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ABSTRACT 

A rising environmental concern, phosphorus (P) loss from agricultural fields via surface runoff or 

sub-surface drainage ends up in freshwater bodies (river, lakes), where it causes widespread algal 

blooms and water quality degradation.  Recent studies suggest that agricultural fields fitted with 

artificial tile drainage system contribute heavily to these P losses.  Simulation models could help 

to measure and manage the agricultural P losses and inform prudent management decisions to 

mitigate this problem in a time saving and cost-effective way. Computer simulation models for 

this purpose are presently lacking, particularly for tile drained agricultural fields. Accordingly, the 

present study was undertaken to develop a computer simulation model to simulate P loss from a 

tile drained agricultural field through different hydrological pathways. A state-of-the-art algorithm 

to simulate the fate and transport of P in tile-drained agricultural systems is proposed, tested and 

incorporated into the RZWQM2 model, to take advantage of its hydrologic and agricultural 

management subroutines — thereby yielding the RZWQM2-P model. Structured according to 

Jones et al., (1984) with updates and modifications prescribed by Vadas, (2014), the RZWQM2-P 

model features dedicated manure and fertilizer P pools to simulate P dynamics arising from their 

application.  To simulate daily P absorption/desorption among the P pools, a dynamically changing 

rate factor is applied rather than a constant rate factor. Tile drainage dissolved reactive P (DRP) 

and particulate bound P (PP) loss are estimated according to Francesconi et al., (2016) and Jarvis 

et al., (1999), respectively. Losses of DRP and PP through surface runoff are simulated according 

to Neitsch et al., (2011) and McElroy et al., (1976), respectively. 

   The RZWQM2-P model’s capacity to simulate the DRP and PP loss from an agricultural field 

through surface runoff and tile drainage was evaluated using two sets of observed P loss and water 
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flow data collected from subsurface-drained fields under a corn-soybean rotation on a clay loam 

soil in southwestern Ontario, Canada. For both cases, the RZWQM2-P model performed 

satisfactorily (NSE > 0.50, PBAIS within ±30%, IoA >0.75). A sensitivity analysis of the 

RZWQM2-P’s input parameters was conducted to facilitate the application of the model by users 

like agricultural managers and environmental stakeholders.  The sensitivity analysis found the 

simulation of RZWQM2-P’s P loss depends on many parameters; however, macroporosity was 

the preeminent parameter in simulation of all form of P losses. The DRP loss through surface 

runoff was most sensitive to the P extraction coefficient, and PP loss through surface runoff was 

mainly governed by the parameters of the Universal Soil Loss Equation. Tile flow DRP and PP 

losses were most sensitive to the plant P uptake distribution parameter and the soil detachability 

coefficient. The newly developed RZWQM2-P model is a capable tool for the simulation of P 

losses from an agricultural field, particularly for the tile-drained fields, however, it requires skilled 

and computationally demanding modelling. 
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RÉSUMÉ 

La préoccupation environnementale croissante quant aux pertes de phosphore des champs 

agricoles par voie des eaux d’écoulement en surface et de drainage souterrain s’explique parce que 

ce polluant se rend éventuellement dans un plan d'eau douce (rivière, lac) où il cause une 

prolifération d'algues nocives et une dégradation de la qualité des eaux.  De récentes études 

donnent à penser que les champs agricoles équipés d’un système de drainage contribuent largement 

à ces pertes en P.  L’utilisation de modèles de simulation permettrait d’évaluer et de gérer les pertes 

en P d’origine agricole, et d’appuyer des décisions de gestion agricole permettant de mitiger ce 

problème d’une manière efficace en temps et en coût. Il nous manque présentement un modèle de 

simulation permettant de telles analyses, particulièrement pour les champs agricoles soumis à un 

drainage souterrain. La présente étude visa donc à développer un modèle de simulation informatisé 

permettant de simuler les pertes en P provenant d’un champ agricole équipé de drainage souterrain, 

par différentes voies de transport hydrologiques. Une nouvelle génération d'algorithme permettant 

de simuler le sort et le transport du P dans un système de culture équipé d’un système de drainage 

souterrain est proposée, éprouvé, puis incorporé dans le code du modèle RZWQM2, afin 

d’exploiter ses sous-programmes hydrologiques et de gestion agricole — créant ainsi le modèle 

RZWQM2-P. Structuré selon Jones et al., (1984) et mis-à-jour et modifié selon Vadas, (2014), le 

modèle RZWQM2-P offre des réservoirs de P dédiés au fumier et aux engrais lors de la simulation 

de la dynamique du P opérant suite à leur application. Afin de mieux simuler 

l’absorption/désorption journalière du P entre les réservoirs de P, des taux d’échange dynamiques 

plutôt que constants furent appliqués. Le P dissout réactif dans les drains souterrains (DRP) et le 

P liés aux particules (PP) furent estimés selon Francesconi et al., (2016) et Jarvis et al., (1999), 

respectivement. Les pertes en DRP et PP par ruissellement de surface furent simulées selon Neitsch 

et al., (2011) et McElroy et al., (1976), respectivement. 
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    L’habilité de RZWQM2-P à simuler avec exactitude les pertes en DRP et PP provenant d’un 

champ agricole par voie de ruissellement de surface et de drainage souterrain fut évalué grâce à 

deux ensembles de données de pertes en P et de débit d'eau enregistrés dans des champs du sud-

ouest de l’Ontario équipés d’un système de drainage souterrain et soumis à une rotation maïs-fève 

soja sur un loam argileux. Le modèle RZWQM2-P performa de façon satisfaisante pour chacun 

des sites (NSE > 0.50, |PBAIS|  30%, IoA > 0.75). Une analyse de sensibilité des paramètres 

d’entrée de RZWQM2-P fut entreprise afin de faciliter l’application du modèle par les 

gestionnaires agricoles et acteurs œuvrant dans le domaine de l'environnement. L’analyse de 

sensibilité indiqua que l’exactitude de RZWQM2-P’s en simulant toutes formes de perte de P 

dépend de plusieurs paramètres, mais en particulier de la macroporosité du sol. La perte de DRP 

par l’écoulement en surface s’avéra particulièrement sensible au coefficient d’extraction du P, 

tandis que la perte de PP par cette même voie était principalement sous l’influence des paramètres 

de l’équation universelle de perte de sol (USLE). La perte de DRP et PP par voie de drainage 

souterrain s’avéra particulièrement sensible au paramètre de distribution de l’assimilation du 

phosphore par la plante, et le coefficient de détachabilité du sol. Le modèle RZWQM2-P 

nouvellement développé est un outil prometteur pour la gestion du P en milieu agricole, 

particulièrement pour les terres doués d’un système de drainage souterrain. Cependant il nécessite 

une haute compétence de modélisation et s’avère exigeant en termes de calcul. 
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CHAPTER 1 

INTRODUCTION 

1.1  BACKGROUND  

       Agriculture phosphorus (P) demand is about 80 - 90% of the total P demand globally and the 

supply of P is heavily dependent on mined rock phosphate, but this is a non-renewable resource 

becoming increasingly scarce and expensive day by day (Expertanswer, 2010).  P is also very 

crucial for agricultural production to obtain proper crop growth and to maintain a high yield.  It is 

also an established fact that most of the P applied in the agricultural field is lost and very little of 

it is consumed by the crops for their growth. This lost P from agricultural fields through water and 

sediment is becoming a serious environmental concern, degrading the quality of water in fresh 

water bodies such as lakes, rivers and also in the brackish water around the coastal area where 

rivers meet the sea, causing widespread P pollution, algal blooms, called eutrophication (Guildford 

and Hecky, 2000). Eutrophication makes the water unsuitable for human consumption and causing 

adverse health effect for humans, livestock and aquatic fauna who are coming within direct contact 

of this kind of water (Dawson, 1998). It is estimated that 80% of the P pollution of Lake 

Champlain’s Missisquoi Bay is estimated to have originated from upstream agricultural lands 

(Hegman et al., 1999). In Quebec about 156 lakes are already polluted by P (> 0.02 ppm of P) in 

2007 due to excessive application of fertilizer and manure in agricultural fields around the region 

(MSSS, 2007).  Previously it was of thought that P is lost from agricultural fields mostly through 

surface runoff during large storm events (Sharpley et al., 1992; Skaggs et al., 1994; Fausey et al., 

1995; Sims et al., 1998), but in some recent studies, artificial tile drainage system was identified 

as a significant pathway of P losses in many agricultural fields (Gentry et al., 2007; Eastman et al., 

2010). It is mainly because of artificial drainage lowers water tables faster, increases subsurface 
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water flow and subsequently reduces surface runoff thus tile drainage contributes to majority of 

stream flow. For example, in Ohio, USA tile drainage contributed 51% of the annual stream flow 

(King et al., 2014) and while in Ontario (ON), Canada it is 42% (Macrae et al., 2007). Tan and 

Zhang (2011) found that subsurface tile drainage in a corn-soybean field, ON contributed up to 

97% of P lost to waterways. Jamieson et al., (2003) also found that subsurface drainage is 37.1% 

of total P loads in agricultural field located near Bedford, Quebec. Ruark et al., (2012) identified 

that tile drainage P load varies from 17% to 41% of the total P loads in Wisconsin, whereas tiles 

supplied 16% to 58% of total dissolved P loads. Similar results also have been reported from other 

studies across mid-western US (Gentry et al., 2007) and Europe (Dils and Heathwaite, 1999; 

Gelbrecht et al., 2005).  P concentrations in tile drainage water (0.01 to 8.0 mg/L) generally exceed 

critical levels for eutrophication (0.02-0.03 mg L-1) (King et al., 2015). Remediation of 

eutrophication is difficult at river and lake level, while removal of excess P from water by chemical 

(Surampalli et al., 1995) and biological (Oehmen et al., 2007) means are complex, expensive and 

time consuming. Also, it can’t be removed by wastewater treatment plants as the non-point source 

nature of agricultural P loss. So, the only prevention technique is to control the quantity of 

fertilizer/manure application in the agricultural field. Thus, in order to obtain sustainable 

development in the agricultural sector, it is necessary to apply P in the agricultural field in such a 

way, so that it will not only maintain the crop yield and but at the same time it will ensure that the 

P will remain available for the future food production and will prevent P pollution in water bodies. 

To manage fertilizer/manure application at agricultural field we need to understand the 

hydrological, physical and bio-chemical processes which are involved in crop P uptake, P 

movement within the soil profile and soil water, and transportation of P through runoff, tile 

drainage and sediments. We also need to know the governing parameters and their influence on 
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these processes. To achieve this, it is required to evaluate all agricultural systems and management 

practices particularly with tile drainage system on an urgent basis. This is a humongous task to do 

with conventional field experiments.  A recent study by Kleinman et al., (2015) regarding the fate 

and transport of P from tile-drained agricultural fields indicated that computer simulation models 

are currently one of the top priorities in improving one’s understanding of P dynamics of arable 

lands in an efficient way. The computer simulation models are useful in assessing and simulating 

complex hydrological and physiological processes occurring in agricultural fields which would 

otherwise be costly and can’t be physically measured (Vadas et al., 2013), thus allowing more 

detailed and efficient investigations than conventional field studies. However, current P computer 

simulation models lack the capacity to adequately simulate P losses from agricultural field, 

particularly those occurring through tile drainage (Radcliffe et al., 2015). Hence, suitably 

developed computer-based simulation models are of urgent need to assist agro-environmental 

managers to manage P as a nutrient as well as a pollutant.  

    Modelling P dynamics in an agricultural field involves, modelling of the hydrological processes 

that are occurring on and below the ground surface and of the effects of agricultural management 

practices. A P model needs to simulate both surface hydrological processes (e.g., soil evaporation, 

plant transpiration, runoff, and soil erosion), and subsurface hydrological processes (e.g., 

infiltration, matrix flow, preferential flow or macropore flow, flow to tile drainage, fluctuation of 

water tables, root water and nutrient uptake, and soil moisture redistribution). Agricultural 

management practices such as surface irrigation and sub-irrigation, drainage, fertilization, tillage 

and residue management, and crop rotation influence the fate and transport of P. The success of a 

P model greatly depends on how effectively and efficiently the model captures these hydrological 

processes and how these processes are parameterized within the model. The Root Zone Water 
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Quality Model (RZWQM2, Ahuja et al., 2000) is a field scale agricultural system model and that 

has been extensively evaluated in assessing the impact of agricultural management practices and 

climate change on hydrology, water quality, and crop production at locations across the United 

States (Fang et al., 2014b; Gillette et al., 2018; Hanson et al., 1999; Ma et al., 2007a,b, 2004;  

Malone et al., 2014; Qi et al., 2011, 2013; Thorp et al., 2007; Wang et al., 2015) and in Canada ( 

Ahmed et al., 2007a,b; Al-Abed et al., 1997; Madani et al., 2002; Jiang et al., 2018). But as of 

today, RZWQM2 does not have the capability to simulate P fate and transport from agricultural 

field.  Hence, in this study it has been focused to develop a process-based P management model 

and subsequently incorporate it within the RZWQM2 model as it is equipped with proven 

subroutines to simulate all the hydrological processes and agricultural management practices 

required to simulate P dynamics in an agricultural field. The newly developed P model integrated 

into RZWQM2 model serves as a single tool known as RZWQM2-P model. The RZWQM2-P 

model is an all-in-one agricultural P simulation model and it addresses the limitations of the present 

P simulation models as highlighted by Radcliff et al., (2015). The developed RZWQM2-P model 

has advance capabilities to simulate the P dynamics due to manure and fertilizer applications while 

special attention was given in simulating P losses (DRP and PP) particularly through tile drainage 

system.  

       Simulation of P loss from agricultural fields through surface runoff and tile drainage is an 

extremely complex phenomenon involving soil physical, chemical, biological and hydrological 

processes occurring on and below the soil surface. The P simulation by the RZWQM2-P model 

greatly depends on how effectively and efficiently these processes are calibrated by the model 

users. There being many input parameters governing P-loss processes, RZWQM2-P is difficult 

and time-consuming to calibrate. So, a sensitivity analysis is employed to identify influential 
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model parameters so that calibration process is only focused on them to simplify the modelling 

process.   

1.2   OBJECTIVES 

        The overall goal of this research is to improve one’s understanding of the science behind the 

fate and transport of P from an agricultural field through computer simulation and modelling 

approach, in order to enable agro-environmental mangers an economic, time saving, and scientific 

evaluation of agricultural management practices that may mitigate P pollution of freshwater 

bodies, arising due to the application of fertilizer/manure in agricultural fields.  The goal was 

achieved through the following specific objectives: 

1. To develop a computer model to simulate P loss through different hydrological pathways 

from an agricultural field, based on the most recent scientific findings regarding the fate 

and transport of P. 

2. To incorporate the developed P model into the RZWQM2 model. 

3. To test, calibrate and validate the newly developed RZWQM2-P model in simulating P 

losses in tile drained field under North American conditions. 

4. To perform a sensitivity analysis of the developed RZWQM2-P model in order to identify 

the most sensitive parameters of the model in relation to P simulation. 

 

1.3  THESIS OUTLINE 

       This thesis has been written in a “manuscript based” style. Chapter 1 is general introduction, 

which presents the backgrounds, justifications, and objectives of the research. Chapter 2 presents 

the literature review on some P simulation models and RZWQM2’s evaluation and applications 

under diverse agrarian scenarios. Chapter 3, 4 and 5 present the results of model development, 

evaluations, applications and sensitivity analysis three research papers with connecting text. 

Figures and tables are all presented within the texts when it appears for the very first time. The 
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governing equations of the developed P model is presented in Appendix A. All the references cited 

in the thesis are given at the end of the thesis.  
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CONNECTING TEXT TO CHAPTER 2 

 

Chapter 1 introduced the background and the objectives of this study. It also pointed out that the 

presently available P simulation models have limited capacity to simulate P losses particularly 

from a tile drained agricultural field, while the RZWQM2 model can be used as a basis for the 

development of a new P simulation model. In the Chapter 2, review of some available P models is 

presented to highlight their limitations. Besides, a summery of the RZWQM2’s key hydrological 

processes influencing P dynamics along with it’s application and evaluation in diverse agrarian 

scenarios are presented to substantiate the feasibility of the RZWQM2 model to serve as a basis 

for the development of a new P simulation model for agricultural fields. 
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CHAPTER 2 

LITERATURE REVIEW 

 

     Agricultural fields, particularly those with artificial subsurface tile drainage systems, represent 

a major source of phosphorus (P) reaching surface waters and causing widespread eutrophication.  

Despite extensive research, significant problems with the nonpoint source pollution of surface 

waters by agricultural P remain. Presenting a review of present P simulation models and their 

capacity and limitations in simulating P loss from agricultural fields, particularly through 

subsurface tile drains, this chapter also summarizes the overall hydrological processes influencing 

P loss (e.g., runoff, tile drainage, macropore flow etc.), P fate and transport in soil, P transport 

through tile drains. The P simulation models for agricultural fields reviewed in this chapter include: 

EPIC (Erosion/Productivity Impact Calculator; Sharpley and Williams 1990),  ADAPT 

(Agricultural Drainage and Pesticide Transport; Chung et al., 1992), APEX (Agricultural 

Policy/Environmental eXtender; Francesconi et al., 2014), HYDRUS  (Boivin et al., 2006, 

Šimůnek et al., 2008), PLEASE (Phosphorus LEAching from Soils to the Environment; 

Schoumans et al., 2013), SurPhos (Surface Phosphorus and Runoff Model; Vadas, 2014) and 

ICECREAM (Tattari et al., 2001). The RZWQM2 model was chosen as a basis for the 

development of a new P model addressing the limitation of the present model; accordingly, a 

review of the key hydrological processes of the RZWQM2 model influencing P dynamics and the 

application and evaluation of the model for diverse agrarian scenarios are presented to substantiate 

the practicability of using the RZWQM2 model for this purpose.  
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2.1 P MODELS  

       Since late 1970s, P simulation models serving as management tools for agricultural fields and 

tended to be physically or empirically based and driven by climate variables. Since then, despite 

much progress in the science behind the fate and transport of agricultural P and in the development 

of  P-simulation models, P models available today remain limited in their applicability to predict 

P losses from agricultural fields, particularly those which are artificially drained (Radcliff et al., 

2015). In the following sections, some of the available P models have been reviewed briefly to 

highlight their strengths and limitations.  

2.1.1 EPIC 

        Based on an algorithm proposed by Jones et al., (1984), the EPIC model’s nutrient sub-model 

is designed to simulate P loss from agricultural fields. The EPIC model has served as the precursor 

of many other P simulation models. The model divides soil P into five pools (labile, active 

inorganic, and stable inorganic and fresh and stable organic). Inorganic fertilizer P inputs are added 

into the labile P pool, whereas, for organic fertilizer, organic fractions and manure are added into 

the fresh organic P pool, while the inorganic fraction is added into labile P pool. Continuous 

movement (e.g., mineralization, immobilization, absorption, desorption) of P happens of among 

these P pools to maintain an equilibrium. The EPIC model’s runoff sub model simulates surface 

runoff volumes and peak runoff rates, given daily rainfall amounts. Runoff volume is estimated by 

a modified Soil Conservation Service (SCS) curve number technique. Drainage via subsurface 

drainage systems is treated as a modification of the natural lateral subsurface flow. The EPIC 

model does not compute the macropore flow process. The model provides options for agricultural 

management practices. The model is capable of simulating DRP loss both through surface runoff, 

and tile drainage, while PP loss is only simulated through surface runoff. Using EPIC to conduct 



10 
 

a simulation of crop yield, surface runoff, tile drainage and P loss (DRP) from a clay loam soil in 

Canada’s Lake Erie region, Wang et al., (2018a) found the model to simulate crop yields and flow 

volumes well, but DRP losses only adequately (NSE ~ 0.50). The absence of a preferential flow 

simulation and the use of a constant coefficient to regulate P flux among the P pools during the 

model’s simulation of phosphorus sorption/adsorption were deemed to be the model’s main 

limitations in simulating P losses.   

2.1.2  APEX 

         Derived from the EPIC model and following the P routines of Jones et al., (1984), the APEX 

model is a field-scale to small-watershed-scale process-based hydrological model, wherein tile 

drainage is regarded as a modification of natural lateral subsurface flow of the soil layer bearing 

the tile. Storage routing theory and pipe flow simulation are used for subsurface flow simulation. 

The SCS curve number approach is followed as the key method for simulating surface runoff, with 

infiltration computed as the difference between effective precipitation and surface runoff. The 

model also includes an option to compute infiltration and runoff by the Green and Ampt (1911) 

method. Percolation of water through the soil profile is estimated through a cascade approach. 

However, APEX does not address the macropore flow process. While APEX provides extensive 

options to simulate different agricultural management practices, it is only capable of simulating of 

soluble P loss (DRP) transportation through both surface runoff and tile drainage. Drawing on data 

from a monitored corn-soybean rotation field situated in Michigan’s St. Joseph River watershed, 

Francesconi et al., (2016) evaluated the APEX model’s ability to simulate surface and tile DRP 

transport with its newly incorporated nonlinear (Langmuir) P sorption option. This was added to 

better simulate P dynamics than the model’s earlier user-defined linear P sorption (based on 

GLEAMS) option. Although the model’s overall performance in predicting soluble P was very 
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poor, the inclusion of the Langmuir isotherm improved soluble P sorption estimates in surface 

runoff and tile drainage during the corn year, when the only P inputs were added. The linear 

method proved more appropriate during the soybean year when no fertilizers were applied. They 

suggested further improvements of in the model’s P partitioning processes and the addition of a 

preferential flow component.  

2.1.3  ADAPT  

         Mainly derived from the GLEAMS (Leonard et al., 1987; Knisel, 1993) and DRAINMOD 

(Skaggs, 1978, 1982) models, ADAPT was mainly enhanced by adding tile drainage, snowmelt, 

and macropore flow components. The ADAPT model’s P sub-model originated from the EPIC 

model’s nutrient components. The ADAPT model employs two algorithms for tile drainage 

simulation: Hooghoudt’s steady state equation (Bouwer and Schilfgaarde, 1963)  when the water 

table’s midpoint rests between the drains the soil surface, and Kirkham’s equation (Kirkham, 1957) 

when the water table is above the soil surface. Surface runoff is estimated using the SCS curve 

number method. ADAPT uses a basic approach to computing macropore flow volume, making it 

a function of clay content and the number of dry days during which the soil water supply has not 

met the potential evapotranspiration demand. Capable of simulating P losses (DRP) through 

surface runoff and tile drainage, ADAPT is incapable of modeling PP loss. Its use not being widely 

reported to date, we are not aware of any direct study of P loss using ADAPT. In a review article 

Radcliff et al., (2015) stated that “ADAPT is not capable of modeling P fate and transport in 

drained agro-ecosystems and is unlikely to accurately predict P losses from drained agricultural 

fields. The model requires improvement to adequately represent the subsurface movement of P as 

influenced by soil type, farming practices, and drainage water management”. 
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2.1.4  HYDRUS 

          A process-based model for simulating movement of water, heat, and multiple solutes in 

variably saturated media, HYDRUS exists in multiple versions: a one-dimensional version freely 

available to the public (HYDRUS-1D), and commercial two- and three-dimensional versions 

(HYDRUS-2D/3D. Providing limited options to simulate agricultural management practices, the 

HYDRUS model simulates water quality using its solutes module, a general simulation that lacks 

detailed phosphorus components. HYDRUS adopts two analytical solutions — Hooghoudt’s 

steady state equation (Bouwer and Schilfgaarde, 1963)  and  Ernst’s equation (Ernst, 1962) — for 

tile drainage simulation and uses numerical solutions to the Richards (1931) equation for 

infiltration and water movement through the soil profile. Rainfall in excess of the infiltration 

capacity is diverted as surface runoff.  The HYDRUS model’s macropore model is complex and 

offers three modelling options: one dual-porosity model and two dual-permeability models. While 

HYDRUS is not specifically designed to model P, it can be represented through the model’s tile 

bound solute transport simulations. Accordingly, the HYDRUS model is only capable of simulate 

P losses (DRP, PP) through tile drainage while P losses through surface runoff cannot be simulated 

under the current model versions. Using HYDRUS-2D/3D to simulate the fate of phosphorus in a 

tile-drained clay loam soil located in southern Ontario, Qiao (2013) found the model to perform 

well on a weekly scale, but poorly on a daily scale. The worse simulation errors happened during 

the winter period. HYDRUS could be used to simulate P loss in artificially drained fields,  

however, due to complex macropore flow simulation and  the absence of specific P routines, 

surface runoff and erosion modeling , or extensive agricultural management options, it  cannot be 

effectively used to model P loss from agricultural fields. 
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2.1.5  PLEASE 

         A process-based field scale model based on the STONE model (Wolf et al., 2005), PLEASE 

(Schoumans et al., 2013) was developed to estimate annual nutrient losses from agricultural fields 

in the Netherlands. PLEASE calculates P loss through tile drainage by multiplying the mean P 

concentrations in soil layers as a function of depth and the total annual horizontal water flux 

(Schoumans et al., 2013). The dissolved inorganic P concentration in the soil solution in each layer 

is calculated using the Langmuir isotherm equation (Van der Zee and Bolt, 1991), whereas the 

annual horizontal drainage flux is calculated based on effective annual precipitation, water table 

depth, drainage resistance and depth of two drainage systems (Van der Salm et al., 2011).  There 

is no component within the model to simulate surface runoff and macropore flow and the model 

is only capable of simulating soluble P loss (DRP) through tile drainage. The model provides 

limited options to simulate different agricultural management practices and drainage simulation is 

indirect being mimicked by specifying alternative input parameters for the model (Dupas and van 

der Salm, 2010). Applied and evaluated in Nordic countries (mostly Denmark) and the 

Netherlands, the model generally performed well in simulating water quantity in tile drains, except 

under heavy clay soil conditions. This was probably the result of the absence of a macropore 

simulation component (Van der Salm et al., 2011). Accordingly, PLEASE only provides annual 

estimates of the P loss, making it unsuitable for many applications where higher temporal 

resolution is required. Moreover, PLEASE’s lack of components for simulating surface runoff, 

macropore flow and its limited agricultural management options, further limits its applicability to 

a wide range of purposes.  
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2.1.6  SurPhos  

         A daily-scale empirical P simulation model designed to simulate edge-of-field DRP loss 

through surface runoff, SurPhos (Vadas, 2014) was developed to be seamlessly integrated into 

other models to enhance their P simulating ability, particularly with respect to DRP loss through 

surface runoff subsequent to the application of inorganic fertilizer and manure (Vadas et al., 2007, 

2008). The model’s basic structure follows that of the EPIC model, with three inorganic P pools 

(Jones et al., 1984) and four additional manure P pools to simulate manure P dynamics and two 

additional fertilizer P pools to simulate fertilizer P dynamics. The model adopts an advanced daily 

absorption/desorption among the inorganic P pools by using a dynamically changing rate factor 

(Vadas et al., 2006). The model simulates DRP loss in runoff, but neither considers runoff loss of 

sediment bound P, or subsurface loss of P through leaching or artificial drainage. The model does 

not have any component to simulate runoff, drainage or macropore flow and requires to be relevant 

data from other models to simulate P loss. The model’s application to agricultural management 

practices is limited to tillage. In a recent study focusing on the application and evaluation of 

SurPhos, Wang et al., (2018b) reported the model’s performance to be acceptable in simulating 

soil labile P dynamics, as well as DRP loss in surface runoff for both solid and liquid cattle manure 

application, as well as inorganic fertilizer application. In comparing SurPhos’s performance to that 

of SWAT in predicting manure phosphorus loss, Sen et al., (2012) opined that the “SWAT-P model 

should be replaced by the SurPhos model”. Although the SurPhos model is a powerful tool to 

simulate DRP loss through surface runoff, it lacks the self-sufficiency to simulate PP loss through 

surface runoff and bound P loss though drainage tiles. Moreover due to the absence of surface 

runoff and macropore flow simulation and the lack of extensive agricultural management options, 

it cannot be successfully used as a stand-alone model to simulate P loss from agricultural fields. 
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2.1.7  ICECREAM  

        The ICECREAM model (Tattari et al., 2001) is an agricultural nutrient management process 

control model mainly used for simulating P losses through runoff and leaching from agricultural 

land. Combining the CREAMS (Knisel, 1980) and GLEAMS (Leonard et al., 1987; Knisel, 1993) 

models, ICECREAM was initially developed to suit conditions in Nordic countries, and further 

improved by Larsson et al., (2007), who added a macropore flow component. The P component in 

ICECREAM is based on the P model formerly developed for the EPIC model (Jones et al., 1984), 

which employs five P pools: the fresh organic P pool, the slowly mineralizable stable organic P 

pool, the plant available labile P pool, the long-term stable inorganic P pool and the active P pool. 

The model simulates surface runoff and infiltration into the soil by partitioning precipitation 

according to the Soil Conservation Service (SCS) Curve Number method. While ICECREAM 

does not have a water table-based tile drainage component, it uses the summation of matrix and 

macropore flow flux at tile depth to mimic tile drainage. ICECREAM adopts simple storage 

routing concepts to simulate matrix flow within the soil profile, while macropore flow is simulated 

using the dual porosity approach of Larsson et al., (2007). In its present form, ICECREAM can 

simulate DRP and PP losses through both surface runoff and tile drainage. Widely tested in Sweden 

by researchers at the Swedish University of Agricultural Sciences, Uppsala to assess its 

performance in simulating PP and DRP loss through surface runoff, matrix flow and macropore 

flow (Larsson et al., 2007; Blombäck and Persson, 2009; Liu et al., 2012), the model has also been 

applied to estimate P losses from agricultural lands for environmental reporting in Sweden and in 

the European Union (Johnsson et al., 2008) and served to estimate P losses for climate change 

scenarios in central Sweden’s Svärtaån catchment (Blombäck et al., 2012). The very first ever 

evaluation of the ICECREAM model outside Nordic countries (Qi et al., 2017) highlighted the 
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model’s limited ability to simulate PP loss through tile drainage at a site in Canada. While 

ICECREAM seems to be the most accurate agricultural P management model in simulating P 

losses through tile drains from agricultural fields (Radcliffe et al., 2015), it lacks a water table-

based tile drainage component, rather adopting simple storage routing concepts to simulate matrix 

flow within the soil profile. This can be improved by adopting the soil-matric-potential-based 

Richards equation to simulate matrix flow and Hooghout’s equation to simulate tile drainage. 

ICECREAM’s simulation of manure and fertilizer P dynamics appears to be weak as it  assumes 

that manure and fertilizer P are instantaneously mixed into the soil upon application and that there 

are not separate P pools to simulate manure and fertilizer P dynamics. ICECREAM also computes 

the daily absorption/desorption of P among the inorganic P pool using a constant rate factor, which 

can be further improved by adopting a dynamically changing rate factor (Vadas et al., 2006). 

2.2  RZWQM2 

2.2.1 Model Description 

          RZWQM2 is a one-dimensional agricultural systems model, developed by USDA–

Agricultural Research Service scientists in the mid-1980s and its first version was officially 

released back in 1992.  Subsequently with time, the model underwent many development and 

modification to improve its capability by many researchers and scientists.  The model simulates 

the interactions and impacts of various agricultural management practices and associated 

hydrological processes on crop growth, nutrient transformations, and pesticide transport (Ahuja et 

al., 2000). The model facilitates the simulation of a broad variety of agricultural management 

practices and scenarios. These management practices include different types of tillage, different 

methods and timing of fertilizer, manure and pesticide applications, different methods and timings 

of irrigation, tile drainage and different crop planting methods. Tillage and residue management 
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have an impact on soil physical and hydraulic properties, micro-topography and surface roughness, 

energy and water balance, and nutrient transfer from soil to surface runoff. Tillage-induced 

changes to soil hydraulic properties are slowly changed back to their original conditions as rainfall 

reconsolidates the tilled layers. The model’s input data requirements include site-specific weather 

information (precipitation, minimum and maximum daily air temperature, solar radiation, relative 

humidity, and wind speed), initial soil nutrient and hydraulic properties, crop cultivar information 

and field management information. All the processes within the RZWQM2 model runs on daily 

time steps except the hydrological processes (Figure 2.1), which runs on hourly time steps. A 

flowchart of the model’s operations is presented in Figure 2.2. 

 

Figure 2.1: Schematic of hydrological processes in RZWQM2 (adopted from Smith, (2019) *) 

* permission obtained from the author.  
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Figure 2.2. Workflow of RZWQM2 (adapted from Fang et al., 2014b *) 

Es is soil water evaporation; Ec is crop transpiration; DP is deep seepage; DR is drainage; LF is 

lateral flow; P is precipitation; and I is irrigation.  

