
Integrating Synchronous Update Everywhere

Replication into the PostgreSQL Database System

based on Snapshot Isolation

by:

Shuqing Wu

A Thesis

Submitted in Partial FulfiUment of the Requirements

for the Degree of Master of Science

at

McGill University

Montréal, Canada

October 2004

© Copyright by Shuqing Wu 2005

AU Rights Reserved

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-494-06473-0
Our file Notre référence
ISBN: 0-494-06473-0

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

This thesis presents the integration of a synchronous, update everywhere replica

tion proto col into the relational database system PostgreSQL. This work is based

on previous work which integrated replication into PostgreSQL 6.4 using strict 2-

phase-Iocking for concurrency control. In this thesis, we migrated the approach to

PostgreSQL 7.2 which uses a multi-version concurrency control mechanism providing

the isolation level Snapshot Isolation. This required a complete redesign of the replica

control component. With our approach, transactions can be submitted to any replica.

This replica executes the transaction locally and multicasts the updates to the other

replicas. The combined concurrency and replica control components guarantee that

concurrent updates are serialized in the same order at aIl replicas, providing the same

isolation level as a non-replicated system. The thesis also presents a performance

evaluation showing that our approach has litt le overhead and provides scalability up

to 20 replicas.

11

Résumé

Nous présentons à l'intérieur de cette thèse l'intégration d'un protocole de réplication

synchrone avec mise à jour globale (update-everywhere) au système de gestion de base

de données relationnelle PostgreSQL. Les travaux précédents sur le sujet, sur lesquels

nous nous sommes basés, intégraient un protocole de réplication à PostgreSQL 6.4 en

utilisant le protocole de verrouillage à deux phases strict (strict 2PL) comme contrôle

d'accès simultané. Dans cette thèse, nous avons plutôt concentré notre travail sur

PostgreSQL 7.2, qui utilise un mécanisme de contrôle d'accès à versions multiples

fournissant une isolation de niveau Snapshot. Ceci a donc requis une restructuration

complète de la composante de contrôle de réplication. Avec notre approche, chaque

transaction peut être soumise à n'importe quelle réplique. Cette dernière exécute

la transaction et multidiffuse les mises à jour aux autres répliques. La combinai

son des composantes de contrôle d'accès simultané et de réplication guarantissent
,

que les mises à jour simultanées seront sérialisées dans le même ordre à chacune des

répliques, fournissant ainsi le même niveau d'isolation que le système non répliqué.

Nous évaluons aussi dans cette thèse la performance de notre approche et nous dis

cutons des coûts additionnels qu'elle implique et des limites de son extensibilité.

iii

Acknow ledgements

1 would like to gratefully acknowledge the enthusiastic supervision of Prof. Bettina

Kemme during this work. Throughout my graduate study, she provided great teach

ing, sound advice and encouragement. Rer patience is greatly appreciated.

1 would like to thank several of my friends for helping with the preparation of this

thesis. Thomas Feng, Zhan Yu, Lili Chen, Ruaigu Wu, Yi Lin, Chenliang Sun and

Yishen Liu have provided me a great environ ment to live and study.

1 wish to thank my parents, Qiying Tong and Fukang Wu for their endless love

and support throughout my live. 1 am also grateful to Qiongping Dong and Mianmo

Li for their support.

1 cannot end without thanking Fang Li, on whose constant encouragement and

love 1 have relied in the last four years.

IV

Contents

Abstract

Résumé

Acknowledgements

1 Introduction

2 Background

2.1 Transactions.

2.2 Concurrency Control

2.3 Snapshot Isolation (SI)

2.3.1 Isolation Levels

2.3.2 Snapshot Isolation

2.4 Replica Control

2.4.1 Categorizing Replication Strategies

2.4.2 Traditional Solutions

2.5 Group communication systems (GCS) .

2.6 Replica Control Based on GCS

3 Replica and Concurrency Control providing SI

3.1 SI-C: Centralized Concurrency Control providing SI

3.2 SI-R: Concurrency and Replica Control providing SI .

3.3 SI-P: Concurrency Control in PostgreSQL

v

ii

iii

iv

1

4

4

5

7

7

8

9

10

11

12

14

15

15

17

19

3.3.1 SI-P: Concurrency Control in PostgreSQL 19

3.4 SI-PR: Concurrency and Replica Control providing SI based on SI-P. 23

3.5 Delay Abort Local Transactions .. 26

4 PostgreSQL-R Project 29

4.1 PostgreSQL 30

4.1.1 General Architecture 30

4.1.2 IPC 33

4.1.3 Locking Mechanism .

4.1.4 Transaction Abort Mechanism .

4.1.5 System Catalog

4.2 Postgres-R

4.2.1 Architecture ..

4.2.2 Writesets and Their Application on Remote Nodes

4.3 Distributed Recovery .

5 Implementation Details

5.1 Overview

5.2 Replication Manager

5.2.1 State Machines

5.2.2 Remote Transaction Aborts Local Transaction

5.3 Backend

5.3.1 State Machines

5.3.2 pg_transrecord System Table.

5.3.3 Remote Transaction Aborts Local Transaction

5.3.4 Version Check and Execution of Remote Transactions.

6 Evaluation and Discussion

6.1 TPC-W Benchmark

6.1.1 Update Intensive Workloads

6.1.2 Comparison with other Approaches

VI

34

36

37

37

37

39

40

42

42

46

47

49

50

50

51

53

54

57

57

60

61

7 Discussion of Optimization and Conclusion

7.1 Discussion of Optimization and Future Work .

7.2 Conclusion .

Bibliography

VIl

62

62

63

64

Chapter 1

Introduction

Storing, managing, and retrieving information are very crucial tasks for businesses

and in our daily life. Databases allow us to achieve this easily and efficiently. In

the last four decades, the use of databases has grown tremendously. Databases have

become an important component in the development of a variety of applications.

Fault tolerance and performance are two important features that must be provided

by database systems. Using replication is one of the solutions. Replication is the

technique that creates and maintains several copies of a database and stores them on

different servers (nodes). Fault tolerance is achieved by providing access to different

copies. When one of the nodes experiences a failure, the user application can keep

functioning by connecting to other accessible servers. Performance, in terms of high

throughput, low response time and good scalability, is gained by distributing the load

submitted to the system over all copies. In a WAN environment, typically the nearest

copy is accessed. However, achieving reasonable performance without compromising

data consistency is a big challenge in a replicated database. The different copies of

the database have to be kept consistent despite updates. This task is called replica

control and requires coordination and communication among nodes. Sorne replication

algorithms proposed in the research community are too complicated to be used in

practice. Sorne others are trading correctness for performance.

Replica control solutions can be categorized to be either synchronous or asyn

chronous [17]. Using a synchronous approach, updates are propagated within the

1

CHAPTER 1. INTRODUCTION 2

transaction boundaries, i.e. before the transaction commits and the user is informed

about the outcome. Using this approach, data consistency among replicas can be

guaranteed. In contrast, updates are propagated after the transaction has committed

in the asynchronous replication approach. This approach does not provide full fault

tolerance, since transactions that committed locally but whose updates were not prop

agated before a crash are lost. Although only synchronous solutions can guarantee

full data consistency, most of the commercial databases are using the asynchronous

approach due to its better performance.

Replica control solutions can also be categorized to be either mas ter j slave or

update everywhere. Using the masterjslave approach, also called primary copy ap

proach, update operations can only be submitted to the master no de (which then

propagates them to the other nodes). In contrast, update everywhere allows any

copy in the system to be updated. To preserve data consistency, efforts have to be

made to coordinate operations submitted to different copies.

Replica control techniques often depend on the underlying concurrency control

mechanism. The most popular concurrency control approach is 2-phase-locking.

Using 2-phase-Iocking, a transaction must acquire a lock on a data object before

accessing the object and if one holds a lock allowing it to update the data object,

no other Iock is granted. Instead, a transaction requesting a lock has to wait until

the granted lock is released. Using 2-phase-Iocking, a transaction is not allowed to

acquire any further lock once it has released a lock. One problem of this approach

is deadlock. Other concurrency control me chanis ms keep several versions of a data

object, allowing read operations to access oider versions while writes create a new

version. Depending on the particular concurrency control mechanism, this allows read

and write operations on the same data object to run concurrently. PostgreSQL 7.2

and Oracle use such a multi-version concurrency control mechanism. However, they

do not provide the standard isolation Ievel serializable [7] as guaranteed by 2-phase

locking proto cols, but a lower isolation level called snapshot isolation [7]. Therefore,

we refer to them here as "snapshot isolation" concurrency control mechanisms.

In [221. the author presents a suite of synchronous and update everywhere database

CHAPTER 1. INTRODUCTION 3

replication protocols. These proto cols use powerful multicast primitives to send up

dates to all replicas and to help determining the execution order. Furthermore, they

attempt to keep message overhead small by sending all updates of a transaction in

a single message. The approach is designed to work for LAN environments with a

cluster of workstations holding the database replicas. One of the proposed algorithms

is based on a multi-version concurrency control mechanism.

The object of this thesis is to integrate this algorithm into PostgreSQL 7.2. Our

main challenge was that the rather abstract algorithm in [22] had to be adjusted

considerably to fit the concrete implementation of snapshot isolation in PostgreSQL.

Our implementation takes advantage of an existing replication architecture for Post

greSQL, called Postgres-R. Several versions of Postgres-R have been developed, one

for locking based concurrency control (based on PostgreSQL 6.4), and one using a

master/slave approach based on PostgreSQL 7.2. Our solution is a further step to

provide a general update everywhere replication solution for PostgreSQL. We thor

oughly evaluated our implementation showing that it is efficient and provides high

throughput and good scalability.

The rest of the thesis is structured as follows: Chapter 2 provides necessary back

ground information in regard to concurrency control, replica control and communica

tion primitives. Chapter 3 presents the synchronous, update everywhere replication

algorithm providing snapshot isolation proposed in [22] and redesigns it to be used

in PostgreSQL. Chapter 4 shows the architecture of PostgreSQL and Postgres-R.

Chapter 5 presents the implementation details. Chapter 6 shows the experiments

and analyzes the results. Chapter 7 discusses possible optimizations and conclu des

the work.

Chapter 2

Background

In this chapter, we first introduce the main concepts behind transactions and provide

an overview of several concurrency control mechanisms, in particular those providing

the snapshot isolation level. Then, we provide an overview of replica control strategies.

FinaUy, we introduce group communication systems, and outline how they can be used

to support the tasks of replica control.

2.1 Transactions

A transactionTi is a sequence of read operations ri(X) and write operations Wi(X)

on data objects X. Operations of a transaction build a logical unit of work from an

application point of view. Several transactions can run concurrently in a database.

Transactions must satisfy four primary properties, the so caUed AC l D properties. In

our context, atomicity, isolation and durability are the most important. Atomicity

means that either aU or none of the operations of a transaction have effect on the

database. If aU operations succeed, we say the transaction commits (Ci), otherwise

it aborts (ai). In regard to isolation, several isolation levels are known. The most

common isolation level is serializable: although transactions run concurrently, their

execution has the same effect as a seriaI execution of these transactions. Durability

finaUy guarantees that once a transaction has committed, its changes to the database

are persistent despite system failures.

4

CHAPTER2. BACKGROUND 5

2.2 Concurrency Control

The concurrency control component provides isolation of concurrent transactions.

It ensures that transactions do not interfere with one another and guides against

incorrect results. The concurrency control component orders conflicting operations

of different transactions. Two operations confiict if they access the same data object

and at least one of them is a write operation. To guarantee serializable execution, the

combined effect of interleaving operations of a set of transactions must be the same

as if the transactions had executed one at a time in sorne seriaI execution.

There are three common concurrency control techniques presented in the litera

ture: locking, optimistic concurrency control and timestamp ordering [13]. Using

locking, a transaction that wants to access a data object, has to first acquire a lock

for this object. To read an object, a transaction has to acquire a shared lock. When it

wants to write an object, it has to acquire an exclusive lock. Several shared locks can

be granted at the same time on an object. But if an exclusive lock on an object has

been granted, no further lock (shared or exclusive lock) will be granted on the same

object. AlI transactions requesting locks on that object must wait until the exclusive

lock is released. In order to guarantee serializability, 2-phase-Iocking (2P L) is used.

In 2PL, the locking period for a transaction can be divided into a growing phase

and a shrinking phase. During the growing phase, the transaction can acquire locks.

Once the transaction releases the first lock, it enters the shrinking phase, and may not

obtain any new locks. If aIl transactions follow the 2PL principle, their interleaved

execution is guaranteed to be equivalent to a seriaI execution. The problem of this

mechanism is that it is subject to deadlocks. Another potential problem is that dirty

read is possible. When a transaction is in the shrinking phase and has released an

exclusive lock, the changes made by this transaction are visible to other transactions.

If the transaction aborts, these changes will be undone. However, other transactions

might have seen the changes. This is called a dirty read. The consequence is that the

transactions which see the changes also have to abort. This causes cascading-abort.

To prevent this problem, we can use strict 2P L. Using strict 2PL, exclusive locks are

held until the transaction commits or aborts. The drawback of this approach is less

CHAPTER 2. BACKGROUND 6

concurrency.

