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Abstract

The equations of motion of a tethered satellite system are highly nonlinear and
should possess many interesting related features: yvet its nonlinear dynamics has never
been thoroughly investigated in previous works. This thesis analyzes the nonlinear
dynamics of two-hody tethered satellite systems using numerical tools of analysis
such as phase plane plots. power spectral densities (PSD’s). Poincaré sections and
first Lyvapunov exponents. as well as approximate analytical methods including the
method of Melnikov. Motion in the stationkeeping phase wherein the tethered system
is just a gravity gradient pendulum is studied. first considering pitch motion only, and
then considering the coupled pitch and roll motions. Regions of regular (periodic or
quasi-periodic) and chaotic motions exist in the planar system for orbits of nonzero
eccentricity, and also in the coupled system for both the circular and elliptic orbit
cases. The size of the chaotic region grows with eccentricity, or in the coupled motion.
circular orbit case. with increasing values of the Hamiltonian. Chaotic libration.
observed in the coupled motion cases. hmits the regular libration region to a region
smaller than simpiyv the libration region of non-tumbling motion. Melnikov's method
applied to the planar motion perturbed by roll (assumed to be small and harmonic}.
showed that such a svstem will always have chaotic motion near the separatrix. The
deployment/retrieval phases are studied next. For a circular orbit. pitch stability is
examined for varving exponential length rates: for the unstable cases. it is compared
to an equivalent uniform length rate scheme. which showed better stability behaviour.
Application of Melnikov's method to planar motion of slow exponential deployment in
a slightly elliptic orbit showed that chaotic separatrix motion will occur if eccentricity
is greater than a critical value. proportional to the exponential length rate constant.

Approximate analytical methods applied to coupled motion of retrieval under a length
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rate control law in a circular orbit. predicted well the characteristics of the pitch and

roll limit cycles response.
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Résumé

Les équations di mouvement d'un systeme de satellites cablés sont grandement
non linéaires et devraient comprendre plusieurs caractéristiques intéressantes: pour-
tant. cette dvnamique non linéaire n’a jamais été étudiée en détail dans de précédents
travaux. Cette these analvse la dvnamique non linéaire de systemes composés de deux
corps cablés satellisés en utilisant des méthodes numériques d’analyse telles que les
diagrammes de phase. la densité de puissance spectrale. les coupes de Poincaré. les
premiers exposants e [Lvapunov ainsi que des méthodes analytiques d"approximation
incluant la methode de Melnikov. Le mouvement pendant la phase de maintien en
position. pour lequel le systeme correspond a un simple pendule soumis au gradi-
ent de gravité. esi ctudié en considérant premierement. le mouvement de tangage
seulement. et deuxirmement. les mouvements couplés de roulis et lacet. Les régions
correspondant aux mouvements réguliers (periodiques et quasi-périodiques) et celles
correspondant aux mouvements chaotiques existent dans le cas d'un systeme plan
pour des orbites d'eecentricité non nulle. et également dans le cas d'un systéme couplé
pour des orbites cirenlaires ou elliptiques. La taille de la région chaotique augmente
avec l'eccentricite ui. dans le cas d'un systeme couplé pour une orbite circulaire. avec
les valeurs croissantes de I'Hamiltonien. L’oscillation chaotique. observée dans les
cas de mouvement couplé. imite la region correspondant aux mouvements réguliers
a une région plus petite que celle correspondant simplement au mouvement de non
renversement. [.a méthode de Melnikov appliquée au mouvement plan perturbe par
le roulis (supposeé faible et harmonique). a montré qu'un tel systeme a toujours un
comportement chaotique pres de la séparatrice. Les phases de déploiement et de
repliement sont ¢tudiées par la suite. Pour une orbite circulaire. la stabilité en tan-

gage est étudiée a travers le taux de variation exponentiel de la longueur: dans les
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cas instables. la stabilité est comparée avec celle obtenue par le procédé équivalent de
variation uniforme de longueur. qui montre un meilleur comportement de stabilité.
L’utilisation de la méthode de Melnikov pour le mouvement plan d’un déploiement
faiblement exponentiel dans le cas d'une orbite légerement elliptique a montré que
le mouvement chaotique pres de la séparatrice se produit si l'eccentricité est plus
grande qu'une valeur critique. proportionelle a la constante de taux de changement
exponentiel de la longucur. Des méthodes analytiques d’approximation. appliquées au
mouvement couplé de repliement contrélé par le taux de variation de la longueur pour
une orbite circulairc. ont correctement preédit les caractéristiques des cycles limites

pour les réponses de roulis et de tangage.
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Chapter 1

Introduction

1.1 Space Tether Systems

1.1.1 Historical Development

The idea of tethers in space is a century old. Tsiolkovsky (1895) suggested
connecting large bodies in space by a long thin string to provide gravity gradient
stabilization. \When the space program became a reality. tethers were first considered
as a means of rescuing stranded astronauts (Starlv and Adlhoch. 1963). Two tether
experiments were carried out during the last two Gemini missions. where the Gemini
spacecraft was scparated from an Agena rocket by a 30 m tether (Lang and Nolting,
1967). In the first experiment the system was spun. to provide some artificial gravity:
in the second. the system demonstrated passive gravity-gradient stabilization. How-
ever. the era of tethers in space began in earnest with Colombo et al. (1974), the
first to seriously consider connecting heavy masses in space with a very long tether.
Colombo proposed a “Shuttle-borne Skyvhook'. a scientific satellite extended below the

Shuttle to conduct low orbital altitude research. Colombo’s proposal led to investi-




CHAPTER I. INTRODUCTION 2

gations into the potential uses. dynamics and design of the Tethered Satellite System
(TSS), as well as of other space tethered systems. Detailed historical recounts of
space tethered systemns include those of von Tiesenhausen (1984) and Grossi (1986).

TSS-1. the maiden mission of the American/[talian TSS program. flew in 1992
but with a limited success. The subsatellite could be depioved from the Atlantis
Shuttle only up to 2350 meters instead of the planned 20 km; however. tether motion
was successfullyv controlled. TSS-1R. the reflight mission took place in early 1996.
Although the tether eventually snapped so retrieval could not occur. the full 20 km
length of the tether had been recached and maintained for several hours allowing much
dvnamical information to be obtained. NASA flew SEDS (Small Expendable-Tether
Deployment System) [ and H. in 1993 and 1994 respectively. succeeding to deplov a
probe from the second stage of an orbiting Delta II rocket to a distance of 20 km.
Several sub-orbital tethered flights have also taken place. Of note are the Canadian
endeavours OEDIPU'S ‘A and C (Observations of Electric-field Distributions in the
lonospheric Plasma a ['nique Strategy), involving 1 km long tethers. launched in
1989 and 1995 respectively. Several other tethered missions are planned for the near

future.

1.1.2 Applications

The motivation behind the research on the dynamics. control. design and testing
of various space tether syvstems are the potential applications. which make up a whole
new means for space utilization. The proposed applications are great in number and
in variety. Theyv can be free flving tethered systems. or involve the Shuttle or Space
Station. Some have already been tested in the trial flights that have taken place. as

cited in the preceding section: others are near. or strictly far term in demonstrability.
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The proposed applications of tethered systems in space are well reviewed by Bekey
(1983). and in a detailed and complete summary of their study to 1989 included in
the NASA Tethers in Space Handbook edited by Penzo and Ammann (1989). The
following is a brief discussion of the general categories of the potential uses of space
tethered systems. with some examples.

Scientific Uses: Scientific study of regions of the earth’s atmosphere. ionosphere and

magnetosphere. which are otherwise inaccessible. and gravimetric measurements would
be possible via a probe tethered below the orbiting Shuttle or space platform (low
orbital altitude rescarch). Similarly towing an aerodynamic model at such altitudes
would create a space-based “wind tunnel” providing aerothermodynamic conditions
not achievable in ground-based facilities. I[n the long term. tethered penetrators
could be launched from a spacecraft to collect samples from the surfaces of asteroids
or Mars.

Electrodynamic Uses: The motion of an orbiting insulated conductive tether through

the earth’s magnetic field induces a voltage across the tether: an electric current will
be drawn from the the ionospheric plasma through the tether. The tether becomes
a highly etficient generator of electric power for on-board electronics. at the expense
of orbital energy. Alternatively. feeding current through the tether from an on-board
power supply such as a solar array. reverses the process such that the tether acts as
a motor. producing a propulsive thrust without the use of propellants. [n another
application. the tether current could be modulated to generate low frequency radio
waves. such that the tether acts as a worldwide communications antenna.

Artificial Gravity ['ses: Tether end-masses experience the tether tension as artificial

gravity. in either a gravity-gradient stabilized configuration along the local vertical

(rotating about its centre of gravity once per orbit) or in a rotating configuration
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(rotating more rapidly than once per orbit). The level attainable increases with the
distance from the centre of mass of the system. and rotation rate. Artificial gravity
approaching a magnitude of 1 g could be created on the Space Station by extending
a counterweight along the local vertical with a very long tether: or. more practically,
by using a moderate tether length and inducing a slow spin about the centre of
mass. In the long term. a spinning tethered system could provide an artificial gravity
environment acceptable for manned interplanetary travel. A number of controlled
gravity applications for laboratory or industrial space uses have also been proposed.
often in conjunction with the Space Station.

Transportation ['ses: By permitting momentum exchange to occur between two space-

craft. tethers could replace or reduce the need of propellants in orbital transfer ma-
neuvers. In a tethered system stable along the local vertical in a circular orbit. the
upper mass travels at an orbital circular velocity too fast for its altitude. while the
lower mass travels at an orbital circular velocity too slow for its altitude . If the
constraining tether is cut. the upper mass will enter an elliptic orbit with a higher
apogee and the lower mass will enter an elliptic orbit with a lower perigee. Thus. to
cite two applications of “tether propulsion’. the Shuttle could boost a payload into
a higher orbit while simultancously deboosting itself back to Earth. or the Shuttle
could be deboosted from the Space Station while simultaneously boosting the Station
itself into a higher orbit.

Constellations: \ tethered constellation i1s a collection of more than two masses in

space connected by tethers in a stable configuration. Various constellations have
been proposed. in either one. two or three dimensions. using different combinations of
stabilizing lorces. A space elevator (or crawler) running along the connecting tether

between the Space Station and a platform is one proposed three-body application
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of a one-dimensional. gravity-gradient-stabilized constellation. A two-dimensional.
gravity-gradient and air-drag stabilized “fish-bone™ constellation has also been pro-
posed. where via tethers a number of platforms are separated but remain physically

connected to the Space Station for ready access and common power supply.

1.2 Literature Review

The equations governing the attitude dynamics of tethered systems are highly
nonlinear and promise a rich body of nonlinear and possibly chaotic dynamics. The
attention of the previous investigations of tethered satellite svstems (well reviewed
to 1986 in the survey by Misra and Modi. 1987 and by Beletskii and Levin. 1993)
usually has focussed on the control of the tethered systems dynamics. specifically the
control of the unstable retrieval dynamics. rather than on the fundamental nonlinear
dynamical behaviour. The following is a review of literature which is of significance to
the nonlinear dvnamics of two-body tethered satellite svstems (such as the Shuttle-
supported TSS). The dynamical model of interest considers only rotational motions
{elastic oscillations of the tether are ignored). point-mass end bodies. a tether of
negligible mass in the variable length phases. and ignores aerodynamic drag. but the
motion remains complex. with nonlinear coupling between pitch and roll motions.

This literature review considers first the stationkeeping stage of operation. and
the deployment and retrieval stages together afterwards. In the stationkeeping stage

the tether length is constant. while it varies during deployvment and retrieval.
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1.2.1 Stationkeeping Phase

In the stationkeeping phase. the tethered system is just a gravity gradient pendu-
lum. or a dumb-bell satellite. for which there does exist a fair amount of study of its
nonlinear dynamics. often considered as a special case of the general gravity gradient
satellite.

Hughes (1986) rceviews well the work done on gravity gradient satellites in the
1960°s. These studies used approximate analytical and numerical techniques for both
the circular and elliptic orbit cases. for both planar (pitch motion only). and three-
dimensional coupled motion. Of note is the work done by Brereton and Modi (1967)
and Modi and Brereton (1969a. 1969b) who used Poincaré sections to study the limit-
ing stability region and periodic solutions of the planar. elliptic orbit problem. Modi
and Brereton (1963) and Modi and Shrivastava (1971a. 1972) also used Poincaré sec-
tions in the stabilitv analvses of the Hamiltonian problem of coupled motion in a circu-
lar orbit and observed “island” and “ergodic” solutions within the region of guaranteed
stability {non-tumbling motioni defined by zero-velocity curves. The coupled motion.
elliptic orbit case was studied by Modi and Shrivastava (1971b) who presented sta-
bility plots showing allowable impulsive disturbances for non-tumbling motion. More
recently. Melvin ( 1938a) generated analytically and numerically the nonlinear normal
mode of the gravity gradient pendulum in a circular orbit. In Melvin (1988a. 1988b)
numerical integrations of the equations of motion also revealed some solutions which.
plotted on the unit sphere. appeared pathological or chaotic. for the cases of a cir-
cular orbit and a slightly elliptic orbit. No attempt was made to confirm that these
solutions are indeed chaotic as is defined in the nonlinear dynamics literature.

The gravity gradient pendulum. as a special case of the gravity gradient satellite.

has been studied for the planar problem from a modern nonlinear dynamics approach.
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where analytical and numerical nonlinear dynamic analysis techniques are used to
study the nature of motion. regular or chaotic. (Numerical tools such as spectral
analysis. Poincare sections. and Lyapunov exponents, and the analytical method of
Melnikov have been applied to a variety of nonlinear engineering systems in the last
fifteen vears. Their application and interpretation are well explained in Moon (1992)
or Lichtenberg and Licberman (1990). for example).

Tong and Rimroti (1991a) generated Poincaré maps for planar motion for a variety
of orbit eccentricities. and found chaotic regions for non-zero eccentricity. They also
applied the analytical technique of Melnikov to the system: the conclusion. chaotic
motion possible for non-zero eccentricity. although valid only for small eccentricity
due to approximating limitations imposed by the analvtical method. corroborated
their numerical investigation.

Karasopoulos and Richardson (1992) and (1993). extended the former analysis
by numerical methods. including Poincaré maps. bifurcation diagrams and Lyapunov
exponents.

The effect of damping on the system was studied numerically by Tong and Rimrott
(1991b) and by Melnikov's method by Tong and Rimrott (1993). For other variations
of the basic planar syvstem. Melnikov's Method has been applied by: Seisl and Stendl
(1989) (acrodvnamic drag). Koch and Bruhn (1989) (oblate central body} and Gray
and Stabb (1993) ' control). All these works are for planar motion.

Other than the Poincaré sections presented by Modi and Brereton (1968) and
Modi and Shrivastava (1971a. 1972) as mentioned above. the techniques of modern
nonlinear dvnamics have not been previously used to study the three-dimensional
coupled motion of the gravity gradient satellite. However such numerical techniques

have been applied to the three-dimensional dynamics of spinning satellites (Cole and
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Calico. 1992 and Guran. 1993).

1.2.2 Deployment and Retrieval

In the cases of tether deplovment and retrieval. no extensive nonlinear analysis.
in terms of the geometric viewpoint of nonlinear dynamics, has been carried out.
Some phase plane plots for exponential length rate retrieval for the planar system
in a circular orbit were included in the work of Fleurisson et al. (1993). Proposed
control schemes such as the length rate control law of Monshi (1992) and Monshi et
al. {1991) were found in numerical simulations to confine growth of pitch and roll
motions during retrieval 1o limit cycles. which are particular to nonlinear systems.
In Monshi (19921 and Monshi et al. (1991) approximate analvtical methods were

applied to pure in-plane and out-of-plane motions.

1.3 Objectives and Scope of the Thesis

This objective of this thesis is to explore the fundamental three-dimensional
dynamical behaviour of tethered satellites. using various techniques of nonlinear dyv-
namics analvsis. The analysis uses primarily the modern numerical tools of nonlin-
ear dyvnamics. with numerical integration of the governing equations of motion and
presentation of phase plane plots. time histories. power spectral densities (PSD’s).
Poincaré sections and [Lyvapunov exponents. The analyvtical method of Melnikov is
also applied as well as classical approximate analytical methods.

The thesis considers the atiitude dyvnamics of a two-body tethered system whose
centre of mass travels in a Keplerian orbit. Aerodvnamic forces are ignored. The

end masses are considered as point masses so that their three dimensional rigid body
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dynamics is ignored. The tether is considered to have negligible mass in the vari-
able length analyses. The elastic oscillations are ignored and the tether is assumed
to remain straight. Thus only the librational dynamics of the tethered system is
considered.

All the three phases of operation. stationkeeping. deployment and retrieval are
considered.

The stationkeeping case considers planar as well as three-dimensional coupled
motion. in circular and elliptic orbits. The numerical tools as well as Melnikov's
Method (for an idealization of the couplied system). are used to identifv regular or
chaotic motions. s discussed. such a nonlinear dvnamics analvsis has been carried
out earlier for a system that is similar to a tethered system in the stationkeeping
phase. i.e.. for the gravity gradient pendulum. in the planar case. but not for the
three-dimensional case.