* permission obtained licence no: 486483031565 



19 
 

2.2.2  Hydrological Components 

The RZWQM2 model computes the soil water balance as: 

𝐼 + 𝑃 = 𝐸𝑇 + 𝑅 + 𝐷 + 𝐿𝐹 + 𝐷𝑃 ± ∆𝑆𝑊 (2.1) 

where,  D is tile drainage (mm),  DP is deep seepage (mm), ET is evapotranspiration (mm), I is 

irrigation (mm), LF is lateral flow (mm), P is precipitation (mm), R is runoff (mm), and Δ𝑆𝑊 is 

the change of soil water storage (mm). 

Evapotranspiration is estimated using the double layer Shuttleworth-Wallace model (Shuttleworth 

and Wallace, 1985), while the Richards equation (Eq 2.2) (Richards, 1931) served to simulate soil 

water redistribution within the soil profile following infiltration of the rainfall and/or irrigation 

water.  

𝑑𝜃

𝑑𝑧
=

𝑑

𝑑𝑧
[𝐾(ℎ, 𝑧)

𝑑ℎ

𝑑𝑧
− 𝐾(ℎ, 𝑧)] − 𝑆(𝑧, 𝑡) (2.2) 

where, h is the soil-water pressure head (m),  t is the time (s), z is the soil depth (m, assumed to be 

positive downward, K is the unsaturated hydraulic conductivity (m s-1) as a function of h and z, 

S(z,t) is the sink term for root water uptake and tile drainage rates (s-1), and 𝜃 is the volumetric soil 

water content (m3 m-3), 

The infiltration is simulated by the Green-Ampt method (Green and Ampt, 1911). 

𝑉 =  𝐾𝑠

𝜏𝑐 + 𝐻0 + 𝑍𝑤𝑓

𝑍𝑤𝑓
 (2.3) 

 where, H0 is the depth of surface ponding (mm), if any, Ks is the effective average saturated 

hydraulic conductivity of the wetting zone (mm s-1), V is the infiltration rate at any given time 

(mm s-1), Zwf is the depth of the wetting front (mm), and 𝜏𝑐 is the capillary drive or suction head at 

the wetting front (mm). The soil water content matric suction relationship and unsaturated 
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hydraulic conductivity-matric suction relationships were described by the modified Brooks-Corey 

relationships (Brooks and Corey, 1964). Surface runoff is generated when the rainfall rate exceeds 

the infiltration rate. Tile drainage flow is calculated by Hooghoudt’s steady state equation (Bouwer 

and Schilfgaarde, 1963)  

𝐷 = 4.0 𝐾𝑒𝐸𝑚[
2.0𝐻𝑑 + 𝐸𝑚

𝑆2
] (2.4) 

where, D is the drainage flux (m s-1), 𝐸𝑚  is the elevation of the water table above the tile drains 

(m), 𝐻𝑑 is the equivalent depth of the impermeable layer from the center of the drain (m), 𝐾𝑒  is the 

effective lateral hydraulic conductivity (m s-1), and S is the drain spacing (m). 

 Macropores provides a rapid delivery water to tile drains. The simulation of the macropore 

flow with the RZWQM2 model is governed by Poiseuille’s law, assuming gravity flow (Ahuja et 

al., 2000):  

For cylindrical macropores: 

𝐾𝑚𝑎𝑐 = 
𝑁𝑝𝜌𝑔𝜋𝑟𝑝

4

8𝜂
 (2.5) 

For planar macropores: 

  𝐾𝑚𝑎𝑐 = 
𝐿𝑐𝜌𝑔𝜋𝑑3

12𝜂
 (2.6) 

where, g is the gravitational constant, rp is the radius of cylindrical holes (cm), Lc is the total length 

of cracks per unit area (cm), Np is the number of pores per unit area,  is the dynamic viscosity of 

water, and  is the density of water,  
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2.2.3  Model Evaluation and Applications 

          Since the RZWQM2 offers practical options to simulate different agronomic management 

practices, it had been exhaustively evaluated for its ability to simulate the impacts of agricultural 

management practices (e.g., tile drainage, manure and fertilizer application, pesticide application, 

water table management, tillage management and cropping system management) and of climate 

changes on hydrology, water quality (N), and crop growth at locations across the United States 

(Ma et al., 2007a,b, 2004;  Qi et al., 2013, 2011; Wang et al., 2015) and in China (Fang et al., 2010, 

2013). A review of studies demonstrating RZWQM2’s strengths RZWQM2 in simulating different 

agricultural management practices follows.  

2.2.3.1  Tile Drainage  

             In most studies the RZWQM2 model’s capacity to accurately simulate tile flow and 

attending nitrogen losses was deemed satisfactory. In the first ever evaluation of the model’s 

capacity to simulate agricultural  drainage, Singh and Kanwar (1995a) successfully calibrated and 

validated the model using measured subsurface drainage flow data compiled under four different 

tillage treatments implemented at the NERC water quality research site at Nashua, Iowa. They 

concluded that the model was capable of satisfactorily simulating tile drainage under different 

tillage practices as its output closely followed the trends of the measured data. Singh and Kanwar 

(1995b) applied the model to evaluate the impact of different tillage practices on N concentration 

in soil and N losses in drainage water at the same site as that of their earlier study. This time, the 

model proved capable of estimating N concentrations in drainage water during the simulated years 

but failed in calculating the effects of tillage on N losses through tile drainage. In a further study 

at a field in the Walnut Creek watershed, IA, USA, Bakhsh et al., (2004) showed that RZWQM2-

simulated drainage and nitrogen loss through drainage water was comparable to measured data 
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(Nash-Sutcliffe coefficient (NSE) values of 0.99 and 0.80 respectively). In Canada’s coastal areas 

in Nova Scotia, Akhand et al., (2003) evaluated the performance of RZWQM2 for simulating 

subsurface drainage flow in a shallow drained soil. Simulated tile drainage agreed closely with 

measured values with r2 of 0.60 and 0.57, respectively, for the model calibration and validation 

phase, indicating the wide adaptability of the RZWQM2 model for subsurface drainage simulation 

under various climatic and soil conditions. Qi et al., (2011) applied the RZWQM2 model in Iowa, 

USA to study the long-term (1970-2009) effects on the hydrologic and nitrogen cycles attributable 

to winter cover crops within a corn-soybean rotation. Daily and annual drainage and annual NO3
−-N 

loss through tile drainage were satisfactorily simulated by the model, with Nash-Sutcliffe 

efficiency (NSE) >0.50, ratio of RMSE to standard error (RSR) < 0.70, and percent bias (PBIAS) 

within 25% except for the overestimation of annual drainage and NO3
−-N for one treatment. In 

another study at Iowa, USA, Qi et al., (2012) also reported that the RZWQM2 model performed 

satisfactorily in simulating of NO3
−-N concentration ([NO3

−-N]) in subsurface drainage under 

different N fertilizer rates with NSE and PBAIS values of 0.76 and -3%, respectively. Using hourly 

tile drainage data from Ontario, Canada, and Iowa, USA, Xian et al., (2017) reported that the 

hourly simulation of tile drainage could be enhanced by enabling the macropore component of 

RZWQM2. All these studies established the use of the RZWQM2 model to predict tile drainage 

flow and its impact on drainage water quality once calibrated to suit local conditions.      

2.2.3.2  Manure and Fertilizer Application  

            Kumar et al., (1998b) found the RZWQM model to have satisfactorily simulated the effect 

of swine manure applications on [NO3
−-N] in subsurface drainage water from continuous corn 

fields (IA, USA) receiving a manure application. In another study, Ma et al., (1998a) used 

RZWQM to simulate the fate and transport of N attending the application of poultry manure in an 
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agricultural field located at Arkansas, USA. The model adequately predicted the responses of soil 

profile [NO3
−-N]to poultry manure applications and corroborated RZWQM’s ability to simulate 

manure dynamics.  The RZWQM evaluation of soil [NO3
−-N] response to cattle manure application 

on a corn field located at Colorado, USA also demonstrated the model’s ability to adequately 

predict soil [NO3
−-N] and soil water content (r 2 > 0.83, Ma et al., 1998b). Similarly, Malone et al., 

(2007) applied the RZWQM model to quantify the long-term effects of different types of N inputs 

(e.g., chemical fertilizer, swine manure), along with the timing and rates of their application on 

crop production and water quality in subsurface drainage water. They suggested that after proper 

calibration and thorough testing, the RZWQM model can be used to quantify the relative effects 

of corn production and [NO3
−-N]in tile drainage water under several alternative management 

practices. Qi et al., (2012) conducted a long-term simulation using RZWQM2 to investigate the 

impact of different N fertilizer application rates on N loss in a subsurface drainage system in north-

central Iowa, USA and suggested an N application rate to meet the requirement of Iowa water 

quality standards. Again, the RZWQM2 model was shown to perform satisfactorily in simulating 

the response of [NO3
−-N] in subsurface drainage to nine different N fertilizer rates. This study 

strengthened the argument for using RZWQM2 to predict [NO3
−-N] in subsurface drainage at 

various N application rates, provided the model were calibrated for local conditions. Recently, 

Bhar and Kumar (2019) successfully applied RZWQM2 to predict real-time fertilization and 

irrigation decision-making for optimum crop production without environmental over-exploitation. 

From all these studies one can infer that RZWQM can simulate the impact of manure and fertilizer 

applications on water quality in different weather and soil conditions. 
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2.2.3.3  Pesticide Application  

            A limited number of studies have been found in the literature regarding the performance of 

RZWQM2 in estimating pesticide transport under different weather and soil conditions. Kumar et 

al., (1998a) calibrated and validated the RZWQM model using observed daily drainage and 

atrazine concentration data from Nashua, IA, obtained under two different tillage systems. 

Drawing on data from the same location in Iowa, Malone et al., (2014) later evaluated the model’s 

ability to simulate pesticide transport. Both studies revealed that simulated drainage flow, and 

pesticide loss to tile drains closely followed the measured values and that simulated pesticide 

concentrations were comparable with observed values. In between, Ma et al., (2004) used 

RZWQM to investigate the loss of atrazine, alachlor and fenamiphos through surface runoff from 

conventional‐tillage corn mesoplots located in Tifton, GA, US. The model effectively estimated 

runoff water volumes, resulting a predicted/observed ratio of 1.2 (±0.5) for all events. Predicted 

pesticide concentrations and loads were generally within a factor of 2, but atrazine losses from 

these events were underestimated. The ratios of predicted to measured pesticide concentrations in 

all runoff events varied between 0.2 and 147, with an average of 7. The normalized RMSE for 

pesticide runoff concentration and load predictions varied between 42 and 122%, with an average 

of 84%. The study concluded that the RZWQM’s runoff mixing model delivers a reasonable 

estimate of pesticides loads and concentration in runoff water, provided that the pesticides are in 

dissolved/adsorbed forms and not in residual granules or ionized forms. Shrestha and Dutta (2015) 

tested and subsequently compared  the performance of the RZWQM and  PESTFADE (PESTicide 

Fate And Dynamics in the Environment) models in predicting soil water content, metribuzin fate, 

and transport in a sprinkler-irrigated soybean field located at the experimental farm of the Asian 

Institute of Technology (AIT) in the Pathumthani Province, Thailand. RZWQM performed better 
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in simulating the soil water content, whereas the PESTFADE performed better in simulating the 

level of metribuzin residues in the soil. The RZWQM model slightly overpredicted the metribuzin 

residue at 0-0.10 m soil depth one day after pesticide application, whereas its prediction of 

metribuzin residues at 0.10-0.20 and 0.30-0.40 m soil depths concurred with measured values. The 

study concluded that with proper calibration the RZWQM model can be effectively applied to 

predict the movement of water and metribuzin residues in the soils of tropical zones.  All these 

studies imply that the pesticide sub-models in RZWQM represent a robust predictor of pesticide 

entrainment and can be applied to various agro-climatic scenarios. 

2.2.3.4  Water Table Management 

             Water table management practices, such as controlled drainage with or without subsurface 

irrigation systems, have been reported to be an effective way to improve agricultural water quality 

(Madramootoo et al., 2001; Drury et al., 2014). RZWQM has been successfully applied as a tool 

to develop suitable water table management practices under different weather and soil conditions. 

When Ma et al., (2007a) applied RZWQM to evaluate the long-term effects of crop rotation, 

tillage, and controlled drainage on crop yield and NO3
−-N  loss through tile drain flow at Nashua, 

IA,USA, the model’s simulation suggested that implementation of controlled drainage would 

result in a 30% reduction in drain flow and a 29% decrease in N losses in drain flow compared to 

free drainage. The RZWQM simulations closely agreed with observations, and the study 

concluded that RZWQM was a promising tool for quantifying the relative effects of controlled 

drainage on N loss in drainage flow. Based on a long-term RZWQM simulation (1996–2008), 

Fang et al., (2012) studied the effects of controlled drainage on N loss to subsurface drainage and 

reported that RZWQM was well capable of simulating the effect of controlled drainage on drainage 

water quality and would reduce N losses by 39% after switching from free drainage. Thorp et al., 
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(2007, 2008) applied the RZWQM to understand how different water table management strategies 

might affect the water balance and N cycling across 48 different locations in the US Midwest and 

serve as a reference for water table management’s impact on reducing N losses through drainage 

across different locations in the United States. The evaluation of RZWQM2 by Lu (2015) in 

simulating surface runoff from a subsurface drained field in Ontario, Canada reported that the 

model’s simulation of surface runoff in a field under free drainage conditions was satisfactory but 

for the controlled drainage with sub-irrigation field the simulation was poor. In a study, Jiang et 

al., (2018) applied RZWQM2 to simulate the hydrologic cycle and crop production in a 

subsurface-drained and sub-irrigated field in Southern Quebec, Canada. The model showed a 

satisfactory simulation of soil water content, sap flow, growth stage, leaf area index, and crop 

yield. Tile flow simulations for both free drainage and controlled drainage with sub-irrigation were 

reasonably accurate during the growing season but, significantly overestimated flow during the 

non-growing season; accordingly, they applied a Kalman filter technique to improve the model’s 

performance during the non-growing season. Overall, the study suggested that the RZWQM2 model 

implementing the Kalman filter technique can be used for water table management. Most recently, 

Jiang et al., (2020), implemented the hybrid RZWQM2-SHAW model to evaluate the model 

performance in predicting surface runoff, subsurface tile drainage, and crop yield under regular 

drainage and controlled drainage with sub-irrigation using data collected in a tile-drained field in 

Harrow, Ontario. The study demonstrated, RZWQM2-SHAW’s satisfactory performance in simulating 

the subsurface drainage and runoff under both regular drainage and controlled drainage with sub-

irrigation.   
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2.2.3.5  Tillage and Cropping System Management 

             The RZWQM2 model has been widely employed to investigate the impacts of tillage and 

cropping system management — including crop rotations, winter cover crops and crop residue 

removal — on water quality and crop production. Ma et al., (2007b) used the RZWQM model to 

evaluate year to year crop yield, water, and N balances in a study drawing on 26 years of data from 

a study near Nashua, IA. Although, average yields were fairly well simulated by the model, but 

yearly crop yields were less well simulated (r2 = 0.52 for corn and r2 = 0.37 for soybean). The 

model appropriately simulated year to year variations in tile flow (r2 = 0.74) and N loading in tile 

flow (r2 = 0.71). Simulated corn and soybean yields had high RMSE values (1386 and 674 kg ha−1, 

respectively)1 with coefficient of variations (CV) of 0.19 and 0.25, respectively, while the RMSE 

for simulated soil water storage, water table, annual tile flow, annual N loading and residual soil N 

were 3.0 cm, 22.1 cm, and 5.6 cm, 16.8 kg N ha−1 and 47.0 kg N ha−1 respectively. The study 

concluded that further improvements in model algorithms were needed to better simulate plant N 

uptake and yield, but that overall, the use of RZWQM for the simulation of annual tile flow and 

annual N loading in tile flow was acceptable. In another study using RZWQM at the same location 

Ma et al., (2007a) evaluated the long-term management impacts of tillage and crop rotation on 

hydrology and crop yield, showing an adequate simulation of higher corn yield under a corn–

soybean rotation than under continuous corn. The RZWQM model satisfactorily captured the 

observed increase in [NO3
−-N] in drain flow with increasing tillage intensity and showed 14% less 

drainage under the corn–soybean rotation than under continuous corn. The study concluded that 

RZWQM is a promising tool for quantifying the relative effects of tillage and crop rotation on N 

loss in drainage flow.  Ahmed et al., (2007b) employed RZWQM to simulate the long-term effects 

of current N management practices for corn production in Southern Ontario, Canada and evaluated 
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different cropping systems for their potentially better N management. The model satisfactorily 

simulated the amount of subsurface tile drainage, residual soil NO3
−-N, NO3

−-N in subsurface 

drainage water, and crop yield. Moreover, the simulation found that changing the crop rotation 

from corn-soybean to corn-soybean-soybean would result in a greater reduction in N losses 

through drainage on a silt loam soil than on a sandy loam soil. Using the RZWQM2 model (coupled 

with CERES‐Wheat), Qi et al., (2013) conducted a study at Sydney, Montana to quantify the 

effects of crop management practices and tillage on soil water and spring wheat production in a 

continuous spring wheat system under dryland conditions. They further extended the RZWQM2 

model simulation results to propose alternate cropping systems and management practices under 

long term weather conditions. The RZWQM2 model simulated soil water and crop yield to an 

acceptable level under various tillage methods, planting dates, and seeding rates, showed no 

impacts of tillage, but found late planting to considerably reduced grain yield and biomass. The 

model’s simulation under long-term climate variability revealed a large water deficit (323 mm) for 

spring wheat and subsequently proposed a mitigation strategy consisting of fallowing the cropland 

every other year, which would conserve 42 mm of water for the following wheat growing season, 

resulting in a yield increase of 249 kg ha–1 (13.7%).  Other long-term simulations identified that 

to achieve optimum economic returns optimal spring wheat planting dates should be between 

1 March and 10 April, at seeding rates of 3.71 and 3.95 × 106 seeds ha–1 for conventional and 

ecological management treatments, respectively. Ding et al., (2020) employed RZWQM2, to 

simulate the effects of conventional tillage vs. four different conservation tillage practices (no-till, 

subsoiling tillage, no-till with straw, and subsoiling tillage with straw) on soil water, nitrogen 

dynamics, and yield of winter wheat in Henan province, China.  They found an acceptable 

agreement index (d) and RMSE between simulated and measured soil water content, soil [NO3
−-N], 



29 
 

and grain yield. The study demonstrated a reasonable use of the RZWQM2 model to simulate the 

impact of tillage on crop production, while it suggested replacing conventional tillage with no-till 

in Henan Province of China to reduce water loss and N leaching. Using RZWQM2, Qi et al., 

(2011) investigated the long-term impact of winter rye cover on water cycling and N dynamics 

under a soybean-corn rotation system at an experimental site located in Iowa, USA.  Prior to the 

long-term simulation, the model was calibrated and validated against daily drainage flow under 

four different treatments. The model’s simulation of drainage as well as NO3
−-N loss through tile 

drainage were deemed to be satisfactory. The results of long-term simulation indicated that a 

winter rye cover crop reduced annual subsurface drainage and NO3
−-N loss by 11% (29 mm) and 

22% (11.8 kg N ha-1), respectively, and increased annual ET by 5% (29 mm).  Instituting the use 

of RZWQM to simulate the impact of cover crops on water quality in the Mississippi River Basin, 

and simulating corn–soybean rotations and continuous corn plantings in Ohio, Indiana, Illinois, 

Iowa, and Minnesota, Kladivko et al., (2014) showed 20% less N loss to the Mississippi River 

under a winter rye cover crop. In another recent study, Gillette et al., (2018) used the RZWQM 

model to evaluate NO3
−-N losses to drain flow and N2O emissions in a corn-soybean system with 

a winter rye cover crop situated in central Iowa, USA and found that average measured and 

RZWQM simulated drain flow and [NO3
−-N] with a winter rye cover crop to be 60% and 54% less 

than without cover crop. Average annual April through October cumulative observed and 

simulated N2O emissions were 6.7 and 6.0 kg N2O-N ha− 1 for no cover crop, and 6.2 and 7.2 kg 

N ha− 1 for with a cover crop. The study concluded that RZWQM was a promising tool for 

estimating the impact of a winter rye cover crop on drainage water quality (NO3
−-NNO3

−-N ) and 

N2O emissions from subsurface drained agricultural fields under a corn-soybean rotation.  
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2.3  KNOWLEDGE GAP AND NEED OF RESEARCH 

        We still, today, face significant environmental problems with the nonpoint source P pollution 

of surface water bodies. The P pollution of surface water bodies is leading to eutrophication or 

algal bloom. Researchers have identified that agriculture fields are one of the major sources of P 

that eventually contributes to the surface water bodies. It is also identified that, among the 

agricultural fields, those are having artificial subsurface tile drainage system, contributes most 

towards this P loss.  As of present, we still lack the extensive body of knowledge on the science 

behind the agricultural P dynamics and the fate and transport of P from an agricultural field. It is 

primarily because of the several limitations in the existing agricultural process control models 

(Radcliff et al., 2015) that can be effectively employed to simulate agricultural P dynamics and P 

loss from an agricultural field particularly through tile drainage system. The existing P models are 

mostly limited to surface runoff bound P losses simulation and does not have the capabilities to 

simulate P dynamics arising out of fertilizer / manure application. Many of the existing models 

also lacks the ability to simulate PP losses, which constitute majority of P loading originating from 

the agricultural fields. Researchers (Kleinman et al., 2015) have suggested that there is an urgent 

need to develop agricultural process control models particularly for the tiled drained agricultural 

filed that can be effectively used my the agricultural managers and planners to understand science 

behind the fate and transport of P from the agricultural field to the surface water bodies.  This 

research is undertaken to overcome these limitations of the existing agricultural P simulation 

models (Radcliff et al., 2015), while developing an all-in-one P simulation model (RZWQM2-P) 

for the tile drained agricultural field as recommended by the earlier researchers (Kleinman et al., 

2015). The developed RZWQM2-P model can serve as a valuable tool for agricultural planner and 

environmental scientists to evaluate different agricultural management practices and judicially 
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identify best management practices to reduce P loading from agricultural field to the surface water 

bodies. 
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CONNECTING TEXT TO CHAPTER 3 

 

Chapter 2 reviewed of some available P models and highlighted their limitations. The chapter 2 

also discussed the RZWQM2 model’s effective applications to simulate the impact of wide range 

of agricultural management practices on hydrology, crop growth and water quality and how its  

various features can be effectively used to develop a new P model to overcome the limitations of 

the exiting P models. The Chapter 3 presents the development and the first attempt of evaluating 

the newly developed P model (RZWQM2-P) (Root Zone Water Quality Model-Phosphorus) using 

a measured dataset including subsurface tile drainage, surface runoff, DRP and PP loss through 

tile drainage and surface runoff, soil water content, soil temperature from a corn soybean rotated, 

inorganic fertilizer applied artificially drained experimental field. 

The following manuscript based on the content of the Chapter 3 has been published in the journal 

of Environmental Modelling and Software and it was co-authored by Zhiming Qi1, Tie-Quan 

Zhang2, Chin S. Tan2, Liwang Ma3 and Allan A. Andales4. 

Sadhukhan, D., Qi, Z., Zhang, T., Tan, C. S., Ma, L., & Andales, A. (2019). Development and 

evaluation of a phosphorus (P) module in RZWQM2 for phosphorus management in agricultural 

fields. Environ. Modell. Softw. 113, 48-58. 
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ABSTRACT 
 

A few management tools can simultaneously describe dissolved and particulate P losses from tile- 

drained agricultural fields. In this study a phosphorus (P) management tool was developed based 

on most recent scientific findings to simulate dissolved and particulate P loses from tiled drained 

agricultural fields, and it was subsequently incorporated into the Root Zone Water Quality Model 

2 (RZWQM2) to take advantage of its featured hydrologic and agricultural management 

subroutines. The RZWQM2-P model was evaluated against data collected in a tile-drained corn-

soybean rotated field fertilized with inorganic P at South Woodslee, Ontario. The results indicate 

that overall, the model satisfactorily simulated dissolved reactive P (DRP) and particulate P (PP) 

losses through surface runoff and tile drainage with Nash-Sutcliffe model efficiency coefficient > 

0.65, percent bias within 25% and index of agreement > 0.75.  RZWQM2-P is a promising tool for 

P management, particularly for subsurface-drained fields. Further testing is needed to assess its 

performance under different fertilization (manure), soil, climate, and cropping conditions.   
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3.1 INTRODUCTION 

       Agriculture phosphorus (P) demand accounts for 80% to 90% of global phosphorus 

consumption. The supply of P is heavily dependent on mined rock phosphate, a non-renewable 

resource becoming increasingly scarce and expensive day by day.  In plants, phosphorus plays a 

role in cellular energy transfer, respiration, and photosynthesis; and is a structural component of 

the nucleic acids of genes and chromosomes, as well as many coenzymes, phosphoproteins and 

phospholipids (Grant et al., 2001). While proper crop growth and the maintenance of high yields 

are critical to agricultural production, crop P use efficiency in the year of application is rather low 

(15-30%; Syers et al., 2008). The build-up of legacy P in soils under long-term application has 

increasingly caused P losses from soil to surface waters. Such P losses from agricultural fields via 

water and sediment have become a serious environmental concern, degrading the quality of water 

in fresh water bodies (e.g., lakes and rivers), as well as brackish sea waters (e.g. sea coast rivers 

outlets), by causing a rapid increase in algal populations leading to eutrophication (Guildford and 

Hecky, 2000). Such algae infested water is resulting in adverse ecological conditions for aquatic 

flora and fauna. It is now an established fact that excessive P loading of freshwater bodies and 

coastal sea areas can be confidently attributed to an over application of fertilizer in upstream 

agricultural fields. It is estimated that 80% of the P pollution reaching Lake Champlain’s 

Missisquoi Bay originated in upstream agricultural lands (Hegman et al., 1999). In Quebec alone, 

some 156 lakes were already deemed polluted by P (MSSS, 2007). 

     As removal of excess P from water by chemical (Surampalli et al., 1995) or biological (Oehmen 

et al., 2007) means is complex, expensive and time consuming, remediation of eutrophication in 

rivers and lakes is difficult. One practical option to mitigate this problem is to arrest P loss right at 

the source by adopting proper agricultural management practices. To control P loss from an 

http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2012.04190.x/full#b121
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agricultural field one must understand the P dynamics of an agricultural field. Kleinman et al., 

(2015) indicated that computer modelling drawing on measured P data was a currently priority in 

achieving this goal. Of available agricultural P management models, ICECREAM (Tattari et al., 

2001) seems to be the best at simulating P losses through tile drains (Radcliffe et al., 2015). 

However, in the absence of a water table-based tile drainage component, ICECREAM uses matrix 

and macropore flow flux at a certain soil depth to mimic tile drainage (Qi and Qi, 2016; Radcliffe 

et al., 2015). ICECREAM adopts simple storage routing concepts to simulate matrix flow within 

the soil profile. This can be improved by adopting the soil-matric-potential-based Richards 

equation (Richards, 1931) to simulate matrix flow and Hooghoudt’s equation (Bouwer and 

Schilfgaarde, 1963) to simulate tile drainage. With no separate P pool to simulate manure and 

fertilizer P dynamics, ICECREAM assumes that manure or fertilizer P are mixed with the soil upon 

application. 

      Modelling P in an agricultural field involves modelling of hydrological processes on and below 

the ground surface and the effects of agricultural management practices. A P model needs to 

simulate both surface hydrological processes (e.g., soil evaporation, plant transpiration, runoff, 

and soil erosion), and subsurface hydrological processes (e.g., infiltration, matrix flow, preferential 

flow or macropore flow, flow to tile drainage, fluctuation of water tables, root water and nutrient 

uptake, and soil moisture redistribution). Agricultural management practices such as surface 

irrigation and sub-irrigation, drainage, fertilization, tillage and residue management, and crop 

rotation influence the fate and transport of P. The success of a P model greatly depends on how 

effectively and efficiently the model captures these hydrological processes and how these 

processes are parameterized within the model.  RZWQM2 (Ahuja et al., 2000), a widely tested 

field-scale process-based model, is an ideal option as a base of a P model, because it is equipped 
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with subroutines to simulate all the hydrological processes and agricultural management practices 

mentioned above. It has been extensively evaluated at locations across the United States (Fang et 

al., 2014a,b; Gillette et al., 2018; Hanson et al., 1999; Ma et al., 2007 a,b, 2004;  Malone et al., 

2014; Qi et al., 2011, 2012, 2013; Thorp et al., 2007; Wang et al., 2015) and in Canada ( Ahmed 

et al., 2007a, b; Al-Abed et al., 1997; Madani et al., 2002; Jiang et al., 2018). Nonetheless, current 

P models lack the capacity to adequately simulate P losses, particularly those occurring through 

tile drainage (Radcliffe et al., 2015). In this study an attempt was made to develop a model based 

on most recent scientific finding regarding the fate and transport of P from an agricultural field 

available in the literature, and to test this new P management tool against measured hydrologic and 

P data in a tile-drained cropland. 

3.2  MATERIALS AND METHODS 

3.2.1  P Model  

          The P model (Figure 3.1) is designed with five different soil P pools: three inorganic, namely 

labile P (LabP) active inorganic P (ActIP) and stable inorganic P (StabIP) and two organic pools 

namely fresh organic P pool (FresOP)  and stable organic P pool (StabOP) respectively following 

the nomenclature of Jones et al., (1984). Besides these soil P pools, as an advanced feature the 

model also has four surface manure P pools and two surface fertilizer P pools to simulate P 

dynamics arising from the application of fertilizer and manure (Vadas, 2014). The manure P pools 

are inorganic water extractable P (ManWIP), inorganic stable P (ManSIP), organic water 

extractable P (ManWOP), and organic stable P (ManSOP). The fertilizer P pools  were available 

fertilizer P (AvFertP) and residual fertilizer P (ResFertP)  Among these P pools, the LabP pool is 

considered to be in dissolved form and the most dynamic P pool. In addition, it is the only P pool 

from which plants can uptake P. Plant root density is the highest near the soil surface so plant P 
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uptake in the upper portion of the soil profile is more than that in deeper layers. This depth 

distribution of plant P uptake is controlled by plant P uptake distribution parameter. The governing 

equations of plant P uptake were adopted from Neitsch et al., (2011). There is constant absorption 

and desorption happen among these three inorganic P pools to maintain an equilibrium. The LabP 

pool is in rapid equilibrium with the 𝐴𝑐𝑡𝐼𝑃 pool, which is in slow equilibrium with the StabIP 

pool. The rapid adsorption and desorption of inorganic P in the soil between LabP and ActIP is 

simulated based on Jones et al., (1984), with advanced dynamic absorption and desorption as 

prescribed by Vadas et al., (2006). This modification enables the model to simulate P movement 

among these pools by using a dynamically changing rate factor rather than a constant rate factor. 

The slow adsorption and desorption of inorganic P in the soil between ActIP and StabIP is 

simulated based on Jones et al., (1984).  After decomposition, P from plant residues and soil humus 

are added to the FresOP pool and the StabOP pool, respectively. Mineralization happens from 

FresOP pool and mineralized P is added to the LabP and the StabOP pools. A slow mineralization 

also follows in the StaOP pool and mineralized P is added to the LabP pool. Immobilization 

happens in the LabP pool and immobilized P is added to the FreOP pool. When fertilizer and/or 

manure is applied in the field the fertilizer and/or manure P is subsequently added to the fertilizer 

and manure pools based on application depth, type and properties of fertilizer and/or manure 

applied (Vadas, 2014). These independent fertilizer and manure P pools enable the model to 

simulate more precisely the P dynamics arising from the application of fertilizer and manure in an 

agricultural field. Then the leaching and decomposition takes place from these pools. Decomposed 

and leached P are added to the soil P pools. The ability of the P model to simulate DRP through 

tile flow is improved by adopting the recommendations of Francesconi et al., (2016) whereas the 

PP loss through tile drainage is simulated by considering colloidal particle transport through 
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macropore flow (Jarvis et al., 1999; Larsson et al., 2007). In the model, the first soil layer is set to 

a 0.01 m depth as the model assumes that particle bound P originates from the first 0.01 m depth 

of the soil profile. All the P pools contribute to PP loss whereas the LabP pool, ManWOP and 

ManWIP pools and all the ferilizer P pools contribute to DRP loss. To simulate DRP and PP loss 

through tile drainage the linear groundwater reservoir-based approach, as suggested by Steenhuis 

et al., (1997), was used. In this approach DRP is generated through matrix flow and macropore 

flow, while PP is only generated through macropore flow and is first to contribute to a groundwater 

reservoir. Subsequently a daily mass balance is calculated, then DRP and PP is lost along with the 

tile drainage water from this groundwater reservoir. All the equations used in the model are 

provided in the Appendix A. 

