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ABSTRACT 

~his thesis describes the evolution of Trellis Coded Modulation(TCM) technique 

and then developes the Analytically Described Trellis Codes with Panially Overlapped 

Signal Constellation for A WGN channels. This development is shown to obtain a 

perfonnance gain over the TCM witlt conventional signal constellation. The new signal 

constellation is fIfSt introduced. A few examples (for one-, two-, and high-dimensional 

signal sets) are then given to show the performance gain due to the overlap of signal 

constellation. Bit error probability analysis is carried out for these examples. 
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SOMMAIRE 

Cette thèse décrit d'abord l'évoluùon de la technique de Modulation de CoJage en 

Treillis et puis développe les Codages en Treillis Décrits AnalytIquement en lIt1lI~al1t 

une constellation de signaux partiellement superposés pour des canaux sous l'mllul'J1Ll' 

de bruit gaussien unifonne. Ce développement est démontré d' obtCllIf dc~ garn.., en 

perfonnance par rapport à la Modulation de Codage en Treillis avec con-,tcllatron 

conventionnelle des signaux. Premièrement, la nouvelle constellation des signaux sera 

introduite. En suite, nous présenterons quelque exemples (pour des sets de ~Ignaux ("II 

un-, deux-, et haute-dimension) démontrant l'accroissement en perfomlanœ dO à la 

superposition de constellation des signaux. L'analyse de probabilité d'{"ITcur par unité 

transmise("bit") sera exécutée sur les exemples présentés. 
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Chapter 1 Introduction 

Ungerboeck has developed Trellis Coded Modulation (TCM) a~ a combmed 

coding and modulation technique for digital band-limited channel~ The mam attraction 

of TCM is that it allows the achievement of signiflcant codmg gall1s over conventlona] 

uncoded multilevel modulation without compromlsmg bandwldth efficlency 

In the past, coding and modulation were treated as separa te opcral1on~ WIll! 

regard to overall system design. In panicular, mcst earlier works 011 coded dl,l!ltal 

communication systems independently optimlzed: 1) convcntlonal (blcx:k III 

convolution al) coding with maximized minimum Hamming di.,tance, and 2) 

conventional modulation with maximally separated signaIs, In an Additive Whlll' 

Gaussian Noise (A WGN) environment. 

Massey [1] was the first person to show that consiècrable PCrlOTl11iJlJC ( 

improvement could be obtained by treating coding and modulation as a ~lI1glc entIly 

Following this line of thinking, the fust TCM schemes were propo'led in 1976 Pl bl' 

Ungerboeck and Csajka. Then a more detailed publication (3) in 19X2 wa) showl' Il. 

1987 Ungerboeck described funher in detail the features of TCM and de~lgn l11erhorj of 

Trellis Coded Modulation schemes [4, 5]. 

Ungerboeck's TCM seems to coyer the range of possible codmg gain~ (in the 

3-6 dB range) with complexity of the order of what we mig!lt expect Can 1 he '1 hl 
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further improved? It seems unlikely that further major improvements are possible. But, 

the upper bound on the gain of trellis code was obtained in [6]. So they still can be 

improved. AIso within the spectrum of performance of aIready known schemes there 

will Iikely be sorne funher embellishments, that will reduce implementation 

complexity or have other desirable properties. even in the application of TCM in the 

channels other than the A WON. Ba.l\ed on the Ungerboeck's TCM many such works 

have been done. Is this enough? The answer is: no. We still have a lot of works to do. 

Since 1982 an explosion of research and actuaI implementations of TCM has taken 

place [7-11]. Recently, Divsalar has introduced Trellis Coded Modulation into the 

fading mobile satellite channels [12-14], then expanded the applications of TeM. 

In this thesis, we will show that using constellations with partially overlapped 

:,ignaI points, i. e., constellations with less than 2n+1-points, one can achieve a 

considerable coding gain in comparison to the tradirional 2n+1-point constellation. The 

• increase in coding gain is due to a reduction in transmitted signal energy as a result of 

deleting sorne high power signaIs from the original 2n+1-point constellation and 

replacing them with sorne of the low power signais. 

In chapter 2, the princip les and general structure of trellis-coded modulation 

techniques will he outlined. The main significance of TCM is the mapping methnd 

called "mapping by set partitioning". Design criteria for TCM codes will be described 

flrst. Then several important works whirh improve or modify the TCM technique will 

be briefly reviewed. 

Chapter 3 will introduce the new anaIytically described trellis codes with 

partially overlapped constellation. The partiaIly overlapped sign:!l constellation will be 

discussed in both of analytical and coset representations. Examples for one-, two- and 

four-dlmensional signal constellation will be given to describe the use of partially 

1 
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overlapped constellations for anaIytica11y described TCM schemes. Funher analysis of 

new codes will aIso be discussed. 

In chapter 4, the bit error probability perfonnance of these new codes will be 

analysed. Conclusions and suggestions for funher modifications are given in chapter 5. 
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Chapter 2 Evolution of TCM Techniques 

2.1 The General Structure and Principles of TCM 

TCM schemes employ redundant nonbinary modulation in combination with a 

finite-state encoder which govems the selection of modulation signals to generate 

coded signal sequences. In the receiver, the noisy signaIs are decoded by a soft-decision 

maximum-likelihood sequence decoder. The essential new concept of TCM that led to 

the aforementioned gains was to use signaI-set expansion to provide redundancy for 

coding, and to design coding and signal-mapping functions jointly so as to maximize 

directly the "free distance" (minimum Euclidean distance) between coded signal 

sequences. This is because signal waveforms representing information sequences are 

most impervious to noise-induced detection errors if they are significantly differenl 

from each other. Mathematically, this translates into the requirement of signal 

sequences with large distance in Euclidean signal space. This new concept allowed the 

construction of modulation codes whose free distance significantly exceeded !.hr, 

minimum distance between uncoded modulation signaIs, at the same information rate~ 

bandwidth. and signal power. 

Following the above arguments, one encoder structure is shown in Fig. 2.1. 

Here, in order to improve errer performance, m bits of data over a period T must be 
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transmitted in redundantly coded fonn by a set of 2m+1 channel signaIs. We can ea1lily 

conclu de this as expanding the binary data sequence by suitable convolutional encoding 

with rate R=m/(m+ 1), and subsequent mapping of groups of m+ 1 bits into the larger set 

of channel signals. 

Xnm 

· · · · 

1 

• binary 

convolutional 

• encoder 

• R = m/(m+l) 

ym 
n 

· · · · 

yo 
n 

... . 

. .. 

.. 

Fig. 2.1 Multilevel encoder structure. 

mapping 
~ 

~= M(Yn) 

If m bits are not fully encoded and only m'(m'<m) bits are encoded, then ilnothcr 

general structure of TeM encoders/decoder is depicted in Fig. 2.2 [5]. 

According to this figure, TCM signals are generated as follows: When m bits 

are transmitted per encoder/modulator operation, m' < m bits are expanded by a 1 ail" 

m'/(m'+I) binary convolutionaI encoder into m'+l coded bits. These bite; arc used to 

select one of 2m'+1 subsets of a redundant 2m+l_ary signai set. The remaining m-- m' 

uncoded bits detennine which of the 2m-m' signais in this subset is to be tranSrTlIllnj 

With d(~, ~') denrJting the ED between channel signais :ln and ~', the encoder should 

he designed to achieve maximum free ED: 

• 



6 

m mm' -· · · · · } signal mapping nn 2 : · · · · (select signal · · 1 : · from subset) viterbi · X · de coder · ~ lrn ~' i ---+ · \J....I convolutional (soft · -!-+ · · . · . · · · · 

· 
} select subset Z! · encoder · · · 

~ate m'/(m'+l) ~ · · · · m'+l 

Figure 2.2 General structure of encoder/decoder for 

trellis-coded modulation. 

decision) 

(2.1) 

between aIl pairs of channel-signal sequences {lin} and {lln'} which the encoder can 

produce. 

In arder to compare trellis coded modulation with uncoded ones in a 

convenient way, we consider uncoded 2m channel signal modulation as a 5pecific 

one-state trellis coding as shawn in Fig. 2.3. The 2m "parallel" transitions jn the 

one-state trellis diagram of Fig. 2.3 [5] for uncoded 2m-modulation do not restrict to the 

o 

Fig. 2.3 One-state trellis diagrnm. 

sequences of 2m signais that can he transmitted, that is, there is no sequence coding. 
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Hence, the optimum decoder can make independent nearest-signal declslons for cadI 

noisy 2m-modulation signai received. The smallest distance between the :;rn signais IS 

denoted as .10 ' We caU it the "free distance" of uncoded 2rr'-modulation to use common 

tenninology with sequence-coded systems. 

Now, let us discuss sorne important rules for designing optimum TCM. 

2.1.1 Set Partition;ng 

The main significance of TCM technique is the mapping method betwecn the 

convolutional binary codes and channel signais, called "mapping by set partiuomng" 

[4, 5]. Through Fig. 2.4 we illustrate this concept for a 16-QAM channel sIgnai set, ,l 

signal set of lattice type "~". Generally, the notation "Zk" is used to denote an mflllite 

"lattice" of points in k-dirnensional space with integer coordinates. L'ittlce-type ~igna) 

sets are finite subsets of lattice points, which are centered around the origin and haw " 

minimum spacing of .10 ' 

First, set partitioning divides a signai set successively into smaller 'Iub..,et<. 

with rnaximally increasing smallest intra-set distances .11' i = 0, 1, .... Each panlllon I~ 

two-way. The partitioning is repeated m'+l times until ~'+l is equal to or grcalcr Ihan 

the desired free distance of the TCM scheme to be designed. The finally obtainlad 

subsets, labeled as Co' Cl' <;, C3 in the case of Fig. 2.4, will henceforth be referrcd to 

as the "subsets". 

Second, the labeling of branches in the partition tree by the m' + 1 coded bit~ Zn m' > 

Zn 0 , in the order as shown in Fig. 2.4, results in a label Z = {Zn m', ... , Zn 0 
} for each 

subset. The label reflects the position of the subset in the tree. This labeling lead~ to an 

important property. If the labels of two subsets agree in the 1ast q posiuons, but nol ln 
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Z;:=o 

BO~ 
· . . . . . 
, . ' .' , 
, '.+' • ' · ., .' , 

· '. ' . ' . . . 

. . . . .. 
· . ' ... 
· , '+' . . 
· . , .' . 
.. . . ." . 

