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Abstract 

Considerable resources and time are required to bring a new drug to the market, in a 

multidisciplinary process involving structural biologists, synthetic chemists, pharmacologists, 

among many other experts. It has long been recognized that computation could alleviate costs and 

human-involvement; and computational tools are now applied to virtually all stages of the drug 

discovery process. From rigorous statistical analyses of large sets of data or employment of newly 

emerging artificial intelligence techniques to predict absorption, distribution, metabolism, 

excretion and toxicity (ADMET) properties among others, to more physically grounded methods 

simulating the structural and dynamic features of molecular systems. The focus of this thesis will 

be directed towards this latter class, as we investigate molecular mechanics (MM) models, in 

which a computationally affordable classical (as opposed to quantum) description of molecules, 

allows for high-throughput applications and the simulation of large biomolecular systems. Notable 

applications include virtual screening of large libraries of potential inhibitors, and molecular 

dynamics simulations of entire proteins or nucleic acids, which can also provide insights onto 

macromolecule-ligand binding. First, we will describe the inner-workings of MM, and review the 

current state-of-the-art, as well as most recent contributions to improve these models. Our research 

group has recently been involved in the development of a new method called H-TEQ, in which we 

have challenged the traditional representation of molecules in MM using atom types and base our 

predictions on quantified implementations of well-established chemical principles. Conjugated 

chains and aromatic rings are privileged scaffolds in drug design, and 84% of FDA approved 

pharmaceuticals contain at least one nitrogen atom. In that context, any successful application of 

MM based methods in drug design is bound to pay particular attention to these moieties. In the 

second part of this thesis, we report our most recent contributions to H-TEQ, in which we extend 

its domain of application to small organic molecules containing unsaturations. In the third part of 

this thesis, we describe current shortcomings of MM to describe molecules in which nitrogen 

atoms are bound to π-systems and share potential solutions which could resolve those issues.  
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Résumé 

Afin d’amener un nouveau composé pharmaceutique sur le marché, des investissement 

considérable (en ressources et en temps) sont nécessaires, dans un processus impliquant biologistes 

structurels, chimistes organiciens, pharmacologistes, parmi de nombreux autres experts. Il est 

reconnu depuis un certain temps que l’utilisation d’outils informatiques pourrait réduire le recours 

à la main d’œuvre, ainsi que les coûts. Dès à présent, pratiquement chaque étape de la conception 

de nouveaux médicaments fait appel à ces nouveaux outils. De l’analyse statistique rigoureuse de 

large jeux de données, ou l’emploi émergent de l’intelligence artificielle permettant de prédire 

certaines propriétés moléculaires (e.g. absorption, distribution, métabolisme, excrétion et toxicité), 

jusqu’à l’utilisation de méthodes reposant sur des principes physiques simulant les caractéristiques 

structurelles et dynamiques de systèmes moléculaires. Dans cette thèse, nous nous intéresserons 

particulièrement à cette seconde catégorie, en explorant les modèles classiques (et non quantiques) 

de mécanique moléculaire (MM) auxquels des coûts de calculs avantageux permettent des 

applications haut-débit et de simuler de larges systèmes biomoléculaires. Les principales 

applications des modèles MM incluent le criblage virtuel de bibliothèques chimiques afin identifier 

de potentiels inhibiteurs, ainsi que les simulations par dynamique moléculaire de protéines ou 

d’acides nucléiques permettant d’éclaircir les mécanismes d’adhésion entre ligand et 

macromolécule. Dans un premier temps, nous dresserons un bilan sur l’état-de-l’art actuel des 

méthodes MM, tout en détaillant leur fonctionnement, puis nous décrirons les plus récentes 

contributions apportées par la communauté scientifique en vue d’améliorer leur performance. 

Notre groupe de recherche a récemment développé une nouvelle technique appelée H-TEQ, dans 

laquelle nous omettons la représentation traditionnelle de molécules à travers les « types 

d’atomes » (liée à plusieurs défaillances majeures), et dont les prédictions sont fondées sur une 

quantification de principes chimiques qualitatifs établis depuis plusieurs décennies. La conception 

de nouveaux médicaments fait appel à de nombreux fragments moléculaires privilégiés (e.g. 

chaines conjuguées, cycles aromatiques) et 84% des composés thérapeutiques approuvés par la 

FDA contiennent au moins un atome d’azote. Dans ce contexte, l’application des méthodes MM 

lors de la conception de nouveaux médicaments se doit de porter une attention particulière lors de 

la paramétrisation des fragments mentionnés ci-dessus, afin d’obtenir des résultats fiables. Dans 



 

iii 

 

la deuxième partie de cette thèse, nous rapportons nos plus récentes contributions apportées à H-

TEQ, dont nous étendons le domaine d’application aux molécules organiques désaturés. Dans la 

troisième partie, nous décrivons les défaillances des méthodes MM pour décrire les molécules 

contenant un azote lie à un système conjugué, puis proposons de potentielles solutions permettant 

de résoudre ces insuffisances. 
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1 Current Status of Molecular Mechanics Based 

Methods for Drug Discovery 

 

1.1 Molecular Mechanics in Drug Discovery 

  

1.1.a Computational Methods in Drug Discovery  

 In 2004, Jorgensen stated that while computers couldn’t design drugs single-handedly, they 

permeated practically all stages of drug discovery (DD).1 Computational tools have steadily spread 

since this observation, as a result of the continued increase in computational power, and the ever-

growing availability of large amounts of data. DD is a non-linear process containing multiple 

feedback-loops, in which all facets of a potential therapeutic compound are examined 

concomitantly.2 This idea has been reinforced by the introduction of computational tools which 

can predict properties on wide libraries of compounds when access to physical samples are limited 

(i.e. low throughput or expensive experiments). For example, it is now common to estimate a 

molecule’s “drug-likeness” (based on Lipinski’s rules or more advanced schemes),3 and/or 

evaluate absorption, distribution, metabolism, excretion and toxicity (ADMET) properties4 earlier 

in the DD process, which could  reduce the fraction of pharmacokinetics or toxicity related failures 

in clinical phases.5 More importantly, a compound’s ability to interact with a biological target can 

be assessed in computer aided drug design (CADD) following two main approaches known as 

ligand based drug design (LBDD) and structure based drug design (SBDD). 

 In SBDD, knowledge of the 3-D structure of a designated target is used to search for 

potential inhibitors possessing significant structural and chemical complementarity.6 Central to the 

SBDD paradigm is the estimation of rigorous macromolecule-drug binding affinities; the accuracy 

of those predictions rely on multiple factors such as the level of detail of the structural model 

(subatomic, atomic, coarse-grained),7 a proper sampling of accessible molecular conformations,8 

as well as the accuracy of the mathematical functions (potentials) used to compute a molecule’s 
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(or molecular complex’s) potential energy surface (PES).9, 10 A wide array of methods allowing to 

predict binding affinities are now accessible to researchers; from rapid but approximate scoring 

functions employed during preliminary searches through large libraries of compounds (virtual high 

throughput screening),11 to the more accurate and computationally costly free energy perturbation 

(FEP)12, 13 calculations generally performed on the most promising candidates only, among other 

methods.14  

 Molecular potentials can be computed following two fundamental approaches. On one 

hand, quantum mechanical (QM) techniques could provide a very accurate depiction of the PES 

of molecules as they consider electronic interactions at the subatomic level explicitly. However, 

such methods cannot be carried to high-throughput tasks or evaluate the energetics of large 

molecules (e.g. entire proteins in solvent), due to their restrictive computational costs. In this 

context, molecular mechanics (MM) methods have emerged in which the PES is calculated using 

simplified potentials aimed to approximate the QM (and experimental) energy surface, while 

reducing computational costs by several orders of magnitude.  

 The major focus of this review will be on the current status of atomistic MM methods with 

an emphasis on the modeling of small drug-like molecules. We will first give a general description 

of how molecular systems are treated in MM, followed by a discussion of the current liabilities of 

MM, and how the research community has addressed them in recent years. It is out of the scope 

of this review to discuss the large array of computational methods applicable to DD and we 

recommend the following reviews to any interested reader.1, 15  

1.1.b General Description of Molecular Mechanics  

 In MM,  molecular systems are somewhat described as a set of beads (or points) 

interconnected by springs,  where beads represent atoms in the molecule and springs represent the 

different interactions beads are subject to (Figure 1.1). Each bead is assigned an “atom type” based 

on the element, hybridization state and direct chemical environment of the atom that it represents. 

Every atom type is associated to a set of parameters which determines its behavior. For example, 

a carbon atom in ethane could be assigned the hypothetical atom type “Csp3”, while a carbon atom 

in an alkene would be assigned “Csp2” and a carbon atom in benzene would be assigned “Caromatic”. 
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It becomes evident that describing larger portions of chemical space, while considering subtle 

differences in chemical environments and properties, requires the addition of more atom types. For 

example, in the most recent version of AMBER, the protonated histidine residue is assigned 

different atom types than its unprotonated counterpart.16 However, it is a known drawback that the 

addition of too many atom types both increases the cost of the parametrization process and is linked 

to the redundancy of some parameters.17 These limitations will be discussed in more detail 

throughout this review.  

 

Figure 1.1. Interactions included in common molecular mechanics models to calculate the 

potential energy of a molecule. As an example, glycylglycine is shown in the presence of two 

water molecules. Not all interactions are shown to reduce visual clutter. 
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 The overall energy of the system is calculated as a linear combination of multiple 

components, each associated to an underlying interaction as exemplified by Eqs. 1.1 to 1.7. These 

contributions can be split into two categories, bonded interactions (bonds, angles, torsions, out-of-

plane) which are calculated for atoms within the same molecule, and non-bonded interactions (van 

der Waals and electrostatics) which are calculated for pairs of atoms separated by 3 or more bonds 

(intramolecular) or pairs of atoms in different molecules (intermolecular). Each term in the 

equation uses two or more parameters (shown in bold) which vary depending on the atom types 

of the beads involved in that interaction. Parameters are obtained from precomputed tables. In case 

parameters for a specific molecule are missing, programs can either assign generic parameters 

(developed from a similar molecule), with no guarantee that these will transfer well, or exit without 

being able to provide any information. The equations (which may differ from those shown here) 

used to calculate the multiple interactions and the corresponding set of parameters are referred to 

as force fields (FFs). 

 

Etotal = Ebonds + Eangles + Etorsions + Eout−of−plane⏟                            
𝒃𝒐𝒏𝒅𝒆𝒅

+ EvdW  +  Eelectrostatic⏟            
𝒏𝒐𝒏−𝒃𝒐𝒏𝒅𝒆𝒅

 
(1.1) 

 𝐸𝑏𝑜𝑛𝑑𝑠 = 𝑲𝒓(𝑟 − 𝒓𝒆𝒒)
2
 (1.2) 

 𝐸𝑎𝑛𝑔𝑙𝑒𝑠 = 𝑲𝜽(𝜃 − 𝜽𝒆𝒒)
2
 (1.3) 

 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = ∑ 𝑽𝒏(1 + 𝑐𝑜𝑠(𝑛𝜑 + 𝜹))

𝑁

𝑛 = 1

 (1.4) 

 𝐸𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 = 𝑲𝝎(𝜔 −𝝎𝒆𝒒)
2
 (1.5) 

 𝐸𝑣𝑑𝑊 = ∑ 𝜺𝒊𝒋 [(
𝑹𝒎𝒊𝒏,𝒊,𝒋

𝑟𝑖,𝑗
)

12

 −  (
𝑹𝒎𝒊𝒏,𝒊,𝒋

𝑟𝑖,𝑗
)

6

]

𝑝𝑎𝑖𝑟𝑠 𝑖, 𝑗

 
(1.6) 
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𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠 = ∑

𝑞𝑖𝑞𝑗
4𝜋𝜀0𝑟𝑖,𝑗

𝑝𝑎𝑖𝑟𝑠 𝑖, 𝑗

 
(1.7) 

The connectivity of a molecule is pre-set, and bond breaking/forming events cannot occur 

within the molecular mechanics framework. A notable exception to that rule is ReaxFF,18 in which 

connectivity is recalculated for each conformation, and set depending on interatomic distances. 

While this FF has seen applications in various contexts,19-21 it cannot yet be applied to study large 

biologically relevant macromolecules as simulations are subject to complications as the number of 

possible reactions increases (e.g. large proteins).22, 23 In addition to the fixed molecular 

connectivity imposed by MM methods, lone pairs of electrons are usually not explicitly considered 

(there is no lone pairs bead). Hence, the many interactions lone pairs can undergo (conjugation, 

lp-lp repulsion, etc.) are thus generally considered by the heteroatom holding the lone pair. This 

simplification can become problematic when modeling nitrogen containing compounds which we 

will further discuss in this thesis.  

1.1.c Main Domains of Application of Force Fields 

MM methods trace their roots back to the 1970’s with Allinger’s MM1 force field for 

hydrocarbons.24 While computational capabilities have and continue to increase exponentially 

(allowing expensive QM calculations to be used in rare cases25), MM methods remain at the 

forefront due to their applicability to high-throughput tasks such as docking and computationally 

intensive tasks such as molecular dynamics (MD), which constitutes the two major applications of 

MM in the realm of SBDD.  

In docking, a potential ligand is placed within a biological target’s active site (protein, or 

nucleic acid), in what is known as a pose (binding mode), which is subsequently analyzed by a 

scoring function. Multiple poses for the same ligand are evaluated, thereby providing insights onto 

receptor-ligand binding modes.26 It is important to note that not all scoring functions rely on FFs 

in their calculations.8 The strength of docking originates from its extremely cheap computational 

cost, allowing the scan of large libraries of compounds (109 potential ligands), it is therefore 

routinely used in virtual screening methods.27 However, docking only gives an account of static 
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receptor-ligand pair binding affinities, whereas binding events are known to be subject to dynamic 

changes (induced fit).28 

Dynamic (fast) events can be tracked in MD, as molecular systems are simulated following 

Newton’s laws of motion. The position of every atom along the overall trajectory is updated after 

small finite timesteps (femtoseconds), by calculating the forces acting on each atom using a 

potential energy function.29 Although MD simulations have been carried out using accurate QM 

potentials,25 cheaper  MM potentials can carry simulations of larger systems (e.g. entire proteins 

or even entire virus30) in explicit solvent and for increased time scales (microsecond).31 Increase 

in computational power combined with MM potentials has thus allowed to monitor biological 

events which could not previously be captured by MD such as protein folding,32 motion of ions 

through channels33 and dynamics of membrane transporters.34 More accurate receptor-ligand 

binding affinities can also be acquired from MD simulations using techniques such as FEP 

calculations.13 Hybrid QM/MM potentials have also been employed within MD simulations, which 

treat regions of interest (e.g. protein active site and ligand) at the more accurate QM level, while 

accounting for the less important regions (i.e. rest of the protein) with faster MM potentials.35 

1.1.d Parametrization of Force Fields 

 The performance of a FF depends on both the specific potential used to compute the energy 

and the validity of the parameters. While all FFs do not share the same potential, it can be argued 

that the quality of the parameters prevail on the potential function used.17 Indeed, the simple 

potential shown in Eq. 1.1, used by most common FFs in SBDD (see section 1.1.e), has been 

applied with great success to model enzyme-inhibitor interactions,36 formation of lipid bilayers,37 

and protein folding (in all 3, non-bonded interactions prevail).38 Hence, the particular methodology 

employed during the parametrization (from which its parameters arise) is one of the major 

differences between FFs and their resulting performance. We will only give a short account of the 

parametrization process, as a recent review by Vanommeslaeghe et al.,17 describes it in great detail. 

Parametrization is complex,39 and the limited attention we will grant this topic should not be 

misunderstood as a token of its simplicity. 
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 First, the list of all atom types that will be used to describe molecular systems needs to be 

chosen. Ideally, each element will have multiple possible atom types depending on its 

hybridization state and direct chemical environment. The introduction of more atom types in 

principle allows to discern more subtle differences between molecular moieties, at the cost of a 

more extensive parametrization. FF development hence relies heavily on the transferability of 

parameters (associated to atom types) developed on molecules with specific chemical properties 

and environments, to different molecules with similar environments and properties (Figure 1.2).  

 

Figure 1.2. Transferability of atom types from a molecule to another. In both example, GAFF 

atom types are chosen to demonstrate how  carbon atoms are assigned different atom types 

depending on their chemical environment. “≠” denotes situations in which carbon atoms are too 

different, and a different atom type is hence assigned. “≃” symbol denotes situations where the 

chemical environment is similar enough to retain the same atom type. 

While this reliance on transferability is particularly fit for the modeling of peptides and 

nucleic acids as they are built from a few repeating units, the vastness of drug-like molecule 

chemical space40 limits the possibility for few (e.g. hundreds of) atom types to describe all possible 

drug-like molecules. An attempt to incorporate a description of the entire periodic table was carried 

by Rappe et al. with the universal force field (UFF).41 However, applications of UFF in condensed 

phase simulations of small molecules have shown poor performance,42 and no scientific articles 

were found using UFF to model proteins. This exemplifies how accuracy can be lost at the cost of 

covering a larger portion of chemical space. While the general philosophy behind UFF is not at 
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fault, the parametrization required to describe accurately the entire periodic table (including 

biopolymers and organic molecules) is far too costly and cannot be easily carried out. 

Parametrization for SBDD applications are thus focused only on the relevant elements: C, N, O, 

H, P, S, halogens and metal ions (e.g. Cu2+, Zn2+, Mg2+) that usually bind to proteins and nucleic 

acids. It is important to note that new atom type descriptions can always be added to the FF later 

on in the development process when particular functional groups are found to be improperly 

modeled. Commonly used FFs are hence built upon over the years as more parameters are 

generated and existing parameters are perfected; rather than remodeled from scratch, which would 

require tremendous efforts.  

Once the atom types in the FF description have been determined, a training set of molecules 

is generated for which parameters will be optimized. A validation set (containing different 

molecules) usually accompanies that training set, to confirm the transferability of parameters to 

similar molecules.43 Target data then has to be collected (or calculated) for which the parameters 

are optimized to reproduce. This optimization is an iterative process, during which parameters are 

refined from an initial guess until they reproduce the target data with sufficient accuracy. 

Considering the additive nature of each term in the FF, each part is optimized separately and in a 

specific order. Hard degrees of freedom (bonds, angles) are optimized first, as they greatly 

influence the other degrees of freedom (vdW, electrostatics, torsions). Each part of the FF is 

optimized using different forms of target data such as experimental spectroscopic data (IR, H-

NMR),44 thermodynamic properties (ρ, ΔHvap, ΔGsolv),
12 or QM calculations.45 Interestingly, it has 

been found that using QM calculated IR vibrations could replace experimental values.46, 47 In order 

to reproduce experimental thermodynamic properties (used to parametrize non-bonded 

parameters), simulated values must be acquired by carrying short MD simulations, which are 

ultimately compared to experimental values. Torsional parameters are obtained by fitting to QM 

torsional energy profiles, which require many conformations to be optimized at the QM level. Both 

aforementioned methods are computationally expensive, hence the availability of target data is the 

limiting factor determining the size of the training set and ultimately, the transferability of the FF. 

