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ABSTRACT

The least-used direction (LUD) rule is one of a class of largely unanalyzed

pivot rules - the history-based rules. History-based pivot rules guide the progres-

sion of edge following algorithms like the Simplex method. This thesis investigates

the problem of finding an exponential length LUD path on a particular kind of

digraph known as an acyclic unique sink orientation of a hypercube (AUSO). In

addition, a survey of six well-known history-based pivot rule and examples to

illustrate their independence is given. The Fibonacci construction is introduced

as a potential way of creating families of AUSOs that allows for exponential LUD

paths. The most straight-forward application of this technique is unsuccessful, but

there is room for more exploration. An exponential lower bound is given for the

number of times the least-used direction is used by a Hamiltonian path following

the related history-based Zadeh’s rule. This result shows that the number of times

each direction is used grows at a similar rate and is thus relatively balanced.
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ABRÉGÉ

La règle de least-used direction (LUD) fait parti de la grande classe des règles

pivots history-based. Ceux-ci guident la progression des algorithmes de détection

des contours, tel que la méthode Simplex. Ce mémoire examine le problème de

la recherche de chemin LUD de longueur exponentielle dans un graphe acyclique

dirigé à bloc récepteur unique (acyclic unique sink orientation - AUSO) dans les

hypercubes. De plus, une vue densemble de six règles pivots history-based ainsi

que des exemples sont fournis pour illustrer leurs indépendances. La structure

Fibonacci est présentée comme une possibilité de créer des familles de graphe

acyclique dirigé à bloc récepteur unique permettant des chemins LUD de longueurs

exponentielles. Exécuter cette technique de faon simple savère infructueuse, par

contre cela nous laisse la place à plus damples explorations. Une borne inférieure

exponentielle est fournie pour le nombre de fois que LUD est présent dans un

chemin Hamiltonian selon la règle history-based Zadeh. Les résultats obtenus

démontrent que le nombre de fois utilisé par chaque direction augmente à une

fréquence semblable et est donc relativement équilibré.
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CHAPTER 1

Introduction

Computational complexity theory categorizes algorithms as either “good” or

“bad” based on how resource-usage increases as the size of the input increases.

One important resource is time. Algorithms that take a constant amount of time

on each unit of input plus any constant overhead are known as linear ; these

algorithms are considered very good. Linear algorithms are a subset of the class of

algorithms known as polynomial. Polynomial algorithms take time proportional

to some polynomial function of the units of input; these algorithms are considered

good. Algorithms that take time proportional to some exponential function of

the units of input are known as exponential ; these algorithms are considered bad.

Algorithms that involve processing combinatorial input, such as searching for a

Hamiltonian path in a graph (a path that visits every vertex exactly once), are

often exponential.

The categories linear, polynomial, exponential, and others not mentioned

here are theoretical distinctions based solely on worst-case behaviour. In many

instances, the distinction provides a simple way of determining the practicality of

using a particular algorithm. However, this is not always the case. There are some

“bad” algorithms that perform well in practice. They are able to execute quickly

on the vast majority of typical input. Various versions of the Simplex method for

solving linear programs have this property.
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A linear program (LP) is an optimization problem of the following form:

max cT x

subject to Ax ≤ b

x ≥ 0

where c, x ∈ R
n, b ∈ R

m, and A ∈ R
m×n. The region of allowable solutions, known

as the feasible region, is given by a system of linear inequalities (Ax ≤ b, x ≥ 0),

and the goal is to find a point x in the feasible region where the linear function

cT x is maximized. Geometrically, this feasible region is called a polyhedron and

when it is bounded, a polytope. The maximum value will always occur at a vertex

of the polytope. The Upper Bound Theorem states that a polytope defined by

m + n inequalities can have as many as
(

n+m−⌊n+1

2
⌋

m

)

+
(

n+m−⌊n+2

2
⌋

m

)

vertices; this is

superexponential [25]. Therefore, simply checking the value of every vertex to find

the maximum is a superexponential algorithm.

The Simplex method for solving LPs is a framework for a family of algorithms.

It solves an LP by following a path along the directed edges of the feasible region.

The edges are directed from a vertex x to a vertex y if and only if cT x < cT y.

Once the path reaches a vertex with no outgoing edges, the process is complete

and the value given by the last vertex is the maximum.

It is possible that there are more than one improving vertices; therefore, a rule

for selecting the vertex must be selected in order for the Simplex method to be an

algorithm. This rule is called a pivot rule. There are a number of pivot rules that
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cause the Simplex method to be exponential, but there are other rules that have

not yet been analyzed. One of these rules may yield a polynomial algorithm.

There are two main reasons to suspect that there exists a pivot rule that

will make the Simplex method polynomial. Firstly, as previously mentioned, the

method performs well in practice even using exponential pivot rules. Secondly,

there exist several non-Simplex-based algorithms that solve LPs in polynomial

time.

Victor Klee and George Minty were the first to prove that the Simplex

method is exponential when used in conjunction with the pivot rule known as

Dantzig’s rule. They did so by constructing an LP on which the pivot rule forces

the Simplex method to complete a Hamiltonian path of the feasible region before

finding the sink. The feasible region of Klee and Minty’s LP is the perturbed

hypercube now known as the Klee-Minty cube. An n-hypercube has 2n vertices, so

a Hamiltonian path is exponentially long.

On the graph of a hypercube, the least-used direction (LUD) rule is a pivot

rule that keeps track of how many times the path selects each direction. When the

Simplex method reaches a point where a decision must be made between multiple

outgoing edges, the LUD rule selects the direction that has been used the least

thus far. Presently, no time complexity results are known for the Simplex method

using this pivot rule.

