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Abstract

Dynamical systems are found in almost every field, and Ordinary differential equations

(ODEs) are often used to model these systems. By solving the ODE, we can predict

the behaviour of the system. However, some ODEs are not solvable via analytical and

numerical approaches. For such cases, practitioners leverage approaches that estimate the

parameters of the ODE. Recently, many methods have been developed which estimate

the ODE parameters, and these methods vary in their estimation accuracy, computation

time, and noise handling. Moreover, due to the variety of available parameter estimation

methods, practitioners are faced with the challenge of selecting the best method for their

needs.

Therefore, in this thesis, we compare the performance of four cutting-edge parame-

ter estimation methods, namely the Parameter Cascades method, Joint Estimation

method, Two-step method, and finally, IV-GLS method. To evaluate the methods,

we leverage a linear ODE system with varying noise levels to estimate its parameters using

each of the methods. Moreover, we compute three performance metrics, namely the com-

putation time, L2 norm and infinity norm. The evaluation results show that the IV-GLS

method provides the most accurate estimation of the parameters, even with high levels of

noise. On the other hand, the Two-step method requires the shortest computation time to

provide its estimation. Our results provide guidance to practitioners when deciding which

parameter estimation method to use for their dynamical system.



Abrégé

Les systèmes dynamiques se trouvent dans presque tous les domaines, et les équations diffé-

rentielles ordinaires (EDO) sont souvent utilisées pour modéliser ces systèmes. En résolvant

l’EDO, on peut prédire le comportement du système. Cependant, certains EDO ne peuvent

pas être résolus par des approches analytiques et numériques. Pour tels cas, les praticiens

utilisent des approches qui estiment les paramètres de l’EDO. Récemment, beaucoup de

méthodes ont été développées pour estimer les paramètres EDO, et ces méthodes se varient

en termes de précision de l’estimation, de temps de calcul et de gestion du bruit. De plus,

à cause de la variété des méthodes d’estimation des paramètres disponibles, les praticiens

sont confrontés au défi de choisir la meilleure méthode pour leurs besoins.

Donc, dans cette thèse, on compare les performances de quatre méthodes d’estimation

de paramètres en pointe, c’est-à-dire la méthode Les Cascades de paramètre, la méthode

d’estimation conjointe, la méthode Deux-Etape et finalement la méthode VI-MCG

(Variables instrumentales - moindres carrés généralisée). Pour évaluer les méthodes, on

utilise un système EDO linéaire avec différents niveaux de bruit pour estimer ses paramètres

en utilisant chacune des méthodes. De plus, on calcule trois métriques de performance, à

savoir le temps de calcul, la norme L2 et la norme à l’infini. Les résultats de l’évaluation

montrent que la méthode VI-MCG donne l’estimation la plus précise des paramètres, même

avec des niveaux de bruit élevés. Par contre, la méthode Deux-Etape nécessite le temps de

calcul le plus court pour donner son estimation. Nos résultats aident les praticiens à décider

de quelle méthode d’estimation des paramètres à utiliser pour leur système dynamique.
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1

Chapter 1

Introduction

Ordinary Differential equations (ODEs) have a central role in a multitude of applications

as they can describe complex dynamical systems. ODEs can model systems from various

domains, ranging from medicine to mechanical and electrical engineering and more. Some

ODE’s can be solved using analytical or numerical methods. However, a significant portion

of ODEs is not solvable using these approaches. In such cases, practitioners often leverage a

parameter estimation method that predicts the system behaviour over time. In other words,

parameter estimation methods enable practitioners to obtain an understanding of a diverse

set of dynamical systems that are unsolvable via conventional approaches. This explains

the broad interest of the research community in these methods. In fact, many methods

have been developed by researchers in recent years to estimate a system’s parameters. For

example, the Artificial Neural Network approximation-based decomposition method that

was developed by Dua [10] and applied to systems that model various chemical reactions.

Another example is the multiple shooting method [26], which was applied to estimate the

parameters of oscillations in calcium signalling.

However, practitioners are faced with a challenge when selecting the best method to

estimate their system’s parameters due to the variety of available methods. For example,

to predict the behaviour of a dynamical system for HIV, Liang and Wu [23] used the
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pseudo–least squares method, while Holder and Rodrigo [19] used the integration based

method. In both cases, practitioners attempted to estimate the parameters of the same

system, but ended up selecting different parameter estimation methods.

Hence, this thesis aims to provide an in-depth comparison of four cutting-edge parameter

estimation methods to evaluate their performance, especially with regards to the methods’

ability to handle systems with varying noise levels. The methods we asses are: Parameter

Cascades method, developed by Ramsay et al. [31] and Cao and Ramsay [6]; Joint

Estimation method, put forward by Carey et al. [8]; Two-step method, introduced by

John [22]; and finally, IV-GLS method, which was developed by Ghoshal and Michalska

[15].

To evaluate these methods, we leverage a single input single output linear time-invariant

system. More specifically, we use the methods to estimate this system’s parameters and

compare their results with the ground truth parameters and trajectories. Moreover, to

assess the method’s ability to handle noise in the system, we test the methods using the

same system, but with varying amounts of Additive White Gaussian Noise (ranging from

σ = 0 to 1.5 with µ = 0). We also measure several widely-used performance metrics for

parameter estimation methods, namely, the computation time, L2 norm, and infinity norm.

Furthermore, We study the effects of increasing the noise levels and the sample points in

the system on the methods’ performance.

The thesis provides the following contributions:

• To the best of our knowledge, this is the first work to evaluate these cutting-edge

methods using the various performance metrics mentioned above.

• We assess the methods using varying amounts of noise in the system.

• We explore the impact of increasing the number of sample points on the method’s

performance.



1 Introduction 3

The rest of the thesis is organized as follows: Chapter 2 provides a brief description of

the evolution of parameter and state estimation of dynamical systems in history. Chapter

3 explains in detail the mathematical approaches and the theory behind four widely-used

parameter methods that will be considered in this thesis. Chapter 4 outlines the experiment

setup and presents the mathematical system and metrics that are used in the evaluation

process. Chapter 5 is devoted to the results of the evaluation. Chapter 6 explicates the

results from the previous chapter, and presents the recommended parameter estimation

method. Chapter 7 concludes the thesis and suggests ways for improvements in the future.
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Chapter 2

Literature Review

Dynamical systems evolve with time, and typically, to model these dynamical systems,

Ordinary Differential Equations (ODEs) are used. Oftentimes, we are interested in pre-

dicting the behaviour of the target system for an extended time period. To obtain these

predictions, we need to estimate the parameters of the ODE accurately. However, due to

the expensive computational effort required to solve the ODE numerically and the unavail-

ability of analytical solutions for most ODEs, estimating the ODE’s parameters presents a

significant challenge. Nevertheless, many methods have been developed over the years to

solve this estimation problem. These methods used different approaches, and they varied

in their success and performance.

One of the earliest methods that attempted to estimate a system’s parameters is the

nonlinear least square (NLS) method introduced by Bard [3] in 1974. Biegler et al. [4] then

used this method in 1986 to solve a real-life system from an industrial environment. The

NLS method estimates the ODE parameters by minimizing the differences between the

observed data and the estimated data with respect to the estimated parameter. However,

this method employs an iterative procedure to reach its goal, and for that, this method

needs to have suitable initial values; otherwise, the iteration will either not converge, or it

will converge to a local (vs. a global) minimum.
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To overcome the minimization problem of the NLS, Gelman et al. [13] introduced the

Bayesian approach. Recently Putter et al. [28], Huang and Wu [20], and Huang et al. [21]

further improved the Bayesian approach by introducing hierarchical Bayesian approaches.

Nevertheless, [28, 20, 21] applied the improved method on HIV dynamic models to estimate

their parameters.

Another method to estimate a model’s parameters was the two-stage method first sug-

gested by Varah [36] in 1982. This method was later developed into the iterated principal

differential analysis method (iPDA) by Heckman and Ramsay [18], Ramsay and Silverman

[30], and Poyton et al. [27]. The iPDA method uses the spline technique to fit the discrete

measurements of the output variables. First, the dynamical equation’s derivative trajecto-

ries are estimated and substituted as variables into the ODEs; then, nonlinear least square

is used to estimate the ODE parameters in the second stage. The drawback of this method

is its complexity and the difficulty of estimating the derivatives.

Motivated by the previous method, Ramsay et al. [31], and Cao and Ramsay [6] proposed

the generalized profiling method, also called parameter cascade and profiling method. This

method uses a multi-criterion optimization scheme and penalized spline smoothing tech-

nique to estimate the ODE parameters. The estimate of the parameters is usually accurate;

however, this method is also computationally expensive.

To overcome the computational performance drawback of profiling with the parameter

cascading method, Carey et al. [8] proposed a Generalized smoother for linear ODEs. In

this method, the partial derivatives are solved explicitly with respect to the parameters.

Then, an iterative strategy is employed to get the optimal estimates of the parameters.

Fliess et al. [12] and Sira-Ramírez et al. [34] depended on a different approach for

estimating the parameters by leveraging numerical differentiation, where differentiators are

used instead of nonlinear asymptotic estimators. Inspired by the differentiation method,

Ghoshal et al. [16] developed the kernel representations for differential systems method.

Later on, Ghoshal and Michalska [14] and Sridhar et al. [35] continued working on the Kernel
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method where they developed it into a method that can identify and reconstruct a dynamic

system’s trajectory from a single realization of an output measurement on a finite interval.

Finally, Ghoshal and Michalska [15] extended the kernel method by using instrumental

variable and covariance weighting to enable the method to estimate the parameters and

trajectories from the noisy measurements accurately.
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Chapter 3

Details of the Evaluated Parameter

Estimation Methods

We initiate our study by selecting the parameter estimation methods that will be evaluated

and compared in this thesis. All methods will be applied on linear systems, and they

function on finite time intervals. In the following, we list the parameters estimation methods

that fit our criteria and which will be evaluated in this study:

• Parameter Cascades method: A method developed by James Ramsay and Jiguo

Cao to estimate liner systems’ parameters. In essence, this method uses a multi-

criterion optimization scheme and penalized spline smoothing technique to estimate

three levels of parameters. The local parameters define the coefficient of the basis

functions that defined the smooth, the global parameters which define the roughness

penalty, and lastly, the complexity parameters that control the amount of roughness

in the smooth.

• Joint Estimation method: Put forward by Michelle Carey, Eugene Gath, and

Kevin Hayes, this method solves the estimation problem by forming a model-based

penalty, deriving the mathematical term for local, global, and complexity parameters,
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and finally using an iterative strategy to estimate the optimal parameters.

• Two-step method: A method introduced by Anju John. This method uses double

sided kernel and features a simple unconstrained minimization to identify and esti-

mate the system’s actual parameter from single noisy realizations on a finite time

interval.

• IV-GLS method: Debarshi Ghoshal and Hannah Michalska developed this parame-

ter estimation method. This method depends also on the kernel representation of the

differential invariance combined with a feasible recursive version of the generalized

least squares, covariance weighting, and instrumental variables to accurately estimate

the parameters from noisy measurements.

In the next sections, we further explain the details of each method and the steps we

followed to evaluate the methods.

3.1 Parameter Cascades Method

This method was developed by Ramsay et al. [31] and Cao and Ramsay [6] to estimate

functional parameters. The method transforms most functional data and models to matrix

expressions by representing the functions in the form of linear combination of basis functions

expansions. A basis function system is a set of known functions φk that are mathematically

independent of each other, and that have the property that we can well approximate any

function by taking a weighted sum or linear combination of a sufficiently large number K

of these functions.

x(t) =
K∑
k=1

ckφk(t) (3.1)

The expansion can capture any amount of variation in the data. Using so many basis

functions will lead to over fitting; to avoid over fitting, roughness penalties of the below
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form are used. Roughness penalties are based on optimizing a fitting criterion that defines

what a smoothing of the data is trying to achieve.