Overall, to generate physically meaningful and transferable parameters, it is necessary to 

use as large and diverse a training set as possible, as well as correct types of target data and 



Chapter 1 

9 

 

methodologies. For example, the TIP4P-Ew water model was parametrized by using 

thermodynamic properties (ρ, ΔHvap) over a range of temperatures (235.5-400K) and was found to 

reproduce other properties which were not used during the training (e.g. heat capacities, self-

diffusion coefficient).48 On the other hand, non-bonded terms in MMFF94 were essentially 

parametrized by using gas phase QM calculations, which were later found to be less reliable than 

thermodynamic properties which provide a better account of  condensed phase properties and 

dynamic effects.49  

1.1.e Common Force Fields in Structure Based Drug Discovery 

The most common set of force fields known as class I FFs include the AMBER,50, 51 

CHARMM,52, 53 GROMOS54, 55 and OPLS56, 57 series which calculate potentials using an equation 

similar to Eq. 1.1. Class II/III FFs use more complex equations, including for example higher order 

terms for the bond and angle energies (respecting behavior out of equilibrium) and cross-terms 

which describe the interplay between two motions (e.g. a bond stretching as an angle bends). 

Common FFs in these classes include CFF,58, 59 the MM series,60-63 and MMFF94.64, 65 While these 

FFs describe molecular systems more accurately, they require a more extensive parametrization, 

ultimately limiting the applicability to cover the extremely large chemical space of small drug-like 

molecules. Furthermore, in SBDD related applications, correctly modeling low-energy 

conformations has been deemed more important than less probable high-energy conformers. 

Ligands usually bind to receptors in one of their lowest-in-energy conformations (although this 

has been challenged)66, 67  and over the course of a room temperature MD simulation molecules do 

not see their angles and bonds vary far from equilibrium. Prediction of accurate energy barriers for 

rotation around a bond are essential however, as overestimated energy barriers would restrict 

molecules from performing crucial motions.68 All in all, class II FFs are not as relevant to SBDD 

applications as they have been largely parametrized from gas phase QM calculations, lack 

parameters for biological macromolecules and have smaller applicability domains, they have 

however been applied with great success to predict vibrational and Raman spectra.59, 63 

 In order to be applied to SBDD projects, it is mandatory to have an accurate description of 

macromolecules (proteins, RNA, etc.), potential binders (e.g. small organic molecules), and most 

importantly of the intermolecular interactions between them.69 An essential fact that we have 
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omitted thus far is that the description of different classes of molecules (proteins, nucleic acids, 

lipids, small organic molecules) are not performed by the same part of the FF. Using AMBER as 

an example, each class mentioned above is described by its specifically tailored FF.16, 70, 71 The 

importance of accurate intermolecular interactions between molecules from two different classes 

(e.g. protein and drug) requires complementarity from both parts of the FF. Therefore, it is not 

possible to use just any protein FF with just any organic FF to understand the interactions between 

a protein and a drug. This has led to the development of FFs geared to describe small organic 

molecules working in synergy with existing highly optimized force fields for biomolecules. To 

that end, AMBER developers have issued the generalized amber force field (GAFF),43 CHARMM 

includes the CHARMM general force field (CGenFF)72, and GROMOS’ latest parameter set 

(54A873) which covers biopolymers is supplemented by an automated topology builder (ATB74) 

for drug-like compounds. Note that computations are required to generate ATB parameters, as 

opposed to GAFF or CGenFF in which parameters are directly available; ATB is hence similar to 

the other automatic parameter generating toolkits we will discuss later in this review. On the other 

hand, OPLS3e75 includes parameters for both small organics and amino acids within the same FF. 

A newer version of GAFF, called GAFF2 has been available since the distribution of the 

AMBER16 package, although the manuscript detailing changes that were implemented is still in 

preparation.76 

Table 1.1. Summary of the common class I force fields for structure based drug design. 

Family Molecules covered Name of latest version  

AMBER proteins, nucleic acids ff14SB16 

 small organics GAFF43 

 lipids Lipid1471 

 carbohydrates GLYCAM0677 

   

CHARMM proteins, nucleic acids, lipids CHARMM3678 

 small organics CGenFF72 

   

GROMOS proteins, nucleic acids, lipids, small organics 54A873 

 small organics ATB2.074 

   

OPLS proteins, small molecules 

nucleic acids 

OPLS3e75 

OPLS-AA/M79 

Note: A complete list detailing all versions of these four FF families can be found in this review by 

Riniker.80 
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The fact that FFs are tuned to accurately model one specific class of molecules highlights 

one the biggest hurdles in FF development, that of transferability. The current state-of-the-art of 

FFs in drug discovery relies heavily on the transferability of parameters developed on one set of 

molecules, to model other similar molecules. A very good example of lack of transferability can 

be provided by the recent interest in intrinsically disordered proteins (IDPs) which lack a clearly 

defined three-dimensional folded structure. It has recently been shown that traditional parameters 

for proteins where not transferable to IDPs, and new parameters had to be developed.81, 82 This 

effort to allow the modeling of IDPs is particularly interesting as no new atom type descriptions 

were introduced in the FF, and the new parameters performed well on both traditional proteins and 

IDPs. It is important to keep in mind however that prior to that addition, IDPs were not properly 

modeled, hence an accurate representation of particular molecules depends strongly on the 

composition of the training set. This issue of parameter transferability is most exacerbated for 

small drug-like molecules considering the vastness of the chemical space. In 2015, authors of the 

OPLS force field estimated that 33% of drug-like molecules were missing at least one torsion 

parameters despite the vast training set used to develop it.83 In their latest publication to date, 

attempting to cover an even wider range of drug-like chemical space, the authors do not estimate 

the current % coverage of drug-like chemical space of their method.75 

1.1.f Water Models in Force Fields 

It is well established that water plays important roles in biological events and does not act 

simply as an inert solvent.84 In that respect, a proper treatment of water molecules needs to be 

included in computational methods to reflect those interactions, with a proper balance between 

accuracy and computational cost. FEP calculations rely heavily on accurate calculations of solvent-

solute interactions to predict binding energies,85 and are hence run in explicit solvent. On the other 

hand, docking large libraries of compounds is usually performed using implicit solvation models.86 

Many explicit water models have been developed over the years and are discussed here,87, 88 the 

number of interactions sites included being the major difference between models. SPC89 and 

TIP3P87 models include 3 interaction sites (on each atom), while TIP4P87 includes an additional 

“dummy-atom” next to the oxygen, and TIP5P90 includes two additional sites which can be 

attributed to the lone pairs (Figure 1.3). It is out of the scope of this review to discuss extensively 
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in what ways water models differ from one and more information on implicit and hybrid models 

can be found here.91 A comparative study by Nguyen et al. highlights the importance of choosing 

the correct biomolecular FF/solvation model pair.92 This is not surprising as parameters for the 

biological FF are generated using a specific water model during the parametrization of non-bonded 

parameters. Therefore, these FFs need to be applied with the same water model, AMBER, 

CHARMM and OPLS typically use TIP3P or TIP4P while GROMOS uses SPC waters.  

 

Figure 1.3. Different water models in Molecular Mechanics. The additional charge site in the 

TIP4P model is referred to as M because the particle is “massless”. The additional charge sites in 

the TIP5P model are referred to as LP (lone pairs).  

 We will now turn our attention to recent efforts directed towards the improvement of FFs, 

keeping the modeling of small drug-like molecules at the center of our discussion. First, we will 

discuss how the potential energy equation used in class I FFs has been challenged, more 

specifically how treatment of the non-bonded interactions (van der Waals and electrostatics) could 

be improved by using more physically meaningful models. Then, we will discuss areas of FF 

development which, might have not received enough attention and may require notable 

improvements.    
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1.2 van der Waals Interactions 

The van der Waals (vdW) contribution to the energy contains an attractive and repulsive 

component. The former can be attributed to London dispersion forces; as any two atoms approach 

each other, the dynamic nature of their electrons leads to the formation of temporary dipoles 

eventually allowing weak attractive dipole-dipole interactions to occur. This weak attractive force 

is in competition with a strong repulsion (Pauli exclusion, electrons in close proximity) at very 

close distances. 

 

Figure 1.4. Lennard Jones 12-6 potential used to model the van der Waals interactions in class I 

force fields. Blue spheres represent atoms. 

 𝐸𝐵𝑢𝑓−14−7 = ∑ 𝜺𝒊𝒋(
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 −  2
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𝑝𝑎𝑖𝑟𝑠 𝑖, 𝑗

 (1.8) 

Since vdW interactions need to be calculated for every pair of atoms (alongside the 

electrostatic contribution), it makes up for a large portion of the computational cost associated with 

the MM energy. Hence the vdW interaction has typically been modeled using the Lennard Jones 

(LJ) 12-6 potential (Figure 1.4), although limitations arise such as an overestimated repulsion at 
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very short distances. To correct for this limitation, some FFs scale down the vdW interaction of 

atoms separated by 3 bonds, or use a separate set of parameters (ε, Rmin) for 1,4 interactions. It has 

been noted however that the derived 1/R6 dependence of the dispersion is obtained by resorting to 

approximations during the derivation and should not be taken as an end all be all rule to follow.93, 

94 Other functional forms have been developed including the exponential-6 form which has not 

found widespread application due to the increase in computational cost and the need for additional 

parameters. On the other hand, the buffered 14-7 potential (Buf-14-7, Eq. 1.8) used by MMFF9495 

and AMOEBA (which we will discuss further in the next section),96 has received more attention. 

While parameters in MMFF94 were incorrect as a result of fitting to gas phase data only, 

reparameterization using more appropriate strategies,97-99 has shown improved performance of the 

Buf-14-7 potential over the standard LJ 12-6 for organic molecules and nucleic acid base pair 

stacking.100 The importance of fitting to condensed phase data can be explained by the fact that 

vdW interactions in a molecule are not simply pair-wise (as the MM functional calculates them), 

but also contain many-body effects linked to the chemical environment.101 These many body 

interactions are considered implicitly when parameters are fit to experimental liquid properties 

since these macroscale liquid properties are the result of all interactions at the atomic scale, 

including many-body interactions.102  

For the calculation of the vdW energy, each atom type holds two parameters, one related 

to the well depth (ε), and the other to the distance at which attraction and repulsion cancel each 

other out (Rmin). Since vdW interactions involve two atoms, parameters for the interaction are 

obtained by combining the ε and Rmin
 (associated to both atom types) using mixing rules such as 

taking the geometric mean for both (OPLS, GROMOS), and Lorentz-Berthelot mixing rules 

(AMBER, CHARMM). The Lorentz-Berthelot rules were shown to overestimate well depth (and 

ultimately liquid densities),103 although this study was carried out on rare gases only. In the 

previously mentioned article,100 Riu et al. have compared in detail the impact of multiple mixing 

rules on different potentials (LJ 12-6, Buf-14-7 and Buckingham) and found that the Buf-14-7 

potential coupled with refined mixing rules104 performed better than current implementations in 

AMBER and CHARMM. The authors do mention however that the study was performed only 

using sophisticated QM calculations (SAPT) and serves only as a starting point which should be 

validated/refined with MD simulations to reproduce liquid properties. The Buf-14-7 potential 
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contains two additional buffering parameters δ and y, which have been set to constant values in 

the current version of AMOEBA to limit the number of parameters which need to be developed. 

Overall, the different potentials and mixing rules used explains the non-transferability of vdW 

parameters from a FF to another, and by extension the non-transferability of torsional parameters. 

To conclude this section, we would like to argue that using simplified potentials such as 

the LJ 12-6 should not remain the state-of-the-art solely for their computational cost advantage in 

an environment were computational capabilities continue to grow exponentially. Considering the 

importance of the vdW interaction in biological phenomena,105, 106 more research should be carried 

out to provide the best account of vdW forces, ultimately improving the accuracy of binding energy 

calculations in SBDD related applications. In 2004, MacKerell stated in a review107 that the LJ 12-

6 potential remained adequate for room temperature MD simulations, although this claim was not 

backed up by any particular study, but rather on the number of successful applications of FFs found 

in the literature. While the general consensus that the LJ 12-6 potential is sufficient for SDBB 

applications, it has recently been challenged by the re-apparition of the Buf-14-7 potential which 

could ultimately provide a more accurate treatment of vdW interactions,100 allowing to probe more 

sensitive biological phenomena. Considering the interdependence of FF terms (e.g. vdW, torsions, 

electrostatics), a considerable modification to one of the terms would require a complete 

reparameterization of the FF, which explains why AMBER, CHARMM, GROMOS and OPLS 

have not modified the potential handling the vdW interactions. Finally, errors stemming from one 

part of the FF (vdW, electrostatics) are usually counterbalanced by other parts of the FF, hence a 

comparison of the performance of an isolated term doesn’t necessarily translate into a better FF 

overall. This is referred to as the self-consistency of FFs. 
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1.3 Electrostatic Interactions and Polarizable Models 

 Class I FFs consider electrostatic interactions using a simple Coulombic additive potential, 

between fixed point charges located at the center of mass of every atom. The potential is “additive” 

as the contribution to the energy is calculated as a sum of all pairwise monopole-monopole 

interactions, without considering effects charges can have on one another (e.g. polarization, 

correlation, charge transfer), multi-body effects, and a with very crude representation of the charge 

distribution. As opposed to other interactions, class I FFs do not rely on parameters to calculate 

electrostatic effects, however they rely on the assignment of partial charges to every atom. We will 

first present how traditional FFs allocate these partial point charges, followed by a discussion of 

the wide variety of alternative polarizable models which have emerged to describe electronic 

interactions more rigorously. 

1.3.a Partial Charge Fitting Schemes 

 Partial charges need to be assigned to all atoms in a molecule before a simulation and are 

kept constant over the course of the simulation, regardless of conformational changes which are 

known to impact charge distribution.108, 109 One of the most widely used schemes to generate partial 

charges is to fit charges to electrostatic potentials (ESP) computed with ab initio QM methods.110 

This approach has two known drawbacks; not assigning identical partial charges to chemically 

equivalent atoms, and poorly predicting the partial charges of buried atoms. These limitations were 

addressed by including restrictions during the fitting process, giving birth to the restricted 

electrostatic potential (RESP) charging scheme, which predicted DNA base pairing energies and 

solvation free energies of small molecules more accurately.111, 112 The RESP scheme remains 

computationally expensive, and while tabulated parameters exist for proteins and nucleic acids 

(within AMBER),51, 113 the method is generally not widely used for small drug-like molecules.  

 Rule based methods such as bond charge increment (BCI) and electronegativity 

equalization have been developed with high-throughput applications in mind (orders of magnitude 

faster than methods relying on QM calculations such as RESP). In BCI (used by CGenFF),114 

formal charges are first assigned to each atom, and then redistributed in a stepwise process based 

on the atom types, until a convergence criterion is met. Electronegativity equalization methods 
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follow a similar approach were charges are redistributed until all atoms reach the same 

electronegativity.115, 116 

 Another option to generate partial charges are semi-empirical methods such as AM1,117 

PM3118 and the CM1-CM5 series119-121 which provide comparable accuracies to RESP models, 

with reduced computational costs. These semi-empirical models have also been combined with 

rule based methods, the most notable example being AM1-BCC122, 123  available within AMBER. 

The performance of AM1-BCC to reproduce free energies of solvation (organic molecules), 

hydrogen bonding energies (base pair dimers and organic molecules) has been extensively 

monitored and found to perform on par with RESP while considerably reducing computational 

costs, making it an excellent candidate to generate partial charges for small drug-like molecules. 

AM1-BCC charges were also found to be transferable to the OPLS_2005 FF (reproduces solvation 

free energies well), except for polar molecules (e.g. amides, amines, ethers, etc.).12 To correct for 

these classes of molecules, another semi-empirical method with rule-based corrections was thus 

developed to work in conjunction with the OPLS_2005 FF called CM1A-BCC.12 Authors do note 

that a self-consistent FF (i.e. all other parameters generated with CM1A-BCC charges during 

training), would perform better, and the CM1A-BCC scheme was carried to later versions of 

OPLS. Indeed, these improvements have been observed in the newest version to date (OPLS3e75), 

in which authors focused on the ability of the FF to predict protein-ligand binding affinities (low 

RMSE of ~ 1 kcal·mol-1 on a very large set of  393 small molecules with different binding partners). 

 None of the methods presented above are perfect however, and research in this field 

remains particularly active.124, 125 On the other hand, an inherent limitation of the Coulombic 

potential used by class I FFs is that it neglects multi-body effects and polarization. While some of 

the charging schemes presented (particularly the newer) try to incorporate these effects 

implicitly,112, 125 a radically different approach consists in having a potential energy function which 

can treat polarization explicitly.  
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1.3.b Polarizable Electrostatic Models 

The notion that the simplistic point charge model used to describe electrostatic interactions 

could be improved by partially representing electron delocalization using multiple charge sites has 

been demonstrated before any application in the context of FFs. For example, in 1990, Hunter et 

al. showed that distributing charges in aromatic systems using tripoles (positive charge on atoms, 

negative charge above and below every atom in the π-system) gave a better account of π-π stacking 

than describing the system with a single point charge on every atom.126 Point charges are 

equivalent to a symmetric spherical distribution of the charge density around the point charge, 

thereby neglecting any potential anisotropy of the charge distribution, affecting hydrogen 

bonding,127 halogen bonding (σ-hole),128 π-π stacking129 and cation-π interactions,130 which are 

ubiquitous in biological systems. In addition to the limitation associated with a poor description of 

charge localization, non-polarizable models are notoriously deficient in two major aspects: 1) by 

retaining the same partial charges on atoms throughout simulations, in spite of the known 

dependence of charges on conformations131 and 2) by neglecting the influence of 

inter/intramolecular effects on the charge distribution, which are central in protein-ligand 

interactions,132 protein-protein interactions during folding,133 and energetics of ion conduction 

through channels,134, 135 among others.  

Although polarizable methods could provide more accurate depictions of biological 

processes, they require a more extensive parametrization and have been estimated to be 3 to 10 

times more computationally expensive (depending on the specific implementation of 

polarization).136 The computational drawback has been a long-lasting argument against polarizable 

methods, however recent hardware and software improvements such as the implementation of MD 

codes on GPU architectures,137 and the introduction of the particle mesh Ewald (PME) algorithm 

to evaluate electrostatic energies,138 have somewhat alleviated these computational cost 

restrictions. We will now turn our attention towards the various attempts to include electronic 

polarization explicitly in FFs. First, by describing briefly how polarization is implemented in those 

models and finally discuss applications and outlooks of these new methods.  
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Figure 1.5. Different interactions in which polarization plays an important role: a) hydrogen 

bonding, b) π-π stacking, c) cation-π interactions and d) halogen bonding. In d) X represents a 

halogen (F, Cl, Br, I), E is an electrophile and Nu is a nucleophile. 

1.3.c Fluctuating Charge and Drude Oscillator Models 

Polarization is the process by which the charge distribution in a molecule changes in 

response to the environment.139 The fluctuating charge (FQ), and Drude oscillator models 

incorporate polarization while retaining the  simple Coulombic potential of non-polarizable FFs. 

They both allow charges to vary over the course of a simulation (thereby targeting problem 1 

mentioned above), but only the Drude model considers the anisotropic nature of the electron 

distribution thus additionally addressing problem 2. 
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In the FQ model, the charges are simply reassigned after each simulation step, to reflect 

the effect of the environment on the charge distribution. The movement of charges is calculated 

using charge equilibration (Qeq) schemes based on the notion of electronegativity equalization, 

which are analogous to those employed to derive partial charges.140 An implementation of a FQ 

model in CHARMM is available and covers a wide range of molecules (proteins, lipids, 

carbohydrates), although the method has not yet been parameterized for small drug-like molecules 

yet.141, 142   

 

Figure 1.6. Drude oscillator model for a water molecule. Note that the water model is built from 

TIP4P (hence the additional M charge site). qC is the charge at the oxygen nucleus, qD  is the charge 

of the Drude particle attached to the oxygen. For graphical purposes, qD is shown far from the 

atomic nucleus, however in practice Drude particles are close to the nucleus.  

In the Drude oscillator model, polarization is included through the addition of charges sites. 

