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Abstract 

Nitrogen (N) fertilizer is essential to maintain agricultural yields but is susceptible to 

reactions that produce nitrous oxide (N2O), which acts as a greenhouse gas and contributes to 

stratospheric ozone depletion. It is difficult to predict where these reactions will produce ‘hot 

spots’ of high N2O fluxes in a field, as well as the ‘hot moments’ when peak N2O fluxes occur. 

The objective of this study is to relate the N2O fluxes in a Panicum virgatum L. (switchgrass) 

field to N fertilizer application rates of 0, 50, 100, and 150 kg N ha-1 while considering the 

spatial-temporal heterogeneity of the field. In summer 2017, soil samples were collected at 128 

locations in an 8.87 ha switchgrass field in the Cookshire-Eaton region (45°20'N, 71°46'W) of 

Québec, Canada. The sandy loam soil was analysed for standard soil test parameters: macro- and 

micro-nutrient content, pH and texture. In addition, proximal soil sensing was done to 

characterize the elevation, electrical conductivity and surface spectral reflectance. This data was 

used to generate a spatial soil map of the field with R 3.4.1 statistical software and ArcGIS, 

which revealed three distinct management zones in the field. In spring 2018, four N fertilizer 

rates were applied to blocks (15 m wide x 100 m long), which created four blocks with variable 

N fertilizer rates in the high-yielding switchgrass zone and four blocks with variable N fertilizer 

rates in the low-yielding switchgrass zone. Non-flow-through non-steady-state chambers were 

installed (n=3 per block) for manual gas sampling and N2O fluxes were calculated during a 1 h 

period every 7-10 d during the growing season. The experiment was repeated in spring 2019 in 

the same management zones but in newly-selected blocks that had uniform fertilization in the 

2018 growing season. Four N fertilizer rates were applied at random to 4 blocks in the high-

yielding zone, plus 4 blocks in the low-yielding zone, and gas sampling chambers (n=3) were 

placed in new locations in each block. The “hot moments” of N2O flux occurred in the first 30 d 
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after N fertilizer application. Although N2O fluxes differed in the management zones in 2018, 

there were no distinctive “hot spots” in the switchgrass field in the 2019 growing season. 

However, the cumulative N2O emission in each growing season tended to increase with greater 

N fertilizer rates, suggesting that applying more N fertilizer increased the risk of gaseous N loss, 

probably through denitrification. I conclude that precision agriculture techniques based on 

geospatial characterization of agricultural fields may help to calibrate site-specific N fertilizer 

inputs and meet agroenvironmental goals by improving crop production while reducing N2O 

emissions. 
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Résumé 

L'engrais azoté (N) est essentiel pour maintenir les rendements agricoles, mais il est 

susceptible de produire de l'oxyde nitreux (N2O), qui agit comme un gaz à effet de serre et 

contribue à l'appauvrissement de l'ozone stratosphérique. Il est difficile de prédire où ces 

réactions produiront des « points chauds » de flux élevés de N2O dans un champ, ainsi que les « 

moments chauds » de flux élevés de N2O. L'objectif de cette étude est de relier les flux de N2O 

dans un champ de Panicum virgatum L. (panic érigé) aux taux d'épandage d'engrais azoté de 0, 

50, 100 et 150 kg N ha-1, tout en considérant l'hétérogénéité spatio-temporelle du champ. Durant 

l’été 2017, des échantillons de sol ont été prélevés à 128 emplacements dans un champ de panic 

érigé de 8,87 ha dans la région de Cookshire-Eaton (45°20'N, 71°46'O), Québec, Canada. Le sol, 

un loam sablonneux, a été analysé pour les propriétés suivantes : la teneur en macro et 

micronutriments, la conductivité électrique, le pH et la composition de la texture du sol. La 

réflectance spectrale de la surface ainsi qu’une détection proximale du sol mesurant l'altitude et 

la conductivité électrique ont été utilisés pour générer une carte de sol avec le logiciel statistique 

R 3.4.1 et ArcGIS. Cette caractérisation a révélé trois zones de gestion distinctes dans le champ. 

Au printemps 2018, chaque dose d'N a été appliquée aux blocs (15 m de largeur par 100 m de 

longueur), ce qui a créé quatre blocs avec des doses d’N variables dans la zone de panic érigé à 

haut rendement et quatre blocs avec des doses d’N variables dans la zone à faible rendement. 

Des chambres de gaz ont été installées (n = 3 par bloc) pour l'échantillonnage manuel des gaz et 

les flux de N2O ont été calculés pendant une période de 1 h tous les 7 à 10 jours pendant la 

saison de croissance. L'expérience a été répétée au printemps 2019 dans les mêmes zones de 

gestion mais dans des blocs nouvellement sélectionnés qui avaient une fertilisation uniforme au 

cours de la saison de croissance 2018. Quatre taux d'engrais azoté ont été appliqués au hasard à 4 
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blocs dans la zone à haut rendement, et 4 blocs dans la zone à faible rendement. Des chambres 

d'échantillonnage de gaz (n=3) ont été placées à de nouveaux emplacements dans chaque bloc. 

Les « moments chauds » du flux de N2O se sont produits dans les 30 premiers jours après 

l'application d'engrais N. Même s'il y avait des différences entre les flux de N2O dans les zones 

de gestion en 2018, il n'y avait pas de « points chauds » distinctifs dans le champ de panic érigé 

au cours de la saison de croissance en 2019. Cependant, les émissions cumulées de N2O à chaque 

saison de croissance avaient tendance à augmenter avec des taux d'engrais N plus élevés, ce qui 

suggère dose plus élevée d'engrais azoté augmentait le risque de perte de N gazeux, 

probablement par dénitrification. En conclusion, les techniques d'agriculture de précision basées 

sur la caractérisation géospatiale des champs agricoles peuvent aider à calibrer les apports 

d'engrais azoté spécifiques au site et à atteindre les objectifs agroenvironnementaux en 

améliorant la production agricole tout en réduisant les émissions de N2O. 
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General Introduction 

Global climate warming is the result of a surplus of greenhouse gases in the atmosphere that 

trap heat radiating from Earth towards space. Nitrous oxide (N2O) is a potent greenhouse gas 

with a half-life of 120 years and almost 300 times the global warming potential of carbon dioxide 

(CO2) (de Carvalho et al., 2017). Agriculture accounts for approximately 70% of all 

anthropogenic N2O emissions, primarily due to inefficient uptake of nitrogen (N) fertilizer by 

crops (Wile et al., 2014). Denitrification is a major biological process that produces N2O emitted 

from the agricultural sector and is modulated by the availability of substrates (e.g., nitrate and 

available organic carbon) and edaphic factors such as temperature, oxygen concentration and pH, 

which result in variable denitrification rates through the soil profile (Munch & Velthof, 2007). 

Since human management of agricultural land alters substrate availability and edaphic factors, it 

is important to select management practices that will not trigger the denitrification process.  

Managing the nitrogen fertilizer inputs to agricultural fields is the most practical way to 

constrain denitrification and reduce N2O emissions. In North America, mineral fertilizer 

represents 48-55% of the N applied for crop production (Liu et al., 2010). Conventional 

fertilization practices apply a uniform fertilizer rate across fields, without regard for the 

underlying heterogeneity in soil properties. An average N fertilizer rate will deliver too much, 

too little or just enough N fertilizer for different parts of the field. When N fertilizer rates are in 

excess of crop requirements, this may trigger denitrification and cause NO3 loss via leaching, 

while reducing the net profit because N fertilizer lost from the field cannot support crop growth. 

When crops receive insufficient N fertilizer, they will produce less yield and less revenue for the 

agricultural producer. Precision agriculture is a method developed to avoid inefficient 

fertilization practices that uses spatial data to calculate site-specific N fertilizer rates within a 
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heterogeneous field. I hypothesize that site-specific N fertilizer rates will reduce the N2O 

emissions of a field, compared to applying a uniform N fertilizer rate on the field.  

The global objective of my M.Sc. thesis project is to understand how soil spatial 

variability influences the microbially-mediated processes that produce N2O and determine if 

adjusting the N fertilizer rate according to the principles of precision agriculture will lower N2O 

emissions. My general objectives were 1) to describe the site-specific variability of a 

heterogeneous agricultural field under switchgrass (Panicum virgatum L.) production, and 

determine whether a limited number of proximal soil variables could be as effective as 

conventional soil test data in distinguishing the field management zones, and 2) to compare N2O 

fluxes from four N fertilizer rates, and in relationship to auxiliary measurements of spatio-

temporal variability, and 3) to quantify the switchgrass yield relative to N fertilizer application 

and N2O fluxes within each field management zone. This will allow me to understand how 

management zones influence the temporal pattern of N2O flux and determine if precision 

agriculture techniques could lower the N losses from N2O emissions in one field under 

switchgrass production in Québec. 
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Chapter 1: Literature review 

1.1 Agriculture and greenhouse gas emissions 

 Rising methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) concentrations in 

the atmosphere act as greenhouse gases (GHG) that trap radiative energy, thereby affecting the 

global climate and altering weather patterns. Globally, agricultural activities are responsible for 

~5.0–5.8 Gt CO2-eq yr−1 or ~11% of anthropogenic CO2, CH4 and N2O emitted into the 

atmosphere. There is particular concern about the agricultural sources of N2O, which is a potent 

ozone-depleting substance. The agricultural sector produced about 2 Gt CO2-eq yr-1 of N2O in 

2010 and is expected to reach more than 4 Gt CO2-eq yr-1 by 2100 (Gernaat et al., 2015; Frank et 

al., 2018). We need to reduce the N2O emissions and the N2O concentration in the atmosphere 

because its global warming potential is approximately 300 times more than CO2 and it is a 

persistent GHG with a half-life of more than 100 years (Munch & Velthof, 2007).  

Agricultural soils are a major global source of N2O and other GHG because they receive 

fertilizer, are irrigated and are cultivated regularly. All of these activities stimulate the biological 

(microbially-mediated) reactions that generate GHG. Improved agricultural management such as 

site-specific N fertilizer application is expected to reduce N2O emissions. This literature review 

will discuss the soil microbial processes and soil characteristics that are responsible for the N2O 

emissions from agricultural soils.  

 

1.2 Microorganisms and nutrient cycling 

 The gaseous compound N2O, byproduct of microbial reactions in the N cycle, makes a 

major contribution to global climate change. The soil N cycle is mediated by soil 
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microorganisms, whose activities are responsible for virtually all of the N cycling reactions in 

soil (Wrage et al., 2018). When N fertilizers are added to agricultural soil, they are transformed 

through microbial processes. For example, urea, which accounts for approximately 60% of 

global N fertilizer application (Fisher et al., 2016), is solubilized in water and then hydrolyzed by 

the extracellular enzyme urease, which produced by microbial cells. Urea hydrolysis releases 

ammonium carbonate, an unstable compound that chemically decomposes into ammonia (NH3) 

and CO2 before reacting with H+ to produce ammonium (NH4
+) cation (Kiss & Simihăian, 2002). 

Although NH4
+ can be absorbed by crops, it may undergo other biological transformations in 

soil. For example, NH4
+ resulting from the hydrolysis of urea can be oxidized by soil bacteria 

and archaea to produce nitrate (NO3
-) (Fisher et al., 2016). Ammonium oxidation, nitrifier 

denitrification and denitrification are three major soil pathways that produce N2O (Fig. 1-1). It is 

important to note that N2O is generated in the nitrification (aerobic) and denitrification 

(anaerobic) reactions, either as a by-product or direct intermediate of the reaction. Therefore, 

there is always some N2O flux from soil. The magnitude of the N2O flux depends upon the 

availability of substrates and edaphic factors that govern microbial activity. 
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Figure 1-1. Major N2O emission pathways in soil. Adapted from Kool et al. (2011). 

 

1.2.1 Mineralization 

 Mineralization is the enzyme-catalyzed transformation of organic N compounds into 

NH4
+ (Whalen & Sampedro, 2010). Urea, protein, and peptides are just a few examples of 

organic substances that undergo N mineralization through the hydrolysis of these compounds by 

urease, protease and peptidase enzymes. The NH4
+ released from mineralization is used directly 

by plants and microorganisms, or is transformed through the microbially-mediated reaction of 

ammonia oxidation, followed by nitrification reactions. 