· . .. .. · . .. . 
, ,e+, .' · . .. . . . 
, '. ' .' . . , 

AO 
"7_" 1 . • ..... &J]. atttce 

• ..... • A 
. •• + •• ...... U o 

•••••• •••••• 

BI 

• ••••• 
· e '+"':.: .. &1=...J2.10 · .. ' ~, 

· e ' .' . , , , 

z!=o / \~=l 
Cl/ '\ C3 

· ..... 
, • '+. ' , 
, , , 

· ...... . , , 

· . . . . . .. . . . 
900 CO ~CI~C2-+ C3-+CO 

Fig. 2.4 Set partitioning of the 16-QAM signal set (of lattice type "Z:z"), 
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the Zn q bit, then the signaIs of the two subsets are elements of the same subset at level q 

in the partition tree; thus they have at Ieast distance .1q• 

FinalIy, the m-m' uncoded bits Xnm', .. " Xn m'+l are used to choose a signal 

from the selected subset. The specifie labeling of subset signaIs by these bits is not 

panicularly important. In the code trellis, the signaIs of the subsets become associated 

with 2m-m ' paraIlel transitions, 

Then, the free Euc1idean distance of a TCM code can be expressed as 

d free = Min [!\n'+l' dfree(m')] (2.2) 
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where L\n'+l is the minimum distance between parallel transitions and dfrce(m') denotes 

the minimum distance between nonparallel paths in the TCM trellis diagram. In the 

special case of m'=m, the subsets contain only one signal, and hence there are no 

parallel transitions. 

2.1.2 Convolutional Codes/or TreUis-Coded Modulation 

The rate-m'f(m'+l) convolutional encoder depicted in Fig 2.2 recelves m' 

input bits, and generates m'+l coded bits which serve as the subset labels Zn = IZn
Ol

', ••• , 

ZnO] at rime n. The set of all possible sequences (bt), which the encoder l'an genemte, 

fonns a convolurional code. Valid code sequences must satisfy the followlllp, 

parity-check equation at all times n, 

m' 

I (hvizin_Y e hiv_tzin_V+l e ... hoiZni) = O. 
i=O 

(/.3) 

In this equation, e denotes modulo-2 addition. The quantity v I~ called the 

constraint length, or we can say that encoder realizations with v bmary ~tor;lg{" 

elements, which is equivalent to saying that the code ha:; 2v trellis states. The quantltle~ 

h1
i , y ~ 1 ~ 0; 0 sis m', are the binary parity-check coefficients of the code. 

To search optimum TeM codes, d2
frce(m') must be as large as pos~Jhk J..el 

• now {~n} and (~') = (~n e~) be two code sequences, where (~n) denotes the error 

sequence by which these sequences differ. Since the convolutional code is linear, (en} 

is alsa a code sequence. The squared free distance between non-parallel paths in the 

TCM trellis is bounded by [2] 



dfree 2(m') ~ Min l .1~(en) . 
(~)~(O) 

(2.4) 

10 

Here q~) is the number of trailing zero in ~, that is, the number of trailing positions 

in which two subset labels ~ and ~' = {Zn ES en} agree. This means that the distance 

between signals in the subsets selected by ~ and ~' is lower-bounded by .1q~). 

Minimization has to be carried out over all non-zero code (error) sequences {~} that 

deviate at, say, time 0 from the alI-zero sequence {Q} and remerge with it al a laler 

time. For any given sequence {en} there exist two coded signaI sequences whose 

signais have at any time n the smallest possible distance between the signais of subsets 

whose labels differ by ~. UsuaIly, this smallest distance equals .1q~) for ail ~. If this 

is the case, the above bound on dfree(m') becomes an equation. 

This equation is of key imponance in the search for optimum TCM codes. It 

states that free Euclidean distance can be determined in much the same way as free 

Hamming distance is found in linear binary codes, even though linearity does not hold 

for TCM signal sequence. It is only necessary to replace the Hamming weights of the 

en (number of l's in~) by the Euclidean weights ~~~). 

2.1.3 Searchfor Optimum TCM Codes 

For a given sequence of minimum intra-set distances Ao s .11 S ... L\n" and a 

chosen value of v, a convolutional code with the largest possible vaIue of dfree(m') can 

be found by a code-search progrnm described in [2]. The program perfonns the search 

for the (v + 1). (m' + 1) binary parity-check coefficients in a panicular order and with a 



II 

set of code-rejection roles such that explicit checks on the value of dcrcc(m') are very 

frequently avoided. FinalIy, another important aspect of TCM wIll be descnbed. 

2.1.4 Soft-decision Decoding 

The Viterbi algorithm is employed as decoder (soft decision). The Yucrbl 

decoding algorithm was discovered and analyzed by Yiterbi [15] in 1967. The Yuerbi 

algorithm essentially performs maximum likelihood decoding. However, it reduces the 

computation al load by taking advantage of the special structure in the code trellis. The 

advantage of the Viterbi decoding, compared with brute-force decoding, is that the 

complexity of a Viterbi deccxier is not a function of the number of .:;ymbols in the 

codeword sequence. The aIgorithm involves calculating a measure of similanty, or 

distance, between the received signal, at time ~, and all the trellis paths cntering each 

state at time ~. The Viterbi algorithm removes from consideration those trelhs path .. 

that could not possibly be candidates for the maxImum likelihood choice. When two 

paths enter the same smte, the one having the best metric is chosen; thi!! path i~ called 

the surviving path. This selection of surviving paths is performed for all the states. Thc 

deccxier continues in this way to advance deeper into the trellis, making decislon~ by 

eliminating the least likely paths. The early rejection of the unlikely paths reduce~ Ihe 

decoding complexity. Note that the goal of selecung the optimum pa th can br 

expressed, eqUlvalenùy, as choosing the codeword with the maximum hkelJhood 

metric, or as choosing the codeword with the minimum distance metric. 

= 
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2.2 TCM with Multidimensional Constellations 

Because of the effects of carrier-phase offset, recently, there have been a 

number of investigations into trellis coding with signal sets defined in more than two 

dimensions [8, 9, 16-20]. When a carrier-modulated two-dimensionaI TCM signaI is 

demodulated with a phase offset ~.' the soft-decision decoder then operates on a 

sequence of complex-vaIued signaIs {rn} = (~exp(j~.) + Wn}, where the <ln are 

transmitted TCM signaIs and the W n denote additive Gaussian noise. The phase offset 

~. could be caused, for instance, by disturbances of the carrier phase of the received 

signaI which the phase-tracking scheme of the receiver cannot track instantly. 

The effect of this phase offset can he explained as follows. In the trellis 

diagrams of TCM schemes, there exist long distinct paths with low growth of signal 

distance between them, that is, paths which have either the same signaIs or signaIs with 

smallest distance ~o assigned to concurrent transitions. In the absence of phase offsel, 

the non-zero squared distances ~o 2 and the squared larger distances of diverging or 

merging transitions add up to at Ieast the squared free distance. However, if phase 

offset rotates the received signaIs such that received signaIs bec orne Iocated haIfway 

between the signaIs of the original signaI set, the difference in distance between 

received signaIs and the signaIs on distinct transitions that are .10 apart may be reduced 

to zero. There rnay then be no difference in distance between a long segment of 

received signaIs and two distinct trellis paths, just as though the code were catastrophic, 

At this point, the decoder begins to fail. 

In generaI, it is desirable that TCM codes have as many phase symmetries as 

possible to ensure rapid carrier-phase resynchronization after temporary loss of 

synchronization. In practical systems, multi-dimensionai signaIs can he transmitted as 



sequences of constituent one- or two-dimensional (l-D or 2-D) signals. In this scetlOn. 

2k-D TCM schemes are considered which transmit m bas per cons.muent 2-D ~1~na1. 

and hence mk bits per 2k-D signal. The princip le of using a redundant '>Ignal ,el of 

twice the size needed for uncoded modulation i~ mallltained. Thus. 2k-D TCvl ..,L'lll'lIle'. 

result in less signal redundancy in the constituent 2-D signal sets 

Fig. 2.5 Partition of four-dimensional signal sets. 

It has been found that multi-dimensional TCM schemes have more 90° pha ... c 

invariance [20]. This is an important advantage which we deSIre. Also the larg~I "lgnJI 

spacing should make multi-dimensional TCM systems less senSIUve to pha~e uff'>l'I 1') J 

Now, let us analyse the multi-dimensional signal sets. For 2-D TCM ~çheme~ 

with "Zz"-type signal sets, the minimum signal spacing .10 mu,>t be reJuced by 

approximately the factor {2 (-3dB) to have the same average sIgnal power a\ for 

uncoded modulation. But this loss in signal spacing can be compensated hy (odJflg in 
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obtain an ove raIl improvement in free distance. Then the lower signal redundancy of 

multi-dimensional TC~ schemes with "~k"-type signal sets results only in a reduction 

of the minimum signal spacing by the 2k-th root of 2, so coding has to contribute Jess 

than in the case of 2-D TCM to detain the same gain in free distance. 

One example of set panitioning of four-dimensional signal sets is shown in 

Fig 2.5 [20]. The corresponding "~"-type signal sets is in Fig. 2.4. Note that sets (Co. 

Co)u(~, Cz), (Cl' Co)u(Co' ~). (Cl' CI)U(C3• C3). (C3, C1)U(CI• C3) of Fig. 2.5 

have the largest distance between them, and the effect of a 900 rotation is shown in Fig. 

2.5. 

2.3 TCM with Asymmetric Signal Constellation 

Symmetric signal constenations, Le., those with uniformly spaced signal 

points, have been used traditionaIly for TCM SC~lernes. But Divsalar and Simon use 

asymmetric signal constellations instead of Ungerboeck's symmetric ones for TeM to 

improve the performance [11, 21]. The results in [21] show that for 2-state TCM, 

significant performance improvement is achievable in sorne case relative to the 

equivalent symmetric design. The gain in free Euclinean distance of the two-state 

trelhs-coded asymmetric M level signal constellation over the uncoded M/2-point one 

is much better than the gain in symmetric M level signal constellation over the uncoded 

one. But in high coding complexity (the number of states is more than two in the trellh 

diagram), the amount to he gained by asymmetry diminishes; although the overall of 

the asymmetric coded system is improved, relative to the equivalent bandwidth 

uncoded Mf2-point system. 

By designing asymmetric signal constellations and combining them with 
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optimized trellis coding, one can funher improve the perfonnance of coded system!. 

without increasing power requirements or changing the bandwidth constraints mlposcd 

on the system. How to design asymmetric signal constellations? For signal sets wlth 

one degree of freedQm, e.g., MPSK and M-AM, the optImum asymmetric zn+l_rOll1t 

constellation to be used with rate n/(n+l) trellis coding is composed by a symmetrlc 

2n·point constellation and a phase rotated (for MPSK) or amplitude lTanslatcd (for 

M-AM) version of itself. For sorne signal sets with two degrees of freedom, for 

example, QAM, it appears that the optimum 2n+1-point asymmetric st lClUre lS 

achieved by the optimum 2n two-dimensional AM-PM structure with a rotatcd version 

of itself. In general, for arbitrary two-dimensional structures, the optimum asymmetric 

set is undoubtedly achieved by combining the optimum symmetric set contaimng half 

the number of points with a translated and rotated version of Ïtself. 