The deplovment/retrieval phases are also studied. For a circular orbit. considering
planar motion only. pitch stability is examined for different exponential length rates
by analyvsis of the fixed points and the phase plane. which has not been carried
out previously in any systematic manner. For the unstable cases. the exponential
length rate scheme is compared to an equivalent uniform length rate scheme. using
time-histories and the phase plane. Melnikov's Method is applied to the case of
slow exponential deployvment in a slightly elliptic orbit to determine the condition for
chaotic motion. Coupled three-dimensional motion in a circular orbit is considered
next: the limit cycle motion which has previously been observed to occur in numerical
simulations of controlled retrieval. is examined here for a given length rate law by

application of approximate analytical methods to the coupled motion.




CHAPTER 1. INTRODUCTION 10
1.4 Organization of the Thesis

The equations of motion of the system are derived in the following Chapter.
The stationkeeping case is analvzed in Chapter 3. The planar motion is examined
first, for a circular orbit as well as for elliptic orbits with varying eccentricities. The
coupled pitch and roll motion in circular and elliptic orbits is studied next in the
same Chapter. Chapter | examines dyvnamics for various cases of the deployment and
retrieval phases. Finallv. Chapter 5 contains the conclusions and recommendations

for future work.




Chapter 2

Dynamical Formulation

2.1 Introduction

This Chapter begins with a general description of the svstem under study and
a statement of assumptions. Then after describing the kinematics. the kinetic and
potential energy expressions are derived and the equations of motion are obtained

using the Lagrangian procedure. A brief analysis of the Hamiltonian ends the chapter.

2.2 System Description

The two-body tethered satellite svstem considered in this thesis is shown in
Figure 2.1. The two end-bodies are assumed to be point masses. The connecting
tether is assumed to remain straight. The elastic oscillations of the tether tincluding
twist) are neglected. Gravity is considered to be the only external force acting on the
system. The centre of mass of the svstem is assumed to follow a Keplerian orbit.

At any instant. the tether has a length ¢ and corresponding mass m, {constant dur-

ing stationkeeping. variable during deployment/retrieval). The mass from/to which

11
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the tether is deploved/retrieved. denoted by m;, thus also may depend on time: the
other end-mass is denoted by m; and is constant.

The librational motion of the system is described by two rotations of the tether
from the local vertical: a pitch angle a and a roll angle ~. given in that order in and
out of the orbital plane. respectively.

The energy expressions and equations of motion of the system are known (e.g.
Modi et al. (19821 for a circular orbit. Xu (1984) for an elliptic orbit and additionally
accounting for elastic vibrations of the techer) but are rederived here for completeness.

[n this thesis the length rate is specified and thus is not considered a generalized

coordinate when deriving the equations of motion.

2.3 Kinematics of the System

Referring again to Figure 2.1. the kinematics of the system can be described as
follows.

The position of the centre of mass of the svstem C in its orbit around the Earth is
defined by the true anomaly § and the radial coordinate R.. Two rotating coordinate
svstems are used with origin at the centre of mass of the svstem. The coordinate
system r..y,.z has r, axis along the orbit normal. y, axis radially outward away from
the earth along the local vertical. and =, axis along the local horizontal completing the
right hand triad. The coordinate system z.y. = i1s obtained via the rotation a (pitch)
about the r, axis. vielding the axes r'.y'. =’ followed by the rotation =+ (roll) about
the =’ axis. At anv instant. the y axis and the tetherline coincide. Rotation about
the tether axis (vaw) is assumed to be of no consequence. The set of unit vectors

associated with the axes r,.y,. 2, and r.y,z are 1,.;,.k, and ., k. respectively.
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The position vectors of masses m, m, and an elemental mass of the tether with

respect to the centre of the earth. are respectively

ﬁlzﬁc_{hFlT -!?2’—" C+F~? —EC=FC+F!' (2.1)

Here. R, is the position vector of the centre of mass of the system with respect to
the centre of the earth. and 7). 7, and 7,, respectively denote the position vectors
of masses m;. m, and an elemental mass of the tether. with respect to the centre of
mass of the syvstem.

R. can be expressed as

R.=R.J,. (2.2)

By definition of the location of the centre of mass of a system. the following
relation holds:

my Ty + m; F2+/ redm, =0. (2.3)
my

Referring to the r.y.: coordinate system. one has
=ryj) =tl—rjj. Fo=rj =(s=r)j. (2.4)

where r;. ry and r. are the magnitudes of the position vectors 7). 7,. and F,. while the
spatial variable s is measured along the tetherline from mass m, to an elemental mass
of the tether. The magnitudes r; and r, can be solved for by substituting Eq. (2.4)
into Eq. (2.3). and noting that m, = p,£. where p, is the mass per unit length of the
tether. Thus

¢
—my ry +my(€—ry)+ p /

[e]

(s — r‘l)ds}] =0.

which vields

ri =FfHmy+m/2)/m. ro=(m+m/2)/m. r,=s—Fma+m/2)/m. (2.3)
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with m = m, + m, + m,. the total svstem mass.
The velocities of masses m;. m; and an elemental mass of the tether with respect

to the centre of the carth. are given by, respectively

Bi=R.+7. Ro=R.+7. R =R.+F, . (2.6)

The velocity /. of the centre of mass of the system with respect to the centre of

the earth. can be expressed as

R. =R, +ROF,. (

[SV]
-1

where ¢ is the orbital angular velocity.
The velocities of masses m;. m, and an elemental mass of the tether. with respect

to the centre of mass. 7;. 7> and 7,. are respectively

Fl=—f ] +TxF (2.8)
Fa= FyJ+T X7 (2.9)
Fo= F ) +TXT. (2.10)

Here I is the angular velocity of the system. expressed in the r.y. z svstem as
S=(f+a)cos~i1—(0+a)siny )+ 3 k. (2.11)

[n determining r,.r,. and r, using Eq. (2.3). one takes into account that although
m, and total mass m are constant. mn, = p{ = m,({/€). and m; = —rn, : one also

recognizes that s = /.
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2.4 Kinetic Energy of the System

The kinetic energy of the svstem is

T = T['i"['g‘.L'Tg

1
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tof —

+ :)-m[?l'r1+mgr2'7"2+/ r!-r,dm, .
me

Since Eq. (2.3) holds. the second term is zero and

T = o, dme . (2.12)

R 1 . . . .
m /{.ﬁ'lf..+; my T, T +my FQ-F-3+/
m

<) —

t
The first term is the orbital kinetic energy of the centre of mass. T,,,. Using Eq. (2.7).
Tore = 1—, m (f?f’ ~ f? 0“’) . However the orbit has been assumed to be Keplerian and
only the attitude dynamics. the motion of the system about the centre of mass and
to which the sccond term in Eq.(2.12) is related. is of interest. Rewriting this term
by substituting Eqgs. (2.1) -(2.3) and Eqgs. (2.8) -(2.11) into Eq.(2.12) and carrying

out some algebra. one obtains:

- 1 P ) .3 l :
I'=Tos~5m. ¢ [(0 + @)% cos® 4 -+-‘,'“} +5 [y (my + my,)/m]F*. (2.13)

where m. 1s an equivalent mass dependent on time defined by

m, = [m(m; + m¢/3) + (m,/3)(my - m,/4)] /m (2.14)
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2.5 Potential Energy of the System

The potential energy of the system arises due to the gravitational field of the
earth and is given by

my

- ‘“[rf’ /m ﬁl}

_ my mt
B |R.+7 | |R+ra| me | Re + 7, |

where x is the gravitational constant

L

of the earth (i.e.. product of the universal
gravitational constant and the mass of the earth)

Now

'R+ Ty :

— ) —_}o' FI'Fl —%
= /)) -vf- .
[ R. 2 J

where Eq. (2.2). R. =

—~
0
-+
T
|
!
&
+
[EV]
=]

(2.15)

R. j,. has been used. Expanding binomially the right hand

side and ignoring third and higher powers of | 7| |/ R.. one obtains

! - p-l I_j»:'F!_Fl'Fl—:s(jo'Fl)l
i/—f~*’-'li .

2
3R (2.16)
Substituting this expression and the corresponding expressions for 1—,—3—1;—' and

> I3 2
—1—into Fq. (2.15) and rearranging. gives
| Rr.T"f | .

. jom i — -
V= - — — |, F, + myTy + rdm| -
HC Rg ™me °
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The first term is the orbital potential energy of the centre of mass. V,,,. The second
term is zero due to Eq. (2.3). The third term is found by substituting Eqs. (2.1)-(2.5).

and the following relation for the unit vector j, expressed in the z,y. > system:
Jo =cosa sinyi+cosa cosv j —sina k. (2.18)

Then. after some algebra. one obtains

V=1 + )LR‘ m. €* [l — 3cos’a cos? | . (2.19)

where m. is given by Eq. (2.14). i.e.. the same equivalent mass that appeared in the

kinetic energy expression.

2.6 Equations of Motion

The Lagrange equation is used to obtain the equations of motion from the kinetic

and potential energy expressions:
d (dT aT oV o
—|=]- —+—=0Q.. (2.20)
dt \ dq, dg, g,
where ¢, are the generalized coordinates. and @, are the associated respective gener-
alized forces resulting from the nonconservative external forces.

The generalized coordinates relevant to the attitude motion are a and ~. In
the deplovment/retrieval schemes considered in this thesis. £ is specified through an

algebraic or differential equation and is not a generalized coordinate. The equations

of motion governing pitch and roll are then found to be

cos” ~ {(('i +0) + '[l(f/f) {m] (m2 + 3 m,) /m m,,] -2 tan ";’} {a + 4

o
S}
—
~—

+ (Bu/R?) sina cosa} = Qa/m, £2. (2.
1

S+ 2660 [my (my+ yoe) fmome]

+ {(a+0) +(3pu/RY) cos’ a] siny cosy =Q./m, *(2.22)
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Environmental effects and control torques are not considered in this thesis and thus
Q. and Q. are zero.
The independent variable can be changed from time £ to true anomaly 6 using the

second and third of the following relations which hold for a Keplerian orbit.

R. = a(l —€e)/(l +¢ cosf). (2.23)
0 = [(1+¢cos0)?/(1—€)*|n. (2.24)
noo= aMe] (2.25)

where €. a and n are the orbit eccentricity, semi-major axis. and mean orbital angular

rate . respectively. Then. Eqs.(2.21) and (2.22) transform to (with @, and Q, =0).

cos” 4 {a" - i‘.’(['/f) {ml (mg +1 m,) /m m,,] -2+ tan~ — F} (o' +1)
~ 3¢ sina cosa} =0. (2.26)
-7~ {‘_’(['//) [rnl (7712 + 1 m,) /m m,?E - Fl -~
- i'.”/ + 1) =3¢ cos® (1 sin ~ cos~ = 0. (2.27)

where prime refers to differentiation with respect to 8. and £ and (7 are functions of

eccentricity ¢ and 6 as follows:

F=2csinf/(l +¢ cos). (=1/(1 +¢€ cosb). (2.28)

The equations of motion of the two-body tethered system considered here are
shown above in their most general form. During the stationkeeping phase of op-
eration. the length of the tether is constant. i.e.. { = 0. During deployment and

retrieval. the tether length varies with time along with the tether mass: to simplify
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the equations somewhat the tether mass is assumed negligible compared to m, and
m3. The equations arc analyzed along with the equation specifying the length rate.

The equations of motion remain. even with such simplifications. non-autonomous
for eccentric orbits. and highly nonlinear. including nonlinear coupling of in~plane and
out-of-plane motions. Thus. an analytical exact solution can be obtained only for a
very special case. \x described in Chapter 1. some approximate nonlinear analysis
is carried out in the thesis. but mostly numerical solutions of different cases of the

above equations are obtained.

2.7 Hamiltonian of the System

The Hamiltonian £/ of a dvnamic svstem is constant if there are no nonconser-
vative external forces and time does not appear explicitly in the energy expressions.

The Hamiltonian can be expressed as

H=T,-Ty~1{". (2.29)
where the general expression for T is

In the above equation. 7,.T;. and T, are functions respectively quadratic in. linear
in and independent of the generalized velocities ¢,.

There are no nonconservative external forces in the present syvstem. The attitude
motion is under consideration assuming a Keplerian orbit which implies absence of
environmental disturbances. [f the energy expressions corresponding to the attitude
motion. T, =T ~ 7T .5 and 1,,, = V" — 1., do not involve time explicitlyv. then the

corresponding Hamiitonian for the attitude motion is a constant of motion.
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T, and V7., can be expressed with true anomaly as the independent time variable

using the Keplerian relations Eqgs.(2.24) -12.23) as:

1 : .
. 2 s R
rz:z = E~{—m._£z (1 "'Q'J-COS.’{*‘-"‘va

2 :
l
_ ;(ml(mz—m:)/mlf.rz} _ (2.31)
]. . T 1 5 7
.. = yD”(_;m,t‘} 1 —3cos”a cos® =~ . (2.32)

where D and [ are both functions of 8. given by the right hand sides of Eqs.(2.24)
and (2.23). respectively.

As seen. for an eccentric orbit. § appears explicitly in the energy expressions and
the Hamiltonian i~ not conserved.

For a circular oriit. the expressions reduce to

. l - ) :
r... = nz{sm,él (1 ~a'ifcos = — "
1 L) ‘
~;<m1¢m3-m,|;m|k'} . {2.33)
. N 1 .y . B L R
... = n- 5t ] —3cos"a cos™~ . (2.34

The equation ~neaifving the variation of lengtz when +° £ (0 i for deplovment,/re-
trieval caser ntrodices # explicitly into the above energy expressions. However.
during stationkeening. ¢ s constant and for a circular orbit the energy expressions
are cleariy autonomons. Thus the corresponding Hamiitonian is a constant of motion.

[t is found 10 be
2. l -d 2 2 2 . . 2 IR ES
H=n ismfti{s" ~cosT e — 1 - Jeostar — 1% . (2.35)
or in a dimensioniess form

QG =1 == ~cos*~{a? =1 —3cosTa =Cy . 12.36)
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Figure 2.1: Geometry of the System
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Chapter 3

Stationkeeping Phase

3.1 Introduction

For the stationxeening case. the tether length is constant. i.e.. ¥ = (. Hence the

governing equatiuns o) motion given nv Egs. 12.261 and 12.27) reduce o

cos® - = 22" tan- — F 2"~ 1.~ 3G sina cosa} =0. 3.1

)

- F- = ca' =1 " =30 cos” a sin~ cos- =1) 3.2
with expression= 2.2>

F=2 sl =—=¢vcosh. (G=1/1~¢cosf.

These are the riations of motion of a gravity gradient pendulum. The gravity
gradient pendulum s a special case iinertia ratio=1. a dumb-bell satellite) of the gen-
eral gravity gradien: stabilized sateilite. As described in Chapter 1. the planar motion
of a gravity gradier® pendulum has been well-studied by both classicai and modern
nonlinear dvnamic analvsis techniques. but in the case of the three-dimensional cou-

pled motion. onlv 2 more classical arnalysis has been made.

(V]
(V]
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This Chapter examines both planar and coupled motion for the circular and el-
liptical orbits nusing the methods of modern nonlinear dvnamics. The numerical tech-
niques are used mainly but the analytical method of Melnikov has also been applied.
to identify reguiar or chaotic motions. The equations of motion are integrated numer-
ically to produce Puincaré sections. PSD’s and Lvapunov exponents {computational
tests which decide the nature of motion) as well as the phase plane plots and time
histories. Detaiis and <orne discussion on the numerical integration of the equations
and construction of rhe power spectra. Poincare sections and Lvapunov exponents
are given at the end of *he Chapter in Section 3.4.

Some general remarks regarding the dynamics of the tethered system during the
stationkeeping phase are made here.

One notes that the equations of motion for the stationkeeping case are independent
of the tether lengtn. The gravity gradient restoring force which acts when the system
is dispiaced from *he local vertical grows with the tether lengtn in the same manner
as the moment o! inertia. so the libration frequencies anout the local vertical of the
gravity gradien: pendiium are independent of the tether length.

During starionkeeping. there are no dissipative forces: such a svstem is cailed a
Hamiltonian sv<rem. \s discussed in Section 2.7. the Hamiitonian of the svstem is
conserved oniv for tnhe stationkeeping phase in a circitiar orbit. in which case there
are no dissipative forces and the energy expressions are autonormous: it is then given

in dimensionless furm by Eq. 12.364. repeated here for convenience:
g ;2 r2 I n 2 r . . 2
H=H/n"mi = ;{-' ~cos”~ta” -1 —-3cos" ) ~ 1} : (3.3)

When the eccentricity is non-zero. the time variabie # appears explicitly in the
equations of motion as well as in the energy expressions. Hence the equations of

motion are autonomous for a circular orbit. but non-autonomous for an elliptic orbit.
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3.2 Planar Motion

From the equations of motion. one can notice that if roll motion is initially
unexcited. the motion remains confined to the orbital plane. Then Eq. (3.1) reduces
to

a" — Fla'+ 1)+ 3G sina cosa = 0. (3.4)

Equation (3.4} is the equation of motion of a planar gravity gradient pendulum. The

circular orbit case is examined first. followed by the elliptic orbit case.