More specifically, every non-hydrogen atom holds two-point charges (i.e. dipole description), 

which are connected by a spring (Figure 1.6). The first charge is fixed at the atomic nucleus, while 

the other (Drude particle) is free to move in response to the external electric field. An advantage 

of this fluctuating dipole model is that it can be interpreted chemically (i.e. charges represent the 

nucleus and electron density respectively). Nevertheless, the description of the charge density by 

a single point remains a clear simplification. In order to limit the computational cost, Drude 

particles are typically assigned to non-hydrogen atoms only. An implementation of that method 

can be found in CHARMM (Drude-2013), which currently covers proteins, DNA, lipids, and 

carbohydrates.143, 144 A few small organic molecules were also included during the 

parametrization, although the FF cannot be (and has not been) applied to any diverse set of drug-

like molecules yet.  
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1.3.d Polarization through Multipole Expansion 

Another approach aimed at describing anisotropic features of the electron density is 

through the inclusion of polarization using atomic multipole moments.145 These techniques tackle 

both problems 1 and 2 discussed above but require the addition of a polarization term to the FF 

equation to cover charge-dipole, dipole-dipole interactions (and more if the multipole expansion 

is carried further).  

The first comprehensive implementation of a polarizable FF including multipole expansion 

(up to dipoles), called ff02 was issued by Cieplak et al. within the AMBER package in 2002.146 

Subsequent efforts to provide a more robust parameterization were later shown to improve the 

accuracy of amino acid intermolecular interaction energies.147 More recently, a few applications  

of ff02 to probe protein-protein148 and protein-ligand149 interactions were found, however the 

ligands were short peptide chains, highlighting the absence of parameters for small drug-like 

molecules. 

Arguably, the most popular FF including multipolar electrostatics (up to quadrupoles) is 

AMOEBA in which electrostatics are calculated as a sum of permanent and induced multipoles. 

AMOEBA is the polarizable FF which currently covers the largest portion of chemical space. 

Initially developed for water,150 the FF was supplemented over the years allowing the treatment of 

ions,151 proteins,152 nucleic acids,153 and small organic molecules.96 The performance of AMOEBA 

towards small organic compounds was assessed: In the gas phase, dimer equilibrium structures 

and dimer binding energies conformed to QM results. Condensed phase properties (ρ, ΔHvap) were 

found to be well reproduced, most notably the hydration free energies of 27 molecules are in close 

agreement to experimental values (RMSE = 0.69 kcal·mol-1).96 However, the FF hasn’t been fully 

automated, and assigning partial charges and parameters still requires manual involvement, which 

for now prohibits any high-throughput application. 
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1.3.e Beyond Point Charge Representations 

More recently, approaches to describe polarization while capturing the three-dimensional 

nature of the electron distribution have emerged. Donchev et al. have issued QMPFF which uses 

a decaying exponential function to describe part of the electrostatic energy,154 and Naserifar et al. 

have used Gaussian functions in RexPoN, a reactive and polarizable FF.155-157 The exponential and 

Gaussian type functions are analogous to the Slater and Gaussian type orbitals used as basis 

functions in QM calculations (Figure 1.7). Both of these FFs are particularly interesting because 

they challenge the traditional FF parametrization strategy where condensed phase properties are 

used as target data. Indeed, both QMPFF and RexPoN use only gas phase QM derived properties 

as training data, as opposed to condensed phase properties as discussed previously. Authors of 

QMPFF argue that including polarization in the FF potential energy function, making it more 

physically grounded leads to a greater transferability from gas phase to condensed phase. This 

claim has been confirmed by the excellent agreement of calculated condensed properties of water 

by RexPoN with experimental properties. Additionally, promising quantitative agreement with 

experiment of protein-ligand binding affinities were obtained by QMPFF,158 although its 

performance was only compared to MMFF94 on a very small subset of molecules.  

 

Figure 1.7. Three-dimensional nature of the electron distribution using decaying exponential and 

gaussian functions. 
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Overall, QMPFF has not received a lot of attention since its initial publication in 2005, 

probably because the parametrization process is particularly costly, and has hence not been 

extended to many molecules. Finally, efforts by Naserifar et al. in deriving the RexPoN force field 

are very recent (2018), and applications of the method by other groups were not found. It should 

be noted that inclusion of exponentials in the potential energy function considerably increases the 

associated computational costs (more so than computing more charge/charge pairs with the 

inclusion of multipoles), hence the applicability of these methods to carry out high throughput 

tasks remains to be validated.  

1.3.f Successful Applications of Polarizable Force Fields and Perspectives  

Altogether, class I FFs cannot describe electrostatic interactions accurately due to the 

inherent limitation of the simple point charge model. Polarizable FFs can provide a gain in 

accuracy at the cost of a more complex parametrization and longer simulation times. Polarizable 

methods have repeatedly been shown to provide accurate results in multiple contexts such as 

prediction of ligand-protein binding energies,159-161 and stable MD simulations of proteins.152, 162 

A more physically grounded description of electrostatics also leads to a better transferability of the 

associated parameters, as demonstrated by the amino acid parameters in AMOEBA.152 

Furthermore, the Drude model within CHARMM was used to perform long scale (μs) simulations 

of two small proteins (ubiquitin and CspA), showcasing that long scale simulations are possible.163  

On one hand, researchers building non-polarizable methods argue that the computational 

cost increase and more extensive parametrization associated with polarizable models and 

comparable accuracies obtained thus far do not justify the use of such methods. For example, the 

Drude-CHARMM and non-polarizable CHARMM36 models displayed similar trajectories when 

simulating 10 proteins for 100 ns.162 The ability of AMOEBA to predict the solvation free energy 

of various small molecules is multiple solvents (acetonitrile, chloroform, DMSO and toluene), was 

also found to be in par with GAFF, a non polarizable FF.164  On the other hand, polarizable FFs 

developers argue that polarizable FFs have not received the same extensive parametrization and 

are expected to outperform their non-polarizable counterparts once proper parametrization is 

achieved. A study by Lindorff-Larsen et al. supports this idea as they show that more recent FFs 

perform better than older FFs, simply because more appropriate parameters are available.165 Hence 
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a comparable accuracy with minimal parameter refinement should be seen as a success, and 

polarizable models are expected to describe relevant biological events more accurately once they 

have been specifically parametrized to do so (e.g. recent addition of parameters for halogenated 

ligands).166  

There are currently no extensive comparative studies (polarizable vs. non-polarizable FFs) 

in the literature performed by authors that are not directly involved in the development of 

polarizable methods. Similarly, most applications of these new FFs have been performed within 

the laboratories they have been developed in. Comparative studies performed by 3rd parties are 

highly encouraged to diagnose areas in which polarizable FFs could be improved without bias or 

in which they outperform non-polarizable FFs. Overall, the accuracy of polarizable FFs are 

expected to grow as more parameters are introduced. To this day, polarizable FFs have not been 

extensively parametrized to cover drug-like molecule space and cannot be applied to high-

throughput SBDD tasks. Finally, it would not be surprising to see both types of FFs applied in 

different contexts, polarizable FFs could be used to provide very accurate binding free energies 

(e.g. FEP calculations) as molecular recognition is known to be  sensitive to polarization. Whereas 

more demanding simulations of very large proteins, or flexible proteins such as IDPs167 requiring 

a more extensive sampling of conformational space, could be performed using faster non-

polarizable FFs.  

1.4 Torsional Parameters and Transferability 

It should not have eluded to our reader that during our extensive discussion of electrostatics 

in FFs, we reported that many of these methods were “not yet applicable to drug-like molecules”. 

By that, we meant that parameters from one class (or more) were missing to describe the PES of 

these molecules accurately. In fact, torsional parameters are the main culprit, as bonds and angles 

are generally assumed to be fully covered,80 vdW parameters are obtained using the mixing rules 

detailed previously and electrostatics do not rely on parameters per se. As of today, non-

polarizable methods also fail to cover chemical space completely (although to a lesser extent). As 

previously stated, authors of OPLS3 estimated their FF to cover only 2/3rd  of drug-like molecules, 

although the training set used consisted of 6,500 molecules (only surpassed by their latest 
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publication in which 20,000 torsional profiles were generated and parameterized).75, 83 Generally, 

not all classes of molecules are subject to missing parameters. Biological molecules such as 

proteins and nucleic acids consist of repeating units (i.e. amino acids and base pairs) which eases 

their parametrization. Once each building block has been assigned parameters, all polymers built 

from these repeating units can be simulated. In fact, the parametrization for these groups is more 

often performed with greater care than drug-like molecules (e.g. using more robust QM 

functionals, sampling larger portions of conformational space).  

On the other hand, drug-like molecule space is far more diverse40 and its sheer size posses 

problems to the FF parametrization based on atom types. The general trend has been to increase 

the number of atom types to cover more diverse functional groups,80 however this cannot be carried 

indefinitely. In fact, millions of different torsion parameters would be required to fully cover a FF 

containing 50 atom type definitions (far less than the 139 currently in CHARMM/CGenFF or 124 

in OPLS3). To date, the largest scale parametrization (20,000 torsional profiles) is still orders of 

magnitude smaller than the millions of parameters required, which remains (and will continue to 

be) computationally prohibitive. More realistically, not all of these different torsions need to be 

specifically parametrized, and researchers have relied on the assumption that parameters obtained 

for particular functional groups would be transferable to other comparable functional groups (i.e. 

within similar chemical environments). Although, in practice the validity of this assumption can 

be questioned. 

As a temporary solution to that problem, multiple automated toolkits have emerged, 

allowing to generate missing parameters (e.g. GAAMP,168 ffTK,169 Paramfit170 and Parmscan171). 

These tools are particularly fit for purposes were few parameters need to be obtained, for example 

to parametrize a ligand prior to an FEP calculation to predict a protein-ligand binding affinity. On 

the other hand, these methods cannot be carried to high-throughput tasks (e.g. parametrizing large 

libraries of potential ligands), as they rely on time consuming QM calculations. While these tools 

permit previously inaccessible applications of FFs, they do not attempt to solve the problem of 

poor parameter transferability and poor coverage of chemical space at a fundamental level. To 

address this foundational problem, general FFs were built to specifically cover small molecule 

space (e.g. GAFF, CGenFF), however their accuracies and coverage remain questionable. Indeed, 
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in one of our recent studies, we have shown that the agreement between QM and GAFF torsional 

profiles on a diverse set of small organic molecules were very unsatisfactory (average RMSE of 

1.74 kcal·mol-1 for 1,000 profiles).172  

A number of technical problems can arise from the traditional conception of FFs based on 

atom types. For example, if new hydration free energy data suggests that a new atom type needs 

to be introduced to model the vdW interactions of a particular moiety, then new valence parameters 

to describe all of the bonds, angles and torsions these new atom types can be involved in are 

immediately required. Often these new parameters were copied from “parent” parameters without 

a proper basis for these choices, and led to unnecessary redundancies.173 Mobley et al. have 

discussed how the choice of atom type definitions has traditionally been determined from chemical 

intuition without a rigorous basis supporting these choices.173 They have suggested replacing 

human annotated features (here atom types) by fully automated ones in their newly developed 

method SMIRNOFF. Although the label designating each atom is still referred to as an atom type 

in their scheme, the way in which they are assigned (through direct chemical perception) is 

radically different and does not involve subjective rules. More concretely, SMIRNOFF uses the 

SMIRKS language to describe all atoms by strings of characters. Each SMIRKS string contains 

information about the atom (i.e. element, hybridization, connectivity) and can be further 

“decorated” to describe the chemical environment up to two bonds away. Allowing for example 

to discern between a sp3 carbon atom bonded to electron withdrawing elements (e.g. -CF3), and an 

sp3 carbon bonded to carbons/hydrogens (e.g. -CH3), which is something traditional atom typing 

methodologies did not account for (Figure 1.8). Further, when generating bond-types, angle-types, 

etc. by combining the atom types which make them up, SMIRNOFF also considers the bond order 

(single, double, triple) as part of the representation, as opposed to traditional FFs (bond orders are 

implied from the atom types, leading to known problems173). As a result, the parameter file in 

SMIRNOFF is roughly 300 lines long as opposed to the roughly 6,500 lines in GAFF. The few 

parameters in their method were obtained from previous FFs (namely GAFF and Parm@Frosst174) 

and SMIRNOFF was found to perform on par with GAFF to predict the hydration free energies of 

642 small molecules. Novel parametrization methodologies to work in accordance with the new 

SMIRKS representation of molecules are currently under development.175  
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Figure 1.8. Comparison of the torsional profiles of two anilines. Bold line corresponds to QM 

energy (MP2/6-311+G**) and dashed line corresponds to GAFF energy. The same GAFF atom 

types are assigned to atoms involved in the torsion (namely: ca, nh, c3 and hn) which is highlighted 

by the fact both GAFF (dashed) profiles are very similar. This is not in accordance with QM 

calculations however, in which inductive effects lead to a very large decrease in the torsional 

barrier’s height.  

The poor transferability of torsional parameters can in part be attributed to the fact they are 

usually expected to empirically correct for errors emerging from other parts of the FFs, most 

notably 1,4 non-bonded interactions. Atom types are also responsible for the non-transferability of 

torsional parameters as portions of an atom’s chemical environment are neglected when assigning 

atom types. Using the same example as above, in GAFF the carbon in a -CH3 or a -CF3 moiety 

would be assigned the same c3 atom type (representing all sp3 carbons), which does not reflect the 

strong inductive effects fluorine atoms have on the carbon, ultimately affecting torsional profiles 

(Figure 1.8). It is generally believed that functions reflecting physically grounded interactions 

would be more transferable.158 In this context, our lab is currently developing a novel FF which 

does not rely on atom types called H-TEQ.172, 176 First, we have shown that hyperconjugation was 

the major contributor to the torsional profiles of small saturated molecules. Then, we have replaced 

the classical torsional term (in GAFF) by a hyperconjugation term and found that H-TEQ 

reproduced the torsional energy profiles of about 1,000 small organic molecules more accurately 

than GAFF. As expected, a more physically grounded torsional term (based on hyperconjugation) 

led to a better transferability of our method. We have observed one main drawback from H-TEQ, 

its reliance on other terms of the FF (we kept other terms as calculated by GAFF during our 

analyses). Specifically, our method did not empirically correct for inaccurate 1,4 non-bonded 
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interactions. Nevertheless, we expect H-TEQ to be more robust when applied in conjunction with 

more accurate vdW and electrostatic terms (e.g. polarizable models). H-TEQ is currently 

applicable to virtually all saturated small molecules. In chapter 2 of this thesis, we will describe 

our efforts to extend the coverage of H-TEQ to molecules containing unsaturations. 

Overall, atom type based FFs have been employed with great success to simulate proteins 

and nucleic acids. However, the vastness of drug-like molecule space and poor transferability of 

torsional parameters remains a major challenge for high-throughput SBDD applications relying on 

FFs. Articles in the literature discussing the link between atom typing and parameter transferability 

are scarce. Likewise, to the best of our knowledge, only two techniques (SMIRNOFF and H-TEQ) 

moving away from an atom type based parameter assignment have emerged as potential 

substitutes. Both FFs are relatively new and have not been extensively tested yet. Nonetheless they 

appear as promising candidates to cover greater portions of chemical space with greater accuracies, 

provided that continuous efforts are conducted to supplement their current abilities. 

1.5 Additional Liabilities of Force Fields 

 The majority of efforts in FF development have been directed towards torsions and 

electrostatic interactions, as both were recognized to require considerable refinement. 

Additionally, as the number of applications of FFs in various context grows, additional limitations 

come to light. For example, the modeling of nitrogen containing compounds is particularly 

challenging. Vitaku et al. have observed that 84% of all FDA approved drugs contain at least one 

nitrogen atom, 59% contain at least a nitrogen heterocycle, and on average a drug contains 2.3 

nitrogen atoms.177 Considering the prevalence of nitrogen containing drugs, any successful SBDD 

application is bound to pay particular attention to these moieties during the parametrization. A 

good example is the inclusion of an additional charge site to nitrogen atoms (corresponding to a 

lone pair) within aromatic rings in OPLS3,83 to better represent their electrostatic interactions. In 

chapter 3 of this thesis, we will discuss in detail how current FFs fail to model molecules containing 

conjugated nitrogen substituents and offer potential solutions to correct for these drawbacks.  
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 Furthermore, increases in computational power have allowed for longer MD simulations 

to be carried, and deficiencies of FFs with respect to the kinetics of biomolecules have become 

apparent.80, 178-180 Precise experimental thermodynamic data being more readily available explains 

why FF have generally used it over kinetic data for parametrization. Hence, using more 

experimental kinetic data during the parametrization of FFs should naturally improve their ability 

to simulate biochemical events. 

1.6 Conclusions 

Molecular mechanics based methods are widely applied to SBDD projects. The popularity 

of FFs and their simple functional form over QM methods is largely due to their suitable accuracies 

and greatly reduced computational costs. It is now anticipated that the more accurate functionals 

of polarizable FFs would provide deeper insights into drug-target binding modes, once proper 

parametrization is undergone, ultimately improving the reliability of FFs methods in the design of 

new pharmaceutical compounds. By the same token, it is likely that the current state-of-the-art 

additive class I FFs continue to see widespread use, particularly to study larger molecular systems, 

for longer periods of time. The development of novel methodologies which do not rely on atom 

types are also expected to provide an increased transferability of parameters, and a greater 

coverage of chemical space would allow to scan more varied libraries of potential therapeutic 

compounds. Finally, additional insights onto the weaknesses of FFs will be obtained as they are 

applied in more projects, ultimately guiding the next rounds of refinement.  
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2 Atom Type Independent Modeling of the 

Conformational Energy of Benzylic, Allylic, 

and other Bonds Adjacent to Conjugated 

Systems 

This chapter is reproduced from a manuscript submitted for publication: “Atom Type 

Independent Modeling of the Conformational Energy of Benzylic, Allylic, and other Bonds 

Adjacent to Conjugated Systems”, Champion C., Barigye, S. J., Wei W., Liu Z., Labute P., 

Moitessier N. J. Chem. Inf. Model. (ci-2019-005818) 

2.1 Introduction 

2.1.a Computational Methods in Drug Discovery and Molecular Mechanics 

 Computational methods are often quick and cost-effective complements to experiments to 

identify potential binders to targets of therapeutic interest and/or off-targets. Over the years, 

computational tools have contributed to many stages of the drug discovery process, from the 

prediction of drug-likeness1 following, for example, Lipinski’s rule of five or ADME (absorption, 

distribution, metabolism and excretion) properties2 using artificial intelligence (AI) or statistical 

analysis, to physics-based methods providing insights into the structure and dynamics of molecular 

systems.3, 4 It is anticipated that Structure-Based Drug Design (SBDD) will have even greater 

relevance in future Drug Discovery paradigms.5, 6 The accuracy of predicted drug binding affinities 

depend on several factors such as the level of detail of the structural model7  (subatomic, atomic, 

coarse-grained), the accuracy of the energy potentials computed for molecular conformations,8, 9 

as well as the degree to which all energetically accessible conformations are sampled.10 In this 

context, quantum mechanical (QM) methods would provide a very accurate depiction of the 

energetics of molecular systems, allowing rigorous estimates of ligand-macromolecule binding 

energies.11 These methods can, however, not be carried to high-throughput tasks, to scan large 
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portions of conformational space, or to study large macromolecules, due to their restrictive 

computational costs. In light of this limitation, molecular mechanics (MM) methods have been 

developed to evaluate the energetics of molecular systems using simplified potentials with the 

objective to reproduce experimental data and QM potentials, while reducing computational costs 

by several orders of magnitude. However, the accuracy of these more empirical MM methods 

largely depends on the quality of the potentials and parameters of the underlying force fields 

(FFs).12, 13  

2.1.b Atom-type based FFs 

In MM, the potential energy of a molecular system (e.g. small molecules, proteins, nucleic 

acids, and complexes) is calculated using a FF corresponding to a set of potential energy functions 

and its associated precomputed parameters (Eqs. 1.1-1.7). The contributions from each term in a 

FF can be split into two categories, “bonded” interactions (bonds, angles, torsions, out-of-plane 

angles) which are calculated for atoms within the same molecule, and “non-bonded” interactions 

(e.g., van der Waals and electrostatics) which are calculated for pairs of atoms separated by 3 or 

more bonds (intramolecular) or pairs of atoms in different molecules (intermolecular). It should 

be noted that the interactions of atoms separated by 3 bonds are therefore of both types: torsions 

and non-bonded interactions. 

