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Abstract Sodium/proton antiporters or exchangers
(NHE) are integral membrane proteins present in most,
if not all, living organisms. In mammals, these trans-
porters chiefly catalyze the electroneutral exchange of
Na+ and H+ down their respective concentration gradients
and are crucial for numerous physiological processes,
ranging from the fine control of intracellular pH and cell
volume to systemic electrolyte, acid-base and fluid
volume homeostasis. NHE activity also facilitates the
progression of other cellular events such as adhesion,
migration, and proliferation. Thus far, eight distinct NHE
genes (NHE1/SLC9A1–NHE8/SLC9A8) and several
pseudogenes have been identified in the human genome.
The functional genes encode proteins of varying primary
sequence identity (25–70%), but share a common pre-
dicted secondary structure comprising 12 conserved
membrane-spanning segments at the amino-terminus
and a more divergent, cytoplasmically-oriented, car-
boxy-terminus. They show considerable heterogeneity in
their patterns of tissue/cell expression and membrane
localization. Functional studies have revealed further
differences in their kinetic properties, sensitivity to
pharmacological antagonists, and regulation by diverse
hormonal and mechanical stimuli. Altered NHE activity
has been linked to the pathogenesis of several diseases,
including essential hypertension, congenital secretory
diarrhea, diabetes, and tissue damage caused by isch-
emia/reperfusion. Further characterization of their func-
tional properties should lead to a better understanding of
their unique contributions to human health and disease.

Keywords Na+/H+ exchanger · Genetic diversity ·
Acid-base homeostasis · Na+ absorption · Organellar
function

Introduction

Carrier-mediated transport of sodium in exchange for
protons across biological membranes has been detected
universally in organisms throughout the various phyla,
from simple prokaryotes such as bacteria to more
complex eukaryotes of the plant, fungi, and animal
kingdoms. This cation flux is conducted by a family of
polytopic membrane proteins commonly called Na+/H+

antiporters (Nha) or exchangers (NHE or NHX)1. These
proteins are classified as secondary active transporters
since the driving force for catalysis is not coupled directly
to the hydrolysis of ATP, but instead is derived from the
electrochemical gradient established for one of the solutes
that drives countertransport of the other.

Throughout phylogeny, the NHEs have been co-opted
to fulfill a diverse range of vital biological functions. For
instance, unicellular organisms like the bacterium
Escherichia coli contain two Na+/H+ antiporters (NhaA
and NhaB) that utilize the inwardly-directed electrochem-
ical H+ gradient generated by inner membrane H+-ATPase
pumps to export Na+ (or Li+) electrogenically (the
coupling stoichiometries for NhaA and NhaB are
1Na+:2H+ and 2Na+:3H+, respectively) (Fig. 1A). These
antiporters exhibit considerable differences in their cation
affinities and regulatory properties that, collectively,
allow E. coli to flourish under adverse conditions, such
as high saline and/or alkaline environments. The extru-
sion of Na+ also helps to maintain an inwardly-directed
Na+ gradient that is coupled to the uptake of various other
solutes and nutrients (reviewed in [101]).
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By comparison, the source of energy that drives
mammalian NHEs at the plasma membrane differs from
their bacterial counterparts. Instead of an electrochemical
H+ gradient, an inward Na+ gradient established by
plasma membrane Na+/K+-ATPase pumps propels the
countertransport of H+ in an electroneutral manner
(1Na+:1H+ stoichiometry) (Fig. 1B). Thus, under normal
physiological conditions, plasmalemmal NHEs extrude
excess acid accumulated by cellular metabolism and by
various H+ (acid equivalents) leak pathways, thereby
playing an important role along side bicarbonate trans-
porters in maintaining intracellular pH (pHi) homeostasis.
Since subtle fluctuations in steady-state pHi modulate the
activities of many biomolecules, and indeed may act as a
regulatory stimulus, the fine control of pHi is a funda-
mentally important mechanism to sustain a suitable
cytoplasmic milieu for stable protein activity and inter-
actions, and ultimately cell function and survival. Con-
sistent with this notion, pHi changes associated with NHE

activity facilitate other biological processes, such as
cellular adhesion, migration, and proliferation. In addi-
tion, the transmembrane influx of Na+ contributes directly
to the regulation of cell volume and to the absorption of
salt and water across various epithelia (for earlier reviews,
see [81, 84, 96, 112, 145]).

This review presents a current synopsis of the struc-
tural, functional and regulatory heterogeneity of mam-
malian NHE genes, emphasizing where possible their
physiological roles and potential involvement in certain
pathophysiological states.

Genetic diversity

Higher eukaryotes have evolved a diverse repertoire of
NHEs. For example, genomes of the plant Arabidopsis
thaliana and the nematode Caenorhabditis elegans
encode for at least seven (AtSOS1, AtNHX1–6) [5, 124,
168] and nine (CeNHX1–9) [90] distinct NHE-like
proteins, respectively, while mammals such as Homo
sapiens possess a minimum of eight functional genes
(HsNHE1/SLC9A1–HsNHE8/SLC9A8) (Fig. 2). In each
case, these isoforms are expressed in a tissue/cell-specific
manner and are localized differentially to discrete mem-
brane compartments (cell surface or endomembrane
organelles), implicating them in a variety of housekeeping
and specialized cellular functions.

Sardet and colleagues in 1989 [117] were the first to
describe the primary structure of a mammalian Na+/H+

exchanger, termed NHE1, using an intricate genetic
complementation approach. This isoform resides exclu-
sively in the plasma membrane of most cell types and is
considered the prototypical mammalian NHE. Following
this pivotal study, other laboratories screened tissue
cDNA libraries from various species by low-stringency
hybridization—initially using the human NHE1 cDNA as
a convenient probe—in search of other homologous genes
that could account for their reported functional heteroge-
neity. Analyses of rat [8, 98, 150], rabbit [136, 137, 138]
and human [9, 21, 86] libraries collectively yielded a total
of five distinct plasmalemmal-type NHEs (NHE1–5).
With the advent of the human and mouse genome
sequencing projects, other more distantly related NHE
genes (NHE6–8) have been identified and characterized
partially (Table 1) [51, 92, 93]. In the case of NHE6 and
NHE7, heterologous expression studies indicate that these
isoforms accumulate predominantly in organellar com-
partments [22, 89, 92] (Table 1). Comparisons of their
primary structures show considerable sequence diver-
gence, ranging between 25 and 70% amino acid identity
(Table 2). The human genome also appears to contain
several putative NHE-like or NHE-pseudogenes, some of
which have been characterized [66].