To prove that the LUD rule makes the Simplex method exponential using a

construction similiar to the Klee-Minty cube involves two steps. For the algorithm

to take exponential time, there must be an exponential length path through the
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vertices of some polytope that obeys the LUD rule at every move. The first step

is to find such a path. If such a path can be found then the second step is to look

for an LP whose feasible region corresponds to the polytope and whose objective

function evaluates to the same relative values at each vertex.

This thesis investigates the LUD pivot rule only for polytopes combinatorially

equivalent to a hypercube. In order for such a hypercube to be realized as an LP

(the second step), it must satisfy two necessary conditions, acyclicity and unique

sink orientation. Unique sink orientation (USO) is the property that every face of

the hypercube, including the hypercube itself, has exactly one source. Therefore,

this thesis analyzes the problem of finding an exponential path that obeys the

LUD pivot rule on an acyclic USO (the first step).

Chapter 2 gives the necessary background knowledge and a review of the

classical and current literature related to the problem. The chapter is further

divided into the following sections: linear programming, the Simplex method,

acyclic USOs, and pivot rules.

Chapter 3 details a construction for acyclic USOs that has the potential

for giving exponential paths. The most straight-forward implementation of this

Fibonacci construction is unsuccessful, but further research may meet with

interesting results. The chapter is further divided into the following sections:

general construction and implementation.

Chapter 4 gives an exponential lower bound on the number of times the

least-used direction is used by the LUD-related pivot rule known as Zadeh’s rule

assuming that there exists a Hamiltonian path that follows Zadeh’s rule. The
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relationship between Zadeh’s rule and the LUD rule is very close, so this bound

may give some insight into the LUD rule.

Chapter 5 concludes this thesis with a summary and a discussion of future

work related to finding an exponential path that obeys the LUD pivot rule on an

acyclic USO.



CHAPTER 2

Background

The aim of this chapter is to review the related literature and to provide all

the background knowledge needed to understand the remainder of the thesis. The

first section describes linear programming and will explain its history, its main

algorithms, and some of its properties. The second section explains the Simplex

method of solving linear programs. The third section examines the use and the

usefulness of the acyclic unique sink orientation abstraction. The last section

details select pivot rules that may be used in conjunction with the Simplex method

with an emphasis on history-based rules.

2.1 Linear Programming

A linear program (LP) is a common type of optimization problem. It has

applications in the areas of resource allocation [6], scheduling [8], network flows

[12], game theory [9], approximation algorithms [17], and more. Much of the

continued practical interest in the Simplex method of solving LPs is for their

applications in cutting plane methods. Cutting plane methods are used for solving

the NP-hard problem of solving integer linear programs. Every problem in NP can

be formulated as an integer linear program, so LPs are especially important for

this application.

In general, optimization problems are defined by a set of feasible solutions and

the goal is to find some “best” or optimal value over all the solutions in the set.

6
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In linear programming, the set of feasible solutions is given by a system of linear

inequalities (Ax ≤ b, x ≥ 0) referred to as linear constraints, and the optimal value

is given by the vector x that maximizes the objective function (cT x). The standard

form of an LP [6] is

max cT x

subject to Ax ≤ b

x ≥ 0

where c, x ∈ R
n, b ∈ R

m, and A ∈ R
m×n. Its corresponding dictionary representa-

tion is the system of linear equations

xs = b − Ax

z = cT x

The newly introduced variables, xs ≥ 0, are called slack variables, and the original

variables, x ≥ 0, are decision variables. Variables on the left-hand side of the

equations, initially the slack variables, are called basic and are said to be in the

basis. The last row, z = cT x, is called the objective row.

LPs have a natural geometrical representation in n-dimensional space, and

it is often helpful to think of them in this way. Each linear inequality defines

a halfspace. If the intersection of all the halfspaces is empty then there are no

feasible solutions for the LP. If, on the other hand, the intersection is non-empty

then it forms an n-polyhedron called the feasible region. More information about

polyhedra can be found in Ziegler’s book [38]. A point is in the feasible region

if and only if it satisfies all the LP constraints. When the feasible region is
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unbounded then it extends to infinity in at least one direction. For unbounded

polyhedra there may be no optimal solution. When the feasible region forms a

bounded polyhedron, a polytope, then there is always at least one optimal solution.

A polytope is simple if each vertex is the intersection of exactly n of the LP

constraints (see Figure 2–1).

     Infeasible    Unbounded     Bounded

x
1

x
2

x
1

x
2

x
1

x
2

Figure 2–1: The three possible intersections of halfspaces in 2 dimensions.

A hypercube is an example of a simple polytope. An n-dimensional hypercube

is a polytope defined by the halfspaces 0 ≤ xi ≤ 1 for i = 1, ..., n. Each vertex

is a point where exactly n of these 2n inequalities are at equality. A related, but

not necessarily simple, class of polytopes is the zonotopes. A zonotope is the affine

projection of an n-dimensional hypercube onto d < n dimensional space. For a

non-simple example in three dimensions, see [38].

The objective function of an LP is geometrically represented by an n-

dimensional hyperplane. To maximize the objective function, move the hyperplane

through the feasible region to the furthest point such that they still intersect. At

that time, the intersection points give the maximum value (see Figure 2–2).
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max x1�x2

s.t. x1� x2�1

x1, x2�0

x
1

x
2

x
1

x
2

x
1

x
2

x
2

Figure 2–2: An example of the hyperplane x1 − x2 moving through the feasible re-
gion to the vertex with the maximum value.

There is no loss of generality to assume that the feasible region defines a

simple polytope and that the objective function has a unique value at each vertex.

This is the same as assuming that degeneracy [6] does not occur and that exactly

one vertex gives the maximum value.