Another way using Ungerboeck's "set partitioning" concept to descnbe the 

M-point asymmetric construction is to imagine partitioning the symmetric M-poinl 

c,onstellation into two M/2-point constelhtions with maximally separated signab and 

then perfoml an appropriate rotation (MPSK), translation (M-AM), or cornbmation of 

rotation and translation (QAM) of one subset with respect te the other. Upon 

optimization of the amount of translation, rotation, or the combination of ùle two, the 

resulting two subsets can be used as the frrst level of set panitioning in U ngcrboeck' s 

method. The example of asymmetric signal sets is shown in Fig. 2.6. The approach of 

assigning signals to transitions of the trellis code is still based on a mapping ruk (,il lu; 

"mapping by set partitioning" [3]. 

Finally, the procedure for designing good trellis codes, combined with 

optimum asymmetric signal constellation, can be summarized by the following; 
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(a) Use the Ungerboeck's mapping rule caIled "mapping by the sel 

partitioning" method to partition the signaI constellation. 

(b) Assign signaIs from cither of the two partitions (each containing 2n 

signaIs) generated at the f1l'st level of partitioning in (a) to transitions 
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diverging from a given state. Similarly, assign signals from the other of 

the se two panitions to transitions remerging into a given stute. ll1esc 

assignments should be made such that the minimum distance between 

diverged transitions and the minimum distance between remerged 

transitions are as large as possible. 

(c) Find the free Euclidean distance of the TCM. 

(d) Maximize the free Euclidean distance of (c) with respect to the rotation 

angle ., or the translation ~, or both. These values of. and ~ define the 

optimum asymmetric signal constellation. 

2.4 A New Description of TCl\t 

Ungerboeck's technique for TCM consists of finding an underlying 

convolutional code and then mapping the output coded bits into channel signais 

according to rules referred to as "mapping by set panitioning". As an altemale 

approach, an analytic or algebraic, description of trellis codes has been introduced lJy 

Calderbank and Mazo [10]. They have shown how to realize these two operations in a 

single-step procedure. 

They directly consider the relationship of output channel signais and lnl.Jlli 

binary bits in rCM. A rCM code is then described as a "sliding window" mcthod of 

en~oding a binary data stream {~}, ai = 0, 1, into a sequence of real numbcrs (XI} 

which are transmitted into a noisy transmission channel. For the mte of k bits pcr 

channel symbol. each channel input Xi will depend not only on the most recent blod of 



18 

k data bits that enter the encoder but will also depend on the v bits preceding this block. 

Formally, 

Xi = x ( aik' ~-l' •.. , ~-(k-l) ; ~i-l)k' ... , ~i-l)k-(v-l~ , (2.5) 

most recent k-bit block, v bits preceding this block. 

Here, the states of encoder are detennined by the preceding bits, and for each 

certain state 2k possible output symbols are associat.,=d for each possible input block of 

k bits. The state for the next channel symbol is determined by shifting every ~ 

appearing in (2.5) k places to the right, dropping the right-most k bits, and inserting the 

new k-bit block at the beginning. 

Drawing this encoding procedure sequentially in time results in a trellis 

structure; hence the name trellis code. The procedure of analytical description trellis 

codes can be shown as in Fig. 2.7. 

.. . . 

· . . · · · · · · bk : 

Memory 

~+v 

~+l 
. . 

. 
~-v • 

Fig. 2.7 Analytic description of trellis codes. 

The channel input signal Xi is considered as a real-valued functioo of (k+v) 

binary variables (AM). Theo the simplification of (2.5) is shown as follow. 

., 
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(2.6) 

where n = k + v. In mathematics we note that any real-valued function x may be written 

as a sum of products of the ~, 

n n 
x(al' · ... lin) = Xo + ~ xi ~ + E Xij ~ aj + ... + Xl...n al a2 ••• <1n • (27) 

1=1 iJ=1 
j>i 

There are 2n constants on the right side of (2.7), one for each distinct product 

of the variables ~. They are determined by the 2n values that x(al' ... , Un) can take as 

pointed out in [22]. Through (2.7), they realize the purpose to express directly the 

relationship between output channel signal and input binary data. 

For trelIis codes. in order to take advantage of the signal symmetry, both i Il 

the signJ.1 set and more generally in the trellis, a conversion from binary to ± 1 input 

bits is perfonned. Then (2.7) is changed ta the desired form, 

x ~ x(b1, •••• bn} = Xo + l xi bi + l Xij b l bj + ... + Xl .. n bl ... bn • (2.8) 
i iJ 

where bi = ±l and the constants in (2.8) are not the same as in (2.7). Calderbank ,1110 

Mazo suggested that a method to detennine the constants on the right side of (2 8) 1<' to 

regard the 2n values of x(b1, .... bn} as a vector x of dimension 2". Similarly, regard the 

2n values taken byeach product of the variables bl as a vector of dimension 2n. Then, 

the vector of coefficients on the right side of (2.8) can be viewed as the Hadamard 
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transfonn of the vector x [23]. 

The alternative description of trellis codes described in above is analytic rather 

than graphicaI, allowing some statistical questions to be easily treated, and still the 

transmitted power spectrum is not affected by the coding. Funhermore, many practical 

codes are simple to describe. 

Calderbank: and Mazo resmcted their anaIysis to rea!-vaIued functions. That 

is, mey only looked at the one-dimensional(1-D) case or Amplitude Modulation. 

Turgeon and Mclane extend their ideas to multi-dimensions and to rotationally 

invariant trellis codes [24]. We can consider respectively each component of complex 

signal as a reaI-valued function of input bits. 

From Calderbank and Mazo's method the channel signais is expressed as a 

function of input binary bits in terms of 2n constants. The resulting function may be 

viewed with an equivalent matrix equation [25] as follows: 

X=BD (2.9) 

where X = channel signal matrix 

B = Hadamard matrix with elements ±l 

and D = matrix of constants to be determined. 

But here, in equation (2.9), we have, 

XT = (x(b1• b2• "" bn)}, bi = ±I 

(D x 2n matrix) 

Bk = {l, b l , b2, ... , b l b2 ... bn} 

(kth row of 2n x 2n matrix ID 

DT = {da, dl' ... , d12 .. .n} 

(2.10) 
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(D x 2n matrix ofunknown) 

where D is the number of signal dimensions and supcrscript T denotes matrix 

transpose. 

Then, we can make the following conclusion: although Calderbank and MalO 

only looked at the one·dimensional trellis-coded scheme!l, however, no malter what the 

number of signal dimensions is, the input bits can only take two values, that IS :t 1 

Hence, the Hadamard matrix B remains unaffected by the chOlce of dnnension. The 

only change is that the matrix of constants, D, has the same number of dlmen!lÎons a~ 

the channel signaIs x. Clearly, equation (2.9) could always be used for any trellis code. 

2.S Multiple T'CM for Gaussian and Fading Channels 

A trellis coded modulation technique referred to as multiple trellis coded 

modulation (MTCM) is developed by Divsalar and Simon [26, 27J, wherein more than 

one channel symbol per trellis branch is transmÏtted. The principle behmd thelT 

discovery is to design a rate nk/(n+l)k (k = 2, 3, 4 ... ) encoder and comb me it wah a 

2n+l_point signal constellation outputting k of the se signal points (one for each group uf 

n+l encoder output symbols) in each transmission interval. In each tTanSmlS~lon 

interval, lm bits enter the encoder and k symbols leave the modulator, we ~till have :1 

unity bandwidth expansion relative to an uncoded 2n·pOInt uncoded system Wh('/I 

values of k are greater than 1 ( k = 1 corresponds to the conventional TCM sy~tem), Ihc 

vaIues of dfrcc are increased with symmetric modulations for cenam cases. They have 

found simple two-state trellis codes for symmetric MPSK and AM modulation~ whlch 

can achieve 3dB gain over uncoded modulation at very high signal-to·noi~e TaIIŒ 
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without bandwidth expansion and without reduction in infonnation bit rate. 

Indeed, MTCM may also be thought of as a coding onto a multidimensional 

signal set constructed from successive channel symbols [7, 16, 18, 28-30]. But, there 

are differences between the two. The encoder used in Multidimensiona! Trellis Codes 

is rate nk/(nk+l) [5] which is different from a rate nk/(n+l)k encoder used in MTCM. 

In other words, MTCM differs !rom the other multi-dimensional codes in the sense that 

the size of the channel symbol set is always twice the size of the uncoded set used for 

comparison. MTCM is also different from lattice coding [28]. The theory of set 

construction used in lattice coding cannat be directly applied ta MPSK modulation. 

For k=2, the partition of signal sets is similar to that of high-dimensional sets. 

But, for k=3 or more, we cannat directly use the partition of high-dimension signal sets. 

Since the simple two-state MTCM shows a significant improvement over the uncoded 

case, we de scribe the general mapping rule for 2-state MTCM. Suppose that the 

original signal set is fIfst divided into two subsets Ba and BI as maximally increasing 

intra-set minimum distance. The rules used here are, 

(1) the transitions emanating from state "0" will be assigned with signaIs 

in partition Bo; partition BI will be used for transitions emanating from 

state "} "; 

(2) for 2M '! parallel paths between like states (or unlike states), assign ta 

each parallel path a sequence of k symbols from a partition (Bo or BI)' 

such that the minimum squared distance between any two of these 

parallel paths is equal ta twice the minimum squared distance between 

points in the partition; 
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(3) the remaining 2nk.1 k-tuples fonned from symbols in the same parution 

are assigned to the parallel paths corresponding to a transition to an 

unlike state. The minimum squared distance arnong aIl paIrs of 

parallel paths betweel} unlilr; states will also be twice the minimum 

squa.red distance between points in the partition. 

According to above mapping rule, the minimum squared distance among aIl 

pairs of paths consisting of a path between like states and a path between unlike states 

both originating from the same state is only equal to the minimum squared dist2..'ce 

between the points in the partition. The place where the trellis multiphcity k has ilS 

influence is in regard to the minimum squared distance among aIl pairs of path~ 

consisting of a path between like states and one between unlike states where the two 

paths originate from two different states. With the above k-tuple assignments, thi~ 

minimum squared distance is k times the minimum squared distance between points in 

one partition and points in the other. dfree perfonnance is improved when the mimmum 

distance associated with the error event path of length 2 increase wi th the increa~e of k. 

Recently, Divsalar and Simon have introduced the technique of Muhlpk 

Trellis Coded PSK for fading mobile satellite channels. In previous publicauons l] 2, 

31-33], they have considered the perfonnance of conventional and multiple treJJi~. 

codes in a Rician fading environment characteristic of the mobile satellite channel 

Results were reported for both the case of coherent detection and deferenually coherent 

detection with and without the use of channel state information (CSI). The pnmary 

emphasis in the se previous works was the degradation in performance produccd by the 

fading for trellis codes designed to be optimum on the additive Gaussian noise channd 
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(AWGN). 

In recent papers [\3, 14], they look more carefully into the properties of the 

average bit error probability of trellis coded modulation (l'CM) and then proceed to use 

these as design criteria for conventional and multiple trellis codes operating over a 

fading channel. It is shown that, over Rician fading channels with interleaving/ 

deinterleaving, the asymptotic performance of TCM at high signal-to-noise mtio (SNR) 

is dominated by several other factors depending on the value of the Rician parame ter k, 

Le., the ratio of direct plus specular power (coherent components) 10 diffuse power 

(noncoherent component). In particular, for small values of k (the channel tends toward 

Rayleigh), the primaI)' design criteria for high SNR become: 

1) the length of shortest error event path. 