 

1.2.2 Ammonia oxidation and nitrification 

Nitrification is a key process in the global N cycle. Nitrification, which transforms 
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ammonia (NH3) into the final product of nitrate (NO3
-), is an energy-generating reaction for 

many soil microorganisms, including bacteria and fungi (Hayatsu et al., 2008). The three-step 

reaction is mediated by ammonia oxidizing bacteria and nitrite oxidizing bacteria (Banning et al., 

2015). Ammonia oxidation by ammonia oxidizing archaea and bacteria is the first, rate-limiting 

step of nitrification (Merbt et al., 2016). Ammonia oxidizing bacteria oxidize NH3 into 

hydroxylamine and subsequently to nitrite (NO2
-) with the ammonia monoxygenase and 

hydroxylamine oxidoreductase enzymes. Nitrous oxide is a byproduct of the ammonia oxidation 

reaction. Nitrite oxidizing bacteria then oxidize the NO2
- into NO3

- with nitrite oxidoreductase.  

This reaction is initiated when ammonia oxidizing bacteria have ample substrate, i.e., 

NH3. In addition to NH3 derived from mineralization of decaying organic matter, N fertilizers 

such as urea are a source of NH3 for ammonia oxidizers. Furthermore, N fertilizers increase plant 

biomass, leading to more photosynthesis and more root exudation, a source of labile organic 

carbon that is readily metabolized by ammonia oxidizing archaea and bacteria, accelerating their 

growth and enzymatic processes, which include N2O production. However, the application of N 

fertilizers is often associated with a significant increase in population sizes of the ammonia 

oxidizing bacteria, which are either better adapted or better competitors for N fertilizer inputs 

than the ammonia oxidizing archaea present within the soil (Cui et al., 2008; Xiang et al., 2017). 

Thus, most of the N2O production in well-aerated agricultural soils is probably related to the 

activity of ammonia oxidizing bacteria. 

 

1.2.3 Nitrifier denitrification 

Ammonia-oxidizing bacteria also produce N2O via nitrifier denitrification, which reduces 

NO2 into N2O and N2 (Wrage-Mönnig et al., 2018). Nitrifier denitrification is catalyzed by nitrite 
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reductase and nitric oxide reductase (Shi et al., 2017). A study using the dual-isotope method, 

which can differentiate between four biological pathways for N2O production using 15N and 18O, 

found that nitrifier denitrification accounted for 39 and 65 % of N2O production in acidic and 

alkaline soils, respectively (Shi et al., 2017). Nitrifier denitrification occurs when oxygen levels 

are < 0.20 mg O2 L
-1 (Li et al., 2018), which is common in microsites of well-drained 

agricultural soils within C-rich particles and aggregates (Seitzinger at al., 2006). More N2O was 

produced from nitrifier denitrification when water-filled pore space was 50-70 % than from 

biological denitrification, which is optimal at ≥80 % water-filled pore space (Kool et al., 2011). 

However, nitrifier denitrification depends upon the substrates supplied by ammonia-oxidizing 

bacteria, which is why ammonia-oxidizing bacteria that received NH4
+ additions produced more 

N2O fluxes (Carey et al., 2016; Meinhardt et al., 2018). A laboratory experiment by Meinhardt et 

al. (2018) with control (0 µmol NH4
+ g soil-1) and amended (40 µmol NH4

+ g soil-1) soils that 

were saturated to ~60% water-filled pore space, ensuring conditions optimal for nitrifier 

denitrification, showed an increase in ammonia oxidizing population (based on amoA gene 

counts) from 2.18 × 106 ± 3.29 × 105 to 9.81 × 107 ± 2.70 × 107 g soil-1 (P = 0.004) in the N 

amended soil and decreased in the control (P = 0.02). Furthermore, the activity of the ammonia-

oxidizing bacteria increased 87-fold in the N-amended soil (amoA transcript abundance, P = 

0.002). In a switchgrass field with plots of unfertilized and synthetic N amendments (9 µmol 

NH4
+ g soil-1 year-1), the ammonia-oxidizing bacteria amoA gene count increased with N 

amendment (P < 0.0001) and was correlated with N2O flux in the N amended (R2 ₌ 0.72, P < 

0.0001) and unfertilized plots (R2 = 0.51, P = 0.002; Meinhardt et al., 2018). Therefore, we 

should expect N2O flux from unsaturated soils due to the combined ammonia oxidation and 
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nitrifier denitrification processes, particularly when ammonium-based fertilizers are applied to 

agroecosystems.  

 

1.2.4 Biological denitrification 

Biological denitrification, hereafter referred to as denitrification, is the sequential 

reduction of NO3
- that produces N2 as a final product, with gaseous NO and N2O as intermediate 

products of incomplete denitrification (Chen et al., 2008).  

NO3
−→NO2

−→NO→N2O→N2 

Biological denitrification is catalyzed by any soil microorganism (bacteria and fungi) that 

possesses the genes that encode for the reductive enzymes, such as nirK and nirS (functionally 

equivalent single-copy genes coding for nitrite reductases) and nosZ (nitric oxide reductase).  

Denitrifiers require a minimum of 5 mg kg-1 soil NO3
- N for this reaction (Conen et al., 

2000). The reaction is optimal at pH 7.0 but is reported in soils with pH 5.0 to 9.0 (Scholefield et 

al., 1997). Soil biological processes, including denitrification, increase at higher soil 

temperatures, resulting in significantly more N2O flux in a sandy loam pasture soil incubated at 

20 oC and 25 oC were significantly higher than those incubated at 10 oC and 15 oC (P < 0.001, at 

24 h of incubation), with cumulative denitrification responsible for the production of 235, 408, 

1027 and 1525 µg N2O-N kg-1 soil, respectively (Abdalla et al., 2009). Biological denitrification 

always occurs under anaerobic soil conditions (Okiobe et al., 2019), meaning that the reaction is 

affected by soil moisture and the oxygen concentration. Therefore, the denitrification ‘hot 

moments’ of high N2O flux from agricultural soils tend to occur in summer, when warmer soil 
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temperatures are recorded, and after rainfall events that create anaerobic conditions (temporarily) 

in the soil.  

 

1.2.5 Respiration resulting from carbon metabolism and consequences for N2O production  

Soil organic matter is the largest terrestrial C pool, containing about 50% C, and responsible 

for the storage of approximately 1500 Pg C in the upper 1 m layer of soils worldwide (FAO & 

ITPS 2015). The C in soil originates from primary producers, which fix CO2 from the 

atmosphere to produce sugars through photosynthesis. The main reaction in the Calvin cycle of 

photosynthesis that reduces CO2 to sugar is the carboxylation of ribulose-1,5-biphosphate 

(Sharkey et al., 2012). This reaction is catalyzed by the Rubisco enzyme, which is present in 

plants, algae and many bacteria. Due to the high N requirement for Rubisco production 

(approximately 20% of total leaf protein is used for Rubisco), supplemental N fertilizer is 

required for non-leguminous agricultural plants, affecting the global N cycle (Sharkey et al., 

2012). While most of the C fixed through photosynthesis is retained in the above- and below-

ground biomass during the growing season, some C will be exuded through the roots and enter 

the soil system. The cultivation of perennial grasses, such as switchgrass with a root:shoot ratio 

of 1.8-6.1, increases soil organic carbon in the top 30 cm of soil by approximately 0.1–1 Mg ha-1 

yr-1, as roots and rhizomes are the primary method for C movement from biofuel crops to soil 

(Anderson-Teixeira et al., 2009). Furthermore, soluble root exudates and non-lignified root litter 

are easily metabolized by microorganisms in the rhizosphere, which emit CO2 from respiration 

when abundant oxygen is present. When respiration is high and depletes the oxygen level in soil 

microsites, the redox conditions become suitable for other biochemical processes, such as N2O 
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production via denitrification and CH4 production by methanogens (Brahmaprakash et al., 2017; 

Shah et al., 2020). Methanogens ferment acetate and use CO2 as an electron acceptor for their 

metabolism process, which releases CH4 as a by-product. Therefore, C cycling processes are 

connected with reactions in the N cycle and need to be considered simultaneously, supporting 

my decision to measure N2O, CO2 and CH4 in agricultural soil. 

 

1.3 Factors contributing to the variation in CO2 and N2O fluxes from soil-plant systems  

 The CO2 and N2O fluxes vary across agricultural fields because field soils are not 

homogeneous. Soil properties are fundamentally deterministic but soil parameters vary across 

spatial and temporal scales (Zou et al., 2018), creating an environment where aerobic and 

anaerobic microbial activities occur simultaneously. However, the pre-dominant aerobic or 

anaerobic activity in any spatio-temporal unit is related to the environmental conditions and 

available energy sources. Understanding the edaphic and environmental factors that influence the 

activities of soil microorganisms can give insight into the ‘hot spots’ and ‘hot moments’ of gas 

emissions. The edaphic factors that are influential for GHG fluxes are soil physical, chemical and 

biological properties, and the most important environmental factors are temperature and rainfall, 

which alter the soil temperature and soil moisture content (Yao et al., 2017). While physical 

properties like soil texture are relatively stable during longer periods of time (e.g., a growing 

season), we expect more spatio-temporal variability in soil chemical and biological properties 

(McDaniel et al., 2017). Short-term changes in soil chemistry, related to the concentration of soil 

organic carbon and nutrients, elicit responses in microbial activity, leading to the production of 

CO2 and N2O gases. The heterogeneity of site-specific properties through space and time, which 
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control CO2 and N2O fluxes in soil-plant systems, must be taken into consideration when 

selecting climate-smart management practices for agriculture. 

 

1.3.1 Topography and soil type 

 Topography influences GHG production because the distribution of water, organic 

matter, microbial populations and various other properties is less at higher slope positions than in 

lower slope positions across agricultural landscapes (Florinsky et al., 2004). The most important 

effect of topography, in determining the occurrence of aerobic vs. anaerobic microsites, is the 

way that topography influences precipitation flow patterns, water accumulation and erosion 

processes (Wiesmeier et al., 2019). Downslope positions have higher denitrifier enzyme activity 

than upslope positions and thus higher potential for denitrification (Florinksky et al., 2004). Field 

studies have found that relief accounted for 51% of the variation in denitrification potential (Li et 

al., 2018). 

 Soil types differ in their respiration and denitrification potential. Denitrification potential 

is highest in peat soils, followed by clay soil, loamy soils and sandy soils that have the lowest 

potential (Munch & Velthof, 2007). Peat soils have at least 60% organic matter, which can 

decompose and provide nutrients required for N2O emissions. Clay soils contain more 

micropores, which may provide more habitat for denitrifiers and support higher denitrification 

potential than loamy soils and sandy soils. Soil type and structure will give an indication of the 

porosity within the soil and thus the capacity of the soil to retain air, organic matter and water. 

 

1.3.2 Soil temperature 

 Soil temperature is positively correlated with increasing rates of GHG emissions. In a 
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subtropical climate study, temperature explained 26-59% of CO2 flux variability across paddy, 

orchard, woodland and upland land-use types (Iqbal et al., 2008). A study of maize, soybean and 

maize-soybean intercropping systems demonstrated that log normalized N2O fluxes and 

temperature were positively associated, with a Pearson correlation coefficient of 0.207 (P < 0.05) 

(Shen et al., 2018). The same study found a Pearson correlation coefficient of 0.614 (P < 0.01) 

for CO2 fluxes and temperature. Proximal soil sensing reveals that soil temperature and moisture 

are better predictors of the emission of CO2 than N2O or CH4 (McDaniel et al., 2017).  

 

1.3.3 Soil moisture 

 Moisture content is an important determinant of soil GHG emissions. Changes in 

moisture content influence the distribution of oxygen in the soil (Linn & Doran, 1984). Although 

N2O emissions occur in both aerobic and anaerobic conditions, a soil that experiences an 

increase in moisture content, as from after a rainfall event, can be expected to emit N2O at a 

higher rate. Fluxes of N2O from agricultural soils are highest after the application of the fertilizer 

and following heavy rainfall events (Monti et al., 2012). When sampling GHGs using soil 

surface gas chambers, it is considered good sampling practice to take chamber headspace 

measurements after soil rewetting events to capture the maximum GHG fluxes from the field.  

 

1.3.4 Soil pH 

 Soil pH is a limiting factor for the growth and activity of soil fauna and flora because it 

changes the efficacy of enzymatic reactions and the availability of nutrients that are metabolized 

and transformed in biogeochemical cycles (Hayatsu et al., 2008). Nitrogen-cycling 
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microorganisms may have a competitive advantage in a particular pH range. For instance, the 

ammonia oxidizer Nitrosospira is more abundant in acidic soils with pH 3 to 6. Denitrification is 

also influenced by the soil pH (Bouwman et al., 2002). Denitrification occurs at slower rates in 

acidic soils than in slightly alkaline soils. The product ratio of N2O:N2 from denitrification is 

influenced by pH; at pH below 8, N2O reductases are supressed and the denitrification cycle is 

not completed, leading to the release of N2O as the dominant product (Kunhikrishan et al., 2016). 