To work with the geometrical representation, take the graph of the polytope’s

edges and direct each edge {x, y} from vertex x to vertex y if and only if cT x <

cT y (see Figure 2–3). This preserves the structure of the polytope, and any

subgraph induced by a face of the polytope will be considered a face of the new

digraph. Now the search for the polytope’s maximizing vertex is equivalent to the

search for the digraph’s unique sink.
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Polytope Digraph

x
1

x
2

x
2

Figure 2–3: The conversion from a polytope to a digraph.

Every bounded LP has such a corresponding digraph, but not every digraph

has a corresponding LP. Those digraphs that do are known as LP digraphs. It

is difficult to tell whether an arbitrary digraph is an LP digraph. No properties

are known to be both necessary and sufficient aside from actually finding a

corresponding LP. However, Avis and Moriyama [3] analyze the relationships

between four distinct necessary properties. These properties are acyclicity, unique

sink orientation, Holt-Klee, and shelling. All digraphs that fail to possess even

one of these properties are not LP digraphs. The acyclicity property means that

there are no directed cycles. The USO property means that the directed subgraph

defined by each face of the polytope has a unique sink (and consequently a unique

source for simple polytopes [38]). The Holt-Klee property means that every k-

dimensional face of the digraph has at least k vertex-disjoint paths from its source

to its sink. The shelling property involves a topological sort of the digraph’s

associated polytope. Acyclicity and USO are discussed in Section 2.3. For more

information about Holt-Klee and shelling, see [18] and [3] respectively. These

properties can be useful in the complexity analysis of LP-solving algorithms.
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There are three main methods for solving LPs. Two of these methods work

well in practice, the Simplex method [8] and the interior-point method [22, 36], and

two of them are polynomial algorithms, the interior-point method and the ellipsoid

method [23, 16]. The Simplex method concentrates solely on the vertices of the

feasible region; the other two algorithms utilize the interior region of the polytope.

The existence of polynomial algorithms is very important for the theory of

linear programming because it gives researchers confidence that any problem that

can be formulated as an LP has a good solution. But this is not the end of the

complexity battle between these methods because the two polynomial methods

are what is known as weakly polynomial. This means that they are polynomial in

terms of the bit-size of the input as opposed to strongly polynomial algorithms,

which would be polynomial in terms of the number of variables and the number of

constraints of the LP. It is due to the combinatorial nature of the Simplex method

that if a polynomial variant is found it would most likely be strongly polynomial.

2.2 Simplex Method

More than 30 years prior to the introduction of the ellipsoid method and the

interior-point method there was the Simplex method. Developed by George B.

Dantzig during World War II but not published until 1947, it was intended to solve

planning and management problems for the U.S. military [8].

The Simplex method takes advantage of two important properties of the

feasible regions of LPs: the optimal value is given by a vertex and, since the

polytope is convex, the local optimum is also the global optimum. The first

property, that the optimal value is given by a vertex, allows the algorithm to check
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only the finite number of vertices rather than the infinite number of points that

make up the feasible region. The second property, that the local optimum is the

global optimum, allows the algorithm to use local improvement rules to find the

global optimum. These two properties together ensure that the Simplex method

will terminate at the maximum vertex in finite time.

The Simplex method starts at any vertex of the polytope and then moves

to an adjacent vertex on the condition that the value of the objective function is

greater at the new vertex than at the old one (local improvement). This move is

called a pivot. Geometrically, successive pivots form a path on the edges of the

associated LP digraph. When there is no such improving vertex, the method has

found the maximum value (the local and global optimum) (see Figure 2–4).
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max x1�2 x 2�4 x3�8 x4

s.t. x1�1

x
2
�1

x3�1

x4�1

x
1,
x

2,
x

3,
x

4
�0

   (a)

(b)      (c)

(d)      (e)

15

0

1 3

2

4

5 7

6

9

8

11

10

1412

13

151 3

2

4

5 7

6

9

8

11

10

1412

13

0

151 3

2

4

5 7

6

9 11

10

14

13

0

8

12

151 3

2

4

5 7

6

9 11

10
13

0

8

1412

1 3

2

4

5 7

6

9 11

10
13

0

8

12

15

14

Figure 2–4: A geometrical example of the Simplex method on a 4-dimensional hy-
percube. (a) The associated LP-digraph labelled with the value of the objective
function at each vertex. (b) Starting at vertex 0, pivot to vertex 8 (0 < 8). (c)
From vertex 8, pivot to vertex 12 (8 < 12). (d) From vertex 12, pivot to vertex 14
(12 < 14). (e) From vertex 14, pivot to vertex 15 (14 < 15) and stop because there
are no more improving vertices. 15 is the maximum value.

In the dictionary representation, a pivot is a change of basis that improves

the value of the objective row. One variable enters the basis and is known as the
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entering variable, and one leaves the basis and is known as the leaving variable.

When there is no change of basis that gives a better value in the objective row, the

method has found the maximum value (see Figure 2–5).

max x1�2 x 2�4 x3�8 x4

s.t. x1�1

x
2
�1

x3�1

x4�1

x
1,
x

2,
x

3,
x

4
�0

      
x5�1�x1

x6�1�x2

x7�1�x3

x8�1�x4

z�x1�2 x2�4 x3�8 x4

          
x5�1�x1

x6�1�x2

x
7
�1�x

3

x4�1�x8

z�8� x1�2 x2�4 x3�8 x8

   

x5�1�x1

x6�1�x2

x
3
�1�x

7

x4�1�x8

z�12�x1�2 x2�4 x7�8 x8

x5�1�x1

x2�1�x6

x
3
�1�x

7

x4�1�x8

z�14�x1�2 x6�4 x7�8 x8

x1�1� x5

x2�1�x6

x
3
�1�x

7

x4�1�x8

z�15�x 5�2 x6�4 x 7�8 x8

(a) (b)

(c) (d) (e)

Figure 2–5: A dictionary example of the Simplex method. (a) The associated
dictionary with the basis {x5, x6, x7, x8} where z = 0. (b) Pivot to the basis
{x5, x6, x7, x4} where z = 8 > 0. (c) Pivot to the basis {x5, x6, x3, x4} where
z = 12 > 8. (d) Pivot to the basis {x5, x2, x3, x4} where z = 14 > 12. (e) Pivot
to the basis {x1, x2, x3, x4} where z = 15 > 14 and stop because there are no more
improving bases. 15 is the maximum value.