Additional molecular heterogeneity in the form of
alternatively-spliced mRNAs has been reported for some
isoforms. A recent study [116] has described the isolation
of a purported splice-variant of NHE1 from a rat colon
cDNA library that encoded the first 9 of 12 predicted

Fig. 1A, B Na+/H+ exchangers of bacteria and mammals. The
diagram illustrates the cation pumps, F-type H+-ATPase and Na+/
K+-ATPase, that provide the respective driving force for (A)
bacterial Na+/H+ antiporters (Nha) and (B) mammalian Na+/H+

exchangers (NHE)
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membrane-spanning a-helices of NHE1 linked to a
unique 63-amino acid segment at its C-terminus. How-
ever, alignment of this novel C-terminus with sequences
in GenBank reveals homology to sequences located at
human chromosome 9q21.32 (accession numbers
NM_032307 and AL354733), whereas human NHE1 is
located at chromosome 1p36.1-p35; suggesting that the
former is part of another gene. Based on similar
arrangements of syntenic genes amongst mammalian
genomes, these two DNA segments are probably non-
contiguous in rats as well. Since there is presently little
evidence to support bona fide trans-splicing of pre-

mRNAs in mammalian cells, further study will be
required to verify the authenticity of this gene product.

On the other hand, there is suggestive evidence that the
NHE6 pre-mRNA undergoes alternative splicing to form
at least three gene products designated NHE6 (the original
cDNA clone) [93], NHE6_v1 [89] and NHE6_v2 (M.
Numata, I. Virdee, J. Orlowski, unpublished data). The
latter two each contain an additional 32 amino acids that
share ~85% identity to each other and are predicted to
reside in the second exofacial loop (between original
residues Leu143-Val144). Interestingly, these inserts are
also highly homologous to an analogous segment of

Table 2 Identity of mammalian Na+/H+ exchangers. Pairwise
comparison of the percentage similarity of human (h) or rat (r)
Na+/H+ exchanger isoforms. The values were calculated by
dividing the number of identical matches between pairs of isoforms
by the length of the isoform listed in the leftmost column. This

matrix yields two values for each pair of isoforms. The overall
percentage identity between any pair of isoforms is calculated as
the average of these two values and is presented below. The lengths
of NHE1, -2,-3, -4, -5, -6, -7, -8 are 815, 812, 834, 717, 896, 669,
725, 581 amino acids, respectively

hNHE1 hNHE2 hNHE3 rNHE4 hNHE5 hNHE6 hNHE7 hNHE8

hNHE1 100 46 39 42 39 25 27 25
hNHE2 100 42 58 40 27 27 24
hNHE3 100 38 53 27 28 26
rNHE4 100 35 27 26 26
hNHE5 100 25 25 27
hNHE6 100 68 26
hNHE7 100 27
hNHE8 100

Fig. 2 Phylogenetic relationships of eukaryotic Na+/H+ exchangers.
Phylogenetic relationships were determined by multiple sequence
alignments using the CLUSTAL W algorithm [133] and the radial tree
was drawn using TreeView [102]. The GenBank accession numbers
for the various NHEs are as follows: Saccharomyces cerevisiae (Sc)
NHA1 and NHA2/NHX1 (NC_001144 and NC_001136, respective-
ly); Arabidopsis thaliana (At) SOS1 and NHX1–6 (AF256224,
AF106324, AF490586, AAF08577, AF490588, AF490589,

AF490590, respectively); Caenorhab- ditis elegans (Ce) NHX1–
NHX9 (NM_078221, NM_063213, NM_072542, NM_171714,
NM_171768, NM_061634, NM_077429, NM_170928, and
NM_069858, respectively); Homo sapiens (Hs) or Rattus norvegicus
(Rn) NHE1/SLC9A1-NHE8/SLC9A8 (NM_003047, NM_003048,
NM_004174, NM_173098/XM_087199, NM_004594, NM_006359,
NM_032591, XM_030524, respectively). The numbers represent the
percentage identity amongst the mammalian NHEs
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NHE7, although the functional significance of this region,
if any, has yet to be ascertained.

General structure-function correlates

Membrane topology

Computer modeling of the hydrophobic-hydrophilic na-
ture and predicted secondary structures (i.e.; regions of a-
helical and b-sheet structures) of the NHEs predicts a
common membrane topology, with 12 relatively con-
served membrane-spanning (M) segments at the N-
terminus (~450–500 amino acids) and a more variable
hydrophilic C-terminus that faces the cytoplasm (~130–
450 amino acids depending on the isoform) and contains
numerous canonical sites for phosphorylation by different
protein kinases and for binding other ancillary factors,
indicative of this region serving a regulatory function.

Empirical evidence generally supporting this model
comes from a combination of approaches, including
immunolocalization of epitopes [69, 162], delineation of
glycosylation sites [32, 139], susceptibility to protease
cleavage [125], functional measurements of C-terminal
truncations [24, 75, 142] and accessibility of substituted
cysteines [146]. The latter approach has provided the
most detailed two-dimensional map of the organization of
transmembrane helices and interconnecting hydrophilic
loops of NHE1 (model illustrated in Fig. 3, upper panel).
Of particular note is the presence of a large exofacial re-
entrant loop (R-loop) between M9 and M10 that resem-
bles the pore (P)-loop structure identified in ion channels
and pumps as part of the ion conduction pathway [119],
and may represent an analogous structure in the NHEs.
Likewise, intracellular loops IL2 and IL4 are accessible to
thiol-modification by reagents placed on either side of the
membrane, suggesting that they insert into the lipid
bilayer and face an aqueous milieu, perhaps also consti-

Fig. 3 Transmembrane organi-
zation and regulation of mam-
malian Na+/H+ exchangers
NHE1 and NHE3 (R-loop re-
entrant loop, PIP2 phosphati-
dylinositol 4,5-bisphosphate,
CHP calcineurin B homolog
protein, CaM calcium-calmod-
ulin, NIK Nck-interacting ki-
nase, CAII carbonic anhydrase
II, PTH parathyroid hormone,
DPPIV dipeptidyl peptidase IV,
ROK rho-associated kinase,
NHERF NHE regulatory factor,
AC adenylate cyclase)
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tuting part of the ion translocation pathway. While it is
widely accepted that the hydrophilic C-terminal region
faces the cytoplasm, certain immunological analyses have
suggested that ill-defined epitopes of the C-terminus of
NHE1 [64] and NHE3 [15] may be exposed extracellu-
larly.

