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ABSTRACT

This thesis describes the evolution of Trellis Coded Modulaton(TCM) technique
and then developes the Analytically Described Trellis Codes with Partially Overlapped
Signal Constellation for AWGN channels. This development is shown to obtain a
performance gain over the TCM with conventional signal constellation. The new signal
constellation is first introduced. A few examples (for one-, two-, and high-dimensional
signal sets) are then given to show the performance gain due to the overlap of signal

constellation. Bit error probability analysis is carried out for these examples.




SOMMAIRE

Cette theése décrit d’abord 1’évolution de la technique de Modulation de Codage en
Treillis et puis développe les Codages en Treillis Décrits Analytiquement en utilisant
une constellation de signaux partiellement superposés pour des canaux sous 'influence
de bruit gaussien uniforme. Ce développement est démontré d’obtenir des gains en
performance par rapport a la Modulaton de Codage en Treillis avec constelliation
conventionnelle des signaux. Premiérement, la nouvelle constellation des signaux sera
introduite. En suite, nous présenterons quelque exemples (pour des sets de signaux en
un-, deux-, et haute-dimension) démontrant 1’accroissement en performance di a la
superposition de constellation des signaux. L’analyse de probabilité d’erreur par unité

transmise("bit") sera exécutée sur les exemples présentés.
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Chapter 1 Introduction

Ungerboeck has developed Trellis Coded Modulation (TCM) as a combined
coding and modulation technique for digital band-limited channels The main attraction
of TCM is that it allows the achievement of significant coding gans over conventional
uncoded multilevel modulation without compromusing bandwidth efficiency

In the past, coding and modulation were treated as separate operations with
regard to overall system design. In particular, most earlier works on coded digial
communication systems independently optimized: 1) conventional (block o
convolutional) coding with maximized minimum Hamming distance, and 2)
conventional modulation with maximally separated signals, in an Addiuve Whie
Gaussian Noise (AWGN) environment.

Massey [1] was the first person to show that consicerable performini
improvement could be obtained by treating coding and modulation as a single entity
Following this line of thinking, the first TCM schemes were proposed in 1976 [2] by
Ungerboeck and Csajka. Then a more detailed publication [3] in 1982 was showi h,
1987 Ungerboeck described further in detail the features of TCM and design methord of
Trellis Coded Modulation schemes [4, 5].

Ungerboeck’s TCM seems to cover the range of possible coding gains (in the

3-6 dB range) with complexity of the order of what we might expect Can they ht
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further improved? It seems unlikely that further major improvements are possible. But,
the upper bound on the gain of trellis code was obtained in [6]. So they still can be
improved. Also within the spectrum of performance of already known schemes there
will likely be some further embellishments, that will reduce implementation
complexity or have other desirable properties, even in the application of TCM in the
channels other than the AWGN. Based on the Ungerboeck’s TCM many such works
have been done. Is this enough? The answer is: no. We still have a lot of works to do.
Since 1982 an explosion of research and actual implementations of TCM has taken
place [7-11]. Recently, Divsalar has introduced Trellis Coded Modulation into the
fading mobile satellite channels [12-14], then expanded the applications of TCM.

In this thesis, we will show that using constellations with partially overlapped
signal points, i. e., constellations with less than 2"*l.points, one can achieve a
considerable coding gain in comparison to the traditional 2"*!-point constellation. The
increase in coding gain is due to a reduction in transmitted signal energy as a result of
deleting some high power signals from the original 2™*!-point constellation and
replacing them with some of the low power signals.

In chapter 2, the principles and general structure of trellis-coded modulation
techniques will be outlined. The main significance of TCM is the mapping methad
called "mapping by set partitioning". Design criteria for TCM codes will be described
first. Then several important works which improve or modify the TCM technique will
be briefly reviewed.

Chapter 3 will introduce the new analytically described trellis codes with
partially overlapped constellation. The partially overlapped signal constellation will be
discussed in both of analytical and coset representations. Examples for one-, two- and

four-dimensional signal constellation will be given to describe the use of partially




overlapped constellations for analytically described TCM schemes. Further analysis of
new codes will also be discussed.
In chapter 4, the bit error probability performance of these new codes will be

analysed. Conclusions and suggestions for further modifications are given in chapter 5.



Al

priling

Chapter 2 Evolution of TCM Techniques

21 The General Structure and Principles of TCM

TCM schemes employ redundant nonbinary modulation in combination with a
finite-state encoder which governs the selection of modulation signals to generate
coded signal sequences. In the receiver, the noisy signals are decoded by a soft-decision
maximum-likelihood sequence decoder. The essential new concept of TCM that led to
the aforementioned gains was to use signal-set expansion to provide redundancy for
coding, and to design coding and signal-mapping functions jointly so as to maximize
directly the "free distance” (minimum Euclidean distance) between coded signal
sequences. This is because signal waveforms representing information sequences are
most impervious to noise-induced detection errors if they are significantly differeni
from each other. Mathematically, this translates into the requirement of signal
sequences with large distance in Euclidean signal space. This new concept allowed the
construction of modulation codes whose free distance significantly exceeded the.
minimum distance between uncoded modulation signals, at the same information rate,
bandwidth, and signal power.

Following the above arguments, one encoder structure is shown in Fig. 2.1.

Here, in order to improve error performance, m bits of data over a period T must be

x




transmitted in redundantly coded form by a set of 2™*! channel signals. We can easily
conclude this as expanding the binary data sequence by suitable convolutional encoding
with rate R=m/(m+1), and subsequent mapping of groups of m+1 bits into the larger set

of channel signals.

xnm Ynm

———»| binary ——
: convolutional . mapping .
—— 3| encoder ) —>
ol = M(Y,)

—1—> R =m/(m+1) |

Xy y.o

n

Fig. 2.1 Multlevel encoder structure.

If m bits are not fully encoded and only m’(m’'<m) bits are encoded, then another

general structure of TCM encoders/decoder is depicted in Fig. 2.2 [5].

According to this figure, TCM signals are generated as follows: When m bits
are transmitted per encoder/modulator operation, m’< m bits are expanded by i rate
m’/(m’+1) binary convolutional encoder into m’+1 coded bits. These bits are used to
select one of 2™*! subsets of a redundant 2™*!-ary signal set. The remaining m--m’
uncoded bits determine which of the 2™™ signals in this subset is to be transmuited
With d(a,, a,") denating the ED between channel signals a, and a,’, the encoder should

be designed to achieve maximum free ED:
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X" m m-m’
X'+ signal mapping n,
n — —»» (select signal
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: y A |@r“ decoder | =
X;"' : convolutional : > (soft
—H . : . .
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: ate m | :
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Figure 2.2 General structure of encoder/decoder for

trellis-coded modulation.

12
djee = Min ( ﬁdz(am an’)) @2.1)

(a)#{a,’)
between all pairs of channel-signal sequences {a,} and {a,’} which the encoder can

produce.

In order to compare trellis coded modulation with uncoded ones in a
convenient way, we consider uncoded 2™ channel signal modulation as a specific
one-state trellis coding as shown in Fig. 2.3. The 2™ "parallel" transitions in the
one-state trellis diagram of Fig. 2.3 [5] for uncoded 2™-modulation do not restrict to the

0

Fig. 2.3 One-state trellis diagram.

sequences of 2™ signals that can be transmitted, that is, there is no sequence coding.
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Hence, the optimum decoder can make independent nearest-signal decisions for each
noisy 2™-modulation signal received. The smallest distance between the 2™ signals 15
denoted as A,. We call it the "free distance” of uncoded 2™-modulation to use common
terminology with sequence-coded systems.

Now, let us discuss some important rules for designing optimum TCM.
2.1.1 Set Partitioning

The main significance of TCM technique is the mapping method between the
convolutional binary codes and channel signals, called "mapping by set partitioning"
[4, 5]. Through Fig. 2.4 we illustrate this concept for a 16-QAM channel signal sct, a
signal set of lattice type "Z,". Generally, the notation "Z," is used to denote an nfinite
"lattice”" of points in k-dimensional space with integer coordinates. Lattice-type signal
sets are finite subsets of lattice points, which are centered around the origin and have a
minimum spacing of A,

First, set partitioning divides a signal set successively into smaller subsets
with maximally increasing smallest intra-set distances A, i =0, 1, .... Each parution 1s
two-way. The partitioning is repeated m’+1 times until A -, is equal to or greater than
the desired free distance of the TCM scheme to be designed. The finally obtained
subsets, labeled as C,, C;, C,, C; in the case of Fig. 2.4, will henceforth be referred to
as the "subsets".

Second, the labeling of branches in the partition tree by the m’+1 coded bits Z,™,
Z.°, in the order as shown in Fig. 2.4, results in a label Z = (zm™, .., Z.°} for each
subset. The label reflects the position of the subset in the tree. This labeling leads to an

important property. If the labels of two subsets agree in the last q positions, but not 1n
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Fig. 2.4 Set partitioning of the 16-QAM signal set (of lattice type "Z,").

the Z,9 bit, then the signals of the two subsets are elements of the same subset at level g

in the partition tree; thus they have at least distance Ag.

Finally, the m—m” uncoded bits X,™, ..., X,™*! are used to choose a signal
from the selected subset. The specific labeling of subset signals by these bits is not
particularly important. In the code trellis, the signals of the subsets become associated
with 2™™ parallel transitions.

Then, the free Euclidean distance of a TCM code can be expressed as

dree =Min [Ap,, dfree(m')] (2.2)

*oaty




where Ay, is the minimum distance between parallel transitions and dg,.(m”) denotes
the minimum distance between nonparallel paths in the TCM trellis diagram. In the
special case of m'=m, the subsets contain only one signal, and hence there are no

parallel transitions.
212  Convolutional Codes for Trellis-Coded Modulation

The rate-m’/(m’+1) convolutional encoder depicted in Fig 2.2 receives m’
input bits, and generates m’+1 coded bits which serve as the subset labels Z_ = {Z,™, ...,
Z,°] at time n. The set of all possible sequences {Z}, which the encoder can generate,
forms a convolutional code. Valid code sequences must satisfy the following

parity-check equation at all times n,

’

m
z (hvizin_v @ hiv_lzin.v_ﬂ @ v hoiZni) = 0 . (?3)
i=0

In this equation, @ denotes modulo-2 addition. The quantity v 15 called the
constraint length, or we can say that encoder realizations with v binary storage
elements, which is equivalent to saying that the code has 2¥ trellis states. The quantities
hli ,v2120; 0 <is<m’, are the binary parity-check coefficients of the code.