Furthermore, the reactive soil N concentration is lower in acidic soils (pH < 6.5) and in highly 

alkaline soils (pH > 7.5) than in soils with neutral pH conditions. When soil pH deviates from the 

optimal range of pH 6.5-7.5, the inhibition of extracellular proteases and urease involved in N 

mineralization reactions that produce NH4
+, coupled with lower ammonia oxidation and 

nitrification rates, generate less reactive soil N (Kunhikrishan et al., 2016). Therefore, the highest 

N2O fluxes from nitrification occur between pH 6 and 7, and denitrification-mediated N2O fluxes 

are greater from pH 5-8. 

  

1.4 Conclusions and future directions 

In agricultural soils, naturally occurring biological processes like root and microbial 

respiration will produce CO2, while microbial transformation of N substrates can generate N2O. 

Applying more N fertilizer than required by crops increases the likelihood of N2O emissions, but 

this depends upon soil conditions like moisture, temperature, pH, reactive soil N concentration 

and texture, which control the CO2 and N2O fluxes. Developing an in-depth understanding of 

field variability and establishing a monitoring program to track the dynamic ancillary variables 

such as moisture and temperature can support the selection of climate-smart management 

practices that determine the ‘hot spots’ and ‘hot moments’ of CO2 and N2O fluxes.  
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My thesis research involved the characterization of soil variability and delineation of 

homogenous soil zones to identify the variables that contribute to the hot spots and hot moments 

of CO2 and N2O. The objectives of this study were to assess field variability, predict different 

zones in the field that could be susceptible to higher GHG fluxes and evaluate N fertilizer 

application rates on the production of N2O. I hypothesize that the hot spots will occur in the 

wetter areas of the field, 40-80% water-filled pore space, in the lower slope position and has 

slow-draining clay soils, where greater N2O will be produced than the drier hillslope with fast-

draining sandy-loam soils. I hypothesize that the largest hot moment will occur following the 

first major rainfall event after the addition of N fertilizer, and other N2O peaks will be correlated 

with higher N rates, higher precipitation and higher soil temperatures. This study will expand on 

the understanding of field variability and the impacts of N fertilizer additions on GHG emissions. 

This study will help farmers and other agricultural decision makers to create recommendations 

for management practices that are site-specific and encompass an in-depth understanding of field 

variability and conditions.  
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Summary text for the Table of Contents 

Commercial farms are looking for cost-effective ways to apply fertilizers needed by crops. 

Because it is challenging to continually adjust the fertilizer applicator across non-uniform fields, 

the alternative is to set fertilizer rates for distinct management zones. Proximal sensors that 

measure apparent soil electrical conductivity and spectral reflectance were an effective 

alternative to traditional soil fertility testing for delineating the boundaries of fertilizer 

management zones in a perennial switchgrass system. 
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Abstract 

Soil fertility is generally uneven in agricultural fields, meaning that a uniform fertilizer 

application rate could be inadequate or provide excessive nutrients to the crop. Fertilizer 

applicators can be programmed to deliver variable fertilizer rates, but it is computationally 

demanding to adjust the fertilizer metering system continuously across heterogeneous fields. The 

objective of this study was to determine how many input variables are required to distinguish 

fertilizer management zones in a perennial switchgrass field (8.9 ha, located in southern Québec, 

Canada) based on (1) soil physicochemical properties in topsoil (0–20 cm) at 128 locations, (2) 

apparent electrical conductivity in the soil profile at 0.75 m and 1.5 m, and (3) a multispectral 

red, green and blue image of the bare (non-vegetated) soil surface. Apparent soil electrical 

conductivity was measured continuously at depths of 0.75 m and 1.5 m. Four field maps were 

drawn with Management Zone Analyst software, a geostatistical mapping program, and ArcGIS. 

Three management zones were identified in the reference map, which included soil 

physicochemical properties (C:N ratio, total sand, silt, clay, extractable phosphorous, total 

carbon, soil moisture, pH) along with coarse elevation and apparent soil electrical conductivity. 

Maps drawn from the electrical conductivity alone or with multispectral images also had three 

management zones. The definitive map of this field, with three management zones and 73% 

overlap in grouped areas relative to the reference map, used these parameters: electrical 

conductivity (0.75 m and 1.5 m), coarse elevation and the multispectral red, green and blue 

images of the bare soil surface.  

Keywords: geostatistics, humid temperate agroecosystem, nitrogen fertilizer, proximal sensing, 

soil mapping, traditional soil fertility testing. 
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2.1 Introduction 

Soil fertility varies across agricultural fields that have unequal topography, hydrology and 

soil-forming processes, resulting in a non-uniform crop yield. Since the 1990s, advances in 

remote sensing coupled with on-the-go yield monitoring have revealed soil fertility variation at 

the field scale (Pedersen & Lind 2017). Farmers need to describe the variability in soil fertility 

across fields, so they can adjust the fertilizer application rates according to the crop nutrient 

demands and expected yields. Computerized fertilizer application equipment such as the 

GreenStar™ Rate Controller, GreenStar™ 3 2630 and Rate Controller 2000 (Deere & Company, 

Moline, IL) provide control of the fertilizer application rate across the field. However, there are 

limits to the accuracy of this technology. For example, the GreenStar™ Rate Controller 

calculates the application rate from a smoothing function, which will apply fertilizer within 3-15 

% of the rate specified by the operator (Deere & Company 2012). Therefore, there are limitations 

in the ability of variable rate fertilizer applicators to match the nutrient inputs with crop nutrient 

requirements across farm fields.  

Since it is impossible to change the fertilizer application rate for every square meter of 

the farm field, the practical approach is to segregate the field into areas with similar soil fertility, 

known as management zones, and apply a targeted fertilizer rate to each zone. Management 

zones are assumed to have homogenous soil fertility and thus can be treated uniformly with 

respect to fertilizer application. Depending on the delineation method, management zones can be 

selected by calculating and assigning zone values for each data point provided by the user, which 

generates homogenous polygons that group the points according to their zone value. Typically, 

fields are divided into 2 to 4 management zones (Martínez-Casasnovas et al. 2018; Rossi et al. 

2018; Moral & Serrano 2019). In a study on maize production in Colorado (USA), the field was 
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partitioned into 3 management zones drawn with Management Zone Analyst software (Cordero 

et al. 2019). Maize grain yield, N use efficiency and the farmer’s net return were compared in 

each zone that received a targeted N fertilizer rate or the zone-specific, variable N fertilizer rate. 

The uniform N fertilizer rate was suitable in homogenous areas of the field, but the variable N 

fertilizer rate was a better predictor of yield and profitability in areas with greater spatial 

variability because the partial factor productivity could be improved by optimizing the grain 

yield relative to total amount of N supplied (based on crop proximal sensing in areas with <16 m 

spatial range or zone identification with Management Zone Analyst in areas with >100 m spatial 

range; Cordero et al. 2019). 

Soil fertility parameters are often used to delineate management zones. This involves 

testing soil from discrete locations or by proximal soil sensing methods, which reflect soil 

conditions across the field area. Since boundaries are drawn across the field, discrete data like 

soil extractable nutrient concentrations, texture and pH must be transformed into continuous data 

using geostatistical analysis (Chilès & Delfiner 2012). Soil properties can also be estimated 

continuously with ground conductivity meters that rely on electromagnetic induction to monitor 

the apparent soil electrical conductivity. The apparent soil electrical conductivity is correlated 

with the clay content, volumetric water content and temperature (Baas et al. 2014). Although 

ground conductivity meters do not measure soil fertility directly, the apparent soil electrical 

conductivity is correlated with soil fertility indicators such as soil organic matter and cation 

exchange capacity (Moral & Serrano 2019). Furthermore, apparent soil electrical conductivity is 

correlated with crop yield. In a 27 ha field of wheat with 3 management zones, the highest mean 

crop yield of 4.80 t ha-1 was in the management zone with a mean electrical conductivity of 0.74 

dS m-1 and the lowest mean crop yield of 2.22 t ha-1 was in the management zone having a mean 
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electrical conductivity of 5.35 dS m-1 (Yari et al. 2017). Apparent soil electrical conductivity is 

related to soil moisture and salinity, which inhibited growth in the low-yielding management 

zone due to water ponding and salt accumulation.  

Multispectral satellite imagery, such as bare (non-vegetated) soil imagery, is another type 

of continuous data that describes field variability. Multispectral images capture the wavelengths 

of light that are reflected from a surface, i.e., the surface color. Soil moisture and organic matter 

concentration are the main determinants of the spectral properties of bare soils (Fleming et al. 

2004). In an agricultural field, the bare soil color is an indication of water distribution in the field 

because wet or flooded soils have a darker color than dry soil (Vauclin et al. 1982; Ge et al. 

2011; Georgi et al. 2018). Additionally, darker soils are associated with higher fertility and 

higher organic matter concentrations, and bare soil images gave a reliable prediction of soil C 

values (r2=0.97; Chen et al. 2000). Since bare soil images are associated with soil fertility 

parameters, they could be input data for management zone delineation.  

The objective of this study was to determine how many input variables are required to 

distinguish management zones in a heterogeneous switchgrass field (8.9 ha) based on (1) soil 

physicochemical properties in topsoil (0–20 cm) at 128 locations, (2) apparent electrical 

conductivity measured continuously in the soil profile at 0.75 m and 1.5 m, and (3) a continuous 

multispectral red, green and blue image of the bare (non-vegetated) soil surface. The reference 

map in this study was the 10 Variables map developed by important soil properties defined in 

Longchamps and Khosla (2017), which considers the variability associated with soil 

physicochemical properties (C:N ratio, sand, silt, clay, extractable phosphorous, total carbon, 

moisture, pH) along with coarse elevation and apparent soil electrical conductivity (1.5 m). The 

similarity of boundaries and management zones of all other maps, drawn with fewer input 
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parameters, were compared with the reference map. We predicted that the proximal sensing data 

will provide enough information for management zone delineation, thereby reducing the need for 

time-consuming and costly soil testing. 

 

2.2 Materials and methods 

2.2.1 Site description 

The experimental field is on a predominantly clay loam soil in the Cookshire-Eaton 

region (45°34' N, 71°78' W) approximately 10 km southeast of Sherbrooke, Québec Canada. 

Field soil is classified as a Podzol (Soil Classification Working Group 1998). The site receives 

approximately 1000 mm of precipitation annually with about 700 mm of precipitation from April 

to October (Environment Canada 2017). Switchgrass (Panicum virgatum L. cv Cave-in-Rock) 

was established in 2008, cultivated continuously and harvested once a year.  

  

2.2.2 Soil sampling and physicochemical analysis 

Soil (0-20 cm) was sampled with a soil probe (4 cm diameter) on 25 May 2017 from 128 

geo-referenced locations, recorded using an Arrow 200 GNSS Receiver with real time kinetic 

precision (Eos Positioning Systems, Terrebonne, Québec). Sampling locations were pre-

determined with a stratified random sampling design (Dutilleul 2011), illustrated in Fig. 2-1. 

Samples were air-dried and sieved (<2 mm) before analysis. Soil pH was determined in 1:1 

soil:deionized water slurries. Total carbon, total nitrogen and the C:N ratio were measured with a 

vario MACRO cube analyzer (Elementar, Langenselbold, Germany). Extractable nutrients (P, K, 

Ca, Mg, Al, Fe, Cu, Zn and Mn) in Mehlich III solution (1:10 soil:extractant) were analyzed with 
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the Optima 4300™ DV ICP-OES an ICP analyzer (PerkinElmer Inc., Waltham, MA). Soil 

physicochemical parameters are described in Table 2-1. 

 

 

Figure 2-1. Soil sampling locations in an 8.9 ha switchgrass field in southern Québec, Canada. 

The sampling pattern was a random within grid sampling design. The map was drawn in ArcMap 

(version 10.4.1) and the bare soil image was taken from Google Earth Pro (version 7.3.2.5776). 

  



22 
 

 

Table 2-1. Soil physicochemical properties (0–20 cm) in an 8.9 ha switchgrass field in 

southern Québec, Canada. Data are from 128 soil samples collected in May 2017. 

 Physicochemical Property Unit MinA MaxB Mean SDC CVD 

pH (1:1) 5.71 6.94 6.25 0.26 4.2 

Clay g kg-1 46.4 133 74.8 15.2 20 

Sand g kg-1 237 712 425 113 27 

Silt g kg-1 181 712 500 124 25 

Total Carbon (C)  g kg-1 16.3 63.3 30.4 8.05 27 

Total Nitrogen (N) g kg-1 1.19 4.42 2.23 0.549 25 

Phosphorus (P) mg kg-1 8.21 131 40.1 23.7 59 

Potassium (K) mg kg-1 32.8 227 72.3 27.7 38 

Magnesium (Mg) mg kg-1 24.4 147 69.9 22.9 33 

Iron (Fe) mg kg-1 129 642 352 117 33 

Copper (Cu) mg kg-1 2.07 11.8 3.90 1.31 34 

Zinc (Zn) mg kg-1 2.18 8.77 4.73 1.54 33 

Manganese (Mn) mg kg-1 11.3 293 74.9 59.7 80 
 

AMin: Minimum. BMax: Maximum. CSD: Standard Deviation. DCV: Coefficient of Variation (%) 
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2.2.3 Apparent soil electrical conductivity and multispectral measurements 

Apparent soil electrical conductivity and coarse elevation were determined by proximal 

scanning with an EM38-MK2 (Geonics Limited, Mississauga, ON, Canada) to depths of 0.75 m 

and 1.5 m in the soil profile. The ground conductivity meter was pulled across the field along 

sequential east-west transects, starting at the northwest corner of the field and ending at the 

southeast corner of the field. The average distance between sampling scans was 9.74 m.  