While it is tempting to generalize this model to all
NHEs, other in vitro analyses [175] have suggested that
NHE3 contains a cleavable N-terminal signal peptide
followed by 11 membrane-spanning segments, with the
putative R-loop situated between the two most C-terminal
helices, M10 and M11. However, it is unclear whether the
apparent structural disparity between these two isoforms
reflects true variations in their topologies, or method-
ological differences. The former model is more appealing
since it relies on analyses of functional transporters.

Information regarding higher-ordered structures of the
mammalian NHEs is limited to biochemical studies
suggesting that they form homodimers through intermo-
lecular interactions between transmembranous regions of
the respective monomers [40]. Though limited, this
rudimentary model compares favorably with recent higher
resolution structures obtained for the E. coli Na+/H+

antiporter NhaA. Three-dimensional mapping of well-
ordered, two-dimensional crystals of the NhaA protein
analyzed by electron cryomicroscopy suggest that the
antiporter assembles as a dimer, with 12 tilted membrane-
spanning helices per monomer [161]. Thus, despite
considerable differences in the primary structures of
bacterial NhaA and mammalian NHEs, it is conceivable
that their three-dimensional architectures may be con-
served. There is also some limited kinetic [100] and
biophysical [10] evidence to suggest that mammalian
NHEs may exit as higher-order, tetramer complexes.

Cation selectivity

Numerous studies have shown uniformly that plasma-
lemmal NHEs exhibit a hyperbolic dependence on the
extracellular Na+ (Na+

o) concentration (KNa: 5–50 mM,
depending on the isoform), indicative of a single binding
site (see [127] and references therein). To date, only one
residue located in transmembrane helix M4 (i.e., F162) of
human NHE1 has been implicated in Na+ binding [135].
Other monovalent cations such as Li+ and NH4

+, but not
K+, can also be translocated by plasmalemmal-type NHEs
in exchange for Na+ or H+, but usually at slower velocities
[6, 7]. This contrasts with the organellar isoform NHE7
which is capable of transporting Na+ or K+ (and possibly
other monovalent cations) in exchange for H+, and
probably functions primarily as a K+/H+ exchanger in
vivo [92]. One possible exception to the apparent
localization of “K+-selective” NHE subtypes to intracel-
lular compartments is the human erythrocyte, which
manifests K+(Na+)/H+ exchange on its surface when
exposed to extracellular medium of low ionic strength
[67]. However, it is unclear whether this transporter
represents a novel plasmalemmal-type NHE or rather one

of the known organellar NHEs such as NHE7, which,
potentially, could accumulate on the cell surface follow-
ing dissolution of the endomembrane compartments of
this specialized cell-type.

In contrast to Na+
o, plasmalemmal NHEs typically

display a greater than first-order dependence on the H+
i

concentration, suggestive of an allosteric H+
i-modifier site

in addition to the H+ transport site [6, 99]. Earlier
structural studies have indicated that the transmembrane
domain contains the “H+

i-sensor”, whereas the cytoplas-
mic region regulates the pHi set-point of the exchanger
[142]. This postulate is seemingly supported by recent
mutational analyses showing that conserved residues
within IL5 (R440) and M11 (G445, G446) of human NHE1
decreased and increased, respectively, its sensitivity to
pHi [147]. However, the data did not resolve the question
of whether mutations at these sites had altered interac-
tions between H+ and the allosteric modifier site or the
transport site. Indeed, the positive cooperative effects of
H+

i on NHE activity are not observed universally. For
instance, NHE5 shows a simple first-order dependence on
the H+

i concentration when expressed ectopically in
fibroblastic cells [127], suggesting that allosteric regula-
tion by H+

i may be isoform-specific.

ATP dependence

It is well recognized that cation fluxes through the NHE
are driven solely by the combined transmembrane chem-
ical gradients of the substrates. Nevertheless, plasma
membrane NHEs require physiological levels (i.e., mil-
limolar) of ATP for optimal function, despite the fact that
they neither bind nor consume ATP directly. Acute
cellular depletion of this nucleotide markedly reduces the
activities of NHE1 and NHE2, and almost completely
abolishes that of NHE3 and NHE5, even in the presence
of a large transmembrane H+ gradient [59, 127, 142].
Kinetic analyses have indicated that inhibition of NHE1
and NHE2 mainly reflects reduced affinities for H+

i, while
alterations in both pHi sensitivity and maximum velocity
account for the drastic reductions in NHE3 and NHE5.
The molecular mechanisms underlying these phenomenon
are not fully resolved. A direct role for protein kinases or
phosphatases have been excluded as contributing factors
since the state of phosphorylation of NHE1 is unaffected
during acute ATP depletion [50]. Instead, association of
the plasmalemmal polyphosphoinositide, phosphatidyl-
inositol 4,5-bisphosphate (PIP2), with two positively-
charged clusters in the cytoplasmic juxtamembrane region
of NHE1 is critical for optimal exchange activity [1]. It
has been proposed that net dephosphorylation of PIP2
upon ATP depletion could account, at least in part, for the
observed inhibitory effect on NHE activity. Other studies
[55] have also shown that PIP2 plays a significant role in
regulating other ion carriers such as the cardiac Na+/Ca+

exchanger and K+
ATP channels, highlighting a central role

for this phosphoinositide in modulating ion fluxes across
biological membranes.
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Drug recognition

The NHEs isoforms are inhibited by several classes of
pharmacological compounds, including the diuretic ami-
loride and its analogues, benzyolguanidinium-based
derivatives (e.g., HOE642 or cariporide, HOE694),
cimetidine, clonidine and harmaline [18, 25, 31, 92, 95,
120, 127, 170]. Though chemically distinct, each one of
these inhibitors possesses either an imidazoline or guani-
dinium moiety and hence bears some structural similarity
to the others. The affinity of these compounds for the
NHEs is isoform-dependent and spans over two orders of
magnitude, with NHE1 exhibiting the highest sensitivity
(NHE1�NHE2>NHE5>NHE3>NHE4). More recently, a
preferential antagonist (S3226) of NHE3 has been
synthesized that may also facilitate functional studies of
this isoform [123].