To search optimum TCM codes, d%,.(m’) must be as large as possible ) el
* now {Z,) and (Z,’) = (Z, ® e,} be two code sequences, where (¢} denotes the error
sequence by which these sequences differ. Since the convolutional code is linear, {e}
is also a code sequence. The squared free distance between non-parallel paths in the

TCM trellis is bounded by [2]
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p . 2
dfrec2(m).>_ Min EAq(en). (2.9
{eq) #{ 0}

Here q(e,) is the number of trailing zero in e, that is, the number of trailing positions
in which two subset labels Z, and Z." = {Z, © e,} agree. This means that the distance
between signals in the subsets selected by Z, and Z," is lower-bounded by AQ@::)'
Minimization has to be carried out over all non-zero code (error) sequences {e,} that
deviate at, say, time O from the all-zero sequence {0} and remerge with it at a later
time. For any given sequence {e,} there exist two coded signal sequences whose
signals have at any time n the smallest possible distance between the signals of subsets
whose labels differ by e. Usually, this smallest distance equals Aq(Qn) for all e,. If this
is the case, the above bound on dg,.(m") becomes an equation.

This equation is of key importance in the search for optimum TCM codes. It
states that free Euclidean distance can be determined in much the same way as free
Hamming distance is found in linear binary codes, even though linearity does not hold
for TCM signal sequence. It is only necessary to replace the Hamming weights of the

e, (number of 1's in e;) by the Euclidean weights Aé(gn).
2.1.3  Search for Optimum TCM Codes

For a given sequence of minimum intra-set distances A, < A, < ... A, and a
chosen value of v, a convolutional code with the largest possible value of dg..(m”) can
be found by a code-search program described in [2]. The program performs the search

for the (v + 1). (m'+ 1) binary parity-check coefficients in a particular order and with a
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set of code-rejection rules such that explicit checks on the value of dg(m’) are very

frequently avoided. Finally, another important aspect of TCM will be described.

2.1.4  Soft-decision Decoding

The Viterbi algorithm is employed as decoder (soft decision). The Viterbi
decoding algorithm was discovered and analyzed by Viterbi [15] in 1967. The Viterbi
algorithm essentially performs maximum likelihood decoding. However, it reduces the
computational load by taking advantage of the special structure in the code trellis. The
advantage of the Viterbi decoding, compared with brute-force decoding, is that the
complexity of a Viterbi decoder is not a function of the number of symbols in the
codeword sequence. The algorithm involves calculating a measure of similanty, or
distance, between the received signal, at time t,, and all the trellis paths entering each
state at time t. The Viterbi algorithm removes from consideration those trellis paths
that could not possibly be candidates for the maximum likelihood choice. When two
paths enter the same state, the one having the best metric is chosen; this path is called
the surviving path. This selection of surviving paths is performed for all the states. The
decoder continues in this way to advance deeper into the trellis, making decisions by
eliminating the least likely paths. The early rejection of the unlikely paths reduces the
decoding complexity. Note that the goal of selecing the optimum path can he
expressed, equivalently, as choosing the codeword with the maximum hkehhood

metric, or as choosing the codeword with the minimum distance metric.
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2.2 TCM with Multidimensional Constellations

Because of the effects of carrier-phase offset, recently, there have been a
number of investigations into trellis coding with signal sets defined in more than two
dimensions [8, 9, 16-20]. When a carrier-modulated two-dimensional TCM signal is
demodulated with a phase offset A,, the soft-decision decoder then operates on a
sequence of complex-valued signals {r,} = (a exp(jA,) + W,}, where the a, are
transmitted TCM signals and the W, denote additive Gaussian noise. The phase offset
A, could be caused, for instance, by disturbances of the carrier phase of the received
signal which the phase-tracking scheme of the receiver cannot track instantly.

The effect of this phase offset can be explained as follows. In the trellis
diagrams of TCM schemes, there exist long distinct paths with low growth of signal
distance between them, that is, paths which have either the same signals or signals with
smallest distance A, assigned to concurrent transitions. In the absence of phase offset,
the non-zero squared distances A 2 and the squared larger distances of diverging or
merging transitions add up to at least the squared free distance. However, if phase
offset rotates the received signals such that received signals become located halfway
between the signals of the original signal set, the difference in distance between
received signals and the signals on distinct transitions that are A, apart may be reduced
to zero. There may then be no difference in distance between a long segment of
received signals and two distinct trellis paths, just as though the code were catastrophic..
At this point, the decoder begins to fail.

In general, it is desirable that TCM codes have as many phase symmetries as
possible to ensure rapid carrier-phase resynchronization after temporary loss of

synchronization. In practical systems, multi-dimensional signals can be transmitted as
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sequences of constituent one- or two-dimensional (1-D or 2-D) signals. In this section,
2k-D TCM schemes are considered which transmit m bits per constituent 2-D signal,
and hence mk bits per 2k-D signal. The principle of using a redundant signal set of
twice the size needed for uncoded modulation is mantained. Thus, 2k-D TCM schemes

result in less signal redundancy in the constituent 2-D signal sets

AxA,

(COUCZ’ COUQ) (C 1 UC3, Cl L )C})

C3, C3) \

(Cos CHU(C,, Cy)

(CZ' Co)U(Co' CZ)

(€, C) €, G (C1, Cp) (G G)

90°

Fig. 2.5 Partition of four-dimensional signal sets.

It has been found that multi-dimensional TCM schemes have more 90° phasc
invariance [20]. This is an important advantage which we desire. Also the larger signoi
spacing should make multi-dimensional TCM systems less sensitive to phase offset |5)

Now, let us analyse the multi-dimensional signal sets. For 2-D TCM schemes
with "Z,"-type signal sets, the minimum signal spacing A, must be reduced by
approximately the factor 2 (-3dB) to have the same average signal power as for

uncoded modulation. But this loss in signal spacing can be compensated hy (oding io
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obtain an overall improvement in free distance. Then the lower signal redundancy of
multi-dimensional TCM schemes with "Z,,"-type signal sets results only in a reduction
of the minimum signal spacing by the 2k-th root of 2, so coding has to contribute less
than in the case of 2-D TCM to detain the same gain in free distance.

One example of set partitioning of four-dimensional signal sets is shown in
Fig 2.5 [20]. The corresponding "Z,"-type signal sets is in Fig. 2.4. Note that sets (C,,,
CU(Cy, Cp, (Cp CIUACqr Cp), (Cy, CYU(Cy, C3), (Cs, CPU(Cy, C3) of Fig. 2.5

have the largest distance between them, and the effect of a 90° rotation is shown in Fig.

2.5.
23 TCM with Asymmetric Signal Constellation

Symmetric signal constellations, i.e., those with uniformly spaced signal
points, have been used traditionally for TCM schaemes. But Divsalar and Simon use
asymmetric signal constellations instead of Ungerboeck’s symmetric ones for TCM to
improve the performance [11, 21]. The results in [21] show that for 2-state TCM,
significant performance improvement is achievable in some case relative to the
equivalent symmetric design. The gain in free Euclinean distance of the two-state
trellis-coded asymmetric M level signal constellation over the uncoded M/2-point one
is much better than the gain in symmetric M level signal constellation over the uncoded
one. But in high coding complexity (the number of states is more than two in the trellis
diagram), the amount to be gained by asymmetry diminishes; although the overall of
the asymmetric coded system is improved, relative to the equivalent bandwidth

uncoded M/2-point system.

By designing asymmetric signal constellations and combining them with
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optimized trellis coding, one can further improve the performance of coded systems
without increasing power requirements or changing the bandwidth constraints iniposed
on the system. How to design asymmetric signal constellations? For signal sets with
one degree of freedom, e.g., MPSK and M-AM, the optimum asymmetric 2™'-pont
constellation to be used with rate n/(n+1) trellis coding is composed by a symmetnc
2"-point constellation and a phase rotated (for MPSK) or amplitude translated (for
M-AM) version of itself. For some signal sets with two degrees of freedom, for
example, QAM, it appears that the optimum 2"*l-point asymmetric st icture 1s
achieved by the optimum 2" two-dimensional AM-PM structure with a rotated version
of itself. In general, for arbitrary two-dimensional structures, the optimum asymmetric
set is undoubtedly achieved by combining the optimum symmetric set containing half
the number of points with a translated and rotated version of itself.

Another way using Ungerboeck’s "set partitioning” concept to descnbe the
M-point asymmetric construction is to imagine partitioning the symmetric M-point
constellation into two M/2-point constellations with maximally separated signals and
then perform an appropriate rotation (MPSK), translation (M-AM), or combination of
rotation and translation (QAM) of one subset with respect to the other. Upon
optimization of the amount of translation, rotation, or the combination of the two, the
resulting two subsets can be used as the first level of set partitioning in Ungerboeck s
method. The example of asymmetric signal sets is shown in Fig. 2.6. The approach of
assigning signals to transitions of the trellis code is still based on a mapping rule, < alesi
"mapping by set partitioning” [3].

Finally, the procedure for designing good trellis codes, combined with

optimum asymmetric signal constellation, can be summarized by the following;




16
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° °

Asymmetric 8§ PSK

Fig. 2.6. The procedure of designing asymmetric
8-PSK signal sets.

Use the Ungerboeck’s mapping rule called "mapping by the set

partitioning” method to partition the signal constellation.

Assign signals from either of the two partitions (each containing 2"

signals) generated at the first level of partitioning in (a) to transitions
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diverging from a given state. Similarly, assign signals from the other of
these two partitions to transitions remerging into a given state. These
assignments should be made such that the minimum distance between
diverged transitions and the minimum distance between remerged

transitions are as large as possible.

