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ABSTRACT 

 

Music Emotion Recognition (MER) is a promising new direction for automatic music 

organization and retrieval. The aim of MER is to automatically annotate music based on mood. 

Researchers have tried to retrieve music mood using audio features, contextual text information, 

and multimodal methods. Among these music features used in MER, lyrics are an important part 

of vocal music that MER researchers have been exploiting. Using traditional lexicons and 

traditional Natural Language Processing (NLP) techniques, researchers have been conducting 

MER using lyrics alone in several languages. However, there has not been enough data for MER 

to use NLP on lyrics. Transfer learning methods can bridge the gap between the need of massive 

data for machine learning methods and the lack of annotated data for MER. This thesis implements 

transfer learning to classify music only using lyrics in English into four categories: angry, happy, 

sad, and relaxed. Two pre-trained models, BERT and XLNet, are tested and compared with a 

traditional machine learning method, Support Vector Machine. Also investigated are the effects of 

different text preprocessing techniques and their combinations on MER using lyrics.   
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RÉSUMÉ 

 
La reconnaissance d’émotions dans la musique (“Music Emotion Recognition,” MER) est 

une nouvelle voie prometteuse dans l’automatisation de l’organisation et de la recherche de la 

musique. Le but de la MER est d’automatiquement annoter la musique selon l’émotion. Des 

recherches ont déjà été faites pour détecter l’émotion dans la musique en utilisant des 

caractéristiques sonores, des informations et métadonnées textuelles et des approches 

multimodales. À l’aide de lexiques et de techniques de traitement automatique du langage naturel 

(TALN) traditionnels, des études MER n’utilisant que les paroles ont été menées dans plusieurs 

langues. Toutefois, cette méthode de MER à l’aide des paroles utilisant le TALN souffre de 

manque de données. L’apprentissage par transfert peut combler à la fois le besoin massif de 

données pour les méthodes d’apprentissage automatique et le manque de données annotées pour 

la MER. La présente thèse implémente l'apprentissage par transfert pour classifier la musique en 

anglais, à l’aide des paroles seulement, dans quatre catégories : fâchée, joyeuse, triste et paisible. 

Des modèles pré-entraînés, BERT et XLNet, sont testés et comparés avec une méthode 

traditionnelle d’apprentissage automatique, les machines à vecteur de support. La recherche porte 

aussi sur les effets de différentes méthodes de prétraitement de texte et de leurs combinaisons sur 

la MER utilisant les paroles.   
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Chapter 1 Introduction 

With the rapid proliferation in the amount of music produced, music information search 

strategies need to evolve to fulfill users’ expectations of searching and browsing capabilities (Kim 

et al. 2010). Researchers have explored similarities among music pieces to organize music in 

groups and recommend suitable music to users. However, most music classification problems 

concentrate on genre or style classification. Lately, the emotional aspect has become another 

essential criterion for music classification. 

Music psychology studies have revealed that the affective aspects of music are essential. 

Scruton (1983, 49) believed that the value of music is found in its capacity to express emotion. 

Schubert (2007, 500) also pointed out that one of music’s major attractions may be its capacity to 

arouse and express emotion. Furthermore, Huron (2000) stated that the primary functions of music 

are “social and psychological.” Huron (2000) also asserted that stylistic and mood indexes are the 

most useful retrieval indexes for music since they benefit social and psychological search. As a 

result, music mood emerges as a new type of metadata for music.  

In addition, Sloboda and O’Neill (2001, 415) believed that music offers a form of semiotic 

and affective power that helps individuals construct socially emotional feelings. Eerola and 

Vuoskoski (2013) asserted that “the emotional power of music is the reason for its application in 

areas as diverse as the gaming industry, film industry, marketing, and music therapy.” 

Recently, the demand for automatic methods for music classification and recommendation 

has arisen with the advent of music streaming and downloading services and the exposure to 

information on a massive scale. Nevertheless, most music archives do not support emotion-based 
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music retrieval. Moreover, it is impossible and time-consuming to manually annotate music 

emotion for all pieces of music. 

Automatic Music Emotion Recognition (MER) appeared as a promising new direction for 

automatic music organization and retrieval. In general, MER is regarded as a multiclass-multilabel 

classification or regression problem (Kim et al. 2010). Music emotion measurement usually 

consists of two components: perceptions and inductions (Gabrielsson and Lindström 2001). MER 

tasks are primarily concerned with recognizing the emotion expressed by music rather than the 

mood induced by music (Kim et al. 2010). 

The goal of MER is to annotate music based on mood automatically. The music can be an 

entire song or a section of a song. Surveys, social tagging, and annotation games are common 

methods for gathering ground truth. With the ground truth, contextual text and audio-based music 

features can be analyzed to recognize emotions.  

1.1 Motivation 

Music psychology studies have indicated that lyrics are essential to music mood. For 

example, Stratton and Zalanowski (1994) stated that lyrics seem to have more power to stimulate 

mood change than audio alone and can endow a particular melody with emotional qualities. 

According to Cunningham et al. (2006), lyrics were the most frequently mentioned feature by 

participants when asked why they do not like a song. 

Lyrics have been shown to be crucial in MER. For example, Yang and Lee (2009) stated 

that lyrics alone could be used to generate human-comprehensible classification models. However, 

most works in MER try to combine lyrics with other modalities, such as audio and social tags (e.g., 
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Hu, Downie, and Ehmann 2009; Hu 2010; Xue, Xue, and Su 2015). Only a few MER models used 

lyrics solely.  

This thesis takes the assumption that lyric information can be used to classify music mood 

and continue exploring its limitations with the state-of-art Natural Language Processing (NLP) 

techniques. In addition, the effect of different text preprocessing methods on lyric emotion 

classification is investigated, which has yet to be studied in detail before. It is hoped that the NLP 

methods deployed on lyrics can properly classify music based on mood. 

1.2 Project Overview 

This thesis used the two existing English lyrics datasets annotated using mood tags 

available music archive: MoodyLyrics4Q1 and AllMusic2 dataset. Both datasets classify music 

into four categories based on Russell’s model (Russell 1980): happy, relaxed, sad, and angry. The 

lyrics themselves were collected from the Internet using the Genius API3 since the datasets do not 

provide lyrics because of license issues. 

As a baseline, an automatic music emotion classification based only on lyrics was built 

using a Support Vector Machine (SVM) classifier with Term Frequency-Inverse Document 

Frequency (TF-IDF) score as the input lyric feature. For the main experiment, novel word 

embedding strategies based on transfer learning and Transformers, BERT and XLNet, were 

finetuned to classify music using lyrics. In addition, for each classifier, the effect of different 

 
 
1 http://softeng.polito.it/erion/MoodyLyrics4Q.zip 
2 http://mir.dei.uc.pt/resources/Dataset-Allmusic-771Lyrics.zip 
3 https://genius.com/ 
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combinations of text preprocessing techniques such as lowercase conversion, noise removal, stop-

words removal, and stemming or lemmatization, were evaluated. 

1.3 Thesis Organization 

This thesis contains five chapters. Chapter 1 (the current chapter) introduced MER and the 

motivation and overview of this thesis research. Chapter 2 first gives the background of MER from 

the music psychology perspective. Then, it reviews the related works in MER, beginning with an 

overview of mood as a new type of metadata. Next, it examines the history of two evaluation 

forums, reviews MER methods based on audio, text, and multimodal features, and ends with an 

overview of NLP methods. Chapter 3 presents the details of the methodology, including datasets, 

lyrics collection, evaluation metrics, and a description of machine learning methods. Chapter 4 

covers the setup, execution, and results of preliminary experiments and main experiments, and a 

further discussion on the results. Chapter 5 contains the conclusion of this thesis and provides 

possible future directions suggested by the results of the experiments. 
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Chapter 2 Background 

This chapter provides the background and popular methods in Music Emotion Recognition 

(MER). Section 2.1 describes music mood from the perspective of music psychology. Then, 

Section 2.2 presents the related works in MER. Finally, Section 2.3 gives an overview of Natural 

Language Processing and its application in Music Information Retrieval, especially in MER. 

2.1 Mood in Music Psychology 

This section introduces music mood in the view of music psychology and its usage in Music 

Information Retrieval (MIR). First, Section 2.1.1 provides the nuanced differences and similarities 

between three terms used in MER: mood, emotion, and sentiment. Next, Section 2.1.2 discusses 

the sources of mood in music. Section 2.1.3 provides several music psychology principles that are 

helpful in MER research. Finally, Section 2.1.4 presents two kinds of music emotion representation 

widely used in MER: categorical representation and parametric representation. 

2.1.1 The Terms: Affect, Mood, Emotion, and Sentiment 

Affect is a term that refers to a wide range of feelings that people can have. It encompasses 

both mood and emotion. Both terms, mood and emotion have been used in music psychology and 

Music Information Retrieval (MIR) studies to describe the affective impacts of music. Researchers 

have been focusing on refining the concepts of mood and emotion since the beginning of music 

psychology research, although they are not entirely unrelated.  

In comparison between mood and emotion, moods are distinguishable from emotions by 

duration. Weld (1912, 283) concluded that “While it is true that the conscious content of the mood 

is similar to that of the emotion, yet the temporal course and life-history of the former is different 
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from that of the latter. The emotion is temporary and evanescent; the mood is relatively permanent 

and stable.”  

Another main difference between mood and emotion lies in induction. It is usually easy for 

people to recognize the specific event that triggers a certain emotion whereas it is more difficult 

to determine the cause of mood (Ekman and Davidson 1994). 

Hu (2010, 17) found that the term emotion appears to be more prevalent in music 

psychology while mood seems to be more preferred in MIR research. Hu proposed two reasons 

for this difference:   

First, MIR researchers try to find the common affective themes of music recognized 

by the majority, while music psychologists are more interested in human responses to 

different emotional stimuli. Therefore, MIR studies focus more on the general sentiment 

that music conveys and choose the term mood over emotion. Second, MIR researchers are 

searching for a new type of metadata to organize and retrieve music pieces. The research 

purpose of MIR is on music rather than human responses. It is worth noting that music 

does not have emotional responses. However, music does convey a certain mood to its 

audience (Hu 2010, 18). 

Although there is a slight difference between them, the two concepts are not completely 

separated. Hu (2010, 18) also stated that “to some extent, their difference mainly lies in 

granularity.” 

Another term, sentiment, has also been used in text-involved MIR tasks. According to The 

Oxford English Dictionary (2021), sentiment refers to “A thought or reflection coloured by or 

proceeding from emotion.” In contrast to the term emotion, sentiment is more a resulting opinion 
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or view towards an object caused by emotion developed over time (Munezero et al. 2014). 

However, they are frequently used interchangeably as they both refer to experiences resulting from 

the interaction of biological, cognitive, and social aspects (Stets 2006). Therefore, in this research, 

the terms mood, emotion, and sentiment are used interchangeably. 

2.1.2 Music Mood Sources 

The sources of music mood are also a topic of interest to MIR researchers, which is related 

to music psychology. Is it a result of the intrinsic attributes of music pieces or the extrinsic contexts 

of music listening behaviours? The answers will significantly impact how mood labels are assigned 

to music works, whether manually or by computer programs. 

The root of the question is whether music meaning lies solely within the context of the 

musical work itself. There are two opposing perspectives of music meaning in music psychology: 

absolute and referential views (Meyer 1956, 1). The absolute view sees music meanings as existing 

only in the context of the music piece. The referential view, however, sees music meanings, which 

concern the concepts, behaviours, emotional states, and character, as existing outside of music. 

Meyer (1956, 1) declared that both forms of music meanings exist.  

Sloboda and Juslin (2001, 1) reinforced Meyer’s idea by proposing two different types of 

music emotion: “internal” and “external” emotion. Internal emotion is activated by the music’s 

structural attributes, whereas external emotion is evoked by the semantic context associated but 

outside the music piece. Thus, music mood, they concluded, is a combination of the content and 

social context of music. In fact, recent MIR studies have started to combine music content, such 

as audio and lyrics, and social context, such as social tags and reviews (Aucouturier et al. 2007; 

Hu 2010, 19; Saari et al. 2013b).  
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2.1.3 Fundamental Principles in Music Psychology 

In addition to sources of emotion in music, music psychology studies contain some 

fundamental principles of music mood perception that can be helpful for MIR research. First, 

music does have a mood effect on listeners. Early studies have proved that music can change a 

listener’s mood (Capurso et al., 1952). Furthermore, it is widely accepted that assigning mood 

labels to music pieces appears natural to listeners (Sloboda and Juslin 2001, 94).  

