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“Ce n’est qu’en essayant continuellement qu’on finit par réussir &

donc plus ça rate plus on a de chances que ça marche!”

Les Fondements de la pensée Shadock
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ABSTRACT

The breakdown of the celebrated Fermi liquid theory in 1D motivated Tomon-

aga and Luttinger to propose new models to describe many-body physics in 1D.

To experimentally test the predictions of Tomonaga–Luttinger physics, experiments

have been performed over the last twenty years or so in electronic systems and low-

density cold atoms gases. However, as of today and seventy years after Tomonaga and

Luttinger seminal works, a one-dimensional high-density strongly correlated bosonic

experimental system is still lacking. In this thesis, we provide the first experimental

realization of a quasi–one-dimensional flow with superfluid helium–4. Measurements

of 4He flow through a single nanopore of ∼3 nm radius were performed as a func-

tion of temperature above and below the superfluid transition temperature Tλ. The

observed pressure dependence of the flow is found to be much weaker than in larger

pores, and from previous studies. The critical velocities of the superfluid inside the

pore are extracted from the measurements by combining a short-pipe hydrodynamic

model developed by Langhaar, and the two-fluid model of Tisza and Landau. The

temperature dependence of the critical velocities below the transition temperature

is found to be well-modeled by a power law with non-universal exponent, in con-

trast to the known behavior of the bulk 4He superfluid exhibinting critical exponents

belonging to the three-dimensional O(2) universality class. Furthermore, the criti-

cal velocities associated with each of the nanopores studied are found decrease with

the nanopore radius. This is also in stark contrast with the behavior predicted by

the Feynman critical velocity model observed in larger pores. Recent theoretical

advances regarding superfluid dissipation predict a similar trend that is observed in

our work, and suggest that our smallest pore is neighboring a regime where enhanced
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dissipations inside the pore will further suppress the critical velocity. Our findings

are an important advance towards the realization of a Tomonaga–Luttinger liquid in

a dense bosonic system.
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ABRÉGÉ

L’échec de la théorie du liquide de Fermi en 1D a motivé Tomonaga et Luttinger à

développer un nouveau modèle pour décrire la physique corpusculaire en 1D. Afin de

vérifier expérimentalement les prédictions de Tomonaga–Luttinger, des expériences

ont été effectuées avec des systèmes électroniques et des gaz d’atomes froids à faibles

densités. Pourtant aujourd’hui, 70 années après les travaux précurseurs de Tomon-

aga et Luttinger, aucun système expérimental de bosons à haute densité et fortement

corrélés n’a encore été réalisé. Dans cette thèse, nous réalisons expérimentalement

pour la première fois écoulement quasi–uni-dimensionel avec de l’Hélium–4 super-

fluide. Des mesures du débit massique d’4He à travers un unique nanopore de ∼3

nm de rayon on été effectuées en fonction de la température en dessus et en dessous

de la température de transition superfluide Tλ. La dépendance en pression du débit

massique observée est bien plus faible que dans le cas de nanopores plus larges, ainsi

que rapporté précedemment dans la littérature. Les vitesses critiques du superfluide

dans le nanopore sont extraites des mesures en combinant un modèle d’écoulement

hydrodynamique classique pour canal court développé par Langhaar avec le modèle

des “deux-fluides” de Tisza et Landau. La dépendance en température des vitesses

critiques en dessous de la température de transition est bien décrite par une loi de

puissance avec des exposants non-universels, contrastant avec le comportement connu

de l’4He superfluide proche de la transition qui est décrit par des loi de puissance

avec des exposants critiques appartenant à la classe d’universalité tri-dimensionelle

O(2). De plus, nous avons établi que la vitesse critique diminue lorsque le rayon du

nanopore diminue en comparant les vitesses critiques de trois nanopores. Cela est en

opposition forte à la tendance prédite par le modèle de vitesse critique de Feynman,
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qui avait été observée pour des pores de plus grands rayons précedemment. Des

avancées théoriques récentes concernant les dissipations dans la phase superfluide

prédisent une dépendance de la vitesse critique par rapport à la taille du nanopore

qui est en accord avec celle que nous avons observée. Par ailleurs elles suggèrent

que notre plus petit nanopore est à la frontière d’un régime où il est prédit que les

dissipations sont créées à plus haute fréquence et contribuent à réduire fortement la

vitesse critique. Nos résultats constituent une avancée importante vers la réalisation

d’un liquide de Tomonaga–Luttinger dans un sytème de bosons denses.
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CHAPTER 1

Introduction

While in modern physics the theoretical approach enjoys the great freedom

of choosing the physical constraints on a specific system in order to model it, in

experiments one has to craft a system that is as close as possible to the theoretical

one, in spite of the many physical constraints imposed by the system.

It is the case of the experiments presented in this thesis, which build on the

work initiated by Michel Savard at McGill University [1] and aim to achieve a one-

dimensional (1D) confinement of strongly interacting particles in a quantum fluid, as

schematically illustrated in Fig. 1–1. The motivation for this work stems from sem-

inal theoretical works by Tomonaga [2], Luttinger [3], and Haldane [4] showing that

interacting particles in one dimension should exhibit a strikingly different behav-

ior than in two or three dimensions. For example, the Tomonaga–Luttinger Liquid

(TLL) theory predicts correlation functions decaying as power laws with exponents

controlled by a single parameter depending on the specific interactions of the system

considered. Another prediction is that spin and charge excitations occuring in a

1D system should become independent from one another and propagate at different

velocities. Moreover, bosons and fermions are predicted to be indistinguishable in
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one dimension since two particles cannot strickly speaking undergo spacial exchange

as a result of the lower dimensionality, and ultimately their hard-core interactions.

Channel Size

“3D” “1D”

Bulk Superfluidity (SF) Quantum 
Confined SF

Multi-channel
TLL

Single-channel TLL

Figure 1–1: Schematic transition from a bulk “3D” state to a confined “1D” state.
Art credits: Samuel Gaucher.

In general, the dimensionality of a system depends on how the intrinsic length

scales of the particles interactions compare to its physical size. In condensed mat-

ter physics, a system is said to be in the mesoscopic regime when its size becomes

comparable to intrinsic length scales, such as the de Broglie wavelength, or the co-

herence length of the macroscopic wave function in the case of superfluid 4He [5]. In

this regime, quantum effects become important, and can even dominate the physi-

cal properties of the system. A good mesoscopic example is the quantization of the

electrical conductance in a quasi–one-dimensional wire when its cross-section diam-

eter becomes comparable to the Fermi length of the electron transported through it.

When this is the case the conductance exhibits quantum “steps” quantized in units

of e2/h.
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The first experiments on one-dimensional systems were only accomplished sev-

eral decades after the first theoretical predictions in the 1950s [2, 3]. Some of these

experimental prouesses have been possible in the past decades, owing to impressive

progress in our ability to control matter at the nanoscopic scale thanks to tech-

niques such as Molecular-Beam Epitaxy (MBE) [6] and Scanning Tunneling Micro-

scope (STM) [7]. As of now, several one-dimensional systems have been realized

[8–10]. One-dimensional systems for electrons (fermions) were realized with quan-

tum wires consisting of carbon nanotubes [11–14] or semiconductor heterostructures

[15–17]. Some organic conductors have been shown to exhibit one-dimensional be-

havior [18], as well as the quantum spin-ladder material (C5H12N)2CuBr4 under high

magnetic field [19, 20]. One-dimensional trapping of particles in low-density bosonic

and fermionic systems have also been realized by the cold atom community [21–24].

To this day, an experimental realization of a high-density and strongly interact-

ing one-dimensional bosonic system is still lacking. Helium–4 is an excellent can-

didate to engineer such a system. Indeed, it was shown to undergo TLL crossover

theoretically using a quantum Monte Carlo (QMC) algorithm to simulate 4He atoms

confined into a cylindrical channel [25–27]. One of the key advantages of 4He is

that it remains liquid even at zero temperatures and so open the door to access the

very low energy scales necessary to probe the fascinating physics of TLL. Another

advantage of this element is the existence of the Helium–3 fermion isotope, which

would allow the investigation of the indistinguishability of bosons and fermions in

one dimension.

Previous investigations of helium confined at the nanometer scale have focused

on porous media such as in Vycor R⃝ [28], and more recently in the zeolites and other
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mesoporous media [29, 30]. These studies have shown a possible new thermody-

namic phase of 4He stabilized at low temperature [29] as well as Nuclear Magnetic

Resonance (NMR) signature of a one-dimensional crossover for 3He [30]. While

these advances are certainly considerable in the search for a strongly-interacting

one-dimensional neutral quantum liquid, their approaches require an extremely large

number of nanoscopic channels to gain enough signal for a bulk-probe detection tech-

nique.

Our experiment differs much in spirit from those cited above since the 4He atoms

are confined inside a single, nearly cylindrical pore. This lone pore, or channel, is

tailor-made from an amorphous Si3N4 membrane that can be fabricated with radii

ranging from R ∼ 1–100 nm [31, 32]. The main advantage of this approach is

that there is no ensemble averaging over pore distributions and/or potential defects

of the sample. Its main drawback, however, is that traditional bulk measurement

techniques, such as specific heat or NMR most likely cannot be performed in a single

nanopore containing only ∼104 to 105 helium atoms. Rather, the mass flow through

the nanopore is measured with a mass spectrometer, i.e. we perform a Direct Current

(DC) transport measurement, similar to measuring the conductance of an electrical

circuit. To the best of our knowledge, since the 50’s, the only other attempt to

measure DC flow through a single nanopore was performed subsequent to the first

results of our own group, by Prof. Taborek group, in very large aspect-ratio pores

fabricated by ion-track etching of polymer or mica foils [33]. The radius of these

pores is however one order of magnitude larger than our smallest pore and thus

further away from the one-dimensional confinement regime.
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In contrast, the measurements of superfluid flow through the smallest nanopore

presented in this thesis represent the first glimpse inside the mesoscopic regime. In-

deed, in our experiment, several intrinsic 4He length scales such as coherence length,

thermal length and de Broglie wavelength become comparable to the pore radius in

the temperature range between 1 K and the superfluid transition temperature (∼2.17

K). As a result, the experiment in the smallest nanopore was found to be strikingly

different from results obtained in larger pores, both for results from our own group

and from those previously reported in the literature [1, 32, 33]

This thesis is organized as following. We provide the necessary theoretical back-

ground in chapter 2, and in chapter 3, the experimental methods and apparatus used

to perform the measurements are described. Results are reported and analyzed in

chapter 4. Finally, the key original contributions of this thesis are summarized in

chapter 5, together with some outlooks for future experiments.
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CHAPTER 2

Theoretical background

In this chapter, we will first introduce a general terminology of phase transitions

so as to discuss the superfluid phase transition of bulk 4He in the last section. Next,

we will discuss the Fermi liquid model for correlated fermions and show how it dra-

matically fails in one dimension. We will then introduce the Tomonaga–Luttinger and

the Tomonaga–Luttinger liquid models which can successfully capture the physics of

both bosons and fermions in one dimension. Finally, we will discuss the properties

of the superfluid phase transition of 4He, of the utmost importance to chapter 4.

2.1 Phase transitions and criticality

The aim of this section is to provide the reader with basic knowledge of some

important concepts about phase transitions and critical phenomena that will be used

throughout this thesis. We will focus on transitions between two distinct phases, and

the importance of dimensionality in the context of phase transitions will be discussed.

One way to introduce phase transitions at the conceptual level is to consider the

Helmoltz free energy F of a system,

F (T, V,N) = E(S, V,N) − TS, (2.1)

8
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where E is the internal energy of the system which depends on the entropy S, the

volume V and the particle number N , and T is the temperature. At high1 fixed

temperature and volume, increasing the entropy of the system decreases its free

energy F and it thus favors disordered states. Depending on the system, there might

exist a finite critical temperature Tc under which the internal energy term dominates

and for which the entropy does not influence anymore the free energy. This flags a

phase transition from a disordered phase towards an ordered phase2 . Exactly at Tc,

there is no difference between the two phases. However any departure from Tc will

lead, in the ideal case, to the equilibrium of one or the other phase only [1]. This

critical temperature is determined by the microscopic interactions responsible for the

ordered phase and is not an universal quantity [2].

The phases on both sides of a transition are characterized by one or several

order parameters, φi. An order parameter is a variable which is usually equal to

zero in one phase and non-zero in the other phase. One example of such order

parameter is the difference between the density ρ and the specific gas density ρG, φ =

ρ− ρG, at the liquid-gas transition. Another example is the thermodynamic average

of the spontaneous magnetization φ ≃ ⟨m⃗⟩ in the paramagnetic-ferromagnetic phase

transition. An illustration of the magnetization as a function of temperature is

shown in Fig. 2–1. In certain cases, such as the ferromagnetic one, the symmetry

of the ordered phase is lower than that of the paramagnetic disordered phase. In

the paramagnetic phase, the system is invariant under uniform rotation of all spins.

1 High temperature here means higher than a phase transition temperature pro-
vided such a temperature exists. This will become clear later in the text.

2 Tc is referred as the critical transition temperature.
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However, in the ferromagnetic phase, this symmetry is broken in the system since

only two configurations are now preferred : most spins up or most spins down. This

is referred to as a spontaneous symmetry breaking phase transition.

0

T = Tc

ϕ

T

(A1)

Figure 2–1: Typical example of ferromagnetic phase transition at Tc. The magneti-
zation φ ≃ ⟨m⃗⟩ is the order parameter and it varies as a function of temperature. Its
value is zero above Tc, and finite below Tc. This is an example of higher-order phase
transition as the order parameter value increases continuously across the transition.

The thermodynamic properties of a system near a phase transition can be de-

scribed by one of its thermodynamical potentials near the transition. Here, we will

consider F as our potential. It is usually assumed that the free energy is an analytic

function of the temperature T and of the order parameters {φi} [3]. Phase transi-

tions for which ∂F
∂T

is discontinuous are referred to as first-order phase transitions,

such as the celebrated liquid-gas transition. Our focus throughout the thesis will

consist mainly on phase transitions for which ∂2F
∂T 2 is discontinuous or infinite while

∂F
∂T

is continuous. These transitions are referred to as higher-order or continuous

phase transitions [4]. The higher-order phase transitions can also be characterized

by a continuous behavior of the order parameter as a function of the temperature
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whereas the order parameter jumps from zero to a finite value at Tc for first-order

transitions.

An important characteristic of the ordered phase is the existence of long-range

correlations of its order parameter. For example, in the case of the ferromagnetic

phase, the correlation between the magnetization of two different regions has a finite

value when the distance between the two regions tends to infinity. This is called

long-range order and is in general true for any dimension larger than two. Mermin

and Wagner’s theorem predicts that in two-dimensional systems with short range

interactions and continuous symmetry, the correlations are algebraically suppressed

with distance by thermal fluctuations for any finite temperature (T > 0). This leads

to a quasi–long-range order and prevents a phase transition to an ordered state [5].

However, at T = 0, the two-dimensional case with continuous symmetry can still

exhibit a long-range order and therefore a phase transition to an ordered phase at

Tc = 0 is possible. In contrast, for the one-dimensional case, thermal fluctuations

lead to an exponential decay of the correlations as a function of distance. This holds

true even at T = 0 for classical models, and so it precludes any phase transition.

One-dimensional quantum systems will be covered further in section 2.3.

In a ferromagnet, the overall non-zero magnetization arises because spins sepa-

rated by large distances align in a coherent fashion below the transition temperature

Tc. The distance over which spin fluctuations are correlated is called the correlation

length ξ(T ), and it has the property to become infinite at the critical temperature,

i.e. ξ(T → Tc) → ∞. One striking characteristic of the correlation length, and of

many other thermodynamic functions such as the specific heat or the magnetic sus-

ceptibility, is its power law behavior controlled by critical exponents near Tc. Such
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critical exponents for a generic function f with a single order parameter φ, f(t, φ),

where t ≡ T −Tc

Tc
is the reduced temperature, is defined as

λ± ≡ lim
t→0

ln f(t)
ln(±t) , (2.2)

where f(t) ≡ f(t, φ = 0) and “+/−” stands for approaching the transition from

above/below Tc. We note that as the order parameter goes to zero, a similar definition

can be set for f(φ) ≡ f(t = 0, φ), yielding another critical exponent.

The different critical exponents are related via fundamental thermodynamic

inequalities, known as scaling relations. A possible route to retrieve the relations is

to invoke the scaling hypothesis [1]. This hypothesis assumes that the singular part

of the thermodynamic potential near the critical point is a generalized homogeneous

function, i.e. it satisfies

f(Latt, Laφφ) = Lf(t, φ), (2.3)

where L ∈ R∗
+ and at, aφ ∈ R. This property is extensible to Legendre transforms

or derivatives of f(t, φ) and thus all thermodynamic functions are generalized ho-

mogeneous functions if the scaling hypothesis holds [6]. The relations between at,

aφ and all the critical exponents can then be found using the property in Eq. (2.3).

Therefore, the values of only two critical exponents are required to determine all

others. Thanks to Renormalization Group (RG) theory, the scaling hypothesis has

been shown to be valid in the vicinity of Tc. Using RG theory, the critical exponents

can be estimated numerically, and are found in good agreement with their exper-

imental values [7]. A full description of RG theory goes beyond the scope of this

thesis, however we point the following reviews on the subject [6–8] to the interested

reader.
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Many examples of ferromagnetic phase transitions can be covered by a class

of interacting classical spins models, called the n-vector or O(n) model, and are

described by the following Hamiltonian,

H = −J
∑
⟨i,j⟩

S⃗i · S⃗j. (2.4)

Here, S⃗i are n-component spin vectors and J ∈ R sets the energy scale of the

interaction. In particular, the case with n = 2 is called the XY model3. This special

case has two-component order parameter and shares the same critical exponents as

superfluid 4He. It means that the critical exponents are independent of the micro-

scopic details of the system. Since they describe a universal behavior of very different

systems near their critical points, these critical exponents are referred to as universal

exponents and different systems are then said to belong to the same universality class

[8].

3 n = 1 corresponds to the Ising model and n = 3 to the Heisenberg model.
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2.2 Fermi liquid theory in three and two dimen-
sions

In 1957, Lev Davidovich Landau developed his famous Fermi liquid (FL) theory

[9], a model for interacting fermions which is asymptotically exact for excitations

at low energies and long-wavelengths. This model has been extremely successful

at describing electrons in most metals, as well as atoms in non-superfluid liquid
3He. The FL model however fails to describe any quantum phase which involves

symmetry breaking. Examples of such quantum phases are Wigner crystals and

Charged Density Waves (CDW) for which translational symmetry is broken [10,

11]. Quantum Hall effects and itinerant magnetism also lack time-reversal symmetry

[12]. Materials exhibiting superconductor or superfluid behavior break global gauge

symmetry. Furthermore, FL theory also breaks down in one-dimensional systems.

This current section will provide a brief introduction of the FL theory, and in next

section we will discuss the one-dimensional case.

The starting point of FL theory is a set of non-interacting fermions whose mo-

mentum distribution is given by Fermi statistics, i.e. a Fermi gas [13]. At zero

temperature (T = 0), all energy states are occupied up to an energy labeled as the

Fermi energy4 , EF. In terms of momentum, all states with momentum k below kF

(EF = ℏ2k2
F/2m), the Fermi momentum, are occupied5 and all states above kF are

empty6 . In momentum space the Fermi surface corresponds to a surface spanned

4 EF = µ(T = 0), where µ(T ) is the chemical potential in the Fermi distribution.
5 This set of states is called the Fermi sea.
6 From here and until section 2.4, ℏ = 1.
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by k-vectors for which E(k) = EF. A Fermi surface of free fermions is illustrated in

Fig. 2–2.

Figure 2–2: Fermi surfaces of free fermions in several dimensions, with quadratic
dispersion E(k) = k2/2m. The sphere corresponds to a 3D Fermi surface, with k
having 3 components. The solid line circle from the intersection of the sphere and
the kx-ky plane forms a 2D Fermi surface, with k having two components. The two
white dots located at ±kF on kx represent a 1D Fermi “surface”, where k has only
one component.

