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Abstract

The equations of motion of a tethered satellite system are highly nonlinear and

should possess rnany interesting related features: yet its nonlinear dynamics has never

been thoroughly in\·cst i~ated in previous works. This thesis analyzes the nonlinear

dynamics of two-~)()dy tethered satellite systems using numerical toois of analysis

such as phase pla.ne plots. power spectral Jensities (PSD·s). Poincaré sections and

first Lyapuno\" l'xponents. as weIl as approximate analytical methods including the

method of :\Ielniko\·. ~Iotion in the stationkeeping phase wherein the tethered system

is just a gra\'ity e;rildicrIi pt'ndulum is studied. first considering pitch motion only~ and

then considcrin!!; the cOllpled pitch and roll motions, Regions of regular (periociic or

quasi-periociic) (iraI chaotic rnotions exist in the planar system for orbits of nonzero

eccentricity~ and also in the coupled system for both the circular and elliptic orbit

cases, The size uf the chaotic region grows with eccentricity~or in the coupled motion.

circular orbit case. \\"it h increasing values of the Hamiltonian. Chaotic libration.

obser\"ed in the cOllplcd rHotion cases. limits the regular libration region to a region

smaller than ~irnpiy t he libration region of non-tunlbling motion. :\Ielniko\··s method

applied to tilt' pi,lnar rnotion perturbed by roll (assumed to be small and harmonic)~

showed that stlch a system will always ha\'e chaotic motion near the separatrix. The

deployrnent/ wt rie\·al phases are studied next. For a circular orbit. pitch stability is

examined for varyin~ C'xponential length rates: for the unstable cases. it is compared

to an equival('nt llniform length rate scherne. which showed bctter stability behaviour.

Application of ~Ic!Iliko\··s rnethod to planar motion of slow exponential deployment in

a slightly plliptic orbit showed that chaotic separatrix motion will oecur if eccentricity

is greater than a critical \'alue. proportional to the exponential length rate constant.

Approximate analytical methods applied to coupled motion of retrieval under a length
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rate control law in a circular orbit. predicted weIl the characteristics of the pitch and

roll Iimit cycles response.
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RésUIllé

Les équations du mouvement d~lln système de satellites cablés sont grandement

non linéaires et dC\Taient comprendre plusieurs caractéristiques intéressantes: pour­

tant. cette dynan1Î(jlH' non linéaire n'a jamais été étudiée en détail dans de précédents

travaux. Cette thèst' analyse la dynamique non linéaire de systèmes composés de deux

corps cablés satelIi:-;{~s ('n utilisant des méthodes numériques d'analyse telles que les

diagrammes de phase. lel d~nsité de puissance spectrale. les coupes de Poincaré. les

premiers exposanb dt' Lyapunov ainsi que des méthodes analytiques d'approximation

incluant la méthorÏl' dl' \Ielniko\·. Le mouvement pendant la phase de maintien en

position. pour lf'qlH'! 1(' système correspond à un simple pendule soumis au gradi­

ent de gra\·itf., ('st f~t lIdit~ {'n considérant prenùèrement. le mouvement de tangage

seulement. et oCl1xi;'nH'nlent. les mou\·ements couplés de roulis et lacet. Les régions

correspondant 'l.!lX mou n'ments réguliers (périodiques et quasi- périodiques) et celles

correspondant aux rnou\·pments chaotiques existent dans le cas d'un système plan

pour des orhit('~ d ·,·(·ccntricité non nulle, et également dans le cas d'un système couplé

pour àes orbit.t's (-i~Cl1laires 011 elliptiques. La taille de la région chaotique augmente

avec !"eccentricitt"' U;l. dans le cas (fun systènH? couplé pour une orbite circulaire, a\'ec

les \·aleurs croissantt'~ de l"Harniltonien. L'oscillation chaotique. observée dans les

cas de mouverTlcut nmplé, limite la region correspondant aux mouverrlcnts réguliers

à une région plus pel ite que celle correspondant simplement au rnou\·ement de non

renversement. La fIlét hode de \Ielniko\· appliquée au mou\·ement plan perturbé par

le roulis (supposé faible et harmonique). a ITlontré qu'un tel système a toujours un

comportement chaotique près de la séparatrice. Les phases de déploiement et de

repliement sont {~tuJiées par la suite. Pour llne orbite circulaire, la stabilité en tan­

gage est étudiée à travers le taux de variation exponentiel de la longueur: dans les
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cas instables. la stabilité est comparée avec celle obtenue par le procédé équivalent de

variation uniforme de longueur, qui montre un meilleur comportement de stabilité.

L~utilisation de la méthode de ylelnikov pour le mouvement plan d~un déploiement

faiblement exponentiel dans le cas d'une orbite légèrement elliptique a montré que

le mouvement chaotique près de la séparatrice se produit si l'eccentricité est plus

grande qu'une valeur c:rit ique. proportionelle à la constante de taux de changement

exponentiel de la IOT1~uetlr. Des méthodes analytiques d'approximation, appliquées au

mouvement couplé df' rppIiement controlé par le taux de \'ariation de la longueur pour

une orbite circulaire. unt. correctement prédit les caractéristiques des cycles limites

pour les réponses dl' roulis et de tangage.
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Chapter 1

Introduction

1.1 Space Tether Systems

1.1.1 Historical Development

The idca of tcthcrs in space is a century old. Tsiolko\"sky (189.]) suggested

connecting large bodies in space by a long thin string to provide gravity gradient

stabilization. \\'hen th(~ space program became a reality. tethers were first considered

as a means of r('scuin~ st randed astronauts (Starly and :\dlhoch. 1963). Two tether

experiments were carricd out during the last two Gemini missions. where the Gemini

spacecraft was separateà from an :\gena rocket by a :30 m tether (Lang and ~olting~

196ï). [n the first f'xperiment the system was spun. to provide sorne artificial gravity:

in the second, t he system dcmonstrated passive gravity-gradient stabilization. How­

ever. the era of tethers in spa<:e began in earnest with Colombo et al. (1974L the

first ta seriously ronsider connecting heavy masses in space with a \"ery long tether.

Colombo proposed a 'Shuttle-borne Skyhook'. a scientific satellite extended below the

Shuttle to conduct low orbital altitude research. Colombo~s proposai led to investi-



CHAPTER 1. LYTRODFCTI01V 2

(

(

gations into the potential uses. dynamics and design of the Tethered Satellite System

(TSSL as weIl as of other space tethered systems. Detailed historical recounts of

space tethered systems include those of von Tiesenhausen (1984) and Grossi (1986).

TSS- i. the rnaidcn rnission of the American/ [talian TSS program. flew in 1992

but with a limitcd stlccess. The subsatel1ite could be dep!oyed from the Atlantis

Shuttle only up to ~.~O rnelers instead of the planned 20 km; however. tether motion

was successfully (ont roll('o. TSS-1 R. the reftight mission took place in early 1996.

Although the tet her ('\'PTlt ually snapped so retrievaI could not occur. the full 20 km

Iength of the tet her had bpcn reached and maintained for severa! hours aIIowing much

dynamical inforn1ation tu he obtained . .\:\S.-\ fie\\" SEDS (Smal1 Expendable-Tether

Deployment SysteTlll 1 and II. in 1993 and 199-1 respectively. succeeding ta deploy a

probe from the ::it'cond ~t age of an orbiting Delta II rocket ta a distance of 20 km.

Several sub-orbi t al t pt hered flights have aIso taken place. Of note are the Canadian

endea\"ollrs OEDIP{'S .-\ and C (Obsen'ations of Electric-field Distributions in the

Ionospheric Pla~rna ii LOnique Strategy)~ in\'oh'ing l km long tethers. launched in

1989 and 199.=) rp::;r_H'ctin'ly. SeveraI other tethered missions are planned for the near

future.

1.1.2 Applications

The moti\"at ion behind the research on the dynamics. control. design and testing

of various space t('! her systems are the potential appIications~ which make up a whole

new means for space utilization. The proposed applications are great in number and

in variety" They can be free tlying tethered systems. or involve the Shuttle or Space

Station. Sorne ha\"c already been tested in the trial flights that have taken place. as

cited in the preceding section: others are near. or strictly far term in demonstrability.
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The proposed applications of tethered systems in space are well reviewed by Bekey

(1983L and in a detailed and complete summary of their study to 1989 included in

the XASA Tethers ln Space Handbook edited by Penzo and :\mmann (1989). The

fol1owing is a brief discussion of the general categories of the potential uses of space

tethered systems. with sume examples.

Scientific (:ses: Scientitic study of regions of the earth~s atmosphere. ionosphere and

magnetosphere. which are otherwise inaccessible. and gravimetric measurements would

be possible \'ia il probe tethered below the orbiting Shuttle or space platform (low

orbital altitude f('sPilrch ). Similarly towing an aerodynamic model at such altitudes

would crcate a spact'- hased '~wind tunner' pro\'iding aerothermodynamic conditions

not achievable in ~round-based facilities. In the long terme tethered penetrators

could be launched frorn a s pacecraft to collect samples from t he surfaces of asteroids

or :\Iars.

Electrodynamic ('SPS: The nl0tion of an orbiting insulated conducti\'c tether through

the earth's mag;netic licld induces a voltage across the tether: an electric current will

be drawn from the the iunaspheric plasma through the tether. The tether becomes

a highly efficient !:!;('rwrator of electric power for on-board elcctronics. at the expense

of orbital cnergy..\ltcrnatÎ\·ely. feeding current through the tether from an on-board

power supply slIch as a solar array. rc\'erscs the process snch that the tether acts as

a motor. producing a propulsi\'e thrust without the use of propellants. In another

application. the tcther currcnt could be modulated ta gcnerate law frcquency radio

\'·,'aves. such that the tcther acts as a worldwide communications antenna.

.-\rtificial Gra\'ity (' ses: Tether end-masses experience the tether tension as artificial

gravity. in eithcr Cl gravity-gradient stabilized configuration along the local vertical

(rotating about its centre of gravity once per orbit) or in a rotating configuration
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(rotating more rapidly than once per orbit). The level attainable increases with the

distance from th~ cent re of mass of the system. and rotation rate. Artificial gravity

approaching a ma~nit ude of l 9 could be created on the Space Station by extending

a counterweight alùrle; the local vertical with a very long tether: or. more practically~

by using a moderate tether length and inducing a slow spin about the centre of

mass. In the long [('rnt. a spinning tethered system couIci provide an artificial gravity

environment arct'pt able for manned interplanetary traver. :\ number of controlled

gravit,Y" applications for laboratory or industrial space uses have also been proposed.

often in conj unet iUIl wi th the Space Station.

Transportation (·St'S: Uy permitting momentum exchange to occur between two space­

craft. tethers cOllld n'place or rcduce the need of propellants in orbital transfer ma­

neuvers. In a [t't hf'red system stable along the local vertical in a circular orbit. the

upper mass t rél.\'('!:-- <1.1 an orbital circular \"(~locity tao fast for its altitude. while the

lower mass t ril\"('ls at an orbital circular \·elocity tao slow for its altitude. If the

constraining tl'T her is cut. t he upper mass will enter an elliptic orbit with a higher

apogee and the lo\\"('r rnass will enter an elliptic orbit with a lower perigee. Thus. to

cite two applications of ·tether propulsion·. the Shuttle could boost a payioad into

a higher orbit \\"hile sirnultaneously deboosting itself back to Earth. or the Shuttle

could b~ dehoos[l·d fronl the Spacc Station while simultaneously boosting the Station

itself into a higher orbit.

Constella! ions:.\ tet hercd constellation is a collect ion of more than t \\'0 masses in

space connectcd by tet hers in a stabie configuration. Various constellations have

been proposcd. in pit her one. two or three dimensions. using ditferent combinations of

stabi lizing forces ..-\ space elevator (or crawler) running aiong the connect ing tether

between the Space Station and a platform is one proposed three- body application
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of a one-dimensional. gravity-gradient-stabilized constellation. .\ two-dimensional.

gravity-gradient and air-drag stabilized '~fish-bone" constellation has aiso been pro­

posed. where via tethers a number of platforms are separated but remain physically

connected to the Space Station for ready access and common power supply.

1.2 Literature Review

The equations~overnlng the attitude dynamics of tethered systems are highly

nonlinear and promise a rich body of nonlinear and possibly chaotic dynamics. The

attention of the previous invest igations of tet hered satellite systems (weil reviewed

to 1986 in the Sllr\"f~Y by :\'Iisra and :\Iodi. 1987 and by Beletskii and Levin. 1993)

usually has focus:ied on the control of the tethered systems dynamics. specifically the

control of the unstablc ret rieval dynamics. rather than on the fundamental nonlinear

dynamical beha\"iour. The following is a review of literature which is of significance ta

the nonlinear dynamics of t\\'o-body tethered satellite systems (such as the Shuttle­

supported TSS). The dynamical rnodel of interest considers only rotatianal motions

(elastic oscillations of the tcthcr are i~nored). point-mass end bodies. a tether of

negligiblc nlass in the \"ariable length phases. and ignores aerodynamic drag. but the

motion renlains complex. with nonlinear coupling bctween pitch and roll motions.

This litcratllrc rC\'icw considers first the stationkeeping stage of operation. and

the deploymcnt and rctrieval stages together afterwards. In the stationkeeping stage

the tether length is constant. while it \'aries during deployment and rctrieval.
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1.2.1 Stationkeeping Phase

(

In the stationkeeping phase. the tethered system is just a gravity gradient pendu­

lum. or a dumb~bell satellite. for which there does exist a fair amount of study of its

nonlinear dynamics. often considered as a special case of the general gravity gradient

satellite.

Hughes (1986) [('news weil the work done on gravity gradient satellites in the

1960~s. These studies IIS('ci approximate analytical and numerical techniques for both

the circular and dlipt ie orbit cases. for both planar (pitch motion only). and three­

dimensional cOllplt~d rnot ion. Of note is the work done by Brereton and :\Iodi (1967)

and :\fodi and B[(~r('ton ( l !)()9a. 1969b) who used Poincaré sections to study the limit­

ing stability re~ion and p('riodic solutions of the planar. elliptic orbit problem. :\Todi

and Brereton (19{)~) étIlU :\[odi and Shrivastava {1g/la. 1972) also used Poincaré sec­

tions in the stability ;ulalys(~sof thc Hamiltonian problem of coupled motion in a circu­

lar orbit and ohser\"(~d -island - and 'crgodic' solutions within the region of guaranteed

stability (non-tllmbling motion 1 defined by zero-\'clocity cun·es. The coupled motion.

elliptic orbit case \Vas st Hdiee! by :\Iodi and Shrivasta\'a ( 1971 b" who presented sta­

hility plots showin~ allu\\"élble impulsiw\ disturbances for non-tumbling motion. :\[ore

recent Iy. :\Ickin t l !JSSa) generatcd analytically and numerically the nonlinear normal

mode of the gravit y gradient pcndulum in a circular orbit. In :\[eh·in (1988a. 1988b)

numerical integrat ions of the equations of motion also revealed sorne solutions which.

plottcd on the unit sphere. appeared pathological or chaotic. for the cases of a cir­

cular orbit and a sli~htly dliptic orbit. Xo attempt was made to confirm that these

solutions arc indced cltaotic as is defined in the nonlinear dynamics litcrature.

The gravity gradient penduIllm. as a special case of the gra\'ity gradient satellite.

has been stlldied for the planar problem from a modern nonlinear dynamics approach.
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where analyticaI and numerical nonlinear dynamic analysis techniques are used ta

study the nat ure of motion. regular or chaotic. (~umerical tools such as spectral

analysis. Poincaré sf'rtions. and Lyapunov exponents~ and the analytical method of

ylelniko\' have bee!l applied to a variety of nonlinear engineering systems in the last

fifteen years, Their applicat ion and interpretation are well explained in :VIoon (1992)

or Lichtenberg and Licberman (1990). for example).

Tong and Rirnrotr ( 1!)9la) generated Poincaré maps for planar rnotion for a variety

of orbit cccentricirips. élnd found chaotic regions for non-zero eccentricity. Theyalso

applied the analyt iraI lPchnique of ~[elniko\' ta the system: the conclusion. chaotic

motion possiblf' for non-zero f'ccentricity. although \'alid only for small eccentricity

due to approxirnat in~ limitations imposed br the analyticaI method. corroborated

their numerical in \·esti~ation.

Karasopalllo~ and Richardson (1992) and (1993). extended the former analysis

by numericaI met hods. including Poincaré maps. bifurcation diagrams and Lyapunov

exponents.

The etfcct of darnping; on the system was studied numerically by Tong and Rimrott

(1991b) and by \[('lniko\"s rnethod by Tong and Rinlrott (199:l). For other variations

of the basic planar :'ystcm. \lelnikov's ~[ethod has been applied by: Scisl and Stendl

(1989) (a('rodynarnic drag). (~och and Bruhn (1989) (oblate central body) and Gray

and Stabb (1!)9:J l 'l"(Hltro[). AlI these works are for planar motion.

Other than t he Poincaré sections presented by :\[odi and Brereton (1968) and

ylodi and Shri\'asta\'a (l9ïla. 1972) as mcntioncd above. the techniques of modern

nonlinear dynan1ics ha\'e not been previously used to study the thrEE-dime.nsional

coupled motion of t he gravi ty gradient satellite. Howe\'er such numerical techniques

have been appliecl to the three-dimensionaI dynamics of spinning satellites (Cole and
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Calico. 1992 and Guran. 1993).

8

1.2.2 Deployment and Retrieval

(

In the cases of tet her deployment and retrie\'al. no extensive nonlinear analysis.

lU terms of the gpometric \'iewpoint of nonlinear dynamics~ has been carried out.

Sorne phase pla.ne plots for exponential length rate retrieval for the planar system

in a circular orbit \\"t'rc inc1uded in the work of Fleurisson et al. (1993). Proposed

control schemes snch (1:-; the length rate control law of ).tIonshi (1992) and ).[onshi et

al. (1991) wcre fUlllld in numerical simulations to confine growth of pitch and roll

motions during [t'tric'\Oal tu limit cycles. which are particular ta nonlinear systems.

In )'lonshi (1 ~)9:Z1 élnd ).[onshi et al. (1991) approximate analytical methods were

applied to pur<' in-plane and out-of-plane motions.

1.3 Objectives and Scope of the Thesis

This objpct i \"(' of t his t hesis is to ~xplore the fundamental th ree-d imensional

dynamical ~)('ha\'ilJllr of tpthered satellites. using \'arious techniques of nonlinear dy­

namics allalysis" The analysis Ilses primarily the modern numericaI tools of nonlin­

ear dynamicso wif Il rlllmericai integration of the gon~rning equations of motion and

presentation of phase plane plots. time histories. power spect rai densities (PSD's),

Poincaré sections ilnd Lyapuno\' exponents. The analytical method of ~[elnikov is

also applied as \",'pI! as classical approximatc analytical methods.