2) the product of branch distances along that path with dfree a secondary 

consideration. 

Thus, the longer is the shonest error event path and the larger is the product of the 

branch distances along that path, the better the code will perform even though dfree does 

not achieve its optimum value over the A WON! 

The set partitioning method used for optimally designing trellis codes to he 

transmitted over the Rician fading channel is different from Ungerboeck's method, 

which is used for oprimally designing trellis codes to be transmitted over the additive 

white Gaussian noise (A WON) channel. The procedure will be based on the optimum 

performance criteria developed for this channel. In fact, it may not lead to a tree 

structure. 
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Why have they used multiple TCM for fading channel and not convention al 

ttellis codes (Le., tholle with one channel signal per branch)? Considering the critena 

for designing TCM to achieve minimum error probability perfonnance over the fadmg 

channel described above, indeed, it was shown that the analogy to maximizing 

diversity was to design the code such that the length (as measured by the number of 

channel signals) of the shonest error event path is maximized. It i~ observed that for 

ttellises with parallel paths, conventional trellis codes are limited to a diversity of one. 

Furthermore, for trellises with no parallel paths, the diversity achievabie with 

convention al trellis codes is stilllimited to the number of branches along the shonesl 

error event path. But allowing for multiple symbols per trellis branch, i.e., multiple 

ttellis coded modulaJon (MTCM), provides an additional degree of freedom fOi 

designing a code to meet the oprimization criteria on the fading channel. In panicular, 

we are able to achieve diversities larger than those achievable with conventional trellis 

codes having the same number of ttellis states. It is here where the MTCM technique 

exploits its full potential. 

2.6 Other Works to Improve TCM 

Sorne interesting new TCM schemes that exhibit modest improvements are 

shown by Forney, JR. et al. in [7]: a 2-state code that has a nominal coding gain of 

aImost 3 dB, and an 8-state trellis code with a coding gain of 4.5 dB. The idea in the 

2-state scheme is to use subsets that are partially overlapping and partially distinct. '1 he 

other one in the 8-state scheme is to use a 4-dimensional constellation as tf]e basic 

constellation(4-dimensional ttellis codes have aIso been studied by Wilson 134) and 

Fang et al. [35].). Two simple examples will be described to illustrate these ideas 
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For the 2-state scheme they use a 80-point signal constellation, which is 

divided to four subset A', Ali, B', B". Each of four subsets has 32-points. A' and A" 

both include 24 same inner A points, but each includes a different 8 outer points; and 

similarly with B' and B". Thus A' and Ali are partially overlapping and partially 

disjoint, and 50 are B' and B". For a 2-state treIlis diagram, the squared distance 

between two paths beginning and ending at common nodes remains 2rlo 2 since the basic 

distance propenies between A subsets and B subsets remain [4]. And there also is a 

slight reduction in power due to the increased constellation size. 

In another 8-state trellis code they first divide a two-dimensional 2n-point 

rectangular grid into four subsets . Then the binary convolutional encoder for this 

scheme, operates on pairs of symbols (4-dimensional signals). During each pair of 

symbol in terval s, three bits enter the encoder and four coded bits are produced. The 

fust two coded bits select the subset for the fust symbol and the ,second two bits select 

the subset for the second symbol. The minimum free Hamming distance of this 

convolutional code is 4. The ~Iquared distance between any two sequences 

corresponding to different encoded outputs is at least 4do
2• Over two symbol intervals, 

2n-l bits enter the modem and one parity check is generated, giving 2n bits to select the 

two signal points. Since (n-1/2) bits/symbol enter the modem, there is a loss of 1.5 dB 

due to the larger signal constellation. And then a gain of 6 dB in distance is reduced to 

a net nominal codin~ gain of 4.5 dB. 

Traditionally, for a rate of n bits per channel symbol, a 2n+1 point constellatjon 

is used for TCM schemes, in both of Ungerboeck's methods and Calderbank and 

Mazo's schemes. Calderbank and Mazo's analysis description of TCM has an 

important advantage than Ungerboeck's which is to simplify the procedure of TCM 

design. Even though Forney, et al. [7] have introduced a new channel signal 
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constellation which has less than 2n+1 points for trellis coded QAM modulation which 

has the advantage of reduction of average power of channel signais. But they re ... tncted 

to 2-D dimensional one, and also did not find its analysis description. In this the~is. wc 

study the panially overlapped signal constellations which have Iess than 211 1-1 pUlnt!'> fOl 

1-D, 2-D and multi-dimension. To keep the advantages of both of thl.' p.lrtlally 

overlapped constellation and the analytic description of TCM, we preselll the an.llytll,ll 

description of TCM's with the partially overlapped constellation in one anJ tWIl 

dimensions. Funhennore, analytically described trellis coded modulatIOn will! 

high-dimensional partially overlapped constellation is studied, because the larger ~ignal 

spacing of multi-dimensional constellation can make TCM systems less sensltlvc 10 

phase offset and also compared to low dimensional schemes, this results in \cs!'> ~lgnal 

redundancy in the constituent low dimensional signal sets [36, 37]. 
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There is a growing need for reliable transmission of high quality voice and 

digital data in digital communication systems. These systems are both power and 

bandwidth limited. By integrating both coding and modulation into a single entity, the 

technology of TCM has provided significant coding gain without bandwidth expansion 

when comparing to uncoded conventionaI uncoded signal sets. This is the work that has 

laid the foundation for the design and development of ail power and bandwidth 

efficient digital modems in practice today [3-5]. Recently, many people work on 

modification and improvement of TCM. These works have developed and perfected 

TCM to adapt the need of high quality transmission of digital signal. In this chapter, we 

will show our new analytically described TCM with partially overlapped 

constellation[36, 37]. It reduces implementation complexity and also possesses other 

desirab1e ~ror~rties. 

3.1 Introduction 

In Ungerboeck's TCM representation, first n input bits enter a rate n/(n+ 1) 

convolutional encoder, and then the n+ 1 output bits of the encoder are assigned to the 

channel signaIs, from a 2n+1-point constellation, according to th~ "mapping by set 
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partitioning roIe". The added redundancy obtained by doubling the number of channel 

signaIs (compared to a corresponding uncoded scheme) allows Ungerboeck to achievc 

significant gain over uncoded modulation. 

Calderbank and Mazo presented an analytical description of the trcllis codes 

which combine Ungerboeck's two steps into one [10]. In Calderbank and Muzo's 

representation, they express the channel input signal, as a function of the input bits 

(2.8). To search the optimum codes, they use the computer to find d2 mm' 111C method i" 

to use the graph of possible transitions, where edges are labeled with the contributIOn or 

the transition to d2• More specifically, in this graph the state to which the tramitIon i~ 

made is used to determine which tenns of the code are excited when evaluating. A ~tale 

(0 ... 0) has been introduced as an initiaI state. and the length l ,.If an CITor event 

corresponds in this graph to a path of length 1 from (0 ... 0) 10 (0 ... 01). 

Turgeon and Mclane have used the same method for two· and 

four-dimensional cases[24]. 

Ungerboeck, Calderbank and Mazo [10], Turgeon and Mclane [24] still use 

the traditional 2n+1-point signal constellation for input n bits codes. In this chaptcr, we 

investigate the use of constellations having less than 2n+1-points called the partlally 

overlapped signal constellations [7]. Partially overJapped signal constellatIOns an', 

formed by omitting some of the high power signal points of a conventional 2n+1-pOlnt 

constellation. This results in a constellation with s,,-:"sets having common SIgnal pOIrlI~ 

Since the number of points in such a constellation is less than what n+l bit~ al lht 

output of convolutional encoder can address, sorne of the signais, preferably sigllaJ<.. 

having Iowest power, should be used more than once. This in tum results in a ~aving In 

transmitted energy, and therefore, in a coding gain as compared to the TCM schcmcs 

using conventional constellation. 
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3.2 Partially Overlapped Signal Constellation 

3.2.1 Anolytical Representation 

In represenlation of (2.8), before we set Xo equal to zero since it does not 

contribule to the distance. Also. in order to have 2n+1 signaI points, exactly n+ 1 tenns 

of (2.8) should hav= non-zero coefficients. For example, for a 16AM/8AM TeM code, 

Le., for n=3, oflly four ternI expressions of the fonn, 

(3.1) 

should he considered, where fi(.), i = 0, ... ,3 are products of different subsets of {bl' ... , 

bm}, and, therefore take values ±1. 

Il is obvious tbat in order to have 2n+1 distinct signal points, i.e., for TeM 

schemes with conventional constellation, there should not he any linear dependence 

between subsels of {ao' ... , Un} with coefficients ±l. To see this we assume ulal 
k·l 
~ ~LJ cJ = (l where, cJ = ±1, j ; 0 , ... , k-l, and k ::;; n+ 1. Then, these k coefficients result 

in 2k-l (and DI. 't 2k) values, and, therefore, if there is no other such linear dependence 

between remailting n+l-k coefficients, the number of distinct signal points will he 

(2k_l)2n+l'k=2n+l_2n+l.k. For example, in the case of n=3, if we let Œo=l, al=2, fl?,::< 

Q3=4 in (2.3), then we have a linear dependency relationship of the Conn ~-a3=O' and, 

therefore, k=2, and the number of points will be 24.24-2=12. If there are more linear 

dependency relationships hetween the coefficients, then more points will overlap 



31 

resulting in a constellation with even fewer points. Let's consider the situation whcre 

there are two linear dependency relationships involving k1 and k2 terrns. Furthcnnore, 

assume that ka of the tenns are common in two relationships. Then, it is easy to show 

that the number of points in the resulting constellation is, 

As an example, take the expression (2.3) again, but this time wlth {Xo-= 1, (1 1:-­

~= 2, and 0.3= 4. Then, wc have two linear combinations, Œ1- <lz= 0 and (II+ 0.2 u\­

O. so, k l= ka= 2, k2= 3 and, therefore, the resulting constellation has only 10 points, 

namely, ±l, ±3, ±7 and ±9. Deriving expression similar to (3.2) for other cases of 

interest is a straight forward practice. 

3.2.2 Coset Representation 

Calderbank and Sloane [28] made the observation that signal points can be 

considered as finite subsets of infinite lattices. This observation resulted into 

representing the TCM schemes in terms of coset codes [19]. A lattice A b an mhml( 

regular set of points in an N-dimensional space. Signal points are taken from a finitl' 

subset of points lying inside a coset of A the form A+c which is the ~ct of N -tuple~ of 

the fonn Â.+c, where Â.eA, and therefore A+c is a translate of A. A sublatuce A' of 1\ ,', 

a subset of elements of A which is itself a lattice. A sublattice A' induces a parution of 

A, denoted by NA', into equivalence class, we obtain a set of coset represcntatIve~ for 

the partition A/A', denoted by [NA']. Then we can write the following CO\Cl 

decomposition of A, 
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A = A' + [NA']. (3.3) 

That is, every element of A can be written as Â = Â' + c where Â' eA' and 

cerNA']. For example, take A=Z, Le., the set of all integers and A'='2Z, the set of even 

integers. Then 0, and 1 from a system of coset representatives for the partition ZI2Z, 

i.e., Z can be regarded as the vision of 2Z, and 2Z+ 1. 