 

 

Figure 3.1: RZWQM2-P Model’s P pools. 
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FresOP , fresh organic P; StabOP, stable organic P; StabIP, stable inorganic P; ActIP, active 

inorganic P; LabP, labile P pool;  ManWIP, manure water extractable inorganic P; ManWIP, 

manure water extractable organic P; ManSIP, manure stable inorganic P; ManSOP, manure stable 

organic P; AvFertP available fertilizer P; ResFertP, residual fertilizer P; DRP,dissolved reactive 

P; PP,  particulate P; FertilizerP, Applied P with fertilizer application;   ManureP, Applied P with 

manure application. 

3.2.2  RZWQM2 Overview  

          Developed by the USDA-ARS, the RZWQM2 model (Ahuja et al., 2000) is a field scale, 

one-dimensional model which integrates physical, biological, chemical and hydrological processes 

and simulates crop growth, hydrologic cycle, fate and transport of nutrients and pesticides under 

different agronomic management practices and climate patterns. Within the RZWQM2 model soil 

water retention is described using the Brooks-Corey equation (Brooks and Corey, 1964). The 

Green-Ampt approach (Green and Ampt, 1911) is used to compute the infiltration. The model 

employs the Richards equation (Richards, 1931) to simulate soil water redistribution following 

infiltration in the soil profile. Tile drainage flow is calculated by Hooghoudt’s steady state equation 

(Bouwer and Schilfgaarde, 1963) and the macropore flow is governed by the Poiseuille’s law.  The 

Simultaneous Heat and Water (SHAW) model (Flerchinger, 1987,1989) is linked to RZWQM2 to 

simulate ice in soil, snow accumulation, snow melting, as well as soil freeze-thaw cycles. The crop 

growth can be simulated either by embedded DSSAT 4.0 crop models (Jones et al., 2003) or a 

generic crop production model (Hanson, 2000) whereas evapotranspiration is estimated using the 

double layer Shuttleworth-Wallace model (Shuttleworth and Wallace, 1985). 

3.2.3 P model and RZWQM2 Integration 

          The P model described above was first developed then incorporated into the RZWQM2 

model. While the P model simulates P dynamics, the RZWQM2 governs the physical, biological, 

chemical and hydrological processes that influence the P simulation. The developed P model 

combined with RZWQM2 performs as a single tool, the P model being dependent on RZWQM2 
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for the simulation of crop growth, runoff, drainage, soil moisture and its flux, soil temperature, 

sediment yield, macropore flow, residue and soil humus decomposition and agriculture 

management practices. All these components are simulated by RZWQM2 within its original 

functionalities and then the P model uses model outputs to simulate P dynamics and P loss through 

surface runoff and tile drainage from an agricultural field. The P model’s working algorithms along 

with its dependencies on RZWQM2 are presented in Figure 3.2.  

 

 

Figure 3.2: RZWQM2-P model’s working algorithms and its dependencies on RZWQM2 
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3.2.4  Field Experiment 

          To evaluate the P model, observed runoff and drainage water flow, as well as DRP and PP 

mass in both runoff and tile drainage water were collected from an Agriculture Agri-Food Canada 

(AAFC) experimental site, the Hon. Eugene F. Whelan Research Farm, near South Woodslee, ON 

(42.21N, 82.74W) from June 2008 to December 2012. The site was comprised of 16 plots (67.1 m 

× 15.2 m) receiving different fertilizer types and drainage system treatments. Among these, plot 

numbers 5 and 9, selected for the present study, received inorganic NPK fertilizer applications and 

were subject to standard tile drainage (depth: 0.85 m, spacing: 3.8 m) (Zhang et al., 2013). The 

crop was rotated between maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] in alternating 

years. In 2008, 2010 and 2012 maize was planted at a density of 79,800 seeds ha-1, while in 2009 

and 2011 soybean was planted at a at a density of 486,700 seeds ha-1. The inorganic fertilizers 

(114.5 kg P2O5 ha-1 (roughly 50 kg P ha-1), 200 kg N ha-1 from NH4NO3, and 100 kg K ha-1 from 

KCl) were surface-applied before planting in the maize planting years. Chisel plow tillage was 

done each year after harvest or in the following year before planting. The dates of cropping and 

other crop management practices are presented in Table 3.1. The P content in corn and soybean 

grain were measured after harvest (between 20 October and 13 December) each year. Grain 

samples were dried at 55°C, ground and passed through a 1-mm sieve and digested using a H2SO4-

H2O2 procedure. Phosphorus concentrations in all of the filtrates and digests were determined 

using a QuikChem Flow Injection Auto-Analyzer (Lachat Instruments), employing the ammonium 

molybdate ascorbic acid reduction method (Murphy and Riley, 1962). 
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Table 3.1: Crop and management practices at the Site 

 

Year Date Management practices 

2008 

08-Jun Inorganic fertilizer 

18-Jun Maize planting 

5-Nov Maize harvest 

2009 

  

5-Mar Chisel plow 

22-May Soybean planting 

20-Oct Soybean harvest 

1-Nov Chisel plow 

2010 

17-Jun Inorganic fertilizer 

26-Jun Maize planting 

8-Nov Maize harvest 

1-Dec Chisel plow 

       2011 

15-Jun Soybean planting 

13-Dec Soybean harvest 

20-Dec Chisel plow 

       2012 

20-May Chisel plow 

22-May  Inorganic fertilizer 

25-May Maize planting 

05-Nov Maize harvest 

20-Nov Chisel plow 

 

     The soil type was clay loam and the measured soil properties for plots 5 & 9 were averaged 

(Table 3.2) and used as the soil input data for the model. The soil profile was delineated into six 

layers. The soil properties such as soil texture, field capacity (θfc), permanent wilting point (θwp), 

and saturated hydraulic conductivity (𝑘sat) were measured before the start of the experiment. Soil 

bulk density (ρ) and porosity (φ) were measured in 2010 where as 𝑘sat was measured in the year 

2008. Prior to the onset of the experiment in 2008, soil P was measured using the Olsen P method 

(Olsen et al., 1954). Volumetric soil moistures (θ) for the soil layer ranging in depth between 0-

0.08 m were measured twice a week using a portable probe, while soil temperature (Tsoil) at depth 

of 0.05 m was measured hourly from June to October for the years 2010, 2011, and 2012, using 
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sensors. Hourly Tsoil were averaged to obtain daily mean Tsoil.  

Table 3.2: Model input data for soil physical and chemical properties, average of Plots 5 & 9 

 

ρ, soil bulk density; Clay, soil clay content; Sand, Soil Sand Content; OM, Soil organic matter 

content; θfc, Volumetric soil moisture content at field capacity; φ, Soil Porosity; θwp, Volumetric 

soil moisture content at permanent wilting point; pH, soil pH; LabP, Soil labile P, FresOP, Soil 

fresh organic P, StabOP, soil stable organic P ; TotalP, Soil total P. 

 

      The required weather data (air temperature, precipitation, relative humidity, solar radiation and 

wind speed) to run the model were collected for the period of 1st Jan. 2008 to 31st Dec. 2012 from 

the automated meteorological weather station located at the Whelan farm, located less than 500 m 

from the experimental site. During the winter (1st Oct. – 30th April of 2009, 2010 and 2011), rain 

gauge inaccuracies for snowfall precipitation, led to data being obtained from Environment 

Canada’s Harrow Weather Station (Station ID 6133362, 42.030N, 82.90 0W) located 16.6 km from 

the study field. In each experimental plot there was a catch basin similar to a sewage sink at their 

downstream end to collect the surface runoff. Surface runoff and tile drainage from the 

experimental plot were directed to a central instrumentation building via underground PVC pipes. 

In the instrumentation building, the flow rate was measured automatically using electronic 

flowmeters and recorded in a multi-channel data logger. Surface runoff and tile drainage water 

samples were collected automatically using autosamplers (CALPSO 2000S, Buhler Gmbh & 

Company). Surface and tile water samples were collected continuously (year-round), 

proportionally to flow volume, samples being taken for every 1000 L of flow during the growing 

Soil 

Layer 

depth 

(m) 

ρ  

(Mg m-3) 

Clay  

(%) 

Sand  

(%) 

OM  

(%) 

θfc 

 (m3m-3) 

φ 

(m3 

m-3) 

θwp 

 (m3 m-3) 
pH 

LabP  

(g kg-1) 

FresOP 
(g kg-1) 

StabOP 

 (g kg-1) 

TotalP 
(g kg-1) 

0.00-0.01 1.326 34.2 29.0 3.7 0.368 0.54 0.175 7.5 0.0230 0.100 0.2303 0.9045 

0.01-0.10 1.326 34.2 29.0 3.7 0.368 0.54 0.175 7.5 0.0210 0.085 0.2174 0.9000 

0.10-0.25 1.391 34.2 29.0 3.7 0.361 0.54 0.175 7.5 0.0210 0.085 0.2174 0.9000 

0.25-0.45 1.391 40.7 25.7 2.0 0.351 0.50 0.175 7.5 0.0110 0.055 0.1148 0.6500 

0.45-0.80 1.326 40.4 27.0 0.7 0.356 0.48 0.175 7.5 0.0055 0.028 0.0580 0.5000 

0.80-1.20 1.326 39.3 24.6 0.5 0.356 0.48 0.174 7.5 0.0055 0.028 0.0580 0.4000 
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season and for every 3000 L of flow during the non-growing seasons. After the collection the 

samples were analyzed in the laboratory for DRP and total dissolved P (𝑇𝑜𝑡𝑎𝑙𝐷𝑃) using an 

acidified ammonium persulfate [(NH4)2S2O2] oxidation procedure (USEPA, 1983). Unfiltered 

water samples were analyzed for total P (TotalP) using the sulfuric acid-hydrogen peroxide 

digestion method (USEPA, 1983). The 𝑃𝑃 was computed by the difference between TotalP and 

TotalDP.  

3.2.5  Model Calibration and Validation 

          The RZWQM2 with this newly developed P model was run using the four and a half years 

(June 2008 – Dec 2012) of data collected from the experimental site. There were some limitations 

on flow event separation during the flow data collection, so to ensure the precision of P loss 

estimation, the collected data was aggregated into 19 different periods (Table 3.3) and out of these 

the first twelve periods (01 June 2008 to 21 Dec 2010, two and half years) were used for calibrating 

the model, while the last seven periods (22 Dec 2010 to 09 Dec 2012, two years) were used for 

validating the model. During the calibration process, parameters related to soil moisture, soil 

temperature, surface runoff and tile drainage were initially calibrated, as these processes control 

the P loss from an agricultural field. Then the parameters related to P loss through surface runoff 

and tile drainage were calibrated. The calibration was undertaken manually while changing the 

calibration parameters within the range as obtained from prior studies and available literature, by 

a trial and error method following the protocol given by Ma et al., (2011) and iterated several times 

until a good match with the observed data was obtained. Three model evaluation statistics: Nash‐

Sutcliffe efficiency (NSE), percent bias (PBIAS), and Index of agreement (IoA) (Moriasi et al., 

2007, 2015) served to evaluate the performance of the model in simulating hydrology, soil 

moisture, soil temperature and P loss through surface runoff and tile drainage. Model performance 
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was catergorised as very good, good, statisfatory and unsatifactory based on the criterion of those 

model evaluation statistics as recommended by Moriasi et al., (2007, 2015). The model is regarded 

to perform satisfactorily when NSE > 0.50 and good when NSE > 0.65. Model performance is 

deemed to be satisfactory when  |PBIAS| is between 15% and 25% for water flow and is between 

40% and 70% for P and it is deemed to be good when |PBIAS| is between 10% and 15% for water 

flow and is between 25% and 40% for P (Moriasi et al., 2007). Model performance is regarded as 

acceptable when IoA > 0.75 (Moriasi et al., 2015). 

Table 3.3: Periods of water flow and P measurement data for calibration and validation 

 

Period  

no. 

Period Period 

no. 

Period 

Calibration Validation 

1 1/Jun/2008-16/Jun/2008 13 22/Dec/2010-23/Mar/2011 

2 17/Jun/2008-17/Jul/2008 14 24/Mar/2011-22/Jun/2011 

3 18/Jul/2008-22/Oct/2008 15 23/Jun/2011-7/Sep/2011 

4 23/Oct/2008-11Feb/2009 16 8/Sep/2011-7/Sep/2011 

5 12/Feb/2009-27/Mar/2009 17 10/Nov/2011-22/Dec/2011 

6 28/Mar/2009-26/May/2009 18 23/Dec/2011-12/May/2012 

7 27/May/2009-16/Jul/2009 19             13/May/2012-09/Dec/2012 

8 17/Jul/2009-23/Oct/2009   

9 24/Oct/2009-20/Apr/2010   

10 21/Apr/2010-11/Jun/2010   

11 12/Jun/2010-5/Aug/2010   

12 6/Aug/2010-21/Dec/2010   

 

         In RZWQM2 model soil moisture content is parametrized with air entry pressure (Pb) and 

pore size distribution index (λ). Initially the values Pb and λ were set to the default values of these 

parameters according to soil texture as given by Ma et al., (2011) then subsequently these values 

were adjusted to match the observed values. The value of λ was found to be more sensitive than 

that of Pb in soil water simulations: an increase in λ resulted in reduction in soil water content 
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whereas an increase of Pb led to increase of soil water content.  Once the soil moisture content was 

calibrated and a good fit with the observed value was found, then calibration of runoff and tile 

drainage followed. To calibrate runoff parameters such as saturated hydraulic conductivity (𝑘sat), 

surface crust hydraulic conductivity (𝑘crust) and albedo were adjusted. In RZWQM2 runoff is 

simulated when the rainfall rate exceeds the infiltration rate (Ma et al., 2012), so the top layer 𝑘sat 

and 𝑘crust values were adjusted to obtain a good fit with the observed runoff. Furthermore, the 

albedo was adjusted for simulation of evapotranspiration, which in turn affected surface runoff. 

For tile drainage calibration, 𝑘sat, Pb and lateral hydraulic conductivity (𝑘lat) were adjusted. 

Increasing 𝑘sat resulted in an increase in tile drainage, whereas increasing Pb resulted in decrease 

in tile drainage. Moreover, 𝑘lat had very prominent influence in tile drainage simulation and it was 

adjusted to 2×𝑘sat. In addition, Pb was slightly adjusted to better match tile drainage without 

hampering the previous calibration for soil moisture.   

        The loss of DRP through surface runoff was calibrated by adjusting the soil P extraction 

coefficient while calibration of DRP loss through tile drainage depended on macroporosity, Pb and 

λ of the deeper soil layers. In the model, macropore flow is initiated when the top soil layer 

becomes saturated and DRP carried away through macropore flow depends on the volume of 

macropore flow. Therefore, to control the DRP loading to the groundwater reservoir the 

macroporosity value was adjusted. Finally, the Pb and λ of the deeper soil layers were slightly 

adjusted to control the DRP loading to groundwater reservoir by matrix flow without altering the 

earlier results for tile drainage and soil moisture simulations. The PP loss through surface runoff 

was calibrated by adjusting USLE soil loss coefficients (soil erodibility factor, cover and 

management factor, support practice factor) and Manning’s n. These parameters control the 

sediment yield thereby controlling the PP loss through surface runoff. Increasing soil erodibility 
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increased the sediment yield, while increasing the Manning’s n reduced it. Accordingly, to obtain 

a good match of PP loss through surface runoff these two parameters were carefully adjusted along 

with the cover and management factor and support practice factor. The PP loss through tile 

drainage is controlled by parameters like soil replenishment rate coefficient, soil detachability 

coefficient, and soil filtration coefficient. These parameters govern the colloidal particle loss to 

sub-surface flow hence limit the PP loss through tile drainage. The high soil filtration coefficient 

leads to less colloidal particle loss whereas the increase of soil detachability coefficient and soil 

replenishment rate coefficient leads to more colloidal particle loss. So, these parameters were 

carefully balanced over the calibration period to get a reasonable simulation with respect to PP 

loss through tile drainage. Finally, to adjust the plant P uptake from the LabP pool, the P uptake 

distribution parameter for each crop was adjusted. Calibrated soil hydraulic parameters and their 

values are presented in Table 3.4 and all other calibrated parameters are presented in Table 3.5.  

 

Table 3.4: Calibrated soil hydraulic parameters 

Soil Layer 

depth  

(m) 

Soil hydraulic parameters 

Pb 

(cm) 
λ 

𝑘sat 
(cm hr-1) 

𝑘lat 
(cm hr-1) 

0.00-0.01 -20.06 0.16 0.25 0.50 

0.01-0.10 -29.03 0.15 0.35 0.70 

0.10-0.25 -14.64 0.20 0.55 1.10 

0.25-0.45 -12.16 0.19 0.55 1.10 

0.45-0.80 -25.10 0.15 0.17 0.34 

0.80-1.20 -35.16 0.14 0.17 0.34 

Pb, Air entry pressure; λ, Pore size index; 𝑘sat, Saturated hydraulic conductivity; 𝑘lat, Lateral 

Hydraulic Conductivity; 
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Table 3.5: Calibrated parameters and their values 

Parameters 
Calibrated 

Values 
Default (Range) 

Surface 𝑘crust (mm h-1) 0.50 0.01 (0.01-20) 

Albedo   
    Dry soil 0.50 0.20 (0.01-0.9) 

    Wet Soil 0.65 0.30 (0.02-0.9) 

    Crop at Maturity 0.55 0.70 (0.01-0.9) 

    Fresh Residue 0.85 0.22 (0.01-0.9) 

Macroporosity (m3 m -3) 0.03 - 

P extraction coefficient (-)  0.35 0.10-1.00 

USLE Coefficients   

   Soil erodibility (ton ac-1) 0.25 0.02(0.005-0.80) 

   Cover and management factor 0.85 0.50 (0.01-1.00) 

   Support practice factor 0.85 0.50 (0.01-1.00) 

Manning’s n 0.02 0.01 (0.01-0.40) 

Soil filtration coefficient (m-1) 0.002 0.00 (0.00-1.00) 

Soil detachability coefficient (gm  J-1 mm-1) 0.90 0.40 (0.00-1.00) 

Soil replenishment rate coefficient (gm m-2 day-1) 0.10 0.20 (0.00-1.00) 

P uptake distribution parameter   

    Corn 10.00  1.00-15.00 

    Soybean 10.00  1.00-15.00 

 

3.3  RESULTS 

3.3.1  Soil Moisture and Soil Temperature 

         The time series of simulated and observed soil temperature (Tsoil) at 0.05 m depth and soil 

moisture (θ) between 0-0.08 m depths are presented in Figure 3.3. The simulation statistics are 

summarized in Table 3.6. Model simulation of θ and Tsoil ware satisfactory with NSE of 0.64, 

PBIAS of 0.30% and IoA of 0.89 and with NSE of 0.59, PBIAS of 13.08 % and IoA of 0.89 

respectively.   
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Figure 3.3: Comparison between simulated and observed (a, b, c) soil moisture (%) (0-0.08 m) and 

(d, e, f) soil temperature (0C) (0.05 m) 

 

 

Table 3.6: Statistics for model performance in Soil Moisture and Soil Temperature simulation   

Statistics 

Soil Moisture  Soil Temperature 

Calibration Validation 
All 

Period 
 Calibration Validation 

All 

Period 
 

PBIAS 1.63% -1.67% 0.30%  12.67% 13.72% 13.08% 

NSE 0.57 0.56 0.64  0.63 0.52 0.59 

IoA 0.88 0.86 0.89 
 

0.91 0.88 0.89 

PBIAS, Percent bias, NSE, Nash-Sutcliffe model efficiency; IoA, Index of agreement. 

 

3.3.2  Hydrology 

       Simulated vs. observed surface runoff and tile drainage are depicted in Figures 3.4a and 3.4b, 

respectively, and the accuracy statistics presented in Table 3.7. For the calibration period, 

simulation in surface runoff was very good and in tile flow was satisfactory based on the model 

evaluation criteria.  During the calibration period, surface runoff was estimated with PBAIS of -

12.47% and with NSE of 0.85 while drainage was estimated with PBAIS of 12.46% and the NSE 
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of 0.60. The simulated average annual runoff and tile drainage were 129.57 mm and 375.43 mm 

(Table 3.8), respectively. These values were very close to the observed annual mean values.  

Overall, the model’s performance was very good in simulating runoff (NSE>0.75, PBIAS within 

± 10% and IoA > 0.75) and good in simulating tile drainage (NSE>0.65, PBIAS within ± 10% and 

IoA > 0.75). The simulated vs. observed water balance components are summarized in Table 3.8. 

During the four and a half years of simulation, simulated average annual ET (449.73 mm) was 

47.45% of the observed annual precipitation (947.71 mm). This was similar to annual ET that was 

45% of measured precipitation in the same region (Tan et al., 2002b). Between the simulated 

average annual surface runoff and tile drainage, most (74.34 %) of the water moved out of the field 

through the tile drainage system. 

 

Figure 3.4: Comparison between simulated and observed (a) surface runoff (b) subsurface 

drainage. Periods are the time periods as mentioned in Table 3.3. 
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Table 3.7: Statistics for model performance in simulation of water, dissolved reactive phosphorus 

(DRP), particulate phosphorus (PP) and sum of DRP & PP (SumP) 

                  

Water 

Statistics 

 Runoff  Drainage 

 Calibration Validation 
All 

periods  
Calibration Validation 

All 

periods 

PBIAS  -12.47% 1.71% -4.08% 
 

12.46% 2.95% 7.18% 

NSE  0.85 0.71 0.81 
 

0.60 0.72 0.73 

IoA   0.96 0.92 0.95 
 

0.86 0.91 0.92 

Dissolved Reactive P (DRP) 

  

  DRP in Runoff   DRP in Drainage 

 Calibration Validation 
All 

periods 
 Calibration Validation 

All 

periods 

PBIAS  10.63% -2.80% 4.58% 
 

-13.40% 6.17% -1.19% 

NSE  0.95 0.59 0.80 
 

0.65 0.74 0.83 

IoA   0.99 0.90 0.95 
 

0.91 0.94 0.95 

Particulate Phosphorus (PP) 

  

  PP in Runoff   PP in Drainage 

 Calibration Validation 
All 

periods 
 Calibration Validation 

All 

periods 

PBIAS  13.79% -10.24% 0.10% 
 

-8.28% 5.55% 0.54% 

NSE  0.76 0.72 0.76 
 

0.58 0.69 0.73 

IoA   0.93 0.91 0.93 
 

0.86 0.86 0.90 

Sum of DRP and PP (SumP) 

  

  SumP in Runoff   SumP in Drainage 

 Calibration Validation 
All 

periods 
  Calibration Validation 

All 

periods 

PBIAS  12.87% -8.34% 1.40% 
 

-10.15% 5.76% -0.07% 

NSE  0.84 0.73 0.78 
 

0.71 0.84 0.86 

IoA   0.96 0.92 0.94 
 

0.92 0.94 0.95 

  SumP in Runoff+ Drainage     

  
Calibration Validation 

All 

periods     
PBIAS  -1.38% 1.59% 0.41%     
NSE  0.86 0.82 0.86     
IoA   0.96 0.94 0.95         

PBIAS, Percent bias, NSE, Nash-Sutcliffe model efficiency; IoA, Index of agreement. DRP, 

Dissolved Reactive Phosphorus; PP, Particulate Phosphorus; SumP, Sum of  DRP, PP;  
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OBS, Observed; SIM, Simulated; ET, Evapotranspiration; ΔS, Soil water change 

3.3.3  Dissolved Reactive Phosphorus (𝐃𝐑𝐏) Loss 

          Simulated and observed DRP loss through runoff and drainage for the calibration and 

validation periods are presented in Figures 3.5a & 3.5b and the simulation statistics are 

summarized in Table 3.7. The simulation statistics show that the P model’s simulation of DRP loss 

through surface runoff during the calibration period was in very good agreement with the observed 

data (NSE >0.75, PBIAS within ± 25% and IoA > 0.75) whereas for tile drainage it was good 

(NSE >0.65, PBIAS within ± 25% and IoA > 0.75). During the validation period, simulated DRP 

loss through runoff was satisfactory and simulated DRP loss through tile drainage was good (Table 

3.7). Overall the P model could simulate the DRP loss through both surface runoff and tile drainage 

in very good agreement with the observed data (NSE >0.75, PBIAS within ± 25% and IoA > 0.75) 

and it was found that most of the DRP (75.93% of total simulated DRP loss) was lost through the 

tile drainage system during the simulation period (Table 3.9). 

 

 

Table 3.8: Water balance table for simulation period (mm) 

 Year 
Rainfall 

ET 
Runoff Drainage 

ΔS 
Lateral  

Flow 

Deep 

 Seepage OB SIM OBS SIM OBS 

06/01/08-05/26/09 1034.90 441.51 183.56 174.68 389.72 470.53 -4.56 0.00 8.69 

05/26/09-06/11/10 721.20 417.68 35.56 29.72 251.64 275.73 -11.31 0.00 3.43 

06/11/10-06/22/11 1171.50 422.96 219.26 154.82 499.38 588.51 -9.14 0.00 12.26 

06/22/11-05/15/12 994.70 335.28 144.14 200.89 532.06 479.19 7.61 0.00 6.33 

05/15/12-12/09/12 342.40 406.35 0.55 0.12 16.64 6.26 56.80 0.00 0.78 

Total 4264.70 2023.80 583.07 560.23 1689.45 1820.22 39.40 0.00 31.49 

Average (mm y-1) 947.71 449.73 129.57 124.50 375.43 404.49 8.76 0.00 7.00 
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Figure 3.5: Comparison between simulated vs. observed mass of (a) DRP in surface runoff, (b) 

DRP in drainage water (c) PP in surface runoff, (d) PP in drainage water, (e) SumP in surface 

runoff, (f) SumP  in drainage water, (g) SumP  in surface runoff + drainage water. DRP, Dissolved 

Reactive Phosphorus; PP, Particulate Phosphorus; SumP, Sum of  DRP, PP; Periods are the time 

periods as mentioned in Table 3.3. 

 

 

 

 

1 3 5 7 9 11 13 15 17 19

P
P

 i
n
 D

ra
in

a
g
e
 W

a
te

r

(g
/h

a
)

0

1500

3000

4500

6000

1 3 5 7 9 11 13 15 17 19

P
P

  i
n
 S

u
rf

a
c
e
 R

u
n
o
ff

 

(g
/h

a
)

0

1500

3000

4500

6000
(c) Calibration Validation (d) Calibration Validation

1 3 5 7 9 11 13 15 17 19

D
R

P
 i
n
 S

u
rf

a
c
e
 R

u
n
o
ff

 

(g
/h

a
)

0

1500

3000

4500

6000

Observed

Simulated

(a) Calibration Validation

1 3 5 7 9 11 13 15 17 19

D
R

P
 i
n
 D

ra
in

a
g
e
 W

a
te

r 

(g
/h

a
)

0

1500

3000

4500

6000
(b) Calibration Validation

Periods

1 3 5 7 9 11 13 15 17 19

S
u
m

P
 i
n
 D

ra
in

a
g
e
 W

a
te

r

 (
g
/h

a
)

0

1500

3000

4500

6000

1 3 5 7 9 11 13 15 17 19

S
u
m

P
 i
n
 S

u
rf

a
c
e
 R

u
n
o
ff

 (
g
/h

a
)

0

1500

3000

4500

6000
(e) Calibration Validation (f) Calibration Validation

Periods

1 3 5 7 9 11 13 15 17 19

S
u
m

P
 i
n
 S

u
rf

a
c
e
 R

u
n
o
ff

 &

D
ra

in
a
g
e
 W

a
te

r 
(g

/h
a
)

0

1500

3000

4500

6000 (g) Calibration Validation



54 
 

 

     OBS, Observed; SIM, Simulated; ΔSP, Soil P change; DRP, Dissolved Reactive Phosphorus; 

PP, Particulate Phosphorus; GH, Grain Harvested. 

 

3.3.4  Particulate Phosphorus (PP) Loss 

           Simulated PP loss through runoff and tile drainage agreed well with the observed data. 

Simulation results and statistics are presented in Figures 3.5c & 3.5d and Table 3.7, respectively. 

Analysis of observed data revealed that 68.09% of the net P loss (DRP+PP) was lost in the form 

of PP and tile drainage contributed (63.47% of the total PP loss) more PP loss than the surface 

runoff (Table 3.9). The model captured this well and simulated 68.04% of the net P loss in the form 

of PP and simulated tile drainage PP loss was 63.50% of the total PP loss. Overall, the model’s 

ability in simulating PP loss through surface runoff and subsurface drainage was very good and 

good respectively. (Figure 3.5c, Figure 3.5d and Table 3.7).  

 

 

Table 3.9: P balance table for the simulation period (all values in kg ha-1) 
   

Year 
Ferti-

lizer 

Residue & 

 Humus P 

Release 

GH 
DRP PP 

ΔSP Runoff Drainage Runoff Drainage 

SIM OBS SIM OBS SIM OBS SIM OBS SIM OBS 

06/01/08-05/26/09 50.00 21.50 19.56 15.30 0.47 0.54 1.07 1.27 1.08 1.22 1.73 1.87 34.46 

05/26/09-06/11/10 0.00 33.11 20.12 18.26 0.03 0.07 0.68 0.37 0.21 0.32 1.15 1.04 -10.24 

06/11/10-06/22/11 50.00 33.68 18.12 16.77 0.75 0.59 1.33 1.68 2.20 2.15 2.59 2.80 11.09 

06/22/11-05/15/12 0.00 18.08 18.48 21.23 0.22 0.33 1.44 1.18 1.19 1.01 2.58 2.43 -21.27 

05/15/12-12/09/12 50.00 11.60 16.93 15.01 0.00 0.00 0.04 0.01 0.01 0.00 0.08 0.02 17.03 

Total 150.00 117.97 93.20 86.57 1.46 1.53 4.56 4.51 4.70 4.70 8.12 8.17 31.07 

Average 33.33 26.22 20.71 19.24 0.32 0.34 1.01 1.00 1.04 1.04 1.81 1.82 6.90 
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3.3.5  Sum of DRP and PP (𝐒𝐮𝐦𝐏) Loss 

          The simulation results of the sum of DRP and PP loss (SumP) through surface runoff and 

tile drainage) and its statistics are presented in Figures 3.5e, 3.5f & 3.5g and Table 3.7 respectively. 

Observed data revealed that tile drainage dominated the SumP loss composing 67.14% of total 

annual SumP loss while the simulated SumP loss through tile drainage was 67.46% of the total 

annual SumP loss. The simulation of SumP loss through surface runoff was very good (NSE >0.75, 

PBIAS within ± 25% and IoA > 0.75) while it was good during the validation period (NSE >0.65, 

PBIAS within ± 25% and IoA > 0.75).  The simulation of SumP loss tile drainage during the 

calibration and validation period was good and very good respectively. Overall, the SumP loss 

simulations through both surface runoff and tile drainage were very good (Table 3.7).  The 

simulation of total SumP loss from the field, such as sum of DRP in both runoff and drainage and 

PP in both runoff and drainage for the entire simulation period was also very good (Figure 3.5g 

and Table 3.7). 

3.4  DISCUSSION 

         The field experiment showed that subsurface drainage was the major pathway of P loss from 

the field, comprising 67.14% of total annual average SumP loss. The annual average SumP loss 

through tile drainage was dominated by PP which accounted for 64.53% of total annual average 

SumP loss through tile drainage (Table 3.9). In contrast, a study conducted by Qi et al., (2017) 

with the ICECREAM model at the same site reported that ICECREAM failed to simulate the PP 

loss through tile drainage and that soil moisture content was also not simulated satisfactorily. They 

concluded that it could be improved by adopting the soil matric potential-based Richards equation 

to simulate soil matrix flow. Radcliffe et al., (2015) noted that, although ICECREAM was one of 

the best P simulation models available to date, it lacked macropore and tile drainage components. 
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The newly developed P model combined with RZWQM2 addressed all the concerns that were 

previously highlighted. Qi et al., (2017) reported that ICECREAM simulated DRP loss through 

tile drainage within 18% of observed values and with NSE of 0.66 while it failed to simulate PP 

loss through tile drainage (NSE <0.0 and PBIAS 44%).  While comparing the simulation results 

of this study (Table 3.7) with those of Qi et al., (2017), we found that the P model’s capability was 

particularly improved in its simulation of P losses through the tile drainage system. The model’s 

simulation of P losses particularly through tile drainage system improved after the proper 

calibration of soil moisture. The adoption of Richards’s equation led to better soil moisture and 

soil matrix flux simulations (Table 3.6).  This had a direct impact on P dynamics, as soil moisture 

governs the decomposition and mineralization rate and P flows among the various pools and soil 

matrix flux determines the amount of P loading to the tile drainage system. The use of Poiseuille’s 

law resulted in better macropore flow simulations, which is one of the major pathways of DRP and 

PP loading to the tiles. Finally, the use of Hooghoudt’s steady state equation further improved tile 

drainage simulations and P loss through tile drainage. Soil temperature also has an important role 

in simulation of P dynamics in agricultural fields. An acceptable soil temperature simulation (Table 

3.6) led to good estimation of P flow rate among various P pools, decomposition and mineralization  

rates of residue and soil organic matter. 