A red, green and blue image of the bare soil surface was extracted from Google Earth Pro 

(version 7.3.2.5776, Google, Mountain View, CA) using the “Historical imagery tool” to identify 

an image showing bare soil and the “Save image tool” to download the image in high definition 

(i.e., 1920 x 1080 pixels). Geo-rectification in ArcMap 10.4.1 (ESRI, Redlands, CA) matched 

the multispectral image to the georeferenced field boundaries. The image that was transferred 

into ArcMap contained the multispectral red, green and blue values, which were used as 

continuous input data in Management Zone Analyst.  

 

2.2.4 Geostatistical analysis of soil physicochemical properties 

Spatial distribution of geolocated soil physicochemical parameters was described with a 

geostatistical method, following the procedure of Longchamps et al. (2015) in which 

autocorrelation among soil properties was evaluated with Moran’s I statistic, partial Moran’s I 

and P-values (Moran 1948). Soil properties that were autocorrelated (P < 0.05) were used for 

data interpolation by semi-variogram analysis and kriging. The spherical, exponential and 

Gaussian semi-variogram models were tested to determine the best-fit semi-variogram model for 

each soil characteristic with R statistical software (version i386 3.4.1, Comprehensive R Archive 

Network, Vienna, Austria). The semi-variogram model with the lowest Akaike information 
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criterion value was considered the best-fit model (Webster & McBratney 1989), which was 

different for each autocorrelated soil physicochemical property in this study. Kriging following 

the procedure of Tripathi et al. (2017) produced a continuous estimate of each soil 

physicochemical property in unsampled areas of the field. The accuracy of predicted and actual 

measurements of each soil characteristic was cross-validated according to Longchamps et al. 

(2015).  

Next, the interpolated map layers (i.e., one layer for each soil characteristic) were 

generated and transferred into ArcMap (Fig. 2-2, Fig. 2-3). A composite layer, which is a meta-

file with all field data, was derived using the Fishnet tool from ArcMap. This tool generated 

points at 10 m intervals that linked the value for each soil characteristic (from the interpolated 

kriging map of the field) into a common vector file, and point values were deduced with the 

Spatial Analyst tool in ArcMap. Management Zone Analyst allows the user to select properties 

from the composite layer, giving a choice about which of the soil physicochemical properties are 

included in a particular map. 

 

2.2.5 Management zone delineation  

Management zones were delineated with Management Zone Analyst (version 1.0, USDA 

ARS, https://www.ars.usda.gov/research/software/). Parameters that could describe the field 

heterogeneity were the continuous data from soil physicochemical maps (one map for each soil 

variable), the apparent soil electrical conductivity at two depths (0.75 m and 1.5 m), field 

elevation map and the multispectral image of the field. All maps were drawn using the software 

default parameters (Fridgen et al. 2004), described in Table 2-2.  
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Post classification analysis in Management Zone Analyst generates graphs that are used to 

select the appropriate number of zones for a field based on the normalized classification entropy 

and the fuzziness performance index. Normalized classification entropy measures the 

homogeneity of the zones while the fuzziness performance index measures the degree of 

separation between the zones, which ranges from 0 to 1. If the fuzziness performance index 

value is closer to 0, then the zones are very distinct (i.e., the properties in one zone have different 

values from the properties in the other zone). Ideally, we wanted ≤ 3 management zones with 

different variable N fertilizer rates so the farmer could set a reasonable number of target N 

fertilizer rates to be delivered with a conventional fertilizer applicator (calibrated manually).  

Four maps were produced with Management Zone Analyst. The Reference map set zone 

boundaries with the ten parameters: the C:N ratio, sand, silt and clay content, extractable 

phosphorous concentration, total carbon concentration, soil moisture, pH, coarse elevation and 

apparent soil electrical conductivity (1.5 m). The second map drawn from the apparent soil 

electrical conductivity (ECa 0.75 m and ECa 1.5 m) and coarse elevation data was called the ECa 

based map. The third Simple map included coarse elevation, ECa 0.75 m, ECa 1.5 m and 

multispectral images of red, blue and green bands. The fourth Texture map was generated from 

the total sand, silt and clay content.  
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Table 2-2. Parameters used to delineate map boundaries with Management Zone Analyst 

software. 

Parameter Selected value Notes 

Measure of similarity  Mahalanobis distance Covariance ≠ 0 

Fuzziness exponent 1.30 Limited membership sharing 

Maximum number of iterations  300  

Convergence criterion 0.0001  

Minimum number of delineated zones 2  

Maximum number of delineated zones 6  

 

2.2.6 Comparing alternative maps to the Reference map  

The data points were grouped with a fuzzy c-means unsupervised clustering algorithm, 

which accounted for continuous data by allowing each data point to be partial members of any 

group and terminated when the convergence criterion was met. Every map drawn with 

Management Zone Analyst had 878 coordinates that were assigned a management zone value of 

1, 2 or 3, based on the unsupervised clustering algorithm. Each alternative map (ECa based, 

Simple, Texture) was compared to the Reference map to determine (1) if they had the same 

number of management zones and (2) if the coordinates were classified in the same management 

zone. The classification of coordinates in the management zones was determined with the 

countif() function in Excel (Microsoft Corporation, Redmond, WA). The percentage of 

coordinates that matched in the Reference and alternative maps was expressed as the % 

similarity between the two maps.  

 

2.3 Results 

2.3.1 Spatial autocorrelation of soil physicochemical properties  

The 8.9 ha agricultural field was spatially heterogeneous, based on the switchgrass yields of 

5 to 11 t dry matter ha-1 across the field (personal communication with the farmer), visual 
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appearance and the measured soil test and proximal sensing data in this study. Most soil 

physicochemical properties in the agricultural field were spatially auto-correlated (Moran I, P < 

0.05). The only soil parameter that was not autocorrelated was potassium (K), which had a 

concentration of 32.8 to 149 mg K kg-1 in 127 samples and one outlier that contained 227 mg K 

kg-1 (Table 2-1), so it was excluded from the spatial analysis. Autocorrelated soil variables were: 

ECa 0.75 m, ECa 1.5 m, clay, sand, silt, pH, total carbon, total nitrogen, phosphorous, calcium, 

aluminum, cadmium, copper, magnesium, zinc and manganese. Kriging of autocorrelated soil 

variables showed two distinct sections of the field along a north to south transect, and this was 

associated with a soil texture gradient (e.g., see the variation in total sand content, Figure 2-2). 

These visual observations provide insight into the variability, which occurs gradually across the 

field, not in discrete areas of the field.  

There was less variability in soil fertility parameters than the soil texture. For example, soil 

pH varied from 5.7 to 6.9 (Fig. 2-3) with some scattered zones of low and high pH. The variation 

in pH in this field probably did not affect switchgrass growth, since switchgrass growth is 

optimal from pH 5.0-8.0 and this crop is relatively insensitive to changes in soil pH (Martel & 

Lalonde 2018; Wolf & Fiske 2009). The lack of variation in soil pH and most other soil fertility 

indicators justify excluding these soil physicochemical parameters from management zone maps.  
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Figure 2-2. Total sand content, determined by geostatistical interpolation, in an 8.9 ha 

switchgrass field in southern Québec, Canada. 
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Figure 2-3. Soil pH determined by geostatistical interpolation, in an 8.9 ha switchgrass field in 

southern Québec, Canada. 

 

2.3.2 Management zones  

The Reference map and alternative maps had 3 management zones (Figs. 2-4, 2-5, 2-6 

and 2-7). The Reference map was similar to the Simple map, since 73% of the coordinates were 

in the same management zone but differed from the ECa based map and the Texture map. When 

comparing the Reference and Simple maps, there was 79% similarity in the coordinates of Zone 

1, 87% similarity in Zone 2 and 58% similarity in Zone 3 (Figs. 2-4 and 2-6). Descriptive 
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statistics of selected soil physicochemical properties in Zone 1 and Zone 3 of the Simple map are 

given in Table 2-3. 

 

 

Figure 2-4. Reference map of an 8.9 ha switchgrass field in southern Québec, Canada. The map 

was drawn from 10 variables, including 8 soil physicochemical properties (C:N ratio, the total 

sand, silt and clay content, extractable phosphorous concentration, total carbon concentration, 

soil moisture content and pH) along with coarse elevation and apparent soil electrical 

conductivity (ECa 1.5 m), with Management Zone Analyst. 
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Figure 2-5. ECa based map of the 8.9 ha switchgrass field in southern Québec, Canada. The map 

was drawn from the coarse elevation and apparent soil electrical conductivity (ECa 1.5 m and 

ECa 0.75 m) data with Management Zone Analyst. 
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Figure 2-6. Simple map of the 8.9 ha switchgrass field in southern Québec, Canada. The map 

was drawn from the coarse elevation, apparent soil electrical conductivity (ECa 1.5 m and ECa 

0.75 m) and the multispectral red, green and blue images of the bare soil surface with 

Management Zone Analyst. 
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Figure 2-7. Texture map of the 8.9 ha switchgrass field in southern Québec, Canada, based on 

sand, silt and clay content, drawn with Management Zone Analyst. 

 

 

 

 

 

 

 

 

 



34 
 

Table 2-3. Descriptive statistics for selected physicochemical properties, apparent electrical 

conductivity and coarse elevation in Zones 1, 2 and 3 of the ‘Simple’ map of an 8.9 ha switchgrass 

field in southern Québec, Canada. The ‘Simple’ map is illustrated in Fig. 6. 

Management 

Zone Parameter Unit Mina Maxb Mean SDc CVd 

Zone 1 

Sand g kg-1 286 445 374 32.2 9 

Silt g kg-1 464 664 554 38.6 7 

Clay g kg-1 49.8 90.0 74.3 6.31 8 

Total carbon  g kg-1 23.9 38.9 32.9 2.37 7 

Mehlich-3 extractable P mg kg-1 12.0 60.7 24.4 7.30 30 

pH unitless 5.85 6.84 6.17 0.157 3 

ECa 0.75 mS m-1 41.4 46.6 43.6 0.92 2 

ECa 1.5 mS m-1 9.69 24.0 14.8 1.36 9 

Elevation m 234 245 240 2.52 1 

Zone 2 

Sand g kg-1 262 559 382 68.5 18 

Silt g kg-1 334 703 550 80.3 15 

Clay g kg-1 35.5 104 69.8 12.1 17 

Total carbon g kg-1 23.4 54.2 32.4 5.74 18 

Mehlich-3 extractable P mg kg-1 23.0 110 50.4 19.4 39 

pH unitless 5.82 6.73 6.24 0.203 3 

ECa 0.75 mS m-1 42.7 50.8 46.4 1.17 3 

ECa 1.5 mS m-1 5.92 23.9 16.2 2.02 13 

Elevation m 233 241 237 1.40 1 

Zone 3 

Sand g kg-1 398 684 528 85.6 16 

Silt g kg-1 210 530 393 101 26 

Clay g kg-1 53.0 139 80.0 19.7 25 

Total carbon g kg-1 18.0 34.4 24.7 2.87 12 

Mehlich-3 extractable P mg kg-1 23.2 88.0 46.0 10.3 22 

pH unitless 5.73 6.80 6.32 0.22 3 

ECa 0.75 mS m-1 42.4 49.2 45.3 1.19 3 

ECa 1.5 mS m-1 13.1 22.7 17.7 1.58 9 

Elevation m 231 240 235 1.74 1 

 
AMin: Minimum. BMax: Maximum. CSD: Standard Deviation. DCV: Coefficient of Variation (%) 

 

2.4 Discussion 

2.4.1 Site-specific management zone delineation  

Our findings confirm that proximal soil sensing is appropriate to describe the spatial 

variability in this 8.9 ha switchgrass field. Like the Reference map, the maps derived from 

proximal sensing data, i.e., the Simple map and the ECa based map, identified three management 
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zones. As many producers continue to adjust their fertilizer applicator manually rather than with 

automated on-the-go metering systems, it is considered to be more practical to identify 2 to 4 

management zones per field (Shukla et al. 2017; Rossi et al. 2018; Martínez-Casasnovas et al. 