U sing the idea of coset decomposition, a TCM code can be represented using 

the structure of Fig. 3.1 [19]. 

m bits Binary m+l bits Coset Selector 
Encoder NA' 

oneof2m+1 

cosets of A' 

n - m uncoded bits Signal Point 
Selector one of 20 +1 . 

signal pomts 

Fig. 3.1 General structure of a coset code [19]. 

It is evident that when the number of points in the constellation is less than 

2n+l, the poi,nts cannot he partitioned as explained above. However, there is stiU 

possibility of de composition into overlapping subsets. In particular, consider the. 

lO-point constellation discussed above. Points of this constellation can be written as, 

(3.4) 
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From (3.4), one can immediately see that th~ constellation can be decomposed 

using finite subsets of lattices 4Z and 2Z (more accurately 4Z + 2 and 2Z + 1). That is, 

each point in the constellation can be written as Â. = Â,' + c where Â.' e (-6, -2, 2, 6) and 

ce{ -3, -1, 1, 3}. Now, the structure of Fig. 3.1 can be modified, for an n = 3, m = 1 

reM code, as follows. Two bits at the output of the encoder choose one of four "coset 

leaders," fI, ±3, and uncoded bits b2 and b3 choose a point from the set c + {±2, ±6} 

where c is the "coset leader" selected. 

3.3 Examples 

In this section, we present two examples demonstrating the application of 

panially overlapped signal constellations for the design of TCM schernes. Botb 

examples are simple two state codes. The first example is a one-dimensIOn al scherne 

using the lü-point constellation described above. The second ex ample uses a 12 poi nI 

QAM constellation. 

3.3.1 AM Examples 

In this sub-section, we consider a two-state, n = 3 code using the lO-point 

constellation discussed above. First bit, bl' specifies the state. Therefore, therc are four 

parallel transitions between any two states specified by the values of b2 and b1. ft is 

obvious that there are four groups of such paraUe! transitions between states Each 

group can be specified by b4 and bl' where, b4 and bl detennine the old and new states, 

respectively. In order to minimize the distance between the parallel branches, wc 

assign to each set of parallel paths one of the cosets of (±2, ±6). In othcr words, b J and 
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b4 de termine CE {±1, ±2} and b2 b3 choose one of four points in c + {±2, ±6}. That is, 

the channel signal x cao be written as x = Xl + x2' where Xl is a two term expression 

with coefficients 1 and 2 and involving only bl and b4 while x2 has coefficients 2 and 

4, involves b2 and b3 only. In 2.1 the TeM design criteria has been discussed, the 

optimum TCM is which with the largest minimum squared Euclidean distance called 

the squared "free distance". Il is easy to write a program to search for the codes with 

the largest squared "free distance" among the codes satisfying the above mentioned 

assignment rules. However, simple codes such as present example, can be designed by 

hand. In particular, the following additional mapping mIe can be helpful. Fig. 3.2 

shows a two stage decomposition of the lO-point constellation into four previously 

mentioned subsets. Note that while sets A' and A" (also B' and B") overlap, none of the 

pairs (A', B'), (A", B"), and (A', BU), (A", B') has points in common. 

Our additional mapping rule of assigning the signais to the transitions in the 

trellis diagram is as the following, 

1. paraIlel transitions are associated with signais with maximum distance 

between them, in other words, the signais in the four previously 

mentioned subsets. 

2. non-overlapping signal sets are assigned to transition sets leaving or 

rnerging to a given state. 

3. signais are used in the trellis diagram with unequal frequency, sorne 

signais with lowest power are used once more than that other high-power 

signai he used. 
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.. 

. ............... . ............... . -. 
A' B' · A B A B A B . Ali B" · · · · -9 -7 · -5 -3 -1 1 3 5 7 9 · · , .................. • ............ 4O" ... .. ·1 

•.............•.. .......... . ............ ,. .. .. ............ 
A' . A A A:. B' · B B . · B 

. +-~ .. 
-9 -5 -1 3: -7 -3 1 5 

... 4O ••••••••••••• . .......... , · · .............. 

~ .. .. . . . . . . ... . ........................ , 
: A A A Ali : B B B" . . . . 
: -5 -1 3 . 7 : -3 1 5 : 9 
.................................................. 

Fig. 3.2 Decomposition of lO-AM constellation. 

A trellis diagram for a two-state, n = 3 trellis code using the JO p01l1l 

constellation is shown in Fig. 3.3. 

B" B" 
1 (}----7I"-------Q.----,--.- " --' ._.,) 

,'/' 

-1 

Fig. 3.3 A trellis diagram for 2-state, n = 3 trellis code. 
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Note that this subset assignment is not unique. We can simply replace each 

A'(B") with A"(B") and vice versa and obtain another code (Fig. 3.4). 

1 

-1 

Fig. 3.4 Another trellis diagram for 2-state, n=3 trellis code. 

Also assignment of uncoded bits, bz and b3, to points of each subset is not 

specified in Fig. 3.3. If we assign the bits to points of the subset using Gray encoding, 

we have the TCM scheme with the following analytical representation, 

(3.5) 

The values of Xl' and x2 as a function of bl' b4, and b2, b3 respectively are 

given in Fig. 3.5. 

Another possible code for a trellis diagram in Fig. 3.4 is, 

(3.6) 

Now we calculate the coding gain of this scheme over uncoded 8-AM 

modulation. Firstly, we discuss uncoded 8-AM modulation. As it has been discussed in 

2.1, we consider uncoded g·AM modulation as a specifie one-st.'lte trellis coding as 

shown in Fig. 2.3. The smallest distance between 8 "parallel" transitions in the 
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6 1 1 3 1 1 
-+-__ +-~t_...\-_---,-~~ Xl 

-6 -2 T 2 6 

2 1 -1 -3 1 -1 

1 -6 -1 1 -1 1 -+----+I~t~+_--_+~~ XI 

-3 -1 T 3 -2 -1 -1 -1 -1 -1 

Fig. 3.5 Value ofx2 and xl depending on b2• b3 and bl , b4 respectivdy. 

one-state trellis diagram is called the "free distance" of uncoded 8-AM modulation. Sn 

that d2
free= 4 and, 

The free squared distance for the TCM scheme repre~ented in (3.6) wlth 

trellis dia gram shown in Fig. 3.3 is 

and the average power is, 

So, the coding gain is, 

8/25 
G = 10 log -- = 2.253 dB 

4/21 

which is 1.335 dB more than 0.918 dB coding gain of the comentional TCM ~chcmc. 
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using 16-AM constellation. More eoding gain can be obtained by increasing the overlap 

between the subsets of the constellation. For example, a similar TCM scheme using an 

8-AM constellation, i.e., a constellation with totally overlapped subsets gives a coding 

gain of 3 dB over conventionaI uncoded scheme. However, the problem with this code, 

which can aIso be considered as a limiting case of an asymmetric TCM scheme [21], is 

that it is catastrophic, it has infinite length error events with inrmite Euelidean distance 

and nonzero probability. Note that, our code also has infinite length error events with 

distances not exceeding 8. However, in this case the probability of these error events is 

zero. This is due to the faet that with a probability of p = 0.25 a point chosen at random 

form A'(B') is not a member of A"(B"). That is, two paths diverging from a given state 

are forced to reconverge to a common state on average p symbols [7], e.g., every 4 

symbols in our scheme. 

3.3.2 QAM Examples 

In these examples, we use a 12·point 2-dimensionaI constellation. Again, the 

code has two states and 0=3. The constellation together with corresponding set 

decomposition is shown in Fig. 3.6. Note that this constellation is fonned by removing 

four outer points of a regular 16·point constellation and using four inner most points 

twice. 

The treIlis diagram is as that of the AM example shown in Fig. 3.3. A possjhlr. 

analytical representation is, 

Another one is, 

.., 
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A' B" 
o • • 0 

~".B pf!l" 
• B .An 

.~ 
Ali 

A~ • B" 

A' • .A .A B. B • B'~ .. 
A. A. A~ • B' .B .. B 

• Ali B' • 

Fig. 3.6 12-QAM constellation and its set decomposiuon. 

and the trellis wagram for this code is same as which is shown in Fig. 3.4. The value~ 

of xl' and x2 as a function of bl , b4, and b2, b3, respectively are given in rig. 't', fOI 

(3.7). Here, first bl and b4 select c E {±1, ±j} and then, b2 and b) choose il point I!OIll 

the suhet c + {±2, ±j2}. The minimum squared distance between parallel path is 8. For 

the mÎllimum error event (of length two, see Fig. 3.3 and Fig. 3.4), we hav~, 

and the average power is, 
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X2 

(1. -1) 

x2 b2 b3 xl bl b4 (b2• b3)=(1, 1) 

2 1 1 l+jl 1 1 

j2 1 -1 I-jl 1 -1 

-j2 -1 1 -1+jl -1 1 
o (bl. b4)=(1, 1) 

-2 -1 -1 -1-j -1 -1 

~ 

(-1, -1) 0 1 0(1. -1) 

Fig.3.7 Value of x2. xl depending on b2• ~. and bl • b4 respectively. 

For a corresponding 8-PSK, with average power of 1, 

d2
free = 0.7652 = 0.585. 

And therefore, the coding gain of our scheme over uncoded 8-PSK is 

G = 10 log 8/6 = 3.58 dB. 
0.585/1 

The coding gain over an uncoded 8-AMPM. with a minimum distance of 8 

and an average power of 10, is 

G = 10 log 8/6 = 2.22 dB. 
8/10 
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This is 0.46 dB more than the coding gain of a TCM scheme with a 16-point QAM 

constellation. 

For the QAM example, p=O.5, i.e., a point chosen at random from the subset 

A'(B') has a fifty percent chance of not being in A"(B tI
). That is, two pauls dlverging 

from a common state are forced to reconverge to a common state on average every two 

symbols. 

An extra 0.79 dB coding gain can be obtained using a constellatIOn wllh 

totally overlapped subsets, i.e., using 8-point QAM constellation ~hown In Fig. 'i.H. 

Then, the coding gain of our scheme over uncoded 8-PSK is achieved to 4.36 dB, and 

the coding gain over an uncoded 8-AMPM will be 3 dB. That is bcc~lU~e of the 

reduction of the average power Pav. However, by doing so, we will haw p 0, amI 

therefore, the code will be catastrophic. 