The momentum distribution of the Fermi gas is represented by the dashed line

shown in Fig. 2–3 (A). The departure from the Fermi gas model is obtained by

switching on fermion-fermion interactions adiabatically. These interactions modify

the free energy of the system and as a result, change the momentum distribution.

A simple approach to this complex many-body problem is to construct a mean-field

theory by averaging out the individual interactions into a term that renormalizes the

energy. Importantly, it can be shown that the momentum distribution of the free
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particles is only slightly modified near kF. The solid line in Fig. 2–3 (A) shows the

effect of such interactions. The excitations in the mean-field model can be described

by quasi-particles with well-defined momentum, charge and spin, within a one-to-one

correspondence with the free fermions in the adiabaticity limit [9, 14]. The energy-

momentum dispersion relation for these quasi-particle excitations is displayed in Fig.

2–3 (B).

kF

1

n
(k

)

k

(A1) Fermi gas
(no interactions)

Fermi liquid
(interactions)

kF

1

n
(k

)

k

(A2) Fermi gas
(no interactions)

Fermi liquid
(interactions)

2kF

ω
(q

)

q

(B)

Figure 2–3: (A1-A2) Momentum distributions of free fermions in the cases of a
Fermi gas (dashed line) and a Fermi liquid (solid line). (A1) For weak interactions,
the jump at kF is still close to one. (A2) For stronger interactions the jump at kF
becomes smaller. (B) Positive momentum part of fermion-hole excitation spectrum
of three, or two–dimensional free fermions. The shaded area is the excited states
continuum. The solid red line corresponds to fermion-hole excitations for which
khole = ±(kF + δ), with δ ≪ 1. Based on [15].
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The FL theory is thus a Fermi gas description of quasi-particles containing the

interactions. The thermodynamic properties are hence similar, with only parame-

ters such as the effective mass being renormalized by interactions. For this model to

hold, it is essential for the momentum of these quasi-particles to remain well-defined.

Landau has shown theoretically that it is indeed the case in three dimensions, pro-

vided their energy remains small compared to the Fermi energy, i.e in the low-energy

limit, and their momentum small, i.e. long-wavelength limit [9]. The fact that the

Fermi energy of most metals is on the order of 104 K explains why this model can

successfully be applied so broadly [16].

In two dimensions, there are not a large variety of examples where the FL picture

fails without explicit symmetry breaking [17]. The few breakdowns were only found

in theoretical lattice models. Anderson suggested that the strongly coupled 2D

Hubbard model could be an example of failure of the FL description [18, 19]. Some

other work reached a similar conclusion [20, 21]. However for the same model in the

low electron density limit (weak coupling), the FL picture was shown to be valid

[17, 22]. One reason put forth by Anderson for the breakdown of the FL model was

the similarities between the 2D Hubbard model at half-filling and one-dimensional

fermionic models. This now leads us to the next section where we discuss why the

FL picture fails in 1D and what other model could provide a good description for

the low-energy, long-wavelengths excitations of the system.
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2.3 One-dimensional systems

The one-dimensional case is truly special since it can be described by models

with exact analytical solutions, thanks to the relative simplicity brought by reducing

the number of degrees-of-freedom. The problem of correlated fermions or bosons in

1D was first tackled as a theoretical problem and remained theoretical for a long

time. The level of technical expertise required to craft one-dimensional systems

experimentally has only recently become available, and as of today it remains a

formidable challenge. These experimental aspects will be described in detail later in

chapter 3, and here onwards the focus will remain theoretical. We will first explain

why the FL theory breaks down in 1D due to the Peierls instability and then we will

describe the Tomonaga–Luttinger model as its replacement. Finally we will introduce

the Tomonaga–Luttinger liquid as an extension of the Tomonaga–Luttinger model to

account for more realistic systems.

Our emphasis is put on extracting the physics behind the model in the hope

to provide the reader with an intuitive understanding. While the mathematical

description of the model will be introduced, efforts have been purposely made to

focus on the concepts. The reader interested in the numerous mathematical details

can find them in the following reviews, [14–16].

2.3.1 Failure of Fermi liquid theory

FL theory fails in one-dimensional systems due to a phenomenon referred to

as Peierls instability. Peierls showed that a periodic potential of periodicity q in

momentum space applied to a free electron gas would open a gap at ±1
2q in the

electron bands modulated by this potential [11]. In the one-dimensional case, if the

potential is q = 2kF periodic, the gap opens exactly at the Fermi surface. This in
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turns prevents the excitation of low-energy quasi-particle bound states, a concept

at the core the FL model. Such a potential could be realized by electron-phonon

interactions as illustrated in Fig. 2–4 leading to CDW. Another justification for the

breakdown of the FL theory is that the CDW break translational symmetry and FL

being a mean-field theory, it cannot break any symmetry.

r

ρ(r)

a

Initially: half filled band (kF = π/2a)

r

ρ(r)

2a

After: double unit cell

-π/a π/a

EF

-kF kF

k

E(k)(A)

-π/a π/a

EF

-kF kF

k

E(k)(B)

Figure 2–4: (A) N atoms are homogeneously spread in a lattice of spacing a as
shown on the left panel. Each atom possesses a weakly bound electron which can
occupy two states. The density of states is then n = 1

2
2π
L

= π
Na

where L is the size
of the lattice. If the band is half-filled, i.e. n = 2kF

N
, then kF = π

2a
. (B) Attractive

interactions can distort the lattice as shown in the left panel. In this example the
lattice spacing is doubled. The right panel shows a band gap opening at π

2a
, at

the Fermi wavevector, kF. The energy cost of the lattice distortion is offset by the
reduced kinetic energy of the electrons at the edge of the band. The excitations close
to the Fermi surface are now gapped and the FL description fails. Source: Quantum
condensed matter lectures by Aashish Clark at McGill University.
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2.3.2 A replacement model : Tomonaga–Luttinger model

In one-dimensional systems, the Fermi surface reduces to only two points (±kF),

as displayed in Fig. 2–2. The energy dispersion relation of free fermions E(k) is

illustrated in Fig. 2–5 (A). The dispersion relation of the excitations ω(q) is shown

−kF kF

EF

E(k)(A1)

−kF kF

EF

E(k)(A2)

2kF

ω
(q

)

q

ωlow

ωhigh

(B)

Figure 2–5: (A1-A2) Energy dispersion relation for one-dimensional free fermions.
The fermions in the ground state lie on the solid line below EF. (A1) Example of
fermion-hole excitation with momentum q and energy ω(q), corresponding to the solid
red line (ωhigh) starting at q = 0 in (B). (A2) Example of fermion-hole excitation
with momentum q and energy ω(q), corresponding to the dashed blue line (ωlow)
in (B). (B) Positive momentum part of fermion-hole excitation spectrum of one-
dimensional free fermions. The shaded area represents the excited states continuum.
Note the absence of low-energy states away from q = 0 or q = 2kF. The solid red
lines (ωhigh) correspond to fermion-hole excitations for which khole = ±(kF + δ), with
δ ≪ 1. The dashed blue line (ωlow) corresponds to fermion-hole excitations for which
kfermion = kF + δ. Based on [23, 24].
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in Fig. 2–5 (B). The comparison of this excitation spectrum with the excitation

spectrum of the 3D FL displayed in Fig. 2–3 (B) provides an intuitive idea of why

FL theory cannot be accurate in 1D: at low-energy, there is no continuum of states

with momentum larger than zero to accommodate a quasi-particle description of the

excitations. Low energy excitations are only available close to momenta transfer

q = 0 and q = 2kF. Therefore, the low-energy excitations consist solely of left

(k ≃ −kF), or right movers (k ≃ +kF).

In 1950, Tomonaga introduced a model of interacting one-dimensional spinless

fermions which was based on the linearization of the energy dispersion relation near

−kF kF

EF

E(k)
(A)

2kF

ω
(q

)

q

ωlow

ωhigh

(B)

Figure 2–6: (A) Linearized energy dispersion relation for one-dimensional free
fermions. The possible states only lie on the solid line below EF. The dotted line
corresponds to unphysical negative energy states created by the linear approxima-
tion. The grey line represents the one-dimensional free fermions energy dispersion
relation. (B) Positive part of fermion-hole excitation spectrum based on the en-
ergy dispersion relation shown in (A). The shaded area represents the excited states
continuum. Note that the hashed area corresponds to excitations of the unphysical
negative energy states. The solid red lines (ωhigh) correspond to fermion-hole ex-
citations for which khole = ±(kF ∓ δ), with (δ ≪ 1). The dashed blue line (ωlow)
corresponds to fermion-hole excitations for which kfermion = kF + δ. Based on [24].
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the Fermi points [25]. The linearized dispersion relation can be seen in Fig. 2–6 (A).

While simplifying the mathematical treatment, this modified dispersion gives rise to

an unphysical infinite number of negative energy states, represented by the dotted

line in Fig. 2–6 (A). Tomonaga had originally introduced cutoffs to tackle this

problem. Unfortunately, these cutoffs prevented the derivation of an exact solution

of the model [14]. A similar model was developed independently by Luttinger a

decade later [26]. Unlike the Tomonaga model, the Luttinger model is based on the

whole range of momentum vectors k from ∞ to −∞. To acknowledge Tomonaga’s

earlier work, the model has been coined the Tomonaga–Luttinger model.

In the Tomonaga–Luttinger (TL) model, the linearized energy dispersion near

the Fermi points is given by

Er(k) = vF(rk − kF) + EF, (2.5)

where vF = ∂E(k)
∂k

⏐⏐⏐⏐
k=kF

is the Fermi velocity and r = ± is used to refer to the right

(r = +) and left (r = −) branches of the energy dispersion relation close to kF.

Therefore, the energy εr(q) of a fermion-hole pair excitation with momentum q is

given by7

εr(q) = Er(k + q) − Er(k) = rvFq. (2.6)

This dispersion relation is similar to that of a sound wave (i.e. a collective mode

excitation). The fact that it is independent of k provides another justification for

the failure of the quasi-particle description of the FL model as k is no longer a good

quantum number to label excited states [15].

7 ω(q) = εr(|q|) in Figs. 2–5 (B) and 2–6 (B).
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In order to build a model that includes interactions between fermion-hole pairs,

one has to consider scattering processes between the pairs. The simplest model only

accounts for scattering processes which conserve both energy and momentum of the

lattice. Those are limited to the four cases displayed in Fig. 2–7 : forward8 scattering

of particles on different branches (H2), forward scattering of two particles on the same

branch (H4), backscattering of particles on different branches (H1) and Umklapp pro-

cesses (H3). The H1 and H3 processes were not included in the TL model originally

as its focus was on the low momentum (q ≪ kF) and low-energy (εr(q) ≪ vFkF)

excitations. However they will be discussed briefly towards the end of this section.

−kF kF

(A) H1

−kF kF

(B) H2

−kF kF

(C) H3

−kF kF

(D) H4

Figure 2–7: Spinless scattering processes conserving energy and momentum of the
lattice. The processes are illustrated on a one-dimensional energy dispersion relation.
The dashed horizontal line corresponds to EF. (A) Backscattering of particles on
different branches. (B) Forward scattering of particles on different branches. (C)
Umklapp process. (D) Forward scattering of particles on the same branch, this
process also occur on the r = − branch but was only illustrated on the r = + side.
Based on [14].

8 Forward means that the momentum of each scattered particle does not change
sign upon interaction.
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The Hamiltonian of the TL model consists of three distinct terms

HT −L = H0 + H2 + H4, (2.7)

where H0 in Eq. (2.9) is the kinetic term and H2 in Eq. (2.10), H4 in Eq. (2.11) are

the two forward scattering terms.

In the spinless case, the Hamiltonian can be expressed in terms of a fermionic

density operator

ρr(q) =
∑

k

: c†
r,k+qcr,k := ρ†

r(−q), (2.8)

where cr,k is a destruction operator of a fermion with momentum k located on branch

r and : ... : denotes normal ordering of the operators.

Using Eq. (2.8), the terms of Eq. (2.7) reads

H0 = 2πvF

L

∑
r=±

∑
q>0

ρr(rq)ρr(−rq), (2.9)

H2 = 1
L

∑
q

g2ρ+(q)ρ−(−q), (2.10)

H4 = 1
2L

∑
q

g4 [ρ+(q)ρ+(−q) + ρ−(q)ρ−(−q)] . (2.11)

Here, the parameters g2 and g4 control the strength of the respective interactions,

and the H2 term gives rise to fermion-hole pairs excitations out of the Fermi sea. It

does not commute with H0 and is responsible for scattering of fermion-hole pairs at

arbitrarily small momentum. On the other hand, the H4 term commutes with the

kinetic term and, as a result, it does not create excitations above the ground state

but it lifts the degeneracies present in excited states [14, 16]. This is best expressed

by the renormalization of the collective mode’s velocity in Eq. (2.6) in terms of the
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coupling strength parameter g4,

vS = vF

(
1 + g4

πvF

)
. (2.12)

Remarkably, the Hamiltonian of the TL model can be solved exactly, i.e. it

can be written in a quadratic form of bosonic operators by means of a Bogoliubov

transformation. The mathematical details of the procedure can be found in Refs.

[14–16, 27]. The final form is not presented here as it does not add much physical

insights. Rather, we discuss another approach introduced by Haldane in which the

TL Hamiltonian employs a particle field bosonic operator Ψ(x) [24]. This operator

is defined by two canonical conjugate fields9 θN(x) and θJ(x),

Ψ†(x) ∼
√
∂xθN(x)eiθJ (x), (2.13)

where ∂xθN(x) corresponds to the q ≃ 0 part of density fluctuations at point x, and

∂xθJ(x) is proportional to the difference between the left and right movers [16, 28].

Within this prescription, the TL Hamiltonian is now given in terms of two fields,

HT −L = 1
2π

∫
dx [vN(∂xθN(x))2 + vJ(∂xθJ(x))2 ], (2.14)

or,

HT −L = vS

2π

∫
dx [K(∂xθN(x))2 + 1

K
(∂xθJ(x))2 ], (2.15)

where

vS =
√(

vF + g4

π

)2
−
(
g2

π

)2
= √

vNvJ , (2.16)

9 i.e., they obey the relation [θJ(x′), ∂xθN(x)] = iπδ(x′ − x).
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and

K =
√
πvF + g4 + g2

πvF + g4 − g2
, (2.17)

vN = vSK and vJ = vS

K
. (2.18)

Notably, this Hamiltonian can be diagonalized by a Bogoliubov transformation.

The formulation given in Eq. (2.14) is extremely concise and provides an explicit

description of the elementary low-energy excitations allowed in the TL model, i.e.

the collective density fluctuations (controlled by vS, the phonon modes), the charge

excitations (controlled by vN) and the current excitations (controlled by vJ) [24].

The integer numbers N and J are also both good quantum numbers. They represent

the symmetric and anti-symmetric parts in the left-right movers description : N is

proportional to N+ +N−, and J is proportional to N+ −N−. The physical interpre-

tation of N is the total electronic charge, whereas J is related to the average current

j = vJ
J
L

, where L is the size of the system. Those two quantities are conserved in the

TL model as the number of right (N+) and left (N−) movers are conserved quantities

because they commute with the Hamiltonian [14],

[N±,HT −L] = 0. (2.19)

This can also be viewed as the consequence of the symmetries of the H2 and

H4 scattering processes. The addition of the H1 and H3 scattering processes will no

longer conserve N and J because they break these symmetries.
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The Hamiltonian given in Eq. (2.15) is a different reformulation of Eq. (2.14)

that defines a dimensionless parameter K called “Luttinger parameter”10 in Eq.

(2.17). This parameter encompasses the physics of the interactions induced by g2

and g4. A value of K = 1 describes the non-interacting case. If K > 1, interactions

are repulsive and if K < 1, they are attractive. At T = 0, it can be shown that

K describes a crossover from a superfluid state (K = 0) to a state with solid order

(K → ∞) [28], as illustrated in Fig. 2–8. Importantly, K also controls the algebraic

decay11 properties of correlation functions which will be briefly discussed at the end

of this section.

0 1 ∞
K
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Superfluid order Solid order

Figure 2–8: Physical interpretation of the Luttinger parameter K at T = 0.

So far we have only considered the spinless case. In order to take the spin

into consideration, the operators have to be modified to avoid a violation of the

Pauli principle during fermionic scattering processes. An explicit description of these

operators goes beyond the scope of this thesis, and so we only provide here a short

10 This parameter is not defined uniquely across the literature. The definition
presented here is from [24] but some reviews use 1

K
as K [14–16].

11 i.e. the correlations decay as a power law of the distance. It is slower than
exponential decay.
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discussion. The Hamiltonian with spin can be diagonalized by way of a Bogoliubov

transformation and the interesting outcome is that its formulation then explicits

separation of spin and charge excitations. This spinful Hamiltonian is written as a

sum of two independent quadratic terms

HT −L = HT −L
ρ + HT −L

σ , (2.20)

respectively for the charge (CDW) and spin (SDW) collective excitations. These

collective excitations propagate at different velocities and give rise to the phenomenon

of spin-charge separation. The relations in Eqs. (2.16), (2.17) and (2.18) are still

valid, however the parameters g2 and g4 now have different values for spin and charge

excitations12 .

One way to illustrate this separation is to consider an anti-ferromagnetic spin

chain, as displayed in Fig. 2–9. Note that the spin-charge separation arises directly

from the conservations of the charge and spin of the right and left movers. This

would not hold if Umklapp processes (H3) were enabled [15, 29].

In addition to the fascinating spin-charge separation occurring in the TL model,

one important specificity is that it can be derived from both fermionic and bosonic

operators. Remarkably, the kinetic term H4 of the Hamiltonian yields the exact

same energy spectrum for both operators [24]. In the interacting case including H2

and H4, the bosonic representation of the Hamiltonian in Eq. (2.15) is more concise

whereas the fermionic operators are handier to compute the correlation functions [14].

However, the low-energy excitations can be described in terms of either operators [15].

12 This would typically be indicated by a sub or superscript σ and ρ respectively.
For simplicity, this notation will not be used in the remainder of this thesis.
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(B)

(C)

(D)

h

h
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s

s

Figure 2–9: (A) A one-dimensional anti-ferromagnetic spin chain (typically a 1D
Hubbard model with strong coupling and half-filling of the sites, i.e. each site con-
tains only one spin). (B) A spin is removed from a site creating a holon surrounded
by two aligned spins. (C) The holon is moved to the left thanks to the kinetic term
of the Hamiltonian. It is now surrounded by anti-aligned spins and creates a spinon,
a pair of adjacent aligned spins. (D) If the Hamiltonian contains spin exchange
processes, the spinon can move along the chain with a velocity not necessarily equal
to the holon’s, as illustrated in the figure. Based on Fig. 3–4 in Ref. [16].

This correspondence between boson and fermion systems is a unique characteristic

of one-dimensional system, a property that was actually already highlighted before

the TL model [30].

The physics of a one-dimensional system is exemplified by determining single

particle (spectral) or density-density correlation functions. The single-electron spec-

tral function A(q, ω)13 in the TL model is shown together with the spectral functions

13 The spectral function is a count of the excited states with energy ω that can be
created by the addition of an electron with momentum q to the system.
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of the Fermi gas and FL in Fig. 2–10. The spectral function of the TL model displays

power law decay with non-universal14 exponents greatly differing from FL theory. A

very important result from the TL model is that these power law exponents are all

controlled by the Luttinger parameter K.

Figure 2–10: Spectral function A(q, ω) = ∑
f

⏐⏐⏐⟨f |c†
q|0⟩

⏐⏐⏐2δ(Ef −E0 −ω) where f labels
the excited states above the ground state |0⟩. All figures are at T = 0. (A) The
spectral function of a free fermion is a Dirac delta function at the frequency ω = E(q).
(B) The spectral function of a Fermi liquid is a peak broader than a Dirac delta
function, exhibiting quasi-particle excitations at energy E(q) and momentum q (the
width is inversely proportional to the lifetime of the quasi-particle). (C) The spectral
function in the TL model with g2 ̸= 0 and g4 ̸= 0. One can clearly see the two peaks
rising on the ω > 0 quadrant. They correspond to spin and charge excitations and
are located at ω = vσq and ω = vρq. The behavior in the vicinity of these peaks
follows power laws dictated by non-universal exponents that are functions of K,
γ = 1

8(K +K−1 − 2). Based on [14, 31].

