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Thesis abstract

This thesis concentrates on the error analysis of B-spline based finite-element methods for
three fourth-order elliptic partial differential equations subject to essential boundary condi-
tions. The first being the biharmonic equation with square-integrable right-hand side and
the second and third are models for quasi-geostrophic equations (QGE) simulating large-scale
wind-driven oceanic currents.

The large scale ocean currents transport heat around the globe which is important in
understanding the climate system due to their influence on the temperature variations across
many of the Earth’s regions. Understanding the dynamics of matter and heat transport
resulting from global wind patterns is a non-trivial computational task that can be tackled
using finite-element methods. Due to the Earth’s axial rotation, annual wind patterns are
westward near the equator and eastward at the mid-latitudes. These wind patterns drive
strong western intensification of oceanic circulations as demonstrated in the Gulf Stream
in the Atlantic ocean, the Kuroshio in the Pacific ocean, the Brazil Current in the south
Atlantic ocean, and the Agulhas current off the east coast of Africa. As a consequence, the
most striking features of oceanic currents are strong western boundary currents along with
weak interior flows and weak eastern boundary currents characterized by the wind forcing
and the effects of rotation. The quasi-geostrophic equations (QGE) are one of the most
popular mathematical models to predict the wind-driven ocean circulation at mid-latitudes.
Although the QGE allow for efficient computational simulations, the solutions of the QGE
can lead to spurious oscillations and poor resolution due to the presence of boundary layers.
The accuracy of the solutions can be improved with refined meshes in the regions where
the boundary layer arises. The QGE are derived from the Navier-Stokes equations where
the velocity vector field is expressed in terms of steam-function potential. The importance
of studying this model is because it is the standard test problem in the geophysical fluid
dynamics literature. In this thesis we address adaptive h-refinement finite-element methods
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for the stationary quasi- geostrophic equation and the Stommel–Munk model.

In contrast to standard Lagrange finite-element methods, B-spline based finite-element
approximations can easily obtain high order continuity at a relatively low computational cost.
Moreover, complex geometries can be represented accurately using B-splines and NURBS
basis functions. In fact, Hughes, Cottrell, and Bazilevs in 2005 introduced an isogeometric
framework for finite element analysis utilizing the aforementioned geometric capabilities.
However, B-splines are non-interpolatory, and imposing even simple boundary conditions
can be problematic. Furthermore, for problems where the formation of boundary layers is
an important feature, the imposition of boundary conditions in a strong manner may not
be appropriate all-together since it may induce artificial oscillations in the solution and it
reduces the accuracy of the underlying numerical method as pointed out by Bazilevs and
Hughes in 2017. Instead, one can impose the boundary conditions weakly using a classical
method by Nitsche dating back to 1971. The so-called Nitsche’s method has been successfully
applied to impose boundary conditions for the second- and fourth-order partial differential
equations in a 2010 publication by Embar, Dolbow and Harari. The essence of the method
is rooted in the method of Lagrange multipliers with the addition of stabilization penalty
terms. The first analysis of this kind was done for the Poisson problem by Babuška in
1973, then generalized by Barbosa and Hughes in 1991 to general Hilbert space setting and
later brought to the spotlight by Sternberg in 1995. Kim and Jiang introduced Nitsche-
type variational formulations for the stream-function formulation of the stationary quasi-
geostrophic equation (SQGE) and its simplified linear version the Stommel–Munk model.
These Nitsche-type formulations can be readily applied for non-interpolatory basis functions
such as B-splines and embedded geometries, where the domain can be implicitly defined
via a level-set function. The purpose of this thesis, among other things, is to analyze the
performance of adaptivity for these Nitsche-type methods and supplement the analyses with
benchmark numerical simulations.

The goal of this thesis is two-fold. On one hand, we derive and analyze error estimators
for the purpose of adaptive h-refinement. The earliest effort was concerned with the linear
Stommel-Munk. We note that a second-order treatment has been done in 2009 by Juntunen
and Stenberg where the analysis hinges on a so-called saturation assumption to relate the
numerical error with the discrete error between two refinements. We carry out a similar ana-
lysis for the fourth-order PDE. In the nonlinear SQGE we perform the error analysis without
a saturation assumption making this work novel in two ways: The treatment requires dealing
with the nonlinear convective term and the reliability proofs are saturation-assumption free.

The second goal of this thesis is concerned with the convergence and optimality of Nitsche-
type adaptive methods for the biharmonic equation. Such a study for general second order
elliptic order equations has been extensively studied when essential boundary conditions are
prescribed into the discrete space. The first convergence proof for the Poisson problem was
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given by Dörfler in 1996 and improved on by Morin, Nochetto, and Siebert in 2000 where
some stringent conditions on the domain partitions were removed. Those ideas were soon
to be extended to general second order linear elliptic problems by Mekchay and Nochetto,
and finally a convergence analysis in a Hilbert space setting was given by Morin, Siebert and
Veeser. The first analysis of convergence rates and quasi-optimality for the Poisson prob-
lem is pioneered by Binev, Dahmen and DeVore in 2004 and also by Stevenson where he
removed an artificial coarsening step. Those ideas were applied to symmetric second order
linear elliptic problems by Cascón, Kreuzer, Nochetto and Siebert and further generalized
by Feischl, Führer and Praetorius to non-symmetric linear problems as well as to strongly
monotone nonlinear operators. We add that all aforementioned literature consider boundary
condition conforming finite-element spaces in that those discrete spaces satisfy the bound-
ary conditions. For completeness, we do the same for the biharmonic problem. As far as
non-conforming methods are concerned, to the best of our knowledge, no such study has
been made for Nitsche’s method before the appearance of our work, not even for the Poisson
problem. The closest situation we have is that of discontinuous Galerkin methods for sym-
metric second order elliptic problems which we draw our inspiration from. The convergence
and quasi-optimality of discontinuous Galerkin methods was studied by Bonito, Andrea and
Nochetto in 2010.
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Résumé de la thèse

Cette thèse se concentre sur l’analyse des erreurs des méthodes aux éléments finis basées
sur la spline B pour trois équations différentielles partielles (EDP) elliptiques du quatrième
ordre soumises à des conditions limites essentielles. La première de ces EDP est l’équation
biharmonique avec le côté droit intégré au carré, et a deuxième et troisième EDP sont des
modèles pour les équations quasi-géostrophiques (EQG) simulant les courants océaniques à
grande échelle poussés par le vent.

Les courants océaniques à grande échelle transportent la chaleur autour du globe. Ceci
est important pour comprendre le système climatique en raison de leur influence sur les
variations de température dans de nombreuses régions de la Terre. La compréhension de la
dynamique du transport de la matière et de la chaleur résultant de la configuration des vents
à l’échelle planétaire est une tâche de calcul non triviale qui peut être abordée à l’aide de
méthodes par éléments finis. En raison de la rotation axiale de la Terre, les vents annuels
se dirigent vers l’ouest près de l’équateur et vers l’est aux latitudes moyennes. Ces régimes
de vent entrâınent une forte intensification des circulations océaniques vers l’ouest, comme
le montrent le Gulf Stream dans l’océan Atlantique, le Kuroshio dans l’océan Pacifique, le
courant du Brésil dans l’océan Atlantique sud et le courant des Aiguilles au large de la côte est
de l’Afrique. En conséquence, les caractéristiques les plus frappantes des courants océaniques
sont les forts courants de l’ouest ainsi que les faibles flux intérieurs et les faibles courants
de frontière caractérisés par le forcage du vent et les effets de rotation. Les EQG sont l’un
des modèles mathématiques les plus populaires pour prédire la circulation océanique due au
vent aux latitudes moyennes. Bien que les EQG permettent des simulations informatiques
efficaces, les solutions des EQG peuvent produire à des oscillations parasites et une mauvaise
résolution en raison de la présence de couches limites. La précision des solutions peut être
améliorée grâce à des maillages raffinés dans les régions où la couche limite est présente. Les
EQG sont dérivées des équations de Navier-Stokes où le champ du vecteur vitesse est exprimé
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vi RÉSUMÉ DE LA THÈSE

en termes du potentiel de la fonction vapeur. Ce modeèle est important vu qu’il s’agit du
problème de test standard dans la littérature sur la dynamique des fluides géophysiques.
Dans cette thèse, nous abordons les méthodes adaptatives d’éléments finis de raffinement H
pour l’équation stationnaire quasi-géostrophique et le modèle de Stommel-Munk.

Contrairement aux méthodes standard d’éléments finis de Lagrange, les approximations
d’éléments finis basées sur la spline B peuvent facilement obtenir une continuité d’ordre
élevé à un coût de calcul relativement faible. De plus, les géométries complexes peuvent être
représentées avec précision à l’aide de B-splines et de fonctions de base NURBS. En fait,
Hughes, Cottrell et Bazilevs ont introduit en 2005 un cadre isogéométrique pour l’analyse
par éléments finis en utilisant les capacités géométriques mentionnées ci-dessus. Cependant,
les B-splines sont non interprétables et l’imposition de conditions limites, même simples,
peut être problématique. En outre, pour les problèmes où la formation de couches limites
est une caractéristique importante, l’imposition de conditions limites de manière forte peut
ne pas être appropriée dans son ensemble car elle peut induire des oscillations artificielles
dans la solution et elle réduit la précision de la méthode numérique sous-jacente comme l’ont
souligné Bazilevs et Hughes en 2017. Au lieu de cela, on peut imposer les conditions limites
de manière faible en utilisant une méthode classique de Nitsche datant de 1971. La méthode
dite de Nitsche a été appliquée avec succès pour imposer des conditions limites pour les EDP
du deuxième et du quatrième ordre dans une publication de Embar, Dolbow et Harari en
2010. L’essence de la méthode est ancrée dans la méthode des multiplicateurs de Lagrange
avec l’ajout de termes de pénalité de stabilisation. La première analyse de ce type a été
réalisée pour le problème de Poisson par Babuška en 1973, puis généralisée par Barbosa et
Hughes en 1991 à l’ensemble de l’espace de Hilbert, et enfin mise en lumière par Sternberg
en 1995. Kim et Jiang ont introduit des formulations variationnelles de type Nitsche pour la
formulation de la fonction de flux de l’équation quasi-géostrophique stationnaire (EQGS) et
sa version linéaire simplifiée, le modèle de Stommel-Munk. Ces formulations de type Nitsche
peuvent être facilement appliquées pour des fonctions de base non interpolatoires telles que
les splines B et les géométries intégrées, où le domaine peut être implicitement défini par une
fonction de niveau.

L’objectif de cette thèse est, entre autres, d’analyser les performances de l’adaptabilité
pour ces méthodes de type Nitsche et de compléter les analyses par des simulations numériques
de référence. D’une part, nous dérivons et analysons les estimateurs d’erreur pour le raffine-
ment H adaptatif. Le premier effort a porté sur le Stommel-Munk linéaire. Nous notons qu’un
traitement de second ordre a été effectué en 2009 par Juntunen et Stenberg où l’analyse re-
pose sur une hypothèse dite de saturation pour relier l’erreur numérique à l’erreur discrète
entre deux raffinements. Nous effectuons une analyse similaire pour l’EDP du quatrième
ordre. Dans l’QSE non linéaire, nous effectuons l’analyse d’erreur sans hypothèse de satur-
ation, ce qui rend ce travail inédit de deux manières : le traitement nécessite de traiter le
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terme convectif non linéaire et les preuves de fiabilité sont sans hypothèse de saturation.
D’autre part cette thèse concerne la convergence et l’optimalité des méthodes adaptatives

de type Nitsche pour l’équation biharmonique. Une telle approche pour les EDP elliptiques
générales second ordre a été largement étudiée lorsque des conditions aux limites essentielles
sont prescrites dans l’espace discret. La première preuve de convergence pour le problème de
Poisson a été donnée par Dörfler en 1996 et améliorée par Morin, Nochetto, et Siebert en 2000
où certaines conditions strictes sur les partitions de domaine ont été supprimées. Ces idées
ont bientôt été étendues à des problèmes elliptiques linéaires généraux du second ordre par
Mekchay et Nochetto, et enfin une analyse de convergence dans un cadre spatial de Hilbert
a été donnée par Morin, Siebert et Veeser. La première analyse des taux de convergence et
de la quasi-optimalité pour le problème de Poisson est lancée par Binev, Dahmen et DeVore
en 2004 et également par Stevenson où il supprime une étape de grossir artificielle. Ces
idées ont été appliquées à des problèmes elliptiques linéaires symétriques du second ordre par
Casc’on, Kreuzer, Nochetto et Siebert, puis généralisées par Feischl, Führer et Praetorius
à des problèmes linéaires non symétriques ainsi qu’à des opérateurs non linéaires fortement
monotones. Nous ajoutons que toute la littérature susmentionnée considère les espaces à
éléments finis conformes aux conditions limites en ce sens que ces espaces discrets satisfont
aux conditions limites. Par souci d’exhaustivité, nous faisons de même pour le problème
biharmonique. En ce qui concerne les méthodes non conformes, à notre connaissance, aucune
étude de ce type n’a été réalisée pour la méthode de Nitsche avant l’apparition de nos travaux,
même pas pour le problème de Poisson. La situation la plus proche que nous ayons est celle
des méthodes discontinues de Galerkin pour les problèmes elliptiques symétriques du second
ordre dont nous nous inspirons. La convergence et la quasi-optimalité des méthodes Galerkin
discontinues ont été étudiées par Bonito, Andrea et Nochetto en 2010.



viii RÉSUMÉ DE LA THÈSE
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Notations and acronyms

notation meaning
N the natural numbers 1, 2, 3, . . .
Z, R integers and real numbers, respectively
Ω, ∂Ω bounded Lipschitz domain in Rd, and its boundary
Ck(Ω) the space of functions with continuous k-order derivatives
Lp(Ω), Lp the space of functions on Ω for which

∫
Ω
|f |p is finite

W s
p (Ω), W s

p the Sobolev space with smoothness s measured in Lp

Hs(Ω), Hs equal to W s
2 (Ω)

Hs
0(Ω), Hs

0 the closure of C∞0 (Ω) in Hs(Ω)
Bs
q(L

p(Ω)), Bs
q(L

p), Bs
p,q Besov space with smoothness s measured in Lp and secondary

index q
L(X, Y ) bounded linear operators between two normed spaces X and

Y
V, W Banach or Hilbert spaces
V′ the dual of V
‖ · ‖V the norm associated to V
u, v, w, . . . elements of V or W
〈·, ·〉 the duality product on V× V′
‖ · ‖ the standard norm on L2

(·, ·) the standard inner product in L2

P, τ a partitioning of domain Ω and a generic member cell
EP , GP , σ interior edges, boundary edges and a generic member edge
XP the B-spline based finite element space consisting of C1 or C2

piecewise polynomial splines

xv
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notation meaning
‖ · ‖s,P the mesh-dependent semi-norm for functions on Ω defined by

weighted L2 integrals along the boundary ∂Ω; see (4.10)
f . g f ≤ C·g with a constant C > 0 that may depend only on fixed

constants under consideration
f h g f . g and g . f
� end of example, definition, or long remark

end of proof



Chapter 1
Thesis overview

Let Ω be a two-dimensional bounded domain with a polygonal boundary Γ. Given a forcing
function f ∈ L2(Ω) and a non-dimensional parameter α > 0, we consider the solution u of a
fourth-order partial differential equation with homogeneous Dirichlet boundary conditions{

α∆2u+ F0(·, u,∇u,∆u) + divF (·, u,∇u,∆u) = f in Ω,

u = ∂u
∂n

= 0 on Γ,
(1.1)

for functions Fi = Fi(x, u,∇u,∆u), i = 0, 1, 2, and F = (F1, F2) taking three forms:

1. Fi ≡ 0 for all i’s and α = 1 corresponding to the biharmonic operator equation with the
right-hand side f . The convergence and quasi-optimality analyses of an h-refinement
adaptive method for this differential equation will be addressed. Two approaches will
be considered: the first, being the content of Chapter 3, uses polynomial spline-based
finite elements which enforces the essential boundary conditions in a strong manner.
Specifically, the boundary conditions are encoded in the discrete space. The second
approach, which is the subject of discussion of Chapter 6, encodes the boundary con-
ditions indirectly through Nitsche’s penalty terms.

2. Here F0 = −εs∆u − ∂u
∂x

, F1 = F2 ≡ 0 and α = εm corresponds to the Stommel–Munk
model (Vallis [66]) for wind-driven ocean circulation in an enclosed midlatitude basin,
where u and f can be the velocity streamfunction and the wind forcing, respectively.
The parameters εs and εm are the nondimensional Stommel and Munk numbers, re-
spectively, which are defined by

εs =
γ

βL
and εm =

A

βL3
, (1.2)

1



2 THESIS OVERVIEW 1.0

where γ is the coefficient of the linear drag (or the Rayleigh friction) as might be
generated by a bottom Ekman layer, β is the coefficient multiplying the y-coordinate
in the β-plane approximation, A is the eddy viscosity parametrization, and L is the
characteristic length scale. In addition to the Laplacian and biharmonic terms, the
model involves the rotation term ∂u

∂x
which is also added to introduce an asymmetry in

the east-west direction. This is the subject of discussion in Chapter 4.

3. Finally, F0 = −Ro−1 ∂u
∂x

, F = ∆u∇⊥u where ∇⊥u = (∂u
∂y
,−∂u

∂x
), and α = Re−1 cor-

responding to the streamfunction formulation of the one-layer SQGE (Vallis [66] and
Foster [37]) for a given velocity streamfunction u and a wind forcing f with Ro−1f on
the right-hand side. The Re and Ro are the Reynolds and Rossby numbers defined by

Re =
UL

A
and Ro =

U

βL2
, (1.3)

respectively. The Rossby number is a measure of the significance of earth’s rotation.
Here, U is the characteristic velocity scale. For large scale oceanic flows, the Reynolds
number Re is large and the Rossby number Ro is small, indicating small diffusion and
large rotation. Thus, the SQGE is dominated by convective terms with the large wind
forcing.

The weak formulation for the general problem (1.1) in the Hilbert space H2
0 (Ω) reads

Find u ∈ H2
0 (Ω) such that a(u, v) + b(u; v) = `f (v) ∀v ∈ H2

0 (Ω), (1.4)

where the principal part a : H2
0 (Ω) × H2

0 (Ω) → R is given by a(u, v) = α
∫

Ω
∆u∆v and

b : H2
0 (Ω) × H2

0 (Ω) → R is either bilinear or nonlinear in both arguments but linear in the
second argument. In both cases the form b is non-symmetric and given by

b(u; v) =

∫
Ω

F0(·, u,∇u,∆u)v −
∫

Ω

F (·, u,∇u,∆u) · ∇v. (1.5)

Finally, `f ∈ H−2(Ω) and reads `f (v) =
∫

Ω
fv. In Chapter 4 the essential boundary conditions

are prescribed into the B-spline polynomial space XP leading to the discretization:

Find U ∈ XP such that a(U, V ) + b(U ;V ) = `f (V ) ∀V ∈ XP . (1.6)

For Nitsche-type methods we initially modify the principal part a to define a new mesh-
dependent principal part aP : XP × XP → R

aP (U, V ) = α

∫
Ω

∆U∆V + α

∫
Γ

(
∂∆U
∂n

V + U ∂∆V
∂n

)
− α

∫
Γ

(
∆U ∂V

∂n
+ ∂U

∂n
∆U

)
+ γ1

∫
Γ

h−3
P UV + γ2

∫
Γ

h−1
P

∂U
∂n

∂V
∂n
,

(1.8)
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where γ1 and γ2 are positive stabilization parameters. The lower order terms of form b
remains unchanged. Actually in our initial work (Chapter 4) on the linear Stommel-Munk,
we did modify b as well, but later it became clear that this was not necessary; compare with
Chapter 5. Therefore in hindsight we leave b unchanged here. We solve:

Find U ∈ XP such that aP (U, V ) + b(U ;V ) = `f (V ) ∀V ∈ XP . (1.9)

While (1.9) produces the right solution to (1.6), the a posteriori estimation will only be
possible using a saturation assumption as a price to pay for having aP be well-defned for
only XP . The use of this saturation assumption is justifiable for the Poisson problem since
a discrete lower bound can be derived. This has been done when the finite-element dis-
cretization satisfies the boundary conditions (Dörfler [53] and Morin et al. [54]). However
to the best of our knowledge no such estimate exists for the fourth-order problem or when
Nitsche’s method is employed even for the Poisson problem. We do not attempt to derive a
discrete lower bound because it is shown to be unessential for convergence or quasi-optimality
(Cascón et al. [61], Feischl et al. [62] and Siebert et al. [58]). We show that the dominance
of the a posteriori error estimator over the numerical error is realized without a saturation
assumption but at the cost of the discrete methods consistency with (1.4). Nevertheless, the
resulting inconsistency is shown to weaken with refinement. Here we modify aP to be

aP (u, v) := α

∫
Ω

∆u∆v − α
∫

Γ

(
∂ΠP (∆u)

∂n
v + u∂ΠP (∆v)

∂n

)
+ α

∫
Γ

(
ΠP (∆u) ∂v

∂n
+ ∂u

∂n
ΠP (∆v)

)
+ γ1

∫
Γ

h−3
P uv + γ2

∫
Γ

h−1
P

∂u
∂n

∂v
∂n
,

(1.11)

with ΠP a suitable projection operator and γ1 and γ2 retain the same meaning as in (1.8).

The outline of the thesis is as follows. In Chapter 2 (Basic principles), we go over the
necessary analytic tools needed to assess the performance of adaptive methods. We cover
various elements of approximation theory and smoothness spaces. The primary goal of this
section is to familiarize the reader with the underlying theory making some of the analysis
more intuitive as proofs of this type can get quite technical.

In Chapter 3 (Conforming method for the biharmonic equation), we derive an a posteriori
error estimator and prove convergence and quasi-optimality of the method, and conclude
with the characterization of approximation classes.

In Chapters 4 and 5 (Wind-driven ocean circulation models), a posteriori error estimators
are derived for the linear Stommel-Munk model and the nonlinear SQGE model. In addition,
we provide a complete a priori analysis for the nonlinear SQGE model. The a priori estimate
enables us to predict the expected rate of convergence using techniques of approximation
theory in Chapter 2.
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In Chapter 6 (Nitsche’s method for the biharmonic equation), a complete analysis ana-
logous to that in Chapter 3 is carried out for the principal part of the models above in the
context of Nitsche’s discretization.

Chapter 7 (Conclusion) closes the thesis with a summary and discussion of the presented
research topics, as well as with some suggestions for future research.

Each of Chapters 4 and 5 appeared separately in publications. Chapter 4 is based on [78]:

Al Balushi, Ibrahim and Jiang, Wen and Tsogtgerel, Gantumur
and Kim, Tae-Yeon, Adaptivity of a B-spline based finite-element method for
modeling wind-driven ocean circulation, Computer Methods in Applied Mechanics
and Engineering, Volume 332, pp.1–24, Elsevier, (2018).

Chapter 5 is based on [79]:

Al Balushi, Ibrahim and Jiang, Wen and Tsogtgerel, Gantumur and
Kim, Tae-Yeon, A posteriori analysis of a B-spline based finite-element method
for the stationary quasi-geostrophic equations of the ocean, Computer Methods in
Applied Mechanics and Engineering, Volume 371, pp.113317, Elsevier, (2020).

Moreover, they will include numerical results for benchmark problems using square and L-
shaped domains. All mathematical analysis was carried out by the primary first author and
all numerical simulations were produced by Wen Jiang.

1.1 Notational conventions
While many notations are summarized in the table on page xv, we would like to highlight
some specific ones that appear frequently throughout the thesis. In any case, their definitions
appear at the first place where they are introduced.

In this thesis, blackboard bold letters (e.g, V) are used to denote general Banach or
Hilbert spaces and capital letters (e.g., T, I and Q) and sometimes the capital Greek letter Π
are used to denote operators between those space, and often with subscripts indicating some
dependencies.

We will encounter function spaces Ck(Ω), Lp(Ω), W s
p (Ω) and Bs

q(L
p) etc., with Ω being

bounded and open domains with a polygonal boundary ∂Ω. Usually we denote the domain
boundary by Γ. Elements of those spaces are indicated by lowercase letters (e.g., u and v).

A large portion of the thesis concerns with partitions (or meshes) P of domain Ω consisting
of non-overlapping square cells that completely covers Ω. Elements of P will be denoted by
the Greek letter τ . It will be useful for us to also consider the edges making up the partitions:
EP , referred to sometime as the skeleton, consist of all the interior edges, and analogously,
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GP consist all mesh edges along the boundary Γ. Interior and boundary edges will always be
denoted by σ. Let hτ be the diameter of a cell and hσ be the length of an edge.

In addition to mesh objects, we will encounter numerous piecewise polynomial spline
spaces which we mostly denote by PP , SP or XP . Typically the pieces of these spaces is
determined by a partitioning P of domain Ω. The degree of the polynomial spaces will
always depend on the letter r interchangeably being the degree or order. When r is the order
of the space, the degree of the space will be r − 1. In the absence of any confusion, we use
capital letters (e.g., S, V and W ) for elements of polynomial spaces, otherwise we use the
Greek letters χ or π.

Finally, in order to avoid the repeated use of generic but unspecified constants, by f � g
we mean that f ≤ C·g with a constant C > 0 that may depend only on fixed constants under
consideration.
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Chapter 2
Basic principles

2.1 Preliminaries
In this chapter we briefly summarize all the essential theoretical machinery that drives the
analyses of this thesis. The results in this chapter are mostly not new. The only result that
has some new elements are Lemma 2.43 and Theorem 2.46.

2.1.1 Sobolev spaces
We recall some elementary definitions and results from (Adams [1] and Grisvard [2]).

Definition 2.1 (Sobolev spaces). For any open subset Ω ⊂ Rd, integer m ≥ 0 and p ∈
(0,∞], let

Wm
p (Ω) = {u ∈ D ′(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ m} , (2.1)

with ∂α understood in the sense of distributions and D ′(Ω) is the space of distributions. �

In this thesis we consider Lp norms for all positive p values. Integrability range 0 < p < 1 lacks
the attractive topological structure of the p ≥ 1 counterpart, but their role is indispensable
to nonlinear approximation. The functional ‖ · ‖Lp defines a norm for 1 ≤ p ≤ ∞ whereas
for 0 < p < 1 it is only a quasi-norm with reversed Minkowski and Holder inequalities.
Properties of functions in Sobolev spaces depend strongly on the properties of the domain
boundary Γ = ∂Ω. For all our intents and purposes we constrain ourselves with open and
bounded domains with Lipschitz boundary. All bounded, open and convex subsets Ω of Rd

have Lipschitz boundary including closed polygonal boundaries.
The relationship between different Sobolev spaces represent themselves as embdeddings

(of continuous or compact nature) and is entirely dictated by how their smoothness and

7
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integrability indices relate. A simple way to express those relationships is via the Sobolev
number which is defined by Sob(Wm

p ) = m− d
p
. Higher Sobolev numbers correspond to more

regularity. Embedding theorems are initially derived in Fourier space if Ω = Rn and extends
to open domains Ω with Lipschitz boundary using stable extension operators.

Theorem 2.2 (Calderon extension). Let Ω ⊂ Rd be bounded and open with a Lipschitz
boundary. Then for every integer m ≥ 0 and every p ∈ (1,∞) there exists an extension
operator E ∈ L

(
Wm
p (Ω),Wm

p (Rd)
)

such that Eu(x) = u(x) a.e x ∈ Ω.

The embeddings are summarized for integer valued smoothness indices:

Theorem 2.3 (Sobolev Embeddings). Let Ω ⊂ Rd be open and bounded with Lipschitz
boundary. The inclusion

W k
q (Ω) ↪→ Wm

p (Ω), (2.2)

is continuous if either Sob(Wm
p ) ≥ Sob(W k

q ), or, if m ≤ k and p ≥ q whenever Sob(Wm
p ) =

Sob(W k
q ). Moreover, we have

Wm+k
p (Ω) ↪→ Ckb (Ω) = Ck(Ω) ∩W k

∞(Ω), (2.3)

whenever Sob(Wm
p ) > 0.

Remark 2.4. A complement to the direction of (2.3) is Ckb (Ω) ↪→ W k
p (Ω), but the reverse

isn’t true. For example in two-dimensions, Sob(H1) = 0, meaning that the members of
H1(Ω) are not necessarily continuous. For example u(r) = ln(−2 ln r) on the unit open in R2

centered at the origin. Analogously, from the embedding above we also see that functions in
H2 are continuous but not necessarily C1

b .

It is of interest to consider non-integer smoothness indices. In particular, fractional order
Sobolev spaces are needed when working with boundary value problems since they arise
as images of trace operators. Moreover, the performance of approximation methods boils
down to measuring smoothness on a continuous scale. The following definition extends the
smoothness index to real positive numbers using the Slobodeckij semi-norm (2.4):

Definition 2.5 (Fractional Sobolev spaces). Let Ω ⊂ Rd and let s = m+σ, m ∈ N and
σ ∈ (0, 1). Then we define

W s
p (Ω) =

{
u ∈ Wm

p (Ω) :
∂αu(x)− ∂αu(y)

|x− y|σ+d/p
∈ Lp(Ω× Ω), |α| ≤ m, α ∈ Nd

}
. (2.4)

�
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Definition 2.5 extends m to real values by requiring the difference Dmu(rn) to decay at a rate
+σp units faster than just the O(rn) required by the standard definition of differentiation. An
alternative way to Definition 2.5 is to carry fractional differentiation in Fourier space which
is relatively easy. However, this only applies to unbounded or to periodic domains. In the
context of this thesis we will need to define fractional order Sobolev spaces as interpolation
spaces.

We conclude this section with a trace theorem:

Theorem 2.6 (Sobolev Trace). Let Ω ⊂ Rd be a Lipschitz domain with boundary Γ, and
let s > 1/2. Then there exists a unique trace mapping ·|Γ ∈ L(Hs(Ω), Hs−1/2(Γ)).

A more useful form is:

Theorem 2.7 (General Trace Inequlaity). Let Ω ⊂ Rd be a bounded and open domain
with Lipschitz boundary Γ. Then there exists a constant CT > 0 such that

‖u‖Lp(Γ) ≤ CT

(
ε1−1/p‖∇u‖Lp(Ω) + ε−1/p‖u‖Lp(Ω)

)
, (2.5)

for all u ∈ W 1
p (Ω) and ε ∈ (0, 1).

2.1.2 (θ, q)-quasi-norms and sequence spaces

The quasi-norms are a tool for quantifying the rate of decay of sequences with great precision,
making them instrumental in creating different sub-spaces within a larger topological space
by how well they can be approximated by smoother objects.

Definition 2.8 ((θ, q)-quasi-norms). For 0 < θ < 1 and 0 < q ≤ ∞, the following
functional

‖w‖θ,q =


(∫ ∞

0

[t−θw(t)]q dt
t

)1/q

, q <∞,

ess supt>0(t−θw(t)), q =∞,
(2.6)

defines a quasi-norm for all non-negative real-valued Lebesque measurable functions w :
R+ → R+. �

When the (θ, q)-quasi-norm is finite, we can say something about the behavior of w(t) as
t → 0 and as t → ∞. When θ is closer to 1, the function w is expected to decay to zero
faster at the origin.
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Remark 2.9. Taking w(t) = tα, for α > 0, the (θ, q)-quasi-norm is finite if and only if α > θ
irrespective of parameter q making it a secondary parameter in comparison to θ. In this way
parameter q creates finer spaces for each θ value.

In what follows, the function w(t) will actually be a functional w(u; t), parameterized by
t > 0, that measures certain behaviors of a target function u belonging to some function
class X. In this way the (θ, q)-quasi-norm can separate X into various nested sub-spaces
Xθ,q determined by the measurements carried by w(f ; t). If Xθ,q denotes the space of all
non-negative functions for which the quasi-norm (2.6) is finite, we will have the embedding:

Xα,q ⊂ Xβ,p if α > β regardless of q, or, if α = β and q < p. (2.7)

We consider three relevant functionals w(f ; t).

Definition 2.10 (Moduli of smoothness). For Ω ⊂ Rd open, u ∈ Lp(Ω), p ∈ (0,∞], we
denote the modulus of smoothness of order r ≥ 1 of u by

ωr(u, t)p = sup
|h|≤t
‖∆r

h(u, ·)‖Lp(Ωr,h), Ωr,h = {x | (x, x+ rh) ⊂ Ω}, (2.8)

where ∆r
h is the rth order difference with step h ∈ Rd. �

Some properties follow immediately from the definition of ωr(u, t)p. It is clear that ωr(u, t)p →
0 monotonically as t → 0. We expect ωr(u, t)p → 0 faster for smoother functions u. In
particular, if u ∈ W k

p (Ω), with 1 ≤ p <∞, then ωk(u, t)p ≤ tk|u|Wk
p (Ω).

Definition (2.8) measures smoothness without requiring the existence of weak derivatives,
but as long as its rate of decay of ωr(f, t)p → 0 as t → 0 is fast enough, one can infer
additional smoothness. Precisely, if tkωr(f, t)p → 0, 0 ≤ k < r then f ∈ W k

p (Ω). We also

have a useful result due to (Graham [13]: if u(x) = |x|α−d/p, x ∈ Rd, 1 ≤ p ≤ ∞ then

ωr(u, t)p =

{
O(tα), α > r,

O(tr), α < r.
(2.9)

Remark 2.11. If t−rωr(u, t)p → 0 as t→ 0 then u is necessarily an r−1 degree polynomial.
In essence this means there is a limit to how well approximation can be with respect to a
polynomial spaces and results of this kind are said to be saturation results and they extends
to more complicated settings such as polynomial spline spaces.
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A modified modulus is needed when we are in a polynomial spline setting since the addition
of several sub-intervals is expected. We define the averaged modulus of smoothness to be

wr(u, t)
p
p =

∫
[−t,t]d

∫
Ωr,t

|∆r
s(u, x)|p dxds, (2.10)

which is equivalent to (2.8) with proportionality constants depending on r, p and d.
The second form the functional w(f ; t) takes is the so-called K-functional which concerns

Peetre’s real interpolation of spaces.

Definition 2.12 (K-functional). Let V and W be quasi-normed spaces such that the em-
bedding W ↪→ V is continuous. Let t > 0 and u ∈ V. Then we define

K(u, t) = K(u, t;V,W) = inf
w∈W

(‖u− w‖V + t|w|W) . (2.11)

�

Topological considerations of the spaces V and W can be tightened or relaxed, but here the
choice is such that the treatment of Sobolev spaces with 0 < p < 1 is possible. The functional
K(u, t) is increasing, concave (therefore monotone) and continuous on t ≥ 0. The definition
says that having K(u, t) < ε for some t > 0 implies that u ∈ V can be approximated with
error ‖u − w‖V < ε by some w ∈ W with a reasonably sized |w|W < εt−1 illustrating that
the K-functional can quantify the smoothness of u by how well u can be approximated by
smoother objects. In fact, (Johnen and Scherer [10]) show that for any p ∈ (0,∞] and integer
r ≥ 1,

ωr(u, t)p ∼ K(u, t;Lp(Ω),W r
p (Ω)) ∀u ∈ Lp(Ω), ∀t > 0, (2.12)

meaning that if u ∈ Lp is well-approximated by functions with r-order weak derivatives then
the smoothness modulus decay’s reasonably fast and that u has to be somewhere in between
Lp and W r

p .
In general, when w(f ; t) is monotone, discretization of the (θ, q)-quasi-norms is possible

with ‖w‖θ,q ∼ ‖(2θkw(2−k))k∈Z‖`q relating ‖ · ‖θ,q with Lorentz sequence spaces.

Definition 2.13 (Lorentz sequence spaces). Let (ak)k∈Z be a positive sequence and let
α > 0,

‖(ak)‖`αq = ‖(2αkak)‖`q =


(∑

k∈Z
(
2kαak

)q )1/q

, 0 < q <∞,

supk∈Z 2kαak, q =∞.
(2.13)

�

The last choice for w(f ; t) concerns approximation error.
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Definition 2.14 (Error functional). Let V be a quasi-normed space and let X be a finite
dimensional subspace of V. Then we define

E(u,X)V = inf
χ∈X
‖u− χ‖V. (2.14)

�

Remark 2.15. If a sequence (an)n∈N is monotone and decreasing, we have ‖(a2αn)n∈N‖q`αq ∼∑
n∈N[nαan]q 1

n
. It is clear that the inclusion `αq1 ⊂ `αq2 holds whenever q2 ≤ q1. As an

application, if an = E(u,Xn)V for some sequence of approximating spaces {Xn}n≥1, then
‖(an)‖`sq <∞ is equivalent to E(u,Xn)V � n−s for any q.

2.1.3 Interpolation spaces
Definition 2.16 (Interpolation spaces). Let V and W be quasi-normed spaces such that
the embedding W ↪→ V is continuous. For 0 < θ < 1 and 0 < q ≤ ∞, we let

(V,W)θ,q =
{
u ∈ V | |u|(V,W)θ,q <∞

}
, (2.15)

where |u|(V,W)θ,q = ‖K(u, · ;V,W)‖θ,q. �

The spaces Xθ,q = (V,W)θ,q are topologically quasi-normed and will clearly satisfy the em-
beddings (2.7).

The following theorem asserts that if one interpolates between two interpolation spaces,
one does not obtain anything new:

Theorem 2.17 (Reiteration Theorem). Let V′ = (V,W)α1,q1 and let W′ = (V,W)α2,q2

with α1 < α2. Then for any 0 < θ < 1 and 0 < q ≤ ∞,

(V′,W′)θ,q = (V,W)α,q, α = (1− θ)α1 + θα2. (2.16)

Interpolation spaces serve a number of relevant applications. First of which is the defini-
tion of fractional Sobolev spaces thereby extending Definition 2.1 to continuous smoothness
parameter values without resorting to the unpopular Slobodeckij semi-norm (2.4): For k ∈ N,
0 < σ < 1 and domain Ω with Lipschitz boundary, the interpolation space

W k+σ
p (Ω) =

(
W k
p (Ω),W k+1

p (Ω)
)
σ,p
, (2.17)

has a norm equivalent to that of Definition 2.5. More generally, we define a generalization
Sobolev to Besov Spaces by interpolation as well:

Bα
q (Lp(Ω)) = (Lp(Ω),W r

p (Ω))α/r,q, 0 < α < r, 0 < q ≤ ∞, (2.18)

where Xθ,q = Bθ
q (L

p(Ω)) inherits all the (θ, q)-embeddings of (2.7). Moreover, in view of the
equivalence (2.12) one obtains an equivalent definition for Bs

q(L
p(Ω)) using the modulus of

smoothness (2.8). We discuss Besov in more detail in the next subsection.
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2.1.4 Besov spaces
Definition 2.18 (Besov Spaces). Let Ω ⊂ Rd and α be a positive real number. Let 0 <
p, q ≤ ∞, r be any positive integer greater than α. Then we have

Bα
q;r(Lp(Ω)) =

{
u ∈ Lp(Ω) | |u|Bα

p,q;r
<∞

}
, (2.19)

where |u|Bα
p,q;r

= ‖ωr(u, ·)p‖α,q. �

Remark 2.19. Recall that ‖ · ‖Bα
p,q;r

= ‖ · ‖Lp + | · |Bα
p,q;r

is a quasi-norm for p < 1 and a

norm otherwise. If α > r − 1 + max{1, 1
p
} then the space is just the polynomial space Pr−1

making the definition (2.19) trivial. Indeed, it can be shown that ωr(f, t)p = O(tr−1+max{1, 1
p
})

and the rest follows from Remark 2.11. Instead, the r should be chosen strictly greater than
α + 1−max{1, 1

p
}. With such r in hand, any positive integer r′ > r will yield a quasi-norm

Bα
p,q;r′ equivalent to Bα

p,q;r. This Besov space independence of r justifies dropping the r
from the definition’s symbol. See (DeVore and Lorentz [6]) for details. When the relation is
equality, there will be dependence on q (Tsogtgerel [22]). We do not discuss this.

Reiteration Theorem 2.17 asserts if one interpolates two fractional Sobolev spaces, the
result is another fractional order Sobolev space with the order resulting from the convex
combination of (2.16). The interpolation of Besov spaces is also a Besov space (DeVore and
Popov [8]):

Theorem 2.20 (DeVore and Popov [8]). If αi ∈ (0,∞) and pi, qi ∈ (0,∞] for i = 0, 1,
then for each θ ∈ (0, 1), and for 1

q
= θ 1

q0
+ (1− θ) 1

q1
and 1

p
= θ 1

p0
+ (1− θ) 1

p1
, we have(

Bα0
q0

(Lp0),Bα1
q1

(Lp1)
)
θ,q

= Bα
q (Lp) with α = (1− θ)α0 + θα1. (2.20)

There are some inconsistencies with Besov and Sobolev spaces; the former is not a strict
extension of the latter. For example for p ≥ 1 and s > 0, the inclusion Bs

q(L
p) ⊂ W s

p is strict
when q > 2, and is flipped when q < 2. In the special case of q = p = 2 the spaces coincide
with equivalent norms for all s > 0.