A B 
• • 

B A 
• • 

._~ 

A B 
• • 

B A 
• 5 

Fig. 3.8 A 8-point QAM constellation. 
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3.4 Further Analysis of the New Codes 

Calderbank and Mazo have developed the analytic description of the trellis 

coded modulation using only one step instead of Ungerboeck's two steps; finding an 

underlying convoluùonaI code and then mapping the output coded bits onto channel 

signaIs according to rules referred to as "mapping by set partitioning". The advantage 

of their work is to simplify the procedure of TCM design. Author has analysed the 

opùmum codes which are shown in Calderbank and Mazo's paper [10], and then found 

that these codes are also suitable to the Ungerboecl .. 's "mapping by set panitioning 

rule". Now, we ~an get this conclusion: 

Even though that Ungerboeck and Calderbank, Mazo have used different 

methods to search the optimum TCM codes, the resuIts of searching optimum codes are 

the same; Cenainly, sorne results in Calderbank and Mazo's codes are slightly better 

than Ungerboeck's codes. But this is only because of the asymmetry of signal 

constellation. If they use the same signai constellation with Ungerboeck's codes, the 

results should be the same as that of Ungerboeck's codes. 

The important advantage in Calderbank and Mazo's method and aIso in ow 

new codes is that opùmum TCM codes can be simply searched using only one step. But 

for funher understanding of the new code, it is very helpful to analyse the result of 

searching optimum codes using the graphicaI method rather than anaIytic one. 

3.4.1 TIJe Set Decomposition 01 the Partially Overlapped Signal Constellation 

It IS helpful if we compare the set decomposition of our new signal 
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constellation to Ungerboeck's "set partitioning" rule, the set decomposiuon of the 

partially overlapped signal constellation is similar to that set partltloning of the 

traditional constellation. From Fig. 3.2 and Fig.3.6, it is shown that the first step of set 

decomposition is the same as Ungerboeck's. Subsets at this Ievel are not at all 

overlapped. The intra-set distance is maximally increased. The second ~tep of 'Ict 

decomposition is different. The subsets at this level which are from the sa me subsets ar 

level 1 are panially overlapped and partially disjointed. Aiso the intTa-set (h~tanct' al 

this level is the same as the one at level 1. But the important thing is that the number of 

subsets and the number of points in each subset are the same as those in set partlUOl1lnp, 

at this level of the traditional2n+1-point constellations if this new signal constellation l~ 

for input n bits per symbol TCM. 

3.4.2 The Overlopping Property oflhe New Signal Constellation 

More coding gain can be obtained by increasing the overlap between the 

subsets of the constellation which has been discussed above. If there is no overlap 

between the subsets, that is the tradition al signal constellation set partition WhlCh J~ 

used to use for TCM before. If a TCM scheme use the signal cons~ellation with tOlully 

overlapped subsets, it will give a significant coding gain. However, as previou~Jy 

mentioned in section 3.3, this type of limiting case results in a cata~trophic trelh'i nxk 

In practice, one would not use this limiting case. It just be considered as theon',lleal 

research. How much extent of overlap is the optimum choice for the new con~tcllatJ{)Il'1 

The main consideration is to reduce the average power of the constellation and at the 

same time to keep the number of points in each subset and the number of sub~cts the 

same as that of traditional constellation set partitioning. So we like to repeat using tilt' 
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low-power points instead of the high-power points. In other words, we like to have as 

rnuch extent of overlap of subsets as possible. However, in order to avoid a catastrophic 

trellis code, we must keep the pans of subsets which are disjointed. For AM 

constellation, aIl points have different powers. So, subsets are required only to kecp the 

smallest number of hlgh-power points for the disjointed pan to reduce Pav' But for 

QAM constellation, sorne points of the constellation have the same power. Also for the 

convenience of analytic representation, the subsets should he needed to keep the 

number of points for disjointed parts which make the average power the smallest. 

3.4.3 The Mapping Rule for Input Bits to Output Channel Signais 

The mapping rule for input bits to output channel signals can be considered to 

he similar to Ungerboeck's codes, but they are different. (a) Even though there is no 

binary rate n'/(n'+I) convolutional encoder (here n'= 1), n'input bits (b l ) and the bits 

(bot) for the state are still used to select one of 2n'+I= 4 subsets. The function is the same 

with Ungerboeck's codes; (b) the rernaining n - n' bits (if total input "'ts are n bits per 

s~/mbol) de termine one of the 2n-n' signais within the selected subset; (c) aIl signals in 

the final level subsets should he equiprobable. It should be noted here that because. 

sorne subsets are partially overlapped with lower-power points, so that sorne 

low-power signaIs are used twice as often as other high-power signaIs. 

Finally, we compare our codes with Calderbank and Mazo's in graphkal 

analysis. According to the above dif, <'. '. ion, for input bits bl ... bn per syrnbol, we let 

transrnitted channel signal x is composed of Xl and x2' x2 is the function of the most 

recent bit bl and the previous bit bn+l which is for state and Xl is the function of b2 ... bn. 

The basic structure of subsets at final level is fonned by the different values of x2' And 
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the values of xl give the several positions to shift the basic structure and then to fonn 

the several subsets. For AM TCM the difference between Calderbank and Mazo's 

codes and our newly designed codes is the values of Xl' They give the values of Xl to be 

different enough from each other to make the subsets to be unoverlapped at aIl. But thc 

values of Xl according to the new design role make sorne of the subset5 partially 

overlapped each other. The principles for QAM are the same and are not nccc!>sary 10 

he discussed again. 

3.5 Multi-dimensional Trellis Codes 

Ta immune to a carrier phase offset of a in the receiver, a rotationally 

invariant coherent modulation(/demodulation) scheme is desirable. In an uncoJcd 

coherent modulation scheme, rotation al invariance can be easily achieved by using a 

differential encoding(/decoding) technique, which maps (recovers) input data inlO 

(from) the phase difference between the CUITent and previous (estimated) signal points. 

For coded coherent modulation schemes, the issue of rotational invariance 15 more 

complicated. A general structure for coded coherent modulation schemes 15 ~hown ln 

Fig. 3.9 where n is the number of information bits. Xn and Yn are the coordmale~ of a 

2-D signal point. In the receiver, the coherent demodulator outputs a recelved ~ignal 

point (xn, Yn) which is noisy and possibly rotated by a phase angle equal 10 ,\ pha\e 

ambiguity of the signal constellation. To funher make the coded modulation \chcme 

rotationally invariant, a necessary condition is that a rotation of any vaIJd \equencc of 

signal points by any phase ambiguity of the constellatIon re~ult~ ln anolher valld 

sequence. In addition, if a rotation of the signal points results in, at the output of the 

channel de coder, a sequence of infonnation bits different from what l~ tran~mllted, then 
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Xn 
DifferenuaI .. .. .. TCM Modulation 
Encoder 
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Fig. 3.9 General structure for rotationaIly invariant coded 

coherent modulation schemes. 
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a differential encoding technique may be used to recover the transmitted data 

irrespective of the rotation. 

TCM schernes with multi-dimensional constellations, where the constellation 

has more than two dimensions and may be formed by concatenating a few (constituent) 

2-D constellations, have been shown more advantageous than TCM schemes with 2-D 

constellations in the case where the 2-D constellation is a QAM [5. 7, 16. 17, 19]. The 

important advantage on rotation al invariance of trellis-coded multi-dimensional QAM 

schernes is the following; It was easier to make a multidimensional TCM scheme 

rotationally invarhmt than a 2-D scherne [17]. The reason is that sorne or all of the 

phase ambiguities of a rnulti-dimensional constellation rnay be removed by a careful 

partition of the rnulti-dirnensional constellation without the involvement of the trellis 

encoder. So that this larger signal spacing can make TCM systems less sensitive to 

phase offset problem. Another advantage as before we talked in 2.2 is that; Because the 

multi-dirnensional scheme introduces fewer redundant bits than the 2-D scheme, il has 
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a significantly smaller constituent 2-0 constellation and a better trade off between 

complexity and performance. 

In this section, we extend our research to high-dImensional signal 

constellation. An TeM scheme with 4-D constellation, where the constellation is 

fonned by concatenating a two (constituent) 2-D (QAM) partially overlapped 

constellations as shown in 3.3.2 (QAM exarnple), is shown. Through thIS ex ample the 

procedure of the design of TCM with high-dimensional partially ovcrlapped 

constellation is illustrated. In keeping with our previous work, in our cxample, the 

12-point partially overlapped QAM constellation shown in Fig. 3.6 I~ used for 2-D 

constellation, n=3 bits is transmitted per constituent QAM signal, and hcnce 2n=6 bits 

per 4-D signal. A two-state case is considered. People also can "'Tite a program to 

search for the optimum codes. However, this simple example can be designed by hand. 

The following mapping rule can be very helpful for people to understanding c1early the 

code design procedure. Because there are 32 paraUel transitions between any two states 

and there are four groups of such paraUel transitions between states, so that this 4-0 

signal constellation should have 32x4=128 points. From Fig. 3.6, we can see that the 

2-D (QAM) constellation is divided to four subsets A', A", B', B ". Then, the partition 

of 4-0 I2S-point constellation can be shown in Fig. 3.10. 

I2S-point 4-D signal constellation 

(A', A')u(B', B') (A', B')u(B', A') (Ali, AI)u(B", B") (Ali, BI)u(B", Ali) 

Fig.3.IO The panition of 4-D I28-point constelltltion. 
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A treIlis diagram for the two-state, n=3, trellis code with 2k-D (k=2) 

constellation is shown in Fig. 3.11. 

-1 
(A", Bn

) 

(B", An) 

Fig. 3.] 1 Trellis diagram for a 2-state, n = 3, k = 2 trellis code. 

First bit, b l , specifies the state. Each of four groups of parallels between states 

can be specified by b7 and bl' The 32-parallel transitions between any two states is 

specified by b2 - b6• A possible analytical representation is 

x: = (x(l>, x(2» = (xl (1)+ xp>, Xl (2)+ X2(2» (3.9) 

= {[-b7 + jb2b7] + [(h3 + b4) + j(b3 - b4»), [-b7 -jb2bd + [(bs + b6) + j(bs - b6»))· 

The minimum squared distance between parallel paths is 8. From Fig. 3.11, il 

is easy to see that d2
free = 8. The average power is Pav= 6. The coding gain is the same 

as the corresponding TCM with 2-D (QAM) panially overlapped signal constellation. 

But, as we discussed earlier, trellis-coded modulation schemes using multi-dimensional 

constellation are more advantageous than the usual two-dimensional schemes because 

the multi-dlmensional schemes can be more easily made rotationally invariant; and 

comparing with 2-D TCM schemes, this method is in less signal redundancy in the 

constituent 2-D signal sets. 
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3.6 Conclusion 

In this chapter, we obtain a new analytically described trellis codcd 

modulation scheme using partially overlapped signal sets. By presenting two SImple 

two-state examples, it was shown that using TCM schemes wIlh panially overlappcd 

signal constellations, one can obtain coding gains superior to those of convl'lltional 

TeM schemes. The coding gain of the proposed schemes was also comparc{l to tho..,c 

of the limiting cases of totally overlapped constellations. The latter, whllc provldlllg 

higher coding gains, can not be used in practice. due to their catastrophlc bchaVIOUL 

Then, the further anaJysis of our new codes comparing with Ungerboeck's mcthod i~ 

described. Finally, through an example we extended our work to TCM wnh 

high-dimensional signal constellation. The important advantages of TCM with 

multi-dimensional constellation are discussed. 
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Chapter 4 Performance Analysis 

In this chapter, we flI'st introduce a perfonnance analysis method for TCM 

which is used in many papers about TCM [21, 26]. Then, this method is used for 

performance analysis of our new codes. To keep the conti nuit y of our work, two 

examples shown in chapter 3 are analyzed here according to the bit error probability 

criterion. The results are superior to those of conventional TCM schemes. 