The thesis considcrs the attitude dynamics of a two-body tethered system whose

centre of mass travels in a Keplerian orbit. :\erodynamic forces are ignored, The

end masses are considered as point masses 50 that their three dimensional rigid body



CHAPTER 1. I1VTRODCCTI01V 9

(

(

dynamics is ignored. The tether is considered ta have negligible mass in the vari­

able length analyses. The elastic oscillations are ignored and the tether is assumed

ta remain straight. Thus onl,Y the lihrational dynamics of the tethered system IS

considered.

AlI the three phases of operation. stationkeeping. deployment and retrie\'al are

considered.

The stationkeeping case considers pIanar as weIl as ti1ree-dimensionaI coupled

motion. in circuIar and clIiptic orbits. The numerical tools as weIl as ~Jelnikov's

:\'[ethod (for an idealization of the coupied system). are used to identify regular or

chaotic motions, .\s discussed. such a nonlinear dynamics analysis has been carried

out earIier for a system that is similar ta a tethered system in the stationkeeping

phase. i.e .. for the gravit y gradient pendulum. in the planar case. but not for the

three-dimensioTlul case.

The deploymcntl rctric\'al phases are also studied. For a circular orbit. considering

planar motion only. pitch stability is examined for different exponential length rates

by analysis of the fixed points and the phase plane. which has not been carried

out prc\'iously in any ~yst('matic nlanner. For the unstablc cases. the exponential

length ratc scheme is comparcd ta an equi\'aIcnt uniforrn Iength rate scheme. using

t.ime-histories and the phase plane. :\[elniko\"s :\[ethod is applied to the case of

slow exponent iaI deploymcnt in a sIightIy elliptic orbit to detern1inc t he candi tian for

chaotic motion. Coupled t hree-dimensional motion in a circular orbit is considered

next: the Iimit cycle motion which has pre\"Ïously been obscn'cd ta occur in numerical

simulations of controlled retrie\·aI. is examined here for a gi\'en Iengt h rate Iaw by

application of approxinlate analyticaI methads ta the coupIed rnotion.
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( 1.4 Organization of the Thesis

(

The equations of motion of the system are deri\'ed in the fol1owing Chapter.

The stationkeeping case is analyzed in Chapter :3. The planar motion is examined

first, for a circular orbit a...., well as for elliptic orbits with varying eccentricities. The

coupled pitch and roll motion in circular and elliptic orbits is studied next in the

same Chapter. Chaptt'r 1examines dynarnics for \-arious cases of the deployment and

retrie\-al phases_ Fi!léd!y. ('hapter .1 contains the conclusions and recommendations

for fut ure work.
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Chapter 2

Dynamical Formulation

2.1 Introduction

This l'hapter [wgins wit h a general description of the system under study and

a statement of ëI.~surnptions. Then after describing the kinematics. the kinetic and

potential energy expressions are deri\'ed and the equations of motion are obtained

using the Lagrangidn procedure. :\ brief analysis of the Hamiltonian ends the chapter.

2.2 System Description

The t \\"0- bod~; Tet hcred satellite system considered in t his t hesis is shown in

Figure 2.1. The t ',\"0 l'nd -bodies are assumed ta be point masses. The connecting

tether is assumed to rcrnain straight. The elastic oscillations of the tether 1 including

twist', are neglected. Gravity is considered to be the only external force acting on the

system. The centre of mass of the system is assumed to follow a Keplf'rian orbit.

.-\t any instant. The tcthcr has a length { and corresponding mass m! (constant dur­

ing stationkœping. \·ariable during deployment/retrie\'aIL The mass from/ta which

Il
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l
the tether is deploycdj retrie\"ed. denoted by ml ~ thus aIso may depend on tirne: the

other end-mass is denoted by m2 and is constant.

The librational rnotion of the system is described by two rotations of the tether

from the local n'rt ical: a pitch angle Q and a roll angle -:. given in that order in and

out of the orbital plane. respecti\"ely.

The energy expressions and equations of motion of the system are known (e.g.

'\Iodi et al. (19S~, fur fl. ('ircular orbit. X u (1984) for an elliptic orbit and additionally

accounting for ela:;tic \'ibrations of the techer) but are rederi\"ed here for completeness.

[n this thesi~ r li(' I('ng;til rate is specified and thus is not considered a generalized

coordinate when dcri\'ing; the equations of motion,

2.3 Kinematics of the System

(

Referring; a~ain To Figure 2.1. the kinematics of the system can be described as

follows.

The position uf the centre of mass of the system C in its orbit around the Earth is

ciefineJ by T hl' t n:(' anornaly 0 and the radial coordinate R,~. Two rot ating (oordinate

systerns are tl=-(~d \\"it li origin at the centre of mass of the systen1. The coordinate

system l' ~. Yû' = bas .r. axis along the orbit normal. Yù axis radially out ward away [rom

the earth aIO(l2; rIl(' local vertical. and =0 axis along the local horizontal completing the

right hand triad. The coordinate system x. y. =is obtained \"ia the rotation Q (pitch)

about the X' J axis. yidding the axes x'.y'.=' followed by the rotation -.. (roll) about

the =' axis ..\t any instant. the y axis and the tetherIine coincide. Rotation about

the tet her axis (yaw) is assumed to be of no consequence. The set of unit vectors

associated with the axes l'J'Yo,=o and I.y~= are 7o';o~ko and l.7~k. respectively.
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( The position vectors of masses ml~ m2 and an eiementai mass of the tether \Vith

respect to the centre of the earth. are respectively

(2.1 )

Here. Re is the position \'ector of the centre of mass of the system with respect to

the centre of the earth. and ri ~ r2 and rt~ respecti\'ely denote the position vectors

of masses ml. m]. and an elementai mass of the tethcr. with respect to the centre of

mass of the system.

R-: can be expressed as

(2.2)

By rlefinition of the location of the centre of mass of a system. the follo\ving

relation holds:

(2.3 )

(

Referring to the x. y.::: coordinate system. one has

rI =-1"1). r'2=r1) =t{-rl)]. rt=r~) =(S-1"I)j. (2.-1)

where 1"1."2 and ,.~ are the magnitudes of the position \'ectors rI. r].. and rte while the

spatial \"ariabIl' ...; is measured along the tetherline [rom mass m, 1 to an dementai mass

of the tethcr. The magnitudes r( and r1. can be soh'ed for by substituting Eq. (2.-1)

into Eg. (2.:J). and noting that Tn e = Ptt. where Pt is the mass pcr unit Icngth of the

tether. Thus

[-ml r, + m,(E - r,) + Pt il (5 - r dd5]] = o.

which yields

ri = {(m2 + rnd'2.}/m. r2 = {(ml + md2}/m. rt = S - f(m2 + mt/2}/m. (2.5)
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( with m = Tnt + m2 + Tnt- the total system mass.

The vclocitics of masses mt. m2 and an elemental mass of the tether with respect

ta the centre of the earth. are gi ven by, respecti vely

. .

R2 = Re + "F2 • Rt = Re + -Ft . (2.6)

The velocit\· If uf (ht' centre of mass of the system \Vith respect ta the centre of

the earth. can be t~xpr('ss('d as

(2.7)

where 0 is the orhitaI êuu~ular \"elocity.

The veIocitie~ of masses ml. m2 and an eIementaI mass of the tether. with respect

ta the centre of ma:-is. ft; i. f~ and -Pt. are respectively

(2.8)

(2.9)

(2.10 )

Here ::: is the arl!!l1lar \"('locity of t.he syst.em. cxpressed in the I.Y.:; system as

~ = d) -+- ci) cos -, ; - (iJ + 6) sin -, ) + ~, l· . (2.11 )

(

[u determining ri. ,"!o' and rt u5lng Eq. (2.,j). one takes inta account that although
. ,

m2 and total mass m arc constant. ,nt = pl = mdf./O. and ml = -Tnt: one also

rccognizes that ,~ = f.
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( 2.4 Kinetic Energy of the System

The kinetic cnergy of the system is

~ rn 1 ( Re + PI) .(Re + PI) + ~ m2 ( Re + P2 ) • ( il.. +P2 )

--- ~ L, (Re + p,) .(Re + p,) dm, .

That is.

Since Eq. (L:J) holUs. t he second term is zero and

(2.12)

The first terrn is [he orbital kinetic energy of the centre of [nass. T)r;'. L" sing Eq. (:2.7).

Toro = t m (Ù~ ~ U~ ( 2 ) • Howc\'er the orbit has been assumed to bp Keplerian and

only the attitude dynamics. the motion of the system about the centre of mass and

ta which the second tcrru in Eq.(2.12) is relatcd. is of interest. Rewriting this term

by substitutin~ Eqs. (:!.-l) -(2.5) and Eqs. (2.S) -(2.11) inta Eq.(2.12) and carrying

out sorne algcbra. one obtains:

(2.13)

(
where rn~ is an equi\·alent mass dependent on time defined by

(2.14)
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( 2.5 Potential Energy of the System

The potentiaI f'nergy of the system arises due ta the gravitational field of the

earth and is gi \'C'n by

\ . -
, -

where Il is the ~ra\'itéltjonaI constant of the earth (i.e .. product of the universal

gravitationaI const a[Jt ëlIH.l the mass of the earth).

~ow

(2.15)

where Eq. (2.2). lr- = R,. Jo. has been llsed. Expanding binomially the right hand

side and ignoring; third and higher powers of 1Pl 1/ R-::. one abtains

____ = R- i [1 _}). Pl

i H - 7/"i - Rr
(2.16 )

Substitl1tin~ tItis expression and the corrcsponding expressions for 1 and
1 R... +r2 1

1 R 1, - . into Eq. 1 :!.l.l) ilnd rcarranging. gi\·cs
r.T"r 1

( (2.1 ï)
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The first term is the orbital potential energy of the centre of mass. lt~rb. The second

term is zero due ta Eq. (2.:3). The third term is round by substituting Eqs. (2A)-(2.5L

and the fol1owing relation for the unit veetor j~ expressed in the x~ y. =system:

) 0 = ras Q sin, i + cos Q cos ''Y ) - sin Q k .

Then. after sorne algebra. one obtains

(2.18 )

(2.19)t: _ \' J1. 1J2 [ • 2 2]
~. - :Jr6 + 2 R~ ml' c. 1 - .3 cos Q cos -{ .

where mp is given by EC[. (:2.1·1). i.e.. the same equi\'alent mass that appeared in the

kinetic energy expression.

2.6 Equations of Motion

The Lagrang;e equation is used ta obtain the equations of motion from the kinetic

and potential energy expressions:

(2.20)

(2.21)

(

where qr are the generalized coordinates. and ql are the associated respective gener-

alized forces n'suit in~ [rom t.he nonconservative external forccs.

The gcncralizcd coordinates relevant ta the attitude motion arc n and:. In

the dcploymcIlt1ret. ricval schcrncs considcrcJ in t his thcsis. { is spccificd t hrough an

algebraic or diffcrential cquation and is not a generalized coordinate. The equations

of motion gO\'crning pi tch and roll arc then round ta be

+ (:3 /l/ R;) sin Cl cos Q} = QQ/rn,. [2 .

+ '2f(/f) [ml (rn2 + ~ mt) lm m~] ~.

+ [(0 + 0)2 + (3 p./ R;) cos2 a] sin! cos -( = Q-./nl,! [2 (2.22)
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1 Environmental effects and control torques are not considered in this thesis and thus

Q0 and Q..., are zero.

The indeperLdcnt variable can be changed from lime t ta true anomaly 0 using the

second and thinf nf t lit' following relations whieh hoid for a Keplerian orbit.

(j

n

=

a( i - (01)/( l + e cos 0) .

r 2"l 3/21l(1 + f cos 0) / (l - e) j n .

i .' Ir.!
~GJl/aJj

(2.23 )

(2.24)

(2.25 )

where c a and fi éHP the orbit ('ccentricity. semi-major axis. and mean orbital angular

rate. rcspecti\·ply. Thl~n. Eqs.(L:2U and (:2.:22) transform to (with QCt and Q..., == 0),

"....

:~ (; sinn cosa} == O. (2.26)

'. / 1).! . .) ( • 2:In: -r -.), cos o.: sin ...· cos-,· = O.

wherc prime [l,fers To diffcrentiation with respect to O. and F and G arc runetions of

eccentricity ( élnd 0 as follows:

F = :!c sin 0/( l + t' cos 0) . (; = 1/ (1 + e cos 0) . (2.28)

(...

The eClllations of motion of the two-body tethered system considered here are

shawn abon~ in their [nost general form. During the stationkeeping phase of op-

eration. the length of the tcther is constant. i.e .. [' = O. Dllring deployment and

retrie\"al. the tether length \'aries with time along with the tether mass: to simplify
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l
the equations somewhat the tether mass is assumed negligible compared to ml and

m2. The equations il.rc analyzed along with the equation specifying the length rate.

The equations ùf nlOtion remain. e\'en with such simplifications. non-autonomous

for eccentric orbits. and highly nonlinear. including nonlinear coupling of in-plane and

out-of-plane mot ions. Thus. an analytical exact solution can be obtained only for a

very special case..\~ described in Chapter 1. sorne approximatc nonlinear analysis

is carried out in t Ile t ht'sis. but mostly numerical solutions of different cases of the

abo\'e equations tin' ol,tained.

2.7 Hamiltonian of the System

The Harniltonian 1/ of a dynamic system is constant if there are no nonconser­

vati\'c pxternal furn'~ and lime does not appear explicitly in the cnergy expressions.

Thc Hamiltonian can be t'xprcssed as

H

where t he ~('n('riil l':q)[('s:-;ion for T is

(2.29)

(2.30)

(

In the above ('qllat iun. T2 • Tlo a.nd T,J arc funetions rcspecti\'ely cpladratic In. linear

in and indepcndent of the generalized \'docities ql'

There a.re no nonconsen'ati\'c external forces in the present systern. The attitude

motion is undpr consideration assllming a Keplcrian orbit which implies absence of

cn\'irOnnlental dis! urbances. If the energy expressions corresponding ta the attitude

motion, TJtt = T - [,,"6 and \ ~r: = \' - \ ~r6 do not in\'oh-e time explicitly. then the

corresponding fIalniitonian for the attitude motion Îs a constant of motion.
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( T'1.r: and ~ ~== can be pxpressed with true anomaly as the independent time variable

using the Kepler!an rclations Eqs'(:!.2-1) -(2.25) as:

E' {l J:- ,. ') ') '2 i
- -m,.[-: (1 - Q ,- cos- -...... -. '

? '. ' '.. ~

l / r2 }-'2(m d m 2 -md ml!. .

D-J(l <~ .. il ) ') ")
1.1 -m"J.} - :) cos· Q coS- -,. '. 2

(2.31 )

(2.32)

\\'here D and E iHP rH)t h runetions of O. ~I\'en by the right hand sicles of Eqs.(2.24)

.-\s seen. for ù:: "Cft'rItrir: orbit. 0 appears expiicit1y in the energy expressions and

the HamiitoniaL ::- :)()T conscn·ed.

For a eircui,u ,)rr>it. t he ~xpressions reduce to

,{l )~ /') l r'l= n- - m .. [- (1 - a: ,- r:os- -. - -. -'
.) .. -

l 1 .n}
-0imllm2-m~lim,j.- . (2.33 )

, 1 . )
n • 1 - P'l ; - )2" ,.. - :3 cos~ Q ros 2 -, (:L3-l,

The Pq 11a riur: ,~)('('if::in~ dI(' ':ariat ion of len!:!t ~ ',\' hen J' d:. 0 1 for deployment;' re-

durin~ ~t atioTlK{'f>~):n!!. ' :~ constant and for a cirC111ar orbit ~ he energy expressions

are clearly a1.iT Ur)(J!::C)l~~. Thus the eorresponding Harrültonian lS a constant of motion.

It is found T{J t)f'

- :3 cos~ û ! - l} .

or in a dimen~ionle~~ form

( [2.36,1
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Chapter 3

Stationkeeping Phase

3.1 Introduction

For the star iû::~t'PDi:l~ rase. the :.ether le:1gth is constant. i.e.. {' = O. Hence the

ÎO~- - ., l - "2-' 7an - - F~ t Q' - l ' - :JC' SIn Q cos Q} = 0 . 1 :3.11

- ., - r--·' -

with expression:-: 1 ·1 ....

,
,n ~ - :JG ('05 2

C.z SIn -, cos -. == 11 ; :3.21

(

F = ~._ '5i:11) 1 1 - F (OS 1) l, (; = 1: ( 1 - (; cos 1) 1 •

These are the r'r:':a::O!1S of motio:: of a gra\'Îty gradient pendulum. The gra\'lty

gradient pendulurn :' â :,peciaI c~e 1 :r.ertia ratio= 1. a dumb-beli satellite lof the gen­

erai gra\'ity ~rar.ii('r.: ~tabiIized satellite..-\s described in Chapter 1. the planar motion

of a gra\-ity ~raài('r'_: ?l~ndulum has been weIl-st udied by both c1assicai and modern

nonlinear dynamic é:1alysis techniques, but Îr. the case of the three-dimensional cou­

pIed motion. only 2. ~ore cIassical analysis nas been made.

22
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( This Chapter examines both planar and cou pIed motion for the circular and el-

liptical orbits 11sin~ the methods of modern nonlinear dynamics. The numerical tech-

niques are Ilscd mainly ont the analytical method of ~[elniko\- has also been applied.

to identify re~uiar 0r chaotic motions. The equations of motion are integrated numer-

ically to producc Puincaré sections. PSD's and Lyapuno\- exponents (computational

tests which decio(> the nat ure of motion J as ..'..eIl as the phase plane plots and time

histories. Detaii~ i<.fHi '-orne discussion on the numerical integration of the equations

and construction ur" ~ hl" power spectra. Poincaré :5ections and Lyapuno\- exponents

are ~Î~:en at the enrj of the Chapter in Section :3..1.

Sorne ~ener?.t ~t'nlark5 re~arding the dynamics of the tethered system during the

stationkeepin~ pr:a~t> are made here.

One notes r hat t. rH' equatÎons of motion for the stationkeeping case are independent

of the tether !cn~r I10 The ~ra':ity gradient restorin~ force '.'.-hich acts when the system

15 displaced from t tlf' l()cai \Ocrtical grows \Vith the tether length in the same manner

as the moment (J!- i:wrtia. :30 the libration frequencies ar)out the local \-ertical of the

~ra\Oit:: ~radient ~)t'rj(illi;lm are independent of the tetner ~e~gtn.

Hamiltonian ~:::.;~('r:l. .\~ discussed in Section ~_:-. the Harrùltanian of r.he system is

conse:-':('d oniy :"r)r ~ ~:C' qationkeeping phase in a. ("ircu.1ar orbit. in ','.-hich case there

are no di:;~i pat i ';r torce:; and the energy C'xpressions are ail tonomolls: it is then gl\-en

in dimensionlcs~ Iurrn b\O Eq- i 2.36 f. repeated here for con\-enience:

") , ) l { r1 J ,") 'J}Il = Il in-Tn~J.- = - -. - - cos· -.1 f} - - l -:3 r:os- (lI - l °
.)