Locking oriented mechanisms, likes 2PL, are pessimistic concurrency control al

gorithms. Confiicts are detected as soon as they occur and resolved by blocking the

execution of sorne of the transactions. In contrast, optimistic concurrency control al

gorithms detect confiicts at transaction commit time. This approach is based on the

assumption that confiicts are rare. Transactions in an optimistic concurrency control

algorithm have three phases: read phase, validation phase and write phase (only for

transactions with write operation). In the read phase, whenever an operation accesses

a data object X, the transaction creates its own copy (shadow copy) and works on

the shadow copy from then on. Upon committing, the database performs a check

(validation) to discover if there is any confiict with other concurrent transactions.

The confiicts are resolved by aborting one transaction. The detail of the checks and

the decision which transaction to abort in case of confiict depends on the particular

algorithm. Many alternatives are possible such as forward validation or backward

validation [19]. In forward validation, if the transaction confiicts with any other cur

rently active transaction, it is aborted. In backward validation, it is aborted if it

confiicts with any transaction that committed after the transaction to be validated

started. If the transaction passes the validation phase, the changes will be written

to the database and the transaction commits. Therè are several circumstances where

optimistic concurrency control has better performance than 2PL: the large majority

of the operations are read operations, the confiict rate is low, and transactions are

short. Optimistic algorithms avoid deadlock and allow more concurrency. However,

this approach has high abort rates.

Another concurrency control mechanism presented in the literature is timestamp

ordering. Using timestamp ordering, all confiicting operations are executed in times

tamp order. Each transaction is assigned a unique timestamp value (T S) when it

starts. Every operation in a transaction is using this value. And each data object is

assigned a read timestamp and a write timestamp which is the timestamp of the trans

action that was the last to read or write the object. Timestamp ordering concurrency

control obeys the following rules:

• A read operation of a transaction with timestamp TS can read an object whose

CHAPTER 2. BACKGROUND 7

write timestamp is smaller than TS or equal to TS .

• A write operation of a transaction with timestamp TS can write an object whose

both timestamps are sm aller or equal to TS.

If the timestamp(s) of the object are already too large, the transaction must

abort. With this, serializable execution is guaranteed. Since transactions never wait,

the timestamp ordering mechanism is deadlock free. The disadvantage of this ap

proach is a possibly high abort rate, since transactions are not blocked but immedi

ately aborted. It can also cause cascading aborts. There is an improved version of

the timestamp ordering approach, called multi-version timestamp ordering, which

allows each transaction to create a new version of the object. This increases the con

currency level considerably by redirecting read operations to older versions instead

of aborting them. In general, there exist many variations of concurrency control that

use the concepts of locking, optimism, timestamps and multi-version databases.

So far, we have only looked at concurrency control mechanisms that provide seri

alizability, that is, they produce executions that are equivalent to a seriaI execution.

However, in practice, lower correctness criteria are often used that are defined in

terms of isolation levels.

2.3 Snapshot Isolation (SI)

2.3.1 Isolation Levels

An isolation level describes the degree to which the data being updated by one trans

action is visible to other transactions, thus allows application designers to trade

off concurrency for correctness. AN SI SQL-92 specifies four isolation levels: read

uncommitted, read committed, repeatable read, serializable. These isolation lev

els have been defined assuming lock-based concurrency control. They are defined in

terms of three phenomena: dirty read, non-repeatable read and phantom. Each of

these phenomena violates serializability to a certain degree. Each isolation level is

characterized by ruling out sorne of the phenomena. [6] pointed out that the three

ANSI phenomena are incomplete and ambiguous. To fix the weakness of the ANSI

CHAPTER2. BACKGROUND 8

Isolation Dirty Read Cursor Lost FuzzyRead Phantom Read Skew WriteSkew

Level Update

Read Uncommitted P P P P P P

Read Committed N P P P P P

Cursor Stability N N N P P N

Repeatable Read N N N P N N

Snapshot N N N N N P
Serializable N N N N N N

P - PossIble N - Not PossIble

Table 2.1: Isolation Level Specification of [6]

SQL-92 specification, [6] introduced five new phenomena: cursor lost update, lost

update, fuzzy read, read skew and write skew. Furthermore snapshotisolation

(SI) and cursorstability are defined as two new isolation levels. Earlier discussions

on variations of snapshot isolation can be found in [1]. Table 2.1 provides an overview

of which isolation level avoids which phenomena.

2.3.2 Snapshot Isolation

In this thesis, we focus on snapshot isolation. SI can be implemented via a multi

version database system [1]. In a multi-version database system, each update creates

a new version of a data object. Assume object versions are labelled with the trans

action that created them and each transaction Ti is tagged with TSi(BOT) (begin of

transaction) and T Si (EOT) (end of transaction) timestamps, e.g. physical time or an

increasing counter. We say that two transactions ~ and Tj are concurrent if neither

TSi(EOT) < TSj(BOT) nor TSj(EOT) < TSi(BOT). With this, a concurrency

control proto col provides SI if:

1. Read operation ri(X) of transaction ~ reads from the most recent committed

version of X as of the time of the begin of transaction ~. That is, ~ reads from

a snapshot of the database.

2. Write action Wj(X) of a transaction Tj is invisible to a concurrent transaction ~.

3. Write action Wi(X) will be reflected in the snapshot for Ti.

4. If two concurrent transactions ~ and Tj write a common data object X, at least

CHAPTER2. BACKGROUND 9

one of them must abort. For instance, if Ti commits, Tj must abort.

This approach effectively separates read and write operations. Read operations,

never blocking or being blocked, do not conflict with write operations. Therefore

read-only transactions execute concurrently with read-write transactions without any

interference. Contention is significantly reduced. Obviously, if long-running trans

actions are read-only and update transactions are short, SI should give high perfor

mance. As a result, SI is a popular isolation level offered in centralized database

management systems. For example, Borlands InterBase [11], PostgreSQL [18J and

Oracle [12J offer SI.

SI avoids almost all of the phenomena. However, SI does not ensure that all exe

cutions are serializable. In particular, SI allows the write skew phenomenon. Suppose

we have data objects X=50, and Y =50 with a constraint that X + Y > O. Assume

we have two transactions Tl and T2 • Tl subtracts 60 from Y, and T2 subtracts 60

from X. Before performing the subtraction, both transactions need to read X and Y

in order to check whether such a subtraction can be performed considering the con

straint. We can have the following scenario: rdX=50J rl[Y=50J r2[Y=50J r2[Y=50J

wdY=-10J w2[X=-10J (Cl C2) This execution is possible under SI. However it is not

serializable. The reason is that Tl and T2 read the same state of the database fulfill

ing the constraint but change different data objects. Since conflicts are only detected

when transactions change the same object, each transaction is not aware of the state

change made by the other transaction. l Note that, because of the potential problem

of write skew, application designers must be aware of the nature of the SI and guard

against the constraint violation.

2.4 Replica Control

Replication, as one of the key techniques to improve performance and fault-tolerance

in database systems, has been a hot topic in the distributed computing and database

lInterestingly, since SI avoids all three phenomena described by ANSI SQL-92 standard, Ora
cle and PostgreSQL actually claim that their concurrency control mechanism using SI guarantees
serializable executions.

CHAPTER 2. BACKGROUND 10

management research field in the last two decades. We can find the fundamental

theories related to database replication in [7]. Today, almost every major database

vendor has a replication solution of one kind or another. However, only few of those

solutions meet the correctness criteria described in [7]. A replicated database system

should behave like a one-copy database (non-replicated), i.e. replication should be

transparent to the user. That is, the execution over several copies should be concep

tually equivalent to a serializable execution over a one-copy database. This is referred

to as one-copy-serializability.

2.4.1 Categorizing Replication Strategies

As described in [17], replica control techniques can be categorized by when updates

are propagated. A synchronous replication model, also called eager replication, prop

agates the changes before the transaction commits. In contrast, in the asynchronous

replication model, also called lazy replication, changes made by a transaction are

propagated to other nodes only after the transaction has committed. The potential

problem of this model is that when a node crashes after it commits a transaction, but

before it propagates the changes, the transaction is lost. From a conceptual point of

view, synchronous replication is preferable because it provides data consistency and

system correctness. However, it has high communication overhead, which can increase

response time. In contrast, the communication overhead in lazy replication can be

hidden by implementing propagation as a concurrent background process. Hence the

lazy replication has better response time and scalability. As a result, most of the

commercial database replication solutions apply the lazy model [16]. However, there

are cases in which synchronous database replication is still feasible. Since message

delays are low in LAN's, synchronous replication protocols are practical in cluster

computing when databases are replicated on cluster of workstations.

Replication techniques can also be divided by where updates can be submitted.

In a master /slave approach updates can only be submitted on the master copy, in

an update everywhere approach updates can be submitted to any replica. The mas

ter/slave approach, also called primary copy approach, can be implemented without

CHAPTER2. BACKGROUND 11

too many adjustments to the concurrency control algorithms. The master can exe

cute as a centralized database system. Wh en slaves receive the updates propagated

by the master, they have to apply conflicting updates in the same order they were

executed at the master. The masterjslave approach introduces a potential bottleneck

and single point of failure. The update everywhere approach, in contrast, is more

flexible. However, update everywhere is mu ch more complicated in the design and

implementation.

If update everywhere is combined with asynchronous replication, it can happen

that two transactions Tl and T2 concurrently update data object X on two different

replicas and both commit locally not being aware of the conflict situation. This

requires reconciliation to bring the data copies back to a consistent state which is far

of being trivial. Combining update everywhere with synchronous replication requires

a careful integration of replica control and concurrency control and might lead to a

significant communication overhead among the replicas. The next section describes

sorne traditional synchronous update everywhere solutions.

2.4.2 Traditional Solutions

Textbook replication solutions have been traditionally synchronous update every

where [7]. In a basic ROW A (read-onejwrite-all) approach based on 2PL, a read

operation is executed locaIly, a write is multicast to aIl replicas. AU replicas acquire

locks and execute the operations. A transaction can only commit when aU write

operations succeed on aU replicas. When one replica fails, the system is blocked.

ROW AA (read-onejwrite-aU available) extends this approach and only requires to

write aIl available copies.

One problem of this approach is that each transaction has to check its view of

available replicas constantly to avoid one replica updating a copy which is not acces

sible to another transaction. This problem is caused by network partitions. To deal

with network partitions, quorum proto cols have been proposed. They require both

read and write operations to access a quorum of copies. This approach does not scale

for read-intensive applications. The poor response times (too much communication

CHAPTER 2. BACKGROUND 12

and coordination) and the lack of scalability of these solutions made synchronous, up

date everywhere replication unattractive. Only few commercial databases are using

this model. Instead, these mainly use masterjslave replication to easily guarantee se

rializability, and asynchronous replication to avoid communication within transaction

response time, hence sacrificing flexibility, consistency, and durability of transactions

[16].
[17, 22] attempt to address the limitations of synchronous update everywhere

textbook solutions and propose to take advantage of group communication systems

(GCS) to help with replica control. GCS provide powerful multicast primitives that

guarantee message delivery and order messages.

The next section describes group communication systems and their functionality

in more detail. Only then will we be able to discuss this kind of replication approach

in more detail.

2.5 Group communication systems (GCS)

Group communication systems (GGS) play a very important role in the development

of distributed systems. Beginning with ISIS [8], and followed by many others, such as

Horus [27], Transis [15] and Spread [2], GCS have a well-developed history, especially

for LAN environments. A GCS is a framework that facilitates the task of constructing

reliable and complex distributed applications. It gives the system designer a powerful

set of abstractions upon which many different distributed applications can be built.

GCS typically provide multicast and membership services. A set of pro cesses or

nodes form a group, and each group member can multicast messages to the group.

The messages are delivered to each available group member (including the sender). A

no de can join or leave the group. If a no de crashes, the GCS automatically removes

the node from the group. All nodes of the new group configuration are informed

about changes in the group configuration.

Typically, the semantics of the multicast primitives can be categorized by two

parameters, the ordering semantics and reliability semantics. There are four message

ordering semantics:

CHAPTER 2. BACKGROUND 13

• unordered: No ordering guarantee. Each node can receive any message in any

order.

• FI FO: Messages of each sender are delivered at each node in the order they

were sent.

• causal: Messages sent by aU senders are delivered in an order which preserves

Lamport 's happen-before relation [13].

• total: Messages sent by aU senders are delivered in the same total order at aU

nodes.

There are three message reliability semantics:

• unreliable: Messages may be dropped or lost and will not be recovered.

• reliable: Whenever anode delivers a message, and this no de does not fail for

sufficiently long time, then aU other group members will deliver the message

unless they fail.

• uniform-reliable: Whenever anode delivers a message, aU other nodes will

deliver the message unless they fail (no exception).

Our implementation uses Spread [2], a weU-known open-source GCS for both

local and wide area networks. It outstands by its stability and rich group commu

nication semantics. Spread offers powerful multicast primitives and a membership

service with strong semantics.

Applications can multicast messages by selecting different ordering and reliabil

ity semantics. However, in Spread, not aU reliability semantics can be combined

with aU ordering semantics. Spread supports five different types of service: un

reliablejunordered, reliablejunordered, reliablejFIFO, reliablejcausal, reliablejtotal

(called agreed in Spread) and uniform-reliablejtotal (called safe in Spread).