In order to analyze the Simplex method as an algorithm, there must be a rule

to select the next vertex when multiple adjacent vertices offer an improvement

in the objective function. Such a rule is called a pivot rule. A number of pivot

rules are described in Section 2.4. Some polytopes are known to have “long” paths

to the sink; the number of pivots is exponential in the size of the input [27]. A
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desirable pivot rule should never follow an exponential path. It is not known

whether such a rule exists.

The diameter of a polytope is the maximum length shortest-path between

any two vertices. It gives a lower bound on the time complexity of the Simplex

method regardless of the chosen pivot rule. If the diameter is not polynomial

then neither is the Simplex method. The Hirsch conjecture, or equivalently the

d-step conjecture, [8] surmises that the diameter of an undirected skeleton of an

n-dimensional polytope is no greater than m− n for all m > n ≥ 2 [26]. Santos [30]

recently claimed to have found a counterexample with 43 dimensions and 86 facets.

Settling the Hirsch conjecture does not give any definitive answers about

the existence of a polynomial pivot rule. If the conjecture is true, a pivot rule

that always finds a polynomial path must still be found. If the conjecture is

false, it does not mean a polynomial path does not exist, just that it is longer

than Hirsch believed. On the other hand, if a pivot rule is discovered that finds

a polynomial path in all polytopes then the length of the path may confirm the

conjecture. In any case, it would give a polynomial upper bound on the diameter

of a polytope, which would be a major theoretical advance. As it stands, the

randomized pivot rule of [20] and [28] shows that the diameter is subexponential.

A comprehensive survey of the d-step conjecture and its relatives was done by Klee

and Kleinschmidt in 1987 [26]. For a more recent survey, see the 2009 paper by

Kim and Santos [24].
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2.3 Acyclic Unique Sink Orientations

An acyclic unique sink orientation (AUSO) is a tool for analyzing the

complexity of pivot rules for the Simplex method. An AUSO is an orientation of

the graph of a polytope (normally a graph of a hypercube) such that each face of

the graph, including the graph itself, has exactly one sink (see Figure 2–6).

(a) (b)

0

1 3

2 0

1 3

2

Figure 2–6: (a) An example of an AUSO. The 1-dimensional sinks are the end-
points of each edge. The 2-dimensional sink is vertex 2. (b) Not an AUSO because
on the 2-dimensional face there are two sinks, vertex 1 and vertex 2.

This is useful for analyzing pivot rules because it is an abstraction of an

LP and it satisfies two of the four known properties necessary in LP digraphs.

Although finding an exponential path through an AUSO that obeys a particular

pivot rule does not guarantee that the Simplex method is exponential using that

rule, it is a step in that direction.

The easiest AUSO to work with when looking for an exponential path is one

on a digraph combinatorially equivalent to a hypercube. To be combinatorially

equivalent is to have isomorphic face lattices (see [38]). In other words, there is

a mapping between the vertices of the AUSO and the unit hypercube such that
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there is an edge between two vertices in the AUSO if and only if there is an edge

between the two corresponding vertices in the hypercube, and there is a face in

the AUSO if and only if there is a face in the unit hypercube. An AUSO on a

hypercube is useful because it has exponentially many vertices in terms of the

dimension and it can be defined iteratively. Therefore, exponential paths can exist

and it is possible that an exponential path in one dimension can be used to define

exponential paths in higher dimensions. AUSOs on hypercubes form the basis of

the construction presented in Chapter 3 and the proof presented in Chapter 4.

AUSOs on hypercubes have structure that makes for convenient notation

and terminology. Each vertex is labelled 0, ..., (2n − 1) such that the binary

representation of adjacent vertices’ labels differ by exactly one bit. Each edge has

a direction and orientation. The direction is given by a number 1, ..., n indicating

which bit is different between the two endpoints (counted right-to-left). The

orientation is given by a positive sign (+) if the differing bit is 0 at the edge’s

tail and 1 at its head, and it is given by a negative sign (-) otherwise. This is

illustrated in Figure 2–7. For some pivot rules the direction is important but

not the orientation and in others the (orientation, direction)-pair is important.

Although AUSOs do not necessarily correspond to LP digraphs, the above vertex

labelling can be used to model moving along a path on an AUSO as pivoting in

the dictionary xn+i = 1 − xi for i = 1, ..., n. A pivot +i corresponds to a pivot

where xi enters the basis and xn+i leaves, and a pivot −i corresponds to a pivot

where xn+i enters the basis and xi leaves. This allows the AUSO to inherit various
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pivoting strategies that are defined in terms of LPs. Unless otherwise stated, all

further references to AUSOs are to AUSOs on hypercubes.

00

01 11

10

(a) (c)

(b)

(d)

Figure 2–7: Each vertex is labelled with its binary representation. Edge (a) has
direction 1 since the first bit changed and orientation + since it changed from 0 to
1. Edge (b) has direction 2 since the second bit changed and orientation + since it
changed from 0 to 1. Edge (c) has direction 1 since the first bit changed and orien-
tation - since it changed from 1 to 0. Edge (d) has direction 2 since the second bit
changed and orientation + since it changed from 0 to 1.