(3.3 )

(

\\"hen the ecn~ntricity IS non-zero. the time ':anaDle 1) appears explicitly in the

equat:Orls of rnotion a.:; \\"ell as in the energy expreSSions_ Bence t.he eqllations of

motion are autonomOllS for a circular orbit. but non-autonomOll5 for an elliptic orbit.
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( 3.2 Planar Motion

From the equations of motion. one can notice that if roll motion IS initially

unexeited. the rnotion rcmains confined to the orbital plane. Then Eq. (:3.1) reduces

to

nif - F( Q' + 1) + :lC sin Q cos Q = 0 . (3.4 )

Equation (:l.-t) is the cqllation of motion of a planar gravity gradient pendulum. The

eircular orbit case is l'xarnined first. followed by the elliptic orbit case.

3.2.1 Circular Orbit

The nonlint'ar dynamics is analyzed starting from the simplest case. which is the

ease of a constant Icngth tethered system in a circular orbit.

For zero ccn'ntricity. Eq. (:l.·t) becomes

Q" + :3 sin Cl cos Q = 0 . (3 ..j)

(..

a noniinear h11t ;lllfonomOIIS equation of one degree of freedom. The phase space has

t\\"o dimensions. Cl and n'. It was shown in Section 2.6 that the energy f'xpressions

are autonomous anci :-;ince there are no dissipati\'e forces acting in the stationkeep-

ing phase. the I1élmiltonian is a constant of motion. The system is integrable. and

Eq. (:Ll) has an analyt ical c1osed-form sol ution in terms of .Jacobi ellipt je funetions.

The dynamical !H'ha\'iolIr is weil understood. as re\'iewed by Hughes ( 1986) and others

discussed in Section l.~.

Equation (:Li) is :-;imilar to that of a simple pendulum and its motion differs only

in the position of its cquilibria..\ sinlple pendulum has its centres at Q = ±2nir and

saddle points at Q = ±(2n + L);;-. n = 0.1. 2.,: the gravity gradient pendulum has



CHAPTER 3. STA.TI01V[(EEPI1VG PHASE 25

( centres at Q = ±nrr (the local vertical) and saddlepoints at Q' = ±(2n + 1)ir/2 (the

local horizontal). Tl = O. 1.2...

The phase plane trajectories. shawn in Figure :3.l. are round analytically simply

from the first integral of Eq. (3.5)~

,2 :2 E
Q -:3 cos fi = . (3.6)

(

where E is twice the dimensionless Hamiltonian il of the system. E ~ -:J as is clear

from Eq. (:3.6). The separatrices ( E = 0) separate the periodic (trajectories are closed)

libration (E < 0) and the tumbling (E > 0) motions. The initial conditions deterrnine

E: the amplitude of the libration solutions (}m~x is a function of E. cos 0max =

J-'f. E < 0 for libration.

Figure :3.2 gi\'cs the PSO's constructed from numerical solutions with t\',,·o sets of

initial conditions. bath in the libration range: 0 = 100. Q' = O~ and Q = SO°. Q' = Q.

The frcquencies shawn are nondimensionalized with respect to the orbital fre­

quency. i.e. the number of oscillations per orbit.

The first PSO shows the peak at approximately the frcquency of the linearized

cquation. Vi'}. hut also él. small contribution from the third harmonie. which distorts

the periodic motion from harmonie motion. The second shows the effects of larger

amplitude nlotion. i.e .. dccreased effective stiffness and a lower fundanlental [requeney.

and the appearancc of odd harmonies up to the eleventh.

The depcndency of the frequency of the periodic librations on amplit ude is char-

acteristic of nonlinear systems. The tumbling motion eontains a pcriodic part whose

frequency also dcpends on E. The solution at a given E has contribution [rom har­

monies of the fundamental frequency at that E. The fundamcntal frequency at a

specifie E can be dctermincd expressly in terms of E. involving the complete elliptic

integral of the first kind. Conversely~ the E required to produce a solution with a
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( specifie frequene,Y is also obtainable. For instance. the frequency of libration coin-

cides with the orbital frequency if the system has E = -0.224, an E produced by

initial conditions (10) = 7.(,2°.0"(0) = 0 or 0(0) = 0.0'(0) = 1.67 for example:

similarly the frecpwncy of the periodic part of tumbling motion coincides with the

orbital frequency if the system has E = 0.195~ an E produced by initial conditions

0(0) = 0.0'(0) = 1.7~} for <-,xample.

The separatrix t rajpct.ory rcpresents the system aperiodically and asymptotically

approaching the horizontal. The frequency of the periociic component of the motion

and its harmonies al! tend to zero in the neighbourhood of the separatrix.

~ote that if a dri\'in~ frpquency were applied. resonance could occur wherever

harmonies or subharrnonics of this frequency oceur on the system frequency vs. E

spectrum. ln the rl<'i~hbotlrhood of the separatrix there would al\,..ays be an Infinite

number of resonann's rC'e;ardless of the forcing frequency. (This is weIl illustrated by

Reichl (1992). Lin and Reichl (198.5) for the forced pendulum system.) Xonlinear

resonances are the roeH of chaos in nondissipati\'e systems. In the elliptic orbit case.

considered next. t fI(' systern is a drivcn oscillator problem.

3.2.2 Eccentric Orbit

(..

Let us no\\' rC'turn to the nlotion in eccentric orbits. that is the rnotion governed

by Eq. {:3A).

:\s discussed !rl Section 1.:2. this equation has been studied by several authors

as a special case (inertia ratio of unity ) of the planar gravity gradient satellite. In

part icular. Karasopoulos and Richardson (l992. 1993) and Tong and Rirnrot t (199 la)

applied modern nonlinear analysis techniques to this case.

This is a nonlincar forced one-degree of freedom system. with parametric coef-
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{ ficients; the equation is non-autonomous: its phase space IS spanned by the three

dimensions Q. Q' and O.

Pitch oscillations are forced in an eccentric orbit by the nonuniform rotational

rate of the local \'('rtical (position vector). This is seen clearly from the rotational ac­

celeration appearin~ in the equation of motion \Vith time as the independent variable.

i.e.. Eq. (2.2l) with (Jo) = O. [ = o. -,. = ~.' = O.

Ci + (3 IlI~) sin Q cos fi = -O. (3.7)

(

Returning to the t'quation under consideration. Eq. (:3.-tL one notes that there are

no equilibrium points. as when the time deri"atives (0 acts as the time variable) are

put to zero. a con~r élnt solution for Q does not exist. (\"ote that F and G depend on

O. )

\Vhile the statiùrlkeeping system is Hamiltonian. the Hamiltonian is not conserved

in the eccentric orbit case. as the energy expressions contain 0 explicitly (Section 2. ï).

This Harr1Ï1ttHI iéUl systenl is near~integrable. as shm,\'n for small c by Tong and

Rimrott (l~)~Jla' lIsing; ~\lelniko\"s :\Iethod. :\Ielnikov's :\[ethod. described in more

detail and appli('d in Ill<' followino~ Section. examines the behaviollr of trajectories in

the neighbol1rhood of t Il<' separatrix in terms of a small parameter which perturbs the

systenl from an intc~rabk one (in the present case. ~ = 0). In a consen·ative (Hamil­

tonian) system. :\Ielniko\'·s ~Iethod determines whether the systenl is integrable or

near-integrable. for small \'alues of the perturbation parameter. Integrable systems

will exhibit only f(~~lliar motion. :\"ear-integrable systems are characterized by the

simuitaneolls presence of regular and chaotic trajectories.

Chaotic motion r('fers to that motion in deterministic (no random inputs or pa­

rarnetersJ systems whose time history has a sensitive dependence on initial conditions.

\Vhen initial conditions lie in a chaotic region. a small difference in the initial condi-
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(

tions results in an exponential divergence of the corresponding trajectories~ such that

the motion is unprcdictable. ~[oon (1992) is a very readable introduction to chaotic

motion in enginct'rjn~ systems: chaotic motion in Hamiltonian (conservative) systems

in particular is t reau'cl t horoughly by Lichtenberg and Lieberman (1992) and is aiso

weil discussed by Reichl (1992) and Pcrcivai (1987).

In a consen'at j,'(' system cach set of initial conditions leads to a unique trajectory

which (apart frorn h('in~ stationary) may be periodic. quasi-periodic or chaotic.

The regular t raj<'etories !periodic or quasi-periodic) of libration of the present

system may !H' ':i(,\\"f'd as lying on a torus with the motion occurring around the

minor axis al t fH' pit ch fn'qucncy and the major axis at the forcing orbital frequency.

\Vhen the freqlH'IlCies [J1akin~ up the oscillation solution have an irrational ratio. the

solution is C{uasi rwrioriic. \Vhen the ratio is rational the solution is a resonance. and

is periociic.

The motion rnay he studied by taking a Poincaré section which lies in a two­

dimensionaI span'. \"ia sampling the states at the forcing frequency. Then periodic

motion is shown as él discretc set of points and quasi -periodic motion as a closed

orbit. ('haotic motion. in this conscrvative systcm. appears in the Poincaré section

as a cloud of disore;anizeri points. The phase space of a nonlinear system must have

at lca.st thrcc dimensions for chaotic motion to bc possible.

:\urncrical :,ollltions from differcnt initial conditions of Eq. (:3.-1) were used to

construct Poincaré rnaps. sampled at period 2:7". Q plotted mod 2;7. );0 chaotic

region was round for zero ecccntricity as expectcd. Howe\"er. whcn the eccentricity

\Vas increased. chaotic regions separating orderly librational and tumbling solutions

appcarcd (Figure' :L~ for ('. = 0.00:3 and 0.1). This region. represented by finely

scattered points in Figure :3.3. grows with an increase in eccentricity. This chaotic
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region appears ta grow from the separatrices of the circular orbit phase plane. The

librational solutions shawn are quasi-periodic (closed orbits). .\"ote that for larger

initial conditions the orbits break-up: the tari break up as the chaotic region is

approached in the phase space. Tong and Rirnrott (1991a) and Karasopoulos and

Richardson (1992) have presented more detailed Poincaré maps for planar motion of

a general gravity gradient satellite inc1uding resonant solutions. Tong and Rimrott

(1991a) observe that a state of global chaos. where most of the phase space is covered

by chaotic trajectories. occurs at about eccentricity e = 0.:3.

Figure :L·l is a PSD taken from a solution with the smaller set of initial conditions

used in the PSD's of the previous section. but with eccentric orbit. c = 0.1: this set

of initial candit ions lies in the regular region of the corresponding Poincaré map. The

PSD now shows the forcing frequency of unity (i.e. the orbital frequency) in addition

to the pitch frequency: this is because for small motions and eccentricity Eq.(3..t) can

be approximated as

" .) .) . e ,,"( 2)n + .)Q ....... _E SIn + v E • (:3.8 )

(

The other p('aks are combination tones of these two frequencies as shawn. .-\5 the

motion is made up of pitch and truc anomaly frequencies which are incommensurate.

the motion is rl'lasi -periodic.

The occurrence and growth of the chaot ic region is explained briefiy here. \Vhen

a near-integrable system is pcrturbed from an integrable one by a parameter. in this

case t. chaos will always occur in the separatrix region due ta the infini te number of

resonance zones that accumulate there. The separatrix trajectory is no longer smooth

and develops a complex beha\'iour which the ~Ielniko\' y,[ethod examines, The chaotic

region is initially confincd to the separatrix region by the regular quasi-periodic closed

cun·es. known in the consen'ati\'e chaos literat ure as KA),[ (Kolmogorov..-\rnold.
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·l
Moser) curves. which separate resonance zones throughout the phase space. .-\S the

perturbation streng;th increases. the higher order resonances successively destroy the

KANI curves (resonancc overlap). and the chaotic region grows (Lichtenberg and

Lieberman. 1992).

3.3 Coupled Motion in Stationkeeping Phase

Considerin~ nu\\" hot h pitch and roll degrees of freedom. the motion in the sta-

tionkeeping phase i, ~on'rncd by Eqs. (:J.l )-(:3.:3). The circular orbit case is studied

first. :\ study of tilt' ciliptic orbit case follows.

3.3.1 Circular Orbit

In the case of;J. 'Îrctllar orbit. F = 0 and G = 1: thus Eqs. (:3.1) and (3.2) reduce

to

("o~ - {o"-(-2A;' tanA:)(a'-l)+:J sinn cosa} =0.

"-. (3.10)

(
-.

The :-ystf'[n ,it' .. cribed by thcsc equations \5 a gravity gradient pcndulum with

motion in thr('(' (i::I1('n~ions. in a circular orbit. :\s discussed in Section 1.2. thcse

cquations han' tWf'n .;t udied by sC\'eral authors as a case (inertia rat io of unity ) of

the gra\'ity gradit'nt sa.tellite in a circular orbit using classical approaches: however it

has not been st udicd in the modern sense of regular or chaotic motion.

This systC'rn of "quations is autonomous and in\'olves nonlinear coupling between

the t\\'o degrees of frcedom. The phase space has the four dimensions Q. Q'. ~" and

_'
: .
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(

(

The equilibrium points are (Qe~ -fe)= (±nii. ±nii). (±(2n+l)ii/2. ±n7rL (constant.

±(2n + l}ii/2). n = 0.1. 2... i.e.. the local vertical. the local horizontal in the orbital

plane. and the orbit normal. A linear analysis around these fixed points shows that

only the first one is stable.

As shown in Sect ion :2. 7. the Hamiltonian for this system is conserved: Eq. (2.36)

is repeated here for ("on venience:

>1// 1 -l '2 J ( "2 .) '} r
:.. TI - rn ,.1. - - l = -: + cos-: {} - l - ,J cos- Q) = _H •

.-\ny one of the' four dimensions can be eliminated for a given CF!. allo\ving a three

dimensional st ate s pact' representat ion of the motion. Set ting -;' = 0 in Eq. (2.36)

for a gi\'en Cil gi n's él. mot ion en\'elope in o. 01."'; space surrounding the region of

possible rnotion. S(·ttiIl~ QI = -:" = 0 in Eq. (2.36), (just the cross section of the

motion en\'c!ope at ()' = 0). defines the zero velocity curves in Q - '": space which

bound regions of possible rnotion. such that (:\[odi and Brereton( L968). :\[odi and

Shri\"astava ( l !)7 1a J): for Cil < -.t no motion is possible: for -·1 S; Cf{ S; -1 motion

is bounded: fur -1 < ('f{ :s 0 motion is bounded in ~. only: and for 0 < ('f1 unbounded

rnotion (t.llrnbline;) i7'- possible in both Q and ~"

In the following Two sect.ions the nature of the motion gO\'erned by Eqs. (:3.9)

- (:3.10) is st lldied t hrou~h Tlurnerical techniques. The equations are integrated nu-

rnerically to prodllcc' tinle histories. phase plane plots. Poincaré Sections. PSO's and

Lyapuno\' exponcnts (rlumerical details are gi\'en in Section :3.·1). In Section :3.3.1.3

the approximatc analyt.ical nlcthod of :\[elnikov is applied ta an idealized version of

the system.
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l
3.3.1.1 Series of Poincaré Sections for Increasing Values of Hamiltonian

Constant r"fi (Several Initial Conditions at a Given CH)

FirsL a ::er:es Il! Po :ncaré sectIons for incre~ing CH are presented ;' Figures 3..5

A discussior: ()~ . ~e 2:PrleratIon of a Poincaré sectIon of a t .....o degree of freedom

autonomous H~r:-:::-()~:a:-l ~';-::i:em 15 ci:~cusseci by Henon and Heiles 1 1!J6-i i. anà Licht-

~nberg ana Lie~J(·r~.G.:~ : r '(~2 Trajec:ories of i: he system lie :n the t hree-riimensional

·::e four ~::::e~sional phase space. :::: bO~lnës De!n~ the

f) an ci -.' > O.

The PO::lcarp
.-. ,
t:::::e~ ~:on5 . rJ.. Q . -. 0. - rJ piot :s its

( '.:..:. . .
:) 1) ~~:"l t: ': r·,.

- n'

,
'.1 .~ 0.. Cl. • - ,:?ace

. .
?pr:ot::( ':0~''':::Or:: or resOf.:i:.Lre. ·":~.er~ ~~.e :,"~"_:(j ~Je:·.';eer.

'r': - r·•• C •• L
- -.

C·~ë:...:::~er:(J(::t

- .
:5 lrra::ona!. a?pei:1r~ riS a

(
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( as a ciiffused set of points: it will fil1 the region of possible motion for a gI\"en CH.

where motion is not regular 'neither periodic nor quasiperiodicl.

Poincaré sections generated for a number of initial conditions at each CH show the

de\'elopment of chaotic regions in the pnase space :n two àegree of freedom. conserva-

ti\"e Hamiltonian systems which are near-integrabie. In such a system. separatrices

surrounà the resonanccs: the regions near these separatrices are always chaotic. as

is obse!"\'able wnen ~hown on a large enough scaie, The growth of the chaotic re-

glon occurs \'la the mechanism of resonance o\'erlap ~ the S\'stem Hamiitonian 15

, .
mcre2.sea. .-\n f'xceiIent àetailed discussion of chaot ic rr.otion in 5uch systems 1S

(

founè :~ Lichtenbf'r~ and Lieberman 1 19921 1.

Figures :>'.) l ,U-I ci 1 present Poincaré sections :"or CH =-1..5. -1.~.5. -1 and -0,.5.

respec::\"ely: each is made up of se\'eral trajectories of ';arying initial conditions.

Each : :-aJectory ',':as computed to a minimum of 500 orbits, The boundary of the

regio!! oi pa:::5;olt~ motion in each plot lS shawn as weIl: the gro\\·th or this region with

increè.~i:lg CH <inà : he po~sibiiity of t umoling in pitcn for CH > -: is illustrateà.

For ~o\': ('f{. (~'f{ = - 1.) of Figure :L'j ,a ~. t he Poincaré :3ect ion oE fin" t rajectories

from ':~rY1Eg :::iLiai conditions ',';ere tar-en. Three resonant qua5ip~rÎodic 50iutions

i.e._ t:::-ee sets of closeà curves. are shawn: those assocÎated \t;ith lhe resonances of

::::ome :-::;.mb~r 0:' pitdl oscillation:: for one. fi\'e a:1à ·hree roll oscillations. The periodic

solutio~s an<.i from tirne histories identified them ~ P~l' P~5' and Pl3- respecti\·ely.

where P--. ... signihes m pitch oscillations in n roll oscillations. In addition the separatrix

associa Led wi th t he P~'5 resonanee is shawn: also. the separat rix associ ated wi th a P--. 4

solution is shawn. where m has not been identified. These separatrices are actually

\"ery : :-.in chaot ie layers: on a large enough scale they are shawn to consist of a scatter
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(

(

of points..-\t this Cff the motion is mainly regular.