The embeddings of Besov spaces from (2.7) immediately give Bα
q1

(Lp) ⊂ Bβ
q2

(Lp) whenever
α > β and 0 < q1, q2 ≤ ∞, and Bα

q1
(Lp) ⊂ Bα

q2
(Lp) whenever q1 < q2. In addition to

the inherited embeddings of Besov spaces from the (θ, q)-quasi-norm structure, we have
Bα
p1

(Lp1) ⊂ Bα
p2

(Lp2) whenever p1 < p2. More interestingly, we have the continuous embed-
ding

Bα1
q1

(Lp1) ⊂ Bα2
q2

(Lp2), (2.21)

whenever α1−α2 ≥ d( 1
p1
− 1

p2
) > 0 given any pair 0 < q1, q2 ≤ ∞, or, α1−α2 = d( 1

p1
− 1

p2
) > 0

whenever 0 < q2 ≤ q1 ≤ ∞. In particular, the embedding (2.21) is consistent with that of
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Sobolev embedding (2.2) thereby extending the latter relation to fractional order spaces
when qi = pi. The relation between Bs

q(L
p) spaces, irrespective of the tertiary index q, is

best illustrated by the so-called DeVore diagram. Each point (1
p
, s) on the diagram indicates

the position of Besov space Bs
q(L

p), where the Sobolev embedding line emanates in the
position direction from (1

p
, s) is indicated in thick has slope d. In Figure 2.1 where we use

Bα
2 (L2) = H2(Ω) an example which corresponds to point (1

p
, s) = (1

2
, 2).

1
p

s

L2

H2

L∞

W 2
∞

W
2− d

2∞

d

Figure 2.1: In this so-called DeVore diagram the point (1
p , s) represents the Besov space Bs

q(L
p),

irrespective of 0 < q ≤ ∞. Specific to our interest when p = q, when Besov spaces are equivalent to
fractional Sobolev spaces, the thick line has slope d and corresponds to the Sobolev embedding line
Sob(W s

p ) = Sob(H2) for which p ≤ 2 and s ≥ 2. All spaces on this line and above it and those on
and above the demarcated line embeds into H2.

2.1.5 Approximation classes
There are various types of adaptive approximation procedure in the literature, all with the
mission to increase approximation resolution through focusing computational resources to
where it is most needed. Adaptivity through mesh refinement requires a suitable class of
approximating finite dimensional spaces, an initial mesh configuration, a subdivision strategy
that preserves desirable mesh characteristics and derivable computable quantities serving
the role of local approximation errors to guide refinement. These so-called guides are error
indicators usually defined locally, with error estimators as the global counterpart. The
performance of any adaptive procedure needs to be determined, and because such procedure
is generally more difficult to implement than conventional ones, it is always necessary to
know whether the effort is worthwhile.

Assume that {Xn}n≥1 is a “suitable” sequence or family of finite-dimensional approxim-
ating spaces for V. The meaning of “suitable” will be made precise later. We can classify all
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functions u ∈ V by how well they can be approximated by the family {Xn}n≥1, that is, by
the decay rate of approximation error.

Definition 2.21 (Approximation class). For 0 < q ≤ ∞ and s > 0, let

A s
q = A s

q (V, {Xn}n≥1) =
{
u ∈ V | |u|A s

q
<∞

}
, (2.22)

where |u|A s
q

= ‖(E(u,Xn)V)n≥1‖`sq . �

The embeddings in (2.7) hold true with Xθ,q = A θ
q . The q = ∞ case, which merits its own

symbol A s = A s
∞, is of primary interest since it is the largest approximation class where

functions are approximated with rate s. Fortunately, it is also the simplest of all the possible
q′s. This is consistent with Remark 2.15.

The following result is instrumental in expressing smoothness in terms of how well it can
be approximated:

Theorem 2.22 (Hardy’s inequality). If (ak)k∈Z and (bk)k∈Z are positive sequences such
that for some µ, λ > 0,

bk � 2−kλ
( k∑
j=−∞

(
2jλaj

)µ)1/µ

, (2.23)

then ‖(bk)‖`θq � ‖(ak)‖`θq for all 0 < q ≤ ∞ provided that 0 < θ < λ.

2.2 Approximation theory

The subject of approximation theory is quite technical and wields a sophisticated theoretical
machinery. A brief survey in a concrete setting is developed here for the unfamiliar reader.
The purpose of this section is to provide the reader with a clear idea of how one can anticipate
the upper efficiency limits of an approximating algorithm in terms of the smoothness of a
target function f when f itself is accessible. When solving for a numerical solution for a dif-
ferential equation, one does not have the target function in hand making the analysis harder;
a thorough study of solution regularity is needed. Once the solution regularity is known, the
rest follows naturally as in the former case up to some minor additional technicalities. In
numerical differential equations, as demonstrated in (Binev et al. [59], Stevenson [60] and
Cascón et al. [61]) the right-hand side and boundary conditions can interfere with the rate
because of data oscillation; (see Chapters 3 and 6).
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2.2.1 Fundamental ideas through examples
Example 2.23. Here we approximate a target function f ∈ C∞(I)∩W 1

p (I) with 1 < p <∞
and I = (0, 1) using piecewise constant functions with error measured in Lp. Consider a grid
GN given by breakpoints 0 = x0 < x1 < · · · < xk < · · · < xN = 1 giving rise to N subintervals
Jk = (xk−1, xk). In the absence of confusion we drop subscripts k and N . We can approximate
the target function f with a fI =

∑
J∈G cJ1J with cJ ∈ R taken to be f at the midpoint of

J and a local point-wise error estimation reads

|f(x)− cJ | ≤
∫
J

|f ′(t)| dt ≤ |J |1−1/p|f |W 1
p (J) ∀x ∈ J, (2.24)

from which a local error estimate reads

‖f − fI‖pLp ≤ |J |
p|f |pW 1

p (J), (2.25)

and summing over all subintervals to obtain a global error estimate:

‖f − fI‖Lp(I) =

(∑
J∈G

‖f − cJ‖pLp(J)

)1/p

≤
(∑

J∈G

|J |p|f |pW 1
p (J)

)1/p

. (2.26)

A uniform dyadic partition of level n ≥ 1 is generated by setting xk = 2−k, for k = 0, ..., 2n

giving rise to a dyadic partition G consisting of N = 2n sub-intervals J all with |J | = 2−n,
and the total error converges with

‖f − fI‖Lp(I) ≤ 2−n
(∑

J∈G

|f |pW 1
p (J)

)1/p

= N−1|f |W 1
p (I). (2.27)

In fact, one can show that if fI is any near-best piecewise constant approximation in Lp for
a sufficiently smooth function f , we will expect error convergence with rate O(N−1). �

There is no lack of abundance in literature extending the estimation idea above to multi-
dimensions, higher-order polynomial approximation or to target functions belonging to more
general Sobolev spaces. In what follows we summarize the main results and ideas, and give
credit to those concerned. If S = S(Ω) any polynomial space on Ω a Euclidean domain, the
best-error is given by

E(f, S)p = inf
S∈S
‖f − S‖Lp(Ω), f ∈ Lp(Ω). (2.28)

If Q a cube in d-dimensions, Q with side length lQ and Pr−1 is polynomial spline space of
order r; that is, polynomial of degree r − 1, the classical Whitney’s theorem (Whitney [9])
asserts that

E(f,Pr−1)p � ωr(f, lQ)p ∀f ∈ Lp(Q), (2.29)
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where � depends on order r and dimension d. The transference of estimate (2.29) to poly-
nomial spline setting is done by the advent of quasi-interpolation operators with effort owed
to (De Boor, Carl and Fix [11]); see also (Lyche, Tom and Schumaker [12]) for explicit
constructions.

More recently, (DeVore and Popov [8]) establish that if Gn is a uniform dyadic partition on
a d-dimensional unit cube Q for which sub-cubes have length 2−n which defines Srn = Sr(Gn)
a polynomial spline space of degree r−1 with r−2 continuous derivatives and bounded r−1
derivatives. Then for every f ∈ Lp(Q),

E(f, Srn)p � ωr(f, 2
−n)p. (2.30)

Furthermore, noting that the number of subcubes making up Q is N = 2nd, and if f ∈ W r
p (Q)

then ωr(f, 2
−n)p ≤ (2−n)r|f |W r

p (Q) making for an approximation rate of O(N−r/d).
The direct estimates above (Eqs. (2.30) and (2.29)) carry over in substance from p ≥ 1 to

0 < p < 1, but at the cost of some technical issues which were resolved in (Storozhenko and
Oswald [14]). As metioned previously, the importance of the range 0 < p < 1 is pronounced
for nonlinear approximation methods.

It is sometimes possible to determine the smoothness of a function by how well it can be
approximated. Assume that p > 0, if Srn retains its meaning and λ = min(r, r − 1 + 1/p),
then for every f ∈ Lp(Q) and µ ≤ min(1, p),

ωr(f, 2
−n)p � 2−nλ

( n∑
k=0

2kλµE(f, Srk)µp
)1/µ

. (2.31)

In the following example we illustrate this idea which requires Hardy’s inequality of Theorem
2.22.

Example 2.24. If f ∈ Lp(Q), with p > 1, can be approximated with E(f, Srn)p = O(N−s/d),
N being the number of subcubes, and s < λ then in view of Hardy’s inequality (2.23) with
ak = ωr(f, 2

−k)p and bk = E(f, Srk)p and indices µ = 1, q = ∞ and θ = s we have making
(ωr(f, 2

−k)p)k ∈ `s∞ and therefore f ∈ Bs
∞(Lp) in view of definitions (2.19). If on the

other hand the approximation rate exceeds r/d, then it would mean ωr(f, t)p = o(tr) which
necessarily means f ∈ Srn. The first saturation result in Lp(0, 1) space is owed to (Butler and
Richarts [15]) Applying inverse estimates such as (2.31) usually follows this aforementioned
manner. Direct and inverse estimates provide the following characterization: For 0 < p ≤ ∞,
provided 0 < s < λ we have for all 0 < q ≤ ∞

f ∈ Lp(Q) s.t ‖{E(f, Srk)p}k≥0‖`sq <∞ ⇐⇒ f ∈ Bs
q(L

p). (2.32)

�
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(Ciesielski [16]) established the inverse estimate (2.31) in univariate p ≥ 1 but later it was
extended to all integration indices 0 < p ≤ ∞ in multi-dimensions by (DeVore and Popov
[8]).

Example 2.25. The radial function f(x) = |x|γ with γ ∈ (0, 1) acts as a prototype of
singularities in the derivatives arising in solutions to differential equations. For simplicity
will discuss approximation power of splines in the context of the univariate case on the unit
open interval I using piecewise constants splines with error measured in Lp with p ≥ 1.
When γ > 1− 1/p, relation (2.27) holds immediately since xγ ∈ W 1

p (I). On the other hand
if γ ≤ 1− 1

p
, the target function xγ ∈ W 1

σ (I), for any σ < 1
1−γ which would also be less than

p, unsurprisingly since p-integrability is too strong. In this specific example taking σ = 1
is possible making f ∈ W 1

1 (I). Because σ, p ≥ 1 hold, Holder applies and we arrive at an
estimate for the global error

‖f − fI‖pLp(I) ≤
∑
J∈G

|J |p−p/σ+1‖f ′‖pLσ(J),

= (2−n)p−p/σ+1
∑
J∈G

‖f ′‖pLσ(J) ≤ (N−1)p−p/σ+1‖f ′‖pLσ(I),
(2.34)

after employment of uniform dyadic partition. In the last step we used (
∑

k≤N a
p
k)

1/p ≤
(
∑

k≤N a
σ
k)1/σ since σ < p. We conclude that we have convergence of error ‖f − fI‖Lp(I) with

rate N−1+1/σ−1/p. The best possible rate is given by the largest possible σ < p which is still
suboptimal. For example consider x1/3 and error measured in L2 imposes the restriction that
σ < 3/2.

Using predetermined partitions may limit the performance. We turn our attention to
free partitions that depends on f and show that we can recover any lost convergence or-
der. The idea is to optimize the interaction between the norm quantity of f local error
|J |p−p/σ+1|f |pW 1

σ (J) in (2.34). The quantity σ will be crucial, but for now we will take it to

be any σ < 1
1−γ . We choose a partition G such that the global quantity |f |W 1

σ (I) is equally

distributed over all sub-intervals, i.e find J ∈ G such that |f |σW 1
σ (J) ≤ N−1|f |σW 1

σ (I) which
makes

‖f − fI‖Lp(J) � |f |W 1
σ (J) ≤ N−1/σ|f |W 1

σ (I), (2.35)

then, after summing

‖f − fI‖pLp(I) �
∑
J∈G

N−p/σ|f |pW 1
σ (I) = N−p/σ+1|f |pW 1

σ (I). (2.36)

It turns out that if σ = (1 + 1/p)−1, which is both < p and < 1
1−γ , we obtain the optimal

convergence rate proportional to N−p/σ+1 = N−1. For such σ, the fractional Sobolev space
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/ Besov space W 1
σ (I) would be the largest space with smoothness 1 that is embedding in

Lp(I). In other words, we can recover lost convergence order by constructing partitions that
equidistributes the largest Besov semi-norm of f embedded in Lp. �

The largest space Bs
σ(Lσ) continuously embedded in Lp is obtained by space interpolation:

Theorem 2.26 (DeVore and Popov [8]). Let Ω ⊂ Rd be a bounded domain, let 0 < p <
∞ and let α > 0. If σ = (α

d
+ 1

p
)−1 then the Besov space Bα

σ (Lσ(Ω)) is continuously embedded

in Lp(Ω).

Remark 2.27. Actually, the statement given in [8] concerns Bα
p (Lσ(Ω)) with σ < p. It is

of more interest to us to have Bα
σ (Lσ(Ω)), which is valid because of (2.7), as Bα

σ (Lσ(Ω))
corresponds to fractional Sobolev spaces.

2.2.2 Characterization of approximation classes
We move on to a more general setting. Let V be a quasi-normed space and let {Xn}n≥1 be
a sequence of finite dimensional subspaces of V which serve as approximating spaces to V.
The index n can reflect the dimension number of X or a related quantity with a one-to-one
relationship with the dimension of Xn. The approximation takes place in the topology of V.
We define the approximation functional on V

E(u,Xn)V = inf
χ∈Xn
‖u− χ‖V, (u ∈ V). (2.37)

The finite dimensional subspaces {Xn} are assumed to be nested and whose union ∪n≥1Xn

must be dense in V. Furthermore, Xn is assumed to have a near-best approximant S for any
target function u ∈ V with respect to the functional E(u,Xn)V. A final condition, albeit of
strong relevance to this study is that Xn + Xn ⊂ Xcn for some c ≥ 1. If c = 1 then process
is said to be a linear approximation and if not it is said to be a nonlinear approximation. In
adaptivity, approximation will always be nonlinear; there are numerous mesh configurations
that produce two different approximating spaces with the same number of degrees of freedom.

Let W be a linear space equipped with semi-quasi-norm |·|W, with µ that recovers triangle
inequality (|f + g|µW ≤ |f |

µ
W + |g|µW), such that the embedding W ↪→ V is continuous.

Definition 2.28 (Jackson and Bernstein inequalities). Let V, W and {Xn} be as above.
It is said that the Jackson inequality holds for a real number s > 0 and a constant C > 0 if

E(u,Xn)V ≤ Cn−s|u|W ∀u ∈W, (n ∈ N). (2.38)

Moreover, it is said that the Bernstein inequality holds for a real number s > 0 and a constant
C > 0 if

|χ|W ≤ Cns‖χ‖V, ∀χ ∈ Xn, (n ∈ N). (2.39)

�
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If the Jackson inequality holds,

E(u,Xn)V ≤ CK(u, n−s;V,W), (2.40)

which is exactly the direct estimate (2.30) for dyadic splines when the error is measured in
Lp. On the other hand if the Bernstein inequality holds,

K(u, n−s;V,W) ≤ Cn−s
( n∑

k=1

[ksE(u,Xn)V]µ 1
n

)1/µ

. (2.41)

Bernstein estimate is precisely the inverse estimate (2.31) for dyadic splines, meaning that
Bernstein’s inequality is sufficient to determine the smoothness of target functions in V
in terms of how well they are approximated by Xn. Once both inequalities hold one can
draw comparison between E(u,Xn)V and K(u, n−r,V,W) allowing for the characterization
of approximation classes as interpolation spaces (DeVore and Popov [18])

Theorem 2.29 (DeVore and Popov [18]). If the Jackson and Bernstein inequalities are
valid, then for each 0 < s < r and 0 < q ≤ ∞ the following relations hold between approxim-
ation spaces and interpolation spaces

A s
q (V, {Xn}n≥1) = (V,W)s/r,q, (2.42)

with equivalent quasi-norms.

The final step is to characterize the interpolation spaces (V,W)s/r,q in terms of known smooth-
ness spaces and the value of (DeVore and Popov [8]) Theorem 2.20 in approximation theory
becomes evident:

Theorem 2.30. For 0 < p <∞, 0 < s < α and σ = (α + 1
p
)−1 we have

(Lp,Bα
σ (Lσ))s/α,σ = Bs

σ(Lσ). (2.43)

We have approximation class characterization for approximation with dyadic splines in multi-
dimensions. Let Srn be the space piecewise polynomials of degree r− 1 with r− 2 continuous
derivatives and bounded r − 1 derivatives defined on all possible n piece dyadic partitions.

Theorem 2.31 (DeVore and Popov [8]). Let Q be a d-dimensional cube. Let 0 < p ≤
∞, let r be a positive integer. If s < λ = min(r, r− 1 + 1

p
), Jackson and Bernstein hold with

V = Lp(Q), W = Bs
p(L

p) and X = Srn.
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Actually DeVore and Popov only showed that E(f, Srk)p � ωr(f, 2
−k)p. However, this im-

mediately implies ‖{ωr(f, 2−k)p}k≥0‖`αq = |f |Bα
q (Lp), and by the embedding `q ⊂ `∞ gives

Jackson inequality
E(f, Srn)p � 2−nα|f |Bα

q (Lp) = N−α/d|f |Bα
q (Lp). (2.44)

When q = p the Besov space Bα
q (Lp) is equivalent to fractional Sobolev spaces which is more

suited to our study. Let Srn be the space of dyadic spline space on d-dimensional cube Q
belonging to W r

∞(Q). Given 0 < p ≤ ∞ and λ. If s < r then

E(f, Srn)p � N−s/d|f |W s
p
∀f ∈ Bs

p(L
p), (2.45)

and if furthermore s < r − 1 + 1
p
,

‖S‖Bs
p(Lp) � N s/d‖S‖Lp ∀S ∈ Srn. (2.46)

giving us the characterization for any 0 < q ≤ ∞

A s/d
q (Lp, {Srn}) = (Lp,Bλ

p (Lp))s/λ,q = Bs
q(L

p). (2.47)

By setting q = p, we obtain a characterization of the approximation class A s/d
p in terms of

the fractional Sobolev space W s
p (Q).

Moreover, we have approximation class characterization for approximation with free-knot
splines in one-dimension. Let Σr

n be the space of all possible n piecewise polynomials of
degree r − 1 with r − 2 continuous derivatives and bounded r − 1 derivatives. .

Theorem 2.32 (Petrushev [17]). Let I be an interval. Let 0 < p <∞, let r be a positive
integer. If σ = (r + 1

p
)−1, Jackson and Bernstein hold with V = Lp(I), W = Br

σ(Lσ) and

X = Σr
n. Therefore for all 0 < s < r + 1 and 0 < q ≤ ∞, if σ = (r + 1

p
)−1

A s
q (Lp, {Σr

n}) = (Lp,Br
σ(Lσ))s/r,q. (2.48)

The interpolation space (Lp,Br
σ(Lσ))s/r,q is a Besov space when q = (s + 1

σ
)−1 making ap-

proximation class A s
σ (Lp(I), {Σr

n}) identifiable with fractional Sobolev space W s
σ(I).

Example 2.33. We conclude by applying the characterization theorems on xγ. Using linear
approximation using dyadic piecewise constant polynomials S1

n with error measured in Lp

with p ≥ 1. We find Besov norm of xγ and use characterization Theorem 2.31 to show
membership of xγ in approximation class A s = A s

∞(Lp(Ω), {S1
n}). If γ > 1− 1

p
then in view

of (2.9) with r = 1, we have ω1(xγ, t)p = O(t) and

|(xγ)|pBs
p(Lp) �

∫ 1

0

(
t−st

)p dt
t
<∞ ∀s < 1, (2.49)
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making xγ ∈ A 1 in view of Theorem 2.31 which is consistent with the observation made in
(2.27). On the other hand, if γ < 1− 1

p
, we seek to see for which 0 < s < 1 does the target

function xγ belong to Besov space Bs
p(L

p). Since γ + 1
p
< 1, we have ω1(xγ, t)p = O(tγ+1/p)

and

|(xγ)|pBs
p(Lp) �

∫ 1

0

(
t−stγ+1/p

)p dt
t
<∞, (2.50)

holding for every s < γ + 1
p

and with the assertion of (2.32) we would expect convergence

with rate O(N−γ−1/p). The compromise is clearer when using a change of variables by
defining γ = 1 − 1

p
− ε for some choice ε ∈ (0, 1 − 1

p
); we have xγ ∈ A 1−ε. As for nonlinear

approximation, recall that embedding W 1
σ (I) ↪→ Lp(I) is continuous when σ = (1 + 1

p
)−1

and |(xγ)|W 1
σ (I) < ∞ for any positive γ, (γ > −1

p
), and as a result optimal convergence is

realized; that is, xγ ∈ A 1. The DeVore diagram depicting the discrepancy between linear
and nonlinear approximation powers is given in Figure 2.2. �

B1
σ,σ

Lp

B1−ε
p,p

W 1
p

s

1
q

0

1− ε
1

1
σ

d = 1

Figure 2.2: In the DeVore diagram one see the gap between linear and nonlinear approximation
when γ = 1− 1

p − ε. Here σ = (1 + 1
p)−1.

2.2.3 Approximation with polynomials
We describe the construction of the spline spaces used in this thesis in two-dimensional
setting and restrict ourselves with the unit square domain Ω only as the idea extends to
rectangular and L-shaped domains with immediate facility. In fact, the idea extends imme-
diately to higher dimensions as well due to the tensor-product structure. More complicated
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geometries can be obtained using the IGA framework (Hughes et al. [67]). The construction
of stable adaptive basis spline functions which ensures sharp estimation is not possible on
arbitrary partitions. We discuss the mesh structure criteria needed and how to achieve them,
concluding with error estimates.

2.2.4 Polynomial splines
Assessing the rate at which finite element methods converge hinges on how well the solution
itself can be approximated by polynomial bases. In this section we lay out the tools and
idea behind polynomial approximation of functions in Besov spaces. In particular we discuss
quasi-interpolation operators in the context of the basis functions required by our adaptive
spline basis. This work is a translation of (Scott and Zang [19]) to hierarchical spline setting
and is credited (Giannelli et al. [26], Speleers et al. [27] and [28]).

Given u ∈ Cr(ω) defined on a Lipschitz domain ω, we denote by T ryu the multi-dimensional
Taylor polynomial of degree r centered at y ∈ ω. If u ∈ W r

p (Ω) then Dαu may not be
understood in the point-wise sense. We go around the issue using a mollifier ϕB ∈ C∞c (B) on
a compact ball B ⊂ ω with ϕB scaled so that

∫
ω
ϕB = 1. The averaged Taylor polynomial

degree r is defined as

T r
Bu(x) =

∫
B

T ryu(x)ϕB(y) dy. (2.51)

The definition can be extended to u ∈ L1(B) in a consistent manner by re-writing (2.51)
via partial integration. Here T r

Bu is an r degree polynomial and T r
B defines a projection

operator on L1(ω) into Pr(ω).

Theorem 2.34 (Averaged Taylor Polynomial). Let ω be a convex body in Rn and let
Bω be a largest ball contained in ω with radius rω. For any u ∈ W r+1

p (ω) and 1 ≤ p ≤ ∞,
we have

‖Dα(u−T r
Bu)‖Lp(ω) ≤ CT diam (ω)r+1−|α||u|W r+1

p (ω), 0 ≤ |α| ≤ r, (2.52)

where CT is a constant function independent of u but depends on the ratio diam (ω)
rω

.

This results in a staple result for piecewise polynomial approximation on a collection of
subdomains:

Theorem 2.35 (Bramble-Hilbert Lemma). Let ω ⊂ Rn be convex with a largest in-
scribed ball in ω having radius rω > 0. There is a CHB > 0, depending only on the ratio
diam (ω)

rω
and polynomial degree r, such that for all 0 ≤ k ≤ m ≤ r + 1,

inf
P∈Pr
|u− P |Wk

p (ω) ≤ CHBdiam (ω)m−k|u|Wm
p (ω) ∀u ∈ W k

p (ω). (2.53)
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The ratio diam (ω)
rω

is relevant when ω is triangular or general quadrilateral. If ω is a square
then this ratio is fixed. Finally we need some inverse estimates which follow from finite
dimensional normed space theory.

Lemma 2.36 (Polynomial inverse estimates). Let τ ∈ P . Then, for constants cInv, cdTr >
0 and for any integers 1 ≤ p, q <∞ and 0 ≤ s ≤ t ≤ r + 1,

|V |W t
q (τ) ≤ cInvh

s−t+2/q−2/p
τ |V |W s

p (τ) ∀V ∈ Pr(τ), (2.54)

and if σ ⊂ ∂τ , for a constant cdTr > 0,

‖V ‖L2(σ) ≤ cdTrh
−1/2
σ ‖V ‖L2(τ) ∀V ∈ Pr(τ), (2.55)

in which cInv and cdTr depend only on the polynomial degree r and | · |W s
p

denotes the conven-
tional Sobolev semi-norms.

The following discussion makes the analysis of dyadic splines discussed in the previous
section much more constructive.

Univariate B-splines

This discussion closely follows (Schumaker [23]). Let G be a partitioning of I = (0, 1) obtained
from the set of breakpoints Z = {0 < z1 < · · · < zn < 1} and let Pr(G) be the space of
piecewise polynomials defined on partition G:

S(Pr,G,M) = {S ∈ Pr(G) | S ∈ Cr−mi({zi}), i = 1 : n}, (2.56)

where the set M = {mi}1≤i≤n consisting of integers 1 ≤ mk ≤ r + 1 is said to be the
multiplicity vector of G and controls the number of continuous derivatives on each break
point zi. The dimension of S(Pr,G,M) is obtained by subtracting the number of continuity
conditions from dimPr(G) and

dimS(Pr,G,M) = (r + 1)(n+ 1)−
n∑
i=1

(r + 1−mi) = M + r + 1, (2.57)

where M =
∑n

i=1 mi. A simple basis for (2.56) can be formed from translations of truncated
polynomials {

(x− zi)r+1−p
+

(r + 1− p)!

∣∣∣∣ p = 1 : mi, i = 1 : n

}
, (2.58)

but this basis is not suited for numerical methods for a number of reasons, most notably,
their support influence is unbounded with refinement making them numerically unstable.
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Fortunately, given G and M nontrivial locally supported spline functions exist provided that
M > r − 1 by looking at the Vandermonde matrix of a locally supported spline in terms
of basis (2.58) meaning that the spline space of a specified degree needs to have sufficient
flexibility to have locally supported basis functions. One can’t ask for both high smoothness
and localized support; there will be a trade-off. The proof, which can be found in (Schumaker
[23]) is constructive and provides a strategy to obtain the improved basis expressed in terms
of divided difference of basis functions (x−ξ)r+ with ξ take over multiple repetitions of points
in G according to M:

Bj(x) = (−1)r+1(zi+r+1 − zi)[zi, ..., zi+r+1](x− ξ)r+ · 1[zi,zi+r+1](x), (2.59)

running over indices j = 1 : M + r + 1. This basis, we denote by Br(G,M), is said to be the
r + 1 order B-spline basis on I and each basis function Bi is strictly positive on its support
(zi, zi+r+1), moreover, the basis is locally linearly independent and forms a partition of unity
on I allowing for stable and localized sharp error estimation. The local linear independence is
a result of a finite intersection property where there is a maximum number of basis function
support cell overlap. The study of B-splines has been a subject of great analysis going back
to the 1940’s.

For integers r ≥ 1 and hierarchical level ` ≥ 0, the grid G` is obtained from a set of
n` = 2`(r + 1)− 1 distinct interior break points

Z` =
{
z`k = 2−` k

r+1
| k = 1 : n`

}
(2.60)

with the convention that z0 = 0 and zn`+1 = 1 making the grid G` =
{

(z`k, z
`
k+1) | k = 0 : n`

}
which partitions (0, 1) and gives rise to a sequence {G`}0≤`≤L−1 of dyadic partitions. It is im-
mediate that the sequence {G`}0≤`≤L−1 forms a nested hierarchy of partitions; i.e, G` ⊂ G`+1.
In view of the discussion leading up to the existence of (2.59), we consider the open/extended
knot vector consisting of repetitions of break points Z` according to desired smoothness

Ξ` = {ξ`1 ≤ · · · ≤ ξ`r+1 = 0 < ξ`r+2 ≤ · · · ≤ ξ`M`+r+1 < 1 ≤ ξ`M`+r+2

≤ · · · ≤ ξ`M`+2r+2},
(2.62)

and the subset {ξ`i}
M`+r+1
i=r+2 is the interior knot vector. The presence of r+ 1 repetitions lying

outside I are necessary to define spline function and derivative values on the boundary points.
Moreover, in view of (2.59) there are (M`+r+1)-tupples Ξ`

i = {ξ`i , ..., ξ`i+r+1} called local knot
vectors which makes up the support of each spline basis function, given level `. A recursive
procedure for the evaluation of (2.59) is given by the deBoor-Cox recursive Algorithm (2.2.4)
B`
i (x) = BOOR [Ξ`

i , x]: The set Br(Ξ`) = {B`
i | i = 1 : M` + r + 1} forms a basis for the

spline space
Sr(Ξ`) = span(Br(Ξ`)) ≡ S(Pr,G`,M`), (2.64)
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Algorithm 2.2.1 Evaluate univariate B-spline basis BOOR [Ξ`
i , x]→ B`

i (x)
1: for j = i : i+ r + 1 do
2: Bj,0(x) = 1[ξ`j ,ξ

`
j+1)(x)

3: end for
4: for k = 1 : r do
5: for j = i : i+ r − k do
6:

B`
j,k(x) =

x− ξ`j
ξ`j+k − ξ`j

Bj,k−1(x) +
ξ`j+k+1 − x
ξ`j+k+1 − ξ`j+1

Bj+1,k−1(x) (2.63)

7: end for
8: end for

of dimension M`+r+1 uniquely determined by the inner knot vector. We turn our attention
to refinement. In one-dimensions local refinement is done with facility through knot insertion
by which a new break point, and corresponding knots, are introduced to the extended knot
vector. In the context of our dyadic structure, by introducing m∗ times repeated breakpoints

z∗ =
z`k+z`k+1

2
in Ξ` to obtain Ξ′, only the local knot vectors {Ξ`

i | i = k−r : k} will be effected;
assuming that z`k = ξ`k < ξ`k+1,

..., ξ`k−r−1, ...., ξ
`
k︸ ︷︷ ︸

Ξk−r−1

, ξ∗1 , ..., ξ
∗
m∗ , ξ

`
k+1, ..., ξ

`
k+r+2︸ ︷︷ ︸

Ξk+1

, ... . (2.65)

In the refinement process local vectors {Ξ`
i | i = k − r : k} are removed and replaced with

suitable refined local knot vectors {Ξ′i | i = k − r : k + 1}. The basis is effected locally
with only r + 1 spline function require modification with all functions {B`

i | i 6= k − r : k}
are not effected. The old basis functions {B`

i | i = k − r : k} will belong to the span of
{BOOR [Ξ′i, ζ] | i = k − r : k + 1} giving us the nesting Sr(Ξ`) ⊂ Sr(Ξ∗) making it possible
to express B`

k on Ξ∗ as a linear combination of
{
B`+1
i | i = 2k − 1 : 2k + r

}
via the two-scale

relation

B`
k =

2k+r∑
j=2k−1

c`+1
j B`+1

j ∀k = 1 : n`, (2.66)

for some sequence c`+1
j .

Hierarchical B-spline (HB) spaces

Unfortunately local refinement by knot insertion is inefficient due to the propagation of knot
insertions in multiple dimensions due to the tensor product structure. This can be overcome
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by hierarchical refinement (Vuong et al. [24]) through the exploitation of a multi-dimensional
analog of (2.66); each to-be refined basis B`

k would be replaced with {B`+1
i | i = 2k−1 : 2k+r}

leaving behind {B`
i | i = k − 1 : k − r, k + 1 : k + r} in the refined basis thus producing a

hierarchical B-spline basis. The resulting basis would however not necessarily form a partition
of unity and there are scenarios where the support of left-out basis functions may include an
uncontrollable number of cells compromising finite intersection property. Fortunately both
of those outcomes can be rectified with the addition of mesh structural constraints which will
be the subject of discussion in the section below.

We now describe hierarchical partitions P in two dimensions and define the hierarchical
spline obtained from a hierarchy of multilevel dyadic spline bases B` = Sr(Ξ`) for ` = 0 : L−1.
A cell τ ∈ G` is said to be a cell of level `. A cell τ of level ` is said to active if τ ∈ G` and
appears in P . The hierarchical partition P satisfies the following properties: all cells τ in
P are disjoint, and, the interior of the closure of the union ∪{τ : τ ∈ P} is equal to Ω. A
subdomain Ω` of Ω is defined as the closure of the union of active cells τ of level ` or higher
making Ω` ⊇ Ω`+1 for ` = 0 : L− 1 with int(Ω0) = Ω and ΩL = ∅. In view of the two-scale
relation (2.66) can always express a spline S ∈ S` in terms of B`+1:

S =
∑

β∈B`+1

c`+1
β (S)β, (2.67)

for some coefficients {c`+1
β (S) | β ∈ B`+1}. A Hierarchical B-spline (HB-spline) basis HP with

respect to hierarchical partition P is defined as

HP =
{
β ∈ B` | supp β ⊆ Ω` ∧ supp β 6⊆ Ω`+1

}
. (2.68)

A recursive definition is given in (Speleers et al. [27]). A basis function β of level ` is said
to active if β ∈ B` ∩ HP , otherwise it is passive. Figures 2.3 and 2.4 depict hierarchical
refinements in one dimension.

Admissible partitions

For local and stable approximation we need to control the influence of each basis function in
order to ensure stable and sharp estimation. With additional restrictions on the structure
of partitions P we can guarantee that the number of basis functions acting on any point
is bounded and that the diameter of the support of a basis function is comparable to any
cell in its support. A partition P is said to be admissible if the basis functions in HP ∩ B`
is supported on cells belonging to at most two levels successive levels, namely, levels ` and
` + 1. The procedure required to achieve this is given in REFINE module in Section 2.5
executed in a recursive manner. The support extension of a cell τ ∈ G` with respect to level
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Figure 2.3: (a) One-dimensional cubic B-spline basis functions. (b) Subdivision of an original
uniform cubic B-spline into five contracted B-splines of half the knot span width.
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Figure 2.4: Hierarchical refinement of a set of B-spline basis functions (active basis functions are
indicated with solid lines).

k ≤ ` is defined as

S(τ, k) =
{
τ ′ ∈ Gk | ∃β ∈ Bk s.t supp β ∩ τ ′ 6= ∅ ∧ supp β ∩ τ 6= ∅

}
(2.69)

Note that the support extension consist of cells from the tensor-product mesh Gk. To assess
the locality of the basis; i.e, the influence of basis functions have on active cells, it is useful to
consider a support extension consisting of all active cells belonging to its support regardless
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of level. For τ ∈ P define

ωτ =
L−1⋃
`=0

S(τ, `) ∩ P ≡ {τ ′ ∈ P | supp β ∩ τ ′ 6= ∅ =⇒ supp β ∩ τ 6= ∅}, (2.70)

indicating the collection of all supports for basis function β’s whose supports intersect τ .
Analogously, we denote the support extension for an edge σ ∈ EP ∪ GP by

ωσ = {τ ∈ P | supp β ∩ τ 6= ∅ =⇒ supp β ∩ τ 6= ∅, σ ⊂ ∂τ}. (2.71)

The following auxiliary subdomain provides a way to ensure mesh admissibility

U ` =
⋃{

τ | τ ∈ G` ∧ S(τ, `) ⊆ Ω`
}

(2.72)

Theorem 2.37. If Ω` ⊆ U `−1 for ` = 2 : L− 1, then P is an admissible partition.

Proof. See (Buffa et al. [64]).

In other words, U ` represents the biggest subset of Ω` so that the set of B-splines in B` whose
support is contained in Ω` spans the restriction of S` to U `. This would ensure that each basis
function will have support cells belonging to a maximum of two levels. Finally, partition of
unity can be ensured by appropriate scaling of the basis functions; see (Vuong et al. [24]).
In all of our numerical experiments such procedure did not seem of necessary.

Resulting partition has the following shape-regularity characteristics:

sup
P∈P

max
τ∈P
{τ ′ ∈ P | τ ′ ⊂ ωτ} ≤ NP <∞

(locally quasi-uniform)

sup
P∈P

max
β∈HP

#{β′ ∈ HP | supp β′ ∩ supp β 6= ∅} ≤MP <∞

(finite intersection property)

from which one can derive the following:

sup
P∈P

max
τ∈P

diam (ωτ )

diam (τ)
≤ cshape <∞, (2.73)

and ∑
τ∈P

|u|pW s
p (ωτ ) ≤ cpshape|u|

p
W s
p (Ω). (2.74)
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An anologous statement to (2.73),(2.74) will hold for edges as well. Finally, for any two
partitions P1, P2 ∈ P there exists a common admissible partition in P, called the overlay
and denoted by P1 ⊕ P2, such that

#(P1 ⊕ P2) ≤ #P1 + #P2 −#P0. (2.75)

2.2.5 Approximation in HB spline spaces
Measuring the performance of piece-wise polynomial approximation will hinge on the results
of polynomial approximation of Section 2.2.4, most notably Bramble-Hilbert Lemma and
polynomial inverse estimates, and defining a suitable quasi-interpolation operator. Let Ω ⊂
Rd and let V(Ω) ⊆ Lp(Ω), assuming that SP ⊂ V(Ω) on a partition P is a spline basis spanned
by basis functions BP which are locally supported, non-negative and form a partition of unity
over Ω,

IPu =
∑
β∈BP

λβ(u)β, (2.76)

where the λβ(u), for β ∈ BP , are coefficients which could be chosen in various ways. The set
ΛP = {λβ | β ∈ BP} can views as functionals on V(Ω). Popular choices for coefficients λβ(u)
could be point-values of u or its derivatives and local integrals of u. In general IP is not a
projection on SP . A special choice for the functionals λβ is when ΛP form a dual-basis for
BP automatically making IP a projection operator on SP . As long as the dual-basis is such
that

‖λβ‖V(Ω)′ � diam (supp β)−d/p, (2.77)

then, if Bτ = {β ∈ BP | supp β ⊆ ωτ} and noting that admissible partition shape-regularity
diam (ωτ ) � diam (supp β) and β forming partition of unity

‖IPu‖V(τ) ≤ max
β∈Bτ
|λβ(u)|

∥∥∥∑β∈Bτ β
∥∥∥
V(ωτ )

� ‖u‖V(ωτ ), (2.78)

makes IP : V(Ω)→ SP a locally stable projection in V with IPu serving as a local near-best
approximation:

∀u ∈ V(Ω), ‖u− IPu‖V(τ) ≤ (1 + ‖IP‖) inf
S∈SP
‖u− χ‖V(ωτ ) ∀τ ∈ P. (2.79)

Construction of a projection IP for hierarchical spline space in multi-dimensions is achieved
using the hierarchy of uniform dyadic spline spaces as a building blocks thanks to the nested
partition structure. Specifically, as long as we have a suitable quasi-interpolation operator
for each level, the hierarchical projection can be constructed with facility due to the work
of (Speleers et al. [27]) with only two requirements: each level specific quasi-interpolation
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operator is a projection and the associated dual-basis functionals λ ∈ Λ` are supported in
Ω`\Ω`+1 in the sense that if f |Ω`\Ω`+1

= 0 then we have λ(f) = 0

Theorem 2.38 (Speleers [27]). Let I` : V(Ω) → S` be a sequence of quasi-interpolation
projections such that all of λ ∈ Λ` are supported in Ω`\Ω`+1. Then IPu : V(Ω)→ SP defined
by

IPu =
L−1∑
`=0

∑
β∈B`∩HP

λβ(u)β, (2.80)

is also a projection.