In addition to the regular message service, Spread also maintains membership

information about who is alive and reachable in the group with the same strong or

dering and reliability semantics. When the GCS detects a crash, aU surviving nodes

will deliver a view change message informing about the new membership configu

ration. Spread supports the extended virtual synchrony model [24] which is the

extension of the virtual synchrony model [9] to handle network partitions. Since our

CHAPTER 2. BACKGROUND 14

work focuses on cluster databases in a LAN environment, the virtual synchrony model

is sufficient. Virtual synchrony, which was introduced in ISIS, guarantees that mem

bership changes within a group are observed in the same order by all the members

that remain connected. Moreover, membership change messages are totally ordered

with respect to all regular messages in the system. This means that every two pro

cesses that observe the same two consecutive membership changes, receive the same

set of regular multicast messages between the two changes. This property ensures

delivery atomicity with respect to views of membership in a group.

2.6 Replica Control Based on GCS

There have been many proposaIs suggesting to use GCS to support replica control

[3, 20, 22]. In this thesis, we follow the approach of [22]. The basic idea is as follows.

A transaction Ti can be submitted to any replica. This replica is ris local replica

and Ti is local at this replica. All other replicas are remote replicas for Ti and Ti is

remote at these replicas. Ti is first completely executed at the local replica, and write

operations are collected (called writeset). At commit time, the writeset is multicast

to all replicas using the total order multicast. All replicas now use the total order

delivery to determine the serialization order. Whenever two operations conflict, they

will be executed in the order the writesets were delivered. Since this is the same at

all replicas, all replicas serialize in the same way. No complex agreement protocol

or distributed concurrency control is necessary. The different proto cols proposed in

[22] use different local concurrency control proto cols as their basis. Furthermore,

uniform~reliable delivery is used to avoid lost transactions. Wh en the sender receives

a writeset itself, it knows that everybody else will receive or has already received

it. Renee, it is safe to commitjabort a transaction locally because the other replicas

will do the same. Only one message is sent within the transaction boundaries. 2~

phase~commit is avoided, and a transaction can commit locally without waiting that

other replicas have executed th~ writeset. When replicas fail, the GCS informs the

remaining replicas. They simply can continue as a smaller group. This approach

avoids many of the limiations pointed out by [17], at least for local area networks.

Chapter 3

Replica and Concurrency Control

providing SI

In this chapter, we present the replica control algorithm that we have implemented

in PostgreSQL. Our description follows an incremental approach. In Section 3.1, we

present an abstract centralized concurrency control algorithm providing SI. We call

this algorithm SI-C (centralized concurrency control providing SI). SI-C was the

baseline for the replica control algorithm proposed in [22] which we present in Section

3.2. We refer to this algorithm as SI-R (concurrency and replica control providing

SI). However, we were not able to directly implement SI-R , since PostgreSQL does

not use SI-C, but a variant of SI-C, for concurrency control. This variant, which we

call SI-P (snapshot isolation in PostgreSQL), is presented in Section 3.3.1. Finally,

in Section 3.4 we present SI-PR (concurrency and replica control providing SI in

PostgreSQL), our version of the replica control algorithm which is based on SI-P.

3.1 SI-C: Centralized Concurrency Control pro

vi ding SI

In this section, we present SI-C, an abstract centralized concurrency control algorithm

providing SI. Each transaction Ti receives timestamps TSi(BOT) and TSi(EOT) at

15

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 16

the begin and end of transaction respectively. A counter is used for this purpose.

When a transaction commits the counter is increased and the new value is the trans

action's EOT timestamp. When a transaction begins, its BOT timestamp is set to

the value of the counter without increasing it. As such Tl and T2 are concurrent if

neither TS1 (EOT) :STS2 (BOT) nor TS2 (EOT) :STS1 (BOT).

In SI-C, each transaction Ti has an execution phase and a check and commit

phase:

1. Execution Phase

• When transaction Ti performs a write operation Wi(X) on data object X for

the first time, it checks whether a concurrent transaction Tj that has already

committed, also updated X. This is the case, if there is a version of X labeled

with Tj and TSj(EOT) > TSi(BOT). In this case, Ti aborts. Otherwise,

it creates a shadow copy of X that is not visible to other transactions and

performs the write operation on the shadow copy. If Ti has already a shadow

copy, it performs the update on its shadow copy .

• When Ti performs a read operation ri(X) on data object X and Ti has already

a shadow copy of X, the read is performed on the shadow copy. Otherwise,

Ti reads the last committed version of X as of Ti's BOT timestamp. That is,

Ti reads the version of X labeled with Tj such that TSj(EOT) :STSi(BOT)

and there does not exist another version of X labeled with Tk and T Sj (EOT)

< TSk(EOT) :STSi(BOT).

2. Check and Commit Phase: Upon a commit request, Ti checks whether any con

current already committed transaction had a confiicting write operation. That

is, for each of its shadow copies X, Ti checks whether there is a version of X la

beled with Tj and TSj(EOT) > TSi(BOT). In this case, Ti aborts and discards

an its shadow copies. If there is no confiict on any data object, Ti commits and

its shadow copies become visible to other transactions.

In order to provide correctness, there may not be two transactions in the check

and commit phase at the same time. The algorithm guarantees SI. Read operations

read from a snapshot as of begin of transaction. Out of two concurrent transactions

updating the same data object only the one that first enters the check and commit

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 17

phase will commit, the other will abort. This is also called the jirst-committer-wins

rule. The algorithm performs preliminary checks wh en it first updates a data object

to allow for early conflict detection.

3.2 SI-R: Concurrency and Replica Control pro

viding SI

In [22], the authors propose a suite of different synchronous and update everywhere

replica control algorithms depending on the concurrency control provided by the

underlying database systems. Among them, one is based on SI. Vve refer to this

algorithm as SI-R. The basic ide a of these algorithms is as follows. A transaction

Ti can be submitted to any replica. This replica is said to be the local replica and

transaction Ti is local at this replica. AlI other replicas are remote replicas for Ti and

Ti is remote at these replicas. Ti is first completely executed at the local replica. At

commit time, the writeset containing aIl write operations is multicasted to aIl sites

using the total order multicast. The delivery order of the writesets will determine the

serialization order of the corresponding transactions.

For SI-R it is important to generate globally unique BOT and EOT timestamps

and a transaction should have the same timestamps at each replica. For that pur

pose, the algorithm uses the total order delivery of writesets. When the system

starts, each no de sets its timestamp counter to o. Whenever a writeset is delivered,

the counter is increased and the transaction whose writeset is delivered, receives the

value of the counter as EOT timestamp. Note that, with this, there might be trans

actions with EOT timestamps that have not yet terminated since the delivery of a

writeset happens before the transaction terminates. When a transaction Ti starts, its

BOT timestamp is set to a value TSi(BOT) such that for each transaction Tj with

TSj(EOT) ::5:TSi (BOT), Tj has already committed.

Each transaction Ti has a local execution phase and a send phase at the local node,

and a version checking phase, a write phase and a commit phase at aIl nodes. There

cannot be two transactions concurrently in the version checking phase. The algorithm

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 18

extends SI-C with a locking procedure that takes place in the version checking phase.

This guarantees that remote transactions execute conflicting operations in the order

of writeset delivery.

1. Local execution phase: This phase is exactly the same as in SI-Co During this

phase the write operations are gathered to form the writeset.

2. Send phase When Ti submits the commit request, and Ii is read-only, it commits

immediately. Otherwise the writeset W Si is multicast to all replicas using the

total order multicast. WSi contains BOT(Ti).

3. Lock and version check phase This phase starts when the writeset is delivered.

At most one transaction can be in this phase. Ii receives its EOT timestamp.

Then it checks whether any concurrent transaction whose writeset was delivered

before Ti had a conflicting update. To do so, Ti do es the following for each write

operation Wi(X) in WSi. It checks whether there is a lock on X.

a.) If not, it checks whether there exists a version of X labeled with Tj and

TSj(EOT) > TSi(BOT). If this is the case, the lock and version check

phase is terminated, and Ii aborts. If Ii was local, it discards all its shadow

copies. If there is no such conflicting version of X, Ti receives the lock on X.

b.) If there is already a lock on X, not only existing versions of X have to be

examined but also the future versions created by the transaction that has

the lock or transactions that are waiting for the lock. That is, let Tj be the

last transaction to modify X before Ii (the last one in the waiting queue

for X or the transaction holding the lock if the waiting queue is empty). If

TSj(EOT) > TSi(BOT), then Ti has to abort (terminating the lock and

version check phase and discarding local shadow copies if necessary).

4. Write Phase: Whenever a write lock on X is granted and Ii is local, its shadow

version becomes a valid version. If Ii is remote, it creates a new version of X,

and executes the write operation.

5. Commit Phase: When all write locks are granted and operations executed, the

transaction commits and releases its locks which are granted to the next one

waiting in the queue.

Note that while in the centralized case, check and commit was in one phase,

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 19

it is now separated. The reason is that remote transactions have to execute the

write operations which can take considerable time. Rence, the algorithm wants to

allow non-confiicting remote transactions to execute concurrently while confiicting

operations should be executed in the order of writeset delivery. Therefore, locking is

performed in an atomic step to enqueue confiicting locks in the correct order.

3.3 SI-P: Concurrency Control in PostgreSQL

PostgreSQL [18] is a well~known open~source DBMS. It implements a multi~version

concurrency control mechanism providing SI. Rowever, the algorithm is quite different

to SI~C. In this section, we describe PostgreSQL's implementation of SI and refer to

it as SI~P. Then, we propose a replica control algorithm SI~PR, which is based on SI~

P. For simplicity of description, we only consider SQL update statements. It is easy

to extend the algorithms for insert and delete statements, and Postgres~R supports

them.

3.3.1 SI-P: Concurrency Control in PostgreSQL

In PostgreSQL, each transaction Ti is assigned a unique identifier TI Di when it starts.

This identifier will be used for labeling tuple versions and detect confiicts.

Version System In PostgreSQL, each tuple X is assigned a unique identifier which

is common to all versions of X. Each update creates a new version of X. All versions

are kept, even those created by transactions that later abort. We denote a version

created by a transaction that committed (aborted) a committed (aborted) version. An

important characteristic is that write operations have to acquire an exclusive lock on

the tuple which is only released at the end of transaction. As a result, there are never

two transactions concurrently creating new versions of the same tuple. With this, we

define as valid version, the version of X created by the last committed transaction

that updated X. There is always exactly one valid version of X. Finally, we denote

as active version of X, a version created by a transaction that is still active. There

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 20

Tirne

t1

t2

bO Utmin:TO
wO(X} t xmax: NuU

~I x:va 1
cO TO Cxmin: Tl
bt t xmax: Tt t xmax: Null

~~(X~ x:va Il X:V1 1
w2(y} '-------'
c1
w2(X) TO
82
03 txmax:T1

~:(X} -l X: va
r4(X)

Cxmin: Tl Cxmin; T2
t xmax: T2 t xmax:·Null

Il x: V1 Il x: V2 1

Figure 3.1: Version Creation during Execution

is at most one active version of X in the system. In Figure 3.1 at time t3, both VO

and V1 are committed, V1 is valid, and V2 is active.

Each tuple version V is labeled with two TI Ds. Lxmin is the TI D of the trans

action that created V, and Lxmax is the TI D of the transaction that invalidated V

due to an update creating a new version. That is, when a transaction Ti performs an

update on a tuple X, it takes the valid version V of X, and makes a copy VC of V.

Furthermore, it sets V's t..xmax and VC's t..xmin to TI Di. Figure 3.1 depicts how

transaction T3 at time t3 takes the version V1 created by Tl to make a new version

V2.

Two concurrent transactions may not perform write operations on the same tuple

X. Therefore, before a transaction Ti performs a write operation on tuple X, it

performs a version check to see whether there is any concurrent transaction Tj that

updated X and already committed. For that, Ti looks at the valid version of X and

checks whether Lxmin is the TI Dj of a concurrent transaction Tj . If this is the case,

a conflict is detected, and Ti will abort. In Figure 3.1, T2 must abort at time t2

because of valid version V1 with Lxmin = Tl and Tl committed after T2 started.

When a transaction Ti performs a read operation on X, it reads the version

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 21

created by transaction Tj such that Tj committed before Ti started and there is no

other transaction Tk that updated X and committed after Tj committed and before

Ii started. We denote this as Ii's visible version of X. Using t...xmin and Lxmax the

visible version can easily be determined. Lxmin must be the TI Dj of transaction

Tj such that Tj committed before Ti started. t...xmax must be (1) either NULL, (2)

refer to an aborted transaction, or (3) refer to a concurrent transaction (invalidation

is ignored by Ti independently of whether the concurrent transaction is active or

already committed). With this Ii reads the last committed version as of the time of

Ii's start. In Figure 3.1 when T4 performs the read at t4 it reads V1 (Tl committed

before T4 started), and not the active version V2.

Determining the snapshot In order to determine valid and visible tuples, a trans

action must know which transactions committed, aborted, or were active wh en it

started. PostgreSQL keeps information about each active transaction in shared mem

ory. Part of the information of transaction Ii is a snapshot st ru ct that is created

when Ti starts. snapshot contains xmax, the TI D for the next transaction which

will start just after Ii, and xip, a list of the TI Ds of aIl active transactions at the

moment when Ii starts. We den ote as Ticoncurrent = {TI D E xip V TI D ~ xmax}

the set of concurrent transactions whose updates are invisible to Ti. AlI others have

already terminated before Ii started. If they committed, their versions might be

visible. VVe denote these transactions as Ticommitted = {TI DIT l D ~ Tconcurrent and

TTID committed}. A transaction requires a fast mechanism to determine wh ether

a terminated transaction has aborted or committed. For that purpose, PostgreSQL

keeps a file caIled clog whose tail is buffered in shared main memoryl. Whenever a

transaction terminates, a log entry will be inserted into clog to record the commit

or abort outcome. clog provides a fast access method to determine the out come of a

transaction given its TI D. As an example, when T2 starts in Figure 3.1 at t1, xip is

{TIDd, xmax = TID3 , and clog contains a commit entry for TO.