3.2.1 Circular Orbit

The nonlinear dynamics is analvzed starting from the simplest case. which is the
case of a constant length tethered system in a circular orbit.

For zero cccentricity. Eq. (3.1) becomes
a”" + 3 sina cosa =0. (3.5)

a nonlinear but autonomous equation of one degree of freedom. The phase space has
two dimensions. a and «’. It was shown in Section 2.6 that the energy expressions
are autonomous and since there are no dissipative forces acting in the stationkeep-
ing phase. the Hamiltonian is a constant of motion. The syvstem is integrable. and
Eq. (3.5) has an analvtical closed-form solution in terms of Jacobi elliptic functions.
The dynamical behaviour is well understood. as reviewed by Hughes (1986) and others
discussed in Section 1.2,

Equation (3.5) is similar to that of a simple pendulum and its motion differs only
in the position of its equilibria. .\ simple pendulum has its centres at a = £2n7 and

saddle points at @ = =(2n + l)x. n = 0.1.2..; the gravity gradient pendulum has
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centres at @ = %nw (the local vertical) and saddlepoints at @ = +(2n + 1)x/2 (the
local horizontal). n =0.1.2.. .
The phase plane trajectories. shown in Figure 3.1. are found analytically simply

from the first integral of Eq. (3.5).
a? -3 cos’a=E. (3.6)

where £ is twice the dimensionless Hamiltonian H of the system. E > —3 as is clear

from Eq. (3.6). The separatrices (£ = 0) separate the periodic (trajectories are closed)

libration ( £ < 0) and the tumbling (£ > 0) motions. The initial conditions determine

F: the amplitude of the libration solutions am,: is a function of £. cos@mar =
—%. E < 0 for libration.

Figure 3.2 gives the PSD’s constructed from numerical solutions with two sets of
initial conditions. both in the libration range: a = 10°. @’ =0, and a = 80°. &' = 0.

The frequencies shown are nondimensionalized with respect to the orbital fre-
quency. i.e. the number of oscillations per orbit.

The first PSD shows the peak at approximately the frequency of the linearized
equation. /3. but also a smalil contribution from the third harmonic. which distorts
the periodic motion from harmonic motion. The second shows the effects of larger
amplitude motion. i.c.. decreased effective stiffness and a lower fundamental frequency.
and the appearance of odd harmonics up to the eleventh.

The dependency of the frequency of the periodic librations on amplitude is char-
acteristic of nonlinear systems. The tumbling motion contains a periodic part whose
frequency also depends on £. The solution at a given £ has contribution from har-
monics of the fundamental frequency at that £. The fundamental frequency at a
specific £ can be determined expressly in terms of £. involving the complete elliptic

integral of the first kind. Conversely, the E required to produce a solution with a
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specific frequency is also obtainable. For instance. the frequency of libration coin-
cides with the orbital frequency if the system has £ = —0.224, an £ produced by
initial conditions a(0) = 74.2°.a’(0) = 0 or a(0) = 0.a'(0) = 1.67 for example:;
similarly the frequency of the periodic part of tumbling motion coincides with the
orbital frequency if the system has £ = 0.195, an £ produced by initial conditions
a(0) = 0.a'(0) = 1.79 for example.

The separatrix trajectory represents the system aperiodically and asymptotically
approaching the horizontal. The frequency of the periodic component of the motion
and its harmonics all tend to zero in the neighbourhood of the separatrix.

Note that if a driving frequency were applied. resonance could occur wherever
harmonics or subharmonics of this frequency occur on the system frequency vs. E
spectrum. In the neighbourhood of the separatrix there would always be an infinite
number of resonances regardless of the forcing frequency. (This is well illustrated by
Reichl (1992). Lin and Reichl (1985) for the forced pendulum system.) Nonlinear
resonances are the root of chaos in nondissipative systems. In the elliptic orbit case.

considered next. the syvstem is a driven oscillator problem.

3.2.2 Eccentric Orbit

Let us now return to the motion in eccentric orbits. that is the motion governed
by Eq. (3.1).

As discussed in Section 1.2, this equation has been studied by several authors
as a special case (inertia ratio of unity) of the planar gravity gradient satellite. In
particular. Karasopoulos and Richardson (1992. 1993) and Tong and Rimrott (1991a)
applied modern nonlinear analysis techniques to this case.

This is a nonlinear forced one-degree of freedom system. with parametric coef-
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ficients: the equation is non-autonomous: its phase space is spanned by the three
dimensions a. o’ and 6.

Pitch oscillations are forced in an eccentric orbit by the nonuniform rotational
rate of the local vertical {position vector). This is seen clearly from the rotational ac-
celeration appearing in the equation of motion with time as the independent variable.

Le.. Eq. (221) with Q, =0.£ = 0.5 =" = 0.

&+ (3 p/R}) sina cosa = —4. (3.7)

Returning to the equation under consideration. Eq. (3.4), one notes that there are
no equilibrium points. as when the time derivatives (§ acts as the time variable) are
put to zero. a constant solution for a does not exist. (Note that £ and G depend on
6.)

While the stationkeeping system i1s Hamiltonian. the Hamiltonian is not conserved
in the eccentric orbit case. as the energy expressions contain  explicitly (Section 2.7).

This Hamiltonian svstem is near-integrable. as shown for small ¢ by Tong and
Rimrott (1991a) using Melnikov's Method. Melnikov's Method. described in more
detail and applied in the following Section. examines the behaviour of trajectories in
the neighbourhood of the separatrix in terms of a small parameter which perturbs the
svstem from an integrable one (in the present case. ¢ = 0). In a conservative (Hamil-
tonian) syvstem. Melnikov's Method determines whether the system is integrable or
near-integrable. for small values of the perturbation parameter. Integrable systems
will exhibit only regular motion. Near-integrable systems are characterized by the
simultancous presence of regular and chaotic trajectories.

Chaotic motion refers to that motion in deterministic (no random inputs or pa-
rameters) systems whose time history has a sensitive dependence on initial conditions.

When initial conditions lic in a chaotic region. a small difference in the initial condi-
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tions results in an exponential divergence of the corresponding trajectories. such that
the motion is unpredictable. Moon (1992) is a verv readable introduction to chaotic
motion in engineering systems: chaotic motion in Hamiltonian (conservative) systems
in particular is treated ;,horoughl_\' by Lichtenberg and Lieberman (1992) and is also
well discussed by Reichl (1992) and Percival (1987).

In a conservative system each set of initial conditions leads to a unique trajectory
which (apart from being stationary) may be periodic. quasi-periodic or chaotic.

The regular trajectories (periodic or quasi-periodic) of libration of the present
system may be viewed as Iving on a torus with the motion occurring around the
minor axis at the pitch frequency and the major axis at the forcing orbital frequency.
When the frequencies making up the oscillation solution have an irrational ratio. the
solution is quasi periodic. When the ratio is rational the solution is a resonance. and
is periodic.

The motion may be studied by taking a Poincaré section which lies in a two-
dimensional space. via sampling the states at the forcing frequency. Then periodic
motion 1s shown as a discrete set of points and quasi-periodic motion as a closed
orbit. C"haotic motion. in this conservative syvstem. appears in the Poincaré section
as a cloud of disvrganized points. The phase space of a nonlinear system must have
at least three dimensions for chaotic motion to be possible.

Numerical solutions from different initial conditions of Eq. (3.1) were used to
construct Poincaré maps. sampled at period 27. a plotted mod 2x. No chaotic
region was found for zero eccentricity as expected. However. when the eccentricity
was increased. chaotic regions separating orderly librational and tumbling solutions
appcared (Figure 3.3 for ¢ = 0.003 and 0.1). This region. represented by finely

scattered points in Figure 3.3. grows with an increase in eccentricity. This chaotic
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region appears to grow from the separatrices of the circular orbit phase plane. The
librational solutions shown are quasi-periodic (closed orbits). Note that for larger
initial conditions the orbits break-up: the tort break up as the chaotic region is
approached in the phase space. Tong and Rimrott (1991a) and Karasopoulos and
Richardson (1992) have presented more detailed Poincaré maps for planar motion of
a general gravity gradient satellite including resonant solutions. Tong and Rimrott
(1991a) observe that a state of global chaos. where most of the phase space is covered
by chaotic trajectories. occurs at about eccentricity e = 0.3.

Figure 3.1 is a PSD taken from a solution with the smaller set of initial conditions
used in the PSD’s of the previous section. but with eccentric orbit. ¢ = 0.1: this set
of initial conditions lies in the regular region of the corresponding Poincaré map. The
PSD now shows the forcing frequency of unity (i.e. the orbital frequency) in addition
to the pitch frequency: this is because for small motions and eccentricity Eq.(3.4) can

be approximated as

a” +3a ~2esinf +~ O(e?) . (3.8)

The other peaks are combination tones of these two frequencies as shown. As the
motion is made up of pitch and true anomaly frequencies which are incommensurate.
the motion is quasi-periodic.

The occurrence and growth of the chaotic region is explained briefly here. When
a near-integrable system is perturbed from an integrable one by a parameter. in this
case €. chaos will always occur in the separatrix region due to the infinite number of
resonance zones that accumulate there. The separatrix trajectory is no longer smooth
and develops a complex behaviour which the Melnikov Method examines. The chaotic
region is initially confined to the separatrix region by the regular quasi-periodic closed

curves. known in the conservative chaos literature as KAM (Kolmogorov. Arnold.
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Moser) curves. which separate resonance zones throughout the phase space. As the
perturbation strength increases. the higher order resonances successively destroy the
KAM curves (resonance overlap). and the chaotic region grows (Lichtenberg and

Lieberman. 1992}.

3.3 Coupled Motion in Stationkeeping Phase

Considering now both pitch and roll degrees of freedom. the motion in the sta-
tionkeeping phase i~ zoverned by Egs. (3.1)-(3.3). The circular orbit case is studied

first. A study of the eiliptic orbit case follows.

3.3.1 Circular Orbit

In the case of & circular orbit. £ =0 and G = !: thus Eqgs. (3.1) and (3.2) reduce
to
—(=2+"tanv)(a' = 1)+ 3 sina cosa} = 0. (3.9)

cos™ = {a

~" =il +a't?+3 cos’ alsin~ cosv =0. (3.10)

The svstem described by these equations is a gravity gradient pendulum with
motion in three «imensions. in a arcular orbit. As discussed in Section 1.2. these
equations have been studied by several authors as a case (inertia ratio of unity) of
the gravity gradient satellite in a circular orbit using classical approaches: however it
has not been studied in the modern sense of regular or chaotic motion.

This syvstem of equations is autonomous and involves nonlinear coupling between

the two degrees of {recedom. The phase space has the four dimensions a. o’. 5. and

!

F .
/
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The equilibrium points are (a.. V. )= (£nw. £n7). (£(2n+1)7 /2. £nx). (constant.
+(2n + 1)7/2). n = 0.1.2... i.e.. the local vertical. the local horizontal in the orbital
plane. and the orbit normal. A linear analysis around these fixed points shows that
only the first one is stable.

As shown in Section 2.7. the Hamiltonian for this system is conserved: Eq. (2.36)

is repeated here for convenience:
2H/nm. % — 1 =~%+cos’v(a? =1 —3cos’a) = Cy .

Any one of the four dimensions can be eliminated for a given C'y;. allowing a three
dimensional state space representation of the motion. Setting =" = 0 in Eq. (2.36)
for a given 'y gives a motion envelope in a.a’.~ space surrounding the region of
possible motion. Setting o’ = +' = 0 in Eq. (2.36). (Just the cross section of the
motion envelope at @’ = ). defines the zero velocity curves in a - < space which
bound regions of possible motion. such that (Modi and Brereton(19683). Modi and
Shrivastava (1971a)j: for Cyy < —4 no motion is possible: for —4 < Cy < —1 motion
is bounded: for =1 < (' < 0 motion is bounded in ~ onlyv: and for ) < 'y unbounded
motion (tumbling) is possible in both a and ~.

In the following two sections the nature of the motion governed by Egs. (3.9)
- (3.10) is studied through numerical techniques. The equations are integrated nu-
merically to produce time histories. phase plane plots. Poincaré Sections. PSD’s and
Lyapunov exponents (numerical details are given in Section 3.4). [n Section 3.3.1.3

the approximate analyvtical method of Melnikov is applied to an idealized version of

the system.
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3.3.1.1 Series of Poincaré Sections for Increasing Values of Hamiltonian

Constant 7;; (Several Initial Conditions at a Given ()

First. & series of Poincaré sections

for increasing C'y are presented Figures 3.5
'Aa.)—i' G,

A discussiorn ! *he generation of a Poincaré section of a two degree of freedom
autonomous Ham:onian svsiem is aiscussed by Henon and Heiles 11964 . and Licht-
enberg and Lienermarn 1992 | Trajectories of the syvstem lie in the three-din
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as a diffused set of points: it will fill the region of possible motion for a given Cy.
where motion is not regular neither periodic nor quasiperiodic).

Poincaré sections generated for a number of initial conditions at each Cy show the
development of chaotic regions in the phase space in two degree of freedom. conserva-
tive Hamiltonian systems which are near-integrable. In such a svstem. separatrices
surround the resonances: the regions near these separatrices are alwavs chaotic. as

is observable when shown on a large enough scaie. The growth of the chaotic re-

v
n

gion occurs via the mechanism of resonance overiap as the svstem Hamiitonian

increased.  An exceilent detailed discussion of chaotic motion in such svstems

i’

founc :n Lichtenberg and Lieberman 19921 .

Figures 3.3 ‘a1 d, present Poincare sections for Cy =-1.3. -1.25. -1 and -0.5.

respect:velv: each is made up of several trajectories of varving initial conditions.

Each "rajectory was computed to a munmimum of 300 orbits. The boundary of the

£

region of possibie motion in each plot is shown as well: the growth of this region with

increasing (' and the possipiiity of tumbling in piten for 'y > —! is illustrated.
For low (. 'y = —1.5 of Figure 3.5 .a. the Poincaré section of five trajectories

from varving initial conditions were taxen. [hree resonant quasiperiodic solutions
l.e.. three sets of closed curves. are shown: those associated with the resonances of
some number of pitch oscillations for one. five and “hree roli osciilations. The periodic
poin:s were not isolated in this work. but Modi and Shrivastava 119721 isolated these
soluticns and irom time histories identified them as Py;. P;5. and P,;. respectively.
where P-. signifies m pitch oscillations in n roll osciilations. In addition the separatrix
associated with the Py; resonance is shown: also. the separatrix associated with a P

solution is shown. where m has not been identified. These separatrices are actually

very :hin chaotic lavers: on a large enough scale they are shown to consist of a scatter
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of points. At this 'y the motion is mainly regular.

For a larger ('y;. ('yy = —1.25 of Figure 3.5 (b). the Poincaré section of four tra-
Jectories were taken. .\ chaotic region is observed and was created by a single chaotic
trajectory. [t fills tiie region of possible motion where motion is not regular. The
regular region associated with the P., resonance discussed earlier has disappeared:
those associated with the P,,. Pys. and P,; resonances remain.

For Cy = —1 of Figure 3.5 (ci. the Poincaré section of four trajectories are shown.
The chaotic region as grown such that only the regular regions associated with the
P>, and Ps; resonances remain. One may also observe the reduction in the proportion
of the region of the possible motion taken up by the regular region associated with the
fundamental P,; resonance ras outlined by the chaotic region). This figure includes
two quasiperiodic :rijectories associated with the P, resonance.

Trajectories from three initial conditions generated the Poincaré section of Fig-
ure 3.5 +dj for (', = —0.3. Solutions which tumbled in @ were plotted for mod 2=.
The chaotic region appears to have grown such that the regular region associated
with the P, resonance 1= the onlv reguiar region associated with libration remaining.
Also the chaotic region s unbounded 1n terms of tumbling. Note that a regular region
of nonresonant qua-;periodic tumbling has appeared for positive pitch rate.

[n summary. for a given ('y. the tvpe of motion depends on the initial conditions.
As ("y was increased. the region of possible motion possessed: (i1 mainly regular
libration: (ii) reguiar and chaotic libration. with the chaotic region taking a larger
and larger proportion of the region of possible motion: 1ii1) regular libration. regular
and chaotic tumbling.

The present work has presented a series of Poincaré plots. over a range of Cy doc-

umenting the change in behaviour. as interpreted by Hamiltonian chaotic dynamics.
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This was not done in earlier work on stability and periodic solutions of this system
by Modi and Shrivastava {(1972. 1971a). Modi and Brereton (1968) who did include
some Poincaré plots and noted ‘ergodic’ solutions. It is instructive. however, to make
comparisons with the results they present.

They presented Poincaré plots for Cy = —1.25 and Cyg = -1 similar to those
presented here except that. other than having isolated the periodic solutions for Cg =
—1.25 and the limiting ilargest) orbits of the resonant quasiperiodic regions at least
for Cy = —1.23. each trajectory was only integrated for 10-50 orbits (the computers
in the late sixties were slow). In each case. the chaotic region was not entirely filled
out. as was done here using a single chaotic trajectory. They called the trajectories
appearing as scattered points. now known as chaotic. as "ergodic’: theyv speculated
that they ‘may involve periodicity over a large number of orbits’ which theyv do not.
The significance of the closed curves as quasiperiodic motion was not emphasized.