Kinetic measurements have indicated that many of
these compounds antagonize transport by competing with
Na+

o for binding to a common or nearby site, but also
interact at sites not involved in cation binding [46, 83,
152]. This initial assessment has been corroborated
largely by mutational analyses of NHE1 showing that
residues spanning the second exofacial loop EL2 (G152,
P157 and P158; positions numbered according to rat NHE1
sequence) and adjoining transmembrane helix M4 (F165,
F166, L167 and G178), and residues in M9 (E350, H353 and
G356) are significant determinants of drug recognition [30,
33, 63, 97, 135, 148]. As mentioned above, only
mutations of F166 (human F162) in M4 reduce Na+ affinity
appreciably. In contrast, substitutions of E350 and G356 in
M9 markedly decrease the catalytic turnover of the
transporter without affecting the affinities of either
substrate. Mutations at these latter sites are proposed to
mimic potential conformational constraints imposed by
antagonist binding, thereby compromising optimal sub-
strate translocation. Thus, sites within and surrounding
M4 and M9 are critical determinants of both drug
recognition and cation translocation. Further detailed
examination of these regions should aid in the rational
design of more potent isoform-specific drugs with
therapeutic potential.

Physiological aspects of the SLC9 isoforms

Members of the NHE gene family exhibit distinctive
patterns of tissue/cell expression and membrane localiza-
tion (Table 1). While their involvement in various cellular
processes is well established, recent investigations of
recognized plasma membrane-type NHEs and the discov-
ery of several organellar isoforms have uncovered novel
functions for members of this gene family in mammalian
physiology.

SLC9A1/NHE1

Tissue distribution and subcellular location

NHE1 is present in most cell types and is the most
extensively characterized member of this family. It
resides exclusively on the cell surface, but accumulates
preferentially in discrete microdomains of the plasma
membrane depending on the cell type. For instance,
NHE1 concentrates along the border of lamellipodia in
fibroblasts [52], the basolateral membrane of epithelia
[12], and the intercalated disks and t-tubules of cardiac
myocytes [107].

Physiological roles

NHE1 is believed widely to fulfill two fundamental
functions. First, it serves as the principal alkalinizing
mechanism in many cell types to guard against the
damaging effects of excess acidification that would arise
if metabolic acid generation and/or electrically driven H+

accumulation through various leak pathways remained
unchecked. Thus, it plays a crucial role—together with
bicarbonate-transporting systems (i.e., Na+-HCO3

� co-
transporters, Na+-dependent HCO3

�/Cl� exchangers and
Cl�/HCO3

� exchangers)—in maintaining cytoplasmic
acid-base balance (Fig. 4A). Second, it provides a major
conduit for Na+ influx, coupled to Cl� and H2O uptake,
which is required to restore cell volume to steady-state
levels following cell shrinkage induced by acute eleva-
tions in external osmolality [115] (Fig. 4B). In more
specialized secretory cell types, such as the acinar cells of
the parotid and sublingual glands, NHE1 activity is also
essential for secretagogue-induced fluid secretion [91,
105].

The cell type-specific localization of NHE1 to distinct
subdomains of the plasma membrane also suggests that it
may play more subtle, specialized roles in cell function.
In cardiac myocytes, the localization of NHE1 to
intercalated disks and t-tubules, but not the peripheral
sarcolemma, suggests a potential role in controlling the
activities of neighboring pH-sensitive proteins, such as
the gap-junction protein connexin43 [160] and the
ryanodine-sensitive Ca2+ release channel [163] that
resides near the cytoplasmic surface of the sarcoplasmic
reticulum cisternae, thereby influencing impulse conduc-
tion and excitation-contraction coupling. Consistent with
this notion, inhibition of NHE1 activity by amiloride
decreases the conductance of gap junctions of paired
cardiomyocytes in culture [43].

Recent evidence also suggests that NHE1 expression
may be a significant factor in regulating cell morphology,
adhesion and migration. Denker and colleagues [37]
uncovered a novel structural role for NHE1 in remodeling
the cortical actin cytoskeleton and cell shape of fibro-
blasts through its association with the cytoskeletal-
associated proteins ezrin, radixin and moesin (ERMs)
that is seemingly independent of cation translocation [37].

555



However, both cation translocation and anchorage to the
cytoskeleton are required for remodeling focal adhesions
at the front and trailing edges of the cell necessary for
guided movement [38] and may account, at least in part,
for the observed reduction in proliferation of NHE1-null
fibroblastic cells [59, 110]. Similar conclusions have also
been reached using viral-transformed invasive renal
epithelial MDCK tumor cells where pharmacological
inhibition of NHE1 activity induced disassembly of
filamentous actin, retraction of pseudopodia, and reduced
cell adhesion and motility [71]. Thus, in at least two cell
types, NHE1 appears to influence some cellular functions
through its physical linkage to the cytoskeleton. However,
the extent to which this phenomenon applies to other cell
types is uncertain, as mice with null mutations of Nhe1
are viable at birth [11, 34], suggesting that in vivo most
cells have redundant or compensatory mechanisms that
allow embryogenesis to proceed normally.