For a larger Cf{. (of{ = -1.:2.5 of Figure :3 •.j (b jo the Poincaré section of four tra­

jectories were taken ..\ chaotic region is obsen'ed and was created by a single chaotic

t rajectory. It fills t ii!' r('~ion of possible motion ..'... here motion is not regular. The

regular region associated \'.-ith the P..,...4 resonance discussed earlier has disappeared:

those associated with ~h(' Pli> P4.'5' anà P}'3 resonances remain.

For Cli = -[ of F!~llre :t·) 1CI. the Poincaré section of four trajectories are shov.rn.

The chaotic re~ion ~:,"l' ~rown ~llch that only the regular regions associated with the

P'11 and P2.1 resonanu", [('main. One may aIso obsenoe the reduction in t he proportion

of the region of the' ~o~~iblp motion taken up by the regular re~ion associated with the

fundamental Pli rt'~()nancp 1 as outlined by the chaotic region J. This fi~ure includes

two quasiperiodic : :-;~jt'etorips associateci \';ith the P2I resonance.

Trajectories fro:;: ! hre(~ initial conditions gcnerated the Poincaré section of Fig­

lIre :3.·j ! d J for ('f{ = -O.j. Solutions which tumbled In Q were plotted for mod 2~.

The cnaotîc reglûr: ilppears LO ha\'c !!rown such that the regular reglon associated

wit h : ~e P2i r('~Oflét::O> i~ ! he on Iy re~11iar re~ion aS50ciated \';i t h li brat ion remaining.

:\Iso ~ne c:haotic fl'2::url r~ :Hloollncieci in tc:-ms of tumbling. ~ote that a regular region

of nonresonant qllii""pf'flodic r tlmblin~ nas appearcd for positi\'e pitch rate.

In surnrnary. fc):- il !!in'n ('H. the type of motio!! depends on the initial conditions.

:\5 (of{ was inC[('ë:.'t-d. t he re~ion of possible motion possessed: i i'l mainly regular

libration: 1 ii) re~uiar and chaotic libration. with the chaotic region taking a larger

and larger proportion of the region of possible motion: 1 iiï, regular libration. regular

and cnaotic tumb!in!!.

The present worK has presented a series of Poincaré plots. O\'er a range of CH doc­

umenting the chan~e in beha\·iour. as interpreted by Hamiltonian chaotic dynamics.
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(

This was not done in earIier work on stability and periodic solutions of this system

by ~rodi and Shrivasta\'a (19ï2. 19ï1a). ~[odi and Brereton (1968) who did include

sorne Poincaré plots and noted 'ergodic' solutions. It is instructive. howeveL to make

comparisans wit h the results they present.

They presentcd Poincaré plots for CH = -1.25 and CH = -1 similar ta those

presented here exccpt l hat. ather than having isolated the periodic solutions for CH =

-1.25 and the lirnit in~ lIargest) orbits of the resonant quasiperiodic regions at least

for CH = -1.:2.5. pach trajectory was only integrated for -10-.ïO orbits (the computers

in the late sixtics \'.'f'ff' slo\\" 1. In each case. the chaotic region \Vas not entirely filled

out. as was donc h~'n' llsing a single chaotic trajectory. They called the trajectories

appearing as scattf'red points. now known as chaotic. as 'ergodic': they speculated

that they 'may in\'ol\"c periodicity over a large number of orbits' which they do not,

The significancc of the closed cun'es as quasiperiodic motion was not emphasized.

Thcse arc the only (n - 0') Poincaré plots actually presented. but they make ob­

servations about The change in behaviour for increasing CH' They state that 'ergodic~

trajectories aprH'ar for ('1/ greatcr than a critical value. -L.56. This was not verified

in the pn'SCIlt \\"ork. IIowe\'er. il is expected that at a large p.nough scale. chaos

can be obser\"(~d for ail Cf{. From theory and other numerical work in Hamiltonian

dynanlics. chaos j...; always present near the separatices associated with rcsonances in

near-integrablc t \\"0 dcgrces of freedom systems: t here should be no sudden transi tion

to chaos at sorne critical C[{.

They obser\"(~d an increasing tendency for motion other than of the Pu regular

region as Cil approachcs -1. \\"1th which the results here agreed. The results here also

agreed with their obsen'ation that for greater CH the only st.able solutions are those

associated with the P}'l rcgular region.
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( Finally at C fi = O.82i. they observed that the P21 regular region reduces to just

the periodic solution. 50 that beyond this value gravity-gradient stabilization is not

possible. That this occurs at that value of CEl \,,-as not verified in this work.

3.3.1.2 Series of Poincaré Sections, Phase Plane Plots, Time Histories,

PSD 's and Lyapunov Exponents, for Increasing Initial Conditions

fi (0) = -. dl) = ho. Q' (0) = ; 1(0) = 0

The nature of motion in this system is noW documented numerically further~

through several HllII1crical tools of nonlinear dynamics and chaos. The analysis covers

the change frorn reg;lliar to chaotic motion for the initial conditions of initial angles

0(0) = '1'(0) = 1.:. where IL is a gi\"en angle. and zero initial velocities. as k is increased.

Power spectra and Lyapuno\" exponents as weil as Poincaré sections are computational

tests which id('ntify rcg;ular or chaotic motion: aIl three of these tests. as weil as phase

plane plots anel t imc histories. were taken for the individual trajectories (conunents

on nurnerical élnaly~is issues can be found in the last section of the chapter). As

discusscd beIow. ,ht' Poincaré sections. power spectra and Lyapuno\" exponents show

excellent a~n'pnH'nt in ielcntifying a change from regular to chaotic motion. as k IS

increased. at A' = l:JO. and an lOcrease III the degree of the chaotic motion as k IS

increascd furthpr.

Poincarp Sf'ct ions Wf're taken of indi\"idual trajectories as done earlier. i.e.. record­

ing Q and Q' wh('n -; = 0 and ;' > O. and are shawn in Figure :3.6(a)-(d). They are

aIl taken o\,('r .i00 orbits. ~ote that CH increases with k for 0 < k ::; 90°. Thus.

each t rajectory rno\"cs on a different surface CH =constant with respective bounds

(discussed carlicr).

( Figure :J.û( a) shows the Poincaré sections of t rajectories with k
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and 40° plotted on one graph for convenlence: as CH is not constant for the tra·

jectories shown in this figure the trajectories cross. Figure 3.6(b) is the section for

the trajectory with k == .120
• These figures show the closed curves characteristic of

quasi-periociic oscillation. although they appear to cieforrn and begin to break up as

the initial angles are increased. :\t k == -1:3 0 however the motion is chaotic as shown

by the scatter of points in the section of the trajectory of Figure :3.6( c). The section

of the chaot ic t rajectory at k == -190 of Figure :J.6(ci) covers a much larger region and

shows tumbling occurs in pitch (the trajectory was plotted for mod 2:7 in Ü').

From the prc\"iolls discussion of the series of Poincaré sections for constant CH

(Figure :3.5) one rceogn izcs t he quasi period ie t rajectories shown here as belonging

to the quasiperiodic rcgion associated with the Pu resonance. :\150. one recognizes

the chaotic trajectory of Figure :3.6 (c) for k == .130 as the separatrix trajectory of

the P~5 resonancc. shawn in Figure :Lj. the Poincaré section for Cfi == -1.5: the

trajectory for ~. == 1:3° bas CIf == - L:39. The chaotic trajectary of Figure :3.6 (dL

k == ~9° fills the chaotic rc!?;ion for the respecti\"e CH, Cf{ == -0.99. Just inside the

Iimit for turrlbling in pitch (CIf > -1) tumbling has occurred: the chaotic trajectory

is otherwise identical to that of Figure :3..') le J for Cil == -1. with the regular regions

associated with the P21 and P;:J resanances outlined (cornpare also with Figure 3 ..)

(d) for Cil == -0.·1 J.

The motion k =l:~O exhibits lirrlÎtcd chaos which is characterized by chaotic phase

space orbits rernaining close to sonle regular motion orbit. For larger k. k == -19 0 the

motion has dcveIoped large-scale chaos where chaotic orbits tra\'erse a broad region

of phase space.

Figure :~. ï gives the phase planes and time histories. to 80 orbits. of the trajectories

with k == -10° ..120
• ,1:3° and -19° respect i\·ely. The change from regular ta chaotic motion
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( cannot be discriminated conclusively from phase planes and lime histories~ and thus

computational tests 51lch as Poincaré sections. PSD~s and Lyapunov exponents are

used..--\ subtle differeflce in their appearance r.ould be noted when carefully comparing

the quasiperiodic and chaotic vibrations. namely the \vandering in the phase plane

and aperiodicity of the t ime histories for the chaotic trajectories were somewhat

greater. ~[any of Ill!' dlaotic trajectories also showed. more obviously. an interesting

exchange of energy l)("t wppn the two degrees of freedom in the lime histories. These

differences are sef'n in [his figure. comparing the quasiperiodic (k = -10°. -12°) and

chaotic 1 k = ·l:lo . l'Jo 1 I)~("illations. The exchange of energy between the two degrees

of freedom appear~ T0 ht'f!in towards the end of the time history of the k = -13° case.

and is quite strikine; in the k = 19° case. .\ote that this figure shows that the k = -19°

trajectory. which \\"a:i :,110\\'n to tumble in the Poincaré section taken o\'er .500 orbits.

does not tumblc to éd kast SO orbits (recall this case is just inside the CH > -1

tumbling Iimit l.

The following PS D's \\"ere taken from trajectory solutions. under 80 orbits.

Figure :L~ (il. 1-\ Il.1 ~hows [he pitch and roll PSD's for smali initial conditions.

(1(0) = -.1,0) = f... == [0°. n'(O) = ~,'(O) = LJ and for comparison. Q(O) = O. -~(O) =

10°. a'lÜ) = -,'(0) = O. The frcqucncy spectrum is composed of combination tones of

the two nat ural frccpll'ncics of the linearized system, v'3 and 2. Their being incom-

rnensurate reslllts in qlla~î -periociic motion. Pitch motion a has a forcing frequency

of twice the fundamcntal roll frcquency as seen from the equations approximated for

small motions:

(:3.11 )

(
-.

This can be \"(~rificd in the PSD's. The contribution of this forcing frequency is smaller

than the natural 0 frequency, as it is of second order. Its relati\re contribution is larger
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for the case (a) where Q \vas initially undisturbed compared ta the case (b) where

both angles \Vere initially present.

Figure :1.8 (b) along with Figures :l.g (a)-(d) make up a series of pitch and roll

PSD's for trajectorÎf's with increasing initial angles k. k = 10° and k = 40°.42°.43°

and -19°. respecti\"(~ly" :\s the initial angles are increased. the PSD~s have more fre-

quency componcnts. and contain distinct and identifiable combinat ion tones up ta

k = -12°. For larg;cr k the spectrum broadens. as characteristic of chaotic vibration.

This indicates t he c:han~e from quasi-periodic ta chaotic motion. The PSD~s of the

motion for k = 1:~0 ('xhibit the characteristic of limited or. equivalently~ narrow-band

chaos. which is IIarro\\" or limited broadening of certain frequency spikes. For k = -19 0
•

the PSD's of motion ha\'f' de\'eloped the characteristic of large-scale or. equivalently~

broad· band chaos. TItat is a broad range of frequencies.

FinaIly. t he lélr2;e~t Lyapuno\" exponents of the trajectories were caIculated. Chaotic

motion is characterized by great sensiti\'ity of the motion ta small changes in initial

conditions, (,Iusd.\" n('i~hbollring orbits \\"hich are chaotic. di\Oerge exponentially 10-

cally IOIdy locally sincc' the pbase space may be bounded). The Lyapunov exponents

of a given trajPcTory ("haract.erize the mean rate of exponential separation of trajecto-

ries surrounding il. .\n Tl dimensional system has n Lyapunov exponents. but the first

or largest LyapllnO\' ('xponent ..\. associated with the direction of most rapid gro\vth.

dominates the dynarnics o\"cr time. It can be obtained from ~[oon ( 1992):

(3.12)

<

One ("onsidcrs a refen~nce t rajectory: do is a measurc of the initial distance in the phase

space between this trajectory and a nearby trajectory. dis the distance at a small but

later time. Onc rIlcasures d/do• then considers a new nearby trajectory and defines a

new do. Since the cxponential di\'ergencc of chaotic orbits is only local. the growth
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must be averaged at many points along the trajectory in this ,vay. It approaches a

constant value for large .V. Details of the calculation of À using Eq. (:3.12). including

the determination of the length ratio dl do in Eq. (3.12). is given in Section 3.4.

Thus the first Lyapunov exponent is a quantitative test for chaos: a chaotic tra­

jectory has À > O! and a regular trajectory has À = 0 (for a Hamiltonian system). It

also is a measure of the degree of chaotic behaviour of a trajectory: the greater its

value. the more chaotic the trajectory.

Figure :3.10 plots the first Lyapunov exponents for trajectories with k = 10°! -l0°.

-l2°. -1:1°. 45° and -19 0
• over 200 orbits. For k = LO°. -tao. -l2°. ,,\ appears to tend to

zero. with the -10 0 and .110 curves indistinguishable from each other. However for

k = -l:3°. the exponent tends to a positive value. about 0.05. This value increases as k

is increased to k = 1.1° and -19° (,,\ is equal to about O. Land 0.16. respectively)" The

calculated Lyapuno\" exponent is by definition more accurate the longer the time over

which it is averaged. The first Lyapunov exponent was calculated over 1000 orbits

for trajectories with k = 10 0
• -10 0 A2° and -19° and are plotted again as a function of

orbits in Figure :L Il. In this figure the tendency to zero for large time of the k = 10°

AO° .!:!O cases is cI(~ar. Thc C'xponent for the A: = -19 0 case shows only a slight \"ariation

from 200 to 1000 orbits (its \'alue is O.l.j at 1000 orbits): one expects that the k = 43°!

-150 would also sho\\' little \"ariation. and that the \"alues of the three cases indicated

in Figure :3.10 up to 200 orbits are accuratc at lcast relative to each other. Thus

these figures show that the first Lyapunov exponent (in the limit for large time) has

zero \'alue for 1.: = 10°. ·wo . .120 and positive ,'alue that increases with k for k = 43°

A.jO and -1g0
• Thus regular motion is indicated for k = l 0°. -10°. -12°: a mean rate of

exponential divcrgence of trajectories that increases with k~ that is chaotic motion of

increasing degrec with k. is indicated for k = 43° A5° and 49°.
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The Poincaré sections. P5D's and first Lyapunov exponents presented show ex­

cellent agreement in idcntifying a change from regular to chaotic motion. as k is in­

creased. at k =l:lO. and an increase in the degree of chaotic motion as k is increased

further.

Previous work uf rdcvance to this system. other than by ~Iodi and Shrivastava

(1971a. 19(2) and \Iodi and Brereton (1968). is that of ~Ieh'in (1988a. b). The

results here confirm. hy modern nonlinear dynamics numerical analysis techniques~

the existence of sorne chaotic solutions suggested by ~[elvin for the gravity gradient

pendulum. His work iIlcluded the numerical integration of the equations of motion of

this system. but not the rnodern techniques. He plotted the t\Vo degrees of freedom

of solutions as wd! as zp.ro \'elocity cun'es on a unit sphere. For certain conditions

he observed librat ion sol ut ions characterized by the filling of a large portion of the

zero \'elocity surface. and interpreted them as chaotic. Based on the present work.

this appears él \"(diJ intcrprctation. as the zero \'elocity surface in Q - ;' space is just

a cross sect ion of the IIlot ion en\'elope -: 1 = 0 in Q. Q'. -f space. like the boundary of

possible motion in the (} - 0' Poincaré plots prcsented: most (but not aU) chaotic

libration solutions. ludikc rcgular libration solutions. filled large portions of the re­

gions of possible motion in the Poincaré plots. :\lso. his results and the results here

agree. where compiuisons wpre made. as discussed below. The computational tests of

modern nonlinear dynamics. which decide the nature of a solution (Poincaré sections~

PSO"s. Lyapuno\' exponents) \Vere applied in the present work. but not in ~Ie[vin's

\\·ork.

Specifically. \Ielvin (1988b) obsen'es a chaotic libration regIOn for motions from

rest with small initial roll angle and large initial pitch angle. [n ~[eh'in (1988a) on

the other hand solutions were taken with initial conditions on \'arious zero velocity
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curves. that is from rest for \'arious values of the Hamiltonian constant. In terms of

CH used here. \Ielvin found solutions with Cf{ > -1 quickly tumbled and did not

examine their bphaviour. For CH = -1 he found chaotic solutions for 0(0) > 47.50
•

He also found chaot ie ~olutions for CH slightly less than -1. Comparisons are made

now with the results of the latter paper and the results of the present work.

The results in The pa.per by \leh'in ( 1985a) allow easy comparison with the results

obtaincd here_ for the initial conditions 0(0) = -:(0) = k. k. 0'(0) = -/(0) = 0 (i.e. also

from restl. when rt'spt'cti\'e CH is calculated. The solutions taken with k such that

CH > -1 did quickly ! llnlble. apart fronl the solution at ~. = -i9° where Cf{ = -0.99

and tumbling ocnlrs a.ftf'r sorne time. \Vith CH :;0 close ta CH = -1. the chaotic

k = .19° solution of t his t hesis can be compared with his result. and it is in agreement.

Here chaot ic sol ut iùns wpre observed to begin for k 2: .t:JO or CH 2: -1.:39 .

.--\ careful cornparison of the results of \Ieh-in 1 1988a:, and the Poincaré plots for

gi\-en CH presentC'd here ! Figures :3..5) can also be made. Libration solutions are seen

for Cl{ > -1 in t he plots: note that the plot is not limited to trajectories beginning

from rest as arc ~lis n'sults. The plot for Cf{ = -1 allo\\"s for his result. recognizing

that an initial condition on the plot has -.(0) = 0 only and at rest corresponds to only

ia (0): = 90°. where the boundary '":' = 0 and the u' = 0 axis meet: the plot suggests

that chaotic solutions exist for 10.(0)1 >1.1° appoximately. when ~.(O) = O. a' = O. -/ >

O. That he found chaotic solutions for Cf{ slightly less than -1. is within the results

of the plots herc for Cf{ < -1. recalling that the chaotic region becornes appreciable

as CH = -1 is approached [rom smaller \"alues.