    Analysis of the observed data for both growing seasons (periods 2-3, 7-8, 11-12, 15-17, 19) and 

non-growing seasons (periods 1, 4-6, 9-10, 13-14) revealed that 75.71% of total drainage volume 

and 60.14% of total runoff volume occurred in the non-growing seasons. Consequently, the P loss 

during non-growing seasons was dominant. During non-growing seasons, runoff carried away 

56.24% of the total runoff bound DRP, whereas 64.47% of total tile drainage-bound DRP loss 

occurred during non-growing seasons. The same was observed for the PP loss, with 64.97% of 
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total runoff associated PP and 74.34% of total drainage associated PP being lost during the non-

growing seasons. SumP loss in the non-growing seasons during the whole simulation years 

comprised 68.19% of total SumP loss through surface and subsurface water flow. The newly 

developed model satisfactorily simulated the fact that the major flow and P loss from the field 

occurred during non-growing seasons. For simulated discharge, 66.97 % of total runoff and 

67.91% of total drainage occurred in the non-growing seasons whereas simulated SumP loss 

during non-growing seasons represented 65.76% of the total SumP lost through surface and 

subsurface water flow. These simulated results also corresponded well to the observations of King 

et al., (2015), who found that the non-growing period “represents a significant proportion of annual 

discharge and P loss”. 

       The developed RZWQM2-P model is easy to run with menu driven graphical user interface. 

Although the data required to run the model seems to be meticulous, but it can be easily collected 

from many resources when in-situ measurement is not feasible. Weather data can be obtained from 

online resources for free or with nominal charges. Agricultural management data can be collected 

while interviewing the farmer or the farm manager of the site. It can also be made available from 

various factsheets as published time to time by various agricultural agencies. Soil data can be 

derived using basic county soil survey information along with pedotransfer functions (Schaap et 

al., 2001) or tables as provided by Ma et al., (2011) and Rawls et al., (1982). Initial soil P values 

can be estimated while running the model for certain amount of years prior to start of actual 

simulation year with typical agronomical management practices and cropping system of the site.  

RZWQM2-P has in built database of crop phenology parameters for most common crop cultivars. 

This database can be used to default the crop phenology parameters. 

    Computer simulation models inevitably have some limitations because they are built on 
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assumptions and simplified version of the very complex real-world phenomenon. In this context 

RZWQM2-P model is limited to one dimensional and assuming soil as a homogeneous medium. 

The model is not designed to simulate dissolved unreactive P loss.  It also assumes that PP 

originates from the first 0.01 m soil layer and only the macropore flow contribute to tile drainage 

bound PP loss. Another shortcoming of RZWQM2-P is that it is a field scale model, which cannot 

be applied over large-scale watershed. Despite these limitations and assumptions, RZWQM2-P 

can be used in a wide range of scenarios to mitigate P pollution under various agricultural 

management practices along with different cropping systems that are commonly adopted in North 

America. Agricultural management practices include tile drainage, control drainage with or 

without sub-irrigation, various type of tillage application, surface, sub-surface and injected 

inorganic fertilizer/manure application. Manure type includes poultry, swine, beef cattle and dairy 

cattle under solid and liquid phases. RZWQM2-P can also be applied to identify the impact of 

winter manure application, which is a common practice in many areas of North America.   

      In this present study we presented the development of RZWQM2-P and its very first evaluation 

with a tile drained corn soybean rotated field under inorganic P fertilization over a period of four 

and half years. The evaluation resulted in satisfactory performance of the model over the both 

calibration and validation periods. Although RZWQM2-P seems to be a promising tool to manage 

agricultural P under the given management practices, to be certain about the efficacy of the model 

further tests are recommended at several other locations under different fertilization (i.e. manure), 

soil, climate, and crop conditions for a longer period with more observational data. 

3.5  CONCLUSIONS 

        In this study, a model based P management tool was developed to simulate the fate and 

transport of DRP and PP from an agricultural field based on most recent scientific findings while 
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overcoming the limitations of the ICECREAM model as highlighted by previous researchers (Qi 

et al., 2017; Radcliffe et al., 2015), and taking advantage of the process-based agro-hydrologic 

model RZWQM2. The new P model incorporated into RZWQM2 combined the proven strengths 

in simulating the impacts of agricultural management practices and hydrological processes in an 

agricultural field with the ability to simulate P dynamics. The P model was evaluated against four 

and a half years of data collected from a subsurface-drained corn-soybean rotated field with clay 

loam soil in southwestern Ontario, Canada. The simulation results showed that the newly 

developed model performed satisfactorily in simulating the DRP and PP losses through both 

surface runoff and subsurface drainage with  all periods NSE > 0.65, PBAIS within 25% and IoA > 

0.75. The P model’s P loss simulating ability was improved particularly through tile drainage by 

adopting Richards’s equation for simulation of soil matrix flow, and Hooghoudt’s equation for 

simulation of tile drainage flow. The use of Poiseuille’s law may have resulted in better macropore 

flow simulations, which led to better simulations of PP loading to the tile system. However, this 

needs further investigations. The simulation results were consistent with the observed trend that 

the non-growing season dominated the P loss over growing seasons, tile drainage contributed more 

towards these losses, and PP was the major form of P loss. The newly developed P module 

integrated with RZWQM2 is a promising tool for P management, particularly for subsurface-

drained fields. Further tests are needed to evaluate this model under different fertilization 

(manure), soil, climate, and crop conditions.  
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CONNECTING TEXT TO CHAPTER 4 

 

Chapter 3 presented the development and very first evaluation of the newly developed RZWQM2-

P model. The evaluation revealed satisfactory performance of the model’s simulation of P losses 

both through surface runoff and tile drainage under inorganic fertilizer application. The Chapter 4 

presents another evaluation and application of the newly developed P model (RZWQM2-P) (Root 

Zone Water Quality Model-Phosphorus) under manure application.  The model was evaluated 

against the measured dataset including subsurface tile drainage, surface runoff, DRP and PP loss 

through tile drainage and surface runoff, soil water content, soil temperature from a corn soybean 

rotated, artificially drained experimental field. After the evaluation, the calibrated model was 

subsequently applied to identify the best management strategy to mitigate P losses from the field.  

The following manuscript based on the content of the Chapter 4 has been published in the journal 

of environmental water quality and it was co-authored by Zhiming Qi1, Tiequan Zhang2, Chin S. 

Tan2 and Liwang Ma3. 

Sadhukhan, D., Qi, Z., Zhang, T. Q., Tan, C. S., & Ma, L. (2019). Modeling and Mitigating 

Phosphorus Losses from a Tile-Drained and Manured Field Using RZWQM2-P. J. Environ Qual. 

48(4), 995-1005. 

1. Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, 

H9X 3V9, Canada 

2. Harrow Research and Development Center, Agriculture and Agri-Food Canada, Harrow, 

Ontario, N0R 1G0, Canada 

3. USDA-ARS Rangeland Resources and Systems Research Unit, Fort Collins, Colorado, 80526, 

USA. 
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CHAPTER 4 

 

MODELING AND MITIGATING PHOSPHORUS LOSSES FROM A TILE-

DRAINED AND MANURED FIELD USING RZWQM2-P 

 

Debasis Sadhukhan1, Zhiming Qi1*, Tie-Quan Zhang2, Chin S. Tan2, Liwang Ma3  

1. Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, 

H9X 3V9, Canada 

2. Harrow Research and Development Center, Agriculture and Agri-Food Canada, Harrow, 

Ontario, N0R 1G0, Canada 

3. USDA-ARS Rangeland Resources and Systems Research Unit, Fort Collins, Colorado, 80526, 

USA. 

ABSTRACT 

Prediction of phosphorus (P) losses from manured agricultural fields through surface runoff and 

tile drainage is necessary to mitigate widespread eutrophication in water bodies. However, present 

water quality models are weak in predicting P losses particularly in tile drained and manure applied 

cropland. We developed a field scale P management model RZWQM2-P whose accuracy in 

simulating P losses from manure applied agricultural field is yet to be tested. The objectives of this 

study were 1) to assess the accuracy of this new model in simulating dissolved reactive phosphorus 

(DRP) and particulate phosphorus (PP) losses in surface runoff and tile drainage from a manure 

amended field; and 2) to identify best management practices to mitigate manure P losses including 

water table control, manure application timing and spreading methods by the use of model 

simulation. The model was evaluated against data collected from a liquid cattle manure applied 

field with corn-soybean rotation in Ontario, Canada. The results revealed that the RZWQM2-P 

model satisfactorily simulated DRP and PP losses through both surface runoff and tile drainage 

(NSE > 0.50, PBAIS within ± 25% and IoA > 0.75). Compared to conventional management 
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practices, manure injection reduced the P losses by 18% whereas controlled drainage and winter 

manure application increased P losses by 13% and 23%, respectively. The RZWQM2-P is a 

promising tool for P management in manured and subsurface drained agricultural field. The 

injection of manure rather than controlled drainage is an effective management practice to mitigate 

P losses from a subsurface drained field. 

4.1  INTRODUCTION 

       Non-point source phosphorus (P) pollution of surface water bodies originating from the 

upstream agricultural lands are becoming a serious environmental concern, degrading the water 

quality and causing rapid increase in algal population and eutrophication (Guildford and Hecky, 

2000). Sources of P in an agricultural field mostly are soil, plant materials and applied fertilizer 

and manure (Hansen et al., 2002; Heathwaite and Dils, 2000; Withers et al., 2001).  Among these 

the greatest potential for accelerated P losses occur with manure application (Duda and Finan, 

1983; Eghball and Gilley, 1999; Kleinman and Sharpley, 2003; Moore et al., 2000). Almost all 

manure produced on Canadian farms is applied to agricultural land (Patni, 1991). In Ontario, 

animal husbandry generates approximately 16 million cubic meters of liquid manure and 22 

million tons of solid manure, which are mainly applied to large areas of farmland (OMAFRA, 

2005). Based on Statistics Canada data, the area of manure application was approximately 2.83 

Mha (4% of total agricultural area) in whole Canada while in Ontario 0.75 Mha (15 % of total 

agricultural area) and 0.85 Mha (26 % of total agricultural area) in Quebec was manure applied 

during the year 2016. As a primary control of surface water eutrophication, P losses from manured 

soils have prompted a broad array of guidelines and regulations (USEPA, 1996; OMAFRA, 2002). 

     In northern US and eastern Canada, winter manure application is fairly common and had several 

advantages. For example, it nullifies the use of manure storage structures, allows more spreading 
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time and reduce soil compaction (Srinivasan et al., 2006) but at the same time, it is prone to more 

nutrient loss (Liu et al., 2018, 2017a; Vadas et al., 2017) as compared to spring manure application. 

However, because of frozen soil, winter applied manure normally could not be incorporated and 

due to nutrient losses under frequent runoff from snowmelt and rain on snow events, governments 

have restricted winter manure application to prevent loss of manure constituents including P 

(Srinivasan et al., 2006). Because of limited number of studies on quantifying nutrient losses from 

manure upon winter application, these government restrictions on winter manure spreading are 

based more on commonly held perceptions rather than on research (Srinivasan et al., 2006). 

Therefore, a modeling approach can be employed to quantify the effect of winter manure 

application on P losses. 

   Agricultural subsurface tile drainage is a commonly used management practice in many parts of 

the USA and Canada to improve the soil’s natural drainage and subsequently to increase crop yield 

(Evans et al., 1995). Unfortunately, tile drainage can also increase mobile nutrient losses with 

subsurface flow (Tan et al., 1993, 1998, 2002b ; Rudolph and Goss 1993; Ruark et al., 2012; Zhang 

et al. 2015b) as it tends to increase total water yield from an agricultural field. This increased 

nutrient loading pollutes surface and groundwater resources. A modification of subsurface 

drainage system, which uses a riser on tile outflows, known as controlled drainage, is now being 

used in order to prevent excessive drainage and subsequently nutrient losses. Research indicates 

that controlled drainage reduced tile drainage water volume (Tan et al., 2002a) and nitrate-N loss 

over conventional tile drainage system (Drury et al., 2009; Fogiel and Belcher 1991; Tan et al., 

1998). For P losses there are a few studies which investigated this and they were contradictory. 

Valero et al., (2007) and Stämpfli and Madramootoo (2006) found that controlled drainage system 
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was not effective to reduce P losses whereas Tan and Zhang (2011) and Zhang et al., (2015b) 

found that controlled drainage reduced P losses from an agricultural field. 

      Nutrient losses are aggravated by conventional surface broadcast applications because the 

nutrients remain completely exposed to rain and runoff whereas subsurface injection is can be 

practiced to reduce nutrient losses from an agricultural field (Pote et al., 2006; Watts et al., 2011). 

However, modeling studies to substantiate this fact are limited. 

    Kleinman et al., (2015) indicated that computer modeling using measured P data was currently 

one of the priorities in improving one’s understanding of P dynamics in an agricultural field in 

order to mitigate freshwater eutrophication. However, commonly used models such as EPIC 

(Williams et al., 1983), GLEAMS (Leonard et al., 1987), ANSWERS (Bouraoui and Dillaha, 

1996) and ICECREAM (Tattari et al., 2001) do not have dedicated surface manure P pools to 

simulate P dynamics due to manure application (Pierson et al., 2001; Sharpley et al., 2002). There 

are also lack of models which can simulate P losses through tile drainage (Radcliffe et al., 2015) 

which is one of the major pathways of P loading from agricultural fields to freshwater bodies 

(Ruark et al., 2012; Tan and Zhang, 2011). Of available agricultural P management models, 

ICECREAM seems to be the best at simulating P losses through tile drains (Radcliffe et al., 2015). 

However, ICECREAM does not have a water table-based tile drainage simulation component. It 

uses a simple storage routing concepts to simulate matrix flow and macropore flow (Qi and Qi, 

2016; Tattari et al., 2001) and these fluxes at first contributes to a groundwater reservoir then from 

the groundwater reservoir tile flow get initiated when the storage capacity defined by a user defined 

threshold value is exceeded (Larsson et al., 2007). This conceptual approach is reported to be less 

accurate (Larsson et al., 2007). This may be improved by adopting the soil matric potential based 

Richard’s equation (Richards, 1931) to simulate matrix flow, Poiseuille's law based approach to 
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simulate macro pore flow and Hooghoudt’s equation (Bouwer and Schilfgaarde 1963) to simulate 

tile drainage. 

    Root Zone Water Quality Model 2 (RZWQM2, Ahuja et al., 2000) is a field-scale one 

dimensional agricultural process control model which is widely applied in simulating the impacts 

of agricultural management practices on hydrology, water quality, crop growth, and greenhouse 

gas emission at locations across the United States (Ma et al., 2004,2007a,b; Qi et al., 2011,2013) 

Canada (Ahmed et al., 2007 a,b; Jiang et al., 2018) and in China (Fang et al., 2010 , 2013; Liu et 

al., 2017b) but it lacked a P subroutine. We developed a P module for the RZWQM2 model 

(RZWQM2-P, Sadhukhan et al., 2019a) to simulate P dynamics, based on scientific findings 

regarding the fate and transport of P from tile drained agricultural field. The developed RZWQM2-

P is capable of simulating dissolved reactive P (DRP) and particulate P (PP) loss through both tile 

drainage and surface runoff under inorganic P application (Sadhukhan et al., 2019a) but its 

capability to simulate P losses under manure application is yet to be tested. Further, the impacts of 

agricultural management practices, such as controlled drainage, winter manure application and 

manure injection, on P losses are needed to be quantified. Therefore, in this study we calibrated 

and validated the newly developed RZWQM2-P model against measured hydrologic and P data in 

a tile drained field with liquid cattle manure application and corn-soybean rotation and 

subsequently applied the calibrated model to quantify the impacts of those agricultural 

management practices on P losses and to identify the most effective management practice among 

them to reduce P losses.   
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4.2  MATERIALS AND METHODS 

4.2.1  RZWQM2-P Model Overview 

          Developed by the USDA-ARS, the RZWQM2 model (Ahuja et al., 2000) is a field scale, 

one dimensional agricultural process control model with daily time step. The model employs the 

Richards equation (Richards, 1931) to simulate soil water redistribution within the soil profile 

following infiltration which is simulated by the Green-Ampt method (Green and Ampt, 1911). 

Surface runoff is generated when the rainfall rate exceeds the infiltration rate and sediment yield 

is computed using USLE method (Wischmeier and Smith, 1978). Tile drainage flow is calculated 

by Hooghoudt’s steady state equation (Bouwer and Schilfgaarde, 1963) and the macropore flow 

is governed by the Poiseuille’s law.  The crop growth can be simulated either by embedded DSSAT 

4.0 crop models (Jones et al., 2003) or a generic crop production model (Hanson, 2000) whereas 

evapotranspiration is estimated using the double layer Shuttleworth-Wallace model (Shuttleworth 

and Wallace, 1985). The P model within RZWQM2 model is designed with five different soil P 

pools: three inorganics, namely labile P (LabP), active inorganic P ( ActIP ) and stable inorganic 

P ( StabIP) and two organic pools namely fresh organic P pool (FresOP)and stable organic P 

pool(StabOP) respectively, following the nomenclature of Jones et al., (1984). Besides these soil 

P pools, as an advanced feature the model also has four surface manure P pools and two surface 

fertilizer P pools to simulate P dynamics arising from the application of fertilizer and manure 

(Vadas et al., 2004, 2007, 2008; Vadas, 2014). The manure P pools are inorganic water extractable 

P (ManWIP), inorganic stable P (ManSIP), organic water extractable P (ManWOP), and organic 

stable P (ManSOP). The fertilizer P pools were available fertilizer P (AvFertP) and residual 

fertilizer P (ResFertP) pool. Among these P pools, plant can uptake P for its growth from the LabP 

pool only and it is considered to be in dissolved form. The simulation of plant P uptake is based 
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on Neitsch et al., (2011). The absorption and desorption of P among the inorganic soil P pools is 

simulated based on Jones et al., (1984) with advanced dynamic absorption and desorption rate as 

prescribed by Vadas et al., (2006). Mineralization and immobilization of P is simulated based on 

Jones et al., (1984). Mineralization and immobilization of P is simulated based on Jones et al., 

(1984) while the P decomposition rate from plant residue and soil humus is assumed to be the same 

as carbon decomposition which is simulated based on Shaffer et al., (2000). Applied manure P is 

distributed within the surface  manure  pools based on application depth, type and properties of 

manure applied. For the liquid manure application, 60% of the applied manure P immediately 

infiltrates into the soil added to the soil P pools of the top most soil layer (LabP,  ActIP) (Vadas et 

al., 2007). Leached and decomposed P from the manure P    pools are added to the soil P pools. 

The RZWQM2-P model simulates tile drainage bound DRP and PP loss following Francesconi et 

al., (2016) and Jarvis et al., (1999) respectively. The model assumes that particle bound P 

originates from the first soil layer of the soil profile and PP through soil profile is only transported 

through the macropore flow and contributes directly to the tile system bypassing the soil matrix. 

In the model DRP and PP loss through surface runoff is simulated as per Neitsch et al., (2011) and 

McElroy et al., (1976) respectively. LabP and two manure water extractable P pools contribute to 

DRP loss whereas all the P pools contribute to PP loss.  The processes of P movement among the 

fertilizer, manure, organic and inorganic P pools and plant P uptake are described with greater 

details in Sadhukhan et al., (2019a). While the P model simulates P dynamics, the RZWQM2 

governs the physical, biological, chemical and hydrological processes that influence the P 

simulation i.e. crop growth, runoff, drainage, soil moisture and its flux, soil temperature, sediment 

yield, macropore flow, plant residue and soil humus decomposition and agriculture management 

practices such as tillage. All these components are simulated by RZWQM2 within its original 
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functionalities and then the P model uses them to simulate P dynamics and P losses through surface 

runoff and tile drainage. 

4.2.2  Field Experiment 

           The RZWQM2-P model was assessed against observed DRP and PP loss in both surface 

runoff and tile drainage water flow from the Hon. Eugene F. Whelan Research Farm near South 

Woodslee, ON (42.21N, 82.74W) for eight cropping years from June 2008 to April 2016. The site 

was comprised of 16 plots (67.1 m × 15.2 m) receiving different fertilizer types and drainage 

treatments. Among these, plot number 4 and 14, were selected for the present study. These plots 

received liquid cattle manure application and were subject to tile drainage (depth: 0.85 m, spacing: 

3.80 m). The crop was rotated between maize (Zea mays L.) and soybean (Glycine max (L). Merr.) 

in alternating years. In even years maize was planted at a density of 79,800 seeds ha-1, while in 

odd years soybean was planted at a density of 486,700 seeds ha-1. The liquid cattle manure 

equivalent to 50 kg P ha-1 and 200 kg N ha-1 were surface-applied in the year 2008, 2010, 2012 

and 2014 before maize planting. Manure water extractable P content was not measured, so we 

assumed that in liquid cattle manure 60% of total P was water extractable P (Kleinman et al., 

2005). Chisel plow tillage was implemented each year before planting and after harvest. The dates 

of cropping and other management practices are presented in Table 4.1. 

Table 4.1: Crop and management practices at the site 

Management practices 2008 2009 2010 2011 2012 2013 2014 2015 

Spring tillage  01-Jun 05-Mar 11-Jun 14-Jun 25-Apr 08-May 24-Apr 27-Apr 

Manure application 02-Jun - 12-Jun - 16-May - 24-Jun - 

Crop planting 18-Jun 22-May 26-Jun 15-Jun 25-May 16-May 29-Jun 25-May 

Crop harvest 05-Nov 20-Oct 08-Nov 13-Dec 05-Nov 09-Oct 28-Nov 07-Oct 

Fall tillage 18-Nov 01-Nov 19-Nov 20-Dec 19-Nov 29-Oct 02-Dec 20-Oct 
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     The soil type was clay loam and the measured soil properties for plots 4 & 14 were averaged 

(Table 4.2) and used as the soil input data for the model. The soil profile was divided into six 

layers. The soil properties such as soil texture, field capacity (θfc), permanent wilting point (θwp) 

soil bulk density (ρ) and porosity (φ) were measured before the start of the experiment. Prior to 

the onset of the experiment in 2008, soil labile P was measured using the Olsen P method (Olsen 

et al., 1954) while soil total P was measured following the soil testing recommendations by 

OMAFRA (2009). During growing seasons from 2010 onwards volumetric soil moistures (θ) for 

the soil layer between 0-80 mm was measured twice a week using a portable TDR probe, while 

soil temperature (Tsoil) at a depth of 50 mm was measured on an hourly basis using sensors. Hourly 

Tsoil were averaged to obtain daily mean Tsoil.  

Table 4.2: Measured and calibrated soil properties. 

 

ρ, Soil bulk density; Clay, Soil clay content; Sand, Soil sand content; OM, Soil organic matter 

content; θfc, Volumetric soil moisture content at field capacity; φ, Soil porosity; θwp, Volumetric 

soil moisture content at permanent wilting point; pH, soil pH; LabP, Soil labile P,  TotalP, Soil 

total P;  Pb, Air entry pressure; λ, Pore size index; ksat, Saturated hydraulic conductivity; klat, Lateral 

hydraulic conductivity;  

 

 Measured soil properties  Calibrated soil properties 

Soil 

Layer 

depth 
ρ 

(kg  

m-3 

Clay Sand OM 
θfc  

(m3 

m-3) 

φ 

(m3 

m-3) 

θwp  

(m3 

m-3) 

LabP  

(g  

kg-1) 

TotalP 

(g 

kg-1 

 

Pb 

λ 

Ksat Klat 

(mm) (%) (%) (%) (cm) (cm h-1 ) (cm h-1) 

              

0-10 1330 34.2 29.0 3.7 0.37 0.54 0.18 0.02 0.90  -20.06 0.16 0.01 0.02 

10-100 1330 34.2 29.0 3.7 0.37 0.54 0.18 0.02 0.90  -29.03 0.15 0.35 0.70 

100-250 1390 34.2 29.0 3.7 0.36 0.54 0.18 0.02 0.90  -16.64 0.20 0.55 1.10 

250-450 1390 40.7 25.7 2.0 0.35 0.5 0.18 0.01 0.65  -16.16 0.19 0.55 1.10 

450-800 1330 40.4 27.0 0.7 0.36 0.48 0.18 0.01 0.50  -25.10 0.15 0.17 0.35 

800-1200 1330 39.3 24.6 0.5 0.36 0.48 0.17 0.01 0.40   -35.17 0.14 0.17 0.35 
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      The required weather data (air temperature, precipitation, relative humidity, solar radiation and 

wind speed) to run the model were collected for the period of 1st Jan. 2008 to 31st Dec. 2016 from 

the automated meteorological weather station located at the Whelan farm, located less than 500 m 

from the experimental plots. In each experimental plot there was a catch basin at their downstream 

end to collect the surface runoff. Surface runoff and tile drainage from the experimental plot were 

directed to a central instrumentation building via underground PVC pipes. In the instrumentation 

building, the flow rate was measured automatically using electronic flowmeters and recorded in a 

multi-channel data logger. Surface runoff and tile drainage were collected at the end of each plot 

automatically using autosamplers (CALPSO 2000S, Buhler Gmbh & Company). Surface and tile 

water samples were collected continuously (year-round), proportionally to flow volume, samples 

being taken for every 1000 L of flow during the growing season and for every 3000 L of flow 

during the non-growing seasons. After the collection the samples were analyzed in the laboratory 

for DRP and total dissolved P (TotalDP) using an acidified ammonium persulfate [(NH4)2S2O2] 

oxidation procedure (USEPA, 1983). Unfiltered water samples were analyzed for total P (TotalP) 

using the sulfuric acid-hydrogen peroxide digestion method (USEPA, 1983). The PP was 

computed by the difference between TotalP and TotalDP.  

4.2.3  Model Calibration and Validation 

          The RZWQM2-P model was run using the eight crop years (June 2008 – April 2016) with 

the measured surface runoff and subsurface drainage and corresponding DRP and PP loss data as 

collected from the experimental site. Measured Olsen P values were used to initialize the LabP 

pool while all other inorganic and organic P pools were initialized based on this measured LabP 

values following Jones et al., (1984). All the manure and fertilizer P pools were initialed as zero.  

There were some limitations on flow event separation so to maintain reality of the P loss, water 
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sample collecting periods were scheduled which resulted in total 34 different periods (Table 4.3) 

for the study period. Out of these 34 periods, the first nineteen periods (01 June 2008 to 09 Nov 

2012) were randomly selected for calibrating the model whereas the last fifteen period (10 Nov 

2012 to 31 April 2016) were selected for validating the model. During the calibration process, at 

first parameters related to soil moisture, surface runoff and tile drainage simulation were calibrated 

as these processes govern P loss from an agricultural field, then the parameters related to P losses 

were calibrated. The calibration was done manually by trial and error while changing one 

parameter at a time, within the range as obtained from available literature, following the methods 

as mentioned by Ma et al., (2011, 2012) for the hydrological calibration and Sadhukhan et al., 

(2019a) for P losses calibration.  Three model evaluation statistics such as Nash‐Sutcliffe 

efficiency (NSE), percent bias (PBIAS), and index of agreement (IoA) were used to evaluate the 

performance of the model in simulating hydrology, soil moisture, soil temperature and P losses 

through surface runoff and tile drainage based on the criteria presented in  Moriasi et al., (2007, 

2015).  The NSE is a normalized statistic that determines the relative magnitude of the variance in 

simulated data as compared to the measured data and it is sensitive to peak values, the IoA is a 

standardized measure of the degree of model prediction error whereas PBAIS reflects the goodness 

of model’s simulation in respect of the observed data. The model is regarded to perform 

satisfactorily when NSE > 0.50 and good when NSE > 0.65. Model performance is deemed to be 

satisfactory when |PBIAS| is between 15% and 25% for water flow and is between 40% and 70% 

for P and it is deemed to be good when |PBIAS| is between 10% and 15% for water flow and is 

between 25% and 40% for P (Moriasi et al., 2007). Model performance is regarded as acceptable 

when IoA > 0.75 (Moriasi et al., 2015). 
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Table 4.3: Periods of water flow and P measurement data for calibration and validation 

Period 

 no. 

Period Period 

 no. 

Period 

Calibration Validation 

1 1/Jun/2008-16/Jun/2008 20 10/Nov/2012-15/Mar/2013 

2 17/Jun/2008-17/Jul/2008 21 16/Mar/2013-23/May/2013 

3 18/Jul/2008-22/Oct/2008 22 24/May/2013-26/Jun/2013 

4 23/Oct/2008-11Feb/2009 23 27/Jun/2013-02/Aug/2013 

5 12/Feb/2009-27/Mar/2009 24 03/Aug/2013-26/Mar/2014 

6 28/Mar/2009-26/May/2009 25 27/Mar/2014-23/Jun/2014 

7 27/May/2009-16/Jul/2009 26 24/Jun/2014-05/Aug/2014 

8 17/Jul/2009-23/Oct/2009 27 06/Aug/2014-26/Nov/2014 

9 24/Oct/2009-20/Apr/2010 28 27/Nov/2014-25/Mar/2015 

10 21/Apr/2010-11/Jun/2010 29 26/Mar/2015-28/May/2015 

11 12/Jun/2010-5/Aug/2010 30 29/May/2015-04/Jun/2015 

12 6/Aug/2010-21/Dec/2010 31 05/Jun/2015-07/July/2015 

13 22/Dec/2010-23/Mar/2011 32 08/July/2015-15/Oct/2015 

14 24/0Mar/2011-22/Jun/2011 33 16/Oct/2015-17/Mar/2016 

15 23/Jun/2011-07/Sept/2011 34 18/Mar/2016-29/Apr/2016 

16 08/Sept/2011-07/Nov/2011   

17 08/Nov/2011-22/Dec/2011   

18 23/Dec/2011-15/May/2012   

19 16/May/2012-09/Nov/2012     

 

The soil moisture content simulation within RZWQM2 model is parametrized with air entry 

pressure (Pb) and pore size distribution index (λ). At the start of the simulation, the values of Pb 

and λ were defaulted as given by Ma et al., (2011) then subsequently these values were modified 

one at a time to match the observed values. Once the soil moisture content was calibrated then 

calibration of runoff and tile drainage followed. In the model runoff is simulated when the rainfall 

rate exceeds the infiltration rate (Ma et al., 2012), so the parameters such as saturated hydraulic 

conductivity (𝑘sat) of the top soil layer and surface crust hydraulic conductivity (𝑘crust) were 

adjusted to calibrate runoff. Furthermore, the albedo was adjusted for simulation of 

evapotranspiration, which in turn affected surface runoff. For tile drainage calibration, parameters 
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such as  𝑘sat, Pb , lateral hydraulic conductivity (𝑘lat) and macroporosity were adjusted. 𝑘lat had 

very prominent influence in tile drainage simulation and it was adjusted to 2×𝑘sat. In addition, Pb 

was slightly adjusted to better match tile drainage without hampering the previous calibration for 

soil moisture. The DRP loss through surface runoff was calibrated by adjusting the soil P extraction 

coefficient while DRP loss through tile drainage calibration depended on macroporosity, Pb and λ 

of the deeper soil layers. To control the DRP loading to the tile by macropore flow, the 

macroporosity value was adjusted and subsequently the Pb and λ of the deeper soil layers were 

slightly adjusted to control the DRP loading to tile by matrix flow without hampering previous 

calibration of tile drainage and soil moisture simulations. The PP loss through surface runoff was 

calibrated by adjusting USLE soil loss coefficients (soil erodibility factor, cover and management 

factor, support practice factor) and Manning’s n ' for the overland flow profile segment while the 

PP loss through tile drainage is governed by parameters like soil replenishment rate coefficient, 

soil detachability coefficient, soil filtration coefficient and macroporosity. All these parameters 

were carefully balanced to get a reasonable simulation with respect to PP loss through tile drainage. 