The tensor-product structure will also make the construction of the multi-level quasi-interpolation
operators follow from the one-dimensional case in an almost immediate fashion. The one-
dimensional construction was studied in great detail by de Boor and Fix in 1973.

Lemma 2.39. Let G` be dyadic partition of level ` of a unit interval I, let M` be a multiplicity
vector and let Ξ` be an `-level extended knot vector and let B(Ξ`) = {βi}i be the spline basis
that generates S(Pr,G`,M`). There exists a dual-basis Λ(Ξ`) of linear functionals λβ with

|λ`β(f)| ≤ (2r + 3)9rdiam (supp β)−1/p‖f‖Lp(suppβ), 1 ≤ p ≤ ∞. (2.81)

The linear functionals λβ in the lemma have the integral form

λβ(f) =

∫
suppβ

fDr+1uβ dx, β ∈ B(Ξ`), (2.82)

where uβ is defined explicitly in (Schumaker [23]) with

‖Dr+1uβ‖L∞(I) ≤ (2r + 3)9rdiam (supp β)−1. (2.83)

Together with a tensorization of bases {B(Ξ`) | ` = 0 : L − 1} and corresponding dual basis
{Λ(Ξ`) | ` = 0 : L − 1} admitting a two-dimensional form of (2.82) we consider the quasi-
interpolation operator defined by (2.80). We have a local approximation estimate when V(Ω)
is a Sobolev space and SP has a fixed number of continuous derivatives that is less than r in
each direction:

Theorem 2.40 (Speleers [28]). Let 1 ≤ p ≤ ∞, let 1 ≤ k ≤ r + 1 and let 0 ≤ l ≤ k − 1.
The linear projection IP : W k

p (Ω)→ SP is such that

|u− IPu|W l
p(τ) ≤ CQdiam(τ)k−l|u|Wk

p (ωτ ) ∀v ∈ W k
p (Ω), (τ ∈ P ), (2.84)

and
|u− IPu|W l

p(σ) ≤ CQdiam(τ)k−l−
1
2 |u|Wk

p (ωσ) ∀v ∈ W k
p (Ω), (σ ∈ EP ), (2.85)

for constant CQ > 0 depends only on r and p.
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The result holds by controlling |u−S|W l
p(τ) and |IP (u−S)|W l

p(τ) given any spline S ∈ SP where
the latter expression is owed to IP being a projection. The first one follows immediately from
Bramble-Hilbert lemma of Theorem 2.35. The second requires more delicate treatment aided
with the inverse estimates in Theorem 2.36, local stability of IP (2.78), and finally Bramble-
Hilbert to obtain the rate with respect to cell diameter. In the proof of Lemma 2.43 we carry
a similar argument.

Smoothness indices k and l in Theorem 2.40 can be extended to real numbers by the
following interpolation result.

Theorem 2.41. Suppose θ ∈ (0, 1) and q ∈ [1,∞]. If T ∈ L(Xi, Yi) with norm Mi, for
i = 0, 1. Then T ∈ L ((X0, X1)θ,q, (X1, Y1)θ,q) with norm M ≤M θ

0M
1−θ
1 .

2.2.6 Projection operators
In this thesis we will be using a number of different approximating projection operators all
of which will depend on whether the HB spline space XP satisfies the Dirichlet boundary
condition or not. In the standard setting where XP ⊂ H2

0 (Ω) (in Chapter 3) we just need the
first projection QP . The remaining IP and ΠP are relevant when the boundary conditions
are prescribed using Nitsche’s penalty terms. Projector IP is used in Chapters 4 and 5
where convergence is not studied. When we look at convergence we will use QP instead for
the reason that we would get a better upper bound (see (6.10) and compare with (4.23))
making the convergence proof possible in Nitsche’s setting, otherwise the extra powers of
γ1, γ2 pollutes the contraction result of Theorem 6.9. Finally, the orthogonal projection L2

is used to avoid the saturation assumption of Chapter 4.

Quasi-interpolation projection QP

We assume that the HB spline space XP ⊂ H2
0 (Ω).

Lemma 2.42 (Quasi-interpolation). The quasi-interpolation projection operator QP : H2
0 (Ω)→

XP is such that for a constant cshape > 0,

h2k−4
τ |u−QPu|2Hk(τ) ≤ c2

shape|u|2H2(ωτ ), (τ ∈ P ), (2.86)

for k = 0, 1, 2. Moreover,

h−3
σ ‖u−QPu‖2

L2(σ) ≤ c2
shape|u|2H2(ωσ), (σ ∈ EP ), (2.87)

and

h−1
σ

∥∥∥∂(u−QPu)
∂nσ

∥∥∥2

L2(σ)
≤ c2

shape|u|2H2(ωσ), (σ ∈ EP ), (2.88)

holding for every u ∈ H2
0 (Ω).
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Proof. The proof is in essence the same as proof of Theorem 2.40.

Quasi-interpolation projection IP

The HB spline space XP ⊂ H2(Ω) violates the boundary conditions. The statements of
Lemma 2.42 hold true for IP : H2 → XP .

L2-orthogonal projection ΠP

Let PrP (Ω) be the space of piece-wise polynomials of degree r ≥ 0 defined on P . Let Πr
P :

H2(Ω) → PrP (Ω) be given by standard L2-orthogonal projection. We define an auxillary
subdomain of Ω which will be of use to us in Chapters 5 and 6:

DΓ
P =

⋃
{τ ∈ P : τ adjacent to Γ}. (2.89)

Lemma 2.43 (L2-orthogonal projection). Let P be an admissible partition, let σ ∈ GP
with σ ⊂ ∂τσ for a boundary adjacent cell τσ ∈ P . For a constant cΠ > 0 depending only on
polynomial degree r, if u ∈ Hs(Ω) with s ≥ 2, then( ∑

σ∈GP

hσ‖u− Πr
Pu‖2

L2(σ)

)1/2

≤ cΠ|hsPu|Hs(DhΓ), (2.90)

and ( ∑
σ∈GP

h3
σ

∥∥∥∥∂(u−ΠrPu)
∂nσ

∥∥∥∥2

L2(σ)

)1/2

≤ cΠ|hsPu|Hs(DhΓ). (2.91)

Remark 2.44. It is known that the L2-projection is stable, i.e., ‖Πr
Pu‖L2(Ω) ≤ cΠ‖u‖L2(Ω).

We use cΠ as the stability constant, i.e., ‖Πr
Pu‖L2(Ω) ≤ cΠ‖u‖L2(Ω).

Proof. In what follows, any proportionality relation � depends only on the polynomial degree
r ≥ 0. The general trace inequality gives

‖u− Πr
Pu‖2

L2(σ) � h−1
σ ‖u− Πr

Pu‖2
L2(τσ) + hσ|u− Πr

Pu|2H1(τσ). (2.92)

The norms of u − Πr
Pu on τσ is estimated using the following standard argument and an

application of Hilbert Bramble lemma of Theorem 2.35. Let p ∈ Pr(τσ). Then, we have

‖u− Πr
Pu‖L2(τσ) ≤ ‖u− p‖L2(τσ) + ‖Πr

P (p− u)‖L2(τσ) ≤ 2‖u− p‖L2(τσ) (2.93)
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and

|u− Πr
Pu|H1(τσ) ≤ |u− p|H1(τσ) + |Πr

P (p− u)|H1(τσ)

≤ |u− p|H1(τσ) + cInvh
−1
τσ ‖Π

r
P (p− u)‖L2(τσ)

≤ |u− p|H1(τσ) + cInvh
−1
τσ ‖u− p‖L2(τσ)

(2.95)

where the constant cInv comes from Lemma 2.36. With any s1 ≥ 0, the classical Bramble-
Hilbert lemma gives

inf
p∈Pr(τσ)

‖u− p‖L2(τσ) � hs1τσ |u|Hs1 (τσ), (2.96)

and similarly, for s2 ≥ 1,

inf
p∈Pr(τσ)

|u− p|H1(τσ) � hs2τσ |u|Hs2 (τσ). (2.97)

Taking s = max{s1, s2} yields

‖u− Πr
Pu‖2

L2(σ) � h−1
σ h2s

τσ |u|
2
Hs(τσ) + hσh

2s−2
τσ |u|

2
Hs(τσ) � h2s−1

σ |u|2Hs(τσ), (2.98)

using hτσ ≈ hσ because σ is an edge of τσ. As a consequence, we obtain

‖u− Πr
Pu‖L2(σ) ≤ cΠh

s−1/2
σ |u|Hs(τσ), (2.99)

for a constant cΠ > 0. Squaring both sides and summing over all boundary edges σ ∈ GP
result in ∑

σ∈GP

hσ‖u− Πr
Pu‖2

L2(σ) ≤ c2
Π

∑
σ∈GP

h2s
σ |u|2Hs(τσ) = c2

Π|hsΓu|2Hs(DhΓ). (2.100)

This completes the proof of (2.90). Similarly, we can prove (2.91) by starting with the
following general trace inequality∥∥∥∂(u−ΠrPu)

∂nσ

∥∥∥2

L2(σ)
� h−1

σ

∥∥∥∂(u−ΠrPu)

∂nσ

∥∥∥2

L2(τσ)
+ hσ

∣∣∣∂(u−ΠrPu)

∂nσ

∣∣∣2
H1(τσ)

� h−1
σ |u− Πr

Pu|2H1(τσ) + hσ|u− Πr
Pu|2H2(τσ)

(2.102)

and the rest follows similarly as above when using s ≥ 2 in the Hilbert-Bramble lemma.

2.3 Adaptive spline approximation
Designing approximation methods by exploiting a priori local error estimates is not possible
when direct access to a target function is not available. Nonlinear approximation of solutions
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to a boundary value problems on partitions must instead be done with the aid of a pos-
teriori estimates. We assume that we have at our disposal an estimate η(u, τ) for the local
approximation error whose sum e(u, P ) =

∑
τ∈P η(u, τ) is a reasonably good upper bound

to E(u,SP )V. If Pn is the family of n-piece partitions obtained by subdividing an initial
partition P0, an optimal n-piece partition P ∈Pn will realize e(u, P ) = infP ′∈Pn E(u,SP ′)V
however it is a daunting task to commit to this search since it has exponential complexity.
Instead, cost efficient near-optimal partitions are obtained by adaptive tree approximation
(Binev et al. [51]) where we seek in an iterative manner an n-piece partition P such that for
absolute constants c, C > 0, with c < 1 depending on the number of new cells produced by
each subdivision,

e(u, P ) ≤ C inf
P ′∈Pcn

e(u, P ′). (2.103)

This is done by subdividing the cell τ corresponding to the highest error functional η(u, τ).
The resulting partition is generated from an initial partition P0. When solving differential
equations more sophisticated selection procedures are necessary to achieve optimal efficiency;
see Section 2.5. The tree adaptive approximation class is defined by:

A s(V, {SP}P∈F) =

{
u ∈ V(Ω) | |u|A s = sup

n≥1
ns inf

P∈Pn

e(u, P ) <∞
}
, (2.104)

where F = {Pn | n ≥ 1} is the master forest. In practice, methods would terminate after
reaching a desired error threshold; for ε > 0, the adaptive method produces a partition Pε
would satisfy e(u, Pε) ≤ ε and the complexity of #Pε is given by O(ε−1/s). The adaptive tree
algorithm (Binev et al. [51]) maintains that Pε is near-optimal in the sense that all other
partitions obtained by a sequence of subdivisions from the initial mesh P0 and come close
within the error tolerance cannot be have significantly more favorable mesh complexity.

In our setting, the complexity of ensuring admissible partitions must be taken into ac-
count. Typically in each iteration the mesh undergoes further refinements to maintain con-
ditions of Theorem 2.37. This process is said to be a completion step. We define the set of
marked elements #Mk to be the number of cells needed to be refined to achieve sufficient
reduction in error prior to mesh completion. If P̄ = REFINE(P,M ) where P is admissible,
M obtained from a suitable estimator, and P∗ = CONF(P ) generates an admissible par-
tition from P̄ , The result of (Binev et al. [51]) enables establishing an equivalence between
approximation classes defined on all possible partitions of fixed complexity and those limited
to admissible partition Pa

n:
#P∗ ≤ CΛ#P̄ . (2.105)

In other words, any possible domino effect is not detrimental to approximation performance
and the class (2.104) will be equivalent to

A s(V, {SP | P ∈Pa
n}n≥1). (2.106)
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A final point to make is that if we are at a refinement iteration k it would not be possible to
estimate the difference of two subsequent admissible partitions Pk+1 −#Pk in terms of Mk

as it is possible that the refinement of one marked element may result in arbitrarily large
number of additional refinements due to completion resulting in a domino effect. Fortunately,
we have that the order of #Pn is controlled by the sequence of marked elements only up to
iteration k:

#Pn ≤ #P0 + CΛ(#M0 + · · ·+ #Mn−1). (2.107)

See, e.g., (Buffa [65] and Binev et al. [59])

Algorithm 2.3.1 Theoretical adaptive procedure ADAPTIVE [P, ε]→ P∗
1: M = {τ ∈ P | e(τ, P ) > ε}
2: while M 6= ∅ do
3: P̄ = REFINE(P,M )
4: P∗ = CONF(P̄ )
5: M = {τ ∈ P∗ | e(τ, P∗) > ε}
6: P = P∗
7: end while

Following result is due to (Binev et al. [20]) which we include for completeness.

Lemma 2.45. Let v ∈ Bα
p,p(Ω) for α ≥ 0, 0 < p <∞ and let δ > 0.

e(τ, P ) = |τ |δ|v|Bα
p,p(ω), ω = τ or ωτ . (2.108)

Given any ε > 0, the adaptive Algorithm 2.3 we will terminates in finite steps and produces
an admissible partition P ∈P for which∑

τ∈P

e(τ, P )2 � #Pε2 and #P −#P0 � |v|p/(1+δp)
Bα
p,p(Ω) ε

−p/(1+δp). (2.109)

Proof. With each refinement step, foe error quantities e(τ∗, P`) exceeding ε > 0, |τ | will
reduce by a factor 1/4 and e(child(τ∗), P`+1) ≤ 4−δe(τ∗, P`+1). We will have M` = ∅ after a
finite number of steps L; set P = PL we obtain the first relation in (2.109).

We estimate the cardinality of the resulting partition P . Let R` ⊂ P` be the set of refined
cells and put R = ∪L`=0R`. Let Γj = {τ ∈ R : 2−j−1 ≤ |τ | ≤ 2−j} and let mj = #Λj.

First of all, there can be at most 2j+1|Ω| disjoint τ of size > 2−j−1 which makes mj ≤
2j+1|Ω| which gives us one upper bound on mj.

We obtain a second upper bound in the following manner. Let τ ∈ Γj, then

e(τ, P ) = |τ |δ|v|Bα
p,p(ω) < 2−jδ|v|Bα

p,p(ω), (2.110)
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and

mjε
p <

∑
τ∈Γj

e(τ, P )p < 2−jpδ
∑
τ∈Γj

|v|pBα
p,p(ωτ ) � 2−jpδ|v|pBα

p,p(Ω), (2.111)

by shape-regularity. We therefore obtain mj � 2−jpδ|v|pBα
p,p(Ω)ε

−p.

Let j0 be the smallest integer for which |Ω| < 2j0 . Then if M = ∪L`=0M`

#M ≤
∞∑

j=−j0

#mj �
∞∑

j=−j0

min{2j|Ω|, 2−jpδ|v|pBα
p,p(Ω)ε

−p}. (2.112)

If k is biggest integer for which 2k|Ω| ≤ 2−kpδ|v|pBα
p,p(Ω)ε

−p, then

∞∑
j=−j0

min{2j|Ω|, 2−jpδ|v|pBα
p,p(Ω)ε

−p} = |Ω|
k∑

j=−j0

2j + |v|pBα
p,p(Ω)ε

−p
∞∑

j=k+1

2−jpδ. (2.113)

Observe that

k∑
j=−j0

2j � 2k,
∞∑

j=k+1

2−jpδ � 2−kpδ and 2k(1+pδ) ≤ |Ω|−1|v|pBα
p,p(Ω)ε

−p (2.114)

which makes

#P −#P0 � #M � 2−kpδ|v|pBα
p,p(Ω)ε

−p ≤
(
|Ω|δ|v|Bα

p,p(Ω)ε
−1
)p/(1+δp)

, (2.116)

where we invoked (2.107).

We have the following one-sided characterization for (2.104) in terms of Besov spaces,
with error measured in V = H2(Ω) and hierarchical B-spline spaces SP ⊂ Pr ∩ C1(Ω), with
r ≥ 2, defined on admissible partitions :

Theorem 2.46. We have Bs+2
p,p ↪→ A s/2 for s < r − 2 + max{1, 1

p
} with 0 < 1

p
≤ s+1

2
.

Remark 2.47. If s exceeds the first aforementioned condition in the result above, then any
such function will necessarily belong to SP which is a saturation result. We illustrate the
statement of this result by a DeVore diagram (see Figure 2.5).
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Figure 2.5: DeVore diagram depicting the embedding of Besov spaces into the approximation
A s. The demarcated Line C constraining α comes from avoiding non-trivial Besov spaces; Besov
spaces above the line are r-degree polynomials. Line L corresponds to approximation using uniform
refinement and is limited by basis functions polynomial order only. Line NL corresponds to adaptive
refinement and coincides with the Sobolev embedding line. If Bα

p,p is positioned between lines L, NL
and C, then Bα

p,p ↪→ A s with s = α
2 − 1. The length of the red vector is equal to s.

Proof. Let π ∈ Pr(ωτ ).

|v − IPv|H2(τ) ≤ |v − π|H2(τ) + |IP (π − v)|H2(τ),

≤ |v − π|H2(τ) + cshape|π − v|H2(ωτ ) � cshape|v − π|H2(ωτ ).
(2.118)

Let ωτ = T (G) and v̂ = v ◦ T . For s < r − 2 + max{1, 1
p
} we have nontrivial Besov

spaces Bs+2
p,p (G) when defined with ωr+1(·, t)p (see Remark 2.19). Moreover, if 1

p
≤ s+1

2
we

have the continuous embedding Bs+2
p,p (G) ↪→ H2(G). Together with the facts |v̂|Bs+2

p,p (G) ≈
h

2+s−2/p
τ |v|Bs+2

p,p (ωτ ) and |π̂|Bs+2
p,p (G) = 0 we arrive at

hτ |v − π|H2(ωτ ) ≈ |v̂ − π̂|H2(G) � ‖v̂ − π̂‖Lp(G) + |v̂|Bs+2
p,p (G). (2.119)

Invoking Whitney’s estimate (2.29),

inf
π∈Pr(ωτ )

hτ |v − π|H2(ωτ ) � |v̂|Bs+2
p,p (G) ≈ h2+s−2/p

τ |v|Bs+2
p,p (ωτ ), (2.120)

from we obtain
inf

π∈Pr(ωτ )
|v − π|H2(ωτ ) � |τ |δ|v|Bs+2

p,p (ωτ ), (2.121)
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with δ = s+1
2
− 1

p
> 0. We have the local estimate

∀τ ∈ P, |v − IPv|H2(τ) � cshape|τ |δ|v|Bs+2
p,p (ωτ ), (2.122)

and therefore the global error is

|v − IPv|2H2(Ω) =
∑
τ∈P

|v − IPv|2H2(τ) �
∑
τ∈P

e(τ, P )2. (2.124)

In view of Lemma 2.45 with ω = ωτ , there exists an admissible mesh P ∈P such that

|v − IPv|2H2(Ω) � #Pε2 with #P −#P0 � |v|p/(1+δp)

B2+α
p,p

ε−p/(1+δp). (2.125)

Using the definition of δ, we determine that p/(1 + δp) = 2/(s + 1). Let N = #P and let
ε = N−(s+1)/2|v|Bs+2

p,p (Ω) then

|v − IPv|H2(Ω) � |v|Bs+2
p,p (Ω)N

−s/2 and #P −#P0 � N. (2.126)

Therefore,

|v|A s/2 = sup
N>0

N s/2 inf
P∈PN

inf
V ∈XP

|u− V |H2(Ω),

≤ sup
N>0

N s/2|v − IPv|H2(Ω) � |v|Bs+2
p,p (Ω) <∞.

(2.128)

The direct estimate above cannot be paired with an inverse estimate hindering the application
of Characterization Theorem 2.29. This is primarily to the smoothness limitation of the space
SP . Instead generalized Besov spaces which are characterized by multi-scale decomposition
are used. We do not proceed with this and refer to (Binev et al. [20], Gaspoz and Morin [21]
and Tsogtgerel [22]) for detailed discussion.

Remark 2.48. The parameter s in Theorem 2.46 should not be confused with the Besov
norm smoothness parameter in | · |Bs

p,p
. Here it means the additional regularity exceeding its

minimal possible smoothness of α = 2; only in excess of α = 2 can approximation be possible.
Interchangeably, we can always write Bs+2

p,p ↪→ A s/2 as Bα
p,p ↪→ A s whenever s = α

2
− 1.

2.4 Regularity results
The fourth order problem requires Green’s identity as a tool for analysis, and since full
H4(Ω) regularity of solutions cannot be expected, we present here the identity under weaker
assumptions. Only having u ∈ H2(Ω), the Green identity no longer holds in the usual sense
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since ∂∆u
∂n
|Γ and ∆u|Γ lose their meaning. We reiterate the result of (Bhattacharyya et al. [4],

Blum, Rannacher and Leis [3]) and briefly discuss the main ideas used, namely that if u
belongs to the subspace H2(Ω) of functions with ∆2u ∈ L2(Ω) then the traces of ∆u and
∂∆u
∂n

are understood as members of H−1/2(Γ) and H−3/2(Γ), respectively, and it holds that

〈∂∆u
∂n

, v〉H−3/2(Γ) − 〈∆u, ∂v∂n〉H−1/2(Γ) =

∫
Ω

∆2uv −
∫

Ω

∆u∆v. (2.129)

The regularity of weak solution u of (1.1) near boundary corners ν is dictated by the
interior angle ων and is determined by the principal linear part ∆2u. When the boundary
corners are not large, the weak solution admits full regularity. More precisely, let k = 0 or 1
be fixed. If the maximum angle ω for each boundary corner ν satisfies (i) ω < 126.28...◦, if
k = 0, or (ii) Fi ≡ 0 ω < 180◦, if k = 1, then for f ∈ H−k(Ω), each weak solution u belongs
to H4−k(Ω) with

‖u‖H4−k(Ω) ≤ C
(
‖u‖H2(Ω) + ‖f‖H−k(Ω)

)
. (2.130)

As a result, the operator ∆2 : H2
0 (Ω)∩H3(Ω)→ H−1(Ω) is invertible for any convex polygonal

domain Ω. In the event the angle condition is violated, regularity will be lost near problematic
vertices. In fact, without loss of generality, if ν is the only vertex with interior angle violating
the assumption above, and if Ων ⊂ Ω is a radial neighborhood of ν, then u ∈ H4−k(Ω\Ων)
and admits the form

u(r, φ) = ũ(r, φ) +
∑
zη∈Z

mη∑
µ=1

aηµr
zη ln(µ−1) rψηµ(φ), (r, φ) ∈ Ων (2.131)

on Ων where ũ ∈ H4−k(Ων) is the regular part and the terms under the summation consti-
tute the singular part. The terms aνµ are complex coefficients that depend continuously on
‖u‖H2(Ω) and ‖f‖H−k(Ων) whereas the ψνµ are angular algebraic functions. More importantly,
the powers zη are complex and are the poles, with multiplicities mν , of certain resolvent
operator and are distributed over the strip

Z = {z ∈ C | 1 < Re z < 3− k},
and determine the regularity. The real parts Re zη : [0, 2π]→ (3/2,∞) are continuous func-
tions of interior vertex angle ων and monotonically decrease in a manner that the regularity
deteriorates over 128.28...◦ < ων < 2π when k = 0 and 180◦ < ων < 2π when k = −1.

2.5 Adaptive h-refinement finite element methods
The standard adaptive mesh-refining algorithm which incorporates the ideas of Section 2.3
is an iteration of the following operations

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (2.132)
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The module SOLVE computes a piecewise polynomial B-spline finite-element approximation
U of u with respect to a given hierarchical mesh P . For the module ESTIMATE, we use
a residual-based error estimator ηP derived from a posteriori analysis. The module MARK
follows the Dörlfer marking criterion dictated by the error estimator (Dörfler [53]). Finally,
the module REFINE consists of two steps. The first step is to obtain local refined meshes
by splitting the marked elements M into four new cells producing a new mesh satisfying the
shape regularity constraints (2.73). The second step is to refine the spline basis via B-spline
subdivision wherever mesh refinement took place.

2.5.1 The AFEM modules
In what follows we discuss the modules SOLVE, ESTIMATE, MARK and REFINE in
detail.

The module SOLVE

The module SOLVE[P, f ] produces an approximation U to u of problems (1.6) and (1.9). We
quickly recap the the discretizations treated in this thesis. Let X0

P ⊂ H2
0 (Ω) and XP ⊂ H2(Ω)

be the discrete spline spaces concerned in this thesis. In Chapter 3, U ∈ X0
P is given by

a(U, V ) = `f (V ), V ∈ X0
P , (2.133)

with a being the principal part given in Section 1 and α = 1. In Chapter 4 U ∈ XP is given
by

aP (U, V ) + b(u, v) = `f (V ), V ∈ XP , (2.134)

where aP satisfies (1.8) with α and b are given by the Stommel-Munk model. In Chapter 5,
U ∈ XP is given by (2.134) where aP is taken to be (1.11) with α and b given by the SQGE.
Finally, in Chapter 6, U ∈ XP is given by

aP (U, V ) = `f (V ), V ∈ XP , (2.135)

with aP given by (1.8) with α = 1.
All discrete systems produced are numerically stable by coercivity. In the conforming

formulation the discrete formulation (1.6) is consistent with (1.4) resulting in the Galerkin
orthogonality:

a(u− U, V ) = 0 ∀V ∈ X0
P , (2.136)

which is contrary to discretizations of Chapters 5 and 6, where

aP (u− U, V ) = 〈EP , V 〉 ∀V ∈ XP , (2.137)
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for a suitable inconsistency functional EP . In all our discritizations a Cea-type estimate can
be realized, where the most challenging of all was in the treatment of the SQGE model of
Chapter 5. For this reason we include a complete a priori error analysis. For the remaining
chapters similar estimates hold by standard arguments which we omit.

The module ESTIMATE

The module ESTIMATE[U, P ] produces a collection of error indicators ητ for each element
τ ∈ P , given by

η2
P (V, τ) = h4

τ‖Rτ‖2
L2(τ) +

∑
σ⊂∂τ

(
h3
σ ‖Jσ,1‖

2
L2(σ) + hσ‖Jσ,2‖2

L2(σ)

)
, (2.138)

where interior residual quantity

Rτ = (f − LV ) |τ , (τ ∈ P ), (2.139)

edge jump terms

Jσ,1 =

∣∣∣∣[∂∆V

∂nσ

]∣∣∣∣
σ

and Jσ2 = |[∆V ]|σ , (σ ∈ EP ), (2.140)

and LV = F0(·, V,∇V,∆V )+divF (·, V,∇V,∆V ). Here, |[V ]|σ evaluates the jump of V across
interface σ:

|[V ]|σ (x) = lim
t→0

[V (x+ tnσ)− V (x− tnσ)], x ∈ σ. (2.141)

The error estimator over any subset ω ⊂ Ω is given by

η2
P (V, ω) =

∑
τ∈P :τ⊂ω

η2
P (V, τ). (2.142)

We define the data oscillation term over a subset ω ⊆ Ω by

osc2
P (f, ω) =

∑
τ∈P :τ⊂ω

h4
τ‖(id− Πm

P )f‖2
L2(τ). (2.143)

The module MARK

A number of ways of selecting cells to refine have been explored, among the most notable is
the Maximum strategy selecting all cells with error exceeding θ×100% of the largest cell error,
and the Modified equidistribution strategy aiming to replicate the equidistribution principle
realized in (Babuška and Rheinboldt [47]). The Dörlfer marking strategy (Dörfler [53]) is
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shown to be an optimal marking strategy (Stevenson [60]). For prescribed 0 < θ ≤ 1, the
strategy reads

Find smallest subset M ⊆ P :
∑
τ∈M

η2
P (U, τ) ≥ θ

∑
τ∈P

η2
P (U, τ). (2.144)

This method suppresses excessive iterations and over-refinement by fixing the ratio between
good and bad cells throughout all iterations.

To ensure minimal cardinality of M in the marking strategy one typically undergoes
QuickSort which has an average complexity of O(n log n) to produce the indexing set J . On
the other hand, the log-factor can be avoided using a bucket sort, placing indicators in error
range bins; see Stevenson [60] for more details. When θ = 1 the refinement is uniform.

The module REFINE

The refinement is designed to recursively extend the marked cells M obtained from module
MARK to a set ωRP→P∗ for which the new mesh P∗ is admissible. We define the neighbour-
hood of τ ∈ P ∩ G` as

N (P, τ) = {τ ′ ∈ P ∩ G`−1 : ∃τ ′′ ∈ S(τ, `), τ ′′ ⊆ τ ′} , (2.145)

when ` − 1 > 0, and N (P, τ) = ∅ otherwise. To put in concrete terms, the neighbourhood
N (P, τ) of an active cell in G` consist of active cells τ ′ of level `− 1 overlapping the support
extension of τ with respect to level `. Procedure REFINE will ensure that for a constant

Algorithm 2.5.1 Recursive refinement recursive refine [P, τ ]→ P∗
1: for all τ ′ ∈ N (P, τ) do
2: P ← recursive refine [P, τ ′]
3: end for
4: if τ ∈ P then
5: {τj}4j=1 ← dyadic-refine τ

6: P∗ ← (P\τ) ∪ {τj}4j=1

7: end if

cshape > 0, depending only on the polynomial degree of the spline space, all considered par-
titions therefore will satisfy the shape-regularity constraints (2.73).
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Algorithm 2.5.2 Carry admissible mesh refinement REFINE [P,M ]→ P∗
1: for τ ∈M do
2: P ← recursive refine [P, τ ]
3: end for
4: P∗ ← P

2.5.2 Performance analysis
We conclude this section by applying Theorem 2.46 to various scenarios reflecting subsequent
numerical experiments. We assume in all cases that f ∈ L2(Ω) so that any singularity
that compromises solution’s regularity is entirely determined by the boundary’s vertex ν
with largest interior angle ων . We consider splines with degrees r ≥ 2 and explore the
anticipated convergence rates when using linear and nonlinear approximation methods on a
rectangular domain (ων = π

2
), where full smoothness is ensured, and, an L-shaped domain

(ων = 3π
2

) where a singularity in higher-order derivatives form at the central corner. From the
regularity results of [3] we expect that u ∈ H4(Ω) in the rectangular domain. Determining
the Sobolev regularity for u in the L-shaped domain can be obtained from the following
heuristic argument. Proceeding in polar coordinates, the singular part of u in (2.131) behaves
approximately like ρ1.6 near the obtuse vertex; see in [3] that Rez ≈ 1.6. We estimate |u|Hα(Ων)

using
∫ 1

0
ρ2(1.6−α)ρ dρ. The integral is finite whenever α < 2.6 and therefore we expect that

u ∈ H2.6(Ω). We now look at the anticipated rates. If u is a solution on a rectangular mesh
and we carry approximation using uniform refinement, then the linear method is expected
to converge such that

‖u− U‖H2(Ω) � |h2
Pu|H4(Ω) � N−1|u|H4(Ω). (2.146)

On the other hand, if u ∈ H2.6(Ω), being a solution on the L-shape geometry, we expect that

‖u− U‖H2(Ω) � |h0.6
P u|H2.6(Ω) � N−0.3|u|H2.6(Ω). (2.147)

These expectations are consistent with Theorem 2.46. Indeed, B4
2,2 ↪→ A 1 whereas B2.6

2,2 ↪→
A 0.3 which is consistent with the anticipated rates one can expect from linear methods. On
the other hand, when a nonlinear approach is adopted via h-refinement adaptivity, we first
note that B4

p,p(Ω) ↪→ H2(Ω) when p = 2
3
. In view of Theorem 2.46 u ∈ B4

p,p(Ω) ↪→ A 1.
In the language discussed in Example 2.25, constructing a mesh that equidistributes the
B4

2
3
, 2
3

(Ω)-norm of u over all partition cells yields

‖u− U‖H2(Ω) � N−1|u|B4
2
3 ,

2
3

(Ω). (2.148)

We depict those realizations in a DeVore diagram of Figure 2.6.
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Figure 2.6: DeVore diagram indicating the embedding of various solutions, given their Sobolev
norms, into approximation classes. With abuse of notation kept in mind, A 0.3 and A 1 correspond
to approximation using uniform and adaptive refinement, respectively. The length of the red arrow
indicates gain in convergence rate owed to adaptive refinement.
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Chapter 3
A quasi-optimal boundary-condition conforming
adaptive spline-based finite element method for
the bi-Laplace operator

3.1 Introduction

We address the performance of an adaptive finite element method for the biharmonic problem
using boundary condition conforming B-splines. In this chapter, we prove that the adaptive
procedure (2.132) guided by the a posteriori error estimator converges with optimal rate.

In the pioneering work of (Babuška and Rheinboldt [47]) a mathematical theory is de-
veloped for a class of a posteriori error estimates for solutions of finite element methods
providing a blue-print for h-adaptive mesh generation strategies. Under very general as-
sumptions, the numerical error is estimated in terms of localized quantities which can be
computed approximately. While the existence of optimal partitions was not addressed until
the early 2000’s by Binev, DeVore and Dahmen, their work lead to a heuristic characterization
of optimal meshes as ones that equally distributes the numerical error over all the partition
elements. The error estimator class of Babuška and Rheinboldt were sharp in that they
formed upper and lower bounds up to fixed proportionality constants, but their calculation
require solving local Dirichlet-type problems over every cell, in every iteration. Simultan-
eously, Babuška and Rheinboldt derived an explicitly defined estimator in [48] based on
weighted combinations of suitable residual quantities which approximate the loss of smooth-
ness brought by singularities in the derivatives. Later in (Verfürth [50]), when treating various
boundary value problems for the Poisson equation, the idea of residual-based estimation de-
vised by Babuška and Rheinboldt was made systematic using integration by parts. This

47
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will be the framework used in this thesis. The avoidance of local problems had an impact
on the sharpness of these residual-based error indicators; compare equations (4.8) and (4.9)
of Proposition 4.2 in (Verfürth [50]) with equation (3.3a) of Theorem 3.2 in (Babuška and
Rheinboldt [47]). The global upper bound (see for example Lemma 3.2) and local lower bound
(see for example Eq. (3.58)) were compromised by initial data. Later in (Morin et al [54]),
when studying convergence, it was discovered that the sacrifice in sharpness is intrinsic and
cannot be overcome.

All convergence results in AFEM literature are realized as a contraction of some numerical
error quantity with each iteration. The first Adaptive Finite Element Method (AFEM)
convergence result was given in (Babuška [49]) when treating general second order symmetric
elliptic ODEs. Convergence of AFEM for the Poisson equation for general Dirichlet boundary
conditions in two-dimensions was given in seminal work of (Dörfler [53]) with the advent
of the novel Dörfler marking strategy and an initial-mesh fineness assumption placed to
ensure problem datum, the right-hand side source function and boundary condition values
to be sufficiently resolved before executing the adaptive loop. As a result, the initial mesh
assumption captures the finer features of the initial data thus guaranteeing sharp a posteriori
local estimation in all subsequent iterations and strict numerical error reduction is achieved
with each iteration. However, it did not exclude the possibility of an over-refined initial
mesh. In the case of homogeneous boundary conditions, the initial-mesh finess assumption
read ‖hPf‖L2(Ω).

Later in (Morin et al [54]; see also Morin et al [55]), when treating the more general second
order elliptic operator −div(A∇u) with coefficient matrix A taken to be piecewise constant
with respect to the initial mesh, the authors came to the realization that the discretization of
the prescribed data results in averaging of finer initial data features which interferes with the
numerical error reduction irrespective of quadrature. This averaging error manifests into a
weighted L2-error projection error ‖hP (f − f̄)‖L2(Ω), where f̄ is the L2 average of f , initially
observed in (Verfürth [50]). In contrast to (Dörfler [53]), it is the oscillation of f from f̄ and
not the size of ‖hPf‖L2(Ω) that’s important. As a result, the initial mesh assumption was
removed and replaced with a Dörfler-inspired separate marking strategy that ensures data
oscillation to be sufficiently small before entering a new iteration. In addition to controlling
the data oscillation, the subdivision of each marked element needed to be performed multiple
times so as to produce an interior node amounting to a total of three bisections in addition to
those produced by the completion step. This refinement rule gives rise to a so-called interior
node property and provides a discrete counterpart to the local lower bound to (Verfürth
[50]). The combination of separate marking and the interior node property in each refinement
makes up the Morin-Nochetto-Sierbert (MNS) algorithm and successfully recovers strict error
reduction with every iteration while circumventing an overly-refined initial mesh.

At the heart of all modern AFEM convergence results is a Pythagoras-type relation re-
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lating the numerical error between two refinement levels. The geometric relation is primarily
a consequence of finite element space nesting and the discrete formulation consistency with
the weak problem. When the bilinear form is symmetric, the relation is an equality (see for
example Lemma 3.11), otherwise it is not. This was first addressed in (Mekchay et al. [56])
where convergence results was extended to general non-symmetric second order elliptic prob-
lems with variable coefficient matrix A : Ω → Rd×d Lipschitz, symmertic positive-definite
with bounded eigenvalues. Mekchay et al. brought to light new ideas to the field. Firstly, the
Galerkin-Pythagoras equality broken by the asymmetry still fulfilled its purpose at the price
of some initial-mesh condition (vaguely analogous to that of (Dörfler [53])) that depends on
the non-symmetric term. On the other hand, the variable nature of the coefficient matrix
resulted in the incorporation of the coefficient matrix into the oscillation term. As a result,
the numerical error and oscillation term can no longer be treated separately and resulted in
a novel new convergence argument.

The rate of convergence of the MNS algorithm was studied in the landmark publication
of (Binev, DeVore and Dahmen [59]). Their discovery of controlled complexity of conform-
ing refinement (2.107) and their introduction of a coarsening step laid the foundations for
estimating the rate of convergence in terms of the number of partition elements. Another
fact that they brought to light is that the approximation class containing the solution u was
not enough into ensure the rate of convergence; the oscillation term should also be taken to
account to obtain a complete picture of the AFEM’s optimality. The coarsening step was
intended to mitigate the cost that came from enforcing the interior node property. Later
however, the coarsening step was shown to be artificial in the important paper by (Steven-
son [60]). Significant fundamental changes resulted from (Stevenson [60]) in addition to the
removal of the coarsening. The Dörfler marking was shown to be optimal, in virtue of a
discrete upper bound estimate (see for example Lemma 3.7), making the mesh complexity
analysis significantly simpler than in (Binev, DeVore and Dahmen [59]).

For the better part of the 2000’s the MNS algorithm stood as state of the art for adaptive
finite element methods for linear elliptic problems. It was in seminal paper of (Cascón et
al. [61]) where convergence was achieved without a need for the discrete lower bound. The
discrete lower bound was replaced with a weaker estimator error reduction estimate (see for
example Lemma 3.9) that neither included an oscillation term nor did it require an interior
node property resulting in the ultimate removal of the costly refinement condition as well as
separate marking for oscillation. Subsequently, convergence is shown to hold in a quasi-error
norm (see (3.95)). The total- and quasi- error norms are equivalent in the asymptotic regime,
and the convergence in quasi-norm is sufficient to achieve the desired result: quasi-optimality
of AFEM in total-error.

We now begin with describing the set-up of this chapter. The energy norm ||| · ||| =
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‖∆ · ‖L2(Ω), owing to the Poincaré inequality is a norm on V = H2
0 (Ω). The B-spline based

finite element space is given by

XP = SrP ∩H2
0 (Ω) ⊂ C1(Ω), r ≥ 2. (3.1)

The a priori error estimation is well-known for the boundary-condition conforming discret-
ization and follows from a standard derivation of Céa’s lemma. We limit ourselves with
mentioning it here: If u and U are the weak and discrete solutions, respectively, then

|||u− U ||| ≤ Ccont

Ccoer

inf
V ∈XP

|||u− V |||, (3.2)

and if furthermore u ∈ Hs(Ω) with 2 < s < r + 1 then,

|||u− U ||| ≤ cshapeCcont

Ccoer

|u|Hs(Ω). (3.3)

The constants Ccont > 0 and Ccoer > 0 are the bilinear form’s continuity and coercivity
coefficients, and cshape is the partition shape-regularity coefficient.