Regulation

Diverse stimuli that activate numerous receptor tyrosine
kinases and G protein-coupled receptors enhance NHE1
activity; thereby alkalinizing the cell and facilitating the
progression of certain biological processes. Ultimately,
many growth factors and peptide hormones (e.g., serum,
angiotensin II, thrombin, vasopressin, a-adrenergic re-
ceptors agonists) that activate NHE1 are thought to
transduce their signals through a common mitogen-
activated protein kinase (MAPK) pathway involving
mitogen-activated, extracellular signal-related kinase
(MEK-ERK)-p90rsk. The p90rsk kinase phosphorylates
S703 of human NHE1 directly, which enables binding of
the multifunctional scaffolding protein 14-3-3 to that site
[74, 132] (Fig. 3). In turn, 14-3-3 could serve as focal
point for the assembly of other signaling molecules [42].
NHE1 is also a substrate for other kinases, including
p160-Rho-associated kinase (termed p160ROCK or
ROK), which mediates signals from the integrin receptors
that modulate cell adhesion and spreading [134], and
Nck-interacting kinase (NIK) which transduces signals

Fig. 4A–D Schematic repre-
sentation of major physiological
roles fulfilled by mammalian
Na+/H+ exchangers. A Cyto-
plasmic pH homeostasis, B cell
volume regulation, C epithelial
Na+, HCO3

� reabsorption, D
organelle pH homeostasis)
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from receptor tyrosine kinases, such as platelet-derived
growth factor, independently of the ERK-p90rsk pathway
[164]. In the case of NIK, it directly binds to the central
portion of the NHE1 C-terminus, but phosphorylates a
downstream site that has yet to be mapped precisely.

The mechanisms by which protein phosphorylation
enhances cation exchange remain obscure. One tantaliz-
ing possibility comes from a recent study showing that
serum-induced phosphorylation of the extreme C-termi-
nus of NHE1 (last 178 amino acids) facilitates binding of
carbonic anhydrase II (CAII), which catalyses the hydra-
tion of CO2 to form HCO3

� and H+ [76]. Ectopic co-
expression of both proteins in NHE-deficient Chinese
hamster ovary AP-1 cells increases NHE1 activity
significantly above cells expressing only NHE1; an effect
that is abrogated by acetazolamide, a CAII antagonist.
These data support the notion that regulated binding of
CAII to NHE1 may stimulate transport activity and
cellular alkalinization transiently by increasing the local
production of protons, which are extruded, while simul-
taneously elevating cellular bicarbonate levels. At pres-
ent, it is unclear whether CAII and 14-3-3 compete for
binding to the same phosphorylated site or interact
independently of each other.

NHE1 activity is also modulated by interactions with
other ancillary regulatory factors that may themselves be
targets for phosphorylation by protein kinases. Ca2+/
calmodulin binds to a high (CaM-A, Kd ~20 nM; residues
637–656) or low (CaM-B, Kd ~350 nM; residues 657–
700) affinity, positively-charged cluster in its C-terminal
regulatory domain [143]. The association of Ca2+/cal-
modulin to the high affinity CaM-A domain is thought to
activate NHE1 by relieving an autoinhibitory intramolec-
ular interaction that increases the transporter’s affinity for
H+

i, thereby contributing to its regulation by agonists that
mobilize cytoplasmic Ca2+ [144].

Three other Ca2+-binding (phospho)proteins that are
closely related to each other (~34–50% identity), called
calcineurin B homologous protein-1 and -2 (CHP1 and
CHP2) and tescalcin (renamed CHP3 to indicate its
relatedness), also associate with NHE1 in vitro and in
vivo [78, 85, 103, 104]. CHP1 and CHP2 are equally
capable of interacting with other plasmalemmal-type
NHEs [103, 104], suggesting a broad role in NHE
function. The binding of CHP3 to other NHEs has yet to
be tested. Distinctions between these proteins emerge
when comparing their patterns of tissue expression and
effects on NHE activity. CHP1 is abundantly expressed in
all adult tissues [78], whereas CHP2 is undetectable in
most normal tissues but is significantly up-regulated in
malignant cells [104]. In contrast, CHP3 is expressed in
the developing testis, but is found exclusively in cardiac
tissue of adult animals [85]. With respect to CHP1 and
CHP2, biochemical and functional studies show that
residues in the juxtamembrane region of the NHE
cytoplasmic C-terminus (amino acids 520–535 of rat
NHE1) are critical for binding and optimal basal transport
activity [103, 104]. However CHP2, but not CHP1,
constitutively activates NHE1 and raises the steady-state

pHi under serum-free conditions that seemingly protects
against serum deprivation-induced cell death [104]. The
mechanistic basis for this intriguing phenomenon, how-
ever, remains unknown. Interestingly, the CHP-interact-
ing region is flanked by the two positively-charged
clusters that bind PIP2 in vitro and that are also critical for
basal NHE1 activity [1]. The distal site can also associate
with the related cytoskeletal-associated ERM proteins in
vitro and in vivo [37]. Thus, this juxtamembrane region of
the cytoplasmic C-terminus appears to be a crucial
domain for regulation of NHE activity.

Involvement in pathophysiological states

Despite the apparent normal fetal development of Nhe1�/�

mice, postnatally these animals gradually develop a
severe neurodegenerative disorder characterized by loco-
motor ataxia, epileptic-like seizures, and significant
mortality prior to weaning [11, 34]. The molecular basis
for this phenotype is largely ill defined, but correlates in
part with reduced steady-state pHi and attenuated pHi
recovery from cell acidification, and hyperexcitability of
hippocampal CA1 neurons [53, 165].

In contrast to the phenotype resulting from loss of
NHE1 function, acute over-activation of NHE1 activity is
a common occurrence in cardiac and neural tissues during
episodes of ischemia-reperfusion, which results in a
dramatic increase in Na+

i that, in turn, causes an increase
in Ca2+

i. This Na+-induced Ca2+
i overload triggers a

cascade of deleterious events that lead to tissue dysfunc-
tion (e.g., cardiac arrhythmias, altered synaptic transmis-
sion) and ultimately tissue damage, including free radical
toxicity, cellular edema, apoptosis and necrosis (reviewed
in [61, 111, 159]). Persuasive evidence for NHE1
involvement is provided by numerous studies using
selective NHE1 antagonists that significantly reduce
Na+

i and Ca2+
i overloads and effectively mitigate cardiac

[23, 61] and neural [4, 57] injuries associated with
ischemia-reperfusion both in vitro and in vivo.