2018; Moral & Serrano 2019). Therefore, three management zones is a reasonable number for 

this field, based on the producer’s goal of achieving a consistent, high switchgrass yield in this 

heterogeneous field with a reasonable investment of time and labor (i.e., to calibrate the fertilizer 

equipment and apply the target fertilizer rate to each zone) for this commercial farm operation. 

Proximal soil sensing data gave a robust estimate of the management zone boundaries in 

this field. While the Reference map relied on soil physicochemical parameters, most of which 

were derived from traditional soil sampling and testing methods, the ECa based map was drawn 

from proximal soil sensing data and the Simple map combined proximal soil sensing and spectral 

reflectance data. The definitive feature of the Simple map was the inclusion of multispectral red, 

green and blue images of the soil surface, along with topographical (coarse elevation) and 

hydrological (apparent soil electrical conductivity) features. Spectral reflectance at the soil 

surface is strongly correlated with soil carbon and nitrogen levels, and to a lesser extent with the 

soil textural properties in the surface layer (Ahmadi et al. 2021). Furthermore, color images of 

the soil surface taken with the digital camera of a cell phone camera are associated with the soil 

organic matter level and soil moisture content (Taneja et al. 2021). This suggests that the 

multispectral images included in the Simple map were useful for the proxy measurement of soil 

physicochemical properties like the C:N ratio, total carbon, sand, silt and clay content, as well as 

the soil moisture content, which were included explicitly in the Reference map. 

Zones 1 and 2 showed good correspondence (±21% difference) between the Reference 

map and the Simple map. Fluctuations in the total carbon level and sand content were major 
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sources of variation in these zones, and these characteristics were described by direct 

measurement of total carbon and sand in the Reference map and by proxy with the spectral 

reflectance data in the Simple map. However, there was 42% difference in group classification of 

the coordinates of Zone 3 in the Reference and Simple maps. Zone 3 had a higher sand content 

and less total carbon compared to the other zones, which could affect the interpretation of 

spectral reflectance data that is strongly correlated with soil carbon and soil organic matter 

measurements (Ahmadi et al. 2021; Taneja et al. 2021). This observation is further evidence that 

spectral reflectance data in the Simple map described heterogeneous features related to soil 

carbon, but whether spectral reflectance was more strongly associated with the total carbon or 

soil organic matter level at this site remains to be determined, since soil organic matter was not 

measured in this study. We conclude that spectral reflectance data can describe the spatial 

variation in soil fertility of zones with 23 to 54 g total carbon kg-1 but may not fully represent the 

inherent soil heterogeneity in zones with lower total carbon content. 

 

2.4.2 Management Zone Analyst, a practical tool to make maps from proximal soil sensing data 

Proximal soil sensing is a way to describe soil spatial variability because it is associated 

with soil physicochemical parameters and other site-specific factors that are responsible for the 

heterogeneity in farm fields. Shaner et al. (2008) argued that ECa is the most important variable, 

other than historical yield, needed to delineate management zones. We agree with this statement 

because we found greater overlap of the Reference map with the Simple and ECa based maps, 

both of which included ECa measurements, than the Texture map, which did not. However, we 

acknowledge that ECa 1.5 m was included in the Reference map, meaning that it was already 

adjusted for the underlying hydrologic processes in these fields. Still, it was relatively simple and 
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cost-effective to collect the proximal soil sensing data for this study. For example, collection and 

processing of ECa and multispectral imagery data takes no more than 2 wk. One pass of the 

EM38-MK2 meter provided information on hundreds of points of elevation and ECa 

continuously across a field, and the data can be used as direct input to the spatial mapping 

software. This differs from soil physicochemical parameters, which must be taken from discrete 

locations and analyzed in a certified laboratory.  

After the continuous spatial soil input data is collected or generated, it can be analyzed by 

Management Zone Analyst. Users can compare spatial statistics and ranges of grouping 

recommendations to determine the number of management zones that represent the field 

variability for practical agronomic actions. Once data was collected and processed, it took < 7 d 

to compare the zone delineation options using Management Zone Analyst. Management Zone 

Analyst could be improved by linking to a library with soil fertility groups for a particular 

geographical location, allowing the user to classify zones as low, medium or high fertility, to 

suggest lime application rates or organic amendments that could be helpful, and potentially to 

identify zones that are at a greater risk of emitting greenhouse gases, soil erosion and nutrient 

losses. Another possibility would be to add algorithms to generate and compare maps from field-

based and proximal soil sensing, to reveal the root causes of soil heterogeneity in fields.  

Proximal soil sensing with ECa and multispectral imagery can set appropriate boundaries 

for management zones, but more research is required to support the wide use of these methods as 

maps generated from these indirect measurement techniques are based on correlations rather than 

direct information about soil properties. It will be important to continue discrete soil sampling 

and testing in parallel with proximal soil sensing to produce more robust estimates of soil spatial 

variation across many soil types and agro-climatic conditions (Mendes et al. 2019). We 
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recommend continued study of ECa and multispectral imagery to validate the relationships 

between these proximal data and soil physicochemical properties, for better future predictions of 

soil fertility and productivity across heterogeneous farm fields. 

 

2.5 Conclusion 

Farmers who wish to deploy variable-rate fertilizer technology in their fields are often 

discouraged by the fact that traditional soil mapping can be a time-consuming and expensive 

process that requires the collection and analysis of hundreds or thousands of soil samples to 

identify soil fertility gradients. This study demonstrated that proximal soil sensing data could 

provide robust information to set the boundaries of management zones. The proximal data from 

ECa, coarse elevation and multispectral imagery produced a Simple map that was comparable to 

the Reference map, with 58 to 87% correspondence in the area of three management zones 

between the maps. Multispectral images of the soil surface may represent the total carbon level, 

which was as much as 3 times lower in the sandier zone of the switchgrass field under study. 

While such proximal soil sensing datasets hold promise for partitioning management zones, the 

spectral reflectance measurement seems to be sensitive to the soil carbon or soil organic matter 

level, although this needs to be verified in other locations and production systems. We 

recommend that agricultural practitioners integrate proximal soil sensing in their spatial maps, 

since these measurements are relatively inexpensive and easy to incorporate into management 

zone analysis. 
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Connecting Paragraph 

In Chapter 2, I established that the agricultural field selected for my study was 

heterogeneous in its soil physicochemical properties, apparent soil electrical conductivity and 

spectral images. I delineated three management zones for the field, based on their elevation, soil 

hydrology (derived from the apparent soil electrical conductivity) and color (determined from the 

multispectral red, green and blue images of the bare soil surface). In Chapter 3, I will use my 

definitive field map to design a field experiment with replicated N fertilizer treatments in each 

management zone. The purpose of this experiment is to evaluate the effect of N fertilizer rates on 

N2O emissions and switchgrass yield.  
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Abstract 

Nitrogen (N) fertilizer is essential for crop production but is susceptible to reactions that 

produce nitrous oxide (N2O), a potent greenhouse gas. Matching the N fertilizer inputs to crop N 

requirements should reduce the amount of reactive N that is lost from the agroecosystem as N2O. 

It is difficult to predict where these reactions will produce ‘hot spots’ of high N2O fluxes in a 

field, as well as the ‘hot moments’ when peak N2O fluxes occur. The objective of this study was 

to determine if applying variable rates of N fertilizer to heterogeneous zones would reduce the 

N2O emissions from a Panicum virgatum L. (switchgrass) field. Four N fertilizer application 

rates of 0x, 1x, 2x and 3x were applied to blocks (15 m x 100 m) in the high-yielding switchgrass 

zone and the low-yielding switchgrass zone of the field. Then, the N2O fluxes were determined 

by sampling headspace from non-flow-through, non-steady-state chambers (n=3 per block) every 

7-10 d during the growing season. The “hot moment” of peak N2O flux occurred within 30 d of 

N fertilizer application, after rainfall events. Although N2O fluxes differed in the management 

zones in 2018, there were no distinctive “hot spots” in the switchgrass field in the 2019 growing 

season. Cumulative N2O emission tended to increase when higher N fertilizer rates were applied, 

suggesting that applying more N fertilizer increased the risk of gaseous N loss, probably through 

denitrification. In conclusion, geospatial analysis of agricultural fields can identify soil zones that 

are susceptible to N2O fluxes, although the magnitude of those fluxes depends upon N fertilizer 

rates, climatic conditions and cropping systems.  

 

3.1 Introduction 

Agricultural crops are generally fertilized with mineral N fertilizer to achieve yield 
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targets, but the soluble NH4
+, NO2

- and NO3
- released from N fertilizer are susceptible to 

undergo biological reactions that produce N2O. Since the N2O emissions increase exponentially 

as the N fertilizer rate increases, according to a meta-analysis of 84 agricultural fields 

(Shcherbak et al., 2014), this means that N2O losses are more likely when more N fertilizer is 

applied. Consequently, it is necessary to optimize the N fertilizer application to reduce the risk 

that reactive N from fertilizer will undergo N2O producing reactions. Optimization of the N 

fertilizer application must be done on a site-specific basis to closely match the N fertilizer input 

with the crop N requirements, thereby avoiding an excess of reactive N that can be biologically 

transformed to N2O.  

Applying a variable rate of mineral N fertilizer is an effective way to control N2O 

emissions and N use efficiency in agricultural field. For instance, in low yielding zones of a 

maize field, site-specific variable rate N fertilizer application zones applied with 125 kg N ha-1 

reduced N2O release by 34% with equal crop yields to control treatments applied with 150 kg N 

ha-1 (Sehy et al., 2003). The low yielding zones in Sehy et al. (2003) were on a rounded hilltop 

and the reduction in N2O release from the lower fertilization rate likely resulted from N2O being 

directly related to soil NO3
- content as waterlogging, which increased N2O release in high 

yielding footslope position of the field, was not an issue at the hilltop. Schwalbert et al. (2019) 

found that adjusting the N fertilizer rate in a heterogeneous agricultural field improved the N 

uptake (p < 0.05) in high yielding management zones and had an interaction with the grain yield 

(p < 0.05) of wheat in different management zones. In this study, variability in the field was 

characterized by apparent electrical conductivity (ECa), topographic features (elevation and 

slope) and plant attributes (wheat vegetation index and maize grain yield). The management zone 

effect on plant N uptake was found when the application rate was 120 and 160 kg N ha-1, when 
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plant N is less reliant on soil mineralization. However, there was no increase in plant N uptake in 

low yielding management zones, regardless of fertilizer application rate. When a constant N 

fertilizer rate is applied, the soil-plant system may tend to have excessive N, which is susceptible 

to leaching, denitrification and volatilization. Since additional N fertilizer application does not 

always result in increased N uptake and grain yield, Schwalbert et al. (2019) advocate for 

variable rate N fertilizer application. They found that variable N fertilizer application can reduce 

N2O emissions across management zones with distinct soil hydrology. These studies suggest that 

variable rate N fertilizer application can potentially reduce N2O emissions in fields with variable 

topography and hydrologic conditions. Although this may be true in annual crop production 

systems, it still needs to be evaluated in perennial cropping systems such as those with 

permanent grass cover like the switchgrass field described in Chapter 2.  

The objectives of this study were to (1) evaluate N2O fluxes in response to the application 

of variable rates of N fertilizer in two management zones within a switchgrass field, (2) describe 

spatial variation in N2O fluxes in relation to the inherent variability in soil physicochemical 

properties and crop growth, and (3) evaluate the temporal variation in N2O fluxes in relation to 

environmental variables (e.g., soil moisture, soil temperature, precipitation). I hypothesize that 

(1) the control of 0 kg N ha-1 will have significantly lower N2O emissions than the other three 

fertilizer rates and (2) that the management zone with greater soluble N concentration (due to 

less plant growth and higher N fertilizer rates) will produce more N2O during periods when the 

field is temporarily waterlogged (i.e., after rainfall). 
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3.2 Materials and Methods 

3.2.1 Site description 

The experimental site was located in the Cookshire-Eaton region (45°34' N, 71°78' W) 

approximately 10 km southeast of Sherbrooke, Québec, Canada. The field soil is classified as a 

Podzol with a sandy-loam texture, based on the field average of 75 g clay kg-1 and 425 g sand kg-

1. The site receives about 1000 mm of precipitation annually with approximately 700 mm of 

precipitation occurring from April to October (Environment Canada, 2017). The field has been 

continuously cultivated with switchgrass (Panicum virgatum L. cv Cave-in-Rock) since 2008. 

The switchgrass is harvested once a year, in May.  

 

3.2.2 Experimental design 

The switchgrass field had 3 distinct management zones (Chapter 2), and zones 1 and 3 

were chosen for this study. The area of Zone 1 and Zone 3 were both approximately 2.22 ha-1. 