Second, different people may perceive certain emotions in music differently. According to 

Sloboda and Juslin (2001, 94), listeners are often consistent in their perceptions of the emotional 

effect of music. Schoen and Gatewood (1927, 150) also concluded that music's emotional response 

is remarkably consistent. Moreover, a study conducted by Lee et al. (2021) analyzed 11,500 

emotional ratings of 166 participants from Brazil, South Korea, and the United States over 360 

pop songs originating from these three countries. The results showed that basic moods such as sad, 

joyful, and energetic were rated similarly within and across cultures. It demonstrates that music 

can be universally classified by certain emotions despite the cultural backgrounds of listeners. 

However, music does not evoke all moods equally. To be specific, an experiment by 

Schoen and Gatewood (1927, 147–148) showed that sadness, joy, and love are more often used 

than disgust and irritation when describing feelings aroused by music pieces. Furthermore, the 

level of agreement among listeners is not the same for all the moods. Schoen and Gatewood (1927, 

149–150) stated that moods such as joy, amusement, and sadness are relatively consistent among 

listeners, whereas moods such as disgust and irritation are the moods of low consistency. Edmonds 

and Sedoc (2021) found that annotators have significantly lower agreement on the mood surprise. 

Recent research by Lee et al. (2021) demonstrated that there are significant cross-cultural variances 
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for complex music emotional attributes, such as dreaming and love. For MIR studies, these results 

imply that some moods will be more challenging to recognize than others. 

2.1.4 Music Emotion Representations 

Most (70%) of the music and emotion research uses two types of emotion representation: 

categorical representation and parametric representation (Eerola and Vuoskoski 2013). In a 

categorical representation, the mood space contains a group of discrete mood categories. The 

essential idea is that the number of basic emotions is limited (Ekman 1992). Basic emotions are 

innate and universal emotions, through which all other complex emotional states can be derived 

(Ekman 1992, 170–171; Damasio 1994, 133). Furthermore, these basic emotions are considered 

to be adaptable. For example, when dealing with emergencies in life, basic emotions are aroused 

quickly rather than precisely (Sloboda and Juslin 2001, 76–77).  

Ekman (1992, 175–176) defined six universal emotions for facial expressions: anger, 

disgust, fear, happiness, sadness, and surprise. In the field of music psychology, Hevner (1935) 

first designed a circle by clustering 66 emotion terms into eight groups (Figure 2.1-1). In the circle, 

the terms within the same group are similar in meaning, and before hitting a contrast, adjacent 

clusters differ slightly by accumulating steps. It has been shown that Hevner’s cluster circle is 

consistent despite listeners’ music training (Schubert 2003). Another well-known categorization 

approach is the five clusters (Table 2.1-1) used in Music Information Retrieval Evaluation 

eXchange (MIREX) Audio Mood Classification (AMC) task (Hu et al. 2008). It is derived by 

clustering mood labels using popular music from AllMusic.com.4 

 
 
4 http://www.allmusic.com 
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Figure 2.1-1 Hevner’s adjective circle. (Farnsworth 1954, 98) 
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Table 2.1-1 Five mood clusters used in the AMC task (Hu et al. 2008) 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Rowdy Amiable/ 
Good 
natured 

Literate Witty Volatile 

Rousing Wistful Humorous Fiery 

Confident Sweet Bittersweet Whimsical Visceral 

Boisterous Fun Autumnal Wry Aggressive 

Passionate Rollicking Brooding Campy Tense/anxious 

 Cheerful Poignant Quirky Intense 

   Silly  

 

A parametric mood representation, on the other hand, continuously measures emotion. The 

most popular one is the Valence-Arousal (V-A) space (Russell 1980). The V-A space is a two-

dimensional space (Figure 2.1-2). Valence describes pleasantness, ranging from negative to 

positive. Arousal stands for the stimulation level, ranging from low to high. In order to study the 

influence of internal and external locus on the preference in music, Schubert (2007) first adopted 

the V-A space to music.  

The V-A space has been validated in many studies (Barrett and Russell 1999; Laurier et al. 

2009; Russell 1983). In music-related studies, Cespedes-Guevara and Eerola (2018) argued that 

music can offer affective information including variations of core affect, valence, and arousal, 

although they do not cover all the affective information that music can provide. Van Zaanen and 

Kanters (2010) implemented MER using lyrics with class divisions based on the V-A space and 

claimed that “there is no large difference in mood prediction based on the mood division.” 
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Figure 2.1-2 Unidimensional scaling of 28 affect words on the degree of valence (horizontal 
axis) and arousal (vertical axis) (Russell 1980) 

 
In addition to two-dimensional models, researchers also favour three-dimensional models 

of mood. For example, Sjöberg, Svensson, and Persson (1979) proposed that tension is also a basic 

mood factor besides pleasantness and activation. Schimmack and Grob (2000) supported the need 

for a three-dimensional model of emotion while it is insufficient to fully capture the structure of 

affect in all facets. 

In fact, categorical and parametric representation cannot be fully separated (Hu 2010, 23; 

Zentner and Eerola 1993, 200). Gabrielsson and Lindström (2001) claimed that Henver’s model 

revealed an inherent dimensionality similar to valence and arousal in Russell’s V-A space. To be 

specific, valence (sadness – happy) is in the same manner as cluster II – cluster VI, and arousal 

(exciting/vigorous – serene/dreamy) is similar to cluster VII/VIII – cluster IV/III. Also, Eerola and 

Vuoskoski (2013) mentioned that the distinctions between happy and sad could also be determined 

in the valence and arousal, which is the parametric representation. 
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2.2 Music Emotion Recognition 

This section presents the related works in the field of MER. Section 2.2.1 discusses the 

need and validity of using mood as a type of catalogue metadata in MIR. Section 2.2.2 presents 

two popular evaluation forums for MER research. Then, MER methods using audio features, text 

features, and multimodal features are presented respectively in Section 2.2.3, 2.2.4, and 2.2.5. 

2.2.1 Mood as Metadata 

As stated by Casey et al. (2008), “metadata is the driver of MIR systems.” Music 

information can be accessed by traditional music catalogue metadata, such as title, artist, and genre.  

With the advent of music streaming and downloading services and the proliferation of music 

pieces, however, music information search strategies need to be evolved to fulfill the expectations 

of search and browse capabilities (Casey et al. 2008; Hu 2010, 16; Kim et al. 2010; Yang and Chen 

2012). Many studies have pointed out that Music Information Retrieval (MIR) systems need more 

than traditional bibliographic information for easy and effective access to music information 

(Casey et al. 2008; Futrelle and Downie 2002; Lee and Downie 2004). Lee and Downie (2004) 

conducted a user survey about music information needs, uses, and search patterns, and emphasized 

the importance of contextual metadata. 

In recent years, novel metadata has been proposed to organize music efficiently, including 

perceptual metadata. For example, Hu and Downie (2007) investigated 179 mood labels on 

AllMusic.com1 provided by users. Statistical analysis conducted by the authors demonstrated that 

mood is independent of genre and artist as a new sort of music metadata. Therefore, as a new way 

to obtain music information, mood may be a helpful complement to traditional metadata. 
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2.2.2 Evaluation Forums in MER 

The most popular evaluation forums in MER are the AMC task in MIREX AMC and the 

Emotion in Music task held by the Multimedia Evaluation Benchmark (MediaEval). MIREX is a 

community that has formally evaluated MIR systems and algorithms since 2005. The first AMC 

evaluation task in MIREX was released in 2007. The MIREX 2007 Mood Classification dataset 

was selected from the APM5 collection by the International Music Information Retrieval Systems 

Evaluation Laboratory (IMIRSEL) at the University of Illinois at Urbana-Champaign (UIUC) (Hu 

et al. 2008). The set contains a set of 600 audio clips of 30-second long that covers seven major 

genres. The mood clusters of the audio clips are agreed upon among two out of three human 

assessors. The audio clips are in 22.05 kHz, mono, and 16-bit WAV format.  

In 2013, IMIRSEL and Korea Electronics Technology Institute (KETI) proposed a mood 

classification dataset with K-POP music. The dataset contains 1,438 songs, each labelled with one 

of the five mood clusters. However, this dataset is not evenly distributed across the five clusters. 

In this dataset, each song is annotated by three annotators from the United States and three Korean 

annotators. In total, there are three independent tasks: one uses annotations by North Americans, 

one uses annotations by Koreans, and one uses the MIREX 2007 Mood Classification dataset.  

MediaEval is a benchmarking initiative that develops and tests novel algorithms and 

technologies for multimedia analysis, retrieval, access, and exploration. The first Emotion in 

Music task was released in 2013, composed of two subtasks (Soleymani et al. 2013). The first 

subtask is to detect arousal and valence on a nine-point scale for each song with multimodal 

features. The second subtask is to continuously determine the value on arousal and valence 

 
 
5 http://www.apmmusic.com 
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dimensions for the given song per frame. Compared to MIREX, the music used in this task is 

creative common licensed music from Free Music Archive (FMA)6 covering different genres of 

western music. Experimental and low-quality music is excluded to avoid controversial annotations. 

The dataset consists of 744 songs of 45 seconds. The ground truth is created by human assessors 

and collected on Amazon Mechanical Turk.  

In 2014, an evaluation set of 1000 new clips was released. In addition, the time resolution 

for the dynamic task was improved to 2 Hz.  In addition, the static emotion characterization task 

was removed. A new subtask, feature design, was added instead. In the following year, the task 

was composed of three new subtasks: subtask 1 is to find the best regression approach 

independently of the feature set used, such as linear regression, Feedforward Neural Network 

(FNN), and Recurrent Neural Network (RNN); subtask 2 is to find the best feature set for the time-

continuous estimation independently of the model used; subtask 3 is to find the best global 

approach. Until 2015, two evaluation metrics were used to compare the performance: Pearson’s 

correlation coefficient and Root Mean Square Error (RMSE).  

Then, after a three-year break, the next MediaEval task about music emotion, Emotion and 

Themes Recognition in Music Using Jamendo, was published in 2019. This time, categorical 

representation is used instead of dimensional representation. The dataset used is the “autotagging-

moodtheme”, which is a subset of the MTG-Jamendo dataset7 available under Creative Commons 

Licenses. The subset contains 18,485 audio tracks in MP3 format annotated with 57 tags. Each 

 
 
6 http://freemusicarchive.org/ 
7 https://github.com/MTG/mtg-jamendo-dataset 
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track can possibly have more than one tag. The submission was evaluated using typical 

performance metrics. The task was also performed in 2020 and 2021. 

2.2.3 Audio-based Music Emotion Recognition 

The majority of current work on automatic music emotion recognition is based on audio 

features. According to Panda, Malheiro, and Paiva (2020a), standard audio features available in 

popular frameworks usually relate to the eight musical concepts: rhythm, dynamics, expressive 

techniques, melody, tone colour, musical texture, and musical form. Most features are related to 

tone colour, which concerns timbre. Timbral features are musical surface features that encapsulate 

the statistic information hidden in the waveform or the spectrum of the signal (McEnnis et al. 2005; 

Panda, Malheiro, and Paiva 2020a). Here are some common ones: 

1) Spectral centroid is the mean of amplitudes in the spectrum of the signal, which is 

related to the “brightness” of the timbre. 

2) Spectral rolloff is the frequency below, which is 85% of the spectral energy. It indicates 

the skewness. 

3) Spectral flux is the spectral correlation between adjoining time frames. It measures how 

quickly the spectrum changes.  

4) Mel Frequency Cepstral Coefficients (MFCCs) are the coefficients of the Mel 

Frequency Cepstrum (MFC). It is the linear cosine transform of a log power spectrum 

on the mel scale. The mel scale is based on the human auditory system. MFCC can 

represent the spectral envelope of a musical signal, which is closely related to the 

timbre. 
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In contrast to these low-level features, Panda, Malheiro, and Paiva (2020a) also discussed 

future research directions for higher-level audio features related to playing techniques and musical 

layers. Some of those include tone colour, musical texture, rhythms, and expressive techniques.  

Tone colour, also known as timbre, is related to the properties of the sound itself. They are 

crucial in distinguishing the instruments used. The authors proposed that higher-level tone-colour 

features that capture the types of amplitude envelope (e.g., round, sharp) would be beneficial. 

Musical texture pertains to how rhythmic, melodic, and harmonic information are 

combined in the music work, thus related to the relations between the musical lines or layers. The 

authors introduced texture features describing the number and density of musical layers. 

Rhythm is the musical component of time, reflecting the patterns of long or short notes and 

rests in music. Therefore, the authors presented some rhythmic features relevant to the tempo and 

note values, rhythm types, and rests in music. They also suggested that higher-level features about 

the types of rhythm may be helpful. 