Chronic activation of NHE1 activity in several tissues,
also in association with altered Ca2+

i regulation, is often
considered an intermediate phenotype for essential or
primary hypertension (reviewed in [94]). Current evi-
dence argues against a genetic defect in NHE1 being a
primary cause of essential hypertension in humans [77].
Rather, hypertension appears to correlate with enhanced
activity of the MAPK pathway and phosphorylation of
NHE1 [108, 126], suggesting that alterations in protein
kinase signaling may be responsible for altered cation
homeostasis leading to hypertension. Pharmacological
inhibition of NHE1 activity also appears to be beneficial
in attenuating cardiac hypertrophy and failure in response
to biomechanical stress [60].
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SLC9A2, SLC9A3 and SLC9A4/NHE2–4

Tissue distribution and subcellular location

NHE2–4 are expressed predominantly in the epithelia of
the kidney and gastrointestinal tract, but are also detected
at low levels in other tissues [21, 86, 98, 137, 138, 150].
In renal epithelia, NHE4 is located in the basolateral
membrane [27, 106, 109] and may fulfill similar or
overlapping functions with NHE1, particularly in the
macula densa [106] and intercalated cells of the cortical
collecting duct [12, 155] that lack detectable levels of
NHE1.

In contrast, NHE2 and NHE3 reside in the luminal
membranes of discrete nephron and intestinal segments
[13, 56, 106]. In the kidney, NHE2 is enriched in the
cortical thick ascending limb, macula densa, distal
convoluted tubules and connecting tubules [26, 106],
whereas NHE3 is located predominantly in the proximal
tubule and, to a lesser extent, in the medullary thick
ascending limb [3, 13]. In addition to the microvillus,
NHE3 [14, 28], but not NHE2 [29], is detected in a
discrete population of clathrin-associated subapical endo-
somes, where it could serve as a reservoir of functional
transporters that shuttles to and from the brush-border in
response to hormonal cues. NHE3 also contributes to
acute pH regulation of this endomembrane compartment
[2, 35]; a process that seemingly facilitates receptor-
mediated endocytosis [48].

Physiological roles

NHE3 is the major contributor to bulk Na+ and fluid
reabsorption by the proximal tubule [140]. The associated
secretion of H+ by NHE3 into the lumen of renal tubules
is also essential for approximately two-thirds of renal
HCO3

� reabsorption [149] (illustrated in Fig. 4C). Proton
secretion by NHE2 also regulates HCO3

� reabsorption in
the distal convoluted tubule, although its contribution to
plasma HCO3

� levels is less evident [149]. NHE3, but not
NHE2, regulates basal as well as meal-stimulated ileal
Na+ absorption in vivo [82, 166]. However, the physio-
logical distinction between these two apical transporters is
best revealed by studies of mice with targeted disruptions
of the Nhe2 and Nhe3 loci. NHE3-null mice exhibit slight
diarrhea and alkalinization of the intestinal luminal
contents, sharply decreased HCO3

� and fluid absorption
in proximal convoluted tubules, mild acidosis, reduced
blood pressure, elevated serum aldosterone and higher
renal renin mRNA expression, consistent with the
volume-contracted state of the animals [73, 122]. This
phenotype differs considerably from that observed for
NHE2-null mice, which show severe degeneration of
gastric parietal and zymogenic cells and significantly
decreased parotid gland fluid secretion, but no apparent
intestinal or renal absorptive defects [73, 105, 121].
Taken together, these studies highlight the central
importance of NHE3 in absorptive functions that pro-

foundly influence systemic electrolyte, acid-base, and
blood pressure homeostasis, whereas NHE2 appears to
function primarily in secretory processes of certain
glands.

Regulation

Numerous hormones and physical parameters such as
osmolality also influence NHE3 function, thereby con-
tributing to the fine control of electrolyte and fluid
homeostasis [96]. For example, hormones that activate
cAMP-dependent protein kinase (PKA), such as parathy-
roid hormone, reduce renal Na+ and HCO3

� reabsorption
in part by inhibiting apical NHE3 activity through a
reduction in the transporter’s maximum velocity and
apparent affinity for H+

i [88] (Fig. 4C). Exposure of renal
epithelial cells to hyperosmotic conditions also causes a
similar decrease in NHE3 activity, but mainly by
decreasing its sensitivity to H+

i [153], whereas hyposmo-
lality elicits an increase in renal NHE3 activity by raising
the maximal velocity without altering H+

i affinity [154].
Like NHE1, multiple molecular mechanisms are involved
in regulating NHE3 activity in response to these stimuli,
including direct phosphorylation of the exchanger, inter-
actions with ancillary factors, and trafficking of en-
domembrane vesicles containing NHE3 to and from the
cell surface (illustrated in Fig. 3, lower panel).

Phosphorylation of serine residues (Ser552 and Ser605)
in the carboxy-terminal cytoplasmic region of NHE3 has
been implicated in its responsiveness to PKA [68, 174].
Notably, mutation of Ser605 (RRRS605IR) blocks PKA-
mediated phosphorylation of the transporter, but only
reduces the acute inhibitory effect on transport activity by
~50% [68]. Mutation of an additional nearby serine
(YS634RHEL) is required to abolish the effect of PKA,
even though it is not phosphorylated upon activation by
PKA. This finding implicates the existence of other
modes of action of PKA that indirectly regulate NHE3
activity (discussed below).

Recent studies have indicated that NHE3 forms
macromolecular complexes with other proteins in the
plasma membrane of both non-epithelial and epithelial
cells, some of which modulate its function. These include:
(1) CHP1 and CHP2, which are essential for optimal
transport activity [103, 104]; (2) megalin, a scavenger
receptor that interacts with NHE3 in intermicrovillar
clathrin-coated pits of the renal brush border, where it
renders the transporter inactive [16, 17]; (3) dipeptidyl
peptidase IV (DPPIV), a protease present on the outer
membrane leaflet of many cell types, especially microvilli
of epithelial cells, but its role in NHE3 function is
unknown [49]; and, finally, (4) two homologous PDZ-
domain scaffolding proteins (class I) called Na+/H+

exchanger regulatory factor 1 (NHERF1) (also termed
EBP50) [156] and NHE3 kinase A regulatory protein
(E3KARP) (also called NHERF2) [171]. These latter two
proteins bind to the cytoplasmic C-terminus of NHE3 and
have been postulated to mediate indirectly the effect of
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PKA [157]. Class I PDZ-binding sequences consist of a
short tri-peptide sequence (S/T-X-Ø, where Ø represents a
hydrophobic residue) at the very C-terminus. Interesting-
ly, NHE3 contains a closely related sequence THM at its
C-terminus. However, the NHERFs are believed to
interact at an internal region (residues 585–660) of the
cytoplasmic domain of NHE3 which includes two of the
serines (Ser605 and Ser634) implicated in responsiveness to
PKA [172]. Both NHERF1 and NHERF2 also bind to the
N-terminal domain of ezrin [113, 172], an ERM protein
abundant in apical microvilli of epithelial cells and actin-
containing structures of non-epithelial cells, and serves as
a link between membrane-associated proteins and actin
filaments [169]. Ezrin is also capable of functioning as a
PKA-anchoring protein or AKAP [39], which could
physically position PKA in close proximity to NHE3
and promote the phosphorylation of the exchanger and/or
cytoskeletal proteins.