(c)  Find the free Euclidean distance of the TCM.

(d) Maximize the free Euclidean distance of (c) with respect to the rotation
angle ¢, or the translation A, or both. These values of ¢ and A define the

optimum asymmetric signal constellation.

24 A New Description of TCM

Ungerboeck’s technique for TCM consists of finding an underlying
convolutional code and then mapping the output coded bits into channel signals
according to rules referred to as "mapping by set partitioning”. As an alternate
approach, an analytic or algebraic, description of trellis codes has been introduced by
Calderbank and Mazo [10]. They have shown how to realize these two operations in a
single-step procedure.

They directly consider the relationship of output channel signals and inpui
binary bits in TCM. A TCM code is then described as a "sliding window" method of
encoding a binary data stream {a,}, a; = 0, 1, into a sequence of real numbers (x )
which are transmitted into a noisy transmission channel. For the rate of k bits per

channel symbol, each channel input x; will depend not only on the most recent block of
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k data bits that enter the encoder but will also depend on the v bits preceding this block.

Formally,

X; = X (2 A1 oo Bike(e1) 5 3Dk +o0s AieD ke (vo1) 0 2.5)

most recent k-bit block, v bits preceding this block.

Here, the states of encoder are determined by the preceding bits, and for each
certain state 2X possible output symbols are associated for each possible input block of
k bits. The state for the next channel symbol is determined by shifting every a;
appearing in (2.5) k places to the right, dropping the right-most k bits, and inserting the
new k-bit block at the beginning.

Drawing this encoding procedure sequentially in time results in a trellis
structure; hence the name trellis code. The procedure of analytical description trellis

codes can be shown as in Fig. 2.7.

al b 1 E bk+v
: Memory
ak-V bk.\,: bk+1
Dyevie1

ak'V+l_—'-"—: 1 bl x(bl, vy b“)*= ‘_m)'(__’

by.v
: bk-v+1
ak bk E bk

Fig. 2.7 Analytic description of trellis codes.

The channel input signal x; is considered as a real-valued function of (k+v)

binary variables (AM). Then the simplification of (2.5) is shown as follow,
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x;=x(ayay,..,a,), (2.6)

where n =k + v. In mathematics we note that any real-valued function x may be written

as a sum of products of the a,,

n n
X(@1, ey @) =X+ _lei y+ X x; 33 +.. X n28...2,. VX))
i= ij=1
i

There are 2" constants on the right side of (2.7), one for each distinct product
of the variables a,. They are determined by the 2" values that x(a,, ..., a,) can take as
pointed out in [22]. Through (2.7), they realize the purpose to express directly the
relationship between output channel signal and input binary data.

For trellis codes, in order to take advantage of the signal symmetry, both in
the signal set and more generally in the trellis, a conversion from binary to %1 input

bits is performed. Then (2.7) is changed to the desired form,

X ='éX(bl, esey bn) =Xo t+ z X; bi +2X xij b‘ bj +..+ X 4 bl . bn . (2.8)
i 1,j

where b; = 1 and the constants in (2.8) are not the same as in (2.7). Calderbank nd
Mazo suggested that a method to determine the constants on the right side of (2 8) 14 to
regard the 2" values of x(by, ..., b,) as a vector x of dimension 2". Similarly, regard the
2" values taken by each product of the variables b, as a vector of dimension 2", Then,

the vector of coefficients on the right side of (2.8) can be viewed as the Hadamard
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transform of the vector x [23].

The alternative description of trellis codes described in above is analytic rather
than graphical, allowing some statistical questions to be easily treated, and still the
transmitted power spectrum is not affected by the coding. Furthermore, many practical
codes are simple to describe.

Calderbank and Mazo restricted their analysis to real-valued functions. That
is, they only looked at the one-dimensional(1-D) case or Amplitude Modulation.
Turgeon and Mclane extend their ideas to multi-dimensions and to rotationally
invariant trellis codes [24]. We can consider respectively each component of complex
signal as a real-valued function of input bits.

From Calderbank and Mazo’s method the channel signals is expressed as a
function of input binary bits in terms of 2" constants. The resulting function n:ay be

viewed with an equivalent matrix equation [25] as follows:

X=BD (2.9)
where X = channel signal matrix

B = Hadamard matrix with elements 1
and D = matrix of constants to be determined.

But here, in equation (2.9), we have,

XT = {x(b;, by, ..., by)}, b, =1
(D x 2™ matrix)

B, = (1,b;, b,, ..., byb,...b,} (2.10)
(kth row of 2" x 2" matrix B)

D' =(d, dy, .. dy2 )




(D x 2" matrix of unknown)

where D is the number of signal dimensions and superscript T denotes matrix
transpose.

Then, we can make the following conclusion: although Calderbank and Mazo
only looked at the one-dimensional trellis-coded schemes, however, no matter what the
number of signal dimensions is, the input bits can only take two values, that 1s #1
Hence, the Hadamard matrix B remains unaffected by the choice of dimension. The
only change is that the matrix of constants, D, has the same number of dimensions as

the channel signals x. Clearly, equation (2.9) could always be used for any trellis code.
2.5 Multiple TCM for Gaussian and Fading Channels

A ftrellis coded modulation technique referred to as multiple trellis coded
modulation (MTCM) is developed by Divsalar and Simon [26, 27}, wherein more than
one channel symbol per trellis branch is transmitted. The principle behind therr
discovery is to design a rate nk/(n+1)k (k = 2, 3, 4 ...) encoder and combune it with a
2™*Lpoint signal constellation outputting k of these signal points (one for each group of
n+1 encoder output symbols) in each transmission interval. In each transmission
interval, kn bits enter the encoder and k symbols leave the modulator, we still have »
unity bandwidth expansion relative to an uncoded 2"-point uncoded system When
values of k are greater than 1 ( k = 1 corresponds to the conventional TCM system), the
values of dg,, are increased with symmetric modulations for certain cases. They have
found simple two-state trellis codes for symmetric MPSK and AM modulations which

can achieve 3dB gain over uncoded modulation at very high signal-to-noise ratos
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without bandwidth expansion and without reduction in information bit rate.

Indeed, MTCM may also be thought of as a coding onto a multidimensional
signal set constructed from successive channel symbols [7, 16, 18, 28-30]. But, there
are differences between the two. The encoder used in Multidimensiona! Trellis Codes
is rate nk/(nk+1) [5] which is different from a rate nk/(n+1)k encoder used in MTCM.
In other words, MTCM differs from the other multi-dimensional codes in the sense that
the size of the channel symbol set is always twice the size of the uncoded set used for
comparison. MTCM is also different from lattice coding [28]. The theory of set
construction used in lattice coding cannot be directly applied to MPSK modulation.

For k=2, the partition of signal sets is similar to that of high-dimensional sets.
But, for k=3 or more, we cannot directly use the partition of high-dimension signal sets.
Since the simple two-state MTCM shows a significant improvement over the uncoded
case, we describe the general mapping rule for 2-state MTCM. Suppose that the
original signal set is first divided into two subsets B, and B, as maximally increasing

intra-set minimum distance. The rules used here are,

(1)  the transitions emanating from state "0" will be assigned with signals
in partition By; partition B; will be used for transitions emanating from

state "1";

) for 2nk-1 parallel paths between like states (or unlike states), assign (o
each parallel path a sequence of k symbols from a partition (B or B,),
such that the minimum squared distance between any two of these
parallel paths is equal to twice the minimum squared distance between

points in the partition;




3) the remaining 2™¥"! k-tuples formed from symbols in the same partition
are assigned to the parallel paths corresponding to a transition to an
unlike state. The minimum squared distance among all pars of
parallel paths between unlik: states will also be twice the minimum

squared distance between points in the partition.

According to above mapping rule, the minimum squared distance among all
pairs of paths consisting of a path between like states and a path between unlike states
both originating from the same state is only equal to the minimum squared distznce
between the points in the partition. The place where the trellis multiphcity k has its
influence is in regard to the minimum squared distance among all pairs of paths
consisting of a path between like states and one between unlike states where the two
paths originate from two different states. With the above k-tuple assignments, this
minimum squared distance is k times the minimum squared distance between points in
one partition and points in the other. dg.. performance is improved when the minimum
distance associated with the error event path of length 2 increase with the increase of k.

Recently, Divsalar and Simon have introduced the technique of Muluplc
Trellis Coded PSK for fading mobile satellite channels. In previous publicauons |12,
31-33], they have considered the performance of conventional and multiple trellis
codes in a Rician fading environment characteristic of the mobile satellite channel
Results were reported for both the case of coherent detection and deferentnially coherent
detection with and without the use of channel state information (CSl). The primary
emphasis in these previous works was the degradation in performance produced by the

fading for trellis codes designed to be optimum on the additive Gaussian noise channe)
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(AWGN).

In recent papers [13, 14], they look more carefully into the properties of the
average bit error probability of trellis coded modulation (TCM) and then proceed to use
these as design criteria for conventional and multiple trellis codes operating over a
fading channel. It is shown that, over Rician fading channels with interleaving/
deinterleaving, the asymptotic performance of TCM at high signal-to-noise ratio (SNR)
is dominated by several other factors depending on the value of the Rician parameter k,
i.e., the ratio of direct plus specular power (coherent components) to diffuse power
(noncoherent component). In particular, for small values of k (the channel tends toward

Rayleigh), the primary design criteria for high SNR become:
1) the length of shortest error event path.

2) the product of branch distances along that path with dg,.. a secondary

consideration.

Thus, the longer is the shortest error event path and the larger is the product of the
branch distances along that path, the better the code will perform even though dg,.. does
not achieve its optimum value over the AWGN!

The set partitioning method used for optimally designing trellis codes to be
transmitted over the Rician fading channel is different from Ungerboeck’s method,
which is used for optimally designing trellis codes to be transmitted over the additive
white Gaussian noise (AWGN) channel. The procedure will be based on the optimum

performance criteria developed for this channel. In fact, it may not lead to a tree

structure.