P (x) = λ

∫
[Lx(t)]2dt (3.2)

where L is a linear differential operator of order m of the form:

Lx(t) =
m−1∑
j=0

βj(t)D
jx(t) +Dmx(t) (3.3)

So there is a need to minimize

J(c|β, λ) =
n∑
j

[yj − x(tj)]
2 + λ

∫
[Lx(t)]2dt

=
n∑
j

[yj − c′φ(tj)]
2 + c′R(λ)c (3.4)

where

R(λ) = λ

∫
Lφ(t)Lφ(t)′dt (3.5)

A good and thoughtful selection of the roughness penalties will lead to better estimates

of the parameters.

From the above equations, we have three parameters that need to be estimated:

• ck which can be called a nuisance, incidental or local parameters. They are the

coefficients of the basis function expansion defining the smooth. "The coefficients ck

are data-proxies in the sense that, if a saturated B-spline basis is used, then each

coefficient represents the typical size of the observations yi over the bounded interval

over which the kth basis function is non-negative. The number of ck is not fixed, and

it can vary according to the characteristics of the data".

• β, which are structural or global parameters that need to be constants, as changing

their values will impact all of the fit x(t). In this thesis, these parameters of the
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linear system are the ones that we estimate using the different methods to compare

the methods’ performance.

• λ which is the complexity parameter that controls the amount of roughness in the

smooth.

After identifying the parameters that need to be estimated, and by following the previ-

ous steps, the multi criterion optimization problem becomes as follows:

1. Estimate ĉ by minimizing the inner criterion J(c|β, λ) in (3.4) with respect to c. It

is typically based on any suitable measure of the quality of the fit to the data in

addition to a regularization or smoothing term that defines smoothness in terms of c.

Moreover, the ĉ estimate is guided by the complexity parameter λ and possibly also

on one or more of the global parameters in β.

vector ĉ will now become:

ĉ(β, λ) = [Φ′Φ + R(β, λ)]−1Φ′y (3.6)

where

R(β, λ)(λ) = λ

∫
Lφ(t)Lφ(t)′dt (3.7)

Ramsay et al. [31] and Cao and Ramsay [6] utilized a quadrature rule, namely, the

trapezoidal rule to approximate the integrals in R(β, λ), thus the second term in

(3.4) is also an error sum of squares. Hence, (3.4) is re-expressed as a non-linear

least-squares problem, and the Gauss-Newton algorithm is employed to perform this

optimisation.

This step defines the local parameters as vector-valued functions of the global param-

eter β and the complexity parameter λ, causing the local parameters c to lose their

status as independent parameters. This process of defining a subset of the parameters

as functions of other parameters is called profiling,
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2. Estimate β by minimizing the middle criterion H(c(β)|β(λ)) that defines the fit to

the data conditional on λ

H(β|λ) =
n∑
j

[yj − x̂(tj, β|λ)]2 =
n∑
j

[yj − ĉ(β, λ)′φ(tj)]
2

= y′[I −A(β|λ)]′[I −A(β|λ)]y (3.8)

where the n × n smoothing matrix A(β|λ) = Φ[Φ′Φ + R(β, λ)]−1Φ′.

H(β|λ) is un-penalized criterion as the roughness penalty term is dropped in it.

This cancellation of the penalty term happens because the fitting function is already

smoothed when minimizing J(c|β, λ) and so it does not need to be regularized twice.

By minimizing the un-penalized criterion H(β|λ), the estimate of β̂ is obtained for

any value of λ, hence β̂ is an implicit function of λ. Lastly, the structural parameter

vector β is removed from the parameter space through the middle optimization as a

function of λ.

3. Select the complexity parameter λ by minimizing the outer criterion F (β̂(λ), λ) that

is based on the generalized cross validated criterion which is

F (β̂(λ), λ) = GCV (β̂(λ), λ) = n
SSE(β̂(λ), λ)

[dfe(β̂(λ), λ)]2
(3.9)

where degrees of freedom measure dfe(λ) is

dfe(λ) = n− trace[A(λ)]

By this definition, F should be considered as a function of λ since β̂ is an implicit

function of λ. This definition of F also utilizes the standard GCV, which is an error

sum of squares discounted for the degrees of freedom invested in the model. The
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standard GCV permits us to determine the λ value by optimizing a fit measure that

is relatively insensitive to complexity.

The final parameter estimates become the functional cascade ĉ[β̂(λ̂)], β̂(λ̂), λ̂ defined by

the optimizations with respect to criteria J , H and F , respectively. Notably, The distinct

hierarchy in these three classes of parameters is defined as parameter cascade.

As described in this method, the unique aspect of the parameter cascade is that a different

criterion is optimized for each of the three levels of the cascade. That is, three-criterion

optimization problem need to be solved J(c|β, λ), H(β|λ), and F(λ) for the local, global

and complexity parameters, respectively. At the base level of the computations lie a large

number of local parameters in c, and these are defined here as functions ĉ(β, λ) of the global

and complexity parameters through the estimate (3.6). Even if an explicit solution for ĉ

were not possible, this function can still be defined implicitly by optimizing a penalized or

regularized fitting function like J(c|β, λ) each time the value of a global parameter change.

When the functional relationship is implicit in this way, and the regularity conditions

that are required to ensure that the optimization problem has a unique solution hold, the

Implicit Function Theorem permits the explicit gradient and Hessian calculations which

are essential for fast optimization.

For the third step, selecting the complexity parameter, the optimization of F (β̂(λ), λ)

becomes faster and more stable if we have the gradient

dF (β̂(λ), λ)

dλ
=
∂F (β̂(λ), λ)

∂λ
+
∂F (β̂(λ), λ)

∂β̂

∂β̂

∂λ
(3.10)

where dF (β̂(λ), λ)/dλ is the total derivative of F with respect to λ. "We notice that the

formula of dF (β̂(λ), λ)/dλ involves the term ∂β̂/∂λ. If the middle optimization leads to

an explicit solution for β̂(λ), the gradient is readily available. But if not, the Implicit

Function Theorem can be applied to find ∂β̂/∂λ. Since the optimal local parameter vector
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β̂ satisfies ∂H(β|λ)/∂β = 0, and β̂ is a function of λ and y, we can take the λ-derivative

on ∂H(β|λ)/∂β |β̂= 0 as follows:

d

dλ

(
∂H(β|λ)

∂β
|β̂
)

=
∂2H(β|λ)

∂β∂λ
|β̂ +

∂2H(β|λ)

∂β2
|β̂
∂β̂

∂λ
= 0 (3.11)

which holds since ∂H(β|λ)/∂β |β̂ is a function of λ that is identically 0". Now assuming

that ∂2H(β|λ)/∂β2 |β̂ 6= 0, from the Implicit Function Theorem we get:

∂β̂

∂λ
= −

[
∂2H(β|λ)

∂β2
|β̂
]−1 [

∂2H(β|λ)

∂β∂λ
|β̂
]

(3.12)

3.2 Joint Estimation Method

This method was developed by Michelle Carey and presented in her thesis Carey [7] and

in the research paper Carey et al. [8]. The steps of this method are described below.

3.2.1 General steps

Linear homogeneous ODEs are defined by associating f(x) with its rates of change

Dpf(x) =

p−1∑
r=0

−βrDrf(x) (3.13)

where Drf(x) is the rth derivative of f(x) and βr is the parameter that describes the

relationship between the rth and pth rate of change. f(x) is approximated by a linear

combination of basis functions f(x) = B(x)c, where the n ×K matrix B(x) contains the

underlying basis functions evaluated at the locations x, and the vector c contains the K

corresponding coefficients [29] [30]. For modeling an applicable system, the ODE is selected

such that its solution is the theorized form of f(x) and is incorporated into the estimation

procedure in the form of a model-based penalty R(β), which is given by the L2 norm of

the ODE [27] [18].
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The goal of this method is to estimate three different parameters: c which are the

coefficients of the basis function expansion B(x)c; β which are the p parameters of the

ODE, and λ, the complexity parameter, which controls the fitted curves f(x) adherence

to the solution of the ODE. Moreover, in order to achieve its goal, this method has to

minimize the following objective function:

PENSSE(y|x, c, β, λ) = ‖y −B(x)c)‖2 + λc′R(β)c (3.14)

Now, to solve for (3.13) and (3.14), this method forms the model based penalty R(β), derives

the mathematical term for c(β, λ), β(c), λ(c, β, ρ), and finally uses the iterative strategy

to estimate the optimal ĉ, β̂, and λ̂. Next, to get an updating method for ĉ, β̂, and λ̂,

the partial derivative of PENSSE(y|x, c, β, λ) with respect to c, the partial derivative

of PENSSE(y|x, c, β, λ) with respect to β, and the partial derivative of GCV (β, λ) with

respect to λ will be solved. Then, we use the iterative strategy that starts with small values

of λ with the updating method to get the optimal values for ĉ, β̂, and λ̂.

3.2.2 Detailed steps

The linear ODE in (3.13) is incorporated into the penalized residual sum-of-squares in

(3.14) in the form of a model-based penalty, which is given by the L2 norm of the ODE.

PENSSE(y|x, c, β, λ) = ‖y −B(x)c)‖2 +

λ

∫ πK

π0

[
Dpf(x) +

p−1∑
r=0

βrD
rf(x)

]2

dx
(3.15)

f(x) is approximated by a linear combination of basis functions f(x) ≈ B(x)c; the coeffi-

cients of the basis function expansion c are obtained by minimizing (3.15) with respect to

c for a fixed β and λ; the p parameters of the ODE are obtained by minimizing (3.15) with

respect to β for a fixed c, and the complexity parameter which controls the fitted curves
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f(x) adherence to the solution of the ODE is obtained by minimizing the GCV criterion

given by

GCV (β, λ) =
n ‖y −B(x)(B(x)′B(x) + λR(β))−1B(x)′y‖2

[n− trace(B(x)(B(x)′B(x) + λR(β))−1B(x)′)]2
(3.16)

with respect to λ for fixed c and β. where R(β) =
∫ πK
π0

[
Dpf(x) +

∑p−1
r=0 βrD

rf(x)
]2
dx

3.2.2.1 Construction of the Model-Based Penalty

"Linear L-spline basis functions are linear differential operators that are essentially linear

combinations of the derivatives of order m B–spline basis functions." Given any linear

homogeneous differential equation of the form

Dpf(x) =

p−1∑
r=0

−βrDrf(x)

one can rearrange the terms and, without loss of generality, set βp(x) = 1 to produce a

linear differential operator Lf(x) that is represented by:

Lf(x) =

p∑
r=0

βr(x)Drf(x)

In here, the L2 norm of the linear differential operator can be calculated using:

‖Lf(x)‖2 =

∫ πK

π0

[
p∑
r=0

βrD
rf(x)

][
p∑
s=0

βsD
sf(x)

]
dx (3.17)

Next, by approximating the regression function by a B–spline basis function expansion

f(x) ≈
∑K

k=1 ckBk(x) on the interval [0, 1], we obtain the following equivalent approxima-

tion for the linear differential operator:

‖Lf(x)‖2 =
K∑

k,j=1

ckcj

∫ πK

π0

[
m−1∑
r=0

βrD
rBk,m

][
m−1∑
s=0

βsD
sBj,m

]
dx (3.18)

As an order m B–spline has only m − 1 non-zero derivatives, p should be at most

m − 1. Thus the sums on r and s in equation (3.18) may be extended to m − 1. If
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p < m−1, then we define βr ≡ 0 for p < r ≤ m−1. In practice, differential equations may

not contain all the derivatives Drf(x) for r = 0, ..., p − 1. Equation (3.18) can be easily

modified for these cases by setting the coefficient βr(x) ≡ 0 for the rth derivative that is

not contained in the differential equation. Next, substituting the basis function expansion

for f(x), f(x) =
∑K

k=1 ckBk,m(x), into the L2 norm of the linear ODE in (3.13) results in:

∫ πK

π0

[
Dpf(x) +

p−1∑
r=0

βrD
rf(x)

]2

dx

=

∫ πK

π0

[
K∑
k=1

ckD
pBk,m(x) +

p−1∑
r=0

βr

K∑
k=1

ckD
rBk,m(x)

]

×

[
K∑
l=1

clD
pBl,m(x) +

p−1∑
s=0

βs

K∑
l=1

clD
sBl,m(x)

]
dx

= c′ [(IK ⊗ β′)Ψ(IK ⊗ β) + 2Ω′(IK ⊗ β) + Φ]× c

= c′R(β)c (3.19)

where β = (β0, ..., βp−1)′, Ψ is a (Kp)× (Kp) matrix with K×K submatrices each of which

is a p× p matrix

ψk,l =


∫ πk
π0
D0Bk,m(x)D0Bl,m(x)dx · · ·

∫ πk
π0
D0Bk,m(x)Dp−1Bl,m(x)dx

... . . . ...∫ πk
π0
Dp−1Bk,m(x)D0Bl,m(x)dx · · ·

∫ πk
π0
Dp−1Bk,m(x)Dp−1Bl,m(x)dx


Ω′ is a K × (Kp) matrix with K ×K submatrices each of which is a 1× p vector

η′k,l =
1

2

[(∫ πk

π0

DpBl,m(x)D0Bk,m(x)dx, · · · ,
∫ πk

π0

DpBl,m(x)Dp−1Bk,m(x)dx

)
+(∫ πk

π0

DpBk,m(x)D0Bl,m(x)dx, · · · ,
∫ πk

π0

DpBk,m(x)Dp−1Bl,m(x)dx

)]
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Φ is a K ×K matrix containing the constants

ϕk,l =

∫ πk

π0

DpBk,m(x)DpBl,m(x)dx

Explicit expressions for each of the above terms is in [5].

3.2.2.2 An Expression for c(β, λ)

Now that we have constructed the model-based penalty, we set out to develop an expression

for c(β, λ). To that goal, we start by substituting the penalty matrix expression in (3.19)

into (3.15), which gives:

PENSSE(y|x, c, β, λ) = ‖y −B(x)c)‖2 + λc′R(β)c

= ‖y −B(x)c‖2 + λc′[(IK ⊗ β′)Ψ(IK ⊗ β) + 2Ω′(IK ⊗ β) + Φ]c
(3.20)

Now by differentiating this penalised residual sum-of-squares with respect to c, for a given

β, yields

∂

∂c
PENSSE(y|x, c, β, λ) = 2B(x)′B(x)c− 2B(x)′y + 2λR(β)c

Setting this expression equal to zero gives

(B(x)′B(x) + λR(β)) = B(x)′y

If the matrix (B(x)′B(x) + λR) is invertible, then the estimate ĉ of c is given by

ĉ(β, λ) = (B(x)′B(x) + λR(β))−1B(x)′y (3.21)

3.2.2.3 An Expression for β(c)

The next parameter that we will develop an expression for in this method is β(c). And

similarly to c(β, λ), we start by setting the partial derivative of the penalized residual
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sum-of-squares in (3.20) with respect to β equal to zero and solving for β which results in:

∂

∂βj
PENSSE(y|x, c, β, λ) = λc′

∂R(β)

∂βj
c

= λc′
∂

∂βj
[(IK ⊗ β′)Ψ(IK ⊗ β) + 2Ω′(IK ⊗ β) + Φ]c

= 2λc′(IK ⊗ ej ′)Ψ(IK ⊗ β)c+ 2λc′(IK ⊗ ej ′)Ωc (3.22)

for j = 0, ..., p− 1, where ej is a vector of length p with the jth entry equal to one, and

all other entries equal to zero (i.e., (ej)i = δi,j). Now, by setting (3.22) equal to zero we

get:

c′(IK ⊗ ej ′)Ψ(IK ⊗ β)c+ c′(IK ⊗ ej ′)Ωc = 0 (3.23)

In order to solve (3.23) for β, the equation can be expressed as

p−1∑
i=0

[c′(IK ⊗ ej ′)Ψ(IK ⊗ βiei)c] = −c′(IK ⊗ ej ′)Ωc

And this can be written in vector form as:

(Ip ⊗ c′)A(Ip ⊗ c)β = −(Ip ⊗ c′)Γc

where A is the (Kp)× (Kp) matrix with the (i, j) entry

Ai,j = (IK ⊗ ei′)Ψ(IK ⊗ ej)

and Γ is (Kp)× 1 matrix with jth entry

Γj = (IK ⊗ ej ′)Ω

In here, if the p× p matrix (Ip ⊗ c′)A(Ip ⊗ c) is invertible, then the estimate β̂ of β is
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β̂(c) = −[(Ip ⊗ c′)A(Ip ⊗ c)]−1(Ip ⊗ c′)Γc (3.24)

Typically in this case, (p+ 1) will be smaller than four.

3.2.2.4 An Expression for λ(c, β, ρ)

The final parameter that needs to be tackled is λ(c, β, ρ), and to do so, we initially setting

the partial derivative of the GCV criterion in (3.16) with respect to λ equal to zero and

solving for λ resulting in:

λ̂(c, β, ρ) =
−c′R(β)c− ρc′B(x)′B(x)[G(c)′G(c)]−1G(c)′

ρc′R(β)[G(c)′G(c)]−1G(c)′
(3.25)

where G(c) = (y −B(x)c)′B(x). Here, We introduce a constant parameter ρ which is a

function of c, β, λ and is given by:

ρ(c, β, λ) =
(y −B(x)c)2trace[−B(x)(B(x)′B(x) + λR(β))−1R(β)(B(x)′B(x) + λR(β))−1B(x)′]

n− trace[B(x)(B(x)′B(x) + λR(β))−1B(x)′]
(3.26)

For the GCV criterion we let u = n ‖y −B(x)c‖2 and v = [n − trace(S(β, λ))]2. Now,

differentiating equation (3.16) with respect to λ yields:

∂GCV (β, λ)

∂λ
v
∂u

∂c

∂c

∂λ
− u∂v

∂λ
(3.27)

where

∂u

∂c
= −2n(y −B(x)c)′B(x)

∂c

∂λ
= −(B(x)′B(x) + λR(β))−1R(β)c+ (B(x)′B(x) + λR(β))−1
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∂v

∂λ
= −2(n− trace(S(β, λ)))trace

(
∂S(β, λ)

∂λ

)

∂S(β, λ)

∂λ
= −B(x)(B(x)′B(x) + λR(β))−1R(β)(B(x)′B(X) + λR(β))−1B(x)′

Next, setting equation (3.27) equal to zero produces:

nv(y −B(x)c)′B(x)[−(B(x)′B(x) + λR(β))−1R(β)c+ (B(x)′B(x) + λR(β))−1]

−u(n− trace(S(β, λ)))trace(
∂S(β, λ)

∂λ
) = 0

(3.28)

let

ρ =
u(n− trace(S(β, λ)))trace(∂S(β,λ)

∂λ
)

nv

and

G = (y −B(x)c)′B(x

By multiplying both sides of equation (3.28) by G′ we get:

G′G[−(B(x)′B(x) + λR(β))−1R(β)c+ (B(x)′B(x) + λR(β))−1] = ρG′

Now if G′G is invertible then,

−(B(x)′B(x) + λR(β))−1R(β)c+ (B(x)′B(x) + λR(β))−1] = ρ(G′G)−1G′

Multiplying both sides of the equation by (B(x)′B(x) + λR(β))−1 produces

−R(β)c = ρ(B(x)′B(x) + λR(β))(G′G)−1G′

Lastly, gathering the terms involving λ yields:
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−R(β)c− ρB(x)′B(x)(G′G)−1G′ = λρR(β)(G′G)−1G′

By multiply both sides of the equation by c′ and rearranging the terms, we got the final

estimate of λ represented as:

λ̂(c, β, ρ) =
c′[−R(β)c+ vβ + ϕ]− ρc′B(x)′B(x)[G(c)′G(c)]−1G(c)′

ρc′R(β)[G(c)′G(c)]−1G(c)′
(3.29)

3.2.2.5 An Iterative Scheme for Estimating ĉ, β̂ and λ̂

The steps of the iterative scheme were taken from Carey et al. [8]. We now have point esti-

mates for ĉ, β̂ and λ̂. Here, we provide an iterative scheme that obtains optimal estimates

of β the linear ODE parameters, c the coefficients of the B-spline basis function and λ the

complexity parameter.

• Step #1 Define initial estimates for all the parameters. Set λ̂(0) so that neither the

measures for the data adherence nor the fidelity differential equation dominate (3.20).

By default we set λ̂(0) =1.

Get ĉ(0) by pth order smoothing and substitute λ̂(0) for λĉ(0) = (B(x)′B(x)+λ̂(0)φ)−1B(x)′y.

Substitute ĉ(0) for c in (3.24) to get β̂(0) = [(Ip⊗ ĉ′
(0)

)A(Ip⊗ ĉ(0))]−1(Ip⊗ ĉ′
(0)

)[−Γĉ(0)].

• Step #2 Attain the estimated complexity parameter. To do so we use:

ρ̂(i) = (y−B(x)ĉ(i))2trace[−B(x)(B(x)′B(x)+λ(i)R(β̂(i)))−1R(β̂(i))(B(x)′B(x)+λ(i)R(β̂(i)))−1B(x)′]

n−trace[B(x)(B(x)′B(x)+λ(i)R(β̂(i)))−1B(x)′]

and

λ̂(i+1)(ĉ(i), β̂(i), ρ̂(i)) =
ĉ′

(i)
[−R(β̂(i))ĉ(i)]− ρ̂(i)ĉ′

(i)
B(x)′B(x)[G′(ĉ(i))G(ĉ(i))]−1G′(ĉ(i))

ρ̂(i)ĉ′
(i)
R(β̂(i))[G′(ĉ(i))G(ĉ(i))]−1G′(ĉ(i))
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• Step #3 Obtain the estimated coefficients of the basis function expansion and the

estimated parameters of the ODE. The expressions for the parameters are:

ĉ(i+1)(β̂(i), λ̂(i+1)) = (B(x)′B(x) + λ̂(i+1)R(β̂(i)))−1 × [B(x)′y]

and

β̂(i+1)(ĉ(i+1)) = [(Ip ⊗ ĉ′
(i+1)

)A(Ip ⊗ ĉ(i+1))]−1 × (Ip ⊗ ĉ′
(i+1)

)[−Γĉ(i+1)]

• Step #4 Repeat step 2 and step 3 until GCV (β̂(i), λ̂(i+1)) reaches a minimum. As

we achieve optimal convergence for c and β when λ is fixed. After GCV reaches

a minimum, we set the estimated complexity parameters to the current value and

repeat Step 3 until the parameters ĉ(i+1)(β̂(i), λ̂(i+1)) and β̂(i)(ĉ(i)) converge.

Finally, since the penalized residual sum-of-squares in (3.20) is a positive definite

quadratic form in both β and c for fixed λ̂(i−1), it follows that:

PENSSE(y|x, ĉ(i), β̂(i), λ̂(i)) ≥ PENSSE(y|x, ĉ(i), β̂(i+1), λ̂)

for all β̂, and that:

PENSSE(y|x, ĉ(i), β̂(i), λ̂(i)) ≥ PENSSE(y|x, ĉ(i+1), β̂(i), λ̂(i))

for all ĉ. Moreover, since this is a positive non-increasing sequence, it converges to a

limit. Thus, the estimates converge and (β̂(i+1), ĉ(i+1)) as i→∞ are the minimum estimates

of the least squares criterion in (3.20) with respect to β and c.
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3.3 Two-step Method

John [22] developed this method by building on the work of Ghoshal et al. [17] that in-

troduced a simpler approach for deriving the algebraic estimation equations. In essence,

this method transforms a high order differential equation that includes a system invariant

into an integral expression with no singularities at the boundaries of the time interval.