These are the only (e — ') Poincaré plots actually presented. but they make ob-
servations about the change in behaviour for increasing C'y. They state that "ergodic’
trajectories appear for ('y; greater than a critical value. -2.56. This was not verified
in the present work. llowever. it is expected that at a large enough scale. chaos
can be abserved for all C'y;. From theory and other numerical work in Hamiltonian
dvnamics. chaos is alwayvs present near the separatices associated with resonances in
near-integrable two degrees of freedom systems: there should be no sudden transition
to chaos at some critical Cy.

They observed an increasing tendency for motion other than of the Py regular
region as ("y approaches -1. with which the results here agreed. The results here also
agreed with their observation that for greater Cy the only stable solutions are those

associated with the P, regular region.
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Finally at Cy = 0.827. they observed that the P,; regular region reduces to just
the periodic solution. so that bevond this value gravity-gradient stabilization is not

possible. That this occurs at that value of C'y was not verified in this work.

3.3.1.2 Series of Poincaré Sections, Phase Plane Plots, Time Histories,
PSD’s and Lyapunov Exponents, for Increasing Initial Conditions

a(0) = ~10) = k. a'(0) = ~"(0) = 0

The nature of motion in this system is now documented numerically further,
through several numerical tools of nonlinear dynamics and chaos. The analysis covers
the change from regular to chaotic motion for the initial conditions of initial angles
a(0) = ¥(0) = &. where & is a given angle. and zero initial velocities. as £ is increased.
Power spectra and Lvapunov exponents as well as Poincaré sections are computational
tests which identify regular or chaotic motion: all three of these tests. as well as phase
plane plots and time histories. were taken for the individual trajectories (comments
on numerical analysis issues can be found in the last section of the chapter). As
discussed below. the Poincaré sections. power spectra and Lyapunov exponents show
excellent agreement in identifying a change from regular to chaotic motion. as & is
increased. at & = [3°. and an increase in the degree of the chaotic motion as & is
increased further.

Poincaré sections were taken of individual trajectories as done earlier. i.e.. record-
ing a and a’ when ~ = 0 and 5" > 0. and are shown in Figure 3.6(a)-(d). They are
all taken over 300 orbits. Note that Cj increases with & for 0 < & < 90°. Thus.
each trajectory moves on a different surface Cy =constant with respective bounds
(discussed carlier).

Figure 3.6(a) shows the Poincaré sections of trajectories with & = 10°,20°. 30°.
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and 40° plotted on one graph for convenience: as Cy is not constant for the tra-
jectories shown in this figure the trajectories cross. Figure 3.6(b) is the section for
the trajectory with & = 42°. These figures show the closed curves characteristic of
quasi-periodic oscillation. although they appear to deform and begin to break up as
the initial angles are increased. At k& = 43° however the motion is chaotic as shown
by the scatter of points in the section of the trajectory of Figure 3.6(c). The section
of the chaotic trajectory at & = 19° of Figure 3.6(d) covers a much larger region and
shows tumbling occurs in pitch (the trajectory was plotted for mod 2= in a).

From the previous discussion of the series of Poincaré sections for constant Cy
(Figure 3.3) one recognizes the quasiperiodic trajectories shown here as belonging
to the quasiperiodic region associated with the P resonance. Also. one recognizes
the chaotic trajectory of Figure 3.6 (¢) for & = 143° as the separatrix trajectory of
the P;s resonance. shown in Figure 3.5. the Poincaré section for C'y = —1.5: the
trajectory for & = 13° has C'y = —1.39. The chaotic trajectory of Figure 3.6 (d),
k = 19° fills the chaotic region for the respective Cy. C'y = —0.99. Just inside the
timit for tumbling in pitch (Cy > —1) tumbling has occurred: the chaotic trajectory
is otherwise identical to that of Figure 3.5 ic) for Cy = —1. with the regular regions
associated with the %, and P,; resonances outlined (compare also with Figure 3.5
(d) for Cyy = =0.51.

The motion A = 13° exhibits limited chaos which is characterized by chaotic phase
space orbits remaining close to some regular motion orbit. For larger &. & = 19° the
motion has developed large-scale chaos where chaotic orbits traverse a broad region
of phase space.

Figure 3.7 gives the phase planes and time histories. to 30 orbits. of the trajectories

with & = 10°.42°.13° and 49° respectively. The change from regular to chaotic motion
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cannot be discriminated conclusively from phase planes and time histories, and thus
computational tests such as Poincaré sections. PSD’s and Lyapunov exponents are
used. A subtle difference in their appearance could be noted when carefully comparing
the quasiperiodic and chaotic vibrations. namely the wandering in the phase plane
and aperiodicity of the time histories for the chaotic trajectories were somewhat
greater. Many of the chaotic trajectories also showed. more obviously. an interesting
exchange of energy between the two degrees of freedom in the time histories. These
differences are seen in this figure. comparing the quasiperiodic (& = 10°.42°) and
chaotic (& = 13°.19°) oscillations. The exchange of energy between the two degrees
of freedom appears 10 begin towards the end of the time history of the & = 43° case.
and is quite striking in the & = 19° case. Note that this figure shows that the & = 49°
trajectory. which was shown to tumble in the Poincaré section taken over 500 orbits.
does not tumble 1o at least S0 orbits (recall this case is just inside the Cy > —1
tumbling limit).

The following PSD’s were taken from trajectory solutions. under 30 orbits.

Figure 3.8 (ai-+b) shows the pitch and roll PSD’s for small initial conditions.

a(0) = ~10) = £

i

10°. a'{0) = ~'(0) = 0 and for comparison. ai0) = 0. ~(0) =
10°. @'10) = ='(0) = (. The frequency spectrum is composed of combination tones of
the two natural frequencies of the linearized system. /3 and 2. Their being incom-
mensurate results in quasi -periodic motion. Pitch motion a has a forcing frequency
of twice the fundamental roll frequency as seen from the equations approximated for

small motions:

a” 4+ 3a ~ 2v'% + O(e®) ~ sin(46). (3.11)

This can be verified in the PSD’s. The contribution of this forcing frequency is smaller

than the natural a frequency. as it is of second order. [ts relative contribution is larger
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for the case (a) where a was initially undisturbed compared to the case (b) where
both angles were initially present.

Figure 3.8 (b) along with Figures 3.9 (a)-(d) make up a series of pitch and roll
PSD’s for trajectories with increasing initial angles k. & = 10° and & = 40°.42°.43°
and 49°. respectively. As the initial angles are increased. the PSD’s have more fre-
quency components. and contain distinct and identifiable combination tones up to
k = 12°. For larger & the spectrum broadens. as characteristic of chaotic vibration.
This indicates the change from quasi-periodic to chaotic motion. The PSD’s of the

o

motion for & = 13° exhibit the characteristic of limited or. equivalently. narrow-band
chaos. which is narrow or limited broadening of certain frequency spikes. For k& = 19°.
the PSD’s of motion have developed the characteristic of large-scale or. equivalently,
broad-band chaos. that is a broad range of frequencies.

Finally. the largest LLyapunov exponents of the trajectories were calculated. Chaotic
motion Is characterized by great sensitivity of the motion to small changes in initial
conditions. Closely neighbouring orbits which are chaotic. diverge exponentially lo-
cally (only locally since the phase space may be bounded). The Lvapunov exponents
of a given trajectory characterize the mean rate of exponential separation of trajecto-
ries surrounding it. .\n n dimensional system has n Lyapunov exponents. but the first

or largest Lvapunov exponent A. associated with the direction of most rapid growth.

dominates the dynamics over time. [t can be obtained from Moon (1992):

A= lim ——— Zlogzd ) (3.12)
0

VL T A (te_t)
One considers a reference trajectory: dy is a measure of the initial distance in the phase
space between this trajectory and a nearby trajectory. d is the distance at a small but
later time. One measures d/dg. then considers a new nearby trajectory and defines a

new dy. Since the exponential divergence of chaotic orbits is only local. the growth
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must be averaged at many points along the trajectory in this way. [t approaches a
constant value for large .V. Details of the calculation of A using Eq. (3.12). including
the determination of the length ratio d/d, in Eq. (3.12). is given in Section 3.4.

Thus the first Lyapunov exponent is a quantitative test for chaos: a chaotic tra-
jectory has A > 0. and a regular trajectory has A = 0 (for a Hamiltonian system). It
also is a measure of the degree of chaotic behaviour of a trajectory: the greater its
value. the more chaotic the trajectory.

Figure 3.10 plots the first Lyapunov exponents for trajectories with & = 10°, 40°,
12°, 13°. 45° and 19°. over 200 orbits. For & = 10°. 10°. 42°. A appears to tend to
zero. with the 40° and 42° curves indistinguishable from each other. However for
k = 13°. the exponent tends to a positive value. about 0.03. This value increases as &
is increased to & = 15° and 49° (A is equal to about 0.1 and 0.16. respectively). The
calculated Lyvapunov exponent is by definition more accurate the longer the time over
which it is averaged. The first Lyapunov exponent was calculated over 1000 orbits
for trajectories with &£ = 10°. 10°42° and 49° and are plotted again as a function of
orbits in Figure 3.11. I[n this figure the tendency to zero for large time of the £ = 10°
~40°.42° cases is clear. The exponent for the £ = 19° case shows only a slight variation
from 200 to 1000 orbits (its value i1s 0.15 at 1000 orbits): one expects that the & = 43°,
43° would also show little variation. and that the values of the three cases indicated
in Figure 3.10 up to 200 orbits are accurate at lcast relative to each other. Thus
these figures show that the first Lyapunov exponent (in the limit for large time) has
zero value for & = 10°. 10°. 12° and positive value that increases with & for £ = 43°
45° and 49°. Thus regular motion is indicated for & = 10°. 40°. 42°: a mean rate of
exponential divergence of trajectories that increases with &. that is chaotic motion of

increasing degree with k. is indicated for £ = 43° ,43° and 49°.
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The Poincaré sections. PSD’s and first Lyvapunov exponents presented show ex-
cellent agreement in identifving a change from regular to chaotic motion. as & is in-
creased. at & = 13°. and an increase in the degree of chaotic motion as & is increased
further.

Previous work of relevance to this system. other than by Modi and Shrivastava
(1971a. 1972) and Modi and Brereton (1968). is that of Melvin (1988a. b). The
results here confirm. by modern nonlinear dynamics numerical analysis techniques,
the existence of some chaotic solutions suggested by Melvin for the gravity gradient
pendulum. His work included the numerical integration of the equations of motion of
this system. but not rhe modern techniques. He plotted the two degrees of freedom
of solutions as well as zero velocity curves on a unit sphere. For certain conditions
he observed libration solutions characterized by the filling of a large portion of the
zero velocity surface. and interpreted them as chaotic. Based on the present work.
this appears a valid interpretation. as the zero velocity surface in a — + space is just
a cross section of the motion envelope ~ = 0 in a.a’.~ space. like the boundary of
possible motion in the @ — a’ Poincaré plots presented: most (but not all) chaotic
libration solutions. unlike regular libration solutions. filled large portions of the re-
gions of possible motion in the Poincaré plots. Also. his results and the results here
agree. where comparisons were made. as discussed below. The computational tests of
modern nonlinear dvnamics. which decide the nature of a solution (Poincaré sections,
PSD’s. Lyapunov exponents) were applied in the present work. but not in Melvin's
work.

Specifically. Melvin (1988b) observes a chaotic libration region for motions from
rest with small initial roll angle and large initial pitch angle. In Melvin (1988a) on

the other hand solutions were taken with initial conditions on various zero velocity
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curves. that is from rest for various values of the Hamiltonian constant. In terms of
Cpy used here. Melvin found solutions with Cgyg > —1 quickly tumbled and did not
examine their behaviour. For Cy = —1 he found chaotic solutions for a(0) > 17.5°.
He also found chaotic solutions for Cy slightly less than -I. Comparisons are made
now with the results of the latter paper and the results of the present work.

The results in the paper by Melvin (1988a) allow easy comparison with the results
obtained here. for the initial conditions a(0) = ~(0) = k. k. 2'(0) = ~'(0) = 0 (i.e. also
from rest). when respective Cyy is calculated. The solutions taken with & such that
Cy > —1 did quickiy rumble. apart from the solution at & = 49° where Cy = —0.99
and tumbling occurs after some time. With Cy so close to Cyy = —1. the chaotic
k = 19° solution of this thesis can be compared with his result. and it is in agreement.
Here chaotic solutions were ohserved to begin for & > 13° or Cyy > —-1.39.

A careful comparison of the results of Melvin 11988a) and the Poincaré plots for
given (' presented here 1 Figures 3.3) can also be made. Libration solutions are seen

for Cy > —1 in the plots: note that the plot is not limited to trajectories beginning

from rest as are his results. The plot for C'y = —~1 allows for his result. recognizing
that an initial condition on the plot has ~(0) = 0 only and at rest corresponds to only
ia(0) = 90°. where the boundary <’ = 0 and the o’ = 0 axis meet: the plot suggests

that chaotic solutions exist for ia(0})! > 13° appoximately. when ~(0) = 0.2’ = 0.~" >
0. That he found chaotic solutions for Cy slightly less than -1. is within the results
of the plots here for (;; < —1. recalling that the chaotic region becomes appreciable
as Cy = —1 is approached from smaller values.

Sections 3.3.1.1 and 3.3.1.2 have applied the numerical techniques of modern
Hamiltonian nonlinear dvnamics analvsis to the coupled motion of a constant length

tethered svstem. or equivalently. a gravity gradient pendulum. The present work has
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presented a detailed series of Poincaré plots. each made up of several trajectories for
a given Hamiitonian constant. over a range of the constant. to document the change
in behaviour as interpreted by modern nonlinear dynamics. i.e.. the regions of regular
and chaotic motion. This was not done in the early work by Modi and Shrivastava
(1972. 1971a}) and Modi and Brereton (1968) who presented a few Poincaré plots
in studies of stability and periodic solutions of the system. and observed ‘ergodic’
solutions. The present work has also presented a series of Poincaré sections. PSD's.
and Lyapunov exponents. that is the computational tests which decide the nature of
motion. as well as phase plane plots and time histories. to document the change from
regular to chaotic motion for trajectories starting from rest with equivalent initial
pitch and roll angles. as the angle is increased. Together with the Poincaré plots for
constant Cy. these results confirm the existence of chaotic solutions in this system.
suggested by Melvin 1 1988a. 10388b) who observed "chaotic” libration solutions plotted

in the pitch-roll zero velocity surface.

3.3.1.3 Melnikov’'s Method Applied to the Idealized System

The near integrability of the svstem and presence of chaotic motion is shown
in Sections 3.3.1.1 and 3.3.1.2 by numerical means. As mentioned in Section 3.2. the
analvtical method of Melnikov could be used to determine whether a conservative
svstem is integrable or near-integrable. where the system can be considered as a
perturbation of an integrable system. This is done for an idealized version of the
svstem as detailed presently.

Melnikov's Method is usually applied to planar (two dimensional) svstems. Adap-
tation of the theory to higher dimensional systems is given briefly in Guckenheimer

and Holmes (1983) and in detail in Wiggins (1988). and has been applied by Grayv
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and Stabb (1993) to study the controlled pitch dynamics of a gravity gradient satel-
lite. Application of Melnikov's Method to a two degree of freedom system assumes
that the system can be considered as a perturbation of an integrable two degree of
freedom svstem. Although it may be possible to apply the method to the full two
degrees of freedom system considered here. in the following. assumptions are made
which idealize the svstem such that the standard planar Melnikov theory can be used:
the near-integrability of the idealized system will be shown.

The assumption made is that roll is small and is harmonic. Assuming first alone
that roll is small such that ~ = Of\/e). where ¢ is a small parameter. then. keeping

to order €. £q. i3.101 becomes
2" (l+a? =3 cos’ ai~=0. (3.13)

One assumes now that the bracketed term is approximately a constant A2 or that roll

is harmonic: then with initial conditions ~(0) = =y = /c. 2/(0) = 0. one has

~ = \/ecos kf. (3.14)

With the roil described by Eq. 13.14i. the pitch equation Eq. ¢3.97 becomes. to
order ¢

a’ +~eksin2kf(a’~ 1)+ 3 sina cosa=0. (3.13)

Assuming roll to be small and harmonic has reduced the system to a planar system
with a time-periodic forcing perturbation. The unperturbed system ¢ = 0. just the
planar svstem described by Eq. (3.3). is integrable with a saddie point and separatrix
orbit. The standard planar theory of Melnikov can now be applied.

A description of the planar theory of Melnikov can be found in Moon (1992).