At last, to control the plant P uptake from the LabP pool, the P uptake distribution parameter for 

each crop was adjusted. This parameter controls the depth distribution of the plant P uptake within 

the soil profile. Higher the values of P uptake distribution parameter, more amount of P is up taken 

by the plant from the topsoil layers. Calibrated soil hydraulic parameters and their values are 

presented in Table 4.2 and all other calibrated parameters are presented in Table 4.4.  
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Table 4.4: Calibrated parameters and their values 

Parameters Calibrated values Default (Range) 

Surface Crust (Kcrust )(cm hr-1) 0.01 0.01 (0.01-20.00) 

Albedo   
    Dry soil 0.75 0.20 (0.01-0.90) 

    Wet Soil 0.85 0.30 (0.02-0.90) 

    Crop at Maturity 0.55 0.70 (0.01-0.90) 

    Fresh Residue 0.85 0.22 (0.01-0.90) 

Macroporosity (m3 m -3) 0.03 - 

P extraction coefficient (-)  1.00 1.00 (0.10-1.00) 

USLE Coefficients   
   Soil erodibility (t ha-1)             1.61  0.05 (0.01-1.97) 

   Cover and management factor 0.55 0.50 (0.01-1.00) 

    Support practice factor 0.55 0.50 (0.01-1.00) 

Manning's n 0.01 0.01 (0.01-0.40) 

Soil filtration coefficient (m-1) 0.20 0.00 (0.00-1.00) 

Soil detachability coefficient (g  J-1 mm-1) 0.60 0.40 (0.00-1.00) 

Soil replenishment rate coefficient (gm m-2 day-1) 0.01 0.20 (0.00-1.00) 

P uptake distribution parameter   

    Corn 10.00  1.00-15.00 

    Soybean 10.00  1.00-15.00 

 

4.2.4  RZWQM2-P Application  

          After the RZWQM2-P model was calibrated and validated, it was run to evaluate the impacts 

of controlled drainage, winter manure application and injected manure application on P losses 

under the same agro-climatic situation and for the same simulation period. For a controlled 

drainage system, the head gate at a depth of 460 mm from the ground level was maintained 

throughout the simulation period. To simulate winter manure application, each day during the non-

growing periods (1st Jan – 15th May) of the corn planting years was selected as the application date. 

It resulted in total 136 simulations. P losses of all these simulations were subsequently averaged 

to identify average P losses under winter manure application. Finally, for injected manure 

application, the liquid cattle manure was assumed to be injected at a depth of 100 mm. For all these 
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cases other agricultural management operations, manure properties kept exactly the same as the 

original simulation. The simulated P losses of these three management practices were then 

compared with original simulation with pre-planting manure application, which is generally the 

conventional management practices, to identify the best management practice to reduce P losses 

from the field. 

4.3  RESULTS 

4.3.1  Soil Moisture and Soil Temperature 

          Simulated and observed average soil moisture (θ) between 0-80 mm depths and soil 

temperature (Tsoil) at 50 mm depth along with the simulation statistics for the calibration and 

validation periods are presented in Figure 4.1a and 4.1b, respectively. The model satisfactorily 

simulated θ during calibration period whereas in validation period it was simulated with NSE less 

than 0.50 (NSE =0.47) which is unsatisfactory but overall during the whole simulation period the 

model’s simulation of θ was satisfactory with NSE 0.50, PBAIS 0.45% and IoA 0.81. Tsoil 

simulation was satisfactory during calibration and validation period (Figure 4.1b). During the 

whole simulation period simulation of Tsoil was also satisfactory with NSE 0.54, PBAIS 12% and 

IoA 0.89. 
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Figure 4.1: Simulated and observed (a) Average soil moisture (0-80 mm) (θ) and (b) Soil 

temperature (@ 50 mm) (Tsoil) 
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PBIAS, Percent bias, NSE, Nash-Sutcliffe model efficiency; IoA, Index of agreement. 

4.3.2  Hydrology 

          Overall, the model’s performance was very good in simulating runoff with NSE 0.80, 

PBAIS -3% an IoA 0.95 and was good in simulating tile drainage with NSE 0.67, PBAIS 10% an 

IoA 0.90. During the calibration period, simulated runoff showed (Figure 4.2a) high NSE value 

(NSE = 0.83), so did simulated tile drainage (Figure 4.2b) (NSE = 0.70) which is very good and 

good respectively according to Moriasi et al., (2007, 2015). On an annual basis, simulated average 

runoff and tile flow were close to the observed annual mean values (Table 4.5). During the eight 

years of simulation, simulated average annual ET (383 mm) was 42 % of the observed annual 

precipitation (910 mm). This was similar to measured annual ET of 45 % of the precipitation in 

the same region reported in Tan et al., (2002b). Between the simulated average annual surface 

runoff and tile drainage, most of the water (68%) moved out of the field through the tile drainage 

system.

 

Figure 4.2: Simulated and observed (a) Runoff (b) Drainage. 

PBIAS, Percent bias, NSE, Nash-Sutcliffe model efficiency; IoA, Index of agreement. 
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Table 4.5: Water balance table for the simulation period. All values are in mm  

OBS, Observed; SIM, Simulated; ET, Evapotranspiration; ΔS, Soil water change 

 

4.3.3  DRP and PP Loss 

          The performance of the RZWQM2-P in simulating P loss in terms of   DRP and PP through 

surface runoff and tile drainage from a manured agricultural field can be judged as satisfactory 

(Figure 4.3). Model simulation suggested that DRP losses through surface runoff (Figure 4.3a) is 

driven by runoff volume, amount of P in LabP pool of the topmost soil layer and surface ManWIP 

pool. The model simulated annual average DRP loss (Table 4.6) is 0.29 kg P ha-1 and applied 

manure P contributed 5% of it, meaning that most of the simulated DRP in runoff came from soil 

P. This conforms to the idea that soil P is an important source of DRP loss through runoff (Wang 

et al., 2018a). The model simulated average annual DRP loss through tile drainage is 0.53 kg P ha-

1 (Table 4.6) which is 83% more than simulated surface runoff associated DRP loss. This 

substantiate the model’s assumption that in case of liquid manure application 60% of the applied 

P immediately infiltrates into the soil as soon as it is applied. This reduces the availability of 

manure P on the soil surface to be lost through surface runoff but increases DRP loss through tile 

drainage. The model’s simulation suggested that macropore flow is the primary mechanism 

 Year 
Rainfall ET 

 SIM 

Runoff Drainage 
ΔS 

Lateral  

Flow 

Deep 

Seepage OB SIM OB SIM OB 

06/01/08-05/26/09 1113.90 386.17 249.56 215.97 361.36 286.03 -4.01 96.02 8.69 

05/26/09-06/11/10 721.20 433.88 39.85 41.59 141.92 217.04 13.19 84.69 3.43 

06/11/10-06/22/11 1171.50 349.49 249.68 190.44 428.82 529.16 18.47 100.59 12.26 

06/22/11-05/15/12 995.30 309.61 163.61 235.25 436.50 513.42 -21.59 39.99 6.09 

05/15/12-05/23/13 638.80 377.14 15.52 7.49 140.68 132.39 6.05 98.02 0.78 

05/23/13-06/23/14 1207.67 498.48 218.15 198.98 363.84 370.92 -7.29 114.78 0.00 

06/23/14-05/28/15 780.75 310.64 72.14 59.11 268.26 210.90 0.58 99.08 0.00 

05/28/15-04/29/16 652.97 398.67 49.91 73.92 119.29 251.23 -15.64 95.49 0.00 

Total 7282.09 3064.08 1058.41 1022.75 2260.66 2511.10 -10.24 728.66 31.25 

Average (mm year-1) 910.26 383.01 132.30 127.84 282.58 313.89 -1.28 91.08 3.91 
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responsible for the DRP loss through tile drainage and it contributed 82% of the total DRP load of 

tile flow. Overall, the simulated DRP loss both through surface runoff and tile drainage closely 

flows the observed pattern with NSE 0.68, PBIAS 6% and IoA 0.93 for surface runoff and NSE 

0.64, PBAIS 0.11% and IoA 0.89 for tile drainage. The simulation identified that 65% of total 

DRP loss was through tile flow, which conform to the observed fact that tile flow is the major 

pathway of the DRP loss from the experimental plot (Table 4.6).  The simulation of PP loss through 

surface runoff and tile drainage in both calibration and validation period agreed well with the 

observed data (Figure 4.3c & 4.3d). The field experiment showed that 74 % of the total P was lost 

in the form of PP and tile drainage and surface runoff almost equally contributed towards this loss 

(Table 4.3). The model’s simulation captured this satisfactorily with 75 % of total simulated P loss 

was in the form of PP and simulated tile drainage PP loss was half of the total PP loss. This also 

agrees with the observation of Tan and Zhang (2011), who reported that PP loss accounted majority 

of total P loss from a tiled drained agricultural field. The model successfully simulated total P loss 

through both the transport pathways from the field, i.e. the sum of DRP and PP in both runoff and 

drainage, with high simulation accuracy (NSE 0.86, PBAIS -0.46 % and IoA 0.96).  
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Figure 4.3: Simulated and observed (a) DRP in runoff (b) DRP in drainage, (c) PP  in runoff and 

(d) PP  in drainage. 

PBIAS, Percent bias; NSE, Nash-Sutcliffe model efficiency; IoA, Index of agreement; DRP, 

Dissolved Reactive Phosphorus; PP, Particulate Phosphorus. 
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Table 4.6: P balance table for the simulation period (all values in kg ha-1) 

OBS, Observed; SIM, Simulated; ΔSP, Soil P change; DRP , Dissolved reactive phosphorus; PP, 

Particulate phosphorus; P, Phosphorus; 

      The RZWQM2-P simulation results were in a good agreement with the observed fact that P 

loss was dominant during non-growing season in the experimental field. In this present study 

observed data showed that non-growing seasons (Dec to May) produced 68 % of total drainage 

volume and 58 % of total runoff volume. Subsequently runoff carried away 53% of the total runoff-

bound DRP and 68% of total tile drainage-bound DRP during non-growing seasons. The same was 

observed for the PP loss, with 56% of total runoff associated PP and 65% of total drainage 

associated PP being lost during the non-growing seasons. P loss in the non-growing seasons during 

the whole simulation years comprised 61% of total P loss through surface and subsurface water 

flow. The RZWQM2-P simulated 61 % of total runoff and 65% of total drainage during the non-

growing seasons whereas simulated P loss during non-growing seasons represented 65% of the 

total P lost through surface and subsurface water flow. These simulated results also corresponded 

Year 
Manure 

P 

Residue 

& 

 Humus 

P 

Release 

Plant 

Harvest

ed 

Grain 

Harves

ted 

DRP PP 

ΔSP 
Runoff Drainage Runoff Drainage 

SIM SIM SIM SIM OBS 
SIM OBS SIM OBS SIM 

OB

S SIM 

06/01/08-05/26/09 50.00 27.67 51.44 18.25 0.70 0.68 0.81 0.62 2.81 3.02 1.71 1.83 18.34 

05/26/09-06/11/10 0.00 25.96 36.39 21.21 0.05 0.06 0.30 0.19 0.31 0.36 0.66 0.46 -13.51 

06/11/10-06/22/11 50.00 26.69 48.65 18.58 0.53 0.41 0.83 1.26 2.15 2.64 1.98 2.42 12.34 

06/22/11-05/15/12 0.00 14.13 32.27 18.73 0.20 0.32 0.77 0.69 1.58 1.18 1.89 1.39 -26.16 

05/15/12-05/23/13 50.00 21.42 51.38 16.54 0.04 0.01 0.25 0.23 0.01 0.02 0.60 0.52 28.27 

05/23/13-06/23/14 0.00 22.82 34.73 19.80 0.28 0.45 0.61 0.54 2.39 1.79 1.49 1.46 -22.71 

06/23/14-05/28/15 50.00 22.18 47.92 11.05 0.43 0.35 0.49 0.43 0.40 0.33 1.11 0.89 28.77 

05/28/15-04/29/16 0.00 22.39 38.53 19.89 0.09 0.18 0.22 0.30 0.26 0.58 0.50 0.65 -8.86 

Total 200.00 183.26 341.31 144.04 2.32 2.46 4.27 4.27 9.90 9.90 9.94 9.62 16.48 

Average 25.00 22.91 42.66 18.01 0.29 0.31 0.53 0.53 1.24 1.24 1.24 1.20 2.06 
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well with the review report of King et al., (2015), who reported that the “non-growing period 

represents a significant proportion of annual discharge and P loss.  

4.3.4  RZWQM2-P Application 

          Impact of three different agricultural management practices (controlled drainage, winter 

manure application, injected manure application) on P losses as identified by the simulation of 

RZWQM2-P and its comparison with conventional management practices are presented in Figure 

4.4.  Implementation of controlled drainage reduced the average annual tile flow volume (85%) 

whereas it increased average annual runoff volume (171%) over conventional management 

practices. Although controlled drainage reduced both DRP and PP loss through tile drainage (both 

83%) but overall it increased (13%) total P loss because significant increase in surface runoff 

volume led to more runoff associated DRP and PP loss (188% and 110% respectively). Winter 

manure application simulation suggested increase in DRP and PP losses through both the transport 

pathways particularly DRP loss through surface runoff (63%) and overall it contributed 23% more 

total P loss as compare to conventional management practices.  Simulation of injected manure 

application revealed as it is the best management practice among these three as it reduced  DRP 

and PP losses both through surface runoff and tile drainage, thus as a whole it contributed to less 

total P loss (17%)  from the field. 
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Figure 4.4: Comparison of RZWQM2-P simulation with conventional management practices 

(CM), injected manure application (IM), controlled drainage (CD) and winter manure application 

(WM) in terms of (a) Runoff, (b) Drainage, (c) DRP loss through surface runoff, (d) DRP loss 

through drainage, (e) PP loss through runoff, (f) PP loss through drainage, (g) DRP + PP loss 

through runoff, (h) DRP + PP loss through drainage, (i) DRP + PP loss through runoff + drainage. 

DRP, Dissolved Reactive Phosphorus; PP, Particulate Phosphorus.  
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Numbers on the top of each bars represents % increase (+)/decrease (-) over conventional 

management practices.  

4.4  DISCUSSIONS 

        The RZWQM2-P model responded well in simulation of manure and soil P dynamics as 

suggested by P balance over the simulation period (Table 4.6).  An inspection of simulated manure 

and soil P dynamics on randomly selected manure application year 2010-11 with maize planting 

shows that on the day of manure application P mass in P pools underwent an addition of 50 kg P 

/ha which reflected with increase in LabP pool (24 kg P ha-1), ActIP pool (6 kg P ha-1) and surface 

manure pool (20 kg P ha-1). This sudden increase of LabP pool created an imbalance between LabP 

and ActIP  pool of and about 18 kg P ha-1 absorbed into ActIP pool from LabP pool following the 

manure application.  During the year 2010-11,  49 kg P ha-1from LabP pool was taken up by the 

crop and on the day of harvest 30 kg P ha-1 was left as crop residue while the remaining 19 kg P 

ha-1 was grain harvested. This is comparable with the observed grain P harvested (17 kg P ha-1) of 

maize at site under similar P application rate (Qi et al., 2017).  During this year 27 kg P ha-1 of 

mineralized P is added to the system from plant residue and soil humus whereas total 5 kg P ha-1 

was lost from system through surface runoff and tile drainage. Overall the simulated P for the 

whole simulation years is balanced (Table 4.3) out with annual average P input (25 kg P ha-1from 

manure, 23 kg P ha-1from plant residue and soil humus) is added up with annual average P output 

(43 kg P ha-1of plant P uptake, 3 kg P ha-1of P loss through transport pathways) and annual average 

change in soil P (increase of 2 kg P ha-1).  

     The RZWQM2-P model is capable of simulating the partition of total P losses through different 

pathways in tile drained field with manure application. Several studies have shown that both 

surface runoff and tile drainage are important pathways for P loss from agricultural fields (Smith 
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et al., 2015; Tan and Zhang, 2011; Zhang et al., 2015a). Simulation results showed that 54 % of 

total annual average total P loss (DRP + PP) was through tile flow, of which 75 % was PP (Table 

4.6), and those values were 53% and 74%, respectively, based on observed data. P transfer from 

the soil to tile drainage water occurs through water movement through the soil matrix and/or 

preferential flow path. Preferential flow path was earlier identified as a principle mechanism for 

DRP and PP loss to tiles in the present study area (Tan et al., 2007; Tan and Zhang, 2011; Zhang 

et al., 2015 a, b). Simulation of RZWQM2-P model identified this fact satisfactorily with 82% of 

DRP whereas all of PP load to through tile drainage was transported by the macropore flow. In 

RZWQM2-P model, along with water flow volume, DRP loss through surface runoff and tile 

drainage greatly depend upon amount of LabP pool. Therefore, a satisfactory simulation of P 

dynamics will lead to reasonable estimation of LabP pool, which in turn effect the simulation of 

DRP loss through surface runoff and tile drainage. In a study, at the same site under similar 

management practices Wang et al., (2018b) reported that measured Olsen P in 0-150 mm of soil 

layer is within the range of 50-80 kg P ha-1 during the fall period. This value conforms to the 

RZWQM2-P simulated average LabP of 76 kg P ha-1 for the same depth of soil layer during the 

fall season.  Along with acceptable simulation of P dynamics, the model’s capability in simulation 

of P losses through tile flow is attributed to satisfactory soil moisture, soil matrix flux and 

macropore flux simulations. Adoptation of Richard’s equation to simulate soil moisture and matrix 

flux whereas use of the Poiseuille’s law based approach in simulation of macropore flow may 

resulted in satisfactory water flux through these flow pathways. The use of Hooghoudt’s steady 

state equation may further facilitated tile drainage simulations which in turn impacted P losses 

through tile drainage. Soil temperature also plays an important role in simulating P dynamics while 

an acceptable soil temperature simulation may led to a good estimation of P flow rates among 
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various P pools, decomposition and mineralization rates of residue and soil organic matter. Finally, 

the implementation of manure P pools as recommended by Vadas et al., (2007) may improved the 

simulation of dynamics and fate of applied manure P while considering leaching, physical 

assimilation and decomposition of manure P explicitly.  Although RZWQM2-P satisfactorily 

simulated P losses (DRP, PP) through both surface runoff and tile drainage, further tests are 

recommended with more observed data in a tile drained agricultural field.   

   The management simulation suggested that controlled drainage would reduce total P loss (DRP 

+PP)  through tile flow, but as it increased total P loss through surface runoff, overall it contributed 

towards 13 %  more total P loss from the field considering both surface runoff and tile drainage 

than conventional management  practices (Figure 4.4). Tan and Zhang (2011) found that total P 

loss was reduced through tile flow and it increased through surface runoff. But overall, controlled 

drainage reduced total P loss from the field considering both surface runoff and tile drainage, which 

conflicted with our study. This may be due to the fact that the greater amount of precipitation 

during our study period as compared to the same of Tan and Zhang (2011) (910 mm vs 781 mm) 

leads to more surface runoff (358mm vs 37 mm) consequently more P losses through surface 

runoff, which resulted in more overall total P losses from the field in our study. So, for the areas 

where frequent rainfalls lead to significant amount of surface runoff, controlled draiange is not a 

recommended management practice to reduce overall P losses from tile drained field. Winter 

manure application leads to more P losses (23% increase) as compare to conventional management 

practices. This is due to the fact that during the winter season majority of water outflow from the 

field occurs and winter manure application makes applied P vulnerable for loss under frequent 

runoff from snowmelt and rain on snow events. This simulation of winter manure application by 

RZWQM2-P agreed with the study of Liu et al., (2017a) who simulated the impact of fall and 
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winter manure application on total P losses and found that this has increased annual total P losses 

loss by 12-16% over the spring application. Finally, simulation of injected manure application with 

RZWQM2-P indicated that instead of surface application, injected manure application into shallow 

soil profiles would decrease all forms of P losses from agricultural fields under similar agro-

climatic conditions (Figure 4.4). This is attributed to the low availability of P on the soil surface 

for rain and runoff and better incorporation into soil profile due to injection of manure below the 

soil surface.  These results concurred with the study of Daverede et al., (2004) who reported that 

injected manure application reduced DRP loading through surface runoff by 90% over the surface 

application.   

   Computer simulation models are built on assumptions and simplified version of the very 

complex real-world phenomenon so inevitably they have some limitations. In this context, 

RZWQM2-P model is limited to one dimension, field scale and treats soil as a homogeneous 

medium. The dissolved unreactive P loss is not being simulated under the present model science 

and so the P loss to groundwater. The model has limited capability in simulation of PP loss, as it 

assumes that particle bound P originates from the first 0.01 m soil layer and only the macropore 

flow contribute to tile drainage bound PP loss while bypassing the soil matrix. Another 

shortcoming of RZWQM2-P is that, being a field scale model, it cannot be applied over a large-

scale watershed.  At present, within RZWQM2-P the Richard’s equation is solved iteratively, 

which slows down the simulation and calibration process of the model parameter based on the trial 

and error method. It utilizes a lot of resources. Therefore, for future improvement attention should 

be paid to adopting algorithms to accelerate the speed of solving the Richard’s equation and auto 

calibration of model parameters.  
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4.5  CONCLUSIONS 

         In this study, the newly developed RZWQM2-P model, was assessed in simulating 

agricultural P losses in term of DRP and PP . The model assessment was done with eight years of 

data collected from a subsurface drained field with liquid cattle manure application and corn-

soybean rotation in southwestern Ontario, Canada. The simulation results showed that the 

RZWQM2-P performed satisfactorily in simulating the DRP and PP losses both through surface 

runoff and subsurface drainage and were consistent with the observed trend that the non-growing 

season dominated the P losses over the growing season. The simulation resembles with the 

observed fact that tile drainage and surface runoff both equally contributed towards P losses and 

most P was lost as PP. The simulation suggested that preferential flow is the main pathway for P 

losses through tile drainage at the site. Furthermore the application of RZWQM2-P to quantify the 

impacts of three agricultural management practices indicated that the subsurface manure 

application rather than controlled drainage is an effective option to mitigate P losses from a tile 

drained cropland whereas winter manure application suggested increase in P losses from the field. 

Although, the developed RZWQM2-P appears to be a promising tool for P management in 

subsurface drained manured agricultural field, further tests are recommended with more observed 

data in a tile drained agricultural field.    
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CONNECTING TEXT TO CHAPTER 5 

 

Chapter 3 and Chapter 4 presented the development, evaluation, and applications of the newly 

developed RZWQM2-P model. The evaluation revealed satisfactory performance of the model’s 

simulation of P losses both through surface runoff and tile drainage under inorganic fertilizer and 

manure application. The model simulation identified the injected manure application is a 

promising management strategy to reduce the P losses from an agricultural field. However, the 

RZWQM2-P model has many input parameters that governs P simulation thus making it time 

consuming to calibrate. So, a sensitivity analysis is employed to identify influential model 

parameters so that calibration process is only focused on them to simplify the modelling process. 

Chapter 5 presents a sensitivity analysis of the newly developed RZWQM2-P model to provide a 

guideline for its user in selection of the key parameters while calibrating the model. 

The following manuscript based on the content of Chapter 5 has been prepared for publication in 

a peer reviewed international journal and it was co-authored by Zhiming Qi1, Youjia Li1, Tie-Quan 

Zhang2, Chin S. Tan2, and Liwang Ma3. 
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of RZWQM2-P in simulation of agricultural phosphorus loss.  
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3. USDA-ARS Rangeland Resources and Systems Research Unit, Fort Collins, Colorado, 80526, 
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CHAPTER 5 

 

GLOBAL SENSITIVITY ANALYSIS OF RZWQM2-P IN SIMULATION 

OF AGRICULTURAL PHOSPHORUS LOSS  

 

Debasis Sadhukhan1, Zhiming Qi1, Youjia Li1, Tiequan Zhang2, Chin S. Tan2, Liwang Ma3  

1. Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec, 

H9X 3V9, Canada 

2. Harrow Research and Development Center, Agriculture and Agri-Food Canada, Harrow, 

Ontario, N0R 1G0, Canada 

3. USDA-ARS Rangeland Resources and Systems Research Unit, Fort Collins, Colorado, 80526, 

USA. 

ABSTRACT 

 

In assessing how the output of a numerical model is influenced by its input parameters, sensitivity 

analysis provides a guideline in identifying and selecting key parameters while calibrating the 

model. Recently developed RZWQM2-P model, integrating a new phosphorus (P) module into the 

RZWQM2 model, was shown to successfully simulate P losses through surface runoff and tile 

drainage under different agricultural management practices. No global sensitivity analysis was 

performed for the newly developed RZWQM2-P model’s simulation of P losses, leaving key 

parameters governing P losses simulation unidentified. The present study’s objective was to 

address this shortcoming. Morris screening and Sobol-variance-based sensitivity analysis methods 

were applied to the prediction of dissolved reactive P (DRP) and particulate P (PP) losses through 

surface runoff and tile drainage. Data were collected from a liquid cattle manure applied 

experimental field with maize and soybean rotation in Ontario, Canada. Macroporosity proved to 

be a sensitive parameter in simulating P losses in all forms and from all outlets, while DRP loss 
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through surface runoff was most sensitive to the P extraction coefficient, and PP loss through 

surface runoff was mainly governed by Universal Soil Loss Equation (USLE) parameters. Tile 

flow DRP and PP losses were most sensitive to the plant P uptake distribution parameter and the 

soil detachability coefficient, respectively. These results will inform the development of guidelines 

for RZWQM2-P model calibration. 

5.1  INTRODUCTION  

       Sensitivity analysis (SA) examines how variation in a numerical model’s input parameters 

affects variation in the model’s output. Depending upon whether the output variability is obtained 

by varying the input parameters across their entire feasible range or around a fixed reference value, 

SA is classified as global sensitivity analysis (GSA) or local sensitivity analysis (LSA), 

respectively (Norton et al., 2015). An LSA examines the one-at-a-time effect of a single input 

parameter on the model output while keeping other parameters at constant values. In contrast, GSA 

addressed variability in model output by considering simultaneous changes and resulting 

interactions among all input parameters over given ranges (Pianosi et al., 2016). However, GSA 

has high computation demands as it requires multiple model runs over a defined sample space 

(Pianosi et al., 2016; Norton et al., 2015; Vanuytrecht et al., 2014). Widely acknowledged in the 

literature as an essential and particularly well-suited tool for performing sensitivity analysis of 

environmental models (Saltelli et al., 2008; Pianosi et al., 2016), GSA procedures generally 

implements a screening method, followed by variance based methods (Pianosi et al., 2016; Saltelli 

et al., 2000; Vanuytrecht et al., 2014). The screening method is employed to reduce the 

computation cost of more robust variance-based methods (Pianosi et al., 2016).  

    Loss of P from an agricultural field through surface runoff and tile drainage is an extremely 

complex phenomenon involving soil physical, chemical, biological and hydrological processes 
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occurring on and below the soil surface. The success of an agricultural P process control model 

greatly depends on how effectively and efficiently the model parameterizes these processes. 

Sadhukhan et al., (2019a) developed the RZWQM2-P model and satisfactorily calibrated and 

validated its simulation of dissolved reactive P (DRP) and particulate P (PP) losses through both 

surface runoff and tile drainage from a field amended with either inorganic P fertilizer and manure 

P application, and subject to a corn-soybean rotation (Sadhukhan et al., 2019 a, b). There being 

many input parameters governing P-loss processes, RZWQM2-P is difficult and time-consuming 

to calibrate. A sensitivity analysis (SA) could be applied to identify influential parameters, 

narrowing the focus of the calibration process to high impact parameters, thereby simplifying the 

modelling process. Accordingly, the present study was designed to perform GSA on the simulation 

of DRP and PP losses through surface runoff and tile drainage by the RZWQM2-P model. The 

study’s specific objectives were to: (i) employ a Morris screening method (Morris, 1991) to screen 

and subsequently identify those P input parameters which have the greatest influence on model 

outputs, and (ii) employ Sobol’s variance based method (Sobol, 1990) to quantify the most 

influential P parameters. 

5.2   MATERIALS AND METHODS 

5.2.1 RZWQM2-P Model 

           A P module enhanced extension of the USDA-ARS-developed RZWQM2 model (Ahuja et 

al., 2000), the RZWQM2-P model (Sadhukhan et al., 2019a) performs as a single model: the P 

module simulating P dynamics in an agricultural field, and RZWQM2 governing the physical, 

biological, chemical and hydrological processes that influence the P simulation — i.e., crop 

growth, runoff, drainage, soil moisture and its flux, soil temperature, sediment yield, macropore 

flow, plant residue and soil humus decomposition and agriculture management practices such as 
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controlled drainage and tillage. All these components are simulated by RZWQM2 within its 

original functionalities and then the P module uses them to simulate P dynamics and P losses 

through surface runoff and tile drainage. RZWQM2-P is a field scale, one dimensional agricultural 

process control model with a daily time step. The model employs the Richards equation (Richards, 

1931) to simulate soil water redistribution within the soil profile following infiltration, the latter 

being simulated by the Green-Ampt method (Green and Ampt, 1911). Surface runoff is generated 

when the rainfall rate exceeds the infiltration rate and sediment yield is computed using USLE 

method (Wischmeier and Smith, 1978). Tile drainage flow is calculated by Hooghoudt’s steady 

state equation (Bouwer and Schilfgaarde, 1963) and the macropore flow is governed by 

Poiseuille’s law.  Crop growth can be simulated by either embedded DSSAT 4.0 crop model (Jones 

et al., 2003) or a generic crop production model (Hanson, 2000), while evapotranspiration is 

estimated using the double layer Shuttleworth-Wallace model (Shuttleworth and Wallace, 1985). 

The P model within RZWQM2 model is designed as per Jones et al., (1984) and Vadas (2014). 

The RZWQM2-P model simulates DRP and PP loss through surface runoff using the methods 

developed by Neitsch et al., (2011) and McElroy et al., (1976), respectively, whereas it simulates 

tile drainage bound DRP and PP loss following Francesconi et al., (2016) and Jarvis et al., (1999), 

respectively.  

5.2.2  Field Experiment & Input Data Collection 

            The data inputs required by the RZWQM2-P model include: (i) site specific information 

(latitude, longitude, elevation, area, slope etc.), (ii) soil physical and chemical properties, (iii) 

agricultural management practices data (crop planting, harvest, tillage, fertilization etc.), and (iv) 

daily meteorological data. An eight-year (June 2008 to April 2016) field study was conducted at 

the Hon. Eugene F. Whelan Research Farm near South Woodslee, ON (42.21N, 82.74W). The site 
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housed 16 plots (67.1 m × 15.2 m) subject to different treatments, of which plots 4 and 14 received 

liquid cattle manure and were under free drainage (depth: 0.85 m, spacing: 3.80 m). The crop 

rotation followed an annual rotation of maize (Zea mays L.) and soybean [Glycine max (L.) Merr.]. 

Maize was planted in even years (2008, 2010, 2012 and 2014) at a density of 79,800 seeds ha-1, 

while soybean was planted in odd years (2009, 2011, 2013, 2015) at a density of 486,700 seeds 

ha-1. Prior to seeding, in corn years exclusively, liquid cattle manure an equivalent of 50 kg P ha-1 

and 200 kg N ha-1 was surface-applied to the plots. Though manure water extractable P content 

was not formally measured, we assumed 60% of the liquid cattle manure’s total P to be in that 

form (Kelinman et al., 2005). Chisel plow tillage occurred each year prior to planting and after 

harvest. Serving as RZWQM2-P soil input data, the properties of the clay loam soil of plots 4 and 

14 were averaged across six soil horizons (Table 5.1). Prior to the onset of the experiment (2008), 

soil texture, field capacity (θfc), permanent wilting point (θwp), bulk density (ρ) and porosity (φ) 

were measured, along with soil labile P (as Olsen P - Olsen et al., 1954), and soil total P. Weather 

data (air temperature, precipitation, relative humidity, solar radiation and wind speed) to run the 

model were collected for the period of 1st Jan. 2008 to 31st Dec. 2016 by an automated 

meteorological weather station located at the Whelan farm, and located less than 500 m from the 

experimental plots. Sadhukhan et al., (2019b) used the same dataset to calibrate and validate the 

RZWQM2-P model. In the present study the calibrated soil hydraulic input parameters (Table 5.1) 

from that earlier study were adopted. 
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Table 5.1: Measured and calibrated soil physical and chemical properties at the study site 

 

ρ, Soil bulk density; OM, Soil organic matter content; θfc, Volumetric soil moisture content at field 

capacity; φ, Soil porosity; θwp, Volumetric soil moisture content at permanent wilting point; LabP, 

Soil labile P, TotalP, Soil total P;  Pb, Air entry pressure; λ, Pore size index; ksat, Saturated 

hydraulic conductivity; klat, Lateral hydraulic conductivity;  

5.2.3  Sensitivity Analysis  

5.2.3.1  Parameters 

            Based on experience gained during the manual calibration of RZWQM2-P to simulate DRP 

and PP losses through surface runoff and tile drainage for the same 8-year dataset (Sadhukhan et 

al., 2019b), parameters influencing P losses (Table 5.2) were selected to include in a GSA of the 

model. These parameters were assumed to be independent from one another and their probability 

density functions (PDF) to be uniformly distributed within a given range as the range of “input 

values usually has more influence on the output than the distribution shapes” (Haan et al., 1998).  