2.1.c Transferability 

“Atom types” are central to most widely applied FFs in SBDD, such as the AMBER,14, 15  

CHARMM,16, 17 GROMOS,18, 19 and OPLS20-23 series. In AMBER protein FF, for example, 

parameters for aromatic carbons (atom type CA) are different from aliphatic carbons (CT) or 

carbonyl carbon (C) and other carbon types. However, these definitions are limited to local 

environments and distant chemical functional groups do not affect the atom type (and set of 

parameters) assigned to particular moieties, which consequently ignores some electronic effects. 

For example, electron donating or withdrawing substituents adjacent to aromatic rings are not 

considered in ring atom types, whereas torsional energy profiles could differ when such 

substituents are present. 
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 Parametrization of a FF consists in finding the ideal values for all the parameters (shown 

in bold) associated with each function (Eqs. 1.1-1.7). For example, the bond stretching term (Eq. 

1.2) describes the ideal bond distance between two atoms and is characterized by an equilibrium 

bond length (req) and a force constant (Kr). In order to describe all possible bond stretching events, 

parameters for the equilibrium value and force constants are required for all combinations of two 

atom types.12 This parameter fitting process uses experimental (e.g., H-NMR, thermodynamic 

properties) and/or high-level QM data as reference, which are costly to obtain, ultimately imposing 

a limit on the size of the training set used to develop parameters. FFs thus rely on the transferability 

of parameters obtained from molecules in the training set to other similar molecules. The current 

consensus is that no particular FF could accurately describe the energetics of all possible small 

drug-like molecules due to the sheer size of the chemical space, and the poor transferability of 

empirical parameters generated on specific molecules.24 It is important to keep in mind that not all 

types of parameter are subject to this lack of transferability; for instance, bonds and angles are 

generally assumed to be fully covered. However, the authors of OPLS3.0 estimated in 2015 that 

33% of drug-like molecules were missing at least one torsion parameter,21 (a more recent version 

attempts to solve this limitation25) and the treatment of non-bonded interactions has also recently 

been challenged by the introduction of polarizable Force Fields (e.g. AMOEBA,26, 27 CHARMM-

Drude28, 29). Current developments in FF methodologies are hence highly focused towards 

torsional and non-bonded interactions. 

 To address the liabilities resulting from poor parameter transferability and/or missing 

parameters, researchers have followed two main approaches. On one hand, automated toolkits such 

as GAAMP,30 ffTK,31 Paramfit32 and Parmscan33 have been developed, allowing to generate 

accurate parameters for specific molecules of interest from QM data. These user-friendly toolkits 

are particularly fit for researchers studying the interactions within a ligand/receptor pair using 

molecular dynamics (MD), since only few parameters need to be generated (usually for the drug-

like molecule). However, these tools cannot be carried to high-throughput tasks (e.g. docking 

libraries of compounds), due to the computational costs associated with the parameter fitting 

process. While these toolkits allow parameters to be generated for specific studies, they do not 

solve the problem of parameter transferability. A radically different approach consists in 

developing MM methods with greater transferabilities without relying on the concept of atom types 
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to determine parameters. To our knowledge, Mobley et al.’s recent attempt with SMIRNOFF,34 a 

FF which uses direct chemical perception instead of traditional atom types to determine 

parameters, as well as H-TEQ (developed in our lab),35, 36 are the only methods moving away from 

the atom type paradigm of FFs. Both SMIRNOFF and H-TEQ, were shown to perform comparably 

well to GAFF (one of the most widely used FFs for small organic molecules)37 in reproducing 

liquid properties and QM torsional profiles respectively. The performance of these methods has 

not yet been extensively tested in the context of SBDD relevant interactions, due to their very 

recent releases, and we expect further work to allow these methods to cover most (if not all) 

possible organic molecules with good accuracy. These efforts are highly encouraging in the future 

ability of atom type free FFs to rival state-of-the-art FFs towards SBDD applications, without 

requiring any molecule-specific parametrization. 

 While our previous versions of H-TEQ focused on saturated compounds, we report here 

our efforts to incorporate unsaturated compounds.  

2.2 Impact of Unsaturations on Torsional Energy 

2.2.a Organic Chemistry Principles and Drug Conformational Energy 

 In organic chemistry, several models have been employed to rationalize the conformational 

preferences of molecules and stereoselectivity in chemical reactions. For example, the 

hyperconjugation model is often evoked to rationalize the preference of the staggered 

conformation in ethane and the anomeric effect in carbohydrate molecules.38-40 Briefly, 

hyperconjugation is a stabilizing interaction involving the donation of electrons from a bonding 

(e.g. σ) to an antibonding (e.g. σ*) orbital, leading to the formation of a new orbital lying lower in 

energy (Figure 2.1).41 Two main factors influence the strength of hyperconjugation interactions.42, 

43 First, a greater physical overlap between interacting orbitals leads to a stronger interaction. This 

overlap is maximized when σ and σ* are in anti relationship (Figure 2.1a) rather than syn (Figure 

2.1b) and is minimal when orbitals are perpendicular to one another. Second, a smaller gap 

between donating and accepting orbitals energy levels leads to a stronger interaction. For example 

in fluoroethane, the electronegative fluorine results in a lower lying σ*(C-F) orbital (Figure 2.1c) 
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than σ*(C-H) (Figure 2.1d) and reducing the energy gap ultimately favoring the conformation in 

which σ(C-H) and σ*(C-F) (the best acceptor in this molecule) are anti.  

 

Figure 2.1. Factors influencing the strength of hyperconjugation interactions in the fluoroethane 

molecule. The orbital overlap is greater when σ(C-H) and σ*(C-F) are anti (a) rather than syn (b). The 

energy gap between σ and σ* is smaller between σ(C-H) and σ*(C-F) (c) than σ(C-H) and σ*(C-H) (d). 

 Although qualitative in nature, these chemistry principles are highly transferable since they 

follow general principles such as the degree of electron donating or electron withdrawing 

character, presence of lone pairs and the degree of overlap of molecular orbitals. Indeed, we have 

demonstrated that if these principles are quantified (using simple atomic properties), universal 

models for computing the torsional energy of molecules could be developed.35, 36 While our 

previous studies were focused towards σ → σ* and n → σ* hyperconjugation modes, a large 

number of drug like molecules contain unsaturations and aromatic ring systems,44 which exhibit 

other hyperconjugation modes: σ → π* and π → σ*, which we will refer to as π-hyperconjugation. 

These additional hyperconjugation interactions must play an important role in determining the 

conformational preferences of such moieties. Therefore, the goal of the present manuscript is to 
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describe our progress in integrating π interaction modes into our H-TEQ method, to guarantee its 

applicability to torsions in any drug-like molecule, improving the accuracy of FF-based methods 

for SBDD applications. In this present work, conjugated systems are not considered, and we focus 

on the prediction of torsional parameters for C(sp2)-C(sp3) bonds only. 

2.2.b Asymmetric Induction and π-Hyperconjugation 

 As predictive yet qualitative chemical principles, multiple chemical models have been 

developed to predict diastereoselectivity in nucleophilic addition reactions involving carbonyl 

groups such as the Cram and Felkin-Anh models.45, 46 The early Cram model states that the ideal 

path of attack of a nucleophile towards a carbonyl group, is essentially that minimizing steric 

hindrance. The more reliable Felkin-Anh model invokes additional electronic effects which control 

the diastereoselectivity; a strong electron withdrawing group (RL in Figure 2.2) at the vicinal 

position oriented antiperiplanar to the incoming nucleophile leads to a favorable σ → σ* 

interaction stabilizing the transition state. Furthermore, the angle of attack of the nucleophile is 

not 90° but ~107° (Burgi-Dunitz angle)47 which maximizes the alignment of the nucleophile σ 

orbital with the carbonyl π* orbital, ultimately leading to the bond formation.4-6 Although these 

different models disagree as to which of these interactions predominate, and do not predict the 

same stereochemical outcomes, it remains clear that both steric and electronic effects govern 

nucleophilic addition reactions on carbonyl centers. 

 While the Felkin-Anh model is in principle intended to predict the orientation of 

nucleophilic attacks to the C-α, it can also provide an understanding of the π → σ* or σ → π* 

hyperconjugation propensity. From the Felkin-Anh model, strongly electron-withdrawing (EWD) 

groups play a role similar to large substituents favoring the alignment of the σ* with π and π* 

orbital, and thus favoring the π → σ* hyperconjugation. Indeed, as can be observed in Table .2.1, 

our calculations with the natural bond orbitals method (NBO) (see Computational Methods) 

allowed us to quantify the strength of hyperconjugation interactions and showed that strong EWD 

groups (e.g. fluorine) favor π → σ * relative to σ → π*. The favorable nucleophilic attack at the 

carbonyl group may therefore be attributed to the interaction between the σ → π* resulting in a 

lower energy LUMO and thus more susceptible to nucleophilic attack. On the other hand, electron 

donating groups (e.g. CH3) result in weak σ* receptors and thus σ → π* hyperconjugation 
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predominates. In Table 2.1, we present values for the energy gaps and Fock matrix elements 

obtained from NBO calculations. In short, the Fock matrix elements are related to the overlap 

between the interacting orbitals (a larger value/overlap corresponds to stronger hyperconjugation), 

and energy gaps are self-explanatory (smaller energy gap leads to a stronger interaction as 

discussed). We would recommend the following article42 to any reader interested in the details of 

how NBO calculates these values. 

 

Figure 2.2. Electronic interactions evoked by the Felkin-Anh model to predict conformational 

preference.  

 The qualitative models routinely employed by organic chemists are often transferable, as 

they tend to isolate the predominant factors to simplify the picture. However, in order to translate 

these qualitative theories into robust quantitative predictions, an inclusion of other weaker 

interactions might be necessary. The underlying interrogative is: for a given torsion involving σ 

→ π* and π → σ*, should the predominant hyperconjugation mode be exclusively considered or 

should contributions from both modes be incorporated in our model; this is particularly interesting 

for cases where comparable magnitudes are observed (e.g. toluene in Table 2.1). Furthermore, 

should σ → σ* hyperconjugation interactions be neglected as they are smaller in magnitude than 

π-hyperconjugation interactions? It is important to note that σ → σ* are maximal when the σ and 

σ* orbitals are anti (in plane with the π-system), whereas σ → π* and π → σ* are maximal when 
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the σ and σ* orbitals are perpendicular to the π-system (Figure 2.3). Hyperconjugation and π-

hyperconjugation hence favor different conformations, thus neglecting weaker competing 

interactions could hinder the predictive ability of our model. 

Table 2.1. Energy gap and Fock matrix elements for π→σ* and σ → π* hyperconjugation 

  Ehyp(kcal/mol) ΔE [BD – BD*]/(a.u) F[BD, BD*]/(a.u) 

 

π → σ* 1.77 1.10 0.039 

σ → π* 5.96 1.03 0.070 

 

π → σ* 2.28 1.10 0.045 

σ → π* 9.32 0.91 0.082 

 

π → σ* 4.5 1.01 0.060 

σ → π* 2.3 1.40 0.051 

 

π → σ* 4.42 0.90 0.056 

σ → π* 4.7 0.98 0.061 

 

π → σ* 5.22 0.90 0.061 

σ → π* 7 0.86 0.069 

 

π → σ* 11.68 0.79 0.086 

σ → π* 2.04 1.34 0.047 

 

Figure 2.3. Different conformations favor different hyperconjugation modes. σ → σ* is favored 

when C-H and C=O are coplanar (left), π → σ* is favored when C-H and C=O are perpendicular 

(right). 
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2.2.c Hyperconjugation and/or Sterics as Major Torsional Energy Contributors 

 The conformational flexibility of small drug-like molecules essentially stems from rotation 

around bonds (i.e. dihedral angles). Hence, an accurate prediction of torsional energy profiles is 

critical for applications in SBDD. Non-bonded interactions (vdW, electrostatics) cannot be 

neglected however, as when a bond is rotated, the molecule can reorganize other degrees of 

freedom in order to minimize steric clash, allow favorable H-bonding or vdW interactions to occur 

etc.; these additional effects become weaker however as molecules get smaller. Typically, 

empirical torsional parameters are parametrized last, and are the only term in the FF equation 

which do not explicitly describe a specific underlying physical interaction. While this empirical 

nature can make up for errors in non-bonded parameters and improve the accuracy of molecules 

in the development set, it may be at the root of the poor transferability of torsional parameters.13 

We hence hypothesize that replacing these poorly transferable empirical parameters, by 

contributions from different hyperconjugation modes (σ → σ*, π-hyperconjugation) will improve 

the transferability of torsional energies for drug-like molecules. It should be noted that for the 

purpose of our comparison, the remaining terms of the FF energy will be calculated with the 

current implementation of GAFF2, hence residual error from the other parts of the FF are expected 

to be present.   

The first step in our approach is to confirm our hypothesis that hyperconjugation interactions will 

play an important role in the determination of conformational preference. Rotational energy 

profiles were computed with QM at the MP2/6-311+G** level of theory which is consistent with 

previous studies.35, 36 As shown in Figure .4, different π-system reveal varying conformational 

preferences and radically different rotational profiles (amplitude and periodicity). On one hand, 

the thiophene and benzene profiles contain two minima (±90°) and two maxima (0°, 180°), 

whereas the ketone and furan show 3 minima (180°, ±60°) and 3 maxima (0°, ±120°). Inspecting 

the optimal conformations of each molecule, we notice that for both the benzene and thiophene 

derivatives, the -CH3 substituent is positioned such as to maximize the overlap between the σ(C-C) 

and π/π* orbitals in the aromatic ring, at the expense of possible interactions between the σ(C-H) 

and π-orbitals (Figure 2.4). On the other hand, the furan derivative in its preferred conformation 

shows reduced orbital overlap between the σ(C-C) and the π-orbitals, allowing one of the σ(C-H) to 
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partially overlap with the π-orbitals. For the ketone, σ(C-C) does not interact at all with the π-orbitals, 

and both σ(C-H) partially overlap with the π-orbitals. In the benzene example, the preference for 

±90° can be attributed to unfavorable steric clash between hydrogens at the ortho position when 

the methyl group is in plane of the π-system. The thiophene derivative reveals a very similar 

profile, although it is not expected to be subject to a steric clash of the same magnitude, the 

hydrogen atom being further away (5-membered rings having inherently different geometries than 

6 membered rings).  

 

Figure 2.4. Variety of QM torsional profiles is linked to the underlying interactions. Rotated bonds 

are shown in red. 

 A notable difference between the benzene and thiophene profiles is the broadness of the 

low energy region. Clearly, the nature of the π-system is closely linked to which interaction will 

predominate, and ultimately to which conformation will be preferred. Three hyperconjugation 

modes are competing in these systems (σ → σ*, σ → π* and π → σ*, Figure 2.3), and their strength 

depends on two major factors, the energy level difference of the interacting bonding/antibonding 

orbital pair and the spatial orbital overlap.41-43, 48 The nature of the π-system is directly related to 

the energy levels of π and π* orbitals, as well as their polarization.49 While it remains unclear at 
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this stage as to which interaction predominates in each case, we can assess that the same set of 

interactions (with different electronic effects from various functional groups) may lead to very 

different profiles (Figure 2.4).  

2.2.d Understanding Interactions 

 While quantum chemistry can provide an accurate depiction of molecules, the information 

that can be extracted remains limited, and it is sometimes impossible to directly translate results 

obtained from these theoretical calculations into well understood chemical or physical principles. 

This discrepancy has thus led to a wide range of QM based methods that decompose the quantum 

energy into more chemically relevant parts. There are currently three main approaches allowing to 

dissect delocalization interactions (hyperconjugation in this work): natural bond orbital (NBO) 

analysis,50 energy decomposition analysis (EDA)51 and the block localized wavefunction method 

(BLW).52 While these methods are built around similar concepts (a full wavefunction or electron 

density is compared to a localized construct, and the energy difference between both is assumed 

to be related to delocalization interactions), they operate quite differently, specifically in the way 

they generate the localized orbitals. While EDA methods and BLW use non-orthogonal orbitals 

(which increases the role of steric effects), NBO uses orthogonal orbitals to describe the localized 

reference.53 Such decomposition schemes were initially developed to study intermolecular 

interactions,54, 55 but have more recently been used to study intramolecular hyperconjugation type 

interactions.56 The degree to which the decomposition is performed also varies from method to 

method and to this day, NBO is the only method which can output an energy value for every 

bonding/antibonding orbital pair in a molecule. In other methods, hyperconjugation and 

conjugation energies are agglomerated into a single energy term, hence not giving a chemically 

relevant picture with the same level of resolution. 

 Considering the two major interactions present in our systems are σ → π* and π → σ*, we 

expect that factors increasing the amplitude of one of them will decrease the amplitude of the other, 

as a good σ-donor is usually a poor σ-acceptor, and vice versa (see Table 2.1).42 Hence, a full 

decomposition of the interactions resolving both σ → π* and π → σ* seems more valuable, our 

end goal being to understand and develop rules to explain the factors controlling these interactions. 

NBO has notably been applied to understand the conformational preference of ethane, by invoking 
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the predominant role of hyperconjugation,38 to discern how different elements within pnictogens 

(N, P, As)57 and chalcogens (O, S, Se, Te)58 impacts n → σ* hyperconjugation and ultimately the 

magnitude of the anomeric effect. NBO has also already been used to study the torsional energy 

profiles of conjugated systems.59 Overall, NBO has been employed to understand the 

conformational preference of a wide range of molecules, explaining these preferences with 

different hyperconjugation modes, as well as to explore how different elements within a group can 

impact such interactions; it is therefore particularly fit for our purposes.  

2.3 Computational Methods 

2.3.a Construction of the Development Set 

 In order to complement our previously developed H-TEQ method, our objective was to 

replace the empirical torsional energy found in GAFF2 by a new function which would describe 

π-hyperconjugation. This function would be based on atomic properties (e.g. treating all carbons 

atoms in the same way) and from the topology of the molecule. Overall, the function assigns 

torsional parameters from only atomic properties and topology, without any prior atom typing of 

the molecules. To that end, we have first constructed a development set (Figure 2.5), covering a 

large variety of π-systems and saturated groups positioned at a vicinal position, in order to 

understand the effects of different moieties on torsional profiles, and the underlying interactions 

giving rise to such profiles. It should be noted that our data set is not built to resemble drug-like 

molecules, but rather to cover as wide a range of chemical space as possible (-R groups going from 

very electron withdrawing (e.g. fluorine) to electron donating (e.g. hydroxyl), in order to 

understand the factors governing the various hyperconjugation modes.  

2.3.b Details of the Calculations 

 First, we have obtained torsional energy profiles for every molecule in our development 

set using QM at the MP2/6-311+G** level of theory using the software GAMESS-US,60, 61 which 

is consistent with our prior studies.35, 36 In more detail, the torsional profiles were obtained by 

freezing the desired torsion from -180° to 180° with 10° increments while allowing all other 

degrees of freedom to optimize. The resulting optimized conformations were used to perform the 

MM and NBO calculations. 
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Figure 2.5. Development set of molecules used to study conformational preference of organic 

molecules containing π-systems. Rotated bonds are shown in red (R = H, F, Cl, CH3, OH). 