Reichl (1992). Lichtenberg and Lieberman (1992). and in more mathematical detail
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in Wiggins (1990.1988) and Guckenheimer and Holmes (1983). Suppose the system

equations of motion can be written as

] = ‘—' + 3.16

q 3 €q1 (3.16)
)= ———— + € 3}_"')
P 3 ag» ( WL

where (g, p) are the generalized coordinate and momentum variables. § = §(p,q.¢t) =
(g1.92) i1s periodic in time. ¢ is a small parameter and H(q.p) is the Hamiltonian for

the (undamped. unforced) integrable problem (e = 0). The Melnikov function is

M(7) :/* §*-VH(g".p")dr (3.18)

—_—aC

where ¢" = g(q~.p~.t = f5): ¢°(t) and p°(¢) are the solutions for the separatrix of the
saddle point in the phase plane of the unperturbed problem. and ¢, is a measure of the
distance along this separatrix. [n the phase plane of an integrable syvstem the stable
and unstable manifolds of the saddle point join smoothly: however these manifolds
separate and oscillate and may intersect transversely in the Poincaré section of the
perturbed problem where integrability has been destroved (Figure 3.12). Transverse
intersection lcads 1o chaotic motion near the separatrix. The Melnikov function is a
measure of the separation between stable and unstable manifolds of the saddle point
in the Poincaré scction of the perturbed problem. If M(7) has simple zeros they
intersect. [n a conscrvative svstem if the manifolds separate they will always have
transverse intersection: Melnikov's Method can be used to demonstrate whether a
conservative system is integrable or near-integrable. and whether chaotic motion will
occur. In a dissipative system the manifolds separate and oscillate but need not cross.
and Melnikov's Method vields at what parameter values the crossing. and thus chaos.

OCCcurs.
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Returning to Eq. (3.13). one first rewrites it in the following form:
a” +(3/2) sin2a = ¢[—ksin2kf(a’ + 1)]. (3.19)

The left hand side can be written as that of the normalized pendulum equation

by making the substitutions 0 = 2¢ and 7 = v/38. and then after some algebra.
ll d y
‘ET—‘Z +sino= e[Asinw(d—f +a)]. (3.20)

where (w =2/V3i k. A= —(1/V3)kand a =2/V3.
In Egs. (3.161-3.17) one has t = 7. ¢ = o and p = v = do/dT. g = 0 and

g2 = [Asinw7(2 —uii. The Hamiltonian for the unforced problem (e = 0) is

H={(1/2) v +(l —cos o) . (3.21)
and
oH aH
— =sino. — =v 3.22
do me- gy T ( )
Thus
§-VH =gy (3.23)
On the unperturbed separatrix orbit from the saddle point (0 = = {mod 27).v =

0) H = 2. Considering just the positive branch of the unperturbed separatrix orbit

the solution is found to be

o" =2tan"'(sinh 7). (3.24)
do" .
L :d—_zlsechr. (3.25)

The Melnikov function from Eq. (3.18) thus becomes

- +nc
M(m) =24 [.2/ sinw(7 + 7o) sech *rdr + a/ sinw(T + 70) sech 7dr| (3.26)
The integrals
+00
/ sinw(7) sech *rdr = 0. (3.27)
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+00
/ sinw(r) sech rdr =0 . (3.28)

since the integrands are odd. The integrals

+00 ) Tw
/ cosw(T)sech “rdr = 7w csch — . (3.29)
+oo TW
/ cosw(7) sech rdT = 7 sech - (3.30)

evaluated by the method of residues.

Thus the Melnikov function of the system is evaluated to be

Tw l Tw
M(7y) = =2wr (.‘; csch 5+ ﬁ sech T) sinwTy . (3.31)

The two perturbed manifolds. stable and unstable. will touch transversely when M (7o)
has a simple zero. \s 7, is varied along the unperturbed separatrix. W (7) varies in
sign. Thus the svstem described by Eq. (3.13). that is the planar svstem in a circular
orbit. perturbed by roll defined to be small and harmonic. is near-integrable and has
chaotic motion near the separatrix.

One might compare this Melnikov analysis with that of Tong and Rimrott (1991).
for the system consisting of the planar gravity gradient satellite in an orbit of small
eccentricity (the system of Section 3.2.2 but general inertia ratio. small eccentricity
only). or that of Koch and Bruhn (1989). for the same system but in addition small
oblateness of the rentral body. Similarly to the system under consideration. in the
above-mentioned cases small forcing but no dissipation was present and the systems
were chaotic for all values of the system parameters. Later in this thesis. Melnikov's
Method will be applied to the planar svstem in an orbit of small eccentricity and
small exponential tether length rate. where the system is no longer conservative.

The system here was idealized such that the system could be considered as a

peturbation of an integrable. planar system. The application of Melnikov's Method
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to a two degrees of freedom system assumes that the system can be considered as a
perturbation of an integrable two degrees of freedom svstem. but this was not con-
sidered due to the complexity. The analysis presented here might lead one to expect
that an application of Melnikov's Method to the more complex two degree of freedom,
four dimensional system. considered as a perturbation of an integrable system. would
conclude chaotic dynamics aiso. Note that the validity of such an analysis would be
limited to small values of the perturbation parameter. In Sections 3.3.1.1 and 3.3.1.2
the near-integrability and nature of motion of the two degree of freedom system in a

circular orbit. with no limiting assumptions. was seen by numerical methods.

3.3.2 Eccentric Orbit

Considering now eccentricity. the coupled motion in the stationkeeping case is

governed by the equations of motion Egs. (3.1)-(3.2). repeated here for convenience:
cos? ~ {a”" — 124" tanv+ Fl(a' + 1) + 3G sina cosa} =0.
2" = F~' = (1 +a')) +3G cos® a|siny cosy = 0.
with expressions (2.28)
"= 2e sinf/(l +€ cosf). G =1/(1+e cosb).

These are the governing equations of coupled motion of a gravity gradient pendulum
in an elliptic orbit. This system has been studied by other authors as discussed in
Section 1.2. but not in terms of the nature of (regular or chaotic) motion.

The system is nonlinear. coupled between the two degrees of freedom. and. due
to the presence of eccentricity. non-autonomous. Both pitch and roll equations have
parametric coeffients (due to eccentricity). Roll has no nonhomogeneous forcing; pitch

is nonhomogeneously forced both by eccentricity and roll terms.
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The equations of motion written with time as the independent variable, i.e., Eqs.

(2.21)-(2.22) with Q, = Q. = 0. { =0 and rearranging. are
&—2%tan=~ a+ (3pu/R) sina cosa = —0 +2% tanv g. (3.32)

5~ ;:{(i +0) +(3 p/R3) cos® a] siny cosy=0. (3.33)

From these equations. vne sces clearly the excitations due to eccentricity of the orbit
present in the motion. [he excitation caused by the nonuniform rotation of the local
vertical (position vectori appears as f(t) and (t). The excitation caused by the
varving magnitude of the position vector appears as R.(t). The latter appears as
parametric excitation for both pitch and roll motions. 0(!) is a parametric excitation
for the roll motion. while 6(f) and 6(f) are nonhomogeneous excitations for the pitch
motion.

Returning now 1o Eqs. 13.1)-(3.2). one notes that there are no equilibrium config-
urations (putting time derivatives to zero no constant solution can be obtained for «
and ~). The svstem Hamiltonian is not a constant since the energy expressions are
non-autonomous  Section 2.7). These effects of eccentricity were already scen in the
planar case.

The system (3.1:-13.2) is a nonautonomous. two degree of freedom system. The
phase space has five dimensions. a.a’.5.+". 0.

The high dimensionality of the system allows in theory for the phenomenon of
Arnold diffusion (see Lichtenberg and Lieberman. 1992). Consider an .V degree of
freedom autonomous Hamiltonian system. or an .\ — | degree of freedom nonau-
tonomous Hamiltonian system. Trajectories move on 2.V — | dimensional energy
surface. in 2.V dimensional phase space for autonomous system. or in 2.V — 1 dimen-

sional phase space for nonautonomous system. Regular (integrable) KAM surfaces
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are .V dimensional. They cannot divide space into distinct regions for .V > 3. in which
case all chaotic regions are connected into a single complex network. the Arnold web.

Thus. in an autonomous. two degree of freedom Hamiltonian svstem. or a nonau-
tonomous one degree of freedom Hamiltonian system (as. respectively. the coupled
circular orbit case. and planar elliptic orbit case studied here), in the three dimen-
sional energy surface. or phase space. the chaotic trajectories may be isolated from
one another by two dimensional KAM surfaces. In the nonautonomous. two degree
of freedom system (the case of the coupled. elliptic orbit under study here). in the
five dimensional phase space the chaotic trajectories are not isolated by the three
dimensional KAM surfaces. but are connected in the chaotic web.

[n a near-integrable Hamiltonian system of .V > 3. as for smaller .V. chaotic layers
in phase space form necar the resonances of the motion. The thickness of the layers
expands with increasing perturbation away from integrability. As shown. for .V > 3
the chaotic lavers or regions are connected in the Arnold web. The web permeates the
entire phase space. For any initial condition within the web. the chaotic trajectory
will eventually intersect every finite region of the phase space. even the predominantly
regular regions where the fraction of chaotic initial conditions is small. The rate at
which this Arnold diffusion occurs along the web depends on the thickness of the
chaotic lavers and is slow. but diffusion occurs for any finite perturbation. Note that
for small perturbation. for .V < 2. chaotic motion exists but is confined to thin lavers
bound by regular surfaces. For .V > 3 the chaotic motion is no longer confined and
can diffuse throughout the phase space. but for small perturbation this diffusion along
the thin layers is extremely slow.

A surface of section (Poincaré section) is a reduced phase space of dimension

2N — 2 (see Lichtenberg and Lieberman, 1992). As shown in the previous sections.
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when the surface of section is two dimensional and is computed for a large number
of initial conditions on the same energy surface (autonomous system) or in the phase
space (nonautonomous syvstem) it can give an immediate picture of the phase space
structure. This is not the case of the present system. where the surface of section
is four dimensional and more difficult to display and interpret on a two dimensional
piece of paper.

The following is an analysis similar to that applied in the last section. in that
numerical techniques (phase plane and time histories. PSD’s. Poincaré sections. Lya-
punov exponents| are used to examine the change in the nature of motion of tra-
jectories with initial conditions at perigee a(0) = +(0) = k. &'(0) = ~'(0) = 0 for
increasing k. but an elliptical orbit of eccentricity of e = 0.1 is now considered.

From phase plane plots and time histories calculated to 80 orbits and Poincaré
sections calculated to 200 orbits. 1t was found that for £ < 30° trajectories do not
tumble up to 200 orbits. while for & > 30°. trajectories tumble quickly. in less than
15 orbits. The nature of motion of the libration trajectories & < 30° is examined in
the following.

Lyvapunov exponents A were calculated for the libration trajectories for increasing
k. some of which are shown in Figure 3.13 (a)-(b). All A were calculated over 200
orbits. For & < 26°. orbits appear regular. \ approaching zero over time. This is
shown in Figure 3.13 (a} for & = 10° and 26° (along with the positive A for the
chaotic orbit of & = 30° for comparison) over 200 orbits. However for & > 26°, A
approaches a positive value denoting chaotic orbits. Figure 3.13 (b) shows this for
for £ = 27°.28°.30° (along with A for the regular orbit A = 10° for comparison).
Note that these positive values are low. A. for both the cases of 28° and 30°. has

a value of about 0.025 at 200 orbits. A for the 27° case has a value of about 0.01
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at 200 orbits. very close to the value for the regular orbit £ = 26° (these have been
plotted separately for clarity). For £ < 26°. A appears to approach zero smoothly, if
asymptotically. For & = 27°. \ over time appears to approach a low positive value
and thus indicate the limit of weak chaos.

From Figure 3.13 (b). the £ = 28° and 30° trajectories can be considered to share
the same \ and to belong to the same chaotic region: however. the & = 27° trajectory
has a clearly distinct A. denoting another. segregated chaotic region. This serves
as an argument that if Arnold diffusion occurs. it occurs too slowly to be observed
numerically over 200 orbits. In theory. the chaotic regions of a high dimensional
svstem such as this one are connected by the Arnold web. through which a chaotic
trajectory will diffuse. In this case a trajectory beginning in a weak chaotic region
should after sutficient time be found in a strong region. and take on the A of the strong
region the trajectory will rarely return to the thin layvers of a weak region since they
make up a negligible {raction of the web). Lichtenberg and Lieberman (1992) review
the work of Benettin et al. (1980) and Contopoulos et al. (1978) who made similar
observations for their particular high dimensional system. They found that chaotic
trajectories belonged to apparently segregated chaotic regions with distinct A. and
it was concluded that Arnold diffusion. if it occurs at all. happens too slowly to be
observed numerically over the time frame studied.

In summary. for libration trajectories & < 30°. the Lyapunov exponents show
that up to 200 orbits. two main regions exist for increasing k: a regular region for
k < 26°. and a weakly chaotic region for 27° < & < 30°. The chaotic region appears
to be subdivided into unconnected component regions. Arnold diffusion. if it exists
as predicted by theory. occurs too slowly to be observed numerically over 200 orbits.

The transition from regular to chaotic motion as k is increased. for the libration
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trajectories & < 30°. was examined further. using phase planes and time histories.
PSD’s and Poincaré sections.

Phase planes and time histories were taken of the trajectories to 80 orbits. Some
of these (k£ = 10°. 22° 23° 26° 27°. 28°. 30°) are shown in Figure 3.14. While in
the phase plane trajectories appear to wander more as k is increased. little can be
extracted from the phase planes and time histories (thus the need for other compu-
tational tests such as [.vapunov exponents to identify the nature of motion).

Power spectra were taken of the libration trajectories under 30 orbits. some of
which (those corresponding to the phase planes and time histories presented in Fig-
ure 3.14) are shown in Figure 3.15.

The PSD for & = 10°. that is initial conditions a(0) = ~(0) = 10° 2'(0) =
+'(0) = 0, can be compared with Figure 3.8 (b). with the same initial conditions
in a circular orbit. and Figure 3.4. with initial conditions a(0) = 10°. a’(0) = 0
in a planar orbit of the same eccentricity as considered here (e = 0.1). Frequency
components are combination tones of the three frequencies of the orbital frequency.
and the pitch and roll natural frequencies of the linearized svstem (1. v/3. and 2 times
the orbital frequency. respectively ). The frequency components of the pitch PSD's of
the planar. elliptic case and coupled. circular orbit case appear in the pitch PSD as
well as other combinations. In particular. both forcing frequencies. the parametric and
nonhomogeneous forcing orbital frequency and the nonhomogeneous forcing frequency
of twice the roll fundamental. are seen. The frequency components of the roll PSD of
the coupled. circular orbit case appear as well as other combinations. In particular.
the parametric forcing orbital frequency can be seen.

The transition to chaotic motion as 4 is increased cannot be sharply defined in

this case using the PSD’s. due to the weak nature of the chaotic motion for libration.
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As k is increased the PSD contains more frequency components. The PSD’s for
k < 22° definitely indicate regular motion with distinct and identifiable components.
Local broadening of a few frequency spikes which should indicate a very weak chaotic
motion can be found for 23° < & < 26°. This broadening of the spectra is more
predominant for & > 27°, but still somewhat local. as chaos is weak. Trajectories for
k < 27° are judged regular however. as indicated by the Lyvapunov exponents. due to
the somewhat more subjective interpretation of weak chaotic motion as it appears in
the power spectra.

Finally. surface of sections were taken of the individual libration trajectories for
increasing &. As mentioned above the surface of section has 2.\ — 2 dimensions (see
Lichtenberg and Lieberman. 1992). For V' > 3. the NV — | number of two dimensional
(generalized coordinate-velocity) projections of the surface of section may be used
to visualize the trajectory. However for .\ > 3. even for a regular trajectory. the
trajectory intersections generally fill an annulus of finite area on each projection.
with thickness reiated to the nearness to exact separability of the trajectory in the
coordinates 1 if reguiar and exactly separable. the annulus reduces to a smooth curve).
The intersections of such a regular trajectory with the surface of section lie in an .V —1
dimensional surface. whose projection is a finite area. The intersections of a chaotic
trajectory fills a 2.\ — 2 dimensional volume within the 2.V — 2 dimensional surface
of section. whose projection is also an area. Thus for N > 3 the surface of section is
less useful for determining nature of motion. The surface of section has been used to
illustrate Arnold diffusion over long times in some systems. where the intersections
of the chaotic trajectory eventually spread throughout the projections.

For the preseni case the four dimensional surface of section was taken by sampling

’ I4

a.a’.v.+" at § = constant = n2x. n =0.1.2.... L.e.. at perigee. and the a — a’ and

'
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¥—+' projections examined. Surfaces of section were taken of the libration trajectories
over 200 orbits. The projections of some of these are shown in Figure 3.16 (those
corresponding to the presented phase planes. time histories and PSD’s. & = 10°.
22°.23°, 26°. 27°. 238°. 30°). For & = 10°. the annuli approximate smooth curves.
indicating a regular trajectory which is separable: for small motions the equations
approximately decouple. As & is increased. the thickness of the annuli generallv
increases. since the coupling is stronger. The pitch annuli gradually approach a form
resembling that of rhe libration chaotic region observed for the circular orbit case:
however. the figures give little indication as to at what & motion changes from regular
to chaotic motion. which is not unexpected from the discussion above. The projections
for larger £ known to be chaotic from the Lyapunov exponents and PSD’s (k > 27°)
were observed also at intermediate times: motion is well confined to the annuli from
earlv times and there is no evidence of diffusion to the 200 orbits taken.