 

 

 

 

 Measured soil properties  Calibrated soil properties 

Soil Layer 

depth ρ 

(kg 

m-3 

Clay Sand OM 
θfc  

(m3 

m-3) 

φ 

(m-3 

m-3) 

θwp  

(m-3 

m-3) 

LabP  

(g  

kg-1) 

TotalP 

(g  

kg-1) 

 

Pb 

λ 

ksat klat 

(mm) (%) (%) (%) (cm) 
(cm 

h-1) 

(cm 

h-1) 

          

0-10 1330 34.2 29.0 3.7 0.37 0.54 0.18 0.02 0.90  -20.06 0.16 0.01 0.02 

10-100 1330 34.2 29.0 3.7 0.37 0.54 0.18 0.02 0.90  -29.03 0.15 0.35 0.70 

100-250 1390 34.2 29.0 3.7 0.36 0.54 0.18 0.02 0.90  -16.64 0.20 0.55 1.10 

250-450 1390 40.7 25.7 2.0 0.35 0.50 0.18 0.01 0.65  -16.16 0.19 0.55 1.10 

450-800 1330 40.4 27.0 0.7 0.36 0.48 0.18 0.01 0.50  -25.10 0.15 0.17 0.35 

800-1200 1330 39.3 24.6 0.5 0.36 0.48 0.17 0.01 0.40   -35.17 0.14 0.17 0.35 
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Table 5.2: RZWQM2-P parameters selected for the sensitivity analysis and their ranges 

Parameters Symbol Range 

Macroporosity (m3 m -3) Mac 0.01 - 0.90 

P extraction coefficient (-)  Pexc 0.10 - 1.00 

Soil erodibility (t ha-1) K 0.01 - 1.97 

Cover and management factor C 0.01 - 1.00 

Support practice factor P 0.01 - 1.00 

Manning's N N 0.01 - 0.40 

Soil filtration coefficient (m-1) Kf 0.01 - 1.00 

Soil detachability coefficient (g  J-1 mm-1) Kd 0.01 - 1.00 

Soil replenishment rate coefficient (gm m-2 day-1) Kr 0.01 - 1.00 

Plant P uptake distribution parameter  Pup 1.00 - 15.00 

 

5.2.3.2  Morris Screening Method 

             Morris, (1991) established the powerful Elementary Effect Test (EET) (Saltelli et al., 

2008), to screen parameters for inclusion in more detailed and time-consuming variance based SA 

(Ruano et al., 2012). As the Morris screening method ranks parameters according to their influence 

on the model’s output within a reasonable number of model runs, the method is particularly 

suitable for models with many parameters and the need a great deal of computational resources. 

The method works by computing the mean (μ*) of r absolute finite differences, i.e., the 

‘Elementary Effects (EE)’ as (Campolongo and Saltelli, 1997): 
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   (5.1) 

where,  

i  is the index of the parameters and 𝑖 = 1, 2,⋯ ,𝑀 

j  is the index of the absolute finite differences and 𝑗 = 1, 2,⋯ , 𝑟 

r  is the number of absolute finite differences for a given parameter, 

x  is the M-dimensional model input parameter vector, and 𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑀 

L  is the number of levels (Pianosi et al., 2016), L = 4 in our study 

M  is the total number of input parameters subject to SA,  

Y(x)  is the model output,  

Δi  is the input parameter variation, and ∆𝑖=
𝐿

2∙(𝐿−1)
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A parameter having a high μ* is deemed to be more influential, while a parameter with a high 

standard deviation (σ) of the EEs shows it to be interacting with other parameters as its sensitivity 

changes across the variability space.  

5.2.3.3  Sobol’s Variance-Based Method 

            Sobol’s variance-based method (Sobol, 1990; Homma and Saltelli, 1996) takes a broader 

approach, quantifying parameter sensitivity as the proportion of the output variance due to the  

each parameter’s individual effect compared to their overall combined effect. First-order 

sensitivity indices (𝑆𝑖
𝐹), or ‘main effects (Eq. 5.2),’ are computed in order to quantify the direct 

contribution of a parameter to the model’s output variance, while total-order sensitivity indices 

(𝑆𝑖
𝑇) or the ‘total effect,’ (Eq. 5.3) measures the overall influence of an individual parameter 

considering it direct effect and its interaction with all the other parameters. The values of 𝑆𝑖
𝐹 and 

𝑆𝑖
𝑇 vary from zero to one, with zero representing no sensitivity and one representing the highest 

possible sensitivity: 

𝑆𝑖
𝐹 = 

𝑉[𝐸𝑥~𝑖(𝑦|𝑥𝑖)]

𝑉(𝑦)
 (5.2) 

𝑆𝑖
𝑇 =

𝐸𝑥~𝑖[𝑉𝑥𝑖
(𝑦|𝑥~𝑖)]

𝑉(𝑦)
 (5.3) 

and  

0 ≤ 𝑆𝑖
𝐹 < 𝑆𝑖

𝑇 ≤ 1 (5.4) 

where,  

x~i denotes all input parameters but the ith  

E  is the expected value,  

V  is the variance. 

i           is the index of the parameters and 𝑖 = 1, 2,⋯ ,𝑀 

M  is the total number of input parameters subject to SA,  
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5.2.3.4  Sample Generation and RZWQM2-P Simulation 

           The Morris screening method and the Sobol method required a tailored sampling technique. 

The required input samples for both methods were generated using the SAFE Toolbox (Sensitivity 

Analysis for Everybody, Pianosi et al., 2015) in Matlab (Mathworks, 2015) environment. For the 

Morris screening method, the Morris sampling strategy (Morris, 1991) was used with the values 

of r = 100 and M = 10 (Table 5.2), resulting in total number of model evaluations of 

r(M+1) = 1,100.  For the Sobol’s method, the top five most influential parameters were chosen as 

resulted from the Morris screening method.  To generate the input sample for the Sobol’s method, 

Pianosi et al., (2016) suggested all-at-a-time (AAT) sampling strategy was followed with a base 

sample size N = 1,429 and M = 5 resulted in N(M+2) = 10,003 model runs for each output. As the 

model had 4 outputs (DRP in runoff and tile and PP in runoff and tile), the total number of model 

evaluations was 10,003 × 4 = 40,012. The RZWQM2-P-simulated output was analyzed using 

Matlab (Mathworks, 2015) and sensitivity indices were computed with the help of the SAFE 

Toolbox (Pianosi et al., 2015). 

     The sensitivity analysis of RZWQM2-P required a considerable amount of time and 

computational resources. Under the present setup, a single run of the RZWQM2-P model using a 

PC with Intel® i7 dual core CPU operating at 3.60 GHz and using 8 GB RAM took about 3.5 

minutes. Accordingly, to fully complete the Morris screening method it would take around 3 days 

while Sobol’s method would take roughly 97 days to complete. To speed up the SA of RZWQM2-

P, a computing parallelism technique was implemented.  In our case, the parallelization and its 

preparation was automated by a Microsoft PowerShell® batch processing script. The script treated 

each logical core in the system as an individual computing unit, through multithreading technology 

that is accomplish by processor affinity assign. By using this methodology, the simulation of 
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RZWQM2-P was carried out parallelly in each logical core of an IBM BareMetal® windows 

server, Intel® Xeon Gold 5120 with 56 logical cores and 96 GB RAM. This take about 4 hrs. for 

Morris method and 7 days for Sobol’s method to complete. 

5.3  RESULTS 

5.3.1  Morris screening method 

       The Morris method (Morris, 1991) allowed the screening of the RZWQM2-P model’s 

parameter set (Table 5.2) while providing a qualitative ranking of the parameters for simulation of 

DRP and PP loss through surface runoff and tile drainage.  Mean EEs (μ*) of the parameters and 

their standard deviations (SD) (Figure 5.1) were considered the ranking criteria for the input 

parameters. The higher a parameter’s μ* value, the more influential that parameter; while the 

higher a parameter’s SD the greater its degree of interaction with the other parameters. The ranking 

of top 5 most influential parameters for DRP and PP losses through surface runoff and tile drainage 

are presented in Table 5.3. The parameters Pexc and Pup  were ranked highest in the simulation of 

DRP loss through surface runoff and tile drainage, respectively. For the PP loss through surface 

runoff, the USLE soil loss parameters (K, P, C) occupied the top ranked positions, whereas Kd  

was the top ranked parameter for PP loss through tile drainage. Macroporosity was ranked as an 

influential parameter in simulation of P losses particularly through tile drainage.  
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Table 5.3: Rank of P parameters based on Morris Screening Method in simulation of DRP in 

runoff, DRP in tile, PP in runoff and PP in tile. 

Rank 
DRP  

Runoff 

DRP 

 Tile 

PP  

Runoff 

PP  

Tile 

1 Pexc Pup K Kd 

2 Mac Mac P Mac 

3 Pup Kd C Kf 

4 Kd Pexc Mac Kr 

5 K Kf Kf Pup 
 

DRP, Dissolved reactive phosphorus; PP, Particulate phosphorus; C: Cover and management 

factor; K: Soil erodibility; Kd: Soil detachability coefficient; Kf, Soil filtration coefficient; Kr, Soil 

replenishment rate coefficient; Mac, Macroporosity; P Support practice factor; Pexc, P extraction 

coefficient; Pup, Plant P uptake distribution parameter. 

5.3.2  Sobol’s variance based method 

         In the present study the Sobol’s variance-based method (Sobol, 1990; Homma and Saltelli, 

1996) was employed to compute the sensitivity of the top 5 most influential parameters (Table 5.3) 

in simulation of DRP and PP loss through surface runoff and tile drainage, as identified by the 

Morris screening method (Morris, 1991). The computed first order (SF) and total order (ST) 

sensitivity indices, for the parameters listed in Table 5.3, are presented in Figure 5.2. In simulation 

of DRP loss through surface runoff, Pexc and macroporosity individually contributed 51% and 27%, 

while overall they accounted for 73% and 42% respectively (Figure 5.2a).  Simulation of DRP loss 

thorough tile drainage was mainly governed by Pup and macroporosity (Figure 5.2b), whereas Pup 

alone influenced 95% of the output variability and macroporosity overall influenced 47% of the 

output variability. Macroporosity was the main explanatory parameter in simulation of PP loss 

through surface runoff, contributing individually 42% of output variability, while the USLE soil 
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loss parameters K, P, and C overall contributed 22%, 29% and 5%, respectively to simulating PP 

loss through surface runoff (Figure 5.2c).   Simulation of PP loss through tile drainage was 

predominantly determined by Kd and macroporosity (Figure 5.2d) while other parameters like Kf, 

Kr and Pup overall contributed 55%, 43% and 38% of the output variability, respectively.    

 

Figure 5.1: Mean EE and its SD for the RZWQM2-P’s P parameters in simulation of a) DRP in 

runoff, b) DRP in tile, c) PP in runoff and d) PP in tile 

EE: Elementary effect; SD: Standard deviation; DRP, Dissolved reactive phosphorus; PP, 

Particulate phosphorus; C: Cover and management factor; K: Soil erodibility; Kd: Soil 

detachability coefficient; Kf, Soil filtration coefficient; Kr, Soil replenishment rate coefficient; 
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Mac, Macroporosity; N, Manning’s N, P Support practice factor; Pexc, P extraction coefficient; Pup, 

Plant P uptake distribution parameter. 

 

Figure 5.2: 1st order (SF) and Total sensitivity (ST) indices in simulation of a) DRP in runoff   b) 

DRP in tile c) PP in runoff and d) PP in tile. 

DRP, Dissolved reactive phosphorus; PP, Particulate phosphorus; C: Cover and management 

factor; K: Soil erodibility; Kd: Soil detachability coefficient; Kf, Soil filtration coefficient; Kr, Soil 

replenishment rate coefficient; Mac, Macroporosity; P Support practice factor; Pexc, P extraction 

coefficient; Pup, Plant P uptake distribution parameter. 
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5.4  DISCUSSION 

        Sensitivity analysis showed that P loss outputs of the RZWQM2-P model were influenced by 

several input parameters; however, certain input parameters (e.g., macroporosity) had a dominant 

role in the simulation of P losses (Figure 5.2).  This substantiates earlier findings that the 

preferential flow path is the principle mechanism for DRP and PP loss in the present study area 

(Sadhukhan et al., 2019a; Tan et al., 2007; Tan and Zhang, 2011; Zhang et al., 2015a, 2015b). 

Macroporosity is a measurable parameter, so while calibrating this model, care should be taken to 

determine its value reliably. As demonstrated by the calculated sensitivity coefficients (Figure 5.2b 

& 2c), Pup had a significant influence on DRP loss simulation through tile drainage whereas Kd, Kf 

and Kr had their greatest impact on simulated PP loss through a tile drainage system. This occurred 

because a plant’s P uptake from the soil labile P pool through its root system (represented by Pup) 

limits the availability of labile P in the soil profile which would otherwise be lost as DRP through 

the tile drainage system. Whereas Kd controls the detachment of soil particles to which P is 

attached, Kf controls filtration as they pass through the soil profile and Kr governs their 

replenishment. While  Pup , Kd, Kf and Kr are time consuming and costly to measure in field 

experiments, so a user of the RZWQM2-P model should prudently choose the value of these 

parameters while calibrating the model.  

      The value of Pexc was found to be highly correlated (Figure 5.2a) with the RZWQM2-P’s 

simulation of the DRP loss through surface runoff. This signifies that DRP in surface runoff is 

mainly influenced by the size of the labile P pools in topmost soil layer. Accordingly, while 

calibrating the model, care should be taken in determining the size of the labile P pool of the 

topmost soil layer. The simulation of PP loss through surface runoff is sensitive to the USLE soil 

loss coefficients (K, P, C) (Figure 5.2c), which control the yield of sediment to which P is attached. 
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Accordingly, attention must be paid to these parameters when calibrating PP loss through surface 

runoff.   

     A systematic sensitivity analysis requires a certain amount of information about the model’s 

input parameters, such as parameter distributions and minimum/maximum values, i.e., the range 

of values within which the input parameters vary. In the present case, we were able to find 

parameter ranges from the literature, but very little information was available regarding parameter 

distributions. We made the seemingly arbitrary assumption that all parameters were distributed 

uniformly over their given range; however, the parameter distribution assumptions have been 

found to not significantly affect the outcome on sensitivity analyses (Haan and Zhang, 1996; 

Fontaine et al., 1992). Another restriction in the present study was the limited available 

computational resources as under the present setup. In our case, a single RZWQM2-P scenario 

took about 3.5 minutes to complete. Given the total of roughly 50 input parameters (including 

hydraulic and crop parameters) needed for the simulation of P losses in the RZWQM2-P model, a 

gigantic and cumbersome number of model runs would be necessary to perform sensitivity 

analysis. Therefore, a choice of the ten number of input parameters (Table 5.2) that would be 

subjected to the sensitivity analysis was made based on previous experience (Sadhukhan et al., 

2019 a, b) in manually calibrating the model.  At present, within RZWQM2-P, the Richard’s 

equation is solved iteratively, which slows down the simulation process and uses a considerable 

amount of resources. Additionally, the exclusivity of RZWQM2-P on a Microsoft Windows® 

operating system restricts us to fully utilizing available high-performance computational 

resources. Therefore, for future improvement, attention should be paid to adopting algorithms to 

accelerate the speed of solving the Richard’s equation and to develop a LINUX version of the 

model.  
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5.5  CONCLUSIONS 

       In this study, a global sensitivity analysis was performed following a Morris screening method 

and a Sobol’s variance-based method for the RZWQM2-P model in simulation of DRP and PP 

loss through surface runoff and tile drainage. RZWQM2-P’s P loss simulations depended upon 

many parameters, however, macroporosity was the preeminent parameter in simulation of all form 

of P losses. Others parameters that substantially impacted P loss simulation were Pup  (98% for tile 

DRP) , Kd (85% for PP tile)  Kf (45% for PP tile), Kr (40% for PP tile) , Pexc (75% for DRP runoff) 

and USLE soil loss coefficients (>10% for PP runoff). The key model parameters identified in this 

study will provide a guideline during the future calibration process of the model. 
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CHAPTER 6 

GENERAL SUMMARY AND CONCLUSION 

6.1  GENERAL SUMMARY  

          Phosphorus (P) is becoming a scarce resource day by day as its demand is ever increasing 

particularly for agricultural sector. P being a crucial nutrient for maintaining plant growth and crop 

yield, is mainly added to the agricultural fields in the form of fertilizer and/or manure. Due to 

uncontrolled and non-scientific fertilizer / manure application, this applied P is being lost along 

with the water outflow (surface runoff, tile drainage) from the agricultural field and is finally being 

ended at the freshwater bodies (River, Lakes), causing widespread algal bloom leading to water 

quality degradation.  Latest, research in this regard, had identified that agricultural fields those 

having tile drainage system in it, is contributing most towards this P loss.  To manage the P loss 

from agricultural fields, we need to understand the hydrological, physical and bio-chemical 

processes which are involved in crop P uptake, P movement within the soil profile and soil water,  

and transportation of P through runoff, tile drainage and sediments. Researchers had recommended 

that computer simulation models could be efficiently employed to accomplish this task. However, 

as of present day there seems a lack of P simulation computer models particularly to simulate P 

loss from tile drained agricultural field. Hence, this research has been undertaken and the overall 

goal of this research was to develop a computer simulation model to simulate P loss through 

different hydrological pathways from an agricultural field and embedded it into RZWQM2 model. 

The P model was designed with five different soil P pools (Jones et al., 1984) with dedicated P 

pools for to simulate P dynamics due to the manure and fertilizer applications (Vadas, 2014). The 

developed P model has advance capabilities to simulate tile bound DRP (Francesconi et al., 2016) 

and PP losses (Jarvis et al., 1991; Larsson et al., 2007).  Subsequently, developing the model and 
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integrating it with the RZWQM2 model, its evaluations have been done twice, once with the 

manure application and another time with fertilizer application. A global sensitivity analysis of the 

RZWQM2-P was also performed to identify the most influential model parameter in relation to P 

loss simulation.   

6.2  CONCLUSIONS   

Objective 1: To develop a computer simulation model to simulate P loss through different 

hydrological pathways from an agricultural field, based on the most recent scientific findings 

regarding the fate and transport of P. 

       A new P model is developed while assigning the soil P in five different soil P pools: three 

inorganics, namely labile P (LabP), active inorganic P (ActIP) and stable inorganic P (StabIP) and 

two organic pools namely fresh organic P pool (FrsOP) and stable organic P pool (StabOP) 

respectively, following the nomenclature of Jones et al., (1984). Besides these soil P pools, as an 

advanced feature, the P model has four surface manure P pools and two surface fertilizer P pools 

to simulate P dynamics arising from the application of fertilizer and manure (Vadas et al., 2004, 

2007, 2008; Vadas, 2014). The manure P pools are inorganic water extractable P(ManWIP), 

inorganic stable P (ManSIP), organic water extractable P (ManWOP), and organic stable P 

(ManSOP). The fertilizer P pools are available fertilizer P (AvFertP) and residual fertilizer P 

(ResFertP) pool. These independent manure and fertilizer P pools enable the model to simulate 

more precisely the P dynamics arising from the application of fertilizer and manure in an 

agricultural field. Among these P pools, plant can uptake P for its growth from the LabP pool only 

and it is considered to be in plant available dissolved form. Applied P in the form of 

manure/fertilizer is distributed within the manure P pools / fertilizer P pools based on application 

depth, type and properties of manure/fertilizer applied. For the liquid manure/fertilizer application, 
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it is assumed that 60% of the applied P immediately infiltrates into the soil added to the soil P 

pools (LabP, ActP) of the topmost soil layer (Vadas et al., 2007). Leached and/or decomposed P 

from the manure/fertilizer P pools are incorporated to the soil P pools (LabP, ActP).  The 

absorption and desorption of P among the inorganic soil P pools is simulated based on Jones et al., 

(1984) with advanced dynamic absorption and desorption rate as prescribed by Vadas et al., 

(2006).  This latest modification enables the model to simulate P movement among these pools by 

using a dynamically changing rate factor rather than a constant rate factor. Mineralization and 

immobilization of P is simulated based on Jones et al., (1984). The P model simulates tile drainage 

bound DRP and PP loss following Francesconi et al., (2016) and Jarvis et al., (1999) respectively. 

The model assumes that particle bound P originates from the first soil layer of the soil profile and 

PP through soil profile is only transported through the macropore flow and contributes directly to 

the tile system bypassing the soil matrix. In the model DRP and PP loss through surface runoff is 

simulated as per Neitsch et al., (2011) and McElroy et al., (1976) respectively. LabP and two 

manure water extractable P pools contribute to DRP loss whereas all the P pools contribute to PP 

loss.   

Objective 2: To incorporate the developed P model into the RZWQM2 model. 

     The newly developed P model described above successfully incorporated into the RZWQM2 

model. While the P model simulates P dynamics, the RZWQM2 governs the physical, biological, 

chemical, and hydrological processes that influence the P simulation. The developed P model 

combined with RZWQM2 is known as RZWQM2-P which performs as a single tool. The P model 

being dependent on RZWQM2 for the simulation of crop growth, runoff, drainage, soil moisture 

and its flux, soil temperature, sediment yield, macropore flow and agriculture management 

practices. All these components are simulated by RZWQM2 within its original functionalities and 
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then the P model uses model outputs to simulate P dynamics and P losses (DRP, PP) through 

surface runoff and tile drainage from an agricultural field.  

Objective 3: To test, calibrate and validate the newly developed RZWQM2-P model in North 

American condition. 

      The newly developed RZWQM2-P model was successfully evaluated twice to test its 

capability in simulation of DRP and PP loss through surface runoff and tile drainage from 

agricultural field using the observed P loss and water flow data collected from a subsurface-drained 

corn-soybean rotated field with clay loam soil in southwestern Ontario, Canada.  The first 

evaluation corresponded to test the model’s response of fertilizer application while the second was 

for the manure application. The simulation results of both the tests showed that the RZWQM2-P 

model performed satisfactorily in simulating the DRP and PP losses through both surface runoff 

and subsurface tile drainage and were consistent with the observed trend that the non-growing 

season dominated the P losses over the growing season. The simulation resembled with the 

observed fact that most P was lost as PP and tile drainage contributed majority of P loss. The 

simulation also suggested that preferential flow is the main pathway for P losses through tile 

drainage at the site. The RZWQM2-P model’s acceptable P loss simulating ability particularly 

through tile drainage can be attributed to the adoption of the Richards’s equation for simulation of 

soil matrix flow, and the Hooghoudt’s equation for simulation of tile drainage flow. The use of 

Poiseuille’s law may have resulted in better macropore flow simulations, which led to better 

simulations of PP loading to the tile system. The newly developed P module integrated with 

RZWQM2 is a promising tool for agricultural P management, particularly for subsurface-drained 

fields.  
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Objective 4: To perform a sensitivity analysis of the developed RZWQM2-P model in order 

to identify the most sensitive parameters of the model in relation to P simulation. 

    A global sensitivity analysis was performed following a Morris screening method and a Sobol’s 

variance-based method for the RZWQM2-P model in simulation of DRP and PP loss through 

surface runoff and tile drainage. To perform the sensitivity analysis data were collected from a 

liquid cattle manure applied experimental field with maize and soybean rotation in Ontario, 

Canada. The sensitivity analysis identified RZWQM2-P’s P loss simulations depended upon many 

parameters, however, macroporosity was the preeminent parameter in simulation of all form of P 

losses. The DRP loss through surface runoff was most sensitive to the P extraction coefficient, and 

PP loss through surface runoff was mainly governed by Universal Soil Loss Equation (USLE) 

parameters. Tile flow DRP and PP losses were most sensitive to the plant P uptake distribution 

parameter and the soil detachability coefficient. The key model parameters identified in this study 

will provide a guideline during the future calibration process of the model. 

6.3 CONTRIBUTIONS TO KNOWLEDGE 

     The research performed as presented in this thesis led to several contributions to knowledge as 

follows, 

1. A new P simulation model for the tile drained agricultural field is successfully developed, 

which many researchers earlier identified as an urgent need to understand P dynamics in 

an agricultural field.   

2. The RZWQM2 model has now became more versatile as an agricultural process control 

model with added P simulation capability. 

3. The developed RZWQM2-P model has a potential to serve as a valuable tool for 

agricultural planners and environmental stakeholders to evaluate different agricultural 
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management practices suitable to reduce P loading from agricultural field to the surface 

water bodies. 

4.  This study is an example of how a process-based model can be developed and applied to 

model P losses from agricultural fields. The study can also be used as a valuable guide and 

reference for future modelling studies. 

 

6.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

1. Newly developed RZWM2-P model needs to be further tested at several other locations 

under different soil, climate, and crop rotations for a longer period with more observed data. 

2. The RZWQM2-P needs to be applied to evaluate the impact of control drainage, control 

drainage with sub-irrigation and different tillage methods on P losses from agricultural fields. 

3. The RZWQM2-P model is a field scale, one dimensional model and treats soil as a 

homogeneous medium. Further research can be carried out to upgrade it to the watershed scale, 

multidimensional model and that treats soil as a heterogeneous medium. 

5. At present, within RZWQM2-P, the Richard’s equation is solved iteratively, which not only 

slows down the simulation process but also consumes a considerable amount of time and 

computational resources. So, in future research it is recommended to modify the model code 

to adopt algorithms to accelerate the speed of solving the Richard’s equation. 

6. The exclusivity of RZWQM2-P on a Microsoft Windows® operating system restricted us 

to fully utilizing available high-performance computational resources. Therefore, the future 

research can be directed towards the development of a LINUX version of the model. 
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APPENDIX-A 

RZWQM2-P GOVERNING EQUATIONS 

A1  INITIALIZATION OF P POOLS 

         Before the start of model simulations, the soil P pools need to be initialized. Initial amount 

of labile P pool, stable organic P pool and fresh organic P pool are needed to be specified by the 

model user. Other P pools are initialized as follows.  

Active P Pool is initialized as: 

                                                       𝐴𝑐𝑡𝑃 = 𝐿𝑎𝑏𝑝 ∗
1−𝑃𝑆𝑃

𝑃𝑆𝑃
                                                             (1) 

Where, ActP = Active P amount in a soil layer (kg/ha) 

              Labp = Labile P amount in a soil layer (kg/ha) 

              PSP = Phosphorus sorption coefficient (or P availability index) (Williams et al., 2008) 

PSP is calculated as follows  

     𝑃𝑆𝑃 =  −0.045 ∗ 𝐿𝑜𝑔(𝐶𝑙𝑎𝑦) + 0.001 ∗ 𝐿𝑎𝑏𝑃 − 0.035 ∗ 𝑆𝑜𝑖𝑙𝑂𝐶 + 0.43                            (2) 

Where, Clay = Clay % of soil 

            Labp = Labile P amount in a soil layer (mg/kg) 

            SoilOC = Soil Organic Carbon (%)            

                                                   𝑆𝑜𝑖𝑙𝑂𝐶 = 𝑆𝑜𝑖𝑙𝑂𝑀 ∗ 0.58                                                             (3) 

Where,   SoilOM = Soil organic matter in a layer (%) 

Inorganic Stable P pool is initialized as: 
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                                            𝑆𝑡𝑎𝑏𝑖𝑃 = 4 ∗ 𝐴𝑐𝑡𝑃                                                                                (4) 

Where,    StabiP = Stable Inorganic P pool in a soil layer. (kg/ha) 

                ActP = Active P amount in a soil layer (kg/ha)                  

All the surface manure and fertilizer P pool are initialized as zero. 

A2  FERTILIZER P DYNAMICS  

          Model assumes that when a fertilizer is applied the fertilizer P is instantaneously is divided 

between two surface fertilizer pools based on depth of application namely available fertilizer P 

pool and residual fertilizer P pool. 75% of fertilizer P is added to available fertilizer pool and 25% 

is added to residual fertilizer pool (Vadas, 2014; Williams, 1969). The P in the available fertilizer 

pool is readily available to be lost by runoff and to be adsorbed by soil. The adsorbed fertilizer P 

is added to the soil labile P pool of the first soil layer. 

So, in case of surface applied fertilizer i.e. depth of application is zero 

                                                   𝐴𝑣𝑓𝑒𝑟𝑡𝑃 = 0.75 ∗ 𝐹𝑒𝑟𝑡𝑃                                                          (5) 

                                                   𝑅𝑒𝑠𝑓𝑒𝑟𝑡𝑃 = 0.25 ∗ 𝐹𝑒𝑟𝑡𝑃                                                        (6) 

And in case of subsurface application 

                                                𝐴𝑣𝑓𝑒𝑟𝑡𝑃 = 0.75 ∗ 𝐹𝑒𝑟𝑡𝑝 ∗ 𝐹𝑠𝑢𝑟𝑓                                               (7) 

                                               𝑅𝑒𝑠𝑓𝑒𝑟𝑡𝑃 = 0.25 ∗ 𝐹𝑒𝑟𝑡𝑝 ∗ 𝐹𝑠𝑢𝑟𝑓                                              (8) 

Where, Avfertp = Available fertilizer P pool (kg) 

             Resfertp = Residual fertilizer P Pool (kg) 

             FertP = Fertilizer P applied in the field (kg) 
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             Fsurf = Fraction of fertilizer left on surface during application (-) 

The fraction of FertP which is applied below soil surface is directly added to the soil labile P pool 

depending upon a factor based on the ratio of soil layer thickness to fertilizer application depth. 

For a layer having depth less than fertilizer application depth  

                                                        𝐹𝑎𝑐𝑡 =
𝑇𝑠𝑜𝑖𝑙

𝐹𝑒𝑟𝑡𝐷
                                                   (9) 

For the soil layer where the fertilizer is applied  

                                                      𝐹𝑎𝑐𝑡 = 1 − ∑ 𝐹𝑎𝑐𝑡𝑘
𝑘
1                                                (10) 

                                             𝐿𝑎𝑏𝑃𝑎 = 𝐿𝑎𝑏𝑃𝑏 + 𝐹𝑒𝑟𝑡𝑃 ∗ 𝐹𝑎𝑐𝑡 ∗ (1 − 𝐹𝑠𝑢𝑟𝑓)               (11) 

Where, Fact = A factor (-) 

             Tsoil = Thickness of a soil layer (m) 

             FertD = Fertilizer application depth (m) 

             LabPb= Labile P pool of a soil layer before subsurface fertilizer application. (kg) 

             LabPa= Labile P pool of a soil layer after subsurface fertilizer application. (kg) 

             k = Number of soil layers having depth less than fertilizer application depth. (-) 

After the fertilizer application, once the rainfall happens all the P in Avfertp pool is released. For 

the second rainfall, 40% of the P in Resfertp is released and from the third rainfall onwards, 

consistently about 7.5% of the remaining P in Resfertp was released until all the P in Resfertp pool 

is exhausted (Vadas et al., 2008).  

So, for the case of first rainfall event 
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                                      𝐹𝑒𝑟𝑡𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝐴𝑣𝑓𝑒𝑟𝑡𝑃                                                                  (12) 

For the case of 2nd rainfall event 

                   𝐹𝑒𝑟𝑡𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 0.40 ∗ 𝑅𝑒𝑠𝑓𝑒𝑟𝑡𝑃                                                                         (13)     

For the case of 3rd rainfall onwards 

                𝐹𝑒𝑟𝑡𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 0.075 ∗ 𝑅𝑒𝑠𝑓𝑒𝑟𝑡𝑃                                                                          (14)        

Where, Fertprelease = Amount of P is released due to rainfall from the fertilizer P pools. (kg)                               

This released P is either lost through runoff or absorbed in soil labile P pool with infiltration or 

both depending upon a factor based on rainfall and runoff (Vadas, 2014; Vadas et al., 2008).  