This transformation is done by applying the Cauchy formula for multiple integrals and the

forward and backward integration. To characterize system trajectories, this method lever-

ages the reproduced output of the system invariance in any time interval. In the following,

we explain how we apply this method to a single-input single-output (SISO) linear time

invariant (LTI) system.

3.3.1 A Double Sided Kernel in SISO LTI Representation

To estimate a system’s parameter using this method, we first need to reach an expression

for the differential invariant of the system. To do so, we consider a SISO LTI system of the

form:

ẋ = Ax

y = Cx (3.30)

the matrix A of the system is in canonical structure,

0 1 0 . . . 0

0 0 1 . . . 0
...

...
... . . . ...

0 0 0 · · · 1

−a0 −a1 −a2 . . . −an−1


(3.31)

and,

C =
[
1 0 0 . . .

]
(3.32)
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Thus, the system’s characteristic equation is,

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = 0 (3.33)

Now, we need to successfully identify the unknown values of the parameters ai, i = 0, .., n−1

given noisy observations of the system’s output y(t) over an arbitrary finite interval of time

t ∈ [0, T ], T > 0. For a homogeneous system, the estimation of the parameter is equivalent

to identifying the differential invariant I (I ≡ 0) of a dynamical system. It is important to

note here that the differential invariant remains the same under the action of the system

dynamics. The differential invariant I can be expressed as:

I(t, y(t), y(1)(t), · · · , y(n)(t))

= y(n)(t) + an−1y
(n−1)(t) + · · ·+ a0y(t) ; t ≥ 0 (3.34)

One issue that arises from the conventional integral of (3.34) is the singularity at t =

0. In this method, the problem of the singularity is avoided when a two-sided forward-

backward integration is applied, resulting in an alternative integral system representation

of (3.34) in a reproducing kernel Hilbert space (RKHS), as described in the following

theorem.

Theorem 1 There exist Hilbert-Schmidt kernels KDS, Ki
DS, i = 1, · · ·n− 1, such that the

output function y of (3.34) is reproduced on any given interval [a, b] in accordance with the

action of the evaluation functional

y(t) =

∫ b

a

KDS(t, τ)y(τ) dτ ; ∀t ∈ [a, b] (3.35)

and the derivatives of the output y(1), · · · y(n−1) can be computed recursively by way of output

integration, so that for i = 1, · · ·n− 1 and for all t ∈ [a, b]:

y(i)(t) =
i−1∑
k=0

bk(t)y
(k)(t) +

∫ b

a

Ki
DS(t, τ)y(τ) dτ (3.36)
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where y(0) ≡ y and bk(·) are rational functions of t. Hilbert-Schmidt kernels are square

integrable functions on L2[a, b]× L2[a, b].

Knowing the system’s characteristic equation allows us to use the reproducing property

to get the output on an arbitrary finite interval of time [a, b]. The differential invariance is

used to obtain the behavioural model of the system. Next, We can reconstruct the output

and its time derivatives that validate the system invariance from noisy measurements using

the mathematics of the Reproducing Kernel Hilbert Space (RKHS) of the behavioural

model. Finally, we develop a fourth order kernal1 for the system which we use in the next

steps.

3.3.2 Parameter Estimation Using L-splines in RKHS

After developing the forward-backward kernal, we will define the minimization problem

and solve it in a two steps approach (hence the method’s name).

3.3.2.1 Optimization-based mathematical formulations for estimation problem[25]

Consider a general fourth-order system:

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0 (3.37)

The aim is to estimate the system’s parameter vector ~a from noisy observation z(τ); τ ∈

[a, b] of the function y(τ); τ ∈ [a, b]. The expression

L(y) =

∫ b

a

Ka
DS(t, τ)y(τ)dτ (3.38)

denotes an operator that maps the function y ∈ L2[a, b] into the RKHS where the ker-

nel KDS depends on the unknown parameter vector ~a, with a positive symmetric kernel

expressed as

Ka(t1, t2) =

∫ b

a

Ka
DS(t1, τ)Ka

DS(t2, τ)dτ (3.39)

1For a detailed explanation of the kernal development steps, please refer to [22].
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The “noisy measurement function” z(t),t ∈ [a, b] is projected onto the subspace in RKHS

defined by:

Sa , {y ∈ Ker⊥L | s.t y(t) =

∫ b

a

Ka
DS(t, z)y(z)dz} (3.40)

where, Ker⊥L denotes the orthogonal compliment to the null space of the operator L in

(3.38). Next, we need to find the approximate expressions for projections ŷ ∈ Ker⊥L as

finite linear combinations of the vectors in the subspace span{KDS(t, .), t ∈ [a, b]}. These

finite linear combinations will have the following form:

ŷ(.) ∼=
n∑
j=1

cjK
a
DS(tj, ·) (3.41)

for some distinct time instants ti ∈ [a, b], i = 1, ..., n chosen in such a way that, Ka
DS(tj, ·)

are linearly independent for tj, j = 1, ..., n for distinct tj. The linear combination in (3.41)

should approximately satisfy the reproducing equation below:

ŷ(t) =

∫ b

a

Ka
DS(t, τ)ŷ(τ)dτ (3.42)

By substituting (3.41) in (3.42):

n∑
j=1

cjK
a
DS(tj, t) =

∫ b

a

Ka
DS(t, τ)

n∑
j=1

cjK
a
DS(tj, τ)dτ

=
n∑
j=1

cj

∫ b

a

Ka
DS(t, τ)Ka

DS(tj, τ)dτ

=
n∑
j=1

cjK
a(t, tj)

=
n∑
j=1

cjK
a(tj, t)

(3.43)

As RKHS kernels are symmetric, the above equation can be re-written as,

n∑
j=1

cj[K
a
DS −Ka](tj, t) = 0 (3.44)
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or, equivalently,

cTvec{[Ka
DS −Ka](tj, t)}nj=1 = 0 (3.45)

with cT , [c1, ..., cn],

vec{[Ka
DS −Ka](tj, t)}nj=1 , [(Ka

DS −Ka)(t1, t), ..., (K
a
DS −Ka)(tn, t)]

T

The projection has to minimize

min{1

2
‖z − ŷ‖2 ; cj, j = 1, · · · , n} (3.46)

subject to (3.44), where z represents the noisy observation. "Now, we need to compute the

norm in (3.46) in the space L2[a, b]. Recalling that the kernels Ka
DS and Ka both depend on

the parameter vector a, to estimate the system parameter vector a, the arg min solution in

(3.46) of the above must further (or simultaneously) be minimized w.r.t. a. For simplicity,

the dependence of both KDS and K on a is dropped from the notation in the sequel".

3.3.2.2 Step 1: Parameter estimation

we need to estimate the actual parameter a by making V (a, z) = y using the minimization.

If this equality is required at a finite number n of discrete-time points tj; j = 1, · · · , n, then

the problem will be to obtain the optimal solution to:

min{J(a) :=
1

2n

n∑
i=1

(y(ti)− < y,KDS(ti, ·) >2)2 | w.r.t. a ∈ R3} (3.47)

= min{ 1

2n

n∑
i=1

[
y(ti)−

∫ b

a

KDS(ti, τ)y(τ)dτ

]2

| w.r.t. a ∈ R3}

KDS(t, τ) is expressed as a scalar product of some partial kernels

KDS(t, τ) = Kv(t, τ)Ta+ kv5(t, τ) equivalently KDS(t, τ) = aTKv(t, τ) + kv5(t, τ)

(3.48)
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Kv(t, τ)T := [kv1(t, τ), kv2(t, τ), kv3(t, τ), kv5(t, τ)]; a := [a0, a1, a2, a3]T (3.49)

By substituting the overhead expressions into the cost of (3.47) we get (with T := b− a)

J(a) :=
1

2n

n∑
i=1

[
y(ti)−

∫ b

a

KDS(ti, τ) y(τ)dτ

]2

=
1

n

n∑
i=1

[
1

2
y(ti)

2 − y(ti)

∫ b

a

KDS(ti, τ) y(τ)dτ +
1

2

(∫ b

a

KDS(ti, τ) y(τ)dτ

)2
]

=
1

n

n∑
i=1

[
1

2
y(ti)

2 − y(ti)

∫ b

a

KDS(ti, τ) y(τ)dτ +
1

2

∫ b

a

KDS(ti, τ) y(τ)dτ

∫ b

a

KDS(ti, s) y(s)ds

]
=

1

2n

n∑
i=1

y(ti)
2 − 1

n

n∑
i=1

y(ti)

∫ b

a

KDS(ti, τ) y(τ) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

KDS(ti, τ)KDS(ti, s) y(τ)y(s) dτ ds

Expanding the kernels gives

J(a) =

=
1

2n

n∑
i=1

y(ti)
2 − 1

n

n∑
i=1

∫ b

a

[Kv(ti, τ)a+ kv5(ti, τ)] y(τ)y(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[aTKv(ti, τ) + kv5(ti, τ)][Kv(ti, s)
Ta+ kv5(ti, s)] y(τ)y(s) dτ ds

=
1

2n

n∑
i=1

y(ti)
2dt− 1

n

n∑
i=1

∫ b

a

Kv(ti, τ)T y(τ)y(ti) dτ a−
1

n

n∑
i=1

∫ b

a

kv5(ti, τ) y(τ)y(ti) dτ

+
1

2n
aT

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
Ty(τ)y(s) dτ ds a

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)Kv(ti, s)
T y(τ)y(s) dτ ds a

+ aT
1

2n

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)kv5(ti, s) y(τ)y(s) dτ ds

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] y(τ)y(s) dτ ds



3 Details of the Evaluated Parameter Estimation Methods 29

Assembling the terms above gives a standard quadratic:

J(a) = d+ bTa+
1

2
aTCa with

d :=

{
1

2n

n∑
i=1

y(ti)
2 − 1

n

n∑
i=1

∫ b

a

kv5(ti, τ) y(τ)y(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] y(τ)y(s) dτ ds

}

bT :=

{
− 1

n

n∑
i=1

∫ b

a

Kv(ti, τ)T y(τ)y(ti) dτ

+
1

2n

n∑
i=1

∫ b

a

∫ b

a

[Kv(ti, s)
Tkv5(ti, τ) +Kv(ti, τ)Tkv5(ti, s)] y(τ)y(s) dτ ds

}

C :=

{
1

n

n∑
i=1

∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
T y(τ)y(s) dτ ds

}

The standard quadratic cost results in a minimization problem with respect to the param-

eter a. The problem is solved globally and analytically as follows:

min{J(a) | a ∈ R3} is attained globally and uniquely at

â = −C−1b; with minimum value J(â) = d− 1

2
bTC−1b (3.50)

For simplicity, the double integrals above can be rewritten in terms of single integrals∫ b

a

∫ b

a

kv5(ti, τ)kv5(ti, s)] y(τ)y(s) dτ ds =

(∫ b

a

kv5(ti, τ) y(τ) dτ

)2

∫ b

a

∫ b

a

[Kv(ti, s)
Tkv5(ti, τ) +Kv(ti, τ)Tkv5(ti, s)] y(τ)y(s) dτ ds

=

(∫ b

a

Kv(ti, s)
Ty(s) ds

)(∫ b

a

kv5(ti, τ) y(τ) dτ

)
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+

(∫ b

a

Kv(ti, τ)Ty(τ) dτ

)(∫ b

a

kv5(ti, s) y(s) ds

)
∫ b

a

∫ b

a

Kv(ti, τ)Kv(ti, s)
Ty(τ)y(s) dτ ds

=

[∫ b

a

Kv(ti, τ) y(τ) dτ

] [∫ b

a

Kv(ti, s) y(s) ds

]T

3.3.2.3 Step 2: Output and derivatives estimation by projection

In the second step of the approach, we reconstruct the system output trajectory by using:

ŷ =

∫ b

a

KDS(ti, τ)z(τ)dτ (3.51)

where z(τ) is the measured signal.