The proto col Each transaction Ii has two phases

lclog is also used for recovery purposes.

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 22

1. Execution Phase

• '\Then transaction Ti performs a write operation Wi(X) on data object X for

the first time

• Check: It first checks if there exists a version of X such that Lxmin E

Ticoncurrent and the transaction with TI D = Lxmin has already commit

ted. This is the same check as in SI-Co

• If such version exists, then Ii is aborted.

• If no such version exists, Ii requests an exclusive lock for X.

• If the lock is granted immediately, Ti looks for its visible version of X,

that is the version V of X such that t--xmin E Ticommitted and Lxmax (j.

Ticommitted' Note that because Ii passed the version check and has a

lock on X, t--xmax is actually either NU LL or the TI D of an aborted

transaction. It cannot be the TI D of an active transaction or a committed

transaction that was concurrent to Ii. Ii makes a copy V' of V, and sets

Lxmax of the old copy V and Lxmin of the new copy V' to its own

TID i ·

• If there is already a lock on X, Ii 's request is appended to a waiting

queue for X. Upon being woken up by the transaction releasing the lock

on X, Ii starts all over again at the step above labeled Check.

• When transaction Ii performs a successive write Wi(X) on a data object, it

already holds the lock on X and has created a new version V'. It performs

the update sim ply on V'.

• When transaction Ti performs a read operation ri(X) on data object X, it

reads its own version V' if a previous write on the same object was performed,

or it reads the version V of X such that t--xmin E Ticommitted and t--xmax (j.

Ticommitted' Note that in this case Lxmax might contain the TI D of a

concurrent transaction Tj (meaning that Tj has performed an update and

created a new version, or deleted the tuple), but V is still visible to Ii

because Ii ignores Tj 's updates.

2. Termination Phase. Upon the commit request or abort request for Ii, Ii updates

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 23

clog, releases aIl locks, and wakes up aIl transactions waiting for one of these

locks.

The difference of SI-P compared to SI-C is that there is a locking procedure in

the execution phase. When a transaction wants to create a new version of a data

object, it tries to lock that object after the version check. If there is no lock on the

object, the lock will be granted. Else, the lock request will be enqueued. By this

locking procedure, conflicting write operations are serialized. When a transaction ~

holding the lock commits and wakes up a waiting transaction Tj , Tj performs again

the version check. This time, ~'s version exists leading to the abort of Tj . If ~

aborted, it also wakes up Tj • In this case Tj's check will succeed, and it will again

attempt to get the lock. If more than one transaction is waiting, an are woken up,

an perform the check, and either abort, or compete again for the lock. It is a neat

approach which takes advantage of the fact that version checks are very fast due to

the snapshot struct and the clog.

3.4 SI-PR: Concurrency and Replica Control pro

viding SI based on SI-P

By analyzing SI-P it becomes clear that the SI-R algorithm of Section 3.2 must

be adjusted. The first major issue are global timestamps. TI Ds are local at each

replica and there is no guarantee that a transaction can get the same TI Ds at aIl

sites (because each site will have different read-only transactions that are not sent

to other sites). Hence, we use as in SI-R the delivery order of writesets to generate

globaIly unique timestamps. However, the internaI system of PostgreSQL works with

TI Ds and we do not want to change this system because this would have an effect

on many different modules of PostgreSQL. As such, each transaction keeps locally its

TI D, and at the same time, each update transaction will receive a global identifier,

referred to as G ID, which will be the same at aIl sites, and is determined by the order

the writesets are delivered. The replication component at each site keeps an internaI

table that allows for a fast matching between G l D and TI D of a transaction. One

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 24

important thing to keep in mind is that for a local transaction, a TI D is generated

at the start of the transaction, the corresponding G 1 D is only determined when the

writeset is delivered at commit time. For a remote transaction, however, G 1 D and

TI D are generated at the same time when the writeset is delivered.

Another major change we did is that we do not allow remote transactions to

execute concurrently but they execute serially one after the other. In particular,

whenever a writeset is delivered for either local or remote transaction, the transaction

has ta completely terminate (commit or abort) before the next writeset is delivered.

This is fast for local transactions. However, for remote transactions it means they

go through the checking phase and the execution phase before a new writeset is

delivered. The reason is that concurrent execution requires sorne locking as explained

in Section 3.2. However, the centralized version of PostgreSQL uses its own locking

mechanism, to detect writejwrite conflicts during execution. These locks behave

quite differently than the locking scheme of SI-R. Since we did not want to change

the locking scheme of PostgreSQL for modularity reasons, we decided to run remote

transactions serially. Section 7.1 outlines how our algorithm could be optimized to

allow concurrent execution of non-conflicting remote transactions.

We distinguish between the execution of a local transaction and a remote trans

action.

• Local Transaction

1. Execution Phase: The execution phase is the same as in the centralized con

currency control proto col in PostgreSQL, SI-P, with sorne additional steps.

Purely TI Ds are used for conflict check, and the same locking procedure for

writes is used as in SI-P. For each write operation Wi(X) on tuple X, Ti
retrieves the version V of the X created by Tj such that Tj is the last trans

action that updated the tuple and committed before Ti started. Ti makes

its own copy V' of V and performs the update on it. At the same time, it

retrieves the G 1 D of T j (which already exists since T j already committed).

Both the new version V' of the tuple and the G 1 D of Tj are added to the

writeset.

2. Send Phase: When Ti submits the commit request, and Ti isread-only, it

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 25

commits immediately. Otherwise the writeset W Si is multicast to aIl replicas

using the total order multicast.

3. Commit Phase: U pon delivery of the writeset, the G l D is determined and

added to the internaI table together with TI D. The rest is the same as the

termination phase in SI-P .

• Remote Transaction: Upon delivery of the writeset for remote transaction Ti, the

G l D is determined, a transaction is started locaIly, and both G l D and TI Di

are added to the internaI table.

1. Version Check and Early Execution:

a.) For each tuple version V' of X in W Si, the version check is performed.

The idea is the following: Ti retrieves the local valid version V of X

according to its local TI Di. That is, it retrieves the version V created by a

transaction T j that was the last to commit and update X before Ti started

locally on this remote site (Lxmin E Ticommitted and Lxmax tj. Ticommitted

according to its local snapshot). N ow it retrieves the G l D of Tj and

compares it to the GID attached to V' in WSi .

b.) If the G l Ds are different, a concurrent transaction had updated X and

committed before Ti (it had committed before Ti started on this remote

site, but it was concurrent to the execution of Ti on its local site). Renee,

the check fails, and Ti aborts.

c.) If the G l Ds are the same, the last version of X is still the same as when

Ti executed at its local site. Rence, the version check succeeds. In this

case, Ti requests an exclusive lock for X.

d.) If the lock is granted immediately, Ti sets Lxmax of V and L.xmin of V'

to its own TI Di.
e.) Ifthere is already a lock on X, this lock belongs to an active local transac

tion Tj which either has not yet send its writeset or whose writeset has not

yet been delivered (there is only at most one remote transaction active;

and local transactions whose writesets had been delivered are guaranteed

terminated). In principle, Tj should be aborted because Ti's writeset is

delivered before Tj 's writeset, and hence, Ti should be serialized before

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 26

Tj . However, we do not abort it immediately but delay further actions

on X until Ti has passed the version checks on ALL tuples in W Si.

2. Late Execution: If the transaction has not yet aborted, it has passed the

version checks of aIl tuples in W Si. Furthermore, it has performed the up

dates on tuples for which no local active transaction had a lock. At this time

point, we know that Ti will commit. It now has to perform the updates on

the tuples for which local transactions have locks. These transactions have

to be aborted. Hence, for each such tuple, Ti requests again a lock, and if

the local transaction still holds it (it might have aborted in between for sorne

reason), Ti sends an abort request to Tj . When Tj receives this request, it

aborts, releases the lock which is directly granted to Ti (different to SI-P

where aIl waiting transactions are woken up). Ti updates V and V' of X.

3. Commit Phase: After aIl tuples have been updated, Ti updates clog and

releases aIllocks, waking up aIl waiting transactions.

3.5 Delay Abort Local Transactions

It is very important not to abort a local transaction prematurely. We now want

to give an example why a remote transaction should not immediately abort a local

transaction whose writeset has been sent but not yet delivered. Figure 3.2 provides

an illustration: Assume three nodes N1, N2 and N3. Assume that so far there was one

transaction with GID=1 updating X and Y at aIl sites. Now N1 has local transaction

Tl updating X, N2 has local transaction T2 updating X and Y, and N3 has local

transaction T3 updating Y. AlI three send their writesets. Assume the delivery order

is T3 before T2 before Tl. On N1, T3 gets CID = 2, passes the check (GID=1 both for

the visible version V and the version V' in the writeset), executes and commits. Then

T2 st arts the check, finds local transaction Tl holding lock on X and Tl 's writeset has

not yet been delivered. Assume now that T2 signaIs Tl to abort, then checks on Y. It

retrieves T3 's version of Y as the visible version with CID = 2. It detects the confiict

(GID should have been 1) and aborts. This is, on N1, both Tl and T2 abort. However

on N2, when T3's writeset is delivered, T3 aborts T2 because of the conflict on Y

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 27

N 1 N2 N3

If we abort a local transaction during the
version check for a remote transaction, the
local transaction might be aborted pre
maturely

Figure 3.2: Example of Premature Abort

and T3 has to be serialized before T2 . Wh en now Tl arrives, Tl passes the validation

test and commits. On N3, upon delivery of T3 's writeset, T3 commits. When T2 is

delivered, the confiict is detected (visible version has G 1 D = 2 instead of 1) and T2

is aborted. When the writeset of Tl is delivered, Tl will commit. In summary, the

abort of Tl on NI was wrong because T2 triggers the abort and then aborts itself.

Hence, we have to delay aborts to local transactions until we are sure that the remote

transaction causing the abort will commit.

However, we do not delay an execution. During the checking phase of a remote

transaction, if there is no confiict with a local transaction, we immediately perform the

update. That is, we do not completely separate the version check from the execution.

CHAPTER 3. REPLICA AND CONCURRENCY CONTROL PROVIDING SI 28

Aceessing tuples is expensive because they have to be found and possibly loaded from

disk. If we completely separate checking phase and execution phase, each tuple has

to be loaded twiee, which can be expensive. By combining both phases whenever

there is no conflict we speed up execution.

At this point we like to explain why there is no version check upon writeset delivery

of a local transaction. If there is any conflict between a local transaction Ti and a

remote transaction Tj which is serialized before ~, ~ would have been aborted by Tj

in Ti's late execution phase. Renee, upon delivering the writeset for ~, if it is still

alive, it has already passed the version check implicitly.

Chapter 4

PostgreSQL-R Project

PostgreSQL is an open source, object-relational database management system [26,

28]. It has a long history starting at the University of California at Berkeley in 1986

when Prof. Michael Stonebraker began the project, originally called Postgres. The

main goal of this project was to show that a relational database system could cope

with modern demands of extensibility. It was called an object-relational database

because it was a relational database system integrated with sorne object-oriented

features, such as inheritance, user-defined data types, operators, and functions. Now

this project is continuously developed by a group of people in the open-source com

munit y under the name of PostgreSQL. In addition to those object-oriented features,

PostgreSQL also has other core features in the latest version. For instance, it sup

ports SQL92 and SQL99. It supports internaI procedural languages, including a

native language called PL/pgSQL. This language is comparable to Oracle's procedu

raI language, PL/SQL. It provides several APIs, e.g., ODBC, C, C++, JDBC, Perl,

Tcl/Tk and Python. Its internaI services have been largely improved, providing more

efficient buffer management, write-ahead-Iogging, and, as described in Section 3.3., a

multi-version concurrency control mechanism.

The Postgres-R project extends PostgreSQL. The project was initiated by Bettina

Kemme, Gustavo Alonso, Win Bausch, and others at ETH Zürich. The goal of the

project is to provide synchronous database replication strategies using GCS. In [5],
Win Bausch implemented an update everywhere replica control algorithm from [22]

29

CHAPTER 4. POSTGRESQL-R PROJECT 30

based on strict 2PL. This implementation laid out the basic architecture of Postgres

R. It also provided general functions to generate writesets and apply them efficiently

at remote sites without re-executing the SQL statements. This first version was

based on PostgreSQL 6.4 which used locking as its concurrency control method. The

PostgreSQL community took the version implemented by Win Bausch (with several

changes done by Bettina Kemme) and migrated it to PostgreSQL 7.2. However, the

developed version was never correct, sinee PostgreSQL 7.2 uses the SI-P algorithm

described in Section 3.3 and no more 2PL. Mabrouk Chouk [lOJ took this modified

version and transformed it to a master-slave replica control proto col (which did not

need to consider concurrency control issues) and added recovery. For my thesis, l have

taken Mabrouk Chouk's version and changed it again back to update everywhere

by developing and implementing the SI-PR algorithm of Section 3.4. The main

architecture and the basic writeset functionalities, however, are still the same as in

the original Postgres-R by Win Bausch.

