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Abstract

Abstract

The advent of next-generation sequencing (NGS) technology caused a fundamental change in
molecular biology, as sequencing the genome is not time consuming. It is well established in
the literature that epigenetics and chromatin modifications are important factors that can govern
gene activity and are a requirement for normal embryonic development and cell differentiation.
The mechanisms of epigenetic reprogramming, which are believed to be essential for normal
growth and development, are still poorly understood. Effects of the paternal environment such as
stress, diet and toxicants have been linked to various negative outcomes for offspring including
birth defects and increased risks for complex diseases. Although it is well known that a woman’s
preconception health is essential to the development and health of her children, the reproductive
health of men has been comparatively ignored. New studies highlight the role of fathers in disease
transmission via epigenetic mechanisms (i.e. non-genetic inheritance). While there is growing
consensus among researchers that paternal health is critical to that of offspring, little is known
about the effect of paternal nutrition on children, or whether potential effects are passed onto future
generations. Despite the linkage of paternal effects to birth defects and complex diseases such
as cancer, diabetes and infertility, to date, there are no studies linking environmental exposure to
environmental factors (e.g. toxins) to changes in the sperm epigenome of men. These paternal
effects may occur via non-genetic inheritance, through epigenetic mechanisms including DNA
methylation, post-translational modifications of histones and noncoding RNAs (ncRNAs). These
epigenetic factors are passed onto offspring through the highly compacted paternal genome in
sperm. Sperm has a unique chromatin conformation with the majority of somatic histones being
replaced by protamines with only 1% retained in sperm from mice and 15% from men. There is
evidence in literature that unlike a typical chromatin immunoprecipitation sequencing (ChIP-Seq)
profile generated from targeting a histone modification, there are fewer histone peaks in sperm, and
these tend to be distributed over CpG (5’-C-phosphate-G-3’) enriched regions. Specific parameters
are required for alignment, peak calling and quantitating sperm ChIP-Seq data. The challenges
in analyzing and quantifying ChIP-Seq data from sperm with currently available software are the
ability to detect and quantify differences, not just in peak enrichment but also the broad domains.
The goal of my research is to develop a stand-alone Docker container with Galaxy data analysis
pipelines and with tools for quantitative comparison of histone modification levels in sperm of
mice and men. The Galaxy framework will allow biologists with no command-line knowledge to
perform optimal pre-processing, peak calling and statistical analysis. To address challenges in data
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analysis, I have incorporated efficient bioinformatics pipelines for analyzing sperm epigenome data
by using currently available tools (Bowtie2, Trimmomatic, Picard tools, MACS2) with optimized
parameters and in-house developed tools for statistical analysis, while considering the unique
chromatin configuration in sperm. All pipelines have been tested on datasets from mice and men
using those available from the lab (see section 4.1 for details) and from public datasets (GSE15594
and GSE79230). All the in-house built tools or scripts are made available through the Galaxy Test
ToolShed, only after the tool passed a test. I have included several other tools and R packages for
statistical analysis, which would not restrict the users to the provided pipelines, and they would
be able to adapt it according to their research requirements. This pipeline will help biologists and
clinicians who want to work with sperm ChIP-Seq data, but who have minimal to no bioinformatics
background.
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Résumé

L’avènement de la technologie de séquençage de nouvelle génération (NGS) a provoqué un change-
ment fondamental dans la biologie moléculaire, le séquençage du génome ne prenant pas beaucoup
de temps à être effectué. Il est bien établi dans la littérature que l’épigénétique et les modifica-
tions de la chromatine sont des facteurs importants pour contrôler l’activité des gènes et qui sont
nécessaires au développement embryonnaire normal et à la différenciation cellulaire. Par contre, les
mécanismes de la reprogrammation épigénétique, considérés comme essentiels pour la croissance et
le développement normaux, sont encore peu connus. Les effets de l’environnement paternel tels que
le stress, l’alimentation et les substances toxiques ont été associés à divers résultats négatifs pour
la progéniture, y compris des malformations congénitales et des risques accrus pour les maladies
complexes. Malgré qu’il soit bien connu que la santé d’une femme avant la conception est essentielle
au développement et à la santé de ses enfants, la santé reproductive des hommes a été relativement
ignorée. De nouvelles études mettent en évidence le rôle des pères dans la transmission de maladies
complexes par des mécanismes épigénétiques (hérédité non génétique). Alors que les chercheurs
s’entendent de plus en plus sur le fait que la santé paternelle est essentielle à la progéniture, on en
sait peu sur les effets de la nutrition paternelle sur les enfants ou sur les effets potentiels sur les
générations futures. En dépit du lien entre les effets paternels et les malformations congénitales et
les maladies complexes telles que le cancer, le diabète et l’infertilité, aucune étude n’a établi de lien
entre les facteurs environnementaux et l’épigénome du sperme qui pourrait être transmis à l’enfant
et ainsi affecter ses risques à développer des maladies complexes. Ces effets paternels peuvent se
produire par transmission non génétique, c’est-à-dire, par des mécanismes épigénétiques tels que
la méthylation de l’ADN, des modifications post-traductionnelles des histones et des ARN non
codants (ncRNAs). Ces facteurs épigénétiques sont transmis à la progéniture à travers l’épigénome
paternel hautement compacté dans le sperme. Les spermatozoïdes ont une conformation unique de
la chromatine. En effet, la majorité des histones somatiques sont remplacées par les protamines.
Seulement 1% des histones sont donc présentes dans les spermatozoïdes des souris et 15% chez
les hommes. Il existe des preuves dans la littérature que contrairement à un profil typique de
séquençage d’immunoprécipitation de la chromatine (ChIP-Seq) généré en ciblant une modification
d’histone, ces modifications d’histones sont généralement moins abondantes dans les spermato-
zoïdes et celles-ci sont distribuées principalement dans les régions riches en CpG (5’-C-phosphate-G
-3 ’). Des paramètres spécifiques sont requis pour l’alignement des séquences génomiques, pour
la détection de régions riches à la modification d’histone d’intérêt, ainsi que la quantification des
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données générées par le ChIP-Seq du sperme. L’analyse et la quantification des données ChIP-Seq
du sperme avec les logiciels actuellement disponibles représentent un réel défi quant à notre capacité
à détecter et à quantifier les différences entre des échantillons comparés provenant de différents
groupes expérimentaux. Le but de ma recherche est de développer un contenant Docker permettant
l’analyse automatisée de données de façon autonome sur l’interface Galaxy incluant des outils de
comparaison quantitative des modifications des histones dans les spermatozoïdes des souris et des
hommes. L’interface Galaxy, disponible gratuitement et publiquement, permettra aux biologistes
d’effectuer l’analyse bioinformatique et statistique de leurs données de ChIP-Seq de façon optimale
et rapide, tout en donnant une flexibilité dans les choix de paramètres d’analyse à sélectionner, sans
toutefois nécessiter de connaissances de codage. Pour relever les défis de l’analyse des données, j’ai
intégré une chaine de traitements bioinformatiques efficace pour analyser les données épigénétiques
des spermatozoïdes en utilisant les outils actuellement disponibles (Bowtie2, Trimmomatic, outils
Picard, MACS2) avec des paramètres optimisés et des outils internes d’analyse statistique, en
considérant la configuration unique de la chromatine du sperme. Toutes les étapes comprises dans
la chaîne de traitement de données ont été testées par une série de données de ChIP-Seq de souris et
d’hommes générée par notre laboratoire (voir section 4.1 pour plus de détails) et à partir de données
publiques (GSE15594 et GSE79230). Tous les outils ou scripts créés lors du processus sont mis à
disposition via le Galaxy Test ToolShed, uniquement après que l’outil ait passé un test. J’ai inclus
plusieurs autres outils pour l’analyse statistique, ce qui ne limitera pas les utilisateurs de cette chaîne
de traitement de données, et leur permettra d’adapter leurs analyses en fonction de leurs besoins de
recherche. Ce pipeline aidera les biologistes et les cliniciens voulant travailler avec des données
ChIP-Seq sur les spermatozoïdes, sans nécessiter de connaissances au niveau bioinformatique.
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Introduction

1 Introduction

Deoxyribonucleic acid (DNA) is compacted into chromosomes in the form of chromatin. The unit
of chromatin is the nucleosome that consists of eight histone proteins: H2A, H2B, H3 and H4
(two copies of each), with about 147 base pair (bp) of DNA wrapped around each nucleosome [1].
Gene expression can be affected by various changes in chromatin structure, for example: DNA
methylation, replacement of histone variants by canonical histones, post-translational changes in
histones, and chromatin remodeling [2].

Emergence of next generation sequencing (NGS) technologies allowed researchers to study histone
modifications by performing Chromatin Immunoprecipitation (ChIP), followed by deep sequencing
(ChIP-Seq) and finally mapping the modified regions to the reference genome. There could
be various histone modifications present in a genome, including methylation, acetylation and
ubiquitination. One of which, histone methylation is the most complex, since it occurs in mono, di
or tri form (me1, me2 or me3).