 MM calculations were performed using the AMBER16 package; GAFF2 atom types were 

automatically assigned with antechamber, partial charges were assigned using the AM1-BCC 

method on the global minimum structures and were carried to all other conformations of the same 

molecule. Finally, the GAFF2 energy was calculated by following the sander routine.    

 NBO calculations were performed with the NBO 6.050 program using the same level of 

theory and basis set as our QM calculations. To verify whether NBO energies could be used, we 

first replaced the torsional energy (related to the central rotated bond only) in GAFF2, by 

hyperconjugation energies (from NBO) related to all of the hyperconjugation modes around the 

central bond of interest. We then resorted to a scaling of these NBO energies down by factors of 

0.25 for σ → σ* and 0.4 for π-hyperconjugation to minimize the root-mean squared error (RMSE) 

between QM and scaled NBO profiles (see Appendix 1). Note that the NBO profiles were obtained 
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by replacing the torsional energy in GAFF2 by scaled NBO hyperconjugation energies. Only the 

torsional energy related to the central rotated bond were replaced by NBO energies. A Fourier 

regression of the hyperconjugation profiles of every molecule in the development set was 

performed, such that each σ → π* and π → σ* would be associated to a set of V1-3 parameters.  

 The RMSE calculations were performed with Eq. 2.1, in which every point in the torsional 

profile is compared to the QM reference. Prior to the RMSE calculation, profiles were rescaled 

such that the point with lowest energy was set to 0 kcal/mol. RMSEs being an imperfect measure, 

cut-offs or Boltzmann weights are sometimes used to discard or scale down the contribution from 

points of the potential energy surface that are higher in energy.62 We did not notice any significant 

difference in RMSEs when using such schemes (Appendix 2), and have kept the simpler RMSE 

scheme shown in Eq. 2.1.  

 𝑅𝑀𝑆𝐸 =  √
∑ (𝐸𝑀𝑀 − 𝐸𝑄𝑀)

2

𝑛

𝑛
 (2.1) 

 Finally, to compare the performance of our method H-TEQ 3.0, we have replaced the 

torsional energy in GAFF2 by the equations we have developed (Eqs. 2.2 and 2.3) which are meant 

to reproduce NBO calculated π-hyperconjugation energies. σ → σ* hyperconjugation energies 

were also included by using our previously developed set of equations.36 It is important to note 

that only the torsional energies related to the central rotated bond were replaced by H-TEQ 3.0 

values. Indeed, our method cannot yet cover all possible chemical groups (notably torsions 

involving π → π* and n → π* interactions) and some of the molecules in our validation set could 

not be supported by H-TEQ 3.0. Hence to treat every molecule with the exact same methodology, 

we kept all of the other (non-central) GAFF2 torsional energies. Generally, rotation around these 

other torsions is minimal as the central bond is rotated, particularly when the molecule is small. A 

few exceptions in which the other parts of the molecule reorganized considerably were observed 

though (Appendix 3).  
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2.3.c Construction of the Validation Set 

 To evaluate the performance of H-TEQ 3.0, we have developed a validation set of 50 

diverse drug molecules from a larger set previously developed in our lab.63 In order to reduce the 

computational cost associated with the obtention of QM torsional profiles, molecules were 

fragmented, keeping only the most relevant parts. For example, molecules were fragmented at sp3-

sp3 bonds, replacing parts of the molecule by hydrogens atoms. Furthermore, torsional profiles 

were obtained by using 15° (rather than 10°) increments, thereby reducing the number of 

conformations in a profile from 36 to 24. Overall, our validation set does not contain any molecule 

used to train the model, and a variety of novel π-systems were used (e.g. extended conjugated 

systems, fused rings). The full set can be found in the supporting information (Appendix 4). 

2.4 Results and Discussion 

2.4.a Quantifying Hyperconjugation from NBO 

 The first step to our approach consisted in verifying that NBO hyperconjugation values 

could be used to replace the torsional energy within GAFF2. When replacing GAFF2 torsional 

energies by scaled NBO hyperconjugation values, we note a significant decrease in RMSE from 

0.84 kcal/mol to 0.55 kcal/mol with respect to the QM reference (full results in Appendix 1). A 

more detailed account of NBO’s performance can be obtained by inspecting the histogram shown 

in Figure 2.6. As expected from the average values shown in Appendix 1, RMSEs obtained by 

NBO are lower than those obtained using GAFF2. More interestingly, GAFF2 reveals the presence 

of two populations, which we can interpret as molecules having been explicitly parameterized (low 

RMSE), and those for which parameters were transferred from similar molecules but which suffer 

from poor transferability (larger RMSEs). The development set used herein consists of very small 

molecules only (< 20 atoms) and we expect the lack of transferability to be further exacerbated in 

larger, more diverse drug-like molecules, as the probability that more parameters will be sub-

optimal is larger, and smaller errors will accumulate. In Figure 2.6, the torsional profiles for 3 

molecules are shown using QM, GAFF2 and NBO (replacing the torsion energy of GAFF2). 

Although for some molecules (e.g. ethylbenzene) the impact of replacing torsional energies by 

hyperconjugation was low, the QM torsional profile was reproduced much more accurately in the 
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furan and ketone examples. While the energy barriers remained underestimated in the ketone 

profile, NBO correctly predicted that the 3 energy minima were not equivalent. Furthermore, the 

furan profile was modeled with far greater accuracy by NBO, which can be explained by the fact 

that 5-membered rings are poorly parametrized (some not parameterized at all) in GAFF2, hence 

calculations often rely on “generic” parameters. 

 

Figure 2.6. Replacing the torsional energy term in GAFF2, by hyperconjugation obtained from 

NBO (with scaling factors of 0.4 and 0.25). Histogram distribution of the RMSEs of the 98 

molecules in our development set between NBO/QM (blue) and GAFF2/QM (orange). 

 While NBO energies were better at reproducing QM profiles, these calculations cannot be 

run to generate torsional parameters every time parameters are required. Hence, following an 

approach used successfully in the development of earlier versions of H-TEQ, our first objective 

was to understand factors governing the strength of the different interactions based on NBO 

generated data, and to develop a set of rules based on atomic properties (electronegativity, bond 

length, aromaticity etc..) which would reproduce NBO interaction energies, and could be 

calculated on-the-fly. Such a method would allow chemists to generate parameters for any drug-

like molecule containing π-systems for use in MD simulations or docking studies. 
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2.4.b Electronegativity, Aromaticity and π – Hyperconjugation 

 As previously mentioned, two major factors impact the strength of the σ → π* / π → σ* 

interactions. First, the energy gap between bonding and antibonding interacting orbitals is directly 

related to electronegativity. More electronegative elements yield lower-in-energy orbitals; for 

example, the π and π* orbital energy levels are higher in benzene, than in pyridine. Thus, 

introduction of heteroatoms into an aromatic ring, or non-aromatic conjugated systems leads to a 

lowering of the energy levels. The energy levels of π and π* orbitals being quite disparate, we can 

expect that a lowering of the energy levels would favor interactions unidirectionally (σ → π* or π 

→ σ*), as when the energy gap decreases for one interaction, it is expected to increase for the 

other. 

 Secondly, the spatial overlap between interacting orbitals. From heterocyclic chemistry, it 

is known that the introduction of heteroatoms into aromatic systems results in differences in atomic 

charges, as well as a greater shielding effect due to heteroatom substituents.64 It is also expected 

that more electronegative heteroatoms lead to a polarization of the π orbitals, which strongly 

impacts the ability of vicinal (σ or σ*) orbitals to overlap and interact. π and π* orbitals have 

opposite polarization, further reinforcing the fact that as one interaction becomes stronger, the 

other weakens, as it is impossible for two orbitals with opposite polarizations to have simultaneous 

strong overlaps with vicinal orbitals. In non-polar π-systems such as alkenes, π and π* orbitals are 

equally distributed towards both atoms of the double bond. In contrast, introduction of more 

electronegative heteroatoms (N, O) leads to the polarization of the π orbital towards the 

heteroatom, which ultimately limits the ability of the π-system to partake in π → σ* donation 

(lower orbital overlap, increase in energy gap). On the other hand, the π* orbital is polarized 

towards the carbon atom of the double bond leading to stronger overlap for the σ → π* interaction, 

resulting in a more prominent acceptor ability. As a rule of thumb, good π acceptors will be poor 

π donors and vice versa (although in some cases both interactions occur with similar magnitudes, 

Table 2.1). In Figure 2.7, NBO profiles are shown for these specific interactions, indeed we 

observe that less electronegative elements in the π-system leads to a stronger π → σ*, but weaker 

σ → π* interaction. The concept of electronegativity is therefore central in understanding the 

propensity of a system to contribute to π-hyperconjugation.  
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Figure 2.7. Electronegativity of elements in π-systems has an opposing effect for π → σ*(C-R) 

and σ(C-R) → π* interactions. In this example -R is a methyl group, although this trend extends 

to all -R groups studied (H, Cl, F, OH, CH3). 

 Similarly, the elements involved in the σ group with which the π-system is interacting 

impact the torsional energy profiles. More electronegative elements act as better donors, and 

weaker acceptors, and less electronegative elements will be better donors and weaker acceptors. 

The concept of electronegativity will hence be our major descriptor for π-hyperconjugation.  

2.4.c Developing Equations for π-Hyperconjugation 

 Traditionally, the torsional component of the energy in FFs is calculated using a truncated 

Fourier series (Eq. 1.4); the number of terms (N) included varies depending on the FF but usually 

doesn’t exceed 6 with 3 being most common. While FFs are empirical in nature, it is essential to 

understand that each term (Vn) can be interpreted in the context of rotation around a bond and 

assigned a corresponding chemical meaning. The V1 terms relates to the syn or anti preference of 

two groups, since π-orbitals are somewhat symmetrical (similar density above and below the 

ring/double bond), the V1 term should be negligible in our equation. The V2 term describes the 

energy cost of rotating around a bond and is related to the strength of the interaction which is 

maximal at 90° (maximal orbital overlap) and minimal at 0° (no orbital overlap). Finally, the V3 

term can be understood as a correcting factor which can weakly shift the energy barrier, this V3 
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term is also related to orbital overlap in the sense that it controls whether it is possible to rotate the 

bond slightly away from the ideal conformation (±90°) without losing π-hyperconjugation 

(Appendix 5).  

 For our purposes, V2 and V3 components of the torsion energy were sufficient to describe 

π-hyperconjugation interactions; π-hyperconjugation torsion profiles obtained from NBO were 

fitted to derive the V2 and V3 parameters for each molecule in the set. Since we are treating both 

interactions independently, each interaction will be assigned its corresponding V2 and V3 value, 

which will then be summed to describe π-hyperconjugation fully. Furthermore, as we noticed that 

σ → σ* could not be neglected, we will also add the classical hyperconjugation contribution 

(weaker), by using our previously developed set of equations.36 As expected, we found that only 

the V2 term was subject to large variations from a molecule to another, hence the V3 term was 

assigned a constant value of -0.5 kcal/mol for all molecules. We then concentrated our efforts into 

the development of an equation to model the V2 term for both σ → π* and π → σ * interactions, 

based on our understanding of the effects of electronegativity (χ) on energy levels and polarization 

of the orbitals involved in these interactions. More specifically how the strengths of these 

interactions are modulated by the electronegativity of relevant parts of the molecule.  

 𝑉2(𝛔 →  𝛑
∗) =  𝒂 

𝜒𝜋1  +  𝜒𝜋2

𝜒𝜎
 +  𝒃 (2.2) 

 
𝑉2(𝛑 → 𝛔

∗) =  𝒄 
𝜒𝜎 

𝜒𝜋1  +  𝜒𝜋2
 +  𝒅 

(2.3) 

 

 

Figure 2.8. Parts of the molecule considered to predict the strength of multiple interactions. The 

electronegativities of circled atoms are used to calculate the interactions of σ(C-R) → π* and π → 

σ*(C-R) (benzene analog) and σ(C-R2) → π* and π → σ*(C-R2) (ketone).  
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 𝜒𝑔𝑟𝑜𝑢𝑝 = 
1

𝜔 +  𝑁
( 𝜔 × 𝜒𝑐𝑒𝑛𝑡𝑟𝑎𝑙 + ∑𝜒𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  )

𝑁

 (2.4) 

 It is important to note that the major factors in Eqs. 2.3 and 2.4 are inverses of one another, 

as effects favoring one interaction, disfavor the other. Here V2 is shown as proportional to a 

function based on the electronegativity (χ) of various parts of the molecule (Figure 2.8). The values 

for electronegativities were obtained from the Pauling scale (Appendix 6)65 and electronegativity 

was calculated using the concept of group electronegativity as discussed previously.35, 36 Indeed 

for -CF3 or -CH3 substituents, we expect the electronegativity of the carbon atom to be much larger 

in trifluoromethyl than methyl, due to the neighboring chemical environment. Sanderson’s 

electronegativity equilibration principle66 states that the electronegativity of both atoms in a 

diatomic system equilibrate to give rise to a new value related to the equilibrium charge 

distribution in the molecule (this postulate can be extended to all molecules, not simply diatomics). 

Indeed, while electronegativity measures the ability of an atom to attract electrons towards itself, 

in polar molecules after the electron density has found its ideal distribution, there is no net flux of 

electrons away from this optimal distribution; in principle, electronegativity needs to be the same 

for every atom. A large amount of work has been dedicated to understanding the relationship 

between electron density and electronegativity, from which researchers have developed many 

schemes to calculate “group electronegativity” for specific parts of a molecule.67-70 Although this 

area of research received a lot of attention in the 80’s and 90’s, no recent contributions were found 

in the literature. Some of the schemes for group electronegativity rely on calculating the partial 

charge of every atom, ultimately requiring QM calculations, and are hence not consistent with our 

objective to develop a method applicable to high-throughput tasks. We have thus opted to use the 

simple equation described here by Smith et al. (Appendix 7).70 It is interesting to note that 

electronegativity equalization methods have also been applied to derive partial charges,71-73 for 

example the current implementation of CGenFF (CHARMM force field for drug-like molecules), 

uses a method which draws from these ideas to generate partial charges.74   

 The strength of the σ → π* and π → σ* obtained from NBO correlate well (r2 = 0.71 and 

0.81) with the developed rules (Figure 2.9), linear least square regression provided us with the 

values for a, b, c and d coefficients in Eqs. 2.2 and 2.3. It should be noted that changing the 
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electronegativity scale (e.g. Pauling units vs. Mulliken units) or weights in the group 

electronegativity calculation impacted the correlation of our method with NBO derived values. 

Indeed, while modifications to the equation could in principle improve the accuracy (stronger 

correlation to NBO) of one of the interactions (e.g. σ → π*), it usually led to a decrease in the 

correlation with the other (π → σ*). We thus decided to keep the simplest equation (with a weight 

of 2 for the central atom) and Pauling units as used previously to limit overfitting. Overall, Eqs. 

2.2 and 2.3 both use the same electronegativity scales and weights. It should be noted that minor 

scaling factors were used to differentiate different kinds of π-systems (6-membered, 5-membered, 

double bonds) such that the same equation could be used for all molecules (Appendix 8). 

 

Figure 2.9. Comparison of rules developed (Eqs. 2.2 and 2.3) to describe both π-hyperconjugation 

modes (σ → π* and π → σ*) with values calculated using NBO analysis. Correlations coefficients 

obtained are r2 = 0.71 (σ → π*) and r2 = 0.81 (π → σ*). 

 These equations were implemented into H-TEQ3.0, a program deriving V1-3 parameters 

for MM calculations. The developed java program also includes the equations from the previous 

versions of H-TEQ. The parameters (a-d) used in Eqs. 2.2 and 2.3 are shown in Table 2.2. 

Considering the V2 values generated for π → σ* and σ → π* are summed to make an overall V2 

term, parameters b and d could be agglomerated into a single parameter. We present them as 

separate parameters to highlight the fact they were obtained from a linear least square regression 

around NBO data. To test the transferability of these parameters, we have also performed a 

bootstrapping analysis (Appendix 9).   
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Table 2.2. Parameters obtained from the linear regression. 

Parameter Value (kcal/mol) 

a  6.16 

b   -6.50 

c  29.52 

d -8.88 

 

2.4.d Evaluation 

 

Figure 2.10. Performance of GAFF2 and H-TEQ3.0 methods over the development set of 98 

molecules. Contributions of σ → σ* hyperconjugation and the V3 correction factor were also 

monitored to understand their impact on our method. The black line at the center of each box 

corresponds to the median value.   

 The performance of this newly developed method (H-TEQ 3.0) on the development set of 

molecules was compared alongside GAFF2 against QM energies (Figure 2.10). The contribution 

of σ → σ* was calculated using the previously published version of H-TEQ 2.0.36 Overall, our 

method was found to perform better than GAFF2 when a V3
 correction factor of -0.5 kcal/mol was 

used. While the inclusion of σ → σ* had a minimal impact on the overall RMSE, the marginally 

lowest RMSE was found when σ → σ* hyperconjugation was omitted, which contradicted with 

the results found when replacing raw NBO values (Appendix 1). This discrepancy likely results 

from the equation modelling σ → σ* hyperconjugation being trained only on sp3 centers, which 
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might not be fully transferable to conjugated (sp2) centers. In conjugated systems, shielding of the 

σ orbitals by π orbitals is expected, and different geometries of the substituents (109.5° vs. 120°) 

modifies the ability of orbitals to overlap.  

 Overall, our method was found to be more accurate than GAFF2 in reproducing QM 

profiles, doing so without requiring the use of atom type description of the molecules, or any prior 

parameterization. 

2.4.e Performance and Validation 

 To validate our findings, we have applied the H-TEQ3.0 method to a diverse set of 50 drug 

molecules (Appendix 4) which does not contain any molecule used to train the model, and a variety 

of novel π-systems (extended conjugated systems, fused rings, Figure 2.11). 

 

Figure 2.11. Performance of our method on 4 drug-like molecules chosen from the validation set. 

Full lines correspond to the total energy predicted by each method, dashed lines correspond to the 

torsional component (of the central bond in red) only. The four molecules shown are (a) 1-(4-

fluorobenzyl)-5-methyl-1H-tetrazole, (b) N-(thiophen-2-ylmethyl)acetamide, (c) 6-(tert-butyl)-

7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine and (d) 1-(4-chlorophenethyl)-3-phenylurea.  
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 Furthermore, we rotated bonds that were located both in the center and at extremities of 

the molecules, the former being more important as they lead to the most prominent conformational 

changes. As for the development set, our method was compared to the widely used GAFF2, and 

torsional energy was replaced by our equations for π-hyperconjugation and previous equations 

from H-TEQ 2.0 were employed for σ → σ* hyperconjugation. Again, the effects of the V3 

correcting factor and σ → σ* interactions, were monitored by switching them on/off (Figure 2.12).  

 

Figure 2.12. Performance of GAFF2 and H-TEQ3.0 methods over the validation set of 50 

molecules. Contributions of σ → σ* hyperconjugation and the V3 correction factor were also 

monitored to understand their impact on our method. One outlier with a large RMSE (~20 

kcal/mol) is not shown (Appendix 3). The black line at the center of each box corresponds to the 

median value.   