These observations raised the possibility that the
activity of NHE3 may be controlled in some manner by
its state of association with the actin cytoskeleton, which
may facilitate regulation by PKA. Indeed, a fraction of
total cellular NHE3 co-sediments with F-actin, suggestive
of an interaction between NHE3 and the cytoskeleton
[70]. Moreover, disruption of normal actin structure by
pharmacological means (i.e., using cytochalasins or
latruculin) or by expression of dominant-negative con-
structs of RhoA or its downstream target ROK—signaling
effectors that control the organization of the actin
cytoskeleton—impair NHE3 activity in stably transfected
Chinese hamster ovary cells without altering its abun-
dance at the plasma membrane [70, 129]. Interestingly,
the inhibition of NHE3 by cytoskeleton-disrupting agents
is conferred by C-terminal residues 638–684 and bears
structural and functional similarities with that induced by
elevation of PKA activity, which also dramatically alters
cell morphology by antagonizing the activity of the RhoA
[72], thereby disrupting the actin microfilament network.
Consistent with this notion, constitutively-active forms of
RhoA and ROK interfere with actin disruption caused by
activated PKA and also attenuate PKA-mediated inhibi-
tion of NHE3 [130]. Other stimuli, such as hyperosmotic-
induced cell shrinkage, also disrupt the actin cytoskeleton
and may account for the associated decrease in NHE3
activity [128]. Thus, linkage of NHE3 to the actin
cytoskeleton appears to be important for both basal and
regulated transport activity.

As mentioned above, recent evidence has shown that
NHE3, in addition to being present at the surface
membrane, is also detectable in intracellular vesicles of
epithelia and transfected fibroblasts. In these cells,
plasmalemmal transporters undergo constitutive uptake
into clathrin-coated vesicles that are recycled back to the
plasma membrane in a phosphatidylinositol 3-kinase-
dependent manner [69]. Gradual redistribution of renal
NHE3 to a vesicular compartment is observed following
chronic in vivo treatment of rats with parathyroid
hormone [41, 173] or after induction of hypertension
[167]. Taken together, these observations are consistent

with an intracellular redistribution of the exchangers
following treatment with certain agents that modify the
rate of transport.

Involvement in pathophysiological states

Defective NHE3 function has been linked to the patho-
genesis of human congenital secretory diarrhea; a rare
autosomal recessive disorder characterized by the absence
of intestinal brush-border Na+/H+ exchange, severe diar-
rhea typified by Na+-enriched alkaline stools, hyponatre-
mia and metabolic acidosis [19], and which closely
mimics the phenotype of Nhe3�/� mice.

Aberrant NHE3 activity has been implicated as a
potential contributing factor in the pathophysiology of
other disease states, including hypertension and renal
ischemia-reperfusion injuries. Isolated ileum [141] and
renal proximal tubules [62] of spontaneously hypertensive
rats (SHR) show increased levels of NHE3 activity and
protein in brush-border membranes compared with control
Wistar-Kyoto (WKY) animals, which may contribute to
increased Na+ reabsorption and the pathogenesis of
hypertension. Similarly, induction of diabetes mellitus in
rats—a disease associated with hypertension and renal
dysfunction—increases renal brush-border NHE3 activity,
which reverses upon insulin treatment [54]. In contrast,
ischemic-reperfusion injury in the kidney leads to drastic
and prolonged reductions in NHE3 as well as other apical
ion transporters, and could contribute to the increased
fractional excretion of NaCl and water that occurs during
recovery from ischemic acute renal failure [151].

SLC9A5/NHE5

Tissue distribution and subcellular location

NHE5 is distinguished from other NHEs by its concen-
trated expression in neuronal-enriched regions of the
central nervous system [8, 9]. It is most closely related to
NHE3 (~50% amino acid identity, Table 2) and shares
similar properties; namely its localization in the plasma
membrane and its internalization by clathrin-mediated
endocytosis into recycling endosomes when stably trans-
fected into Chinese hamster ovary cells [131]. A compa-
rable subcellular distribution is also observed when
transiently over-expressed in differentiated neuroendo-
crine PC12 cells and primary cultures of rat hippocampal
neurons, in which NHE5 accumulates in somatodendritic
vesicles, but also in synaptic or synaptic-like microvesi-
cles along the axons or neurite processes [131].

Physiological roles

The role of NHE5 in neuronal function is presently
unknown. However, it is tempting to speculate that it may
modulate the acidity of synaptic vesicles, which is an
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important determinant of neurotransmitter concentration,
and ultimately of synaptic transmission [79]. In this
regard, it is intriguing to note that genetic mapping studies
have localized NHE5 to a region of chromosome 16q22.1
[65] that coincides with a locus linked to a late-onset (20–
60 years of age) form of autosomal dominant spinocer-
ebellar ataxia (SCA4) [44], implicating NHE5 as a
possible candidate gene in the development of this
neurodegenerative disease.

Regulation

Little is known about the regulation of NHE5. Pharma-
cological activation of protein kinase A or C, as well as
hyperosmolality, reduce rat NHE5 activity when the latter
is over-expressed in Chinese hamster lung fibroblast
PS120 cells, similar to that observed for NHE3 [7].
Likewise, the trafficking of NHE5-containing vesicles is
also dynamically regulated by phosphatidylinositol 30-
kinase and by the state of F-actin assembly [131].