Previously, sperm were thought to only deliver the genome to the oocyte at fertilization. Advance-
ments in science helped researchers to understand that apart from the transfer of DNA to the oocyte,
the epigenome is also transferred [3]. Various studies in mice, men and zebrafish, have shown
that genes related to development, are marked by histone H3 lysine 4 trimethylation (H3K4me3)
and histone H3 lysine 27 trimethylation (H3K27me3) [4–7]. It has also been hypothesized that
these histone marks are inherited during fertilization [8] through a mechanism called epigenetic
inheritance. Infertility is one of the major problems faced by couples around the world, including
Canada. It is defined as the problem of not conceiving after unprotected intercourse for one year. It
is estimated that 11.5% to 15.7% of couples in Canada are having problems with conception [9], and
more than 60% of infertility is due to male factors [10]. In the Kimmins lab at McGill University,
the focus is primarily infertility, which can be associated with epigenetic modifications (histone
modifications) in the sperm of both men and mice. We study several histone modifications in sperm,
and a primary focus is on histone modifications occurring at histone H3 lysine 4 (H3K4). The
peaks (represents enrichment of histone modifications in genome) due to H3K4me3 (one of the
modifications occurring at H3K4) are narrow in somatic cells but very broad in the sperm [11]. The
changes in histone modification levels are studied by combining native ChIP (N-ChIP) and deep
sequencing, and mapping the sequenced reads to the reference genome. Computational analysis
of ChIP-Seq is intensive and generates huge amount of data, which is further analyzed to find the
location of changes in enrichment of a specific histone modification of interest. Several pipelines
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have been published in this regard [12–14], but none focuses on sperm histone ChIP-Seq data
analysis, which required specialized parameters for alignment, mismatches [15] and peak calling.
This thesis focuses on histone modification H3K4me3 occurring in sperm due to the following
reasons:

• Histone methylation in sperm serves in the transmission of epigenetic information that
influences embryonic development and phenotypes transgenerationally in mice [6].

• Nucleosomes are retained at promoters. Histones in sperm are retained at genes implicated in
cell processes, metabolism and embryo development [4].

• Different profiles were observed in fertile vs idiopathic infertile men.
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2 Review of the Literature

2.1 Epigenetics

The word “epigenetics” was coined by a British developmental biologist Conrad Hal Waddington
in 1942. He also laid the foundation for theories that underlie epigenetics, systems biology and
evolutionary developmental biology. All the cells in a multicellular organism have the same genome,
and C. H. Waddington defined a model, called “Waddington’s model”, which describes how genes
interact with the environment to produce a phenotype [16]. The word “epigenetics” is made up of
two words, “epi” and “genetics”, which means “on the top of genetics”.

Epigenetic mechanisms can be divided into four major categories: DNA methylation, histone
modifications (e.g. methylation, acetylation), histone variants and non-coding RNA (ncRNA). DNA
methylation is associated with gene regulation by transcriptional silencing [17], occuring at cytosine
residues in CpG (5’-C-phosphate-G-3’) dinucleotides. Histone modifications on histone N-terminal
tails play a role in either activation or repression of transcription [18, 19], and histone variants,
such as non-histones, can be associated with alteration of epigenetic states, such as, the exchange
between histones and protamines in chromatin to alter transcription [20]. ncRNA is known to
regulate gene expression at the transcriptional and post-transcriptional level [21].

2.2 Sperm cell structure and function

Sperm are the smallest cells in mammals, and are the carriers of the haploid paternal genome to the
oocyte. Each sperm is 50 to 60µm in length and made up of three major parts, Figure 2.1 [22]:

The head: The sperm head contains the tightly compacted father’s haploid genome and has less
cytoplasm, as compared to somatic cells.

The midpiece: The midpiece contains mitochondria, which generates adenosine triphosphate (ATP)
to drive tail movement.

The tail: Sperm motile tail consists of microtubules. Flagellar movement in sperm cells is caused
by the sliding of microtubules by ATP driven dynein proteins [23].
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Figure 2.1: Representative schematic of sperm from men. Sperm is composed of three regions. “The
head region contains the highly compacted sperm DNA and associated proteins (blue) surrounded by the
cellular membrane (black) that in the head region has receptors for recognizing oocyte factors. The acrosome
(purple) houses digestive enzymes used for penetrating the oocyte outer layers. The mid-piece region consists
of the paternally contributed centrosome (green circle) and mitochondria (tan) used for energy generation.
The flagellar tail (green) provides motility” [24]. Reproduced with minimal modifications from [24].

2.3 Spermatogenesis

Spermatogenesis begins with the onset of puberty in males. It is the process by which a developing
sperm cell (primary spermatocytes) creates two cells (secondary spermatocytes), and each of
those produce two cells, called spermatids, which are further differentiated into spermatozoa.
Spermatogenesis takes place in the seminiferous tubules and is divided into three different phases
[25]:

Proliferative phase: spermatogonia undergo a series of mitotic divisions and differentiates into
primary spermatocytes.
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Meiotic phase: spermatocytes divide to give rise to spermatids, and exchange of genetic information
by recombination takes place when the haploid spermatids are produced.

Spermiogenesis: also known as post-meiotic phase or differentiation phase, involving a number of
morphological events, required for the production of mobile mature sperm.

In the course of spermatogenesis, sperm chromatin undergoes dramatic changes, resulting in the
replacement of the majority of histones by special proteins called protamines. This process allows
for an extreme compaction of chromatin in sperm, as compared to the somatic cell nuclei [26].
However, the replacement of histone proteins with protamines is incomplete, and it has been shown
that, in men, proteins associated with sperm DNA contains approximately 85% protamine, 15%
histone and other proteins, in men [27, 28].

2.4 Chromatin Structure

One of the most interesting challenges in the history of chromatin biology has been to understand
how DNA is organized in a single cell nucleus. The cell nucleus measures around two meters
in length and is contained within 5 to 10 µm in diameter. The cell adjustment is accomplished
by organizing DNA into chromatin. DNA and histones are the components of chromatin in
eukaryotic organisms. DNA is wrapped around an octamer of histone proteins to form a nucleosome
(fundamental repeating subunit of chromatin), and all nucleosomes are connected by a linker DNA
(associated with linker histone H1) forming a “beads-on-a-string” structure (11 nm thickness)
[29, 30]. Two copies of each of the four different types of histones -H2A, H2B, H3 and H4-
form a nucleosome. Chromatin also contains non-histone proteins that facilitates the packaging of
DNA, DNA replication, gene transcription and DNA repair [31]. Chromatin is not uniform, with
regards to gene distribution and organization. Its organization can be divided into euchromatin and
heterochromatin. Heterochromatin is densely stained and is highly condensed, whereas Euchromatin
is weakly stained and contains actively transcribed genes [30].

2.5 Sperm chromatin

Sperms are remarkably complex cells having the important task of delivering the paternal genome
and associated factors to the oocyte during fertilization. Sperm DNA is important for reproductive
success including fertilization and embryonic development. Chromatin in sperm is different as
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compared to somatic cells. Most of the genome in sperm is packed with protamines not nucleosomes,
though there are a few histones retained in sperm, Figure 2.2. It has been shown in literature that
the nucleosomes are retained at GC rich sequences, and are present at the transcriptional start site
(TSS) of genes that regulate development [4]. DNA packaging in sperm with protamines occurs
towards the end of sperm maturation and, resulting in a very highly compact genome into the sperm
head [26].

Figure 2.2: Epigenetic modifications in sperm. Sperm has a unique chromatin structure that is unlike any
somatic cells as only 10% to 15% of histones are retained in men and only 1% in mice, and the rest are
converted to protamines. Both DNA methylation and Histone modifications are found in sperm. Histone
tail modifications (methylation and acetylation) are known to play a regulatory role in gene expression.
Reproduced with minimal modifications from [32].

6



Review of the Literature

Figure 2.3: Packaging chromatin. “A model of chromatin packaging in somatic cells (left) and mammalian
sperm (right). In somatic cells, the DNA is wound twice around histone octamers to form nucleosomes, which
are then coiled into solenoids. The solenoids are attached at intervals to the nuclear matrix at their bases and
form DNA loop domains. In the sperm nucleus, protamines replace the histones and the protamine-DNA
complex is coiled into a doughnut shape. Inset shows the tight compacting of protamine-DNA strands.
Displacement of the histones is facilitated by post-translational modifications (PTMs) of the proteins, in the
form of histone H4 acetylation, ubiquitination and phosphorylation. Phosphorylation and dephosphorylation
of the transition proteins facilitate their displacement before protamines bind” [34]. Reproduced with minimal
modifications from [34].

Protamines are small, arginine-rich, nuclear proteins that replace histones late in the haploid
phase of spermatogenesis. The protamine gene cluster resides on chromosome 16 in men and
mice. It contains codes for protamine 1 (PRM1), protamine 2 (PRM2) and transition protein 2
(TNP2) [33]. These genes are responsible for the correct packaging of DNA into the sperm head,
during spermiogenesis [34]. They are believed to be essential for sperm head condensation and
DNA stabilization by binding to one turn of DNA helix contrast to ~147 bp nucleosome [36]. In
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mature sperm, protamines compact the genome into doughnut-shaped toroids, and each toroid has
~50 kilo base pair (kbp) of the haploid genome [38]. This allows for denser packaging of DNA in
the spermatozoon than histones. Differences in chromatin packaging in sperm compared to somatic
cells is shown in Figure 2.3.