 Regardless of the specific method used (inclusion or not of the V3, etc.), our method 

performs on par with the current implementation of GAFF2 (full results in Appendix 10). The V3 

factor was found to slightly negatively impact the accuracy of our method, while the effects from 

σ → σ* hyperconjugation were found to be minimal. In Table 2.3, results are summarized for the 

version of H-TEQ including both V3 and σ → σ*, the slight increase in accuracy over GAFF2 in 

the development set was lost in the validation set. This should not be confused as a lack of 

transferability of H-TEQ however, and the larger RMSEs in the validation set result from the larger 

prevalence of non-bonded interactions as torsions are rotated, in these larger drug-like molecules. 

Indeed, the non-bonded parameters were calculated using GAFF2, and our method has no impact 
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on the non-bonded parameters’ accuracy. The prevalence of non-bonded interactions is 

demonstrated in Figure 2.11, indeed GAFF2 and H-TEQ3.0 profiles are very similar, and the 

torsional component of the energy is weak compared to the overall predicted energy barriers (Fig. 

2.11a-d).  

Table 2.3. Accuracy of GAFF2 and H-TEQ3.0 to reproduce the torsional profiles over the 

development and validation sets of molecules.  

Method compared to MP2/6-311+G**  

and set of molecules used 

Average RMSE 

(kcal/mol) 

GAFF // development set 

GAFF (no torsions) // development set a 

0.84 

0.93 

H-TEQ3.0 // development set b   0.80 

GAFF // validation set  

GAFF (no torsions) // validation set a 

1.69 

1.78 

H-TEQ3.0 // validation set  b 1.71 

a The torsional energies related to the central bond were set to 0. 
b Both σ → σ* and V3 were included. 

 Figure 2.11c shows an example of a correct prediction of GAFF2 and H-TEQ3.0 where the 

torsional component is equal to 0 as a result of the phase cancelation of the torsion energy, and the 

weak vdW contribution to the energy alone can correctly predict the energy barriers. In Figure 

2.10b, a similar phase cancelation is observed, although the overall profile overestimated the 

height of the energy barrier by a factor of 2.5. In this case, the flexibility of other parts of the 

molecule were not modelled well by other energy terms of GAFF2 (vdW, electrostatics). Profiles 

shown in Figure 2.11a and 2.11d are more interesting. In Figure 2.11a the weak torsional 

component to the energy predicted by H-TEQ3.0 (out of phase with the overall profile), replacing 

the null contribution of GAFF2 led to a slightly more accurate profile, while in Figure 2.11d the 

opposite is seen, an incorrect torsional energy is predicted by GAFF2, which when replaced by a 

null contribution from H-TEQ led to a much more accurate profile. 

 An understanding of the magnitude of various π-hyperconjugation modes can explain the 

origins of the phase cancelation of the torsional terms. Indeed, sp3 carbons involved in σ → π* and 

π → σ* interactions of interest have 3 substituents which are separated by dihedrals of 120°. 
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Considering the interactions are essentially modeled by a V2 term, if the V2 are of similar 

magnitude they will cancel out. In the development set, the substituent that was modified could be 

more electronegative (F, Cl and OH) than the 2 other H atoms on the sp3 carbon, hence phase 

cancelation was not observed for these molecules. On the other hand, the majority sp3 carbon atoms 

bound to π-systems in drug-like molecules will have two H atoms and another larger group as a 

substituent, the atom directly attached to the sp3 carbon being in most cases a carbon atom. The 

propensity of π-hyperconjugation is similar for both -H and -C(R1R2R3) unless R1-3 are very 

electronegative, as predicted by NBO calculations (Figure 2.9), which explains why phase 

cancelation is observed for many drug-like molecules in the validation set. As a null hypothesis, 

we have also calculated the RMSEs where central torsional energies in GAFF2 were set to 0 and 

have observed larger RMSEs than when using GAFF2 with torsions or H-TEQ 3.0 (Table 2.3). 

However, the difference was rather small, which supports the idea that non-bonded interactions 

play an important role in determining these torsional profiles.   

 As a result, a major contributor to the energy in bulky drug-like molecules, when a torsion 

at the center of the molecule is rotated is sterics. Consequently, a correct modeling of non-bonded 

interactions is of greater importance to correctly predict the conformational energy landscape of 

such molecules. Polarizable Force Fields are expected to predict these non-bonded interactions 

with greater accuracy. Methods such as AMOEBA FF, may provide a much more thorough 

treatment of electrostatic interactions (performed using dipole and quadrupoles moments). 

However, an automated tool to generate AMOEBA atom types and parameters is yet to be 

developed, which hindered our ability to perform and include such a comparison in the present 

study, as atom types and parameters would have to be assigned manually. 

2.5 Conclusions 

 We have shown that replacing the torsional energy calculated by empirical parameters in 

FFs with more chemically meaningful potentials describing hyperconjugation interactions in 

conjugated molecules led to accuracies comparable to the widely used GAFF2, without relying on 

atom types description or parameterization, avoiding common drawbacks known to be associated 

with these methods. As opposed to previous work performed on saturated molecules, 
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hyperconjugation is not the predominant factor in determining conformational preference. The 

self-consistency of FFs (empirical torsion making up for poor non-bonded parameters) thus 

explains why, for the time being, transferable methods like H-TEQ3.0 do not perform significantly 

better than empirical methods as long as the other terms (especially non-bonded terms) are not 

trained concomitantly. The non-transferability of parameters remains a central challenge in FF 

development, and we expect chemically relevant transferable methods like H-TEQ3.0 to provide 

more accurate depictions of the energetics of small drug-like molecules, provided that non-bonded 

interactions are more accurately transcribed. Future research goals include the comparison of our 

method in MD and docking studies, comparison against a wider range of FFs (including 

polarizable FFs).  

 Finally, as the treatment of non-bonded interactions was shown to be problematic in this 

study, application of the atom type free methodology to describe non-bonded interactions could 

also be examined, removing entirely the need for atom typing in FFs, ultimately allowing more 

transferable methods to be applied towards many different SBDD programs.  
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3 Predicting the Hybridization of Nitrogen in 

Force Field Models 

3.1 Introduction 

3.1.a Prevalence of Nitrogen in Drugs and Biopolymers 

In 2014, Vitaku et al. have compiled a database containing all U.S. FDA approved 

pharmaceuticals;1 out of the 1086 small drug-like molecules present in this set, 84% contain at 

least one nitrogen atom. Nitrogen is also central in biopolymers; all base pairs which make up 

nucleic acids contain multiple nitrogen atoms, and amino acids are joined together in proteins by 

amide bonds.2 Additionally, compounds which resemble peptides (peptidomimetics), or are 

directly protein-based such as biologics (e.g. insulin), have been recognized as important classes 

of therapeutics.3 Molecular recognition of peptidomimetics (as well as classical drugs) by 

biopolymers is central to the development of new drugs and requires an accurate understanding of 

their dynamics and conformation upon binding.4 Rotation around amide linkages is particularly 

slow due to the partial double bond character of the C-N bond, and it is well established that the 

trans conformation is preferred in folded proteins to minimize steric clashes.5 On the other hand, 

cis/trans isomerization of the proline residue is one of the rate determining step in protein folding,6 

and cis/trans isomers exist in a state of dynamic equilibrium in unfolded proteins.7 Considering 

the prevalence of nitrogen in drug-like molecules and biopolymers, a rigorous description of the 

conformations and dynamics of these systems is required in order to provide meaningful 

descriptions of protein folding and macromolecule-drug interactions in computational structure-

based drug design (SBDD) methods. 

3.1.b Force Fields in Drug Design 

As extensively discussed in this thesis, computational methods are used in virtually all drug 

discovery projects.8 For example, virtual screening of libraries of compounds to identify “hits”,9 

or more accurate free energy perturbation (FEP), are routinely employed to predict binding 
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energies of potential therapeutics.10, 11 While in principle quantum mechanical (QM) provide more 

trustworthy estimates,12 they are unsuitable due to their high computational costs, and 

commonplace applications are usually performed with empirical molecular mechanics (MM) 

models and their underlying force fields (FFs). Among the many available MM methods, some of 

the most widely used comprise the AMBER,13, 14 CHARMM,15, 16 GROMOS17, 18 and OPLS19-22 

series, which calculate the potential energy of a molecular system as a sum of bonded and non-

bonded interactions (Eq. 3.1) using parameters obtained from precomputed tables.  

In MM, every atom in a molecule is assigned an atom type based on its element, 

hybridization state and direct chemical environment. In GAFF (the drug-like molecule FF 

associated with AMBER),23 sp3 nitrogens (amines) are assigned the atom type n3, sp2 nitrogens 

bound to aromatic rings are assigned the atom type nh, and amide nitrogens are assigned the atom 

type n. These atom types determine the behavior of the atom, by dictating which parameters are 

used to calculate the contribution of each term to the overall energy (Eq. 1.1).  

3.1.c Challenges in the Modeling of Nitrogen Containing Compounds 

In addition to limitations which have previously been discussed in this thesis (non-

transferability of parameters, poor treatment of electrostatic interactions, etc.), the modeling of 

nitrogen containing molecules is particularly challenging. As will be discussed throughout this 

report, these problems arise from both limitations in the simple additive functional (Eq. 1.1), and 

from the implicit treatment of lone pairs (lone pairs are considered by the heteroatom holding the 

lone pair, not by explicit  lone-pairs). Indeed, MM methods do not deal with the electron density 

explicitly, and the implicit treatment of the many interactions (n → σ* hyperconjugation, n → π* 

conjugation, electrostatics) lone pairs partake in is more often insufficient. As early as 1997, Dixon 

et al. have shown that the addition of lone pairs to FFs could improve the modeling of hydrogen 

bonding, by considering its inherent anisotropic nature.24 However, direct inclusions of lone pairs 

in force fields have remained scarce; a few examples include OPLS3 in which off-atom charges 

are included for aryl nitrogens,22 the TIP5P water model,25 and H-TEQ (developed in our lab) 

which incorporates lone pairs to account for their hyperconjugation interactions.26 Allinger et al. 

have also highlighted the importance of lone pairs to account for hydrogen-bond directionality 

with MM4, a class II Force Field,27 however this FF is not relevant for biomolecular simulations 
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or SBDD applications, due to its more complex parametrization and greater computational costs.28 

It could also be argued that polarizable methods such as the Drude oscillator models or multipolar 

expansion models include lone pairs in their refined electrostatic potentials by describing the 

electron density with additional dynamic charge points.29, 30 Although, the more sophisticated 

treatment of electrostatic interactions by polarizable models comes with a greater computational 

costs (~3-10 times more costly).31 More recently, Oroguchi et al. have shown that a simple 

inclusion of lone pairs in amino acid residues could improve H-bonding directionality in molecular 

dynamics (MD) simulations, without significant impact on the computational cost.32 Overall, while 

FF explicitly incorporating lone pairs exist, and widely used packages often allow the manual 

addition of lone pairs in the form of “dummy atoms”, most common applications of FFs in SBDD 

related applications do not include a treatment of lone pairs of electrons explicitly.  

We will now discuss the two main challenges associated with the modeling of nitrogen 

containing compounds. The hybridization state of nitrogen atoms depends on neighbouring 

chemical environment, in other words, the hybridization state of nitrogen in different molecules 

(in their most stable conformation) can vary significantly. Nitrogen atoms found in saturated 

molecules such as trimethyl amine will have a sp3 hybridization and tetrahedral geometry. In these 

systems, nitrogen can be a chiral center, and may take both R and S forms (depending on the 

position of the lone pair), although conversion from one form to the other occurs rapidly if 

substituents aren’t bulky, in a process known as nitrogen inversion. On the other hand, nitrogen 

atoms bound to π-systems (e.g. peptide bonds) will be found with sp2 hybridization and planar 

geometry. The lone pair of electron has a strong p-character, with equal electron density 

above/below the nitrogen, which maximizes overlap with the π-system. However, the 

hybridization of nitrogen strongly depends on the nature of the neighbouring π-system and need 

not be necessarily truly sp2 (Figure 3.2). For example, Alabugin et al. have extensively studied the 

effects of substituents in anilines on the hybridization of nitrogen, and found that conjugation is in 

competition with the intrinsic hybridization properties of the amino group (sp3).33 Indeed, electron 

withdrawing substituents on the benzene ring led to an increase in conjugation and more planar 

(sp2) nitrogen, while electron donating substituents led to a weaker conjugation and more 

bent/pyramidal sp3 nitrogen. It is interesting to note that the amino group intrinsically prefers the 

sp3 hybridization state, and it is only in the presence of a strongly accepting π-system (e.g. 
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carbonyls in peptides, heteroatom containing aromatic rings) that the stabilization due to 

conjugation (n → π*) is strong enough and leads to a rehybridization of the nitrogen to a sp2 state. 

 

Figure 3.1. Energy Diagram representation of the two extreme hybridization states of nitrogen in 

organic molecules. The higher in energy p-electrons circled lead to the less stable sp2 when 

conjugation in not possible.  

In GAFF2 (one of the most commonly used FFs for drug-like molecules), 23 which we will 

use as a comparison throughout this study, anilines (nitrogens are assigned atom type nh) are 

improperly predicted to be flat, which can be attributed to angle parameters which have 

equilibrium values of ~120° corresponding to an sp2 geometry. In fact, the nh atom type is assigned 

to all nitrogen atoms bound to π-systems (with the exception of amides and thioamides), even 

though molecules have significantly different preferred conformations/hybridizations. Notable 

distortions from planar sp2 geometries are also encountered in amides, when important electronic 

or steric effects are in play, or due to restrictions such as the amide nitrogen being part of a ring 

(e.g. proline amino acid, β-lactams).34 These deviations from planarity have profound implications 

in biological events such as amide bond proteolysis,35 cis-trans isomerization of peptides,7 and 

protein splicing.36 Furthermore, the β-lactam scaffold is present is multiple antibiotic families. (e.g. 

penicillins, carbapenems, etc.).37 
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Figure 3.2. Different hybridizations of Nitrogen depending on neighboring chemical environment. 

Values extracted from QM calculations at the MP2/6-311+G** level of theory, by constraining 

substituents around nitrogen at various positions (see Methods). Shown are the angle values 

obtained for the lowest-in-energy structures. Colours highlight the difference in neighbouring π-

systems, but are not related to the atom type assigned by GAFF2. 

Additionally, the hybridization state of nitrogen can vary in response to rotation around a 

bond. These changes of hybridization were noticed as early as in the 80’s when QM calculations 

were applied to small amides such as formaldehyde and N-methylacetamide (NMA), both in the 

gas and condensed phases.38-40 NMA is a small molecule that is often used to model a subset of 

the properties of polypeptides since it contains the amide bond and is small enough to allow 

extensive studies at the QM level. It was found that a large energy barrier is associated with rotation 

from cis to trans (both sp2), due to loss of conjugation. The barriers are also slightly larger in water 

relative to gas phase calculations. More interestingly, the molecule can rotate from cis to trans 

following two paths with distinct transition states coined TSanti and TSsyn  in which nitrogen is sp3 

hybridized (Figure 3.3). The difference in energy between both TSs was initially attributed to 

electrostatic interactions, although hyperconjugation (n → σ*(C-O)) could also be responsible for 

this disparity. Authors of these previous studies mentioned that subsequent examinations with 

more accurate methodologies were required as well as more thorough comparison to experimental 

results. In 2017, Thakkar et al. have examined the potential energy surface (PES) of NMA is great 

detail at the B3LYP/6-311+G** level of theory, confirming the presence of both sp3 transition 
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states, while providing a better picture of the actual path taken by NMA during isomerization 

(slightly different than what is represented in Figure 3.3).41 However, they omit to discuss which 

interaction(s) is (are) responsible for the difference in energy between both transition states. The 

pyramidalization of nitrogen plays a fundamental role in the rate of hydrolysis of amide bonds,42, 

43 and in the cleavage of N-glyosidic bonds (nucleic acids).44, 45  

 

Figure 3.3. Cis/trans isomerization of the N-methylacetamide molecule can take two distinct paths 

through which different transition states are reached. 

To our knowledge, none of the widely used FFs consider the pyramidalization of nitrogen,  

with the exception of MMFF94 (although over-predicting pyramidalization for some 

molecules).46, 47 MMFF94 is outdated however, and infrequently used in SBDD related 

applications after weaknesses in its parametrization process were recognized, and have not been 

corrected since.48 Major hurdles to implement this complex behavior are outlined in the literature 

such as the large variation of charge distribution with respect to conformation (which non-

polarizable FFs cannot include) and the use of redundant coordinates in the FF potential energy 

(out-of-plane and torsions).49 Mobley et al. also pointed out that traditional atom typing 

methodologies are not fit to represent the spectrum of possible hybridizations for nitrogen (Figure 

3.2), as too many atom types would be required.50 Furthermore, we believe that the simple additive 

potential used by FFs might hinder the ability to represent pyramidalization. A more accurate 

modeling of these nitrogen containing molecules is set to have drastic implications for more 
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accurate simulations of biological events, as well as for the prediction of binding affinities, 

considering the omnipresence of nitrogen in drug-like compounds. 

3.2 Methods 

The first step in our approach consisted in understanding why current FFs performed poorly 

to predict the conformations (and by extension hybridization) of nitrogen containing molecules. 

To this end, we constituted a data set of 104 nitrogen containing molecules (Figure 3.4), where the 

nitrogen atom of interest is placed next to a π-center (sp2) which can be part of an aromatic ring or 

a conjugated chain, thereby allowing conjugation to occur. The molecules in our set contain a wide 

range of π-systems; we have also varied the position on the ring to which the nitrogen substituent 

is attached, and finally added substituents (R1 in Figure 3.4) to the nitrogen in order to understand 

the impact of electron withdrawing (e.g., trifluoromethyl) and electron donating (e.g., hydroxyl) 

groups on the preferred conformation of nitrogen.  

As discussed earlier in this thesis, to ensure an accurate and extensive description of the 

PES of a molecule, a wide range of conformations needs to be included during the parametrization. 

The flexibility of small drug-like compounds essentially stems from dihedral angles, and 

parameters for torsions are typically generated by obtaining torsional energy profiles at the QM 

level, where a bond is rotated, and the energy is calculated at a few points along that rotation. 

However, sampling larger portions of conformational space to generate more accurate torsion 

parameters has been performed in the context of proteins, where Ramachandran (ϕ, ψ)  maps are 

obtained to better reproduce the conformations of peptide backbones.51 In this example, developers 

of the AMBER ff14SB generated two-dimensional maps which allowed to discern coupling 

behavior between adjacent torsions (implicit inclusion in the parameters). In CHARMM, similar 

maps were obtained and a correction factor cross-term (CMAP) was added to the potential energy 

function to model the coupling behavior between backbone torsions explicitly.52, 53 A similar 

approach (obtaining two-dimensional maps) was carried by Robertson et al. in the development of 

the OPLS-AA/M FF for RNA.54 On the other hand, we have not found in the literature any 

application of such extensive searches through conformational space in the context of 

parametrizing drug-like molecules. This is not surprising as those two-dimensional maps are 
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computationally demanding (> 100h for the largest molecules in our set), and the vastness of drug-

like chemical space has led researchers to favor larger data sets of molecules over a greater 

sampling of conformational space.55  

 

Figure 3.4. Set of molecules used to study the conformational preference and hybridization of 

nitrogen. Rotated bonds are shown in red.  