In this chapter, we will first describe PostgreSQL and its components, and then

describe the main architecture and functionalities of Postgres-R as existing at the

begin of this thesis work.

4.1 PostgreSQL

4.1.1 General Architecture

PostgreSQL uses a process-based clientjserver architecture [26, 28J. A PostgreSQL

session consists of the following cooperating processes: A supervisory daemon pro cess

(the postmaster), the user's frontend application or command execution environ ment

(psql), and one or more backend (Postgres) proeesses which are the only proeesses

directly working on the tuples. The postmaster process is always running, waiting for

requests from frontends. Frontend applications that wish to aceess a given database

make calls to the client library (libpqjODBC). The library sends user requests to the

postmaster, which starts a new backend proeess and connects the frontend pro cess

to that new backend. From that point, the frontend and the backend communicate

CHAPTER 4. POSTGRESQL-R PROJECT

---"
\
1

1

1

1

1
1
1
1

PostgreSQU
-------:;....'

f1\ Connection request is sent to the
\.!:..} postmaster

f2' Postmaster forks a backend for the
~ frontend

O Frontend and the backend commu
nicate directly

CD Backend works on the data in the
persistent storage

Figure 4.1: Architecture of PostgreSQL

31

without intervention by the postmaster. The backend executes commands on behalf

of the application program. A simple request-answer communication model is used

between the application and the backend. When the client disconnects, the connec

tion is dropped and the backend exits. The message communication between client

applications and the server can be configured using Tep socket or UNIX socket.

Since PostgreSQL is a process-based system, only one transaction can be executed

in a backend at a time. Each backend has a Proc struct in the shared memory. The

Proc struct stores the state of a process. It contains the information about the

pro cess, e.g. process ID, TID and the link to the Proc struct for the next pro cess in

the shared memory queue. It also stores the data related to the transaction currently

executing in the backend, e.g. transaction ID, execution state, locking information

etc.

In a backend, the main routine is the gateway connecting database and the client

application. Wh en a backend starts, it first checks the options handed over by the

postmaster, e.g. the size of the buffer pool, whether the client is allowed to modify

system tables etc. The backend process then initializes the underlying data structures

based on these options. Before it st arts to receive any query request from the client,

the backend has to register signal handlers to handle certain asynchronous events,

CHAPTER 4. POSTGRESQL-R PROJECT 32

Backend

Figure 4.2: Query Processing Modules

e.g. cancel current query request, deadlock detection request, exit request etc. The

signal mask is also set to determine which signaIs can be raised. This is part of the

standard exception handling mechanism. Signal handlers to han dIe these different

signaIs are provided. Now the backend is ready to enter the query loop. For each

client query, the loop is executed once.

Queries submitted by the client are first passed to the parser. The parser checks

the syntax and generates a parse tree which will be handed over to the traffic cop. The

traffic cop categorizes the queries into two types: complex queries or utility queries.

The complex queries in PostgreSQL are UPDATE, SELECT, INSERT and DELETE.

These queries are sent to the next stage, the rewriter. The utility queries are directly

sent to the utility processor. The rewriter re-writes the parse tree of complex queries

to an alternative form by applying any applicable rule. By this module, PostgreSQL

supports a powerful rule system for the specification of views. The next module is the

planner. The planner generates various execution plans and makes a cost-estimate

based selection to get the optimal plan for further processing. Finally, the plan will

be processed by the executor. If a transaction aborts at any time point, an abort

routine is executed. Then the backend jumps back to the beginning of the query

loop.

CHAPTER 4. POSTGRESQL-R PROJECT 33

4.1.2 IPe

There are three Inter-Process Communication (IPC) mechanisms used in PostgreSQL:

sockets, UNIX signals and shared memory. The communication between the frontend

pro cess and the postmaster, and between the frontend and the corresponding backend

is done through sockets. The postmaster and the backends can communicate with

each other using UNIX signaIs in sorne unusual circumstances, e.g. shutdown. The

communication between backends basically relies on shared memory.

The socket port of the postmaster is predefined and assumed to be known by

clients. When a client sends a request to the postmaster, a new port will be assigned

to the client. Then, the socket connection between the client application and the

backend is created and the two pro cesses can exchange messages. Each message has

a message header and a sequence of bytes as message body. The message might be

sent in several rounds due to the limitation of the packet size.

Signaling is another basic IPC mechanism. When a client sends a disconnection

message abnormally, the postmaster sends a signal to the associated backend. Wh en

the postmaster exits itself, it notifies every backend to abort by sending a signal. The

backend also can send a signal to the postmaster notifying that a table is full, a pass

word has changed etc. There is no signaling mechanism used in the communication

between the backends. However, it is definitely an option.

The shared memory management is more complicated than managing the previous

two IPC mechanisms. PostgreSQL implements a shared memory management module

inside the storage management subsystem which allows to easily create an object

within the shared memory. Objects can be accessed by aIl pro cesses who have a

pointer to the object. When the postmaster st arts a new backend, it aIlocates shared

memory for it. As we have mentioned, each backend process has a Proc header which

contains the link to the next pro cess in a shared memory queue. Lock tables are also

in shared memory. To locate an item in shared memory, the pro cess has to know

the start of the shared memory region and the offset relative to the starting pointer.

Since the shared memory is shared, conflicting operations must be synchronized to

ensure data consistency. Lightweight locks are used for this purpose.

CHAPTER 4. POSTGRESQL-R PROJECT 34

4.1.3 Locking Mechanism

The lock management module is another component of the storage management sub

system. It keeps track of requests for locks and grants locks. This module, together

with the transaction management subsystem, provides concurrency control in the sys

tem. There are three types of locks in PostgreSQL:

• Spinlock is a very short-term lock. It is primarily used as infrastructure for

lightweight locks. Busy-Ioop and timeout mechanism are used in the implemen

tation. There is no deadlock detection and automatic error handling for this type

of lock.

• Lightweight lock (L WLock) is the type of lock which is typically used to lock

access to the data stn~ctures in shared memory. It has exclusive and shared lock

modes. There is no deadlock detection, sin ce it is assumed that a lock is released

before a new one is requested. But the system automatically releases locks upon

an error. LWLocks are implemented using semaphores. A pro cess waiting for a

LWLock is blocked and locks are granted in arrivaI order.

• Regular locks support a variety of lock modes. Deadlock detection is provided

and locks are automatically released at transaction end.

One important note about spinlocks and LWLocks is that these two types of locks,

unlike regular locks, hold off interrupts until all such locks are released.

Locks are the building block of the concurrency control mechanism. There are

eight lock modes which describe the type of the lock, e.g. AccessShareLock, ShareLock

and ExclusiveLock etc. The fundamental data structures in the lock management

model are the LOCK struct and the HOLDER struct.

• Every lockable object has a LOCK struct whenever at least one lock is granted on

the object. It contains:

- locktag, a unique identifier of the lockable object. It is used for hashing locks

in a shared memory hash table.

- grantMask, bitmask for lock types already granted

- waitMask, bitmask for lock types waiting to be granted

- lockHolders, queue of HOLDER objects associated with the lock

CHAPTER 4. POSTGRESQL-R PROJECT 35

- waitProcs, queue of pro cesses waiting on the lock

• Each transaction that is holding or requesting a lock on a LOCK struct has a

HOLDER struct. It contains:

- holdertag, unique identifier of the holder. It is the hash key for the holder hash

table in shared memory.

- lockLink, link to all the HOLDER structs of the transaction

- procLink, link to all the pro cesses which hold the lock

When a transaction tries to request a lock on an object, it creates a locktag and

a holdertag which are used to search the LOCK and HOLDER structs in the lock hash

table and the holder hash table. If no corresponding LOCK or HOLDER struct could

be found, a new one is created. Then, if there is no lock granted or the transaction

has already a lock on the object, the lock is granted. Otherwise, a conflict check is

necessary. The type of lock requested is checked against the grantMask as well as

the waitMask in the LOCK struct. If there is no conflict, the lock is granted and the

transaction is allowed to perform the operation on the data object. EIse, the backend

pro cess executing the transaction is blocked until a holder releases the lock. It implies

that PostgreSQL does not support a pro cess to request multiple locks at the same

time.

When a process joins the waiting queue, it is normally appended to the end of

the queue. However, if the process already holds other locks that conflict with the

request of sorne previous waiter, it puts itself in the queue just in front of the first

such waiter. To synchronize access to lock related data, a masterlock (LWLock) is

acquired before the Lock struct data is accessed. Upon releasing a lock, all waiting

pro cesses are woken up in the order in which they are waiting in the waiting queue.

However, this do es not guarantee that the lock is actually granted to the first one in

the queue due to possible race conditions of UNIX pro cess scheduling.

If a process has to wait for a lock, it sets a timer and goes to sleep. This timer

is used to wake up the process after a certain sleep time to perform deadlock detec

tion. The standard directed-graph (wait-for graph) method is used in the deadlock

detection mechanism in PostgreSQL. If a deadlock is detected, the process will abort.

Wh en a pro cess appends itself to the waiting queue, it checks for two-transaction

CHAPTER 4. POSTGRESQL-R PROJECT 36

deadiocks (deadlocks involving only two transactions) with each waiter in the waiting

queue. This step avoids launching the deadlock detection routine later, since the

deadlock detection is very expensive.

4.1.4 Transaction Abort Mechanism

In PostgreSQL, there are four scenarios in which a transaction might abort. One

scenario happens wh en an exception is raised. In this case, the abort routine is called

to abort the current transaction and the backend starts again at the query loop. The

second scenario is that a transaction fails the version check within the concurrency

control component. The third one takes place when the client sends an ABORT

utility commando In the latter two cases, the backend is in a safe state. Safe means

that the transaction can abort immediately, without messing up the system. They

are the normal query abort scenarios. The abort routine is called directly and the

backend jumps to the beginning of the query loop. The fourth and last scenario

is a bit tricky. It happens when the backend receives a query-cancel signal (the

client has sent a cancel connection request) or shutdown signal from the postmaster.

When the backend receives such signal, it can be in any state or in the middle of

any operation. There is no guarantee that the database would remain consistent if

interrupts are allowed at an arbitrary point in execution. Therefore, PostgreSQL

declares three volatile variables: l mmediateI nterruptO K, l nterruptH aida f f C au nt

and CritSectianCaunt.

1. ImmediatelnterruptOK is set to 1 if the backend is waiting for input or a lock.

At these two spots, interrupts are allowed.

2. InterruptHoldoffCount is incremented when low-Ievel subroutines manipulate

data structures in shared memory. Only if InterruptHoldoffCount = 0, the signal

can be processed.

3. CritSectionCount is incremented wh en the backend performs an operation on the

Write Ahead Log. An exception will force a system-wide reset if CritSection

Count is not zero at the time of the exception. Therefore, interrupts should not

be allowed.

CHAPTER 4. POSTGRESQL-R PROJECT 37

Only if the conditions set by these three variables are satisfied, the signal can be

processed right away. If it is not 'safe', a flag, QueryCancelPending, is set. During

query processing, the backend checks QueryCancelPending at sorne 'safe' spots and

pro cesses the signal. The signal is treated as an exception, and the control will be

redirected to the transaction abort routine.

4.1.5 System Catalog

Database metadata is "data about data". It describes the content of the database,

e.g. information about tables, attributes, indexes etc. In addition, it also contains

functions that manipulate relations. PostgreSQL provides system catalogs to store

such metadata. There exists a catalog containing information about aIl tables, a

catalog containing information about attributes etc. Catalogs by themselves have

table structure. AIl of the catalogs are maintained and accessed via the catalog

subsystem. The catalogs are cached. And there is an efficient way to find a record in

a catalog from the system cache by index lookup, without going through the execution

path to be used for queries on regular tables.

4.2 Postgres-R

4.2.1 Architecture

The architecture of Postgres-R is depicted in Figure 4.3. Postgres-R extends Post

greSQL with three new components: remote backends, replication manager and com

munication manager. The original backends are now called local backends. They

execute local transactions that are submitted by clients connected to the particular

Postgres-R instance. A remote backend is a variant of the original backends. It pro

cesses the writesets propagated from other nodes in the system. The communication

manager is in charge of the message exchange between the replication manager and

the GCS hi des the details of GCS. The replication manager is responsible for starting

remote backends, and coordinating the execution of backends and their communica

tion with the communication manager. In addition to these new components, the

CHAPTER 4. POSTGRESQL-R PROJECT 38

Client

Network

Figure 4.3: Architecture of Postgres-R

struct wri teset is used to bundle an the write operations of a transaction into a

single message.

Wh en a database server starts, the postmaster forks the replication manager pro

cess. Then, the replication manager st arts the communication manager and a re

mote backend. The replication manager listens on two main sockets: the replication

manager server socket and the group communication socket. When a local backend

wants to send a writeset for the first time, it connects to the replication manager

through the replication manager server socket. A new dedicated connection struct

and a new socket are created for this backend. The connection struct will be kept

in a connection list until this local backend is closed. The remote backend has

its own socket and connection struct which is also kept in the connection list.

The connection struct contains information about the associated backend: host ID,

process ID, backend type, TID of current transaction, state of the backend and the

pointer to the socket. The state of the backend is used to identify which stage the

backend is in, as seen by the replication manager. Each message exchanged between

backends and replication manager has a header containing message type, message size

CHAPTER 4. POSTGRESQL-R PROJECT 39

and other information.