2.6 Epigenetic Inheritance

Epigenetic information is passed onto children and grandchildren by a mechanism called epigenetic
inheritance [3]. Epigenetic modifications are established in mammals by enzymes such as histone
acetyltransferases (HATs) and histone lysine methyltransferases (HKMTs) [37], and are altered by
environmental factors. Paternally transmitted epigenetic information is passed to oocytes via the
sperm and are propagated through their ability to escape epigenome reprogramming that occurs in
the zygote and germline. This leads to phenotypic trait inheritance in an offspring that has not been
exposed to the environmental factor in question [35].

2.7 Histone modifications

Histones are subjected to PTMs on their N-terminal tails and globular domains. Researches have
shown that histone modifications are dynamic during development, vary among different tissues,
regulated by specific enzymes, play major role in gene expression, and interact with other epigenetic
control systems such as DNA methylation [39]. There are over 60 different amino acid residues
on the histone tails, where modifications have been detected [40]. Histones can undergo various
modifications, including acetylation, methylation, phosphorylation, ubiquitination and sumoylation
among others [41]. Histone methylation occurs on Lysine (K) and Arginine (R) amino acids by
histone methyltransferase (HMT) enzymes. Histone lysine residues can be mono-methylated,
di-methylated or tri-methylated, and modifications can act as either active or repressive marks.
Methylation of H3K4, H3K36 and H3K79 are linked with activation of gene transcriptions, and
methylation of H3K9, H3K27 and H4K20 are correlated with repression [42, 43].
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2.8 CpG islands

CpG sites are regions of DNA where a cytosine (C) nucleotide occurs next to a guanine (G)
nucleotide in the linear sequence, separated by a phosphate which links the two nucleotides together
in DNA. The “CpG” notation is used to distinguish a cytosine followed by guanine from a cytosine
base paired to a guanine. CpG islands are found near the TSS of genes and are not distributed
uniformly in the genome. They are also found at the promoter site of housekeeping genes [23].
The human genome contains approximately 20,000 CpG islands in the promoter of first exons, and
marks the 5’ ends of the genes [23]. Over 60% of human genes have CpG islands in the promoter
site; over 80% CpG islands have no genes and therefore do not regulate expression [44].

2.9 Chromatin Immunoprecipitation

The study of the interaction between a DNA sequence and a histones can be assessed using a
technique, called ChIP, followed by sequencing. ChIP can be performed in two ways in sperm:
cross-linked ChIP (X-ChIP) and native ChIP (N-ChIP). In X-ChIP, formaldehyde is used to cross-
link histones to the sperm DNA and ultrasound sonication is performed to fragment the DNA,
whereas in N-ChIP, the native covalent bond between histone and DNA is used. The most important
feature in N- ChIP is the fractional generation of two phases: soluble phase with histones and
insoluble phase with protamines [45], Figure 2.4. The genomic DNA (gDNA) is extracted and
further digested by Micrococcal nuclease (MNase) to obtain DNA fragments, which is followed
by ChIP. Samples are treated with Dithiothreitol (DTT, C4H10O2S2) to obtain chromatin. The
chromatin is then treated with MNase enzyme to digest free DNA, after which immunoprecipitation
with antibodies targeting the chromatin modification of interest such as, H3K4me3 is performed.

2.10 Chromatin Immunoprecipitation Sequencing

ChIP-Seq is a powerful technique to study the physical interaction between proteins and DNA on a
genome-wide scale by coupling ChIP with high-throughput sequencing [46, 47]. After performing
ChIP on samples, the next step is library preparation, followed by polymerase chain reaction (PCR)
amplification, and finally deep sequencing. Sequencing can be either single end (reads generated
by sequencing DNA fragment from one end) or paired end (single DNA fragment sequenced from
both ends). Both single-end (SE) and paired-end (PE) type of sequencing are used for ChIP-Seq.
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Although PE sequencing has been widely used in DNA sequencing (DNA-Seq) and RNA sequencing
(RNA-Seq) experiments to uncover genomic rearrangements and genomic structural variation, but it
is not clear how a ChIP-Seq experiment can be benefited from PE libraries [48]. When there is low
cell input, PE can improve the number of mappable reads and the quality of the data. According
to the Encyclopedia of DNA Elements (ENCODE) ChIP-Seq guidelines, a ChIP-Seq experiment
should have 20 million DNA reads mapped uniquely (without duplicates) [49]. As of today, the
combination of ChIP with NGS technology has already generated plenty of ChIP-Seq data. These
experiments produce high volume of data that must be pre processed before any further analysis can
be carried out, such as, peak calling and downstream analysis for quantitative analysis of ChIP-Seq
data.

Figure 2.4: Analysis of DNA–histone interaction in sperm. Taken from [45].
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2.11 Next-generation sequencing

DNA sequencing is performed to determine the order of nucleotides in a DNA fragment (“A”, “T”,
“G”, “C”). This technique is helping biologists around the world in a broad range of applications
such as molecular cloning, breeding, pathogenetics, gene regulations, comparative evolution and
epigenomics. In the last three decade, DNA Sequencing technologies and applications have
undergone tremendous development. In the last few years, the application of semi-automated
Sanger sequencing for genome analysis has been replaced by NGS methods, as they allow for
parallel sequencing, producing thousands or millions of sequences at once.

The three most common massively parallel sequencing systems launched and that have high
accuracy and low costs are: 1) 454 (now Roche), which came out after completion of human
genome project, 2) Solexa (now Illumina) which released a genome analyzer the very next year,
and 3) SOLiD (Sequencing by Oligo Ligation Detection) which was provided by Agencourt (now
Life Technologies). All the three platforms work on different chemistries for sequencing and give
different outputs, and they are competitive and exhibit better performance and accuracy [51]. The
ability to sequence millions of DNA fragments in less than one day is the major advancement in
NGS. In summary, the huge amount of low-cost sequenced reads makes NGS technologies useful
for several applications.

Sequencing can be either SE or PE. In SE sequencing, DNA is sequenced from one end only (5’ to
3’), whereas in PE, both ends are sequenced (5’ to 3’ and 3’ to 5’). There are some advantages of
sequencing longer and PE DNA reads, as opposed to SE and short reads. PE sequencing is done in
order to achieve optimal sequencing depth when less input DNA is present for library preparation
(for example, in the case of embryos). It is further helpful in identifying duplicates, but, still, it is
unclear whether the duplicate has arisen from amplification bias or not. One way to avoid PCR
duplicates is to reduce their generation by using a good amount of input material and keeping
amplification to a minimum.

2.12 Library generation

Before ChIP-Seq is performed, libraries are created by amplifying templates, in order to allow
for massively parallel sequencing (by illumina technology), which will be used in sequencing-by-
synthesis [52, 53]. Then a short PCR cycle with primers for the adapter sequence is performed to
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generate a library of adapter-ChIP fragments [53, 54]. The adapter sequences added to each ChIP
fragment contain universal priming sites and allow different and complex genomes to be amplified
using the same common primers [53]. Sample DNA fragments are then denatured to produce single
strands and hybridized to oligonucleotide sequences, complementary to their adapter sequences.
These are further immobilized on the surface of a flow cell [55]. Multiple cycles of this process
result in the generation of clusters of clonally amplified templates [53, 55].

Figure 2.5: Library preparation steps using low input kit from Qiagen (Qiaseq). This protocol is most
frequently used in the Kimmins lab [6].
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In the Kimmins lab, a Qiagen library preparation kit is used for library generation, Figure 2.5, and
then they are sent to Genome Quebec (GQ) for sequencing. GQ provides sequencing results to us in
either FastQ format or Binary Alignment/Map (BAM) format. A FastQ format is a format of NGS
file, which stores information of raw reads (nucleotides) and their quality scores (Phred).