3.2 A posteriori error estimation
We define the residual quantity RP ∈ V′ by

〈RP , v〉 = a(u− U, v), v ∈ V. (3.4)

In view of continuity and coercivity of the bilinear form we have

C−1
cont‖RP‖V′ ≤ |||u− U ||| ≤ C−1

coer‖RP‖V′ . (3.5)

The quantity ‖RP‖V′ is computable since it only depends on available discrete approximation
of solution u. We follow the techniques devised in (Verfürth [50]) to estimate ‖RP‖V′ .

Estimator reliability

In the following, we estimate the residual ‖RP‖V′ first by deriving and L2-representation for
residual quantity RP then prove the reliability of the proposed error estimator.

Lemma 3.1 (Residual L2-representation). The functional RP ∈ V′ admits the L2-representation
as

〈RP , v〉 =
∑
τ∈P

∫
τ

Rτv −
∑
σ∈EP

(∫
σ

Jσ,1v −
∫
σ

Jσ2

∂v
∂nσ

)
(3.6)

where Rτ and Jσ,i are defined in (5.89) and (5.90).
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Proof. Let v ∈ V. Performing partial integration on each cell τ ∈ P yields

〈RP , v〉 =
∑
τ∈P

∫
τ

(f − LU) v − α
∑
τ∈P

(∮
∂τ

∂∆U
∂nτ

v −
∮
∂τ

∆U ∂v
∂nτ

)
. (3.7)

Let τ1 and τ2 be cells sharing an interior edge σ with corresponding outward unit normal
vectors nτ1 and nτ2 and nτ1 = −nτ2 . By setting nσ = nτ1 , we have∫

∂τ1∩σ
∆U

∂v

∂nτ1
+

∫
∂τ2∩σ

∆U
∂v

∂nτ2

=

∫
σ

[(∆U)τ1(∇v · nσ)− (∆U)τ2(∇v · nσ)]

=

∫
σ

[(∆U)τ1 − (∆U)τ2 ] (∇v · nσ) =

∫
σ

|[∆U ]|σ∇v · nσ.

(3.9)

Similarly, we obtain ∫
∂τ1∩σ

∂∆U

∂nτ1
v +

∫
∂τ2∩σ

∂∆U

∂nτ2
v =

∫
σ

∣∣∣∣[∂∆U

∂nσ

]∣∣∣∣
σ

v. (3.10)

Upon summation of (3.9) and (3.10) over all cells τ we can write∑
τ∈P

∮
∂τ

∆U
∂v

∂nτ
=
∑
σ∈EP

∫
σ

|[∆U ]|σ
∂v

∂n
, (3.11)

and ∑
τ∈P

∮
∂τ

∂∆U

∂nτ
v =

∑
σ∈EP

∫
σ

∣∣∣∣[∂∆U

∂nσ

]∣∣∣∣
σ

v. (3.12)

By applying (5.107) and (5.108) to (5.106), we obtain

α
∑
τ∈P

(∮
∂τ

∂∆U

∂nτ
v −

∮
∂τ

∆U
∂v

∂nτ

)
=
∑
σ∈EP

(∫
σ

Jσ,1v −
∫
σ

Jσ,2
∂v

∂nσ

)
. (3.13)

We now prove that the estimator is reliable in that it forms a global upper bound to the
numerical error.

Lemma 3.2 (Global upper bound). Let P be an admissible partition of Ω. The module
ESTIMATE produces an a posteriori error estimate ηP for the discrete error such that for
a constants CU > 0,

|||u− U |||2 ≤ CUη
2
P (U,Ω), (3.15)

with constants depending only on cshape, Ccont and Ccoer.
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Proof. We have from the previous Lemma

|〈RP , v〉| ≤
∑
τ∈P

‖Rτ‖L2(τ)‖v −QPv‖L2(τ) +
∑
σ∈EP

‖Jσ,1‖L2(σ) ‖(v −QPv)‖L2(σ)

+
∑
σ∈EP

‖Jσ,2‖L2(σ)

∥∥∥ ∂
∂nσ

(v −QPv)
∥∥∥
L2(σ)

(3.17)

We use the approximation results from Lemma 2.42 to estimate interior residual terms∑
τ∈P

‖Rτ‖L2(τ)‖v −QPv‖L2(τ) ≤
∑
τ∈P

‖Rτ‖L2(τ)cshapeh
2
τ |v|H2(ωτ ),

≤ cshape

(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2(∑
τ∈P

|v|2H2(ωτ )

)1/2

,

= cshape

(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2

|v|H2(Ω).

(3.19)

where in the last step we used (2.74). As for the interior edge jump terms,∑
σ∈EP

‖Jσ,1‖L2(σ) ‖v −QPv‖L2(σ)

≤
∑
σ∈EP

‖Jσ,1‖L2(σ) cshapeh
3/2
σ |v|H2(ωσ),

≤ cshape

( ∑
σ∈EP

h3
σ‖Jσ,1‖2

L2(σ)

)1/2

|v|H2(Ω),

(3.21)

and similarly,∑
σ∈EP

‖Jσ,2‖L2(σ)

∥∥∥ ∂
∂nσ

(v −QPv)
∥∥∥
L2(σ)

≤ cshape

( ∑
σ∈EP

hσ‖Jσ,2‖2
L2(σ)

)1/2

|v|H2(Ω). (3.22)

Summing up we arrive at

|〈RP , v〉|
‖v‖V

≤ cshape

{(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2

+

( ∑
σ∈EP

h3
σ ‖Jσ,1‖

2
L2(σ)

)1/2

+

( ∑
σ∈EP

hσ‖Jσ,2‖2
L2(σ)

)1/2
}
,

(3.24)

and the desired result follows from the equivalence (3.5).
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Estimator efficiency

The efficiency of the estimator, which is the L2 form of the lower bound in (3.5), ensures
that the estimator is sharp and equivalent to the numerical error up to the oscillation term.
Arriving at this requires using certain bubble functions that allows us to isolate the residual
quantities from one another.

Lemma 3.3 (Bubble functions). Let τ ∈ P and let σ = ∂τ1 ∩ ∂τ2 for τi ∈ P and let
Dσ = τ1 ∪ τ2. There exists piecewise polynomial functions ψτ be any smooth cut-off such that

suppψτ ⊆ τ, ψτ ≥ 0, max
x∈τ

ψτ (x) ≤ 1, (3.25)

and two C1 cut-off functions ψσ ≥ 0 and χσ, both supported on Dσ, such that

∂ψσ
∂nσ
≡ 0, χσ ≡ 0 and d1h

−1
σ ψσ ≤ ∂χσ

∂nσ
≤ d2h

−1
σ ψσ along σ. (3.26)

Proof. The construction of the first bubble function ψτ is easy to see. We focus on the
edge-based ones. Let H(x, y) = y2(1− y)2(1− x2)2 and define ψ̂ and χ̂ by

ψ̂(x, y) = H(x, y)1x≥0 +H(−x, y)1x≤0 and χ̂ =
∂ψ̂(x, y)

∂x
(x, y) ∈ D̂ := [−1, 1]× [0, 1].

(3.27)
See Figure 3.1 for illustrations of the bubble functions. We focus on τ̂ = (0, 1) × (0, 1).
It is also easy to verify that χ̂|τ̂ = ∂H

∂x
= − 4x

1−x2H(x, y) which means χ̂|σ̂ = 0, where σ̂ =

{0} × (0, 1). Moreover, we also have ∂(χ̂|τ̂ )
∂x
|σ̂ = −4H(0, y) = −4ψ̂|σ̂. Now let τ̂1 = τ̂ , let

τ̂2 = (−1, 0)× (0, 1) and let n = (1, 0) be the unit normal vector associated with σ̂. Finally,
let Fσ be the affine transformation that maps D̂ onto Dσ and define

ψσ = ψ̂ ◦ F−1
σ , χσ = χ̂ ◦ F−1

σ . (3.28)
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(a) The bubble function ψ̂ (b) The bubble function χ̂

Figure 3.1: The bubble functions on the reference subdomain D̂. The values of ψ̂ ad χ̂ along the
edge σ̂ adjacent to two reference cells τ̂1 and τ̂2 are shown in red.

Lemma 3.4 (Localizing estimates). Let τ be a cell in partition P . For a constant cm
depending only on polynomial degree m,

‖q‖2
L2(τ) ≤ cm

∫
τ

ψτq
2 ∀q ∈ Pm(τ). (3.29)

Let σ be an edge in EP for which σ ⊆ ∂τ . We also have

‖q‖2
L2(σ) ≤ cm

∫
σ

ψσq
2 (3.30)

and
‖ψ1/2

σ Eσq‖L2(τ) ≤ cmh
1/2
σ ‖q‖L2(σ) (3.31)

holding for every q ∈ Pm(σ).

Proof. Relations (3.29) and (3.30) are proven in the same fashion as in (Verfürth [50]). We
focus on (3.31). We will define extension operators Eσ : C(σ) → C(τ) for all edges σ with
σ ⊂ ∂τ . Let τ̂ = [0, 1] × [0, 1] and σ̂ = {0} × [0, 1]. Let Fτ : R2 → R2 be the affine
transformation comprising of translation and scaling mapping τ̂ onto τ and σ̂ onto σ. Define
Ê : C(σ̂)→ C(τ̂) via

Êv(x, y) = v(x) ∀x ∈ σ̂, (x, y) ∈ τ̂ , v ∈ C(σ̂). (3.32)

To this end, let σ be an edge of a cell τ ∈ P , then define Eσ : C(σ)→ C(τ) via

Eσv = [Ê(v ◦ Fτ )] ◦ F−1
τ . (3.33)
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In other words extending the values of v from σ into τ along inward nσ. We now prove that
q 7→ ‖ψ1/2

σ Eσq‖L2(τ) is a norm on Pm(σ).

‖Eσq‖L2(τ) = |τ |1/2‖Ê(q ◦ Fτ )‖L2(τ̂). (3.35)

It is clear that q̂ ∈ Pm(σ̂) is identically zero if and only if its extension Êq̂ is identically zero
on τ̂ . So q̂ 7→ ‖Êq̂‖L2(τ̂) is an equivalent norm on Pm(σ̂) we have

‖Ê(q ◦ Fτ )‖L2(τ̂) � ‖q ◦ Fτ‖L2σ̂ = h−1/2
σ ‖q‖L2(σ) (3.36)

so with |τ |1/2h1/2
σ � h

1/2
σ

‖ψ1/2
σ Eσq‖L2(τ) � h1/2

σ ‖q‖L2(σ). (3.37)

We now have all the tools we need to prove the estimator efficiency estimate.

Remark 3.5. If Rτ = Πm
PRτ for m ≤ r − 4,

Rτ −Rτ = (id− Πm
P )f − (id− Πm

P )LV = (id− Πm
P )f. (3.38)

Note that LV |τ ∈ Pr−4.

Lemma 3.6 (Global Lower Bound). Let P be an admissible partition of Ω. The module
ESTIMATE produces an a posteriori error estimate of the discrete solution error such that

CLη
2
P (U,Ω) ≤ |||u− U |||2 + osc2

P (f,Ω), (3.39)

with constant CL depending only on cshape and polynomial degree r.

Proof. The proof is carried out by localizing the error contributions coming from the cells
residuals Rτ and edge jumps Jσ,1 and Jσ,2. For τ ∈ P let ψτ ∈ H2

0 (τ) be as in (3.25) and let
Rτ be a polynomial approximation of Rτ by means of the L2-orthogonal projector Πm

P with
m ≤ r − 4. Using the norm-equivalence relation (3.29) of Lemma 3.4

‖Rτ‖2
L2(τ) ≤ cm

∫
τ

Rτ (Rτψτ ) = cm‖Rτ‖H−2(τ)‖Rτψτ‖H2(τ). (3.40)

From Lemma 2.36 and equation (3.25), ‖Rτψτ‖H2(τ) ≤ cmh
−2
τ ‖Rτ‖L2(τ) and expression (3.40)

now reads h2
τ‖Rτ‖L2(τ) ≤ cm‖Rτ‖H−2(τ). It follows that

h2
τ‖Rτ‖L2(τ) ≤ h2

τ‖Rτ‖L2(τ) + h2
τ‖Rτ −Rτ‖L2(τ),

≤ cm‖Rτ‖H−2(τ) + h2
τ‖(id− Πm

P )f‖L2(τ),

≤ cm
(
‖Rτ‖H−2(τ) + ‖(id− Πm

P )f‖H−2(τ)

)
+ h2

τ‖(id− Πm
P )f‖L2(τ).

(3.42)
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We know that embedding L2(τ) ↪→ H−2(τ) is continuous. Moreover, we can view Rτ as a
restriction of RP to τ and therefore in view of definition (2.143) we may right

h2
τ‖Rτ‖L2(τ) � cm‖RP‖H−2(τ) + oscP (f, τ). (3.43)

We turn our attention to the jump terms across the interior edges. We begin with the edge
residual Jσ,1. Let an edge σ ∈ EP and cells τ1, τ2 ∈ P be such that σ ⊂ ∂τ1 ∩ ∂τ2 and denote
Dσ = τ1 ∪ τ2. If v ∈ H2

0 (Dσ) then

〈RP , v〉 =

∫
Dσ

Rτv +

∫
σ

Jσ,1v −
∫
σ

Jσ,2
∂v
∂nσ

. (3.44)

Let ψσ be the bubble function (3.28) and extend the values of Jσ,1 in directions ±nσ; i.e,
into each of τi, and set vσ = ψσJσ,1. Then (3.44) reads

cm‖Jσ,1‖2
L2(σ) �

∫
σ

ψσJ
2
σ,1 = 〈RP , vσ〉 −

∫
Dσ

Rτvσ. (3.45)

From Lemma 2.36 and (3.28) we have the estimates

‖ψσEσJσ,1‖H2(Dσ) ≤ cInvh
−2
σ ‖EσJσ,1‖L2(Dσ) (3.46)

and ‖ψσEσJσ,1‖L2(Dσ) ≤ cmh
1/2
σ ‖Jσ,1‖L2(σ) which we apply to (3.45) to obtain

cm‖Jσ,1‖2
L2(σ) �

(
cInvh

−2
σ ‖RP‖H−2(Dσ) + ‖Rτ‖L2(Dσ)

)
‖Jσ,1‖L2(Dσ),

≤ cdTrh
1/2
σ

(
cInvh

−2
σ ‖RP‖H−2(Dσ) + ‖Rτ‖L2(Dσ)

)
‖Jσ,1‖L2(σ),

(3.48)

where the the last line follows from (3.31). Now let χσ be the function (3.30), extend the
values of Jσ,2 into Dσ and set wσ = χσJσ,2. We then have

〈RP , wσ〉 =

∫
Dσ

Rτwσ − h−1
σ

∫
σ

ψσJ
2
σ,2. (3.49)

Similarly, we obtain

cmh
−1
σ ‖Jσ,2‖2

L2(σ) ≤ cdTrh
1/2
σ

(
cInvh

−2
σ ‖RP‖H−2(Dσ) + ‖Rτ‖L2(Dσ)

)
‖Jσ,2‖L2(σ). (3.50)

We have from (3.48) and (3.50)

h3
σ‖Jσ,1‖2

L2(σ) + hσ‖Jσ,2‖2
L2(σ) ≤

cInvcdTr

cm
‖RP‖2

H−2(Dσ) + cdTr

cm
h4
σ‖Rτ‖2

L2(Dσ). (3.52)
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Summing up we have

η2
P (V, τ) = h4

τ‖Rτ‖2
L2(τ) +

∑
σ∈∂τ

(
h3
σ‖Jσ,1‖2

L2(σ) + hσ‖Jσ,2‖2
L2(σ)

)
,

≤ h4
τ‖Rτ‖2

L2(τ) + cdTr

cr

∑
σ∈EP

(
cInv‖RP‖2

H−2(Dσ) + h4
σ‖Rτ‖2

L2(Dσ)

)
,

≤ (1 + cshape)h
4
τ‖Rτ‖2

L2(ωτ ) + cInvcdTr

cm

∑
σ∈∂τ

‖RP‖2
H−2(Dσ),

(3.54)

we arrive at

η2
P (V, τ) ≤ C

(
‖RP‖2

H−2(τ) +
∑
σ∈∂τ

‖R‖2
H−2(Dσ) + osc2

P (f, ωτ )

)
, (3.56)

for a generic constant C that depends on cshape and polynomial degree r. We now estimate
‖RP‖H−2(ω), for ω ∈ {τ,Dσ}, in terms of the numerical error:

‖RP‖H−2(ω) = sup
v∈H2

0 (ω)

〈RP , v〉
|v|H2

0 (ω)

= sup
v∈H2

0 (ω)

a(u− U, v)

|v|H2
0 (ω)

≤ Ccont‖∆(u− U)‖2
L2(ω), (3.57)

which makes ‖RP‖2
H−2(τ) +

∑
σ∈∂τ ‖R‖2

H−2(Dσ) � |u−U |2H2(ωτ ) and we have a continuous local
lower bound :

η2
P (U, τ) ≤ C

(
|u− U |2H2(ωτ ) + osc2

P (f, ωτ )
)
. (3.58)

The desired conclusion follows from shape-regularity and summing (3.58) over all cells τ ∈ P .

It is clear now from relation (3.43) that the right-hand side f is the culprit for weakening
the equivalence (3.5). This is the price to pay for having a simple L2 representation of the
residual instead of having to solve local-problems as done in (Babuška and Rheinboldt [47]).
However, the price is not too high for we would expect h2

τ‖Rτ − Rτ‖L2(τ) to decay faster
than the interior residual quantity h2

τ‖Rτ‖L2(τ); the oscillation term may pollute the error
estimation at first, but will eventually vanish faster than the estimator. As a result, we have
estimator dominance over oscillation osc2

P (U, τ) ≤ η2
P (U, τ) in the asymptotic regime. The

combination of Lemmata 3.2 and 3.6 provides an L2 version of equivalence (3.5); i.e, the size
of the residual when measured in L2 is equivalent to the numerical error up-to the oscillation
term:

CLη
2(U,Ω)− osc2

P (f,Ω) ≤ |||u− U |||2 ≤ CUη
2
P (U,Ω) (3.59)

motivates measuring the decay rate of the total-error

ρP (v, V, g) =
(
|||v − V |||2 + osc2

P (g,Ω)
)1/2

. (3.60)
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Discrete upper bound

The following result is not used for convergence but it is instrumental in quasi-optimality. In
particular, the optimality of Dörlfer marking follows from it as will be seen in Lemma 6.13.

Lemma 3.7 (Discrete upper bound). Let P be an admissible partition of Ω and let P∗ =
REFINE [P,M ] for some marked set M ⊆ P . Let U and U∗ are the discrete solutions on
P and P∗, respectively. Then for a constants CdU,1, CdU,2 > 0, depending only on cshape,

|||U∗ − U |||2 ≤ CdU,1η
2
P (U, ωRP→P∗ ), (3.62)

where ωRP→P∗ is understood as the union of support extensions of refined cells from P to
obtain P∗.

Proof. Let e∗ = U∗ − U . First note that if V ∈ XP then in view of the nesting XP ⊂ XP∗ ,

a(U∗ − U, e∗) = a(U∗ − U, e∗ − V ). (3.63)

To localize, we form disconnected subdomains Ωi ⊆ Ω, i ∈ J , each formed from the interiors
of connected components of Ω∗ = ∪τ∈RP→P∗τ . Then to each subdomain Ωi we form a partition
Pi = {τ ∈ P : τ ⊂ Ωi}, interior edges Ei = {σ ∈ EP : σ ⊂ ∂τ, τ ∈ Pi}, and a corresponding
finite-element space Xi. Let Ii : H2(Ωi) → Xi. Let V ∈ XP be an approximation of e∗ be
given by

V = e∗1Ω\Ω∗ +
∑
i∈J

(Iie∗) · 1Ωi . (3.64)

Then e∗ − V ≡ 0 on Ω\Ω∗ and performing integration by parts will yield

a(U∗ − U, e∗ − V ) =
∑
i∈J

[∑
τ∈Pi

〈R, e∗ − IP e∗〉τ

+
∑
σ∈Ei

{〈J1, e∗ − Iie∗〉σ + 〈J2, e∗ − Iie∗〉σ}
]
,

(3.66)

Following the same procedure carried in Lemma 3.2 we have∑
τ∈Pi

〈R, e∗ − Iie∗〉τ +
∑
σ∈Ei

{〈J1, e∗ − Iie∗〉σ + 〈J2, e∗ − Iie∗〉σ}

≤ cΠ

(∑
τ∈Pi

η2
P (U, τ)

)1/2(∑
τ∈Pi

|e∗|2H2(ωτ )

)1/2

,

(3.68)

Set ωRP→P∗ = ∪{ωτ : τ ∈ RP→P∗}, and therefore we have |||U∗−U |||2 ≤ CdUηP (U, ωRP→P∗ )|e∗|H2(Ω)

as desired.
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3.3 Convergence of AFEM
In this section we show that the derived computable estimator (2.142) when used to direct
refinement will result in decreased error. This will hinge on the estimator Lipschitz property
of Lemma 3.8. To show that procedure (2.132) exhibits convergence we must be able to relate
the errors of consecutive discrete solutions. The symmetry of the bilinear form, consistency of
the formulation and finite-element spline space nesting will readily provide that via Galerkin
Pythagoras in Lemma 3.11.

Error reduction

The result of Lemma 3.9 says that the estimator will reduce in value with refinement by an
amount proportional to the difference between two consecutive discrete solutions. This is an
improvement from (Mekchay [56]) in that reduction takes place irrespective of oscillation. The
result follows from well-behaved perturbation of the error indicator on different partitions.

Lemma 3.8 (Lipschitz property of estimator). Let P be an admissible partition of Ω.
There exists a constant Clip > 0, depending only on cshape, such that for any cell τ ∈ P we
have

|ηP (V, τ)− ηP (W, τ)| ≤ Clip|V −W |H2(ωτ ), (3.69)

holding for every pair of finite-element splines V and W in XP .

Proof. Let V and W be finite-element splines in XP and let τ be a cell in partition P .

ηP (V, τ)− ηP (W, τ) = h2
τ

(
‖f − LV ‖L2(τ) − ‖f − LW‖L2(τ)

)
+
∑
σ⊂∂τ

h1/2
σ

(
‖ |[∆V ]|σ ‖L2(σ) − ‖ |[∆W ]|σ ‖L2(σ)

)
+
∑
σ⊂∂τ

h3/2
σ

(
‖ |[∂σ∆V ]|σ ‖L2(σ) − ‖ |[∂σ∆W ]|σ ‖L2(σ)

)
.

(3.71)

Treating the interior term,

‖f − LV ‖L2(τ) − ‖f − LW‖L2(τ) ≤ |V −W |H4(τ) ≤ cInvh
−2
τ |V −W |H2(τ). (3.73)

Treating the edge terms we have

‖ |[∆V ]|σ ‖L2(σ) − ‖ |[∆W ]|σ ‖L2(σ) ≤ ‖ |[∆V −∆W ]|σ ‖L2(σ). (3.74)

Let τ ′ from P be a cell that shares the edge σ, i.e τ ′ is an adjacent cell to τ . For any
finite-element spline V ∈ XP we have

‖ |[V ]|σ ‖σ ≤ cdTr

(
h−1/2
σ ‖V ‖τ + h−1/2

σ ‖V ‖τ ′
)
≤ cdTrh

−1/2
σ ‖V ‖ωτ . (3.75)
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Replacing V with ∆V −∆W gives

h1/2
σ ‖ |[∆V −∆W ]|σ ‖σ ≤ cInvcdTr|V −W |H2(ωτ ). (3.76)

Similarly, we have

h3/2
σ

(
‖ |[∂σ∆V ]|σ ‖L2(σ) − ‖ |[∂σ∆W ]|σ ‖L2(σ)

)
≤ cInvcdTr|V −W |H2(ωτ ). (3.77)

It then follows from (3.71)

|ηP (V, τ)− ηP (W, τ)| ≤ cInv(|V −W |H2(τ) + 2cdTr|V −W |H2(ωτ )),

≤ cInv(1 + 2cdTr)|V −W |H2(ωτ ).
(3.79)

Lemma 3.9 (Estimator error reduction). Let P be an admissible partition of Ω, let
M ⊆ P and let P∗ = REFINE [P,M ]. There exists constants λ ∈ (0, 1) and Cest > 0,
depending only on cshape, such that for any δ > 0 it holds that for any pair of finite-element
splines V ∈ XP and V∗ ∈ XP∗ we have

η2
P∗(V∗,Ω) ≤ (1 + δ)

{
η2
P (V,Ω)− 1

2
η2
P (V,M )

}
+ cshape(1 + 1

δ
)|||V − V∗|||2. (3.80)

Proof. Let M ⊆ P be a set of marked elements from partition P and let P∗ = REFINE [P,M ].
For notational simplicity we denote XP∗ and ηP∗ by X∗ and η∗, respectively. Let V and V∗
be the respective finite-element splines from XP and X∗. Let τ be a cell from partition P∗.
In view of the Lipschitz property of the estimator (Lemma 3.8) and the nesting XP ⊆ X∗,

η2
∗(V∗, τ) � η2

∗(V, τ) + |V − V∗|2H2(ωτ ) + 2η∗(V∗, τ)|V − V∗|H2(ωτ ). (3.81)

Given any δ > 0, an application of Young’s inequality on the last term gives

2η∗(V∗, τ)|V − V∗|H2(ωτ ) ≤ δη2
∗(V∗, τ) + 1

δ
|V − V∗|2H2(ωτ ). (3.82)

We now have
η2
∗(V∗, τ) � (1 + δ)η2

∗(V, τ) + (1 + 1
δ
)|V − V∗|2H2(ωτ ). (3.83)

Recalling that the partition cell are disjoint with uniformly bounded support extensions, we
may sum over all the cells τ ∈ P∗ to obtain

η2
∗(V∗, P∗) ≤ (1 + δ)η2

∗(V, P∗) + cshape(1 + 1
δ
)|||V − V∗|||2. (3.84)

It remains to estimate η2
∗(V, P∗). Let |M | be the sum areas of all cells in M . For every

marked element τ ∈M define P∗,M = {child(τ) : τ ∈M }. Let b > 0 denote the number of
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bisections required to obtain the conforming partition P∗ from P . Let τ∗ be a child of a cell
τ ∈M . Then hτ∗ ≤ 2−1hτ . Noting that V ∈ XP we have no jumps within τ

η2
∗(V, τ∗) = h4

τ∗‖f − LV ‖
2
τ∗ ≤ (2−1hτ )

4‖f − LV ‖2
τ∗ , (3.85)

summing over all children ∑
τ∗∈children(τ)

η2
∗(V, τ∗) ≤ 2−1η2

P (V, τ), (3.86)

and we obtain by disjointness of partitions an estimate on the error reduction∑
τ∗∈P∗,M

η2
∗(V, τ∗) ≤ 2−1η2

P (V,M ). (3.87)

For the remaining cells T ∈ P\M , the estimator monotonicity implies ηP∗(V, T ) ≤ ηP (V, T ).
Decompose the partition P as union of marked cells in M and their complement P\M to
conclude the total error reduction obtained by REFINE and the choice of Dörfler parameter
θ

η2
P∗(V,Ω) ≤ η2

P (V,Ω\M ) + 2−1η2
P (V,M ) = η2

P (V,Ω)− 1
2
η2
P (V,M ). (3.88)

Corollary 3.10. There exists constants qest ∈ (0, 1) and Cest > 0 such that

η2
P∗(U∗,Ω) ≤ qestη

2
P (U,Ω) + C−1

est |||U∗ − U |||2. (3.89)

Proof. Define constants

qest(θ, δ) = (1 + δ)
(

1− θ2

2

)
and C−1

est (δ) = cshape

(
1 + 1

δ

)
,

so that in view of Dörlfer −η2
P (U,M ) ≤ −θ2η2

P (U,Ω) we have

(1 + δ)
{
η2
P (U,Ω)− 1

2
η2
P (U,M )

}
≤ qestηP (U,Ω)2.

The choice δ < θ2

2−θ2 ensures that 0 < qest < 1 as desired.

The following result allows one to relate the numerical error between two iterations.

Lemma 3.11 (Galerkin Pythagoras). Let P and P∗ be an admissible partitions of Ω with
P∗ ≥ P and let U ∈ XP and U∗ ∈ XP∗ be discrete solutions. Then

|||u− U∗|||2 = |||u− U∗|||2 − |||U∗ − U |||2. (3.90)
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Proof. At first we express

a(u− U∗, u− U∗) = a(u− U, u− U)− a(U∗ − U,U∗ − U)

+ a(U − U∗, u− U∗) + a(u− U∗, U − U∗).
(3.92)

Recognizing that a(u− U∗, U − U∗) = a(U − U∗, u− U) = 0, we arrive at

a(u− U∗, u− U∗) = a(u− U, u− U)− a(U∗ − U,U∗ − U). (3.93)

Remark 3.12. The Pythagoras relation of Lemma 3.11 is instrumental in achieving conver-
gence and the expression is really the best case scenario. In particular, the symmetry gives us
the equality. When symmetry is broken due to a linear advection term, a weaker version can
derived (Mekchay et al. [56] and Feischl et al. [62]). The so-called quasi-Pythagoras relation
reads:

|||u− U∗|||2 ≤ Λ|||u− U |||2 − |||U∗ − U |||2, (3.94)

for a constant Λ > 1 that can be made arbitrarily close to 1 with refinement. In order
to make the convergence proof valid for non-symmetric bilinear forms, we consider (3.94)
instead of (3.90). For the convergence of (2.132) in this general setting, we will need P0 to
be fine enough such that (3.94) holds with Λ = 1 + ε with 0 < ε < (1 − qest)

Cest

CU
. In our

symmetric setting, no initial-mesh assumption is needed; we automatically have Λ = 1.

Contraction of quasi-error

We define the quasi-error by
|||u− U |||2 + Cestη

2
P (U,Ω). (3.95)

The constant Cest will be chosen below.

Theorem 3.13 (Convergence of conforming AFEM). For a contraction factor α ∈ (0, 1/Λ),
there exists a suitable choice for Cest > 0 such that given any consecutive admissible mesh
partitions P and P∗, f ∈ L2(Ω) and Dörlfer parameter θ ∈ (0, 1], the adaptive procedure
AFEM [P, f, θ] will produce two successive discrete solutions U ∈ XP and U∗ ∈ XP∗ for
which

|||u− U∗|||2 + Cestη
2
P∗(U∗,Ω) ≤ αΛ

(
|||u− U |||2 + Cestη

2
P (U,Ω)

)
. (3.96)

Proof. Adopt the following abbreviations:

eP = u− U, eP∗ = u− U∗, εP = U∗ − U,
ηP = ηP (U,Ω), ηP∗ = ηP∗(U∗,Ω).



3.4 APPROXIMATION CLASSES 63

The objective is to show that the quasi-error (3.95) is contracts with consecutive refinement;
that is, we will show that there exists a factor 0 < αΛ < 1 such that (3.96) holds true. Apply-
ing Galerkin quasi-orthogonality (3.94) and estimator error reduction in the form expressed
in Corollary 3.10 to the quasi-error

|||eP∗|||2 + Cestη
2
P∗ ≤ (Λ|||eP |||2 − |||εP |||2) + Cest(qestη

2
P + C−1

est |||εP |||2),

= Λ|||eP |||2 + qestCestη
2
P .

(3.98)

thus removing the perturbation term |||εP |||2 by our parameter choice Cest in the quasi-norm
definition.

Let α ∈ (0, 1), to be chose later, and write |||eP |||2 = α|||eP |||2 + (1 − α)|||eP |||2. Now by
Global Upper Bound of Lemma 3.2:

|||eP∗|||2 + Cestη
2
P∗ ≤ αΛ|||eP |||2 + Cest

(
(1− α)Λ CU

Cest
+ qest

)
η2
P . (3.99)

The expression (1− α)Λ CU
Cest

+ qest = αΛ holds when α is chosen to be

α =
ΛCU + qestCest

Λ(CU + Cest)
. (3.100)

We show that the product 0 < αΛ < 1 holds. In view Remark 3.12,

αΛ =
(1 + ε)CU + qestCest

CU + Cest

<
CU + (1− qest)Cest + qestCest

CU + Cest

= 1. (3.101)

Remark 3.14. The rest of the analysis resumes with Λ = 1; symmetry will be invoked.

3.4 Approximation classes
The aim is to show that the proposed AFEM (2.132) will generate a sequence of partitions
{P`}`≥1 for which ρ2

P`
(u, U`, f) decays with order (#P`)

−s. The right-hand side function f is
directly given by Lu which justifies looking at an AFEM approximation class described by
the total-error norm (3.60). For s > 0 define

As =

{
v ∈ H2

0 (Ω) : |v|As = sup
N>0

N s inf
P∈PN

inf
V ∈XP

ρP (v, V,Lv) <∞
}

(3.102)

The AFEM approximation class As is not standard, however, we will express it in terms of
following standard approximation classes: for s > 0 define

A s = A s
∞(H2

0 (Ω), {XP}P∈P), (3.103)
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and
Os = A s

∞(H−2(Ω), {Pr−4
P }P∈P). (3.104)

Remark 3.15. We take the definition of Os to be a subspace of L2(Ω) only and measure the
error in H−2(Ω). Therefore, the approximation error norm E(f,Pr−4

P )H−2(Ω) characterizing
the approximation class Os is equivalent to infS∈Pr−4

P
‖h2

P (f−S)‖L2(Ω) and since L2-orthogonal

projections yields optimal error in L2(Ω), we may just take E(f,Pr−4
P )H−2(Ω) = oscP (f,Ω).

Remark 3.16. We will have to restrict values of s so as not to yield trivial spaces; spaces
consisting of spline polynomials only. For A s we have already done that; see Theorem 2.46.
As for Os, see Theorem 3.22 below.

It is immediate that any weak solution u ∈ As implies that (u,Lu) ∈ A s × Os. The other
direction merits proving:

Lemma 3.17 (Equivalence of classes). Let u be the weak solution. If u ∈ A s and Lu ∈
Os, then u ∈ As.

Proof. By definition we have two admissible partitions P1, P2 ∈ PN and a finite-element
spline V ∈ XP1 such that |||u − V ||| � N−s and oscP2(f) � N−s. Invoking Mesh Overlay
(2.75) we obtain an admissible partition P = P1 ⊕ P2 for which #P � 2N and because of
spline space nesting we have

|||u− V |||2 + osc2
P (f) � N−2s. (3.105)

3.5 Quasi-optimality
The contraction achieved in the convergence proof is ensured by the Dörfler marking strategy.
However the relationship between the Dörfler strategy and error reduction in the total-error
norm goes deeper than asserted in Theorem 3.13. In the following lemma we show that if
RP→P∗ is a set of refined elements resulting in a reduction of error in contractive sense, then
necessarily the Dörfler property holds for the set ωRP→P∗ . The fact will be instrumental in
proving that the cardinality of marked cells will keep the partition cardinality at each refine-
ment step proprtional to the optimal quantity dictated by nononlinear approximation.

In what follows we show that Cea’s lemma holds for the total-error norm, that is, that
the finite element solution U is an optimal choice from XP in total-error norm.
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Lemma 3.18 (Optimality of total error). Let u be the weak solution and let U ∈ XP be
the discrete solution. Then,

ρ2
P (u, U, f) ≤ inf

V ∈XP
ρ2
P (u, V, f). (3.106)

Proof. In view of Galerkin orthogonality and the symmetry of the bilinear form a(u−U,U −
V ) = a(U − V, u− U) = 0 we have

a(u− V, u− Vε) = a(u− U, u− U) + a(U − V, U − V ), (3.108)

and we have |||u− V |||2 = |||u− U |||2 + |||U − V |||2. Therefore,

ρ2
P (u, U, f) ≤ |||u− U |||2 + osc2

P (f,Ω) + |||U − V |||2,
= |||u− V |||2 + osc2

P (f,Ω) = ρ2
P (u, V, f).

(3.110)

Lemma 3.19 (Optimal Marking). Let U = SOLVE [P, f ], let P∗ be any refinement of P
and let U∗ = SOLVE [P∗, f ]. If for some positive µ < 1

|||u− U∗|||2 + osc2
∗(f,Ω) ≤ µ

(
|||u− U |||2 + osc2

P (f,Ω)
)
, (3.111)

and RP→P∗ denotes collection of all elements in P requiring refinement to obtain P∗ from P ,
then for θ ∈ (0, θ∗) we have

ηP (U, ωRP→P∗ ) ≥ θηP (U,Ω). (3.112)

Proof. Let θ < θ∗, the parameter θ∗ to be specified later, such that the linear contraction of
the total error holds for µ = 1 − θ2

θ2
∗
> 0. The Efficiency Estimate (3.39) together with the

assumption (6.94)

(1− µ)CLη
2
P (U,Ω) ≤ (1− µ)ρ2

P (u, U, f),

= ρ2
P (u, U, f)− ρ2

∗(u∗, U∗, f),

= |||u− U |||2 − |||u− U∗|||2 + osc2
P (f,Ω)− osc2

P∗(f,Ω).

(3.114)

In view of Galerkin pythagorus gives |||u − U |||2 − |||u − U∗|||2 = |||U − U∗|||2. RP→P∗ ⊂ P so
osc2

P (f,Ω)−osc2
P∗(f,Ω) ≤ osc2

P (f, ωRP→P∗ ). Estimator asymptotic dominance over oscillation
osc2

P (U, τ) ≤ η2
P (U, τ) and Discrete Upper Bound (3.62)

(1− µ)CLη
2
P (U, P ) ≤ (1 + CdU)η2

P (U, ωRP→P∗ ). (3.115)

By definition θ2 = (1− µ)θ2
∗ < θ2

∗ we arrive at θ2η2
P (U,Ω) ≤ η2

P (U, ωRP→P∗ ) for θ2 < CL
1+CdU

=:

θ2
∗.
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Lemma 3.20 (Cardinality of Marked Cells). Let {(P`,X`, U`)}`≥0 be sequence generated
by AFEM (P0, f ; ε, θ) for admissible P0 and the pair u ∈ As for some s > 0 then

#M` �
(

1− θ2

θ2
∗

)− 1
2s

|u|−
1
s

As

{
|||u− U`|||2 + osc2

`(f, P`)

}− 1
2s

. (3.116)

Proof. Assume that the marking parameter satisfies the hypothesis of Theorem 6.13 and
suppose that u ∈ As for some s > 0. Set µ = 1 − θ2

θ2
∗

and let ε = µρ`(u, U`, f)2. Then by
definition of As there exists an admissible partition Pε and a spline Vε ∈ Xε for which

ρ2
ε(u, Vε, f) ≤ ε2 with #Pε −#P0 � |u|1/sAs ε

−1/s. (3.117)

Let P∗ = Pε ⊕ P` be the overlay partition of Pε and P`, ` ≥ 0, and let U∗ ∈ X∗ be the
corresponding spline solution. In view of Optimality of Total Error in Lemma 3.18 and the
fact P∗ ≥ Pε makes X∗ ⊇ Xε and

ρ2
∗(u, U∗, f) ≤ ρ2

ε(u, Vε, f) ≤ ε2 = µρ2
`(u, U`, f). (3.118)

From Optimal Marking of Lemma 6.13 we have RP`→P∗ ⊂ P` satisfying Dörfler property for
θ < θ∗.

#M` ≤ #RP`→P∗ ≤ #P∗ −#P`. (3.119)

In view of overlay property #P∗ ≤ Pε + #P`−#P0 in (2.75) and definition of ε we arrive at

#M` ≤ #Pε −#P0 � µ−1/2s|u|1/sAs ρ`(u, U`, f)−1/s. (3.120)

Theorem 3.21 (Quasi-optimality of conforming AFEM). If u ∈ As and P0 is admiss-
ible, then the call AFEM [P0, f, ε, θ] generates a sequence {(P`,X`, U`)}`≥0 of strictly ad-
missible partitions P`, conforming finite-element spline spaces X` and discrete solutions U`
satisfying

ρ`(u, U`, f) � Φ(, θ)|(u, f)|As(#P −#P0)−s, (3.121)

with Φ(, θ) = (1− θ2/θ2
∗)
−1/2

Proof. Let θ < θ∗ be given and assume that u ∈ As(ρ). We will show that the adaptive
procedure AFEM will produce a sequence {(P`,X`, U`)}`≥0 such that ρ` � (#P` −#P0)−s.