Why have they used multiple TCM for fading channel and not conventional
trellis codes (i.e., those with one channel signal per branch)? Considering the critenia
for designing TCM to achieve minimum error probability performance over the fading
channel described above, indeed, it was shown that the analogy to maximizing
diversity was to design the code such that the length (as measured by the number of
channel signals) of the shortest error event path is maximized. It i> observed that for
trellises with parallel paths, conventional trellis codes are limited to a diversity of one.
Furthermore, for trellises with no parallel paths, the diversity achievabie with
conventional trellis codes is still limited to the number of branches along the shortest
error event path. But allowing for multiple symbols per trellis branch, i.e., multiple
trellis coded moduladon (MTCM), provides an additional degree of freedom fo
designing a code to meet the optimization criteria on the fading channel. In particular,
we are able to achieve diversities larger than those achievable with conventional trellis
codes having the same number of trellis states. It is here where the MTCM technique

exploits its full potential.

2.6 Other Works to Improve TCM

Some interesting new TCM schemes that exhibit modest improvements are
shown by Fomey, JR. et al. in [7): a 2-state code that has a nominal coding gain of
almost 3 dB, and an 8-state trellis code with a coding gain of 4.5 dB. The idea in the
2-state scheme is to use subsets that are partially overlapping and partially distinct. "The
other one in the 8-state scheme is to use a 4-dimensional constellation as the basic
constellation(4-dimensional trellis codes have also been studied by Wilson [34] and

Fang et al. [35].). Two simple examples will be described to illustrate these idcas
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For the 2-state scheme they use a 80-point signal constellation, which is
divided to four subset A’, A", B’, B". Each of four subsets has 32-points. A’ and A"
both include 24 same inner A points, but each includes a different 8 outer points; and
similarly with B” and B". Thus A’ and A" are panially overlapping and partially
disjoint, and so are B” and B". For a 2-state trellis diagram, the squared distance
between two paths beginning and ending at common nodes remains 2d,2 since the basic
distance properties between A subsets and B subsets remain [4]. And there also is a
slight reduction in power due to the increased constellaiion size.

In another 8-state trellis code they first divide a two-dimensional 2"-point
rectangular grid into four subsets . Then the binary convolutional encoder for this
scheme, operates on pairs of symbols (4-dimensional signals). During each pair of
symbol intervals, three bits enter the encoder and four coded bits are produced. The
first two coded bits select the subset for the first symbol and the second twe bits select
the subset for the second symbol. The minimum free Hamming distance of this
convolutional code is 4. The squared distance between any two sequences
corresponding to different encoded outputs is at least 4d 2. Over two symbol intervals,
2n-1 bits enter the modem and one parity check is generated, giving 2n bits to select the
two signal points. Since (n-1/2) bits/symbol enter the modem, there is a loss of 1.5 dB
due to the larger signal constellation. And then a gain of 6 dB in distance is reduced to
a net nominal codins, gain of 4.5 dB.

Traditionally, for a rate of n bits per channel symbol, a 2™*! point constellation
is used for TCM schemes, in both of Ungerboeck’s methods and Calderbank and
Mazo’s schemes. Calderbank and Mazo’s analysis description of TCM has an
important advantage than Ungerboeck’s which is to simplify the procedure of TCM

design. Even though Fomey, et al. [7] have introduced a new channel signal




constellation which has less than 2"*! points for trellis coded QAM modulation which
has the advantage of reduction of average power of channel signals. But they restricted
to 2-D dimensional one, and also did not find its analysis description. In this thesis, we
study the partially overlapped signal constellations which have less than 2"*! points for
1-D, 2-D and mult-dimension. To keep the advantages of both of the partally
overlapped constellation and the analytic description of TCM, we present the analvucal
description of TCM’s with the partially overlapped constellation in one and two
dimensions. Funhermorc;, analytically described trellis coded modulaton with
high-dimensional partially overlapped constellation is studied, because the larger signal
spacing of multi-dimensional constellation can make TCM systems less sensiive to
phase offset and also compared to low dimensional schemes, this results in less signal

redundancy in the constituent low dimensional signal sets [36, 37].
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Chapter 3  Analytically Described Trellis Codes
with Partially Overlapped Constellation

There is a growing need for reliable transmission of high quality voice and
digital data in digital communication systems. These systems are both power and
bandwidth limited. By integrating both coding and modulation into a single entity, the
technology of TCM has provided significant coding gain without bandwidth expansion
when comparing to uncoded conventional uncoded signal sets. This is the work that has
laid the foundation for the design and development of all power and bandwidth
efficient digital modems in practice today [3-5]. Recently, many people work on
modification and improvement of TCM. These works have developed and perfected
TCM to adapt the need of high quality transmission of digital signal. In this chapter, we
will show our new analytically described TCM with partially overlapped
constellation[36, 37]. It reduces implementation complexity and also possesses other

desirab'e properties.
3.1 Introduction
In Ungerboeck’s TCM representation, first n input bits enter a rate n/(n+1)

convolutional encoder, and then the n+1 output bits of the encoder are assigned to the

channel signals, from a 2™*!-point constellation, according to the "mapping by set
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partitioning rule”. The added redundancy obtained by doubling the number of channel
signals (compared to a corresponding uncoded scheme) allows Ungerboeck to achieve
significant gain over uncoded modulation.

Calderbank and Mazo presented an analytical description of the trellis codes
which combine Ungerboeck’s two steps into one [10]. In Calderbank and Mazo's
representation, they express the channel input signal, as a function of the input bats
(2.8). To search the optimum codes, they use the computer to find dzmm. The method is
to use the graph of possible transitions, where edges are labeled with the contribution of
the transition to d2 More specifically, in this graph the state to which the transition is
made is used to determine which terms of the code are excited when evaluating. A state
(0 ... 0) has been introduced as an initial state, and the length ! of an error event
corresponds in this graph to a path of length / from (0 ... 0) to (0 ... 01).

Turgeon and Mclane have used the same method for two- and
four-dimensional cases[24].

Ungerboeck, Calderbank and Mazo [10], Turgeon and Mclane [24] still use
the traditional 2™*!-point signal constellation for input n bits codes. In this chapter, we
investigate the use of constellations having less than 2™*1-points called the parually
overlapped signal constellations [7]. Partially overlapped signal constellations are.
formed by omitting some of the high power signal points of a conventional 2"*-point
constellation. This results in a constellation with si.Usets having common signal points
Since the number of points in such a constellation is less than what n+1 bits at the
output of convolutional encoder can address, some of the signals, preferably signals
having lowest power, should be used more than once. This in turn results in a saving 1n
transmitted energy, and therefore, in a coding gain as compared to the TCM schemes

using conventional constellation.
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3.2 Partially Overlapped Signal Constellation

3.2.1  Analytical Representation

In representation of (2.8), before we set x, equal to zero since it does not
contribute to the distance. Also, in order to have 2™*! signal points, exactly n+1 terms
of (2.8) should hav: non-zerc coefficients. For example, for a 16AM/8AM TCM code,

i.e., for n=3, only four term expressions of the form,

X = aofo(bl' ceey bm) + alfl(bl, eesy bm) - arzfz(bl, seey bm) + a3f3(b1, ery bm)
@3.1)

should be considered, where f(.), i =0,...,3 are products of different subsets of {b,, ...,
b}, and, therefore take values £1.

It is obvious that in order to have 2™! distinct signal points, i.e., for TCM
schemes with conventional constellation, there should not be any linear dependence
between subsets of {a,, ..., o} with coefficients 1. To see this we assume thai

k-1 .
= ¢, =0 where,c, =%1,j=0,.., k-1, and k < n+1. Then, these k coefficients result

-

j—
in 2%-1 (and not 2¥) values, and, therefore, if there is no other such linear dependence

between remairing n+l-k coefficients, the number of distinct signal points will be
(2k-1)2n+lk=pn+lgn+lk For example, in the case of n=3, if we let o =1, a;=2, 0)=
03=4 in (2.3), then we have a linear dependency relationship of the form a,-03=0, and,
therefore, k=2, and the number of points will be 24-242=12, If there are more linear

dependency relationships between the coefficients, then more points will overlap




resulting in a constellation with even fewer points. Let’s consider the situation where
there are two linear dependency relationships involving k; and k, terms. Furthermore,
assume that k, of the terms are common in two relationships. Then, it is easy to show

that the number of points in the resulting constellation is,
N = on+l _pn+l-kg _ gntl-(ytkyky) (3.2)

As an example, take the expression (2.3) again, but this time with o= 1, o=
a,= 2, and ay= 4. Then, we have two linear combinations, o;- a,= 0 and o, + @, o;-
0. so, k= k,= 2, ko= 3 and, therefore, the resulting constellation has only 10 points,
namely, 1, 3, £7 and 9. Deriving expression similar to (3.2) for other cases of

interest is a straight forward practice.
3.22  Coset Representation

Calderbank and Sloane [28] made the observation that signal points can be
considered as finite subsets of infinite lattices. This observation resulted into
representing the TCM schemes in terms of coset codes [19]). A lattice A is an infiuic
regular set of points in an N-dimensional space. Signal points are taken from a finite
subset of points lying inside a coset of A the form A+c which is the set of N-tuples of
the form A+c, where AeA, and therefore A+< is a translate of A. A sublatuce A’ of A .
a subset of elements of A which is itself a lattice. A sublattice A’ induces a partition of
A, denoted by A/A’, into equivalence class, we obtain a set of coset representatives for
the partition A/A’, denoted by [A/A’). Then we can write the following cosect

decomposition of A,



A=A’ +[A/A].
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(3.3)

That is, every element of A can be written as A = A"+ ¢ where A’eA’ and

ce[A/A’]. For example, take A=Z, i.e., the set of all integers and A’=2Z, the set of even

integers. Then 0, and 1 from a system of coset representatives for the partition Z/2Z,

i.e., Z can be regarded as the vision of 2Z, and 2Z+1.

Using the idea of coset decomposition, a TCM code can be represented using

the structure of Fig. 3.1 [19].

m bits

Binary
Encoder

m+1 bits
.

n - m uncoded bits

Coset Selector
ANA’

one of 2m+!
cosets of A’

Fig. 3.1 General structure of a coset code [19].