Factor, that represents the distribution of released fertilizer P between runoff and infiltration and 

is calculated as 

                                    𝑃𝐷𝐹𝐴𝐶𝑇𝑂𝑅 = 0.034 ∗ 𝑒
(3.4∗

𝑅𝑢𝑛𝑜𝑓𝑓

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙
)
                                                     (15) 

Where, PDFACTOR = P distribution factor 

             Runoff = Runoff amount (cm) 

             Rainfall = Rainfall amount (cm) 

So, P concentration in runoff water due to loss of P from fertilizer P pool 

                                     𝐹𝑒𝑟𝑡𝑃𝑐𝑟𝑢𝑛𝑜𝑓𝑓 =
𝐹𝑒𝑟𝑡𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒∗𝑃𝐷𝐹𝐴𝐶𝑇𝑂𝑅

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙∗𝐴𝑟𝑒𝑎∗100
                                              (16) 

Where, FertPcrunoff = P concentration in runoff water due to loss of P from fertilizer P pool 

(kg/m3) 

             Area = Area of the field (ha) 

 

P mass in in runoff water due to loss of P from fertilizer P pool is calculated as 

                                𝐹𝑒𝑟𝑡𝑃𝑚𝑟𝑢𝑛𝑜𝑓𝑓 = 𝐹𝑒𝑟𝑡𝑃𝑐𝑟𝑢𝑛𝑜𝑓𝑓 ∗ 𝑅𝑢𝑛𝑜𝑓𝑓 ∗ 𝐴𝑟𝑒𝑎 ∗ 100                   (17) 
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Where, FertPmrunoff = P mass in in runoff water due to loss of P from fertilizer P pool (kg) 

The amount of P mass that is released but not carried away by runoff is adsorbed to the soil labile 

pool as follows 

𝐿𝑎𝑏𝑃𝑎(1) =  𝐿𝑎𝑏𝑃𝑏(1) + (𝐹𝑒𝑟𝑡𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝐹𝑒𝑟𝑡𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓) ∗ 0.8                                       (18) 

𝐿𝑎𝑏𝑃𝑎(2) =  𝐿𝑎𝑏𝑃𝑏(2) + (𝐹𝑒𝑟𝑡𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝐹𝑒𝑟𝑡𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓) ∗ 0.2                                       (19) 

Where, LabPa (1) = Labile P pool of first soil layer after adsorption. (kg) 

             LabPb (1) = Labile P pool of first soil layer before adsorption. (kg) 

             LabPa (2) = Labile P pool of second soil layer after adsorption. (kg) 

             LabPb (2) = Labile P pool of second soil layer before adsorption. (kg) 

In between, the first rainfall event and fertilizer application, the P in the Avfertp is being absorbed 

in the soil and added to soil labile P pool of the first soil layer. But this absorption rate varies 

according to the land cover type. It does at a slower rate for grassed or residue-covered soils than 

for bare soils (Vadas et al., 2008; Williams, 1969). The equations used to calculate the fraction of 

applied fertilizer P that remains available on the soil surface over time after application are  

For bare soil:  

                                        𝐹𝑒𝑟𝑡𝑝𝑓𝑟 =  −0.16 ∗ ln(𝐷𝑎𝑦𝑠) + 0.65                                              (20) 

For reside covered soil:  

                                       𝐹𝑒𝑟𝑡𝑝𝑓𝑟 =  −0.16 ∗ ln(𝐷𝑎𝑦𝑠) + 0.75                                               (21) 

From crop covered soil: 

                                      𝐹𝑒𝑟𝑡𝑝𝑓𝑟 =  −0.16 ∗ ln(𝐷𝑎𝑦𝑠) + 0.85                                                (22) 

Where, Fertpfr = Fraction of P in AvFert pool remaining after absorption. (-) 

             Days = Number of days since application. (Days) 
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A3  MANURE P DYNAMICS  

        To simulates manure P dynamics user need to specify the day of manure application , the % 

percentage of manure left on surface during application (100% for surface application, 0% for total 

sub-surface application), mass of manure applied, manure dry matter content (%), P content 

(kg/ha) (%), water extractable inorganic P content  (%), water extractable organic P content  (%). 

At the day of manure application, the applied manure P is divided into four surface manure P pools 

based on P content, water extractable inorganic P content, water extractable organic P content, 

type of application i.e. weather surface or subsurface, and type of manure i.e. weather liquid or 

solid. In case of liquid manure i.e. the manure with dry mater content less than 15%, model 

assumes that 60% of manure P immediately infiltrates into soil and added the respective soil active 

and labile P pools (Vadas et al., 2004, 2006). At the time of manure application, the manure P is 

distributed in four surface manure P pools namely manure water extractable inorganic P pool, 

manure water extractable organic P pool, manure stable inorganic P pool, manure stable organic P 

pool. Water extractable P pools represent P that can be released from manure by rain and stable P 

pools represents P that can be released by rain but can be transformed to water extractable pools 

as manure decomposes and mineralizes (Vadas et al., 2007) . The size of the water extractable 

inorganic and organic P pool are determined based on the percentage of water extractable inorganic 

P and percentage of water extractable organic P present in the manure. The difference between 

manure total P and sum of water extractable inorganic P and water extractable organic P is the 

stable P. The model divides this stable P into inorganic and organic P pools according to 25/75 

ratio (Ajiboye et al., 2004; Dou, et al.,  2000; He, et al., 2003; He and Honeycutt, 2001; He et al., 

2006; McDowell and Stewart, 2005; McGrath et al., 2005; Turner et al., 2004; Vadas, 2014).  

                                   𝑀𝑎𝑛𝑤𝑖𝑝 = (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ 𝐿) ∗
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
                                       (23)         
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                                  𝑀𝑎𝑛𝑤𝑜𝑝 = (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ 𝐿) ∗
𝑀𝑎𝑛𝑤𝑒𝑜𝑝𝑝𝑒𝑟

100
                                      (24) 

          𝑀𝑎𝑛𝑠𝑜𝑝 = (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ 𝐿) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
)*0.75                      (25) 

         𝑀𝑎𝑛𝑠𝑖𝑝 = (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ 𝐿) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
) ∗ 0.25                     (26) 

Where, Manwip = Manure water extractable inorganic P Pool. (kg) 

             Manwop = Manure water extractable organic P Pool. (kg) 

             Mansip = Manure stable inorganic P pool. (kg) 

             Mansop = Manure stable organic P pool. (kg) 

             Manpmass = Manure P mass applied. (kg) 

             Manweipper = Percentage of water extractable inorganic P (%) 

             Manweopper = Percentage of water extractable organic P (%) 

             S =fraction of manure P mass left on surface during application (1 for surface application,  

0-1 for subsurface application.  

             L = Fraction of manure P mass stay on surface after infiltration of manure P into the soil 

during application (0.4 for liquid manure, 1 for solid manure) 

In case of liquid manure, the 60% manure P is absorbed to the soil active and labile P pool as 

follows 

 𝐴𝑐𝑡𝑃𝑎(1) =  𝐴𝑐𝑡𝑃𝑏(1) + 

                                (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ (1 − 𝐿)) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
) ∗ 0.25          (27)        

 

𝐿𝑎𝑏𝑃𝑎(1) =  𝐿𝑎𝑏𝑃𝑏(1) + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ (1 − 𝐿)) ∗
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
   

 +  (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ (1 − 𝐿)) ∗
𝑀𝑎𝑛𝑤𝑒𝑜𝑝𝑝𝑒𝑟

100
∗ 0.95          

    +(𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ (1 − 𝐿)) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
) ∗ 0.75 ∗ 0.95                     (28)  

 

𝐿𝑎𝑏𝑃𝑎(2) =  𝐿𝑎𝑏𝑃𝑏(2) + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ (1 − 𝐿)) ∗
𝑀𝑎𝑛𝑤𝑒𝑜𝑝𝑝𝑒𝑟

100
∗ 0.05   
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      + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ 𝑆 ∗ (1 − 𝐿)) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
) ∗ 0.75 ∗ 0.05                  (29) 

 

Where, LabPa (1) = Labile P pool of first soil layer after absorption. (kg) 

             LabPb (1) = Labile P pool of first soil layer before absorption. (kg) 

             LabPa (2) = Labile P pool of second soil layer after absorption. (kg) 

             LabPb (2) = Labile P pool of second soil layer before absorption. (kg)                                                                      

             ActPa (1) = Active P pool of first soil layer after absorption. (kg) 

             ActPb (1) = Active P pool of first soil layer before absorption. (kg) 

 

In case of sub-surface application of manure, the manure P which is applied below ground surface 

is directly added to soil labile P and active P pool   depending upon a factor based on the ratio of 

soil layer thickness to manure application depth as follows. 

For a layer having depth less than manure application depth  

                                                        𝐹𝑎𝑐𝑡 =
𝑇𝑠𝑜𝑖𝑙

𝑀𝑎𝑛𝐷
                                                            (30) 

For the soil layer where the manure is applied  

                                                      𝐹𝑎𝑐𝑡 = 1 − ∑ 𝐹𝑎𝑐𝑡𝑘
𝑘
1                                                  (31) 

𝐿𝑎𝑏𝑃𝑎 = 𝐿𝑎𝑏𝑃𝑏 + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ (1 − 𝑆)) ∗
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
∗ 𝐹𝑎𝑐𝑡                             

                           + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ (1 − 𝑆)) ∗
𝑀𝑎𝑛𝑤𝑒𝑜𝑝𝑝𝑒𝑟

100
∗ 𝐹𝑎𝑐𝑡      

                 + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ (1 − 𝑆)) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
) ∗ 0.75 ∗ 𝐹𝑎𝑐𝑡              (32) 

𝐴𝑐𝑡𝑃𝑎 = 𝐴𝑐𝑡𝑃𝑏 + (𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠 ∗ (1 − 𝑆)) ∗ (1 −
𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
−

𝑀𝑎𝑛𝑤𝑒𝑖𝑝𝑝𝑒𝑟

100
) ∗ 0.25 ∗ 𝐹𝑎𝑐𝑡  (33) 

Where, Fact = A factor (-) 
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             Tsoil = Thickness of a soil layer (m) 

             ManD = Manure application depth (m) 

             LabPb= Labile P pool of a soil layer before subsurface manure application. (kg) 

             LabPa= Labile P pool of a soil layer after subsurface manure application. (kg) 

            ActPa= Active P pool of a soil layer after subsurface manure application. (kg) 

            ActPb= Active P pool of a soil layer before subsurface manure application. (kg) 

             k = Number of soil layers having depth less than manure application depth. (-) 

After manure application, as the manure ages, manure and P in the Mansip, Mansop, Manwop 

Pool decomposes and assimilates based on ambient temperature and manure moisture content 

(Vadas, 2014). 

 Daily manure decomposition rate is calculated as 

                                                     Mandcomr = 0.003 ∗ 𝑇𝐹𝐴0.5                                               (34) 

Where, Mandcomr = Manure decomposition rate (per day) 

            TFA = Unit less temperature factor (-). Varies between 0-1. 

TFA depends on daily atmospheric temperature and it is calculated as  

                                                     𝑇𝐹𝐴 = 
2∗322∗𝑇2−𝑇4

324                                                                 (35)    

Where, T = Average daily atmospheric temperature (0C) 

Daily manure assimilation rate is calculated as 
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                                   𝑀𝑎𝑛𝑎𝑠𝑖𝑚𝑟 = 30.0 ∗ 𝑒(2.5∗𝑀𝑜𝑖𝑠𝑡)                                                             (36)              

Where, Manasimr = Manure assimilation rate (per day) 

            Moist = Unit less Manure moisture content factor (-). Varies between 0-0.9 

Moist depends on amount of rainfall and it is calculated as 

If no rainfall i.e. rainfall amount = 0 

         𝑀𝑜𝑖𝑠𝑡 =  𝑀𝑜𝑖𝑠𝑡0 − (0.075 − 0.05 ∗
 𝑀𝑎𝑛𝑀𝑎𝑠𝑠

𝐴𝑝𝑝𝑖𝑙𝑒𝑑 𝑀𝑎𝑛𝑀𝑎𝑠𝑠
) ∗ 𝑇𝐹𝐴                                         (37)              

If rainfall is less than 4 mm       

                                          𝑀𝑜𝑖𝑠𝑡 =  𝑀𝑜𝑖𝑠𝑡0                                                                              (38) 

If rainfall is more than 4 mm 

                                       𝑀𝑜𝑖𝑠𝑡 =  𝑀𝑜𝑖𝑠𝑡0 + (0.27 − 0.3 ∗ 𝑀𝑜𝑖𝑠𝑡0)                                        (39)                                 

Where, Moist0 = Manure moisture factor of the previous day. (-) 

            TFA = Temperature factor. (-) 

            ManMass = Current manure mass present in the field. (kg) 

           Applied ManMass = Initial amount of manure applied in the field. (kg) 

Manure decomposition is calculated as  

                                            𝑀𝑎𝑛𝑑𝑐𝑜𝑚 =  ManMass ∗ Mandcomr                                           (40) 

Where, Mandcom = Manure decomposition. (kg/day) 

Manure coverage area also decomposes at a same ratio as manure decomposes 

                                          𝑀𝑎𝑛𝑐𝑜𝑣𝑎𝑑𝑐𝑜𝑚 =  
𝑀𝑎𝑛𝑑𝑐𝑜𝑚

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑐𝑜𝑣                                           (41) 

Where, Mancovadcom = Manure cover area decomposition (ha/day) 

            Mancov = Manure Cover area (ha) 

Decompositions of P from Mansop, Mansip, Manwop Pool is calculated as 

                            𝑀𝑎𝑛𝑠𝑜𝑝𝑑𝑐𝑜𝑚 = 0.01 ∗ 𝑀𝑎𝑛𝑠𝑜𝑝 ∗ 𝑀𝐼𝑁(𝑇𝐹𝐴,𝑀𝑜𝑖𝑠𝑡)                                (42) 

                        𝑀𝑎𝑛𝑠𝑖𝑝𝑑𝑐𝑜𝑚 = 0.0025 ∗ 𝑀𝑎𝑛𝑠𝑖𝑝 ∗ 𝑀𝐼𝑁(𝑇𝐹𝐴,𝑀𝑜𝑖𝑠𝑡)                                 (43)                                                   
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                                 𝑀𝑎𝑛𝑤𝑜𝑝𝑑𝑐𝑜𝑚 = 0.1 ∗ 𝑀𝑎𝑛𝑤𝑜𝑝 ∗ 𝑀𝐼𝑁(𝑇𝐹𝐴,𝑀𝑜𝑖𝑠𝑡)                           (44)     

Where, Mansopdcom = Manure stable organic P decomposition. (kg/day). 

            Mansipdcom = Manure stable inorganic P decomposition. (kg/day). 

            Manwopdcom = Manure water extractable organic P decomposition. (kg/day). 

            Mansop = Manure stable organic P pool. (kg) 

            Mansip = Manure stable inorganic P pool. (kg) 

            Manwop = Manure water extractable P pool. (kg) 

75% of the decomposed P from Mansop is added to Manwip pool and remaining 25% is added to 

Manwop pool. All the decomposed Mansip and Manwop pool is added to Manwip pool (McGrath 

et al., 2005). 

 Manure assimilation is calculated as 

                                           𝑀𝑎𝑛𝑎𝑠𝑖𝑚 = 𝑀𝑎𝑛𝑎𝑠𝑖𝑚𝑟 ∗ 𝑇𝐹𝐴 ∗ 𝑀𝑎𝑛𝑐𝑜𝑣                                      (45) 

Manure cover area and Manure P pools are assimilated at the same ratio as the manure mass 

assimilate as follows 

                                          𝑀𝑎𝑛𝑐𝑜𝑣𝑎𝑠𝑖𝑚 =
𝑀𝑎𝑛𝑎𝑠𝑖𝑚

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑐𝑜𝑣                                                 (46) 

                                         𝑀𝑎𝑛𝑤𝑖𝑝𝑎𝑠𝑖𝑚 =
𝑀𝑎𝑛𝑎𝑠𝑖𝑚

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑤𝑖𝑝                                                 (47) 

                                       𝑀𝑎𝑛𝑤𝑜𝑝𝑎𝑠𝑖𝑚 =
𝑀𝑎𝑛𝑎𝑠𝑖𝑚

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑤𝑜𝑝                                                 (48) 

                                         𝑀𝑎𝑛𝑠𝑖𝑝𝑎𝑠𝑖𝑚 =
𝑀𝑎𝑛𝑎𝑠𝑖𝑚

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑠𝑖𝑝                                                   (49) 

                                       𝑀𝑎𝑛𝑠𝑜𝑝𝑎𝑠𝑖𝑚 =
𝑀𝑎𝑛𝑎𝑠𝑖𝑚

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑠𝑜𝑝                                                    (50) 

Where, Mancovasim = Manure cover area assimilation. (ha/day) 

             Manwipasim = Manwip pool assimilation (kg/day)  

           Manwopasim = Manwop pool assimilation (kg/day) 

           Mansipasim = Mansop pool assimilation (kg/day) 

           Mansopasim = Mansip pool assimilation (kg/day) 

Assimilated P is added to the soils labile and active P pools. 60% of assimilated P is added to the 

respective P pool of the first soil layer. If the depth of the 2nd layer is less than 15 cm then 30% of 
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it is added to the respective P Pools 2nd soil layer and rest 10% is added the respective P pools of 

to the 3rd soil layer. If the depth of the 2nd layer is more than 15 cm then 40% of assimilated P is 

added to the respective P pool of the 2nd soil layer (Vadas, 2014).  

                                 𝐴𝑐𝑡𝑃𝑎(1) =  𝐴𝑐𝑡𝑃𝑏(1) + 𝑀𝑎𝑛𝑠𝑖𝑝𝑎𝑠𝑖𝑚 ∗ 0.6                                             (51)     

      𝐿𝑎𝑏𝑃𝑎(1) =  𝐿𝑎𝑏𝑃𝑏(1) + (𝑀𝑎𝑛𝑤𝑖𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑎𝑛𝑤𝑜𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑠𝑜𝑝𝑎𝑠𝑖𝑚) ∗ 0.6              (52) 

 If the depth of the second layer is more than 15 cm then 

                                𝐴𝑐𝑡𝑃𝑎(2) =  𝐴𝑐𝑡𝑃𝑏(2) + 𝑀𝑎𝑛𝑠𝑖𝑝𝑎𝑠𝑖𝑚 ∗ 0.4                                             (53)     

      𝐿𝑎𝑏𝑃𝑎(2) =  𝐿𝑎𝑏𝑃𝑏(2) + (𝑀𝑎𝑛𝑤𝑖𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑎𝑛𝑤𝑜𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑠𝑜𝑝𝑎𝑠𝑖𝑚) ∗ 0.3              (54) 

If the depth of the second layer is less than 15 cm then 

                                 𝐴𝑐𝑡𝑃𝑎(2) =  𝐴𝑐𝑡𝑃𝑏(2) + 𝑀𝑎𝑛𝑠𝑖𝑝𝑎𝑠𝑖𝑚 ∗ 0.3                                            (55)  

                                   𝐴𝑐𝑡𝑃𝑎(3) =  𝐴𝑐𝑡𝑃𝑏(3) + 𝑀𝑎𝑛𝑠𝑖𝑝𝑎𝑠𝑖𝑚 ∗ 0.1                                          (56)                          

      𝐿𝑎𝑏𝑃𝑎(2) =  𝐿𝑎𝑏𝑃𝑏(2) + (𝑀𝑎𝑛𝑤𝑖𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑎𝑛𝑤𝑜𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑠𝑜𝑝𝑎𝑠𝑖𝑚) ∗ 0.3              (57) 

      𝐿𝑎𝑏𝑃𝑎(3) =  𝐿𝑎𝑏𝑃𝑏(3) + (𝑀𝑎𝑛𝑤𝑖𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑎𝑛𝑤𝑜𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑠𝑜𝑝𝑎𝑠𝑖𝑚) ∗ 0.1              (58) 

After daily manure assimilation and decompositions the Manure mass, Manure coverage area and 

manure P pools are updated as follows 

                   𝑀𝑎𝑛𝑚𝑎𝑠𝑠𝑎 = 𝑀𝑎𝑛𝑚𝑎𝑠𝑠𝑏 − 𝑀𝑎𝑛𝑑𝑐𝑜𝑚 − 𝑀𝑎𝑛𝑎𝑠𝑖𝑚                                (59)                                                                                    

                        𝑀𝑎𝑛𝑐𝑜𝑣𝑎 = 𝑀𝑎𝑛𝑐𝑜𝑣𝑏 − 𝑀𝑎𝑛𝑐𝑜𝑣𝑑𝑐𝑜𝑚 − 𝑀𝑎𝑛𝑐𝑜𝑣𝑎𝑠𝑖𝑚                                   (60) 

                      𝑀𝑎𝑛𝑠𝑖𝑝𝑎 = 𝑀𝑎𝑛𝑠𝑖𝑝𝑏 − 𝑀𝑎𝑛𝑠𝑖𝑝𝑑𝑐𝑜𝑚 − 𝑀𝑎𝑛𝑠𝑖𝑝𝑎𝑠𝑖𝑚                                      (61) 
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                      𝑀𝑎𝑛𝑠𝑜𝑝𝑎 =  𝑀𝑎𝑛𝑠𝑜𝑝𝑏 − 𝑀𝑎𝑛𝑠𝑜𝑝𝑑𝑐𝑜𝑚 − 𝑀𝑎𝑛𝑠𝑜𝑝𝑎𝑠𝑖𝑚                                 (62)   

𝑀𝑎𝑛𝑤𝑜𝑝𝑎 = 𝑀𝑎𝑛𝑤𝑜𝑝𝑏 − 𝑀𝑎𝑛𝑤𝑜𝑝𝑑𝑐𝑜𝑚 − 𝑀𝑎𝑛𝑤𝑜𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑎𝑛𝑠𝑜𝑝𝑑𝑐𝑜𝑚 ∗ 0.25           (63)           

𝑀𝑎𝑛𝑤𝑖𝑝𝑎 = 𝑀𝑎𝑛𝑤𝑖𝑝𝑏 − 𝑀𝑎𝑛𝑤𝑖𝑝𝑎𝑠𝑖𝑚 + 𝑀𝑎𝑛𝑤𝑜𝑝𝑑𝑐𝑜𝑚 + 𝑀𝑎𝑛𝑠𝑜𝑝𝑑𝑐𝑜𝑚 ∗ 0.75 +
                          𝑀𝑎𝑛𝑠𝑖𝑝𝑑𝑐𝑜𝑚                                                                                                       (64) 

a,b stand for manure mass , coverage are and pool sizes after and before a particular day 

respectively. 

When rainfall occurs, P from manure water extractable pools is released. This released P is either 

carried away by runoff or absorbed in soil labile P pool of the first soil layer. The amount of P 

release depends on rainfall amount and rain to manure mass ratio (Vadas et al., 2005; Vadas et al., 

2004). Amount of P release from manure water extractable pools is released is calculated as 

                                  Manprelease = Manextrc ∗ (Manwip + Manwop)                               (65) 

Where, Manprelease = Manure P release due to rainfall (kg /day)  

             Manextrc = Manure extraction coefficient (Per day). It value varies between 0-1 

                                 If no rainfall then Manextrc = 0. 

 Manextrc is calculated as 

For dairy and beef manure 

                                              𝑀𝑎𝑛𝑒𝑥𝑡𝑟𝑐 =
1.2∗𝑊

𝑊+73.1
                                                                      (66) 

For Poultry and swine manure  

                                               𝑀𝑎𝑛𝑒𝑥𝑡𝑟𝑐 =
2.2∗𝑊

𝑊+300.1
                                                                   (67) 

Where, W is rain to manure mass ratio (cm3/gm) and is calculated as 
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                                   𝑊 =
𝑅𝑎𝑖𝑛

𝑀𝑎𝑛𝑚𝑎𝑠𝑠
∗ 𝑀𝑎𝑛𝑐𝑜𝑣 ∗ 105                                                                (68) 

Where, Rain = Amount of rainfall. (cm) 

             𝑀𝑎𝑛𝑚𝑎𝑠𝑠 = Manure mass. (kg) 

             Mancov = Manure coverage area. (ha) 

If runoff happens, then this released P from manure water extractable P pools are carried away by 

runoff, the concentration of released P in runoff water depends upon phosphorus distribution factor 

(PDFACTOR) and it is calculated  (Vadas et al., 2005) as 

                                                        PDFACTOR = (
𝑅𝑢𝑛𝑜𝑓𝑓

𝑅𝑎𝑖𝑛
)0.225                                              (69)                                                                           

Where, Runoff = Runoff amount. (cm) 

             Rain = Rainfall amount. (cm) 

Manure P concentration in runoff water is calculated as 

                                               Manpcrunoff =
𝑀𝑎𝑛𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒

𝑅𝑎𝑖𝑛∗𝐴𝑟𝑒𝑎∗100
∗ 𝑃𝐷𝐹𝐴𝐶𝑇𝑂𝑅                              (70)                                                           

Where, Manpcrunoff = Manure P concertation in runoff. (kg/m3) 

Manure P mass loss through runoff is calculated as 

                                   𝑀𝑎𝑛𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓 = 𝑀𝑎𝑛𝑝𝑐𝑜𝑛𝑟𝑢𝑛𝑜𝑓𝑓 ∗ 𝑅𝑢𝑛𝑜𝑓𝑓 ∗ 𝐴𝑟𝑒𝑎 ∗ 100            (71) 

Where, Manpmrunoff = Manure P mass loss through runoff. (kg) 

            Area = Area of field. (ha) 

The manure P which is released from manure water extractable P pools but not carried through 

runoff is absorbed to soil labile p pools. 60% of it is added to labile p pool of the first soil layer. 
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In case of the depth of 2nd soil layer is more than 15cm then remaining 40% is added to the labile 

P pools of 2nd soil layer. If the depth of 2nd soil layer is less than 15cm then 30% of it added to 

labile pool of the 2nd soil layer and 10% is added to soil labile pool of 3rd soil layer.  

            𝐿𝑎𝑏𝑎(1) = 𝐿𝑎𝑏𝑏(1) + (𝑀𝑎𝑛𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠𝑟𝑢𝑛𝑜𝑓𝑓) ∗ 0.6                          (72) 

If the depth of the second soil layer is more than 15 cm                       

             𝐿𝑎𝑏𝑎(2) = 𝐿𝑎𝑏𝑏(2) + (𝑀𝑎𝑛𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠𝑟𝑢𝑛𝑜𝑓𝑓) ∗ 0.4                         (73) 

If the depth of the second soil layer is less than 15 cm   

                 𝐿𝑎𝑏𝑎(2) = 𝐿𝑎𝑏𝑏(2) + (𝑀𝑎𝑛𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠𝑟𝑢𝑛𝑜𝑓𝑓) ∗ 0.3                     (74) 

                      𝐿𝑎𝑏𝑎(3) = 𝐿𝑎𝑏𝑏(3) + (𝑀𝑎𝑛𝑝𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝑀𝑎𝑛𝑝𝑚𝑎𝑠𝑠𝑟𝑢𝑛𝑜𝑓𝑓) ∗ 0.1                (75) 

A4  SOIL P DYNAMICS 

           There are constant sorption and desorption of P among the soil inorganic P pools (Figure 

3.1) in order to maintain an equilibrium among the inorganic P pools. A rapid sorption and 

desorption exists between labile and active p pool, this is simulated based on Jones et al., (1984), 

with advance dynamic absorption and desorption (Vadas et al., 2006). The absorption and 

desorption of P between labile P and active P pool is depends upon P sorption coefficient (PSP) 

(Williams et al., 2008) and it is calculated as 

             𝑃𝑆𝑃 =  −0.045 ∗ 𝐿𝑜𝑔(𝐶𝑙𝑎𝑦) + 0.001 ∗ 𝐿𝑎𝑏𝑃 − 0.035 ∗ 𝑆𝑜𝑖𝑙𝑂𝐶 + 0.43                  (76) 

An equilibrium is maintained between labile P and active P pool until the PBAL as defined by f 

equation 77 is zero. When PBAL >0, P from labile P pool moved to active P pool and when PBAL 

<0, P from active P pool moves to labile p pool.  

                                            𝑃𝐵𝐴𝐿 =  𝐿𝑎𝑏𝑃 − 𝐴𝑐𝑡𝑃 ∗
𝑃𝑆𝑃

1−𝑃𝑆𝑃
                                                      (77) 
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The movement of P from labile P pool to active P pool is calculated as i.e. when PBAL > 0 

                                                    𝑃𝐹𝑙𝑜𝑤𝑙𝑎𝑏→𝐴𝑐𝑡 = 𝑃𝑠𝑟𝑝𝑓 ∗ 𝑃𝐵𝐴𝐿                                               (78) 

The movement of P from active P pool to labile P pool is calculated as i.e. when PBAL < 0 

                                                  𝑃𝐹𝑙𝑜𝑤𝑎𝑐𝑡→𝑙𝑎𝑏 = 𝑃𝑑𝑠𝑟𝑝𝑓 ∗ |𝑃𝐵𝐴𝐿|                                            (79) 

Where, PBAL = A variable as defined by equation no 77. (kg/ha) 

            Pflowlab->act = P flow from labile P pool to active P pool. (kg/ha) 

            Pflowact->lab= P flow from active P pool to labile P pool (kg/ha) 

            Psrpf = P sorption factor (-) 

            Pdsrpf = P desorption factor (-) 

Psrpf and Pdsrpf  dynamically changes daily as follows 

                                                    𝑃𝑠𝑟𝑝𝑓 = 𝐴 ∗ 𝐷𝑎𝑦𝐵                                                                    (80) 

                                                    𝐴 = 0.918 ∗ 𝑒−4.603∗𝑃𝑆𝑃                                                          (81) 

                                                 𝐵 = −0.238 ∗ 𝐿𝑛(𝐴) − 1.126                                                    (82) 

Where, A = A factor as calculated by equation no 81 

            B = A factor as calculated by equation no 82 

            Day = Cumulative day since when the P in labile p pool increased and created an                             

imbalance with active P pool and P movement from labile P pool to active p pool 

starts. 

                                                    𝑃𝑑𝑠𝑟𝑝𝑓 = 𝐵𝑎𝑠𝑒 ∗ 𝐷𝑎𝑦−0.29                                                      (83) 
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                                                  𝐵𝑎𝑠𝑒 = −1. .08 ∗ 𝑃𝑆𝑃 + 0.79                                                   (84) 

Where, Base = A factor as defined by equation 84. 

             Day = Cumulative day since when P in active P pool increased and created an imbalance 

with labile p pool and P movement from active P pool to labile P pool starts. 

Similarly a slow absorption and desorption happens between P in active P pool and stable inorganic 

P pool. An equilibrium between active P pool and stable inorganic P pool is maintained as long as 

PBAL1 as defined by equation 85 is zero. When PBAL1>0, P from active P pools moved to stable 

inorganic P pool and when PBAL1<0, P from stable inorganic P pool pools moved to active P 

pool. 

                                     𝑃𝐵𝐴𝐿1 = 4 ∗ 𝐴𝑐𝑡𝑃 − 𝑆𝑡𝑎𝑏𝑖𝑃                                                              (85)                     

P flow from active P pools moved to stable inorganic P pool i.e. when PBAL1>0 is calculated as 

                                𝑃𝑓𝑙𝑜𝑤𝑎𝑐𝑡𝑝→𝑠𝑡𝑎𝑏𝑖𝑝 = 0.0006 ∗ 𝑃𝐵𝐴𝐿1                                                      (86)                                     

 P flow from stable inorganic P pool pools moved to active P i.e. when PBAL1<0 is calculated as 

                                𝑃𝑓𝑙𝑜𝑤𝑠𝑡𝑎𝑏𝑖𝑝→𝑎𝑐𝑡𝑝 = 0.00006 ∗ |𝑃𝐵𝐴𝐿1|                                                  (87) 

Where, Pflowactp->Stabip = P flow from active P to stable inorganic P pool. (kg/ha) 

             Pflowstabip->actP = P flow from stable inorganic P pool to active P pool. (kg/ha)  

            PBAL1 = A variable as defined by equation 86. (kg/ha)            

Mineralization happens from fresh organic P pool and 80% of this mineralized P is added to soil 

labile P pool and remaining 20% is added to stable organic P pool (Jones et al., 1984). 