Expressive techniques refer to the ornaments and features composers and performers 

employ to enrich music pieces or express emotions. Expressivity features that the authors proposed 

illustrate the articulation, ornamentation, vibrato, and tremolo in the music work. Future work 

about expressivity features can be on the detection of ornamentations other than glissando and 

portamento, such as trill and slide. 

Continuing on their work, Panda, Malheiro, and Paiva (2020b) built an SVM to classify 

music pieces based on the four quadrants of Russel’s model (Russell 1980) using both low-level 

baseline features and the higher-level features they proposed. The results showed that adding novel 

features improved the F1-score by 9% compared to baseline-only features. In addition, the authors 
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ranked both base and novel audio features. The results showed that tone colour features make up 

the majority of the top five features for each quadrant except quadrant 1. Other than tone colour, 

texture, rhythm, and tremolo also ranked high.  

Classification frameworks used in audio-based MER, that performed well on the MIREX 

AMC task before the boom of neural networks, were SVM and Gaussian Mixture Model (GMM). 

Over three-fold cross-validation, a linear SVM by the Marsyas submission (Tzanetakis 2007) 

ranked the first with an average accuracy of 61.50% in 2007. In 2008, a GMM system using audio 

features achieved 63.67% and was ranked first (Peeters 2008). In the following year, Cao and Li 

(2009) proposed to combine SVM and GMM. The input contained audio features, such as MFCC 

and rhythm patterns. The combined system achieved 65.67% on mood classification. In 2013, Wu 

and Jang (2013) combined the audio-based Gaussian Super Vector (GSV), visual, and acoustic 

features. The GSV feature converts the audio input into a set of GMM parameters to present global 

timbre characteristics. The visual features capture the texture of a spectrogram both locally and 

globally. The concatenated feature vector was input into an SVM classifier. The proposed model 

reached an average accuracy of 68.33% and won the contest.  

Recently, neural networks have become the most popular method in MER. There are 

mainly three types of neural networks: Feedforward Neural Network (FNN), Convolutional Neural 

Network (CNN), and Recurrent Neural Network (RNN). 

FNNs are neural networks where data flows in the forward direction from the input layer 

to the output layer (see Section 2.3.4.2). CNN specializes in image analysis. It uses a sliding kernel 

function to extract features from images. RNN is designed for sequence data. In RNN, the data 

flows in a cycle. Therefore, it has access to previous information when making a prediction. In 
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other words, RNN has the memory of the information that it has seen before. Long Short-Term 

Memory (LSTM) is a special kind of RNN that can learn the long-term dependencies across time.  

The model by Wu and Jang (2013) maintained its first place until 2017, when the neural 

network first appeared in the AMC task.  Park et al. (2017) applied transfer learning to categorize 

music mood. They first trained a Deep Convolutional Neural Network (DCNN) on mel-

spectrogram to identify different artists. The extracted features were then used for training an SVM 

classifier on the MER task. The proposed approach achieved 69.93% in 2017 and holds the record 

on MIREX to this day (2021).  

For the MediaEval Emotion in Music task, the best models in terms of RMSE in the years 

2013 and 2015 for both arousal and valence dimensions are based on Long Short-Term Memory 

Recurrent Neural Networks (LSTM-RNNs) (Weninger, Eyben, and Schuller 2013; Xu et al. 2015).  

However, in 2014, the best model for the arousal dimension is a State-Space Model (SSM) 

based on the Kalman filter and Gaussian Process proposed by Markov and Matsui (2014). The 

LSTM-RNN-based model (Coutinho et al. 2014) ranked first in terms of the valence dimension 

and second for arousal.  

In addition, the Convolutional Recurrent Neural Network (CRNN) structure is also quite 

popular. For example, Malik et al. (2017) applied CRNN on the MediaEval 2015 Emotion in Music 

Dataset (Aljanaki, Yang, and Soleymani 2014). The network is one convolutional layer followed 

by two Recurrent Neural Network (RNN) branches, respectively trained for arousal and valence. 

The performance was the best reported on the dataset till then. Moreover, Choi et al. (2017) 

compared three Convolutional Neural Network (CNN) structures and a CRNN structure on the 

Million Song Dataset (Bertin-Mahieux et al. 2011). The result showed that CRNN outperformed 

all the CNNs at the expense of computation speed.  
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2.2.4 Text-based Music Emotion Recognition 

Researchers have also tried to retrieve music mood using contextual text information, such 

as comments, social tagging, and lyrics (An, Sun, and Wang 2017; Bischoff et al. 2009b; 

Kaminskas and Ricci 2012, 109).  

Golder and Huberman (2006, 198) defined social tagging as “the process by which many 

users add metadata in the form of keywords to shared content.” Lamere (2008) analyzed the 

distribution of tags on last.fm and argued that tags might be the critical solution to many 

challenging MIR problems, such as MER. Hu et al. (2007) created a set of music mood categories 

and also a ground truth set corresponding to the categories using tags on artist, album, and tracks 

on last.fm. Furthermore, Laurier et al. (2009) created a semantic mood space from last.fm tags 

using Latent Semantic Analysis (LSA). The results demonstrated the relevance of basic emotions: 

happy, sad, angry, and tender, with the social network.  

Other than social tagging, lyrics are also an important part of vocal music that MER 

researchers have been exploiting. For example, Yang and Lee (2009) used a content analysis 

package to convert lyrics into psychological feature vectors. They concluded that lyrics alone can 

be used to generate human-comprehensible classification models. 

To perform MER using lyrics, researchers have developed several datasets. Hu, Bay, and 

Downie (2007) derived a simplified ground-truth set of three mood clusters from last.fm8 and the 

USPOP collection 9  using the K-means clustering method. Moreover, to fill the absence of 

emotions such as surprise or fear in lyrics MER datasets, Edmonds and Sedoc (2021) created a 

 
 
8 https://www.last.fm/ 
9 https://www.ee.columbia.edu/~dpwe/research/musicsim/uspop2002.html 



 
 

 
 

21 

novel lyrics dataset of 524 songs on Spotify10, labelled based on Plutchik’s eight core emotions: 

anger, anticipation, disgust, fear, joy, sadness, surprise, and trust (Plutchik 2001). In addition, the 

dataset by Mihalcea and Strapparava (2012), originally based on Ekman’s six core emotions 

(Ekman 1993), was reannotated using Plutchik’s eight emotions at the song level.   

Early works on MER using lyrics are mainly based on traditional lexicons and traditional 

machine learning methods. For instance, Van Zaanen and Kanters (2010) extracted both global 

and word-based features from lyrics. Global features include character count, word count, and line 

count. Word-based features contain the Term Frequency-Inverse Document Frequency (TF-IDF) 

(See Section 2.3.3.1) metric and its components. They also experimented TF-IDF with Laplace 

smoothing and normalized TF-IDF. The dataset of 5,631 lyrics was provided by the Moody 

application of Crayonroom.11 The lyrics were annotated based on 16 partitions of the V-A space. 

Different class division methods were also implemented. The first-class division, the fine-grained 

division, uses all 16 classes. The second-class division only focuses on one aspect of the V-A 

space. The third-class division, the Thayer division, is based on the four quadrants of the V-A 

space. A k-Nearest Neighbors (kNN) classifier, TiMBL, developed by Daelemans et al. (2002), 

was used to test the proposed features. The results showed that over 10-fold cross-validation, all 

the TF-IDF-based features outperformed all global features and their combinations using every 

class division. The combination of TF and TF-IDF achieved the best accuracy. These results 

demonstrated that word-oriented metrics only based on lyrics provide a valuable source of 

information.  

 
 
10 https://www.spotify.com/us/ 
11 http://www.crayonroom.com 
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In recent years, pre-trained models, such as GloVe (Pennington, Socher, and Manning 

2014) and transformers (Devlin et al. 2019; Yang et al. 2019), have shown promising results in 

downstream NLP tasks. For example, Akella and Moh (2019) compared traditional and novel 

machine learning approaches. For traditional methods, they implemented Random Forest with TF-

IDF vectors. For deep learning approaches, GloVe vectors of lyrics were used as input for CNN, 

CRNN, and Bidirectional Long-Short Term Memory (Bi-LSTM). The results showed that CNN 

with GloVe achieved the best accuracy. Abdillah et al. (2020) also implemented GloVe pre-trained 

word embeddings on English lyrics. The dataset used was the MoodyLyrics dataset (Çano and 

Morisio 2017a), which is annotated based on the four quadrants of Russell’s model (Russell 1980). 

The lyrics were first preprocessed with lemmatization, tokenization, stop-word removal, and 

lowercase conversion. Then, the preprocessed lyrics were used for a GloVe pre-trained word 

embedding layer, followed by a Bi-LSTM layer. Finally, a dense layer was used as an output layer 

to produce the mood class. The proposed method was compared with Naïve Bayes, kNN, SVM, 

LSTM, and CNN. The results showed that the proposed approaches achieved the highest accuracy 

of 91%. 

Although most of the lyrics-based analyses used English lyrics, there is other research 

using languages, such as Chinese, Korean, and Hindi. For Chinese lyrics, He et al. (2008) 

compared traditional bag-of-words features in unigrams, bigrams, trigrams, and their combinations 

with three feature representation models: Boolean, absolute term frequency, and TF-IDF 

weighting. The dataset was provided by YY Music Group.12 It consists of 1,903 lyrics of Chinese 

pop music, of which 803 songs are labelled with love, and 1,100 songs are labelled as lovelorn. 

 
 
12 https://www.yy.com/ 
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Three machine learning methods, Naïve Bayes, Maximum Entropy (ME) Classification, and SVM, 

were employed. The results showed that ME with the combination of unigram, bigram, and trigram 

with TF-IDF weighting achieved the best accuracy, indicating that higher-order bag-of-words 

features (e.g., bigrams and trigrams) have the ability to capture semantics in terms of mood 

classification. Moreover, Hu, Chen, and Yang (2009) developed an affective lexicon, called 

Affective Norms for Chinese Words (ANCW). It is composed of words translated from the 

Affective Norms for English Words (ANEW) (Bradley and Lang 1999). They used a fuzzy 

clustering method to classify 500 Chinese songs into four mood categories based on Russell’s V-

A space.  

Kim and Kwon (2011) proposed a lyric-based method using feature extraction based on 

syntactic analysis of Korean songs. To extract emotion features from lyrics, four kinds of syntactic 

analysis rules were applied: negative word combination, time of emotions, emotion condition 

change, and interrogative sentence. Tested on two corpora, the precisions were improved after 

applying syntactic rules. With the emotion features extracted using the four rules, emotion 

classification was implemented on 425 songs using SVM, Naïve Bayes, and Hidden Markov 

Model (HMM). The proposed system achieved the maximum accuracy of 58.8% with SVM using 

eight emotion categories over 10-fold cross-validation.  

For Hindi music, Patra, Das, and Bandyopadhyay (2015) proposed a five-class mood 

taxonomy based on Russell’s model (Russell 1980). Then, they created a corpus of lyrics annotated 

using both the taxonomy and the polarities (positive and negative). Next, they extracted textual 

features based on sentiment lexicons, word counts, and n-grams. Finally, an SVM with Radial 

Basic Function (RBF) kernel was implemented. The model achieved the best F-measure of 68.30% 

for the polarities and 38.49% for the mood taxonomy. 
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2.2.5 Multimodal Music Emotion Recognition 

In general, information about the same phenomenon can be acquired from various detectors 

in different contexts. Each of these acquisition frameworks can be said to obtain a different 

modality (Lahat, Adali, and Jutten 2015). Natural phenomena usually have diverse properties, 

which makes it uncommon to provide comprehensive knowledge of a phenomenon from a single 

modality. Therefore, researchers have been integrating multiple modalities to understand the 

phenomena, such as climate change impact (Beuthe et al. 2014).    

Multimodal Learning has drawn great attention in recent years in domains, such as Human-

Computer Interaction (Jaimes and Sebe 2005), image analysis (Guo, Wang, and Wang 2019), as 

well as MER. Popular modalities in MER include audio, lyrics, and user tags. One of the early 

works on Multimodal MER is Laurier, Grivolla, and Herrera (2008), where the researchers 

investigated both audio and lyrics information for MER studies. They first developed a dataset of 

1,000 pop songs divided into four categories based on Russell’s four quadrants: happy, sad, angry, 

and relaxed. For the audio approach, timbral, rhythmic, tonal, and temporal features were extracted 

and passed to an SVM classifier with a polynomial kernel. For lyrics, the authors implemented 

two unsupervised learning methods, the standard distance-based method and LSA. In addition, 

they proposed a method based on the most discriminative terms between language models. The 

results showed that the two unsupervised learning methods are not as good as the audio-based 

approach, though they are better than a random guess. Moreover, the third method achieved similar 

performance to the audio-based method. Furthermore, combining the audio and lyrics features in 

the same space in a multimodal system showed a significant improvement in the overall 

performance.  
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Hu, Downie, and Ehmann (2009) created a ground truth of 5,585 songs divided into 18 

mood categories based on social tags. In addition, they found the best performing lyric feature set, 

among bag-of-words, Part of Speech (POS) and Function Words, was bag-of-words with 

stemming and TF-IDF weighting (BSTI). They combined this lyrical feature with 63 spectral audio 

features, which performed best in the MIREX 2007 AMC task. Spectral features, BSTI, and the 

combination of the two were compared with an SVM classifier over 10-fold cross-validation. The 

results demonstrated that audio features did not always get higher accuracy than lyric features on 

MER, and that combining lyric and audio features can improve MER accuracies, but not always. 