There exist four procedures which are used to handle messages: one for each com

munication direction (from backend to GCS or from GCS to backend) and backend

type (remote or local). The main routine of the replication manager waits for mes

sages on aIl of the enabled sockets. When the main routine observes a message and

receives the message entirely (based on the message size), it passes the message to

the according message handling routine.

4.2.2 Writesets and Their Application on Remote Nodes

A Writeset carries information about the write operations of a transaction. Statement

level replication is sending the original query in plain text to the remote sites which

will re-execute the query. With tuple-level replication, the modified tuples are sent.

At the remote site, these tuples are directly accessed and updated. The advantage

of tuple-Ievel replication is that there is no hidden dependency. For instance, using

statement-Ievel replication, if an update fires a trigger that again contains update

statements, there is no guarantee that the triggered update will be executed on each

repli ca. Furthermore applying a tuple-Ievel replicated writeset at a remote node is

usually faster than re-executing SQL statements. In our current implementation,

tuple-Ievel replication is used for complex queries. Utility commands use statement

level replication. In the writeset, the data is grouped by relations. For each rela

tion, there exists a list of query structs, one for each query on this relation. With

statement-Ievel replication, the query struct contains simply the query text. With a

tuple-Ievel replication, it contains a tuple collection. For each changed tu pIe there

is a collection of modified attribute values, their attribute numbers in the relations

(PostgreSQL identifies attributes internally not by their name but by an assigned

number), and possibly the primary key values of the tuple (for DELETE and UP

DATE). Hence, the tuple collection can be seen as a two-dimensional array, the

first dimension for the tuples and the second for the attributes.

When processing the writeset, the remote backend pro cesses the queries following

the order in which they appear in the writeset. For statement-Ievel replication, the

CHAPTER 4. POSTGRESQL-R PROJECT 40

execution path is the same as it is for a local transaction (parser, planner, executor).

For each tuple to be modified in tuple-Ievel replication, the remote backend first re

trieves the tuple from the database in two steps. First, the tuple descriptor is

retrieved based on the relation name. The tuple descriptor contains aIl the infor

mation about a tuple in the relation, e.g. attribute names and their order numbers

and which attributes constitute the primary key. This retrieval is fast since the in

formation is stored in the catalog. Second, the index on the primary key, which is

created automatically when the table is created, is th en used to efficiently find and

retrieve the tuple. Now the remote backend can directly perform the change on the

tuple (skipping most of the normal query execution steps).

4.3 Distributed Recovery

Although recovery is beyond the topic of this thesis, we want to briefly talk about

the recovery mechanism in the masterjslave Postgres-R. In PostgreSQL, there is a

eentralized recovery mechanism, which uses a Write-Ahead-Log (WAL). For each

modified tuple, the modified attribute values and their attribute numbers within the

relation are logged. Before any change is written into the database, it must be logged

into WAL first. At commit time, the log is flushed to disk to guarantee durability.

The postmaster periodically performs checkpointing (flushing aIl dirty pages to disk).

Wh en the database st arts after a crash, the postmaster will check the transactions

which are committed after the last checkpoint in the WAL and redo any transaction

which is logged in WAL but whose updates were not written to the database before

the crash. Those aborted transactions in the WAL are ignored.

In [10], Mabrouk Chouk implemented a distributed recovery proto col for the

master-slave approach in Postgres-R. When anode restarts after a crash, it first

has to perform eentralized recovery. After that, it has to synchronize with other

nodes. During the downtime, the other nodes might have executed many update

transactions. The recovering no de has to get the changes performed by these missed

transactions from a peer node. For that, it has to identify the missed transactions.

Sinee local TID's are different on different nodes, Mabrouk Chouk introduced Global

CHAPTER 4. POSTGRESQL-R PROJECT 41

Transaction Identification, G ID, that identifies a transaction throughout the sys

tem. The replication manager keeps a distributed recovery log that records for each

transaction its local TID, the GID and a pointer to the WAL containing the trans

action's updates. During recovery, the recovering node receives from the peer no de

all transactions that appear in the peer node's distributed recovery log but not in

recovering node's log, and applies them. Of course, the recovering pro cess has to

coordinate with the concurrent processing of new transactions. Although the new

update everywhere version of Postgres-R does not yet support recovery, we kept the

necessary data structures, so that the system can easily be extended to provide such

functionali ty.

Chapter 5

Implementation Details

5.1 Overview

While the main architecture of Postgres-R has remained the same, the integration of

SI-PR changed the execution of a transaction considerably. We split the execution

of transactions into different steps, possibly performed by different components. The

start of a new step is triggered by events, e.g. the reception of a request or message.

Events related to replica control protocol, their ordering and interaction between

replication components are described in Figure 5.1 together with Figure 5.2 and

Figure 5.3.

First, we depict the execution of a local transaction. Figures 5.1 and 5.2 help to

understand the interaction:

1. A transaction starts when a client submits a command to a local backend. The

transaction boundary can be explicitly issued by the client using BEGIN and

END /ROLLBACK commands. If the client do es not use these statements, Post

greSQL will execute each individu al SQL statement as a transaction. When a

query arrives, the local backend enters the Execution Phase. During query exe

cution, if there is any update performed, it is added to the writeset. As indicated

in Section 3.4, the GID of the transaction whose version was copied is included.

(Step 1 in Figure 5.1)

2. Upon receiving a commit request, the locàl backend checks the writeset. If the

42

CHAPTER 5. IMPLEMENTATION DETAILS

Network

Remote
Backend

1

~j'-------------,,

:1
'i
:1 Local :l Backend 1

...... _--------------

Figure 5.1: Replication Events in Postgres-R

43

writeset is empty, the transaction commits and results are returned to the client.

If there is anything in the writeset, it will be sent to the replication manager.

(Step 2 in Figure 5.1)

3. When the replication manager receives a writeset from the local backend, it

forwards the writeset to the communication manager. (Step 3 in Figure 5.1)

4. The communication manager uses the total order multicast service, provided by

the GCS, to multicast the updates to aU of the nodes in the system, including

itself. Upon receiving a message from the GCS, the message is forwarded to the

replication manager. (Steps 4, 5 and 6 in Fig~re 5.1)

5. Upon delivery of a writeset, a GID is assigned to the corresponding transaction

(details in Section 5.2). When the replication manager finds out that the write

set received is for a local backend, it sends a RECEIVED notice to the local

backend together with the GID for the transaction. To guarantee serializability,

the channel from the communication manager is blocked. (Step 7 in Figure 5.1)

6. When the local backend gets the delivery notice, it records the GID, commits

the transaction and sends CHECKED to the replication manager. (Step 8 in

Figure 5.1) Upon receiving the acknowledgement from the local backend, the

CHAPTER 5. IMPLEMENTATION DETAILS

Local Backend Replication Manager Communication Manager

start transaction

1l
" if
" '§

WRITESET " " K
~

co mmit transaction

" gj

if
'0

" " CI)

WS_RECElVED

" gj
..c:
Po.

.~
0 CHECKED U

~

send writeset

deliver writeset -
1

2

1 Block TOTAL socket

.
send

toGCS

"'deliver
fromGCS

2 Unblock TOTAL socket

Figure 5.2: Interactive Diagram for Local Transaction

44

replication manager re-opens the channel from the communication manager to

receive the next writeset.

The execution of a remote transactions is shown in Figure 5.1 and 5.3:

1. When the communication manager receives a writeset delivered by the GCS, it

forwards the writeset to the replication manager. (Step 9, 10 in Figure 5.1)

2. When the replication manager receives a writeset, it assigns GID to this remote

transaction and sends the writeset, together with the GID, to the remote backend.

The replication manager blocks the channel from the communication manager.

(Step 11 in Figure 5.1)

3. The remote backend records the CID, and performs the version check. If it passes

the version check for aH tuples, the write operations in the writeset are processed

(aborting local transactions if necessary). Then it sends a READY message to

the replication manager. (Step 12 in Figure 5.1)

CHAPTER 5. IMPLEMENTATION DETAILS

Local Backend Replication Manager Communication Manager

Version Check and
Early Execution

Late Execution

Commit Phase

WRITESET

READY

reading writeset

- 2

1 Block TOTAL socket

deliver
fromGCS

2 Sometimes unblock TOTAL socket

Figure 5.3: Interactive Diagram for Remote Transaction

45

4. Upon receiving a READY message, the replication manager will enable the chan

nel from the communication manager once all local transactions, that had to be

aborted due to conflict with the remote transaction, have completed the abort

(see Section 5.2.2 for more details).

So far, we have described the successful execution of transactions. However, trans

action abort might happen at certain states of the execution. We will discuss this in

Section 5.2.l.

In summary, the major changes we did on Postgres-R to implement SI-PR have

been:

• The control flow within the replication manager has been modified to follow the

steps depicted above.

• A CID generation mechanism has been implemented.

• A new system catalog which maintains the CID and the corresponding TID has

been added to the system.

• The abort mechanism has been enhanced to allow remote transactions to abort

conflicting local transactions.

• A version check mechanism for remote transactions has been implemented. It

CHAPTER 5. IMPLEMENTATION DETAILS 46

Message Type Description

MSG_OPENING A local backend sends a connection request to the replication
manager

MSG_CLOSING A local backend sends a disconnection request to the replication
manager

Nl::Sv_WKlTb lA wnteset message. lt can be senCl1rom a local backenCl to tne
replication manager, from the replcation manager the
communication manager or from the communication manager

MSG_ WS_RECEIVED The replication manager sends writeset delivery
notice to a local backend

MSG_CHECKED A local backend sends a commit notice to the replication manager

MSG_READY A remote backend sends this message to notify the replication
manager that it has finished processing a writeset

MSG_ABORT A local backend or a remote backend notify the replication
manager about its abort

Table 5.1: Messages between the Backends and the Replication Manager

requires to match local TIDs with GID.

In Table 5.1, we summarize the message types that exchange between the backends

and the replication manager.

5.2 Replication Manager

The replication manager is one of the major components ln Postgres-R. It is the

coordinator of the replica control proto col on each node. One of the important roles

of the replication manager is to create the GIDs. The GID should be unique within

the whole replicated system, since it takes the role of the EOT timestamp in the

concurrency control algorithm. Furthermore, each no de must give a transaction the

same GID (while it can have different local TIDs). The replication managers keeps

a GID counter. Wh en the replication manager delivers a writeset, it increments

the GID by one and assigns the new value to the transaction associated with the

writeset. If a transaction aborts but its writeset had been delivered, the GID counter

will be decremented by one. Using this approach, we have not only unique but also

continuous GIDs. This continuity can significantly simplify the distributed recovery

CHAPTER 5. IMPLEMENTATION DETAILS 47

proto col (discussed in chapter 7).

At startup of a node, the GID counter must be initialized accordingly. When the

node joins a running system,it has to perform distributed recovery (Section 4.3). In

this case, the peer no de can give the current GID. In a newly starting system, the

GID can be set to zero. At a restart after a total failure, the GID can be retrieved

from a special catalog (see Section 5.3.2).

5.2.1 State Machines

There are two state machines, one for local transactions and one for remote trans

actions, which show the state of the transaction as seen by the replication manager.

These state machines specify the framework of our replication proto col. Note that

these two state machines depict the protocol from the replication manager point of

view. Later, we will describe state machines as observed by the backends. The dif

ference between the state machines in the replication manager and in the backends is

due to time delay between sending and receiving a message. We must pay attention

to this delay in our implementation. We describe the local state machine (Figure 5.4)

as follows. Before a local backend sends its first writeset, the replication manager

does not know about its existence. Only when the backend sends the first writeset,

it connects to the replication manager and the state machine enters L_IDLE_STATE.

From now on, whenever the replication manager receives a writeset from this backend,

the state machine moves to L_SEND_STATE and the replication manager multicasts

the message. If a transaction aborts after it sends the writeset, the backend has to

notify the replication manager. The state machine will go back to L_IDLE_STATE.

When the writeset is delivered by GCS, it might belong to an aborted transaction in

which case the state is not changed. If the writeset belongs to a not aborted transac

tion, the state machine enters L_CHECK_STATE and the CCS channel is disabled.

At this moment, the replication manager generates the GID for the local transaction,

and sends it with a RECEIVED notice to the backend. Having received the feed

back from that backend in form of a CHECKED message, the replication manager

enables the group communication socket again. Then the state machine goes back to

CHAPTER 5. IMPLEMENTATION DETAILS

Writeset of aborted
___ transaction

/,,,- "
, /

CLOSING

Writeset of aborted
transaction

Writeset of aborted
___ !!ansaction

(.// '>
.... , /'

Message from Backend

Message from GCS

Figure 5.4: State Machine for Local Transaction

48

LJDLE_STATE. When the local client logs off, a CLOSING notification will be sent

to the replication manager. The state machine enters L_DESTROY_STATE. Later,

this connection struct will be freed by the cleanup routine. Note that the connection

st ru ct will not be freed until an writesets for the corresponding backend have been

delivered. The replication manager is not aware of the existence of a transaction in

the backend until it receives the writeset for the transaction. Therefore, the replica

tion manager does not know about read-only transactions or the transactions that

abort before they send the writesets.