14 i.e. because they depend on the microscopic details of the system, they do not
belong to a universality class.
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The TL model introduced in this section is exactly solvable, but it has limita-

tions [27]. Those are inherent to the linear approximation of the energy distribution

at the Fermi points and the omission of scattering processes (H1 and H3). The lin-

earization prevents a description including cross-scattering of excitations themselves.

For example, the process H1 accounts for backscattering of particles by impurities

and is likely present in experimental systems. The Umklapp processes, described by

H3, play a role for large momentum excitations (q ≃ 4kF) only. In the next section,

we will focus on the generalization of the one-dimensional model beyond the linear

approximation near the Fermi surface.

2.3.3 Generalization to the Tomonaga–Luttinger liquid model

Intuitively, one may fear that a more realistic model including backscattering

and a non-linear energy dispersion close to the Fermi surface would not be solvable.

Haldane showed that, at low-energy, the TL structure was preserved even for a model

with a non-linear energy distribution near the Fermi surface [24]. This being said,

Haldane argued that such a model is indeed similar to a TL model with added

interactions between its low-energy excitations. The fundamental relations in Eq.

(2.18) between the velocities associated with the spin and charge excitations, and

the Luttinger parameters K and vS were shown by him to still hold. In the non-

linear regime, the values of K and vS are simply renormalized by the interactions

between the excitations. Haldane called this model the Tomonaga–Luttinger liquid

(TLL) model in analogy to the Fermi liquid which is a solvable model of the Fermi

gas in the presence of strong interactions. In general, in the limit q → 0 and ω → 0,

a one-dimensional many-body system of correlated particles featuring a branch of

gapless excitations will accurately be described by a renormalized TL model [14].
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Haldane’s conjecture is quite powerful as it implies that one only needs the

knowledge of K and vS at low-energy and to renormalize them in the case of higher

energies excitations. In principle, the parameters K and vS could be determined

experimentally either from spin susceptibility, specific heat or compressibility15 since

these quantities are simply renormalized by the interactions. In the case of 4He

flow though a nanopore, K could be determined from the non-universal exponents

of mass flow power laws dependences on pressure (Qm,1D ∼ ∆P β) and temperature

(Qm,1D ∼ T γ). Another possible route would be to directly probe the correlation

functions and extract K from fits, as is done in a QMC simulation [28].

15 i.e. the rate of change of density with respect to the chemical potential.
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2.4 Phase transitions in liquid 4He

In order to probe TLL behavior in a real and tangible liquid, helium appears to

be the only suitable candidate. Indeed, all other elements freeze at the temperatures

required for an experimental realization of a TLL, which is on the order of the hun-

dreds of mK. In contrast, helium does not solidify at atmospheric pressure due to

the zero-point motion of its constituent atoms. Moreover, below a critical transition

temperature, both isotopes 3He and 4He undergo a phase transition from a normal

fluid phase into a quantum ordered phase called a superfluid. The hallmark of this

quantum phase is a vanishing viscosity, thereby enabling frictionless flow. This prop-

erty is a valuable asset for measuring flows in increasingly confined geometries, and

towards the one-dimensional limit. In addition, experiments in helium could also be

realized with either 4He or 3He which follow bosonic and fermionic statistics, respec-

tively. This could be important to demonstrate the indistinguishability of bosons

and fermions in one-dimensional systems.

The critical superfluid transition temperature of 4He, Tλ = 2.17 K at saturated

vapor pressure (SVP), is much larger than that of 3He, Tc,3He = 2.7 mK. It justifies

our initial focus on the bosonic species. The extraordinarily high price of 3He, rising

to several thousands of US dollars for a liter of gas, is also another motivation to

first use 4He as a benchmark for flow experiments in confined geometries. In the

following subsections, the main characteristics of the superfluid phase of 4He will be

introduced, and its relevant flow properties described in details. A special focus will

be made on the dissipation mechanisms occuring in a superfluid.
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2.4.1 Superfluidity

The liquid phase of 4He at SVP was first observed on July 10th 1908 by Kamerlingh–

Onnes and co-workers in Leiden. On that day, they also crossed the transition tem-

perature to the superfluid phase but did not notice the difference with the normal

liquid phase [32, 33]. The transition to the superfluid phase was reproduced twenty

years later in the same laboratory by Keesom and Wolfke16 . They proposed the

names Helium I and Helium II for the liquids above and below the transition tem-

perature, respectively [34]. The phase diagram of 4He is shown in Fig. 2–11.

In 1932, Keesom and Clusius measured the specific heat of liquid 4He and ob-

served that it displays a discontinuity at the transition temperature in the shape of

the greek letter λ [36]. They named it the “λ transition”. In 1938, the ability of

Helium II to flow without apparent viscosity was discovered conjointly by Kapitza

[37] and Allen and Misener [38].

The first theoretical models of 4He superfluidity were developed by London,

Tisza and Landau shortly after its experimental discovery. London proposed to

describe superfluidity as a Bose–Einstein Condensate (BEC), whereas Landau and

Tisza independently proposed a model based on the hydrodynamic properties of

superfluid helium, the well known two-fluid model [39–42]. The two approaches

were first perceived as contradictory but eventually were reconciled by Bogolyubov’s

theory of weakly interacting Bose gas and in the Feynman path integral formulation

[43, 44]. Anderson, building on the works of Feynman, Onsager and Penrose firmly

established the concept of macroscopic wave function with a well-defined coherent

16 They mention that Kamerlingh–Onnes had already noticed a strange behavior
in the liquid density near 2.17 K, i.e. near Tλ.
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Figure 2–11: Pressure-temperature phase diagram of bulk 4He. The transition be-
tween the liquid phase (He I) and the superfluid phase (He II) occurs at Tλ near
2.17 K at SVP. A unique property of 4He is the absence of a solid phase at pressures
below ∼ 25 atm. Based on [35].

phase. This formalism successfully describes the superfluid phase and the evolution

of its macroscopic quantities [44–47].

The 4He superfluid is thus characterized by a macroscopic complex wave function

Ψ(r, t), dependent on position r and time t. This wave function is a coarse grained

average of the single particle field operator ψ(r, t) over small elements of volume

containing nevertheless a macroscopic number of particles [46]

⟨ψ(r, t)⟩ = Ψ(r, t) = Ψ0(r, t)eiΦ(r,t), (2.21)
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where Φ(r, t) is the coherent phase and the amplitude Ψ0(r, t) is related to the su-

perfluid fraction of the total density ρ and the mass of an 4He atom m4 through

Ψ†
0(r, t)Ψ0(r, t) = ρs/m4. In the bulk of a superfluid, it is assumed that both Ψ0(r, t)

and Φ(r, t) are slowly varying in space without sharp discontinuities17, i.e. the strong

correlations between bosons in a dense system as well as the amplitude and phase

fluctuations due to atomic motions are smoothed out by the coarse grained aver-

age [47]. The order parameters at the superfluid phase transition are the superfluid

density ρs, and the phase Φ. The symmetry which is broken18 below the transition

temperature is the choice of the phase Φ.

Anderson has shown that the number of particles N and the phase Φ of the

superfluid obey to canonical relations analogous to the position and momentum of

a single particle [46]. The commutation relation of Φ with the Hamiltonian of the

system H yields an equation of motion for the phase,

ℏ
∂Φ
∂t

= [H,Φ] = −∂H
∂N

. (2.22)

Upon taking the mean value of Eq. (2.22), H becomes equal to the energy E of

the superfluid and ∂E
∂N

can be identified as the chemical potential µ,

ℏ
∂Φ
∂t

= −µ. (2.23)

17 In the remainder of the thesis, the explicit position and time dependence of
Φ(r, t) will be dropped.

18 For historical reasons, it is referred to as “broken gauge symmetry” although it
is related to the phase [47].
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This relation is extremely important as it links the quantum mechanical phase

of a superfluid to its macroscopic properties. According to Eq. (2.23), when there

exists a chemical potential difference across two parts of a superfluid, their respective

phase difference must vary in time. This can be interpreted as an acceleration of the

superfluid component by taking the gradient on both sides of Eq. (2.23),

∂(ℏ∇⃗Φ)
∂t

= −∇⃗µ = F⃗ , (2.24)

where F⃗ is a force acting on the particles of the superfluid. Eq. (2.24) is similar to

Euler’s equation for inviscid flow, where ℏ∇⃗Φ here corresponds to a momentum. It

states that the superfluid may flow without friction by way of a chemical potential

difference19 . The velocity of the superfluid particles is then simply defined as

v⃗s = ℏ
m4

∇⃗Φ. (2.25)

We shall come back to Eq. (2.25) in section 2.4.3 when considering dissipations in

superfluid flow.

Landau and Tisza assumed that below the superfluid transition temperature

Tλ, the Helium II phase consists of normal and superfluid components, independent

from each other and with distinct physical properties [40, 41]. Mathematically, this

is expressed as

ρ = ρn + ρs, (2.26)

19 For example, the chemical potential difference can arise from a pressure or tem-
perature difference across the superfluid, or a combination of both.
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where ρ stands for the total density. The superfluid component ρs carries no entropy

and is inviscid, whereas the normal component ρn solely carries the viscosity and

entropy. The temperature dependence for the two densities is shown in Fig. 2–12.
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Figure 2–12: Illustration of the two-fluid model densities. As temperature decreases
below Tλ, the superfluid part of Helium II, ρs, becomes more and more dominant
over the normal part, ρn, due to the decrease in numbers of thermal excitations (cf.
section 2.4.2). Below 1 K, liquid 4He consists for the most part of the Helium II
phase and ρ = ρs. Close to Tλ, the superfluid density scales as (1 − T

Tλ
)−ν , with

ν ≃ 0.67 [48]. Data source: [49].
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Straightforward connexion of the superfluid density ρs to the BEC aspect of the

superfluidity, i.e. the number of atoms forming the condensate, is tempting at first

but inaccurate. Neutron scattering experiments could directly measure the fraction

of atoms inside the BEC and it was found to be far from unity [50, 51]. This fraction

was first estimated theoretically to 8% by Penrose and Onsager [45]. However, later

experiments found values closer to 10% [51]. The fraction of atoms in the condensate

is therefore not equal to the fraction of the superfluid density ρs/ρ. Rather, the

superfluid density “stands for the inertia of the superfluid fraction” [47]. It consists

of atoms in the condensate as well as atoms excited out of the condensate by inter-

atomic interactions20 [52]. Oscillating disc experiments have been used to define ρs,

as they are sensitive to the inertial decoupling of the superfluid part [53]. Finally,

when the fluid is set into laminar motion, its normal part moves independently from

its superfluid part and the total current density J⃗tot is given by

J⃗tot = J⃗n + J⃗s = ρnv⃗n + ρsv⃗s, (2.27)

where v⃗n obeys the Navier-Stokes equation for viscous flow and v⃗s is described by

Eq. (2.25).

2.4.2 Superfluid elementary excitations

At low temperatures, thermal excitations above the superfluid ground state are

scarce and can be modeled as a non-interacting gas of quasi-particles. The energy

dispersion relation for the excitations of 4He, measured by neutron scattering is illus-

trated in Fig. 2–13. As can be seen on the figure, there are two types of excitations:

20 In the BEC picture, the normal fluid consists of thermal excitations above the
ground state [52].
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phonons and rotons. Below 0.8 K, phonons are the dominant excitations whereas

rotons dominate above that temperature [48]. The two-fluid model is solely based on

phonons and rotons as possible dissipations from the superfluid state. Section 2.4.3

will introduce other dissipation mechanisms which occur when the superfluid is set

into motion.

0.0 0.5 1.0 1.5 2.0
pex/h̄ (Å−1)

0

4
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12

ε e
x
/k

B
(K

)

vL = min{εexpex}

Phonons

Rotons

(A1)

Figure 2–13: Energy dispersion relation for excitations in 4He. The data originates
from neutron scattering experiments at 1.1 K and SVP. There are two main branches.
The phonon branch (circles), where the wavelength associated with the momentum
is large compared to the interatomic distances (small momenta), features a linear
dispersion relation. The roton branch (squares) is located to the local minimum of the
dispersion relation, corresponding to wavelengths comparable with the interatomic
distances [48]. The orange slope correspond to the Landau critical velocity of 58 m/s
and the dashed line is a 8th degree polynomial fit of the data. Data source: [54].
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2.4.3 Dissipation mechanisms in superfluid flow

2.4.3.1 Landau critical velocity

The velocity at which superfluid 4He can flow has an upper bound, for which the

flow can no longer be accelerated. Above a certain velocity, any additional energy will

lead to the creation of an excitation, flagging onset of dissipation. Within the two-

fluid model, Landau has determined this velocity by invoking energy and momentum

conservation. The creation of an excitation reduces the kinetic energy of a superfluid

with mass M initially flowing at a velocity vs. Therefore, the energy of the excitation

is equal to

εex = 1
2M(v2

s − v′2
s ) = 1

2M(vs − v′
s)(vs + v′

s) ≃ M(vs − v′
s)vs, (2.28)

where v′
s is the velocity after the excitation is created. The last step is possible if one

assumes that the energy of a single excitation is very small compared to the kinetic

energy of the superfluid, i.e. εex ≪ 1
2Mv2

s . The momentum conservation dictates

that

Mvs = pex +Mv′
s, (2.29)

and so, combining Eqs. (2.28) and (2.29) yields

vs = εex

pex

. (2.30)

Therefore, the minimum critical velocity vc that the superfluid must reach before

creating an excitation is given by

vc = min{εex

pex

}, (2.31)

and within the two-fluid model, this velocity is called the Landau critical velocity.

It corresponds to the largest slope that can be sketched on the energy dispersion
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relation shown in Fig. 2–13 before meeting the spectrum. This slope stretches from

the origin to the roton minimum, yielding a numerical value of vc = vc,L = 58 m/s.

However, years of experiments have shown that superfluid 4He exhibits a critical

velocity well below vc,L [55]. When Landau had calculated this velocity, he had

considered that phonons and rotons are the lowest energy excitations available for

dissipation in the flow. Since then, vortices were discovered as better candidates

for dissipation mechanisms [56]. Nevertheless, Landau’s approach to determine the

critical velocity of the superfluid remains valid at the conceptual level and can equally

be applied to vortices. We shall now introduce the rotation of Helium II and vortices

as well as the critical velocity associated to their creation.

2.4.3.2 Vortices in 4He superfluid

An important result from oscillating discs experiments in Helium II is that the

superfluid part cannot be set into rotation by the drag of the disc [57]. This property

is predicted by the definition of the velocity’s potential in Eq. (2.25):

∇⃗ × v⃗s = ∇⃗ × ∇⃗Φ ≡ 0⃗. (2.32)

This expression states that the superfluid part of Helium II is irrotational. A

mathematical equivalent to Eq. (2.32) can be found by applying Stokes’ theorem to

the circulation κ of vs along a closed contour ∂A inside the superfluid part,

κ ≡
∮

∂A
v⃗s · d⃗l =

∫∫
A

∇⃗ × v⃗s · da⃗ = 0, (2.33)

where A is a surface spanning the contour ∂A. From Eq. (2.33) we see that the

circulation of the superfluid velocity vs along a closed loop should always remain zero.

This property has been challenged by experiments consisting of a rotating bucket

filled with liquid 4He. At large rotation speeds Ω, the same meniscus was visible
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at the top surface of both Helium I and Helium II [58, 59]. Additional experiments

showed that the superfluid part in the Helium II was still present21 despite the

meniscus. Furthermore, the rotation velocity was too small to consider effects from

Landau’s critical velocity. This meant that the circulation along a circle of radius

almost equal to the bucket’s radius Rb and concentric with the bucket’s axis had to

be close to 2πR2
bΩ in both cases. As this quantity is non-zero, the expression in Eq.

(2.33) was thus directly contradicted by experiments.

Theory and experiment could nevertheless be reconciled. The fact that the

superfluid phase is still present in rotating Helium II means that the macroscopic

wave function Ψ(r, t) should remain non zero and single valued [44, 46]. However,

the phase Φ can change by 2πn, with n ∈ Z, without affecting the wave function.

Combining this observation with Eq. (2.25) and Eq. (2.33) yields

κ =
∮
v⃗s · d⃗l = ℏ

m4

∮
∇⃗Φ · d⃗l = ℏ

m4
∆Φ = ±2πℏ

m4
n = ±nκ0, (2.34)

where κ0 = h/m4 is the quantum of circulation. Thus, the circulation around a closed

loop inside the superfluid is not necessarily zero and Eq. (2.34) states that quantized

excitations exist inside rotating Helium II. Physically, this can be interpreted as

portions of Helium II leaving the superfluid state and acquiring a circulation while

being surrounded by a superfluid at rest. These portions are called line vortices and

are defined by a velocity field vv in the following way,

κ =
∮
v⃗v · d⃗l = 2πrvv. (2.35)

21 This was done by observing the “fountain effect”, the ability of superfluid to flow
through tiny pores [58].
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For the sake of simplicity, the circulation is taken here along a circle around a

straight line vortex. Therefore,

vv(r) = κ

2πr ∼ 1
r
. (2.36)

and it guarantees that vv vanishes away from the line vortex, consistent with the

irrotationality of the superfluid. For vv to not become infinite, the expression in Eq.

(2.36) becomes invalid below some distance a0, comparable with interatomic length

scales. The core of the line vortex is assumed to be close to a0, which is on the order

of a few tenths of nanometers [56]. The line vortex stretches until the boundaries of

the superfluid, i.e. the walls or the surface of Helium II. In the case of a linear flow,

the ends of the vortex can connect together, thereby forming a ring vortex which

axis is parallel to the flow. Alternatively, a line vortex can also form in a channel

flow. In such a case, its ends are pinned to the walls of the channel. Schematic

representations of a line vortex and a ring vortex inside a cylindrical channel are

displayed in Fig. 2–14.

It can be shown that a vortex which possesses n quanta of circulation κ0 is

thermodynamically unstable and will likely separate into n vortices carrying a single

quantum of circulation each [48, 53]. This is important to explain the appearance

of a meniscus in rotating Helium II bucket experiment [56]. If the circulation would

consist only of a few vortices carrying many quantum of circulation, then the tan-

gential velocity as a function of the radial distance from the center of the bucket

would experience abrupt discontinuous jumps. In the case of Helium I, the tangen-

tial velocity of the liquid obeys the linear relation relation v(r) = Ωr. Therefore,

the solution to approach this linear relation as closely as possible is to increase the
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Figure 2–14: Two vortex types that can be nucleated in a cylindrical channel of
radius R by a superfluid flow. The flow is coming out of the page. (A) A line vortex
located a distance x from the center of the channel. The line vortex begins and ends
on the boundaries of the channel. (B) A ring vortex of radius r centered around the
axis of the channel. The direction of the circulation is indicated around the cores of
the vortices. Source: [60].

number of quantized vortices. In order to do so without changing the total circula-

tion within the bucket, the solution is to break the vortices into a large number of

vortices carrying one quantum of circulation κ0.

2.4.3.3 Feynman critical velocity

Because the core of the vortex is not constituted of superfluid, the order pa-

rameter (i.e. ρs) has to vanish there. This means that the vortices cores are nodes

of the macroscopic wave function and this is another hint that some kind of exci-

tation exists [56]. Although there is now a consensus that vortices are elementary

excitations of superfluid helium, the exact microscopic dynamics which govern the

nucleation of these topological defects remains an open problem in condensed matter

physics. The Landau criterion for the maximal velocity at which the superfluid can

flow before nucleating vortices in Eq. (2.31) is still valid. This new critical velocity

was computed by Feynman in the case of ring vortex of radius r,
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vc,F ≃ κ0

4πr ln 2r
a0
, (2.37)

and it is valid as long as r ≫ a0. If a superflow is to take place within a restricted

geometry, such as a cylindrical channel of radius R, the largest ring vortices that can

be created in the channel will have a size limited by the channel’s radius, R = max(r).