Mineralization is calculated as 

                                            𝐹𝑟𝑠𝑜𝑝𝑚𝑖𝑛 = 𝐹𝑟𝑠𝑜𝑚𝑖𝑛𝑟 ∗ 𝐹𝑟𝑠𝑜𝑝                                                   (88) 
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Where, Frsopmin = Fresh organic P mineralization (kg/ha/day) 

             Frsopminr = Fresh organic P mineralization rate (per day) 

             Frsop = Fresh organic P Pool. (kg/ha) 

𝐹𝑟𝑠𝑜𝑝𝑚𝑖𝑛𝑟 = 𝐾𝑜𝑟 ∗ √𝛾𝑡𝑒𝑚𝑝𝛾𝑤𝑎𝑡𝑒𝑟 ∗ 𝛾𝑛𝑡𝑟 

𝐾𝑜𝑟 = 0.8    𝑤ℎ𝑒𝑛 
𝐶𝑟𝑝𝑟𝑒𝑠

𝐶𝑟𝑝𝑟𝑒𝑠𝑖
> 0.8 

                         =  0.05  𝑤ℎ𝑒𝑛 0.1 <
𝐶𝑟𝑝𝑟𝑒𝑠

𝐶𝑟𝑝𝑟𝑒𝑠𝑖
< 0.8          

                                                        =  0.0095 𝑤ℎ𝑒𝑛 
𝐶𝑟𝑝𝑟𝑒𝑠

𝐶𝑟𝑝𝑟𝑒𝑠𝑖
< 0.1                                            (89) 

Where, Kor = Rate constant (per day) 

Mineralization also happens from stable organic P pool, and all the mineralized P from stable 

organic P pool is added to the labile P pool (Jones et al., 1984). Mineralization from stable organic 

P pool is calculated as   

                      𝑆𝑡𝑎𝑏𝑜𝑝𝑚𝑖𝑛 = 𝐾𝑜𝑠 ∗ 𝑀𝐼𝑁(𝛾𝑡𝑒𝑚𝑝 ∗ 𝛾𝑤𝑎𝑡𝑒𝑟) ∗ 𝑆𝑡𝑎𝑏𝑜𝑝                                         (90) 

Where, Stabopmin = Mineralization from stable organic P pool. (kg/ha/day) 

             Kos = rate constant of stable organic P mineralization =0.0003 per day  

             Stabop = P in stable organic P pool. (kg/ha) 

Immobilization happens from labile P pool. The immobilized P from labile P pool is added to soil 

fresh organic P pool (Jones et al., 1984). Immobilization from labile P pool is calculated as 

                                                𝐿𝑎𝑏𝑝𝑖𝑚𝑚𝑜 = 0.16 ∗ 𝑅𝑜𝑟 ∗
𝑃𝑚

𝑂𝑚
                                                    (91) 

Where Labpimmo = Immobilization from labile P pool to fresh organic P pool. (kg/ha/day) 
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            Pm/Om = It depends on Labile P amount and it varies between 0.01 and 0.02.  

                        
𝑃𝑚

𝑂𝑚
= 0.02 𝑖𝑓 𝐿𝑎𝑏𝑃 > 10 

                            = 0.01 + 0.001 ∗ 𝐿𝑎𝑏𝑝        𝑖𝑓 𝐿𝑎𝑏𝑃 < 10                                                    (92) 

            Ror = Immobilization rate (per day) 

                                         𝑅𝑜𝑟 = 𝐾𝑜𝑟 ∗ 𝐶𝑟𝑝𝑟𝑒𝑠 ∗ √𝛾𝑡𝑒𝑚𝑝 ∗ 𝛾𝑤𝑎𝑡𝑒𝑟 ∗ 𝛾𝑛𝑡𝑟                                  (93) 

A5  PLANT P UPTAKE 

           Plant need P for its growth. The governing equations of plant P uptake were adopted from 

Neitsch et al., (2011) and they are as follows. Fraction of P in the plant biomass on a given day in 

case of optimal plant growth is calculated as 

                           𝑓𝑟𝑝 = (𝑓𝑟𝑝1 − 𝑓𝑟𝑝3) [1 −
𝑓𝑟𝑝ℎ𝑢

𝑓𝑟𝑝ℎ𝑢+exp(𝑃1−𝑃2∙𝑓𝑟𝑝ℎ𝑢)
] + 𝑓𝑟𝑝3                                  (94)     

Where, frp = Fraction of P in plant biomass on a given day, in case of optimal plant growth        

            frp1 = Normal fraction of P in plant biomass at emergence. 

            frp3 = Normal fraction of P in plant biomass at maturity. 

            frphu = Fraction of potential heat unit (PHU) accumulated for the plant on a given day. 

            P1, P2 are shape coefficients. These are calculated as follows 

                          𝑃1 = 𝑙𝑛 [
𝑓𝑟𝑝ℎ𝑢,50%

1−
𝑓𝑟𝑝2−𝑓𝑟𝑝3

𝑓𝑟𝑝1−𝑓𝑟𝑝3

− 𝑓𝑟𝑝ℎ𝑢,50%] + 𝑃2 ∙ 𝑓𝑟𝑝ℎ𝑢,50%                                           (95) 
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                         𝑃2 =

𝑙𝑛[
𝑓𝑟𝑝ℎ𝑢,50%

1−
𝑓𝑟𝑝2−𝑓𝑟𝑝3
𝑓𝑟𝑝1−𝑓𝑟𝑝3

−𝑓𝑟𝑝ℎ𝑢,50%]−𝑙𝑛

[
 
 
 
 

𝑓𝑟𝑝ℎ𝑢,100%

1−
𝑓𝑟𝑝~3−𝑓𝑟𝑝3
𝑓𝑟𝑝1−𝑓𝑟𝑝3

−𝑓𝑟𝑝ℎ𝑢,100%

]
 
 
 
 

𝑓𝑟𝑝ℎ𝑢,100%−𝑓𝑟𝑝ℎ𝑢,50%
                                    (96) 

Where, frp2 = Normal fraction of P in plant biomass at 50% maturity. 

            frp~3= Normal fraction of P in plant biomass at near maturity. 

            frphu, 50% = Fraction of potential heat unit (PHU) accumulated for the plant at 50% maturity.     

                         = 0.5 

           frphu, 100% = Fraction of potential heat unit (PHU) accumulated for the plant at 100% maturity.     

                         = 1 

Model assumes the value of (frp~3 - frp3) = 0.0001, in order to avoid the second ln term in the 

equation 96 to become undermined. 

Optimal mass of P that should be stored in plant biomass on a given day is calculated as  

                                                        𝐵𝑖𝑜𝑝,𝑜𝑝𝑡 = 𝑓𝑟𝑝 ∗ 𝐵𝑖𝑜                                                            (97) 

Where, Biop, opt = Optimum mass of P that should be stored in plant biomass on a given day. (kg/ha) 

            Bio = Total plant biomass of a given day. (kg/ha) 

Plant P demand for a day is calculated as 

                              𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 1.5 ∗ 𝑀𝐼𝑁( 𝐵𝑖𝑜𝑝,𝑜𝑝𝑡 − 𝐵𝑖𝑜𝑝, 4 ∙ 𝑓𝑟𝑝3 ∙ ∆Bio)                             (98) 

Where, Pdemand = Plant P demand on a given day. (kg/ha) 

           Biop = Actual Plant P in a given day. (kg/ha) 

           ΔBio = Potential increase in total plant biomass on a given day. (kg/ha) 
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The Pup amount of P is up taken by the plant from the soil labile P pool only. The depth distribution 

of plant P uptake is calculated as  

                                     𝑃𝑢𝑝,𝑧 =
𝑃𝑑𝑒𝑚𝑎𝑛𝑑

1−exp (−𝛽𝑝)
[1 − exp (−𝛽𝑝

𝑧

𝑧𝑟𝑜𝑜𝑡
)]                                                   (99) 

Where, Pup,z = Potential P uptake from the soil surface to depth z (kg/ha) 

             βp = Plant P uptake distribution parameter. 

              z = Depth from soil surface. (m) 

              zroot = Depth of root in soil from the soil surface on a given day. (m)    

        The potential P uptake from a soil layer is calculated by 

                                                           𝑃𝑢𝑝,𝑙𝑦 = 𝑃𝑢𝑝,𝑧𝑙 − 𝑃𝑢𝑝,𝑧𝑢                                                  (100) 

Where, Pup, ly = Potential P uptake from a soil layer. (kg/ha) 

        Pup, zl = Potential P uptake from soil surface to the lower boundary of the soil layer. (kg/ha) 

        Pup, zu = Potential P uptake from soil surface to the upper boundary of the soil layer. (kg/ha) 

Finally, the actual P uptake by the plant from a soil layer is calculated as 

                                   𝑃𝑎𝑐𝑡,𝑙𝑦 = 𝑀𝐼𝑁(𝑃𝑢𝑝,𝑙𝑦, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑  , 𝐿𝑎𝑏𝑃𝑙𝑦)                                               (101) 

Where, Pact, ly = Actual P uptake by the plant from a layer. (kg/ha) 

            Pdemand = P uptake demand not met by the overlaying soil layers. (kg/ha) 

           LabPly = P in labile P pool of the layer. (kg/ha) 
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If the all the P demand of the crop can’t not be met by soil labile P pool then, the plant under goes 

P stress and the yield get reduced. P stress is calculated as 

                                         Pstress = 1 −
𝜑𝑝

𝜑𝑝+exp (3.535−0.02597𝜑𝑝)
                                                 (102) 

Where, Pstress = P stress for a given day. 

            φp = Scaling factor for P stress and it is calculated as 

                                             𝜑𝑝 = 200 ∙ [
𝐵𝑖𝑜𝑝

𝐵𝑖𝑜𝑝,𝑜𝑝𝑡
− 0.05]                                                         (103) 

A6  P FLOW FROM RESIDUE AND SOIL ORGANIC MATTER 

         To simulate the P flow from the crop residue and soil organic matter the crop residues and 

soil organic matter are divided into five computational P pools as described within the soil nutrient 

module of the RZWQM2 model (Ma et al., 2012). The crop residue is divided into two pools 

namely fast residue pool and slow residue pool whereas Soil organic matter is divided into three 

pools namely fast organic matter pool, intermediate organic matter pool and slow organic matter 

pool. At beginning of the simulation P mass in these pools are initialized using the user defined 

initial C: P ratio. The P in these pools are decomposed daily at the same rate of carbon 

decomposition as computed (Rojas and Hanson, 2000) by the RZWQM2 model P is transferred 

within pools as shown in Figure A.2. P released due to degradation of residue pools will be added 

to the Fresh Organic P pool and P released due to the degradation of soil organic matter pools is 

added to stable organic P pool. 
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Figure A.2: P low from Residue and Soil Organic mater 

 

A7  TILLAGE  

         Tillage operation incorporates the surface P pools i.e. fertilizer P pools and manure P pools 

into soil based on tillage incorporation efficiency and mixes the soil P pools and crop residues 

based on tillage mixing efficiency, tillage depth and ratio of soil mass of a layer to total soil mass 

of layers up to tillage depth. During tillage operation fertilizer P pools and manure water 

extractable P pools incorporates into soil labile P pool whereas the manure stable P pools 

incorporates into the active P pool of the first soil layer. 

   𝐿𝑎𝑏𝑃𝑎(1) =  𝐿𝑎𝑏𝑃𝑏(1) + (𝐴𝑣𝑓𝑒𝑟𝑡𝑝 + 𝑅𝑒𝑠𝑓𝑒𝑟𝑡𝑝 + 𝑀𝑎𝑛𝑤𝑖𝑝 + 𝑀𝑎𝑛𝑤𝑜𝑝) ∗
𝑇𝑖𝑙𝑙𝑖𝑛𝑐𝑒𝑓𝑓𝑖

100
    (104)          

  𝐴𝑐𝑡𝑃𝑎(1) = 𝐴𝑐𝑡𝑃𝑎(1) + (𝑀𝑎𝑛𝑠𝑖𝑝 + 𝑀𝑎𝑛𝑠𝑜𝑝) ∗
𝑇𝑖𝑛𝑐𝑒𝑓𝑓𝑖

100
                                                        (105) 
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Where, LabPa (1) = Labile P of the first soil layer after the incorporation due to tillage. (kg) 

            LabPb (1) = Labile P of the first soil layer before the incorporation due to tillage. (kg) 

            ActPa (1) = Active P of the first soil layer after the incorporation due to tillage. (kg) 

           ActPb (1) = Active P of the first soil layer before the incorporation due to tillage. (kg) 

           Tinceffi = Tillage incorporation efficiency. (%) 

Tillage operation also mixes the soil P pools and crop residues of all the layers having depth less 

than tillage depth as follows 

            𝐿𝑎𝑏𝑃𝑎 = (1 −
𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
) 𝐿𝑎𝑏𝑃𝑏 + 𝑇𝑙𝑎𝑏𝑃 ∗ 𝑆𝑜𝑖𝑙𝑟𝑎𝑡𝑖𝑜 ∗

𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
                                  (106) 

            𝐴𝑐𝑡𝑃𝑎 = (1 −
𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
)𝐴𝑐𝑡𝑃𝑏 + 𝑇𝐴𝑐𝑡𝑃 ∗ 𝑆𝑜𝑖𝑙𝑟𝑎𝑡𝑖𝑜 ∗

𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
                                   (107) 

      𝑆𝑡𝑎𝑏𝑖𝑃𝑎 = (1 −
𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
) 𝑆𝑡𝑎𝑏𝑖𝑃𝑏 + 𝑇𝑆𝑡𝑎𝑏𝑖𝑃 ∗ 𝑆𝑜𝑖𝑙𝑟𝑎𝑡𝑖𝑜 ∗

𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
                               (108)     

    𝑆𝑡𝑎𝑏𝑜𝑃𝑎 = (1 −
𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
) 𝑆𝑡𝑎𝑏𝑜𝑃𝑏 + 𝑇𝑆𝑡𝑎𝑏𝑜𝑃 ∗ 𝑆𝑜𝑖𝑙𝑟𝑎𝑡𝑖𝑜 ∗

𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
                              (109) 

    𝐹𝑟𝑠𝑜𝑃𝑎 = (1 −
𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
)𝐹𝑟𝑠𝑜𝑃𝑏 + 𝑇𝐹𝑟𝑠𝑜𝑃 ∗ 𝑆𝑜𝑖𝑙𝑟𝑎𝑡𝑖𝑜 ∗

𝑇𝑚𝑖𝑥𝑒𝑓𝑓𝑖

100
                                    (110) 

Where, LabPa = Labile P pool after the mixing due to tillage. (kg) 

             LabPb = Labile P pool before the mixing due to tillage. (kg) 

             ActPa = Active P pool after the mixing due to tillage. (kg) 

             ActPb = Active P pool before the mixing due to tillage. (kg) 

             StabiPa = Stabip P pool after the mixing due to tillage. (kg) 
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             StabiPb = Stabip P pool before the mixing due to tillage. (kg) 

             StaboPa = Stabop P pool after the mixing due to tillage. (kg) 

             StaboPb = Stabop P pool before the mixing due to tillage. (kg) 

             FrsoPa = Frsop P pool after the mixing due to tillage. (kg) 

             FrsoPb = Frsop P pool before the mixing due to tillage. (kg) 

            TLabP = Sum of the P of all the soil labile P pool for the layers having depth less than 

tillage depth. (kg) 

            TActp = Sum of the P of all the soil active P pool for the layers having depth less than 

tillage depth. (kg) 

            TStabiP =Sum of the P of all the soil Stabip P pool for the layers having depth less than 

tillage depth. (kg) 

            TStabop = Sum of the P of all the soil Stabop P pool for the layers having depth less than 

tillage depth. (kg) 

            TFrsoP = Sum of the P of all the soil Stabop P pool for the layers having depth less than 

tillage depth. (kg) 

             Soilratio = The ratio of soil mass of a layer to the total soil mass of the layers having depth 

less than tillage depth. (kg) 

            Tmixeffi = Tillage mixing efficiency. (%) 
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A8  DRP LOSS RUNOFF  

       Dissolve reactive P (DRP) loss through runoff is calculated as   

                    𝐷𝑟𝑝𝑙𝑜𝑠𝑠𝑟𝑛𝑓 = 𝐹𝑒𝑟𝑡𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓 + 𝑀𝑎𝑛𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓 + 𝐿𝑎𝑏𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓             (111) 

Where, Drplossrnf = Amount of DRP loss through runoff. (kg/ha) 

             Fertpmrunoff = Fertilizer P loss through runoff. (kg/ha) [Section A2] 

             Manpmrunoff = Manure P loss through runoff. (kg/ha) [Section A3] 

             Labpmrunoff = Soil labile P loss through runoff. (kg/ha) 

Labpmrunoff is calculated following Neitsch et al., (2011) as  

                                              𝐿𝑎𝑏𝑝𝑚𝑟𝑢𝑛𝑜𝑓𝑓 =
𝑃𝑒𝑥𝑡𝑟∗ 𝐿𝑎𝑏𝑃(1)∗𝑅𝑢𝑛𝑜𝑓𝑓

𝜌𝑏1∗𝐷𝑠𝑜𝑖𝑙(1)∗𝐾𝑑1
                                               (112) 

Where, Pextr = P extraction coefficient 

             Labp (1) = P in labile P pool of the first soil layer. (kg/ha) 

             Runoff = Amount of surface runoff on a given day. (m) 

             ρb1 = Bulk density of the first soil layer. (kg/m3) 

             Dsoil (1) = Depth of the first soil layer. (m) 

             Kd1 = Soil partitioning coefficient of the first soil layer (m3/kg) 

Soil partitioning coefficient is depend on fraction of clay content of soil and is calculated as 

                                                  𝐾𝑑1 = 0.1 + 0.25 𝑐𝑙𝑎𝑦(1)                                                      (113) 

Where, clay (1) = Fraction of clay content of the first soil layer. (-) 
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A9  PP LOSS RUNOFF  

        Particulate Phosphorus (PP) loss through surface runoff is calculated based on Neitsch et al., 

(2011) as 

                                   𝑃𝑃𝑙𝑜𝑠𝑠𝑟𝑛𝑓 = 0.001 ∗ 𝐶𝑜𝑛𝑐𝑠𝑒𝑑𝑝 ∗
𝑠𝑒𝑑

𝐴𝑟𝑒𝑎
∗ 𝐸𝑛𝑐𝑟                                     (114) 

Where, PPlossrnf = Amount of PP loss through runoff (kg/ha) 

           Concsedp = Concentration of P attached to sediment in the surface soil layer. (gm P/MT soil) 

            Sed = Sediment yield on a given day. (MT) 

           Area = Area of the field. (ha) 

           Encr = P enrichment ratio (-) 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑𝑝  

= 100 
𝐿𝑎𝑏𝑃(1) + 𝐴𝑐𝑡𝑃(1) + 𝑆𝑡𝑎𝑏𝑖𝑝(1) + 𝑆𝑡𝑎𝑏𝑜𝑝(1) + 𝐹𝑟𝑠𝑜𝑝(1) + 𝐴𝑣𝑓𝑒𝑟𝑡𝑝 + 𝑅𝑒𝑠𝑓𝑒𝑟𝑝 + 𝑀𝑎𝑛𝑤𝑖𝑝 + 𝑀𝑎𝑛𝑤𝑜𝑝 + 𝑀𝑎𝑛𝑠𝑜𝑝 + 𝑀𝑎𝑛𝑠𝑖𝑝

𝜌𝑏1 ∗ 𝐷𝑠𝑜𝑖𝑙(1)
 

                                                                                                                                                   (115) 

                  

                                                     𝐸𝑛𝑐𝑟 = 0.78 ∗ 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑟𝑛𝑓
−0.2468                                                 (116)                              

Where, 

         Encr = P enrichment ratio (-) 

        Concsed, rnf = Concentration of sediment in runoff (Mg/m3) 

                                           𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑟𝑛𝑓 =
𝑠𝑒𝑑

10∗𝐴𝑟𝑒𝑎∗𝑟𝑢𝑛𝑜𝑓𝑓
                                                        (117) 

Where,    Sed = Sediment yield on a given day. (MT) 

               Area = Area of the field. (ha) 
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               Runoff= Amount of surface runoff on a given day. (mm) 

A10  DRP LOSS TILE DRAINAGE  

         To simulate DRP loss through tile drainage linear groundwater reservoir based approach as 

suggested by TAM-MO-DEL (Steenhuis et al., 1997) is used. In this approach DRP through matrix 

flow and as well as macropore flow at first contributes to the groundwater reservoir, from which 

then DRP is lost along with the drainage water. 

Amount of P leached out from a layer by matrix flow is calculated as (Francesconi et al., 2016) 

                               𝑃𝐿𝑒𝑎𝑐ℎ,𝑚𝑎𝑡 = 𝐶𝑙𝑎𝑏𝑝,𝑆𝑊 (1 − exp (
−𝑞𝑚𝑎𝑡

𝐾𝑑𝑚𝑠+𝑆𝑊
))                                            (118) 

Where, Pleach, mat = Amount of DRP loss through matrix flow from a soil layer. (kg/m3) 

             Clabp, sw = Concentration of Labp is soil water in layer. (kg/m3) 

             qmat = Amount of matrix flow percolating out of a soil layer. (m) 

             Kd = Soil partitioning coefficient (m3/kg) 

             ms = Mass of a soil layer. (kg/m2) 

             SW = Soil water content of the soil layer. (m) 

 

                                                                     𝐶𝑙𝑎𝑏𝑝,𝑆𝑊 =
𝐿𝑎𝑏𝑃

𝐾𝑑𝑚𝑠+𝑆𝑊
                                              (119) 

                                                                    𝐾𝑑 = 0.1 + 0.25 𝑐𝑙𝑎𝑦                                           (120) 

   Where, Labp = P in labile P pool of a soil layer. (kg/m2) 

                Clay = Clay fraction of a soil layer. (-) 
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Amount of DRP loss from first soil layer is added to labile P pool of the next soil layer and so on 

until it reaches the groundwater reservoir and added to it. 

In case of DRP loss through macropore flow, It is assumed that macropore flow occurs as a short-

circuit flow i.e. it is originated from the first soil layer and directly contributes to the groundwater 

reservoir. Amount of P leached out by the macropore flow is calculated as (Steenhuis et al., 1994).  

                                       𝑃𝑙𝑒𝑎𝑐ℎ,𝑚𝑎𝑐 = 𝐶𝑙𝑎𝑏𝑝,𝑆𝑊,1 (1 − exp (
−𝑅

𝐾𝑑1𝑚𝑠1+𝑆𝑊1
)) ∗ 𝑟                        (121) 

Where, Pleach, mac = Amount of DRP loss through macropore flow. (kg/m3) 

         R = Rainfall amount (m) 

         r = ratio of macropore flow to the total flow from the first soil layer. (-)  

                                                                    𝑟 =
𝑉𝑚𝑎𝑐

𝑉𝑚𝑎𝑐+𝑉𝑚𝑎𝑡
                                                        (122) 

Where, Vmac = Volume of macropore flow. (m3) 

             Vmat = Volume of matrix flow. (m3) 

        1 in subscripts stands for all the variables as defined above for the first soil layer only. 

DRP loss from the groundwater reservoir is calculated by mass balance approach. i.e. 

              Change in P mass in GW reservoir = Incoming P mass – Outgoing P mass 

                                                       𝑦′(𝑡) = 𝐼𝑑𝑟𝑝 −
𝑦(𝑡)

𝑆𝑔𝑤
∗ 𝑑𝑟𝑎𝑖𝑛                                               (123) 

Where, y(t) = Mass of DRP present at any time t in the groundwater reservoir. (kg) 

      Idrp= Incoming DRP mass to groundwater reservoir through macropore and matrix flow. (kg) 
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       Sgw = Storage volume of the groundwater reservoir during time t. (m3) 

       Drain = Outflow volume from the groundwater reservoir i.e. the tile drainage amount. (m3)    

        t = time. (days)     

By solving equation 123 we get  

                                       𝑦(𝑡) =
𝑆𝑔𝑤∗𝐼𝑑𝑟𝑝

𝑑𝑟𝑎𝑖𝑛
+ (𝑦0 −

𝑆𝑔𝑤∗𝐼𝑑𝑟𝑝

𝑑𝑟𝑎𝑖𝑛
) ∗ exp (−

𝑑𝑟𝑎𝑖𝑛

𝑆𝑔𝑤
∗ 𝑡)                      (124) 

In case of Drain = 0 then 

                                                        𝑦(𝑡) =  𝐼𝑑𝑟𝑝 ∗ 𝑡 + 𝑦0                                                        (125) 

Where, y0 = initial amount of P mass in the groundwater reservoir at the beginning of the day.  

(kg) 

Average concentration of DRP in 1 day the groundwater reservoir  

                                                             𝐶𝑑𝑟𝑝,𝑔𝑤 =
𝑦0+𝑦(1)

2∗𝑆𝑔𝑤
                                                         (126) 

Where, Cdrp,gw = Concentration of DRP in groundwater reservoir. (kg/m3) 

 The mass of DRP loss through tile drainage is calculated as 

                                                𝐷𝑟𝑝𝑙𝑜𝑠𝑠𝑡𝑑𝑟𝑎𝑖𝑛 = 𝐶𝑑𝑟𝑝,𝑔𝑤 ∗ 𝑑𝑟𝑎𝑖𝑛                                          (127) 

Where, Drplosstdrain = Mass of DRP loss through tile drainage. (kg) 

A11  PP LOSS TILE DRAINAGE  

         PP loss through tile drainage is based on the model described by Jarvis et al., (1999). In this 

approach it is assumed that PP loss through tile drainage only happens through macropore flow 
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and originates only from the first soil layer. The macropore flow along PP is added to the 

groundwater reservoir then it finally loss through tile drainage with drainage water.  

Soil detachment is calculated as 

                                                   𝐷 = 𝐾𝑑 ∗ 𝐸 ∗ 𝑅 ∗ 𝑀𝑠 ∗ 𝐶𝑟𝑜𝑝                                                  (128) 

Where, D = Detachment of soil particle. (gm m-2 day-1) 

             Kd = Soil detachability coefficient. (gm J-1) 

             E = Kinetic energy of the rain. (J m-2 mm-1) 

            R = Rainfall rate. (mm day-1) 

            Ms = Amount of readily available dispersible particle (gm gm-1 soil) 

           Crop = An empirical crop management factor used in USLE for reduction in particle 

detachment when the crop covers the soil. 

                                                𝐶𝑟𝑜𝑝 = 1 − 𝐹𝐶 ∗ exp (−0.34𝐻)                                             (129)       

Where, H = effective canopy height (m) 

             FC = fraction of land surface covered by crop canopy. (-)  

                                                 H = 0.6* crop height                                                                 (130) 

                                               𝐹𝐶 = 6.5 ∗ 𝐿𝐴𝐼0.75 ∗ 𝑆−0.48                                                          (131) 

Where, LAI = leaf area index. (-) 

             S = row spacing. (mm) 

E depends upon the amount of rainfall and it is calculated as  
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                                               𝐸 = 29 ∗ (1 − 0.72 exp(−0.05𝑅))                                           (132) 

The value of Ms dynamically changes due to particle replenishment. In case of just after tillage, if 

the Ms does not reached 50% of its maximum value (Msmax) then the model make it 50% of its 

maximum value. Msmax is calculated as  

                                            𝑀𝑠𝑚𝑎𝑥 = 0.362 ∗ 𝑐𝑙𝑎𝑦 − 0.518                                                   (133) 

Where clay = clay content of the soil (%) 

If we do mass balance of the available particle at the soil surface (As) then 

                                                      
𝑑𝐴𝑠

𝑑𝑡
= −𝐷 + 𝑃                                                                     (134) 

Where, P is the particle replenishment. It is calculated as 

                                                𝑃 = 𝐾𝑟(1 −
𝑀𝑠

𝑀𝑠𝑚𝑎𝑥
)                                                                    (135) 

Where, Kr = Replenishment rate coefficient. (gm m-2 day-1) 

                                                          𝐴𝑠 = 𝑀𝑠 ∗ 𝛾 ∗ 𝑍𝑑                                                             (136)        

Where, γ = Bulk density of the surface soil layer. (gm/m3)      

             Zd = Depth of the surface soil layer. (m)            

Now, substituting the value of P, As and D in the equation 135 then solving it for Ms we get 

                                       𝑀𝑠 =
1

𝐾
(𝐾𝑟 + (𝐾𝑀𝑠𝑜 − 𝐾𝑟) ∗ exp (−

𝐾𝑡

𝛾𝑍𝑑
))                                     (137) 

                                             𝐾 = 𝐾𝑑 ∗ 𝐸 ∗ 𝑅 ∗ 𝐶𝑟𝑜𝑝 +
𝐾𝑟

𝑀𝑠𝑚𝑎𝑥
                                                 (138) 

Where, Mso = Initial amount of Ms before the beginning of a day. 
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              t = time (1 day) 

Concentration of suspended particle routed into the macropore flow is calculated as 

                                                            𝐶𝑠𝑝,𝑚𝑎𝑐 =
𝐷

𝑅+𝑍𝑑𝑆𝑊1
                                                         (139) 

Where, Csp,mac = Concentration of suspended particle routed into the macropore flow  

                           (gm m-2 mm-1) 

              R = Rainfall (mm) 

              Zd = Depth of the surface soil layer. (mm) 

              SW1 = Soil water content of the surface soil layer. (m3/m3) 

Due to filtering, the mass of suspended particle reaching the groundwater reservoir decreases as 

follows  

                                  𝑀𝑑 = 𝑞𝑚𝑎𝑐 ∗ 𝐶𝑠𝑝.𝑚𝑎𝑐 ∗ exp (−𝑓 ∗ 𝑑𝑔𝑤)                                                 (140) 

Where Md = Mass of suspended particle reaching the groundwater reservoir. (gm m-2) 

           f = filter coefficient (m-1) 

           dgw = Depth to groundwater reservoir. (m) 

Mass of PP reaching groundwater reservoir is calculated as 

  𝑀𝑝𝑝 = 𝑓𝑚𝑑 ∗ (𝐿𝑎𝑏𝑝(1) + 𝐴𝑐𝑡𝑃(1) + 𝑆𝑡𝑎𝑏𝑖𝑝(1) + 𝐹𝑟𝑠𝑜𝑝(1) + 𝑆𝑡𝑎𝑏𝑜𝑝(1) + 𝑀𝑎𝑛𝑤𝑖𝑝 +

                                       𝑀𝑎𝑛𝑤𝑜𝑝 + 𝑀𝑎𝑛𝑠𝑖𝑝 + 𝑀𝑎𝑛𝑠𝑜𝑝 + 𝐴𝑣𝑓𝑒𝑟𝑡𝑝 + 𝑅𝑒𝑠𝑓𝑒𝑟𝑡𝑝)                  (141)                                                        

Where, Mpp = Mass of PP reaching groundwater reservoir (kg/ha) 
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             fmd =  A factor 

                                                                         𝑓𝑚𝑑 =
𝑀𝑑

𝛾𝑍𝑑
                                                         (142) 

Where, γ = Bulk density of the first soil layer. (gm/m3) 

             Zd = Depth of the surface soil layer. (m) 

PP loss from groundwater reservoir through tile drainage is calculated by mass balance approach               

Change in PP mass in groundwater reservoir = Incoming PP mass – Outgoing PP mass i.e. 

𝑑𝑦

𝑑𝑡
= 𝐼𝑝𝑝 −

𝑦(𝑡)

𝑆𝑔𝑤
𝑑𝑟𝑎𝑖𝑛                                                      (143) 

Where, y(t) = Mass of PP present at any time t in the groundwater reservoir. (kg) 

       Ipp= Incoming PP mass to groundwater reservoir through macropore flow. (kg) 

       Sgw = Storage volume of the groundwater reservoir during time t. (m3) 

       Drain = Outflow volume from the groundwater reservoir i.e. the tile drainage amount. (m3)    

        t = time. (days)     

Solving equation 144 we get 

                                 𝑦(𝑡) =
𝑆𝑔𝑤

𝑑𝑟𝑎𝑖𝑛
∗ 𝐼𝑝𝑝 + (𝑦0 −

𝑆𝑔𝑤

𝑑𝑟𝑎𝑖𝑛
∗ 𝐼𝑝𝑝) ∗ exp (−

𝑑𝑟𝑎𝑖𝑛

𝑆𝑔𝑤
∗ 𝑡)                   (144) 

In case of drain =0 

                                                                      𝑦(𝑡) = 𝐼𝑝𝑝 ∗ 𝑡 + 𝑦0                                             (145) 

Where, y0 = initial amount of PP mas in the groundwater reservoir at beginning of the day. (kg) 

Concentration of PP in groundwater reservoir in a day is calculated as 
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                                                                       𝐶𝑝𝑝,𝐺𝑤 =
𝑦0+𝑦(1)

2∗𝑆𝑔𝑤
                                                 (146) 

Where, Cpp,gw = Concentration of PP in groundwater reservoir. (kg/m3) 

Amount of PP loss through tile drainage is calculated as 

                                                           𝑃𝑃𝑙𝑜𝑠𝑠𝑡𝑑𝑟𝑎𝑖𝑛 = 𝐶𝑝𝑝,𝑔𝑤 ∗ 𝑑𝑟𝑎𝑖𝑛                                  (147) 

Where, PPlosstdrain = Mass of PP loss through tile drainage. (kg) 
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