Signal Point
Selector

——p

one of 2n+!

signal points

It is evident that when the number of points in the constellation is less than

271 the points cannot be partitioned as explained above. However, there is still

possibility of decomposition into overlapping subsets. In particular, consider the.

10-point constellation discussed above. Points of this constellation can be written as,

x =f, + 2f) + 2f; + 4f3 = (f, + 2f}) + 2(f; + 2 f3).

3.4)
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From (3.4), one can immediately see that the constellation can be decomposed
using finite subsets of lattices 4Z and 2Z (more accurately 4Z + 2 and 2Z + 1). That is,
each point in the constellation can be written as A = A+ ¢ where A’e€(-6, -2, 2, 6} and
ce(-3, -1, 1, 3}. Now, the structure of Fig. 3.1 can be modified, forann =3, m = 1
TCM code, as follows. Two bits at the output of the encoder choose one of four "coset
leaders,"” £1, £3, and uncoded bits b, and b; choose a point from the set ¢ + {+2, +6)

where c is the "coset leader" selected.

33 Examples

In this section, we present two examples demonstrating the application of
partially overlapped signal constellations for the design of TCM schemes. Both
examples are simple two state codes. The first example is a one-dimensional scheme
using the 10-point constellation described above. The second example uses a 12 point

QAM constellation.

3.3.1 AM Examples

In this sub-section, we consider a two-state, n = 3 code using the 10-point
constellation discussed above. First bit, by, specifies the state. Therefore, there are four
parallel transitions between any two states specified by the values of b, and bs. It is
obvious that there are four groups of such parallel transitions between states Each
group can be specified by b, and b,. where, b, and b; determine the old and new states,
respectively. In order to minimize the distance between the parallel branches, we

assign to each set of parallel paths one of the cosets of {+2, £6}. In other words, b, and
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by determine c e {*1, 2} and b, by choose one of four points in c + {+2, +6}. That is,
the channel signal x can be written as x = x;+ X5, where x; is a two term expression
with coefficients 1 and 2 and involving only b, and b, while x, has coefficients 2 and
4, involves b, and b; only. In 2.1 the TCM design criteria has been discussed, the
optimum TCM is which with the largest minimum squared Euclidean distance called
the squared "free distance”. It is easy to write a program to search for the codes with
the largest squared "free distance” among the codes satisfying the above mentioned
assignment rules. However, simple codes such as present example, can be designed by
hand. In particular, the following additional mapping rule can be helpful. Fig. 3.2
shows a two stage decomposition of the 10-point constellation into four previously
mentioned subsets. Note that while sets A" and A" (also B’ and B") overlap, none of the
pairs (A’, B’), (A", B"), and (A’, B"), (A", B) has points in common.

Our additional mapping rule of assigning the signals to the transitions in the

trellis diagram is as the following,

1. parallel transitions are associated with signals with maximum distance
between them, in other words, the signals in the four previously

mentioned subsets.

2. non-overlapping signal sets are assigned to transition sets leaving or

merging to a given state,

3. signals are used in the trellis diagram with unequal frequency, some

signals with lowest power are used once more than that other high-power

signal be used.
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Fig. 3.2 Decomposition of 10-AM constellation.

A trellis diagram for a two-state, n = 3 trellis code using the 10 pomnt

constellation is shown in Fig. 3.3.

Fig. 3.3 A trellis diagram for 2-state, n = 3 trellis code.
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Note that this subset assignment is not unique. We can simply replace each

A’(B") with A"(B") and vice versa and obtain another code (Fig. 3.4).

BI

A"

Fig. 3.4 Another trellis diagram for 2-state, n=3 trellis code.

Also assignment of uncoded bits, b, and b, to points of each subset is not
specified in Fig. 3.3. If we assign the bits to points of the subset using Gray encoding,

we have the TCM scheme with the following analytical representation,

X = X; + Xy + = (b,by + 2b,) + (2bybs + 4by). (3.5)

The values of x,, and x, as a function of by, by, and b,, bs respectively are

given in Fig. 3.5.
Another possible code for a trellis diagram in Fig. 3.4 is,

X = X, + Xy = (byby - 2by) + (2bs + 4by). (3.6)

Now we calculate the coding gain of this scheme over uncoded 8-AM
modulation. Firstly, we discuss uncoded 8-AM modulation. As it has been discussed in
2.1, we consider uncoded 8-AM modulation as a specific one-state trellis coding as

shown in Fig. 2.3. The smallest distance between 8 "parallel" transitions in the
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Fig. 3.5 Value of x, and x; depending on b, b; and b;, b, respectively.

one-state trellis diagram is called the "free distance" of uncoded 8-AM modulation. So

that d%,..=4 and,

_ 212432452472

P, = =21,
av 8

The free squared distance for the TCM scheme represented in (3.6) with

trellis diagram shown in Fig. 3.3 is
e = d2pin(A", B") + d% (A%, B") =2d,2 = 8,

and the average power is,

_ 2[9%47%+2(5%+3%+1%)

P
av 16

=23.

So, the coding gain is,

G=10log 3% -2253 B
4121

which is 1.335 dB more than 0.918 dB coding gain of the conventional TCM scheme
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using 16-AM constellation. More coding gain can be obtained by increasing the overlap
between the subsets of the constellation. For example, a similar TCM scheme using an
8-AM constellation, i.e., a constellation with totally overlapped subsets gives a coding
gain of 3 dB over conventional uncoded scheme. However, the problem with this code,
which can also be considered as a limiting case of an asymmetric TCM scheme [21], is
that it is catastrophic, it has infinite length error events with infinite Euclidean distance
and nonzero probability. Note that, our code also has infinite length error events with
distances not exceeding 8. However, in this case the probability of these error events is
zero. This is due to the fact that with a probability of p = 0.25 a point chosen at random
form A’(B”) is not a member of A"(B"). That is, two paths diverging from a given state

are forced to reconverge to a common state on average p symbols [7], e.g., every 4

symbols in our scheme.

3.32 QAM Examples

In these examples, we use a 12-point 2-dimensional constellation. Again, the
code has two states and n=3. The constellation together with corresponding set
decomposition is shown in Fig. 3.6. Note that this constellation is formed by removing

four outer points of a regular 16-point constellation and using four inner most points

twice.

The trellis diagram is as that of the AM example shown in Fig. 3.3. A possible.

analytical representation is,

X = Xy + Xy = [b; +jby] + [(by + bj) + j(b, - bs)]. 3.7

Another one is,
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B’ An
A A" B B"
Al A | A A-B
A A A B, B. B"
> > — |
A, A, Al . B .B . B
° A" BI R

Fig. 3.6 12-QAM constellation and its set decompositon.

X=X3+Xxy= [-bl +jb4] + [(b2 - b3) +j(b2 + b3)], (’58)

and the trellis diagram for this code is same as which is shown in Fig. 3.4. The values
of x,, and x, as a function of b, b,, and b,, b;, respectively are given in Fig. 3.7 for
(3.7). Here, first by and by select ¢ € {1, %j} and then, b, and by choose a point from
the suhset ¢ + {+2, £j2}. The minimum squared distance between parallel path is 8. For
the minimum error event (of length two, see Fig. 3.3 and Fig. 3.4), we have,

d%.. = 8,

and the average power is,

_ 8[12+32+12+17)
16

P, =6 .

e




40

X,
(1,-1)
X3 b, b; X1 by by (-1,-1)1{ (b, by)=(1, 1)
-— P >
2 11 14j1 1 1 —
. -1,1)¢ 2
2 1 -1 1-j1 1 -1
-j2 1001 141 | -1 1 '}
-1,1D)0 4+ 0y, b)=(1,1)
-2 -1 -l -1+ 1 1{
1 1 '
J 1
Y—
1
('1’ 'l) o T 0(19 '1)

Fig. 3.7 Value of x,, x, depending on b,, b, and b, b, respectively.

For a corresponding 8-PSK, with average power of 1,
d%g.. =0.765%2 = 0.585,

And therefore, the coding gain of our scheme over uncoded 8-PSK is

G=10log 3/6_ -358 gB.
0.585/1

The coding gain over an uncoded 8-AMPM, with a minimum distance of ¥

and an average power of 10, is
G=10log 30 =222 dB.
8/10
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This is 0.46 dB more than the coding gain of a TCM scheme with a 16-point QAM
constellation.

For the QAM example, p=0.5, i.e., a point chosen at random from the subset
A’(B’) has a fifty percent chance of not being in A"(B"). That is, two paths diverging
from a common state are forced to reconverge to a common state on average every two
symbols.

An extra 0.79 dB coding gain can be obtained using a constellaton with
totally overlapped subsets, i.e., using 8-point QAM constellation shown n Fig. 3.8.
Then, the coding gain of our scheme over uncoded 8-PSK is achieved to 4.36 dB, and
the coding gain over an uncoded 8-AMPM will be 3 dB. That is because of the
reduction of the average power P,,. However, by doing so, we will have p 0, and

therefore, the code will be catastrophic.

B A
»
A B
B A

Fig. 3.8 A 8-point QAM constellation.



42

34 Further Analysis of the New Codes

Calderbank and Mazo have developed the analytic description of the trellis
coded modulation using only one step instead of Ungerboeck’s two steps; finding an
underlying convolutional code and then mapping the output coded bits onto channel
signals according to rules referred to as "mapping by set partitioning”. The advantage
of their work is to simplify the procedure of TCM design. Author has analysed the
optimum codes which are shown in Calderbank and Mazo’s paper [10], and then found
that these codes are also suitable to the Ungerboecl’s "mapping by set partitioning
rule”. Now, we ~an get this conclusion:

Even though that Ungerboeck and Calderbank, Mazo have used different
methods to search the optimum TCM codes, the results of searching optimum codes are
the same; Certainly, some results in Calderbank and Mazo’s codes are slightly better
than Ungerboeck’s codes. But this is only because of the asymmetry of signal
constellation. If they use the same signal constellation with Ungerboeck’s codes, the
results should be the same as that of Ungerboeck’s codes.