2.13 Multiplexing samples with barcodes/ indices

High-throughput sequencers sequence millions of reads in a single reaction. Considering time and
cost, it is often desirable to pool (“multiplex”) libraries from multiple experiments into a single
sequencing reaction. For example, a single flow cell lane from an Illumina HiSeq 2000 instrument,
for example, routinely yields 150 million sequences. Most ChIP-seq libraries do not require that
level of coverage, so it makes sense to combine samples to save costs. To identify the sequence
(by the library it comes from), each library is prepared using adapters containing different index
or barcode (tags), which are typically short (5-7 bp) sequences and, are read during sequencing.
Two kinds of sequence tags are commonly used, barcodes and indices. Various available software
packages can be used to sort the sequence reads by their barcode. The Illumina sequencing platform
also supports a second type of tag (indices). The index is located within the 3’-adapter and is
read using a separate sequencing reaction that follows the primary sequencing reaction. After
sequencing, each read may be traced back to its original sample using the index sequence and is
binned accordingly, called demultiplexing.
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3 Rationale and Objectives

Sperm has a unique chromatin structure in that most of the histones are replaced by protamines.
Protamines are required for sperm head condensation and DNA stabilization. Histones carry multiple
PTMs, such as lysine acetylation, lysine and arginine methylation, and serine phosphorylation.
Lysine methylation can have different effects on gene expression depending on which residue
is modified. For example, genome-wide chromatin analysis in mice and humans demonstrates
that H3K4 is associated with transcribed chromatin, whereas histone H3K9 is symbolic of gene
repression. Furthermore, histone H3 methylation can take the form of either mono-, di- or tri-
methylation. Histone modifications are dynamic, and they can be established and removed by various
enzymes. More than 50% of histones are localized in intergenic regions, while approximately 25%
are localized at promoter regions. In mice, the sperm epigenome, specifically H3K4me3, can
influence offspring development and health [6].

Using currently available software to analyze and quantitate ChIP-Seq data, to detect differences in
broad domains (not just at peaks) of sperm poses a number of challenges. Although several pipeline
exists for ChIP-Seq data analysis, none of them are specific to sperm. Further, there is a lack of
graphical user interface (GUI) based pipelines for data from genomic experiments. The objective
of this research project is to develop and to validate a bioinformatics pipeline, with optimized
parameters for the efficient analysis of sperm ChIP-Seq data. The development of this pipeline will
allow for the detection of differences in sperm epigenome. I aim to:

• build an efficient bioinformatics pipeline for analyzing sperm ChIP- Seq data

• improve or develop a (new) peak calling method that is customized to the unique epigenome
profile of sperm

• make the pipeline available as a complete independent tool
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4 Methods, Tools selection and Results

4.1 Data

For the development of pipelines, the following data were used from Kimmins lab in this thesis:

1. Reference population sample, fertile and infertile samples from men: These samples
were obtained from the CReATe fertility clinic in Toronto to study the epigenetic factors
linked with idiopathic infertility. Thirty men were pooled (24 fertile and 6 infertile) to create
a reference population sample. These men were between 27 years and 61 years in age: 6
were smokers; all had Methylenetetrahydrofolate reductase (MTHFR) 677 polymorphism
(risk factor for male infertility) CC: 13, CT: 2, TT: 15; and 6 men had a high dose folic acid
supplementation (5 mg). We had 5 samples from each group (fertile and infertile): 4 were
pooled and one individual. All, fertile and infertile men had normal semen parameters, as
determined using the criteria of semen analysis established by the World Health Organization
(WHO). Men were categorized as idiopathic infertile as they were not able to produce babies,
provided no female factor was involved.

2. High-fat and control samples from mice: These samples were from high-fat diet fet and
control “C57 black 6” (C57BL/6) mice that were obtained from the Sloboda lab at McMaster
University to study the epigenetic factors linked with obesity. Control mice were fed regular
chow diet and high-fat mice were fed 60% kcal fat for 10 weeks (starting at 6 weeks of age).
For the preliminary study, we obtained three biological replicates for each group. This project
have animal care (McMaster University) and Institutional Review Boards (IRB) approval
from the University of Toronto and McGill University. Note: no samples, only data were used
for this thesis.

4.2 Methods

4.2.1 Preprocessing of ChIP-Seq data

4.2.1.1 Quality Control (QC)

After receiving sequenced data from GQ, the first step was to assess the quality of the data to
determine the reliability of the sequenced reads. To examine the sequencing errors and trimming
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low quality reads, the quality assessment of the raw data was performed using FastQC [56], a
widely-accepted software. FastQC gives a capital overview of the data, Figure 4.1 including but not
limited to the number of sequenced reads, base sequence quality, ‘N’ content (whenever a sequencer
is unable to call a base, it will input ‘N’), sequence duplication levels and adaptor information. A
Hypertext Markup Language (HTML) report generated by the software helps to understand the
pre-processing steps required.

Figure 4.1: Basic statistics of reference population sample.

One of the important steps in quality control is to assess the depth of sequencing. The datasets
used in this thesis had at least 20 million uniquely mapped reads, as recommended by ENCODE
guidelines [49]. ChIP-seq enrichment profiles are expected to saturate after 20 million sequenced
reads, in terms of enrichment regions [57].

The quality assessment is done using the quality scores (Q-scores) in the raw files, which are
translated to quality statistics in FastQC reports and plotted as boxplots, as shown in Figure 4.2. Q
score is defined as the base calling error probabilities and is calculated by the formula: Q = -log10
(P). For instance, if a nucleotide base is assigned a Q score of 30, this is equivalent to the probability
of an incorrect base call of 1/1000 times, which means that the accuracy of base calling is 99.9%. A
Q score of 30 represents perfect base calling with no errors and ambiguities, and is considered a
benchmark for quality in NGS [58].
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Figure 4.2: Per base sequence quality from FastQC: Boxplots represents the bases. If the boxplots are in
the green area, the reads are very reliable; if in orange, they are not so reliable and if in red, they are not at all
reliable.

4.2.1.2 Adaptor and read trimming

Adaptors are artificial DNA oligonucleotides and are required for sequencing by platforms like
Illumina. During the process of Illumina library preparation, adaptors are ligated to the short
DNA sequences. Because of the adapters (attached at the end of reads), the sequencing Q score
is usually low. Therefore, these are required to be removed before downstream processing of the
data. Furthermore, the sequenced DNA reads could have trailing and leading ‘N’ (if a base caller
fails to call a base at a genomic location, it will put ‘N’ instead of ‘A’, ‘T’, ‘G’ or ‘C’). Also, there
is a chance that although long reads were sequenced, small reads appeared after sequencing, or
they became shorter after removal of trailing or leading ‘N’. It is always better to get rid of small
reads and include only longer reads in the analysis, as shorter reads may have low quality due to
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technical errors and will lead to misinterpretation. In our lab, we select reads with minimum length
of 80% of the sequenced reads, by that we get rid of short reads, and increases the quality of the
data. Although the QC steps are multiple processes, they can be handled easily by one software,
Trimmomatic [59].

4.2.1.3 Alignment of sequenced DNA reads (tags alignment)

The alignment of the reads to the genome is a fundamental step that must accurately assign the
sequenced reads to the right position in the genome where they were generated. The sequenced
DNA reads are just big chunks, unless we know where they belong (mapping and annotation).
To provide some meaning to the sequenced DNA reads, we align them (mapping) to a reference
genome. The two major issues in the alignment of ChIP-Seq data are: a tag can be mapped to
multiple locations in the genome and multiple tags can be mapped to the same locations in the
genome. The simplest solution to the first problem is to ignore the tags mapped to multiple locations
in the genome as it is not possible to determine their true origin, and for the second problem to
take one instance of multiple tags aligned to the same location. An exception to this would be if
researchers are interested in repeat regions, for example, H3K9. The most common software (highly
cited) used for alignment are BWA [60], Bowtie [61] and Bowtie2 [62] and these have implemented
Burrows-Wheeler Transformation (BWT) algorithm [63] for alignment.

Figure 4.3: Optimal alignment parameters required for aligning sperm ChIP-Seq data. Analysis
Pipeline from [64] leads to an artifactual signal in repetitive DNA elements [15]. Reproduced with minimal
modifications from [15].
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As sperm chromatin structure is unique, we need to align sperm ChIP-Seq reads with optimized
parameters. Royo et al. [15] analyzed the parameters used in [64] and found that the pipeline leads
to an artifact signal in repetitive DNA elements, as shown in Figure 4.3. The main disagreement
discussed in [15] is using the bowtie parameter “-a”. Saman et al [64] is counting each multimapping
read multiple times. Basically, if a read maps to 10 positions in the genome, it will be assigned to
all 10 positions. Royo et al. [15], when re-analysing the data, found that this affects reads mapping
to repeat regions disproportionately with a large increase in mappings to those regions. This is
not biologically relevant in the case of sperm, as very few histones are retained in sperm. The
authors of [15] have compared various tools and parameters for aligning raw sperm reads. They
suggested the use of bowtie for aligning sperm deep sequenced data by allowing a mismatch/ Single
Nucleotide Polymorphism (SNP) of 3 and alignment limit of 100 per read.

Advancement of NGS has helped researchers to sequence longer reads and Bowtie2 is mainly
designed to handle the reads which are longer than 50 bps, while using less memory and being more
sensitive and faster. I have duplicated the alignment parameters from [15] for sperm ChIP-Seq data
alignment for bowtie2, originally stated for bowtie, which is an advanced version of bowtie and
has greater compression as compared to bowtie. By default, Bowtie2 reports a single alignment
per read for reads that map multiple times i.e., duplicated. But, Bowtie2 does not allow to filter out
the reads with a higher number of SNPs; therefore, in-house script was written to filter reads (with
more than 3 SNPs) after alignment (see 4.2.1.4).