Let A(θ, s) = (1− θ2/θ2
∗)
−1/2s|u|−1/s

As Cardinality of Marked Cells (6.109) and (2.107) yields

#P` −#P0 � A(θ, s)
`−1∑
j=0

ρ
−1/s
j . (3.122)
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In view of Convergence Theorem 3.13, we have for a factor Cest > 0 and a contractive factor
α ∈ (0, 1)

e2
` + Cestη

2
` ≤ α2(`−j) (e2

j + Cestη
2
j

)
, j = 1, .., `− 1, (3.123)

holding for any iteration ` ≥ 0. At each intermediate step, the Efficiency Estimate (3.39)
makes e2

j + γη2
j ≤ (1 + Cest/Ceff) ρ2

j so we may write

ρ
− 1
s

j ≤ α
`−j
s

(
1 + Cest

Ceff

) 1
2s

(e2
` + Cestη

2
` )
− 1

2s . (3.124)

We sum (3.124) over j = 0 : ` − 1 and we recover the total-error from the quasi-error using
estimator domination over oscillation,

`−1∑
j=0

ρ
− 1
s

j ≤
`−1∑
j=0

α
`−j
s

(
1 + Cest

CL

) 1
2s

(e2
` + Cestosc2

`)
− 1

2s . (3.125)

We obtain

#P` −#P0 �M(θ, s)
(
e2
` + Cestosc2

`

)− 1
2s

∑̀
j=1

α
j
s , (3.126)

where M(θ, s) = A(θ, s)
(

1 + Cest

CL

) 1
2s

and
∑`

j=1 α
j
s ≤ α1/s(1 − α1/s)−1 =: S(θ, s) for any

` ≥ 1.
#P` −#P0 � S(θ, s)M(θ, s)ρ`(u, U`, f)−

1
s . (3.127)

Finally, we have the following characterizations:

Theorem 3.22. We have Bs−2
p,p (Ω) ↪→ Os/2 whenever s ≥ s

p
+ 1 and p ∈ (0,∞).

Proof. The proof mirrors the argument used to prove Theorem 2.46 so we just highlight
the main steps. Let π ∈ Pr−4(ωτ ), and choose p ∈ (0,∞) to be such that the embedding
Bs−2
p,p (Ω) ↪→ L2(Ω) is continuous. We will have by (2.29),

inf
π∈Pr−4(τ)

‖f − π‖L2(τ) � h
s−1− 2

p
τ |f |Bs−2

p,p (τ). (3.128)

Moreover,

osc2
P (f) =

∑
τ∈P

h4
τ‖f − Πr−4

P f‖2
L2(τ) �

∑
τ∈P

h
2(s+1− 2

p
)

τ |f |2
Bs−2
p,p (τ)

. (3.130)
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Now let e(τ, P ) = |τ |δ|f |Bs
p,p(τ) with δ = s+1

2
− 1

p
and apply Lemma 2.45 with ω = τ to obtain

an admissible mesh P ∈P such that

osc2
P (f) � #Pε2 with #P −#P0 � |v|p/(1+δp)

Bs−2
p,p (Ω)

ε−p/(1+δp). (3.131)

Using the definition of δ, we determine that p/(1 + δp) = 2/(s + 1). Let N = #P and let
ε = N−(s+1)/2|v|Bs−2

p,p (Ω) from which we conclude

oscP (f) � |f |Bs−2
p,p (Ω)N

−s/2 and #P −#P0 � N. (3.132)

Figure 3.2 illustrates the results of Theorem 3.22 in terms of a DeVore diagram.

α

1
p

L2

H−2

1
2

Bα
p,p

Figure 3.2: If Bα
p,p is positioned on or above the Sobolev embedding line emanating from L2,

depicted by the thick line, the embedding Bα
p,p ↪→ A s holds with s = α

2 + 1 and the length of the red
arrow is equal to s. It is worth noting that even though we look at Lu as a member of L2, we are
in fact measuring the approximation of Lu in H−2. In particular, the height from the demarcated
horizontal line until the s = 0 axis manifests in the h2

P factor in osc; see also Remark 3.15.

The previous two results in combination with Lemma 3.17 and Theorem 2.46 yields a one-
sided characterization of the AFEM approximation class As in terms of smoothness spaces:

Corollary 3.23 (One-sided characterization for As). Let u be the weak solution. If u ∈
Bs+2
p,p;r+1(Ω) ∩ H2

0 (Ω) with 2
p
− 1 ≤ s < r − 2 + max{1, 1

p
}, for some p ∈ (0,∞) and Lu ∈

Bs−2
q,q (Ω) ∩ L2(Ω) with s ≥ 2

q
+ 1 for some q ∈ (0,∞), then we have u ∈ As/2.



Chapter 4
Adaptivity of a B-spline based finite-element
method for modeling wind-driven ocean
circulation

4.1 Introduction

Recently, (Kim et al. [36]) introduced Nitsche-type variational formulations for the stream-
function formulation of the stationary QGE, the Stommel model, and the Stommel–Munk
model. These Nitsche-type formulations can be readily applied for non-interpolatory basis
functions such as B-splines and embedded geometries (Jiang and Kim [39]), where the domain
can be implicitly defined via a level-set function. A distinguishing feature of these formu-
lations is the employment of Nitsche’s method (Nitsche [33]) to weakly impose the Drichlet
boundary conditions and stabilization. Nitsche’s method has been successfully applied to im-
pose boundary conditions for the second- and fourth-order partial differential equations (Em-
bar et al. [69], Kim et al. [70] and Jiang et al. [71]). Moreover, Nitsche-type non-conforming
formulations for fourth-order partial differential equations using C0-elements have been de-
veloped for a second-gradient theory (Kim et al. [40–42] and Kim and Dolbow [43]) and the
stationary QGE (Kim et al. [44]).

Following the previous work of Kim et al. [36], Kim with his colleagues performed a priori
error estimate for the Nitsche-type formulation of the Stommel–Munk model (see Rotunda et
al. [45]). In this paper, we perform a posteriori error analysis for mesh-refinement in Section
3.3 and verify the analysis via numerical tests. This analysis gives rise to the a posterior error
indicators (4.20) for the efficient mesh-refinement in an automatic manner. The capability
of the a posterior error indicator is then verified via several benchmark problems using cubic

69
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B-splines. In particular, our approach is a hierarchical B-spline refinement technique (Jiang
and Dolbow [46], Vuong et al. [73], Schillinger et al. [74] and Bornemann et al. [75]) relying
on the a posteriori error indicator to create meshes well adapted to the solution.

The remainder of this Chapter is organized as follows. In Section 4.2, we present the
Stommel–Munk model and recall the Nitsche-type variational formulation and its discret-
ization for the Stommel–Munk model from Kim et al. [36]. Following this, in Section 4.3,
the a posteriori error estimation is performed to derive the error indicators. Finally, in
Section 4.4, numerical studies with two benchmark problems in rectangular and L-shape
domains are provided to show the performance of the analysis in Section 4.3.

4.2 The Stommel–Munk model

We consider an open set Ω ⊂ R2 with polygonal boundary Γ. The Stommel–Munk model (Val-
lis [66]) is given

−εs∆u+ εm∆2u− ∂u

∂x
= f in Ω,

u = 0, ∇u · n = 0 on Γ.
(4.2)

For the wind-driven ocean circulation in an enclosed midlatitude basin, u and f can be the
velocity streamfunction and the wind forcing, respectively. The parameters εs and εm are
the nondimensional Stommel and Munk numbers, respectively, which were already defined
in (1.2).

We reiterate the Nitsche-type weak formulation for the Stommel–Munk model introduced
by Kim et al. [36] given by (1.9). For a spline finite element space XP ⊂ H2(Ω) such that

XP ⊂ PrP (Ω) ∩ C2(Ω), (r ≥ 3), (4.3)

the discrete problem reads:

Find U ∈ XP such that aP (U, V ) + bP (U, V ) = `f (V ) for all V ∈ XP , (4.4)

where aP is as in (1.8) with α = εm,

aP (U, V ) = εm

∫
Ω

∆U∆V + εm

∫
Γ

(
∂∆U
∂n

V + U ∂∆V
∂n

)
− εm

∫
Γ

(
∆U ∂V

∂n
+ ∂U

∂n
∆U

)
+ γ1

∫
Γ

h−3
P UV + γ2

∫
Γ

h−1
P

∂U
∂n

∂V
∂n
,

(4.6)
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and lower-order form b is non-symmetric, bilinear and is given by

b(U, V ) = εs

∫
Ω

∇U · ∇V −
∫

Ω

∂U
∂x
V − εs

∫
Γ

(
∂U
∂n
V + U ∂V

∂n

)
. (4.7)

We emphasis that the addition of the boundary terms
∫

Γ

(
∂U
∂n
V + U ∂V

∂n

)
arising from the

Laplacian can be neglected. This is because we have observed that the values of U and
∂U
∂n

along the boundary decay very rapidly and therefore their contribution to the numerical
linear system is insignificant. We leave them here so that our analysis remains consistent
with the rest of the PhD. For brevity, we take BP : XP × XP → R is given by

BP (U, V ) = aP (U, V ) + b(U ;V ). (4.8)

In the error analysis, we use the following mesh-dependent norms:

|||u|||2P = ‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω) + γ1‖u‖2
3/2,P + γ2

∥∥ ∂u
∂n

∥∥2

1/2,P
, (4.9)

where

‖u‖2
s,P =

∑
σ∈GP

h−2s
σ ‖u‖2

L2(σ), (4.10)

the GP denotes all mesh edges along Γ and the parameters γ1 and γ2 are chosen such that
the bilinear form BP is coercive; see Remark 4.3 below. Moreover, the norm is a full norm
equivalent to the standard H2(Ω). We justify this fact in Remark 5.2 when treating the
nonlinear model in the coming chapter.

The following corollary is a consequence of Lemma 2.42 and it is instrumental to the
analyses of this Chapter.

Corollary 4.1. Let P and P∗ be admissible partitions with P∗ ≥ P , let V ∈ XP and let
V∗ ∈ XP∗. Then,∑

τ∈P∗

h−4
τ ‖V∗ − IPV∗‖2

L2(τ) +
∑

σ∈IP∗∪GP∗

h−3
σ ‖V∗ − IPV∗‖2

L2(σ)

+
∑

σ∈IP∗∪GP∗

h−1
σ

∥∥∥ ∂
∂nσ

(V∗ − IPV∗)
∥∥∥2

L2(σ)
≤ cshape|V∗|2H2(Ω),

(4.12)

and ∑
σ∈GP∗

(
hσ‖∆(V∗ − IPV∗)‖2

L2(σ) + h3
σ

∥∥∥ ∂∆
∂nσ

(V∗ − IPV∗)
∥∥∥2

L2(σ)

)
≤ cshape|V∗|2H2(Ω). (4.13)
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Proof. Since XP∗ ⊂ H2(Ω), applying Lemma 2.42 gives

h−4
τ ‖V∗ − IPV∗‖2

L2(τ) +
∑
σ⊂∂τ

h−3
σ ‖V∗ − IPV∗‖2

L2(σ)

+
∑
σ⊂∂τ

h−1
σ

∥∥∥ ∂
∂nσ

(V∗ − IPV∗)
∥∥∥2

L2(σ)
≤ cshape|V∗|2H2(ωτ ),

(4.15)

where an edge σ ⊂ ∂τ has a support extension ωσ ⊂ ωτ . By summing over τ ∈ P∗ and using
the shape regularity we obtain the estimate (4.12).

For a boundary edge σ ∈ GP∗ , (V∗ − IPV∗)|ωσ belongs to XP . Hence, in view of the
inverse estimates of Lemma 2.36, we can obtain inequalities ‖∆(V∗− IPV∗)‖L2(σ) � h−2

σ ‖V∗−
IPV∗‖L2(σ) and ‖ ∂∆

∂nσ
(V∗ − IPV∗)‖L2(σ) � h−3

σ ‖V∗ − IPV∗‖L2(σ). Using Lemma 2.42, we obtain

‖V∗ − IPV∗‖L2(σ) � h
3/2
σ |V |H2(ωσ).

hσ‖∆(V∗ − IPV∗)‖2
L2(σ) + h3

σ

∥∥∥ ∂∆
∂nσ

(V∗ − IPV∗)
∥∥∥2

L2(σ)
≤ cshape|V∗|2H2(ωσ). (4.16)

We arrive the estimate (4.13) by summing over the boundary edges and invoking shape-
regularity.

4.3 A posteriori error analysis
In this section, we derive an a posteriori error estimator and prove that the estimator is
reliable with respect to the mesh-dependent norm. We first begin by deriving an upper bound
on the error measured in ||| · |||P . Then, we demonstrate that the stabilization terms can be
dominated by the interior error indicators for sufficiently large stabilization parameters.

Our study is based on an analysis introduced in (Juntunen and Stenberg [72]) for the
Poisson problem. Controlling the boundary terms follows techniques inspired by the work
(Bonito et al. [63]) in the treatment of discontinuous Galerkin methods.

First we recall some results that are of use to us. The bilinear form is automatically
bounded since it is defined on a finite-dimensional space. Although the bilinear form BP

is initially defined on XP × XP , it can be extended to Hs(Ω) × XP with s > 7/2 using the
definition and it is bounded: For a constant Ccont > 0,

|BP (u, χ)| ≤ Ccont|||u|||`‖χ‖` for all (u, χ) ∈ Hs(Ω)× XP , s >
7
2
. (4.17)

Theorem 4.2 (Coercivity of BP ). There exists stabilization parameters γ1 > 0 and γ2 >
0 large enough such

BP (V, V ) ≥ Ccoer|||V |||2P for every V ∈ XP (4.18)

for a constant Ccoer > 0 that depends only on the stabilization parameters γ1 and γ2.
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Remark 4.3. The choice for the γs will depend on the non-dimensional constants εs and εm,
as well as, the proportionality constants of Lemma 2.36. See (Kim et al. [36]) for a detailed
discussion. We note that we develop a detailed coercivity argument in the next chapter when
treating the nonlinear SQGE.

Lemma 4.4 (Consistency). Let u be a smooth solution to (4.2). Then,

BP (u, V ) = `f (V ) for every V ∈ XP . (4.19)

Proof. Detail proof is in (Kim et al. [36]). We carry our own partial-consistency proof for
the nonlinear SQGE in the next chapter.

Theorem 4.5. For all cells τ ∈ P and interior edges σ ∈ I`, let

Rτ =
(
f + εs∆U − εm∆2U + ∂U

∂x

)∣∣
τ

and Jσ =
∣∣∣[∂∆U
∂nσ

]∣∣∣
σ
. (4.20)

If

η2
P (Ω) =

∑
τ∈P

h4
τ‖Rτ‖2

L2(τ) +
∑
σ∈IP

h3
σ‖Jσ‖2

L2(σ), (4.22)

then
|||u− U |||P � Crel

(
ηP (Ω) + γ1‖U‖3/2,P + γ2

∥∥∂U
∂n

∥∥
1/2,P

)
, (4.23)

for a constant Crel > 0.

Remark 4.6. It is worth nothing that the power of γ1 and γ2 is half an order higher than
defined in (4.9). This will remain true for the nonlinear SQGE in the following chapter. It will
be clear from Corollary 4.9 below that the estimate (4.23) is not sharp. In the convergence
analysis of Chapter 6 we will need a sharper estimate. For practical purposes the sub-optimal
estimation is not of much relevance.

Proof. The so-called saturation assumption claims that there exists a constant 0 < ρ < 1
such that if P∗ = REFINE(P,M ) we have

|||u− U∗|||P∗ ≤ ρ|||u− U |||P . (4.24)

By estimating

|||U − U∗|||P∗ ≥ |||U − u|||P∗ − |||u− U∗|||P∗ ≥ |||U − u|||P − ρ|||u− U |||P , (4.25)
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we may write

|||u− U |||P ≤
1

1− ρ
|||U∗ − U |||P∗ . (4.26)

Our proof boils down to estimating the discrete error |||U∗ − U |||P∗ . It suffices to bound the
error |||U − U∗|||P∗ using coercivity of BP∗ , i.e.,

Ccoer|||U − U∗|||2P∗ ≤ BP∗(U − U∗, U − U∗). (4.27)

If we set V∗ = U−U∗
|||U−U∗|||P∗

, then |||V∗|||P∗ = 1 and

Ccoer|||U − U∗|||P∗ ≤ BP∗(U − U∗, V∗). (4.28)

Introducing −IPV∗ + IPV∗ into BP∗ yields

BP∗(U − U∗, V∗) = BP∗(U − U∗, V∗ − IPV∗) + BP∗(U − U∗, IPV∗). (4.29)

For convenience, we denote the first term as W1 and the second term as W2 of (4.29), i.e.,

W1 = BP∗(U − U∗, V∗ − IPV∗), (4.30)

W2 = BP∗(U − U∗, IPV∗). (4.31)

We first start by estimating W1. From (4.4) the equality BP∗(U∗, V∗− IPV∗) = `f (V∗− IPV∗)
holds. As a result, (4.30) is written as

W1 = BP∗(U, V∗ − IPV∗)− `f (V∗ − IPV∗). (4.32)

By denoting E∗ = V∗ − IPV∗, W1 can be rewritten as

W1 = −
∫

Ω

fE∗ − εs∇U · ∇E∗ − εm∆U∆E∗ + ∂U
∂x
E∗−εs

∫
Γ

(
∂U
∂n
E∗ + U ∂E∗

∂n

)
+εm

∫
Γ

(
∂∆U
∂n

E∗ + U ∂∆E∗
∂n

)
−εm

∫
Γ

(
∆U ∂E∗

∂n
+ ∂U

∂n
∆E∗

)
+
∑
σ∈GP∗

(
γ1h

−3
σ

∫
σ

UE∗ + γ2h
−1
σ

∫
σ

∂U
∂n

∂E∗
∂n

)
.

(4.34)

If we decompose
∫

Ω
in terms of the partition P∗,∫

Ω

εs∇U · ∇E∗ + εm∆U∆E∗ − ∂U
∂x
E∗ =

∑
τ∈P∗

∫
τ

εs∇U · ∇E∗ + εm∆U∆E∗ − ∂U
∂x
E∗. (4.35)
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For τ ∈ P∗, applying Green identity yields∫
τ

εs∇U · ∇E∗ + εm∆U∆E∗ =

∫
τ

(
−εs∆U + εm∆2U

)
E∗ + εs

∮
∂τ

(∇U · nτ )E∗

− εm

∮
∂τ

(∇∆U · nτ )E∗ + εm

∮
∂τ

∆U∇E∗ · nτ
(4.37)

where nτ denotes a unit outward normal vector on ∂τ . We observe that∮
∂τ

χ|∂τ =
∑
σ∈Iτ

∫
σ

(χ|τ )|σ =⇒
∑
τ∈P∗

∮
∂τ

χ|∂τ =
∑
σ∈IP∗

∮
χ|σ (4.38)

where a set of interior edges Iτ = {σ ∈ IP : |σ ∩ τ̄ | > 0} and ∂τ = ∪{σ : σ ∈ Iτ}. If σ ∈ IP∗
shares two cells τ and Q, χ|σ = (χ|τ )|σ if σ ⊂ ∂τ and χ|σ = (χ|Q)|σ if σ ⊂ ∂Q. Then,∫

σ

χ =

∫
σ

(χ|τ )|σ + (χ|Q)|σ. (4.39)

Using −nQ = nτ =: nσ and (4.39), we have∫
σ

[∇(U |τ ) · nτ ]|σE∗ + [∇(U |Q) · nQ]|σE∗ =

∫
σ

[∇(U |τ − U |Q) · nτ ]|σE∗. (4.40)

Since |[∇U · nσ]|σ = [∇(U |τ − U |Q) · nτ ]|σ, we have

∑
τ∈P∗

∮
∂τ

(∇U · nτ )E∗ =
∑
σ∈IP∗

∫
|[∇U · nσ]|σ E∗ = 0 (4.41)

using the second equality in (4.38). The jump term |[∇U · nσ]|σ = 0 because U ∈ C2(Ω).
We apply (4.39) to

∮
∂τ

∆U∇E∗ · nτ to conclude that the jump terms |[∆U ]|σ are also zero.
Therefore, the last terms of the first and second lines on the right of (4.37) vanish. On the
other hand, the first term in the second line of (4.37) survives due to the presence of jumps
in their third derivatives:

∑
τ∈P∗

∮
∂τ

(∇∆U · nτ )E∗ =
∑
σ∈IP∗

∫
σ

|[∇∆U · nσ]|σ E∗. (4.42)
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Applying above results and (4.37) into (4.34) yields

W1 = −
∑
τ∈P∗

∫
τ

(f − LU)E∗−εs

∫
Γ

U∇E∗ · n

+εm

∫
Γ

U∇∆E∗ · n+
∑
σ∈IP∗

∫
σ

εm |[∇∆U · nσ]|σ E∗−εm

∫
Γ

(∇U · n)∆E∗

+γ1

∑
σ∈GP∗

h−3
σ

∫
σ

UE∗+γ2

∑
σ∈GP∗

∫
σ

h−1
σ (∇U · nσ)(∇E∗ · nσ).

(4.44)

Let
W1 = R1 +R2 +R3, (4.45)

where

R1 = −
∑
τ∈P∗

∫
τ

RτE∗ + εm

∑
σ∈IP∗

∫
σ

JσE∗,

R2 = −εs

∫
Γ

U ∂E∗
∂n
− εm

∫
Γ

∂U
∂n

∆E∗ + εm

∑
σ∈IP∗

∫
σ

U ∂∆E∗
∂n

,

R3 = γ1

∑
σ∈GP∗

h−3
σ

∫
σ

UE∗ + γ2

∑
σ∈GP∗

h−1
σ

∫
σ

∂U
∂nσ

∂E∗
∂nσ

.

To estimate R1, we have

R1 = −
∑
τ∈P∗

∫
τ

RτE∗ + εm

∑
σ∈IP∗

∫
σ

JσE∗,

≤
∑
τ∈P∗

‖Rτ‖L2(τ) ‖E∗‖L2(τ) + εm

∑
σ∈IP∗

‖Jσ‖L2(σ) ‖E∗‖L2(σ),

≤
(∑
τ∈P∗

h4
τ ‖Rτ‖2

L2(τ)

)1/2(∑
τ∈P∗

h−4
τ ‖E∗‖2

L2(τ)

)1/2

,

+ εm

( ∑
σ∈IP∗

h3
σ ‖Jσ‖

2
L2(σ)

)1/2( ∑
σ∈IP∗

h−3
σ ‖E∗‖2

L2(σ)

)1/2

,

(4.47)

The approximation estimate (4.12) together with the fact |||V∗|||2P∗ = 1 can be rewritten as∑
τ∈P∗

h−4
τ ‖V∗ − IPV∗‖2

L2(τ) +
∑
σ∈IP∗

h−3
σ ‖V∗ − IPV∗‖2

L2(σ) � cshape. (4.48)
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Applying above inequality to (4.47) completes the estimate of R1 by

R1 � cshape


(∑
τ∈P∗

h4
τ ‖Rτ‖2

L2(τ)

)1/2

+

( ∑
σ∈IP∗

h3
σ ‖Jσ‖

2
L2(σ)

)1/2

 . (4.50)

The simple fact that a+ b ≤
√

2(a2 + b2)1/2 holds for all positive real numbers will be useful
from now and onward to show that(∑

τ∈P∗

h4
τ ‖Rτ‖2

L2(τ)

)1/2

+

( ∑
σ∈IP∗

h3
σ ‖Jσ‖

2
L2(σ)

)1/2

� ηP∗(Ω). (4.51)

Similarly, we estimate R2

R2 ≤ εs

( ∑
σ∈GP∗

hσ‖U‖2
L2(σ)

)1/2( ∑
σ∈GP∗

h−1
σ

∥∥∥ ∂
∂nσ

(V∗ − IPV∗)
∥∥∥2

L2(σ)

)1/2

+ εm

( ∑
σ∈GP∗

h−3
σ ‖U‖2

L2(σ)

)1/2( ∑
σ∈GP∗

h3
σ

∥∥∥ ∂∆
∂nσ

(V∗ − IPV∗)
∥∥∥2

L2(σ)

)1/2

+ εm

( ∑
σ∈GP∗

h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)1/2( ∑
σ∈GP∗

hσ‖∆(V∗ − IPV∗)‖2
L2(σ)

)1/2

.

(4.53)

The final step is to apply Corollary 4.1 on the projection errors. Finally, assume that hσ ≤
h−3
σ , the estimate for R2 is therefore

R2 ≤ cshape

(
max{εs, εm}‖U‖3/2,P∗ + εm

∥∥∥ ∂U
∂nσ

∥∥∥
1/2,P∗

)
. (4.54)

In a similar fashion, we can obtain the estimate of R3. Applying Cauchy-Schwarz’s inequality
to R3 yields

R3 ≤ γ1

∑
σ∈GP∗

h−3/2
σ ‖U‖L2(σ)h

−3/2
σ ‖E∗‖L2(σ)

+ γ2

∑
σ∈GP∗

h−1/2
σ

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

h−1/2
σ

∥∥∥ ∂E∗∂nσ

∥∥∥
L2(σ)

≤ γ1‖U‖3/2,P∗‖E∗‖3/2,P∗ + γ2

∥∥∂U
∂n

∥∥
1/2,P∗

∥∥∂E∗
∂n

∥∥
1/2,P∗

.

(4.56)

In view of estimates (4.12) and (4.13) of Corollary 4.1 we write,

R3 ≤ cshape

(
γ1‖U‖3/2,P∗ + γ2

∥∥∂U
∂n

∥∥
1/2,P∗

)
. (4.57)
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Upon applying (4.50), (4.54), and (4.57) to W1, we obtain the estimate for W1 by

W1 = R1 +R2 +R3 � cshapeηP∗(Ω) + cshape (max{εs, εm}+ γ1) ‖U‖3/2,P∗

+ cshape (εm + γ2)
∥∥∂U
∂n

∥∥
1/2,P∗

.
(4.59)

To estimate W2 in (4.29), we use BP∗(U∗, IPV∗) = `f (IPV∗) due to the nesting XP ⊂ XP∗ and
BP (U, IPV∗)− `f (IPV∗) = 0 to obtain

W2 = BP∗(U, IPV∗)− f(IPV∗) + BP (U, IPV∗)− `f (IPV∗)
= BP∗(U, IPV∗)−BP (U, IPV∗).

(4.61)

Above result indicates that the only terms involving in W2 are those without edge diameter
factors because both U and IPV∗ are members of XP . To avoid confusion, we denote edges
from GP∗ by σ and edges from Γ` by E. Then,

W2 =
∑
σ∈GP∗

(
γ1h

−3
σ

∫
σ

UIPV∗ + γ2h
−1
σ

∫
σ

∂U
∂nσ

∂(IPV∗)
∂nσ

)
−
∑
E∈GP

(
γ1h

−3
E

∫
E

UIPV∗ + γ2h
−1
E

∫
E

∂U
∂nσ

∂(IPV∗)
∂nσ

)
.

(4.63)

Since hE = 2hσ for σ ⊂ E,

W2 =
∑
σ∈GP∗

{
γ1

(
1− 1

8

)
h−3
σ

∫
σ

UIPV∗ + γ2

(
1− 1

2

)
h−1
σ

∫
σ

∂U
∂nσ

∂(IPV∗)
∂nσ

}
. (4.64)

Applying stability of the projector IP∑
σ∈GP∗

{
h−3
σ ‖IPV∗‖2

L2(σ) + h−1
σ

∥∥∥∂(IPV∗)
∂nσ

∥∥∥2

L2(σ)

}
≤ cshape, (4.65)

completes the estimate of W2 as

W2 ≤ cshape

(
γ1‖U‖3/2,P∗ + γ2

∥∥∂U
∂n

∥∥
1/2,P∗

)
. (4.66)

Summing up (4.59) and (4.66), we obtain the upper bound

|||U∗ − U |||P∗ �ηP∗(Ω) + γ1‖U‖3/2,P∗ + γ2

∥∥∂U
∂n

∥∥
1/2,P∗

, (4.68)

where the implicit constant � depends on cshape, εs and εm. The right-hand side of the
expression is with respect to P∗, but ηP (Ω) ≤ ηP∗(Ω) whenever P∗ ≥ P , moreover, since P∗
is just one iteration after P , ‖ · ‖s,P∗ � ‖ · ‖s,P . Substituting (4.68) into (4.26) completes the
proof of (4.23). Substituting (4.68) into (4.26) completes the proof of (4.23).
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The remainder of this section is dedicated to control the boundary terms (i.e., last two
terms) in (4.68). We prove that, for suitably large stabilization parameters γ1 and γ2, the
error |||u− U |||P is bounded by the error estimator ηP (Ω) only.

Lemma 4.7. Let V ∈ XP . There are finite-element functions V0 ∈ H2
0 (Ω)∩XP and V⊥ ∈ XP

such that the decomposition V = V0 + V⊥ holds with

|V − V0|2Hs(ωσ) ≤ Cbdry

(
h−2s+1
σ ‖V⊥‖2

L2(σ) + h−2s+3
σ

∥∥∥ ∂V⊥∂nσ

∥∥∥2

L2(σ)

)
∀σ ∈ GP , (4.70)

with a constant Cbdry > 0 depending only on cshape.

Proof. Let XP = span(Ni)i∈J and let X0 = XP ∩H2
0 (Ω) with {Ni : i ∈ J} being the B-spline

basis functions for XP . Introduce the indexing set Jint = {j ∈ J : supp (Ni) ⊂ Ω} and
Jext = J`\Jint. Let σ be an edge in GP . We claim that the semi-norm

| · |2σ = ‖ · ‖2
L2(σ) +

∥∥∥ ∂
∂nσ
·
∥∥∥2

L2(σ)
(4.71)

defines a norm on X⊥P = span({Ni : i ∈ Jext such that supp Ni ⊂ ωσ}). Indeed, | · |σ
trivially satisfies the triangular inequality and norm homogeneity property. We show that
it separates points in X⊥P . Let V ∈ X⊥P . If |V |σ = 0, the polynomial V |σ is identically zero.
Consequently, V is identically zero on ωσ because every basis function Ni > 0 on ωσ for
i ∈ Jext ∩ {j : supp Nj ⊂ ωσ}.

For V ∈ XP let V0 =
∑

i∈Jint
λiNi and let V⊥ =

∑
i∈Jext

λiNi. Then, V0 ∈ H2
0 (Ω) and

V = V0+V⊥. More importantly, V −V0 ∈ X⊥P . Scale the subdomain ωσ to ω̂ with diam(ω̂) = 1
via an affine map A : ω̂ 3 x̂ 7→ b+ T x̂ ∈ ωσ, where b ∈ R2 and T is an invertible matrix, and
denote the scaling of S by σ̂ = A(σ). By the equivalence of norms in finite-dimensions (see
Lemma 2.36), we have

|V̂ |L2(σ̂) � |V̂⊥|Hs(ω̂) � |V̂ |L2(σ̂) ∀V̂⊥ ∈ X⊥P , (4.72)

where � depends only on the polynomial degree. We scale back to ωσ to obtain

|T−1|−s|det(T )|−1/2|V⊥|Hs(ωσ) ≤ |V̂⊥|Hs(ω̂) (4.73)

and
|χ̂`|Ht(σ̂) ≤ |(T |σ)|t|det(T |σ)|−1/2|V |Ht(σ), (4.74)

with det(T ) = meas(ωσ)
meas(ω̂)

≤ Cshapeh
2
σ, |T−1|R2×2 ≤ diam(ω̂)

hσ
≤ h−1

σ , det(T |σ) = meas(σ)
meas(σ̂)

� hσ and

|(T |σ)|R1×1 ≤ hσ
ρ̂
� hσ. We then arrive at

C−1
shapeh

2s−2
σ |V⊥|2Hs(ωσ) ≤ h−1

σ ‖V⊥‖2
L2(σ) + hσ

∥∥∥ ∂V⊥∂nσ

∥∥∥2

L2(σ)
. (4.75)
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Theorem 4.8. We have

(γ1 − Cres)‖U‖2
3/2,P + (γ2 − Cres)

∥∥∂U
∂n

∥∥2

1/2,P
� max{1, εs, εm}

Ccoer

η2
P (Ω), (4.76)

with constant Cres = 3 max{1,εs,εm}
2Ccoer

Cbdry.

Proof. Let χ ∈ X0

γ1‖U‖2
3/2,P + γ2

∥∥∂U
∂n

∥∥2

1/2,P
≤ C−1

coer BP (U − V0, U − V0)

= C−1
coer {BP (U,U − V0)−BP (V0, U − V0)}

= C−1
coer {`f (U − V0)−BP (V0, U − V0)} .

(4.78)

Let V0 = U + (V0 − U) and express

BP (V0, U − V0) = BP (U,U − V0)−BP (U − V0, U − V0). (4.79)

Using above equality, we obtain

`f (U − V0)−BP (V0, U − V0) = `f (U − V0)−BP (U,U − V0) + BP (U − V0, U − V0),

=
∑
τ∈P

∫
τ

Rτ (U − V0) + εm

∑
σ∈I`

∫
σ

Jσ(U − V0)

− εs

∫
Γ

U ∂(U−V0)
∂n

− εm

∫
Γ

U ∂∆(U−V0)
∂n

+ εm

∫
Γ

∂U
∂n

∆(U − V0)

+
∑
σ∈GP

(
γ1h

−3
σ

∫
σ

U(U − V0) + γ2h
−1
σ

∫
σ

∂U
∂nσ

∂(U−V0)
∂nσ

)
+ BP (U − V0, U − V0).

(4.81)

Then, we have

`f (U − V0)−BP (V0, U − V0) = εs‖∇(U − V0)‖2
Ω + εm‖∆(U − V0)‖2

Ω

+
∑
τ∈P

∫
τ

Rτ (U − V0) + εm

∑
σ∈I`

∫
σ

Jσ(U − V0)

+ εs

∫
Γ

U ∂(U−V0)
∂n
−εm

∫
Γ

U ∂∆(U−V0)
∂n

+εm

∫
Γ

∂U
∂n

∆(U − V0).

(4.83)

We decompose U = U0 +U⊥ and let DΓ =
⋃
σ∈GP ωσ. Since the difference U−U0 is supported

only on DΓ, ‖∇(U −U0)‖L2(Ω) and ‖∆(U − u0)‖L2(Ω) reduce to ‖∇(U −U0)‖L2(DΓ). Invoking
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Lemma 4.7 on every σ ∈ Γ` results in

εs‖∇(U − U0)‖2
L2(Ω) + εm‖∆(U − u0)‖2

L2(Ω)

≤ max{εs, εm}Cbdry

(
‖U⊥‖2

3/2,P +
∥∥∂U⊥
∂n

∥∥2

1/2,P

)
.

In (4.83), by replacing V0 with U0 and substituting above inequality yield

`f (U − U0)−BP (U0, U − U0) ≤ εs‖∇(U − U0)‖2
L2(DΓ) + εm‖∆(U − U0)‖2

L2(DΓ)

+
∑

τ∈P∩DΓ

‖Rτ‖L2(τ)‖U⊥‖L2(τ) + εm

∑
σ∈I`∩DΓ

‖Jσ‖L2(σ)‖U⊥‖L2(σ)

+
∑
σ∈GP

(
εs‖U‖L2(σ)

∥∥∥∂U⊥∂nσ

∥∥∥
L2(σ)

+ εm‖U‖L2(σ)

∥∥∥∂∆U⊥
∂nσ

∥∥∥
L2(σ)

+ εm

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

‖∆U⊥‖σ
)

� max{εs, εm}Cbdry

∑
σ∈GP

(
h−3
σ ‖U⊥‖2

L2(σ) + h−1
σ

∥∥∥∂U⊥∂nσ

∥∥∥2

L2(σ)

)

+

( ∑
τ∈P∩DΓ

h4
K‖Rτ‖2

L2(τ)

)1/2( ∑
τ∈P∩DΓ

h−4
K ‖U⊥‖

2
L2(τ)

)1/2

+ εm

( ∑
σ∈I`∩DΓ

h3
σ‖Jσ‖2

L2(σ)

)1/2( ∑
σ∈I`∩DΓ

h−3
σ ‖U⊥‖2

L2(σ)

)1/2

+
∑
σ∈GP

(
εs‖U‖L2(σ)|U⊥|H1(σ) + εm‖U‖L2(σ)|U⊥|H3(σ)

+ εm

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

|U⊥|H2(σ)

)
.

(4.85)

In view of (4.72) in Lemma 4.7 and a scaling argument,

‖U⊥‖L2(σ) � h−1/2
σ

∑
K⊂ωσ∩DΓ

‖U⊥‖L2(τ), (4.86)

so we have ∑
σ∈I`∩DΓ

h−3
σ ‖U⊥‖2

L2(σ) �
∑

τ∈P∩DΓ

h−4
K ‖U⊥‖

2
L2(τ)

≤ Cbdry

(
‖U⊥‖2

3/2,P +
∥∥∂U⊥
∂n

∥∥2

1/2,P

)
,

(4.88)
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which makes( ∑
τ∈P∩DΓ

h4
K‖Rτ‖2

L2(τ)

)1/2( ∑
τ∈P∩DΓ

h−4
K ‖U⊥‖

2
L2(τ)

)1/2

+ εm

( ∑
σ∈I`∩DΓ

h3
σ‖Jσ‖2

L2(σ)

)1/2( ∑
σ∈I`∩DΓ

h−3
σ ‖U⊥‖2

L2(σ)

)1/2

,

�
√
CbdryηP (Ω)

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}1/2

.

(4.90)

Moreover, we also have |U⊥|Hk(σ) � h
3/2−k
σ |U⊥|H2(ωσ) thanks to (4.72). This makes∑

σ∈GP

(
εs‖U‖L2(σ)|U⊥|H1(σ) + εm‖U‖L2(σ)|U⊥|H3(σ) + εm

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

|U⊥|H2(σ)

)

≤ ‖U‖3/2,P

{
εs

( ∑
σ∈GP

h3
σ|U⊥|2H1(σ)

)1/2

+ εm

( ∑
σ∈GP

h3
σ|U⊥|2H3(σ)

)1/2
}

+ εm

∥∥∂U
∂n

∥∥
1/2,P

( ∑
σ∈GP

hσ|U⊥|2H2(σ)

)1/2

,

�
(
‖U‖3/2,P +

∥∥∂U
∂n

∥∥
1/2,P

)
|U⊥|H2(DΓ),

�
{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}1/2

|U⊥|H2(DΓ).

(4.92)

Then

`f (U − U0)−BP (U0, U − U0) � max{εs, εm}Cbdry

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}
+
√
CbdryηP (Ω)

{
‖U‖2

3/2,P + εm

∥∥∂U
∂n

∥∥2

1/2,P

}1/2

+
√
Cbdry

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}
,

�
√
CbdryηP (Ω)

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}1/2

+ Cbdry

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}
.

(4.94)

Writing

ηP (Ω)
{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}1/2

≤ 1

2
η2
P (Ω) +

1

2

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}
, (4.95)
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makes

γ1‖U‖2
3/2,P+γ2

∥∥∂U
∂n

∥∥2

1/2,P

≤ max{1, εs, εm}
Ccoer

(
3Cbdry

2

{
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

}
+ η2

P (Ω)

)
,

(4.97)

and we arrive at

(γ1 − Cres)‖U‖2
3/2,P + (γ2 − Cres)

∥∥∂U
∂n

∥∥2

1/2,P
≤ max{1, εs, εm}

Ccoer

η2
P (Ω), (4.98)

with residual controlling constant Cres = 3 max{1,εs,εm}
2Ccoer

Cbdry.

Corollary 4.9. For sufficiently large γ1 and γ2 the estimator (4.22) admits

|||u− U |||2P ≤ CRel max{γ1, γ2}η2
P (Ω), (4.99)

for a constant CRel > 0 that depends on cshape, εs, εm and Ccoer.

Proof. First pick γ1 and γ2 be large enough to satisfy the condition of Lemma 4.2 and
min{γ1 − Cres, γ2 − Cres} > 0. Then in view of Theorem 4.8 we may write

γ1‖U‖3/2,P + γ2

∥∥∂U
∂n

∥∥
1/2,P

≤ max{γ1, γ2}
√

2
(
‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P

)1/2

,

≤
√

2 max{1,εs,εm}
Ccoer

max{γ1,γ2}√
min{γ1−Cres,γ2−Cres}

ηP (Ω).

(4.101)

We estimate max{γ1,γ2}√
min{γ1−Cres,γ2−Cres}

. Without loss of generality, assume that γ2 = cγ1 with

0 < c < 1, then it follows that

γ1√
cγ1 − Cres

=
γ1√
cγ1

√
1

1− Cres

cγ2

�
√
γ1/c

√
1 +

Cres

cγ1

� √γ1.

The result is now immediate from Theorem 4.5.



84 THE STOMMEL-MUNK MODEL 4.4

4.4 Numerical study
To study the capability of the a posteriori error estimator (4.22), we perform numerical
studies on several benchmark problems in geophysical fluid dynamics. Specifically, we provide
convergence studies using adaptive refinement approach presented in Section 2.5. For this
purpose, we define errors ||e||L2 , ||e||H1 , and ||e||H2 in the L2-norm, the H1-semi norm, and
the H2-semi norm by

||e||L2 =
||u− U ||L2

||u||L2

, ||e||H1 =
|u− U |H1

|u|H1

, ||e||H2 =
|u− U |H2

|u|H2

, (4.102)

respectively, where U is the approximation of u. For adaptivity, we choose θ = 0.9 for the
Dörfler marking strategy and the maximum refinement levels to be 4. The choices of the
stabilization parameters are based on the analysis of Kim et al. [36].