After estimating the parameter vector a, and having the solution of the characteristic

equation, we can reconstruct the system output trajectory from a noisy measurement by

direct orthogonal projection onto the subspace spanned by the fundamental solutions of

the characteristic equation (3.33) of the system. Following that, we obtain the fundamental

solutions by integrating (3.33), as implemented in the next steps.

First, we select initial conditions for the homogeneous LTI system in (3.33) in the form

of n independent vectors which can be taken as the vectors of the canonical basis in Rn:

e1 = [1, 0, ..., 0]

e2 = [0, 1, ..., 0]

· · · (3.52)

en = [0, 0, ..., 1] (3.53)

Then, we solve the system equation (3.33) for every particular initial condition, which

produces:

yi(a) = ei i = 1, · · · , n.
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By this step, we have obtained the initial conditions for the ODE system in (3.33). We

know that any solution of the ODE with any initial condition is a linear combination

of such fundamental solutions yi. Hence, we have to obtain the coefficients of this linear

combination that makes the resulting function the closest to the output measurement data.

Now, we can find the closest solution with respect to the orthogonal projection onto the

span of Sa.

Sa = span {yi(·), i = 1, · · · , n}

To do so, we need to orthonormaliz the set of fundamental solutions. The projection of

a measured noisy signal z(·) ∈ L2[a, b] into Sa is given as:

yE(·) , arg min
{
‖z − y‖2

2 |y ∈ S
a
}
. (3.54)

Looking for:

ŷ =
n∑
i=1

ĉiyi (3.55)

Since ŷ is a linear combination, the optimality requirements in (3.54) are reached only if,

〈
z|yj

〉
2

=
n∑
i=1

ĉi
〈
yi|yj

〉
2
j = 1, · · · , n (3.56)

where the matrix representation is:

v = G(y)ĉ; G(y) , mat
{〈
yi|yj

〉
2

}n
i,j=1

v , vec {〈z|yi〉2}
n
i=1 ; ĉ , vec {ĉi}ni=1

(3.57)

G is named the Gram matrix for vectors in span Sa. Since all fundamental solutions are

linearly independent, the Gram matrix is invertible.

ĉ = G−1(y)v (3.58)
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Therefore the aim of the second step, which is estimating the output trajectory ŷ, is

attained from (3.55). Finally, after estimating ŷ, the derivatives of the reconstructed output

trajectory can also be reconstructed using the equation:

y(i)(t) =

∫ b

a

Ki
DS(t, τ)ŷ(τ)dτ (3.59)

where, Ki
DS are the kernel representation for the derivatives of the output.

3.4 IV-GLS Method

This parameter estimation method was developed by Ghoshal and Michalska [15], and it

leverages the system invariant in its implementation. The system’s differential invariant is

an expression that states the relationship between the system output and its derivatives

and remains constant under the system flows. If the differential invariant of the system

exists, we will be able to predict its output trajectory using this method.

Similar to the Two-step method, this method is based upon the idea of developing a

kernel representation of the differential invariants. The distinctive double-sided kernel sys-

tem representation had an obvious advantage of alleviating the singularity problem at the

extremities of the estimation interval and dropping the need for re-initialization to compen-

sate for the accumulation of numerical error in the fundamental estimation method. More

importantly, the concept of kernel representation of differential invariants of LTI systems

appeared with a bonus in the form of a reproducing kernel Hilbert space induced by the

kernel themselves where the kernel functions could serve as a basis for projections and

representations of bounded linear functions. While the kernel expressions showed effective

parameter estimation under small measurement noise, the method presented here focuses

on enhancing the kernel representation to compensate for higher measurement noise levels.

The finite interval estimation problem will have two main steps: first, estimate the

parameters; second, reconstruct the output and the derivative trajectory from a single re-
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alization of a measurement process with a large level of additive Gaussian noise. However,

the resulting regression model fails to satisfy the Gauss-Markov Theorem’s assumptions,

calling for the use of approaches that can secure consistency and eliminate regression dilu-

tion due to error-in-the variable and heteroskedasticity. In this method, the latter problems

are addressed by employing standard remedies with well established statistical and proba-

bilistic properties such as the introduction of instrumental variables and a recursive version

of the feasible generalized least squares with covariance weighting. In the following, we

describe this method’s steps and details.

3.4.1 A finite interval estimation problem for an LTI system

Suppose we have a Single Input Single Output Linear Time Invariant system of n-th orders,

in a state space form developed on a given finite time interval [a, b] ⊂ R:

ẋ = Ax+ bu ; y = cTx ; x ∈ Rn (3.60)

the system matrices and the characteristic equation below have matching dimensions

λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0 (3.61)

The input-output equation for system (3.60) becomes

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t) = − bn−1u
(n−1)(t)− · · · − b0u(t) (3.62)

where −bi, i = 0, . . . , n − 1 are the coefficients of the polynomial in the numerator of

the rational transfer function for (3.60).

In order for this method to produce an estimate of a system’s parameters, the following

assumptions must hold:

(i) The input function u(t), the derivatives of the input function u(i)(t), i = 1, · · · , n−1 for

t ∈ [a, b], and the dimension of the state vector of the Linear Time-Invariant system

are known in advance.
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(ii) The output of the system is recognized as a single realization of a ‘continuous’ measure-

ment process yM(t) := y(t) + η(t), t ∈ [a, b] in which η represents the additive white

Gaussian noise (AWGN) with unknown variance σ2. Having an unlimited number of

output measurements over the finite interval [a, b] is needed to satisfy this assumption.

Following these assumptions, the method is expected to:

(a) For the given time interval [a, b], determine the identifiability of the input and output

parameters of the system ai, bi, i = 0, · · · , n − 1 from a single realization of the

measurement process yM(t), t ∈ [a, b];

(b) If the parameters are identified, the method needs to provide accurate estimates for

the parameters ai, bi, i = 0, · · · , n− 1;

(c) For the given time interval [a, b], estimate and reconstruct the true system output

trajectory y(t) and its n − 1 time derivatives y(i)(t), i = 1, . . . , n − 1 from the noisy

observation;

(d) As there is an increment in the number of measurement samples of yM , the error in

the estimated output function y and its derivatives y(i), i = 1, . . . , n− 1 converges to

zero consistently.

3.4.2 A kernel representation of a system differential invariance

This method depends on the integral representation of the controlled differential invariance

of the system (3.62) which, for a homogeneous system, can be presented as a mapping J :

J(y, y(1), · · · , y(n)) := y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

(1)(t) + a0y(t)

≡ const. = 0; t ∈ [a, b] (3.63)

This mapping remains fixed when there is a flow of the system, and the external func-

tion does not exist. From the validity of (3.63), we can obtain more measurement-noise
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independent information about the system’s behaviour beyond the observation of the noisy

yM . Moreover, the characterization (3.63) of the homogeneous system has to have a config-

uration that does not rely on the system’s initial conditions and does not require any time

derivatives of the output, as the direct measurement cannot provide time derivatives.

The representation for the SISO LTI system depends on developing an integral kernel,

as presented in the Theorems below.

Theorem 2 There exist Hilbert-Schmidt kernels KDS,y, KDS,u, such that the input and

output functions u and y of (3.60) satisfy

y(t) = α−1
ab (t)

[∫ b

a

KDS,y(n, t, τ)y(τ)dτ +

∫ b

a

KDS,u(n, t, τ)u(τ)dτ

]
(3.64)

where the inverse of the annihilator of the boundary conditions of the system has been

chosen as

α−1
ab (t) :=

1

(t− a)n + (b− t)n
(3.65)

Hilbert-Schmidt double-sided kernels of (3.64) are square integrable functions on L2[a, b]×

L2[a, b]. The ‘forward’ and ‘backward’ kernels for the respective integral representations

are stated below:

KDS,y(n, t, τ) ,

KF,y(n, t, τ), for τ ≤ t

KB,y(n, t, τ), for τ > t

KDS,u(n, t, τ) ,

KF,u(n, t, τ), for τ ≤ t

KB,u(n, t, τ), for τ > t

(3.66)

The kernel functions KDS,y, KDS,u have the property of being linear in the system param-

eters ai, bi, i = 0, · · · , n− 1 n− 1, in addition, they are times differentiable as functions of

t.
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Remark 1. It is important to note that for u ≡ 0, the invariance representation (3.64)

is in fact a continuous evaluation functional for the system output functions and hence

induces a unique reproducing kernel Hilbert space (RKHS) with kernel

Ky(t1, t2) := α−2
ab (t)

∫ b

a

KDS,y(t1, τ)KDS,y(t2, τ)dτ (3.67)

t1, t2 ∈ [a, b] where the dependence of the kernels on the system order n has been sup-

pressed for brevity. Resulting from the remark, kernel L(Ky(t, ·)) is a representer for any

enclosed linear functional L : y → L(y)(t) on the RKHS space. This indicates that for

homogenous systems, for example, the kernel representation of the time derivatives of the

output functions involves only the derivatives of the KDS(., τ),

y(i)(t) =

∫ b

a

∂

∂t
[α−1
ab (t)KDS,y(t, τ)]y(τ)dτ t ∈ (a, b) (3.68)

The zero input solutions of the SISO LTI system are defined unambiguously as a novel

characteristic of the reproducing property of the kernel demonstration of the system invari-

ance. The reproducing feature (3.64) is mutual among all the fundamental solutions of the

LTI system since they span a subspace of the RKHS.

From here, the method will perform the estimation problem in two steps: (1) Estimate

the coefficients of the characteristic equation ai, i = 0, . . . , n − 1 (parametric); (2) Recon-

struct the system output trajectory and its time derivatives over the bounded time horizon

[a, b] (non-parametric).

3.4.3 Parametric estimation as a least squares problem

We can rewrite the reproducing property to highlight that the kernels of Theorem 2 are

linear in the unknown system coefficients:

y(t) =

∫ b

a

KDS,y(t, τ)y(τ) dτ

=
n∑
i=0

βi

∫ b

a

KDS(i),y(t, τ)y(τ)dτ (3.69)
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where the KDS(i),y; i = 0, · · · , n are ‘component kernels’ of KDS,y that post-multiply the

coefficients βi = ai; i = 0, · · · , n− 1, with βn = 1 for the support of the representation. In

the noiseless case, the output variable y gets to be the evaluated output corresponding to

the actual output trajectory yT . As a consequence, the regression equation for the constant

coefficients ai, i = 0, . . . , n− 1, (3.69), can be written in a partitioned structure as:

yT (t) = [K ā, K1](t; yT )βT (3.70)

ā := [a0, · · · , an−1]; βT := [ā; βn]

where K ā(t; yT ) is a row vector with integral components

K ā(t; yT )k :=

∫ b

a

KDS(k),y(t, τ)yT (τ)dτ ; k = 0, . . . n− 1 (3.71)

while K1(t; yT ) is a scalar

K1(t; yT ) :=

∫ b

a

KDS(n),y(t, τ)yT (τ)dτ (3.72)

corresponding to βn = 1. If we have discrete time instants t1, · · · , tN ∈ (a, b], defined as

knots, the regression equation is expressed point-wise in an equation that involves matrices

Q(yT ) = P (yT )ā (3.73)

Q :=


q(t1)
...

q(tN)

 ;P :=


p0(t1) · · · pn−1(t1)

. . .

p0(tN) · · · pn−1(tN)


q(ti) = yT (ti)−K1(ti, yT );

pk(ti) = K ā(ti; yT )k (3.74)

In the noiseless case, and if the identifiability hypothesis is satisfied, we can solve these

equations using the least-squares error minimization.
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3.4.3.1 Identifiability of homogeneous LTI systems from a single realization of

a measured output

A homogeneous LTI system such as

ẋ(t) = Ax(t); y = Cx; x ∈ Rn

x(0) = b (3.75)

is identifiable from a single noiseless recognition of its output trajectory y, given specific

requirements, which are complicated to prove using computational methods. Nevertheless,

the practical form of identifiability is satisfied with the given estimation scheme as described

underneath.