4.2.1.4 Mismatch removal

The genome of human beings differs from one another by a minute percentage. If we randomly
select two people and sequence their genomes, we will find that they differ by one nucleotide base
per 1,200 to 1,500 DNA bases. If we consider differences in the whole genome, one person would
be different from another for around three million DNA bases and although this number seems
bigger, it accounts for only 0.1% (any two individuals have 99.9% same DNA bases) [65]. The
question that arises is; how many dis-similarities should we allow in sperm for ChIP-Seq data
analysis? A published study [15] suggests that for sperm, we should allow a maximum of three
mismatches in the sequenced DNA reads of 100bp. By allowing up to three mismatches or, by
using an alternative “ENCODE-unified analysis pipeline” (tolerating up to five mismatches), the
percentage of mapped reads increases. Allowing for some mismatches is acceptable as we already
know that humans differ from each other with approximately 0.1% of DNA sequence. Therefore, in
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the designed pipeline 3 SNPs are permitted per 100 bp.

4.2.1.5 Duplicate sequenced DNA reads

A duplicated read in ChIP-Seq data can arise as a PCR artifact, or via reading of the same fragment
of DNA twice. It is debatable if duplicated reads are to be removed or not from ChIP-Seq data [66].
Most of the NGS pipelines recommend removing duplicates, or at least marking them for peak
calling, as duplicates may lead to a false enrichment profile. It is suggested to retain marked
duplicates for downstream analysis, as it decreases enrichment overall. PCR amplification is carried
out to intentionally multiply the number of reads to ensure enough coverage. It has been suggested
that PCR cycles should not exceed 6 so that the library retains a high degree of complexity. This
will result in only 4% of duplicates [67]. The percentage of duplicate reads in the sequenced
samples is highly dependent on the depth of the library sequenced. The main aim behind removal
of duplicated reads is to mitigate the effects of PCR amplification bias which is introduced during
library preparation. Proper duplicate removal is fully dependent on a low error rate in the library.
On the other hand, sequenced reads which are mapped to the genome may indeed have the same
genomic coordinates, reads sequenced can be of same length and have identical mapping coordinates,
but can still belong to different genomic coordinates. The two identical mapping reads with a SNP
in the complementary DNA (cDNA) fragments may have been derived from both the parents, and
these two cDNA fragments, which differ by just one SNP, could contain biological information that
would be erased while removing duplicates on the basis of mapping coordinates [67].

4.2.2 Peak calling

The aim of peak calling is to select real peaks over false positive peaks. Real peaks correspond to
ends of the binding regions for both strands [68]. In some cases false positive peaks correspond
to a contamination process that may happen during the experiment or, due to a faulty peak caller.
Usually, a ranking procedure takes place to identify best peaks among all other peaks. Also, visual
examination using a genome browser is required to see if peak calling is accurate. In some software,
peaks are ranked based on p-values, as in Model-based analysis of ChIP-Seq (MACS) [69] and
MACS2. Peak calling process varies between systems in terms of implementation. In a two samples
experiment, the control data is generated by doing the experiment without including any antibody
targets.
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The data from ChIP-Seq are represented as aligned stacks of reads which represent the enrichment
of the targeted epigenetic factor in the genome. Some of these regions represent signals of interest
where histone proteins occur, and others could be experimental bias. Based on performance,
various papers discuss benchmarking of peak calling methods [70–74]. Previous research has also
considered width and number of peaks [75]. As well, a recent publication [76] tested 30 different
methods for peak calling for transcription factors and histone modifications in somatic cells and
identified the features that define the best peak caller. According to the publication [76], peak
calling can be subdivided into two problems: “identifying peaks” and “testing peaks for statistical
significance”. The authors have also described various features that best describe peak calling
methods and checked for the presence of these features in various peak callers. Importantly, there
is no previous study which describes a best peak caller for sperm, though there are various
software available for broad peak-calling: MACS2 [69], based on cross-correlation; RSEG
[77], based on Hidden Markov Model (HMM); and BroadPeak [78], based on segmentation
algorithm.

4.2.2.1 MACS2

MACS is a tool for peak calling within a single ChIP-Seq experiment while modeling the ChIP
generated read distribution along the genome with a Poisson distribution [69]. MACS2 scans the
genome with a sliding window of fixed width centered on each nucleotide. Candidate peak regions
are identified using a Poisson test of regions where the numbers of reads in the ChIP sample are
greater than what one would expect given a fixed background rate (gDNA/ input). These regions
are then ranked using a Poisson test that assesses if reads in the ChIP sample are greater than what
one would expect, given a local background rate estimated from the input sample. In case of no
gDNA/input sample, the background threshold is calculated from around the peak.

4.2.2.2 BroadPeak

BroadPeak is based on a Maximal Segmentation algorithm, in which the data to be binned into
non-overlapping 200 bp windows and then evaluated with the high-tag bins compared to the genomic
background density (low-tag bins) [78]. Adjacent genomic bins with high tag counts are put together
to form the broad peaks. The method can be used as unsupervised as well as supervised (machine
learning). One of the major advantages of this software is that it does not use input/ gDNA to filter
out the background.
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4.2.2.3 RSEG

RSEG is a HMM based algorithm which aims to identify the genomic regions marked by broad
histone marks such as H3K36me3 and H3K27me3 [77]. The whole genome is segmented into
non-overlapping bins of a defined size and reads within each bin are counted to obtain signal
tracks. Resulting signal tracks are further filtered for unmappable regions and remaining signals are
adjusted.

Figure 4.4: Peak calling in sperm ChIP-Seq data from men. Peak calling was performed using MACS2,
RSEG and BroadPeak methods. MACS2 identified the true peaks, though the boundaries of peaks were not
so appropriate. The correct boundaries which could have been identified, are marked with arrows after visual
inspection (orange: peak-start, blue: peak-end) for reference sample.

Earlier, the peak calling parameters were assessed in the Kimmins lab by Keith Siklenka (a graduate
student) using Homer, MACS1.4 and MACS2, and MACS2 with “–broad” and “–broad-cutoff 10-6”
were found to be most reliable for peak calling in sperm ChIP-Seq data. Further, I have tested
RSEG and BroadPeak methods to optimize the peak calling in sperm ChIP-Seq data from men and
mice (from the lab), Figure 4.4, and it is concluded that peak-calling using MACS2 with “–broad”
and “–broad-cutoff 10-6” parameters is most optimal, consistent to what Dr. Siklenka found and is
implemented in the pipeline.
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4.2.3 Statistical analysis

4.2.3.1 Calculating read counts in the samples

To calculate the read counts from pre-processed alignment files (bam files), the pipeline was tested
using an approach where we bin the samples into 200 bp windows, keeping an overlap of 50 bp
between windows, and then count the number of reads in 200 bp windows in all samples using
csaw [79]. A human haploid genome consists of 3.2 billion nucleotide bases and is binned into
approximately 21 million 200 bp windows. Although, binning and calculating read counts in 21
million windows is computationally very intensive, this task can be optimized to perform in less
than 30 minutes, using “data.table” and “csaw” packages from R. This reduces the original time
by many folds (one week to 30 minutes), and can be faster or/ slower depending on the access to
computational power (servers/ clusters).

4.2.3.2 Normalization

The most widely used normalization method for ChIP-Seq data is adjustment of total counts
(sequencing depth). However, this approach has a drawback, if the signal-to-noise ratio is very
different between two libraries, one library is going to contain more background reads than the
other. A classical method used to normalize RNA-Seq data is Upper Quantile (UQ) normalization
method [80], where “raw count” values are divided by the 75th percentile of the column (after
removing zeros) and multiplied by 1000 (a scaling factor). The normalized file therefore does not
take any external factors into account, but simply transforms each sample so the values are relative
to the 75th percentile with a x1000 adjustment factor. This is based on the hypothesis that most
genes/ regions are not Differentially Enriched (DE) [80].

A new method, called Trimmed Mean of M-values (TMM), also hypothesizes that most genes/
regions between samples are not DE [81]. TMM performs UQ normalization and estimates the
scaling factor (based on sequencing depth). The next step is to calculate the weighted trimmed
mean of the log enrichment ratios, which accounts for the variability among samples.

Another method, voom [82] was developed in 2013 and can be used to correct over variance across
samples. Voom estimates the mean variance of the logged read counts (non-parametrically) and
uses it to predict the variance of each log-cpm (Counts Per Million, also used in TMM method)
values. Variance is then encapsulated as an inverse weight for the log-cpm value and the weights
are incorporated into a linear modeling procedure. We found that this method corrects for variance
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in the genes/ regions which have very low enrichment.

Figure 4.5: Normalization methods. Different normalization methods were tested in all the datasets, and
TMM normalization works best in normalizing read-counts. These plots shows the testing of UQ, TMM and
voom normalization methods on high-fat and control mice data from the lab.

Correct normalization methods are essential for comparing the two independent groups ChIP-Seq
data. I have compared UQ, TMM and voom normalization methods, as shown in Figure 4.5, and I
propose that TMM method is the best method for normalization of ChIP-Seq data for the following
reasons:

• As many genes/ regions have low enrichment, it did not consider them and this is helpful
while performing differential enrichment analysis.
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• It performs library normalization (correcting for sequencing depth).