Thus, the critical velocity will be scaling as ln(2R)/2R, i.e. it should increase as the

channel gets smaller as illustrated in Fig. 2–15.
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Figure 2–15: Feynman critical velocity from Eq. (2.37) with a0 = 0.345 nm.
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In chapter 4, we will return to this topic as the experimental results presented

in this thesis will be compared with Feynman’s theoretical prediction Eq. (2.37)

for the critical velocity. Newer theoretical predictions for the critical velocities in

channel and orifice flows, as well as phase slippage dissipation mechanisms, will also

be discussed [60].
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CHAPTER 3

Materials and methods

In this chapter, we will introduce the experimental techniques used to acquire

the data presented in chapter 4. We will first describe the two refrigerators used

to cool down the nanopores below the 4He superfluid transition temperature. The

newer refrigerator will be described, although no data presented in this thesis were

acquired with it. Nevertheless, future successors of this project may benefit from a

description of this newer experimental setup. We will then present the nanopores’

fabrication and mounting procedure within the experimental cell. Finally, we will

discuss the measurement scheme and instrumentation of the flow experiments.

51
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3.1 Cryogenics and thermometry

Reaching temperatures in the mK range is usually done in two main steps. The

first step is to reach the temperature of liquid 4He (≃4 K). A temperature of ≃4

K is achieved either by means of a compressor and a Stirling cycle1 , which extracts

the heat, or by providing a liquid 4He bath. The two designs are referred to as dry

and wet, respectively. A wet refrigerator requires weekly transfers of about 100 L

of liquid 4He, which becomes increasingly costly as the world’s reserves of 4He are

getting scarcer [2]. Coupling the exhaust of a wet refrigerator to a liquefier is an

efficient way to recycle the 4He. A dry refrigerator takes longer to cool its inner

components but does not require weekly liquid 4He transfers after reaching the base

temperature. The drawback is its consumption of large amounts of electrical power,

thus making it sensitive to power shutdowns.

Once a temperature close to 4 K is achieved, there are few different routes to

reach temperatures below 1 K. We will describe the two that are relevant to our

refrigerators in the following sections.

The experimental setup used in previous works [3, 4] was mounted inside a

Janis R⃝ 3He wet refrigerator. The data presented in chapter 4 were also acquired us-

ing this experimental setup. However, the prospect of achieving stable temperatures

down to a few mK motivated the design and construction of a second experimen-

tal setup on a BlueFors Cryogenics c⃝ dilution dry refrigerator. The two distinct

experimental setups will be described in sections 3.1.1 and 3.1.2, respectively.

1 called a pulse tube [1].
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3.1.1 3He wet refrigerator

The 3He wet refrigerator consists of two main parts: a dewar, which contains

the liquid 4He bath, and an insert enclosed in a vacuum chamber, which reaches

the lowest temperatures. The insert, shown in Fig. 3–1, thermalizes towards 4 K

thanks to 4He gas inside the vacuum chamber which thermally connects it to the

liquid 4He bath. Once close to 20 K, the insert is thermally isolated from the 4He

bath by pumping the 4He gas from the vacuum chamber. The insert reaches 4 K

by filling the 1 K pot with liquid 4He. Temperatures below 1 K are then obtained

in two steps. The first step is to fill the 1 K pot with some liquid 4He from the

dewar’s bath and pump on it with a utility pump to create evaporative cooling,

thereby reaching temperatures on the order of 1.2 K. As soon as the temperature

of the 1 K pot reaches below the 3He liquefaction transition, ≃3.2 K, the 3He gas

in the central tube shown in Fig. 3–1 will start to condense and drop into the 3He

pot. Once all available 3He gas is liquefied, the second step consists in activating the

charcoal sorption pump by cooling it using liquid 4He from the dewar’s bath. This

will once again create evaporative cooling, and reach temperatures on the order of

a few hundred mK. The 3He pot is therefore the coldest part of this refrigerator,

which is why the experimental cell was mounted on a coin silver2 rod firmly attached

to it. The lowest temperature can be maintained as long as liquid 3He remains,

which normally lasts between 2 and 4 days with this refrigerator. However, the

capillary circuit carrying 4He to our experimental cell created heat leaks and the

lowest temperature could only be maintained for 5 to 6 hours (see section 3.1.1.3).

2 Coin silver consists of 10% copper and 90 % silver and has high thermal conduc-
tivity at low temperature.
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Figure 3–1: Diagram of the main 3He refrigerator’s insert components. On the right
side is a photograph of the insert matching the schematics on the left. In black: the
vacuum chamber immersed in the 4He bath of the external dewar. In green: charcoal
sorption pump parts. The central tube leads to a 3He gas storage vessel on top of the
external dewar (not visible). In blue: the central tube connects to the 3He pot. In
red: the liquid 4He inlet to the 1 K pot from the 4He bath, passing through the needle
valve. In green: on the opposite side is a pumping line for evaporative cooling. In
grey: silver tail, the coldest part of the insert and the volume dedicated for samples
and the experimental cell. The diagram is a modified version of the drawings by the
manufacturer, Janis Research Company, LLC. Based on [4].
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3.1.1.1 Experimental cell

The experimental cell consists of two coin silver flanges, as illustrated in Fig.

3–2. The two flanges both bear a through-hole along their axis, serving as inlet (I)

and outlet (O) for the 4He. The cell can be closed hermetically with an o-ring (R)

which is hand-crafted from a 1 mm diameter indium wire3 . Brass screws (6-32) are

used to firmly press and hold the two flanges tightly together. The through-hole of

the bottom part of the cell on Fig. 3–2 is encircled by a groove in which another

hand-crafted indium o-ring is used to seal the surrounding of the Silicon Nitride

(Si3N4) membrane. The membrane is pressed against the o-ring (R) with an Invar R⃝

42 (42% nickel) plate (P) and brass screws4 (0-80). One side of these screws have

been cut with a diamond saw to prevent air trapping at the bottom of the screws’

pit. The inlet and outlet of the cell are connected to the experimental circuit by

means of brass adapters. The capillaries used to transport the 4He in and out of the

cell are silver braised onto the brass adapters. The adapters then are firmly attached

to the flanges of the cell with brass screws (2-56) and indium o-rings (R) are once

more used for sealing.

3.1.1.2 Measurement and control of the temperature

A precise measurement of the temperature inside the cell is key. Indeed, a reli-

able control of the temperature cannot be achieved without it. The temperature is

3 In the initial design, the seal was a copper ring against a knife-edge, but the
larger thermal contraction of copper tended to open leaks at low temperatures.

4 In the new design described in section 3.1.2, the 0-80 brass screws are replaced
by stainless steel 316 ones. This is to avoid that the nickel contained in brass screws,
due to its high SVP, constitutes a source of impurities when pumping on the cell.
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Figure 3–2: Computer-Aided design (CAD) drawing of the coin silver experimental
cell which was mounted inside the 3He refrigerator. The inlet/source (I) and out-
let/drain (O) reservoirs are connected to the top and bottom parts of the cell, and
sealed with indium o-rings (R). The silicon substrate, holding the Si3N4 membrane
(M), is itself sealed to the bottom part of the cell with an indium o-ring (R) and a
push-on Invar R⃝ plate (P). The initial design from Ref. [4] employed a copper o-ring
to seal the bottom and top parts. However, due to the thermal expansion of copper
compared to coin silver, the seal often did not work. An indium o-ring (R) was there-
fore used instead. The diameter of the flanges is 1-1/8 inch. The available volume
of the main chamber (subtracting the volume of the screws and of the Invar R⃝ plate)
is ≃0.70 cm3. Art credits: Richard Talbot.

regulated using Joule heating to warm the experimental cell above the base temper-

ature provided by the refrigerator. A target temperature is reached by a PID loop

which provides the adequate amount of current I to a resistive heater firmly screwed

on the experimental cell. The heater thus brings a controlled heat load of power
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Ph = RheaterI
2 to the experimental cell. The heater consists of a resistive 0.1 mm

diameter manganin wire.

The thermometer used to monitor the temperature of the experimental cell is a

Ruthenium oxide (RuOx) resistance chip. It was installed by Michel Savard [4]. The

resistance chip was placed inside a copper bobbin, as shown in Fig. 3–3 and covered

with Stycast R⃝ 2850. The leads connecting to the thermometer were tightly wound

around the bobbin’s shaft and glued in place with Stycast R⃝ 2850 to ensure their good

thermalization. The bobbin was fixed onto the silver cell with a 4-40 stainless steel

screw. The resistance of the thermometer was measured with a resistance bridge, a

LakeShore R⃝ 340, in a 4-point measurement scheme to minimize the importance of the

leads’ resistance. The resistance of the thermometer was related to temperature using

a Chebychev polynomial fitting on a National Institute of Standard and Technology

(NIST) traceable calibration curve provided by LakeShore R⃝.

3.1.1.3 Heat exchangers

When the refrigerator is cold, bringing 4He to the experimental cell is not a

straightforward task. This is because, at low temperature, superfluid 4He is amongst

the best thermal conductors5 known to humankind. Hence, a capillary filled with it

creates heat leakage to the experimental cell inside the refrigerator. This heat leakage

eventually prevents the refrigerator to reach its lowest operating temperatures and

often alters temperature stability. A look at Eq. (A.1) suggests that an efficient

way to decrease heat leak is to reduce the cross section, and increase the length of

the capillaries transporting 4He to the experimental cell. Unfortunately, reducing the

5 The thermal conductivity of superfluid 4He at Tλ is one order of magnitude above
that of silver’s maximal thermal conductivity at T = 10 K [6].
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(A) (B)

Figure 3–3: (A) Thermometer inside an Oxygen-free High Conductivity (OFHC)
copper piece milled in a bobbin shape. The electrical leads can be wound around the
post thereby ensuring that the whole unit is well thermalized. The RuOx resistive
element is (hidden from view) inside the bobbin within a protective canister. (B)
Exploded view of a heat exchanger where the bottom part is filled with pressure-
sintered silver powder. The two posts are silver-brazed to the cap of the small
container and capillaries are soldered to them. The cap is then closed and sealed
with Stycast R⃝ 2850. Superfluid helium entering from one capillary into the heat
exchanger will rapidly fill the silver powder crevices and be in thermal contact with
the whole unit over a large area. Each silver sinter is filled with ∼1 g of silver powder
and has a surface area of typically 1 to 3 m2 [5]. Source: [4].

cross section of the capillaries will also increase the pumping time of the experimental

cell for up to several days. This creates issues for evacuating the experimental cell

and reducing the impurities within a reasonable timeframe.

Another route to minimize heat leaks, according to Eq. (A.1), is to reduce

the thermal gradient across the circuit where the thermal conductivity of 4He is

highest. To achieve this, the capillary coming inside the refrigerator is connected to

a series of heat exchangers, as shown in Fig. 3–3, which will efficiently precool the
4He in stages before reaching the cell. The heat exchangers are made out of copper
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cylinders with a blind hole filled with sintered silver powder6 . The granularity

of the sinter tremendously increases the surface area and so the thermal exchange

between the 4He inside the capillary circuit and the part of the refrigerator holding

the exchanger. Meanwhile the high thermal conductivity of silver helps to achieve

a high heat transfer rate. In this design implemented by Michel Savard [4], a first

heat exchanger is located near the 1 K pot. A second one is located between the 3He

pot and the cell, on the silver tail. Unfortunately, the 4He inside the capillaries did

create a heat leak from the 1 K pot to the colder 3He pot and thus prevented the

refrigerator to cool down to its normal base temperature of 300 mK. The lowest stable

temperature that could be achieved was 0.87 K and it could only be maintained for

5 to 6 hours before the 3He liquid had completely boiled off.

6 Sintering is the process of forming a solid mass of material by compacting a
powder and/or heating it below its temperature of liquefaction [5, 7].



3.1. CRYOGENICS AND THERMOMETRY 60

3.1.2 Dilution dry refrigerator

The functional principle of a dry dilution refrigerator is based on some interesting

properties of the 3He and 4He quantum liquids when mixed together. The diluted

fraction of 3He inside a 3He – 4He mixture does not phase separate from the 4He

fraction, even as T → 0, but indeed remains soluble into 4He. This remarkable fact

is due to the smaller mass and hence larger zero-point motion of the 3He atoms. As a

result, they are more likely to “bind” with 4He atoms than with other 3He atoms. The

diluted fraction of 3He can represent up to 6.6% of the total number of atoms inside

the mixture [6]. When 3He atoms dilute themselves from a pure liquid of 3He inside

the 3He – 4He mixture, there is a net enthalpy difference which thermodynamically

contributes to carry heat away from the pure liquid 3He. This is the crucial process

which allows cooling to occur inside a dilution refrigerator. In a dry refrigerator,

the mixture is liquefied and cooled by the combined action of a compressor and a

pulse tube, which acts at the 4 K plate level shown in Fig. 3–4. Once the liquefied

mixture fills the circuit below the 4 K plate, a mechanical pump located outside the

refrigerator is activated to lower the pressure inside the still. Because the saturated

vapor pressure of 3He is larger than that of 4He, preferentially the 3He atoms will

leave the mixture, will be then collected at the pump exhaust and re-liquefied by the

pulse tube prior to being integrated back to the mixing chamber. The 3He is further

cooled on its way down to the mixing chamber by way of heat exchange with the

still pot and the cold 3He rich mixture going from the mixing chamber up to the

still. Once the liquid 3He reaches the mixing chamber, approximately 6–6.6% will

be diluted in the 3He – 4He mixture.
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Figure 3–4: Diagram and photograph of the main components of a dilution dry
refrigerator. On the right side is a photograph of the refrigerator matching the
schematics on the left. All components inside the vacuum can are maintained in
vacuum by a turbo pump (3 · 10−6 mbar). Not shown in the diagram are the copper
and aluminum cans used to shield the components from radiations. The 4 K plate
is cooled by the pulse tube, and all the lower plates are subsequently cooled by the
dilution cycle described in the text. Although the coldest point of the refrigerator is
the mixing chamber plate, the experimental cell is mounted on the cold plate so as
to avoid heat leakage reaching the mixing chamber via the capillaries. The lowest
temperature reached by the cold plate is between 30 and 50 mK. The diagram is
based on the manufacturer’s plans, BlueFors Cryogenics c⃝. The distance between
the 50 K plate and the mixing chamber plate is 80 cm. A schematic of a dilution
cycle can be found in Appendix B–1.
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3.1.2.1 Experimental cell

New

Figure 3–5: CAD drawing of the coin silver experimental cell which was mounted
inside the dilution refrigerator. Its design is very similar to the previous experimental
cell (cf. Fig. 3–2). It was improved only by carving a groove in the bottom part (see
red ellipse) for seating the indium o-ring sealing the top and bottom parts. Although
a simple design improvement, it tremendously helped to reduce the seal’s failures of
the experimental cell. The available volume of the main chamber (subtracting the
volume of the screws and of the Invar R⃝ plate) is ≃0.42 cm3. Art credits: Richard
Talbot.

Only two modifications were made to the design of the experimental cell de-

scribed in section 3.1.1.1. First, a larger groove was carved in the bottom flange, as

shown in Fig. 3–5. Second, the top flange had a step designed to press against an in-

dium o-ring placed in the bottom’s groove. These modifications drastically improved

the reliability of sealing the cell hermetically and greatly reduced leakage from the
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inside of the cell to the vacuum can at low temperatures. The 0-80 screws holding

the Invar R⃝ plate are in stainless steel 316.

3.1.2.2 Measurement and control of the temperature

The thermometer used to monitor the temperature of the experimental cell is

a RuOx resistive chip thermometer (LakeShore R⃝ Rx102A-BR). It was calibrated

against the NIST calibrated mixing plate thermometer provided with the BlueFors

Cryogenics c⃝ dilution refrigerator. It is then mounted on a gold plated copper holder

with Apiezon R⃝ grease. The holder includes a spool for the winding of thermometer

leads and it ensures that both are well thermalized. The leads are connected in such

a way that its resistance is measured in a 4-point configuration. The holder is tightly

maintained on the silver cell with a 316 stainless steel screw.

3.1.2.3 Heat exchangers

The experimental circuit mounted on the dilution refrigerator contains several

heat exchangers anchored on each plate of the refrigerator, namely the 50 K plate,

the 4 K plate, the still plate and the cold plate. The design of the heat exchanger, in

display in Fig. 3–6, is the same for all the plates. The heat exchanger consists of a

copper body and a brass cap. A cavity was drilled inside the body and silver powder

was sintered in it. The internal surface of the cavity was first coated with a few

nanometers of gold to avoid oxidation. Then, silver powder (Alfa Aesar 120 mesh,

Premion R⃝ 99.999%) was pressed with a packing fraction of ∼0.5 inside the cavity.

Each heat exchanger holds between 0.7 and 0.8 g of silver powder, which represents

between 0.7 and 2.4 m3 of surface area. The procedure was inspired from Ref. [5].

The brass cap was tapped to fit in the 3/8-24 threads of the copper body’s shaft,

allowing the cap to be screwed onto the body. The heat exchanger is sealed using
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indium wire coiled around the threads of the copper body. The indium is pressed

against the threads with a soldering iron at 150 ◦C and the cap is screwed on and off

repeatedly, until the indium has coated the threads uniformly over at least 3 whole

loops. This sealing method has the advantage to only expose the 4He inside the

capillary circuit to metals, as opposed to the previous design using Stycast R⃝ 2850.

Indeed, glues are known to outgas and this could lead to an increase in impurities

ultimately risking to block the nanopore during the cooldowns.

S

C

B

I O

In

Figure 3–6: CAD drawing of the heat exchanger which was installed inside the
dilution refrigerator. The stainless steel capillaries at the inlet (I) and outlet (O) are
silver-soldered to the brass cap (C) of the heat exchanger, whereas the copper-nickel
capillaries are tin-soldered. The sinter (S) is made out of an Alfa Aesar 120 mesh,
Premion R⃝ 99.999% silver powder compacted to a ∼0.5 packing fraction. The cap
can be screwed onto the copper body (B) which is threaded. The seal between the
body and the cap is made with indium (In) spread onto the threads of the body. Art
credits: Richard Talbot.
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The choice of material and dimensioning of the capillaries were made to optimize

the setup under several constraints:

i. The heat leak to each plate due to 4He inside the capillaries should be as small

as possible, i.e. the capillaries should be long and have a small inner diameter.

ii. The pumpdown time for the whole circuit should be as short as possible, i.e.

the capillaries should be short and have a large inner diameter.

iii. The heat leak due to the empty capillaries should not prevent the refrigera-

tor to reach its base temperature when used for other experiments, i.e. the

capillaries should have thin walls and the material should have a poor thermal

conductivity at low temperatures.

The capillaries from the gas panel down to the still plate were chosen to be

made out of stainless steel. As the temperature gets closer to a few Kelvin, the

thermal conductivity of stainless steel becomes very poor compared to its room

temperature value. To efficiently cool the stainless steel capillaries, several copper

braids were silver-brazed around them. The braids were then firmly held onto the

plates with screws for thermal anchoring. The capillaries from the still plate down

to the experimental cell, located onto the cold plate, are made out of copper nickel.

The return line from the experimental cell up to the top of the fridge is made out

of a single stainless steel capillary, thermally anchored to the 4 K and 50 K plates

with silver-soldered copper braids. The dimensions of the capillaries as well as the

estimated heat leaks in vacuum are given in Appendix C.
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3.2 Solid-state nanopore

Regarding potential ways to confine a fluid in a flow experiment, one obvious

geometry comes to mind: a pipe. When adding the constraint that the pipe should

have nanometric dimensions, one may think at first about carbon nanotubes. The

problem here is leak-tightness. While perhaps not impossible, it would be extremely

difficult to manipulate and seal a single nanotube into a macroscopic circuit. It

would even be harder to do so if the fluid in question is amongst the least viscous

ones, namely superfluid 4He, flowing through the tinniest cracks.