Sections :L:L 1.1 and :L:3.1.2 have applied the numerical techniques of modern

Hamiltonian nonlinear dynamics analysis to the coupled motion of a constant length

tethered system. or equivalently. a gravity gradient pendulum. The present work has
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presented a detailed series of Poincaré plots. each made up of se\'eral trajectories for

a gi\'en Hamiltonian constant. O\'er a range of the constant. to document the change

in behaviour as interprcted by modern nonlinear dynarnics. i.e.. the regions of regular

and chaotic rnotion. This was not done in the early \....ork by ),Iodi and Shrivastava

(1972. 1971 a) and ~Iodi and Brereton (1968) who presented a few Poincaré plots

in studies of stability and periodic solutions of the system. and observed 'ergodic'

solutions. The pwsent work has also presented a series of Poincaré sections. PSD ·s.

and Lyapunov pxponents. t hat is the computational tests which decide the nature of

motion. as wdI a~ pilas<' plane plots and tinle histories. to document the change from

regular to chaotic motion for trajectories starting [rom rest with equi\'alent initial

pitch and roll aIl!?;Ie~. as the angle is increased. Together with the Poincaré plots for

constant Cf{- t!tf'S(l results confirm the existence of chaotic solutions in this system.

suggested by ~I('h'in 1 i 0~8a. 1988b) who obsen'ed 'chaotic' libration solutions plotted

in the pitch- roll zero \'docity surface.

3.3.1.3 Melniko\"~s :Ylethod A.pplied ta the Idealized System

The rlt'ar irlttl~rability of the system and presence of chaotic rnotion is shown

in Sections :t:L l.1 and :LJ.l.~ by numerical means. As mentioned in Section :3.2. the

analyt iraI rnct !lad uf ~[elni kov could be used ta determine whet her a conser\"ati\"e

svstenl is intcgrabl(· t)[ near-integrable. where the system can be considered as a

perturbation of an integrable system. This 15 done for an idealized \'ersion of the

system as detaiied presently.

~Ielniko\" s ~Iet hod is usually applied to planar (t \\"0 dimensional) systems. Adap­

tation of the thcory ta higher dimensional systems is gi\'en briefiy in Guckenheimer

and Holmes (1983) and in detail in \\ïggins (1988) _and has been applied by Gray
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and Stabb (L99:3) to study the controlled pitch dynamics of a gravity gradient satel-

lite..-\pplication of ~Ielniko\"s ~lethod to a two degree of freedom system assumes

that the system can be considered as a perturbation of an integrable two degree of

freedom system. .-\lthough it may be possible to apply the method to the full two

degrees of freedom system considered here. in the following. assumptions are made

which idealize the system such that the standard planar :\[elniko\" theory can be used:

the near-integrability of the idealized system will be shawn.

The assumption made is that roll is small and is harmonie. Assuming first alone

that roll is small such that -,. = or 0). where f: is a small parameter. then. keeping

to order c Eq. i :J.l 01 hecomes

" ,-. (3.13 )

One assumes no\\' t hat the braeketed ternl is approximately a constant k 2 or that roll

is harmonie: then with initial conditions -.(0) = ~·o = fi. -:'(0) = O. one has

-. = fi cos kB. (3.14 )

\\ïrh the roll d('scrit.wJ by Eq. t :>'1·1 L the pitch equation Eg. i :L!Ji hecomes. ta

order (

o." ~ (k sin "2kB( Q' - 1) + :3 sin Q cos Q = 0 . (3.15 )

<

Assuming roll to be small and harmonie has reduced the system to a planar system

with a time-periociic forcing perturbation. The unperturbed system t = O. just the

planar systenl described by Eq. l :3 ..j). is integrable with a saddie point and separatrix

orbit. The standard planar theory of ~[elniko\· can now be applied.

A description of the planar theory of ~[elniko\' can be found in ~loon (1992).

Reichl (1992). Lichtenberg and Lieberman (1992). and in more mathematical detail
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( in \Viggins (1990.1988) and Guckenheimer and Hoimes (1983). Suppose the system

equations of motion can be written as

. aH
P=--+f.g2

âq

(3.16)

(3.17)

where (q~ p) are th('~('neralizedcoordinate and momentum variables. 9 = g(p, q~ t) =

(gl~g2) is periodic in lime. ( is a small parameter and H(q.p) is the Hamiltonian for

the (undamped. unforc('dl integrable problem (t = 0). The .\[elnikov function is

(3.18)

(

where fJ- = g(q•. p•. t ~ fol: q-(t) and p.(t) are the solutions for the separatrix of the

saddle point in the phast' plane of the unperturbed problem. and to is a measure of the

distance along thi~ ~t'paratrix. [n the phase plane of an integrable system the stable

and unstable manifolds of the saddle point join smoothly: however these manifolds

separate and oseillate and may intersect trans\'ersely in the Poincaré section of the

pert urbed problem \\'hcfe integrability has been destroyed (Figure :3.12). Transverse

intersection lca(is T0 chaot ie ITlOtion near the separatrix. The :\[eIniko\' function is a

measure of the s{'paration between stable and unstable manifolds of the saddle point

in the Poinca[{~ :il'clion of the perturbed problem. [f JI( io) has sinlple zeros they

intersect. [n a conservat i\"{~ system if t he manifolds separate t hey will al ways have

trans\'erse intersection: ~[elniko\"s .\lethod can be used to demonstrate whether a

conservative system is integrable or near-integrable. and whether chaotic motion will

occur. In a dissipat iw' system the manifolds separate and oscillate but need not cross.

and ~Ielnikov's ~[cthod yields at what parameter \'alues the erossing. and thus chaos.

occurs.
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Returning to Eq. (:3.15). one first rewrites it in the fol1owing form:

0" + (:3/2) sin~n = c[-ksin2kO(n' + l)J.

46

(3.19 )

The left hand side can be written as that of the normalized pelldulum equation

by making the substitutions 0 = 2n and ï = J38. and then after sorne algebra.

(f-o ddJ
dT 2 + sin 0 = (fA sin~'T( dT + a)] ~

where (~ = '2/ ifJ, L .. \ = -(l / fi) k and a = '2/ ifj.

(3.20 )

In Eqs. (:3.16 'H:L 17) one has t = ï. q == 0 and p = t' = do/dT. 91 = 0 and

g2 = [A sin .....T( :~'~ - rI 1]. The Hamiltonian for the unforced problem (t: = 0) is

and

H = P /2) t'
2 ~ ( l - cos 0) . (3.21 )

Thus

aH .
80 = SIn o.

aH
-=v.av (3.22)

il . v H = 92L'. (3.23)

On the unperturtH'd separatrix orbit from the saddle point (0 = ~ (mod 2;ï). v =

0) FI = :!. Consiciering just the positi\'e branch of the unperturbed separatrix orbit

the solution is fOllnd to be

do·
v· = - = 2 sech T .

dT

The :\[clnikov function from Eq. ~:3.18) thus becomes

(3.24)

(3.25)

J[(TO) = L·\ [2 f-x~ 5io".:(T + TO) sech 'TdT + a l:oc SiOW(T + TO) sech TdT] (3.26)

(
The integrals

1
+00

sin """.( Tl sech 2T dT = 0 .
-1)0

(3.27)
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1
+00

-<Xl sinw( T) sech TdT = 0 .

since the intcgrands are odd. The integrals

j
+~ ? ~w

-'Xl cos w( T) sech - TdT = ;r~ eseh T ~

1+00 ~w

-'Xl cos w( T) sech TdT = ;j sech 2 ~

evaluated by the rncthod of residues.

Thus the :\[<'lniko\" function of the system is evaluated to be

(
iiu.; 1 ;ru.;)

.\1( Il)) = - :z.... iT IN' eseh - i M sech - sin u..'TO .
:2 v3 2
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(3.28)

(3.29)

(3.30)

(3.31 )

(

The two pertudH'd rnanifolds. stable and unstable. will toueh transversely when .i~I(Ta)

has a simple zero..\s 10 is varied along the unperturbed separatrix. J[(Ta) varies in

sign. Thus the systern deseribed by Eq. (3.15). that is the planar system in a circular

orbit. perturbl'd hy roll defined ta be small and harmonie. is near-integrable and has

ehaotic motion Ilcar the separatrix.

One might compare this :\feInikov analysis \Vith that of Tong and Rimrott (1991).

for the systt-~rll consistin~ of the planar gravity gradient satellite in an orbit of small

eccentricity (t IIC systcrn of Section :3.:2.2 but general inertia ratio. small cccentrieity

only). or that of Koch and Bruhn (1989). for the same system but in addition small

oblateness of t hl' central body. Similarly ta the system under consideration. in the

above-mentioned cases small forcing but no dissipation was present and the systen"1s

\Vere chaotic for aU values of the system parameters. Later in this thesis. :'vlelnikov's

yfethod will be applied to the planar system in an orbit of small eccentricity and

smaIl exponent ial tether length rate~ where the system is no longer conservative.

The system here was idealized such that the system could be considered as a

peturbation of an integrable. planar system. The application of ~Ielnikov's :\Iethod



CHA.PTER 3. STA.TI01V[{EEPllVG PHASE 48

(

(

to a two degrees of freedom system assumes that the system can he considered as a

perturbation of an integrable two degrees of freedom system. but this was not con-

sidered due to the complexity. The analysis presented here might lead one to expect

that an application of .\[elnikov·s .\[ethod to the more complex two degree of freedom~

four dimensional system. considered as a perturbation of an integrable system. would

conclude chaotic dynamics aiso. Xote that the validity of such an analysis would be

limited to small \'aIues of the perturbation parameter. [n Sections 3.3.1.1 and 3.3.1.2

the near-integrabiIity and nature of motion of the two degree of freedom system in a

circular orbit. with no Iimiting assumptions. was seen by numerical methods.

3.3.2 Eccentric Orbit

Considering no\\" cccentricity~ the coupled motion ln the stationkeeping case is

gO\'erned by t.he equations of motion Eqs. (3.1 )-(3.2). repeated here for convenience:

cos 2
-; {a" - [2-/ tan-f ~ F! (0" + l) + :3G sinn cosa} = o.

l' ,'" 2 • • 2 1-: - F -: + ~ ( l -r 0) ;-.3G cos (} sin -r cos: = a.

with expressions (~.~S)

F = 2E sin8/(1 + E cos8). C = LjO + e cos8).

These are the gO\'erning equations of coupled motion of a gra\'ity gradient pendulum

in an elliptic orbit. This systenl has been studied by other authors as discussed in

Section 1.2. but not in terms of the nature of (regular or chaotic) motion.

The system is nonlinear. coupled between the two degrees of freedom. and. due

to the presence of eccentricity. non-autonomous. Both pitch and roll equations have

parametric coeffients (due to eccentricity). Roll has no nonhornogeneous forcing; pitch

is nonhomogeneously forced both by eccentricity and roll terms.
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( The equations of motion written with time as the independent variable~ i.e.! Eqs.

(2.21 )-(2.22) with Q) = q.., = O. f. = 0 and rearranging~ are

Ci - 2':· tan -: 0 + (:1 11-/ R~) sin lX cos a = -0 + 2:' tan r 0 . (3.32)

(3.33 )

(

From these equat ion~. une sees clearly the excitations due to eccentricity of the orbit

present in the [notion" I"he excitation caused by the nonuniform rotation of the local

. -
\'ertical (position ':t'ctarl appears as fJ(t) and fJ(l). The excitation caused by the

varymg magnitude of the position \-cctor appears as Rc(l). The latter appears as

parametric excita! ion for hot Il pitch and roll motions. fJ( t) is a parametric excitation

for the roll motion. \\" hile O( t) and O( t) are nonhomogeneous excitations for the pitch

motion.

Returning no\\" 10 Eq~. 1 :J.l )-( :~.2). one notes that there are no equilibrium config-

urations 1 putting t irne deri\'atives to zero no constant solution can be obtained for Q

and .... ). The systf'm Harniltonian is not a constant since the energy expressions are

non-autonomoliS ,Section :2.7). These effects of eccentricity were already seen in the

planar case.

The system t:L l '-l, :L:!) is a nonautonomous. two degree of freedom system. The

phase space has fin> dirncnsions, Q. Q', .,. ;', fJ.

The high dirncnsiollality of the systern allows ln thcory for the phenomenon of

Arnold diffusion (sep Lichtenberg and Lieberman. 1992). Consider an .\' degree of

freedom autonomOllS Hamiltonian system. or an .V - l degree of freedom nonau-

tonomous Hamiltonian system. Trajectories mo\'e on 'LV - 1 dimensional energy

surface. in 2.\' dirncnsional phase space for autonomous system. or in 2.\' - i dimen-

sional phase space for nonautonomous system. Regular (integrable) K.-\~'[ surfaces
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are ~y dimensional. They cannat divide space into distinct regions for ~V ~ 3, in which

case aIl chaot ie rcgions arc connected into a single complex network. the Arnold web.

Thus. in an au tonomous. two degree of freedom Hamiltonian system. or a nonau­

tonomous one dt>grcc of freedom Hamiltonian system (as. respectively. the coupled

circular orbit ca~e. and planar eUiptic orbit case studied here), in the three dimen­

sional cnergy surface'. ur phase space. the chaotic trajectories nIay be isolated from

one another by two dirnensional K:\~I surfaces. In the nonautonomous. two degree

of freedom system 1 t he case of the coupled. eUiptic orbit under study hcre). in the

Ove dimensional phas!' spacc the chaotic trajectorics are not isolated by the three

dimensional K:\~I :-,urfaccs. but are connected in the chaotic web.

In a near-intc~rablc Hanliltonian system of .Y ~ :L as for smaUer .\". chaotic layers

In phase space fonn ncar the rcsonances of the motion. The thickness of the layers

expands with incrcasing perturbation away from integrability. :\s shown. for .V ~ 3

the chaotic layers or r{'gions arc connected in the .-\rnold web. The web permeates the

entire phase space. For any initial condition within the web. the chaotic trajectory

will ew'ntually inters('ct c\"(~ry finite region of the phase space. cven the predominantly

regular regioIlS wlH'f(' t.he fraction of chaotic initial conditions is small. The rate at

which this Arnold diffusion occurs along the web dcpends on the thickncss of the

chaotic laycrs and is slow. but diffusion occurs for any finite perturbation. :'\ote that

for small pC'rtllrbation. for .\. < L chaotic motion exists but is confined to thin layers

bound by rcglliar ~l1rfaces. For.\" ~ :1 the chaotic motion is no longer confined and

can diffuse throughollt the phase space. but for small perturbation this diffusion along

the thin layers is extrcmely slow.

:\. surface of section (Poincaré section) is a reduced phase space of dimension

2.V - 2 (see Lichtenberg and Lieberman~ L992)..-\s shown in the previous sections.
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when the surface of section is two dimensional and is computed for a large nurnber

of initial conditions on the same energy surface (autonomous system) or in the phase

space (nonautonomolls system) it can give an immediate picture of the phase space

structure, This is rIot the case of the present system~ where the surface of section

is four dimensional and more difficult to dis play and interpret on a two dimensional

piece of paper.

The followine; IS an analysis similar to that applied in the fast section. III that

numerical techniqu<,s 1 phase plane and time histories. PSD~s. Poincaré sections, Lya­

puno\" exponents) are used to examine the change in the nature of motion of tra­

jectorics with initial conditions at perigee 0(0) = -((0) = k. n'(O) = ~.'(O) = 0 for

increasing 1..-. but an clliptical orbit of eccentricity of e = 0.1 is now c:onsidered.

From phase pla.ne plots and time histories calculated to 80 orbi ts and Poincaré

sections calcu[att'd Tl> ~OO orbits. il was found that for k :::; 30° trajectories do not

tumble up to :!OO urhits. while for k > :JQo, trajectories tumble quickly. in less than

1·) orbits. The nat urt' of motion of the libration trajectories k :::; :300 is examined in

the fol1owing.

Lyapunov pxporwnts .\ \\"cre calculatcd for the libration trajectories for increasing

k. sorne of which iHe shawn in Figure :3.1:3 (a)-(b). ;-\11 ~\ were calculated over 200

orbits. For f..: S ~GO. urbits appear regular. ,\ approaching zero o\"cr time. This is

shown in Figure :Ll:~ (a.l for j.. = lO° and 26° (along \\·ith the positi\'c ~\ for the

chaot ie orbit of k = :30° for comparison) over 200 orbits. However for k > 26° ~ ~\

approaches a positivc \·alue denoting chaotic orbits. Figure :J.13 (b) sho\\·s this for

for k = 27°.~SO.:WO (a[ong with'\ for the regular orbit k = 10° for comparison).

~ote that thcse positi\"c \'a[ues are low. ,\. for both the cases of 28 0 and 30°. has

a value of about 0.02.5 at 200 orbits. .\ for the 27° case has a value of about 0.01
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at 200 orbits. \"ery close to the value for the regular orbit k = 26° (these have been

plotted separately for cIarity). For k ::; 26°. ~\ appears to approach zero smoothly~ if

asymptotically. for k = 27°. ~\ over time appears to approach a low positi\"e value

and thus indicate the limit of weak chaos.

From Figure :3.1:3 (b). the k = 28° and 30° trajectories can be considered to share

the same ~\ and to belong to the same chaotic region: however. the k = 27° trajectory

has a clearly distinct ~\. denoting another. segregated chaotic region. This serves

as an argument that if Arnold diffusion occurs. it occurs tao slowly to be observed

numerically ow'r 200 orbits. In theory. the chaotic rcgions of a high dimensional

system such as this one are connected by the Arnold web. through which a chaotic

trajectory will diffuse. In this case a trajectory beginning in a weak chaotic region

should after sufficient time be found in a strong region. and take on the ,\ of the strong

region (the t rajectory will rardy return to the thin layers of a weak region since they

make up a negligible fraction of the web). Lichtenberg and Lieberman (1992) review

the work of Benettin et al. (1980) and Contopoulos et al. (1978) who made similar

obsen"ations for their particular high dimensional system. They found that chaotic

trajec!orics tH'longed to apparently segregated chaotic regions with distinct ,\. and

it was concludcc1 t hat :\rnold diffusion. if it occurs at aIl. happens too slowly to be

obsen'ed numerically O\'er the t irne frarne st udied.

In summary. for libration trajectories k ::; :30°. the Lyapuno\" pxponents show

that up to ~oo orbits. two main regions exist for increasing k: a regular region for

k ::; 26 0
• and a weakly chaotic region for 27° ~ k ::; :30°. The chaotic region appears

to be subdi\'ided into unconnected component regions. Arnold diffusion. if it exists

as predicted by theory. occurs too slowly to be observed numerically o\"er 200 orbits.

The transition from regular to chaotic motion as k is increased. for the libration
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trajectories k ~ :JO°. was examined further. u5lng phase planes and time histories.

PSD's and Poincaré sections.

Phase planes and t irnc histories \\'ere taken of the trajectories to 80 orbits. Sorne

f th (k l 00 ')')0 ')')0 ')6 0 ')-0 ')80 '300 ) h" F' .) l f \V"h'l .o ese - = . __ . _.) ,_ ,_, . _ .' . are s o\\n ln 19ure .J. ~. le In

the phase plane trajectories appear to wander more as k is increased. little can be

extracted from the pha:w planes and time histories (thus the need for other compu-

tational tests such as Lyapunov exponents to identify the nat ure of motion).