Furthermore, the results showed that, with simply training on lyric features, the combination of 

lyric and audio features cannot always improve MER performance.  

With the same dataset, Hu and Downie (2010) combined basic lyrics features, linguistic 

features, and audio features using two fusion methods: feature concatenation and late fusion. SVM 

was chosen as the classifier. The results demonstrated that combining lyrics and audio features can 

improve system performance, and that the hybrid system can achieve the same or better accuracies 

with fewer training data than the systems using only lyrics or audio features.   

Lu et al. (2010) proposed a two-layer classification method called Fusion by Subtask 

Merging (FSM), using AdaBoost to classify arousal and valence separately and merging the result. 

They compared MIDI, audio, lyrics features, and their combination with a dataset of 500 Chinese 

pop songs divided into four classes based on Russell’s model. The results showed that combining 

three feature domains achieved the highest accuracy.  

Wang et al. (2011) analyzed information from Chinese lyrics and rhyme to classify music 

emotion in the V-A space. A TF-IDF-based new feature space, proposed by Van Zaanen and 

Kanters (2010), was combined with Part-of-Speech features. Sequential Minimal Optimization 
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(SMO) SVM was implemented on the proposed lyric feature. In addition, a Naïve Bayes Classifier 

was applied to the rhyme feature. Both feature-level fusion and classifier-level fusion were 

evaluated and compared. The results show that feature-level fusion cannot improve performance. 

As for the classifier-level fusion, the meta-learning method outperforms the baseline learning 

method. 

More recently, Xue, Xue, and Su (2015) incorporated audio and lyric information using a 

Hough Forest-based fusion and classification schema. The lyrics features were extracted with a 

Recursive AutoEncoder model after filtering. The method was implemented on a dataset of 781 

songs with a total duration of 3,000 minutes.  

Other than Western and Chinese songs, Patra, Das, and Bandyopadhyay (2016) have also 

compared features of audio, lyrics, and their combination on Hindi music. They collected a dataset 

of 210 60-second clips divided into five categories: angry, calm, excited, happy, and sad. An SVM 

was used as the classifier. Over 10-fold cross-validation, the results showed that the multimodal 

system achieved the maximum F-measure.    

Apart from integrating audio and lyrics, Bischoff et al. (2009a) have tried to combine audio 

and social tag information. They implemented MER using audio features and social tags from 

last.fm5 based on both MIREX mood clusters and Russell’s four quadrants. The classifier for audio 

features is SVM with Radial Basis Function (RBF) kernel, and for social tags is Naïve Bayes 

Multinomial. The multimodal method is the linear combination of the two separate classifiers. The 

results on 1,612 songs showed that the tag-based classifier performed better than the audio-based 

classifier. In contrast, the multimodal classifier achieved the best performance in terms of recall, 

precision, F1-Measure, and accuracy.  
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In addition, Saari et al. (2013b) evaluated the audio-based Semantic Layer Projection (SLP) 

method proposed in Saari et al. (2013a) for predicting mood ratings with a tag-only system, 

Affective Circumplex Transformation (ACT), and the combination of semantic tags and audio 

features in automatic mood annotation. SLP converts audio features into a low-dimensional 

semantic layer that corresponds to the circumplex model proposed by (Russell 1980). The authors 

trained SLP on audio features extracted from I Like Music13 production music corpus with tags 

provided by last.fm.8 Based on LSA, ACT technique projects mood terms onto the V-A space. The 

results suggest that although the audio-based system alone had a good performance, the 

combination of audio features and tags led to a remarkable increase.  

2.3 Natural Language Processing 

As discussed in the section above, researchers have been using Natural Language 

Processing (NLP) methods to analyze contextual texts for MER. This section gives an overview 

of NLP methods and their applications. First, Section 2.3.1 provides the general definition and 

workflow of NLP, as well as its applications in poetry and lyrics. Next, Section 2.3.2 presents the 

text preprocessing stage in the NLP workflow. Then, feature construction methods are discussed 

in Section 2.3.3. Finally, Section 2.3.4 describes two types of popular classifiers in NLP: SVM 

and neural networks.  

2.3.1 Natural Language Processing 

Natural Language Processing (NLP) refers to a set of techniques that strives to make 

computers understand human language (Eisenstein 2019, 1). NLP encompasses a wide range of 

 
 
13 https://web.ilikemusic.com/ 
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tasks and methods. Typical NLP applications include text classification, machine translation, 

sentiment analysis, and question-answering (Chowdhary 2020, 12). 

In the field of NLP, there have been numerous works on poetry computational analysis and 

classification. For instance, Tizhoosh, Sahba, and Dara (2008) extracted four groups of features: 

rhyme, meter, shape, and meaning for poetry recognition. Agirrezabal, Alegria, and Hulden (2016) 

analyzed the rhythmic pattern in poetry using machine learning algorithms, including Naïve Bayes 

and SVM. Kesarwani (2018) established a poem classification system based on rhyme, diction, 

and metaphor. Ahmad et al. (2020) classified poems based on emotional states using an attention-

based Convolutional Bi-LSTM model.  

In addition to poetry analysis and classification, poetry generation is also an NLP task that 

researchers are interested in. For example, Ghazvininejad et al. (2016) used a Finite-start acceptor 

together with RNN to generate poetry based on user-provided topics. Also, Van de Cruys (2020) 

implemented RNN with poetic constraints to generate poems automatically. 

As a special form of literature, poetry is similar to lyrics in the sense of similarity features, 

such as rhyme, diction, and metaphor. Researchers have been using NLP methods to tackle MIR 

tasks involving lyrics, such as lyric structure and content analysis, as well as lyric perception (Fell, 

2020).  

MER on lyrics using categorical representation can be regarded as a text classification 

problem in NLP. A traditional NLP framework for text classification is usually composed of three 

stages: text preprocessing, feature construction, and classification. The text preprocessing stage 

often contains tasks including tokenization, stop-word removal, noise removal, etc. The feature 

construction stage maps text into a vector of numerical values. Finally, the classification stage 

utilizes pattern classification algorithms, such as SVM and neural networks. 
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In conclusion, NLP aims to help computers interpret text and speech in a manner similar 

to that of human beings. Poetry is a popular research object in NLP. Lyrics have similarities with 

poetry and have also received much attention in the cross field of NLP and MIR. MER on lyrics 

is a task combined with MIR and text classification. The following sections will introduce each 

step in the text classification workflow in detail. 

2.3.2 Text Preprocessing 

Text preprocessing is one of the critical components in NLP classification tasks. It cleans 

the text data and prepares the data for the model. Text preprocessing methods for English generally 

include lowercase conversion, noise removal, stop-word removal, stemming or lemmatization, and 

tokenization. 

Lowercase conversion is usually one of the first steps in English text preprocessing. In 

most NLP tasks, it is accepted that there is no difference between uppercase or lowercase forms of 

words (Uysal and Gunal 2014). Therefore, prior to any actions, the text is often converted into the 

same case, preferably lowercase, to avoid information loss due to case differences.  

Another widely used first preprocessing step is noise removal. The purpose of noise 

removal is usually to clean the text data. In this step, all the punctuations, numbers, links, 

whitespaces, and tags will be removed from the text.  

Stop-words are the words that frequently appear in texts but are not related to a specific 

topic. Typical stop-words include conjunctions, prepositions, articles, etc. These words usually 

have little or no meaning. As a result, stop-words are considered irrelevant in text classification 

tasks and are removed during the preprocessing stage.  
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After text cleaning, the remaining text is ready for the next stage of text preprocessing. 

Different forms of a word, but with similar meanings, are often used in documents for grammatical 

reasons. In many cases, it would be helpful for computers to consider these words as a set. Both 

stemming and lemmatization are procedures that reduce inflectional forms of a word to a common 

base form (Manning, Raghavan, and Schütze 2008, 32).  

Stemming reduces inflection toward their root forms by slicing the words from prefixes or 

suffixes. For example, the stem of the word “studies” is “studi”, and the stem of “studying” is 

“study”. There are many different stemmers available in different languages. One of the most 

common stemmers for English is the Porter Stemmer, which strips suffixes (Porter 1980). The 

Porter Stemmer is a rule-based approach. It is composed of five stages of word reductions, within 

which there are several protocols to select rules. 

On the other hand, lemmatization is a dictionary-based approach. It considers the 

morphology of the words and recovers the words to their canonical or dictionary forms, also known 

as lemma, so that they can be analyzed as a single item.  It is worth noting that a lemma is the root 

form of all its inflectional forms. For example, lemmatization will transform both the word 

“studies” and “studying” into lemma “study”. The WordNet Lemmatizer is one of the most popular 

lemmatizers. WordNet is a large and publicly available lexical database for the English language 

with lemmatization features (Miller 1995).  

Before feature construction, tokenization is often used as the last step of text preprocessing. 

Tokenization is the procedure of chopping up sentences into small pieces, called tokens. That is to 

say, tokenization is a form of text segmentation. For example, words, numbers, and punctuations 

can all be regarded as tokens, which is why numbers and punctuations are usually removed from 
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the text in the very first step in text preprocessing, for the tasks where they are unrelated to the 

content and considered noises. 

To sum up, text preprocessing is an important step in NLP that converts text into a simpler 

format and helps improve model performance. Text preprocessing for the English language starts 

with transforming all letters into the same case, then removing potential noise, converting words 

to their base forms, and ends with segmenting sentences. It should be noted that not every step of 

text preprocessing must be performed. Different NLP tasks require different text preprocessing 

processes (Uysal and Gunal 2014).  

2.3.3 Feature Construction 

Feature construction encodes the text data into feature vectors for the model. The feature 

construction stage in NLP usually uses the vector space model proposed by Salton, Wong, and 

Yang (1975), which represents documents as vectors in the same vector space, to handle the 

information retrieval operations (Manning, Raghavan, and Schütze 2008, 120).  These vectors are 

known as word embeddings.  

Popular word embeddings include Term Frequency-Inverse Document Frequency (TF-

IDF), BERT embeddings, and XLNet embeddings. In this section, these three types of word 

embeddings are described respectively in Section 2.3.3.1, 2.3.3.2, and 2.3.3.3. Finally, Section 

2.3.3.4 presents a brief summary of the word embeddings introduced in this section. 

2.3.3.1 TF-IDF 

TF-IDF is a statistical method that measures the importance of a word to a document. 

Proposed by Salton and Buckley (1988), TF-IDF is based on the bag-of-words method by Harris 

(1954), which only describes the occurrence of words, whereas the exact order of words is ignored. 
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The general idea of TF-IDF is that a term is important to a document if it appears many times in 

the document, and it is a relatively rare word overall. To be specific, Term Frequency 𝑇𝐹(𝑡, 𝑑) is 

usually the count of the term 𝑡 divided by the length of the document 𝑑. The Inverse Document 

Frequency 𝐼𝐷𝐹(𝑡, 𝐷)  is the number of documents 𝑁 in the corpus 𝐷 divided by the number of 

documents that contain the term 𝑡 in the logarithmic scale: 

 𝐼𝐷𝐹(𝑡, 𝐷) = log !
|{$∈&:(∈$}|*+

, ( 1 ) 

where the 1 in the denominator serves as a smoothing factor, to avoid the division-by-zero 

situation when the term t is not in the corpus. From the expression, it is worth noting that for the 

same corpus, the IDF score of the same word is the same.  

Then, the TF-IDF score is the product of TF and IDF: 

 𝑇𝐹-𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡, 𝐷). ( 2 ) 

TF-IDF has been widely used for various NLP tasks. For example, Bafna, Pramod, and 

Vaidya (2016) used TF-IDF along with hierarchical agglomerative clustering and fuzzy K-Means 

to cluster different types of documents. In the field of behavioural finance using NLP techniques, 

Chen and Chen (2019) developed a public mood dynamic prediction model for stock prices by 

analyzing financial blogs and news article content with TF-IDF.  