Thankfully, there is another approach which is to craft a pipe by “drilling”

a hole into a membrane. Indeed, this makes no difference for the fluid confined

inside the pipe, but it allows for the handling of the “pipe” on a macroscopic scale,

thereby greatly simplifying the sealing problem. The next section will discuss the

technique used to fabricate the nanopores, as well as potential alternatives which

were developed by other research groups during the course of this thesis work.

3.2.1 Nanopore fabrication procedure

Over the past 10 years, interest in employing nanopores as nanosensors (i.e.

DNA sequencing, or molecule filtering [8, 9]) stimulated the development of reliable

nanopore fabrication processes [10]. This resulted in a number of approaches to

fabricate nanopores in various types of membranes, such as ion/electron beam drilling

[11, 12], track etching [13, 14], or dielectric breakdown [15]. As we are interested in

creating a single nanopore, the beam techniques was found to be more adapted to our

needs. The smallest beam spot that can be achieved is with an electron beam (0.5–1

nm, limited by magnetic lenses aberrations), which makes it an ideal candidate for

our experiment.
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3.2.1.1 Nanopore substrates

Single nanopores were drilled into commercially-available7 , low-stress, amor-

phous silicon nitride (Si3N4) membranes. The Si3N4 membrane is free-standing onto

a silicon substrate, as shown in Fig. 3–7. The size of the silicon substrate is 2 x 2

mm and 200 µm thick. It can be conveniently handled with plastic tweezers cleaned

with isopropanol. The window of free-standing Si3N4 is usually a square with sides

ranging from 10 to 50 µm, depending on the thickness of the membrane. Smaller

pores are easier to drill in thinner membranes. However, as Si3N4 is amorphous, the

fear of 4He diffusing through the membrane led us to limit ourselves to a minimum

thickness of 20 nm for our nanopores. The only nanopore we produced and in which

we could measure superfluid 4He flow was drilled into a 30 nm thick membrane8 .

3.2.1.2 Transmission Electron Microscope

The focused electron beam of a Transmission Electron Microscope (TEM) was

used to drill a single nanopore through the Si3N4 membrane. The TEM employed

is a JEM-2100F, located at the École Polytechnique de Montréal. The electrons

accelerating voltage was set to 200 kV.

After adjusting the settings to have a well-focused image at a magnification

of 500kX, the largest beam aperture was chosen to maximize the beam intensity

available for drilling. The beam was first converged as close as possible to a single

7 The membranes used for this work were purchased from Silson R⃝ or Norcada R⃝.
8 Failure to measure superfluid flow can have several origins: the nanopore can

get filled by impurities (Appendix A1 of Ref. [4]), the Si3N4 membrane can break,
or one of the indium seals can leak at low temperature.
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Figure 3–7: Schematic side view of a TEM membrane used for drilling a single
nanopore. A Si3N4 layer (grey/top) of controlled thickness is deposited on a silicon
substrate (blue/bottom), which is then etched to expose a free standing window of
Si3N4. The nanopore is drilled in this window. The suppliers quote them with an
uncertainty in the thickness within 7% of the total thickness [16].

spot, and then defocused to +1500 nm to begin the drilling process9 . The pore

would then typically open within minutes of exposure, sometimes even less than a

minute for the 10 nm thick membranes. When the beam is converged in one spot,

it is no longer possible to visualize the membrane simultaneously. It is therefore

difficult to estimate when a pore opens across the membrane and to stop the drilling

process. Nevertheless, a signature of an open pore is the appearance of a faint thin

ring around the beam spot. Therefore, the smallest nanopore achievable with this

technique depends on the beam spot size of the TEM. The beam spot size is mainly

limited by the spherical aberrations of the objective lense. For the JEM-2100F, the

beam spot could not be made smaller than 0.5–1 nm. Pores as small as 0.7 nm

could be drilled with this TEM, although they would unfortunately not remain open

9 This defocusing value was experimentally found to drill well.
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for more than a few hours [17]. Other groups report nanopores with similar sizes

[12, 18].

Pores would sometime close within hours after being opened. In order to de-

crease the risk of mounting an unstable pore inside the experimental cell, our pro-

cedure was to wait at least one day, and then re-image the membrane. If the pore

was still open then, we would proceed and mount it inside the experimental cell for

a cooldown.

3.2.1.3 Atomic Layer Deposition

In an attempt to reduce the size of the larger nanopores (i.e. those with more

than 10 nm diameter) produced with the TEM, Atomic Layer Deposition (ALD) of

Hafnium Oxide (HfO) was also employed. ALD is an isotropic process depositing

successive layers of a material onto three-dimensional structures through cycles of

injection and purge. The total thickness of the HfO layer can be controlled with a

precision down to 0.1 nm [19]. The membrane would then be coated as shown in

Fig. 3–8, and the layer of HfO helps to reduce the diameter of an existing pore.

Alternatively, it was demonstrated in Ref. [18] that a nanopore can be drilled

directly in a HfO membrane. Thus, a thin layer of HfO of a few nanometers only,

could also be deposited on top of a blank Si3N4 membrane prior to the drilling

process. The stability of a pore opened by this procedure should be better than that

of a pore in bare Si3N4, according to the results in Ref. [18]. We unfortunately did

not have the time to conduct enough successful trials of this pre-layer of HfO ALD

procedure, nor master the ALD deposition reactor. However we could successfully

achieve a proof-of-concept verification for the filling of an already open pore.

One of our few experimental trials is shown in Fig. 3–9, which displays a ∼21

nm diameter pore drilled through a 30 nm membrane before and after a HfO ALD.
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Figure 3–8: Schematic side view of a TEM membrane coated with a layer of HfO
deposited by ALD. The insert illustrates how a pre-existing nanopore can be filled
by ALD, in principle.

The image clearly shows HfO deposited on the inner wall of the pore. A recent

publication also reports HfO ALD in porous silicon, with an average pore diameter

of 4.8 nm [20]. Scanning Electron Microscope (SEM) imaging of their sample showed

that HfO ALD coated the first 100 nm inside the pores. This gives us confidence

in the technique, and that indeed it can help us to uniformly reduce the size of

our pores. The downside of this approach, however, is that it adds more steps to

the sample fabrication process, i.e. extra TEM imaging sessions before and after

the ALD process and the ALD process itself. These extra steps might increase the

nanopore production time by several days, as both the ALD reactor and the TEM

are shared-user facilities.
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Figure 3–9: TEM top views of a nanopore in a 30 nm thick Si3N4 membrane,
illustrating how the ALD process can be employed to significantly reduce the size
of pre-existing nanopores. (A) Nanopore on the day of its drilling. (B) The same
nanopore a week later. Its shape became more circular, with an approximate diame-
ter of ∼21 nm. (C) The same nanopore following HfO ALD. The previous dimension
remains clearly visible, highlighted by a darker area. This darker area is a proof that
ALD occurred on the inner wall of the pore. Indeed, the brightness of the image
is correlated with the amount of HfO the electrons must cross prior to reaching the
camera. (D) Estimates of the ALD layer thickness. This picture illustrates the sen-
sitivity of the technique to the initial shape of the pore. Here, the ALD resulted in
a channel with a squared cross section.
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3.2.1.4 Controlled dielectric breakdown

During the course of this work, another technique to drill nanopores was de-

veloped, consisting in applying a low voltage (typically 18 V) across a TEM Si3N4

membrane dipped in a molar solution [15]. Due to the small thickness of the mem-

brane, the induced electric field across the latter can reach several thousand V/m.

Then, redox reactions occur stochastically on the surface of the membrane and there

is a probability for two redox reactions to occur vis-a-vis from both sides. When this

occurs, the thickness is reduced locally, thus increasing the tunneling probability of

electrons. This triggers a runaway process where increased tunneling leads to local

resistive heating, in turns leading to a higher probability of tunneling until the mem-

brane melts due to Joule heating. This local melting process creates a nanopore.

Once a pore is open, the ionic current across the membrane increases drastically.

This increase is used as a trigger to drop the voltage to zero. The inventors of this

method claim that only one pore opens across the membrane.

A major drawback of this technique for our use is that the nanopore appears at

a random location on the membrane. When imaging the membrane with a TEM, it

is thus very difficult and time-consuming to find the nanopore. For this reason alone,

it was decided not to try this technique as consistency with our previous procedure

was judged more important. Recently however, the same research group reported

improvements of the technique by applying it to membranes with a thinned region

[21]. The thickness of the membrane being inversely proportional to the probability

of a dielectric breakdown across it, it narrows the area over which the nanopore is

formed. In the future, this could become an alternative route to produce nanopores

for our experiment.
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3.2.2 Mount and cooldown procedure

In order to avoid as much as possible contaminants inside the circuit, the source

and the drain (inlet and outlet as shown in Fig. 3–5, respectively) of the experimental

cell are connected to 5N purity 4He gas reservoir (overpressurized) when the cell is

open to room atmosphere (i.e. ≃70 mbar above atmospheric pressure). This way,

a constant flow of 4He prevents impurities to flow back inside the heat exchangers

and the capillaries. The 4He from the reservoir passes through a cold trap filled with

activated charcoal in liquid nitrogen before reaching the source part of the capillary

circuit inside the refrigerator.

The membrane is deposited on an indium o-ring made out of a 70 µm diameter

indium wire. The o-ring itself sits on a groove in the silver cell’s drain part, as

displayed in Fig. 3–5. Using curved-tips tweezers, the Invar R⃝ plate with two 0-80

screws is placed above the silicon chip holding the Si3N4 membrane, without touching

it. The two screws are delicately screwed into their holes to guide the plate, which is

maintained parallel to the chip by the tweezers, until the plate touches the chip. The

screws should not be tightened at this stage. The pit in the silicon chip leading to the

Si3N4 membrane should be visible from the through hole of the Invar R⃝ plate when

looking from above. A microscope camera connected to a computer was used for

convenience. If the pit is not visible, it means that the membrane is not aligned with

the drain and that 4He will not be able to flow through the nanopore. The above

procedure should then be repeated (the indium seal does not need to be replaced as

it was not pressed on). Once the membrane’s pit is visible through the Invar R⃝ plate

hole, the two remaining 0-80 screws are inserted and all four screws are tightened to

press the silicon chip uniformly on the indium o-ring. Care should be taken not to

break the silicon chip by applying too much torque on the screws.
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At this stage, the 4He gas overpressure with respect to the atmosphere should

be almost suppressed in the drain. This minimizes lateral motions of the silicon chip

as it is pressed against its indium seal. Once the membrane seal is made, the cell is

closed with another indium seal10 . While starting to tighten the screws11 in a star

pattern, moisture inside the cell is purged by flowing 4He gas through the source.

The 4He gas pressure at the source is monitored constantly while the cell is closed.

Before the screws are too tight, the overpressure at the source is typically set to

120–160 mbar. It should decrease to 10–20 mbar before tightening the screws as this

contributes to flush air outside the experimental cell.

The leak-tightness of the seal is tested several times during the cooldown pro-

cedure. A successful test at room temperature does not guarantee that the seal will

be leak-tight at lower temperatures. However, a failed test at room temperature

allows for another seal to be made prior to starting the cooldown. The first leak-test

is performed by looking at the graph of the source overpressure versus time. As

the screws are tightened, the overpressure should slowly stop decreasing and should

become stable if the sealing is successful. The overpressure is then raised to 200

mbar. If it does not decrease over time, the source and drain part of the cell are

being pumped on simultaneously to start the cleaning procedure. After an hour of

pumping, the valve to the pump is closed to perform another leak-tightness test. If

the pressure stabilizes after five minutes, the seal is considered leak-tight and the

cleaning procedure starts.

10 This seal is made with a 1 mm diameter indium wire.
11 Each screw is turned a sixth of a turn at the time.
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The cell is cleaned with 5 cycles of purge-pump of 4He gas. Both the source and

the drain are simultaneously filled with ≃1000 mbar of 4He gas and then pumped

down until the pressure reaches ≃30 mbar. Then, the source and drain are pumped

down for a day. Our current gauge saturates at a pressure of approximately 8 mbar

so it is not possible to know exactly the final pressure reached. A last leak-test of

the cell’s seal is performed at room temperature by releasing 4He gas around the cell

while pumping on it with a leak detector. Finally, a low pressure of 4He gas (≃35–70

mbar) is set in the source side before the cooldown, while the drain side keeps being

pumped on. This allows for early detection of a membrane or seal failure. In the

case of a cooldown with the dry refrigerator, which can take up to 36 hours, having

this pressure difference across the membrane is also useful to monitor the mass flow

through the nanopore while the temperature decreases. When crossing the nitrogen

solidification temperature, the flow has been observed to drop to its background level

most likely due to some remaining nitrogen ice clogging the pore. Indeed, warming

up the cell above liquid nitrogen temperature and cooling it back down was most of

the time sufficient to restore the flow.

In order to minimize impurities inside the experimental cell, we designed a mini-

activated charcoal cold trap, shown in Fig. 3–10. The impurities trap consists of a

small amount (≃1–2 mg) of activated coconut charcoal powder wrapped in a copper

mesh with grid size less than a micron. The copper mesh prevents bits of charcoal

to wander around inside the experimental cell. Tin solder was used to seal the wrap.

The activated charcoal provides a good in situ sorption pump to trap a high number

of impurities as the temperature is lowered towards 4 K. The activated surface area

of coconut charcoal varies between 1000 and 2000 m2 per gram [22, 23]. Thus, our

cold trap has a surface area of a few m2. In comparison, the surface inside the
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experimental cell is on the order of 10−4 m2. The maximum dimensions of the wrap

are limited by the available space inside the cell (see Fig. 3–5). If the wrap sits on

the 0-80 screws, its maximum thickness is 2 mm and its shape should fit within a

circle of 6.9 mm radius. The wrap can be made thicker if it can fit within the four

0-80 screws. In the case of the experimental cell within the dry refrigerator, the

thickness can be 3.3 mm and the wrap should either fit within a square of 4.7 mm

side or within a circle of 2.4 mm radius. It is safer to make the dimensions a little

bit smaller than the maximum dimensions to avoid ripping the copper mesh when

closing the cell.

As this impurities trap was developed while installing the circuit on the dry

refrigerator, we unfortunately did not have time to test it. Indeed, the cooldowns

were first intended to check for leaks and we did not want to add an extra parameter

that could modify the way the pressure varies inside the cell.

3.3 Mass flow measurement scheme

The experimental measurement of the mass flow is analogous to an electrical

transport measurement in many aspects. A basic electrical characterization of a ma-

terial is to measure its current-voltage (IV) curve, i.e. a known voltage is applied

across a piece of the material and the current flowing between the contacts is mea-

sured. The procedure is then repeated for different voltages. The resistance R of

the element is determined from the derivative of the IV graph. In the simple case of

Ohm’s law, the relation is linear,

V = RI. (3.1)

In the fluid dynamics analogy, the pressure difference ∆P across the nanopore cor-

responds to the voltage V and the mass flow of 4He atoms Qm to the current of
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Figure 3–10: Activated charcoal cold trap in preparation: closing of the copper mesh
wrap with tin solder. The wrap is similar in concept to a coffee pod. It is crafted
by folding a rectangular sheet of copper mesh in two to create a square poach. The
two sides adjacent to the folded side are folded on themselves using a tweezer. The
poach is filled with charcoal powder and closed. The wrap cannot be too thick as
the available space inside the cell is narrow (see text). This wrap measures 8 by 9
mm and was designed for the experimental cell of the wet 3He refrigerator.

electrons I. The parameter linking Qm and ∆P , which is usually of interest in fluid

dynamics, is the conductance G, i. e. the inverse of the resistance to the flow. By

analogy, Eq. (3.1) then reads,

∆P = 1
G
Qm. (3.2)
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The mass flow rate Qm in this thesis is always expressed in [pg·s−1] and the pressure

gradient ∆P will be displayed in [mbar]. However, we converted the mass flow rates

into [kg·s−1] and the pressures into [Pa] to compute the conductance G, so that it

can be conveniently expressed in SI units, namely [m·s].

When measuring the resistance of electrical elements, in a 2-point configuration

circuit, the resistance of the wires leading to the element should be made small

compared to the resistance of the element itself so that the total resistance is almost

equal to that of the element alone. Similarly, the conductance of the source and

drain circuits should be much larger than the conductance of the nanopore, so that

the mass flow through the circuit is essentially limited by the conductance of the

nanopore, as can be seen in Fig. 3–11.

Figure 3–11: Experimental scheme of the measurement. A pressure gradient ∆P =
PS − PD ≃ PS is applied across the circuit and leads to a mass flow Qm, which is
measured with a mass spectrometer. The mass flow is limited by Gnanopore, because it
is orders of magnitude smaller than the conductance of the source and drain circuits.
In the analogous electrical analogy, if the resistance of a 3.14 nm radius and 30 nm
long nanopore is set to 1 MΩ, then the resistances of the source and drain would
be 15 mΩ and 3.1 Ω, respectively, for the 3He refrigerator’s circuit. For the dry
refrigerator’s circuit, the resistances of the source and drain would be 16 mΩ and 4
mΩ, respectively. Based on [4].
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Calculations of the circuit’s conductance G in the case of infinite pipe Poiseuille
4He gas flow,

Qm,pipe,viscous = πr4

8ηL∆P = Gpipe,viscous∆P, (3.3)

and in the case of a Knudsen free-molecular flow,

Qm,pipe,Kn = 8r3

3L

√
π

2RsT
∆P = Gpipe,Kn∆P, (3.4)

were carried out for both experimental setups. Here, Rs is the specific perfect gas

constant12 for 4He, L the pipe’s length, r its radius, η the 4He viscosity and T its

temperature. The typical conductance of a nanopore lies five orders of magnitude

below that of the circuits’ conductance in both refrigerators. This therefore justifies

neglecting the conductance of the n circuit’s parts Gcircuit,i (i ∈ {1..., n}) in the data

analysis since the total conductance, Gtot, is dominated by the pore’s conductance

Gnanopore,

G−1
tot = G−1

nanopore +
n∑

i=1
G−1

circuit,i ≃ G−1
nanopore. (3.5)

As the nanopore diameter is decreased, the conductance of the pore will decrease

even further, thus allowing us to keep neglecting the conductance of the circuit.

Mass flow measurements were carried out in three different phases of 4He, i.e.

gaseous (at liquid nitrogen temperature, 77 K), liquid (from 4–5 K to Tλ ≃ 2.17

K) and superfluid (from Tλ ≃ 2.17 K to 1 K in our case). Measurements in the

first two phases are used to characterize Gnanopore as a function of pressure at a

fixed temperature and compare it to theoretical models of conductance. This will

be further described in section 4.1. Fitting the experimental data to these models

12 It is equal to the product of Avogadro’s number NA and Boltzmann’s constant
divided by the molar mass Mm of the gas, Rs = NAkB

Mm
.
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provides us with two independent in situ13 estimates of the nanopore’s dimensions.

The superfluid phase is however the most interesting one and the ultimate goal of

this study. Measurements of the mass flow as a function of the pressure at constant

temperature as well as measurements of the mass flow as a function of temperature

at constant pressure were performed in superfluid 4He, with the results presented in

chapter 4.

3.4 Mass flow measurement instrumentation

The 4He mass flow is measured with a commercial leak detector (Pfeiffer Smart

Test R⃝ HLT560). It consists of a vacuum turbomolecular pump connected in series

to a mass spectrometer. Only the atoms with an atomic mass from 2 to 4 can be

measured with this mass spectrometer, enabling us to measure both 4He or 3He flow.

3.4.1 Calibration

The leak detector was calibrated with 4He standard leaks NIST certified, with

values of 4.5 ± 10% pg/s and 3.7 · 10−2 ± 25% pg/s. The calibration was performed

regularly between measurements and after extended periods when the leak detector

was left idling. The calibrated leaks consist of 4He gas cylinders with an initial

overpressure from one standard atmospheric pressure on the order of ≃70 mbar,

connected in series to a valve and a leak element. The leak elements provides a

controlled 4He gas flow rate which is used for the calibration of the mass spectrometer

[24]. The flow rate on the calibration day has to be adjusted from the certified value

13 These in situ estimates are important because the nanopore could shrink after
the TEM imaging, or there could be impurities on the pore’s inner surface, reducing
its effective radius.