Power spectra \\'(~rp taken of the libration trajectories under SO orbits. sorne of

which (those corr('spundin~ to the phase planes and time histories presented in Fig-

ure:3.1-!) aresho\\'n trl Fi~ure:J.I.5.

The PSD for k 10°, that is initial conditions 01.0) = ~'(O) = 10°,0'(0) =

(

;'(0) = O~ can bt' cornparcd with Figure :3.8 (b). with the same initial conditions

ln a circular orbi!. ,ma Fi~urc :J.-L with initial conditions 0(0) = 100 ,0'(0) = 0

ln a planar orbit uf the :-;ame eccentricity as considered here (E = 0.1). Frequency

components are cornbination tones of the three frequencies of the orbital frequency.

and the pitch and roll nat urai frequencies of the linearized system (1. Ji and 2 times

the orbital fr('qlH'nc~·. respectÎ\'cly J. The frequency components of the pÎtch PSD's of

the planar. ('IIipt Îe case and coupled. circular orbit case appear in the pitch PSD as

weil as ather combinat IOns. In particular. bath forcing frcquencies. the parametric and

nonhomogeneous forcing orbital frequency and the nonhomogeneous forcing frequency

of twice the roll funàarTIcntai. are seen. The frequency components of the roll PSD of

the coupled. circular orbit case appear as weIl as other combinations. In particular.

the parametric forcing orbital frequency can be seen.

The transition to chaotic motion as k is increased cannat be sharply defined in

this case using thc PSD ·s. due ta the weak nature of the chaotic motion for libration.
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As k is increased the PSD contains more frequency components. The PSD's for

k ~ 22° definitely indicate regular motion with distinct and identifiable components.

Local broadening of a few frequency spikes which should indicate a \'ery weak chaotic

motion can be found for 23° S ~. :s 26°. This broadening of the spectra is more

predominant for r.... 2: 27°. but still somewhat locaL as chaos is weak. Trajectories for

k < 2ïc are judged r~~ular howe\·er. as indicated by the Lyapunov exponents. due to

the somewhat more :-:ubjecti\'e interpretation of weak chaotic motion as it appears in

the power specr ra.

Finally. surface l){ ~{'ctions were taken of the indi\'idual libration trajectories for

increasing k . .-\s ment ioncd abo\'e rhe surface of section has 2.\" - 2 dimensions (see

Lichtenberg and Lieberman. 1992), For .\" 2: :3. the .\" - l numher of twa dimensional

(generalized coordinate-\'elocity) projections of the surface of section may be used

to visualize the t:-a. ject ory. However for ,\" 2: :3. e\'en for a regular t rajectory. the

trajectory inters('ct ions ~eneraily fill an annulus of finite area on each projection.

with thickness re!~ted to the nearness to exact separability of the trajectory in the

coordinates 1 if rl'2:,.:iar and exactly separable. the annulus reduces to a smooth curve).

The intersect ions uÏ 'l1ch a regular t rajectory wit h t he surface of sect ion lie in an .V - l

dimensionaI surfacc. whose projection is a finite area. The intersections of a chaotic

trajectory filis a LY - "2 dimensional yolume within the 2.\" - 2 dimensional surface

of section. \';ho~c prùj<'ction is also an area. Thus for .\" 2: :~ the surface of section is

less useful for Jeterrnining nature of motÏon. The surface of section has been used to

illustrate .-\rnold diffusion o\'er long times in sorne systems. where the intersections

of the chaotic trajectory cventually spread throughout the projections.

For the present case the four dimensional surface of section was taken by sampling

Q. Q'. J. ~.' at 0 = constant == n2;;-. n = O. 1. 2 .... i.e.. at perigee. and the Q - 0' and
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1-1' projections exarnined. Surfaces of section \Vere taken of the libration trajectories

over :200 orbits. The projections of sorne of these are shown in Figure 3,16 (those

corresponding to the presented phase planes. time histories and PSD~s~ k = 10°,

')'JO ')30 ')6 0 .)-0 '1,,0 ')0 0 ) L' k lO° th l' , h__ ,_ ,- • _ 1 • __, ,.) ,ror = . e annu 1 approXlmate smoot curves.

indicating a regu lar t rajectory which is separable: for small motions the equations

approximately d('collpie. :\s k is increased. the thickness of the annuli generally

increases, since the' cuupling is stronger. The pitch annuli gradually approach a form

resembling that of The libration chaotic region observed for the circular orbit case:

howe\'er. the fig;urt~~ gin:- little indication as to at what k motion changes from regular

to chaotic motion. which is not unexpected from the discussion abo\"e. The projections

for larger k knowrl to bp chaotic from the Lyapuno\' exponents and PSO's (k ~ 27°)

\\.-ere observed é.liso at intermediate times: motion is weil confined to the annuE from

early t imes and t here is no e\'idence of diffusion ta the 200 orbits taken.

The resulb prcsentcd abo\'e for the coupled motion elliptic orbit case can be

summarized as foIlow~. \' umerical techniques were applied to examine t he change

in the nature of motion of trajectories with initial conditions 0(0) = -·tO) = À.'.

0'(0) = -·'fO) = Il, in an orbit of eccentricity c = 0.1. as k is increased. The Lyapuno\"

exponents show That. for libration trajectories k ::; :30° up ta 200 arbits, two main

regions C'xist for increa~ing k: a regular region for k ::; ~6°. and a weakly chaotic region

for 27° :S IL :S :30°. The chaotic region appears to be subdi \"ided into unconnected

component regions. :\rnold diffusion. if it exists as predicted by theory. occurs tao

slowly ta be obscrved numerically o\'er 200 orbits. The transition from regular to

chaotic libration wit h increasing k Îs not sharply defined by power spectra due ta

the \\'eak Ic\"el of chaos of libration. but power spectra confirm that the libration

trajectories of 2ïO :S IL :S 300 are weakly chaotic. Due to the high dimensionality of the
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system. the Poincaré sections as viewed in projections were not useful in identifying

the change from regular to chaotic libration with increasing k: however. those of

the libration trajectories known to be chaotic from Lyapunov exponents and power

spectra. 27° ~ 1.: ~ :lO°. confirm that Arnold diffusion is not observed numerically

over 200 orbits.

The results arc now cornpared with those obtained in the coupled motion circular

orbit case and the planar motion elliptic orbit case of the previous sections.

First the effects of eccentricity and out-of-plane motion on the size of the regular

libration region is examined.

Resulls can be cornparcd directly with those of the series of eomputational tests for

increasing initial conditions 0(0) = -.~O) = k. 0'(0) = -/(0) = 0 carried out similarly

in the coupled motion circular orbit case. In that ease a change from regular to chaotic

libration was obsern~d at k = ·1:3°: in the present case of orbit eccentricity e = 0.1. the

change to chaotic librat ion was obsenoed at k = 27° oThe eccentricity causes chaotic

libration to oecur at a lower k. i.e. a red uetion of the regular libration region for those

initial conditions. One t'xpects the regular libration region as a whole [ail possible

initial conditions j is decreased. and that it decreases with increasing eceentricity

in general. as obsen·ed in the planar case: results at other initial conditions and

eccentricity to show t his eould be obtained in fut ure \\"ork. In the planar case. of

course. chaotic motion exists only with nonzero eccentricity.

Results can aiso be compared \\"i th Figure :l.:l for the planar case of an elliptic

orbit of c = 0.1. Inspection of the Poincaré section showed that a change from regular

pitch libration to chaotic pitch tumbling occurs. for zero initial pitch rate. at the initial

pitch angle Q(O) ~ -10°. i.e. initial conditions 0(0) ....... -t0°. -:(0) = 0'(0) = --:.'(0) = O. In

the present case where roll was given identical initial angle as pitch. the change from
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regular to chaotic libration was observed at 0(0) = 7(0) = 27°. 0'(0) = -/(0) = O.

[ntroduction of a dist urbance in roll angle identical to that in pitch angle for zero

disturbances in the velocities. causes chaotic motion to occur at a lower pitch angle

disturbance. i.e.. redurcs the regular pitch libration region for initial conditions of

initial pitch angle and zero initial pitch rate. One expects the regular pitch libration

region as a whole !al! possible initial conditions) decreases with the introduction of

any roll motion. for any given eccentricity: this \vas the case in the circular orbit

problem. Of cours(' in the circular orbit case chaotic motion exists only when both

degrees of freedom art' present. The above discussion is understood by recognizing

that both eccentricity and out of plane motion introduce additional dimensions to the

phase space and possible' rcsonances of motion: chaotic layers form near the associated

separatrices.

The regular libration rcglon may be smaller or equal to just the the libration

region of non-turnbling rnotion. depending on whether chaotic libration or chaotic

tumbling occurs. In the planar motion. elliptic orbit case. chaotic motion is only

chaotic tumblin~. artd the rcgular libration region is equal to the total libration region.

as seen in the Poincan~ spetions (Figure :3.:3). In the Poincaré sections 1 Figure 3.5) for

constant Harniltonian of the coupled motion. circular orbit case. one sees the regular

libration region is ~urroundcd br chaotic libration or chaotic tumbling. depending on

the Hamiltonian. In the 0(0) = -:(0) = k. n'(O) = :'(0) = 0 series of that system, k

for regular libration was limited by chaotic libration for -13° ~ k ~ -18 0
• with turnbling

motion occurring only for k ~ -19°. In the same series for the coupled elliptic orbit case

with E = 0.1. k for rcgular libration was limited by chaotic libration for 27° ~ k ~ 30°.

with tumbling motion occurring only for k ~ :31 o. Thus the coupled motion elliptic

orbit case is more similar to the couplerl motion circular orbit case than the planar
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elliptic orbit case in that chaotic libration may occur~ which limits regular libration

to a region smaller than that of just the libration region of non-tumbling motion.

The Lyapunov exponents taken in the chaotic librati·Jn range of the 0(0) == -f(O) ==

k. 0/(0) = :/(0) = () series of the coupled motion circular and c = 0.1 orbit cases.

that is 43° ~ J... ~ .p~o. 27° ::; k :s :l0° respecti\'ely~ can be seen from Figures 3.10

and :3.13( b) to show t hat chaotic libration in the E = 0.1 case is weaker than in the

circuiar case. The ra(l~C in itself is smaller for the e == 0.1 case. -1: 0 compared ta 6°.

For the initial candit ions st udied for the elliptic orbit case e = 0.1 the difference

in size between Iiorat ion region and regular libration region due to chaotic libration

is smali (a few d('gn~('s ,. and the chaotic libration is weakly chaotic. However the

desirable region of operation when the nature of motion is considered is reduced. and

one must recognizc t his [nay occur for aIl initial conditions and for ail eccentricity.

.\ comparison is [naue finally of the cou pIed motion elliptic orbit case. with previ­

ous work of intcrest. .\[odi and Shri\"astava (1971 b) presented design plots indicating

allowable impulsin~ disturbances (initial pitch rate. roll rate. zero initial angles) at

perigee for nontlln1blin~ rnotion over a range of f. of this system. showing a decrease

in the libration n'~io[l with eccentricity. They did not consider the nature of libra­

tion howev('r. and 0[1(' expects chaotic libration would restrict the desirable region of

operation ta él. srnallcr rcgular libration region. also decreasing with eccentricity~ as

shown in this work for equai angular disturbances (initial pitch angle. roll angle~ from

rest! al perigee in orbits of e = 0 and e = 0.1. For a slightly elliptical orbit. :\Ielvin

(198Sb) observcd a similar type of instability (chaos) for the two degrees of freedom

plotted on a unit sphere. for the same region. that is motions from rest with small

initial roll angle. large initial pitch angle. as he obsen'ed for the circular orbit case:

in addition he observed in this region that the tether sometimes inverts (tumbling).
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However, ~Ielvin {1988b) did not apply any of the computational tests which decide

the nature of solution. as carried out here, The results here presented PSD's and

Lyapunov exponents which decide the nature of motion in this system~ as weil as

Poincaré sections, phase plane plots and time histories~ to document the change [rom

regular to chaotic motion for trajectories starting at perigee [rom rest with equivalent

initial pitch and roll angles as the angle is increased, in an orbit of e = 0.1. The

regular libration rc~ion for those initial conditions and eccentricity \Vas deterrnined

and the existence of chaotic solutions in this system (coupled motion, elliptic orbit),

as suggested by ~I('h'in (1988b), \Vas confirmed.

From a practical point of \'iew the results of importance presented in· this Section

and Chapter i5 the determination of the regular libration region of the phase space. the

desirable regioll of up('ration of the system. This region is clear for the circular orbit

case from its phase plane: chaos does not occur in this one degree of freedom system.

This rcgion can also be seen [rom the Poincaré section of the planar elliptic case for

initial conditions at perigee (t = 0.003. 0.1 L and the Poincaré sections for constant

values of the lIanliltonian for the coupled motion circular orbit case. In these cases the

regular libration r('~ion of dcsired operation should exclude the ·island· regions \\'hich

are surrounded hy chaos. although they correspond to regular libration trajectories.

[n these systcrns l, nonautonomous one degree of freedom. autonornous two degrees of

freedom) chaot ie t rajenories exist from theory even in regular rcgions: however. they

are very weakly dlaotic. confined ta n~ry thin layers between regular trajectories and

in practice bcha\"c as regular trajectories. Only when these chaotic layers overlap and

create a large chaotic region are the characteristics of chaos shown. Large excursions

of the trajectories may occur within the region~ and motion is unpredictable. The

regular libration region was also determined for the coupled motion circular orbit case
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and coupled motion e = 0.1 orbit case for initial conditions at perigee of equal pitch

and roll angles. zero velocities. The elliptic case is a non-autonamaus t\va degrees

of freedom system. In this case the theory predicts chaotic trajectories even in the

regular regions: however. they are very weakly chaotic. \vhose rate of diffusion in

very thin layers is sa slow that although the layers are connected in a chaotic web

throughout the phase space the trajectories in practice beha\'e as regular trajectories.

3.4 Computational Notes

(

[n this Chapter. as \vell as Chapter 4. numerical solutions of the differential

equations of motion were obtained using the [~[SL subroutine DIVPRK. which uses

Runge Kutta formulas of order five and six. The routine is a variable step size scheme

which attempts ta keep the global error proportional ta a user-specified tolerance. In

this work absolute error control was selected. with tolerance of .j x 10-5
.

Validation of the scheme is particularly important for the solutions of this Chapter.

Error arises due ta the discrctization involved in the numerical work. specifical1y the

truncation errar of the nurnerical integration routine and the roundoff error produced

in the computer. One would like to ensure that the chaotic numerical solutions

represent the dynamics and are not spurious. produced by discretization effects. The

essential correctness of the solutions can be checked by \Oarying the numerical precision

of the routine. and the algorithm itself: the Hamiltonian can aIso be used as a check

for the case where the dynamics require it to be a constant of the motion.

The Hamiltonian is a constant of the motion for the circular orbit case. The

Hamiltonian was chccked for aIl numerical results presented in the coupled motion.

circular orbit section. Section :3.3.1. that is the trajectories associated with aIl Poincaré
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sections. phase plane plots and time histories. PSD's and Lyapunov exponents. AlI

showed excellent behaviour of the Hamiltonian. that is constant with time. within

at most ±O.OOO l uf the yalue of the HaITÙltonian constant CH (Figure 3.17, CH as a

function of time for the chaotic trajectory included in Figure 3.5 (d), is an example).

As the minimurn absolutc \'alue of CH of aU presented trajectories was 0.5. this

corresponds to él maxirnllnl percentage \'ariation of ±0.02%. This variation is smalL

ensuring the validity of the computed trajectories.

For the trajectory of coupled motion. elliptic orbit. 0(0) = -((0) = :30°. 0'(0) =

:'(0) = O. the Lyapuno\' exponent was recomputed over 200 orbits using a stricter

tolerance..) x 1O-ID. and also by another numerical integrator altogether. :\s the

alternate integrator the I:\[SL subroutine DIVPBS was used. DIVPBS employs the

algorithm of Burlisch and Stoer. which uses rational function extrapolation and is

based on the midpoint rllle in a slightly modified form. Like DIVPRK the routine is

a variable step size ~chcme which attempts to keep the global error proportional to a

user-specified tolerance...\bsolute error control and tolerance of.5 x 10-.'5 was selected

as done originally wÎth f) I\·PRK.

In Figure :L 1~ 1 hl's<' LyaplIrlO\' cxponents are shown for companson with the

original calculatcd Lyapuno\' cxponent included in Figure :3.1:3. Discrepancy in the

values. which si~nify él wcakly chaatic orbit. is obsen'able only after 150 orbits and

remains small ta l he 200 orbits shawn. The nurnerical calculation can be cansidered

essentially indepcndcnt of the precision of the integrator and the integratar itself.

Although ather results of the elliptic orbit coupled motion case were not directly

verified in this way. t hey are assumed to be aIso \·alid.

Finally one notes the agreement obtained where direct comparisons could be made

with numerical results available in the literature. that is sorne Poincaré sections for
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the planar motion elliptic orbit case and the coupled motion circular orbit case.

62

For the solutions of this Chapter. the integrator subroutine was called 150 limes

per orbit. that is p\'pry ~() = :b. /150 ::::: 0.042 radian or :2.-1°.

Ta plot the time histories. the angular dis placement is taken at every ~f) = 271/75.

Likewise angular displaccment and \'docity is taken at e\'ery ~O = ~;r /7,1 ta construct

the phase plane plots.

To construct t hp pow~r spect ra. the time history sampled at every ~O = 271/75

15 used. :\ n = lO96 point fast Fourier transform (FFT) is taken. using the FFT

subroutine pro\'ided 1[1 ~I.-\TL:\B. The power spectral density is found as the square

of the absolu te "alue of the complex transform. normalized by the number of data

points. ft is conn~n('d to a decibel scale. and the first n/:2 points are graphed against

the nondimensionaI fn'qllcncy vcctor ....·1+1 = 2,';ri/(rz~O). i = O. 1. .... n/'!. - 1..

Concerning t Iw Poincaré sections. for the elliptic orbit planar and coupled motion

cases. angular dispacement( s) and \'elocity( -ies) are sampled at perigee every orbit as

discussed. For the circular orbit cou pied motion case. where pitch and pitch rate are

ta be sarnpled Whl'Il -. = 0 and -/ > 0 as discussed. the former condition is effected

by testing for il change of sign after every calI.

Details of the computation of the first Lyapuno\' exponent ~\ can be found in ).,[oon

(1987). Rasband i I~J90)' Lichtenberg and Lieberman (1992) and Tabor (1989).

To determine the length ratio d/do in Eq.(3.12). that is

(3.34 )

(

the \'ariationaI cquations can be Ilsed.

For the system

(3.35 )
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( the variational \'ector function ;; of trajectories in the neighbourhood of the reference

trajectory i- (t) is solved from

where

~ = [Al· Tl .