Moreover, Van Zaanen and Kanters (2010) combined TF-IDF with Part-of-Speech as a 

lyrical feature and implemented SMO SVM on the proposed feature to classify music based on 

emotion. Maheshwari, Bhaveshbhai, and Halder (2021) used TF-IDF to analyze the underlying 

lyric trend by finding unique evergreen words.  
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In addition, TF-IDF has also been implemented for MIR tasks other than MER, such as 

music recommendation using lyrics (Nakamura, Fujisawa, and Kyoudou 2017), music genre 

classification (Aryafar and Shokoufandeh 2011), and artist identification (Aryafar and 

Shokoufandeh 2014). 

2.3.3.2 Bidirectional Encoder Representations from Transformers (BERT)  

The lack of enough training data has been one of the biggest challenges in deep learning. 

Although a vast amount of text data is available, only a few thousand or a few hundred thousand 

annotated samples are left when we split it into datasets specific for different tasks, such as lyrics 

analysis, spam detection, and film comment analysis. However, deep learning-based NLP methods 

need significantly more data to function well. Transfer learning (Yosinski et al. 2014) thus 

emerged to bridge the need for massive data of machine learning methods and the lack of annotated 

data.  

The idea of transfer learning is to pre-train a general-purpose language representation 

model using large-scale unlabeled text and then finetune it for specific downstream tasks using 

smaller datasets. BERT is a popular pre-trained model proposed by Devlin et al. (2019). 

The structure of BERT is based on a Transformer architecture (Figure 2.3-1). Proposed by 

Vaswani et al. (2017), Transformer is a machine-learning model designed for NLP that uses an 

attention mechanism to learn the contextual relationships between all words in its input. It is 

composed of an encoder and a decoder. The encoder compresses the input text into a compact 

representation, and the decoder reconstructs the original text. The attention mechanism helps the 

model to utilize the most relevant segment of the input sequence.  
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To construct word embeddings that best represent the input language, BERT is composed 

of several encoders, each of which contains three parts: the input part, the multi-head attention 

mechanism part, and the Feedforward Neural Network (FNN) part.  

 

Figure 2.3-1 The model architecture of Transformer (Vaswani et al. 2017, 3) 

 
BERT is pre-trained using two autoencoding tasks, Masked Language Modelling (MLM) 

and Next Sentence Prediction (NSP) (Devlin et al. 2019). Autoencoding tasks are unsupervised 

tasks that seek to reconstruct the original data from compressed input. In the input of pre-trained 

BERT, 15% of the tokens in each sequence are masked out (Devlin et al. 2019). However, the 

masked tokens will create a discrepancy between pre-training and finetuning. Therefore, to 

alleviate this, the masked tokens are not always replaced with the [MASK] token if chosen. To be 

specific, if a token is chosen as a masked token, it will (1) be replaced with the [MASK] token 
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80% of the time (2) be replaced with a random token 10% of the time (3) remain unchanged 10% 

of the time. 

The MLM task attempts to fill in the original value of these randomly masked tokens based 

on their surroundings to learn the relationships between words, whereas NSP attempts to 

understand the relations between sentences by predicting the following sentence. Unlike 

directional models that read text sequentially, BERT can be considered non-directional since it 

learns the context of a token based on both sides at the same time. In other words, this character 

enables BERT to learn the contextual information of a token regarding all other tokens in the 

sentence. 

The pre-trained BERT generates contextualized embeddings that can be used for different 

NLP tasks, such as machine translation (Imamura and Sumita 2019) and text ranking (Yates, 

Nogueira, and Lin 2021). Pre-trained BERT has also been used on MIR tasks, including symbolic 

music understanding (Zeng et al. 2021) and English lyrics analysis (Fell et al. 2019; Fell 2020; 

Sung and Wei 2021).  

However, BERT has certain limitations. The masked tokens used by BERT in pre-training 

are absent from real data in the finetuning process, which leads to a discrepancy between pre-

training and finetuning (Yang et al. 2019). Moreover, BERT neglects the high-order and long-

range dependencies that exist in natural language as it hypothesizes that the predicted tokens are 

independent of each other given the non-masked tokens (Dai et al. 2019).  

2.3.3.3 XLNet 

As mentioned in the previous section, BERT is an autoencoding method with access to 

contextual information of the whole sentence but suffers from losing relative position information. 

Autoregressive language modelling is a popular pre-training objective that can preserve relative 
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position information (Yang et al. 2019). It aims to estimate the conditional distribution of each 

sentence. In autoregressive language modelling, the likelihood of a text sequence is factorized into 

a product over the words. However, the probability of each word depends on the words either 

before or after it. Therefore, the autoregressive language model is not effective at learning 

contextual information on both sides of a token.   

Proposed by Yang et al. (2019), XLNet is a generalized autoregressive pre-training model 

that combines the benefits of both BERT and autoregressive language modeling while avoiding 

their pitfalls. XLNet integrates the ideas of autoregressive language modelling and Transformer-

XL structure proposed by Dai et al. (2019).  

Transformer-XL is an attentive language model that can learn longer dependency than 

Transformers. XLNet implements an architecture called Two-Stream Self-Attention (TSSA). The 

two streams in TSSA are content stream attention, which is the standard hidden states in 

Transformer, and query stream attention, which uses the position information. TSSA borrows both 

ideas of the segment recurrence mechanism and the relative positional encoding scheme from 

Transformer-XL. The segment recurrence mechanism stores the information of the current layer 

into a memory block and feeds it to the next layer. It helps the model to process longer sequences. 

The relative positional encoding scheme provides a temporal hint to the model on where to pay 

attention to. 

The input of the XLNet pre-training process is the same as BERT, though the pre-training 

process is different. The pre-train objective of XLNet is a generalized autoregressive method called 

Permutation Language Modeling (PLM). PLM trains an autoregressive model on all possible 

permutations of words in a sentence. The pre-training process of XLNet tries to maximize the 

expected log-likelihood over all possible permutations. In this way, PLM enables XLNet to capture 
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bidirectional context information of a sequence from all positions, instead of non-directional 

modelling as BERT and losing relative position information.  

Dai et al. (2019) state that XLNet outperforms BERT on twenty NLP tasks using similar 

experiment settings, including language understanding tasks, reading comprehension tasks, text 

classification tasks, and document ranking tasks. XLNet has also been used in some MIR tasks, 

such as music score infilling (Chang, Lee, and Yang 2021) and MER on lyrics (Agrawal, Shanker, 

and Alluri 2021) 

2.3.3.4 Summary 

This section introduced three common word embeddings used in NLP. Section 2.3.3.1 

presented TF-IDF, which is based on the importance of the word. A term is considered important 

to a document if it appears frequently throughout the document and is a relatively uncommon word 

in general. Section 2.3.3.2 and Section 2.3.3.3 described the pre-trained embeddings that learn the 

representation of language. Specifically, Section 2.3.3.2 presented BERT, a pre-trained model 

based on Transformer. Section 2.3.3.3 introduced XLNet, a pre-trained model based on 

Transformer-XL. 

2.3.4 Classifiers 

As the last stage in the NLP workflow, the classification stage maps the features into 

different categories, and yields the final classification result. This section presents two popular 

classifiers in NLP. To be specific, Section 2.3.4.1 discusses SVM, and Section 2.3.4.2 describes 

FNN. Finally, Section 2.3.4.3 provides a summary of this section. 
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2.3.4.1 Support Vector Machine  

As mentioned in Section 2.2, Support Vector Machines (SVMs), proposed by Boser, 

Guyon, and Vapnik (1992), were a popular machine learning method used in MER tasks before 

the use of neural networks.  

The SVM is a discriminative machine learning approach, as it particularly defines a 

hyperplane to separate data points into different classes. In other words, the hyperplane is the 

decision boundary that helps classify data samples. Obviously, there are many possible 

hyperplanes that can separate data points. The idea of SVM is to find the optimal separating 

hyperplane so that future data can be classified with more confidence, in other words, a hyperplane 

that separates data points into classes and maximizes the distance from the closest data sample to 

either class. As illustrated in Figure 2.3-2, the distance between the hyperplane and the closest data 

sample determines the margin of the classifier, and the data point is called a support vector (Boser, 

Guyon, and Vapnik 1992).  

 

Figure 2.3-2 Optimal separating margin and support vectors (Manning, Raghavan, and Schütze 
2008, 320) 
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In machine learning, the decision boundary is described by points such that 𝑤,𝑥 + 𝑏 = 0, 

so that it is orthogonal to the weight vector 𝑤, where 𝑥 is the feature vector and 𝑏 represents bias. 

Therefore, the weight vector, which points to the same direction as 𝑤 , can be described as 

𝑤-./012 = 3
||3||!

, where normal means the vector is normalized and only provides direction 

information. 

In binary SVM, the threshold values are +1 and −1. Thus, the binary linear classifier 

outputs the prediction class 𝑦9: 

 𝑦9 = 𝑠𝑖𝑔𝑛(𝑤,𝑥 + 𝑏), ( 3 ) 

where a value of +1 indicates one class, and −1 indicates the other.  

As shown in Figure 2.3-3, if the point on the hyperplane closest to 𝑥 is labelled as 𝑥′ then: 

 𝑥4 = 𝑥 − 𝑦𝑟 3
||3||!

, ( 4 ) 

which also satisfies 𝑤,𝑥 + 𝑏 = 0. Therefore: 

 𝑤,(𝑥 − 𝑦𝑟 3
||3||!

) + 𝑏 = 0, ( 5 ) 

 𝑟 = 𝑦 3"5*6
||3||!

. ( 6 ) 
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Figure 2.3-3 The maximum margin (Manning, Raghavan, and Schütze 2008, 323) 

 
The problem of finding the maximum margin then becomes a Quadratic optimization 

problem, which can be solved using standard quadratic programming libraries (Boser, Guyon, and 

Vapnik 1992). The classifier can then be determined: 

	 𝑦9 = 𝑠𝑖𝑔𝑛(∑ 𝛼7𝑦7𝑥7,𝑥 + 𝑏-
78+ ), ( 7 ) 

where 𝛼7 is the Lagrange multiplier, and 𝑤∗ = 𝛼7𝑦7𝑥7, is the optimal weight. To further classify 

data into multiple classes, multi-class SVM defines the margin between the one class and the 

nearest other class. 

However, the linear margin defined cannot separate data points when they are not linearly 

separable. To deal with these situations, a kernel SVM with a non-linear decision boundary is 

needed. This is done by finding a linear decision boundary in an expanded space. The input vector 

𝑥 is replaced by Φ(𝑥), where Φ is called a feature mapping. In this way, the optimal weight 𝑤∗ is 

mapped into an expanded feature space (i.e., a higher-dimensional space).  
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Then, the inner product of input vectors in the classifier can be substituted by a kernel 

function 𝐾:	𝑅0# × 𝑅0# → 𝑅, which can be written as a dot product of feature mappings:   

 𝐾(𝑥+, 𝑥:) = Φ(𝑥+),Φ(𝑥:),, for some Φ. ( 8 ) 

Proposed by Poggio and Girosi (1990), Radial Basis Function (RBF) kernel, also known 

as the Gaussian kernel, is a widely used kernel function for SVM (Manning, Raghavan, and 

Schütze 2008, 333). The RBF kernel on two samples is defined as: 

 𝐾(𝑥+, 𝑥:) = exp(− ||5$;	5!||!

:=!
), ( 9 ) 

where ||𝑥+ −	𝑥:||: is the squared Euclidean distance between the two feature vectors, and 𝜎 is a 

hyperparameter.  

2.3.4.2 Feedforward Neural Network (FNN) 

To finetune a pre-trained model, such as BERT and XLNet, on specific downstream tasks, 

a Feedforward Neural Network (FNN) is usually concatenated to the pre-trained model to generate 

corresponding outputs (Devlin et al. 2019).  

First appeared in the 1950s, FNN is also known as Multi-Layer Perceptrons (MLPs) 

(Rosenblatt 1957). An FNN classifier aims to approximate some function 𝑓 that maps an input 𝑥 

into a category 𝑦. FNN learns the value of parameters 𝜃 in the mapping 𝑦 = 𝑓(𝑥; 𝜃) that obtain 

the best approximation. An FNN is composed of an input layer, one or more hidden layers, and an 

output layer (Figure 2.3-4). A fully-connected layer means each neuron in this layer is connected 

to every neuron in the previous layer. As shown in Figure 2.3-4, the hidden layer is a fully-

connected layer.  
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Figure 2.3-4 FNN structure 

 
While training, each neuron receives input from the previous layer, where each input 

carries a certain weight. Then, each neuron takes the weighted sum of its received input and 

calculates its output using an activation function. The activation function maps the resulting sum 

of each neuron to different categories. In neural networks, non-linear activation functions are the 

most used as they help the model to adapt to a variety of data.  