4.4.1 Western boundary layer in a rectangular domain
We first begin by performing a convergence study on a rectangular domain for the test
problem with the closed-form solution

u(x, y) = [(1− x/3)(1− e−20x) sin(y)]2 in Ω = [0, 3]× [0, 1]. (4.103)

This problem has previously been used to test a finite-element algorithm for large-scale ocean
circulation problems (Foster et al. [37] and Cascón et al. [76]). Notice that the forcing term
f is chosen to match that given by the solution (4.103). We consider a rectangular ocean as
a computational domain, as shown in Figure 5.7. With the origin of a Cartesian coordinate
system at the southwest corner, the x- and y-axis point eastward and northward, respectively,
and the boundaries of the computational domain are the shores of the ocean.

In Figure 4.2, we display the convergence rates for the adaptive refinement along with
those for the uniform refinement. Notice that the optimal rates of convergence of a finite-
element discretization using cubic B-splines are respectively quartic, cubic, and quadratic in
the L2-, H1-, and H2-norms (Rotunda et al. [45]). With the uniform refinement, the rates of
convergence appeared in the figure are optimal, i.e., 2.07, 1.56, and 1.02 in the L2-, H1-, and
H2-norms, respectively, with respect to the mesh-size in a manner that is consistent with
(2.146). The results show that the rates of convergence significantly increase by adding the
first two levels of refinement although the rates gradually reduce to reach the optimal rates
by adding more refinement levels. This means that the proportionality constant of (2.146) is
larger in the case of uniform refinement than it is for the adaptive method. Figure 4.3 shows
the refinement levels for the simulation of this test problem. These refinements are achieved
using the a posteriori error indicator (4.22). In Figure 4.3, the numerical solution with
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the western boundary layer is displayed. Importantly, the mesh is refined near the western
boundary layer, indicating the accuracy and efficiency of the proposed error estimator.

In (4.23), the error is bounded by the error estimator ηP (Ω) and the boundary terms with
the stabilization parameters γ1 and γ2. Theorem 4.8 proved that two boundary terms can be
controlled by ηP (Ω). Hence, our study uses the a posterior error estimator (4.22) without the
boundary terms. In Figure 4.1, we investigate Theorem 4.8 by studying the influence of the
boundary terms on the rates of the convergence in all three error norms. The convergence
plots with the boundary terms are almost identical to those without the boundary terms.
Our numerical study shows that the boundary terms can be controlled by C‖ηP‖2 with the
choice of C = max(γ1, γ2).

103 104
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 4.1: Numerical investigation of Theorem 4.8: The convergence rates with and without
boundary terms.



86 THE STOMMEL-MUNK MODEL 4.4

103 104

er
ro
r

10-6

10-5

10-4

10-3

10-2

10-1

100

uniform refinement ||e||L2

uniform refinement ||e||H1

uniform refinement ||e||H2

local refinement ||e||L2

local refinement ||e||H1

local refinement ||e||H2

degrees of freedom

Figure 4.2: Convergence rates in the L2-norm, the H1-norm, and the H2-norm for the rectangular
geometry.

4.4.2 L-shape geometry
In this section, we further study the capability of the proposed error indicator (4.22) for the
test problem on a L-shape geometry which is more suitable for the test of adaptive refinement.
We use the forcing term f = sin(y) derived from the derivative of the wind stress taken
from Myers and Weaver [77]. For this test problem, an analytical solution is not available.
Therefore, we compute the solution on a sufficiently fine grid with 2,250,000 elements and use
it as a standard solution for convergence study. The fine grid has a sufficiently large number
of elements that the a posteriori error estimator decays with asymptotic regime rate.

Analogous to the previous example, we display the convergence rates for the adaptive
refinement along with those for the uniform refinement in Figure 4.4. With the uniform
refinement, our numerical study shows the significant reduction of convergence rates, i.e.,
0.7, 0.64 and 0.30 in the L2-norm, the H1-norm, and the H2-norm, respectively, with respect
to the number of cells in a manner that is consistent with (2.147). We attribute this to
the presence of the reentrant corner in the L-shape geometry. Interestingly, the use of the
adaptive refinement increases significantly the rates of convergence to 2.89, 2.75 and 1.30 in
the L2-norm, the H1-norm, and the H2-norm, respectively, with respect to the number of
cells in a manner that is consistent with (2.148). Moreover, the solution from the adaptive
refinement is much more accurate at lower resolution than that from the uniform refinement,
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(a) refinement level 0 (b) refinement level 1 (c) refinement level 2

(d) refinement level 3 (e) refinement level 4

(f) solution of refinement level 4

Figure 4.3: Local refinement mesh of rectangular geometry example (θ = 0.9)

indicating the efficiency of our algorithm. Figure 4.5 shows local refinement meshes and the
solution. Importantly, the mesh is refined at the reentrant corner as well as the boundary
layers.

Using the L-shape geometry problem, we next examine the influence of the parameter θ
of Dörfler marker’s strategy on the accuracy of the solution. Figure 4.6 shows the L2-norm
of the error versus the parameter θ. Plots are provided for three cases of θ = 0.1, 0.5, and 0.9
along with the convergence plot of the uniform refinement. The results show that while the
smaller θ leads to slightly better convergence rates, the larger θ results in much smaller value
of the L2-norm error at the same refinement levels. Based on this study, notice that all of
our numerical studies are performed using θ = 0.9.

4.4.3 Computational efficiency of the adaptive algorithm

In this section, we examine the efficiency of the proposed adaptive algorithm. This is achieved
by comparing the computational time of our local refinement algorithm with that of the
uniform refinement. All calculations for this example are carried out on a workstation with
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Figure 4.4: Convergence rates in the L2-norm, the H1-norm, and the H2-norm for L-shape geo-
metry.

Xeon E5 v3 2637 3.5 GHz CPU and 64GB of memory. A direct LU solver is employed to
obtain the solutions of the linear algebraic system of equations. In Figures 4.7(a) and 4.7(b),
we provide the CPU time versus all three norms of the error for the rectangular geometry and
the L-shape geometry, respectively. Importantly, the computational time is greatly reduced
by locally refining the mesh. This study shows that our proposed adaptive mesh algorithm
gives rises to accurate results and significant computational savings compared to uniform
mesh approaches.
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(a) refinement level 0 (b) refinement level 1

(c) refinement level 2 (d) refinement level 3

(e) refinement level 4 (f) solution of refinement level 4

Figure 4.5: Local refinement mesh of L-shape geometry example (θ = 0.9)
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Figure 4.7: Computation time versus error in the L2-norm, the H1-norm, and the H2-norm
(θ = 0.9)



Chapter 5
A posterior analysis of a B-spline based
finite-element method for the stationary
quasi-geostrophic equations of the ocean

5.1 Introduction

This study focuses on an adaptive mesh-refinement algorithm using B-splines for the SQGE.
In the linear Stommel–Munk model in Chapter 4, a saturation assumption that enables
relating the numerical error u− U with a discrete error U∗ − U was employed to circumvent
the limitations posed by the definition of the bilinear form. More precisely, the coercivity
result in Chapter 4 does not hold for general u ∈ H2 because the definition of a is limited to
the discrete space XP . Any error estimation, whether it be a priori or a posteriori cannot be
related with the numerical error (through coercivity) unless solution u is sufficiently smooth,
which can’t be expected near boundary layers or problematic corners in the domain. One
can prove the saturation assumption by deriving a local discrete lower bound, but proving
such an estimate is very difficult. To the best of our knowledge, no such estimate exists for
a fourth-order problem or when Nitsche’s method is employed even for the Poisson problem.
However, it is shown in various publications that the discrete lower bound is not essential for
neither convergence nor quasi-optimality analyses of adaptive finite-element methods.

To achieve this goal, we introduce the weak formulation of the SQGE for B-splines us-
ing a standard L2-orthogonal projection operator. We show the dominance of a posteriori
error estimator over the numerical error without a saturation assumption, but at the cost
of consistency of the weak formulation with the strong form of the SQGE. The resulting
inconsistency is however shown to be weaken with refinement. The idea of extending the
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definition of the bilinear form is inspired by the treatment of adaptive discontinuous finite-
element methods (ADFEM) in Bonito et al. [63] highlighting the similarity in nature of both
methods, theoretically as well as numerically.

The remainder of the Chapter is organized as follows. In Section 5.2, we present the SQGE
along with its weak formulation for B-splines. In Section 5.3, a priori estimate and coercivity
analysis for the weak formulation are provided. In Section 5.4, a posteriori error analysis is
performed to derive a posteriori error indicator. Numerical studies with benchmark problems
on rectangular and L-shape domains are provided to show the performance of the analysis
in Section 5.4.

5.2 The stationary quasi-geostrophic equations
We consider a domain Ω ∈ R2 with a polygonal boundary Γ. For a given velocity stream-
function u and a wind forcing f , the streamfunction formulation [37] of the one-layer SQGE
along with boundary conditions is given by{

Re−1∆2u+ J(u,∆u)− Ro−1 ∂u
∂x

= Ro−1f in Ω,

u = 0, ∂u
∂n

= 0 on Γ.
(5.1)

Notice that above boundary conditions indicate no normal transport and no-slip on the
boundary. Here, J(·, ·) is the Jacobian operator given by

J(u, v) = ∇⊥u · ∇v with ∇⊥u =
(
∂u
∂y
,−∂u

∂x

)
, (5.2)

and Re and Ro are the Reynolds and Rossby numbers defined by (1.3).

5.2.1 Weak formulation

We recall the auxiliary subdomain domain DΓ
P , initially defined in (2.89), and define its

support extension ωΓ
P :

DΓ
P =

⋃
{τ ∈ P : τ adjacent to Γ} and ωΓ

P =
⋃
σ∈GP

ωσ. (5.3)

For later use, we define the mesh-dependent semi-norm as

|||u|||2P = Re−1 ‖∆u‖2
L2(Ω) + γ1 ‖u‖2

3/2,P + γ2

∥∥ ∂u
∂n

∥∥2

1/2,P
. (5.4)
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It will be value to abbreviate the boundary norms:

|u|2P = ‖u‖2
3/2,P +

∥∥ ∂u
∂n

∥∥2

1/2,P
. (5.5)

The standard conforming weak formulation of the SQGE (5.1) can be stated as:

u ∈ H2
0 (Ω) such that 〈F (u), v〉 = `f (v), ∀v ∈ H2

0 (Ω), (5.6)

where F : H2
0 (Ω)×H2

0 (Ω)→ R is the nonlinear form

〈F (u), v〉 = Re−1

∫
Ω

∆u∆v +

∫
Ω

∆uJ(u, v)− Ro−1

∫
Ω

∂u
∂x
v, (5.7)

and `f (v) = Ro−1
∫

Ω
fv. Notice that (5.6) can be valid for any interpolatory C1-continuous

basis functions such as conventional Lagrangian or Hermitian polynomial basis functions. For
non-interpolatory basis functions such as B-splines, the Nitsche-type variational formulation
was provided in equation (5) of Kim et al. [36]. Dirichlet boundary conditions are weakly
imposed along with stabilization. Moreover, the formulation includes additional boundary
integral terms on the left-hand side of (5.8) to prove consistency with the SQGE (5.1).
Such additional terms make a posteriori analysis difficult using the consistent variational
formulation. In the following, we discuss this difficulty and motivation of our analysis strategy
allowing us to circumvent the employment of the saturation assumption used in Chapter 4
for the Stommel–Munk model.

Recall that the Green identity,∫
Γ

∂∆u
∂n

v −
∫

Γ

∆u ∂v
∂n

=

∫
Ω

∆2uv −
∫

Ω

∆u∆v ∀v ∈ H2(Ω), (5.8)

which is valid for u ∈ H4(Ω). The integrals
∫

Γ
∆u ∂v

∂n
and

∫
Γ
∂∆u
∂n

v cannot be understood in
the usual way because (5.8) is not valid if u is only a member of H2

0 (Ω) without additional
higher-order derivative integrability. This is because the traces of ∂∆u

∂n
and ∆u are no longer

well-defined on Γ. As a result, the general approach of using (5.8) to obtain a nonlinear weak
form defined on H2(Ω) × H2(Ω) that is coercive with a completely justifiable a posteriori
derivation breaks down. To resolve this problem, the terms ∂∆u

∂n
and ∆u are replaced with

suitable r − 2 degree polynomial approximations on each cell τ using the L2-orthogonal
projection ΠP = Πr−2

P of Lemma 2.43 to make the boundary integrals in (5.8) valid for
u ∈ VP . Moreover, we consider the test and trial spaces as

VP = H2
0 (Ω) + XP , (5.9)
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where XP is the spline space defined in (4.3). Then, any function u ∈ VP can be decomposed
into an H2

0 -conforming part u0 and a spline part U , i.e., u = u0 + U . We propose the weak
formulation for the SQGE (5.1):

Find U ∈ XP such that 〈FP (U), V 〉 = `f (V ) for all V ∈ XP , (5.10)

with FP : VP × VP → R defined by

〈FP (u), v〉 = 〈F (u), v〉+ Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
v + u∂ΠP (∆v)

∂n

)
− Re−1

∫
Γ

(
ΠP (∆u) ∂v

∂n
+ ∂u

∂n
ΠP (∆v)

)
+ γ1

∫
Γ

h−3
P uv + γ2

∫
Γ

h−1
P

∂u
∂n

∂v
∂n
,

(5.12)

where γ1 and γ2 are positive stabilization parameters.

Remark 5.1. Another issue comes from the identity∫
Ω

J(u,∆u)v =

∫
Ω

∆uJ(u, v)−
∫

Γ

∆u(∇⊥u · n)v, (u, v) ∈ H5/2(Ω)×H3/2(Ω), (5.13)

which requires the presence of a nonlinear boundary integral
∫

Γ
∆u(∇⊥u · n)v in our form.

This was the case in the last two terms of (6) in Kim et al. [36]. In this work, we forgo
this term with the reasoning that any solution u ∈ H2

0 (Ω) will maintain that ∇⊥u ·n is zero
along Γ and therefore an approximate solution U ∈ XP is expected to give a small values for
∇⊥U · n along Γ. Dropping the nonlinear boundary term does not interfere with the forms
consistency with the PDE; see Lemma 5.5 below. In a similar vain, the lower order boundary
integral terms coming from the Laplace term (see (4.7)) may also be dropped at no cost to
consistency.

Remark 5.2. The function space VP is a proper subset of H2(Ω) for which (5.4) defines a
full norm equivalent to ‖ · ‖H2(Ω), i.e.,

‖u‖H2(Ω) ≤ cE|||u|||P , ∀u ∈ VP , (5.14)

with a constant cE > 0 depending on the stabilization parameters and the mesh shape-
regularity. It is immediate that ‖∆ · ‖L2(Ω) defines a full norm on H2

0 (Ω). As for the discrete
portion XP which does not belong to H2

0 (Ω), the presence of the boundary integrals in (5.4)
is enough to ensure the positive-definiteness of the semi-norm (5.4) owing to Lemma 4.7. For
completeness, we provide a proof of (5.14)
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Proof. Let u ∈ VP . In view of decomposition (5.21), let u = (u0 +U0)+U⊥ and u0 = u0 +U0.
By applying (4.70) and Poincaré’s inequality with a constant CP , we obtain

‖u‖H2(Ω) ≤ CP‖∆u0‖L2(Ω) + C
1/2
bdry|u|P

≤ CP
(
‖∆u‖L2(Ω) + |U⊥|H2(Ω)

)
+ C

1/2
bdry|u|P

� ‖∆u‖L2(Ω) + max
i
{γ−1

i }
(
γ1‖u‖2

3/2,P + γ2

∥∥ ∂u
∂n

∥∥2

1/2,P

)1/2

.

(5.16)

Notice that the proportionality constant cE in (5.14) depends on CP , Cbdry, γ1 and γ2.

Remark 5.3. The weak form (5.12) can be decomposed into the linear part LP (u, v) and
the nonlinear part N(u, u, v) =

∫
Ω

∆uJ(u, v), i.e.,

〈FP (u), v〉 = LP (u, v) +N(u, u, v). (5.17)

Notice that 〈FP (u), u〉 reduces to LP (u, u) for any u ∈ VP because J(u, u) = 0. The nonlinear
term N(u, v, φ) =

∫
Ω

∆uJ(v, φ) is trilinear in each entry. Moreover, in view of the continuous
embedding H1(Ω) ↪→ L4(Ω), N admits the continuity-type estimate

|N(u, v, φ)| ≤ CN‖∆u‖L2(Ω)‖v‖H2(Ω)‖φ‖H2(Ω). (5.18)

Remark 5.4. The L2 forcing term in dual-norm can be estimated by

‖`f‖V′P = sup
v∈VP

Ro−1
∫

Ω
fv

|||v|||P
≤ cERo−1‖f‖L2(Ω), (5.19)

where cE > 0 is the norm equivalence constant between ‖ · ‖H2(Ω) and ||| · |||P .

5.2.2 Formulation inconsistency
The solution u to the conforming weak formulation (5.6) does not satisfy the discrete formu-
lation (5.10) when tested against members of VP\H2

0 (Ω). As a consequence, (5.10) has only
partial consistency, i.e.,

〈FP (u), v0〉 = 〈F (u), v0〉 = `f (v0) ∀v0 ∈ H2
0 (Ω). (5.20)

To quantify inconsistency, we extract the part V 0 of V ∈ XP comprising of the spline basis
functions belonging to H2

0 (Ω) and the part V ⊥ = V − V 0 that does not satisfy Dirichlet
boundary conditions on Γ as described in Lemma 4.7. In other words, we decompose XP into
the conforming part X0

P = XP ∩H2
0 (Ω) and the nonconforming part X⊥P , i.e.,

XP = X0
P + X⊥P . (5.21)
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Notice that U⊥ is identical to U along boundary edges σ since by definition U⊥ = U −U0

and U0 ∈ H2
0 (Ω). Above inequality is used for a posteriori analysis in Lemma 5.15.

Upon using (5.21), we can obtain the following inequality whose proof is given below. If
u ∈ H2

0 (Ω) is the solution to (5.6) and we let v = v0 + V ∈ VP ,

|〈FP (u), v〉 − `f (v)| � |u|H2(ωΓ
P )|V |P . (5.22)

Notice that the right-hand-side decays as ωΓ
P → 0 because of the vanishing integration do-

main in |u|H2(ωΓ
P ). Moreover, if v ∈ H2

0 (Ω), the right-hand-side vanishes indicating partial
consistency.

Proof. If v ∈ VP , v = v0 + V ⊥ with v0 = v0 + V 0 ∈ VP ∩H2
0 (Ω) in view of (5.9) and (5.21).

By partial consistency, we have

〈FP (u), v〉 = 〈FP (u), v0〉+ 〈FP (u), V ⊥〉 = `f (v
0) + 〈FP (u), V ⊥〉. (5.23)

Then,

〈FP (u), v〉 − `f (v) = 〈FP (u), v0〉 − `f (v0) + 〈FP (U), V ⊥〉 − `f (V ⊥),

= 〈FP (u), V ⊥〉 − `f (V ⊥).
(5.25)

Since V ⊥ is supported only on ωΓ
P and U = U⊥ along Γ, we write

〈FP (u), V ⊥〉 − `f (V ⊥)

=

∫
ωΓ
P

(
Re−1∆u∆V ⊥ + ∆uJ(u, V ⊥)− Ro−1 ∂u

∂x
V ⊥ − Ro−1fV ⊥

)
− Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
V ⊥ − ΠP (∆u)∂V

⊥

∂n

)
.

(5.27)

The difference 〈FP (u), V ⊥〉 − `f (V
⊥) is the source of inconsistency, and we show that it

decays when the near-boundary cells are refined. Each term of above is estimated as follows.∣∣∣∣ ∫
ωΓ
P

∆u∆V ⊥
∣∣∣∣ ≤ |∆u|H2(ωΓ

P )|V ⊥|H2(ωΓ
P ), (5.28)

and ∣∣∣∣ ∫
ωΓ
P

∂u
∂x
V ⊥
∣∣∣∣ ≤ |u|H1(ωΓ

P )‖V ⊥‖L2(ωΓ
P ) ≤ CP |u|H2(ωΓ

P )‖V ⊥‖L2(ωΓ
P ), (5.29)

where the last inequality holds by Poincaré’s inequality and CP is taken to be the Poincaré
constant. Moreover, in view of (5.18),∣∣∣∣ ∫

ωΓ
P

∆uJ(u, V ⊥)

∣∣∣∣ ≤ CN |u|H2(ωΓ
P )‖u‖H2(ωΓ

P )‖V ⊥‖H2(ωΓ
P ), (5.30)
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and ∣∣∣∣ ∫
ωΓ
P

fV ⊥
∣∣∣∣ ≤ ‖f‖L2(ωΓ

P )‖V ⊥‖L2(ωΓ
P ). (5.31)

In view of the norm equivalence (5.14), combining above estimates results in∣∣∣∣ ∫
ωΓ
P

(
Re−1∆u∆V ⊥ + ∆uJ(u, V ⊥)− Ro−1 ∂u

∂x
V ⊥ − Ro−1fV ⊥

) ∣∣∣∣
≤ cE|u|H2(ωΓ

P )

(
Re−1 + CP + CN |u|H2(ωΓ

P ) + Ro−1‖f‖L2(ωΓ
P )

)
|V |P .

(5.33)

It is left to treat the boundary integrals. To avoid including too many calculations at this
point, we direct the reader to the proof of Lemma 5.15 and Remark 2.44 for a similar
treatment that leads us to the estimate:∣∣∣∣Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
V ⊥ − ΠP (∆u)∂V

⊥

∂n

) ∣∣∣∣ ≤ cΠRe−1|u|H2(ωΓ
P )|V |P . (5.34)

Incorporating the last two inequalities completes the proof.

We have so far discussed inconsistency of (5.10) when the weak solution does not have
any weak derivatives beyond the second order. We show that inconsistency is not strong and
will decay with refinement if u solves (5.1) point-wise almost-everywhere and ∆u ∈ Hs(Ω)
for s ≥ 0. In doing so, we define the inconsistency term EP ∈ V′P given by

〈EP , v〉 =

∫
Γ

(
∂ΠP (∆u)

∂n
− ∂∆u

∂n

)
v −

∫
Γ

(ΠP (∆u)−∆u) ∂v
∂n
, v ∈ VP . (5.35)

In the following lemma, above inconsistency term is derived from (5.12).

Lemma 5.5 (Inconsistency). If u ∈ H2
0 (Ω) with ∆2u ∈ L2(Ω) is the solution to (5.1),

then it holds that
〈FP (u), v〉 = `f (v) + 〈EP , v〉, ∀v ∈ VP . (5.36)

Proof. By applying integration by parts, we have

〈FP (u), v〉 − `f (v) =

∫
Ω

(
Re−1∆2u+ J(u,∆u)− Ro−1 ∂u

∂x
− Ro−1f

)
v

− Re−1

∫
Γ

∂∆u
∂n

v + Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
v+u∂ΠP (∆v)

∂n

)
+ Re−1

∫
Γ

∆u ∂v
∂n
− Re−1

∫
Γ

(
ΠP (∆u) ∂v

∂n
+ ∂u
∂n

ΠP (∆v)

)
+ γ1

∫
Γ

h−3
P uv + γ2

∫
Γ

h−1
P

∂u
∂n

∂v
∂n
.

(5.38)
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Invoking the assumptions on u, all integrals over Ω and those boundary integrals with u|Γ
and ∂u

∂n
|Γ vanish. Thus, we have

〈FP (u), v〉 − `f (v) = Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
− ∂∆u

∂n

)
v − Re−1

∫
Γ

(ΠP (∆u)−∆u) ∂v
∂n
. (5.39)

The consistency EP is not strong and it comes from projection ΠP needed to make the
nonlinear form (5.12) well-defined on VP . In fact, as hP decreases with refinement, the area
of DΓ

P will decrease with it, weakening the inconsistency. In Lemma 5.6, we show that the
inconsistency term (5.35) decays with an order of at least hsP for ∆u ∈ Hs(Ω).

Lemma 5.6 (Asymptotic consistency). If u is a solution to (5.1) and ∆u ∈ Hs(Ω),
s ≥ 0, then

〈EP , v〉 ≤ cΠRe−1 |hsP∆u|Hs(DΓ
P )|v|P for all v ∈ VP , (5.40)

equivalently,
‖EP‖V′P ≤ cΠRe−1 |hsP∆u|Hs(DΓ

P ) . (5.41)

Proof. Let v ∈ VP . Then,

〈EP , v〉 = Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
− ∂∆u

∂n

)
v − Re−1

∫
Γ

(ΠP (∆u)−∆u) ∂v
∂n

≤ Re−1
∑
σ∈GP

∥∥∥∂(ΠP (∆u)−∆u)
∂nσ

∥∥∥
L2(σ)

‖v‖L2(σ)

+ Re−1
∑
σ∈GP

‖ΠP (∆u)−∆u‖L2(σ)

∥∥∥ ∂v
∂nσ

∥∥∥
L2(σ)

.

(5.43)

Applying the Cauchy-Schwarz inequality into above yields

〈EP , v〉 ≤ Re−1

( ∑
σ∈GP

h3
σ

∥∥∥∂(ΠP (∆u)−∆u)
∂nσ

∥∥∥2

L2(σ)

)1/2

‖v‖3/2,P

+ Re−1

( ∑
σ∈GP

hσ‖ΠP (∆u)−∆u‖2
L2(σ)

)1/2 ∥∥ ∂v
∂n

∥∥
1/2,P

.

(5.45)

In view of Lemma 2.43 we have

〈EP , v〉 � cΠRe−1 |hsP∆u|L2(DΓ
P ) |v|P . (5.47)
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5.3 Coercivity and a priori analysis
In this section, we prove the well-posedness of the weak formulation (5.10).

Lemma 5.7 (Coercivity). For a constant CCoer > 0,

CCoer|||u|||2P ≤ 〈FP (u), u〉, ∀u ∈ VP (5.48)

where |||u|||P is defined in (5.4).

Proof. Let u ∈ VP and recall that J(u, u) = 0. From (5.12), we have

〈FP (u), u〉 = Re−1‖∆u‖2
L2(Ω) − Ro−1

∫
Ω

∂u
∂x
u

+ 2Re−1

∫
Γ

(
∂ΠP (∆u)

∂n
u− ΠP (∆u) ∂u

∂n

)
+ γ1‖u‖2

3/2,P + γ2

∥∥ ∂u
∂n

∥∥2

1/2,P
.

(5.50)

The first integral on the boundary Γ in the second line of (5.50) is estimated as

Re−1

∫
Γ

∂ΠP (∆u)
∂n

u ≤ Re−1

(∫
Γ

(
h

3/2
P

∂ΠP (∆u)
∂n

)2
)1/2

‖u‖3/2,P

≤ cInvcdTrcΠRe−1‖∆u‖L2(Ω)‖u‖3/2,P

≤
(
cInvcdTrcΠRe−1

)2 δ1
2
‖∆u‖2

L2(Ω) + 1
2δ1
‖u‖2

3/2,P ,

(5.52)

using ∫
Γ

(
h

3/2
P

∂ΠP (∆u)
∂n

)2

=
∑
σ∈GP

h3
σ

∥∥∥∂ΠP (∆u)
∂nσ

∥∥∥2

L2(σ)
,

≤ (cInvcdTr)
2
∑
σ∈GP

‖ΠP (∆u)‖2
L2(τσ),

≤ (cInvcdTr)
2‖ΠP (∆u)‖2

L2(Ω) ≤ (cInvcdTrcΠ)2‖∆u‖2
L2(Ω),

(5.54)

and Young’s inequality with δ1 > 0. The above inequality is obtained using∥∥∥∂ΠP (∆u)
∂nσ

∥∥∥
L2(σ)

≤ cInvcdTrh
−3/2
σ ‖ΠP (∆u)‖L2(τσ), (5.55)

from Lemma 2.36 and the stability of the L2-projection in Remark 2.44 for the last inequality.
Similarly, the second integral along the boundary Γ in (5.50) can be estimated as

Re−1

∫
Γ

ΠP (∆u) ∂u
∂n
≤
(
cdTrcΠRe−1

)2 δ2
2
‖∆u‖2

L2(Ω) + 1
2δ2

∥∥ ∂u
∂n

∥∥2

1/2,P
, (5.56)
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for δ2 > 0. Substituting (5.52) and (5.56) into (5.50) results in

〈FP (u), u〉 ≥ Re−1‖∆u‖2
L2(Ω) − Ro−1

2
‖u‖2

L2(Γ) −
(
cInvcdTrcΠRe−1

)2
δ1‖∆u‖2

L2(Ω)

− 1
δ1
‖u‖2

3/2,P −
(
cdTrcΠRe−1

)2
δ2‖∆u‖2

L2(Ω) − 1
δ2

∥∥ ∂u
∂n

∥∥2

1/2,P

+ γ1‖u‖2
3/2,P + γ2

∥∥ ∂u
∂n

∥∥2

1/2,P
,

(5.58)

with the inequality −2
∫

Ω
∂u
∂x
u ≤ ‖u‖2

L2(Γ) obtained by applying the integration by parts to

the rotational term. By assuming the sufficiently fine mesh, i.e., hP < 1, ‖u‖L2(Γ) < ‖u‖3/2,P

is valid. Applying this inequality to the rotational term, we have

〈FP (u), u〉 ≥
(
1− (cInvcdTrcΠ)2Re−1δ1 − (cdTrcΠ)2Re−1δ2

)
Re−1‖∆u‖2

L2(Ω)

+
(

1− Ro−1

2γ1
− 1

δ1γ1

)
γ1‖u‖2

3/2,P +
(

1− 1
δ2γ2

)
γ2

∥∥ ∂u
∂n

∥∥2

1/2,P
.

(5.60)

Choosing δ1 > 0 and δ2 > 0 small enough such that δ−1
1 > 2(cInvcdTrcΠ)2Re−1 and δ−1

2 >
2(cdTrcΠ)2Re−1 makes

1− (cInvcdTrcΠ)2Re−1δ1 − (cdTrcΠ)2Re−1δ2 > 0, (5.61)

and setting γ1 > 0 and γ2 > 0 large enough so that

γ1 >
Ro−1

2
+ 2(cInvcdTrcΠ)2Re−1 and γ2 > 2(cdTrcΠ)2Re−1 (5.62)

ensures 1− γ−1
1

(
Ro−1

2
+ 1

δ1

)
> 0 and 1− γ−1

2
1
δ2
> 0 as required.

In the following lemma, we prove the stability of u and U .

Lemma 5.8 (Stability). Let u and U be the solutions to (5.1) and (5.10), respectively.
Then,

|||u|||P ≤ C−1
coercERo−1‖f‖L2(Ω) and |||U |||P ≤ C−1

coercERo−1‖f‖L2(Ω). (5.63)

Proof. From coercivity and duality,

Ccoer|||u|||2P ≤ 〈FP (u), u〉 = `f (u) ≤ cERo−1‖f‖L2(Ω)|||u|||P , (5.65)

and

Ccoer|||U |||2P ≤ 〈FP (U), U〉 = `f (U) ≤ cERo−1‖f‖L2(Ω)|||U |||P . (5.67)
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Lemma 5.9 (A priori error estimate). Let u and U be the solutions to (5.1) and (5.10),
respectively. Then,

|||u− U |||P ≤ Capriori

(
inf
V ∈XP

|||u− V |||P + ‖EP‖V′P

)
, (5.68)

with Capriori defined below (5.87).

Proof. If we let eP = u− U ,

|||u− U |||P ≤ |||u− V |||P + |||U − V |||P . (5.69)

Let W = V − U ≡ (V − u) + eP . Then,

Ccoer|||U − V |||2P ≤ 〈FP (W ),W 〉 = LP (W,W ) = LP (eP ,W ) + LP (V − u,W ),

= −[N(u, u,W )−N(U,U,W )] + 〈EP ,W 〉+ LP (V − u,W ),

≤ |N(u, u,W )−N(U,U,W )|+ ‖EP‖V′P ‖W‖P + Ccont‖u− V ‖P‖W‖P .
(5.71)

Adding and subtracting N(U, u,W ) to the nonlinear term yields

N(u, u,W )−N(U,U,W ) = N(u, u,W )−N(U, u,W ) +N(U, u,W )−N(U,U,W ),

= N(u− U, u,W ) +N(U, u− U,W ).
(5.73)

Using eP = W + (u− VP ) and N(U,W,W ) = 0, we obtain

N(u, u,W )−N(U,U,W ) =N(W,u,W ) +N(u− V, u,W )

+N(U,W,W ) +N(U, u− V,W ),

=N(W,u,W ) +N(u− V, u,W ) +N(U, u− V,W ).

(5.75)

Applying (5.18) results in

|N(u, u,W )−N(U,U,W )|
≤ CN (‖∆W‖L2‖u‖H2 + ‖∆(u− V )‖L2‖u‖H2 + ‖∆U‖L2‖u− V ‖H2) ‖W‖H2 .

(5.77)

Going back to the estimation of |||W |||P , we have

Ccoer|||W |||2P ≤ CN (|||u|||P |||W |||P + |||u− V |||P |||u|||P + |||U |||P |||u− V |||P ) |||W |||P
+ ‖EP‖V′P |||W |||P + Ccont|||u− V |||P |||W |||P .

(5.79)

Applying stability in Lemma 5.8 yields

Ccoer|||W |||2P ≤ CNC
−1
coer

(
cERo−1‖f‖L2(Ω)|||W |||P + 2cERo−1‖f‖L2(Ω)|||u− V |||P

)
|||W |||P

+ ‖EP‖V′P |||W |||P + Ccont|||u− V |||P |||W |||P ,
(5.81)
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from which we obtain(
Ccoer−CNC−1

coercERo−1‖f‖L2(Ω)

)
|||W |||P

≤
(
2CNC

−1
coercERo−1‖f‖L2(Ω) + Ccont

)
|||u− V |||P + ‖EP‖V′P .

(5.83)

Then, the estimation of |||W |||P can be achieved as

|||W |||P ≤
2CNC

−1
coercERo−1‖f‖L2(Ω)+Ccont

Ccoer−CNC−1
coercERo−1‖f‖L2(Ω)

|||u− V |||P + 1
Ccoer−CNC−1

coercERo−1‖f‖L2(Ω)

‖EP‖V′P . (5.84)

Now having estimated |||W |||P , we go back to (5.69) to arrive at

|||u− U |||P ≤
(

1 +
Ccont+2CNC

−1
coercERo−1‖f‖L2(Ω)

Ccoer−CNC−1
coercERo−1‖f‖L2(Ω)

)
|||u− V |||P

+ 1
Ccoer−CNC−1

coercERo−1‖f‖L2(Ω)

‖EP‖V′P ,
(5.86)

and the desired estimate is achieved with

Capriori = 1 +
max{1,Ccont+2CNC

−1
coercERo−1‖f‖L2(Ω)}

Ccoer−CNC−1
coercERo−1‖f‖L2(Ω)

. (5.87)

Remark 5.10. Since the parameter Capriori > 0, ‖f‖L2(Ω) < C2
coer/(CN cERo−1). This condi-

tion is analogous to the small data condition used to prove the uniqueness for the steady-state
two-dimensional Navier–Stokes equation [37]. However, as noted in [37], it is also very re-
strictive since C−1

coer is of order ReRo−1 which contains the Rossby number; see [37] for more
details.

5.4 A posteriori analysis
From a posteriori analysis, we will obtain an a posteriori error estimator ηP over a subset
ω ⊂ Ω given by

η2
P (ω) =

∑
τ∈P :τ⊂ω

η2
τ , η2

τ = h2
τ‖Rτ‖2

L2(τ) +
∑
σ⊂∂τ

h3
σ‖Jσ‖2

L2(σ), (5.88)

where
Rτ =

(
Ro−1f − Re−1∆2U − J(U,∆U) + Ro−1 ∂U

∂x

) ∣∣
τ
, (5.89)

and
Jσ = Re−1

∣∣∣[∂∆U
∂nσ

]∣∣∣
σ
, (5.90)
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with |[·]|σ being the edge jump operator. Notice that all our simulation are preformed by using
the error indicator (5.88), and it can be an upper bound for the numerical error |||u − U |||P
up to a decaying term as shown in Corollary 5.18.

To derive (5.88), we define the residual quantity RP ∈ V′P given by

〈RP , v〉 = `f (v)− 〈FP (U), v〉, ∀v ∈ VP . (5.91)

The brief outline of this section is as follows. In Lemma 5.11, we begin by obtaining
a bound of |||u − U |||P with respect to ‖RP‖V′P and ‖EP‖V′P . In Lemma 5.13, we verify
that ‖RP‖V′P can be dominated by the error estimator (5.88) and two boundary integral
terms including the nonlinearity and the stabilization terms along with their estimations in
Lemmas 5.14 and 5.15. Finally, we summarize the estimation of ‖RP‖V′P in Theorem 5.16
and an upper bound of |||u− U |||P in Corollary 5.18 upon using the estimation of |||EP |||V′P in
Lemma 5.6.

Lemma 5.11. Let u and U be the solutions to (5.1) and (5.10), respectively. Then,

|||u− U |||P ≤ CU
(
‖RP‖V′P + ‖EP‖V′P

)
, (5.92)

with CU = 1/(Ccoer − 2CNC
−1
coercERo−1‖f‖L2(Ω)).

Proof. Setting eP = u− U as both arguments of (5.17) yields

〈FP (eP ), eP 〉 = LP (eP , eP ) +N(eP , eP , eP ),

= LP (u, eP )− LP (U, eP )−N(U,U, eP ) +N(U,U, eP ),

= LP (u, eP )− 〈FP (U), eP 〉+N(U,U, eP ).

(5.94)

In view of inconsistency in Lemma 5.5,

〈FP (eP ), eP 〉 = `f (eP )− 〈FP (U), eP 〉+N(U,U, eP )−N(u, u, eP ) + 〈EP , eP 〉,
= 〈RP , eP 〉+N(U,U, eP )−N(u, u, eP ) + 〈EP , eP 〉.

(5.96)

To estimate the nonlinear terms in (5.96), we obtain

N(U,U, eP )−N(u, u, eP ) = N(U,U, eP )−N(u, U, eP ) +N(u, U, eP )

−N(u, u, eP ),

= −N(eP , U, eP )−N(eP , u, eP ).

(5.98)

Invoking (5.18) and stability in Lemma 5.8 gives rise to

|N(U,U, eP )−N(u, u, eP )| ≤ CN |eP |H2(Ω)

(
‖U‖H2(Ω) + ‖u‖H2(Ω)

)
‖eP‖H2(Ω),

≤ 2CNC
−1
coercERo−1‖f‖L2(Ω)|||eP |||2P .

(5.100)
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By applying above into (5.96) and using coercivity in Lemma 5.7, we obtain

Ccoer|||eP |||2P ≤ 〈FP (eP ), eP 〉 ≤ 〈RP , eP 〉+2CNC
−1
coercERo−1‖f‖L2(Ω)|||eP |||2P +〈EP , eP 〉, (5.101)

and(
Ccoer − 2CNC

−1
coercERo−1‖f‖L2(Ω)

)
|||eP |||2P ≤ 〈FP (eP ), eP 〉 ≤ 〈RP , eP 〉+ 〈EP , eP 〉. (5.102)

Notice that, in (5.92), a small data condition cE‖f‖L2(Ω) < C2
coer/(2CNRo−1) is required.

In the following, we estimate ‖RP‖V′P and ‖EP‖V′P .

Lemma 5.12 (Residual L2-representation). The functional RP ∈ V′P admits the L2-
representation as

〈RP , v〉 =
∑
τ∈P

∫
τ

Rτv −
∑
σ∈EP

∫
σ

Jσv − Re−1

∫
Γ

∂U
∂n

ΠP (∆v) + Re−1

∫
Γ

U ∂ΠP (∆v)
∂n

−
∫

Γ

∆U(∇⊥U · n)v − γ1

∫
Γ

h−3
P Uv − γ2

∫
Γ

h−1
P

∂U
∂n

∂v
∂n

(5.104)

where Rτ and Jσ are defined in (5.89) and (5.90).

Proof. Let v ∈ VP . Taking integration by parts on each cell τ ∈ P yields

〈RP , v〉 =
∑
τ∈P

∫
τ

(
Ro−1f − Re−1∆2U − J(U,∆U) + Ro−1 ∂U

∂x

)
v

+
∑
τ∈P

(
Re−1

∮
∂τ

∆U ∂v
∂nτ
− Re−1

∮
∂τ

∂∆U
∂nτ

v −
∮
∂τ

∆U(∇⊥U · nτ )v
)

− Re−1

∫
Γ

(
∆U ∂v

∂n
+ ∂U

∂n
ΠP (∆v)

)
+ Re−1

∫
Γ

(
∂∆U
∂n

v + U ∂ΠP (∆v)
∂n

)
− γ1

∫
Γ

h−3
P Uv − γ2

∫
Γ

h−1
P

∂U
∂n

∂v
∂n
.