The results presented above for the coupled motion elliptic orbit case can be
summarized as follows. Numerical techniques were applied to examine the change
in the nature of motion of trajectories with initial conditions a(Q) = ~(0) = k.
a’{0) = ~'10) = 0. in an orbit of eccentricity ¢ = 0.1. as & is increased. The Lyvapunov
exponents show that. for libration trajectories & < 30° up to 200 orbits. two main
regions exist for increasing k: a regular region for & < 26°. and a weakly chaotic region
for 27° < &k < 30°. The chaotic region appears to be subdivided into unconnected
component regions. Arnold diffusion. if it exists as predicted by theoryv. occurs too
slowly to be observed numerically over 200 orbits. The transition from regular to
chaotic libration with increasing A is not sharply defined by power spectra due to
the weak level of chaos of libration. but power spectra confirm that the libration

trajectories of 27° < k < 30° are weakly chaotic. Due to the high dimensionality of the
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system. the Poincaré sections as viewed in projections were not useful in identifying
the change from regular to chaotic libration with increasing k; however. those of
the libration trajectories known to be chaotic from Lyapunov exponents and power
spectra. 27° < & < 30°. confirm that Arnold diffusion is not observed numerically
over 200 orbits.

The results are now compared with those obtained in the coupled motion circular
orbit case and the planar motion elliptic orbit case of the previous sections.

First the effects of eccentricity and out-of-plane motion on the size of the regular
libration region is examined.

Results can be compared directly with those of the series of computational tests for
increasing initial conditions a(0) = ~(0) = k. a’(0) = +’(0) = 0 carried out similarly
in the coupled motion circular orbit case. In that case a change from regular to chaotic
libration was observed at & = 13°: in the present case of orbit eccentricity e = 0.1. the
change to chaotic libration was observed at & = 27°. The eccentricity causes chaotic
libration to occur at a lower &. i.e. a reduction of the regular libration region for those
initial conditions. One expects the regular libration region as a whole (all possible
initial conditions) is decreased. and that it decreases with increasing eccentricity
in general. as observed in the planar case: results at other initial conditions and
eccentricity to show this could be obtained in future work. In the planar case. of
course. chaotic motion exists only with nonzero eccentricity.

Results can also be compared with Figure 3.3 for the planar case of an elliptic
orbit of ¢ = 0.1. Inspection of the Poincaré section showed that a change from regular
pitch libration to chaotic pitch tumbling occurs. for zero initial pitch rate. at the initial
pitch angle a(0) ~ 40°. i.e. initial conditions a(0) ~ 40°, 4(0) = ’(0) = +'(0) = 0. In

the present case where roll was given identical initial angle as pitch. the change from
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regular to chaotic libration was observed at a(0) = +(0) = 27°. 2'(0) = +'(0) = 0.
Introduction of a disturbance in roll angle identical to that in pitch angle for zero
disturbances in the velocities. causes chaotic motion to occur at a lower pitch angle
disturbance. i.e.. reduces the regular pitch libration region for initial conditions of
initial pitch angle and zero initial pitch rate. One expects the regular pitch libration
region as a whole (all possible initial conditions) decreases with the introduction of
any roll motion. for anv given eccentricity: this was the case in the circular orbit
problem. Of course in the circular orbit case chaotic motion exists only when both
degrees of freedom arc present. The above discussion is understood by recognizing
that both eccentricity and out of plane motion introduce additional dimensions to the
phase space and possible resonances of motion: chaotic lavers form near the associated
separatrices.

The regular libration region may be smaller or equal to just the the libration
region of non-tumbling motion. depending on whether chaotic libration or chaotic
tumbling occurs. In the planar motion. elliptic orbit case. chaotic motion is only
chaotic tumbling. and the regular libration region is equal to the total libration region.
as seen in the Poincaré sections (Figure 3.3). In the Poincaré sections  Figure 3.5) for
constant Hamiltonian of the coupled motion. circular orbit case. one sees the regular
libration region is surrounded by chaotic libration or chaotic tumbling. depending on
the Hamiltonian. In the a(0) = ~(0) = k. a’{0) = +/(0) = 0 series of that system, &
for regular libration was limited by chaotic libration for 43° < & < 48°. with tumbling
motion occurring only for & > 149°. In the same series for the coupled elliptic orbit case
with e = 0.1. & for regular libration was limited by chaotic libration for 27° < k& < 30°.
with tumbling motion occurring only for £ > 31°. Thus the coupled motion elliptic

orbit case is more similar to the coupled motion circular orbit case than the planar
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elliptic orbit case in that chaotic libration may occur, which limits regular libration
to a region smaller than that of just the libration region of non-tumbling motion.
The Lyapunov exponents taken in the chaotic libration range of the a(0) = +(0) =
k. @'(0) = ~'(0) = 0 series of the coupled motion circular and ¢ = 0.1 orbit cases.
that is 43° < & < 18°. 27° < & < 30° respectively, can be seen from Figures 3.10
and 3.13(b) to show that chaotic libration in the e = 0.1 case is weaker than in the
circular case. The range in itself is smaller for the e = 0.1 case. 4° compared to 6°.
For the initial conditions studied for the elliptic orbit case e = 0.1 the difference
in size between libration region and regular libration region due to chaotic libration
is small (a few degreesi. and the chaotic libration is weakly chaotic. However the
desirable region of operation when the nature of motion is considered is reduced. and
one must recognize this may occur for all initial conditions and for all eccentricity.
A comparison is made finally of the coupled motion elliptic orbit case. with previ-
ous work of interest. Modi and Shrivastava (1971b) presented design plots indicating
allowable impulsive disturbances (initial pitch rate. roll rate. zero initial angles) at
perigee for nontumbling motion over a range of € of this system. showing a decrease
in the libration region with eccentricity. They did not consider the nature of libra-
tion however. and one expects chaotic libration would restrict the desirable region of
operation to a smaller regular libration region. also decreasing with eccentricity, as
shown in this work for equal angular disturbances (initial pitch angle. roll angle. from
rest} at perigee in orbits of € = 0 and ¢ = 0.1. For a slightly elliptical orbit. Melvin
(1988b) observed a similar tvpe of instability (chaos) for the two degrees of freedom
plotted on a unit sphere. for the same region. that is motions from rest with small
initial roll angle. large initial pitch angle. as he observed for the circular orbit case:

in addition he observed in this region that the tether sometimes inverts (tumbling).
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However. Melvin (1988b) did not apply any of the computational tests which decide
the nature of solution. as carried out here. The results here presented PSD’s and
Lyapunov exponents which decide the nature of motion in this system. as well as
Poincaré sections. phase plane plots and time histories, to document the change from
regular to chaotic motion for trajectories starting at perigee from rest with equivalent
nitial pitch and roll angles as the angle is increased. in an orbit of e = 0.1. The
regular libration region for those initial conditions and eccentricity was determined
and the existence of chaotic solutions in this system (coupled motion. elliptic orbit),
as suggested by Melvin (1988b). was confirmed.

From a practical point of view the results of importance presented in this Section
and Chapter is the determination of the regular libration region of the phase space. the
desirable region of operation of the system. This region is clear for the circular orbit
case from its phase plane: chaos does not occur in this one degree of freedom svstem.
This region can also be seen from the Poincaré section of the planar elliptic case for
initial conditions at perigee (¢ = 0.003. 0.1). and the Poincaré sections for constant
values of the Hamiltonian for the coupled motion circular orbit case. In these cases the
regular libration region of desired operation should exclude the ‘island” regions which
are surrounded by chaos. although they correspond to regular libration trajectories.
[n these systems 1nonautonomous one degree of freedom. autonomous two degrees of
freedom) chaotic trajectories exist from theory even in regular regions: however. they
are very weakly chaotic. confined to very thin layers between regular trajectories and
in practice behave as regular trajectortes. Only when these chaotic layers overlap and
create a large chaotic region are the characteristics of chaos shown. Large excursions
of the trajectories may occur within the region, and motion is unpredictable. The

regular libration region was also determined for the coupled motion circular orbit case



CHAPTER 3. STATIONKEEPING PHASE 60

and coupled motion e = 0.1 orbit case for initial conditions at perigee of equal pitch
and roll angles. zero velocities. The elliptic case is a non-autonomous two degrees
of freedom system. In this case the theory predicts chaotic trajectories even in the
regular regions: however. they are very weakly chaotic. whose rate of diffusion in
very thin layers is so slow that although the layers are connected in a chaotic web

throughout the phase space the trajectories in practice behave as regular trajectories.

3.4 Computational Notes

[n this Chapter. as well as Chapter 4. numerical solutions of the differential
equations of motion were obtained using the IMSL subroutine DIVPRK. which uses
Runge Kutta formulas of order five and six. The routine is a variable step size scheme
which attempts to keep the global error proportional to a user-specified tolerance. In
this work absolute error control was selected. with tolerance of 5 x 1073,

\alidation of the scheme is particularly important for the solutions of this Chapter.
Error arises due to the discretization involved in the numerical work. specifically the
truncation error of the numerical integration routine and the roundoff error produced
in the computer. One would like to ensure that the chaotic numerical solutions
represent the dvnamics and are not spurious. produced by discretization effects. The
essential correctness of the solutions can be checked by varying the numerical precision
of the routine. and the algorithm itself: the Hamiltonian can also be used as a check
for the case where the dvnamics require it to be a constant of the motion.

The Hamiltonian is a constant of the motion for the circular orbit case. The
Hamiltonian was checked for all numerical results presented in the coupled motion.

circular orbit section. Section 3.3.1. that is the trajectories associated with all Poincaré
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sections. phase plane plots and time histories. PSD’s and Lyapunov exponents. All
showed excellent behaviour of the Hamiltonian. that is constant with time, within
at most £0.0001 of the value of the Hamiltonian constant Cy (Figure 3.17, Cy as a
function of time for the chaotic trajectory included in Figure 3.5 (d), is an example).
As the minimum absolute value of Cy of all presented trajectories was 0.3. this
corresponds to a maximum percentage variation of £0.02%. This variation is small,
ensuring the validity of the computed trajectories.

For the trajectory of coupled motion. elliptic orbit. a(0) = ~(0) = 30°. a'(0) =
+'(0) = 0. the Lyapunov exponent was recomputed over 200 orbits using a stricter
tolerance. 5 x 107!, and also by another numerical integrator altogether. As the
alternate integrator the IMSL subroutine DIVPBS was used. DIVPBS employs the
algorithm of Burlisch and Stoer. which uses rational function extrapolation and is
based on the midpoint rule in a slightly modified form. Like DIVPRK the routine is
a variable step size scheme which attempts to keep the global error proportional to a
user-specified tolerance. Absolute error control and tolerance of 5 x 10~* was selected
as done originally with DIV PRK.

[n Figure 3.13 these Lyapunov exponents are shown for comparison with the
original calculated [.vapunov exponent included in Figure 3.13. Discrepancy in the
values. which signify a weakly chaotic orbit. is observable only after 150 orbits and
remains small to the 200 orbits shown. The numerical calculation can be considered
essentially independent of the precision of the integrator and the integrator itself.
Although other results of the elliptic orbit coupled motion case were not directly
verified in this way. thev are assumed to be also valid.

Finally one notes the agreement obtained where direct comparisons could be made

with numerical results available in the literature. that is some Poincaré sections for
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the planar motion elliptic orbit case and the coupled motion circular orbit case.

For the solutions of this Chapter. the integrator subroutine was called 150 times
per orbit. that is every A0 = 2% /150 ~ 0.042 radian or 2.4°.

To plot the time histories. the angular displacement is taken at every A0 = 27 /75.
Likewise angular displacement and velocity is taken at every A@ = 27 /75 to construct
the phase plane plots.

To construct the power spectra. the time history sampled at every AN§ = 27/73
is used. A\ n = 1096 point fast Fourier transform (FFT) is taken. using the FFT
subroutine provided in MATLAB. The power spectral density i1s found as the square
of the absolute value of the complex transform. normalized by the number of data
points. It is converted to a decibel scale. and the first n/2 points are graphed against
the nondimensional frequency vector w,y; = 2x1/(nAf). : = 0.1..... nf2—1.

Concerning the Poincaré sections. for the elliptic orbit planar and coupled motion
cases. angular dispacement{s) and velocity(-ies) are sampled at perigee every orbit as
discussed. For the circular orbit coupled motion case. where pitch and pitch rate are
to be sampled when -~ =0 and ~" > 0 as discussed. the former condition is effected
by testing for a change of sign after every call.

Details of the computation of the first Lyapunov exponent A can be found in Moon
(1987). Rasband i1990). Lichtenberg and Lieberman (1992) and Tabor (1989).

To determine the length ratio d/dy in Eq.(3.12). that is

A= lim
Neoo t\- — 1o

te)
Z log, ———— do ” (3.34)

the variational equations can be used.

For the system

o= fiz.t). i=1..... n (3.35)
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the variational vector function 7 of trajectories in the neighbourhood of the reference

trajectory £(¢) is solved from

n=1[A]-7. (3.36)
where
[A] = %(f'(t)) (3.37)

is the Jacobian matrix function for the vector field f evaluated along the trajectorv
2 (t).

Eqs.(3.35) and «3.36) can be integrated simultaneously: the former solves for the
given trajectory r-(f). the latter for the variational vector function 7(t) along the
trajectory z7(t). One chooses for convenience |7(0)] = 1. but the initial direction
is chosen arbitrariiy 11t will then likely have a component in the direction of most
rapid growth. associated with the first Lyapunov exponent. to which the solution 7(¢)

converges). After a given time interval (4., — ti = 7. one takes

d(teer) _ (Tt

dity) — [7(0:te)] (3.38)

Before beginning the next time interval in Eq.(3.34) the distance s renormalized:

H{Tite)
ﬁ(OIfU:‘rZ -

—_— 3.39
(7t (539

In this work the true anomaly € acts as the time variable. Renormalization was

carried out every 2x/135 =~ (.42 radians (13 times per orbit).
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Figure 3.1: Phase Plane of Planar Constant Length Tethered System (Gravity Gra-

dient Pendulum) in a Circular Orbit
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Figure 3.2: PSD’s of Motion of Planar Constant Length Tether in a Circular Orbit

with Initial Conditions as Shown
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Figure 3.3: Poincaré Plots for Motion of a Planar Constant Length Tethered System

in Orbits of Eccentricity e = 0.003 and e = 0.1
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Figure 3.4: PSD of Motion of Planar Constant Length Tethered System in an Orbit

of Eccentricity e = 0.1, with Initial Conditions a(0) = 10°,a’(0) = 0
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associated with the periodic solution, not the periodic solution itself. Note P,n has

n regular regions of which only one is labelled here.




pich rale

CHAPTER 3. STATIONKEEPING PHASE

(a) ke 10.20. 30. 40 deg

—
15
14
as
o-
os}
K18
154
s 1 as 0 0.5 1.8
pach
(€) kw4l deg
I SH
1t Ky .
Y N
e \‘tij-:j ii.
L . 4 - »
05 !/ F1 . o W
’
: }
g’ ;
os}
A\, o
F)
ne % A
BRWED
‘\-V.N"
AS8F
5 s Y [) oS 15
ot

Figure 3.6: Poincaré Sections of Motion with Initial Conditions a(0) = ¥(0) = &, k

67
®) k=d2deg
1.5t
T
; 0 : : ]
i
05 \ /
st ]
s o5 0 05 15
pech
(@) ke deg
3 — —
z»
b,
i1
B0 S -."_,_
' ,.'.‘. ... b
- .
2t
aL -
3 1 “o‘ 1 3

as shown, o'(0) = ¥/(0) = 0, Constant Length Tethered System in a Circular Orbit




>Ry

CHAPTER 3.