To evaluate the performance of the model, the loss of each iteration will be calculated using 

a loss function. The most popular cost function for classification problems is the Cross-Entropy 

loss function (Good 1952). Cross-Entropy loss measures the difference between two distributions. 

For classification problems, Cross-Entropy loss is calculated by: 

𝐶𝐸 = −∑ 𝑦>log	(𝑃>?
>8+ ), ( 10 ) 

where 𝑀 is the number of classes, 𝑦> represents if class 𝑐 is the correct label, 𝑃> is the predicted 

probability of class 𝑐. FNN will then update the weight on each neuron so that it can minimize the 

loss using Back Propagation (Rumelhart, Hintont, and Williams 1986).  
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The finetuning process first flattens the pre-trained embeddings as they are usually of more 

than one dimension. Then, a fully-connected layer will be added as an output layer to yield the 

prediction class. The finetuning usually freezes some layers in the pre-trained model and only 

trains the final layers to prevent overfitting (Kovaleva et al. 2019). 

2.3.4.3 Summary 

This section presented two common machine learning classifiers in NLP. Section 2.3.4.1 

introduces SVM, a discriminative machine learning approach. It finds the decision boundaries that 

can separate data points into different classes. Section 2.3.4.2 describes FNN, a neural network 

algorithm, in which the data flows only in one direction. 
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Chapter 3 Methodology 

This chapter presents the details about the dataset, the evaluation metric, and the machine 

learning methods used for experiments in this thesis. To be specific, Section 3.1 provides the 

information of the MoodyLyrics4Q Dataset and the AllMusic Dataset, and describes the procedure 

to collect from the Internet, the words of the lyrics, which were annotated in the datasets but not 

contained within them. Section 3.2 explains the evaluation metric used in the experiments. Section 

3.3 presents the setting of Experiment 1, which implements the SVM method to classify music 

emotions. The structure of the BERT method and the setting of Experiment 2 are explained in 

Section 3.4. Section 3.5 describes the details of the XLNet method and Experiment 3.  

3.1 Dataset 

This section provides detailed information about the dataset used in this thesis. Section 

3.1.1 describes the MoodyLyrics4Q Dataset, its statistics, and the mood annotation process used 

to create the dataset. Section 3.1.2 covers the details of the AllMusic Dataset. However, neither 

dataset provides lyrics due to copyright concerns. Instead, only titles, artists, and mood categories 

are provided. Therefore, Section 3.1.3 describes the method and results of collecting lyrics 

annotated in the MoodyLyrics4Q dataset and the AllMusic Dataset.  

3.1.1 MoodyLyrics4Q Dataset 

In this thesis, the MoodyLyrics4Q Dataset14 proposed by Çano and Morisio (2017b) will 

be used for training and validation. The song sources of this dataset include songs from the Million 

 
 
14 http://softeng.polito.it/erion/MoodyLyrics4Q.zip 
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Song Dataset (Bertin-Mahieux et al. 2011) and the Playlist dataset.15 The dataset contains 2000 

songs annotated using last.fm tags. 

 

Figure 3.1-1 Dataset annotation (Çano and Morisio 2017b) 

 
The dataset is annotated using Russell’s model (Russell 1980). Happy, angry, sad, and 

relaxed are used to represent each cluster corresponding to each quadrant (Figure 3.1-1). Next, the 

annotation process started with a map between users’ tags and Russell’s model. The authors 

manually selected tags provided by AllMusic that clearly fall into one of the four quadrants of 

Russell’s model, using Affective Norms for English Words (ANEW) (Bradley and Lang 1999).  

 

Table 3.1-1 shows the resulting map, where each cluster includes the ten most relevant 

emotion terms. Each cluster was then extended with related forms of the basic ten terms using 

lemmatization since they express the same opinion with different forms.  

 
 
15 http://www.cs.cornell.edu/~shuochen/lme/data_page.htm 
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Each song was scored using the resulting clusters with four counters using users’ tags 

provided in last.fm, corresponding to the number of tags in each cluster. To keep high polarity, 

songs with three or fewer tags were removed. The authors annotated a song to a cluster only when 

one of the following four rules is met. First, the song has four or more tags of the quadrant and no 

tags of the others. Second, when the song has tags of more than one quadrant, it has six to eight 

tags of the selected quadrant and at most one tag of the others. Third, when the song has two tags 

of the others, it must have nine to 13 tags of the selected quadrant. Finally, the song must have 14 

or more tags of one quadrant, when it has at most three tags belonging to the others.  

 
Table 3.1-1 Cluster of terms (Çano and Morisio 2017b) 

Q1-Happy Q2-Angry Q3-Sad Q4-Relaxed 

happy angry sad relaxed 

happiness aggressive bittersweet tender 

joyous outrageous bitter soothing 

bright fierce tragic peaceful 

cheerful anxious depressing gentle 

humorous rebellious sadness soft 

fun tense gloomy quiet 

merry fiery miserable calm 

exciting hostile funeral mellow 

silly anger sorrow delicate 
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3.1.2 AllMusic Dataset 

The test dataset used in this thesis is the AllMusic Dataset16 proposed by Malheiro et al. 

(2018). Similar to Çano and Morisio (2017b), the authors started with a map of AllMusic mood 

tags to four quadrants in Russell’s model using ANEW. Then, the authors extracted 400 songs 

with more emotion tags for each quadrant. A song was annotated to a selected quadrant only if all 

the mood tag terms belonged to the corresponding cluster. Finally, the annotated initial dataset was 

validated by three people. Only the songs with at least one agreement between AllMusic’s 

annotation and human annotators were validated. The resulted dataset contains 771 songs.  

3.1.3 Lyric Collection 

As aforementioned, the dataset only provides titles, artists, and mood categories in an Excel 

table, and does not contain lyrics due to copyright issues. In this thesis, the lyrics were extracted 

from the Genius website, a community that provides music metadata including song titles, artists, 

lyrics, etc. 

A crawler in Python was first written to scrape lyrics according to the song title and artist 

name on the Genius website for each Excel file using the Genius API. Then, songs with non-

English lyrics and acoustic songs without lyrics were discarded. Finally, the common pattern tags, 

such as [Verse 1], in the lyrics were removed.  

For the MoodyLyrics4Q Dataset, lyrics of 1,900 songs from 1,227 artists were extracted. 

As shown in Figure 3.1-2 (a), the resulting dataset is well-balanced. Table 3.1-2 lists the detailed 

numbers of lyrics in each quadrant. The dataset contains 524,397 words in total, and 285,764 words 

 
 
16 http://mir.dei.uc.pt/resources/Dataset-Allmusic-771Lyrics.zip 
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without stop-words. The vocabulary size without stop-words is 25,263. Figure 3.1-2(b) shows the 

distribution of word count per song. It can be observed that most lyrics contain less than 500 words. 

 
Figure 3.1-2 MoodyLyrics4Q Dataset Distributions 

 
757 lyrics by 321 artists were extracted from the AllMusic Dataset. Figure 3.1-3 (a) shows 

the distribution over four classes. The specific numbers of lyrics from each quadrant are listed in 

Table 3.1-2. The dataset consists of 205,146 words, and 111,430 words without stop-words with 

a vocabulary size of 12,773. Figure 3.1-3 (b) shows the lyric length distribution. Similar to the 

MoodyLyrics4Q Dataset, the majority of lyrics have less than 500 words.  

 
Table 3.1-2 Dataset Distribution 

Quadrant MoodyLyrics4Q AllMusic 

1 475 206 

2 493 202 

3 467 203 

4 465 146 

Total 1900 757 
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Figure 3.1-3 AllMusic Dataset Distributions 

 

3.2 Evaluation Method 

For each classifier and preprocessing setting, the model will be trained and validated on 

half of the MoodyLyrics4Q Dataset, and the other half will be used for testing.  

To avoid overfitting and to better compare different models, a 5x2 repeated cross-

validation (Bouckaert and Frank 2004) will be implemented. This step will randomly divide the 

MoodyLyrics4Q Dataset into two parts. For each fold, the model will be trained on one of them 

and validated using the rest part. This process will repeat five times.  

The average F1-score of each fold in each repeat will serve as the performance metric for 

the model. The F1-score is calculated using 𝐹1 = 2 × (A/B>7C7.-	×/B>122)
(A/B>7C7.-*/B>122)

, where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (A
(A*FA

 

and 𝑟𝑒𝑐𝑎𝑙𝑙 = (A
(A*F-

, 𝑡𝑝 represents the true positives, 𝑓𝑝 is the false positives, and 𝑓𝑛 means the 

false negatives.  

Text preprocessing methods will be compared and evaluated using the validation results. 

To be specific, the models without any text preprocessing will be compared with the models with 



 
 

 
 

50 

all combinations of the text preprocessing techniques. The text preprocessing combinations that 

significantly improved the system performance will be discussed.  

In addition, text preprocessing with similar functions will also be compared and evaluated, 

both alone and when combined with the same set of other methods. Specifically, noise removal 

and stop-words removal both remove noisy tokens in the lyrics. However, noise removal 

eliminates punctuations and numbers, whereas stop-words removal removes words that do not 

have specific meanings. Moreover, both stemming and lemmatization convert the token into its 

basic form with different methods. Stemming simply slices the word from prefix or suffix. 

However, lemmatization takes morphology into account and transforms the word into its canonical 

form. Although the two methods in these two sets have similar functions in processing text, the 

differences in their methodology may lead them to have completely different effects on MER. 

In the end, the model that achieves the highest average F1-score will be trained on 60% of 

the MoodyLyrics4Q Dataset, validated using 40%, and tested on the AllMusic Dataset to yield the 

final performance for each classifier. 

3.3 Experiment 1: SVM  

Experiment 1 implements RBF SVM with different text preprocessing techniques on MER. 

This experiment will be conducted on a MacBook Air (M1, 2020) with 16 GB of memory.  

The lyrics will first be preprocessed and converted into vectors using the TF-IDF score for 

the classifier to process. Then, all possible permutations of no preprocess, lowercase conversion, 

noise removal, stop-words removal, and stemming or lemmatization will be explored. 
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As mentioned in Section 3.2.3, most lyrics contain less than 500 words. Therefore, the 

vector size starts from 512. In addition, preliminary experiments have narrowed the vector size to 

512, 1024, and 4096 since a larger size resulted in a significant drop.  

Then, the Scikit-learn Python Library17 will be used to implement the RBF SVM algorithm. 

Scikit-learn is an open-source library that provides tools for machine learning. 

3.4 Experiment 2: BERT 

Experiment 2 uses BERT to perform MER and compares different text preprocessing 

settings. The lyrics will first be tokenized using the pre-trained model ‘bert-base-cased’ provided 

in the library Transformers18 built by Hugging Face,19 an Artificial Intelligence community. The 

‘bert-base-cased’ pre-trained model contains 12 layers, 768 hidden nodes, 12 attention heads, and 

110 million parameters in total.  

The pre-trained model was trained using BookCorpus,20 a dataset that contains 11,038 

books, and English Wikipedia,21 an online encyclopedia.  The model was trained on four cloud 

TPUs for one million steps with a batch size of 256. For 90% of the steps, the sequence length was 

set to 128 tokens, and 512 tokens for the rest. The optimizer used is Adam with a fixed weight 

decay of 0.01, as proposed in Loshchilov and Hutter (2019).  

After tokenization, the lyrics will be padded or cut down to 512 words since most lyrics 

have less than 500 words. The resulting vector will be fed into the pre-trained BERT to finetune 

 
 
17 https://scikit-learn.org/stable/ 
18 https://huggingface.co/transformers/v2.11.0/index.html 
19 https://huggingface.co/ 
20 https://yknzhu.wixsite.com/mbweb 
21 https://en.wikipedia.org/wiki/English_Wikipedia 
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the parameters. The model is the ‘bert-base-cased’ pre-trained model with a linear layer of four 

nodes on top of its output. The optimizer used is the same as the pre-trained model.  

Experiment 2 will be conducted on the Cedar22 cluster provided by Compute Canada.23 

Due to the memory limitation of the hardware (CUDA24) available at Cedar, the batch size will be 

set to 8.  

In addition, early stopping will be implemented to avoid overfitting. Early stopping is a 

regulation method that terminates the training process when a monitored metric stops improving. 

In this experiment, the early stopping method observes the validation loss, which assesses the error 

on the validation set. Specifically, if the validation loss does not drop for a certain number of 

epochs, the training process will be forced to stop. The number of epochs is called patience in early 

stopping. If the training process is not stopped, the model will be trained for 500 epochs at most.  