• It corrects for the variance of very high and very low enriched genes/ regions (outliers).

• Although voom can correct for further variance between samples, we observed that it only
corrects for the genes/ regions which have very low enrichment values (and those are not of
that much importance).

Figure 4.6: Batch effect correction using limma. Batch effect (day bias) was observed in the high-fat and
control mice data from lab, and limma (a R package) was used to correct for the batch effect. On the top,
multidimensional scaling (MDS) plots represent the grouping of controls and high-fat samples. Batch effect
(days bias) can be seen in the raw and TMM normalized data, which was not observed after performing batch
correction. At bottom, boxplots of read-counts from high-fat and control mice sperm ChIP-Seq data are
shown.
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Batch effects are technical experimental data variations that are introduced by processing samples
in multiple batches, and can create confounding biological meaningful variations. To address the
non-biological variance in data, I used limma [83], which models the batch correction via linear
model. As limma method works on linear model, various effects can be modelled together, such
as days and batches, in which the experiment was performed. Moreover, the batch correction is
performed while retaining the group differences. Limma was tested to correct for the batch effect
(day bias) in high-fat and control mice data from the lab, as shown in Figure 4.6

4.2.4 Differential analysis

Detection of differentially enriched regions or genes in ChIP-Seq data is a very important step to
find the changes in protein-DNA binding in different samples. A number of tools have been reported
to either detect differential gene enrichment or delimit differentially methylated regions (DMRs)
between different conditions [69, 84]. A recent review [85] has identified the major problems faced
by these tools in identifying the DMRs:

• DMRs are not limited to a certain genomic coordinate (for example genes) and, they could be
widespread in intergenic regions. Hence, we cannot restrict our search. The changes in the
enrichment (signal) is not constant in data and transformation is required (normalization).

• It is challenging to detect the changes when variation in the data is large and differences are
subtle.

• Histone marks have different bindings with the DNA (width), and the boundaries are not easy
to detect.

It is hard to rely on the output from differential peak calling because of the problems stated above.
A recent tool, “csaw” [79] published in 2016, gives the power of analyzing the full genome by
using a window approach. csaw also provides the power of binning the samples into the same
windows (with or without overlaps) and analyzing them for differential binding, as shown in Figure
4.7. Similar to edgeR [86], csaw uses TMM normalization and also implements lowess-based
(LOcally WEighted Scatterplot Smoother) normalization to remove trended differences in window
counts with respect to abundance and analogous to cyclic loess normalization for microarrays. As
mentioned previously, csaw package uses TMM normalization to account for normalization factors
and uses edgeR to find the differentially enriched windows. csaw suggests the right pipeline for
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analyzing differentially enriched regions by dividing them into small bins, as the differential regions
are not necessarily present at certain genomic intervals. The proposed method in the pipeline for
differential analysis is to bin the samples into 200 bp windows with a 50 bp overlap and then
perform differential analysis of windows. Although the analysis will be a little slow, but overlapping
will provide more resolution and better detection of differentially enriched regions. The rationale
behind using a 200 bp window is: the DNA which wraps around histone octamer is ~150 bp long
(together makes a nucleosome) and two nucleosomes are connected by a ~50 bp long DNA.

Figure 4.7: Coverage plot with results from differential analysis of high-fat vs control mice data using
csaw. With the help of csaw, we were able to detect true differences between high-fat and control samples
(even at a small scale). This figure shows the genomic track with peaks identified by MACS2, and at bottom
(in green) windows identified as differentially enriched. The plot is for Ctfr (cystic fibrosis transmembrane
conductance regulator) gene, which was differentially enriched in high-fat (log fold change: 1.133 and
p-value: 0.0024).
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4.2.4.1 Annotation of genomic regions

Annotation of the genomic regions is an essential step that involves annotating the regions to genes,
ncRNAs or enhancers. After differential analysis and setting cutoff for selecting regions, we aim
to annotate the DE windows. There are various packages available to perform the annotation,
like ChIPseeker [87], Homer [88], Genomic Regions Enrichment of Annotations Tool (GREAT)
[89]. Among these, ChIPseeker provides a better overview by incorporating superior graphical
representation.

Figure 4.8: Annotation of peaks called by MACS2 on fertile, infertile and reference population sam-
ples. "P" represents "pooled" (see section 4.1). A. Annotation of peaks called by MACS2. Different
colors represent the type of genomic sites enriched. B. Binding site percentage of peaks around TSS. Different
colors represent the distance of binding sites for H3K4me3 from TSS. C. Tag density heatmap showing the
intermediate signal of peaks from all samples +/- 3 kb TSS.
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For annotation, ChIPseeker needs a bedgraph file as an input (or a list of bedgraph files).
The genomic coordinates are then annotated based on transcript database (for example
“TxDb.Hsapiens.UCSC.hg19.knownGene”) and boundaries of TSS (for example +/- 3 kb), as
specified by the user. In order to make multiple comparisons of regions among samples (for
example: peaks called by MACS2), ChIPseeker provides clear visualization plots, as shown in
Figure 4.8

4.2.4.2 Pathway Analysis

Genes that are DE should have biological significance, which can be tested against the pathway
databases. The most widely used functional analysis method is the Functional Class Scoring (FCS)
approach. FCS methods have several advantages; for example, they treat the pathway independently
as a gene can function in more than one pathway, meaning that pathways can overlap [90]. The first
method developed on FCS analysis technique was Gene Set Enrichment Analysis (GSEA) and is
still widely used to perform pathway analysis [91, 92]. It requires an input gene list, in which genes
are ranked by some values (correlation or Log Fold Change or read counts): walking down the
ranked list of genes, increasing a running-sum statistic when a gene is in the gene set and decreasing
it when it is not. The magnitude of the increment depends on the correlation of the gene with the
phenotype (or absolute value of the ranking metric). The gene-level statistics for all genes in a
pathway are aggregated into a single pathway-level statistic. The pathway-level statistics used by
current approaches include the Kolmogorov-Smirnov statistic [92]. This method uses Molecular
Signature Database (MSigDB) [92] or pathway databases in Gene Matrix Transposed (GMT) file
format.

I incorporated “fgsea” [93] for pathway analysis, which is based on GSEA. Similar to GSEA, “fgsea”
also requires two inputs: a ranked file and a pathway database in GMT format. Gene Ontology
(GO) analysis using “fgsea” between infertile-fertile samples comparison is shown in Figure 4.9.
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Figure 4.9: GO analysis results of human infertile vs fertile samples using fgsea. GO analysis results
on differentially enriched genes from infertile-fertile comparison, using curated GO pathway database from
MSigDB [92]. The colum "Gene ranks" represents the distribution of genes in the input ranked list (ranked
by log-fold change), that were present in the GO term; "NES" is normalized enrichment score of a GO
term; "pval" is p-value; and "padj" is the corrected p-value of the enriched GO term. Result shows that
positively-enriched (fertile) genes in infertile samples are represented in cell-cycle and negatively-enriched
(infertile) genes are represented in developmental GO terms.
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5 Pipeline

5.1 EpiSpermHis

I have developed a Docker container (a container to encapsulate Galaxy, tools and pipelines) for
analyzing sperm ChIP-Seq data from broad histone marks in sperm, such as, H3K4me3. There are
two main components of the pipeline: Galaxy and Docker.

5.1.1 Galaxy

Analyzing the data from genomics experiments is not an easy task, and requires unique skill-
sets or a well-trained bioinformatician. If biologists could analyze their own data with simple
clicks on the computer, they would probably be the best to interpret their data. To help biologists,
Galaxy framework was developed in 2005 to facilitate the development of GUI for bioinformatics
pipelines [94]. It is a web-based framework and integrated tool management system for running
command-line utilities from a GUI. It provides a point-and-click web interface alternative to the
bioinformatics command line, thus allowing researchers to easily create, run and troubleshoot
analytical pipelines. Furthermore, it allows non-computational researchers in the lab to begin
learning NGS data analysis without first taking 4-6 months to learn Linux at the command-line.
Data analysis in Galaxy can be run through reproducible workflows (pipelines). One can take a
Galaxy workflow and run it on another computer (provided Galaxy and required tools are installed)
without considering compatibility, which is not the case with a command-line pipeline (one would
have to declare various variables on their “command-line user interface” before running a pipeline).

Galaxy maintains a detailed record of what analyses each user has run and in what order. The
software also fosters reproducibility, making it possible to repeat and share analyses, and/or revisit
them at a later date. Also, depending on the computing power, Galaxy can automatically process
samples in parallel mode.

5.1.2 Docker

A pipeline can be run for data analysis if an interface to run it is present and all the essential software
(dependencies) are installed. Docker [95], a tool built in 2014, can package an application and its
dependencies (external software/ requirements) in a virtual container that can be run on any virtual
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machine (VM) and eliminates the term “works on my machine”. Docker machines are containers,
that can be used without any dependency on operating systems. Containers are a way to package
software in a format that can be run isolated on a shared operating system (OS). They are widely
regarded as more effective than VM because of how they allocate resources. Unlike VMs, containers
do not bundle a full OS, only libraries and settings are required to make the software work [96].