(5.106)

We already know that ∑
τ∈P

∮
∂τ

∆U ∂v
∂nτ

=

∫
Γ

∆U ∂v
∂n
, (5.107)

and ∑
τ∈P

∮
∂τ

∂∆U
∂nτ

v =
∑
σ∈EP

∫
σ

∣∣∣[∂∆U
∂nσ

]∣∣∣
σ
v +

∫
Γ

∂∆U
∂n

v. (5.108)
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Let τ1 and τ2 be cells sharing an interior edge σ with corresponding outward unit normal
vectors nτ1 and nτ2 and nτ1 = −nτ2 . By setting nσ = nτ1 , we have∫

∂τ1∩σ
∆U(∇⊥U · nτ1)v +

∫
∂τ2∩σ

∆U(∇⊥U · nτ2)v,

=

∫
σ

[
(∆U)|τ1(∇⊥U · nσ)− (∆U)|τ2(∇⊥U · nσ)

]
v,

=

∫
σ

[(∆U)|τ1 − (∆U)|τ2 ] (∇⊥U · nσ)v,

=

∫
σ

|[∆U ]|σ (∇⊥U · nσ)v = 0.

(5.110)

Upon summing (5.110) over all cells τ , we can write∑
τ∈P

∮
∂τ

∆U(∇⊥U · nτ )v =

∫
Γ

∆U(∇⊥U · n)v. (5.111)

By applying (5.107), (5.108), (5.111) and (5.90) to the second line of (5.106), we obtain∑
τ∈P

(
Re−1

∮
∂τ

∆U ∂v
∂nτ
− Re−1

∮
∂τ

∂∆U
∂nτ

v −
∮
∂τ

∆U(∇⊥U · nτ )v
)

= Re−1

∫
Γ

∆U ∂v
∂n
−
∑
σ∈EP

∫
σ

Jσv − Re−1

∫
Γ

∂∆U
∂n

v −
∫

Γ

∆U(∇⊥U · n)v.

(5.113)

Substituting above equality and (5.89) into (5.106) results in

〈RP , v〉 =
∑
τ∈P

∫
τ

Rτv −
∑
σ∈EP

∫
σ

Jσv

− Re−1

∫
Γ

∂U
∂n

ΠP (∆v) + Re−1

∫
Γ

U ∂ΠP (∆v)
∂n

−
∫

Γ

∆U(∇⊥U · n)v − γ1

∫
Γ

h−3
P Uv − γ2

∫
Γ

h−1
P

∂U
∂n

∂v
∂n
.

(5.115)

Lemma 5.13. For v ∈ VP , the residual RP is estimated as

|〈RP , v〉| ≤ c2
shape

{
ηP (Ω) + (γ1 + cInvcdTrcΠ)‖U‖3/2,P

+ (γ2 + cdTrcΠ)
∥∥∂U
∂n

∥∥
1/2,P

}
|v|H2(Ω) +

∣∣∣∣∫
Γ

∆U(∇⊥U · n)(v − IPv)

∣∣∣∣ . (5.117)
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Proof. Since 〈RP , IPv〉 = `f (IPv)− 〈FP (U), IPv〉 = 0, we have

〈RP , v〉 = 〈RP , v − IPv〉. (5.118)

Then,

|〈RP , v − IPv〉| ≤
∑
τ∈P

‖Rτ‖L2(τ)‖v − IPv‖L2(τ) +
∑
σ∈EP

‖Jσ‖L2(σ)‖v − IPv‖L2(σ)

+ Re−1

∣∣∣∣∫
Γ

∂U
∂n

ΠP [∆(v − IPv)]

∣∣∣∣+ Re−1

∣∣∣∣∫
Γ

U ∂ΠP [∆(v−IP v)]
∂n

∣∣∣∣
+

∣∣∣∣∫
Γ

∆U(∇⊥U · n)(v − IPv)

∣∣∣∣+ γ1

∣∣∣∣∫
Γ

h−3
P U(v − IPv)

∣∣∣∣
+ γ2

∣∣∣∣∫
Γ

h−1
P

∂U
∂n

∂(v−IP v)
∂n

∣∣∣∣ .
(5.120)

Upon applying (2.86) with k = 0 from Theorem 2.42 on the interior terms, we have

∑
τ∈P

‖Rτ‖L2(τ)‖v − IPv‖L2(τ) ≤
(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2(∑
τ∈P

h−4
τ ‖v − IPv‖2

L2(τ)

)1/2

,

≤
(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2

cshape

(∑
τ∈P

|v|2H2(ωτ )

)1/2

,

≤ c2
shape

(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2

|v|H2(Ω).

(5.122)

Similarly, the jump terms in (5.120) can be treated as

∑
σ∈EP

‖Jσ‖L2(σ)‖v − IPv‖L2(σ) ≤ c2
shape

( ∑
σ∈EP

h3
σ‖Jσ‖2

L2(σ)

)1/2

|v|H2(Ω). (5.124)

From now on, we estimate the domain boundary integral terms in (5.120) as follows. The
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first term in the second line can be estimated as follows:

∣∣∣∣ ∫
Γ

∂U
∂n

ΠP [∆(v − IPv)]

∣∣∣∣ ≤∑
σ∈Gh

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

‖ΠP [∆(v − IPv)]‖L2(σ),

≤
∑
σ∈Gh

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

cdTrh
−1/2
σ ‖ΠP [∆(v − IPv)]‖L2(τσ) ,

≤ cdTr

(∑
σ∈Gh

h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)1/2(∑
σ∈Gh

‖ΠP [∆(v − IPv)]‖2
L2(τσ)

)1/2

,

≤ cdTr

(∑
σ∈Gh

h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)1/2(∑
τ∈P

‖ΠP [∆(v − IPv)]‖2
L2(τ)

)1/2

,

≤ cdTr

(∑
σ∈Gh

h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)1/2

‖ΠP [∆(v − IPv)]‖L2(Ω) ,

≤ cdTrcΠc
2
shape

∥∥∂U
∂n

∥∥
1/2,P

|v|H2(Ω).

(5.126)

For the last inequality, we use the following stability of the L2-projector ΠP in L2(Ω) (see
Remark 2.44) and Theorem 2.42, with k = 2;

‖ΠP [∆(v − IPv)]‖L2(Ω) ≤ c2
Π‖∆(v − IPv)]‖L2(Ω) ≤ c2

Πc
4
shape|v|2H2(Ω). (5.127)

In a similar manner, with the aid of a discrete inverse estimate, the second term in the
second line of (5.120) can be estimated as

∣∣∣∣ ∫
Γ

U ∂ΠP [∆(v−IP v)]
∂n

∣∣∣∣ ≤∑
σ∈Gh

‖U‖L2(σ)

∥∥∥ ∂
∂nσ

ΠP [∆(v − IPv)]
∥∥∥
L2(σ)

,

≤
∑
σ∈Gh

‖U‖L2(σ)cdTrh
−1/2
σ cInvh

−1
σ ‖ΠP [∆(v − IPv)]‖L2(τσ),

≤ cdTr

(∑
σ∈Gh

h−3/2
σ ‖U‖2

L2(σ)

)1/2(∑
σ∈Gh

‖ΠP [∆(v − IPv)]‖2
L2(τσ)

)1/2

,

≤ cΠcdTrcInvc
2
shape‖U‖3/2,P |v|H2(Ω).

(5.129)
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Moreover, the second term in the third line of (5.120) can be estimated as∣∣∣∣∫
Γ

h−3
P U(v − IPv)

∣∣∣∣ ≤∑
σ∈Gh

h−3/2
σ ‖U‖L2(σ)h

−3/2
σ ‖v − IPv‖L2(σ),

≤
(∑
σ∈Gh

h−3
σ ‖U‖2

L2(σ)

)1/2(∑
σ∈Gh

h−3
σ ‖v − IPv‖2

L2(σ)

)1/2

,

≤ cshape‖U‖3/2,P

(∑
σ∈Gh

|v|2H2(ωσ)

)1/2

,

= c2
shape‖U‖3/2,P |v|H2(Ω),

(5.131)

and, similarly, the last term of (5.120) can be estimate as∣∣∣∣∫
Γ

h−1
P

∂U
∂n

∂
∂n

(v − IPv)

∣∣∣∣ ≤ c2
shape

∥∥∂U
∂n

∥∥
1/2,P

|v|H2(Ω). (5.133)

Substituting all above inequalities into (5.120) and (5.118) results in

|〈RP , v〉| ≤ c2
shape

{(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2

+

( ∑
σ∈EP

h3
σ‖Jσ‖2

L2(σ)

)1/2
}
|v|H2(Ω)

+ c2
shape

{
(cInvcdTrcΠ + γ1)‖U‖3/2,P + (cdTrcΠ + γ2)

∥∥∂U
∂n

∥∥
1/2,P

}
|v|H2(Ω)

+

∣∣∣∣∫
Γ

∆U(∇⊥U · n)(v − IPv)

∣∣∣∣ .
(5.135)

In the following lemma, we estimate the nonlinear boundary integral term in (5.117).

Lemma 5.14. Let u and U be the solutions to (5.1) and (5.10), respectively. Then,∣∣∣∣∫
Γ

∆U(∇⊥U · n)(v − IPv)

∣∣∣∣ ≤ c2
shapeCN‖U‖3/2,P |v|H2(ωΓ

P ), v ∈ VP , (5.136)

where CN = cdTrc
2
InvC

−1
coercE‖f‖L2(Ω).
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Proof. Decomposing the integral into edges and applying the Cauchy-Schwarz inequality on
each edge integral separately result in∣∣∣∣ ∫

Γ

∆U(∇⊥U · n)(v − IPv)

∣∣∣∣ =

∣∣∣∣∣∑
σ∈GP

∫
σ

∆U(∇⊥U · n)(v − IPv)

∣∣∣∣∣ ,
≤
∑
σ∈GP

‖∆U∇⊥U · n‖L2(σ)‖v − IPv‖L2(σ),

≤
( ∑
σ∈GP

h3
σ‖∆U∇⊥U · n‖2

L2(σ)

)1/2( ∑
σ∈GP

h−3
σ ‖v − IPv‖2

L2(σ)

)1/2

,

≤ c2
shape

( ∑
σ∈GP

h3
σ‖∆U∇⊥U · n‖2

L2(σ)

)1/2

|v|H2(ωΓ
P ),

(5.138)

using (2.87) in the last line and the shape-regularity
∑

σ∈GP |u|
2
H2(ωσ) ≤ c2

shape|u|2H2(ωΓ
P )

. Ap-

plying the Cauchy–Schwarz inequality to the first norm of the above last line yields

‖∆U∇⊥U · n‖L2(σ) ≤ ‖∆U‖L4(σ)‖∇⊥U · n‖L4(σ). (5.139)

The first term in (5.139) is estimated as

‖∆U‖L4(σ) ≤ cInvh
−1/4
σ ‖∆U‖L2(σ) ≤ cInvcdTrh

−1/4
σ h−1/2

σ ‖∆U‖L2(τ),

≤ cInvcdTrh
−3/4
σ ‖∆U‖L2(τσ),

(5.141)

where τσ is the cell along Γ with σ as one of its edges. To obtain the first line of (5.141) we
use (2.54) with s = t = 0, q = 4, and p = 2 for the first inequality and (2.55) for the second
inequality.

Next, the second norm in (5.139) is estimated as

‖∇⊥U · n‖L4(σ) = ‖∇⊥U · n‖L4(σ) ≤ cInvh
−1/4
σ ‖∇⊥U · n‖L2(σ). (5.142)

By combining (5.141) and (5.142) into (5.139) and applying Lemma 5.8 into ‖∆U‖L2(τσ),
we arrive at( ∑

σ∈GP

h3
σ‖∆U∇⊥U · n‖2

L2(σ)

)1/2

≤ cInvcdTrcEC
−1
coer‖f‖L2(Ω)

( ∑
σ∈GP

hσ‖∇⊥U · n‖2
L2(σ)

)1/2

.

(5.144)
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Applying an inverse estimate ‖∇⊥U · n‖L2(σ) ≤ |U |H1(σ) ≤ cInvh
−1
σ ‖U‖L2(σ) to the second

norm in the above yields∑
σ∈GP

hσ‖∇⊥U · n‖2
L2(σ) ≤ c2

Inv

∑
σ∈GP

h−1
σ ‖U‖2

L2(σ) ≤ c2
Inv‖U‖2

3/2,P , (5.145)

using h−1
σ ≤ h−3

σ by assuming sufficiently refined mesh (i.e., hP ≤ 1). This results in( ∑
σ∈GP

h3
σ‖∆U∇⊥U · n‖2

L2(σ)

)1/2

≤ cdTrc
2
InvC

−1
coercE‖f‖L2(Ω)‖U‖3/2,P . (5.146)

Substituting the above inequality into (5.138) completes the proof of the lemma.

In the following lemma, we estimate the stabilization terms in (5.117).

Lemma 5.15. For sufficiently large γ1 and γ2 we have

|U |2P ≤
1
2
C−1

coer

min{γ1 − C−1
coerCΓ, γ2 − C−1

coerCΓ}
η2
P (ωΓ

P ), (5.147)

with

CΓ : = Cbdry max
{

Re−1 + CN + 1
2
,Ro−1

}
+ c2

dTrc
4
shapeC

2
bdry + 3Re−1cInv(cdTr + 1).

(5.149)

Proof. Using coercivity in Lemma 5.7, (5.10), and (5.17), for any V 0 ∈ X0
P , we obtain

γ1‖U‖2
3/2,P + γ2

∥∥∂U
∂n

∥∥2

1/2,P
≤ C−1

coer〈FP (U − V 0), U − V 0〉,

= C−1
coerLP (U − V 0, U − V 0),

= C−1
coer

{
LP (U,U − V 0)− LP (V 0, U − V 0)

}
,

= C−1
coer

{
`f (U − V 0)−N(U,U, U − V 0)

}
− C−1

coerLP (V 0, U − V 0).

(5.151)

If we let V 0 = U + (V 0 − U),

LP (V 0, U − V 0) = LP (U,U − V 0)− LP (U − V 0, U − V 0). (5.152)

The first term on the right can be expressed as

LP (U,U − V 0) = `f (U − V 0)− 〈FP (U), U − V 0〉 = 〈RP , U − V 0〉,
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using (5.17) and (5.91), and we arrive at

γ1‖U‖2
3/2,P + γ2

∥∥∂U
∂n

∥∥2

1/2,P
≤ C−1

coer〈RP , U − V 0〉+ C−1
coerLP (U − V 0, U − V 0). (5.154)

Set V 0 = U0 and define U⊥ = U − U0. In view of Lemma 5.12, we have

〈RP , U
⊥〉 =

∑
τ∈P∩ωΓ

P

∫
τ

RτU
⊥ −

∑
σ∈EP

∫
σ

JσU
⊥ − Re−1

∫
Γ

∂U
∂n

∆U⊥ + Re−1

∫
Γ

U ∂∆U⊥

∂n

−
∫

Γ

∆U(∇⊥U · n)U⊥ − γ1‖U⊥‖2
3/2,P − γ2

∥∥∥∂U⊥∂n ∥∥∥2

1/2,P
.

(5.156)

From the definition of LP , we have

LP (U⊥, U⊥) = Re−1‖∆U⊥‖2
L2(Ω) − Ro−1

∫
Ω

∂U⊥

∂x
U⊥

+ Re−1

∫
Γ

(
∂∆U⊥

∂n
U⊥ + U⊥ ∂∆U⊥

∂n

)
− Re−1

∫
Γ

(
∆U⊥ ∂U

⊥

∂n
+ ∂U⊥

∂n
∆U⊥

)
+ γ1‖U⊥‖2

3/2,P + γ2

∥∥∥∂U⊥∂n ∥∥∥2

1/2,P
.

(5.158)

Summing above two equalities result in

〈RP , U
⊥〉+LP (U⊥, U⊥) = Re−1‖∆U⊥‖2

L2(Ω) − Ro−1

∫
Ω

∂U⊥

∂x
U⊥

+
∑
τ∈P

∫
τ

RτU
⊥ +

∑
σ∈EP

∫
σ

JσU
⊥ −

∫
Γ

∆U(∇⊥U · n)U⊥

+ 2Re−1

∫
Γ

∂∆U⊥

∂n
U⊥ − 2Re−1

∫
Γ

∆U⊥ ∂U
⊥

∂n
.

(5.160)

Following the exact calculation as carried in the proof of Theorem 4.8, we estimate all terms
in (5.160). The spline function U⊥ is supported only on ωΓ

P , and thus U = U⊥ along Γ and
all norms and integrals on Ω reduce to ones over ωΓ

P . We begin by estimating the first two
terms in (5.160). By applying Theorem 4.8 with k = 2, we have

‖∆U⊥‖2
L2(Ω) = ‖∆U⊥‖2

L2(ωΓ
P ) ≤ |U

⊥|2H2(ωΓ
P ),

=
∑
σ∈GP

|U⊥|2H2(ωσ) ≤ Cbdry|U |2P ,
(5.162)

and, provided that hP ≤ 1,

− 2

∫
Ω

∂U⊥

∂x
U⊥ ≤ ‖U⊥‖2

L2(Γ) = ‖U‖2
L2(Γ) ≤ ‖U‖2

3/2,P . (5.163)
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By combining above two inequalities, we have

Re−1‖∆U⊥‖2
L2(Ω) − Ro−1

∫
Ω

∂U⊥

∂x
U⊥

≤ Cbdry

{(
Re−1 +

1

2

)
‖U‖2

3/2,P + Ro−1
∥∥∂U
∂n

∥∥2

1/2,P

}
.

(5.165)

Next, the indicators in (5.160) can be estimated as∑
τ∈P

∫
τ

RτU
⊥ −

∑
σ∈EP

∫
σ

JσU
⊥

≤
( ∑
τ∈P∩ωΓ

P

h4
τ‖Rτ‖2

L2(τ)

)1/2( ∑
τ∈P∩ωΓ

P

h−4
τ ‖U⊥‖2

L2(τ)

)1/2

+

( ∑
σ∈EP∩ωΓ

P

h3
σ‖Jσ‖2

L2(σ)

)1/2( ∑
σ∈EP∩ωΓ

P

h−3
σ ‖U⊥‖2

L2(σ)

)1/2

.

(5.167)

By the shape-regularity of the mesh in (2.73), diam (ωσ) ≤ cshapehτ for a cell τ ⊂ ωσ. This
makes the cell diameter hτ comparable to the edge length hσ because hσ ≤ diam (ωσ). Then,
h−1
τ ≤ cshapeh

−1
σ . Using Theorem 4.8, with k = 0, the last norm in the first line of (5.167) is

treated as

h−4
τ ‖U⊥‖2

L2(τ) ≤ Cbdryh
−4
τ

(
hσ‖U‖2

L2(σ) + h3
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)
,

≤ Cbdryc
4
shapeh

−4
σ

(
hσ‖U‖2

L2(σ) + h3
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)
,

≤ c4
shapeCbdry|U |2P ,

(5.169)

for τ ⊂ ωσ and σ ∈ GP . Summing over all cells τ ∈ P ∩ ωΓ
P , we have∑

τ∈P∩ωΓ
P

h−4
τ ‖U⊥‖2

L2(τ) ≤ (cdTrc
2
shape)

2Cbdry|U |2P . (5.171)

Applying (2.54) to the second norm in the second line of (5.167) gives rise to h−3
σ ‖U⊥‖2

L2(σ) ≤
c2

dTrh
−4
σ ‖U⊥‖2

L2(τ). Then, by summing over edges σ ∈ EP ∩ ωΓ
P , we have∑

σ∈EP∩ωΓ
P

h−3
σ ‖U⊥‖2

L2(σ) ≤ c2
dTr

∑
τ∈P∩ωΓ

P

h−4
σ ‖U⊥‖2

L2(τ) ≤ (cdTrc
2
shape)

2Cbdry|U |2P . (5.173)
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Substituting above inequalities into (5.167) and applying Young’s inequality yield( ∑
τ∈P∩ωΓ

P

h4
τ‖Rτ‖2

L2(τ)

)1/2( ∑
τ∈P∩ωΓ

P

h−4
τ ‖U⊥‖2

L2(τ)

)1/2

+

( ∑
σ∈EP∩ωΓ

P

h3
σ‖Jσ‖2

L2(σ)

)1/2( ∑
σ∈EP∩ωΓ

P

h−3
σ ‖U⊥‖2

L2(σ)

)1/2

,

≤ 1

2

( ∑
τ∈P∩ωΓ

P

h4
τ‖Rτ‖2

L2(τ) +
∑

σ∈EP∩ωΓ
P

h3
σ‖Jσ‖2

L2(σ)

)
+ (cdTrc

2
shape)

2Cbdry|U |2P .

(5.175)

Finally, we obtain the estimate of the indicators as∑
τ∈P

∫
τ

RτU
⊥ −

∑
σ∈EP

∫
σ

JσU
⊥ ≤ 1

2
η2
P (ωΓ

P ) + (cdTrc
2
shape)

2Cbdry|U |2P . (5.176)

Next, we begin by estimating the last two boundary edge terms in (5.160) as∫
Γ

∂∆U⊥

∂n
U⊥ −

∫
Γ

∆U⊥ ∂U
⊥

∂n

≤
∑
σ∈GP

∥∥∥∂∆U⊥

∂nσ

∥∥∥
L2(σ)

‖U⊥‖L2(σ) +
∑
σ∈GP

‖∆U⊥‖L2(σ)

∥∥∥∂U⊥∂nσ

∥∥∥
L2(σ)

.
(5.178)

In view of inverse and trace estimates of Theorem 2.36, we have∥∥∥∂∆U⊥

∂nσ

∥∥∥
L2(σ)

≤ cInvcdTrh
−3/2
σ ‖∆U⊥‖L2(τ) ≤ cInvcdTrh

−3/2
σ |U⊥|H2(τ)

≤ cInvcdTrC
1/2
bdryh

−3/2
σ

{
h−3
σ ‖U‖2

L2(σ) + h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

}1/2

,

(5.180)

for σ ⊂ ∂τ , using Theorem 4.8 with k = 2 in the last inequality. For any non-negative pair
a and b, it follows that a2 + b2 ≤ (a+ b)2; i.e,

√
a2 + b2 ≤ a+ b, which makes∥∥∥∂∆U⊥

∂nσ

∥∥∥
L2(σ)

‖U⊥‖L2(σ)

≤ cInvcdTrC
1/2
bdryh

−3/2
σ ‖U⊥‖L2(σ)

{
h−3/2
σ ‖U‖L2(σ) + h−1/2

σ

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

}
,

≤ cInvcdTrC
1/2
bdry

(
h−3
σ ‖U⊥‖2L2(σ)

2
+

1

2

{
h−3/2
σ ‖U‖L2(σ) + h−1/2

σ

∥∥∥ ∂U
∂nσ

∥∥∥
L2(σ)

}2
)
,

≤ cInvcdTrC
1/2
bdry

(
h−3
σ ‖U⊥‖2L2(σ)

2
+

{
h−3
σ ‖U‖2

L2(σ) + h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

})
,

(5.182)
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where in the last inequality we used (a+ b)2 ≤ 2(a2 + b2). We arrive at∑
σ∈GP

∥∥∥∂∆U⊥

∂nσ

∥∥∥
L2(σ)
‖U⊥‖L2(σ)

≤ cInvcdTrC
1/2
bdry

∑
σ∈GP

(
3
2
h−3
σ ‖U‖2

L2(σ) + h−1
σ

∥∥∥ ∂U
∂nσ

∥∥∥2

L2(σ)

)
,

≤ 3
2
cInvcdTrC

1/2
bdry|U |

2
P .

(5.184)

Similarly, we have ∑
σ∈GP

‖∆U⊥‖L2(σ)

∥∥∥∂U⊥∂nσ

∥∥∥
L2(σ)

≤ 3
2
cdTrC

1/2
bdry|U |

2
P . (5.185)

As a consequence of above inequalities, we obtain

2Re−1

∫
Γ

∂∆U⊥

∂n
U⊥ − 2Re−1

∫
Γ

∆U⊥ ∂U
⊥

∂n
≤ 3Re−1cInv(cdTr + 1)C

1/2
bdry|U |2P . (5.187)

Finally, the nonlinear boundary integral term in (5.160) is estimated as∣∣∣∣ ∫
Γ

∆U(∇⊥U · n)U⊥
∣∣∣∣ ≤ ∑

σ∈GP

h3/2
σ ‖∆U∇⊥U · n‖L2(σ)h

−3/2
σ ‖U⊥‖L2(σ),

≤
( ∑
σ∈GP

h3
σ‖∆U∇⊥U · n‖2

L2(σ)

)1/2

‖U⊥‖3/2,P

≤ CN‖U⊥‖2
3/2,P .

(5.189)

by applying (5.146) to the last inequality. Substituting (5.165), (5.176), (5.187) and (5.189)
into (5.154) yields

γ1‖U‖2
3/2,P + γ2

∥∥∂U
∂n

∥∥2

1/2,P
≤ 1

2
C−1

coerη
2
P (ωΓ

P ) + C−1
coerCΓ|U |2P , (5.191)

where CΓ is defined above. Finally, we have(
γ1 − C−1

coerCΓ

)
‖U‖2

3/2,P +
(
γ2 − C−1

coerCΓ

) ∥∥∂U
∂n

∥∥2

1/2,P
≤ 1

2
C−1

coerη
2
P (ωΓ

P ), (5.192)

which proves (5.147).

Using above lemmas, we finally estimate the residual ‖RP‖V′P in the following theorem.
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Theorem 5.16. Let u and U be the solutions to (5.1) and (5.10), respectively. Then,

‖RP‖V′P ≤ D1ηP (Ω) +D2ηP (ωΓ
P ), (5.194)

with
D1 = cEc

2
shape and D2 = cEC

−1/2
coer max{γ1+C1,γ2+C2}√

min{γ1−C−1
coerCΓ,γ2−C−1

coerCΓ}
, (5.195)

where C1 = cInvcdTrcΠ + c2
shapeCN and C2 = cdTrcΠ.

Proof. In view of Lemmata 5.13 and 5.14, we write

|〈RP , v〉| ≤ c2
shapeηP (Ω)|v|H2(Ω) + c2

shapeCΓ‖U‖3/2,P |v|H2(ωΓ
P )

+
(

(γ1 + cInvcdTrcΠ)‖U‖3/2,P + (γ2 + cdTrcΠ)
∥∥∂U
∂n

∥∥
1/2,P

)
|v|H2(Ω),

(5.197)

which, by norm equivalence (5.14), reduces to

|〈RP , v〉| ≤ cEc
2
shapeηP (Ω)|||v|||P + cE

(
(γ1 + cInvcdTrcΠ + c2

shapeCΓ)‖U‖3/2,P

+ (γ2 + cdTrcΠ)
∥∥∂U
∂n

∥∥
1/2,P

)
|||v|||P .

(5.199)

Let C1 = cInvcdTrcΠ + c2
shapeCΓ and C2 = cdTrcΠ. As the final step, applying Lemma 5.15

results in

(γ1 + C1)‖U‖3/2,P + (γ2 + C2)
∥∥∂U
∂n

∥∥
1/2,P

≤ C
−1/2
coer max{γ1+C1,γ2+C2}√

min{γ1−C−1
coerCΓ,γ2−C−1

coerCΓ}
ηP (ωΓ

P ). (5.201)

Remark 5.17. The estimator ηP (ωΓ
P ) is always smaller than ηP (Ω) by the inclusion ωΓ

P ⊂ Ω,
so it is sufficient to reduce ηP (Ω) only.

Finally, we relate the estimator to the numerical error.

Corollary 5.18 (Upper Bound). Let u and U be the solutions to (5.1) and (5.10), re-
spectively. Then,

|||u− U |||P ≤ CU ηP (Ω) + 2cΠCURe−1|hsP∆u|Hs(DΓ
P ), (5.202)

with CU = CU max{D1, D2}.

Proof. The proof is immediate from Lemma 5.6, Lemma 5.11, and Theorem 5.16.
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Corollary 5.18 shows that the cell-wise indicators (5.88) summed over all cells provide a
computable estimate for the global numerical error. The only issue we can encounter comes
from the term

|hsP∆u|Hs(DΓ
P ) =

( ∑
σ∈GP

h2s
σ |∆u|2Hs(τσ)

)1/2

, (5.203)

as it is not dominated by a computable estimation. On one hand, we expect that on any
cells τσ adjacent to a boundary edge σ situated away from problematic corners or boundary
layers, the solution u will be smooth and the power s in the decay factor hsσ is high, and thus
diminishing the contribution of |∆u|Hs(τσ). On the other hand, in regions where singularities
might occur, the error indicator will force deeper refinement making the area boundary-
adjacent cells τσ small which will reduce the contribution of |∆u|Hs(τσ) even though the effect
of decay factor hsσ diminishes.

We conclude this section by quantifying the rates at which the inconsistent part of the
discrete solution decays. Let X0

P = XP ∩H2
0 (Ω). We characterize an orthogonal complement

X⊥P to X0
P using a projection operator π0

P : XP → X0
P defined by the linear problem

π0
PV ∈ X0

P such that LP (w0, V − π0
PV ) = 0 ∀w0 ∈ X0

P . (5.204)

The problem (5.204) is well-posed by the virtue of the Lax-Milgram Lemma. Indeed, let
B : X0

P ×X0
P → R be given by B(V 0,W 0) = LP (W 0, V ) and for each V ∈ XP , define a linear

functional l on the subspace X0
P by l(W 0) = LP (W 0, V ). The bilinear form is bounded on

coercive on any subspace of H2
0 (Ω) and therefore the linear problem

V 0 ∈ X0
P such that B(V 0,W 0) = l(W 0) ∀W 0 ∈ X0

P , (5.205)

admites a unique solution. By setting π⊥P V = V − π0
PV for any V ∈ XP , we obtain the

following decomposition for every finite-element spline

V = π0
PV + π⊥P V ∈ X0

P ⊕ X⊥P ≡ XP , (5.206)

with LP (V 0, w⊥) = 0 for every pair V and w. We will write V 0 = π0
PV and V ⊥ = π⊥P .

Lemma 5.19. If U is a solution to (5.10),

|||U⊥|||P ≤
C⊥

Ccoer − CNC−1
coercE‖f‖L2(Ω)

(
inf
V ∈X0

P

|u− V |H2(Ω) + |||EP |||V′P

)
, (5.207)

where C⊥ = Ccont

Ccoer
max

{
1, Ccont + 2CNC

−1
coercE‖f‖L2(Ω)

}
.
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Proof. Let V 0 ∈ X0
P . By the orthogonal decomposition (5.206), we write

Ccoer|||U⊥|||2P ≤ LP (U⊥, U⊥) = LP (U⊥ + U0 − V 0, U⊥),

= LP (U − V 0, U⊥) ≤ Ccont|||U − V 0|||P |||U⊥|||P .
(5.209)

To estimate |||U − V 0|||P , the calculation is done in the same manner as carried in a priori
estimation so we omit the calculation and give the final form:

Ccoer|||U⊥|||P ≤
Ccont max{1,Ccont+2CNC

−1
coercE‖f‖L2(Ω)}

Ccoer−CNC−1
coercE‖f‖L2(Ω)

(
|u− V 0|H2(Ω) + ‖EP‖V′P

)
. (5.210)

Corollary 5.20. Let u ∈ H2(Ω) be a solution to (5.6). If ∆u ∈ Hs(Ω) for any s > 0,

|||U⊥|||P ≤
2C⊥max{cshape, cΠRe−1}cshape

Ccoer − CNReRo−1cE‖f‖L2(Ω)

|hsΩ∆u|Hs(Ω). (5.211)

Proof. We have at our disposal a quasi-interpolant projection from H2
0 (Ω) into X0

P which will
estimate

inf
V ∈X0

P

|u− V |H2(Ω) = inf
V ∈X0

P

(∑
τ∈P

‖∆(u− V )‖2
L2(τ)

)1/2

,

≤
(∑
τ∈P

c2
shapeh

2s
τ ‖∆u‖2

Hs(ωτ )

)1/2

= cshape|hsP∆u|Hs(Ω).

(5.213)

With Lemma 5.6 we arrive from Lemma 5.19,

|||U⊥|||P ≤ C⊥
Ccoer−CNC−1

coercE‖f‖L2(Ω)

(
cshape|hsP∆u|Hs(Ω) + cΠRe−1 |hsP∆u|Hs(DΓ

P )

)
. (5.214)

Remark 5.21. As a result, if h is the size of largest edge σ on boundary Γ, ‖U⊥‖L2(Γ) �
γ−1

1 h3/2+s and
∥∥∥∂U⊥∂n ∥∥∥

L2(Γ)
� γ−1

2 h1/2+s for some s > 0.

5.5 Numerical study
To verify adaptivity of the weak formulation (5.10), we provide convergence studies using
cubic B-splines. For this purpose, we define errors ||e||L2 , ||e||H1 , and ||e||H2 in the L2-norm,
the H1-semi norm, and the H2-semi norm by

||e||L2 =
||u− U ||L2

||u||L2

, ||e||H1 =
|u− U |H1

|u|H1

, ||e||H2 =
|u− U |H2

|u|H2

, (5.215)
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respectively, where U is the approximation of u. Notice that the optimal convergence rates
in the L2-, H1-, and H2-norms are quartic, cubic, and quadratic rates, respectively, for the
finite-element discretization using cubic B-splines. Several benchmark problems are used for
the test of the present adaptive refinement algorithm. Unless otherwise specified, we take the
Reynolds number of Re = 1.667 and the Rossby number of Ro = 10−4. A Newton-Raphson
iteration solver is used as a nonlinear solver.

For adaptive refinement, we use a residual-based error indicator ηP in (5.88) based on the
Dörlfer marking criterion. In other words, the refinement consists of two steps, the first step
is to obtain local refined meshes by splitting the marked elements (or cells) MP into four
succeeding cells to produce a new mesh satisfying geometric constraints. The second step is
to refine the spline basis via B-spline subdivision wherever mesh refinement took place. All
of our simulations are performed using θ = 0.9. This choice is based on our previous study
(Chapter 4) on the influence of θ of Dörfler marking strategy on the accuracy of the solution.

5.5.1 Convergence study in a rectangular domain
The accuracy and robustness of the weak formulation (5.10) and the convergence of the
Newton-Raphson iteration solver are sensitive to the stabilization parameters as shown in
Kim et al. [36]. As a result, it is important to check if the stabilization parameters derived
from coercivity analysis in Lemma 5.7 give rise to the accurate and robust numerical results.
To do so, the convergence studies for benchmark problems are performed by taking the
stabilization parameters of γ1 = Ro−1

2
+2(cInvcdTrcΠ)2Re−1 +1/2 and γ2 = (cdTrcΠ)2Re−1 +1/2

from (5.62).
We consider a rectangular ocean as a computational domain as shown in Figure 5.1. With

the origin of a Cartesian coordinate system at the southwest corner, the x- and y-axis point
eastward and northward, respectively, and the boundaries of the computational domain are
the shores of the ocean. We choose the following two problems that were frequently used to
test a finite-element algorithm for large scale ocean circulation problems [36, 37]. These two
problems have exact solutions

u(x, y) = sin2(πx/3) sin2(πy) in Ω = [0, 3]× [0, 1] (5.216)

and
u(x, y) = [(1− x/3)(1− e−20x) sin2(πy)]2 in Ω = [0, 3]× [0, 1]. (5.217)

The forcing term f in the SQGE (5.1) is chosen to match those determined by the above exact
solutions. In Figure 5.1, the plot of the numerical solution of (5.216) is provided. As shown
in the solution, this test problem does not have any western boundary layer. Figure 5.2 shows
the convergence rates in the L2-, H1-, and H2-norms. The optimal rates of convergence are
obtained for all three norms.
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Figure 5.1: The streamfunction for the test problem (5.216) without a western boundary layer.

Figure 5.2: Convergence study for the test problem (5.216) without a western boundary layer.

Figure 5.3 displays the numerical solution of (5.217), with a thin boundary layer, in
the vicinity of x = 0, corresponding to a western boundary layer. Figure 5.4 shows the
convergence rates in the L2-, H1-, and H2-norms. While the convergence rate in the H1-
norm is optimal, the rates of convergence for the L2- and H2-norms are slightly suboptimal
due to the presence of the western boundary layer.

These results from the two example problems indicate that the robust and accurate nu-
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merical solutions can be obtained by choosing the stabilization parameters from (5.62) for
the large-scale wind driven ocean circulation.

Figure 5.3: The streamfunction for the test problem (5.217) with a western boundary layer.

Figure 5.4: Convergence study for the test problem (5.217) with a western boundary layer.
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5.5.2 Adaptivity on rectangular geometry
The performance of the adaptive refinement algorithm using the a posteriori error indic-
ator (5.88) is investigated for the test problem (5.217) on a rectangular domain with a strong
western boundary layer.

In Figure 5.5, we provide four refinement levels that were obtained using the error in-
dicator (5.88). The results clearly show highly refined mesh in the vicinity of the western
boundary layer, indicating the efficiency of the proposed adaptive algorithm. In Figure 5.6,

(a) refinement level 0 (b) refinement level 1

(c) refinement level 2 (d) refinement level 3

Figure 5.5: Adaptive refinement levels for rectangular geometry.

we display the convergence rates for the adaptive refinement along with those for the uniform
refinement. The rates of convergence significantly increase by adding the first two levels of
refinement although the rates gradually reduce to reach the optimal rates by adding more
refinement levels. Moreover, in spite of the presence of the western boundary layer, the solu-
tions with the adaptive refinement are much higher accurate than those with the uniform
refinement in all three norms.

5.5.3 Adaptivity on L-shape geometry
The adaptive refinement algorithm is further examined for the ocean circulation on L-shape
geometry which is more suitable for the test of adaptivity. This problem was used for the
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Figure 5.6: Convergence study for adaptivity on rectangular geometry.

verification of adaptivity of the linear Stommel–Munk model in Chapter 4. The wind forcing
term f = sin(y) is chosen from the derivative of the wind stress [77]. Due to the complexity
of geometry, an analytical solution does not exist for this test problem. As a consequence,
the numerical solution obtained from a sufficiently fine grid with 562,500 elements is used as
a standard solution for convergence study. The fine grid has a sufficiently large number of
elements that the a posteriori error estimator decays with asymptotic regime rate.

In Figure 5.7, adaptive refinement meshes obtained using the a posterior error indic-
ator (5.88) are displayed along with the numerical solutions with the strong western bound-
ary layers. Importantly, the plots show locally refined meshes in the vicinity of the reentrant
corner as well as the western boundary layers, indicating the efficiency of the a posteriori
error indicator. Figure 5.8 shows the rates of convergence for the adaptive refinement along
with those of the uniform refinement. With the uniform refinement, the significant reduc-
tion of convergence rates is obtained for all three norms, due to the presence of the western
boundary layers and the rectangular corner in L-shape geometry. Importantly, the rates
of convergence significantly increase with the adaptive refinement. Moreover, the solution
from the adaptive refinement is much more accurate at lower resolution than that from the
uniform refinement, verifying the accuracy of our algorithm.
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(a) refinement level 0 (b) refinement level 1

(c) refinement level 2 (d) refinement level 3

Figure 5.7: Adaptive refinement levels for the L-shape geometry.

5.5.4 Computational efficiency of the adaptive algorithm
In this section, we examine the efficiency of the proposed adaptive algorithm. All calculations
for this example are carried out on a workstation with Xeon E5 v3 2637 3.5 GHz CPU and
64GB of memory. A Newton–Raphson iteration method is used as a nonlinear solver. For
each nonlinear iteration, a direct LU solver is employed to obtain the solutions of the linear
algebraic system of equations. It typically takes four or five nonlinear iterations to satisfy
our convergence criterion. In Figures 5.9(a) and 5.9(b), we provide the CPU time versus all
three norms of the error for the rectangular geometry and the L-shape geometry, respectively.
The computational time is greatly reduced by locally refining the mesh. This study shows
that our proposed adaptive mesh algorithm gives rises to accurate results and significant
computational savings compared to uniform mesh approaches.
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Figure 5.8: Convergence study for adaptivity on L-shape geometry.

(a) rectangular geometry example (b) L-shape geometry example

Figure 5.9: Computation time versus error in the L2-norm, the H1-norm, and the H2-norm



Chapter 6
A quasi-optimal adaptive spline-based finite
element method for the bi-Laplace operator
using Nitsche’s method

6.1 Introduction

In this final chapter we study the performance of (2.132) on Nitsche’s method for the bi-
Laplace operator. The numerical error will be measured in energy norm (5.4), and the
L2-projection of Lemma 2.43 will be used again. The inconsistency term (5.35) and the
consequences of Lemmata 5.5 and 5.6 can be derived with facility. The coercivity of the
bilinear form in the energy norm and an a priori error estimate is obtained in essentially
the same manner in Lemma 5.9 and we proceed to a posteriori error estimation without
re-mention.