Next, this area was divided into eight treatment strips, each approximately 100 m x 15 m. The 

treatments were N fertilizer rates, assigned at random to strips in 2018 and repeated in the same 

strips in the second growing season, 2019. The N fertilizer was granular urea (46-0-0) broadcast 

via a tri-disk centrifugal spreader across the strip at rates of 0, 16.5, 33, 49.5 kg N ha-1 on 31 

May 2018 and 0, 50, 100, 150 kg N ha-1 on 18 June 2019.  

   

3.2.3 Gas sampling and analysis 

A grid design was used for gas sampling, with bases spread out in an equal grid distance 
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15 m apart from one another. Bases were installed directly, within 1 h after fertilizer was applied 

to zone 1 and zone 3, in both sampling years. A total of 24 bases, with 12 bases per zone and n=3 

per strip, were installed in the field using a GPS (Arrow Series GNSS Receiver, EOS Positioning 

Systems, Terrebonne, QC) with real-time kinematic centimeter-level positional accuracy. In 

2019, the base locations were displaced 15 m to the east of the 2018 base locations to reduce the 

impacts of the previous sampling year on GHG measurements, compaction around the gas 

sampling base, etc. 

Gas fluxes were measured using non-flow-through non-steady-state chambers composed of a 

chamber cover and base. The plexiglass base was 0.56 m x 0.56 m x 0.17 m (W x L x H), 

inserted to a depth of 5 cm. On gas sampling dates, the plexiglass chamber cover (0.565 m x 

0.565 m x 0.05 m) was placed on top of the base, creating a headspace of 41.71 L. The bottom of 

the chamber cover was lined with closed cell insulating foam tape (1.3 cm, Climaloc, 

Mississauga, ON) to create an airtight seal between the top of the base and the bottom of the 

chamber cover. The chamber cover had a sampling tube (0.5 cm internal diameter, 15 cm long) 

in one corner and a ventilation tube (1.5 cm internal diameter, 30 cm long) in the opposite corner 

to equilibrate the pressure within the chamber with fluctuations in outside atmospheric pressure. 

Reflective insulation on the chamber covers reduced temperature differences between the 

chamber headspace and the surrounding atmosphere.  

Gas fluxes were measured periodically from May to August in 2018 and June to August in 

2019. Generally, the headspace gases were collected every 6-10 d, within 48 h of a major rainfall 

event (> 0.5 mm). During a dry period from July to August 2018, the gas samples were collected 

every 10-15 d. Three air samples were collected to establish the atmospheric concentration of 

greenhouse gases, prior to sampling gas from the chamber headspace. Chamber covers were 
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placed on top of the base, the headspace gases were sampled after 0, 15, 30, 45 and 60 min, and 

then the chamber covers were removed until the next gas collection date. Gas sampling occurred 

between 8:00 to 14:00 to constrain the diurnal variation in gas fluxes. Headspace gas was 

collected using a 20 mL plastic syringe and injected into pre-evacuated 12 mL glass Exetainer™ 

(Labco, High Wycombe, UK) with double wadded septa.  

The N2O, CO2 and CH4 concentration in gas was analyzed with a Bruker 450 gas 

chromatograph (Bruker Corporation, Billerica, MA, USA) within 14 d of sample collection. The 

gas chromatograph uses an electron captor detector (operating at 350 ºC) and a flame ionization 

detector (operating at 300 ºC). Two field air samples (collected at the same time and location of 

chamber sampling) and two gas control samples (a. 0.34 ppm N2O, 1.19 ppm of CH4, 346 ppm 

of CO2 and b. 1.09 ppm N2O, 3.03 ppm CH4, 990 ppm CO2) were included with each batch of 

field sampled exetainers.  

 

3.2.4 Gas flux calculations and seasonal emissions 

Flux of N2O (µg N2O-N m-2 min-1) and flux of CO2 (µg CO2-C m-2 min-1) were determined 

for each chamber on each sampling date, based on five headspace gas samples (0, 5, 10, 20 and 

30 min after placing the chamber cover), with the HMR package (v1.0.0, Pedersen, 2019), in the 

statistical software R (version i386 3.4.1, Comprehensive R Archive Network, Vienna, Austria), 

was used to calculate the gas fluxes of N2O and CO2 (FHMR). The flux calculation method, linear, 

non-linear (HMR) or no flux, was selected on the recommendation of the HMR package. Fluxes 

were assumed to be valid if there was a gradual increase in CO2 concentration in the headspace 

from 0 to 30 min after placing the chamber cover. If the CO2 concentration oscillated or 
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decreased with time after placing the chamber cover, the data was manually evaluated to 

determine if this was due to the presence of outliers or data errors. We removed outliers, e.g., 60 

min measurements lower than the 0 min measurement when all chamber concentrations were 

increasing after 0 min, before re-analyzing the CO2 and N2O flux from n < 5 data points with the 

HMR package. There were 92 outliers among the 4800 timepoints in the gas flux database. The 

HMR flux (FHMR) was corrected with the daily air pressure value according to Rochette & 

Bertrand (2007) where 

𝐹 = 𝐹𝐻𝑀𝑅  (1 −
𝑒𝑝

𝑝
) 

  where: 

  F = corrected gas flux (µg N2O-N m-2 min-1 or µg CO2-C m-2 min-1) 

  FHMR = HMR flux value 

  ep = average partial pressure of water vapor (kPa) 

  p = average station pressure (kPa) 

The ep and p for each chamber was based on the average pressure measured in 2 representative 

chambers (designated at random) during each headspace sampling period with a Kestrel Drop D3 

(Kestrel Meters, Boothwyn, PA) data logging device. Cumulative emissions of N2O (mg N2O-N 

m-2) and CO2 (g CO2-C m-2) were calculated using linear interpolation between sampling dates. 
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3.2.5 Ancillary measurements 

Weather conditions were monitored from May to October (2018 and 2019) with a 

HOBO® RX3000 (Onset Computer Corporation, Bourne, MA) weather monitoring station 

located in the experimental field. Cloud-based data from this station provided hourly summaries 

of air temperature (̊C), rain (mm), solar radiation (W/m2), wind speed (m/s), gust speed (m/s), 

relative humidity (%), dew point (̊C) and wind direction. Soil temperature (±1̊C) and moisture 

(±3% volumetric water content) were measured using Decagon 5TM (METER Group, Inc., 

Pullman, WA) soil probes, placed 10-15 cm into the soil, at each gas sampling base location. 

Data was collected each hour onto a SD card using a programmed Arduino (Arduino, 

Somerville, MA). Changes in temperature, moisture and pressure in the gas chamber were 

evaluated with a Kestrel Drop D3 (Kestrel Meters, Boothwyn, PA) device placed into one 

chamber at random on each sampling day. 

 

3.2.6 Soil sampling and analysis 

 Soil was collected on the same date as the gas sampling. Soil samples were collected 

within 2.0 m of the gas sampling chamber (n=3, 0-20 cm depth) after removing excess surface 

vegetation. Soil samples (3 per chamber location) were taken with a 2 cm diameter probe and 

mixed together to make a composite sample (~ 250 g). Following 2 M KCl extraction (1:10 soil: 

extractant), the soil solution was analyzed for NH4
+ and NO3

- using a Lachat QuikChem ® 8500 

Series 2 Flow Injection Analysis System (Hatch, Loveland, CO).  

End-of-season soil sampling was completed in October 2018 and October 2019. To avoid 

confounding effects, locations of the end-of-season soil sampling points were randomly assigned 
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within a grid using ArcGIS in 2018 and 2019 so that different locations were sampled in each 

year. Five to ten soil cores were collected randomly within a 2 m radius of the target sampling 

location within each fertilizer treatment in the zone, at least 1.5 m from the edge of the strip that 

received fertilizer. To represent the soil conditions in the vicinity of the gas sampling chamber, 

we also collected soil within 2.0 m of each gas sampling location. 

 

3.2.7 Plant sampling and analysis during the growing season 

Switchgrass foliage was sampled at the same time as gas samples. We removed the 

second fully formed leaf below the apical growing point, and 30 leaves were collected from 

switchgrass plants around each GHG sampling location. Leaves always came from a plant that 

was never sampled previously, verified by looking at the plant stem for missing leaves. Leaf 

biomass was determined by drying to a constant mass (oven-dried at 70 ºC for 24 h). Then, leaf 

samples were ground (<1 mm), digested in sulfuric acid (Isaac & Johnson, 1976) and analyzed 

for total N concentration (g N kg-1 plant tissue) with a Lachat QuikChem ® 8500 Series 2 Flow 

Injection Analysis System (Hatch, Loveland, CO). 

End of season biomass sampling was completed in October 2018 and October 2019. 

Sampling points were chosen at random from a grid that included one sampling point within 20 

m of the center of the strip, at least 1.5 m from edge of the strip. A second sampling point was 

selected randomly within 2.0 m of each gas sampling location (Fig. 3-1). Sampling points were 

located with a GPS with RTK functionality (accuracy of ±0.5 m). The GPS-located point was the 

south-west corner of a 1 m2 quadrant where switchgrass biomass was recorded. The maximum 

plant height (m) was determined with a measuring tape attached to a pole, then the switchgrass 
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was cut as close to the surface as possible (on average, 5.0 cm above the soil surface). Biomass 

was weighed on a bucket ElectroSamson Digital Handheld Scale (Brecknell, Montreal, QC) 

before a 500 g sub-sample was taken to evaluate the moisture content (oven-dried at 70 ºC to 

constant mass). 

 

 

Figure 3-1. Map of the experimental switchgrass field, showing the treatment blocks and 

location of biomass and soil sampling points. 
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3.2.8 Statistical analysis 

In the 2018 and 2019 sampling seasons, Shapiro-Wilk normality tests concluded that N2O 

cumulative emissions were non-normal. Differences in soil N2O and CO2 daily fluxes were 

evaluated with the Kruskal-Wallis test at the 0.05 alpha level.  

 

3.3 Results 

3.3.1 Gas emissions 

 In the 2018 sampling season, the peak CO2 fluxes occurred on the same days in each 

fertilizer treatment in Zone 1 and Zone 3 after fertilizer application, on Julian day 180 and on 

Julian day 205 (Fig. 3-2). Peak N2O flux measurements occurred within 2 wk after fertilizer 

application and gradually decreased to ~0 mg N2O-N m-2 d-1 by Julian day 173 in 2018 (Fig. 3-

3). In 2018, there was a tendency for increasing N2O flux from Julian day 180 to the end of the 

growing season in plots that received 0 kg N ha-1 (Fig. 3-3). In the 2019 season, the peak CO2 

flux was on Julian day 186, which was 17 d after fertilizer application, and declined consistently 

in all fertilizer treatments and both zones for the rest of the growing season (Fig. 3-4). Peak N2O 

fluxes occurred on Julian day 179, which was 10 d after fertilizer application, for all fertilizer 

treatments in both zones (Fig. 3-5). By Julian day 186, the flux was < 2 mg N2O-N m-2 d-1 and 

fluxes remained between 0 and 2 mg N2O-N m-2 d-1 until the end of the sampling seasons (Fig. 3-

5).  

 In 2018, the Kruskal-Wallis test results showed that there were differences in N2O in the 

N-fertilized strips compared to the control on the first two flux sampling dates (n=24, P > 0.05), 
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Julian day 153 and 157. In 2019, the Kruskal-Wallis test results showed that there were 

differences in CO2 in the N-fertilized strips compared to the control on the third day, 166, of flux 

sampling (n=24, P > 0.05). 

Cumulative growing season emissions were calculated for each chamber in 2018 (Table 

3-1) and 2019 (Table 3-2). The linear regression analysis of cumulative CO2 and N2O growing 

season emissions trendlines showed that there was only a significant difference between Zone 1 

and Zone 3 in 2018 (Table 3-3, Fig. 3-6). This is likely due to the lower N fertilizer rates in 2018 

and the high rates of N fertilizer application in 2019. 
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Figure 3-2. Weather data for the A: 2018 sampling season. Total daily precipitation (mm) is 

represented by black bars. Average daily temperature (ºC) is represented by the black line. Mean 

CO2 flux time series in B: Zone 1 and C: Zone 3 on every sampling day during the 2018 

sampling season. Error bars are ±SEM (n=3). The N fertilizer was applied on Julian day 151 

(May 31, 2018), indicated by the black arrow.  
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Figure 3-3. Weather data for the A: 2018 sampling season. Total daily precipitation (mm) is 

represented by black bars. Average daily temperature (ºC) is represented by the black line. Mean 

N2O flux time series in B: Zone 1 and C: Zone 3 on every sampling day during the 2018 

sampling season. Error bars are ±SEM (n=3). The N fertilizer was applied on Julian day 151 

(May 31, 2018), indicated by the black arrow. 