AUSOs are not the first abstraction used to study LPs and the Simplex

method. Two previous abstractions were developed specifically for this area of

research. Adler and Saigal [1] introduced abstract objective functions (AOFs) in

1976, and Hoke [35] introduced completely unimodal numberings in 1988. Both

of these abstractions assign a number to each of the vertices of a polytope. In

an AOF, each vertex is assigned a real number, and in a completely unimodal

numbering each vertex is assigned a different integer 0, ..., (k − 1) where k is

the number of vertices. In addition, on every face of an AOF there is a strictly

increasing valued path from every vertex to the maximum-valued vertex and a

strictly decreasing path from every vertex to the minimum-valued vertex. On

every face of a completely unimodal numbering there is exactly one vertex whose
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number is higher than all of its neighbours. In these two abstractions, finding the

maximum-valued vertex is equivalent to finding the LP solution.

There is a strong relationship between these three abstractions. AUSOs (not

restricted to hypercubes) and completely unimodal numberings are equivalent, all

completely unimodal numberings are AOFs, and all AOFs define an AUSO (not

restricted to hypercubes) and a completely unimodal numbering (see Figure 2–8).

56

7 4

3

1 2

0

2133

111 20

7.7

1.5 5

0.1

AOF

AUSO Completely unimodal

        numbering

Figure 2–8: The relationship between AOF, AUSO, and completely unimodal
numbering.

If AUSOs and completely unimodal numberings are equivalent then why were

AUSO introduced? The fact is that USOs were not originally intended to be used

for LPs. USOs on hypercubes were introduced by Szabó and Welzl [33] in 2001 for

use on two other research problems. They noticed that the linear complementarity

problem on a class of matrices known as P-matrices [32] and some quadratic
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optimization problems including finding the smallest enclosing ball of a set of

points [33] could both be solved by finding the sink of an appropriate USO on

a hypercube. Gärtner and Schurr [15] later found that the problem of solving

arbitrary LPs can also be encoded as a USO where the sink gives the solution

if there is one or a proof of infeasibility or unboundedness otherwise. Note that

this encoding is not an LP digraph of the problem. In all three of these problems,

cycles can arise in the USO.

2.4 Pivot Rules

The Simplex method is not an algorithm unless it has a pivot rule. There

are many existing pivot rules and many more that have not yet been discovered.

Pivot rules can be deterministic or randomized. They can be based on historical

information or not. They can cause the Simplex method to be exponential,

sub-exponential, or maybe someday polynomial.

The original pivot rule was introduced by Dantzig in 1947. It is more eas-

ily explained in the context of the dictionary representation of LPs than the

geometrical representation.

Dantzig’s rule (a.k.a. the largest coefficient rule) [8]: For the entering variable,

select the variable with the largest coefficient in the objective row.

Figure 2–4 uses Dantzig’s rule.

In practice, Dantzig’s rule performs exceedingly well. In empirical tests, the

Simplex method using Dantzig’s rule finds the maximum in m to 3m iterations

[8]; this is linear in the number of constraints in the LP. For years Dantzig’s rule
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was used with no problems but without knowing whether it were a theoretically

“good” algorithm. Then in 1970, Klee and Minty published a breakthrough paper

answering the question of “how good is the Simplex algorithm?” [27]. They

construct an LP digraph on a hypercube that forces Dantzig’s rule to visit all 2n

vertices in its search for the sink, thus proving that Dantzig’s rule is exponential.

The structure of the Klee-Minty cube is that of a deformed product. The

Klee-Minty cube is an example of an AUSO. Each cube can be built recursively

from the k-dimensional case to the (k + 1)-dimensional case as follows (see Figure

2–9):

1. Given the k-dimensional cube C, create a duplicate C ′. For each vertex

x ∈ C, call its duplicate vertex in C ′ x′.

2. Add the edge (x, x′) for all vertices x ∈ C.

3. Reverse all edges that have both endpoints in C ′.

          1D      2D                           3D                                                     4D

Figure 2–9: The Klee-Minty cube for dimensions 1, 2, 3, and 4.
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A number of other pivot rules give exponential paths on the Klee-Minty

cube. They include the maximum improvement rule (a.k.a. the maximum increase

rule), which Jeroslow [19] proved exponential in 1973, and Bland’s rule (a.k.a. the

smallest subscript rule) [5], which Avis and Chvátal [2] proved exponential in 1978.

All of these pivot rules are deterministic and not history-based.

In a 1980 technical report, Norman Zadeh [37] investigated the Klee-Minty

cube construction hoping to determine why it is so effective against certain pivot

rules. He found that the paths following these rules recurse in the same way as the

cube’s construction. First the k-dimensional Hamiltonian path is followed in C,

then it takes an edge from C to C ′. Once in C ′ it follows the same k-dimensional

Hamiltonian path backwards (see Figure 2–10).

          1D      2D                           3D                                                     4D

Figure 2–10: The Hamiltonian path on the Klee-Minty cube for dimensions 1, 2, 3,
and 4.
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Notice that these paths tend to favour some directions over others. This

tendency is built into the pivot rule and is exploited by the Klee-Minty cube.

Zadeh designed a new pivot rule to defeat the Klee-Minty construction.

Zadeh’s rule (a.k.a. the least entered rule) [37]: For the entering variable,

select the improving variable that has entered the basis least often thus far.

Zadeh’s rule results in a path that favours the edges that the earlier pivot

rules avoided. Klee and Kleinschmidt [26], Terlaky and Zhang [34], and Fathi and

Tovey [11] are amongst those who think that Zadeh’s rule is a good candidate for

being polynomial.

Note that Zadeh’s rule chooses between the 2n variables (n decision variables

and n slack variables) whereas the next history-based rule chooses between the n

pairs of decision and slack variables, (xi, xn+i), each of which defines a direction.