STATIONKEEPING PHASE

k = 40 deg

pitch rate
[=)

S

pich

roll rate
o

roll

k = 42 deg

pitch rate
o

roll rate
o

roll

pitch (deg)

roll (deg)

pitch (deg)

roll (deg)

20

40
orbits

20

40
orbits

60

80

68

Figure 3.7: Phase Planes and Time Histories of Motion with Initial Conditions a(0) =

¥(0) = k, k as shown, o'(0) = 4'(0) = 0, Constant Length Tethered System in a

Circular Orbit



CHAPTER 3. STATIONKEEPING PHASE

pitch rate

roll rate

pitch rate

pitch (deg)

roll (deg)

pitch (deg)

roll (deg)

Figure 3.7 (continued)

v
o

o

n
o

20 40 60 80
orbits

o

g

20 40 60 80
orbits

69



CHAPTER 3. STATIONKEEPING PHASE 70
a(0) =0, a'(0) = 0; 7(0) = 10deg. ¥(0) =0

) pitch psd
sot | k .
R S — -
-150+
-200 -

0 2 4 6 8 10 12 14
nondimensional frequency

roll psd

2 4 6 8 10 12 13

nondimensional frequency

a(0) = 10deg, a'(0) = 0; 7(0) = 10deg, 7'(0) =0

itch
50 __pitch psd _
0 -
s ot \\—‘\\,\
-100}+
130, 2 s 6 8 10 12 14
nondimensional frequency
roll
50 psd
0 -
£ .50t
-lm L
150 2 3 6 8 10 12 14

nondimensional frequency
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Figure 3.9: PSD’s of Motion with Initial Conditions a(0) = ¥(0) = k, k as shown,

a'(0) =4(0) = 0, Constant Length Tethered System in a Circular Orbit




CHAPTER 3. STATIONKEEPING PHASE

k=43 deg pitch psd

L v 1]

4
0 5 10 15 20 25
nondimensional frequency
roll psd
50 - — T T
o
©
.1m A L ) 1 3
0 5 10 15 20 25
nondimensional frequency
k=49 deg pitch psd
0 4
8 -50r ]
-100} *
-150 - . — I
0 5 10 15 20 25
nondimensional fraquency
roll psd
° ]
o
©
50 .
‘1 00 1 W A
0 5 10 15 20 25
nondimensional frequency

Figure 3.9 (continued)

72



5

CHAPTER 3. STATIONKEEPING PHASE

[}
3

E

s

0.0 . ’ : : : -
60 80 100 120 140 160 180 200
orbits
Figure 3.10: Lvapunov Exponents of Motion with Initial Conditions a(0) = ~(0) =

k. k as shown. a'i0+ = ~"10) = 0. Plotted Over 200 Orbits. Constant Length Tethered

System in a Circular Orbit

0.2

0.18

0.1
=
o
e}
E
s

0.05 P

k= 40° 47°
or k=10
_005 1 . 1 1 1 4 L ] L
0 100 200 300 400 S00 600 700 800 900 1000
orbits

Figure 3.11: Lyvapunov Exponents of Motion with Initial Conditions a(0) = ~(0)

k.k as shown.a’(0} = ~'(0) = 0. Plotted Over 1000 Orbits. Constant Length Tethered

System in a Circular Orbit




CHAPTER 3. STATIONKEEPING PHASE

vy
ulﬂ(P)
P
WS (P)

Figure 3.12: Sketch of Separation and Transverse Intersection of Stable and Un-
stable Manifolds of Saddle Point of Poincaré Section of Integrable Syvstem Under

Integrability-Breaking Perturbation (figure from Tong and Rimrott, 1991a)
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Figure 3.16: Projections of the Poincaré Sections of Motion with Initial Conditions

a(0) = +(0) = k. k as shown. '(0) = +'(0) = 0. Constant Length Tethered Svstem

in an Orbit of e = 0.1
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Chapter 4

Deployment and Retrieval

4.1 Introduction

While the previous chapter studied the nonlinear dvnamics of the stationkeeping
phase. where the tether length 1s constant. this chapter considers the deployment and

retrieval phases. where the tether length varies. With the assumption of tether mass

,

negligibie compared 10 1ny and m,. the mass ratio f‘ml (m2 - % m,) /m m,; appearing
in the equations of motion Eags. 12.261-12.27} reduces to unity. and the equations of
motion reduce to
cos’~ {a" — 20/iv=2+"tan~ = Fi(a' =+ 1)
— 3G sina cosa} =0. (4.1)
== 20678 — F1 A

- {a’~1)? <3G cos’ a} sin~ cos v = 0. (1.2)
with the quantities F and (G given by

F=2sinf/(l —ecosf). G=1/(1+¢€cosb).

87
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Note that deployment (positive ¢') leads to positive damping terms in Egs. (4.1)-(4.2)
and will tend to stabilize the motion. while the opposite is true for retrieval (negative
&).

Different cases governed by the above equations of motion. are considered in this
Chapter. Planar motion in a circular orbit is considered first. Pitch stability is
examined for varying exponential length rates. and for the unstable cases. compared

to an equivalent uniform length rate scheme.

Application of Melnikov's Method to the case of planar motion in a slightly ellip-
tic orbit with slow exponential deployment. to determine the conditions for chaotic
motion. Is carried out next.

Finally. the coupled motion of retrieval in a circular orbit under a length rate
control law is examined. The limit cvcle response characteristics are predicted from
approximate analytical methods and compared with those obtained from numerical

simulation.

4.2 Planar Motion in a Circular Orbit

[f the motion is confined to the orbital plane i1.e.. ¥ = 0) and the orbit is circular

(i.e.. ¢ = 0). the governing equation. Eq. (4.1). becomes
o" +2(/f) e’ +3 sina cosa = =2({'[€) . (4.3)

As the damping term is proportional to #'/¢. deployment causes stabilizing positive
damping. retrieval destabilizing negative damping. Equilibrium points (a” = o’ = 0)
satisfv

(3/2)sin2a, +2(€/6) = 0. (4.4)

From the above equation. it is seen that there exist fixed equilibrium points only
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in the case where ¢’/ = ¢ = constant. that is when the deployment/retrieval is ex-
ponential. £ = 7, exp(c #). Here ¢, is the initial length and ¢ = ¢ /{ is a dimensionless
constant governing the rate of deployment/retrieval. The equation of motion is au-
tonomous. The first term of Eq. (1.1) represents the effect of gravity and centrifugal
gradient forces which work to restore the configuration to the local vertical and the
second term the elfect of Coriolis forces induced by the deployvment/retrieval. The
resulting equilibrium position of the subsatellite is ahead of the orbiter for downward
deployment and behind for upward deployment. and the opposite is true for retrieval.
Note that if the length change rate is too large. ||c|| > 3/1. equilibrium points do not
exist. since || sin2a. must be less than or equal to unity.

The equilibrium angles a. are given by
a. = (/D sin(—=1¢/3) = (n7/2) + (=1)" (1/2) arcsin(—1c/3),

n integer. From lincarized analysis about these equilibrium points. one can find that
the singular points are saddle points if n is odd and are unstable for both deployment
and retrieval: for even n theyv are foci for 0 < |¢f] < 0.74. changing to nodes for
0.74 < {le]] < 0.75. and stable for deployment ¢ > 0. unstable for retrieval ¢ < 0.

Figure 1.1 plots the fixed points against c. showing stability changes with ¢. The

locus of fixed points nndergoes bifurcations at jjcll = 3/4. for a. = p7m + 7/4 at
¢ = —-3/1 and for 0. = pr — =/4 at ¢ = 3/4. and at ¢ = 0 for a. = p7. p integer.
At |le|f = 3/+4 the saddle points and nodes coalesce into saddle-nodes. with no fixed

points existing for ji¢il > 3/4: at ¢ = 0 centres separate the stable and unstable foci.
Local bifurcation theorv (see Wiggins (1990) for example) predicts bifurcations at
these fixed points. the former case having a single zero eigenvalue with the other
cigenvalue having a nonzero real part. while the latter has a pure imaginary pair of

eigenvalues.
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When {|c|| > 3/4. there is no fixed point. The length rate is so large that the
Cortolis forces overcome the gravity and centrifugal force gradient. While the retrieval
dynamics are always unstable, this explains why for deployment too the dvnamics
become unstable for {jc|l > 3/4. which has been observed in previous work (Baker et
al., 1976). Figures 1.2 and 4.3 show the behaviour of phase plane trajectories and
corresponding time histories. numerically obtained. for increasing the deployvment
constant c¢. Note the movement of the position of the equilibrium with increasing c.
the change of focus to node at ¢ = 0.71. and finally the change to unstable motion
for ¢ > 3/4. Figure t.1 is the phase plane for ¢ = 3/8. showing the saddle points.
stable foct and separatrices. Figure 1.5 is the phase plane for ¢ = [ : the saddles
and foci have coalesced and disappeared. and no equilibrium exists. This figure
is particularly interesting as it shows how instability occurs in deplovment. Pitch
grows unbounded in the negative direction along what appears to be the collapsed
separatrices remaining from the saddle-node. with bounded pitch rate. Fleurisson
et al. (1993) show corresponding phase planes for retrieval where the pitch angie
and pitch rate grow away from these “collapsed separatrices™ either in the positive or
negative directions depending on the initial conditions. Thus not only for ¢ < 0 but
also for ¢ > 0.75. the exponential scheme leads to instability.

If the deployment/retrieval is uniform. ' = constant = hf..; and { = £, + b€, 40,
where b is a dimensionless length rate constant and ¢,.; is a reference tether length,
usually taken as either the fully deploved or retrieved final length £;. Now the
equation of motion is non-autonomous and strictly speaking. there is no equilib-
rium point: however. one can define an instantaneous equilibrium angle a.(8) =
(1/2) sin~'[(=46/3)((£./€.cs) + b8)7']. During deployment decaying oscillations oc-

cur around a gradually reducing equilibrium angle. while during retrieval growing
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oscillations occur around an increasing equilibrium angle. Some numerical simula-
tions were carried out to make a comparison between the exponential and uniform
schemes for the unstable values of the exponential constant c. such that the initial
and final lengths as well as the time to complete the length change are identical in
both schemes. Figure 1.6 (a)-(c) presents the phase plane plots and time histories for
a series of numerical integrations taken for ¢ = 0.8 with ¢,/£, =1/100: 1/1000: and
1/10.000 from a given set of initial conditions. The equivalent uniform case proved
to be preferable with the motion bounded. as opposed to the exponential case. Fig-
ure 4.7 presents the phase plane plot and time history for ¢ = —0.1. retrieval case.
with /,/{; =10 from a given set of initial conditions: the growth in motion is much

slower in the equivalent uniform case.

4.3 Planar Motion in a Slightly Elliptic Orbit with
Slow Exponential Deployment - Solution by

Melnikov’s Method

The equation of motion for planar motion in an elliptic orbit is. from Eqgs. (4.1)-

(1.2) with 7 = " = 0.
a" + R = Fl(a'+ 1)+ 3G sina cosa = 0. (4.3)

with

=22 sinf/(1l +ecosf). G=1/(1l+e€cosbi.

(‘onsider exponential deplovment. i.e.. {'/f = ¢ > 0. In an eccentric orbit the

system is nonautonomous. hence has three dimensions. and chaos is possible.
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Now consider a small eccentricity e = O(¢). Also assume that the exponential
deployment is slow. that is ¢ is small. i.e.. ¢ = ¢e. where ¢ = O(1).

Then Eq. (14.3) becomes. to O(¢)

a” + [2ce ~2esinfl(a’" + 1)+ (3/2)(l —ecosf)sin2a =0 . (4.6)
Rewriting,
o +3/2 sin2a = ¢[(=2¢ + 2sinf)(a’ + 1) + (3/2) cos O sin 2a] . (4.7)

This system. a perturbation of an integrable system with a saddle point and
separatrix orbit. can be treated by Melnikov's Method. which was introduced and
applied to a constant tether length system in Section 3.3.1.3.

The left hand side can be written as that of the normalized pendulum equation

by making the substitutions o = 2a and = = v/30. and then after some algebra.

d* . . : do
Z_% +~sino = e¢lcoswrsino + a(—¢ + sm.‘;r)(d—T +a)l. (4.8)
where constants - =1/ v/_l and a = l/ﬁ
Comparing with Eqgs. 13.16)-(3.17). one has t = 7. ¢ = o and p = ¢ = do/dr.

g1 =0and gy =coswrsino +a(—¢ + sin“;T)(j—f + a).
The undamped. unforced problem (¢ = 0) is the same as for the svstem analyzed

in Section 3.3.1.3. with Hamiltonian

H=(1/2)v*+ (1l —coso). (4.9)
Thus
oH oH )
%=L. Eg—smo. (4,10)
and

§-VH =gy, (4.11)
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As in Section 3.3.1.3. the unperturbed separatrix orbit is given by

0" = 2tan"'(sinh ) (4.12)
do~
v = 2 —dsechr (4.13)
T
Now
L. tan (0°/2)
sino” = 2 5
[ +tan® (0=/2)
= 2tanhrtsechr . (4.14)

where Eq. (4.12) and trigonometric and hyperbolic identities have been used.

The Melnikov function from Eq. (3.18) thus becomes

M(r) = (/?IA cosw(T + 7o) tanh T sech *rdr

+C +xc ”
-~ 2a [—u ('/ sech Tdm — 26/ sech “7dr

-0 -0
- . 2 +-c .
*2/ sinw(7 + 79) sech “7d7 + a/ sinw(7T + 1) sech 7dr| (4.13)
-< -~
The integral
+c "
/ cos T tanh 7 sech “rdr = (+.16)
-
since the integrand 1s odd. The integral
+x 2 T, W -
sinwT tanh 7 sech “7dt = — csch 5 - (4.17)
-~ 2 2

evaluated by the method of residues. The following integrals can be easily evaluated

+20

/ sech 7dT = = . (4.18)
+o0

/ sech 2rdr = 2. (4.19)

Then. along with the integrals evaluated in Eqgs. (3.27)-(3.30). the Melnikov func-

tion of the syvstem is evaluated to be

M) = 2= [(—u;*’ + 2wa) csch TTU' + a? sech ”—;—} sinwry — 2¢alaw + ] (4.20)

4 -
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Transverse intersection and chaotic separatrix motion occurs if .W/(7) changes sign

at some Tg:; this occurs if ¢ < é... where ¢.. is the critical value of ¢

T , Tw Tw
p = —————— |{—w” + 2wa) csch — 2 sech —-] . 4.2
e pyp—— [( ) cs 3 + a“ sec 5 (4.21)

Ix 3r 4 Vi3r
Cp = ———— h - h . _2
eV [csc 5 3 sec e ] (4.22)
Therefore chaos occurs if ¢ < ¢, where
3= Viz 1 Vi3r
E— m [csch _G— -+ ? sec 6 } €. (423)
or alternatively. chaos occurs if € > €., where
(7 +2vV3)c
= v3) (4.24)

€Cryp = — - -
Ir ( csch J,’& + 3sech ﬁ—)
6
The above result holds for small eccentricity and exponential deployment constant.
The last equation reduces for ¢ = 0 to the familiar criterion for chaos in the (planar
motion) stationkeeping case. ¢ > 0: the Melnikov analysis of Tong and Rimrott
(1991a) applicable to the stationkeeping case. is a special case of the analysis here.
Exponential deplovment ¢ introduces dissipation into the system. such that chaotic

motion only appears for sufficiently large eccentricity e.

4.4 Coupled Motion of Retrieval Under a Length

Rate Control Law, in a Circular Orbit

If both out of plane as well as in plane motions are considered. the equations of
motion in the variable length case can be obtained from Egs. (2.26) and (2.27) for a

circular orbit and for negligible tether mass. as follows:

1

a” + (o’ + 1}[-24" tan~ +2(€'/€)] + 3 sina cosa = 0. (4.

(W]
(<]}
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2"+ 2A0)05 = (1 +2)? =3 cos® af sin cosv =0 (4.26)

This system of equations has equilibrium points a. = {1/2)sin™'{(—=4/3)(£/¢)].
~e = n=/2. From the roll equation. it may be noted that the roll motion is negatively
damped and unstable during retrieval. The same can be seen from the pitch equation
for small roll motion. This is illustrated by the phase planes and time histories of
Figure 4.8

Pitch and roll motions can be confined to limit cyvcles by using a length change
control law involving linear feedback of pitch rate and quadratic feedback of roll rate

{Monsni (19923, Monsht et al. (1991)):

#'=cll-RKR,a' - h,v* L. c<0 (4.27)

The svstem of equations remains autonomous.

In the following. the characteristics of the pitch and roll limit cycle response (re-
spective position. amplitude. frequency and the phase difference) are determined using
approximate analvtical methods. For specific sets of svstem parameters. predicted
values are compared with the values of the actual response as obtained from numerical
integration of the equations of motion. In the previous work {Monshi. 1992, Mon-
shi et al.. 1991 1. approximate analytical methods were applied to pure in-plane and
out-of-plane moticns oniv. and study of the coupled limit cyvcle motion was mainly
limited to numerical simulation.

For small motions 1a. ~ and their derivatives of O(¢)). the svstem of equations
Egs. (4.25) -1-1.26). with length change control law Eq. (4.27). can be written to O(¢€®)

as:

: ’ - - i r 8
~T = 22—+ Ko’ + A3+ ot - g‘fz +2a" +a?-3a% =0. (4.29)
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Note that the linearized equations.

o’ — 2e(K, — 1)o' + 3a = -2c. (4.30)
"+ ey + 4v=0.¢c<0 (4.31)
predict that pitch executes damped {if A, > l) oscillations approaching a. = —2¢/3,

and roll executes negatively damped (unstable) oscillations about ~. = 0. The limit
cycles occur when nonlinearities are considered.
An approximation of the roll limit cyvcle motion can be made by considering a

pure roil motion. linear in roll except for the control term.

“ 221+ A+ 4 =0 (4.32)

or

-+ 4- = —C{'Z(‘,-r - 1\'{‘;,3)] . (1.33)

and assuming small c. For small ¢ the method of variation of parameters can be
applied to the above equation. This was carried out by Monshi {1992): according to

this method. a limit cvcle oscillation of the following form occurs:
-~ = bcostwT . (4.34)

where frequency < and amplitude b are

BV
.

(4.35)

b=I1/3K1]'* . (4.36)

An approximation of the pitch limit cycle motion can be made by considering the

pitch equation. linearized in terms of pitch but retaining the O(€?) roll forcing terms.

a” = 2(K, - 1)a' - 3a = =2cK.,~"? + 24"+ = 2c. (4.37)
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and assuming a roll limit cycle motion % = bcosw7. Substituting v = bcosw and its
derivative into the right hand side of Eq. (1.37) and expanding using trigonometric

identities. Eq. (1.7 becomes

a”— 2c(K,=11a'= 30 = =2¢(1— K.b0°w?/2) —c AL b2 ? cos 2wt — b sin 2wr. (4.38)
or. rewriting the forcing terms.