Definition 1 (Practical linear identifiability) The homogeneous system (3.62) is prac-

tically linearly identifiable on [a, b] with respect to a particular noisy discrete realization of

the output measurement process, yM(t), t ∈ [a, b], if and only if there exist distinct knots

t1, · · · , tN ∈ (a, b] which render rankP (yM) = n. Any such output realization is then called

persistent.

Moving to the cases where there is noise (consider it Additive White Gaussian Noise),

the regression equation (3.69) should be replaced to have a stochastic regression problem,

since the reproducing property fails to exist with the noisy output, which makes the equa-

tion no longer applicable. The reason is that the stochastic output determination works on

a proper space, for example, L2(Ω,F ,P) as the yM that is supposed to accommodate the

general filtration of the standard Wiener process W on [a, b] is

yM(t, ω) = yT (t) + σẆ (t, ω) ; t ∈ [a, b] (3.76)

where yT is the true output of the system and Ẇ implies the generalized derivative of the

standard (one-dimensional) Wiener process; (see [32]). In other words, σẆ is recognized

with the white noise process with steady variance σ2.
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The kernel formulation:∫ b

a

KDS,y(t, τ)yM(τ) dτ =
n∑
i=0

βi

∫ b

a

KDS(i),y(t, τ)yM(τ)dτ

=

∫ b

a

KDS,y(t, τ)yT (τ) dτ +

∫ b

a

KDS,y(t, τ) σẆ (τ)dτ (3.77)

is a random variable, and the subsequent equality exists because yT fulfills the reproducing

feature in the deterministic regression equation (3.69).

yM(t) =

∫ b

a

KDS,y(t, τ)yM(τ) dτ + e(t) (3.78)

with e(t) := σẆ (t)−
∫ b

a

KDS,y(t, τ) σẆ (τ)dτ (3.79)

The random error variable e is conditional on the unknown system parameters ai, i =

0, · · · , n − 1, which is one thing that must be taken into consideration. The stochastic

regression equation.

yM(t) =
n∑
i=0

βi

∫ b

a

KDS(i),y(t, τ)yM(τ)dτ + e(t) (3.80)

has the stochastic regressor vector[∫ b

a

KDS(0),y(t, τ)yM(τ)dτ, · · · ,
∫ b

a

KDS(n),y(t, τ)yM(τ)dτ

]T
(3.81)

From the above, and by checking the hypotheses of the Gauss-Markov Theorem, we can

confirm that it is not applicable in the linear regression problem (3.80), as first the random

regressor is associated with a regression error, and second, it fails to be homoskedastic.

Therefore the superior regression is a standard ‘error-in-the-variable’ dilemma with

heteroskedastic noise.

3.4.3.2 Heteroskedasticity

The Ordinary least squares estimator has severe penalties when there is heteroskedasticity,

such as wrong estimated regression error and inaccurate confidence intervals. On the other



3 Details of the Evaluated Parameter Estimation Methods 40

hand, the OLS estimator remains unbiased. This method suggests an efficient approach to

handle the unknown heteroskedasticity which is to employ GLS (generalized least squares),

as the GLS estimator is proved to be BLUE (Best Linear Unbiased Estimator)[2].

The GLS applies inverse covariance weighting in the regression error minimization prob-

lem related to (3.80). As what was employed in the deterministic OLS (3.73), consider

Q(yM) and P (yM) are the matrices corresponding to N instances of the measurement pro-

cess realization yM at a batch of knots t1, · · · , tN . The yielded stochastic regression error

vector is

e := [e(t1), · · · , e(tN)]T = Q(yM)− P (yM)ā (3.82)

where e(ti) are as in (3.79). To estimate the parameter vector ā, the conventional GLS

regression error minimization is

min
ā

(
[Q(yM)− P (yM)ā]TS[Q(yM)− P (yM)ā)]

)
(3.83)

with S := [Cov(e)]−1 ; Cov(e) := E
[
eeT
]

By applying the features of white noise and using the expectation operator to equations

(3.76) and (3.79), the covariance computation carried out as below [15]:

Cov[e(ti), e(tj)] = σ2δ(ti − tj)− σ2KDS(ti, tj)σ
2KDS(tj, ti)

+ σ2

∫ b

a

KDS(ti, τ)KDS(tj, τ)dτ

Because the covariance matrix relies on the unknown variance σ2 and the unknown

parameter vector ā in the KDS kernels, the regular GLS as in (3.83) cannot be directly

employed. To solve this issue, a feasible version of the GLS should be applied. Hence

in this method, the covariance matrix is calculated gradually as more information about

the regression residuals becomes obtainable. This is implemented as part of a recursive

approach, where successive batches of samples are extracted from the realization of yM .
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Given that the regression error ei is expressed as Qi − Piā, the recursive GLS algorithm

calculates:

âk = arg min
ā

(
k∑
i=1

(Qi − Piā)TSi(Qi − Piā)

)
(3.84)

where âk is the parameter estimate update at iteration k of the algorithm. After estimating

the parameter âk and the variance σ2 that is gotten from the residual trajectory yM(t) −

yE(t) in preceding iteration k, the weighting matrix Sk+1, is calculated as the inverse of the

covariance matrix.

3.4.3.3 Errors-in-variables

It is a known fact that the presence of errors-in-variables causes an asymptotic bias in OLS

regression estimates, which is commensurable to the signal-to-noise ratio in the recognized

regressand. The preeminent way to eliminate estimation bias in such cases is to use In-

strumental Variables (IV) (see [38]) in the standard equations that produce the optimal

estimates. The IV is formed using the backward reproducing kernels approach to provide

statistical consistency for the estimation problem, which is described in what follows.

With regards to Theorem 2, the ‘double-sided’ regression equation (3.70) can be origi-

nated as two regression equations corresponding to the forward and backward kernels KF,y

and KB,y as follows:

(t− a)nyT (t) =

∫ t

a

KF,y(t, τ) yT (τ)dτ (3.85)

:= [K ā
F , K

1
F ](t; yT ) β ; t ∈ [a, b] (3.86)

(b− t)nyT (t) =

∫ b

t

KB,y(t, τ) yT (τ)dτ (3.87)

:= [K ā
B, K

1
B](t; yT ) β ; t ∈ [a, b] (3.88)

Having a set of knots [t1, · · · , tN ];N > n; t1 >> a; tN << b, the forward and backward

kernels KF,y and KB,y are written in discrete time using a matrix-vector form as N copies
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of (3.86) and (3.88)

YT = KF (yT )β (3.89)

YT = KB(yT )β (3.90)

An OLS estimator for the parameter vector β corresponding to the normal equation is

presented in (3.89) equation:

KF (yT )TKF (yT )β = KF (yT )TYT

namely:

β̂F :=
[
KF (yT )TKF (yT )

]−1
KF (yT )TYT (3.91)

given that the inverted matrix is non-singular.

Next, we pre-multiply the forward estimation equation (3.89) by the backward matrix

KB(yT ). If the matrix fulfills:

det
[
KB(yT )TKF (yT )

]
6= 0 (3.92)

then it delivers one more estimator which, in the noiseless case, will be competitive with

that in (3.91):

KB(yT )TKF (yT )β = KB(yT )TYT

so that

β̂IV F :=
[
KB(yT )TKF (yT )

]−1
KB(yT )TYT (3.93)

In the noiseless representation, both estimators provide exactly similar values for the esti-

mated parameter vector, i.e. βF = βIV F , as long as the nonsingularity condition (3.92) is

satisfied,

we can select a reasonable choice of the ‘instrumental variable’ using the fact that

the forward and the backward kernel integrals (3.85)–(3.87) have just t as their point in
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common, as they are defined on the intervals [a, t] and [t, b], respectively. KB can be the IV

for the forward equation (3.93), and KF can be the IV for the backward equation. Hence,

the forward equation (3.93) and the backward equation could be considered as ‘instrumental

variable estimators’.

The IV instrument’s statistical features that were addressed earlier restore the consis-

tency of the adjusted GLS estimator employing such IV instrument.

β̂k+1 = β̂k +Rk+1P̃
T
k+1Sk+1(Q̃k+1 − P̃k+1β̂k) (3.94)

Rk+1 = Rk −RkP̃
T
k+1(S−1

k+1 + P̃k+1RkP̃
T
k+1)−1P̃k+1Rk (3.95)

and the matrices P and Q are substituted by P̃ and Q̃ respectively, where

P̃ = KB(yM)TKF (yM) ; Q̃ = KB(yM)TYM (3.96)

and Mk+1 =
∑k+1

i=0 P̃
T
i SiP̃i and Rk+1 = M−1

k+1.

Motivated by the fact that the last estimate for the recursive approach should lead to

βn = 1 where β := [a0, · · · , an−1, βn], a stopping condition is presented as

|β̂n − 1| < ε for some ε > 0 (3.97)

Finally, when applying this method, the error terms’ covariance is calculated by substi-

tuting the KDS by KF or KB properly.

3.4.4 Trajectory and derivative reconstruction

As the first step of solving the estimation problem is done, we now proceed to the subsequent

step, estimating the output trajectory. We perform this step by projection onto the finite-

dimensional subspace of the RKHS spanned by the fundamental solutions, expressed in

this method by ξ1, · · · , ξn. More specifically, we follow these steps:
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(a) Obtain the fundamental solutions by integrating the characteristic equation for n sets

of initial conditions (where Bk are the canonical basis vectors in Rn):

Y (0)k := [y(0), y(1), · · · , y(n−1)] = Bk; k = 1, · · · , n (3.98)

(b) Use the Gram-Schmidt ortho-normalization procedure in L2, to orthonormalize the

set ξk, k = 1, · · · , n into ζk, k = 1, · · · , n. As the ortho-normalizing transformation is

linear with 〈·|·〉2 as the inner products in L2.

span{ξk, k = 1, · · · , n} = span{ζk, k = 1, · · · , n} := Ξ

〈ζi|ζj〉2 = 0, i 6= j; 〈ζi|ζi〉2 = 1 (3.99)

(c) Estimate ŷT with linear estimators ĉi for the coefficients ci in the form:

ĉi := 〈yM |ζi〉2 =

∫ b

a

yM(τ)ζi(τ)dτ, i = 1, · · · , n (3.100)

as the true output trajectory is a linear combination of fundamental solutions

yT =
n∑
i=1

ciζi; with ci = 〈yT |ζi〉2, i = 1, · · · , n (3.101)

(d) Reconstruct the output trajectory given ȳM on the finite time interval [a, b] using:

yE(t) =
n∑
i=1

〈ȳM |ζi〉2ζi(t); t ∈ [a, b] (3.102)

(e) Estimates the derivatives y(i)
E , i = 1, · · · , n− 1 from yE using these expressions:

y(i)(t) =

∫ b

a

Ki
DS(t, τ)yT (τ)dτ

Ki
DS(t, τ) :=

(
∂

∂t

)i
KDS(t, τ); i = 1, · · · , n− 1 (3.103)

Finally, the estimator ŷT that results from using the coefficients of (3.100) is BLUE as

well. This arises from the fact that the estimator can be seen as an OLS where a set of

measurements yM is projected onto some subspace Ξ where the measurement errors are

Gaussian i.i.d. Therefore, the strict Gauss-Markov assumptions are satisfied here.
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Chapter 4

Experiment setup

In this chapter, we outline our experiment setup, showcase the system for the evaluation,

and detail the metrics and approach used to recommend an optimal parameter estimation

method.