Directions are not a very useful concept in arbitrary polytopes, as no two edges

may be parallel, but they are a natural feature of hypercubes and are inherited by

zonotopes. A zonotope that is a projection of the n-dimensional hypercube, will

directly inherit the n directions of the hypercube, some of which may no longer

appear.

Least-used direction rule (LUD) [4]: For the entering variable, select the

improving variable whose direction has been used least often thus far.

Other history-based rules include
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Least-recently considered rule [7]: Set a fixed ordering of the variables

v1, v2, ..., v2n and let the previous entering variable be vi. For the entering

variable, select the improving variable that first appears in the sequence

vi+1, vi+2, ..., v2n, v1, ..., vi−1 (or v1, ..., v2n if this is the first pivot).

Least-recently basic rule [Johnson in [7]]: For the entering variable, select the

improving variable that left the basis least recently.

Least-recently entered rule (a.k.a. least-recently used) [11]: For the entering

variable, select the improving variable that entered the basis least recently

thus far.

Least iteration in the basis rule [4]: For the entering variable, select the im-

proving variable that has been in the basis for the least number of iterations.

The differences between these rules may be easier to understand when

expressed geometrically in the special case when the feasible region and the

objective function are modeled by an AUSO.
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Zadeh’s rule: Choose the outgoing edge whose (orientation, direction)-pair has

been used least often thus far. See Figure 2–11.

Vertex

(orientation, direction)-pair

Options+ 4 -4 + 3 -3 + 2 -2 + 1 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 +1, +2, +3, +4

1 0 0 0 1 0 0 0 0 0 0 1 0 +2, +3, +4

3 0 0 1 1 0 0 0 0 1 0 1 0 -1, +4

2 0 0 1 0 0 0 0 0 1 0 1 1 +3, +4

10 1 0 1 0 1 0 0 0 1 0 1 1 -2

8 1 0 0 0 1 0 0 0 1 1 1 1

15

4

5 7

6

9 11

1412

13

0

1 3

2

108

Figure 2–11: An example of Zadeh’s rule. The chart shows at each step how many
times each (orientation, direction)-pair has been selected, what options are avail-
able, and which option is selected. Notice at vertex 0011, -1 is an option because
of the distinction between +1 and -1. Notice at vertex 1010, +1 is not an option
because it has already been used once whereas -2 has never been used.
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Least-used direction rule (LUD): Choose the outgoing edge whose direction

(with either orientation) has been used least often thus far. See Figure 2–12.

Vertex

Direction

Options4 3 2 1

0 0 0 0 0 0 0 0 0 1, 2, 3, 4

1 0 0 0 1 0 0 0 1 2, 3, 4

3 0 0 1 1 0 0 1 1 4

11 1 0 1 1 1 0 1 1 2

9 1 0 0 1 1 0 2 1 1

8 1 0 0 0 1 0 2 2

15

2

4

5 7

6

10

1412

13

0

1 3

119

8

Figure 2–12: An example of the LUD rule. The chart shows at each step how
many times each direction has been selected, what options are available, and which
option is selected. Notice at vertex 0011, 1 is not an option because it has already
been used once whereas 4 has never been used.
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Least-recently considered rule: Set a fixed ordering of the (orientation,

direction)-pairs v1, v2, ..., v2n and let the previously selected pair be vi. Choose

the outgoing edge whose pair first appears in the sequence vi+1, vi+2, ..., v2n, v1, ..., vi−1

(or v1, ..., v2n if this is the first pivot). See Figure 2–13.

Vertex Sequence Options

0 0 0 0 0 + 2, - 2, + 1, - 1, + 3, - 3, + 4, - 4 + 2

2 0 0 1 0 - 2, + 1, - 1, + 3, - 3, + 4, - 4 + 3

6 0 1 1 0 - 3, + 4, - 4, + 2, - 2, + 1, - 1 + 4

14 1 1 1 0 - 4, + 2, - 2, + 1, - 1, + 3, - 3 - 3

10 1 0 1 0 + 4, - 4, + 2, - 2, + 1, - 1, + 3 - 2

8 1 0 0 0 + 1, - 1, + 3, - 3, + 4, - 4, + 2

15

4

5 7

6

1412

131 3

119

8 10

20

Figure 2–13: An example of the least-recently considered rule. The chart shows at
each step the considered sequence, what options are available, and which option is
selected. Notice that there is never any choice.
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Least-recently basic rule: Choose the outgoing edge whose direction has been

used least recently thus far. See Figure 2–14.

Vertex

(orientation, direction)-pair

Options+ 4 - 4 + 3 - 3 + 2 - 2 + 1 - 1

0 0 0 0 0 � � � � +1, +2, +3, +4

1 0 0 0 1 � � � � +2, +3, +4

5 0 1 0 1 � � � � +2, +4

13 1 1 0 1 � � � � +2

15 1 1 1 1 � � � � -1

14 1 1 1 0 � � � � -3

10 1 0 1 0 � � � � -2

8 1 0 0 0 � � � �

2

4

5 7

6

12

3

119

0

1 13 15

14

108

Figure 2–14: An example of the least-recently basic rule. The chart shows at
each step which (orientation, direction)-pairs are in the basis, what options are
available, and which option is selected. Notice at vertex 1111, -4 is not an option
because it was last in the basis in iteration #3 whereas -1 was last in the basis less
recently (iteration #1). Notice at vertex 1010, +1 is not an option because it was
last in the basis in iteration #5 whereas -2 was in the basis less recently (iteration
#4).
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Least-recently entered rule: Choose the outgoing edge whose (orientation,

direction)-pair was selected least recently thus far. See Figure 2–15.