As aforementioned, the pre-trained BERT model contains a large number of parameters, 

thus needing a long time to run. Therefore, several preliminary experiments will be carried out 

first to narrow down the possible hyperparameter settings. The details are covered in Chapter 4. 

3.5 Experiment 3: XLNet 

For the XLNet method, the lyrics will first be tokenized using the pre-trained model ‘xlnet-

base-cased’ provided in the Transformers18 Python library. The ‘xlnet-base-cased’ model consists 

of 12 layers, 768 hidden nodes, and 12 attention heads.  

 
 
22 https://docs.computecanada.ca/wiki/Cedar 
23 https://www.computecanada.ca/ 
24 https://developer.nvidia.com/cuda-zone 



 
 

 
 

53 

The training dataset for their model included BookCorpus,20 English Wikipedia,21 Giga5,25 

ClueWeb 2012-B,26 and Common Crawl.27 The model was trained for 500,000 steps with an Adam 

weight decay optimizer and a batch size of 8,192 (Yang et al. 2019).  

To finetune the model to fit the MER problem, a linear layer of four nodes will be added 

on top of the pre-trained model, which matches the four target classes. Experiment 3 will use the 

same optimizer as the pre-trained model. The batch size will be set to 8 because of the hardware 

(CUDA) memory limitation. Early-stopping will also be implemented using the same criteria for 

the BERT model. 

As in Experiment 2, preliminary experiments will first be conducted to find the reasonable 

range of hyperparameters (i.e., learning rate and the early-stopping patience).  The details of 

preliminary experiments are included in Chapter 4. 

 

  

 
 
25 https://catalog.ldc.upenn.edu/LDC2011T07 
26 https://lemurproject.org/clueweb12.php/ 
27 https://commoncrawl.org/ 
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Chapter 4 Experiments 

This chapter presents the detailed settings, results, and discussions of each experiment 

described in Chapter 3. Section 4.1 includes the details of the experiments conducted on the 

MoodyLyrics4Q Dataset. Section 4.2 presents the experiments and results on the AllMusic 

Dataset. Finally, discussions of both experiments’ results are covered in Section 4.3. 

4.1 Experiments and Results on MoodyLyrics4Q Dataset 

This section provides the experiments and results on the MoodyLyrics4Q Dataset. Section 

4.1.1 presents Experiment 1, which uses a Support Vector Machine (SVM) classifier with different 

maximum token sizes and text preprocessing techniques. Section 4.1.2 covers Experiment 2, which 

implements BERT (Section 2.3.3.2) with different hyperparameter settings. Experiment 3 is 

described in Section 4.1.3, which uses XLNet (Section 2.3.3.3) with different hyperparameter 

settings. Finally, Section 4.1.4 briefly summarizes the main findings. 

4.1.1 Support Vector Machine (SVM) 

The hyperparameters of the SVM experiments include the maximum length of the input 

tokens and the text preprocessing steps. As mentioned in Section 3.1.3, most lyrics have fewer 

than 500 words. Therefore, the lower limit of the maximum length was set to 512. The upper limit 

of 4096 was chosen because preliminary experiments have shown that there was a dramatic drop 

in the F1-score beyond 4096. Thus, the possible values for the maximum length were: 512, 1024, 

2048, and 4096. Lyrics that have less words than the maximum length would be zero-padded. For 

lyrics with more words, the exceeding words would be cut out. 

Then, the SVM classifiers with combinations of the four different maximum lengths and 

all possible permutations of text preprocessing techniques were trained and validated using the 
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training subset of the MoodyLyrics4Q Dataset. As mentioned in Section 3.2, text preprocessing 

methods with similar functions were compared and evaluated. Group 1 compares stemming and 

lemmatization as they both convert the token into its basic. Group 2 compares noise removal and 

stop-words removal because they both remove noisy tokens.  

Table 4.1-1 and Table 4.1-2 present all the pairs, where LC means lowercase conversion, 

NR represents noise removal, SR means stop-words removal, Stem denotes stemming, and Lemma 

represents lemmatization. The pairs on the same row will be compared to control variables. 

The repeated 5x2 cross-validation results are shown in Figure 4.1-1. In this figure, the 

corresponding 𝑝 values of the paired t-test between the pairs in Group 1 and Group 2 less than 

0.05, which indicates a significant difference, are labelled. Also labelled are the pairs that show 

significant differences between with and without text preprocessing. 

 

Table 4.1-1 Text preprocessing method Group 1 

Stem Lemma 

Stem + LC Lemma + LC 

Stem + NR Lemma + NR 

Stem + SR Lemma + SR 

Stem + LC + NR Lemma + LC + NR 

Stem + LC + SR Lemma + LC + SR 

Stem + NR + SR Lemma + NR + SR 

Stem + LC + NR + SR Lemma + LC + NR + SR 
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Table 4.1-2 Text preprocessing method Group 2 

NR SR 

NR + LC SR + LC 

NR + Stem SR + Stem 

NR + Lemma SR + Lemma 

NR + LC+ Stem SR + LC + Stem 

NR + LC + Lemma SR + LC + Lemma 

 
 
 

As indicated in Figure 4.1-1, the SVM classifier, among the models with text 

preprocessing, only stemming (Stem), noise removal and stemming (NR + Stem), and noise 

removal and lemmatization (NR + Lemma) performed significantly better than the model without 

any text preprocessing. In addition, the model with stemming (Stem) achieved a better F1 score 

than the model with lemmatization (Lemma). This is the case even when they are combined with 

lowercase conversion, noise removal, stop-words removal (LC + NR + SR + Stem; Lemma), 

although the difference is insignificant when they are combined with other text preprocessing 

methods. In addition, no significant difference shows in Group 2. 
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Figure 4.1-1 F1-Scores for SVM validation results of different text preprocessing configurations. 
The significant differences are shown with brackets with the corresponding p-values. 

 

For each text preprocessing setting, the maximum length with the highest F1-score was 

tested on the MoodyLyrics4Q test subset. The results and the corresponding maximum token 

lengths are shown in Table 4.1-3. For most text preprocessing settings, the SVM model worked 

the best with a maximum token length of 2048. The performance of the SVM models ranges from 

46.44% to 50.82%. The SVM model without any text preprocessing achieved an F1-score of 

47.09%. 
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Table 4.1-3 SVM test results on MoodyLyrics4Q 

Preprocessing Maximum Token Length F1-Score 

None 2048 47.09% 

LC 2048 46.87% 

NR 2048 47.58% 

SR 2048 47.78% 

Stem 2048 47.54% 

Lemma 2048 48.06% 

LC + NR 2048 47.54% 

LC + SR 2048 49.04% 

LC + Stem 2048 49.99% 

LC + Lemma 2048 48.46% 

NR + SR 2048 46.81% 

NR + Stem 2048 48.25% 

NR + Lemma 2048 47.60% 

SR + Stem 2048 47.84% 

SR + Lemma 4096 47.68% 

LC + NR + SR 2048 47.48% 

LC + NR + Stem 2048 48.85% 

LC + NR + Lemma 2048 47.53% 

LC + SR + Stem 1024 49.02% 

LC + SR + Lemma 4096 48.33% 

NR + SR + Stem 4096 49.28% 

NR + SR + Lemma 2048 46.44% 

LC + NR + SR + Stem 4096 50.82% 

LC + NR + SR + Lemma 2048 49.35% 
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4.1.2 BERT 

As mentioned in Section 3.4, preliminary experiments were carried out first to determine 

the number of frozen layers of BERT in the finetuning process. The ‘bert-base-cased’ model 

contains 11 BERT layers in total. The preliminary experiments started with freezing all but the last 

BERT layer and stopped when the model started to overfit the training set. Figure 4.1-2 shows the 

validation loss change of the BERT model with different numbers of unfrozen layers.  

 

Figure 4.1-2 Preliminary experiment results with different numbers of unfrozen layers of BERT 

 

When all the layers of the pre-trained model were frozen, the model learned slowly because 

only the fully-connected layer was updated during the training process. Unfreezing more layers 

reduces the number of steps it takes to converge to a local minima. When more than one layer in 

the pre-trained model were unfrozen, the loss dropped faster, but it started to overfit the training 

dataset after a few epochs. This overfitting can be compensated by early stopping with an 

appropriate patience value.  
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However, when three layers were unfrozen, the model learned too fast and overfit the 

training data too fast, making it impossible to early stop exactly at the lowest point. Furthermore, 

adding more unfrozen layers results in more parameters to be trained and more processing time 

needed for each step (more than 40 hours needed for an entire 5x2 cross-validation). Therefore, 

only two unfrozen layers were used in the pre-trained model. This configuration provided a 

reasonable learning speed and training time while reducing overfitting. 

Then, the preliminary experiments also explored the reasonable learning rate for 

finetuning. The results show that when the learning rate was set to 1𝑒;G	or 1𝑒;H, the validation 

F1-score of the model stopped increasing much earlier than that of the model with a learning rate 

of 1𝑒;I. It is possible that the step that each batch takes in gradient descent was too large when 

the learning rate was 1𝑒;G, so that the model bounced back and forth between the convex function 

of gradient descent. By contrast, when the learning rate was 1𝑒;H, the steps were so small that the 

model barely learned. Therefore, the learning rate was set to 1𝑒;I. 

Next, preliminary experiments tested different early-stopping patience values. The 

experiment started with 5 and kept increasing with a step of 5. The results showed that when the 

early-stopping patience value was set to 15, the difference between the training and validation F1-

score was greater than 15%, which indicates the model overfits the training set. Therefore, the 

early-stopping patience values were limited to 5 and 10. 
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Figure 4.1-3 F1-Scores for BERT validation results of different text preprocessing. The brackets 
show the significant differences with the corresponding p-values. 

 

Next, the BERT model with combinations of the two different early-stopping patience 

values (5 or 10) and all possible permutations of text preprocessing techniques were trained and 

validated using the training subset of the MoodyLyrics4Q Dataset.  

Figure 4.1-3 shows the results of the model with the highest F1-score in each text 

preprocessing setting. It is observed that only the model with lowercase conversion (LC) 

performed significantly better than the model without any text preprocessing techniques. In 

addition, although stemming and lemmatization do not show a large difference when applied alone, 
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lemmatization had significantly better results than stemming when combined with noise removal 

(NR + Stem; Lemma), lowercase conversion (LC + NR + Stem; Lemma), stop-words removal (LC 

+ SR + Stem; Lemma), and their combinations (LC + NR + SR + Stem; Lemma). 

The early-stopping patience value for each text preprocessing setting was thus selected 

based on the cross-validation result. The selected models were then tested on the MoodyLyrics4Q 

test subset. The results are shown in Table 4.1-4. The performance of the BERT models ranges 

from 47.48% to 53.31%. The BERT model without any text preprocessing obtained an F1-score 

of 51.13%. 

4.1.3XLNet 

Similar to BERT, several preliminary experiments were conducted for XLNet to find the 

optimal number of unfrozen layers of the pre-trained model and the early-stopping patience values 

during finetuning. To determine the number of unfrozen layers, the preliminary experiments 

started by freezing all the layers in the pre-trained model and kept increasing the number of 

unfrozen layers until the model started to overfit the training set.  

As shown in Figure 4.1-4, adding unfrozen layers increased the learning speed. When two 

layers were unfrozen, the model learned faster, but the validation loss started to increase after a 

few epochs, indicating the model overfits the training set. However, the validation loss of the 

model with three unfrozen layers directly jumped back when reaching the bottom and started to 

increase rapidly. In this case, it is much harder to compensate for the overfitting than in the model 

with only two unfrozen layers. Hence, only two layers out of 11 XLNet layers in the pre-trained 

model were unfrozen.  
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Table 4.1-4 BERT test results on MoodyLyrics4Q 

Preprocessing Early-stopping Patience F1-Score 

None 10 51.13% 

LC 10 52.50% 

NR 10 49.24% 

SR 10 52.46% 

Stem 10 51.72% 

Lemma 10 53.31% 

LC + NR 10 51.49% 

LC + SR 10 50.92% 

LC + Stem 10 49.38% 

LC + Lemma 10 52.34% 

NR + SR 10 52.10% 

NR + Stem 10 47.87% 

NR + Lemma 10 48.13% 

SR + Stem 10 51.95% 

SR + Lemma 10 52.39% 

LC + NR + SR 10 50.15% 

LC + NR + Stem 10 48.19% 

LC + NR + Lemma 10 52.20% 

LC + SR + Stem 10 50.34% 

LC + SR + Lemma 10 52.96% 

NR + SR + Stem 10 49.49% 

NR + SR + Lemma 10 52.02% 

LC + NR + SR + Stem 10 47.48% 

LC + NR + SR + Lemma 10 49.43% 
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Figure 4.1-4 Preliminary Experiment Results of XLNet 

Then, the preliminary experiments investigated the proper learning rate and early-stopping 

patience values for the XLNet model. The results showed that the XLNet model behaved similarly 

to the BERT model with the same learning rate and the same early-stopping patience values (See 

Section 4.1.2). Therefore, the learning rate was set to 1𝑒;I, and the early-stopping patience values 

were limited to 5 and 10. 