3.4. MASS FLOW MEASUREMENT INSTRUMENTATION 81

based on the time ∆t elapsed since the certification date, the variation from the

certification temperature ∆T . The depletions coefficients Ct and CT are provided by

the manufacturer. The exact relations between these parameters are also provided

by the manufacturers.

3.4.2 Signal-to-noise ratio improvement: 4He background
removal

The leak detector is sensitive to 4He gas in the air surrounding them since

KF vacuum flanges do have a small leak rate14 . This was problematic as in a low

temperature laboratory with wet refrigerators, large amounts of 4He gas are then

released (during cryogen transfer or simply due to normal boil-off). To circumvent

this, a special cabinet was built to enclose the mass spectrometer and designed to

be slightly overpressurized above one atmosphere. It is displayed in Fig. 3–12. The

cabinet was overpressurized with compressed air. The cabinet successfully decreased

the lowest background 4He signal of the mass spectrometer by a factor five, down

to 1.6 ·10−2 pg/s. It also attenuated the rise in the background signal during liquid
4He transfers into the wet refrigerators by one order of magnitude, reducing the

timeframe needed for the background signal to go back to its lowest value from a

whole day to a few hours.

14 The 4He leak rate of one KF25 flange due to permeation of 4He through the
Viton R⃝ o-rings is estimated to be on the order of 1.1 ·10−2 pg/s per o-ring. For a
pressure difference of 105 Pa, this leads to a conductance of 1.1 · 10−22 m·s. The
electrical analog is a leak to electrical ground with a resistance of 182 MΩ, provided
the resistance due to the nanopore is equivalent to 1 MΩ as in Fig. 3–11.
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Figure 3–12: (A) Cabinet enclosing the mass spectrometer. The tube coming from
the right connects to the experimental circuit inside the refrigerator. The tube
going upwards connects to a utility turbo pump. The valves allow either the mass
spectrometer or the utility pump to connect to the circuit inside the refrigerator.
(B) Cabinet closed by a Plexiglas window. A glove is used to operate the valves.
Above the cabinet, the utility turbo molecular pump can be seen.

3.4.3 Data acquisition and analysis tools

The data outputted by the pressure gauges, resistance bridge (thermometers)

and mass spectrometer were acquired remotely with a computer software and RS-

232 or GPIB interfaces. The computer software was entirely developed in Python 2

language by Benjamin Schmidt and the author of this thesis [25] (recently also com-

patible for Python 3 [26]). The entire code is too large to be included in the Appendix,

however it can be found on the publicly available GitHub [27] or GitLab [28]. All

further data treatment, analysis, publication figures, as well as figures in the present

thesis, were performed with the open source Python modules Matplotlib and Scipy

[29, 30].
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CHAPTER 4

Quasi–one-dimensional superfluidity

In this chapter, we will first present mass flow measurements made through a

single nanopore with the smallest radius ever used in a helium transport experiment

[1]. We will then compare these measurements with previous data obtained by our

research group in larger nanopores [2, 3], as well as with data previously reported

in the literature. We will discuss at length the effects caused by the strong radial

confinement. Finally, the scaling of the critical velocity and the recent theoretical

advances made by Adrian Del Maestro and Bernd Rosenow [4] will be discussed.

The proof-of-concept experiment of superfluid mass transport though a nanopore

was achieved by Michel Savard et al. at McGill University. For extensive details on

the theory of mass flow through a nanopore, we refer the reader to his thesis [3] and

earlier works [2, 5].
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4.1 4He mass flow in a sub-ten nanometer pore

Since our aim is to study how lowering the dimensionality affects superfluidity,

an accurate determination of the nanopore’s geometry is of the utmost importance.

In particular, the radius of the pore is the most important parameter governing the

crossover between a 3D and 1D quantum state. In our work, we determine its value

using three independent methods. The first one is based on straightforward TEM

imaging of the pore shortly before the sample is mounted into the experimental

cell, as shown in Fig. 4–1. The other two procedures, described in the following

subsections, provide in situ values using a fit of the experimental conductance1 Gexp

to theoretical models in both the gas and normal liquid phases of 4He. The length

of the nanopore is fixed by the thickness of the Si3N4 membrane provided by the

manufacturer, with a tolerance of 7%, i.e. (30 ± 2.1) nm [6].

4.1.1 Mass flow in the gaseous Knudsen regime

A gas flow experiment was initially performed at 77 K in order to obtain a first

in situ characterization of the pore radius R. The methodology is similar to that

reported in Ref. [5] where the conductance Gexp of the nanopore is measured as a

function of the dimensionless Knudsen number Kn, defined here as the ratio of the

atoms’ mean free path2 , λmfp, to the nanopore diameter, D = 2R,

Kn ≡ λmfp

2R = kBT

2
√

2πσ2PR
. (4.1)

1 The conductance is defined as the ratio of the measured mass flow, Qm,exp, to
the pressure difference ∆P , applied across the nanopore, Gexp = Qm,exp/∆P .

2 The mean free path used here is based on non-interacting particles.
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5 nm 5 nm

Figure 4–1: TEM images of the nanopore used in this study. (Left) Image taken with
a JEM-2100F TEM 15 minutes after the pore was drilled. Its radius determined by
an analysis of the image line profile is 5.1±0.2 nm. (Right) Image of the same pore a
few hours prior to mounting inside experimental cell, taken with a FEI TecnaiG2F20
TEM. This TEM has a lower resolution at high magnification than the JEM-2100F
one. Its radius has shrunk since its initial opening to 4.3 ± 0.2 nm.

.

.

The Knudsen number is a function of both the temperature T and pressure

P . In Eq. (4.1), the factor
√

2 arises from assuming a Maxwell distribution for

the velocities of the individual atoms, kB is the Boltzmann constant and σ is the

cross-section, or hard-shell, diameter. For 4He, σ is equal to 2.6 · 10−10m [7]3 . The

Knudsen number is a dimensionless number, useful to determine whether statistical

or continuum mechanics is a more suitable description for the mass flow. A cartoon

of the different flow regimes as a function of Kn is provided in Fig. 4–2. A low

value, Kn ≪ 1, means the gas is in a regime of viscous flow and hence in the realm

of continuum mechanics. A high value, Kn ≫ 1, corresponds to the Knudsen regime

3 In Ref. [3], σ = 2.18 · 10−10m was used. However the value found in Ref. [7] is
from more recent measurements.
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where the mean free path is much larger than the nanopore diameter and so the

particles undergo ballistic motions, i.e. interactions between particles are rare.

0.01 0.1 1 100.001

KnudsenTransitionContinuum Slip

Figure 4–2: Schematic illustration of the density of particles as a function of the
Knudsen number, Kn. The value of Kn reflects various fluid dynamic regimes, as
indicated on the scale. Source: [3].

.

Due to the small radius of our nanopore, the Knudsen number is sufficiently

high across the range of experimental pressures so that we are always in the Knudsen

regime and as such, we can neglect contributions from viscous flow. In the Knudsen

regime, the conductance is given by [8, 9]

GKn = R2κCl(R,L, θ)
√

π

2RsT
, (4.2)

where Rs is the specific perfect gas constant for 4He, L is the nanopore’s length and

θ is the opening angle of the nanopore, as illustrated in Fig. 4–3. Note that the

conductance is independent of the applied pressure, as can be seen in Eq. (4.2). The

determination of the opening angle θ is discussed in section 4.1 of Ref. [3].

The Clausing factor, κCl(R,L, θ), is a geometrical factor that accounts for the

probability for an atom to go from one side of the nanopore to the other by bouncing
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off the walls [8, 10]. Graphs of the Clausing factor as a function of θ and L/R are

provided in Figs. D–2 and D–3, respectively.

θ

L

R

F
low

Figure 4–3: Cross-section view of a nanopore, showing the definition of θ used in the
Clausing factor. When θ = 0◦ the nanopore is a perfect cylinder. Source: [10].

.

Fig. 4–4 shows the value of the conductance Gexp as a function of Knudsen

number Kn. The data at higher Kn have larger uncertainties because they were

taken at very low pressures/flow regimes where the mass spectrometer’s signal-to-

noise ratio is lower. The radius of the nanopore and its uncertainty, ∆R, were

extracted from the minimization of GKn(R)−Gexp and GKn(R±∆R)−(Gexp±δGexp),

for which L = 30 ± 2.1 nm and θ = 15 ± 5◦ and where Gexp is the average of the

values measured at different pressures. Here, the deviation δGexp corresponds to

one standard deviation from Gexp. The extracted value for the radius was found to

be RKn = 3.06 ± 0.13 nm. It is significantly smaller than the value of 4.3 ± 0.20

nm, obtained by TEM imaging at room temperature. It is because the nanopore

shrinks over time, and this is consistent with previous work of Dauphinais et al. [11],

and Savard et al. [3, 5]. Moreover, the shrinkage has been observed live at several

occasions during the fabrication process of theses Si3N4 nanopores.
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Figure 4–4: Determination of the radius by Knudsen effusion. Conductance values
obtained from the ratio of the measured mass flow and the applied pressure gradient
across the nanopore. The red circles and the blue squares are Knudsen effusion
measurements at 77 K performed prior and after the superfluid flow measurements,
respectively. The two datasets were acquired two months apart from each other. The
solid line corresponds to the average conductance, Gexp, of the square data points
above Kn = 10. The dashed and dashed-dotted lines correspond to Gexp + δGexp

and Gexp − δGexp, respectively.
.
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4.1.2 Mass flow in the normal liquid phase

A second in situ estimate of the pore radius R was made with pressure-driven

flow experiments in the normal phase of 4He, at temperatures above Tλ. In this

phase, the flow through the nanopore is viscously dissipative, and is expected to

follow the model developed for a short pipe by Langhaar [12], based on the Navier-

Stokes equations. The pressure at the outlet of the pore being close to vacuum

Poutlet ≃ 0, we consider that ∆P = Pinlet − Poutlet ≃ Pinlet ≡ P . The pressure P

inside the experimental cell, or the pressure difference ∆P across the membrane are

thus equivalent in the remainder of this thesis. Pressure sweeps were conducted at

constant temperature while monitoring the mass flow rate Qm,exp. An example of

pressure sweep at a fixed temperature of 3 K is shown in Fig. 4–5. In the absence

of a pressure difference, the mass flow rate should go to zero. However, a spurious

signal is detected in the mass flow spectrometer even when the pressure difference

across the nanopore vanishes, ∆P → 0. This likely arises from evaporation at the

walls of the pore, or from an offset in the mass spectrometer. To determine this

offset, the data were fitted with a modified equation for viscous flow in a short pipe,

Qm(P, T ) = 8πηL
α̃

⎛⎝
√1 + α̃ρR4

32η2L2P − 1
⎞⎠+ Q̃m, (4.3)

where the last term was added here to account for the spurious signal as ∆P → 0.

The free parameters in Eq. (4.3) are the radius R, the length L, a mass flow offset

Q̃m, and α̃ which is a geometry-dependent factor accounting for the acceleration of

the fluid at the nanopore’s inlet. The temperature dependence of Qm is implicitly
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Figure 4–5: Mass flow measurements as a function of pressure in the normal phase
at T = 3 K. The blue line is a fit of the data using Eq. (4.3). The value of the
radius extracted from the fit is RHeI = 3.14±0.11 nm. The other fit parameters were
found to be L = 30 nm, Q̃m = Qm,offset = 15.77 pg/s and α̃ = 2. The dashed and
dash-dotted lines are obtained using Eq. (4.3) with the same fitting parameters than
that of the blue line except for the radius. The radii associated to the dashed and
dash-dotted lines correspond to RHeI ±∆R, with ∆R = 0.11 nm. The finite intercept
at zero pressure Q̃m = Qm,offset is a spurious signal (see text). The shaded area in
the lower pressure range represent the vapor phase of 4He. Its upper boundary on
the abscissa is the saturated vapor pressure at 3 K.

contained in the tabulated values of the viscosity η and the density ρ [13]4 . These

parameters are evaluated here at fixed temperature. Across the pressure range of

4 The density ρ(T, P ) and viscosity η(T, P ) of 4He on both sides
of the superfluid transition are interpolated from experimental data
[13–15] using Python 2.7 Scipy package [16]. The open-source code
is publicly available on GitHub https://github.com/Bachibouzouk/
liquid-helium-physical-properties-interpolator.

https://github.com/Bachibouzouk/liquid-helium-physical-properties-interpolator
https://github.com/Bachibouzouk/liquid-helium-physical-properties-interpolator
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interest in Fig. 4–5, the density and viscosity vary almost linearly with P and

they are bound by a 3% and 10% variation, respectively. The best-fit values of

the free parameters were determined using a least squares method ∑(Qm −Qm,exp)2

evaluating the difference between the theoretical value Qm and the experimental one,

Qm,exp. This fitting procedure was conducted over a hypercube in the parameter

space of (R,L, Q̃m, α̃) in order to find a global minimum in the difference. The

solid line displayed in Fig. 4–5 is a fit of Eq. (4.3) to the data with a radius of

RHeI = 3.14±0.11 nm. This value is in excellent agreement with the one determined

independently via the Knudsen effusion technique discussed above. Importantly, it

demonstrates de facto that our experiment can quantitatively determine the mass

flow near the superfluid transition in very small channels.

It is interesting to note that since ρ and η are nearly constant in the normal

phase, the influence of the α̃ parameter becomes negligible at sufficiently small values

of R, i.e.,

8πηL
α̃

(√
1 + α̃ρR4

32η2L2P − 1
)

≃ 8πηL
α̃

(
1 + α̃ρR4

64η2L2P − 1
)

= πρR4

8ηL P.

This was indeed the case for this nanopore. Changes in Qm arising from a variation

of α̃ between 1 and 10 were found to be negligible, and so the exact value of α̃ had

little or no influence on the determination of the radius R.

The mass flow model used in this section is based on the assumption that a

nanopore shape can be approximated as a cylinder. Tomographic imaging by other

groups showed the shape of similar size nanopores to be closer to a Laval nozzle

[17]. To correct the model for a Laval nozzle geometry would require a tomographic

image of the nanopore, an image that was not available to us. Nevertheless, since

the cylindrical model fitted the data well and since the fitted value for the radius was
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found to be in good agreement with the value extracted from the Knudsen effusion,

most likely this correction is small. Therefore, we approximated all pores to have a

cylindrical geometry in the remainder of this thesis. Another assumption was that

the 4He is in its liquid phase along the whole channel, i.e. the liquid-gas interface

is located on the low pressure side. A model for mass flow with liquid-gas interface

located inside the channel was tested with recent 4He mass flow measurements per-

formed by the group of Prof. Taborek in long (L ≃ 20 µm) capillary channels [18].

They found that the liquid-gas interface was very close to the low pressure side. In

this model, the pressure drop across the pore is equal to ∆P = Pinlet − Pint + 2γ
Rc

.

Pint is the pressure in the gas a few mean-free-path from the liquid-gas interface.

Its value is expected by the authors of Ref. [18] to be to close to SVP≃ 240 mbar

at T = 3 K. The factor 2γ
Rc

is the Laplace pressure, proportional to the ratio of the

surface tension, γ, and the radius of curvature of the interface, Rc. The radius of

curvature cannot be smaller than the radius of the pore R, which provides and upper

bound on the Laplace pressure at 2γ
R

≃ 1400 mbar at T = 3 K. Both Rc and Pint

are unknown, however, their effect is similar to a pressure offset P̃ on the Langhaar

model, i.e.

Qm(P, T ) = 8πηL
α̃

⎛⎝
√1 + α̃ρR4

32η2L2 (P + P̃ ) − 1
⎞⎠ . (4.4)

A fit of Eq. (4.4) on the experimental data with a radius R = 3.14 nm and a length

L = 30 nm yields a value of P̃ = 3026 mbar, which is more than a factor 2 larger

than the upper bound on P̃ ≤ 2γ
R

≃ 1400 mbar. A fit with a fixed value of P̃

lower than 3026 mbar requires lower values of both L and R. Fitting Eq. 4.4 to

the experimental data with parameters R ∈ [2, 5] nm, L ∈ [10, 30] nm, P̃ ∈ [0, 1400]

mbar and α̃ ∈ [0.1, 20] did not yield better fits as with Eq. (4.3), shown in Fig.

4–5. The offest due the Laplace pressure (4.4) can be partially accounted for by Q̃m
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in Eq. (4.3). However, if P̃ is large, then α̃ is not negligible anymore. Thus, Eq.

(4.4) has five fitting parameters (R,L, Pint, Rc, α̃) whereas Eq. (4.3) has only three

(R,L, Q̃m), as the effect of α̃ can be neglected. Based on the last points, and in

regard of the excellent agreement with the radius determined via Knusden effusion,

it was decided to keep Eq. (4.3) as the fitting model of our experimental data in the

normal phase of liquid 4He. In the superfluid phase, due to the sharp decrease of the

viscosity, the pore is expected to be completely filled with liquid.
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4.1.3 Mass flow in the superfluid phase

Subsequent to the two independent in situ determinations of the nanopore’s

radius, the mass flow was measured as a function of temperature across the superfluid

phase transition Tλ, and at several constant pressures. These data are displayed in

Fig. 4–6 with the mass flow offset Qm,offset previously discussed in section 4.1.2

subtracted. An important feature of the flow data not previously observed in larger

pores is the extremely weak pressure dependence below Tλ. The increase of pressure

difference by a factor 15 only enhances the flow by 10–30 percent for temperatures

below the superfluid transition. This independence of the mass flow upon a pressure

gradient is expected in the case of a purely superfluid flow [19].

Previous work in Vycor R⃝5 observed the onset of the superfluid transition tem-

perature at 1.95 K, lower than Tλ [20]. However, the superfluid transition in our pore

is observed, to within our experimental accuracy, at a temperature very close to the

bulk transition temperature, i.e. 2.17 K. This is not surprising since we measure the

total conductance of the nanopore and of the source reservoir in series. Therefore,

the onset of superfluidity in the bulk is first observed at Tλ and we expect the onset

of the superfluid transition inside the pore to appear as a kink in the superfluid flow

at a temperature slightly lower than Tλ. Unfortunately, it was not observed in our

experiment due to the uncertainty in the mass flow near Tλ.

5 Vycor R⃝ is a porous glass material with pores’ sizes typically ranging between 5
and 10 nm diameter [20].
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Figure 4–6: Temperature dependence of the mass flow measured at various pressures
in the 3.14 nm radius pore. The offset Qm,offset introduced in 4.1.2 has been sub-
tracted for each dataset. The vertical dashed line shows the bulk superfluid transition
temperature Tλ at SVP.

In Fig. 4–7, the normal and superfluid mass flow from Figs. 4–5 and 4–6 are

compared with measurements performed in a 7.81 nm radius and 30 nm long pore.

Remarkably, the pressure dependence of the mass flow is strongly weakened in the

smaller pore.
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Figure 4–7: Normal fluid mass flow measurements at constant temperature as a
function of pressure for a 7.81 nm (A) and a 3.14 nm (B) pore radius in the normal
state. The panel (B) was presented in Fig. 4–5. The blue line is a fit of Eq. (4.3) to
the data and the dashed and dash-dotted lines are one standard variation from the
mean value for the radius, with all other parameters in Eq. (4.3) kept constant. The
shaded area in the lower pressure range represent the vapor phase of 4He. (C) and
(D), temperature dependence of the superfluid mass flow at several pressures as in
Fig. 4–6. The vertical dashed line shows the bulk superfluid transition temperature
Tλ at SVP. Source: [1].
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Using the data taken during temperature sweeps at fixed pressures and shown

in Fig. 4–6, we can reconstruct various pressure dependences of the mass flow at

fixed temperatures and compare them with predictions from the normal flow model

described in Eq. (4.3). The data and the model are displayed in Fig. 4–8 (A) and

(B), respectively.
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Figure 4–8: Pressure dependence of the mass flow at various fixed temperatures.
(A) The experimental pressure dependences reconstructed from the temperature
sweeps data, except for the black squares which are from the pressure sweep at 3 K
(cf. Fig. 4–5). The offset Qm,offset introduced in 4.1.2 has been subtracted for each
dataset. The dashed lines are linear fits to the displayed datasets. (B) The pressure
dependences predicted by Eq. (4.3), model for the normal flow. The parameter
values used here are described in the main text. The dashed lines are also linear fits.
Note that the datasets in (A) correspond to the total mass flow, whereas the ones
in (B) correspond only to the normal part of the flow. The values of the fits’ slopes
are compared in Fig. 4–9 for additional fixed temperatures, not displayed here for
the sake of readability.
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Because the radius determinations by Knudsen effusion before and after the

superfluid measurements are in close agreement (cf. Fig. 4–4), we can assume that

both radius and length of the nanopore are constants. Thus, the model’s parameters

used in Fig. 4–8 (B) are the ones extracted from the fit of the model for the 3 K

pressure sweep data discussed in section 4.1.2, i.e. R = 3.14 nm, L = 30 nm

and α̃ = 2. As the value of the parameter Q̃m has no influence on the slopes of

the pressure dependences, it was set to zero in the curves shown in Fig. 4–8 (B).