 

5

10

15

20

25

N
2
O

 N
 (

m
g
 m

 2
d

 1
)

 
0 kg N ha  

16.5 kg N ha  

33 kg N ha  

49.5 kg N ha  

0

5

10

15

20

25

153 157 166 173 180 188 192 199 205

N
2
O

 N
 (

m
g
 m

 2
d

 1
)

Date ( ulian)

C 0 kg N ha  

16.5 kg N ha  

33 kg N ha  

49.5 kg N ha  

0

5

10

15

20

25

30

5

10

15

20

25

30

35

40

T
e
m

p
e
ra

tu
re

 (
 C

)

P
re

c
ip

it
a
ti
o
n
 (

m
m

)
A Total Precipitation

Daily Air Temperature



61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4. Weather data for the A: 2019 sampling seasons. Total daily precipitation (mm) is 

represented by black bars. Average daily temperature (ºC) is represented by black line. Mean 

CO2 flux time series in B: Zone 1 and C: Zone 3 on every sampling day during the 2019 

sampling season. Error bars are ±SEM (n=3). The N fertilizer was applied on Julian day 169 

(June 18, 2019), indicated by the black arrow. 
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Figure 3-5. Weather data for the A: 2019 sampling seasons. Total daily precipitation (mm) is 

represented by black bars. Average daily temperature (ºC) is represented by the black line. Mean 

N2O flux time series in B: Zone 1 and C: Zone 3 on every sampling day during the 2019 

sampling season. Error bars are ±SEM (n=3). The N fertilizer was applied on Julian day 169 

(June 18, 2019), indicated by the black arrow. 
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Figure 3-6. Cumulative seasonal emissions of A: CO2 and B: N2O from switchgrass plots in the 

2018 and 2019 seasons. Points are the average of n=3 measurements per zone, and error bars are 

±SEM.  
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Table 3-1. Cumulative growing season emissions in 2018, presented as the interpolated 

cumulative values ± SEM, n=24. 

Zone Fertilizer Rate (kg N ha-1) Chamber N2O-N (mg m-2) CO2-C (g m-2) 

1 0 22 21.1 ± 0.11 199 ± 0.14 

 0 23 9.73 ± 0.04 206 ± 0.14 

 0 24 3.26 ± 0.01 283 ± 0.33 

 17 19 72.5 ± 0.36 240 ± 0.15 

 17 20 25.0 ± 0.11 293 ± 0.31 

 17 21 53.8 ± 0.29 228 ± 0.17 

 33 7 69.0 ± 0.39 280 ± 0.32 

 33 8 25.2 ± 0.17 254 ± 0.15 

 33 9 27.1 ± 0.11 306 ± 0.15 

 50 10 78.6 ± 0.56 318 ± 0.16 

 50 11 168 ± 0.72 269 ± 0.20 

 50 12 122 ± 0.56 387 ± 0.51 

3 0 16 26.4 ± 0.09 188 ± 0.13 

 0 17 95.1 ± 0.33 244 ± 0.25 

 0 18 18.2 ± 0.08 222 ± 0.24 

 17 13 49.3 ± 0.25 210 ± 0.19 

 17 14 20.8 ± 0.10 183 ± 0.15 

 17 15 26.7 ± 0.14 309 ± 0.33 

 33 1 139 ± 0.90 210 ± 0.17 

 33 2 28.8 ± 0.24 282 ± 0.23 

 33 3 38.7 ± 0.19 265 ± 0.17 

 50 4 111 ± 0.69 247 ± 0.17 

 50 5 60.6 ± 0.34 214 ± 0.14 

 50 6 54.0 ± 0.25 292 ± 0.31 
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Table 3-2. Cumulative growing season emissions in 2019, presented as the interpolated 

cumulative values ± SEM, n=24. 

Zone Fertilizer Rate (kg N ha-1) Chamber N2O-N (mg m-2) CO2-C (g m-2) 

1 0 22 32.8 ± 0.02 375 ± 0.23 

 0 23 4.45 ± 0.0 503 ± 0.34 

 0 24 1.67 ± 0.0 286 ± 0.17 

 50 19 35.7 ± 0.13 553 ± 0.49 

 50 20 37.1 ± 0.06 311 ± 0.15 

 50 21 21.0 ± 0.03 372 ± 0.28 

 100 7 37.3 ± 0.12 238 ± 0.11 

 100 8 23.1 ± 0.06 606 ± 0.39 

 100 9 21.5 ± 0.07 470 ± 0.31 

 150 10 105 ± 0.29 541 ± 0.38 

 150 11 99.4 ± 0.31 467 ± 0.32 

 150 12 74.7 ± 0.19 473 ± 0.32 

3 0 16 0.457 ± 0.00 358 ± 0.27 

 0 17 2.37 ± 0.00 275 ± 0.20 

 0 18 0.44 ± 0.00 323 ± 0.27 

 50 13 29.0 ± 0.05 541 ± 0.34 

 50 14 13.6 ± 0.04 394 ± 0.23 

 50 15 24.7 ± 0.04 486 ± 0.32 

 100 1 58.5 ± 0.18 342 ± 0.21 

 100 2 91.8 ± 0.20 473 ± 0.44 

 100 3 48.1 ± 0.14 397 ± 0.32 

 150 4 36.5 ± 0.09 335 ± 0.24 

 150 5 19.1 ± 0.05 408 ± 0.37 

 150 6 66.6 ± 0.24 364 ± 0.30 
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Table 3-3. Linear regression of cumulative growing season emissions, in relation to the N 

fertilizer rate. The slope and intercept of the best-fit line (± SEM) were calculated with R 

statistical software. 

Gas Year Zone Linear Equation 

CO₂-C (g m⁻²) 2018 1 CO₂ flux = 1.89 (± 0.20) × N fertilizer + 225 (± 6.34) 

   3 CO₂ flux = 0.70 (± 0.19) × N fertilizer + 221 (± 5.89) 

  2019 1 CO₂ flux = 0.69 (± 0.11) × N fertilizer + 381 (± 9.98) 

    3 CO₂ flux = 0.16 (± 0.71) × N fertilizer + 379 (± 66.0) 

N₂O-N (mg m⁻²) 2018 1 N₂O flux = 1.96 (± 0.72) × N fertilizer + 7.17 (± 22.3) 

   3 N₂O flux = 0.73 (± 0.40) × N fertilizer + 37.4 (± 12.5) 

  2019 1 N₂O flux = 0.47 (± 0.20) × N fertilizer + 5.72 (± 18.6) 

    3 N₂O flux = 0.33 (± 0.20) × N fertilizer + 8.20 (± 18.4) 

 

3.3.2 Biomass and ancillary measurements 

 In 2018, soil NO3
- and NH4

+ peaked within 30 d after N fertilizer application in both 

zones, with 0 to 15 mg NO3
- kg⁻  and 0 to 20 mg NH4

+ kg-1 during the growing season (Fig. 3-7). 

In 2018, NO₃⁻ values remained between 0 and 15 mg NO3
- kg-1 and NH4

+ remained between 0 

and 20 mg NH4
+ kg-1. In 2019, NO3

- values were between 0 and 2 mg NO3
- kg-1 in both zones 

(Fig. 3-8). In 2019, NH4
+ peaked after fertilizer application and stayed between 0 and 15 mg 

NH4
+ kg-1 20 d after fertilization. 

In 2018, switchgrass biomass at the end of the growing season tended to be greater in 

Zone 1 than Zone 3 (Table 3-4). Biomass N concentrations were higher in the early part of the 

growing season and declined with time, in both years of the study, probably due to a dilution 

effect as the switchgrass accumulated more carbon/ dry matter relative to its nitrogen 

requirements (Fig. 3-8, Fig. 3-9, Fig. 3-10). 
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Figure 3-7. Average soil NH₄⁺ and NO₃⁻ concentrations for each fertilizer application rate in 

2018 of A: Zone 1 NO₃⁻, B: Zone 3 NO₃⁻, C: Zone 1 NH₄⁺, D: Zone 3 NH₄⁺. Fertilizer applied on 

151 (May 31, 2018). Points are the mean (n=3) with ±SEM bars. 
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Figure 3-8. Average soil NH₄⁺ and NO₃⁻ concentrations for each fertilizer application rate in 

2019 of A: Zone 1 NO₃⁻, B: Zone 3 NO₃⁻, C: Zone 1 NH₄⁺, D: Zone 3 NH₄⁺. Fertilizer applied on 

169 (June 18, 2019). Points are the mean (n=3) with ±SEM bars. 
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Figure 3-9. Average N concentration in switchgrass biomass in A: Zone 1 and B: Zone 3 during 

the 2018 sampling season. The N fertilizer was applied on Julian day 151 (May 31, 2018). Points 

are the mean (n=3) with ±SEM bars. 
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Figure 3-10. Average N concentration in switchgrass biomass in A: Zone 1 and B: Zone 3 

during the 2019 sampling season. The N fertilizer was applied on Julian day 169 (June 18, 2019). 

Points are the mean (n=3) with ±SEM bars. 
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Table 3-4. End of season above ground biomass yield (t dry matter ha-1) adjacent to the gas 

sampling locations. Values are the mean ± SEM, n=3. 

Year Fertilizer Rate (kg N ha⁻¹) 
Switchgrass yield (t ha⁻¹) 

Zone 1 Zone 3 

2018 0 9.37 (± 0.57) 8.25 (± 0.49) 

 17 9.36 (± 0.62) 8.35 (± 0.45) 

 33 10.4 (± 1.05) 9.05 (± 0.52) 

  50 12.1 (± 1.34) 9.78 (± 0.21) 

2019 0 7.18 (± 1.85) 9.63 (± 1.35) 

 50 7.79 (± 0.67) 9.79 (± 1.21) 

 100 11.6 (± 0.81) 11.6 (± 1.03) 

  150 10.3 (± 1.32) 10.8 (± 0.33) 

 

3.4 Discussion 

My first hypothesis, that the control of 0 kg N ha-1 will have significantly lower N2O 

emissions than the other three fertilizer rates, was supported on some, but not all GHG sampling 

dates. I believe that the lack of significant differences in emissions on sampling dates later in the 

season happened due to the hardiness of the switchgrass crop and its ability to efficiently take up 

N from the soil. My second hypothesis, that that the management zone with greater soluble N 

concentration (due to less plant growth and higher N fertilizer rates) will produce more N2O 

during periods when the field is temporarily waterlogged (i.e., after rainfall), was not supported 

in 2019 as there was no difference in the slope of the trendlines for cumulative emissions in Zone 

1 and Zone 3.  

 

3.4.1 Gas emissions and site-specific N 

Most hot moments of gas flux occurred within the first 30 days following fertilizer 
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application for all gases in each zone and year. The only exception was CO2 in 2018, where daily 

fluxes gradually increased from the fertilizer application date to their peak at 30 days after 

fertilizer application. The higher slope for cumulative emission, in Zone 1 compared to Zone 3, 

at increasing rates indicates that Zone 1 fertilizer rates increased emissions at a higher rate than 

in Zone 3. Zone 1 was initially believed to be the zone that was better suited for switchgrass 

growth as it was higher in elevation than Zone 3 and the producer mentioned that the historical 

yields in that zone were generally better than the surrounding field.  

 

3.4.2 Ancillary measurements and management zones 

 In 2018, the switchgrass with the 0 kg N ha-1 fertilizer application rate generally had 

lower total N than all other fertilizer treatment rates. In 2019, the switchgrass growing in the 0 kg 

N ha-1 fertilizer application rate strips always had lower total N concentrations than the other 

treatment rates.  

 In 2018, average soil NO₃⁻ and NH₄⁺ peaked within the first 30 d after N fertilizer 

application (Fig. 3-7). Measurements were taken on Julian day 123, 28 d before N fertilizer 

application, and did not differ significantly for NH₄⁺ (Fig. 3-7). Soil NO₃⁻ values during the 

sampling season were lower than the NO₃⁻ values measured before N fertilizer was applied. 

 In 2019, NO₃⁻ appears to fluctuate, however the scale is small and NO3⁻ values remain 

between 0 and 2 mg NO₃⁻ kg-1 in both zones (Fig. 3-8). In both zones, NH₄⁺ peaked after 

fertilizer application and remained below 15 mg NH₄⁺ kg-1 20 d after fertilization for the 

remainder of the sampling season, which is reasonable considering that the fertilizer was the 
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main source of N in the field and that it was transformed and used by the switchgrass since N 

was no longer a limiting factor for growth.  