4.1 The Method of Performance Analysis 

At time k, for every n infonnation bits per symbol, the rate n/(n+ 1) trellis 

coded modulation transmits a signal xk chosen from a 2n+1 signal set. We denote a 

coded symbol sequence of length N by x = (xl' X2, ... , XN)' Then, Xk is considered as the 

kth element of x and is a nonlinear function of the n information input bits denoted by 

uk and the v preceding bits for states denoted by sk' i.e., 

(4.1) 

Then, the next state shI at rime k+ 1 is a nonlinear function of the present state sk and 

the input uk' In mathematical terms, 
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(4.2) 

Corresponding to x. the channel outputs the sequence r = (rt. r2' .... rN), where the kth 

element rt. represenring the output at rime k. is given by, 

(4.3) 

where nk is a sample of a zero mean Gaussian noise process with variance 82. 

To fmd the average bit error probability perfonnance of the Viterbi decodcr, 

we must [lfst find the pairwise error probability p(x ... i) between the coded sequence x 

= (xk) and the esrimated sequence x = ( Xk ). Assume that Ixi = l. Then, using the 

Bhattacharyya bound [38]. we have, 

p(x ... i) S I)Â, ~ = 1: Ô2(Sk. Ut) 
t 

where. 

(4.4) 

(4.5) 

with Sk and Ût are the estimates of the state of the decoder and the information symbol, 

respectively. Also, D is the Bhattacharyya parameter which in this case is given by, 

D = exp(-1/8ô2). (46) 
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The parameter D of (4.6) cao be related to the system bit energy-to-noise ratio Et/No by 

first recognizing that ô2 = (2EJNeJ-l where Es is the M-ary symbol energy. Since, for 

0/(n+1) trellis coding, n input bits of energy Eb produce n+l code symbols, which in 

iurn result in a single M-ary symbol of energy Es, then clearly Es = nEb. Using these 

observations in (4.6) gives the desired relation for D in tenns of Et/Nol namely, 

D = exp( -nEt/4No}. (4.7) 

11le pair state Sk and the pair-infonnation symbol Uk [38,39] are defined as, 

(4.8) 

We are in a correct pair state when Sk = sk and in an incorrect pair state when Sk * ~k. 
In tenns of the above definitions, it cao be shown by analogy with the results 

in L401 that the average bit error probability Pb is upper bounded by, 

1 d 
Pb S --T(D,z) 

n dz z=l 
(4.9) 

or obtrun an ev en tighter bound, 

2 

1 ~ ( J nEb drlee '\ D -dfree d T(D ) 1 (4.10) Pb S; - eue -- - 1 -- , z , 
2n No 4./ dz z:1 
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where erfc(x) is the complementary error function, d2
free is the squared free distance of 

the trellis code, and T(D, z) is the transfer function of its pair-state diagram, 

and, 

T(D, z) = 2- vt [I-All W , 
m 

~ T(D,Z)I 
cLz z=l 

= 2.. V t [1 - A(l)]"lA'(I)[I - A(l)]-lW , 
m 

(4.11) 

(4.12) 

m is the number of correct states. The vectors V and W have dimension m2 + m wuh 

elements taking on values 1 and O. A(z) is an (m2 + m)x(m2 + m) pair-state transition 

matrix with elements 

if Vk is nonempty set 

(4.13) 

where, 

in which St and Sd are sets of all true and dummy correct pair states, respecuvcly. anJ. 
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(4.15) 

FmaH y, the free Euclidean distance of the code [39] is, 

2 T(2D,I) 
dfree = Hm log2 ----

D...o T(D,I) 
(4.16) 

Note that if /Xk/2 * 1, then in (4.10) 

(4.17) 

and in (4.13), 

(4.18) 

In previous chapters, our entire discussion has focussed on perfonnance gain 

as measured by improvement in minimum free distance of the trellis code. In the limit 

as the system bit error probability becomes arbitrarily small, this measure is equivalent 

to the irnprovement in required bit energy-to·noise spectral density ratio for a given 

average bit error probability. So that maximizing d2
frc:e is synonymous with minimizing 

the average bit error probability. As we have discussed earlier, in our new codes 

optimization of our panially overlapped condition produces signal sets wherein the 

signal subsets are overlapped at aIl. This results in the smallest possible IxI2 and the 

largest pOSSIble d2frcc = d 2 min / IXk/2. However, this results in a catasll'ophic trellis code. 
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Our code will also have infinite length error events with distances not exceeding d2
Crl'c. 

However, in this case the probability of these error events is zero. In next two sections, 

we will discuss the bit error probability performance of our codes. 

4.2 Rate 3/4, 2-state Code with lO-AM Partially Ol'erlappcd Constellation 

Comparing with Corresponding TCM with 16-AM Constellation 

From a practical standpoint, one is often interested in the redm tJun of bll 

energy-to-noise spectral density ratio for a given average bit error probabihty. PreVIOWt 

results [10, Il, 21,40,41] on conventional trellis coding showed that such n:dUC11011:-' 

were possible. Using pair-state diagrams and upper bounds on bit error probablluy 

computed Cron: the transfer function of the se diagrams, we shall now determine the 

magnitude of the se performance gains for our new codes. Without going lOto grcat 

detail, it has been shown that a tight upper bound on the bit error probability of trelhs 

codes is given by (4.10). 

First, consider the rate 3/4, 2-state trellis code with 10-AM panially 

overlapped constellation (shown in Fig. 3.2) and the following analytical 

representation, 

The relationship between input bits bl , b2, b3 and the output signaJ x i~ lil,lcd in 

table (4.1). The trellis diagram is as in Fig. 3.3 and the equivalent pair-state dlagram for 

~omputing T(D, z) is shown in Fig. 4.1. In Fig. 4.1, the branches are labeled Wllh a gaIn 

of the fonn, 

~----------------~ 
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Table 4.1 The relationship between input bits and output signals 

for ID-AM panial overlapped constellation 

b l b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 
x - (A') -9 -5 -1 

b l b2 b3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 

x - (Ali) -5 -1 3 

b l b2 b3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 
x..-... (B') -7 -3 1 

b l b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 

x - (B") -3 1 5 

a 

a 

Fig. 4.1 Pair-state diagram corresponding to Fig. 3.3. 
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(4.19) 

Here z is an index, n is input bits per symbol, n is the Hamming distance betwcen Input 

bit sequences and ô2 is the squared Euclidean distance between output signab for tht' 

transition between the pair states (if Pav :;. 1, which should be divided by 1',1\) III 

accordance with (4.19), then in Fig. 4.1, 

a = 1/8 [(60 1 6/pav + 20144/Pav)z + 4D64/Pavz2] 

b = 1/8[4016/Pavz + (3 + 4D64/Pav + n2.56/Pav)z2 + 2(D16/Pav + Dl44/Pav)z ') 

c = 1I8[404/Pavz + (304/Pav + 3036/Pav + olOO/Pav + D196/Pav)z2 1- ï.(nJ6{1'av 1 

0100/Pav)z3] 

d = z-1e = l/8[404/Pav + (304/Pav + 3036/Pav + 0100/Pav + Dl 96/Pav)z + 2(D 16/P,IV ~ 

o 1 OO/Pav)z2] 

e = 1I8[4036/Pav + (3D4/Pav + 30 1OO/Pav + 036/Pav + D324/Pav)z 1- 2(D4/Pav • 

(4.20) 

where for lO-AM partially overlapped constellation, Pav:: 25. The ttansfcJ flIlIClJ()JI ,)1 

Fig. 4.1 is easily computed as, 

T(D z) = 2(a+ e(e+d». 
, 1 - 2b 

(4:1 J) 

For n = 3. d2free = 8/25 :.. 0.32,0 = e-nEb/4No = e·O.75Eb/No, the upper bound on Pb 1~, 



58 

Pb S ~ en{ )0.24 ~: ) eO.24Eb/No • H(D) , (4.22) 

where, 

H= 
dT(iJ, z) (4.23) 

dz z=1 

so that Fig. 4.4 is an illustration of the upper bound of (4.22). For the purpose of 

comparison, let us discuss the upper bound on Pb for the corresponding rate 3/4, 2-state, 

16-AM TCM scheme. Using Ungerboeck's method. the signal constellation. the set 

partitioning and the 2-state trellis diagram are shown in Fig. 4.2 and Fig. 4.3, 

Ali 

-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 

B' B' B' B' A' A' A' A' 

~ So ~ S1 

-15 -7 1 9 -13 -5 3 11 

B" B" B" B" Ali Ali Ali Ali 

• S2 1----+ S'i 

-Il -3 5 13 -9 -1 7 15 

Fig. 4.2 16-AM; signai constellation and ilS set partitioning. 

respectively. The corresponding pair-state diagram for computing T(D, z) is the same 
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1 

-1 

Fig. 4.3 2-state trellis diagram corresponding 10 Fig, 4.2, 

as the one in Fig. 4.1. 

If we have the relationship between input bits and output signal a'i ~hown 1/1 

table 4.2. then, 

a = l/4[(3D64/Pav + D576/Pav)z + 20256!Pavz2] 

b = l/8[4D4/Pavz + (3D36/Pav + 301OO/Pav + 0484/Pa'l + D 676/Pav)1.2 + :>(D'CJ(J/PJV , 

0324/Pav)z3] 

c = l/8[4D16/Pavz + (3D16/Pav + 30144/Pav + 0400/Pav 1- O'/R<1/P,IV)// : ')(1 )ltlJ1/I'.lv : 

0400/Pav)z3] 

d = l/8[4D4/Pav + (3D36/Pav + 30100/Pav + 0484/Pav + n676/Pav)t. 1 2(1),Qr.tPav 1 

03l4/Pav)z2] 

e = l/8[4D36/Pav + (3D4/Pav + 30196/Pav + 0324/Pav + D900/Pav)7 t ?(D'()('/l'JV \ 

0484/Pav)z2] (4.24) 

where for 16-AM constellation Pav = 85. For n = 3, d2
free = 20/85 = 4/1'/, f) = e III h/4No ~ 
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Table 4.2 The relationship between input bits and output signais 

for 16-AM signal constellation. 

bl b2 b3 
, -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 

X -+ (A') -13 -5 3 11 

bl b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 1 1 

x -+ (Ali) -9 -1 7 15 

bl b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 1 1 

x -+ (B') -15 -7 1 9 

hl bz b3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 

x -+ (B") -11 -3 5 13 

e-0,75Eb/No, the upper bound on Pb is, 

P < _1 erfc( J 3 Eb) e3117(Eb/No). H(D) 
b - 6 17 N ' 

o 

(4.25) 

where H(D) is expressed as in (4.23). So that the upper bounds on Pb of (4.25) are 

shawn in Fig. 4.4 ta compare with that of (4.22). Bath upper bounds on Pb are also 

shown in table 4.3. We observe from these results that, over the range of Eb/N,. 

illustrated. our code with the ID-AM partially overlapped constellation is better thaIl 

the conventional trellis code with 16-AM constellation. The improvement increases 

with the increase in SNR. 