[A] = :~ (x"(t))

(3.36)

(3.37)

is the Jacobian mat rix function for the vector field j evaluated along the trajectory

Eqs.(:3.:J;J) and 1 :L:i6) can be integrated simultaneously: the former salves for the

gi\'en trajectory .fi f 1. t he lat ter for the \'ariational vector function ij(t) along the

trajectory i"UI, One chooses for con\'enience lij(O)1 = 1. but the initial direction

is chosen arbitrarily 1 it will then likely have a component in the direction of most

rapid growth. associatcd with the first Lyapunov exponent. to \"'hich the solution Tl( t)

con\"erges), .\fte~r il f?;in'Il time inten'al t"+ 1 - t,: = 7". one takes

!r](T:lk)!

11](0:[4;)1
(3.38 )

Before heginnin~ 1he' r}pxt time inten'ai in Eq.(:3.:3-11 the distance is renormalized:

(3.39)

(

In this work the t rue anomaly 0 acts as the time variable. Renormalization was

carried out e\"f'ry 2:-:/1.1 :::: üA2 radians (15 limes per orbit).
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Figure 3.1: Phase Plane of Planar Constant Length Tethered System (Gravity Gra-

dient Pendulum) in a Circular Drbit
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Figure 3.2: PSD '8 of Motion of Pla.nar Constant Length Tether in a Circular Orbit

( with Initial Conditions as Shawn
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Figure 3.3: Poincaré Plots for Motion of a PIanu Constant Length Tethered System
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Figure 3.4: PSD of Motion of Planar Constant Length Tethered System in an Orbit

( of Eccentricity e = 0.1, with Initial Conditions 0(0) = 10°,0'(0) = 0
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Figure 3.5: Series of Poincaré Sections for Increasing Values of Hamiltonian Constant

CH (Severa! Initial Conditions at a Given CH), Constant Length Tethered System

in a Circular Orbit. Note Pmn in the figure is meant to identify the regular regions

associated with the periodic solution, not the periodic solution itself. Note Pmn has

n regular regions of which only one is labelled here.
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Figure 3.8: PSD's of Motion with Initial Conditions (a) 0(0) = 0, ,(0) = 10D
, 0'(0) =
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Figure :3.1 0: Lyapuno\· Exponents of ~Iotion with Initial Cop..ditions 0(Q) = -:(0) =

k. k as shown. 0'(01 = -.1, 0) = o. Platted Over 200 Orbits. Constant Length Tethered

System in a Circuiar Orbit
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Figure 3.11: Lyapunov Exponents of ~fotion with Initial Conditions 0(0) = -!(O) =

k. k as shawn. 0'(0) == -:'(O,! == O. Plotted Over 1000 Orbits. Constant Length Tethered

System in a Circular Orbit
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(

Figure 3.12: Sketch of Separation and Transverse Intersection of Stable and Un­

stable ylanifolds of Saddle Point of Poincaré Section of Integrable System Cnder

Integrability-Breaking Perturbation (figure from Tong and Rimrott. 1991a)
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Chapter 4

Deployment and Retrieval

4.1 Introduction

\Yhile the prp.\"iOllS chapter studied the nonlinear dynamics of the stationkeeping

phase. \\"here the' tt'ther length is constant. this chapter considers the deployment and

retrie\"al pha~es. \';here the tether length \"aries. \\ïth the assumption of tether mass

negligible compare'ci Ta ml and m2. the mass ratio ~ml (ml ~ t mr) lm m .. ~ appearing

in the e(~llations (jf motion Eqs. 1~"26)-j2"27) reduces to unity. and the equations of

motion ~ed ur.e !Cl

{o"cos- -.

:3 G sin 0 casa} = O. (·LI)

Il

(

1(' 2 G ') li Q : 1) ~:3 coS- QI sin -t cos": = O.
~ J

with the quantities F and G gi\'en by

F = 2E sin (J / (1 ~ ECOS f)). G = 1/(l ~ e cos (J) "

87

(·L2)
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( Note that deployment (positive f.') leads to positive damping terms in Eqs. (--1.1 )-(4.2)

and will tend ta stabilize the motion. while the opposite is true for retrieval (negative

e') .

Different cases governed by the above equations of motion. are considered in this

Chapter. Planar motion in a circular orbit is considered first. Pitch stability is

examined for varying exponential length rates. and for the uns table cases. compared

to an equivalent uniform length rate scheme.

Application of ~Ielnikov's :'vlethod to the case of planar motion in a sIightly eIlip­

tic orbit \\rith slow exponential deployment. to determine the conditions for chaotic

motion. Îs carried out next.

Finally. the coupled rnotion of retrie\'al In a circular orbit under a length rate

control la\v is examined. The limit cycle response characteristics are predicted from

approximate analytical methods and compared with those obtained from numerical

simulation.

4.2 Planar Motion in a Circular Orbit

[1' the motion Îs confined ta the orbital plane li.e.. -r = 0) and the orbit is circular

(i.e.. ( = 0). the gon>rning equation. Eq. (-L1). becomes

0:" + '2([' If) n' +:J sin Q cos Ct = -'2(['Il) . (·L3 )

As the damping term is proportional to f.'1fl.. deployment causes stabilizing positi\"e

damping. rctrieval destabilizing negative damping. Equilibrium points (n" = Q' = 0)

satisfy

From the above equation. it is seen that there exist fixed equilibrium points only
(

(3/2) sin 2Qe + 'l( e' Il) = 0 . (4.4:)
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(

in the case where ['1 { = (" = constant. that is when the deployment/retrieval is ex­

ponential. f == fI CXP( cO). Here il is the initial length and c == {' / ( is a dimensionless

constant governing t he rate of deployment/ retrieval. The equation of motion is au­

tonomous. The first tt'rm of Eq. (.1.-1) represents the effect of gravity and centrifugaI

gradient forces \,,-hich work to restore the configuration to the local vertical and the

second term the dfeet of Coriolis forces induced by the deployment/retrieval. The

resulting equilibriunl po~ition of the subsatellite is ahead of the orbiter for downward

deployment and bchind for upward deployment. and the opposite is true for retrieval.

)Iote that if the lengt h change rate is too large. qcl! > :1/-1:. equilibrium points do not

exist. since Il sin ~o. rnu~t he less than or equal to unity.

The equilibriuII1 ilnE;les o .. are given by

0e = (r/~)sin-I(-·lcj:3) = \Tlir/2) +(_1)" (lj2)arcsin(-~cj:3)~

n integer. From liTlt'arized analysis about these equilibrium points, one can find that

the singular points cHl' saddle points if n is odd and are uns table for bath deployment

and retrieval: for l'\"{'n Tl thcy are foci for 0 < Ileli < 0, ï -1. changing ta nodes for

O.ï-1 < Ilell < n.7:). and stable for deployrncnt r > O. unstable for retrieval c < O.

Figure ·L l plots the fixed points against c. showing stability changes with c. The

locus of fixed point:- llTldcrgops bifurcations at lld! = :~j-L for 0,. = p-r. + ilj.'f: at

c = -:Jj-l and for n. = pil - ~/-l at c = :3/-1, and al c == 0 for o~ = pr.. p integer.

.-\t !IcI! == :J/-l the sadd le points and nodes coalesce into saddle-nodes. with no fixed

points existing for ::('1i > :3/-l: al c = 0 centres separate the stable and unstable foei.

Loeal bifurcation thcory (see \Viggins (1990) for example) predicts bifurcations al

these fixed points, t he former case having a single zero eigenyalue \vith the other

cigenvalue ha\'ing a nonzero rcal part. while the latter has a pure iUlaginary pair of

eigen\'alues.
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(

(

vVhen Ilcll > :l!-L there is no fixed point. The length rate is 50 large that the

Coriolis forces o\"ercome the gravity and centrifugaI force gradient. \Vhile the retrieval

dynamics are always unstable. this explains why for deployment too the dynarnics

become unstable for 11 cil ;:: :3/4. which has been observed in previous work (Baker et

al., 1976). FiguresL:! and 4.3 show the behaviour of phase plane trajectories and

corresponding time histories. nurnerically obtained. for increasing the deployment

constant c. Xot~ rhe movement of the position of the equilibrium with increasing c.

the change of fonis to node at c = 0.7·1. and finally the change ta Ilnstable motion

for c > :3!-L Figure 1.-1 is the phase plane for c = :l/8. showing the saddie points.

stable [oci and separat rices. Figure .L,j is rhe phase plane for c = 1: the saddles

and foci ha\'c coalesccd and disappeared. and no equilibrium exists. This figure

is particularly intcresting as it shows ho\\" instability occurs in deployment. Pitch

grows unboundcd in the ncgati \'e direction along what appears to be the collapsed

separatrices rcrnaining from the saddle-node. with bounded pitch rate. Fleurisson

et al. (199:l) show «"orresponding phase planes for retriera! where the pitch angle

and pitch rate g;row ilway frorn these 'collapsed separatrices' either in the positive or

negatin' rlircct ion~ dt'f}ending on the initial conditions. Thus not only for c < 0 but

also for c > o. ï.1. the cxponential scheme leads to instability.

Ir the dcployment/retricval is uniform. {' = constant = hire ! and r = C + b{refO~

where b is il. dimcnsionlcss Icngth rate constant and {rej is a rcference tether length.

usually taken as cither the fully deployed or retrie\"ed final Iength (J. \'ow the

equation of motion is non-autonomous and strictly speaking~ there is no equilib­

rium point: howc\"cr. one can define an instantaneous equilibrium angle GeU}) =

(1/2) sin- I
[( -4bj:3)(({t/fre!) + bEn-I]. During deployment decaying oscillations oc­

cur around a gradually reducing equilibrium angIe~ while during retrieval growing



CHAPTER 4. DEPLOYA1E1VT A1VD RETRIEv:-\.L 91

( oscillations occur around an increasing equilibriurn angle. Sorne numerical simula­

t ions \Vere carried out to make a comparison between the exponentiaI and uniform

schemes for the uflstable values of the exponential constant c. such that the initial

and final lengths as weil as the time ta complete the length change are identical in

both schemes. Figure ·1.6 (a)-(c) presents the phase plane plots and time histories for

a series of nunlcrical Integrations taken for c == 0.8 with fi/e! ==L/100; 1/1000; and

1/ l 0.000 from a gin"n set of initial conditions. The equivalent uniform case proved

ta be preferable-- wit ft t he motion bounded. as opposed to the exponential case. Fig­

ure ·1.7 presents t h(' phase plane plot and time history for c = -0.1. retrievaI case.

with Clf! =10 from a gi\'en set of initial conditions: the growth in motion is much

sIower in the equi\·alent uniform case.

4.3 Planar Motion in a Slightly Elliptic Orbit with

Slow Exponential Deployment - Solution by

Melnikov's Method

The equation of mot ion for planar motion in an elliptic orbit is. from Eqs. (-1. 1)­

(-1.2) with i = -,o' == o.

with

nff + ['2(t'lf) - F](o' Tl) +:J (; sin Q cos 0 = o.

F == ~e si Tl 0/( l + ECOS ()). G = 1/(1 + e cos IFi .

(4.5 )

(
Consider C'xponcntial dcployment. i.e.. [' / { == c > O. [n an eccentric orbi t the

systen1 i5 nonautonomous. hence has three dimensions. and chaos is possible.
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Now consider a small eccentricity e = O( E). Also assume that the exponential

deployment is slow. that is c is smalI. i.e.. c = ce~ where ê = 0(1).

Then Eq. (-1..1) becomes. to O(E)

ail + [2ee - 2esin8](a' -:- 1) + (:J/2)(1 - F.cos8)sin2a = O. (4.6)

Rewriting~

a"+:J/2 sin:!a = f[(-2e-i-2sinO)(n'+ 1) + (:3/2)cosOsin2a] . (4.7)

This system. Ci pert urbation of an integrable system with a saddle point and

separatrix orbita ("an Dt' t rcated hy '\Ielniko\"s .\Iethod. which was introduced and

applied to a const ant t C't her length system in Section :3.:3.1.:L

The Ieft hand side can he written as that of the normalized pendulum equation

by Tnaking the substitutions 0 = 2n and T = vr:30. and then after sorne algebra.

where constants ...: = 1; fi. and a = 2/ fi.

Conlparin~ with Eqs. 1:3.16)-(:3.17). one has t = ~. q = 0 and p

91 = 0 and !Il. = <"os ...... ~ sin 0 i"" a( -c ~ sin ..•.:ïH ~~ ~ (l).

(4.8)

L' - do/dT.

The undamp(\d. unforccd problenl (f~ = 0) is the same as for the system analyzed

in Section :LL 1.:L with IIamiltonian

H = tl/2) t'2 + (1 - cos 0) . (4.9)

Thus

aH
- - t'av - .

aH .
- = 51no.
8f1>

(4.10 )

(
and

Cl.11)
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As in Section :L:J.1.:1. the unperturbed separatrix orbit is given by

d(f)-
l.'. = dT =:2 sech ï

Xow

== .) tan (o· /2 )
- 1 + tan2 (0- /2)

:2 tanh ï sech ï .

where Eg. ( ..1.12) and t rig;onometric and hyperbolic identities have been used.

The :vlelniko\· fllnction from Eg. (:1.18) thus becomes

.\!( ïO) =1 [--~'G cos .:...:( ï ~ ïO) tanh ï sech 2 ï dï

[ j~~ 1+~
~:!.a -Il (' -.X) :iech ïdT -:2ë -'Xl sech 2 ï dï

j ....)Ç 1+1)0 ]
-:! _.-ç"in ...... ( ï + ïO) sech "2 ïdï + a --x; sin .:...:( ï + ïo) sech ,dï

The integral

j
+.)C

_:'Ç cos ....·ï tanh ï sech :2 ;-dï == 0

since the intcgrand i~ odd. The integral

J
~'X: • ');:- ') :T....,:

sm loJoJ', tanh ï sech ~ïdï = - ....... - csch - .
-'''Ç 2:!

93

(4.12 )

(4.13 )

(4.14)

(·l.15)

(4.16 )

(4.17 )

evaluatcd by the !llcthod of rcsidues. The fol1owing integrals can be easily evaluated

J
+:'O

sech ïdï = ;;- .
-')0

J
+OO

sech 2 ï dï == :2 .
-'Xl

(4.18 )

(4.19)

Then. alon~ wi th the intcgrals evaluated in Eqs. (;3.27)-( :3.:30). the ~[elnikov func-

tion of the system i~ ('\·aluated to be

( .l[( ïO) = 2;;- [( _1.4..'2 + 2wa) csch ;r~' + a2 sech ;:-....,.] sin ~TO - 2ë a[a .. + -1]
. :2:2 (4.20 )
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Transverse intersection and chaotic separatrix motion occurs if .\;f( io) changes sign

at sorne '0; this occurs if ë < ër.r ' where ë,::,:" is the critical value of c

Ccr = iT [( _(.4".2 + 2....:a) csch iTW + a 2 sech ~]
a(a7r+-l) 2 2

Inserting the \"alucs of a and ..•.:. one obtains

:J1i [ J37r·1 V31r]
("oT = csch -- ~ :- sech ---1(iT+2V3) 6.J 6

Therefore chaos occurs if c < CeT where

:hr [ J3ii -1 V31i]
(".~ = .. vI3 csch -- + :- sech -.~ €.

-1( ;r T l 3) 6·3 6

or alternati\"C'ly. chaos occurs if (' > L:r where

(4.21 )

(4.22)

(4.23 )

(·L24 )
(:cr = :Jii ( csch -1::- + t sech '1::-)

The abon~ r('suIt hotds for small eccentricity and exponential deployment constant.

The last t'quation [(,duces for C = 0 ta the familiar criterion for chaos in the (planar

motion) stationkt'{'pin~ case. t > 0: the ~[elniko\" analysis of Tong and Rirnrott

(199Ia) applicable 10 the stationkeeping case. is a special case of the analysis here.

Exponcntial dcpluyrncnt c introduces dissipation inta the system. such that chaotic

mot ion only app('ars for sufficiently large eccentricity e.

4.4 Coupled Motion of Retrieval U nder a Length

Rate Control Law, in a Circular Orbit

If both out of plane as weIl as in plane motions are considered. the equations of

motion in the \'ariable length case can be obtained from Eqs. (2.26) and (2.2ï) for a

(
circular orbit and for negligible tcther masse as follows:

Q" + (0' + l)[-2-/ tan,,:. ~ :2(e'/{)] +:J sina cos a = O. (4.25 )
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( (4.26 )

This system or equations has equilibrium points G .. = (1/2) sin-l[(-~/3)(e/t)J.

"te = n~/2. From the roll equation. it may be noted that the roll motion is negatively

damped and tln~table during retrie\·aI. The same can be seen from the pitch equation

for small roll mol ion. This is illustrated by the phase planes and time histories of

Figure -LS.

Pitch and roll mut ion~ can be confined to limit cycles by using a Iength change

control la", in\'oh'in!! linear feedback of pitch rate and quadratic feedhack of rail rate

i \fonsni 1: 199~ 1. \Iunshi et al. (1991)):

-, r 1 /' , r. • rl. ~ { 0
1 = cl - \ ~ a - J\ -. AI • _. c <

The system of l'qllations remains autonomous.

(4.27)

In the folIüw!rl~. dw characteristics of the pitch and roll limit cycle response (re-

spectin> position. él.rnplit uoe. frequency and the phase difference) are determined using

approximate anaiyt ical rnet hods. For specifie sets of system parameters. predicted

\'aIues arc compar('d with thc \'alues of the aetual response as obtained from numerical

integration uf .Ll· ('quations of motion. In thc prc\'Îous work (\Ionshi. 1992. \Ion-

shi et a.l.. l ~)!n !. r-pproximate analyt icaI met hods were appIied to pure in-plane and

out-of-plane mutions unly. and study of the eoupled limit cycle motion was mainly

limited tü nurncrical ~irllulation.

For small nlOt ions 1 (}. A: and their deri\'ati\'es of or ()). t he system of equations

Eqs. 1-i.2.j) -i·l.~6,. with length changeeontrollaw Eq. (-L2ïL can be written to 0((3)

as:

( (4.29 )
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:\ote that the linearized equations.

" .) (r. ~ 1)"') )Q - _C 1\ (2 - Q ~ .}Q = -:"c.

96

(4.30 )

(4.31 )

predict that pitch executes damped (if [\(2 > 1) oscillations approaching Qe = -2c/3,

and roll executes negati\'eIy damped (unstable} oscillations about .....e = O. The lirrùt

cycles occur when nonlinearities are considered .

.-\n approximation of the roll limit cycle motion can be made by considering a

pure roll motion. Iinear in roil except for the control term.

" 1.) rI' f" T,!' " 0-.' - -~ _c. - ~ \ ... -.' . ~ "'"t "r' = .

or

If., r.)(' l " t3 )1-, -- "'"t -, = - c, _ ", - \ ~ -, .
, '1 ~, • 1

(4.32)

(-1.33)

and assuming smali c. For small c the method of \"ariation of parameters can be

applied to the abo\'p equation. This was carried out by ~Ionshi (1992): according to

this method. il. limit cyrle oscillation of the foilowing farm occurs:

-. = b COS( ....:7'" 1 •

where frequency _. and amplit ude b are

-' =~.

b "/( f' ,'1/2= ~l 3 \..,11

(-t.3-t )

(-t.35)

(-t.36 )

.-\n approximation of the pitch limit cycle motion can be made by considering the

pitch equation. linearized in terms of pitch but retaining the O( (2) roll forcing terms.