The remote state machine (see Figure 5.5) st arts with the R_FREE_STATE indi

cating that this backend is ready to process writesets. When the replication manager

receives a writeset from GCS, it generates the GID for this remote transaction and

forwards the writeset together with the GID to the remote backend. At the same

time, it blocks the socket from the GCS to guarantee seriaI execution. Then, the

state machine enters R_BUSY _STATE. When the remote transaction fails the version

check or it performs the transaction successfully, the backend notifies the replication

manager. If the transaction fails, the GID will be reused for the next transaction.

The state machine will go back to R_FREE_STATE.

CHAPTER 5. IMPLEMENTATION DETAILS 49

READY / ABORT

,------~~"-----,
R_FREE J [R_BUSY

-- ,~
"-------------------/

- Message from Backend

----- Message from GCS

WRITESET

Figure 5.5: State Machine for Remote Transaction

5.2.2 Remote Transaction Aborts Local Transaction

Special care has to be taken if a remote transaction passes the version check. In

this case, it might have aborted sorne local conflicting transactions whose writesets

have been sent but not yet been delivered. The replication manager has to catch

these writesets and discard them. There are three related events: the replication

manager receives an ABORT message from a local backend, a READY message from

a remote backend or a writeset from the GCS. We know that a READY message must

be received before the replication manager receives a new writeset because the GCS

channel is blocked. However, the READY message and the corresponding ABORT

messages, and the ABORT messages and the corresponding writesets might arrive in

any orders.

Assume a remote transaction Tl aborts a local transaction T2 which had already

sent the writeset. We have three cases:

1. The replication manager receives TI's READY message before T2 's ABORT mes

sage.

2. The replication manager receives T2 's ABORT message before TI's READY mes

sage.

3. The replication manager receives T2's ABORT message and a writeset for a new

transaction T3 from the same backend before it receives T2 's writeset.

To handle the first two cases, the replication manager must block the channel from the

GCS until it has received the READY message and aU of the ABORT messages for

those aborted local transactions. To be able to do so, the READY message contains

aU TIDs of an aborted local transactions. The replication manager has a counter

CHAPTER 5. IMPLEMENTATION DETAILS 50

keeping track of how many ABORT message it has already received and how many

it needs to receive before the communication channel can be unblocked.

To solve the last problem, the replication manager must keep additional infor

mation in the connection struct to remember those aborted transactions for each

backend. When the replication manager receives a writeset that belongs to an aborted

transaction, the writeset will be discarded.

5.3 Backend

5.3.1 State Machines

Each backend also keeps track of its state using its own state machine. The state

machine for a remote backend is almost the same as the state machine maintained by

the replication manager (see Figure 5.5). The state changes just happen at different

time points. The state switches its state from R_FREE_STATE to R_BUSY _STATE

when the backend receives a writeset from the replication manager. And it switches

from R_BUSY _STATE to R_FREE_STATE when the backend sends a READY or

ABORT message to the replication manager.

However, the state machine of the local backend is quite different. Figure 5.6 de

scribes the state machine when executing a transaction in the local backend. When

a backend starts, it is in L_INPUT _STATE. It listens on the client socket waiting for

a commando When the backend receives a command in its entirety, it switches to

L_LOCAL_STATE. In this state, the backend is processing the command and collect

ing the writeset if there are updates. Upon receiving a commit request and the trans

action running in the backend is not read-only, the backend enters L_SEND_STATE

and sends the writeset to the replication manager. Otherwise, when the backend

finishes executing a normal command or the transaction aborts in the middle of

the process, the state machine goes back to L_INPUT _STATE. After having sent

the writeset, the backend goes to L_WAIT _STATE. To maintain the integrity of the

writeset message, abort is not allowed in L_SEND_STATE. When receiving a delivery

notice from the replication manager, the transaction commits and the state goes back

CHAPTER 5. IMPLEMENTATION DETAILS

Abort
------------------ L_WAIT

Get Input
from Client

Finish Processing a
Command / Abort

L_LOCAL r---------------~
Commit and Ready

to Send Writeset

Finish Sending
Writeset

Figure 5.6: State Machine for Local Transaction

51

to L_INPUT _STATE. The backend might get an ABORT notice from a confiicting re

mote transaction. In this case, the transaction will abort and enter L~NPUT _STATE.

The local backend has to notify the replication manager with an ABORT notiee.

5.3.2 pg_transrecord System Table

When a transaction T (local/remote) starts, a TID is assigned locally and it is stored

in the Proc struct of the backend as long as the transaction is active (see Section

4.1.1). TID is used throughout the execution of T. When there is a write operation,

TID is logged into the WAL before T commits. When T updates a tuple, the old

valid version receives TID as Lxmax and the new version takes TID as Lxmin. Also

in the replicated system, TID has an important role. Furthermore, we need the GIDs.

Specifically, remote transactions have to rely on GIDs to perform the version check

and the locking (see Section 5.3.4). The version check requires to check for updates

of transactions that have been executed on different machines with different TIDs.

Renee, TIDs created by different machines can not be used for the version check, but

GIDs must be used. Rowever, PostgreSQL only stores local TIDs within the tuple.

Renee, we have to match these local TIDs with the corresponding GIDs to detect

confiicts.

CHAPTER 5. IMPLEMENTATION DETAILS 52

When a backend receives the GID for the current transaction from the replication

manager, it saves the GID into its Proc struct. However, this information is volatile

since whenever a backend receives a new GID, the GID for the previous local trans

action of this backend is overwritten. As a consequence, we have to store the GID,

together with the associated TID, in a persistent way and accessible to aIl backends.

There are several possible approaches. The GID can be added to each tuple in ad

dition to the local TID. This costs a lot of disk space and requires to access tuples

of local transactions twice (once when they are updated in the execution phase and

once after the delivery of the writeset when the G ID is determined). Alternatively, we

can create a new log file, as used in the distributed recovery solution for masterjslave

replication (see Section 4.3). However, while in the recovery solution, the log is only

needed to be visible to the replication manager, we need a data structre that is ac

cessible to backends. A third alternative is to create a relational table that contains

GIDs with the corresponding TIDs. An ever better solution is to use a system catalog

to store such information. As described in Section 4.1.5, the system catalog handles

data very efficiently. And this catalog can also be potentially used for distributed

recovery.

Hence, a new catalog, called pg_transrecord, was created for fast retrieval. TID

and GID are the attributes. Furthermore, an index on TID was created. Three

functions have been implemented to add a new record for a new transaction, to

update the GID for a record, and to retrieve the GID for a given TID. It is important

that the pg_transrecord system table is not replicated since it contains different data

in the different replicas.

When a local transaction starts, a new record is created for the transaction in

the pg_transrecord. Since at this time, only the TID for the local transaction is

known, the GID is set to NULL. If the writeset for the transaction is delivered, i.e.

the RECEIVED message has arrived, the GID attribute is updated. For a remote

transaction, the TID and the GID are added to the pg_transrecord in one step upon

writeset delivery at the beginning of the transaction. Note that the visibility of the

records in the catalog follows the the same rules that hold for regular tables. An

active transaction can only see the records which are addedjupdated by transactions

CHAPTER 5. IMPLEMENTATION DETAILS 53

that were committed before it started. Therefore, the catalog is not enough. To

retrieve the GIDs for active transactions, we have to walk through the Proc structs

in shared memory.

5.3.3 Remote Transaction Aborts Local Transaction

In our algorithm, if a remote transaction requests a lock and the lock is held by

a local transaction, the local transaction must abort. It is similar to the last sce

nario of transaction abort in PostgreSQL, i.e. a transaction receives an asynchronous

abort signal (see Section 4.1.4). It can happen at any arbitrary moment in the local

transaction execution. In our implementation, the signaling mechanism is chosen to

let a remote transaction abort a local transaction. To implement this functionality,

the abort mechanism in PostgreSQL must be enhanced. Recall that an abort signal

could not be processed immediately if ImmediatelnterruptOK = false, InterruptHold

offCount> 0 or CritSectionCount > 0 (see Section 4.1.4)). Now, we have several new

situations which do not exist in the centralized system. First, when the writeset is

sent, the backend will wait for the writeset delivery confirmation. In this case, we

want the backend to stop waiting if there is an abort signal. Second, when a local

transaction is ready to commit, the writeset for the transaction will be sent to the

replication manager. Here, we do not want the transaction to be interrupted in the

middle of the transmission. Third, a transaction can not be aborted wh en it is waiting

for the input from a client or in the middle of input transmission. Otherwise, partial

client requests might be left in the communication channel. Note that PostgreSQL

allows to abort a transaction when the backend is waiting for client input only in

case that there is a disconnection request from the client or the database is going to

shutdown.

To handle the first case, a local transaction will abort immediately wh en it is in

L_WAIT_STATE. In order to handle the last two cases, two additional fields have

been added to the Proc struct of a local transaction. A boolean field AbortFlag is set

to true if a local transaction catches an abort signal from a remote transaction but it

can not abort immediately, because it is not safe. These unsafe situations include the

CHAPTER 5. IMPLEMENTATION DETAILS 54

unsafe situations in the centralized system (Section 4.1.4) as weIl as the last two new

cases we described. Another field NoAbortDelay is added to guide against the last

new situation. In summary, in our replicated system, a local transaction is aborted

(through signal by a remote transaction), if state = L_WAIT_STATE or (Immedi

atelnterruptOK = true and InterruptHoldoffCount = 0 and CritSectionCount = 0

and AbortFlag = true and NoAbortDelay = true).

It is possible that a remote transaction sends an abort signal to an aborting trans

action. In this case, PostgreSQL only aborts a transaction once (see Section 4.1.4).

Recall that, there is only one remote transaction or one local transaction process

ing a writeset, since the replication manager will not deliver the next writeset until

it receives the confirmation that the previous transaction has terminated (and local

transactions aborted by a remote transaction have aborted). Hence, the complicated

situation, in which two remote transactions send abort signaIs to an aborting local

transaction which has already sent the writeset, is avoided.

5.3.4 Version Check and Execution of Remote Transactions

Preparing for Version Check

Version check for a local transaction is the same as it is in the original PostgreSQL. In

the execution phase, the local TID is used to do the version check. When the version

check is successful, the operation will be performed. Otherwise the transaction aborts.

The extra work is that if there is a write operation of transaction Ti and the operation

is successfully performed, we have to collect the GID corresponding to the Lxmin of

the version V which is read and copied by Ti and then invalidated by setting Lxmax

to TI Di. This GID can be retrieved from the pg_transrecord given t-xmin. That is,

for a local transaction Ti which successfully performs a write operation on a tuple X.

If Lxmin of the valid version of X is TI D j, we get G l D j corresponding to TI D j by

looking up the pg_transrecord.

Then we have to attach to the writeset for each tuple the corresponding GID.

Recall that there is a tuple collection data structure within the writeset which

contains aIl the modified tuples by a query. An array, GIDArmy is added to the

CHAPTER 5. IMPLEMENTATION DETAILS 55

tuple collection. Each entry within GIDArray matches the corresponding tuple

in the tuple collection. If the changes of a tuple X are kept in the kth position in

the tuple collection, GI Dj is also kept in the kth position in the GIDArray.

Version Check

Now assume a writeset is delivered and a remote transaction Ti with TI Di, corre

sponding to the local transaction Tl on the local site, is started. Assume Tl accessed

tuple X and read version created by Tj with TIDj and GIDj. GIDj was added to

the writeset. At the remote site, Ti now performs the version check. It reads the valid

version of X with Lxmin = TIDk with corresponding GIDk • If GIDk = GIDj , Ti
passes the version check for the tuple.

Execution

In the version check and early execution phase, when a remote transaction finds there

is no one holding the data object, it will get the lock and process the operation right

away instead of waiting until the late execution phase. However, if a local transaction

holds a lock, we do not immediately abort it and execute, but wait until the check

is complete. When the remote transaction has passed aU version checks, it will go

back and perform the rest of the updates which have not been do ne in the early

execution. For that, it will again go through the tuple collection one by one.

Now it has to detect which tuples were already updated and which not. To determine

this, the GIDArray is re-used. After an update operation has been processed in the

early execution phase, the entry in the G IDArray is set to a special value DON E

(a negative number which is not a legal GID). 80 in the late execution phase, if the

GIDArray entry equals DONE, the operation on the tuple has already been performed

and will be skipped this time.

Locking

Another problem to be solved is how a local transaction, aborted by a remote trans

action, hands over a lock to the remote transaction in the late execution phase. As we

CHAPTER 5. IMPLEMENTATION DETAILS 56

have described (see Section 4.1.3), in PostgreSQL the lock holder wakes up all of the

transactions waiting in the queue to let them compete for the lock. The order in the

original waiting queue is totally irrelevant to who might finally be the new holder.

This is not what we want. Our strategy is that we put the remote transaction at

the head of the waiting queue and do not wake up any local transaction until the

remote transaction holds the lock. First, when there is a lock request from a remote

transaction and the holder is a local transaction (by checking whether it has already

a GID), this request will be put at the head of the waiting queue without any further

confiict check within the waiting queue. Then the process in which the remote trans

action is running, sends an abort signal to the holder pro cess and goes into sleep. As

the holder catches and processes the signal, it only wakes up the remote transaction,

which is the first process in the waiting queue. The rest of the waiting queue is passed

to that remote transaction. When the remote transaction wakes up, it holds the lock

and then wakes up the rest of the pro cesses in the waiting queue to continue with the

standard PostgreSQL procedure.

Another note is that the only reason causing a remote transaction to abort is failing

a version check. So the remote transaction should never invoke the deadlock detection

routine. It is achieved by skipping the timer setting for the deadlock detection.