~ 
c 
0 
CIl 
~ 
C 
::1 ,g 
... 
~ 
Q. 

::J 

10-8 

10-10 

10-12 

10-14 
~----------~--------~----------~--------~ 17 18 19 

Et/No (dB) 

20 21 

Fig. 4.4 A comparison of the perfonnance of two trellis codcd AM modulallon 

(~), trellis code with 16-AM; (0), trellis code with lQ-AM pamally 

overlapped constellation. 

Table 4.3 The upper bounds on Pb for two TeM with AM moduJ:JIH)fl 
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~ 17 18 19 20 
21 1 

lO-AM 1.35xlO-5 5.39xlO-7 9. 66x 10,9 6.21 x 101 J J J J xl 0 1 ~ 

... _-_. -

16-AM 1.67xlO-5 1.35xlO-6 6_32xlO·8 1.44x 10.9 13lXl0 11 
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4.3 Rate 3/4, 2-state Code with 12-QAM Partially overlapped constellation 

Comparing with Corresponding TCM with 16-QAM constellation 

An examp]e of rate 3/4, 2-slate trellis code with 12-QAM partially overlapped 

constellatIon which is shown in chapter 3.3.2 is discussed here. A 12-QAM signal 

constellation is shown in Fig. 3.6. Ils analytical representation between input bits, bits 

for state and output channel signal is, 

The relationship between input bits and output sigr •. 1ls is shown in table 4.4. And ûle 

Table 4.4 The relationship between input bits and output signaIs 

for 12-QAM partially overlapped constellation. 

b l b2 b3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 

x -+ (A') -1-j -3+j -1+j3 l+j 
---

bl b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 1 1 

x -+ (Ait) I-j3 -1-j l+j 3-j 

b l b2 b3 - 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 

x -+ (B') -1-j3 -3-j -1+j I-j 

bl b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 1 1 

x -+ (Bit) I-j -1+j l+j3 3+j 



corresponding 2-state trellis diagram is as in Fig. 4.5. Then the equlvalenl p:ur-statc 

1 
Bit B" 

-1 
B'~ B' 

Fig. 4.5 A 2-state trellis diagram. 

diagram for computing T(D, z) is shown in Fig. 4.6, where, 

a = D8/Pavz + (l/2)D16/Pavz2 

b = 1!4[208/Pavz + (1 + 2016/Pav + 032/Pav)z2 + (D8/Pav + D40/PdV)l:3 J 

c = 1!8[ 404/Pav + 4(D4/Pav + D 20/Pav)z + (D4/Pav + 2020/PdV + D36/Pav)721 

d = l/8[404/Pavz + 4(D4pav + 020/Pav)z2 + (D4/Pav + 2D20/Pav t D'6/Pav)z '/ 

(4.26) 

For 12-QAM partially overlapped constellation shown in Fig. 3.6, P av = 6 From Fig. 

4.6 we can easily calculate the transfer function, 

2cd 
T(D, z) = 2(a + 1 -2b ). (ti J'I) 

For n = 3, d2Cree = 8/6 = 4/3,0 = e-nEb/4No = e-O·75Eb/No, the upper bound on Pb J:-', 
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Pb <:; -;; en{ 1 ~o ) e(EbA<O). H(D) , (4.28) 

where H(D) is expressed as in (4.23). 

a 

a 

Fig. 4.6 Pair-state diagrarn corresponding to Fig. 4.5. 

The upper bounds of (4.28) are shown in Fig. 4.9. Now we evaluate the 

performance of the conventional rate 3/4,2-state, 16-QAM TCM scheme. The signal 

constellation and its set partitioning is shown in Fig. 4.7 and the 2-state trellis diagraJJ:1 

is as in Fig. 4.8 according to Ungerboeck's method. The pair-state diagram is as in hg. 

4.6. Suppose we have the relationship between input bits and output signaIs as shown 

in table 4.5, then, 

a = n16!Pavz + (l/2)o32/Pavz2 

b = 1/4[2D4/Pavz + (D4/Pav + 2D20/Pav + oJ6IPav)z2 + (D201Pav + OS2IPav)z3] 

c = 1/4[2D4/Pav + (D4/Pav + 2020/Pav + 036/Pav)z + (D20!Pav + n S2IPav)z2] 

F 
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(4.29) 

where Pav = 10 for 16-QAM constellation. The transfer function lS the sumc as in 

(4.27). Then for n=3, d2
free = 12/10 = 1.2, D = e-nEb/4No = e-o 75 Eb/No , the uppt:r bouml on 

here, H(D) is expressed as in (4.23). 

The upper bound of (4.30) is shown in Fig. 4.9 to compare with that of (·1 :~X). 

Also the comparison of the upper bounds of the two codes is ';sted in table 4.6. From 

these results it is easy to observe that: over the range of Et/No iIlustrated, our 12-QAM 

partially overlapped constellation code is also better than the convention al trellb code 

with 16-QAM signal constellation. 
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B" 0 A;, B" 0 .Ab 
Ali 

0 B' 0 .Ab B' 0 

B'o Ao BQ Ab 
Ali 

0 B' 0 AO Sb 

Cl C3 Co C2 
A' A' 

0 0 Ali Ali 0 0 B' B' 
0 0 B" B" 0 0 

0 0 Ali Ali 0 B' B' A' A' 0 0 B" B" 0 0 

Fig. 4.7 16-QAM constellation and its set panitioning. 

1 
B"(C

O
} B"(Co) 

~----------~~-------------~1 

-1 ~------~----~~~--------------~. ··1 

Fig. 4.8 A 2-state trellis diagram. 



Table 4.5 The relationship between input bits and output !o.ignals 

for 16-QAM signal constellation. 

b l b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 1 

x -+ (A') 3-j -1-j -1+j3 3+J3 

b l b2 b3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 

x -+ (A") I-j3 -3-j3 -3+j 1 +J 

b l b2 b3 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 

x -+ (B') 3-j3 -1-j3 -1+j 3+j 
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1 

1 

--

1 

bl b2 b3 1 -1 1 1 -1 -1 1 1 -1 1 li] 
x -+ (B") I-j -3-j -3+j3 1 +j3 

Table 4.6 The upper bounàs on Pb for two TCM with QAM rnodulauon 

~ Pb 0 dB 13 14 15 16 17 IR 

---

12-QAM 1.85xlO-9 9.20xlO- ll 1.20xlO-14 2.94xlO-18 8.15xl0 23 J.Mx JO 2H 

16-QAM 2.38xl0-9 1.94xlO-11 5.04xlO-14 2.94xlO-17 2.35xl0 '/1 I,Xf)x JO ')(, 
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10-10 

.0 
j;l., 

c:: 
0 
Vl 

10-20 "0 
c:: 
::l 
0 
.0 
~ 

& 
0. 
;:J 

10-30 

14 15 16 17 18 

Et/No (dB) 

Fig. 4.9 A comparison of the performance of two trellis coded QAM modulation: 

QAM modulation: (~), trellis code with 16-QAM; (0), trellis code with 

12-QAM partially overlapped constellation. 
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Chapter 5 Conclusions 

5.1 Concluding Remarks 

In this the sis, the basic principles and structure of Trellis Coded ModulatIOIl 

(TeM), rust developed by Ungerboeck. was described. The key element is set mappllig 

method caUed "mapping by set panitioning". Sorne previous re se arch and 

investigations for improvernent and modification of Ungerboeck's TCM WLTI' 

presented. Based on the previous works the possibility of funher improvemelll wa\ 

discussed. The results showed that it is still possible to improve TeM 10 reacl! Iht' 

upper bound of TeM coding gain. 

The important part in this thesis is the newly developed analytically dt',>nihed 

trellis code with partially overlapped signal constellation, which is abo shown in 116, 

37], Instead of using traditional 2n+1.ary signal constellation, these codes use pamally 

overlapped signal constellation which have lesss than 2n +1 points. It has the advamagL 

that the average power of the signal constellation is reduced, Th~ analytJ< a) 

representation and coset representation of this partially overlapped signal COfl\tdlatlOn 

were presented. 

Severa! examples were given to show the perfonnance gam duc to the ovcrlJp 

of the signal set. The performance gains due to the coding and the ovcrlap WC Tl' 

l 
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evaluated in tenns of the minimum free Euclidean distance dfree of the trellis. The 

results showed that, introducing an appropriate overlap into the constellation design of 

the analytically described trellis codes, one can easi'y improve its performance. For 

M-AM and QAM modulation, it was shown that for low coding complexity significant 

perfonnance improvement is achievable in comparison to the equivalent conventional 

design. ln particular, the gain in free Euclidean distance of the two-state analytically 

described trellis coded M level totally overlapped signal constellation over the uncoded 

M/2-point one approaches 3dB. 

The optimum codes can be easily searched by computer. Because the se Ilew 

TCM codes are analytically described. 

For comparison of the new codes with Ungerboeck's TCM and Calderbank's 

method, set partitioning method was used to analyze these examples. The difference 

was clearly presented. 

The comparison between the values of the minimum free Euclidean distance 

dCree div~ded by P av of new TCM code and the equivalent conventional TCM is an 

indication of the reduction in required EJNo that can be achieved for arbitrarily smalt 

system bit error rates. Bit error probability analysis for the se examples was carried out. 

For sufficiently large values of Et/No, the se new codes are better than the equivalent 

conventionaJ coded schemes. 

5.2 Directions for Future Work 

In our new coding method described above, the optimum distance was 

searched with fixed overlap. Although this led to a considerable increase in the 

perfonnance of bit error probability, but it is still not the optimum values which can be. 
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obtained. The optimum values of upper bound of Pb could be obtained by changlllg 

overlap. This requires funher investigation. 

Since TCM with high-dimensional signal constellation has advantagcs slich as 

less sensitivity to phase jitter and less redundancy, this work was extended to 

analytically described trellis codes with high-dimensional partially overlapped signal 

constellation. The basic principle to fonn this high-dm1ensional constellatlon is to 

concatenate a few (constituent) low-dimensional panially overlapped signal 

constellations. These TCM schemes still keep the perfonnance gain achieved by the 

overlap of low-dimensional partially overlapped constellations, and also have Ihr 

advantages achieved by high-dimensional signal constellation. In ~ection 2.6 an 

example of TCM scheme with 4-D signal constellation, where the con-;tcllatioll j" 

fonned by concatenating a two (constituent) 2-D (QAM) partIully overlappcd 

constellations, is shown. The results obtained clearly demonstrate the above pl cdluion. 

TCM schemes with panially overIapped high-dimentional signal constellations are abo 

wonh further investigation. 
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