Moving forward, it is essential to note that we exclude the Parameter Cascades method

from our evaluation as Carey et al. [8] has shown that the Joint Estimation method pro-

duces comparable accuracy while at the same time being significantly less computationally

exhausting. Moreover, Carey [7] proved that the sum square of errors of the predictions is

less in the Joint Estimation method compared to the Parameter Cascades method.

4.1 Evaluation System

To evaluate the methods, we leverage a fourth order unstable system, which is described

as:

ẋ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −5 −5 0

x ; y = x1 ; x(0) = [0, 0, 0, 1] (4.1)
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and has the following characteristic equation:

y(4)(t) + a3y
(3)(t) + a2y

(2)(t) + a1y
(1)(t) + a0y(t) = 0 (4.2)

where the nominal (ground truth) values of the parameters are:

a0 = 1 , a1 = 5 , a2 = 5 , a3 = 0 (4.3)

and the initial values are:

y(0) = 0 , y(1)(0) = 0 , y(2) = 0 , y(3) = 1 (4.4)

The system has two real roots, −0.63342 and−0.27912, and two complex ones, 0.45627−

2.33404i and 0.45627 + 2.33404i. Since there are poles in the right half-plane, the system is

considered unstable. Our decision to use an unstable system was motivated by the fact that

it is generally more challenging for parameter estimation methods to predict the parameters

or control unstable systems [24].

We use each of the three methods to estimate this system’s parameters and reconstruct

its output trajectory within a finite interval from 0 to 6. To assess the methods’ performance

with noisy input, we carry out five different runs of the methods on the system, each with

an increasing amount of noise. In the first run, the system is entirely noiseless, i.e., all

the sample points represent the actual output trajectory. For the second, third, fourth,

and fifth runs, we add to the true output of the system an Additive White Gaussian noise

(AWGN) with a standard deviation σ = 0.3 , σ = 0.7, σ = 1, σ = 1.5 , respectively.

Previous studies have used similar standard deviation σ values for the noise added to

system trajectories. Moreover, by using a wide range of additive noise in our evaluation,

we are able to represent real-life scenarios where systems can have anywhere from a small

amount of noise to a significant amount of it.

Additive White Gaussian noise is characterized by the input output formula yk = xk+nk

where the noise samples nk are independent and identically distributed and drawn from a

normal distribution with a zero mean µ = 0 and a variance equal to E = {|Nk|2} = σ2
n.
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The standard deviation that we are using in our evaluation is equal to the square root of

the variance. [37] [11].

Finally, to run the experiment, we run a Matlab script to run each of the three evaluated

methods against the system and analyze the methods’ results to obtain the evaluation

metrics.

4.2 Tracked Metrics

For each run and method, we record three important pieces of information: 1) the compu-

tation time, which is the time that it takes for the method to fully execute and produce

its results. A shorter computational time means that the method is faster in estimating

the result. 2) L2 norm, a measure of the distance between the vectors of the nominal and

the reconstructed trajectory and it is calculated using the equation in (4.5), 3) Infinity

norm, a measure of the maximum absolute differences between the vectors of the nominal

and the reconstructed trajectory and it is calculated using the equation in (4.6).

L2 Norm =

(
N∑
i=1

|yT (ti)− ŷ(ti)|2
) 1

2

(4.5)

Infinity Norm = Max |yT (ti)− ŷ(ti)| (4.6)

The L2 Norm and the Infinity norm metrics are special cases of the Minkowski metric

(Lp), which is one of the most used quantitative distance measures in scientific and engineer-

ing applications [9]. We compute the Minkowski distance between the nominal trajectory

vector and the reconstructed trajectory vector, specifically yT = (yT (t1), yT (t2), ..., yT (tn))

and ŷ = (ŷ(t1), ŷ(t2), ..., ŷ(tn)) in the n-dimensional Euclidean space, Rn. the mathematical

expression is given as:
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Lp(yT, ŷ)

(
N∑
i=1

|yT (ti)− ŷ(ti)|p
) 1

p

(4.7)

the Minkowski distance is the general formula, and some examples of it include the L2

(Euclidean metric), and the L∞ (chessboard metric) as in (4.5), and (4.6) respectively.

The L2 norm is more informative when assessing the states of the trajectories. On

the other hand, the infinity norm is more informative when evaluating the accuracy of the

parameters’ estimation. The smaller the values of the L2 norm and the infinity norm, the

more accurate the estimation of the trajectories’ states and parameters is.
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Chapter 5

Results

In this chapter we show the results of evaluating the Joint Estimation, Two-step, and

IV-GLS methods.

5.1 Noiseless case

We consider the noiseless case to be our base case in this comparison. In this run, the

sample points of the system exactly the same as those from the true output trajectory.

Now, we apply each of the three methods on this noiseless system with the number of

sample points N = 50, which were selected to be equidistant in [0, 6]. Table 5.1 presents

the results of estimating the noiseless system’s parameters from each method. The table

also shows the elapsed time during each method’s execution and the L2 norm and infin-

ity norm metrics. The estimated parameters’ values vary from one method to the other.

However, all three methods result in estimated parameters with values that are quite close

to the true parameters. The Joint Estimation method takes the minimum computation

time compared to the Two-step and IV-GLS methods. However, both the Joint Estimation

and IV-GLS produce more accurate estimations of the states of the trajectories and the

parameters, with lower L2 and infinity norms compared to the Two-step method.
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Figure 5.1 shows the true output trajectory with the three methods’ reconstructed trajec-

tories. The Joint Estimation and IV-GLS trajectories are almost identical to the actual

trajectory, while there are small differences between the Two-step reconstructed trajectory

and the true trajectory.

Method a0 a1 a2 a3 Computation

time

L2

norm

Infinity

normTrue parameters 1 5 5 0

Joint Estimation 0.9984 5.0076 4.9990 0.0005 33.60 s 1.6677e-04 7.9402e-05

Two-step 1.0084 4.7184 5.0222 -0.0508 33.776 s 0.1915 0.0790

IV-GLS 0.9999 4.9997 5.0002 0.0001 6 mins 32 s 0.0021 7.1406e-05

Table 5.1 Table showing true and approx. par values from a true output

without noise and N=50
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Figure 5.1 True and reconstructed output trajectories of the system using

Joint Estimation, Two-step, and IV-GLS methods with N=50

5.2 AWGN with µ = 0 and σ = 0.3

After evaluating the noiseless case, we set out to evaluate the method’s performance against

a system with AWGN. In this run, we use the same system from (4.2) and on the same

time interval [0, 6], but with AWGN that has µ = 0 and σ = 0.3 to emulate noise-perturbed

output measurement. Moreover, we increase the number of sample points (N) in this run

from 50 to 300. This is because all the methods require more sample points when the system

is noisy. The 300 points were sampled from a uniform distribution over [0, 6]. Finally, we

leverage the same performance measures (The L2 norm and the Infinity norm) to assess

the efficiency of the methods.
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Table 5.2 shows the estimated parameters and the norm values for each method with

the additive noise for this run. The results show that all the methods provide estimated

parameter values that are close to the actual parameters of the system. Nevertheless,

the IV-GLS method proves to be the most accurate in its estimation, followed by the

Joint Estimation and Two-step methods. The results also show that the Joint Estimation

method was the most computationally expensive, taking 1 hour and 56 minutes to generate

its estimations.

Figure 5.2 shows the noisy and true trajectories of the system compared to the esti-

mated trajectories from three methods. To display the difference between the estimated

trajectories more clearly, we exclude the noisy signal from the figure but keep the remaining

trajectories in Figure 5.3. It can be observed from the figures that the estimated trajectory

from the IV-GLS method is the closest to the true trajectory, which confirms the results

from Table 5.2.

Method a0 a1 a2 a3 Computation

time

L2

norm

Infinity

normTrue parameters 1 5 5 0

Joint Estimation 1.8419 3.1973 5.5966 -0.1544 1 hour 56 mins 30 s 0.6546 0.0698

Two-step 1.5368 -5.4472 6.3867 -1.6543 52.427 s 0.6486 0.0932

IV-GLS 1.0087 5.0078 4.9996 0.0010 51 mins 2 s 0.6035 0.0139

Table 5.2 Table showing true and approx. par values from a true output

with AWGN µ = 0 and σ = 0.3 and N=300
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Figure 5.2 Noisy, true, and reconstructed output trajectories of the system

with AWGN of µ = 0 and σ = 0.3 and N=300 using Joint Estimation, Two-

step, and IV-GLS methods

Figure 5.3 True and reconstructed output trajectories of the system with

AWGN of µ = 0 and σ = 0.3 and N=300 using Joint Estimation, Two-step,

and IV-GLS methods
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5.3 AWGN with µ = 0 and σ = 0.7

In this run, we increased the standard deviation of the system noise to 0.7. Table 5.3

showcases the resulting parameters and their corresponding computation time, L2 norm

and infinity norm values. The results show that, in this run, the IV-GLS outperforms the

other methods in the accuracy of estimation. The Two-step method comes second, while

the Joint Estimation method produces estimates of the parameters that are significantly

different compared to the true values. Computationally, the Joint Estimation method is

the most expensive, and it took approximately four times as long compared to the IV-GLS

method. Finally, for both the L2 norm and the infinity norm, the IV-GLS method achieves

the minimum values.

This is also can be realized from Figure 5.5 where the estimated trajectory by IV-GLS

method is almost identical to the true output trajectory. Surprisingly, the Joint Estimation

method failed to estimate the trajectory when there is noise with µ = 0 and σ = 0.7, as

it produces a horizontal signal; in other words, it completely fails in reconstructing the

trajectory.

Method a0 a1 a2 a3 Computation

time

L2

norm

Infinity

normTrue parameters 1 5 5 0

Joint Estimation 131177165.8549 -402536.7984 83351.8333 -6.7451 4 hrs 11 mins 49 s 6.1975 0.8688

Two-step 3.1627 0.7735 5.6422 0.1505 66.689 s 2.7647 0.4217

IV-GLS 1.1856 4.8765 5.1210 -0.0017 1 hr 6 mins 43 s 1.8352 0.0400

Table 5.3 Table showing true and approx. par values from a true output

with AWGN µ = 0 and σ = 0.7 and N=300
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Figure 5.4 Noisy, true, and reconstructed output trajectories of the system

with AWGN of µ = 0 and σ = 0.7 and N=300 using Joint Estimation, Two-

step, and IV-GLS methods

Figure 5.5 True and reconstructed output trajectories of the system with

AWGN of µ = 0 and σ = 0.7 and N=300 using Joint Estimation, Two-step,

and IV-GLS methods
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5.4 AWGN with µ = 0 and σ = 1

Last but not least, in this run we increase the noise in the system to have a standard

deviation = 1. Similar to the previous runs, we record the methods’ estimated parameters

and the corresponding performance metrics. The results of this run are shown in Table

5.4. The results show that the IV-GLS is the best performing method in this run, while

Two-step comes second with comparable performance. Moreover, the evaluation results

show that the difference between the true parameters and the estimated ones by the Joint

Estimation method increased compared to the previous run. The Two-step method is the

fastest with less than a minute (53 seconds) of execution time, followed by the IV-GLS

method which takes a little over 2 hours (2 hrs 10 mins) to finish its computations. The

Joint Estimation method takes the longest to execute with a computation time of 24 hrs

59 mins and 37 seconds. Finally, for the norms, the IV-GLS method has minimal values,

making it the method with the most accurate estimation.

Figure 5.6 and Figure 5.7 shows the reconstructed trajectories using the three methods.