The important advantage in Calderbank and Mazo’s method and also in out
new codes is that optimum TCM codes can be simply searched using only one step. But
for further understanding of the new code, it is very helpful to analyse the result of

searching optimum codes using the graphical method rather than analytic one.
3.4.1  The Set Decomposition of the Partially Overlapped Signal Constellation

It is helpful if we compare the set decomposition of our new signal
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constellation to Ungerboeck’s “set partitioning” rule, the set decomposition of the
partially overlapped signal constellation is similar to that set parttioning of the
traditional constellation. From Fig. 3.2 and Fig.3.6, it is shown that the first step of set
decomposition is the same as Ungerboeck’s. Subsets at this level are not at all
overlapped. The intra-set distance is maximally increased. The second step of et
decomposition is different. The subsets at this level which are from the same subsets at
level 1 are partially overlapped and partially disjointed. Also the intra-set distance at
this level is the same as the one at level 1. But the important thing is that the number of
subsets and the number of points in each subset are the same as those in set partitioning
at this level of the traditional 2"*1-point constellations if this new signal constellaton 1s

for input n bits per symbol TCM.

3.42  The Overlapping Property of the New Signal Consteliation

More coding gain can be obtained by increasing the overlap between the
subsets of the constellation which has been discussed above. If there is no overlap
between the subsets, that is the traditional signal constellation set partition which 1s
used to use for TCM before. If a TCM scheme use the signal cons:ellation with totally
overlapped subsets, it will give a significant coding gain. However, as previously
mentioned in section 3.3, this type of limiting case results in a catastrophic trellis code
In practice, one would not use this limiting case. It just be considered as theorciuical
research. How much extent of overlap is the optimum choice for the new constellation”
The main consideration is to reduce the average power of the constellation and at the
same time to keep the number of points in each subset and the number of subscts the

same as that of traditional constellation set partitioning. So we like to repeat using the



low-power points instead of the high-power points. In other words, we like to have as
much extent of overlap of subsets as possible. However, in order to avoid a catastrophic
trellis code, we must keep the parts of subsets which are disjointed. For AM
constellation, all points have different powers. So, subsets are required only to keep the
smallest number of high-power points for the disjointed part to reduce P,,. But for
QAM constellation, some points of the constellation have the same power. Also for the
convenience of analytic representation, the subsets should be needed to keep the

number of points for disjointed parts which make the average power the smallest.

3.4.3 The Mapping Rule for Input Bits to Output Channel Signals

The mapping rule for input bits to output channel signals can be considered to
be similar to Ungerboeck’s codes, but they are different. (a) Even though there is no
binary rate n’/(n"+1) convolutional encoder (here n’= 1), n’ input bits (b,) and the bits
(b,) for the state are still used to select one of 27 +!= 4 subsets. The function is the same
with Ungerboeck’s codes; (b) the remaining n - n’ bits (if total input bits are n bits per
svmbol) determine one of the 20’ signals within the selected subset; (c) all signals in
the final level subsets should be equiprobable. It should be noted here that because.
some subsets are partially overlapped with lower-power points, so that some
low-power signals are used twice as often as other high-power signals.

Finally, we compare our codes with Calderbank and Mazo’s in graphical
analysis. According to the above di:. . -ion, for input bits b,...b, per symbol, we let
transmitted channel signal x is composed of x; and x;. x5 is the function of the most
recent bit b, and the previous bit b,,; which is for state and x, is the function of b,...b,.

The basic structure of subsets at final level is formed by the different values of x,. And
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the values of x, give the several positions to shift the basic structure and then to form
the several subsets. For AM TCM the difference between Calderbank and Mazo’s
codes and our newly designed codes is the values of x;. They give the values of x; to be
different enough from each other to make the subsets to be unoverlapped at all. But the
values of x, according to the new design rule make some of the subsets partially
overlapped each other. The principles for QAM are the same and are not necessary to

be discussed again.
3.5 Multi-dimensional Trellis Codes

To immune to a carrier phase offset of 8 in the receiver, a rotationally
invariant coherent modulation(/demodulaton) scheme is desirable. In an uncoded
coherent modulation scheme, rotational invariance can be easily achieved by using a
differential encoding(/decoding) technique, which maps (recovers) input data into
(from) the phase difference between the current and previous (estimated) signal points.

For coded coherent modulation schemes, the issue of rotational invariance 15 more
complicated. A general structure for coded coherent modulation schemes 1s shown 1n
Fig. 3.9 where n is the number of information bits. x,, and y, are the coordinates of a
2-D signal point. In the receiver, the coherent demodulator outputs a received signal
point (X, ¥n) which is noisy and possibly rotated by a phase angle equal to ¢ phasc
ambiéuity of the signal constellation. To further make the coded modulauon scheme
rotationally invariant, a necessary condition is that a rotation of any vahd sequence of
signal points by any phase ambiguity of the constellation results in another vahd
sequence. In addition, if a rotation of the signal points results in, at the output of the

channel decoder, a sequence of information bits different from what 15 transmitted, then



Xn

Input Differential B .
e IS TCM y Modulation |
n Encoder n 21—
Channel
Ouipuil Differential c Coherent
< - o™ y
n Decoder n <——yﬂ—— Demodulation

Fig. 3.9 General structure for rotationally invariant coded
coherent modulation schemes.

a differential encoding technique may be wused to recover the transmitted data
irrespective of the rotation,

TCM schemes with multi-dimensional constellations, where the constellation
has more than two dimensions and may be formed by concatenating a few (constituent)
2-D constellations, have been shown more advantageous than TCM schemes with 2-D
constellations in the case where the 2-D constellation is a QAM [5, 7, 16, 17, 19]. The
important advantage on rotational invariance of trellis-coded multi-dimensional QAM
schemes is the following; It was easier to make a multidimensional TCM scheme
rotationally invariant than a 2-D scheme [17]. The reason is that some or all of the
phase ambiguities of a multi-dimensional constellation may be removed by a careful
partition of the multi-dimensional constellation without the involvement of the trellis
encoder. So that this larger signal spacing can make TCM systems less sensitive to
phase offset problem. Another advantage as before we talked in 2.2 is that; Because the

multi-dimensional scheme introduces fewer redundant bits than the 2-D scheme, it has
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a significantly smaller constituent 2-D constellation and a better trade off between
complexity and performance.

In this section, we extend our research to  high-dimensional signal
constellation. An TCM scheme with 4-D constellation, where the constellation is
formed by concatenating a two (constituent) 2-D (QAM) partially overlapped
constellations as shown in 3.3.2 (QAM example), is shown. Through this example the
procedure of the design of TCM with high-dimensional partially overlapped
constellation is illustrated. In keeping with our previous work, in our exanmple, the
12-point partially overlapped QAM constellation shown in Fig. 3.6 1s used for 2-D
constellation, n=3 bits is transmitted per constituent QAM signal, and hence 2n=6 bits
per 4-D signal. A two-state case is considered. People also can write a program to
search for the optimum codes. However, this simple example can be designed by hand.
The following mapping rule can be very helpful for people to understanding clearly the
code design procedure. Because there are 32 parallel transitions between any two states
and there are four groups of such parallel transitions between states, so that this 4-D
signal constellation should have 32x4=128 points. From Fig. 3.6, we can see that the
2-D (QAM) constellation is divided to four subsets A’, A", B’, B". Then, the partition

of 4-D 128-point constellation can be shown in Fig. 3.10.

128-point 4-D signal constellation

(A’UB’, A"UB") (A"UB", A"UB")

(A’ A)U(B,B) (A, B)U(B’,A") (A", A")U(B", B") (A", B)U(B", A")

Fig. 3.10 The partition of 4-D 128-point constellation.
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¥
4
A trellis diagram for the two-state, n=3, trellis code with 2k-D (k=2)
constellation is shown in Fig. 3.11.
- (A", B) (A", B)
, (B,A)
Al s
(B™\NA
’ B \
A"B"
1 (7" @B
(B"’ A")
Fig. 3.11 Trellis diagram for a 2-state, n = 3, k = 2 trellis code.
First bit, b;, specifies the state. Each of four groups of parallels between states
can be specified by b, and b;. The 32-parallel transitions between any two states is
L specified by b, - bs. A possible analytical representation is

x = (xM), x(2)) = (x1(1)+ x2(l), x1(2)+ x2(2)) 3.9)

= {[-by + jbobq] + [(bs + bg) + j(bs - by)], [-by -jbab;] + [(bs + bg) + j(bs - be)]].

The minimum squared distance between parallel paths is 8. From Fig. 3.11, it
is easy to see that d2,,, = 8. The average power is P,,= 6. The coding gain is the same
as the corresponding TCM with 2-D (QAM) partially overlapped signal constellation.
But, as we discussed earlier, trellis-coded modulation schemes using multi-dimensional
constellation are more advantageous than the usual two-dimensional schemes because
the multi-dimensional schemes can be more easily made rotationally invariant; and
comparing with 2-D TCM schemes, this method is in less signal redundancy in the

constituent 2-D signal sets.