Vertex (orientation, direction)-pair Options

+ 4 - 4 + 3 - 3 + 2 - 2 + 1 - 1

0 0 0 0 0 � � � � +1, +2, +3, +4

1 0 0 0 1 � � � � +2, +3, +4

5 0 1 0 1 � � � � +2, +4

13 1 1 0 1 � � � � +2

15 1 1 1 1 � � � � -1, -3, -4

11 1 0 1 1 � � � � -2

9 1 0 0 1 � � � � -1

8 1 0 0 0 � � � �

2

4

5 7

6

10

1412

3

0

1 13 15

119

8

Figure 2–15: An example of the least-recently entered rule. The chart shows at
each step which (orientation, direction)-pairs are in the basis, what options are
available, and which option is selected. Notice at vertex 1111, -3 and -4 are options
because -1, -3, and -4 all last entered the basis at the same time (iteration #1).

Least iteration in the basis rule: Set a counter for each (orientation,

direction)-pair to 0. At each vertex, for each direction d, increment the

+d counter if the vertex label has a 1 in the dth counter bit and increment
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the −d counter otherwise. Choose the outgoing edge whose (orientation,

direction)-pair has the lowest count. See Figure 2–16.

Vertex

(orientation, direction)-pair

Options+ 4 - 4 + 3 - 3 + 2 - 2 + 1 - 1

0 0 0 0 0 0 1 0 1 0 1 0 1 +1, +2, +3, +4

1 0 0 0 1 0 2 0 2 0 2 1 1 +2, +3, +4

5 0 1 0 1 0 3 1 2 0 3 2 1 +2, +4

13 1 1 0 1 1 3 2 2 0 4 3 1 +2

15 1 1 1 1 2 3 3 2 1 4 4 1 -1

14 1 1 1 0 3 3 4 2 2 4 4 2 -3

10 1 0 1 0 4 3 4 3 3 4 4 3 +1, -2

11 1 0 1 1 5 3 4 4 4 4 5 3 -2

9 1 0 0 1 6 3 4 5 4 5 6 3 -1

8 1 0 0 0 7 3 4 6 4 6 6 4

2

4

5 7

6

12

3

0

1 13 15

14

9

8 10

11

Figure 2–16: An example of the least iterations in the basis rule. The chart shows
at each step how many iterations each (orientation, direction)-pair has been in the
basis, what options are available, and which option is selected. Notice at vertex
1111, -3 is not an option because it has been in the basis for two iterations whereas
-1 has been in the basis for less (one iteration). Notice at vertex 1010, +1 is an
option because both +1 and -2 have been in the basis for the same number of
iterations (four iterations).
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All of the above history-based rules are deterministic. No complexity results are

known for their use on LP digraphs.

The LUD pivot rule has certain qualities that make it interesting. Like

Zadeh’s rule [37], which it is based on, the LUD rule does not fall victim to the

Klee-Minty cube. In some ways it self-balances its search for the sink and does

not allow large portions of the digraph to remain unexplored. The LUD rule is a

restricted form of Zadeh’s rule in that all paths obeying the LUD rule also obey

Zadeh’s rule. The converse is not necessarily true.

In examining either of these rules, the history of the path is key. The history

is given in terms of the n directions for the LUD rule and in terms of the 2n

(orientation, direction)-pairs for Zadeh’s rule. Both of these histories can be

represented by an nv vector. Each vertex along the path has an nv vector (vd,

vd−1, ..., v1) where d is the number of directions or the number of (orientation,

direction)-pairs and vi is the number of times the path has selected direction i. In

Figures 2–11 and 2–12 the nv vector at each vertex is given in the chart.

The distinction between the two rules is significant. For example, there are

numerous Hamiltonian paths on AUSOs that obey Zadeh’s rule, but on the 6-, 7-,

and 8-dimension AUSOs there are no Hamiltonian paths that obey the LUD rule

[4]. When studying the LUD rule rather than Zadeh’s rule, there are fewer cases to

consider. It is unclear whether having fewer cases will make a suitable construction

more or less apparent.
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For deterministic algorithms, all the known results are exponential. At this

point, it is time to start investigating randomized pivot rules. Randomized algo-

rithms involve an element of randomness that makes the behaviour of any given

execution unpredictable but often gives good expected results. Two interesting

randomized pivot rules are random edge and random facet.

Random edge: For the entering variable, select an improving variable uni-

formly at random.

Random facet [21]: Given a vertex v of the polytope, uniformly at random

select a facet F containing v. Apply this algorithm on F until reaching

w = top(F ). Repeat this algorithm from w.

Random edge is perhaps the most natural randomized pivot rule, but it is

difficult to analyze. In a 1998 paper, Gärtner, Henk, and Ziegler [14] look at the

special case of Klee-Minty cubes. They find that on these hypercubes, random

edge gives a nearly quadratic upper bound on the number of pivots. In a 2006

paper, Matoušek and Szabó [29] look at the more general case of AUSOs. They

present a construction of an AUSO on which random edge is expected to need

a mildly exponential number of pivots. Neither of these results give definitive

answers for LP digraphs. It is possible that the nearly quadratic behaviour on

Klee-Minty cubes does not generalize to arbitrary LP digraphs. It is also possible

that the mildly exponential behaviour on AUSOs does not occur on any LP

digraphs.
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The random facet rule is not intuitive like the random edge rule, but it has

the best known complexity results. Kalai [20] and Matoušek, Sharir, and Welzl [28]

independently found subexponential bounds for the random facet rule as stated

above and its dual, respectively. This bound is for all LP digraphs. For the special

case of Matoušek orientation of LP digraphs, Gärtner [13] used the Holt-Klee

property of LP digraphs to show that the complexity of random facet is expected

polynomial. This is a great improvement on the bound for general Matoušek

orientations, and it shows how the properties of LP digraphs can be used to obtain

better complexity results.