From this perspective, we decided to obtain two-dimensional maps for each of the 

molecules in our set, to gain deeper insights into the relationship between hybridization, 

conformation and chemical environment. The two-dimensional maps were generated by freezing 

the desired torsion (-180° → 180° with 10° increments), as well as freezing the other substituent 

on the nitrogen to force the molecule into a specific hybridization state (Figure 3.5). It is important 

to note that all of the molecules in our set contain a plane of symmetry, hence rotation from -180° 

→ 0° should be equivalent to rotation from 0° → 180°. However, when constraining the θ2 torsion 

angle, we incremented it in one direction only, whereas two sp3 geometries are possible for each 

θ1 conformation (Figure 3.5). Therefore, the region 0° → 180° describes one of these possible sp3 

states and the region -180° → 0° describes the other one. Overall, each “2D map” is composed of 

288 different conformations, in which two coordinates (θ1 and θ2) are frozen and the remaining 

degrees of freedom in the molecule are optimized at the MP2/6-311+G** level of theory using the 

software GAMESS-US.56, 57  
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Figure 3.5. Torsion angles varied to generate two-dimensional maps. The θ1 torsion is scanned  

from -180° → 180° with 10° increments. For each of these points, the θ2 torsion if scanned from 

110° (slightly more bent than sp3) to 180° (perfectly sp2) also using 10° increments. Conformations 

A and B correspond to the two possible sp3 states for the same θ1 value. 

It should be noted that due to small size of the molecules under study, the two frozen 

torsions θ1 and θ2 account for virtually all of the conformational change between different points 

on the map (i.e. there is no major reorganization of other parts of the molecule). Therefore, our 

maps focus heavily on the nitrogen atom involved in these two torsions, providing details onto 

their preferred hybridization states. The energy of the 288 conformations were then evaluated 

using the GAFF2 FF within the AMBER16 package. GAFF2 atom types were assigned using 

antechamber; charges were assigned using the AM1-BCC method on the lowest energy conformer 

and were carried to all other conformations. The GAFF2 derived potential energy is computed 

using the Sander routine. We then proceeded to modify the GAFF2 parameters (and later equation) 

in order to understand how the MM potential could be modified to reproduce QM derived 

potentials more accurately.  
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3.3 Results and Discussion 

3.3.a Inadequacy of GAFF2 to Model the Hybridization State of Nitrogen 

 

Figure 3.6. 2D map of N-methylacetamide calculated at the MP2/6-311+G** level of theory. The 

four points circled correspond to both minima (cis and trans) and transition states.  

 To begin our analysis, we focused our attention on the NMA molecule considering its 

importance (template for amide bonds) and use in prior studies.39, 58 Four key conformations 

corresponding to the two minima and the two TSs described previously, are highlighted in the QM 

2D map obtained (Figure 3.6). For each of the 36 increments of the θ1 angle (from -180° → 180°), 

we also highlight in black the conformation of lowest energy (w.r.t. the θ2 angle). Considering we 

are using discrete increments, the black line connecting these conformations is an approximation 

of the path taken by the molecule during cis → trans isomerization, and a more accurate path was 

reported by Thakkar et al.41 Nevertheless, the black line reflects the variation in hybridization upon 

rotation; from purely sp2 (cis and trans) to sp3
 (both TSs), as observed by other groups.58 

Additionally, it should be noted that the “real” preferred conformation when θ1 is fixed at a 

particular value might not be shown on the map since θ2 is also varied with fixed increments of 

10° (e.g. the ideal value of θ2 when θ1 is 90° might be 134°, but our maps contains values for 130° 

and 140° only). Therefore, the geometries of the TSs shown are the closest conformations (to the 
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TSs described by Thakkar et al.) present in our map. The fact that our map only approximates the 

path from cis → trans and that TSs are not exact should not be mistaken as liabilities in our 

methodology, our main objective being to sample as many conformations of the PES as possible 

to assess current drawbacks in GAFF2. To summarize, the PES of NMA reveals the presence of 

two large energy barriers (>15 kcal·mol-1) for the rotation of the amide bond. In the regions of low 

energy (cis and trans), the sp2 conformation is preferred, whereas in regions of high energy (TSs) 

the sp3 conformation is preferred. 

 

Figure 3.7. 2D maps of NMA calculated with (A) MP2/6-311+G** and (B) GAFF2. White points 

correspond to energy minima, and black points correspond to transition states (lowest energy 

points on the energy barrier). 

We then compared the 2D maps of NMA (QM vs. GAFF2 in Figure 3.7) and found that 

GAFF2 failed to correctly reproduce the PES.  Indeed, while conformations close to the cis and 

trans minima are accurately represented by GAFF2, the sp3 hybridization state is penalized too 

greatly (for all values of θ1). In QM, the saddle points (lowest energy points on the energy barriers 

corresponding to TSs) are sp3 hybridized, while GAFF2 incorrectly predicts them to be sp2 

hybridized. Moreover, GAFF2 also penalizes the sp3 conformers too greatly in the low energy 

regions (~10 kcal·mol-1 in GAFF2 vs. ~ 5 kcal·mol-1 in QM). We have accredited these differences 

to the angle parameters associated to the three angles around the nitrogen atom. Indeed, the angle 

parameters for the three angles c-n-c3, c-n-hn, and c3-n-hn have equilibrium angle values of 

120.7°, 117.5° and 117.7° respectively which too heavily penalized bent sp3 geometries (angles ~ 

109.5°). In fact, simply removing contributions from these three angles led to a decrease in RMSE 

(3.96 → 3.01 kcal·mol-1), hinting that incorrect angle parameters were at least partially responsible 
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for the poor prediction, although the RMSE remained large, suggesting that the complex behavior 

at play might require more than simply reparametrizing angles. 

 
𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑅𝑀𝑆𝐸 =  

√∑ (𝐸𝑀𝑀 − 𝐸𝑄𝑀)
2
 𝒆−(

𝑬𝑸𝑴
𝒌𝑻

)
𝑛

𝑛
 (3.1) 

In light of the poor performance of GAFF2 to reproduce the PES of a staple molecule, we 

sought to investigate its accuracy on our entire set of 104 molecules, by calculating RMSEs 

between QM and MM maps. Unsurprisingly, deviations between QM and GAFF2 are large (Table 

3.1). Authors of the OPLS FFs,54, 59 have suggested to use Boltzmann scaling factors when fitting 

parameters to maps containing low and high energy conformers, essentially weighing down the 

contribution of less significant high energy conformers. The Boltzmann scaling factor (Eq. 3.1) 

used to complement the traditional RMSE calculation (Eq. 2.1), requires the specification of a 

temperature. Using too low a temperature results in completely disregarding high energy 

conformations (Boltzmann factor < 0.1 if Econfor > 1.4 kcal·mol-1 at 298K), and a temperature of 

2000K was found optimal by aforementioned authors. While we report both Boltzmann scaled and 

unscaled RMSEs in Table 3.1, all RMSEs mentioned in the text (following this comment) will be 

Boltzmann scaled at a temperature of 2000K.  

Table 3.1. Current Performance of GAFF2 to predict the conformational preferences of nitrogen 

containing molecules. 

Method compared to MP2/6-311+G**  Average RMSE 

(kcal·mol-1) 

Median RMSE 

(kcal·mol-1) 

GAFF2 2D map a 4.44 4.29 

GAFF2 2D map b   2.40 2.22 

GAFF2 1D profile a 3.04 2.99 

GAFF2 1D profile b 2.02 1.86 

a RMSE calculated without any scaling 
b RMSE calculated using a Boltzmann scaling factor at 2000K 

Overall, GAFF2 cannot reproduce these maps accurately (only 3 molecules with RMSEs 

< 1 kcal·mol-1), hence we sought to determine which parts of the FF were responsible for these 

weak predictions. In the case of NMA, we had attributed the disparity between QM and MM to 
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angle parameters. Thus, to confirm the validity of the torsional parameters assigned to NMA, we 

extracted the 1D torsional profile (black path in Figure 3.6, Figure 3.8A), which revealed better 

agreement with QM (RMSE 0.71 kcal·mol-1), supporting our hypothesis that angle parameters 

were responsible. It is worth reminding our reader that, agreement for these 1D profiles does not 

mean that the correct hybridization state is assigned overall. On the other hand, torsional 

parameters were missing to describe molecules in which a nitrogen atom was bound to a 5-

membered ring (e.g. Figure 3.8B). In those cases, GAFF2 assigned generic parameters, which 

resulted in drastically incorrect 1D profiles and by extension 2D maps (Figure 3.9C and 3.9D). 

 

Figure 3.8. 1D torsional profiles of (A) NMA and (B) N-methylfuran-2-amine extracted from the 

2D maps. 

In general, the shapes of the PESs described by our QM 2D maps fell within three distinct 

categories. The maps of NMA, and other molecules in which the π-system is a conjugated chain 

(amide, alkene, thioamides, imine, etc.) displayed two regions of low energy (sp2 favoured) 

separated by two energy barriers (sp3 favoured). Molecules within this first category were usually 

accurately modeled in regions of low energy, but poorly modeled in regions of high energy (TSs 

predicted to be sp2 instead of sp3). Molecules in which a nitrogen atom is bound to a 6-membered 

π-system constituted our second category; the energy landscapes described by QM were similar to 

those in category 1. In fact, these maps also contained two regions of low energy separated by two 

energy barriers (although the magnitude of these barriers were weaker, e.g. ~ 5 kcal·mol-1 for N-

methylaniline, Figure 3.9A). However, in this second category, the preferred hybridization states 

were now closer to sp3 for both energy minima and TSs, all of which were incorrectly predicted as 
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being sp2 by GAFF2 (Figure 3.9B). Interestingly, we noticed that the shape of the PES of 

molecules in the second category (two energy barriers, typical for sp2 centers), and their preferred 

sp3 hybridization seemingly contradicted one another. Indeed, torsional profiles involving sp3 

centers (e.g. ethane) typically contain three energy minima and barriers.  

 

Figure 3.9. 2D maps of N-methylaniline (A = QM, B = GAFF2) and N-methylfuran-2-amine (C 

= QM, D = GAFF2). Additional points are included on the map to help visualization, white points 

correspond to local minima and black points correspond to saddle points on energy barriers.  

Finally, molecules in which a nitrogen atom is bound to a 5-membered π-system (e.g. N-

methylfuran-2-amine) comprise the third category, in which the expected threefold profile was 

observed (Figure 3.8B and 3.9C), further emphasizing the sp3 nature of these molecules. However, 

as previously discussed, torsional parameters for molecules within this third category were 

missing, and generic parameters assigned by GAFF2 led to drastic differences between QM and 

MM (Figure 3.9C and 3.9D).  

3.3.b Improving the Modeling of Nitrogen Containing Molecules in GAFF2.  

Our group has followed alternative approaches to tackle computational chemistry 

problems, our main idea being to directly incorporate well established and transferable chemical 

principles into computational chemistry programs. For example, we have encoded the Hammond-



Chapter 3 

88 

 

Leffler postulate and Curtin-Hammett principle to predict the stereochemical outcome of 

asymmetric reactions.60, 61 More recently, we have carried this philosophy to develop a new FF 

called H-TEQ in which we substituted the torsional energy by equations modeling various 

hyperconjugation modes, without relying on the concept of atom types.26, 62 Our latest contribution 

to H-TEQ has been described in the previous chapter.  

From this perspective, we decided to first address the aforementioned limitations found in 

GAFF2, with the same methodology as previous iterations of H-TEQ (i.e. quantifying 

hyperconjugation by using data generated from NBO63). From our chemical intuition, as well as 

previous results,26 we expected the n → π* interaction to predominate, and essentially determine 

the conformational preferences of the molecules in our set. However, we rapidly realized that we 

could not rely on NBO to quantify the intensity of n → π* interactions. For instance, NBO 

predicted a stabilization greater than 90 kcal·mol-1 for the n → π* in the NMA molecule, when the 

QM calculated barrier was found at around 20 kcal·mol-1. Moreover, the n → π* stabilization in 

N-methylaniline was predicted to be around 40 kcal·mol-1 which is more than 8 times greater than 

its QM energy barrier (smaller than 5 kcal·mol-1). Considering all hyperconjugation modes (some 

of which are out of phase with the n → π*, thereby reducing the overall barrier height), did not 

lead to a correct match between QM and NBO profiles either. As discussed in the previous chapter, 

the inner workings of NBO involve constructing a Lewis like representation of the molecule by 

localizing orbitals. Considering the systems under study are highly delocalized, we questioned the 

ability of NBO to describe them. Furthermore, too many hyperconjugation modes (i.e. σ → σ*, σ 

→ π*, π → σ*, n → σ* and n → π*) are present in these molecules, and a potential accumulation 

of small errors could have impaired the predictive capabilities of our method, had we chosen to 

follow this approach. Overall, we decided to move away from the previously employed 

methodology, and abandoned NBO as a tool to understand bonding/antibonding interactions in 

this present context.  

In the introduction, we discussed how, in our opinion, the explicit introduction of lone pairs 

could potentially improve the modeling of nitrogen containing compounds. However, it is difficult 

to obtain the position of the lone pair from a QM calculation as it is delocalized, hence including 

a lone-pair bead (described by a point) becomes problematic. Further, new terms for lp-atom-atom 
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angles and lp-atom “bonds” would have to be developed. To our knowledge, it is not possible to 

extract this kind of information from QM calculations (i.e. it is not possible to perform a PES scan 

with the lone pair as one of the coordinates). While we could in principle develop empirical 

parameters, this would contradict with our initial objective of having a method based on well 

founded chemistry principles. Another option would be to freeze the lone pair at a set distance 

from the nitrogen and with set angles (with the nitrogen’s other substituents), however this 

probably wouldn’t allow to model the change from sp2 to sp3 as the angles mentioned would have 

to change too. Overall, the inclusion of lone pairs as “dummy-atoms” which participate in valence 

interactions proves to be particularly challenging, mostly because target data from which 

meaningful parameters could be fit to cannot be easily obtained.  

In light of these difficulties, we then decided to approach the problem from another 

perspective. By inspecting the PES of NMA in more detail, we noticed an intrinsic link between 

torsions and angles. Concretely, as the C-N bond is rotated from cis (sp2 geometry, angles around 

nitrogen are 120°) to trans, the molecule passes by a sp3 favoured region (angles around nitrogen 

close to 109.5°). In order to reflect the association of two motions, cross-terms can be included in 

the MM potential, thus we though that incorporating an angle-torsion cross-term could force the 

molecules in their correct hybridization state, throughout the rotation of the C-N bond. More 

specifically, we have developed Eqs. 3.2 and 3.3, inspired from the regular angle term (Eq. 1.3), 

such that conformations in which angles divert from their equilibrium value θeq are penalized. 

However, the value of θeq  now varies w.r.t. the torsion as the bond is rotated and we refer to it as 

θnew. Mannfors et al. have described that to calculate proper forces in MD simulations, each energy 

term needs to be attributed to the correct atoms.49 In the present context, all 3 angles around 

nitrogen hold similar values (i.e. they all bend at the same time when becoming sp3), hence we 

apply our additional cross-term 3 times (once for each angle) to reflect for that behavior. We also 

calculate the variation in Eq. 3.3 by summing up all 4 dihedrals (φ), instead of arbitrarily choosing 

one.  

 𝐸𝑐𝑟𝑜𝑠𝑠−𝑡𝑒𝑟𝑚 = 𝑲𝜽 (𝜃 −  𝜽𝒏𝒆𝒘)
2 (3.2) 
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 𝜽𝒏𝒆𝒘 =  𝜽𝒂𝒗𝒈 + 𝜽𝒗𝒂𝒓 [ ∑ 𝑐𝑜𝑠(2𝜑𝑖)

4

𝑖 = 1

] (3.3) 

 

Figure 3.10. 2D maps of NMA at the QM level (A), and with a torsion angle cross-term included 

in the GAFF2 potential (B).  

As expected, the 2D map of NMA was much better reproduced when including our cross-

term (RMSE decreases from 1.28 to 0.72 kcal·mol-1, Figure 3.10). Initially we expected our new 

parameters θavg and θvar to reflect an underlying physical meaning (i.e. θavg describes angles in the 

molecule in average hybridization state and θvar describes the magnitude of the variation in 

hybridization). Concretely, in the case of NMA where angles vary from ~ 120° to 109.5°, we 

expected θmid to be ~115° and θvar to be equal to ~1.25 (5/4 as the cosine varies from -4 to +4). 

However, the optimal parameters (those which minimized the RMSE), were different from our 

initial guesses (θavg = 71 and  θvar = 1). As during the optimization all other parameters were kept 

fixed, we presumed that our method empirically corrected for erroneous parameters in GAFF2 

(notably, angle parameters). Implementing the cross-term such that it replaced the original angle 

terms (instead of supplementing them) led to somewhat more meaningful values (θavg = 105 and  

θvar = 1), although θavg was still far from our initial assumption of 115°, suggesting once again that 

as we optimized the parameters, the ideal values made-up for pre-existing errors in the FF. 

Altogether, the addition of a cross-term improves the modeling of NMA, as the TSs now have the 

correct sp3 geometry without impacting the low energy region (Figure 3.10).  
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Figure 3.11. Set of anilines, pyridines-amines and pyrimidines-amines used to tune the angle 

parameters within GAFF2. 

After having shown that the PES of NMA could be more rigorously modeled by an angle-

torsion cross-term, we sought to apply the cross-term to molecules in the second category (i.e. both 

minima and TSs are closer to sp3). When doing so, the optimal value for θvar was 0, indicating that 

the hybridization did not vary upon rotation (in agreement with QM maps) transforming Eq. 3.2 

into an additional  angle term, instead of a cross-term. Therefore, we decided to inspect the validity 

of the angle parameters currently in GAFF2 and examine whether a simple modification to these 

parameters could reproduce the PES of these molecules more accurately. Concretely, we took the 

18 molecules in category two (Figure 3.11), for which the angles around nitrogen are all described 

by the same three angle types (namely ca-nh-c3, hn-nh-c3 and ca-nh-hn). First, we modified the 

equilibrium angles by taking values from the saddle points on N-methylaniline’s QM map, which 

led to a decrease in RMSE (2.18 kcal·mol-1 → 1.81 kcal·mol-1, over the 18 molecules) suggesting 

that equilibrium angles were incorrect for these molecules. Then, we also inspected whether the 

force constants could be modified and found that it led to a further decrease in RMSE (2.18 → 

1.36 kcal·mol-1), suggesting that new angles parameters could greatly improve the modeling of 

these molecules. Additionally, we performed a traditional PES scan of these three angles in N-

methylaniline (Figure 3.12), as generally performed to generate angle parameters, which also led 

to a decrease in RMSE (2.18 → 1.43 kcal·mol-1). Interestingly, we found that two of the three 

angles now had θeq values of 112° and 113°, which corresponds to a hybridization between sp2 and 

sp3. We note that the last angle with a θeq value of 119° (sp2) was probably due to a steric clash 

between the methyl hydrogen, and the ortho-hydrogen.  
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Table 3.2. Modifications to the angle parameters used to model the 18 molecules shown in Fig. 

3.11 (anilines, pyridines, pyrimidines).  

Angle (GAFF2 atom types) ca-nh-c3 hn-nh-c3 ca-nh-hn RMSE 

(kcal·mol-1) 

Parameters in GAFF2 

 (Kθ, θeq) 

65.25, 120° 46.42, 116° 48.79, 116° 2.18 

Modified parameters A  

(Kθ, θeq) 
a 

65.25, 112.5° 46.42, 108.5° 48.79, 108.5° 1.81 

Modified parameters B  

(Kθ, θeq) 
b 

25, 112.5° 45, 108.5° 25, 108.5° 1.36 

Modified parameters C  

(Kθ, θeq) 
c 

60, 119° 43.4, 113° 46, 112° 1.43 

All values of Kθ are in units of [kcal/(mol·radians2)] 
a Values for θeq taken from the saddle points on the QM 2D map of N-methylaniline 
b Values for θeq obtained as in a, values for Kθ were further optimized  
c Values for Kθ and θeq obtained from the angle scans shown in Fig. 3.12 

 

 

Figure 3.12. PES scan of the three angles around nitrogen of N-methylaniline obtained at the 

MP2/6-311+G** level of theory. 