49

3.6 Conclusion

In this chapter, we obtain a new analytically described trellis coded
modulation scheme using partially overlapped signal sets. By presenting two simple
two-state examples, it was shown that using TCM schemes with partially overlapped
signal constellations, one can obtain coding gains superior to those of conventional
TCM schemes. The coding gain of the proposed schemes was also compared to those
of the limiting cases of totally overlapped constellations. The latter, while providing
higher coding gains, can not be used in practice, due to their catastrophic bchaviour.
Then, the further analysis of our new codes comparing with Ungerboeck's method is
described. Finally, through an example we extended our work to TCM with
high-dimensional signal constellation. The important advantages of TCM with

multi-dimensional constellation are discussed.
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Chapter 4 Performance Analysis

In this chapter, we first introduce a performance analysis method for TCM
which is used in many papers about TCM [21, 26]. Then, this method is used for
performance analysis of our new codes. To keep the continuity of our work, two
examples shown in chapter 3 are analyzed here according to the bit error probability

criterion. The results are superior to those of conventional TCM schemes.
4.1 The Method of Performance Analysis

At time k, for every n information bits per symbol, the rate n/(n+1) trellis
coded modulation transmits a signal x, chosen from a 2™*! signal set. We denote a
coded symbol sequence of length N by x = (x,, x,, ..., XN). Then, x; is considered as the
kth element of x and is a nonlinear function of the n information input bits denoted by

ui and the v preceding bits for states denoted by s,, i.e.,
Xg = f(Sk, Uk). (41)

Then, the next state s, at time k+1 is a nonlinear function of the present state s, and

the input u,. In mathematical terms,
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k1 = g(sk, uk). (42)

Corresponding to x, the channel outputs the sequence r = (ry, 1y, ..., Ty), where the kth

element r, representing the output at time k, is given by,

T - Xy + Ny, (4.3)

where n is a sample of a zero mean Gaussian noise process with variance &2,

To find the average bit error probability performance of the Viterbi decoder,
we must first find the pairwise error probability p(x ~ X) between the coded sequence x
= (x,)} and the estimated sequencex = { x; }. Assume that |x,/> = 1. Then, using the

Bhattacharyya bound [38], we have,

p(x-%) < DA, A= LS, Uy (4.4)
k
where,
A . .2
8U(Sy, Uy =|f(sy, uy) - £y, By) (4.5)

with Sk and Uiy are the estimates of the state of the decoder and the information symbol,

respectively. Also, D is the Bhattacharyya parameter which in this case is given by,

D = exp(-1/852). (4 6)
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The parameter D of (4.6) can be related to the system bit energy-to-noise ratio E,/N, by
first recognizing that 82 = (2E,/N,)"! where E; is the M-ary symbol energy. Since, for
n/(n+1) trellis coding, n input bits of energy E, produce n+1 code symbols, which in
iurn result in a single M-ary symbol of energy E,, then clearly E; = nE,. Using these

observations in (4.6) gives the desired relation for D in terms of E,/N,,, namely,
D = exp(-nEy/4N,). 4.7

The pair state S, and the pair-information symbol Uy [38, 39] are defined as,

Sk = (0 8 Ug 2 (up ). (458)

We are in a correct pair state when 5 = Sk and in an incorrect pair state when S * Sk.
In terms of the above definitions, it can be shown by analogy with the results

in [40] that the average bit error probability P, is upper bounded by,

1 d
P, € ——T(MD,z
b —4 D2 4.9)
or obtain an even tighter bound,
2
12\ _d
p, < Lcrfc( Ry iree_) D™ 9 1D,z | 4.10)
2n No 4 / dz z=1
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where erfc(x) is the complementary error function, dzfm is the squared free distance of

the trellis code, and T(D, z) is the transfer function of its pair-state diagram,
T(D, z) = 1w [-Al' W, 4.11)
m
and,

9 ro.g| = L v Aa@ra - Anrw, (4.12)
dz

1
z=1 m

m is the number of correct states. The vectors V and W have dimension m? + m with
elements taking on values 1 and 0. A(z) is an (m?+ m)x(m? + m) pair-state transition

matrix with elements

2
5 __ln_ 2 VUG Ul - if Uy is nonempty set
ey 2 (4.13)
a(Sy, Sy4p) =

0, otherwise

where,

Ui = {(u 0y) | Gy G) # (S )y S & Sa, Sier = G(Si, Up) €5, ) (4.14)

in which S, and S, are sets of all true and dummy correct pair states, respectively, and,



G(Sy, Up) 2 (8650 u)s EGpr ).
Finally, the free Euclidean distance of the code [39] is,

T(2D, 1)

2
d¢.. =lim lo
free oo g2 TD, 1)

Note that if |x,|? # 1, then in (4.10)

2
d2 _ dmm
fr -
© o xd?
and in (4.13),
£(sy, uy) - f(8,, Gy )|2
82(Sk,Uk)§| ko Uk %o Uyl

|Xk|2
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(4.15)

4.16)

(4.17)

(4.18)

In previous chapters, our entire discussion has focussed on performance gain

as measured by improvement in minimum free distance of the trellis code. In the limit

as the system bit error probability becomes arbitrarily small, this measure is equivalent

to the improvement in required bit energy-to-noise spectral density ratio for a given

average bit error probability. So that maximizing d2;, . is synonymous with minimizing

the average bit error probability. As we have discussed earlier, in our new codes

optimization of our partially overlapped condition produces signal sets wherein the

signal subsets are overlapped at all. This results in the smallest possible Ix|2 and the

largest possible d?,, = d?;, / x|2. However, this results in a catastrophic trellis code.
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Our code will also have infinite length error events with distances not exceeding d%,.,.
However, in this case the probability of these error events is zero. In next two sections,

we will discuss the bit error probability performance of our codes.

4.2 Rate 3/4, 2-state Code with 10-AM Partially Overlapped Constellation

Comparing with Corresponding TCM with 16-AM Constellation

From a practical standpoint, one is often interested in the reducton of bt
energy-to-noise spectral density ratio for a given average bit error probability. Previous
results [10, 11, 21, 40, 41] on conventional trellis coding showed that such reductions
were possible. Using pair-state diagrams and upper bounds on bit error probability
computed fron: the transfer function of these diagrams, we shall now determine the
magnitude of these performance gains for our new codes. Without going into great
detail, it has been shown that a tight upper bound on the bit error probability of trellis
codes is given by (4.10).

First, consider the rate 3/4, 2-state trellis code with 10-AM pariially
overlapped constellation (shown in Fig. 3.2) and the following analytical

representation,

X =Xy + Xg = (b1b4 <+ 2b4) + (2b2b3 + 4b2).

The relationship between input bits b,, by, b; and the output signal x is listed in
table (4.1). The trellis diagram is as in Fig. 3.3 and the equivalent pair-state diagram for
computing T(D, z) is shown in Fig. 4.1. In Fig. 4.1, the branches are labeled with a gain

of the form,




Table 4.

1 The relationship between input bits and output signals

for 10-AM partial overlapped constellation

by b by 1 -1 1|1 -1 -1 {1 1 -1]1 1
x—(A”) -9 -5 -1 3
by by by J.1 a4 11 -1 a1}l of-101
x—(A") 5 -1 3 7
by by b |-1 -1 1}|-1 -1 -1{-1 1-1]-11
x—(B’) -7 -3 1 5
b, b by {1 -1 1|1 -1 -1]1 1 1f1 1
x— (B") -3 1 5 9
a

Fig. 4.1 Pair-state diagram corresponding to Fig. 3.3.
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2
1 ps”, 4.19)
2n

G =

Here z is an index, n is input bits per symbol, Q is the Hamming distance between mput
bit sequences and & is the squared Euclidean distance between output signals for the
transition between the pair states (if P,, # 1, which should be divided by P,) In

accordance with (4.19), then in Fig. 4.1,

a = 1/8[(6D!6/Pav + 2D144/Pav); 1 4p6iavz2]

b = 1/8[4D15Pavz 4 (3 + 4DO/Pav 4 D236Pavyz2 4 J(DI6/Pav 4 [y144/Pav),3)

¢ = 1/8[4D*Pwvz + (3IDHPav 4 3P36Fa 4 PI0OFer | pIIPavy2 o (3s6kay
D100/Pav);3)

d =z"lc = 1/8[4D4Pa 4 (3DHPa 4. 3D36/Pav 4 DIOPav 4 DI6/Pavy, o ) ([y36/Pav
D100Pav);2

e = 1/8[4D%Pv 4 (3pHPav 4 3p100Fav 4 36Pav 4 p32Pavy; | (DHPw

Dl96/PaV)z2] , (4.20)

where for 10-AM partially overlapped constellation, P,, = 25. The oansfes funcuon

Fig. 4.1 is easily computed as,

TD, =2a+££-e—+‘1)-). (474}
D, 2) ( T-2b

For n = 3, d%, = 8/25 = 0.32,D = eEY4No = ¢:0.75EbNo the upper bound on Py, 1,
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P, < ie " /0.2 4 Ep ) ¢0-24EbNo . (D) | 4.22)
6 No

dT(, z)
dz

where,

4.23)

z=1

so that Fig. 4.4 is an illustration of the upper bound of (4.22). For the purpose of
comparison, let us discuss the upper bound on Py, for the corresponding rate 3/4, 2-state,
16-AM TCM scheme. Using Ungerboeck’s method, the signal constellation, the set
partitioning and the 2-state trellis diagram are shown in Fig. 4.2 and Fig. 4.3,

B' A' Bn A" BI Al B" An
l | | L | ] 1 |
I 1 | { | | i I

-15 -13 -11 -9 -7 -5 -3 -1

Bn A" Bl Al B" An
—

5 7 9 11 13 15

b—l_‘—q
w4 >

BB B B P AN A AN A
t—t——F> % —t—"—""
-1 7 1 9 -13 -5 3 11
B" B" B" B" A" A" A" A"
%
-11 -3 5 13 9 -1 7 15

Fig. 4.2 16-AM; signal constellation and its set partitioning.

respectively. The corresponding pair-state diagram for computing T(D, z) is the same
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B'(S,) B'(S,)

B"(S,)

A"(S3)

Fig. 4.3 2-state trellis diagram corresponding to Fig. 4.2.

as the one in Fig. 4.1.

If we have the relationship between input bits and output signal as shown n

table 4.2, then,

a=1 /4[(3D64/Pav + D576/PaV)z + 2D256/Pav22]

b = 1/8[4D¥Pavz 4 (3D3/Pav 4 3DI00/Pay | [asa/Par | [6T6avy 2 4 H(Dy196iPav |
D324/Pav);3)

c = 1/8[4D16/Pavy 4 (3D16/Pav 4 3D144/Pav | DA0O/Pav | 1y TBA/Pwv), 2\ o)y A4/Pav
D400/Pavy, 3y

d= 1/8[4D4/Pav + (3D36Pav 4 3DI100/Pav | )484/Pav DO76Pav), | y(jy96lPay
D324/Pav),2)

e = 1/8{4D36/Pav 4 (3DHPav ¢ 3DI9%6/Pav 4 D3AU/MPav | [NI00Pavy, | (I Mav |

D484/PaV)Z2] (4.24)

where for 16-AM constellation P,, = 85. For n = 3, d%,, = 20/85 = 4/17, 1) = ¢ " PANo .