At temperatures below the superfluid transition, the mass flow is constituted of a

normal and a superfluid component. Thus, the density ρ in Eq. (4.3) was replaced by

the normal component’s density, ρn (see Eq. (2.26)). Since previously measured pure

superfluid flow was found to be pressure independent [19], we tentatively attribute the

pressure dependence of the observed mass flow below the superfluid transition to the

normal component. When looking at the pressure dependence of the data, we notice

that its pressure dependence becomes gradually weaker as the temperature decreases.

In contrast, the model’s pressure dependence becomes stronger at first in the vicinity

of Tλ, before getting weaker and similar to the observed dependence on the data at

lower temperatures. For the lowest temperature of 1.6 K, the model predicts even a

weaker pressure dependence than what is observed. These observations are illustrated

via a linear fit of the mass flow versus pressure. The slopes of the fits on the data

and the model’s pressure dependences are shown in Fig. 4–9. In the vicinity of the

superfluid transition temperature, the slope of the pressure dependence predicted

by the normal flow model is up to twice as large than the observed one, whereas

above the transition and below 1.8 K the slopes’ values are comparable. Hence, the

data displayed in Fig. 4–9 clearly show the failure of the model to predict the right

pressure dependences very close to Tλ.
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Figure 4–9: Slopes of the linear fits to the experimental and modeled pressure
dependences illustrated by the dashed lines in Figs. 4–8 (A) and (B), respectively.
The vertical dashed line shows the bulk superfluid transition temperature Tλ at SVP.
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4.1.4 Relevant length scales

Now that we have characterized the nanopore radius R and its length6 L, it is

imperative to perform a comparative analysis of all possible relevant length scales to

determine the effective dimensionality of the nanopore. Unlike superconductors or

superfluid 3He which undergo BCS pairing, 4He has a very small coherence length

on the Angstrom scale, i.e. ξ4(T ) ≃ ξ0(1 − T/Tλ)−ν with ξ0 ≃ (3.45 ± 0.05) · 10−10

m [21] and ν ≈ 2/3 is the correlation length universal critical exponent [21, 22]. For

example, ξ4 ∼ 0.4–2 nm in the temperature range T ≃ 0.5–2 K. In this temperature

range, the pore radius R can also be compared to the thermal de Broglie wavelength,

Λ(T ) =
√

2πℏ2/m4kBT ∼ 1 nm and with the thermal length LT = ℏc1/kBT ∼ 1 nm,

where c1 ≃ 235 m/s is the first sound velocity of 4He.

Another estimate regarding the effective dimensionality can be made by con-

sidering 4He atoms confined inside a long cylinder of radius R with hard walls. In

analogy with electrons confined in quantum wires, we compute the energy needed

to populate excited single particle transverse modes. In order to fill the lowest

excited transverse angular momentum state for a single 4He atom, a temperature

T ∼ ∆⊥/kB ≃ 3.5/R2 nm2 · K ∼ 0.4 K for R = 3 nm is needed. These estimates,

which neglect interaction effects, would place our flow experiments in a mesoscopic

regime, whereby confinement length scales and energy scales are on the order of the

intrinsic ones.

6 Our nanopores lengths are known from the thickness of the membrane through
which they were drilled.
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4.1.5 Critical velocity

Considering only the mass flow data below Tλ, we can extract the superfluid

velocities using the two-fluid model proposed by Landau and Tisza (see Eq. (2.27))

and the relation between the mass current density J⃗tot and the mass flow Qm,tot,

Qm,tot ≡
∫

A
J⃗tot · da⃗ =

∫
A

(ρnv⃗n + ρsv⃗s) · da⃗ = Qm,n + ρsvsπR
2. (4.5)

In the last step above, we assume the superfluid velocity field being (i) homo-

geneous in space and (ii) along the axis of the nanopore. Here, Qm,n is the normal

flow of 4He which is still present down to temperatures to approximately 1 K. It is

modeled in Eq. (4.3), by replacing ρ by ρn. Subtracting Qm,n from the total mass

flow yields the superfluid fraction of the flow, whereby the velocity is given by

vs = (Qm,tot −Qm,n)/(ρsπR
2). (4.6)

In this analysis, we use the in situ determination of the radius R described

in previous subsection 4.1.2, i.e 3.14 ± 0.11 nm. We also assumed the superfluid

density ρs is that of the bulk for the 4He inside the pore. It would be desirable to

independently measure ρs, however this is not yet possible in our flow experiment. In

the remainder of this thesis, ρs will always refer to the superfluid density taken from

the bulk. Finally, as in the previous literature dating since the 1930’s, we assume that

the superfluid is always reaching the critical velocity, i.e. vs = vc. The superfluid

velocities are thus limited due to dissipation mechanisms, as previously discussed in

subsection 2.4.3. In the remainder of this thesis, vs and vc will be equivalent.

4.1.5.1 Pressure dependence of the critical velocities

When the constant Qm,offset is used as the parameter Q̃m in Eq. (4.3), the model

underestimates the normal mass flow above the transition temperature for the low
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pressures datasets in Fig. 4–6. Conversely, it overestimates it for the high pressure

ones. At low pressure (below 500 mbar), the underestimation results in large critical

velocities near the transition temperature, in a region where the normal flow still

has a strong influence within the two fluid model. For the high pressure datasets

(above 1.5 bar), the subtraction of the normal flow can even result in unphysical

negative critical velocities close to the transition temperature because the model

predicts larger flow than the measured ones. To correct for a potential pressure

dependence of Q̃m, a pressure dependent quantity δQ̃m(P ) is added to Qm,offset.

The δQ̃m are determined for each fixed pressure dataset by a fit of Eq. (4.3) with

fixed radius R = 3.14 nm and L = 30 nm to the data taken above Tλ. In the

following of this chapter, the critical velocities are computed using these two routes,

by using either (i) Q̃m = Qm,offset or (ii) Q̃m = Qm,offset + δQ̃m(P ) in Eq. (4.3).

The mass flow datasets at fixed pressure 137 and 1723 mbar and the models based on

the two routes (i) and (ii) are shown in Figs. 4–10 (A) and (B), respectively7 . The

surprising maximum in the normal mass flow below Tλ arises from the temperature

dependence of the liquid 4He viscosity which decreases by a factor of two across the

transition, thus leading to an increase of the flow. This increase is then countered

and suppressed by ρn which greatly decreases with the temperature. The critical

velocities extracted from the two aforementioned mass flow datasets are displayed in

Figs. 4–10 (C) and (D). The values of δQ̃m(P ) used in route (ii) are summarized in

Tab. 4–1. The resulting critical velocities extracted for all fixed pressure datasets

following routes (i) and (ii) are displayed as a function of temperature in Figs. 4–11

and 4–12, respectively.

7 The fits for the other pressures are shown in Appendix E.
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Figure 4–10: Critical velocities from the mass flow measured at various fixed pres-
sures in the 3.14 nm radius pore. Vertical axes are shared for sub-figures in the same
row, and horizontal ones are shared for sub-figures in the same column. (A)-(B)
Mass flow as a function of temperature for the 137 and 1723 mbar fixed pressure, re-
spectively. The solid and dashed red lines correspond to the model in Eq. (4.3) with
Q̃m = Qm,offset and Q̃m = Qm,offset + δQ̃m(P ), respectively. The grey shaded area
is a visual representation of Qm,offset which was not subtracted from the datasets
here. (C)-(D) Critical velocities extracted using Eq. (4.6) and Eq. (4.3) with
Q̃m = Qm,offset (open symbols) or Q̃m = Qm,offset + δQ̃m(P ) (filled symbols). The
colored shaded areas represent a confidence interval accounting for the experimental
and fitting uncertainties. The vertical dashed line shows the bulk superfluid transi-
tion temperature Tλ at SVP.
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P (mbar) 137 482 827 1723 2068

δQ̃m (pg/s) 1.58 0.47 0.16 -0.95 -1.10

Table 4–1: Values of the δQ̃m(P ) used to make the normal flow model parameter Q̃m

pressure dependent. They are determined by the difference of Qm,offset and Q̃m(P ).
Qm,offset is determined by the fit of the normal flow model in Eq. (4.3) on pressure
sweep data at fixed temperature above Tλ, shown in Fig. 4–5. Q̃m(P ) are extracted
for each fixed pressure from a fit of Eq. (4.3) on the temperature sweep data. The
data used in the fit are restricted to temperatures above Tλ.

The critical velocities obtained through route (i) display large variations near

Tλ in Fig. 4–11. In this case, the pressure dependence of the critical velocities is

extremely weak below 1.9 K. We note that the higher pressure sets have lower critical

velocities than the lower pressure ones in the range (1.7 K – Tλ). Below approxi-

matively 1.7 K, this pressure dependence is inversed. We do not interpret this as a

regime transition, but rather as arising from systematic errors made in the modeling

of the normal flow component. Indeed, changing the value of Q̃m would shift the

temperature at which this change of pressure dependence is observed. The critical

velocities obtained through route (ii), and shown in Fig. 4–12, display no significant

pressure dependence in the (1.8 K – Tλ) range compared to route (i). Below 1.8 K,

the critical velocities exhibit a larger spread between different pressure sets than the

ones extracted through route (i). The route (i) shows better agreement with pre-

vious experimental results highlighting the pressure independence of the superfluid

velocity at low temperature, where the normal flow is vanishing [19]. However, in the

case of route (ii), the superfluid velocities vanish at the transition, which is expected

for the two-fluid model when ρs → 0 . The values of critical velocities obtained via

the two routes thus provide a confidence interval for the critical velocities extracted
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from the mass flow measurements. This confidence interval reflects the systematic

error in the determination of Q̃m.

The critical velocities below 1.95 K are less dramatically affected by the route

used to subtract the normal flow component. This is because the normal component

density ρn decreases rapidly with the temperature and thus the percentage of the total

mass flow in the normal phase decreases as well, leading towards a pure superfluid

flow around 1 K. Moreover, by excluding data in the vicinity of Tλ in our analysis, we

also minimize the systematic error arising as previously discussed in section 4.1.3. In

next section, we will therefore only discuss critical velocities at temperatures below

1.95K.
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Figure 4–11: Critical velocities computed by subtracting the normal flow component
modeled by Eq. (4.3) with a constant Q̃m parameter. The vertical dashed line shows
the bulk superfluid transition temperature Tλ at SVP.
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Figure 4–12: Critical velocities computed by subtracting the normal flow component
modeled by Eq. (4.3) with a pressure dependent Q̃m parameter. The pressure
dependent deviations from Q̃m = Qm,offset, δQ̃m, are listed in Tab. 4–1. The vertical
dashed line shows the bulk superfluid transition temperature Tλ at SVP.
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4.1.5.2 Temperature dependence of the critical velocities

The extracted superfluid critical velocities are shown as a function of reduced

temperature, t ≡ 1 − T/Tλ, in Fig. 4–13 for two lower pressure datasets.
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Figure 4–13: Log-log plot of the superfluid critical velocity versus the reduced tem-
perature t ≡ 1 − T/Tλ for the 3.14 nm pore data. The filled symbols indicate the
data used for the power law fit of the data taken at pressure of 482 (dashed line) and
827 (solid line) mbar. The power law relation used in the fit follows Eq. (4.8). The
data at low reduced temperature, i.e. close to Tλ, is very sensitive to uncertainty on
Qm,tot because ρs is nearly zero. The power law is graphed by the dashed lines with
color corresponding to each pressure dataset. The colored shaded areas show the
maximum and minimum uncertainties for all combinations of the power law fitting
parameters.
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Near the bulk superfluid transition, it is well-established that the superfluid

density follows a universal power law form

ρs(t) = ρs,0t
ν , (4.7)

where ν is the correlation length’s critical exponent found experimentally to be close

to 2/3 [23]. Considering a slowly-varying quantum-mechanical wave function with a

phase Φ, the kinetic energy of the superfluid is given by ρsv
2
s/2 = ρs(ℏ2/2m2

4)|∇⃗Φ|2.

From scale invariance, we expect near Tλ the mean square of the superfluid velocity

to scale with the correlation length ξ4(T ) as v2
s ∼ 1/ξ4(T )2 ∼ t2ν . In fact, this result

is only valid at temperatures very close Tλ, i.e for t ≲ 0.1. From this hyperscaling

analysis, there is a priori no reason to expect a power law behavior in the superfluid

velocity over a wide range of temperatures away from Tλ.

However, the data shown in Fig. 4–13, appear to follow a power law of the form

vc(t) = vc0t
α, (4.8)

where vc0 is the superfluid critical velocity at T = 0 K. For our pore, the power

law yields an exponent α equal to 0.44 ± 0.09 and 0.48 ± 0.09 for the 482 mbar

and 827 mbar pressure datasets, respectively. Critical velocities extrapolated at zero

temperature are vc0 = 14.5 ± 1.1 m/s and vc0 = 15.4 ± 1.2 m/s for both pressures,

respectively.

In contrast, the superfluid velocities in a larger pore (7.81 nm radius), as shown

in Fig. 4–14, display a significantly distinct exponent equal to 0.66 ± 0.05 and the

zero-temperature extrapolated critical velocity is vc0 = 30.1±2.4 m/s. Other work in

nanoporous material such as Vycor R⃝ reported in Ref. [20] found power law behavior

close to the transition temperature with exponents close to the three-dimensional
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bulk value, i.e. ν ≃ 0.67. While not a proof given the limited range in temperature

explored, the appearance of a smaller non-universal exponent when the dimension-

ality is reduced is consistent with expectations from quantum hydrodynamics in

1D, whereby increased thermal and quantum fluctuations should prohibit long-range

order. In that limit, it is expected for superfluidity to become governed by non-

universal power laws as a function of the systems’ details, such as pore length and

size, rather than a universal critical exponent, as in the bulk case.

In the next section, experimental data for the superfluid flow will be compared

with previous measurements conducted in larger single nanopores [2, 3]. This will

allow us to highlight the quasi–one-dimensional behavior observed in the 3.14 nm

pore. For the sake of readability, only the data extracted from route (i) will be used

in the plots, however the confidence interval will be used for systematic uncertainties.
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4.2 Comparison with previous studies

4.2.1 Critical velocity versus pore radius

The superfluid critical velocities extracted from measurements in larger single

pores are displayed as a function of temperature in Fig. 4–14, together with the

data presented in the previous section. As mentioned in section 4.1.3, the pressure

dependence of the velocities in the smaller pore is weaker than for larger pores.
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Figure 4–14: The superfluid critical velocities are shown at several pressures below 1
bar for three different nanopore radii. The filled symbols refer to the 3.14 nm pore,
the open symbols to the 7.81 nm one and the half-filled symbols a 20 nm pore from
a previous study [2]. The dashed lines are fits using the power law from Eq. (4.8).
The thicknesses of the membranes for the 20 and 7.81 nm pores are 50 and 30 nm,
respectively. Source: [1].

The larger pores have a smaller aspect ratio L/R and a relatively small length

compared to the porous media used as superleaks to filter Helium II from Helium I

[20]. This likely explains why the pressure dependence of the superfluid velocities is
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stronger in the larger pores, as the Helium I might be less efficiently filtered out over

distances comparable to the membrane thickness and so it contributes more to the

measured flow. An inspection by eye of the data plotted in Fig. 4–14 readily shows

the superfluid velocities being smaller in the R ≃ 3.14 nm pore, at similar pressures

and temperatures. Such suppression of the flow velocity as the radius is decreased is

in stark contrast to the behavior described by Eq. (2.37), i.e. vc,F ≃ κ0
4πR

ln(2R/a0),

predicted by Feynman, and observed in larger apertures and nanoporous materials

[24]. To illustrate this last point, critical velocities from previous studies of super-

fluid flow through channels of sizes ranging from centimeters down to a few tens of

nanometers are displayed in Fig. 4–15, together with the data from Fig. 4–14, and

the predictions from the Feynman model.

From our data, it is clear that Feynman’s model does not predict the correct

trend of the critical velocity at the nanometric scale. This early model of dissipations

in superfluid flow via production of vortices does not address either the rate at which

those are produced. Anderson [27] proposed, in analogy with the Josephson effect

in superconductors, that a steady state non-entropic flow may be achieved at a

critical velocity vc via a mechanism that unwinds the phase of the order parameter

in 2π quanta (cf. Eq. (2.25) from section 2.4.1). Such “phase slips” (or vortices)

occur at a rate Γ, and correspond to a process for which the amplitude of the order

parameter Φ would instantaneously be suppressed to zero at some point along the

nanopore. This process can be driven either by thermal or quantum fluctuations.

In the temperature range of our experiment, we however expect thermally-activated

phase slips to dominate. Using a Gibbs–Duhem relation at constant temperature to

convert a pressure to a chemical potential difference, energy conservation dictates

that there must exist dissipation mechanisms in the nanopore occurring at a rate Γ
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Figure 4–15: Critical velocities at temperature T = 1.5 K from Fig. 4–14 (color) are
displayed alongside with critical velocities from various previous work (white squares,
diamonds, circles and triangles) summarized by Varoquaux [24]. The squares and di-
amonds correspond to pressure driven AC flow experiments with circular nanopores
in nanoporous 5 µm thick mica [25] and in ∼100 nm thick nickel foil [26], respec-
tively. The circles represent a homogenous set of data and the triangles represent a
heterogeneous set of data collected from various types of experiments (heat flow, os-
cillations) for which vc was found independent of the temperature [24]. The outliers
triangle data point at larger radius is a thin film experiment. The superfluid critical
values are all quoted at 1.5 K, since earlier experiments were not performed at a
lower temperature. The dashed line represents Feynman’s critical velocity, described
in Eq. (2.37).
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given by

hΓ = m4∆P
ρs

− 1
2m4v

2
s . (4.9)

Experimental estimates of Γ were first made by Trela and Fairbank [28], who found

Γ ∼ 1 Hz for superfluid flow through constrictions with R ∼ 10−4 m. Using Eq.

(4.9) with our range of values for ∆P and vs , we estimated that Γ ∼ 3–5 GHz,

which is well below the flow rate of 7.5 × 1012 atoms/s measured in our smaller pore,

yet approaching the quantum of mass flow given in natural units by Q0 = m2
4/h ≃

1010 atom/s at one bar differential pressure and fluid density taken at SVP.

In the next section, we will present very recent theoretical work regarding the

dissipation rate in superfluid [4] that builds on previous seminal works of Langer and

Fisher [29]. Strikingly, this new model accounts properly for the critical velocity as

well as the temperature and nanopore size dependences found in our experiment.
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4.2.2 Beyond the Feynman critical velocity

Feynman’s prediction for superfluid critical velocity in confined geometries, Eq.

(2.37), is based on the assumption that the nanopore radius R is much larger than

the vortex core radius a0, which he had arbitrarily estimated to be 0.4 nm, close to

the 4He atomic spacing [30]. Our smallest pore radius is only one order of magnitude

larger than a0. Thus, a change of regime as we approach this critical length scale

seems plausible. Indeed, we indicated in previous section that the trend of our

experimentally determined critical velocities, as the pore size decreases, contradicts

Feynman’s prediction. In this section, we will describe a new model which suggests

that our smallest pore stands at the edge of a crossover region where dissipations are

further enhanced with the decrease of the pore’s size.