"~ 2(Ky=11a'~ 30 = =2e( 1= K b2 21+ b [ K22 + 1 cos(2er +3). (4.39)

where

ch.w

J:Ian'l< 1 ) ) (1.40)

This linear. damped + A', > ). harmonically forced equation has the steady state

solution
—2c o , } AR+ 1
a=—/(l-N.bo"/2V~ho — — cos2wT + (3 — 1)
3 \} (3 — 4w = 16w?c* (A, — 107 ( ]
(4.41)
where
—tew (N, — 1)
-1 x :
= tan _ : +.42)
I ( 3 — 402 ) (
Thus for roll motion executing a limit cvele motion ~ = bhcos . the approximate

pitch equation of motion predicts a steady state limit cycle motion of the form a =
ap +acos(2er ~ b A7, 2o 1) where ag . a and ® are known explicitly. If the phase

angle between the two motions is transferred to the roll expression. one obtains

~ =bcos(wT +0), a=ag+ acoswT. (4.43)
with 0o = —=®/2. Then
—-2c s
Qg = '—3-(1 - [\'«,b-u"-/:l) (4.44)

AR+ 1

= h’e
“ \J (3 — 4212 + 16w2c? (N, — 1)

(1.45)
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l —dee(K, = 1) -1
o=(w—-31/2= 3 ll:ta.n_l ( 4?(_[::2 l ) —tan”! (C[\'.y...‘) (4.46)

Note that a, i1s the average value of the pitch oscillations. and expression Eq. (1.44)
will also result if Eq. 114.37) is averaged over a period of pitch. assuming the respective
harmonic expressions for pitch and roll found above. The roll motion leads to an
average value of pitch g less than a, = —2¢/3.

Now. by assuming periodic solutions of the form Eq. (4.43)
= =bhcosicT -~ 0). a=ayg+acosleT.

as suggested by rthe above analvses. and substituting into the Oie®) equations of
motion Eq. (1.2%:-01.29). the method of harmonic balance is used to obtain more
accurate expressions determining <. b. aq. a. and o. Details of the method of harmonic

balance. which is closely related 1o the Galerkin method. can be found in any reference

tn

on approximate enalyvtical inethods of nonlinear analysis: Nayvfeh and Mook (1979} 1s
an example.

Proceeding. the pitch and roll approximations Eqs. '+ 1.43) and their derivatives are
substituted into Feags. o 12390029 which are then expanded by use of the appropriate
trigonometric identities in terms of sine and cosine harmonics of ~7. The pitch
equation is composed of constant terms and even harmonics: the roll equation is
composed of udd harmonics. The constant terms and second harmonics of the pitch
equation. and the first harmonics of the roll equation are collected. Based on the
assumption of pitch and roll. Eq. (1.43). the method of harmonic balance requires that
the constant term and coefficients of those harmonics be equated to zero (to balance
the zero values on the right hand sides of the equations:. A higher accuracy solution

would have been found if higher harmonics had been included in the assumption. in

which case the coefficients of these harmonics are also equated to zero.
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In this way. the following five equations in the five unknowns w. b, aq, @, and o,
are obtained:

Constant (from pitch equation):

2c + 3an — 2a3 — 3aga® — fculfd* K, — cK Wb

+cwlab’ I, sin 26 — w?ab® cos 26 = ) (4.47)
cos 2«7 (from pitch equation):
’ . . l} 3 - 139 , 9.
—lwta = baga + Ra — 5@ +ch,e"b”cos20 + wb sin20 =0 (4.48)
sin 2«7 (from pitch equation):
teal N, — 1) + 2cwab’ K. - cAowb®sin20 + b2 cos 20 = 0 (4.49)

cosw (from roll equation):

y R . 2 a2 9 . ¢ 2 o2
cosol —? = 2N, w?a + 4 = 26 — 3al — 3aga + 2.%a* — =a?)

i 3 ,
+sino(=2cw + 3c[\.,.u3bz +2ca) =10 (4.50)

-~

sinw7 (from roll equation):

. ) . 3.
. » - 2 . . B 2 2 2
sino( = = 2eh o a + 4 —2b° — -305 + 3aga + 2uca” — 51 )

3 .. s , )
+coso(2cw — 361\.,*‘36' +2wa) =0. (4.51)

This is a system of nonlinear algebraic equations which will have multiple solutions.
It is third order in ag. a. and &: « appears up to the third power. An analytical
solution. which would best be attempted with the aid of computer algebra. was not
attempted.

(Consideration up to the second order in ag. a, and b would simplify the first three

equations, and correspond to having considered the pitch equation only to O(€?).
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The first equation (i.e.. Eq. (1.47), from the constant terms of the pitch equation)

would then immediately yvield a solution for aq explicitly. as a function of a, b and w:
"-ZC' s 12 2 - 2 2
ag = —_3—(1 - K b%w? /2 — 2K a°”%) . (4.32)

This expression for aq. the average value of pitch. also results by averaging the O(e?)
equation over a period of pitch. assuming the respective harmonic expressions for pitch
and roll. as shown by Monshi (1992). [t shows that ag is reduced from a. = —2¢/3 by
the presence of steady-state oscillations of both pitch and roll: this is a more accurate
approximation of ag than obtained previously, Eq. (-1.44). where no O(¢?) pitch terms
were considered.

Eq. (4.52) from the first equation (from pitch) would reduce the second order
svstem of equations to four unknowns «. 4. @. and o. Further analytical solution
remains complex and was not carried out in this work.

The nonlinear svstem of five equations Egs. (4.47)-(4.31) in the five unknowns w.
b. ap. a. and o. second or third (as they are shown) order in ag, @ and b can be solved
numerically. given a particular set of system parameters c. A',. .. where an estimate
of the desired solution is provided. Such numerical solutions were obtained here using
the “fsolve” M-file function of MATLAB and are given presently.

Note that Egs. (-£.335)-(1.36). (4.44)-(4.46). from the approximate solutions pre-
sented earlier. or. preferably. Eqs. (1.33)-(4.36). (1.45)-(1.46). along with Eq. (4.532).
together provide an explicit “first approximation” or estimate of the five unknowns for
a given set of parameters.

Figure 1.9 and Figure -1.10 show the pitch and roll phase planes and time histories
from numerical integration of the equations of motion for ¢ = —=0.3. A, = 2. and
K, = 9. and for ¢ = —=0.5. A, = 1. and A, = 27 respectively. First considering

the former. initially when angles are small, motion follows the linearized equations of
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motion. that is. pitch motion exhibits damped oscillations toward a. = ~2¢/3 = [1.5°
and roll negatively damped oscillations about v, = 0. When the roll motion reaches its
limit cvcle. it excites the pitch limit cycle as well. Considering the second case, where
K, = 1. the initial pitch oscillations about a, = 19° show little damping. Damping is
provided by higher order terms in the pitch equation of motion and ensures that when
the roil motion reaches its limit cycle. pitch assumes the steady state limit cycle also.

The roil and pitch oscillations can be formulated as Eq. {1.43) of the approximate

solutions
= =hcos{wT +0). a=ag+acos2uT.
Tables 1.1 and 1.2 compare. for the cases ¢ = —03. A, = 2. A, = 9 and
e = -05. A, = 1. KA. = 27 respectively, the actual values of «.b.ag.a and ¢ as

obtained from numerical simulation. with three approximations. The “first approxi-
mation’ refers to the explicit expressions Eqs. (1.33)-(4.36). (4.45)-(4.46). along with
Eq. (4.52). These were derived using a combination of methods applied to lower or-
der approximations of the equations of motion. The nonlinear system of equations
Egs. 1 1.47)-(4.511 for the two cases second and third order in aq. a and b respectively
was solved numerically. using the first approximation values as estimates. The sys-
tem of equations was derived using the method of harmonic balance applied to higher
order approximations of the equations of motion. These predicted the values more ac-
curately as might be expected. although sometimes the second order solution seemed
to be closer to the numerical integration results. as compared to the third order so-
lution (perhaps error was introduced when extracting the values of the numerical
integration solutions). However. the values obtained from the explicit expressions.

which did not require numerical solution. are indeed an excellent first approximation.

at least for these cases where motions are sufficiently small.
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:! First Approximation | Numerical Solution of | Numerical Integration
xl Egs. (-1.35)-(:1.36). Eqgs. (4.47)-(4.531) to | of Equations of Motion
l! (4.43)-(-1.46). (-4.52) | 2nd order | 3rd order
i W 2.00 1.95 1.96 1.95
I 6 11.0° 12.2° 12.2° 12.5°
' a 1.3° 2.2° 2.1° 2.1°
, Qg 3.6 ° 2.2° 2.5° 2.3°
L o 80 ° i9° ‘, 5° e
Table 1.1: Comparison for case ¢ = —0.3. K, =2. K, =9
E First Approximation { Numerical Solution of | Numerical Integration
§ Eqs. (£.35)-(-£.36). Egs. (1.47)-(4.51) to | of Equations of Motion
(1.45)-0-L16). (1.52) ‘ 2nd order j 3rd order
. 1 2.00 194 1.96 1.93
’ b | 6.1° 0° 6.7 ° T.3°
a 2.9 ° 3.6° 3.4° 3.4
a0 6.0 ° 120 440 3.8°
E| o 39 ° 39 ° 82° 76 °
Table 4.2: Comparison for case c = —0.5. A, = 1. K, =27

102
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Monshi (1992) and Monshi et al. (1991) introduced a second reel rate law involv-
ing absolute value. rather than quadratic. out-of-plane feedback. Future work could
similarly apply approximate analytical methods to predict the limit cyvcle response

characteristics using this control law.
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Figure 4.1: Bifurcation Diagram of Fixed Points for Planar Exponential Deploy-

ment/Retrieval in a Circular Orbit
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Figure 4.4: Phase Plane for Deployment Constant ¢ = 3/8, Planar Motion in a

Circular Orbit. Showing the Stable Foci, Saddle Points and Separatrices
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Figure 4.5: Phase Plane for Deployment Constant ¢ = 1, Planar Motion in a Circular

Orbit. Showing the Disappearance of Equilibrium Points and Occurrence of Instability
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Figure 4.6: Phase Planes and Time Histories for Comparison of Exponential and
Uniform Fast Deployment, Planar Motion in a Circular Orbit, ¢ = 0.8, «(0) = 0,

«(0) = 0.5; (a) £:/€; = 1/100.
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Figure 4.6 (continued) (b) ¢;/¢, = 1/1000.
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Figure 4.6 (continued) (c) £,/¢, = 1/10,000.

10




CHAPTER 4. DEPLOYMENT AND RETRIEVAL 110

0.6 L 1

0.2

0.4

—_ . exponential rate
- uniform rate

¥
!

0.6

Y a3 oz w1 0 01 02 03 04 0S

<)
F

Figure 4.7: Phase Plane and Time History for Comparison of Exponential and Uni-
form Retrieval, Planar Motion in a Circular Orbit, ¢ = —0.1, £;/£; = 10, «(0) = 0.02

rad, «'(0) =0
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Figure 4.8: Phase Plane and Time Histories for Uncontrolled Retrieval in a Circular
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Figure 4.9: Phase Plane and Time Histories for Controlled Retrieval Eq. (4.27) in a
Circular Orbit. A, =2, K, =9, ¢=-0.3; {, = 100 km, {; = 0.1 km: «(0) = a'(0) =

0. 7(0) = 0.1 deg. v'(0) = 0
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Chapter 5

Conclusions

5.1 Summary of the Findings

This thesis has examined the three-dimensional librational dynamics of two-body
tethered satellite systems. mainly through a modern nonlinear dynamics approach.

The governing pitch and roll equations of motion are highly nonlinear. Hence.
both numerical and approximate analvtical methods have been used to analvze these
equations. Primarily. numerical tools of nonlinear dynamics analvsis have been used:
phase plane plots. time histories. Poincaré sections. PSD’s and Lyvapunov exponents
were constructed from numerical integration of the equations of motion. The analyt-
ical method of Melnikov. as well as classical approximate methods of solution. have
also been applied.

The stationkeeping phase as well as the deployment and retrieval phases have been
studied. The dyvnamical model considers a system of two point masses connected by
a rigid tether. in a Keplerian orbit. and ignores aerodynamic effects. The tether is
considered to have negligible mass in the variable length analyses.

Motion in the stationkeeping phase. in which the tethered system is just a gravity

113
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gradient pendulum. was analyzed first considering only pitch dynamics. and then
considering both pitch and roll degrees of freedom. for both the circular and elliptic
orbit cases.

In the stationkeeping phase the behaviour can be understood from Hamiltonian
nonlinear dynamics. In a near-integrable Hamiltonian systemn the phase space and
surface of section i~ made up of regular {periodic or quasi-periodic) and chaotic
regions of motion. The chaotic layers exist near the separatrices associated with the
resonances of motion and grow with increasing perturbation away from integrability.

[n the case of planar motion and a circular orbit. the system is integrable and
the motion is entirely regular. [t was shown that periodic libration and tumbling
solutions exist. separated by separatrices in the phase plane.

For planar motion. nonzero cccentricity case. Poincaré sections showed that a
chaotic tumbling region appears to grow from the separatrices of the circular orbit
case. this region growing with increasing eccentricity. For smaller initial conditions.
the solutions are those of regular libration.

[n the case of coupled motion. for a circular orbit. the region of possible motion
in the phase space and surface of section is dependent on the Hamiltonian constant
Cy. For a given (7. the nature of motion depends on the mix of initial conditions.
Surfaces of section showed that as Cy was increased. the region of possible motion
changed from mainly regular libration. to regular and chaotic libration. to regular
libration along with regular and chaotic tumbling. For trajectories starting from rest
with equivalent initial pitch and roll angles. a series of Poincaré sections. PSD’s, and
Lyvapunov exponents were presented to document a change from regular to chaotic
motion. and subsequent increase in the degree of chaotic motion. as the angle is

Increased.
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[f roll is assumed to be small and harmonic. the system can be considered as a
perturbation of the integrable. planar system. Melnikov's method applied to this
idealized version of the coupled system. showed that such a system will always have
chaotic motion near the separatrix.

For the coupled motion. nonzero eccentricity case. the numerical techniques were
applied to examine the nature of motion of libration trajectories starting from rest
with equivalent initial pitch and roll angles. for an orbit of a specified eccentricity.
Librations change from regular motion to weaklyv chaotic motion as the initial angles
are increased. The phenomenon of Arnold diffusion. predicted in this svstem by
theory. was not observed for the chaotic trajectories and time frame studied.

Eccentricity and out-of-plane motion reduced the size of the observed region of
regular libration solutions: they introduce additional resonances and chaotic solutions
to the phase space.

Chaotic libration. observed in the coupled motion cases. limits the regular libration
region to a region smaller than just the libration region of non-tumbling motion.
Therefore in terms of determining the desirable region of operation of the system. it
is important to consider the nature of motion (regular or chaotic motion).

The variable length case (deplovment and retrieval) was studied next. Planar
motion in a circular orbit was first considered. For an exponential length rate. linear
analysis about the fixed points and phase planes showed that the system is stable
when stable foci or nodes exist: deployment is stable only for exponential length rate
constant 0 < ¢ < 3/4. while retrieval is unstable for all values of length rate ¢ < 0.
For the unstable values of c. the exponential length rate scheme was compared to an
equivalent uniform length rate scheme. where a given length change is completed in

an equal amount of time in both schemes. using time histories and phase planes. The
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uniform case remained stable for ¢ > 3/4 and showed slower growth in motion for
¢ < 0. and is thus preferable regarding motion growth.

Application of Melnikov’s method to the planar motion of slow exponential de-
ployment in a slightly elliptic orbit. showed that chaotic separatrix motion occurs only
for eccentricity greater than a determined critical value e.,, which is proportional to
c: deployment introduces dissipation into the system which has a regularizing effect.

Finally. the thesis examined the coupled motion of retrieval in a circular orbit
under a given length rate control law. involving linear feedback of pitch rate and
quadratic feedback of roll rate. The pitch and roll limit cycle response characteristics
were determined by approximate analyvtical methods of solution: for specified system
parameters the values predicted compared well with those of the actual response as
obtained from numerical simulation.

[n summary. the thesis shows that the tethered satellite systems have very rich dy-
namical behaviour due to the nonlinearity of the governing equations. understanding

of which may help in mission design and planning.

5.2 Recommendations for Future Work

The material presented in this work covered only a part of the nonlinear dvnamics

of tethered satellite systems. Some recommendations for future work are given below.

o Extend the numerical analysis of the regular libration region for the station-
keeping. coupled motion. elliptic orbit case to more general initial conditions

and eccentricities.

¢ [nvestigate numerically the occurrence of chaos in the exponential deployment.

planar motion. elliptic orbit case.
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e Study the phase space of the coupled motion of controlled retrieval further.

e Apply approximate analytical methods to predict the limit cycle response char-
acteristics for the retrieval length rate control law involving absolute value,

rather than guadratic. out-of-plane feedback.

e The present work ignored the elastic vibrations of the tether. I[nvestigate the

nonlinear dvnamics for the case of a flezible tether.
e [nvestigate the nonlinear dynamics of multi-body tethered satellite systems.

e Carry out experimental or flight verification of the dynamical behaviour pre-

dicted in the thesis.
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