Table 4.2 The relationship between input bits and output signals

for 16-AM signal constellation.

by by by f.r -1 11 1|11 1]

by by by | 11 1] 211 1)1 111

e'0-75Eb/No the upper bound on Py, is,

1 3 E, )
< — erfc — b e3/17(Eb/N0) -H , (425)
P s ot [ 2 2 ®)

where H(D) is expressed as in (4.23). So that the upper bounds on P, of (4.25) are
shown in Fig. 4.4 to compare with that of (4.22). Both upper bounds on P, are also
shown in table 4.3. We observe from these results that, over the range of E/N,
illustrated, our code with the 10-AM partially overlapped constellation is better than
the conventional trellis code with 16-AM constellation. The improvement increases

with the increase in SNR.
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Fig. 44 A comparison of the performance of two trellis coded AM modulation
(©), trellis code with 16-AM; (O), trellis code with 10-AM partially
overlapped constellation.
Table 4.3 The upper bounds on Py, for two TCM with AM modulation
p, 8 ) V7 18 19 20 21
10-AM 1.35x10°3 5.39x10”7 9.66x10” 6.21x101 | 1 )ix10""
16-AM 1.67x10-5 | 1.35x10° 6.32x10°8 1.44x10° | 13.x10 "
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4.3 Rate 3/4, 2-state Code with 12-QAM Partially overlapped constellation
Comparing with Corresponding TCM with 16-QAM constellation

An example of rate 3/4, 2-state trellis code with 12-QAM partially overlapped
constellation which is shown in chapter 3.3.2 is discussed here. A 12-QAM signal
constellation is shown in Fig. 3.6. Its analytical representation between input bits, bits

for state and output channel signal is,

X=X1+Xy= [bl +Jb4] + [(b2 +b3) +j(b2- b3)].

The relationship between input bits and output sigr.!is is shown in table 4.4. And the

Table 4.4 The relationship between input bits and output signals

for 12-QAM partially overlapped constellation.

by b by -1 -1 1|1 |11 1)1 1
x — (A”) -1+ -34j -14j3 14j

143 14 1+j 3

x — (B") -1-j3 -3-j -14j 14

x — (B") 1-j -1+4j 14j3 34j
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corresponding 2-state trellis diagram is as in Fig. 4.5. Then the equivalent par-state

B" Bn

Fig. 4.5 A 2-state trellis diagram.

diagram for computing T(D, z) is shown in Fig. 4.6, where,

a = D8PV 4 (1/2)D16/Pavz2
b = 1/4[2D8F2vz + (1 + 2D!6/Pav 4 DI2/Pav),2 4 (DBFav 4 DilPavy 3
C = 1/8[4D*P% + 4(D3/Pav + D20Pavy o (DAPav 4 p20Pav 4 p36iPavy 2
d = 1/8[4D*P%z + 4(D 4 D20Pav)z2 4 (D¥Pav 4 2D20/Pav 4 pI6Favy, 3|
(4.26)
For 12-QAM partially overlapped constellation shown in Fig. 3.6, P,, = 6 From Fig.

4.6 we can easily calculate the transfer function,

2cd
477
1-2b ). “n

TD,z) = 2(a +

Forn=3,d%,,.=8/6=4/3,D= gEb/ANo = ¢-0.75Eb/No the ypper bound on Py, 13,



1 [ Eo 428
P, < Ferfc( N, ) e®EbNo) . H(D) , (4.28)

where H(D) is expressed as in (4.23).

a
d o c
1,1 1,-1 »(1, 1)
112
a b 1
c
‘> <] F
c
1/ 1
d c
1. -] (1 —»Cl, -]

@

Fig. 4.6 Pair-state diagram corresponding to Fig. 4.5.

The upper bounds of (4.28) are shown in Fig. 4.9. Now we evaluate the
performance of the conventional rate 3/4, 2-state, 16c:QAM TCM scheme. The signal

constellation and its set partitioning is shown in Fig. 4.7 and the 2-state trellis diagram
is as in Fig. 4.8 according to Ungerboeck’s method. The pair-state diagram is as in }ig.
4.6. Suppose we have the relationship between input bits and output signals as shown

in table 4.5, then,

a = D16/Favz 4 (1/2)D32/Pavz2
b= 1/4[2D*Pavy + (D#Pav 4 D20/Pav 4 D36Pavy,2 4 (D20Pav 4 pSUPavy,3y

c=1 /4[2D4/Pav + (D4/Pav + 2D20/'Pav + D36/Pav)z + (D20/Pav + D52/PﬂV)z2]
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d=1 /8[4D8,P3VZ + 4(D8/Pav +D40/PaV)Z2 + (‘DS/pav 4+ 2D40Pav D'n/P.w) Z3l ‘
(4.29)

where P,, = 10 for 16-QAM constellation. The transfer function 1s the same as in

(4.27). Then for n=3, d%;,, = 12/10= 1.2, D = ¢"EbANo  ¢07TSEWNo ke ypper bound on

1 / E,
—_— —_— 0.9(Eb/No) , (1 30)
P, < 3 erfc{ 09 No) ¢ °).HD) ,

here, H(D) is expressed as in (4.23).

Pb is,

The upper bound of (4.30) is shown in Fig. 4.9 to compare with that of (4 28).
Also the comparison of the upper bounds of the two codes is "isted in table 4.6. I'rom
these results it is easy to observe that: over the range of E,/N, illustrated, our 12-QAM
partially overlapped constellation code is also better than the conventional trellis code

with 16-QAM signal constellation.
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Fig. 4.7 16-QAM constellation and its set partitioning.

| B"(C,) B"(C,)
B'(Cz) B'(C ?)
A'(Cy)
A" A"(Gy)
1 4 (C3) (o} o

Fig. 4.8 A 2-state trellis diagram.




Table 4.5 The relationship between input bits and output signals

for 16-QAM signal constellation.
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by by by [1 1 1|1 a1 a1t o1

x — (A% 3 -1-j -14j3 343

by by by |1 a4 |1 -1 a1l 1]l

X — (An) 1'j3 '3‘j3 ‘3+j 1+J

by b by |1 a1 1|1 -1 -1 1 -1]-1 1

x — (B') 3-j3 -1-j3 -14 34]

by b, b; 1 -1 1} 1 -1 1] 1 1 <11 1 1

x — (B") 1] -3-j -3+3 143

Table 4.6 The upper bounds on Py, for two TCM with QAM modulation

E,
p, ~o(dB] 13 14 15 16 17 18
12-QAM | 1.85x10? | 9.20x1011] 1.20x1014| 2.94x10-18 | 8.15x10 2| 1.6-4x10 8
16-QAM | 2.38x10° | 1.94x10-11| 504x104| 2.94x10°17 | 2.35x10 7' | 1.86x107
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Fig. 49 A comparison of the performance of two trellis coded QAM modulation:

QAM modulation: (¢), trellis code with 16-QAM; (D), trellis code with

12-QAM partially overlapped constellation.
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Chapter 5 Conclusions

5.1 Concluding Remarks

In this thesis, the basic principles and structure of Trellis Coded Modulation
(TCM), first developed by Ungerboeck, was described. The key element is set mapping
method called "mapping by set partitioning”. Some previous research and
investigations for improvement and modification of Ungerboeck’s TCM were
presented. Based on the previous works the possibility of further improvement wis
discussed. The results showed that it is still possible to improve TCM to reach the
upper bound of TCM coding gain.

The important part in this thesis is the newly developed analytically described
trellis code with partially overlapped signal constellation, which is also shown in | 36,
37]. Instead of using traditional 2™!-ary signal constellation, these codes use partially
overlapped signal constellation which have lesss than 27*! points. It has the advantage
that the average power Of the signal constellaion is reduced. The analyrscal
representation and coset representation of this partially overlapped signal constellation
were presented.

Several examples were given to show the performance gain due to the overlap

of the signal set. The performance gains due to the coding and the overlap were
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evaluated in terms of the minimum free Euclidean distance dg,, of the trellis. The
results showed that, introducing an appropriate overlap into the constellation design of
the analytically described trellis codes, one can easi'y improve its performance. For
M-AM and QAM modulation, it was shown that for low coding complexity significant
performance improvement is achievable in comparison to the equivalent conventional
design. In particular, the gain in free Euclidean distance of the two-state analytically
described trellis coded M level totally overlapped signal constellation over the uncoded
M/2-point one approaches 3dB.

The optimum codes can be easily searched by computer. Because these new

TCM codes are analytically described.
For comparison of the new codes with Ungerboeck’s TCM and Calderbank’s

method, set partitioning method was used to analyze these examples. The difference

was clearly presented.

The comparison between the values of the minimum free Euclidean distance
dee divided by P,, of new TCM code and the equivalent conventional TCM is an
indication of the reduction in required E,/N, that can be achieved for arbitrarily small
system bit error rates. Bit error probability analysis for these examples was carried out.
For sufficiently large values of E,/N,, these new codes are better than the equivalent

conventional coded schemes.
5.2 Directions for Future Work

In our new coding method described above, the optimum distance was
searched with fixed overlap. Although this led to a considerable increase in the

performance of bit error probability, but it is still not the optimum values which can be
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obtained. The optimum values of upper bound of P, could be obtained by changing
overlap. This requires further investigation.

Since TCM with high-dimensional signal constellation has advantages such as
less sensitivity to phase jitter and less redundancy, this work was extended to
analytically described trellis codes with high-dimensional partially overlapped signal
constellation. The basic principle to form this high-dimensional constellation is to
concatenate a few (constituent) low-dimensional partiaily overlapped signal
constellations. These TCM schemes still keep the performance gain achieved by the
overlap of low-dimensional partially overlapped constellations, and also have the
advantages achieved by high-dimensional signal constellation. In section 2.6 an
example of TCM scheme with 4-D signal constellation, where the constellation is
formed by concatenating a two (constituent) 2-D (QAM) parually overlapped
constellations, is shown. The results obtained clearly demonstrate the above prediction.
TCM schemes with partially overlapped high-dimentional signal constellations are also

worth further investigation.
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