From the figures, we can conclude that the IV-GLS method has the closest estimated

trajectory with the regards to the true trajectory, meaning that it is the most accurate.

The figures also show that, while the Two-step method can somehow catch the curve, the

Joint Estimation method fails to estimate the trajectory in this run.

Method a0 a1 a2 a3 Computation

time

L2

norm

Infinity

normTrue parameters 1 5 5 0

Joint Estimation 1272687520.5444 25109474.1712 247130.7714 127.5858 24 hrs 59 mins 37 s 8.0201 0.8690

Two-step -0.8861 1.3487 7.09 -0.3881 53 s 3.5768 0.6118

IV-GLS 0.7574 4.6523 4.8791 0.1451 2 hrs 10 mins 50 s 3.2552 0.1019

Table 5.4 Table showing true and approx. par values from a true output

with AWGN µ = 0 and σ = 1 and N=500
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Figure 5.6 Noisy, true, and reconstructed output trajectories of the system

with AWGN of µ = 0 and σ = 1 and N=500 using Joint Estimation, Two-step,

and IV-GLS methods

Figure 5.7 True and reconstructed output trajectories of the system with

AWGN of µ = 0 and σ = 1 and N=500 using Joint Estimation, Two-step, and

IV-GLS methods
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5.5 AWGN with µ = 0 and σ = 1.5

In our last run, we maximized the AWGN in the system to have a σ = 1.5. The same

evaluateion criteria from the previous runs are used here. The results of this run are shown

in Table 5.5, where we can observe that the estimations of the IV-GLS method are the

closest to the true parameter values. The Two-step again follows, with estimation that

are also not too far from the true parameters. Finally, the results show that the Joint

Estimation method is unable to provide an estimate for this run. As for computation time,

the Two-step method comes first, followed by the IV-GLS, and Joint Estimation method.

The IV-GLS method achives the minimum value for the infinity norm, in this run, making

it the most accurate method. However, for estimating the trajectory states, the Two-step

method is more efficient as it achieves the minimum L2 Norm value.

We plot the noisy, ture and estimated trajectories for this run in Figures 5.8 and 5.9. From

the firgures, we can observe that both the IV-GLS and Two-step were able to develop ap-

proximately similar trajectories to the true signal. On the other hand, the Joint Estimation

method fails to do so.

Method a0 a1 a2 a3 Computation

time

L2

norm

Infinity

normTrue parameters 1 5 5 0

Joint Estimation 1490370691.8895 20396.6919 219410.1197 0.0680 20 hrs 16 mins 59 s 8.0201 0.8690

Two-step -0.8919 0.5769 6.9429 -0.2402 58.4 s 4.4783 0.713

IV-GLS 0.5125 3.9756 6.0137 0.2271 2 hrs 43 mins 32 s 9.0112 0.3019

Table 5.5 Table showing true and approx. par values from a true output

with AWGN µ = 0 and σ = 1.5 and N=500
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Figure 5.8 Noisy, true, and reconstructed output trajectories of the system

with AWGN of µ = 0 and σ = 1.5 and N=500 using Joint Estimation, Two-

step, and IV-GLS methods

Figure 5.9 True and reconstructed output trajectories of the system with

AWGN of µ = 0 and σ = 1.5 and N=500 using Joint Estimation, Two-step,

and IV-GLS methods
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5.6 Study of the influence of the number of sampling points

To better understand the effect of increasing the number of sample points on the methods’

performance, we run the methods on the same system from (4.2) but with an increased

number of samples points. More specifically, we use the aforementioned system on the

same time interval [0, 6] and we test the methods using four configurations 1) the system

has AWGN with µ = 0 and σ = 1 and 500 sample points 2) the system has AWGN with

µ = 0 and σ = 1 with 2000 sample points 3) the system has AWGN with µ = 0 and σ = 1.5

with 500 sample points, and 4) the system has AWGN with µ = 0 and σ = 1.5 with 3000

sample points. We exclude the Joint Estimation method from this analysis as it is unable

to handle large number of sample points (2000 and 3000).

We evaluate the IV-GLS and Two-step methods on all four configurations, and we

record the resulting estimated parameter values and corresponding performance metrics.

The results of this evaluation are showcased in Table 5.6. From the results, we can ob-

serve that both the IV-GLS and Two-step methods produce more accurate estimations with

increased sample points. The IV-GLS method, however, produces the most accurate esti-

mated parameters in all four configurations. While the methods’ accuracy increases with

more sample points, so does the execution time. Both methods take significantly longer

time to finish executing when the sample points are increased.
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Method
N σ

a0 a1 a2 a3 Computation

time

L2

norm

Infinity

normTrue parameters 1 5 5 0

Two-step
500 1 -0.8861 1.3487 7.09 -0.3881 53 s 3.5768 0.6118

2000 1 1.8662 -0.6654 5.6723 -1.1421 4 min 5 s 3.0198 0.2454

IV-GLS
500 1 0.7574 4.6523 4.8791 0.1451 2 hrs 10 mins 50 s 3.2552 0.1019

2000 1 0.9851 4.9987 5.0066 0.0018 8 hrs 43 mins 20 s 1.9078 0.0685

Two-step
500 1.5 -0.8919 0.5769 6.9429 -0.2402 58.4 s 4.4783 0.713

3000 1.5 2.6539 -3.1851 6.1401 -0.9916 7 min 10 s 5.3116 0.2098

IV-GLS
500 1.5 0.5125 3.9756 6.0137 0.2271 2 hrs 43 mins 32 s 9.0112 0.3019

3000 1.5 0.5090 4.2273 5.2360 -0.1905 16 hrs 21 mins 15 s 3.6835 0.1647

Table 5.6 Table showing true and approx. par values from a true output

with AWGN µ = 0 and σ = 1 σ = 1.5 with varying number of sample points

Figures 5.7 and 5.11 show the true and estimated trajectories of the methods for the

system with AWGN σ = 1 and 500 and 2000 sample points, respectively. We can observe

from the figures that the increase in the number of sample points from 500 to 2000 on the

same system results in trajectories that are closer to the true trajectory in both the IV-GLS

and Two-step methods. For the last two configurations, the results are displayed in Figures

5.9 and 5.13, where, similarly to the first two configurations, both the IV-GLS and Two-

step method produce trajectories that better emulate the true trajectory. Nevertheless,

in all four figures and configurations, the IV-GLS method is the overall better performing

method in terms of accuracy.
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Figure 5.10 Noisy and true output trajectories of the system with AWGN

of µ = 0 and σ = 1 and N=2000

Figure 5.11 True and reconstructed output trajectories of the system with

AWGN of µ = 0 and σ = 1 and N=2000 using Two-step and IV-GLS methods
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Figure 5.12 Noisy and true output trajectories of the system with AWGN

of µ = 0 and σ = 1.5 and N=3000

Figure 5.13 True and reconstructed output trajectories of the system with

AWGN of µ = 0 and σ = 1.5 and N=3000 using Two-step and IV-GLS methods
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Chapter 6

Discussion

In chapter 5, we showcased our results from the three evaluated methods and for each of the

five runs. In this chapter, we deep dive into the results to better understand the methods’

performance with no/low noise levels and high noise levels. Finally, we provide an overall

(comprehensive) performance metric for all methods.

6.1 No/Low level of Noise

When presented with no/low levels of noise in the system (µ = 0 and σ = 0, 0.3), all the

three evaluated methods are able to produce estimates of the parameters. Moreover, we

find that the IV-GLS method generates the most accurate estimates, followed by the Joint

Estimation and Two-step methods, respectively. Nevertheless, the Two-step is the fastest

in computation time while still producing reasonably accurate estimates.

6.2 High level of Noise

This part of the discussion concerns the methods’ performance when presented with systems

that have high levels of noise (µ = 0 and σ = 0.7, 1, 1.5). In these cases, we observe that the
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IV-GLS method is the overall best performer when it comes to accuracy, followed by the

Two-step method. The Joint Estimation method was unable to obtain sensible estimates

in any system with high levels of noise in our experiment. As for computation time, the

Two-step method runs significantly faster when compared to the other methods, even when

presented with noisy systems. We also studied the effect of increasing the number of sample

points in these noisy systems and found that the performance of the IV-GLS and Two-step

methods increased when more sample points were provided.

6.3 overall results

Finally, to find out which method is most efficient overall, we leverage an approach used

by previous work [1] [33] to give an overall ranking of different methods/techniques based

on various performance metrics. More specifically, we give an overall rank to the Joint

Estimation method, Two-step method, and IV-GLS method based on their computation

time, the L2 Norm and the Infinity Norm results. Table 6.1 shows the results of this

approach, where every method is evaluated on each its results in each run. For each run,

we rank the methods from 1 to 3 in each metric. For the computation time, the fastest

method gets ranked the highest (rank 1), and the slowest method gets the lowest rank (rank

3). Moreover, for the L2 Norm, the lower the value of the L2 norm, the more informative the

states of the trajectories are. Hence, lower values of L2 norm are ranked higher. Similarly,

smaller infinity norm values correspond to a higher rank in our evaluation.

Finally, after ranking each method in each run, we compute the average for each

method’s results to obtain an overall ranking for each method.In this step, the method

with the lowest average is the highest-ranked and thus the best performing overall. The

results of this analysis show that the IV-GLS method has the overall best performance (av-

erage rank 1.66) out of the evaluated methods, followed by the Two-step method (average

rank 1.86) and the Joint Estimation method (average rank 2.46).

Based on this evaluation, we recommend practitioners to use the IV-GLS method for
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general parameter estimation use cases, as it shows the overall best performance, with the

highest accuracy and an acceptable speed. Moreover, the IV-GLS method maintains its

high performance even when high noise levels are present in the system.

Case Metric
Joint

Estimation
Two step IV-GLS

Noiseless case

Computation time 1 2 3

L2 Norm 1 3 2

Infinity Norm 1 3 2

AWGN with µ = 0 and σ = 0.3

Computation time 3 1 2

L2 Norm 3 2 1

Infinity Norm 2 3 1

AWGN with µ = 0 and σ = 0.7

Computation time 3 1 2

L2 Norm 3 2 1

Infinity Norm 3 2 1

AWGN with µ = 0 and σ = 1

Computation time 3 1 2

L2 Norm 3 2 1

Infinity Norm 3 2 1

AWGN with µ = 0 and σ = 1.5

Computation time 3 1 2

L2 Norm 2 1 3

Infinity Norm 3 2 1

Average (Overall) rank 2.46 1.86 1.66

Table 6.1 Overall ranking of the evaluated methods
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Chapter 7

Conclusion and Future Work

Dynamical systems exist in nearly every field, and they can be modelled by ODEs. Some

ODEs can not be solved via numerical or analytical methods. In such cases, practitioners

leverage parameter estimation methods to estimate the ODE parameters and predict the

system’s low of motion. However, practitioners face a challenge when selecting the best

parameter estimation method to use due to the variety of available methods that they

can choose from. Therefore, we compare the performance of four cutting-edge parame-

ter estimation methods to highlight which ones provide optimal behaviour under various

conditions of noise and sample sizes.

The evaluation results show that IV-GLS method is the overall best performing method

when it comes to the estimation accuracy. Moreover, we find that IV-GLS method can pro-

vide an estimation of the parameters for all levels of system noise used in our evaluation.

As for the computation time, our results show that Two-step method requires the shortest

computation time compared to other methods. Nevertheless, the results show that increas-

ing the number of sample points leads to more accurate estimations by all of the evaluated

methods, especially when noise is present in the system.

As future work, we plan to compare more parameter estimation methods with those

evaluated in this thesis. More specifically, we plan to evaluate methods that leverage
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machine learning techniques, such as deep learning, in their implementation. Moreover, we

plan to include more systems from different domains and real-life applications to be used

in the evaluation of the methods. These new systems can have different features, such as

but not limited to being non-linear systems.
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