Figure 5.1: EpiSpermHis: Docker containerized Galaxy for sperm ChIP-Seq data analysis.

In 2015, Galaxy was containerized with Ubuntu (a Linux OS) and some base tools into a Docker
image [97]. This Docker image has been used to further make it specific to a particular data analysis
and the recently published RNA workbench [98] is a perfect example of that. I have used the
original Galaxy Docker container and extended it to make it specific for sperm histone ChIP-Seq
data analysis, Figure 5.1. The “EpiSpermHis” Docker container encapsulates several data analysis
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pipelines, NGS tools and in-house built tools. The container also contains other NGS and statistical
analysis tools, which will help researchers to adapt pipelines according to their research concern.
This Docker container can be installed easily on any machine and data analysis can be carried out,
depending on the computational power.

5.1.3 Graphical User Interface

Galaxy GUI is user friendly and contains various features. Some of the important features are
shown in Figure 5.2.

Figure 5.2: GUI of EpiSpermHis. Galaxy interface for sperm ChIP-Seq data analysis.
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5.1.4 Galaxy tools

Galaxy tools are written in Extensible Markup Language (XML). A script or a piece of code can
also be wrapped into an XML format. An XML file of the tool contains tool ID, tool name, tool
version, help for the tool, commands to run the tool, input and output formats and tests. Before
putting the tool into the Galaxy Test Toolshed, it needs to be tested and validated using Planemo (a
software developed to assist tools development for galaxy) [109].

Various NGS tools are available in the Galaxy Test Toolshed for the data analysis. For “EpiSper-
mHis”, we have included the tools for QC, peak calling and statistical analysis. An example of the
in-house tool for removing reads with more than 3 SNPs is shown in Figure 5.3. As per Galaxy
guidelines, this tool was wrapped into XML format, as required for publishing on Galaxy toolshed,
Figure 5.4. After that, tools were tested with Planemo and they passed the test, Figure 5.5. All
the in-house developed tools were tested in the same manner, before publishing them on the Test
Toolshed website of Galaxy. Each tool is version controlled in the GitHub.

Figure 5.3: RemoveSNPs: a tool coded in bash and Perl to filter reads with more SNPs.
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Figure 5.4: XML format of RemoveSNPs tool for Galaxy. Tools for Galaxy are written in XML format.
For a tool to run on the Galaxy, all the inputs and outputs for the tool are defined. This is an XML code for
RemoveSNPs tool that was written for removing sequenced reads with higher SNPs.
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Figure 5.5: Test result of a Galaxy tool: RemoveSNPs tool passes a test.

5.1.5 Pipelines

An overview of a pipeline is shown in Figure 5.6. Pipelines available for sperm ChIP-Seq data
analysis are mentioned in table 5.1. All the pipelines can be modified with the help of “workflow
editor” in Galaxy to make them work for a specific reference genome (mm10/ hg19).

Table 5.1: Pipelines for sperm ChIP-Seq data analysis

Pipeline Function

PreprocessingPeakCallingInputSE Pre-processing and peak calling (including "gDNA/ Input") of
SE ChIP-Seq data

PreprocessingPeakCallingInputPE Pre-processing and peak calling (including "gDNA/ Input") of
PE ChIP-Seq data

PreprocessingPeakCallingSE Pre-processing and peak calling (without "gDNA/ Input") of
SE ChIP-Seq data

PreprocessingPeakCallingPE Pre-processing and peak calling (without "gDNA/ Input") of
PE ChIP-Seq data

StatisticalAnalysis Pipeline to perform statistical analysis (differential analysis,
functional analysis and annotation)
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Figure 5.6: Pipeline for analyzing Epigenetic (histone) modification in sperm. Overview of Sperm
ChIP-Seq data analysis pipeline with all the steps and tools used.

5.2 Pipeline evaluation

To evaluate the pipeline, I used the publicly available H3K4me3 targeted sperm ChIP-Seq datasets.
Human and mice datasets were obtained from Gene Expression Omnibus (GEO). GSE15594 (human
sperm ChIP-Seq) was obtained from [4] and GSE79230 (mouse sperm ChIP-Seq) was obtained
from [99]. For GSE15594, authors had collected the data from three known fertile donors, who
were attending the University of Utah Andrology laboratory, and gave their consent for research.

Data was provided as an input to the pipeline in fastq format and was aligned to the reference
genomes (“mm10” for mice and “hg19” for human). The pipeline runs well for preprocessing and
peak calling, Figure 5.7. As the data from GEO was available from only one biological group, it
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was not able to evaluate the pipeline for any statistical analysis.

Figure 5.7: Coverage plot of human and mice sperm data. A. Coverage plot of Hox (Homeobox) genes
from GSE15594 dataset. The figure also depicts peaks identified by MACS2. The peaks were not identified
properly as the data is from year 2009 with sequencing depth of only 10 million. Another possible reason
could be the compatibility issues of current version of MACS2 software with sperm ChIP-Seq data from year
2009. B Screenshot of outputs created while analyzing GSE79230 in Galaxy.
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6 Conclusion

In the end, we could say that epigenetics refers to the reversible, heritable changes in gene regulation
which occur without changing genetic code (DNA sequence), and sperm ChIP-Seq data analysis
requires optimized methods to perform correctly. From a developer’s point of view, the advantage
of scripting method is the flexibility in design, debugging and execution. With scripting, it is possible
to perform data analysis, use application programming interface (API) of databases to retrieve
data/ information, and to incorporate them into the pipeline. Further, tools can be programmed to
implement the missing elements. From an end user perspective, once the pipeline is implemented,
performing the data analysis is possible by providing the input files and cluster scheduler, such as
sun grid engine (SGE)/ slurm, for job submission. However, clusters often do not have a GUI but
rather use a command line interface (CLI).

Docker container is lightweight and is the best solution for making a data analysis platform available
by wrapping Galaxy, data analysis tools and pipelines. Galaxy has been proven to be very helpful
for biologists for data analysis but is less flexible compared to command-line. The pipeline system
(Docker container) developed here may be further extended or adapted according to the research
questions and type of data available.
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Abstract

Unlike a typical ChIP-seq profile in somatic cells, in sperm, there are fewer histone peaks, and these
tend to be distributed over CpG (5’-C- phosphate-G-3’) enriched regions. We have developed a stan-
dalone Docker container with Galaxy, that has embedded tools for NGS and quantitative comparison
of histone modification enrichments in sperm and includes downstream data analysis pipelines.
The Galaxy framework will allow biologists without command-line knowledge to perform optimal
pre-processing and to address other challenges in data analysis. We have incorporated efficient
bioinformatics pipelines for analyzing sperm epigenome data by using sperm specific parameters in
currently available tools and tools developed in-house, including tools for differential analysis and
functional analysis. We have included several tools, statistical analyses and R packages, allowing
users to adapt the analysis to their research requirements. This Docker image is available from our
DockerHub repository (https://hub.docker.com/r/dktanwar/ngs_chip-seq_sperm_histones/).

Keywords

ChIP-Seq, Histones, H3K4me3, Bioinformatics, Docker, Galaxy

Findings

Background

The recent support for environmental factors causing epigenetics alterations has generated data
suggesting how fertility can be affected by environmental exposures occurring in histones [101–104].
ChIP-Sequencing enables us to understand and study these alterations in sperm histones by mapping
them throughout genome.

The challenges in analyzing and quantifying ChIP-seq data from sperm with currently available
software is the need to detect and quantify differences not just in peak enrichment, but also to call
peaks with parameters specific to sperm. It is even more challenging for biologists to study these
modifications by virtue of computers (bioinformatics data analyses). To analyze these datasets,
a person needs to have command line knowledge as well as knowledge of other programming
languages, including R for computational statistical analysis. Also, the installation of tools and then
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fighting dependencies (external software on which installed software depends on) of software is
always problematic.

There are several tools available that can assist in making automated pipelines, including makefiles
and snakemake [100]. The graphical user interface (GUI) is limited in the field of Bioinformatics.
A GUI has a unique feature of automating pipeline development and reproducibility for genomic
data analysis. The GUI based platforms available to date for bioinformatics data analysis are
Galaxy [105], Taverna [106], Pegasus [107], Geneious (commercial) [108]. The Galaxy community
is dedicated to increase the availability of bioinformatics tools for researchers. Further, Galaxy
offers a variety of features and is “an open source, web-based platform for performing accessible,
reproducible, and transparent genomic science” [105]. Galaxy is one of the best GUI for bioinfor-
matics, that provides web-based platform for large-scale interactive data analysis. It allows scientists
to share the whole analysis workflow and datasets. Further, Galaxy is a user-friendly analytical
platform, and researchers without computational background can navigate their way through an
investigation and use various analytical tools and workflows. It provides various features such as
interactive tours, workflow building from history, sharing history with data and workflows, being
open source.