To understand more concretely how the modification of these angle parameters impacted 

the overall PES, we then plotted the 2D map of N-methylaniline using the modified angle 

parameters (set B in Table 3.2). We observed that the hybridization of both minima and TSs were 

now predicted to be closer to sp3 (Figure 3.13), which also extended to the 18 other molecules. On 

the other hand, the barrier height did not precisely match QM predictions, which suggested that 

torsional parameters could also be improved. Overall, the new angle parameters we propose here 
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(notably sets B and C, considering they lead to greater decreases in RMSE) could be directly 

incorporated into GAFF2. However, we do not argue that these are the best parameters that could 

describe these molecules. Parameter sets B and C are quite different, and in both cases, the RMSEs 

remained unsatisfactory to describe the PES of molecules containing conjugated nitrogens.  

 

Figure 3.13. 2D maps of N-methylaniline at the QM level (A) and using GAFF2 with corrected 

angle parameters (B).  

We expect that a further refinement of the torsional parameters could solve this issue. 

However, the way these torsional parameters would be developed remains a challenge. Should the 

torsions be refined after having fixed the angle parameters to new, more accurate values? Should 

both angles and torsions be optimized simultaneously, from 2D maps in which conformational 

space is sampled to a greater extent than typical angle and torsion scans? Is it sufficient to look at 

MP2/6-311+G** quantum data, or should other functionals be employed? Would it be possible to 

move away from an atom type based approach and include lone pairs explicitly in the FF 

description of these molecules? All of these technical questions highlight the fact that while the 

equations to model each interaction in FFs are very simple, complexity arises when multiple 

degrees of freedom impact one another. In order to efficiently parametrize molecules containing 

conjugated nitrogens, it is necessary to first answer these questions, and build robust and 

appropriate parametrization strategies. Then, these methodologies could be used to parametrize all 

molecules discussed, those within category three being most important considering they are 

currently missing both angle and torsion parameters. Further, molecules in category one could also 

benefit from such a re-parametrization, onto which an angle-torsion cross term could ultimately 

be applied, which we expect would now hold more physically meaningful parameters.  
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3.4 Conclusions and Future Work 

To conclude, we have analyzed in depth the current performance of GAFF2 to predict the 

conformational preference and hybridization of molecules containing conjugated nitrogen 

substituents. We have found that GAFF2 performs particularly poorly in that respect and 

established three different ways in which GAFF2 could be further refined. In our first category, 

the application of an angle-cross term was found to more accurately model the PES of molecules 

in which nitrogen is bound to a conjugated chain, where the preferred hybridization states vary 

along rotation around a torsion. In our second category, a simple refinement of the angle 

parameters showed promising improvements which could be directly incorporated into GAFF2, 

although the torsional parameters remained imperfect. Finally, in the third category, current 

torsional parameters were lacking, and generic parameters led to drastically incorrect predictions 

of the PES. Overall, the development of new methodologies to parametrize these molecules should 

allow to generate more physically meaningful parameters. These new methodologies could be 

applied to all three classes of molecules, and from this new point, the incorporation of an angle-

torsion cross-term could be reassessed. Considering the prevalence of nitrogen atoms in drugs, 

these ameliorations are expected to contribute greatly in the advance of FF based methods for 

SBDD, by estimating protein-ligand binding affinities and ligand conformations upon binding 

more truthfully. Further, a more rigorous description of the amide bond should result in more 

accurate simulations of proteins when using tools such as MD. 

In more detail, the development of new methodologies to parametrize these molecules 

should be the first priority to continue this work. In our opinion, a good hypothesis to try would 

be to: first obtain more robust angle parameters, then obtain torsional scans in which the molecule 

is frozen into an sp2 state from which torsional parameters can be obtained (which should 

essentially be V2). Finally, these new parameters can be projected on the 2D maps generated in 

this work, and if a good match is observed, it can then be concluded that these parameters are 

adequate. In fact, they would be transferable in conformational space (which is another form of 

transferability we have not discussed extensively in this thesis). However, if the new parameters 

are not suitable, the methodology would need to be revisited. Finally, the treatment of 1,4 non-

bonded interactions might pose problems to generate meaningful torsional parameters, to avoid or 
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reduce such limitations an alternative would be to use a polarizable FF (such as AMOEBA) to 

obtain the rest of the FF terms. 
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4 Conclusions and Future Work 

4.1 Conclusions 

To summarize, virtually all drug discovery (DD) endeavours rely at least at one point on 

methods utilizing molecular mechanics (MM) potentials to describe molecular systems.1 The most 

common applications, molecular dynamics and docking, both rely on accurate force fields (FFs) 

in order to provide valuable information regarding the dynamics of large biomolecules, and 

binding affinities between potential ligands and specific biological targets. Much work has been 

directed towards the improvement of FFs, and the continuous update and refinement of potentials 

and parameters are expected to further strengthen the reliability of aforementioned predictions, 

ultimately reducing the costs to bring new pharmaceutical compounds to the market.2 Most of 

these efforts have been guided towards the treatment of electrostatic interactions via polarizable 

models, and the parametrization of torsions to cover drug-like molecule space.3  

First, we have carried the philosophy of H-TEQ, in which hyperconjugation interactions 

replace the torsional energy term, to unsaturated molecules (e.g. allylic, benzylic). As opposed to 

previous studies focusing on saturated molecules,4, 5 hyperconjugation was no longer the 

predominant factor determining conformational preference, hence non-bonded interactions (van 

der Waals, electrostatics) must be accurately transcribed, to reproduce potential energy surfaces 

(PES) well. We have shown that our method performed on par with GAFF2,6 one of the most 

commonly used FFs for small organic molecules, without relying on atom types to assign 

parameters, which are associated to many known drawbacks.7 We believe that associating our H-

TEQ3.0 equations with polarizable methods such as AMOEBA8 could lead to better accuracies, 

and a stronger transferability of parameters which is essential to cover greater portions of drug-

like molecule space.  

Additionally, we have discussed current drawbacks in GAFF2 limiting its ability to 

reproduce the correct PES and preferred hybridization states of molecules containing nitrogen 

atoms bound to π-systems. In this context, we found that we could not rely on NBO9 to quantify 
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(hyper)conjugation interactions and discussed difficulties which hindered our ability to carry the 

H-TEQ methodology towards these molecules. More specifically, our inability to obtain 

theoretical quantum data to support the explicit inclusion of lone pairs (LPs) with physically sound 

parameters, suggested that for now, empirical parameters were needed to describe these systems. 

However, we have determined and classified ways in which GAFF2 led to incorrect predictions, 

proposed a novel cross-term which could support the change of hybridization of nitrogen centers 

as bonds are rotated, and shown that corrections to the angle parameters could fix current 

deficiencies. Altogether, incorrect torsional and angle parameters need to be readjusted, using 

more suitable methodologies which need to be developed. In that respect, we believe that sampling 

larger portions of conformational space as we have performed (i.e. 2-D maps) could be more 

adequate. Once this has been completed, the necessity of the cross-term proposed can be reassessed 

for which more physically meaningful parameters should be derivable, as the latter would not be 

empirically correctly for other sources of error.  

4.2 Future Work and Perspectives 

Overall, more work is required to expand the current coverage of H-TEQ such that it could 

support all possible drug-like molecules. Work in our lab to include biaryl systems has already 

been completed, but other torsion types such as those studied in chapter 3, or those involving other 

kinds of conjugated systems (e.g. aryl-amides) are still missing. The development of more accurate 

energy decomposition analysis (EDA10) tools by theoretical chemists could allow to carry the H-

TEQ methodology to molecules discussed in chapter 3. Further, once the H-TEQ method 

completely covers drug-like chemical space, its equations could be retrained on more rigorously 

decomposed quantum data, ultimately improving its accuracy. As of now, H-TEQ has been tested 

by retaining every other (non-torsion) term as found in GAFF currently (MMFF94 and 

parm@Frosst were also used in our first two studies on saturated compounds).4, 5 We are thus 

curious to see how H-TEQ fares when using polarizable methods such as AMOEBA8 or the Drude-

201311 FF to calculate other terms (i.e. bonds, angles, vdW, electrostatics). This will be made 

possible once automated atom typers and parameter assignment protocols are made publicly 

available. We expect our method to be more accurate in conjunction with polarizable FFs, as 

current torsional parameters in non-polarizable methods are currently expected to empirically 
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make up for errors stemming from non-bonded terms, which H-TEQ is fundamentally not designed 

to take care of.  

Additionally, we envision that employing atom type free methodologies such as H-TEQ 

would be particularly suited to develop more transferable van der Waals parameters, which is also 

the direction followed by Mobley et al. with SMIRNOFF.7 Technically, an H-TEQ like 

methodology could be employed to generate bond and angle parameters, although following that 

route might not be the best allocation of resources as those terms are generally assumed to be well 

covered. We note that for the sake of compatibility with SMIRNOFF, Mobley et al. have planned 

to reparametrize bonds and angle terms entirely. Finally, H-TEQ should be further validated by 

carrying concrete applications in the context of SBDD. For example, docking libraries of 

compounds, and comparing results with other FFs. Or by comparing FEP predicted protein-ligand 

binding affinities to experimental values. Ultimately, results from various applications will point 

towards what future rounds of refinement should consist of. 
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Appendix 

Appendix 1. Scaling Factors Applied to NBO 

 When replacing GAFF2 torsional energies by NBO calculated hyperconjugations, we 

noticed that NBO significantly overestimated energies for all kinds of interactions (Table A1), 

leading to a high RMSE of 2.01 kcal/mol (computed between NBO predicted profiles and QM 

profiles) when no scaling factor was applied. Removing the σ → σ* and comparing only π-

hyperconjugation to QM led to a slightly lower RMSE of 1.87 kcal/mol which could erroneously 

lead us to think σ → σ* could be neglected to achieve more faithful predictions. When relevant 

energies were scaled down however, it became apparent that both hyperconjugation and π-

hyperconjugation needed to be considered to correctly predict torsional profiles. Overall, with 

scaling factors of 0.4 for hyperconjugation and 0.25 for π-hyperconjugation, the RMSE for NBO 

energies substituting the torsional energy was significantly better (0.55 kcal/mol) than using pre-

existing torsional parameters within GAFF2 (0.84 kcal/mol). We have used the scaling factors 

which we found to minimize the RMSE between QM and NBO profiles, having tried various 

combinations (scaling factors tested from 0 to 1.5, with 0.05 increments).  

Table A1. Accuracy of GAFF2 and NBO to reproduce the torsional profiles of the 98 molecules 

in the development set. 

Method compared to MP2/6-311+G**  Average RMSE (kcal/mol) 

GAFF2 0.84 

NBO a 2.01 

NBO (π-Hyperconjugation only) a 1.87 

NBO + scaling a 0.55 

NBO (π-Hyperconjugation only) + scaling a 0.75 

a The torsional term from GAFF2 was replaced by this method, all the other terms were kept. 
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Appendix 2. Alternative RMSE Calculations 

 To test the impact of the RMSE equation, and ensure that values obtained could be trusted, 

we performed RMSE calculations using two additional schemes, which did not reveal any 

significant difference than the traditional RMSE equation. In the scheme with a cut-off, point in 

which the QM energy is greater than 10 kcal/mol were not included in the RMSE calculation. In 

the scheme with Boltzmann weights, the contribution from every point is scaled down by a 

Boltzmann factor based on the quantum energy (Eq. 3.1).    

Table A2. RMSE obtained using different schemes. 

Method compared to  

MP2/6-311+G**  

and set of molecules used 

Average 

RMSE 

(kcal/mol) 

Average 

RMSE with 

cut-off 

(kcal/mol) 

Average RMSE 

with Boltzmann 

weight (kcal/mol) 

GAFF // development set 0.84 0.84 0.67 

H-TEQ 3.0 // development set 0.80 0.80 0.65 

GAFF // validation set 1.69 1.67 1.23 

H-TEQ 3.0 // validation set 1.71 1.68 1.24 
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Appendix 3. Outlier in the Validation Set. 

 One of the molecules in our validation set showed a very large RMSE of > 20 kcal/mol 

when comparing GAFF2 or H-TEQ to its QM energy profile. A closer look revealed that as we 

rotated the torsion shown in red (Figure A1), a reorganization of other parts of the molecule occurs. 

More specifically, the other torsion (shown in blue) rotated leading to weaker conjugation with the 

neighboring double bond, and the current parameters in GAFF2 strongly penalizes this loss of 

conjugation whereas QM calculation predicts it to be much weaker.  

 While our efforts are to describe the rotation around the red torsion (for which we obtained 

a torsional profile), in this specific case a major rearrangement of other parts of the molecule (blue 

torsion) were predominant. Since we only replace the parameters for the torsion shown in red with 

H-TEQ derived values, it is not surprising that the high RMSE is maintained when comparing H-

TEQ and QM. The overexaggerated penalty for the loss of conjugation currently predicted by 

GAFF2 is a major issue we have diagnosed, and research in our group is currently undertaken to 

incorporate conjugated (π → π*) systems into our H-TEQ method.  

 

Figure A1. Torsional profile of the outlier found in our validation set. Torsion angle rotated is 

shown in red. Torsion angle highlighted in blue rearranges leading to the large energy barriers in 

MM.  
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Appendix 4. Validation Set Used in our Study. 

 

Figure A2. Set of 50 molecules used to validate the ability of H-TEQ 3.0 to describe the torsional 

energy of drug-like molecules. The rotated bond is shown in red. 
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Appendix 5. Effect of the V3 Term on the π-Hyperconjugation Energy 

Profile. 

 The effect of changing the strengths of the V3 correction term on the π-hyperconjugation 

profile was demonstrated in Figure A3. Each profile shown included a non-zero value for V2 (here 

V2 = 2.5 kcal/mol). The effect of a positive and negative V3 value on the overall profile was probed 

by varying V3 sequentially to be -0.5, 0, and 0.5 kcal/mol. As a result of the introduction of a non-

zero V3 value, the energy profile near the minima (±90°) was shifted (~5°) outwards (±180°) for 

negative values and inwards for positive values. The impact of V3 also led to an asymmetry of the 

two energy barriers. A value for V1 of the same magnitude could be used to correct for this 

asymmetry, if needed. In our current study, we chose to keep only V3, since a counterbalancing V1 

term did not significantly improve the RMSEs with respect to the QM profiles (Table A3).  

 

Figure A3. Comparison of π-hyperconjugation energy profiles using no V3 (orange), a positive V3 

(blue) and a negative V3 (green). 
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Table A3. Impact of V3 and V1 terms on the RMSEs (development set of 98 molecules), with σ 

→ σ* hyperconjugation also included. 

Method compared to MP2/6-311+G**  

and set of molecules used 

Average RMSE 

(kcal/mol) 

GAFF // development set  0.84 

H-TEQ3.0 // development set  

Inclusion of V3 

Inclusion of V3 and V1 

 

0.80 

0.80 

 

Appendix 6. Pauling Electronegativity Values used to Determine H-

TEQ 3.0 Parameters. 

Table A4. Pauling Electronegativity values of common elements. 

Element Electronegativity (a.u.) 

H 2.2 

B 2.04 

C  2.55 

Si 1.90 

N 3.04 

P 2.19 

O 3.44 

S 2.58 

F 3.98 

Cl 3.16 

Br 2.96 
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Appendix 7. Group Electronegativity 

 Our group electronegativity assignment scheme not only considered the central atom, but 

also covalently bound neighboring atoms. The central atoms were accounted for with a greater 

weight ω (Eq. 2.4). The electronegativities of the π-system (χπ1 and χπ2) were calculated by 

considering both sides of the ring, and the convention was kept for less aromatic molecules (or 

non-aromatic) such as 5-membered rings or conjugated chains (Figure 2.8). This could be 

rationalized by inductive effects of the groups attached to the π-system (without forming a double 

bond); strongly electron-withdrawing groups (EWG) will increase the propensity of σ → π*, and 

strongly electron-donating groups (EDG) will increase the propensity of π → σ*.  

Appendix 8. Scaling factors to Describe π-Hyperconjugation with a 

Unique Equation. 

 The left panels in Figures A6 shows the trends found using Eqs. 2.2 and 2.3. The trends for 

Eq. 2.2 applied to different types of π-systems to model σ → π* correlated well with NBO data (r2 

= 0.71, 0.69 and 0.76 for double bonds, 5-membered rings and 6-membered rings respectively). A 

minor scaling factor of 0.95 was applied to 5-membered rings leading to a slight increase in 

correlation for the entire set of molecules (from r2 = 0.69 to 0.71).  

 The difference between trends of various types of π-systems was more pronounced for π 

→ σ* hyperconjugation (Eq. 2.3). To correct for these differences, a scaling factor of 1.2 was 

applied for the double bonds and the same scaling factor of 0.95 was applied to 5-membered rings. 

Again, had we opted to use separate equations for each type of π-systems, the trends found revealed 

good correlations (r2 = 0.70, 0.82, 0.79 for double bonds, 5-membered and 6-membered rings 

respectively). The right panels in Figure A4 correspond to plots shown in Figure 2.9 of the thesis. 

The scaling factors abovementioned are used to scale the χπ1 and χπ2 variables in Eqs. 2.2 and 2.3.  
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Figure A4. Application of scaling factors to equations used in the modeling of π-hyperconjugation 
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Appendix 9. Transferability of the a, b, c and d Parameters. 

 To confirm the transferability of the parameters a, b, c and d obtained from the linear 

regression around NBO data. We have performed a bootstrapping analysis in which sets of data 

(of the same size) are randomly generated from the initial data set. In short, points (H-TEQ vs. 

NBO) are picked randomly to make a new data set which can contain duplicates ( or triplicates, 

etc.) and hence not contain some of the initial points. This kind of analysis allows to control for 

the presence of outliers in the set. We then obtain new parameters with a linear regression around 

this new data set. We performed this step 1000 times (and 10000 times), to calculate the average 

value and standard deviation of these parameters (see Table A5). Overall, we observe that the 

average value is very close to the value obtained initially, and the standard deviation is small.   

Table A5. Results of the bootstrapping analysis.  

Parameter Initial value 

from trend 

(kcal/mol) 

Bootstrapping 1k 

iterations average value ± 

standard deviation 

(kcal/mol) 

Bootstrapping 10k iterations 

average value ± standard 

deviation (kcal/mol) 

a 6.16 6.14 ± 0.36 6.15 ± 0.37 

b -6.50 -6.47 ± 0.02 -6.48 ± 0.00 

c 29.52 29.57 ± 1.39 29.60 ± 1.35 

d -8.88 -8.91 ± 0.04 -8.91 ± 0.01 
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Appendix 10. Performance of Different Versions of H-TEQ 3.0.  

 Below, we detail the full results obtained when including (or excluding) σ → σ* and V3 

correcting terms into the H-TEQ 3.0 method, on both the validation and development sets of 

molecules. 

Table A6. Accuracy of GAFF2 and H-TEQ3.0 over the development and validation sets, by 

toggling on/off σ → σ* and the V3 correction terms. 

Method compared to MP2/6-311+G**  

and set of molecules used 

Average RMSE 

(kcal/mol) 

GAFF // development set  0.84 

H-TEQ3.0 // development set   

Only σ → σ* is included 

Both σ → σ* and V3 are omitted  

Both σ → σ* and V3 are included  

Only V3 is included  

 

0.90 

0.80 

0.80 

0.73 

GAFF // validation set  1.69 

H-TEQ3.0 // validation set   

Only σ → σ* is included 

Both σ → σ* and V3 are omitted  

Both σ → σ* and V3 are included  

Only V3 is included  

 

1.63 

1.65 

1.71 

1.76 

 