SLC9A6, SLC9A7 and SLC9A8/NHE6–8

Tissue distribution and subcellular location

Sequence comparisons show that NHE6–8 have diverged
considerably from the plasmalemmal-type NHEs (~25%
overall amino acid identity, Table 2), clustering with
homologous genes from diverse eukaryotic species in a
separate branch of the NHE phylogenetic tree (Fig. 2).
These isoforms are expressed ubiquitously, suggesting
that they probably perform housekeeping functions.
NHE6 and NHE7 are closely related to each other
(~70% identity, Table 2), differing largely at their
extreme N- and C-termini. By comparison, NHE8 shares
only 25% identity with NHE6 and NHE7, and therefore
represents the most evolutionarily distant isoform
amongst the mammalian NHEs.

Initial transfection studies using HeLa cells showed
that an NHE6-green fluorescent protein (GFP) chimera
localized to intracellular vesicles that closely overlapped
MitoTracker Red-stained mitochondria [93], and was
thought to partly account for earlier descriptions of
monovalent cation/H+ exchangers in this organelle [47].
However, other reports [22, 89] have since provided more
compelling data that both NHE6 and its splice variant
NHE6_v1 are processed preferentially through the secre-
tory pathway and accumulate chiefly in endosomal
vesicles when transiently over-expressed in mammalian
cells. Hence, the molecular entity/entities that ostensibly
mediate Na+/H+ exchange in mitochondria remain elusive.

By comparison, NHE7 localizes predominantly to the
trans-Golgi network and associated endosomes [92]. As
mentioned earlier, NHE7 is distinguished from other
cloned mammalian NHEs by its ability to transport either
Na+ or K+ in exchange for H+. Since K+ is the major
intracellular cation, it is likely that NHE7 catalyzes

chiefly K+/H+ exchange. The cation specificities of NHE6
have yet to be determined empirically, but are likely to be
similar, given its close relatedness to NHE7.

Considerably less is known about NHE8. Northern blot
analyses have shown NHE8 mRNA to be expressed
widely in adult mouse [51] and human (M. Numata, I.
Virdee, S. Grinstein, J. Orlowski, unpublished data)
tissues. Goyal and colleagues [51] have demonstrated
further that the corresponding protein can be detected in
isolated brush-border membrane vesicles of renal proxi-
mal tubule epithelia using an isoform-specific polyclonal
antibody, although other tissue preparations were not
examined. The antibody, however, was ineffective in
immunocytochemical analyses, precluding precise deter-
mination of its subcellular distribution. By contrast,
ectopic expression of an epitope-tagged form of human
NHE8 in HeLa cells shows a diffuse punctate distribution
throughout the cell, suggesting that it may reside primar-
ily in endomembrane compartments (M. Numata, I.
Virdee, S. Grinstein, J. Orlowski, unpublished data).
Similarly, the orthologous isoform from C. elegans,
CeNHX8-GFP, accumulates in punctate, perinuclear
vesicles of cells in transgenic nematodes [90]. A more
accurate description of the subcellular distribution of
NHE8 awaits the development of more versatile isoform-
specific antibodies.

Physiological roles

What may be the roles of NHEs in organellar function? It
is well established that the luminal pH of organelles along
the secretory and endocytic pathways of eukaryotic cells
is acidic and tightly regulated, with the [H+] differing up
to 100-fold between compartments [158]. This acidifica-
tion is important for proper post-translational processing
and sorting of newly synthesized proteins, and for the
redistribution and degradation of internalized membrane
proteins such as ligand-receptor complexes and fluid-
phase solutes [87]. The precise determinants of steady-
state pH within the lumen of different endomembrane
compartments are incompletely understood. However,
current evidence supports a complex interplay between
the rates of H+ pumping by the vacuolar H+-ATPase [45],
counterion conductances of anions such as Cl� [58], and
ill-defined H+ (or acid equivalent) leak pathways that are
readily manifested by the rapid dissipation of the
transmembrane H+ chemical gradient upon inhibition of
the vacuolar H+-ATPase with bafilomycin or con-
canamycin [36, 80, 118] (illustrated in Fig. 4D). A
component of this H+ leak in the Golgi complex has been
identified recently as a Zn2+-inhibitable H+ conductance
[118], but can not account fully for H+ turnover. The
presence of NHE7 in organelles of the secretory pathway
may account for part of this sizable H+ leak [36, 80].
Likewise, NHE6 may contribute to pH regulation of
organelles of the endocytic pathway.

In addition to serving as organellar H+ efflux path-
ways, isoforms such as NHE7 may also regulate the
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luminal K+ concentration, and consequently volume
homeostasis, of these compartments. Indeed, the [K+] of
the Golgi complex was recently determined to be close
(~107 mM) to that of the cytoplasm (~140 mM), impli-
cating the existence of K+ influx pathways [118]. Recent
intriguing findings also suggest that the luminal [K+] may
function as a meaningful allosteric regulator of the Kex2/
furin family of endoproteases located in the secretory
pathway; thereby influencing the processing of newly
synthesized protein and polypeptide precursors [114].
Consistent with the importance of NHEs in organellar
function, Saccharomyces cerevisae containing null or
functionally-inactive mutants of the organellar ScNha2/
Nhx1 isoform show aberrant processing and missorting of
proteins along the secretory pathway [20].

Conclusions

In summary, the mammalian NHE gene family has shown
itself to be more diverse that previously anticipated from
earlier functional studies. Much progress has been made
over the last few years in characterizing the kinetic,
regulatory, and physiological properties of the plasma
membrane-type NHEs. Studies of the organellar-type
NHEs are still in their infancy, but undoubtedly will
provide exciting new insights into their contributions to
cellular physiology. Are there additional NHEs yet to be
identified molecularly? Functional studies suggest that two
distinct types of monovalent cation/H+ exchangers are
present in mammalian mitochondria; a Na+-selective and a
non-selective monovalent cation/H+ exchanger (reviewed
in [47]). However, the mitochondria-enriched preparations
used in many of these studies have been generated by
differential gravity centrifugation, and hence are relatively
crude in nature. Further biochemical studies using more
highly-purified mitochondria and isoform-specific antibod-
ies will be required to distinguish whether these activities
represent truly novel NHEs or are known isoforms resident
in contaminating endomembrane vesicles.
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