The switchgrass yields of 7.18 to 12.1 t ha-1 measured in our field were consistent with, 

and slightly better, than the on-farm historical yield and other yield measures of the Cave-in-

Rock cultivar in southern Québec. The cooperating producer grows switchgrass and achieved 

yields of 5 to 11 t ha-1 during the 2012 growing season (personal communication with the farmer, 

2018). The highest yields achieved in our field and on this farm are superior to the average yield 

of 8.97 t ha-1 for the Cave-in-Rock cultivar calculated at 5 experimental sites in Québec during a 

4 yr period from 2013 to 2016 (Martel & Lalonde, 2018). 

 

3.5 Conclusions  

The findings of this study suggest that most of the N fertilizer applied to this switchgrass 

field was retained in the soil-plant system, since the soil NO₃⁻ and NH₄⁺ concentration peaked at 

the beginning of the season and decreased with time during both growing seasons. Since the 

switchgrass was planted 10 yr before this study, I expect that it established an extensive root 

system that was able to absorb nutrients added in the form of urea-N fertilizer. This interpretation 

is supported by the fact that the major hot-moments of N2O and CO2 occurred within 20 to 30 d 

following N fertilizer application, with relatively low fluxes of these greenhouse gases for the 

remainder of the growing season. With gas chambers placed 15 m apart and no extreme slopes 

present in the field, I am confident that the measurements within each treatment band reflect the 

soil-plant responses and gas fluxes in response to applied N fertilizer. Although Zone 1 and Zone 

3 have distinctive soil physico-chemical properties, they were fairly consistent in their biological 
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outcomes. Within each growing season, there was a consistent pattern of N2O and CO2 flux and 

cumulative emissions of these gases in Zone 1 and Zone 3. Furthermore, the dynamics of soil 

NH₄⁺ and NO₃⁻ pools and switchgrass biomass at the end of the growing season responded 

similarly when equivalent N fertilizer rates were applied in Zone 1 and Zone 3. This suggests 

that plant growth and N cycling were affected more by the environmental conditions associated 

with year-to-year fluctuations in weather, rather than the underlying physico-chemical variability 

in this large 8.9 ha switchgrass field, which already had optimal growing conditions for 

switchgrass. This intriguing possibility should be confirmed in farm-scale experiments on other 

commercial farms, considering more cropping systems, soil types and multiple sampling years to 

reflect a broader range of realistic growing conditions on farms.  

 

References 

Environment Canada. (2017). Monthly meterological summaries for Sherbrooke. 

https://climate.weather.gc.ca/ 

Isaac, R. A., & Johnson, W. C. (1976). Determination of total nitrogen in plant tissue, using a 

block digestor. Association of Official Analytical Chemists, 59, 98–100. 

Martel, H., & Lalonde, O. (2018). Guide de Production Panic Erige. Réseau des plantes bio-

industrielles du Québec. 

Rochette, P., & Bertrand, N. (2007). Soil-surface gas emissions. In M. Carter & E. Gregorich 

(Eds.), Soil Sampling Methods of Analysis, Second ed. (pp. 851-861). CRC Press. 



75 
 

Sehy, U., Ruser, R., & Munch, J. C. (2003). Nitrous oxide fluxes from maise fields: relationship 

to yield, site-specific fertilization, and soil conditions. Agriculture, Ecosystems and 

Environment, 99, 97-111. https://doi.org/10.1016/S0167-8809(03)00139-7 

Shcherbak, I., Millar, N., & Robertson, G. P. (2014). Global Metaanalysis of the nonlinear 

response of soil nitrous oxide (N₂O) emissions to fertilizer nitrogen. Proceedings of the 

National Academy of Sciences,111(25), 9199-9204. 

https://doi.org/10.1073/pnas.1322434111 

Schwalbert, R. A., Amado, T. J. C., Reimche, G. B., & Gebert, F. (2019). Fine-tuning of wheat 

(Triticum aestivum, L.) variable nitrogen rate by combining crop sensing and 

management zones approaches in southern Brazil. Precision Agriculture, 20, 56-77. 

https://doi.org/10.1007/s11119-018-9581-6 

 

  



76 
 

General Discussion 

 My thesis presents a case study on the use of management zones for understanding N 

fertilizer requirements across a switchgrass field. The reasons that management zones are 

preferred, compared to uniform application of fertilizer, is because the variability that occurs in 

all fields can affect the inherent fertility and hence the nutrient demands of the crop. I wish to 

avoid applying an excessively high amount of N fertilizer where it is not needed by the crop 

because the N fertilizer can stimulate microbial activities that produce N2O, CO2 and CH4, which 

can result in GHG emissions from the agroecosystem. 

 

Mapping with management zones  

Management zones are understudied in perennial cropping systems, relative to 

agroecosystems with annual crops. I found 7 peer-reviewed article publications in the past 5 yr 

involving switchgrass and management zones, compared to >70 peer-reviewed publications in 

the same period describing management zones for corn production. Despite the limited 

information, perennial crops like switchgrass are good candidates for management zone analysis. 

Generally, N fertilizer is broadcast once per season, after the snow has melted and before 

emergence of the switchgrass, because farm machinery passing over a field of growing 

switchgrass would mechanically damage the tall, dense vegetation and reduce the switchgrass 

yield. Therefore, management zone analysis can be a strategy for understanding the field 

conditions and applying a suitable amount of N fertilizer to optimize the perennial crop growth 

over many years. 
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Traditional methods of determining field variability require hundreds of soil samples and 

extensive geostatistical analysis, involving kriging and semi-variogram analysis. This led me to 

attempt to simplify the management zone delineation process, based on an example that used 

proximal soil sensing, i.e., apparent electrical conductivity and pre-existing knowledge of the 

high yielding zones in the field to characterize field heterogeneity (Longchamps & Khosla, 

2017). I also found that zone classification overlapped in maps that were generated with 

numerous (>10) variables and when the same area was mapped with half as many variables that 

were selected due to their importance for the growth of the crop. This indicates my method using 

proximal soil sensing rather than conventional soil testing data is a robust way to segregate a 

heterogeneous 8.9 ha field into three clearly-defined management zones. I judge the method to 

be ‘robust’ because of the high degree of overlap in the management zones (from 58-87% 

similarity) when I compared the two mapping approaches (i.e., conventional soil testing vs. 

proximal soil sensing). 

 I created field maps with Management Zone Analyst, which requires specific information 

and training. For instance, the agronomic decision maker who wishes to create a similar map 

needs access to georeferenced data to use the software and therefore must have some basic 

understanding of how to collect, organize and verify the accuracy of the data that will be used to 

create the map. Additionally, Management Zone Analyst assigns arbitrary ordinary numbers for 

the zone classifications so the decision maker for the field must use ArcGIS or QGIS to project 

the software output and compare maps generated with each data source to visualize the zones 

(Fridgen et al., 2004). The decision maker must also consider what variables are to be included 

for management zone delineation, based on some prior knowledge. The issue is that 

Management Zone Analyst can use any values for the clustering algorithm and some variables 
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are intercorrelated (i.e., they describe the same physicochemical property of the field). Providing 

too much information to the software could cause unimportant variables to skew the results.  

 

Emission of N2O  

 In both sampling years, the peak N2O flux occurred within 30 d after N fertilizer was 

applied. Furthermore, soil NO3
- and NH4

+ concentration peaked early in the growing season, 

which suggests the N fertilizer applied to the field was the main source of N2O emitted from the 

field. The N2O emission trendlines were different in Zone 1 and Zone 3 during the 2018 growing 

season, indicating a site-specific variability in the N2O production and loss across the field. 

However, this effect was not observed during the 2019 growing season, which used higher N 

fertilizer rates than 2018. I deduce that the similarity in N2O emissions between Zone 1 and Zone 

3 meant that environmental conditions were more favorable for switchgrass growth in 2019, with 

more precipitation measured at the field during the gas sampling period, and thus the crop was 

more efficient at using the N fertilizer. However, switchgrass yield was only 2.5% greater, on 

average, in 2019 than 2018.  

Gas fluxes were measured with non-flow-through non-steady-state chambers, which is a 

cost-effective tool to measure gas fluxes in the field and interpolating the GHG emissions during 

the growing season. Still, the chambers cover a relatively small area (<1 m2) relative to the size 

of the management zones (222,000 m2) and fertilizer strip within each zone (1,500 m2). Some 

locations had more vegetative growth within and surrounding the gas chambers, which probably 

reduced the amount of GHG emitted. One way to improve the accuracy of the gas fluxes is to 

increase the number of chambers in the field to account for microvariability in the field. 
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Furthermore, N2O is produced through three separate biological processes (i.e., ammonia 

oxidation, nitrifier-denitrification, denitrification), depending on substrate availability, microbial 

activity and environmental conditions. In the future, I would recommend advanced N isotope 

tracing methods, using equipment like a Picarro G5131-i isotopic and gas concentration analyzer 

that can simultaneously measure the site specific and bulk δ15N and δ18O in N2O to discern the 

source of N2O emissions real-time in the field.  

 

Recommendations 

My research suggests that proximal soil sensing data is suitable to represent field 

heterogeneity in agricultural landscapes. Future research on site-specific N fertilization could be 

based on non-invasive and cost-effective measurements of proximal soil sensing data, including 

free images of bare soil that may be obtained without charge from Google Earth and other 

remote sensing platforms. While my work reveals that N2O flux from a switchgrass field is 

related in part to N fertilizer application, this factor explains a relatively small proportion of the 

N2O emissions. Consequently, it is important to monitor precipitation and temperature at the 

field scale to understand hot spots and hot moments of organisms’ activity and of emission of 

GHGs. Management zones might be more effective at reducing N2O emissions in annual 

cropping systems, but the perennial switchgrass that I studied was planted in 2008 and thus was 

established for 10 yr before the GHG emissions were measured. Additionally, historical yields in 

this switchgrass field are similar to the average switchgrass crop yield in the region (Martel & 

Lalonde, 2018), meaning that the producer has already optimized all of the agronomic practices 

that affect nutrient acquisition and growth of their switchgrass crop. In the future, I could 

implement a similar study in a switchgrass field that has below-average yields, meaning that it is 
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not using nutrients efficiently and thus will probably benefit from site-specific N fertilizer 

applications, which need to be calibrated to avoid N2O emissions. 
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General Conclusions 

 Crop yield is generally uneven in agricultural fields, due to the underlying heterogeneity 

in soil fertility and water availability across sloping fields. Areas within the field with high crop 

yield may use fertilizer nutrients more efficiently than in the regions where crop growth is 

limited by lack of water or soil constraints. The case study for this thesis was an 8.9 ha 

switchgrass field in southeastern Québec with well-documented heterogeneity in yield (from 5 to 

11 t ha-1 across the field). Hence, the field was a good candidate for testing of precision 

agriculture principles. The global objective of this work was to operationally define management 

zones that would receive variable rates of N fertilizer, and to assess which of the N fertilizer rates 

applied to these management zone would support the switchgrass yield target without increasing 

N2O losses. 

In Chapter 2, I looked at management zones and compared how a variety of data sources 

that could describe field heterogeneity, such as soil texture, electrical conductivity, soil surface 

reflectance, etc., would delineate zones. Regardless of the data source and quantity of inputs 

Management Zone Analyst determined that 3 management zones was reasonable, based on the 

normalized classification entropy and fuzziness performance index, for my research field. 

Proximal soil sensing data appears to be a reasonable indicator for characteristics measured by 

conventional soil testing. This is probably due to the fact that proximal measurements of soil 

ECa are correlated with soil moisture, soil organic matter, salinity and cation exchange capacity 

(Yari et al., 2017; Moral & Serrano, 2019). Additionally, multispectral imagery is a form of 

proximal soil sensing data that I found to be another good indicator of field heterogeneity. My 

findings were in agreement with existing literature that found multispectral imagery to be related 
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to soil characteristics such as soil moisture and soil C (Chen et al., 2000; Flemming et al., 2004; 

Georgi et al., 2018). 

 In Chapter 3, I studied how management zones and fertilizer application influence the 

emissions of GHGs and crop yields. The slopes for the trend of emission for Zone 1 and Zone 3 

was different in 2018, when the N fertilizer rates were lower than the recommended rate for 

switchgrass, but in general the two management zones emitted a similar amount of N2O and 

other GHGs. The switchgrass growing in the 0 kg N ha-1 fertilizer application rate strips had 

lower total N than all other fertilizer application rate strips in both years. In 2018, Zone 1 

switchgrass yields tended to be greater than in Zone 3. The overall yields were similar, if not 

slightly better than the historical yields at our experimental field site. 

 This thesis adds to the scientific community’s knowledge of how to delineate 

management zone with proximal soil sensing data, and also reveals that N fertilizer rates are not 

the sole predictor of GHG emissions. This thesis adds to the knowledge of the agronomic 

decision-making community by demonstrating the use of proximal soil sensing data such as soil 

ECa and bare soil images to create robust maps for field management.  
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