We begin by considering an early model of dissipation in the form of thermally-

activated vortices [29]. The energy cost of a vortex creation along a superfluid flow,

Etot, is a balance between the condensation energy inside the core of the vortex, E0,

and the kinetic energy due to the circulation of superfluid around the vortex core,

Etot = E0 + p⃗ · v⃗s. (4.10)

Here, p⃗ is the momentum of the vortex and v⃗s is the superfluid velocity, both with

respect to the rest frame. For ring vortices created within the flow through a long

pore or channel (i.e. with an aspect ratio L/R of ten or more), it can be shown that

Etot is a function of the vortex radius r [4]. In the limit where r/a0 ≫ 1, Langer and

Fisher [29] predicted the existence of a critical vortex radius rc for which Etot(rc) is

a local maximum, as illustrated in Fig. 4–16. This critical radius arises from the

creation of vortices. Vortices with a radius r larger than rc will lower their energy

by expanding further, whereas vortices with r < rc, will tend to collapse.
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Langer and Fisher assumed the height of the energy barrier to be Emax ≡

Etot(rc), and that it can be used as an estimate for the free energy difference δF

between a metastable state without vortices and a stable state with vortices. Re-

stricting themselves to temperature-dependent critical flow velocities, they linked

Emax directly to Γ, the rate of vortex creation inside the superfluid, i.e to phase slip

events, with an Arrhenius law of the form

Γ ≃ Γ0e
−βδF = Γ0e

−βEmax , (4.11)

where β = 1/kBT and Γ0 is a rate, referred to as the attempt rate (or attempt fre-

quency). Namely, Γ0 corresponds to the phase space available for vortices excitations

and depends on the vortex type as well as the temperature [4]. When the channel

radius is such that R < rc, the maximum size of a vortex ring is then constrained by

the radius R of the channel. The energy barrier for their creation is thus lowered,

leading to an increase in dissipation. It is interesting to note that their estimate of

rc ≃ 3 nm is conspicuously the length scale of the smallest pore measured in this work.

The suppression of the experimental critical velocities as the pore radius decreases

at T = 1.5 K, as shown in Fig. 4–15, can therefore be interpreted as a crossover to

a regime where the flow is dominated by the physics inside the channel.

Building on the work of Langer and Fisher, recent theoretical work by Del

Maestro and Rosenow quantitatively describes the critical velocity temperature and

pore size dependence for two different pore geometries, i.e. a pinhole (orifice) and

a cylindrical channel [4]. They determined the energy barrier Emax for thermally-

activated creation of both line and ring vortices as a function of superfluid velocity

vs, pore radius R and a vortex geometric factor equal to x ∈ [−R,R] for line vortices
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Figure 4–16: (A) Energy required for the thermal creation of a ring vortex inside
flowing superfluid 4He through a channel of radius R. The radius at which the energy
is maximum, rc, is special because vortex rings created with a radius r < rc will tend
to collapse, whereas vortices with larger radii will tend to proliferate and slow down
the flow through the channel. (B) A line vortex located at distance x from the center
of the channel. The line vortex begins and ends on the boundaries of the channel.
(C) A ring vortex of radius r centered around the axis of the channel. (B) and (C)
are a reproduction of Fig. 2–14 in section 2.4.3.2.

and r ∈ [0, R] for ring vortices. Both x and r are illustrated in Fig. 4–16 (B) and

(C) respectively.

Using the energy barrier to determine the vortex creation rate at fixed temper-

ature T , in the same spirit as in Eq. (4.10), they found that

Γ = Γ0
(
e−βEmax(vs) − e−βEmax(−vs)

)
, (4.12)

where β = 1/kBT and Γ0 is again the attempt rate. By appyling time-dependent

Ginzburg–Landau theory in the same spirit than the Langer–Ambegaokar–McCumber–

Halperin (LAMH) model for thin superconducting wires [31, 32], they were able to

calculate the attempt rate Γ0, for both ring and line vortices,

Γ0 = 1
τGL

LR

ξ2
4(T )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
πR

ξ4(T ) ring vortices

2π line vortices
, (4.13)
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where τ−1
GL = 16kB(T − Tλ)/h is the Ginzburg–Landau relaxation rate and L is the

length of the orifice, or channel.

To relate Γ to the pressure difference ∆P across the pore through a fixed temper-

ature, they used the Gibbs–Duhem relation8 hΓ = m4∆P
ρs

. Finally, the critical velocity

vc associated with each pore and vortex types at fixed pressure and temperature was

extracted by numerically solving Eq. (4.12). Repeating this procedure for several

pore radii R yields the dashed and solid curves shown in Fig. 4–17. The length

scales and velocities are expressed in natural units of the 4He correlation length at

T = 0, ξ0 = 0.345 · 10−10 m and v0 = κ0/4πξ0 = ℏ/2ξ0m4 = 22.98 m/s, respectively.

We note that ξ0 is effectively pressure independent within the pressure range of in-

terest in this thesis [21]. One important feature of the Bernd–Del Maestro critical

velocity’s model is the absence of adjustable parameters. Our experimental critical

velocities are well bound by these theoretical predictions for ring vortices in orifice

flow. Our smallest pore is even bound by the channel flow, which is consistent with

the increase of its aspect ratio L/R. Interestingly, the smallest pore radius is only a

factor of two away from a region where the critical velocity is predicted to decrease

drastically owing to an increase of dissipation. In this region, the vortices creation

should be enhanced because the energy barrier for vortices creation diminishes as

the pore radius decreases.

8 In their model, the pore has 4He reservoirs located both at inlet and outlet.
Therefore the term 1

2m4v
2
s present in Eq. (4.9) is not needed. For the pressures and

temperatures considered in this thesis, the term 1
2m4v

2
s is always at least one order

of magnitude smaller than m4∆P
ρs

.
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Figure 4–17: Critical velocities prediction for both ring and line vortices inside both
a channel of length L = 103ξ0 (blue) and an orifice of length L = 10ξ0 (red). The
temperature for the prediction was fixed at 0.7Tλ ≃ 1.52 K and the pressure to 500
mbar. The solid and dashed lines represent upper bounds for the critical velocity due
to thermally-activated line and ring vortices, respectively. The black dash-dotted line
is the Feynman critical velocity model, described in Eq. (2.37). Our experimental
critical velocities [1–3] are reproduced in natural units. They are well bound by the
theoretical prediction for ring vortices in orifice flow and the smallest pore falls inside
the channel flow boundary, which is consistent with the increase of its aspect ratio
L/R. Other symbols show mass flow experiments on superfluid helium [25] and on
BEC with 6Li [33] and 23Na [34]. Source: [4].

The temperature dependence of the critical velocities computed with the model

developed by Del Maestro and Rosenow is shown in Fig. 4–18, together with the data

from Fig. 4–15. The experimental critical velocities lie above the theoretical critical

velocity for line vortices but are well bound by the ring vortices’ critical velocity for
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a channel geometry. This indicates, according to their model, that the dissipation

mechanisms limiting the superfluid velocity is the production of ring vortices. Above

1.95 K, the spread in the confidence interval corresponding to the shaded grey area

in Fig. 4–18 becomes too wide to draw any conclusions from the comparison of the

data and the model. It is unfortunately in this region, at the temperature T ∗ = 2.095

K, that the coherence length9 equals the pore radius R = ξ4(T ∗) and that the model

predicts a suppression of the critical velocity. In their theoretical model, the increase

of pressure leads to an increase of the critical velocities. This increase is slightly

smaller than the spread in the confidence interval of our data. However, it is the

same order of magnitude.

In addition we observe that below 1.6 K, the data branch off the predicted

critical velocity. This could be interpreted as the superfluid velocity inside the pore

not reaching the critical velocities. However, as the energy scale of the term m4∆P
ρs

is

more than one order of magnitude larger than the kinetic energy 1
2m4v

2
s , we discard

this interpretation. This discrepancy between the model and the data could be

explained by other dissipation mechanisms which are not accounted for by the model

such as scattering by defects along the channel and quantum phase slips.

As the temperature approaches the absolute zero, the thermal activation of

vortices will eventually be suppressed and this model based on thermal fluctuations

will no longer be valid. Phase slips should still occur but via quantum fluctuations,

i.e. by quantum tunneling through the energy barrier [35].

9 The bulk values of the transition temperature Tλ and the exponent ν are used
to compute the coherence length here.
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Figure 4–18: Prediction of the critical velocity temperature dependence for both line
and ring vortices thermally-activated inside a channel of radius R = 3.14 nm and
length L = 30 nm. The dashed-dotted black vertical line indicates the boundary
where R = ξ4(T ∗). At temperatures lower than T ∗, R > ξ4(T ). The experimental
critical velocities are reproduced from Fig. 4–11 and were extracted with route
(i). The shaded area represents the confidence interval within which lie the critical
velocities extracted from both routes. The line vortices critical velocity is represented
by the solid blue line and the dotted blue line for the lowest and highest pressures of
the experimental datasets, respectively. The ring vortices critical velocity is given by
the dashed and the dashed-dotted blue lines for 137 and 2068 mbar, respectively. The
experimental critical velocities confidence interval is well bound by the prediction for
ring vortices critical velocities and above the line vortices critical velocity limit. Thus,
according to the model, it suggests that line vortices are not the limiting dissipation
mechanisms in this case, as the experimental velocities are larger.
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In this chapter, we demonstrated the measurement of superfluid helium flow

through a single nanopore of ∼3 nm radius and 30 nm long. We determined the

nanopore’s dimensions in situ by fitting conductance models on 4He gas and normal

liquid experimental conductance, Gexp = Qm,exp

∆P
. We observed the superfluid behavior

of the flow in the sudden rise of the mass flow at the bulk superfluid transition

temperature Tλ in temperature sweeps. We discussed two different routes to extract

the superfluid velocities from the total flow measurements using the two-fluid model,

described in Eq. (2.27), and the normal flow model, described in Eq. (4.3). In

addition, we also determined that the normal flow model did not match the pressure

dependence of the observed total flow through the nanopore in the vicinity of the

superfluid transition temperature. We then compared the extracted critical velocities

with measurements made in previous works [2, 3]. From this comparison stem three

important observations: (i) a much weaker pressure dependence for the mass flow in

the smallest pore, (ii) a critical velocity well described by a power law as a function

of the reduced temperature albeit with a non-universal exponent and (iii) decreasing

critical velocities as a function of decreasing radius for pore radii below R = 20 nm,

in stark contrast with what is both predicted by Feynman’s critical velocity model

and previously observed in micrometer-sized channels [24]. We concluded that these

findings indicate that the smallest pore has reached a quasi–one-dimensional regime,

in contrast to the two larger pores. This conclusion was reinforced by comparing the

critical velocities inside the smallest pore with a recent theoretical model developed

by Del Maestro and Rosenow [4]. This model, based on thermal nucleation of vortices

in the superfluid, provides quantitative predictions for the critical velocities inside

pores of different geometries. The temperature and pressure dependences of our

extracted critical velocities were shown to be well bound by the model’s prediction
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of critical velocity due to ring vortices in a channel geometry. Moreover, within this

model, our smallest pore stands at the edge of a region where the superfluid velocity

is predicted to be drastically suppressed due to enhanced vortices creation.
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CHAPTER 5

Conclusion and outlook

5.1 Summary

In this thesis, we reported mass flow measurements of superfluid 4He through a

single nanopore. The overarching goal of this study was the one-dimensional confine-

ment of 4He in order to achieve an experimental realization of a Tomonaga–Luttinger

liquid. We advanced successfully towards this goal by measuring the superfluid 4He

flow through a ∼3 nm radius nanopore and showed that our measurements indicate

a crossover to a quasi–one-dimensional regime. The radius of our pore is a factor 2.5

smaller than previously reported in Michel Savard’s Thesis at McGill University [1].

We compared the mass flow and associated superfluid critical velocities with data

from previous studies [1, 2]. The comparison yields three important findings: (i)

the pressure dependence of the mass flow is much weaker in the pore with a ∼3 nm

radius than in larger ones, (ii) for this small pore, the superfluid critical velocity fits

a power law of the reduced temperature with a non-universal exponent and (iii) the

critical velocity decreases with pore size for pores with radii below 20 nm, in stark

contrast with the behavior predicted by Feynman’s critical velocity model and as

previously observed in larger pores [3].
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We interpret these findings as the signature of a crossover to a quasi–one-

dimensional state whereby increased fluctuations are modifying superfluidity. This

interpretation is further supported by recent theoretical advances in modeling the

superfluid flow inside pores as a function of their size and its temperature [4]. Our

data showed good agreement with this model’s predictions. Moreover, within this

model, our smallest pore’s radius stands very close to the critical pore size at which

the superfluid velocity would sharply decrease due to enhanced thermal vortices cre-

ation.

On the technical side, we have suggested routes for improving the production of

smaller nanopores. We successfully conducted proof-of-concept experiments of the

nanopores’ walls Atomic Layer Deposition coating and it appears as a viable route

to yield nanopores with radii even smaller than ∼3 nm and with different aspect

ratios. Besides, the ability to tune the nanopore’s length will be key asset in order

to probe algebraic decay of the superfluid order parameter in a TLL. In addition,

the most recently fabricated experimental cell at McGill for a dilution refrigerator

extends the range of temperatures for which the superflow can be measured. These

two advances will hopefully lead collaborators to observe crossover to a pure one-

dimensional regime. The lower temperatures achievable, ∼50 mK, will also allow to

probe dissipation in both regimes, i.e. from thermally-activated phase slips, to the

quantum regime where phase slips occur due to quantum fluctuation and tunneling

events through the energy activation barrier [5].
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5.2 Outlook

As we approach the final goal, some assumptions made to model our data will

no longer be valid and hence will need to be questioned. For example, the fluid-

wall interactions will become important when the radii get close to 1 nm. These

interactions are currently neglected in the Langhaar hydrodynamic short-pipe model

we used to model the normal part of the flow. Another assumption we made was

that the bulk values of 4He density and viscosity could be used inside the pore.

We cannot expect this assumption to hold true as the radius of the pore is further

reduced. Ultimately, the density units will have to shift from kg/m3 to kg/m. Recent

numerical simulations studies of 4He inside nanopores provide predictions of the

superfluid density temperature dependence inside pores with 0.3–1.5 nm radii [6, 7].

Yet, an independent experimental determination of the density and superfluid density

inside the confined geometry of the pore for radii in the 1.5–3 nm range would be of

great interest.

These numerical simulation studies bring hope in terms of achieving a one-

dimensional state of matter by confining 4He in a nanopore. Indeed, these simula-

tions used a radius only a factor 2 away from the smallest pore presented in this

thesis. The results of these simulations show that the 4He atoms tend to arrange

in concentric shells centered on the pore axis. Remarkably, they show TLL physics

in the central region. Another interesting finding from these simulations is that the

inner surface of the pore is covered by a few solid-like 4He layers, thus providing

additional confinement1 to the remaining superfluid 4He as well as a screening effect

1 According to Ref. [6], the solid layer thickness could vary from 0.2 to 0.3 nm.



5.2. OUTLOOK 132

from surface defects and from the wall potential of the pore inner surface. Provided

these effects are indeed present in the nanopore, they would tend to increase the

critical pore radius at which a TLL could be realized.

As the channel size of our Si3N4 pores is reduced further, we expect to ob-

serve physics characteristic of a true one-dimensional system. When this is the case,

and according to the TLL predictions, the algebraic decay of the superfluid order

parameter should manifest itself as: (i) a reduction of the superfluid density as a

function of channel length, (ii) the appearance of non-universal power laws in the

mass flow dependence on pressure (Qm,1D ∼ ∆P β) and temperature (Qm,1D ∼ T γ).

Such observations would signal the experimental discovery of a truly one-dimensional

bosonic interacting quantum liquid. Furthermore, diluting a small amount of 3He in-

side the 4He would allow us to study the indistinguishability of fermions and bosons,

as predicted by theory.

The recent numerical simulations of 4He confined in pores and the theoretical

advances modeling dissipation mechanisms in superfluid flow, such as described in

Refs. [4, 6, 7], highlight the importance to keep pushing the limits of this exper-

imental research further, to provide a stable testing ground for TLL physics and

dissipation mechanisms in the fascinating quantum liquids which are 4He and 3He.

We hope that the experimental progress we have achieved in this work will motivate

the next series of efforts to reach the one-dimensional world.
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APPENDIX A

Heat conduction through a solid material

The thermal power Pth due to a temperature gradient along the axis of a cylin-

drical object can be estimated by the following relation

Pth = A

L

∫ TH

TC

k(T )dT, (A.1)

where A is the area of the cylinder’s cross section, L is the cylinder’s length, TH > TC

are the temperatures across the two ends of the cylinder and k(T ) is the thermal

conductivity. The thermal conductivity is temperature and material dependent.
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APPENDIX B

Dilution cryostat cycle

Figure B–1: Dilution cycle as depicted in section 3.1.2. Source: [1].
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APPENDIX C

Capillary circuit inside dilution dry cryostat.

The capillaries between the 4 K plate and the still plate and to the cold plate

have a diameter of 0.006”, while the capillaries from outside to the 50 K and from

to the 4 K plates as well as the return line from the cell have a diameter of 0.030”.

Efforts were made to minimize the thermal link due to helium within the capillaries

by making the capillaries longer and coiling them. Dental floss was used to tighten

the coils together and avoid mechanical vibration.

Plate name T(K) Source (µW) Drain (µW) Total heat (µW)

50 K plate 49 7.0 · 103 2.7 · 104 3.4 · 104

4 K plate 3.2 2.2 · 102 6.8 · 102 9.0 · 102

Still 0.8 5.2 · 10−1 1.6 2.1

Cold plate 0.07 3.1 · 10−2 5.7 · 10−2 8.8 · 10−2

Table C–1: Heat leaks due to the empty lines. Note: the cold plate does not usually
reach 7 mK. Thus, the heat leak correspond to the worst case senario.
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Figure C–1: See Tab. C–2 for dimensions of the capillaries.

Portion of circuit Material diameter length (m)

a1 SS 0.03 (in) 6.4

a2 SS 0.03 (in) 1.37

b SS 0.03 (in) 1

c SS 0.006 (in) 0.2

d CuNi 0.3 (mm) 1

e CuNi 1 (mm) 0.4

f1 SS 0.03 (in) 0.91

f2 SS 0.03 (in) 7.4

Table C–2: SS stands for stainless steel 316 and CuNi for copper nickel.



APPENDIX D

Clausing factor

Figs. D–2 and D–3 show Clausing factor computed by Iczkowski [2] (circles) for

a series of angles of the channel’s opening θ and a series of channel’s aspect ratios

L/R, respectively. A perfect cylindrical tube has an angle of 0◦ and a pinhole has

an angle of 90◦ as shown on Fig. D–1. The dotted lines are guides-to-the-eye.

θ

L

R

F
low

Figure D–1: Reproduction of Fig. 4–3
.
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APPENDIX E

Computation of superfluid velocities for fixed
pressure temperature sweeps

Figs. E–1 to E–5 show the critical velocities from the mass flow measured at

various fixed pressures in the 3.14 nm radius pore. Horizontal axes are shared for

sub-figures in the same column. (A) Mass flow as a function of temperature for the

given pressure. The solid and dashed red lines correspond to the model in Eq. (4.3)

with Q̃m = Qm,offset and Q̃m = Qm,offset + δQ̃m(P ), respectively. The grey shaded

area is a visual representation of Qm,offset which was not subtracted from the datasets

here. (B) Critical velocities extracted using Eq. (4.6) and Eq. (4.3) with Q̃m =

Qm,offset (open symbols) or Q̃m = Qm,offset + δQ̃m(P ) (filled symbols). The colored

shaded areas represent a confidence interval accounting for the experimental and

fitting uncertainties. The vertical dashed line shows the bulk superfluid transition

temperature Tλ at SVP.
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