Chapter 6

Evaluation and Discussion

We evaluated the performance using two different applications. The first test suite

uses a TPC-W benchmark variant to simulate a real-world application. The second

test suite uses a 100% update workload. AH experiments are performed on a cluster

of PCs (2.66 GHz Pentium 4 with 512 M RAM) running RedHat Linux. For each

experiment, we run at least 20000 transactions to achieve stable results.

6.1 TPC-W Benchmark

We expect our system to have good performance in real-world applications since they

are mainly read intensive, and snapshot isolation favors read-only transactions. We

performed our tests using the OSDL-DBT-1 benchmark [23]. It is a simplified version

of the TPC-W benchmark [14] simulating an online bookstore. There are three differ

ent workload types by varying the ratio of browsing to buying transactions: primarily

shopping, browsing and ordering. In our experiment, we choose the browsing work

load, which contains 80% browsing transactions and 20% ordering transactions. We

have set up a two-tier testbed where the OSDL-DBT-1 driver is the front-tier which

directly connects to the database. There are 8 tables in the schema. The database

size is determined by the items and clients in the system. We use a very smaH config

uration with only 1000 items and 40 clients. Larger sizes will only decrease confiict

rates and increase disk 1/0 which will favor the replicated approach. We performed

57

CHAPTER 6. EVALUATION AND DISCUSSION 58

20 40 60 80 100 120 140 160

Throughput in tps

Figure 6.1: TPC-W: Browsing (read-only)

110

VI
100

E 90

.= 80
QJ 70 E

1= 60

1 c .nàl>'iePliCated 1 +-_--<l--..---1
L
+ s'$IiCa$t--

I

.' IT1();œPlIW' 1

+-----------~~

QJ 50
VI
r::: 40
0 c. 30
VI
QJ 20 c::

10
0

20 40 60 80 100 120 140 160

Throughput in tps

Figure 6.2: TPC-W: Ordering (update)

the experiment with a fixed number of 40 client connections. The number of clients

on each server and the load on each client is evenly distributed. The throughput in

transactions per second (tps) is controlled by the think-time parameter, i.e., the time

a client waits between two consecutive requests.

We run the experiment with a centralized, non-replicated server, and then with 5

and 10 replicas. Figure 6.1 shows the client response time for browsing transactions,

and Figure 6.2 shows the response time for ordering transactions when we increase the

overallioad to the system. For all graphs, the response time increases with increasing

load since more transactions concurrently compete for resources. The response time

of the centralized system is much worse than our replicated configuration, and can

achieve a much lower maximum throughput. The reason is that the server is over

loaded very fast while in the replicated systems read-only transactions are distributed

among the replicas. Additionally, the centralized server has problems handling many

CHAPTER 6. EVALUATION AND DISCUSSION

". • non-replicated
175 -,-----------~,--I-------,II

Ê 150 -j-------,+, -----1+ 5 replicas

,5 125-j------+------~
cv
~ l00+----~~,/-------

~ 75-j----~/-------~

~ 50 -j---+------:--=.-"'-/,..-/'~,.
& 25 _____ =',~,:c~."~-'~--~-'~-.-"~" ~-~-.~' ____ ~
O+-~~~-~~~~-~~~

20 40 80 120 160 200

Throughput in tps

Figure 6.3: Update Workload: Response Time

59

clients. The 10-replica system has smaller response times than the 5-replica system

for a given throughput because read-only transactions are distributed over even more

replicas. The only exception are update transactions at 20 tps where the 5-replica

system is better than 10 replicas. The reason might be that with 10 replicas, more

update transactions are remote, and hence, it is more likely that a local update

transaction has to wait for a remote transaction whose writeset is received earlier. At

higher throughputs this disadvantage does not show because the 10-replica system

is much less loaded. In these experiments, abort rates were always weIl below 1%,

which shows that SI can handle real world conflict rates even for very small database

slzes.

However, scalability is not unlimited. Updates have to be performed at aIl replicas.

If the update load increases, each replica has less resources to execute queries. Hence,

the performance gain from 5 to 10 replicas is not as big as from the non-replicated

system to 5 replicas. More about this phenomena can be found in [21 J.
In summary, this experiment proves that the performance of our system is ex

cellent for a real world situation where most of the transactions are read-only. Our

replication solution performs better than a centralized approach by distributing the

load and clients throughout the replicas in the system. Hence, eager update every

where replication based on SI is feasible for real-world applications.

CHAPTER 6. EVALUATION AND DISCUSSION 60

6.1.1 Update Intensive Workloads

The second experiment only uses update transactions. In this case we would not

expect any performance gain compared to a centralized case since all updates are

executed at all replicas. In contrast, we would expect higher response times because

of the total order multicast, write set collection, the overhead of the RM, etc. The

database consists of 10 tables with each 1000 tuples. Each update transaction consists

of 10 operations each updating exactly one tuple (randomly chosen from the 10000

tuples). There are 20 clients in the system each submitting transactions with a rate

as to achieve a certain system throughput. Figure 6.3 shows the response time with

increasing load.

At low throughputs, the central system has faster response time due to the replica

tion overhead for update transactions. However, to our surprise, once the throughput

passes 40 tps, the central system starts to be overloaded and experiences increasing

response times while the response time in the replicated system remains low. Not

shown in the figure, abort rates are between 1% and 1.5% for the replicated system,

for the central system they start at 0.2% at 20 tps and increase to nearly 7% at 120

tps due to the increase in response time. The main reason for the sharply increasing

response times and abort rates is that the central system has difficulties to manage

20 clients. Although the clients are often idle (think-time) it looks like that they put

a considerable administrative burden on the system. We tried to put the clients on

another machine in the LAN with the same results. Another minor reason might be

that in the replicated case, only one replica executes a transaction, the others only

apply the changes which takes less time. This leaves more resources free to execute

additional transactions. However, the difference is not big enough to explain the re

sults of the figure. As a summary, the advantages of distributing clients over several

replicas provides performance gains that are higher than any possible disadvantage

of replication. We are currently investigating whether a smarter client management

might improve the situation for a central server, and whether we can build a test suite

where the disadvantage of the seriaI execution of remote transactions becomes more

apparent.

CHAPTER 6. EVALUATION AND DISCUSSION 61

6.1.2 Comparison with other Approaches

We cannot provide direct comparison with the original Postgres-R based on locking

because the underlying systems, version 6 vs. version 7, differ extremely, not only

in their concurrency control component, but in many other modules. For instance,

the. buffer management (FORCE vs. NOFORCE), and client management is dif

ferent. In general, however, the relative performance of both approaches is similar.

This proves that the general replica control approach (executing transactions locally,

sending writesets at the end of the transaction using a GCS, and applying write

sets efficiently at the remote replicas) is a good way to provide high throughput and

scalability in a LAN setting.

Although other middleware based approaches evaluate their systems using the

TPC-W benchmark [4, 25], we think a direct comparison is unfair since the setups are

always quite different (implementation of the benchmark code, client setup, database

size, etc.).

Chapter 7

Discussion of Optimization and

Conclusion

7.1 Discussion of Optimization and Future Work

We have discussed the current version of our replicated database system. Now we

discuss sorne possible optimizations. In our solution, the processing of remote write

sets is seriaI. We have sorne room to improve our algorithm in this regard. As we

have described, the replication manager does not deliver the next writeset until the

transaction, which owns the last delivered writeset, commits or aborts. One possible

improvement is that the replication manager could deliver the next writeset as soon

as the version check for the previous writeset is completed. To do that, we have sorne

problems to solve:

• In our protocol, if a lock is not granted in the version check and each eaecution

phase, the remote backend will not wait for the lock. To allow concurrent execu

tion of remote backends, there should be a locking mechanism to order conflicting

operations of remote transactions.

• In this case, a remote transaction must be able to wait on several locks at the

same time. The locking proto col has to be extended accordingly.

• The replication manager has to coordinate the remote transactions and the local

aborted transactions, whose writesets have been sent. Now, we can have multiple

62

CHAPTER 7. DISCUSSION OF OPTIMIZATION AND CONCLUSION 63

remote transactions in progress. This coordination protocol has to be analyzed .

• Another potential issue is that GID's can not be guaranteed to be continuous

anymore. There is no problem for concurrency control. However, it might add

extra work to the distributed recovery proto col.

There are many occasions that one of the nodes can fail. For example, anode

might crash. Or one of the servers is slow and causes the buffer in the GCS overflow.

In our system, such anode is automatically excluded by the GCS and the virtual

synchrony property of the GCS guarantees that the other nodes can continue as if

nothing has happened. However, failed nodes should be restarted and again added

to the system. Hence, a recovery module has to be added. The recovery model of

the masterjslave version of Postgres-R is riot working any more with the new version

since the flow control in the replication manager changed considerably. Also, there is

no master anymore. However, we believe that with little modifications, we can have

recovery again in our system. We also can improve the original distributed recovery

mechanism, since we can use the pg_transrecord system catalog in the database rather

than the distributed recovery log of the replication manager.

7.2 Conclusion

This thesis presents the design and implementation of a synchronous and update

everywhere database replication approach based on Snapshot Isolation. Our experi

ments show that this approach has good performance. This work also demonstrates

that synchronous and update everywhere are feasible, at least in a cluster of worksta

tions within a LAN environment. As the algorithm matches the original concurrency

mechanism in the PostgreSQL database management system, this work can be an

excellent extension of PostgreSQL. The project is published as an open-source devel

opment project to integrate replication solutions into PostgreSQL. It is available at

http://gborg.postgresql.org/project/pgreplication/.

Bibliography

[1] M. E. Adiba and B. G. Lindsay. Database Snapshots. In VLDB, pages 86-91,

1980.

[2] Y. Amir and J. Stanton. The Spread Wide Area Group Communication System.

Technical Report CNDS 98-4, Center of Networking and Distributed Systems,

Johns Hopkins University, 1998.

[3] Y. Amir and C. Tutu. From Total Order to Database Replication. In Jnt. Conf.

on Distr. Camp. Systems (JCDCS), 2002.

[4] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent

replication for scaling back-end databases of dynamic content web sites. In Mid

dleware, 2003.

[5] W. Bausch. Integrating Synchronous Update-everywhere Replication into the

PostgreSQL Database. Master's thesis, Swiss Federal Institute of Technology in

Zürich, March 1999.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. A

Critique of ANSI SQL Isolation Levels. In ACM SJGMOD Jnt. Conf. on Man

agement of Data, pages 1-10, June 1995.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison Wesley, 1987.

[8] K. Birman, A. E. Abbadi, W. C. Dietrich, T. Joseph, and T. Raeuchle. An

Overview of the ISIS Project. January 1985.

64

BIBLIOGRAPHY 65

[9] K. P. Birman and T. Joseph. Exploiting Virtual Synchrony in Distributed Sys

tems. In the l1th A CM Symposium on Operating Systems Principles, pages

123-138, November 1987.

[10] M. Chouk. Master-Slave Replication, Failover and Distributed Recovery in Post

greSQL Database. Master's thesis, McGill University, June 2003.

[11] Borland Software Corporation. Interbase Documentation, 2004.

[12] Oracle Corporation. Oracle's Solutions for the Distributed Environment, June

2002.

[13] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and

Design. Addison Wesley, 2000.

[14] Transaction Processing Performance Council. TPC Benchmark W, 2000.

[15] D. Dolev and D. Malki. The Transis Approach to High Availability Cluster

Communication. Communications of the ACM, 39(4):63-70, April 1996.

[16] R. Goldring. A Discussion of Relational Database Replication Technology. In

foDE, 8(1), 1994.

[17] J. Gray, P. Helland, P. E. O'Neil, and D. Shasha. The Dangers of Replication

and a Solution. In ACM SIGMOD Int. Conf. on Management of Data, pages

173-182, 1996.

[18] The PostgreSQL Global Development Group. PostgreSQL 7.2 Documentation,

2001.

[19] Theo Harder. Observations on Optimistic Concurrency Control Schemes. Inf.

Syst., 9(2):111-120,1984.

[20] J. Holliday, D. Agrawal, and A. El Abbadi. The Performance of Database Repli

cation with Group Communication. In IEEE International Symposium on Fault

Tolerant Computing (FTCS29) , pages 158-165, 1999.

BIBLIOGRAPHY 66

[21] R. Jiménez-Peris, M. Patiiio-Martinez, G. Alonso, and B. Kemme. Are Quorums

an Alternative for Data Replication. A CM Transactions on Database Systems,

28(3), 2003.

[22] B. Kemme and G. Alonso. A New Approaeh to Developing and Implementing

Eager Database Replication Protocols. A CM Transactions on Database Systems

(TODS) , 25(3):333-379, September 2000.

[23] Open Source Development Lab. Descriptions and Documentation of OSDL-DBT-

1, 2002.

[24] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended Virtual

Synchrony. The 14th IEEE International Conference on Distributed Computing

Systems (ICDCS), pages 56-65, June 1994.

[25] C. Plattner and G. Alonso. Ganymed: Scalable replication for transaetional web

applications. In Middleware, 2004.

[26] M. Stonebraker and G. Kemnitz. The postgres next generation database man

agement system. Commun. A CM, 34(10):78-92, 1991.

[27] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A Flexible Group Com

munications System. Communications of the ACM, 39(4):76-83, April 1996.

[28] J. Worsley and J. Drake. Practical PostgreSQL. O'Reilly Media, Ine., 2002.