(
a" - 2c( l\a - l )Q' ~ :3Q = ~2cl\.., -.,"2 +2-/-, -:2c. (-1.3i)
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( and assuming a roillimit cycie motion A( = bcos u.:T. Substituting Ai = bcos WT and its

derivative into the ri!?;ht hand side of Eq. (-1.37) and expanding using trigonometric

identities. Eq. (t .;~7" becomes

or. rewriting the forcing t crms.

where

(-lAO)

This Iinear. dampt'd i 1\') > 1). harmonically forced equation has the steady state

solution

-:2c ., 1 ) 1 c21\;~·!. +- 1 0

Q = --(1 - f\-.h~_·-/:2) -- b-~'\I 1 -1. ..), .. cosl:2,.....;' +- (3 -- c')).
:3 ~ (:3 -- -! ...... -)- - 16......·2c-(A a -- ll 2 ' '

(4.41)

where

-1 (_.tc~...:ll\·.} - 1)),. = tan .
- :3 - -!u... 2

(-1.42 )

Thus for roll mût iLJn t'X('ctH ing a linlÎt cycle mot ion A: = b c"'os .....:7'". the approximate

pitch equation of mot ion predicts a steady state limit cycie nl0tion of the form Q =

Qo + a cos(:L.;7'" - cD 1 1 f\O 1 :> 1J. where 00 . a and <t> are known explicitly. If the phase

angle betwœn t IIC' 1\':0 Tllotions i5 transferred ta the roll expression. one obtains

A: = bcos( ......·, + o)~ Q = Qo + acos:2......·,.

with 0 = -cp1'2. Then

-2c .).)
Qo - -( 1 - 1\ b- ......:-j·»)--:3 ~ -

(4A3 )

(4A-l)

(4.45 )
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l r (--!w.: ([{ - 1)) ( -1),]
o=(c.-.n/2==~ltan-1 . ~.2 -tan- 1

--~-.
- .3 - -11./01 cA ..._

98

(4.46 )

~Qte t hat aU Î::; The (in'rage \'alue of the piteh oscillations. and expression Eq. (-1.44)

will also result if Eq. I·L:Jï) is a\'eraged Q\'er a period of pitch. assuming the respective

harmonie exprc~sions for pitch ancl roll found above. The roll motion leads to an

avera~e \'alue of ritch f}-() Icss than O:~ = -2c/3.

~ow. by asstlmin~ ppriociic solutions of the form Eq. (-1.-!3)

-, = h ros( ...,'7" ~ 0 J. 0 == Of) ~ fl cos 2....:7" .

a."i su~gestec1 by r tw édHJ\'P analyses. and substitutin~ into the Qi' f.1.1 pquations of

motion Eq. ( l.:2~ 1- 1 l.:!~) 1. the method of harmonie balance 1S used to obtain more

aeeurate expre~~i()n~ dererminin~ ..,.:. h. 00. a. and O, Details of the method of harmonie

balance. which i:-i doscly rclated to the Galerkin method. can be found in any referenee

on approximatf' d1édytical rncthods of nanlinear analysi5: Xayfeh and :\Iook (1!Jï9j is

an examplp.

Proeepdin~. ! he pitch and roI! approximations Eqs. 1 L-l:31 and their deri\'ati\'es are

~llbst il llted intü Eq:·.. : l.:!~ H ·L~~J J. whieh are rhen expandeci by use of the appropriate

t rigonomet rie icit'n t i t ies in terms of sine and cosi ne ~armonies or" The pitch

(...

equat ion is composed of constant terms and c\"('n harmonies: t he roll equation 15

composcd of udd harmonies. The constant tcrms and ,;peond harmonics of the piteh

cquation. and rtw first harmonies of the roll equation are collecred. Based on the

assumptian of pitch and roll. Eq. (·1.·13). the method of harmonie balance requires that

the constant tf'rrrl and coefficients of those harmonics be equated ta zero (to balance

the zero values on the right hand sicles of the equations!. .~\ higher aecuracy solution

woulcl have been found if hi~her harmonies had been included in the assumption. in

which case the coefficients of t.hese harmonies are also equated to zero .
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In this way. the fol1owing five equations in the five unknowns w. b~ Qo, a~ and d>~

are obtained:

Constant (fronl pitch equation):

.) ,} .) 3 '3 2 1 ~ :JI" }' 2b2_c + '){)o - -Qo - . Qoa - -tC~ a \() - c \ ....w

COS'2w'ï (from pitch equation):

1 • .) .) 3 3 }' ')b'J ) , b') - )
.......·-ll - iJno-a + ·\Cl - -a + c \ ... ~.- - COs:'O + \"J.,,' - sm:'o = 0

'2

sin2.....:ï (from pitch t'quationl:

COS~'J (from roll t'quation):

sin ......'ï 1 fronl roll t1ql1ationl:

. • • 'l 2 '))) :3 l
- i .-"J ·f ,- ~ 1 ')6 .) - + '3 + -) . - - -)~IIl 01 -.- - _C \cr ...... a , -t - - - ')00 • ooa _.....,. a --a

2

:3 f' ')b" .,. .). .} - , -)
i lOS o(_C ......· - -c \ .........: î" _ ......·al = 0_2 .

(4.47)

(4.48 )

(4.49)

(4.50 )

(-l.51)

(

This is a system of nonlincar algebraic equations which \'lil! ha\'e multiple solutions.

It is third arder in Go. Q. and b: w' appears up to the third power. .-\n analytical

solution. which would best be attempted with the aid of computer algebra. \,..as not

attemptcd.

Considcrat ion up to t he second arder in DO, a. and b would simplify the first three

equations. and correspond to ha\'ing considered the pitch equation only to V( (;2).
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1
The first equation (i.e.. Eq. (4.-!ïL from the constant terms of the pitch equation)

would thcn irnmediately yield a solution for 00 explicitly. as a function of a~ band w:

.)
-_c, f' b2 2/.) ')}' 2 2)

00 = T( 1 - \... w' - - - \ C%a -.J.,,' • (4.52)

(

This expression for Go. the average value of pitch. also results by averaging the O( f:2)

equation over a period of pitch. assuming the respective harmonic expressions for pitch

and roll. as shown b.y ~Ionshi (1992). It shows that 00 is reduced from 0e = -2c/3 by

the presence of steady-state oscillations of bath pitch and roll: this is a more accurate

approximation of Qo than obtained previously. Eq. (·1A-l). where no O( t
2 ) pitch terrns

were considered.

Eq. (·1..j2) from the first equation (from pitch) would reduce the second order

system of equations to four unknowns ..i.:. b. a. and o. Further analytical solution

remains complex and was not carried out in this work.

The nonlinear system of five equations Eqs. (-1.-17)-( -L51) in the five unknowns U.J.

b. 0'0. a. and o. spcond or t hird (as they are shawn) order in Qo~ a and b can be solved

numerically. gi\'cn a particular set of system parameters c.I\e>.I\o-.. where an estimate

of the desircd ~olution is pro\Oided. Such numerical solutions were obtained here using

the 'fsolve' :\I-fîlc function of ~I:\TL..-\B and arc given presently.

Xote t hat Eqs. (-L:rj)- (-l.:36 L (-1.-1-1)- (-l .-16). from the approximate salut ions pre-

sented earlicr. or. preferably. Eqs. (-L3.j)- (-1.:36). (.1.-1.5)- (-1.46). along wi th Eq. (-1.52).

together providc an explicit 'first approximation' or estimate of the five unknowns for

a gin~n set of parameters.

Figure ·1.9 and Figure -LlO show the pitch and roll phase planes and time histories

from numerical intcgration of the equations of motion for c = -0.3. I{ C% = 2. and

I{.., = ~-L and for c = -0.5. 1\0 = 1. and I{--. = 27 respecti\·ely. First considering

the former. initially when angles are small~ motion fo11ows the linearized equations of
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(

(-

motion. that is. pitch rnotion exhibits damped oscillations toward Q~ = -2c/3 = 11.50

and roll negati\"{~ly darnped oscillations about -:~ = O. \Vhen the roll motion reaches its

limit cycle. it excites the pitch limit cycle as welle Considering the second case~ where

f{Q = 1. the initial pitch oscillations about Q~ = 190 show little damping. Damping is

provided by higher order tcrms in the pitch equation of motion and ensures that when

the roll motion readH's il S limit cycle. pitch assumes the steady state Iimit cycle also.

The roH and pitch oscillations can be formulated as Eq. (·L·13) of the approximate

solutions

-, = hrOs( ....."ï + 0). Q = 0'0 + a cos 2.....·ï .

Tables ·1.1 anu L:! cnrnpare. for the cases c = -0.3. [\0 = 2. f{ .... = 9 and

r. = -O ..J. A',; = 1. /\'-. = :2ï rcspecti\"ely~ the actual values of ....... h. Qo. a and 0 as

obtained [ronl rlllTIH'rical simulation. with three approximations. The 'first approxi-

mation' refers to t h(' t'xplicit expressions Eqs. (·1.3.) )-( -t.36). CIA5 )-( ·L-!6). along with

Eq. (--!,.j2). Thes!' \\,('re deri\'cd using a combination of methods applied to lower or-

der approximations of the equations of motion. The nonlinear system of equations

Eqs. liAï)-/I.."Jlj for the t\\·o cases second and third order in 00. a and b respectively

was soh"ed rIllTllericaily. llsing the first approximation values as cslimates. The sys-

tcm of equation~ \\·é1.S d{'ri\"(~d using the method of harmonie balance applied to higher

order approxinlations of the equations of motion. These predictcd the values more ac-

curately as rnight he expectcd. although sometimes the second order solution seemed

to be closer to thc numerical integration results. as compared to the third order so-

lut ion ,perhaps error was introduced when extracting the \"alues of the numerical

integration solutions). Howe\·er. the "'"alues obtained from the explicit expressions.

whieh did not requirc numerical solution. are indeed an excellent first approximation.

at least for these cases where motions are sufficiently small.



(

(

CHA,PTER 4. DEPLOYlvIEJ.VT :·\..VD RETRIEVAL

;1 First :\pproximation ~umerical Solution of ~umerical Integration
1

il
Eqs. (·1.:3.5 )-( ·1.:36). Eqs. (4.47)-(4.51) ta of Equations of ~[otioni

1

(-L-Vi )-(L-!6). "·L12) 2nd arder :Jrd arder1

:1
'i
,1

~.OO 1.95 L96 1.95'1 ;.;.; ,
il

1
1 b Il.0 0 1~.2 0 12.2 0 12..1 0:!

,1

1 1
: a I.S 0 2.2 0 2.1 0 2.1 0

1

~ 1 1

1

:: ao 1

:L6 0 2.2 0 1 2.5 0

1

2.:3 0

1

'i
1'1 KO 0 i9° -- 0 -- 0

il 0
1

,.") /.1

Table 1.1: C'omparison for case c = -0.3. /\Q = 2. /{.., = 9

"

1 First Approximation .\" umerical Solut ion of .\"umerical Integration,

Eqs. 1.1.:37»- (1.:36 L Eqs. (-1. -1 ï )-(-! ..51 ) to of Equations of ),Iotion
i 1

1
: 1
1 (·L·r') )-j ·L-H>). (1..:)2) 2nd order

1
:3rd order 1

i

:

1
i,i """. ! ~.OO 1.94 1 1.96 1.9:3

1 1

1 b 1
6A 0 i.a 0

1 6 - 0 7.:3 0.1,

1 a
1

~.9 0 :3.6 0 :3.4 0 :3A 0

1

ii Qo
1

6.0 0 -1.2 0 -1.4 0 :3.8 0

il 0 89 0 89 0 82 0 76 0
'1l,

Table -1.2: Comparison for case c = -0.5. /\"0 = 1. /\--. = 27

102
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ylonshi (1992) and :\[onshi et al. (L991) introduced a second reel rate law involv­

ing absolute \'alue. rather than quadratic. out-of-plane feedback. Future work could

similarly apply approximate analytical methods ta predict the limit cycle response

characteristics llsine; this control law.
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Chapter 5

Conelusions

5.1 Summary of the Findings

This thesis has t'xamined the three-dimensionallibrational dynarnics of two-body

tethered satellite systems. rnainly through a modern nonlinear dynamics approach.

The gO\'ernin~ pitch and roll equations of motion are highly nonlinear. Hence.

both numerical and approximate analytieal methods have been used to analyze these

cquations. Primarily. numerical tools of nonlinear dynamies analysis have been used:

phasf' plane plots. lime histories. Poincaré sections. PSO's and Lyapunov exponents

were constructe<1 from numerieal integration of the equations of motion. The analyt­

ical method of ~[elniko\·. as weIl as classical approximate methods of solution~ have

also been applied.

The stationkeeping phase as weIl as the deployment and retrieval phases have been

studied. The dynamical model eonsiders a system of two point masses conneeted by

a rigid tether. in a Keplerian orbit. and ignores aerodynamic effeets. The tether is

eonsidered to have negligible nlass in the \'ariable length analyses.

'\lotion in the stationkeeping phase, in whieh the tethered system is just a gravity

113
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gradient pendulum. was analyzed first considering only pitch dynamics. and then

considering both pitch and roll degrees of freedom. for both the circular and elliptic

orbit cases.

ln the stationke('ping phase the behaviour can be understood from Hamiltonian

nonlinear dynanlics. In a near-integrable Hamiltonian system the phase space and

surface of section I~ made up of regular (periociic or quasi-periodic) and chaotic

regions of motion. The chaotic layers exist near the separatrices associated \Vith the

resonances of motion ilnd grow with increasing perturbation away from integrability.

ln the case of planar rnotion and a circular orbit. the system is intcgrable and

the motion is (,Tltircly rcgular. It \"'as shown that periodic libration and tumbling

solutions exist. :-;eparated by separatrices in the phase plane.

For planar Tnotion. nonzcro eccentricity case. Poincaré sections showed that a

chaotic tumbling r('~ion appears to grow from the separatrices of the circular orbit

case. this rcgion ~ro\\"ing \Vith increasing cccentricity. For smaller initial conditions.

the solutions arc lhost.' of regular libration,

In the case of cou pied [notion. for a circular orbite the region of possible motion

III the phase ~pac(' ilnd surface of section is dcpendcnt on the Harniltonian constant

CH' For a gi\'cn ('fi. the nature of motion depends on the mix of initial conditions.

Surfaces of section ~howcd that as CfI was increased. the region of possible motion

changed from rnainly regular libration. to regular and chaotic libration. to regular

libration along wit h regular and chaotic tumbling. For trajectories starting from rest

with equivalent initial pitch and roll angles. a series of Poincaré sections. PSD~s. and

Lyapuno\' cxponents were prescnted to document a change from regular to chaotic

motion. and subsequent increase in the degree of chaotic motion. as the angle is

increased.
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[f roll is assumed ta be small and harmonic. the system can be considered as a

perturbation of the integrable. planar system. ~Ielnikov's method applied to this

idealized version of the coupled system. showed that such a system will always have

chaotic motion rlf'ar the separatrix.

For the coupic'd rnotion. nonzero eccentricity case. the numerical techniques were

applied ta examine 1 he nature of motion of libration trajectories starting from rest

with equivalent initial pitch and roll angles. for an orbit of a specified eccentricity.

Librations chang;e frorn rpgular motion ta weakly chaotic motion as the initial angles

are increased. The phenomenon of .-\rnold diffusion. predicted in this system by

theory. was not obscr\"(~d for the chaotic trajectories and time frame studied.

Eccentricit y a.nd out-of-plane motion reduced the size of the obser\"ed region of

regular libration solutions: they introduce additional resonances and chaotic solutions

to the phase spac('.

Chaotic libration. obscrvcd in the coupled motion cases. limits the regular libration

region to a r('~ion srnaIIcr than just the libration regian of non-tumbling motion.

Thercforc in t('rms uf determining the desirable region of operation of the system. it

is important ta considcr the nature of motion ~ regular or chaotic motion).

The \ëlriablc ll'Il~th case (deployment and retrie\"al) was st udied next. Planar

motion in a cirel1!ar orbit was nrst considered. For an exponential length rate. linear

analysis abot! t the fixcd points and phase planes showed that the system is stable

when stable [oei or nodes exist: deployment is stable only for exponentiallength rate

constant 0 < c < :3/-1. while retrieval is unstable for aIl values of length rate c < 00

For the unstable \Oalues of c. the exponential length rate scheme was compared to an

equivalent uniform lcngth rate scheme. where a given length change is completed in

an equal amount of time in bath schemes. using lime histories and phase planes. The
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uniform case remained stable for c 2: :3(1 and showed slower growth III motion for

c < O. and Îs thus preferable rcgarding motion growth.

Application of :\lelnikov's method to the planar motion of slow exponential de­

ployment in a slightly elliptic orbit. showed that chaotic separatrix motion occurs only

for eccentricity greatcr than a deterrnined critical value ecr , which i5 proportional to

c: deployment introduces dissipation into the system which has a regularizing effect.

Finally~ the thesis examined the coupled motion of retrieval in a circular orbit

under a given length rate control law. involving linear feedback of pitch rate and

quadratic feedhack of roll rate, The pitch and rolilimit cycle response characteristics

\Vere deterrnincd hy approximate analyticaI methods of solution: for specified system

parameters the \"alues predicted compared weIl with those of the actual response as

obtained from numerical simulation.

In summary. the t!H'sis shows that the tethered satellite systems ha\'e very rich dy­

namical beha\'iour due to the nonlinearity of the governing equations. understanding

of which may help in mission design and planning,

5.2 Recommendations for Future Work

The material presented in this work covcred only a part of the nonlinear dynamics

of tethercd satpllitc systems. Sorne rccommcndations for future work arc given belo\,,' .

• Extend the Tlumerical analysis of the regular libration reglon for the station­

keeping. coupled motion. elliptic orbit case ta more general initial conditions

and eccentricitics .

• Investigatc numerically t he occurrence of chaos in the exponential deployment.

planar nlotion. elliptic orbit case.
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• Study the phase space of the coupled motion of controlled retrieval further.

• Apply approximatc analytical methods ta predict the limit cycle response char­

acteristics for the retrievaI length rate control law involving absolute value~

rather than qlladratic. out-of-plane feedhack.

• The present work i~nored the elastic vibrations of the tether. [nvestigate the

nonlinear dynanlics for the case of a flexible tether.

• [nvestigate the nonlinear dynarrucs of multi-body tethered satellite systems.

• Carry out experinlcntal or flight \"erification of the dynamical behaviour pre­

dicted in the thesis.
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