We have developed a comprehensive Docker container with NGS tools, statistical analysis (written
in R) and workflows that can be used for the processing of raw data, peak calling and further
downstream analysis (statistical and functional analysis). These workflows can be customized
depending on factors like sequence read length. Software like Galaxy, provides a GUI for biologists
to allow them to analyze their data. This toolbox was generated for the analysis of histone
modifications, such as H3K4me3, that can have a very broad coverage in sperm cells, as compared
to somatic cells [4] .

Implementation

The developed toolbox makes use of several existing programs and connects them in a convenient
interface. Further, it uses recommended practices and can assemble extremely high coverage of
sperm epigenome data. In addition, we provide a series of statistical analysis tools which will help
researchers to quantify the differences in biological groups.

Galaxy enables the addition of novel software into the environment by individual users to fill
in the gaps of tools that haven’t been created by the Galaxy team or other researchers. Galaxy
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tool integration requires a tool definition file, which is written in Extensible Markup Language
(XML). This file dictates the available inputs, outputs and arguments to build the command based on
user-specified parameters. We obtained assistance from Planemo tool [109] to construct the XML
format configuration file for the tool. In-house programs were developed in different computer
languages (Bash, Perl, Python and R) and are configured to work on Galaxy. All repositories are
available on the public Galaxy Test Toolshed (https://testtoolshed.g2.bx.psu.edu/) which allows
users to automatically install any tool in any Galaxy environment [110]. Full access to the test tool
shed repository is provided to Intergalactic Utilities Commission (IUC).

Methods

To run the pipeline, data is accepted in its raw state (FastQ) as well as in binary alignment format
(BAM), since these are two formats in which data is made available to researchers after sequencing.
Most of the packages and softwares in bioinformatics contain several different functions and cannot
be used simultaneously for data analysis and representation. To perform some specific analysis, the
code is modified and organized according to the requirement. We have molded the code into various
scripts to perform specific functions. All tools are made available to Toolshed and are version
controlled on GitHub [111].

Pipeline description

The “EpiSpermHis” Docker container is developed for the analysis of ChIP-Seq data from histone
marks targeted via ChIP in sperm and contains a series of analytical methods that are connected.
As shown in the }, the processing of sperm histones ChIP-Seq data is required to go through three
major steps:

• Quality Control

• Peak Calling

• Quantitative/ Semi-quantitative analysis.

The rationale and details of each step is as follows:
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1. Quality Control of ChIP-Sequencing data: A sequencing center makes data available
either in raw format (fastq) or as data aligned to the preferred reference genome. However,
researchers do not necessarily use the same reference genome. Moreover, adapters are also
attached to the sequenced reads, which affect the quality of reads. Further, some reads
(of shorter length) could have poor base quality score and should be removed from further
analysis. If a sequence fails to call a base, it will put a “N”, instead of “A”, “T”, “C” or
“G” and these sequences should be removed to improve the quality of the data. All the
pre-processing steps are performed using Trimmomatic software [59].

Proper alignment of sperm ChIP-Seq data is required to get an accurate alignment and maximum
depth. There are various software discussed for the alignment of sperm ChIP-Seq data [15]. We
used bowtie2 for alignment due to its advantage over bowtie [62], using the same parameters as
described in [15], except for allowing for a maximum of 100 reads aligned to a region. When reads
align more than 100 times, they can be classified as technical duplicates. It is recommended to
remove while analyzing ChIP-Seq data [66]; hence, they are filtered out further in the pipeline using
Picard tools [112] (keeping only one copy of a read) for peak calling. As specified in [15], the
pipeline allows a maximum of three mismatches (SNPs) in a sequenced read.

2. Peak calling: Peak calling is an essential step in ChIP-Seq data analysis which identifies the
enriched regions in the genome. Three different methods for peak calling were tested, Figure
A.2} out of which, MACS2 with “–broad” parameter, along with “–broad-cutoff” of 10-6

predicts peaks with a well-defined boundary.

3. Quantitative/ Semi-quantitative analysis: For a biologist, statistical analysis is a fundamen-
tal step to determine the important changes in the epigenome. We have tailored our scripts to
Galaxy tools for various statistical tests including edgeR and DSeq2, and “fgsea” functional
enrichment analysis. Tools included are mentioned in table A.1. All tools were developed
keeping the standard format for Galaxy, and then were uploaded to test tool shed only after
they passes a test.

Conclusion

In this paper we have described a standalone Docker container for sperm histones ChIP-Seq data
analysis. To construct the fundamental elements of the pipeline we relied on the tools that are
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Table A.1: In-house tools for analysis

Tools Language Function

RemoveSNPs Perl Remove DNA sequenced reads with more than ’n’
SNPs

CountsTSS R Calculate the read counts around TSS

CountsWindows R Calculate the read counts in whole genome after bin-
ning into windows

TMMnorm R TMM normalization of read counts

DEedgeR R Differential Enrichment analysis using edgeR

AnnoRegions R Annotation of windows

already developed in the bioinformatics community. We did not want to reinvent the wheel in each
and every step but added wrappers of existing tools to perform specifically. The pipelines make use
of highly recommended parameters for data analysis softwares, which are specific to sperm. All
our tools are wrapped into a Galaxy instance, which can also be used independently. The Galaxy
platform and pipelines can be used by researchers without advanced programming skills, or without
high-performance computing clusters.

Taken together, our proposed pipeline includes all relevant sperm histone ChIP-Seq sequencing
data processing modules, is easily applicable, and needs no time consuming installation processes.
Based on what we experienced through this project, the most challenging task is to find the best
program that firstly supports the data of your interest and secondly uses reasonable computational
resources and time to perform and finally produces biologically meaningful result. We plan to
integrate more tools as well as downstream analysis tools, that can assist with functional annotation.

Availability and requirements

Project Name: EpiSpermHis

Project home page: https://github.com/dktanwar/NGS_ChIP-Seq_Sperm_Histones

Operating system(s): UNIX (Galaxy); Platform independent.

Programming Language: Bash, Perl, Python, R

License: MIT
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Any restrictions to use by non-academics: None

All tools described in the article are available in the Galaxy Test Toolshed (https://toolshed.g2.bx.
psu.edu/) and under MIT license via the project GitHub repository. The Dockerfile to automatically
install these tools and a prebuilt Docker image are also provided.
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Peaks in somatic cells, mouse sperm cells and human sperm cells from
H3K4me3 along with density plot and boxplot of peaks distribution

Figure A.1: Peaks in somatic cells, mouse sperm cells and human sperm cells from H3K4me3 along
with density plot and boxplot of peaks distribution.
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Pipeline overview (along with the programming language used) and also a
pipeline of statistical analysis.

Figure A.2: Pipeline for analyzing Epigenetic(histone) modification in sperm. Overview of Sperm
ChIP-Seq data analysis pipeline with all the steps and tools used.
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Appendix B: Samples statistics

Following tables show basic statistics of the data mentioned in section 4.1 :

Table B.1: Basic statistics table for human samples

Sample Sequencing Sequenced read
length

Sequenced read
counts

Duplicates Uniquely mapped reads

Reference (n=30) SE 100 bp 143,077,301 37,625,112 (26.3%) 105,452,189 (73.7%)

Fertile pooled (n=4) SE 100 bp 45,952,728 7,187,648 (15.65%) 38,765,080 (84.35%)

Fertile SE 100bp 38,226,540 40,55,797 (10.6%) 34,170,743 (89.4%)

Infertile pooled (n=4) SE 100 bp 41,002,736 7,862,122 (19.2%) 33,140,614 (80.8%)

Infertile SE 100 bp 51,192,266 6,217,476 (12.15%) 44,974,790 (87.85%)

Table B.2: Basic statistics table for mice samples

Sample Sequencing Sequenced read
length

Sequenced read
counts

Duplicates Uniquely mapped reads

Control replicate 1 SE 100 bp 40,345,634 16,973,812 (42.1%) 23,371,822 (57.9%)

Control replicate 2 SE 100 bp 45,399,661 23,423,502 (51.6%) 21,976,159 (48.4%)

Control replicate 3 SE 100 bp 37,622,335 15,283,698 (40.6%) 22,338,637 (59.4%)

High-fat replicate 1 SE 100 bp 40,701,175 21,179,671 (52%) 19,521,504 (48%)

High-fat replicate 2 SE 100 bp 37,976,375 17,865,227 (47%) 20,111,148 (53%)

High-fat replicate 3 SE 100 bp 42,775,479 15,062,530 (35.2%) 27,712,949 (64.8%)
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Appendix C: Data availability

All the computational analysis was carried out using lab facilities and data is available in lab
computer in the following locations:

1. Reference, fertile and infertile samples from humans:
/Volumes/BINF1_Raid/home/dtanwar/projects/Human_Sperm_CReATe_H3K4me3

2. High-fat and control samples from mice:
/Volumes/BINF1_Raid/home/dtanwar/projects/H3K4me3_McMasterU

3. Data from GEO:
/Volumes/BINF1_Raid/home/dtanwar/projects/testing
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