In the derivation of the global upper bound the same phenomenon of having to control the
boundary terms |U⊥|P appearing in Chapters 4 and 5 appears here as well. The global lower
bound of Lemma 3.6 and estimator error reduction Lemma 3.9 carries over immediately; this
is because those estimates are focused on the domain interior and do not take the boundary
terms into account.

When analyzing the convergence of (2.132), the approach of the previous chapter will not
carry forward immediately. The powers of the stabilization parameters in Lemma 5.13 are
too high and will interfere with the convergence analysis. In addition, due to the formulation
inconsistency and the dependence of the bilinear form on the mesh, obtaining a good Galerkin
Pythagoras identity (as in Lemma 3.11) is not possible. Instead, in Lemma 6.8 we derive
a weaker estimate that fulfills the purpose of comparing the numerical error of consecutive

125
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solutions.
Let Ω be a bounded domain in R2 with polygonal boundary Γ. For a source function

f ∈ L2(Ω) we consider the following homogenous Dirichlet boundary-valued problem

∆2u = f in Ω, (6.1)

u = 0, ∂u
∂n

= 0 on Γ.

We consider the bilinear form aP : VP (Ω)× VP (Ω)→ R

aP (u, v) =

∫
Ω

∆u∆v −
∫

Γ

(
ΠP (∆u) ∂v

∂n
+ ∂u

∂n
ΠP (∆v)

)
+ γ1

∫
Γ

h−3
P uv

+

∫
Γ

(
∂ΠP (∆u)

∂n
v + u∂ΠP (∆v)

∂n

)
+ γ2

∫
Γ

h−1
P

∂u
∂n

∂v
∂n
.

(6.3)

We measure the numerical error using the mesh-dependent norm

|||u|||2P = ‖∆u‖2
L2(Ω) + γ1‖u‖2

3/2,P + γ2

∥∥ ∂u
∂n

∥∥2

1/2,P
, (6.4)

and use the abbreviation
|U |2P = ‖U‖2

3/2,P +
∥∥∂U
∂n

∥∥2

1/2,P
. (6.5)

As previously, XP is decomposed into X0
P = XP ∩H2

0 (Ω) and X⊥P in the manner described by
Lemma 4.7. The proof of Lemma 4.7 can be extended to the following result:

Lemma 6.1. Semi-norm | · |P defines a norm on X⊥P . In particular, for a constant C⊥ > 0

|||V ⊥|||P ≤ C⊥|V ⊥|P ∀V ⊥ ∈ X⊥P . (6.6)

Proof. Let DΓ =
⋃
σ∈GP ωσ. If |V ⊥|P = 0 then V ⊥ = ∂V ⊥

∂n
≡ 0 on DΓ due to the finite-

dimensionality of polynomial space X⊥P . Necessarily we have V ⊥ ≡ 0 everywhere; otherwise
V ⊥ ∈ X0

P .

We have partial consistency virtue of an argument analogous to Lemma 5.5

aP (U, V 0) = `f (V
0) ∀V 0 ∈ X0

P , (6.7)

which gives Partial Galerkin Orthogonality:

aP (u− U, V 0) = 0. (6.8)

Remark 6.2. It is possible to obtain (6.8) with weaker regularity assumptions on u, as done
in Bonito et al. [63], using decomposition (5.206).
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6.2 A posteriori error estimation
We derive a sharper Upper Bound than given in Chapters 4—6. This genuine improvement
was initially recognized by Bonito et al. [63] when applied to adaptive discontinuous finite-
element methods.

Lemma 6.3 (Estimator reliability). Let P be an admissible partition of Ω. The module
ESTIMATE produces a posteriori error estimate ηP for the discrete error such that

aP (u− U, u− U) ≤ CU,1η
2
P (U,Ω) + CU,2

(
γ1‖U‖2

3/2,P + γ2

∥∥∂U
∂n

∥∥2

1/2,P

)
, (6.10)

with constants CU,1, CU,2 > 0 depending only on cshape.

Proof. Let e = u − U and let v = u − U0 and we may write e = v − U⊥. Since IPv ∈ X0
P ,

Partial Galerkin orthogonality (6.8) implies aP (e, IPv) = 0 and we have

aP (e, e) = aP (e, v − IPv)− aP (e, U⊥). (6.11)

The treatment of the term aP (e, v − IPv) is essentially the same as in Chapter 5 so we omit
a detailed calculation:

|aP (e, v − IPv)| ≤ cΠ

{(∑
τ∈P

h4
τ‖Rτ‖2

L2(τ)

)1/2

+

( ∑
σ∈EP

h3
σ ‖Jσ,1‖

2
L2(σ)

)1/2

+

( ∑
σ∈EP

hσ‖Jσ,2‖2
L2(σ)

)1/2
}
|v|H2(Ω) + C1|U⊥|P |v|H2(Ω),

(6.13)

where C1 = cΠcdTr max{cInv, 1}. To control the inconsistency term aP (e, U⊥), we employ
Young’s inequality and the norm equivalence from Lemma 6.1,

aP (e, U⊥) ≤ Ccont|||e|||P |||U⊥|||P ≤ Ccont

C
1/2
coer

aP (e, e)1/2|||U⊥|||P ,

≤ aP (e,e)
4

+
C2

cont

Ccoer
|||U⊥|||2P ≤

aP (e, e)

4
+

C2
cont

Ccoer
C2
⊥|U⊥|2P .

(6.15)

Let C2 =
C2

cont

Ccoer
C2
⊥. Since v = e+ U⊥,

|v|2H2(Ω) ≤ C−1
coeraP (e+ U⊥, e+ U⊥),

= C−1
coer

(
aP (e, e) + 2aP (e, U⊥) + aP (U⊥, U⊥)

)
,

≤ C−1
coer

(
2aP (e, e) + (1 + 2C2) |U⊥|2P

)
.

(6.17)
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Let C2
3 = C−1

coer max{2, (1 + 2C2)}. Summing up, applying Young’s inequality with δ = 1/2,

3
4
aP (e, e) ≤ cΠ

(
ηP (Ω) + C1|U⊥|P

)
|v|H2(Ω) + C2|U⊥|2P ,

≤ cΠC3

(
ηP (Ω) + C1|U⊥|P

) (
aP (e, e) + |U⊥|2P

)1/2
+ C2|U⊥|2P ,

≤ C3

(
ηP (Ω) + C1|U⊥|P

)2
+ 1

4

(
aP (e, e) + |U⊥|2P

)
+ C2|U⊥|2P ,

(6.19)

which makes for constants CU,1 > 0 and CU,2 > 0 depending on C1, C2 and C3,

1
2
aP (e, e) ≤CU,1

2
ηP (Ω) +

CU,2
2
|U⊥|2P . (6.21)

In the following Lemma we show a local version of Lemma 6.3. While the result is not
needed for convergence, it is required for quasi-optimality.

Lemma 6.4 (Estimator discrete reliability). Let P be an admissible partition of Ω and
let P∗ = REFINE [P,R] for some refined set R ⊆ P . If U and U∗ are the respective discrete
solutions on partitions P and P∗, then for constants CdU,1, CdU,2 > 0, depending only on cshape

and cΠ,

|||U0
∗ − U |||2P ≤ CdU,1η

2
P (U, ωRP→P∗ ) + CdU,2

(
γ1‖U‖2

3/2,R + γ2

∥∥∂U
∂n

∥∥2

1/2,R

)
, (6.23)

where ωRP→P∗ is understood as the union of support extensions of refined cells from P to
obtain P∗.

Proof. In view of Partial Consistency (6.7) and the nesting of spline spaces, aP (U0
∗ , V

0) =
`f (V

0) holds if V 0 ∈ X0
P from which we obtain aP (U0

∗ − U, V 0) = 0 for every V 0 ∈ X0
P . Let

E0
∗ = U0

∗ −U0 and let E∗ = U0
∗ −U ≡ E0

∗ −U⊥. Then for any V0 ∈ X0
P we write an analogous

expression to (6.11)

aP (E∗, E∗) = aP (E∗, E
0
∗ − U⊥) = aP (E∗, E

0
∗ − V 0)− aP (E∗, U

⊥), (6.24)

which we proceed to control in terms of the estimator. For the first term, we form dis-
connected subdomains Ωi ⊆ Ω, i ∈ J , each formed from the interior of connected union
of cell support extensions. Set Ω∗ = ∪τ∈RP→P∗ωτ . Then to each subdomain Ωi we form a
partition Pi = {τ ∈ P : τ ⊂ Ωi}, interior edges Ei = {σ ∈ EP : σ ⊂ ∂τ, τ ∈ Pi} and
boundary edges Gi = {σ ∈ GP : σ ⊂ ∂τ, τ ∈ Pi}, and a corresponding finite-element space
Xi. Let Ii : L2(Ωi) → Xi satisfy the local estimates (2.86)— (2.88). Let V 0 ∈ X0

P be an
approximation of E0

∗ be given by

V 0 = E0
∗1Ω\Ω∗ +

∑
i∈J

(I0
i E

0
∗) · 1Ωi . (6.25)
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Then E0
∗ − V 0 ≡ 0 on Ω\Ω∗. To localize the error on ωRP→P∗ we use intergration by parts to

express

aP (E∗,E
0
∗ − V 0) =

∑
i∈J

[∑
τ∈Pi

〈Rτ , E
0
∗ − IPE0

∗〉τ

+
∑
σ∈Ei

{
〈Jσ,1, E0

∗ − IPE0
∗〉σ + 〈Jσ,2, E0

∗ − IPE0
∗〉σ
}

+
∑
σ∈Gi

(∫
σ

U ∂
∂nσ

[
ΠP∆(E0

∗ − IPE0
∗)
]
−
∫
σ

∂U
∂nσ

ΠP∆(E0
∗ − IPE0

∗)

)]
,

(6.27)

∑
τ∈Pi

〈Rτ , E
0
∗ − IPE0

∗〉τ +
∑
σ∈Ei

{
〈Jσ,1, E0

∗ − IPE0
∗〉σ + 〈Jσ,2, E0

∗ − IPE0
∗〉σ
}

≤ cΠ

(∑
τ∈Pi

η2
P (U, τ)

)1/2(∑
τ∈Pi

‖E0
∗‖2

H2(ωτ )

)1/2

,

≤ cΠcshapeηP (U,Ωi)‖E0
∗‖H2(Ωi).

(6.29)

The boundary integral terms will be control by the inconsistent part of the spline solution∑
σ∈Gi

(∫
σ

U ∂
∂nσ

[
ΠP∆(E0

∗ − IPE0
∗)
]
−
∫
σ

∂U
∂nσ

ΠP∆(E0
∗ − IPE0

∗)

)
≤ |U⊥|Pi‖E0

∗‖H2(Ωi).

(6.31)

Together we arrive at an estimate for the first term in (6.4)

aP (E∗, E
0
∗ − V 0) ≤ cΠcshape

(
ηP (U,Ω∗) + C1|U⊥|P

)
‖E0
∗‖H2(Ω∗). (6.32)

To control the inconsistent term from (6.4), we follow the same reasoning made in (6.15)
from Lemma 6.3 to get

aP (E∗, U
⊥) ≤ 1

2
aP (E∗, E∗) + C2

2
|U⊥|2P , (6.34)

where C2 retains the same meaning as before. Noting that E0
∗ = E∗ + U⊥, ‖E0

∗‖H2(Ω∗) ≤
‖E∗‖H2(Ω∗) + ‖U⊥‖H2(Ω∗). Invoking norm equivalence (6.6). Summing up we arrive

aP (E∗, E∗) ≤ CdU,1η
2
P (U,Ω∗) + CdU,2|U⊥|2P . (6.35)

The presence of negative powers in |U⊥|P on the right-hand side in (6.10) and (6.23) may
appear to pose a problem with decreasing mesh-size along the boundary. We now show that
contributions from domain boundary integrals are dominated by the those coming from the
mesh interior.
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Lemma 6.5. For sufficiently large stabilization terms γ1 and γ2,

(γ1 − CR)‖U‖2
3/2,P + (γ2 − CR)

∥∥∂U
∂n

∥∥2

1/2,P
≤ C−1

coerη
2
P (U,Ω), (6.36)

with CR � cshape

Ccoer
.

Corollary 6.6. Under the assumptions of Lemma 6.3 and lemma 6.4, if γ = min{γ1 −
CR, γ2 − CR} > 0 then

aP (u− U, u− U) ≤ CUη
2
P (U,Ω), (6.37)

and
|||U0
∗ − U |||2P∗ ≤ CdUη

2
P (U, ωRP→P∗ ) + γ−1C−1

coerη
2
P (U,Ω). (6.38)

6.3 Convergence
To show that procedure (2.132) exhibits convergence we must be able to relate the errors of
consecutive discrete solutions. In the conforming discrete method of Chapter 3 the symmetry
of the bilinear form, consistency of the formulation and finite-element spline space nesting
would readily provide that via Galerkin Pythagoras. This is not the case in Nitsche’s method
since our formulation is no longer consistent with the weak problem (1.4).

In what follows we establish estimates that allows us to compare two spline solutions on
different admissible meshes. This replaces the unavailable Galerkin Pythagoras which the
conformning formulation enjoyed.

Lemma 6.7 (Mesh perturbation). Let P and P∗ be successive admissible partitions which
are obtained by REFINE. Then for a constant Ccomp > 0, depending only on cshape, we have
for any δ > 0

aP∗(v, v) ≤ (1 + 4δCcoer)aP (v, v) +
Ccomp

δ

(
γ1‖v‖2

3/2,P + γ2

∥∥ ∂v
∂n

∥∥2

1/2,P

)
, (6.39)

holding for every function v ∈ H2(Ω).

Proof. Given any v ∈ H2(Ω) we write

aP∗(v, v) = aP (v, v) + 2

(∫
Γ

ΠP (∆v) ∂v
∂n
−
∫

Γ

∂ΠP (∆v)
∂n

v

)
− 2

(∫
Γ

ΠP∗(∆v) ∂v
∂n
−
∫

Γ

∂ΠP∗ (∆v)

∂n
v

)
− γ1

(
‖v‖2

P,3/2 − ‖v‖2
P∗,3/2

)
− γ2

(∥∥ ∂v
∂n

∥∥2

P,1/2
−
∥∥ ∂v
∂n

∥∥2

P∗,1/2

)
.

(6.41)
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Look at the boundary integral terms depending on P . Let σ ∈ GP an edge to some cell
τ ∈ P , ∫

σ

ΠP (∆v)
∂v

∂nσ
≤ ‖ΠP (∆v)‖σ

∥∥∥ ∂v
∂nσ

∥∥∥
σ
≤ cdTrcΠh

−1/2
σ ‖∆v‖τ

∥∥∥ ∂v
∂nσ

∥∥∥
σ
. (6.43)

Summing (6.43) over all σ ∈ GP and an application of Schwarz’s inequality on the summation
would give ∣∣∣∣ ∫

Γ

ΠP (∆v) ∂v
∂n

∣∣∣∣ � ( ∑
σ∈GP

h−1
σ

∥∥∥ ∂v
∂nσ

∥∥∥2

σ

)1/2( ∑
τ∈P :∂τ∩Γ6=∅

‖∆v‖2
τ

)1/2

,

≤
∥∥ ∂v
∂n

∥∥
P,1/2
‖∆v‖L2(Ω).

(6.45)

Similarly, using the inverse-estimate ‖∂ΠP (∆v)
∂nσ

‖σ ≤ cInvh
−1
σ ‖ΠP (∆v)‖σ, we obtain∣∣∣∣ ∫

Γ

∂ΠP (∆v)
∂n

v

∣∣∣∣ ≤ cdTrcInvcΠ‖v‖P,3/2‖∆v‖L2(Ω). (6.46)

We carry the same reasoning for the remaining boundary integral. Employing Young’s in-
equality with δ > 0 we arrive at

aP∗(v, v) � aP (v, v) + 4δ‖∆v‖2
L2(Ω) +

(
1
δ

+ γ1

)
‖v‖2

P,3/2 +
(

1
δ

+ γ1

)
‖v‖2

P∗,3/2

+
(

1
δ

+ γ2

) ∥∥ ∂v
∂n

∥∥2

P,1/2
+
(

1
δ

+ γ2

) ∥∥ ∂v
∂n

∥∥2

P∗,1/2
.

(6.48)

With the fact that hσ ≤ cshapehσ∗ , with σ ∈ GP and σ∗ ∈ GP∗ , we infer that ‖v‖3/2,P∗ ≤
c−1

shape‖v‖P,3/2 and ‖ ∂v
∂n
‖1/2,P∗ ≤ c−1

shape‖ ∂v∂n‖1/2,P .(
1
δ

+ γ1

) (
‖v‖2

P∗,3/2 + ‖v‖2
P∗,3/2

)
≤ Ccompγ1

δ
‖v‖2

P,3/2, (6.49)

where Ccomp > 0 is an appropriate proportionality parameter that depends on cshape. A
similar argument holds for terms including boundary norms of ∂v

∂n
.

Lemma 6.8 (Comparison of solutions). Let P and P∗ be successive admissible partitions
obtained by REFINE and let U ∈ XP and U∗ ∈ XP∗ be the finite-element spline solutions.
Then we have for any Λ > 1

aP∗(eP∗ , eP∗) ≤ΛaP (eP , eP )− Ccoer

2
|||U∗ − U |||2P∗ +

CComp

(Λ− 1)γ
η2
P , (6.51)

where γ = min{γ1 − CR, γ2 − CR}.
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Proof. We follow the following abbreviation. Let e = u−U , let e∗ = u−U∗, let E0
∗ = U0

∗−U0,
and let E⊥∗ = U⊥∗ − U⊥. Partial Galerkin Orthogonality (6.8) implies

aP∗(e∗, e∗) = aP∗(e∗, e∗ + E0
∗) = aP∗(e∗ + E0

∗ , e∗ + E0
∗)− aP∗(E0

∗ , e∗ + E0
∗). (6.53)

Again, by Partial Galerkin Orthogonality (6.8) and symmetry we have

aP∗(e∗, e∗) = aP∗(e∗ + E0
∗ , e∗ + E0

∗)− aP∗(E0
∗ , E

0
∗). (6.54)

Rewriting U∗ − E0
∗ = U − E⊥∗ we can express e∗ + E0

∗ = e− E⊥∗ and therefore

aP∗(e∗ + E0
∗ , e∗ + E0

∗) = aP∗(e, e)− 2aP∗(e, E∗⊥) + aP∗(E
⊥
∗ , E

⊥
∗ ). (6.55)

We then have

aP∗(e∗, e∗) = aP∗(e, e)− 2aP∗(e, E∗⊥) + aP∗(E
⊥
∗ , E

⊥
∗ )− aP∗(E0

∗ , E
0
∗). (6.57)

Employ Young’s inequality

aP∗(e, e)− 2aP∗(e, E
⊥
∗ ) ≤ (1 + δ)aP∗(e, e) +

C2
cont

δCcoer
|||E⊥∗ |||2P∗ . (6.58)

Writing E0
∗ = E∗ − E⊥∗ and with |||E∗|||2P∗ ≤ 2|||E0

∗ |||2P∗ + 2|||E∗|||2P∗ makes |||E0
∗ |||2P∗ ≥

1
2
|||E∗|||2P∗ −

|||E⊥∗ |||2P∗ and

aP∗(E
⊥
∗ , E

⊥
∗ )− aP∗(E∗0 , E0

∗) ≤ Ccont|||E⊥∗ |||2P∗ − Ccoer|||E0
∗ |||2P∗ ,

≤ −Ccoer

2
|||E∗|||2P∗ + C4|||E⊥∗ |||2P∗ ,

(6.60)

where C4 = Ccoer + Ccont. We therefore have, with C5 = max{C4,
C2

cont

Ccoer
},

aP∗(e∗, e∗) ≤ (1 + δ)aP∗(e, e)− Ccoer

2
|||E∗|||2P∗ + C5

(
1 + 1

δ

)
|||E⊥∗ |||2P∗ . (6.62)

Using the fact that edge sizes between two consecutive refinement steps are comparable and
(6.6)

|||E⊥∗ |||2P∗ � |U
⊥
∗ |2P∗ + |U⊥|2P � C−1

coer

γ

(
η2
P∗(Ω) + η2

P (Ω)
)
. (6.63)

In view of Lemma 6.7, for the same δ > 0 above, and Lemma (6.36)

aP∗(e, e) ≤(1 + 4δCcoer)aP (e, e) + CcompC
−1
coer

δγ
η2
P (Ω). (6.65)

Summing up we have

aP∗(e∗, e∗) ≤ (1 + Cδ)aP (e, e)− Ccoer

2
|||E∗|||2P∗ +

CComp

δγ

(
η2
P∗(Ω) + η2

P (Ω)
)
, (6.67)

where C > 1 and depends on Ccoer. Define Λ(δ) = 1 + Cδ.
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Theorem 6.9 (Convergence of Nitsche’s AFEM). Given f ∈ L2(Ω) and Dörlfer para-
meter θ ∈ (0, 1], there exists γC(θ) > 0, a contractive factor α ∈ (0, 1) and a constant
Cest > 0, such that for all γ ≥ γC the adaptive procedure AFEM [P, f, θ] will produce two
successive solutions U ∈ XP and U∗ ∈ XP∗ for which

aP∗(eP∗ , eP∗) + Ccoer

2
Cestη

2
P∗(U∗,Ω) ≤ α

(
aP (eP , eP ) + Ccoer

2
Cestη

2
P (U,Ω)

)
. (6.68)

Proof. The convergence proof for Nitsche’s method is somewhat more delicate than the proof
of Theorem 3.13, but the core ideas remain the same. We adopte the same abbreviates as in
Theorem 3.13.

aP∗(eP∗ , eP∗) + Ccoer

2
Cestη

2
P∗ ≤ΛaP (eP , eP )− Ccoer

2
|||εP |||2P∗ + Ccomp

γ(Λ−1)

(
η2
P∗ + e2

P

)
+ Ccoer

2
Cest

(
qestη

2
P + C−1

est |||εP |||2P∗
)
.

(6.70)

Quasi-norm factor chosen so that |||εP |||2P∗ is removed and reduces to

aP∗(eP∗ , eP∗) +
(
Ccoer

2
Cest − Ccomp

γ(Λ−1)

)
η2
P∗ ≤ ΛaP (eP , eP ) +

(
Ccoer

2
Cestqest + Ccomp

γ(Λ−1)

)
η2
P . (6.71)

With aP (eP , eP ) = αaP (eP , eP ) + (1− α)aP (eP , eP ) and upper bound γ ≥ γC :

aP∗(eP∗ , eP∗) + Ccoer

2
Cest

(
1− Ccomp

Ccoer

2
Cestγ(Λ−1)

)
︸ ︷︷ ︸

=:A1

η2
P∗

≤ αΛaP (eP , eP ) + Ccoer

2
Cest

(
(1− α)Λ CU

Ccoer

2
Cest

+ qest + Ccomp

Ccoer

2
Cestγ(Λ−1)

)
︸ ︷︷ ︸

=:A2

η2
P .

(6.73)

Making notation simpler: c = CU
Ccoer

2
Cest

. If α chosen to be

α =
qest + cΛ

Λ(1 + c)
+
Ccomp/CU
Λ(1 + c)

γ−1(Λ− 1)−1, (6.74)

then it holds that A2 = αΛ. Let Λ = 1 + ε, with ε ≤ 1−qest

2c
, write qest = 1− (1− qest), then

qest + cΛ

1 + c
= 1− (1− qest)− εc

1 + c
≤ 1− 1

2(1+c)
(1− qest). (6.75)

Furthermore, make γ−1 < CU
2Ccomp

(1− qest)ε so that

A2 ≤ 1− 1
2(1+c)

(1− qest) +
Ccomp/CU

1 + c
γ−1ε−1 < 1. (6.76)
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It is left to make sure that A2 < A1 so that contraction of quasi-norm is valid. We know that
A2 < 1 and the Ccomp

Ccoer

2
Cestγε

part of A1 can be made arbitrarily small by increasing γ, so it is

possible to make A1 = 1− Ccomp

Ccoer

2
Cestγε

> A2 for sufficiently large γ. This means A2 = βA1 for

some 0 < β < 1 and

aP∗(eP∗ , eP∗) + Ccoer

2
CestA1η

2
P∗ ≤ max{A2, β}

(
aP (eP , eP ) + Ccoer

2
CestA1η

2
P

)
. (6.77)

6.4 Quasi-optimlaity of AFEM
The total-error norm is given by

ρP (v, V, g) =
(
|||v − V |||2P + osc2

P (g)
)1/2

. (6.78)

The AFEM approximation class defined in Chapter 3 characterized by nonlinear approxim-
ation from spline spaces contained in H2

0 (Ω) will be shown to be equivalent to the AFEM
approximation class of this chapter.

We define the approximation class in which approximation using spline spaces XP with
H2(Ω) regularity but not necessarily in H2

0 (Ω),

As =

{
v ∈ H2

0 (Ω) : sup
N>0

N s inf
P∈PN

EP (v) <∞
}
, (6.79)

where

EP (v) = inf
V ∈XP

(
|v − V0|2H2(Ω) + osc2

P (Lv)
)1/2

, v ∈ H2
0 (Ω). (6.80)

Analogously, we define the approximation class in which approximation comes from boundary
conforming spline spaces X0

P used in Chapter 3 by

As
0 =

{
v ∈ H2

0 (Ω) : sup
N>0

N s inf
P∈PN

E0
P (v) <∞

}
, (6.81)

where

E0
P (v) = inf

V0∈X0
P

(
|v − V0|2H2(Ω) + osc2

P (Lv)
)1/2

, v ∈ H2
0 (Ω). (6.82)

Lemma 6.10 (Equivalence of classes). As = As
0
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Proof. It is immediate that As
0 ⊂ As. Conversely, let u ∈ As, for s > 0, let N > #P0, let

P∗ ∈PN and let V∗ ∈ XP∗ be such that

ρP∗(u, V∗, f) = inf
P∈PN

EP (u). (6.83)

Using the triangle inequality |||u − V 0
∗ |||P∗ ≤ |||u − V∗|||P∗ + |||V∗ − V 0

∗ |||P∗ with the fact that
|V∗|P∗ = |u− V∗|P∗ we have in view of norm equivalence (6.6)

|||V∗ − V 0
∗ |||P∗ ≤ C⊥|V∗|P∗ � |||u− V∗|||P∗ , (6.84)

from which we obtain

|||u− V 0
∗ |||2P∗ + osc2

P∗(f) � |||u− V∗|||2P∗ + osc2
P∗(f). (6.85)

Upon taking infimum we arrive at

|||u− V 0
∗ |||2P∗ + osc2

P∗(f) � E2
P (u, f) � N−2s. (6.86)

Remark 6.11. In other words, the one-sided characterization of Corollary 3.23 is valid for
approximation from XP .

Lemma 6.12 (Quasi-optimality of total error). For constants CQOTE > 0 and γQ > 0
we have for all γ ≥ γQ

ρ2
P (u, U, f) ≤ CQOTE inf

V ∈XP
ρ2
P (u, V, f). (6.87)

Proof. Let e = u−U . In view of coercivity partial Galerkin orthogonality (6.8) and continuity
of bilinear form

Ccoer|||e|||2P ≤ aP (e, u− U) = aP (e, u− U0)− aP (e, U⊥),

= aP (e, u− V0) + aP (e, U⊥),

= aP (e, u− V ) + aP (e, V ⊥) + aP (e, U⊥),

≤ Ccont|||e|||P
(
|||u− V |||P + |||V ⊥|||P + |||U⊥|||P

)
.

(6.89)

Norm equivalence (6.1) makes |||V ⊥|||P ≤ C⊥|u− V ⊥|P ≤ |||u− V |||P . Nonconforming control
(6.36) and Global Lower Bound (3.39) makes |||U⊥|||P � γ−1/2ηP ≤ γ−1/2CLρP (u, U, f). From

Ccoer|||e|||P � Ccont

(
|||u− V |||P + γ−1/2CLρP (u, U, f)

)
, (6.90)
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we get

|||e|||2P �
C2

cont

C2
coer

(
|||u− V |||2P + γ−1C2

Lρ
2
P (u, U, f)

)
. (6.91)

Add osc2
P (f) to the preceding expression to get(

1− C2
contC

2
L

C2
coer

γ−1
)
ρ2
P (u, U, f) � C2

contC
2
L

C2
coer

ρ2
P (u, V, f). (6.92)

Let γQ =
C2

contC
2
L

C2
coer

.

From now on we define

θ∗(γ) =

(
CL − 2CdUγ

−1

2(1 + CdU)

)1/2

and γ∗(θ) = max

(
2CdU
CL

, γQ, γC(θ)

)
. (6.93)

Then θ∗ > 0 and since CL < CdU , it is sure that θ∗ < 1.

Lemma 6.13 (Optimal marking). Let U = SOLVE [P, f ], let P∗ be any refinement of P
and let U∗ = SOLVE [P∗, f ]. If for some positive µ < 1

|||u− U0
∗ |||2P∗ + osc2

∗(f, P∗) ≤ µ
(
|||u− U |||2 + osc2

P (f, P )
)
, (6.94)

and RP→P∗ denotes collection of all elements in P requiring refinement to obtain P∗ from P ,
then for θ ∈ (0, θ∗(γ)) we have

ηP (U, ωRP→P∗ ) ≥ θηP (U,Ω). (6.95)

Proof. Let θ < θ∗, the parameter θ∗ to be specified later, such that the linear contraction of
the total error holds for

µ(θ, γ) = 1
2

(
1− 2CdUγ

−1

CL

)(
1− θ2

θ2
∗

)
< 1

2
, (γ ≥ γ∗). (6.96)

The efficiency estimate (3.39) together with the assumption (6.94)

(1− 2µ)CLη
2
P (U, P ) ≤ (1− µ)ρ2

P (u, U, f),

= ρ2
P (u, U, f)− ρ2

∗(u∗, U
0
∗ , f),

= |||u− U |||2P − 2|||u− U0
∗ |||2P∗ + osc2

P (f,Ω)− 2osc2
P∗(f,Ω).

(6.98)

Discrete reliability (6.23)

|||u− U |||2P − 2|||u− U0
∗ |||2P∗ ≤ 2|||U0

∗ − U |||2P ,
≤ 2CdRel

(
η2
P (U, ωRP→P∗ ) + γ−1η2

P (U,Ω)
)
.

(6.100)



6.4 QUASI-OPTIMLAITY OF AFEM 137

Estimator Dominance over oscillation

osc2
P (f,Ω)− 2osc2

P∗(f,Ω) ≤ 2osc2
P (f, ωRP→P∗ ) ≤ 2η2

P (U, ωRP→P∗ ). (6.102)

From

(1− 2µ)CLη
2
P (U, P ) ≤ 2(1 + CdU)η2

P (U, ωRP→P∗ ) + 2CdUγ
−1η2

P (U,Ω), (6.103)

re-write into (
(1− 2µ)CL + 2CdUγ

−1
)
η2
P (U, P ) ≤ 2(1 + CdU)η2

P (U, ωRP→P∗ ). (6.104)

For reader’s clarity we show that

(1−2µ)CL−2CdUγ
−1

2(1+CdU )
= θ2. (6.105)

Express
(1− 2µ)CL − 2CdUγ

−1 = θ22(1 + CdU) = θ2

θ2
∗
(CL − 2CdUγ

−1), (6.106)

which is same as

−2µ = θ2

θ2
∗

(
1− 2CdUγ

−1

CL

)
+ 2CdUγ

−1

CL
− 1 =

(
1− 2CdUγ

−1

CL

)(
θ2

θ2
∗
− 1
)
. (6.108)

Lemma 6.14 (Cardinality of Marked Cells). Let {(P`,X`, U`)}`≥0 be a sequence gener-
ated by AFEM (P0, f ; ε, θ) for admissible P0 and the pair u ∈ As for some s > 0 then

#M` �
(

1− θ2

θ2
∗

)− 1
2s

|u|−
1
s

As ρ`(u, U`, f)−
1
s . (6.109)

Proof. Let (u, f) ∈ As and set ε2 = µC−1
QOTEρ

2
`(u, U`, f). In view of Lemma 6.10, u ∈ A0

s

and there exists an admissible partition Pε and V 0
ε ∈ X0

ε with ρ2
ε(u, V

0
ε , f) ≤ ε2 and #Pε �

|u|1/sAs ε
−1/s. Let P∗ be the overlay of meshes P` and Pε. From Partial Consistency (6.7)

aP∗(U
0
∗ ,W

0) = `f (W
0) ∀W 0 ∈ X0

P∗ , (6.110)

we invoke Lemma 6.12 on U0
∗ and use the fact P∗ ≥ Pε makes XP∗ ⊇ Xε and obtain

ρ2
∗(u, U

0
∗ , f) ≤ CQOTEρ

2
ε(u, V

0
ε , f) ≤ ε2 = µρ2

`(u, U`, f). (6.111)

We may now invoke Lemma 6.13 and RP`→P∗ satisfies Dörfler property Minimal cardinality
of marked cells

#M` ≤ #RP`→P∗ ≤ #P∗ −#P`. (6.112)

In view of mesh overlay property #P∗ ≤ Pε + #P` − #P0 in (2.75) and definition of ε we
arrive at

#M` ≤ #Pε −#P0 � µ−1/2s|u|1/sAs ρ`(u, U`, f)−1/s. (6.113)
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Theorem 6.15 (Quasi-optimality of Nitsche’s method). Let γ∗ and θ∗ be as above. If
γ > γ∗ and θ ∈ (0, θ∗(γ)), u ∈ As and P0 is admissible, then the call AFEM [P0, f, ε, θ]
generates a sequence {(P`,X`, U`)}`≥0 of strictly admissible partitions P`, conforming finite-
element spline spaces X` and discrete solutions U` satisfying

ρ`(u, U`, f) � Φ(s, θ)|u|As(#P −#P0)−s, (6.114)

with Φ(s, θ) = (1− θ2/θ2
∗)
− 1

2 .

Proof. The proof is similar to that of the conforming formulation of Chapter 3. For com-
pleteness we outline the analysis. Let θ < θ∗ be given and assume that u ∈ As. We will
show that the adaptive procedure AFEM will produce a sequence {(P`,X`, U`)}`≥0 such that
ρ` � (#P` − #P0)−s. In view of convergence Theorem 6.9, we have for a factor Cest > 0
and a contractive factor α ∈ (0, 1), Efficiency Estimate (3.39) and estimator dominance over
oscillation

`−1∑
j=0

ρ
− 1
s

j ≤
`−1∑
j=0

α
`−j
s

(
1 + Cest

CL

) 1
2s

(e2
` + Cestosc2

`)
− 1

2s . (6.115)

Cardinality of Marked Cells (6.109) and (2.107) yields

#P` −#P0 � |u|−1/s
As

(
1 + Cest

CL

)1/2s α1/s

1− α1/s

(
1− θ2

θ2
∗

)−1/2s

ρ`(u, U`, f)−
1
s . (6.116)



Chapter 7
Conclusion

7.1 Discussion

In [61], Cascon, Kreuzer, Nochetto and Siebert provided the first complete performance
analysis for adaptive h-refinement methods for general symmetric second order elliptic par-
tial differential equations built on the pioneering work of Verfuth, Babuška, Dörfler, Morin,
Siebert, Veeser, Binev, Dahmen, and DeVore and Stevenson. An analogous analysis for the
biharmonic equation is carried out in Chapter 3. The crucial differences in the treatment of
the fourth-order problem are the necessity for an approximation tool suitable for C1 quasi-
interpolation in a basis that is not interpolatory and in the derivation of the continuous
lower bound (3.39). All remaining ingredients for convergence and quasi-optimality analyses
followed in an almost exact manner.

The remainder of this thesis explores a weak prescription of the essential boundary con-
ditions using Nitsche’s method. In Chapters 4 and 5 we performed a priori and a posteriori
error estimations for the Stommel–Munk models and the stationary quasi-geostrophic equa-
tion simulating the large scale wind-driven circulation. Through several benchmark examples,
we demonstrated that the theoretical analysis predicts the performance of our algorithms on
rectangular and L-shaped geometries with a thin western boundary layer. Adaptive refine-
ments were achieved using hierarchical B-splines. Convergence rates of the adaptive methods
were compared with those of the uniform refinement methods.

For both rectangular and L-shaped geometries, higher accuracy of the local refinement
was observed in comparison to the uniform refinement during the initial iterations. In par-
ticular, local refinement resulted in initially stronger convergence on the rectangular domain
with a boundary layer but later returned to the expected optimal rate. We believe that this
is because the local refinement resolved the finer details in an already smooth function with
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efficiency. Moreover, the local refinement method successfully recovered the optimal rate of
convergence on the L-shaped geometry in contrast to the sub-optimal performance of the
uniform refinement indicating the potential advantage of our algorithm on more complex
geometries. Moreover, we compared the computational time of the local refinement with the
uniform refinement. The results clearly show that the computational time can be signific-
antly reduced with the local refinement to obtain accurate results relative to the uniform
refinement, indicating the efficiency of our adaptive algorithm.

We concluded this thesis by adapting the analysis of Bonito and Nochetto [63] to Nitsche’s
formulation. Ingredients to prove convergence and quasi-optimality had to take into account
the dependence of Nitsche’s bilinear form on the mesh.

7.2 Future work
In the future, it is possible to extend our study to the Nitsche-type variational formulation
of the nonlinear model, i.e., the stationary quasi-geostrophic equation. More complex geo-
metries with arbitrary coastal boundaries can be considered. Finally, it would be interesting
to extend this study to the time-dependent QGE.

The convergence and quasi-optimality of the Nitsche’s method can be studied for the
general class of fourth-order problems addressed in [3] by Blum, Rannacher and Leis.
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et Appliquées, Volume 36, pp. 67-95, (1957)

141



142 BIBLIOGRAPHY 7.2

[10] Johnen and Scherer, On the equivalence of the K-functional and moduli of con-
tinuity and some applications, Constructive theory of functions of several variables,
pp. 119–140, Springer, (1977)

[11] de Boor and Fix, Spline approximation by quasi-interpolants, Journal of Approxim-
ation Theory, Volume 8, No. 1, pp. 19–45, Academic Press, (1973)

[12] Lyche and Schumaker, Local spline approximation methods, Journal of Approxim-
ation Theory, Volume 15, No. 4, pp. 294–325, Academic Press, (1975)

[13] Graham, Estimates for the modulus of smoothness, Journal of approximation theory,
Volume 44, 2, pp. 95–112, Academic Press, (1985)

[14] Oswald and Storozhenko, Jackson’s theorem in the spaces Lp(Rk), 0 < p < 1,
Siberian. Math, Volume 19, pp. 630–639, (1978)

[15] Butler and Richards, An L p saturation theorem for splines, Canadian Journal of
Mathematics, Volume 24, No. 5, pp. 957–966, Cambridge University Press, (1972)

[16] Ciesielski, Constructive function theory and spline systems, Studia Mathematica,
Volume 53, pp. 277–302, Instytut Matematyczny Polskiej Akademii Nauk, (1975)

[17] Petrushev, Direct and converse theorems for best spline approximation with free knots
and Besov spaces, CR Acad. Bulgare Sci, Volume 39, pp. 25–28, (1986)

[18] DeVor and Popov, Interpolation spaces and non-linear approximation, Function
spaces and applications, 191–205, Springer, (1988)

[19] Scott and Zhang, Finite element interpolation of nonsmooth functions satisfying
boundary conditions, Mathematics of Computation, Volume 54, pp. 483–493, (1990)

[20] Binev, Dahmen, DeVore and Petrushev, Approximation classes for adaptive
methods, Serdica Mathematical Journal, Volume 28, number 4, pp3.91–416, (2002)

[21] Gaspoz, Fernando and Morin, Approximation classes for adaptive higher or-
der finite element approximation, Mathematics of Computation, Volume 83, No. 289,
pp. 2127–2160, (2014)

[22] Tsogtgerel, Convergence rates of adaptive methods, Besov spaces, and multilevel ap-
proximation, Foundations of Computational Mathematics, Volume 17, No. 4, pp. 917–
956, Springer, (2017)

[23] Schumaker, Spline functions: basic theory, Cambridge University Press, 2007



7.2 BIBLIOGRAPHY 143

[24] Vuong, Giannelli, Jüttler and Simeon, A hierarchical approach to adaptive
local refinement in isogeometric analysis, Computer Methods in Applied Mechanics
and Engineering, Volume 200, pp. 3554–3567, (2011)

[25] Bazilevs, Beirao da Veiga, Cottrell, Hughes and Sangalli, Isogeometric
analysis: approximation, stability and error estimates for h-refined meshes, Mathem-
atical Models and Methods in Applied Sciences, Volume 16, pp. 1031–1090, (2006)
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