Next, the XLNet model with combinations of the two different early-stopping patience 

values (5 or 10) and all possible permutations of text preprocessing settings were finetuned and 

validated using the training subset of the MoodyLyrics4Q Dataset.  

The results of the 5x2 cross-validation are shown in Figure 4.1-5. The results indicate that 

the application of stemming (Stem) significantly decreased the performance of the model 

compared to the model with lemmatization (Lemma). Even when combined with lowercase 

conversion, noise removal, or stop-words removal, the model that implemented lemmatization (LC 
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+ Lemma; NR + Lemma; SR + Lemma) obtained better performance than the model with 

stemming (LC + Stem; NR + Stem; SR + Stem), respectively.  

In addition, the application of noise removal (NR; LC + NR; NR + Lemma) decreased the 

performance significantly compared to the models with stop-words removal (SR; LC + SR; SR + 

Lemma). 

 
Figure 4.1-5 F1-Scores for XLNet validation results of different text preprocessing settings. The 

significant differences are shown with brackets with the corresponding p-values. 

Using the validation result, the proper early-stopping patience value for each text 

preprocessing setting was determined. The selected models were then tested on the 

MoodyLyrics4Q test subset. The results are shown in Table 4.1-5. The performance of the XLNet 
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models ranges from 54.27% to 59.08%. The XLNet model without any text preprocessing 

achieved 58.98% in F1-score. Only the XLNet model with lemmatization outperformed the XLNet 

without any text preprocessing with an F1-score of 59.08%. 

Table 4.1-5 XLNet Test Result on MoodyLyrics4Q 

Preprocessing Early-stopping Patience F1-Score 

None 10 58.98% 

LC 10 56.20% 

NR 10 57.32% 

SR 10 57.17% 

Stem 10 55.31% 

Lemma 10 59.08% 

LC + NR 10 56.48% 

LC + SR 10 56.01% 

LC + Stem 10 56.23% 

LC + Lemma 10 56.17% 

NR + SR 10 56.40% 

NR + Stem 10 56.49% 

NR + Lemma 10 57.21% 

SR + Stem 10 56.64% 

SR + Lemma 10 57.50% 

LC + NR + SR 10 57.12% 

LC + NR + Stem 10 55.44% 

LC + NR + Lemma 10 56.45% 

LC + SR + Stem 10 54.27% 

LC + SR + Lemma 10 55.47% 

NR + SR + Stem 10 57.09% 

NR + SR + Lemma 10 56.84% 

LC + NR + SR + Stem 10 55.85% 

LC + NR + SR + Lemma 10 56.19% 
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4.1.4 Summary of Cross-Validation Results 

The cross-validation results show that text preprocessing methods do not always improve 

MER performance. When using SVM, only stemming (Stem), noise removal and stemming (NR 

+ Stem), and noise removal and lemmatization (NR + lemma) significantly performed better than 

SVM without any text preprocessing (Figure 4.1-1). In addition, only the application of lowercase 

conversion (LC) increased the performance of the BERT model (Figure 4.1-3). However, no text 

preprocessing method significantly improved the MER performance when using XLNet (Figure 

4.1-5). Yet, in general, XLNet (53.32%–65.64%) outperformed both SVM (42.25%–52.97%) and 

BERT (43.25%–59.34%), regardless of text preprocessing methods used (Figure 4.1-1, Figure 

4.1-3, and Figure 4.1-5). 

Furthermore, the effects of text preprocessing methods are different for different 

algorithms. Namely, in Group 1, the SVM model with stemming (Stem: 48.68%; LC + NR + SR 

+ Stem: 49.01%) performed significantly better than SVM with lemmatization (Lemma: 47.47%; 

LC + NR + SR + Lemma: 47.73%) (Figure 4.1-1), whereas the BERT model (Figure 4.1-3) and 

the XLNet model (Figure 4.1-5) observed the opposite results. The results of Group 2 showed that 

XLNet with stop-words removal (SR: 61.68%; LC+SR: 61.47%; SR + Lemma: 61.29%) 

performed better than XLNet with noise removal (NR: 59.79%; LC+NR: 59.91%; NR + Lemma: 

59.92%), yet such difference does not appear for SVM (Figure 4.1-1) and BERT (Figure 4.1-3). 

4.2 Experiments and Results on AllMusic Dataset 

The best hyperparameter settings and text preprocessing techniques for SVM, BERT, and 

XLNet were selected using the results of the experiments on the MoodyLyrics4Q Dataset. To 

further compare the three methods, the best models were also tested using the AllMusic Dataset. 
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To make the validation set and the test set similar in size to prevent overfitting, the models 

were trained on 60% of the MoodyLyrics4Q Dataset, validated using 40% of the MoodyLyrics4Q 

Dataset, and tested on the entire AllMusic Dataset. The results are shown in Table 4.2-1. SVM 

worked best when using all types of text preprocessing methods, with an F1-score of 66.87% 

whereas both BERT and XLNet achieved the best performance with only lemmatization. 

Table 4.2-1 Test Result on AllMusic Dataset 

Method Preprocessing F1-Score 

SVM LC + NR + SR + Stem 66.87% 

BERT Lemma 63.59% 

XLNet Lemma 70.09% 

  

4.3 Discussion 

This section analyses the validation and test results and presents possible explanations. 

First, Section 4.3.1 discusses the validation results on the MoodyLyrics4Q dataset. Then, Section 

4.3.2 analyses the test result differences between the MoodyLyrics4Q dataset and the AllMusic 

dataset. 

4.3.1 Discussion on MoodyLyrics4Q Validation Results 

As concluded in Section 4.1.4, the validation results show that for different algorithms, the 

impacts of text preprocessing methods are different. This is probably because different algorithms 

deal with text information differently. First, in Group 1, the SVM model with stemming 

outperformed the SVM model with lemmatization significantly, whereas the BERT and XLNet 

models had the opposite outcomes. The different effects of stemming and lemmatization on SVM 

may be caused by the fact that the process of stemming cuts the word, whereas lemmatization 
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transforms the word into its basic form. Therefore, stemming does not remove all the conjugation 

information embedded in the word. SVM can make use of this information, and better classify 

lyrics.  

However, BERT and XLNet can handle unseen words in the vocabulary. To be specific, 

they break down the unobserved words into sub-words (Devlin et al. 2019). For example, the word 

“studying” would be divided into “study+##ing,” where ## is used to represent sub-words. When 

dealing with words like “studies,” stemming would cut the word into “studi,” which would hinder 

the model from grouping “studies” and “study.” On the contrary, lemmatization does not change 

the word for conjugation related to person and number. Therefore, lemmatization does not impede 

the unseen word process of BERT and XLNet. 

Second, in Group 2, only XLNet observes the difference between stop-words removal and 

noise removal. This suggests that the punctuations and numbers in the lyrics may be useful for 

XLNet to detect music emotion, whereas the stop-words do not provide much help. 

Moreover, for the BERT model, only the model with lowercase conversion (LC) 

significantly outperformed the model without any text preprocessing techniques (see Figure 4.1-3). 

This indicates that BERT is not sensitive to the division of sentences as the uppercase letter usually 

labels the beginning of a new sentence. This characteristic of BERT may relate to its Next Sentence 

Prediction pre-training task (Section 2.3.3.2), which learns the relationship between sentences. The 

improvement of performance by lowercase conversion suggests that the division of sentences in 

lyrics may not affect the ability of BERT to detect the emotion of music. 

Overall, the validation results of the three methods on the Moodylyrics4Q Dataset showed 

that text preprocessing techniques have different effects, when combined and when used with 
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different methods. Therefore, researchers need to carefully analyze all the possible combinations 

of text preprocessing techniques, instead of simply applying them or disabling them. 

4.3.2 Discussion on Test Results 

The test results on the MoodyLyrics4Q dataset and the AllMusic Dataset are quite 

different. The MoodyLyrics4Q test results show that BERT obtained better performance than 

SVM, and XLNet performed better than BERT. However, for the AllMusic Dataset, the test results 

show that although XLNet achieved a higher F1-score than SVM, BERT performed worse than 

SVM.  

The difference between the annotation processes of the two datasets may explain this 

difference. After the automatic annotation based on the word map, the AllMusic Dataset was 

checked manually, whereas the annotation of the MoodyLyrics4Q Dataset did not have this 

procedure. Therefore, the MoodyLyrics4Q Dataset may contain more noise, where the lyrics were 

annotated incorrectly.  

As a result, the BERT model may overfit this noise, whereas SVM and XLNet were better 

able to handle it. This may be due to the discrepancy between pre-training and finetuning caused 

by the masked tokens in the Masked Language Modelling task (Section 2.3.3.2). The masked 

tokens used in the pre-training process are absent from the finetuning. These absent tokens may 

contain useful information that is crucial in detecting this noise.  

Another possible explanation for the different results between the two datasets is that 

although transfer learning makes use of the knowledge obtained from the pre-training process, thus 

learning much faster than other models with the same amount of data, transfer learning models 

may easily overfit the training data with a small dataset. This thesis tried to avoid overfitting by 
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freezing most layers in the pre-trained model. However, the datasets used may still be too small 

compared to the amount of data used during the pre-training process.  
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Chapter 5 Conclusion 

This chapter presents the concluding remarks on the results of the experiments previously 

conducted. Also discussed are some ways this thesis could be improved and possible directions 

for future research. 

5.1 Concluding Remarks 

The SVM model achieved a 66.87% F1-score on the AllMusic Dataset with lowercase 

conversion, noise removal, stop-words removal, and stemming. The BERT model obtained 

63.59%, and the XLNet model achieved 70.09%. This result showed that although transfer learning 

methods can improve performance, they do not always work better than traditional machine 

learning methods when the dataset is relatively small. 

The text preprocessing results are different for each classifier, suggesting that all 

combinations of text preprocessing should be carefully examined for different methods, even when 

the tasks are the same.  

Among the three methods, the application of lowercase conversion showed a significant 

improvement for BERT. Lowercase conversion removes the division between sentences, which 

BERT learns in the pre-trained process. This improvement suggests that sentence division in lyrics 

may not be important in analyzing the emotion of music. 

Word normalization techniques, stemming and lemmatization, showed different effects on 

different methods. The traditional machine learning model, SVM, cannot deal with unseen words, 

so stemming significantly improved its performance. However, BERT and XLNet have their way 

of processing unobserved words. Large changes in the word form would hinder them from learning 

new words instead. 
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In addition, for the XLNet model, the model with stop-words removal performed 

significantly better than the model with noise removal. This indicates that the stop-words in the 

lyrics may not contain emotional information, whereas the punctuations and numbers may contain 

some useful information. 

5.2 Future Research 

Possible directions for improving the performance of MER on lyrics include: 

• Creating an annotated MER lyrics dataset on a much larger number of songs. 

Although transfer learning reduces the need for a large amount of finetuning data, 

a small finetuning dataset can easily lead to overfitting. This thesis tried to avoid 

overfitting by freezing most layers of the pre-trained model. More data may be 

more helpful in improving system performance and preventing overfitting.  

• Exploring pre-trained Transformer-based word embeddings on lyrics in other 

languages. This thesis only focused on English lyrics. However, whether pre-

trained models can extract useful information related to music mood from lyrics in 

other languages remains unclear. 

• Trying all the possible combinations of frozen layers and active layers of the pre-

trained model in the finetuning process. The preliminary experiments of this thesis 

started with freezing layers from the end, and stopped when the model did not 

overfit the training data. However, other combinations of layer settings may give 

different results. 

• Experimenting with larger word embedding lengths. In this thesis, the maximum 

length of word embeddings was set to 512 for deep learning models, as 92.67% of 
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the lyrics in the datasets contain fewer than 500 words. However, several lyrics 

consist of more words.  

• Implementing different types of neural networks to finetune the pre-trained word 

embeddings, such as different Feedforward Neural Network structures, 

Convolutional Neural Networks and Recurrent Neural Networks. This thesis 

applied the finetuning methods stated in Devlin et al. (2019). Nevertheless, 

researchers have tried to combine pre-trained word embeddings and other types of 

neural network structures.  
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