CHAPTER 3

Fibonacci Construction

One solution to the central problem of this thesis is to find a family of

AUSOs, one for each dimension n, for which the length of a path obeying the LUD

rule increases as an exponential function of n. A path through all 2n vertices of

each AUSO would satisfy this, but even if this is not possible, shorter exponential

paths may exist. The aim of this chapter is to describe the Fibonacci construction

and the families of AUSOs that it produces. It is a modification of the Fibonacci

construction given by [4] for Zadeh’s rule. The first section describes the general

Fibonacci construction and explains how it can be used to produce families

of AUSOs. The second section describes one implementation of the Fibonacci

construction and the results for its family of AUSOs.

3.1 General Construction

The Fibonacci sequence is the sequence of numbers f1, f2, ... such that f1 = 1,

f2 = 1, and fn = fn−1 + fn−2 for n > 2. Each term is simply the sum of its two

preceding terms. The closed form representation fn = 1√
5
(1+

√
5

2
)n − 1√

5
(1−

√
5

2
)n by

Binet (1843) is exponential in n.

In general, given integers a < b < n, a recurrence relation of the form

Ln = Ln−a + Ln−b with base cases L1, L2, ..., Lb will result in a formula for Ln

that is exponential in n. The Fibonacci construction hopes to exploit this fact by

building a path in dimension n whose length is greater than or equal to the sum of

34
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the length of the path in dimension (n−a) and the length of the path in dimension

(n − b).

A family of AUSOs must define an AUSO in every dimension. An AUSO can

be identified by its indegree sequence. The indegree sequence of a digraph G is

defined by gk(G) = the number of vertices with indegree equal to k, for k = 0, ..., n

[38].

Theorem 3.1. If the indegree sequence of an acyclic graph is gk(G) =
(

n

k

)

for

k = 0, ..., n then G is an AUSO [35].

Theorem 3.2. Given two (possibly identical) (n − 2)-dimensional AUSOs A

and B, let A1, A2, and A3 be exact copies of A. The n-dimensional hypercube

given by directing all edges between A1 and B towards B, all edges between

A2 and B towards B, all edges between A1 and A3 towards A1, and all edges

between A2 and A3 towards A2 (see Figure 3–1) is an AUSO.

B

A
1

A
2

A
3

Figure 3–1: Constructing an n-dimensional AUSO from four (n − 2)-dimensional
AUSOs.
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Proof. Since the original (n − 2) dimensional A and B are AUSOs, they each have

the indegree sequence given by gk(A) = gk(B) =
(

n−2

k

)

for k = 0, ..., n − 2. In

the new n-dimensional hypercube Z, the indegree of all the vertices in A1 and A2

increases by one and the indegree of all the vertices in B increases by two. Thus

the indegree sequence of Z is given for k = 0, ..., n by

gk(Z) = gk(A3) + gk−1(A1) + gk−1(A2) + gk−2(B)

=

[(

n − 2

k

)

+

(

n − 2

k − 1

)]

+

[(

n − 2

k − 1

)

+

(

n − 2

k − 2

)]

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

=

(

n

k

)

Therefore, Z is an AUSO by Theorem 3.1.

Schurr and Szabó [31] give a proof of Theorem 3.2 for a more general product

construction.

In order to follow a path through the AUSO constructed by Theorem 3.2,

it is sometimes necessary to reverse the directions of some edges. After the edge

reversals the hypercube must still be an AUSO. This can be done using the

following theorem.

Theorem 3.3. Given an AUSO made up of A1, A2, A3, and B as in

Theorem 3.2, any number of edges between A1 and A3 and between A2 and A3

may be reversed and the resulting orientation is an AUSO.

Proof. Let (u, v) be an edge from A3 to A1 (or from A3 to A2). Let d(u) and d(v)

be the original indegrees of u and v. Let D(u) and D(v) be the indegrees of u and
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v after reversing the edge (u, v). Since A1 and A3 are copies (and A2 and A3 are

copies),

d(u) = d(v) − 1

Reversing (u, v) gives

D(u) = d(u) + 1

= d(v) − 1 + 1

= d(v)

and

D(v) = d(v) − 1

= d(u) + 1 − 1

= d(u)

The indegree sequence of the overall hypercube remains unchanged as the inde-

grees of u and v have simply been interchanged. Therefore, the hypercube after

any number of reversals of this type is still an AUSO by Theorem 3.1.

Note that this is not true for edges between B and A1 or for edges between B and

A2 (see Figure 3–2).
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     (a) (b)

A
1

B

A
3

A
2

u

v

A
1

B

A
3

A
2

u

v

Figure 3–2: An example of an invalid edge reversal. (a) An AUSO as described in
Theorem 3.2. (b) The digraph obtained by reversing the edge (u, v). This graph is
no longer an AUSO because it contains the highlighted cycle.

The Fibonacci construction uses Theorems 3.2 and 3.3 to guarantee that

the constructed hypercube is an AUSO in all dimensions. Let Zn denote the n-

dimensional AUSO constructed by the Fibonacci construction and let Ln denote

the length of the LUD path on Zn. The construction of Zn is as follows for both

the even case (see Figure 3–3) and the odd case (see Figure 3–4):

1. Make three copies of Zn−2, A1, A2, and A3, and one undefined (n − 2)-

dimensional hypercube, B.

2. Create a n-dimensional hypercube by directing all edges between A1, A2, A3,

and B as in Theorem 3.2.

3. Set the starting vertex in A1.

4. In A1, follow Zn−2’s path until the LUD rule is left with no option but to

select an edge from A1 to B.

5. Instead of going to B, do the following:
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i Reverse the edge between the current vertex in A1 and its neighbour in

A3 as in Theorem 3.3.

ii Follow the newly reversed edge to A3 and immediately follow the edge

leading to A2.

iii Follow the next edge of the (n − 2)-dimensional path.

iv Reverse the edge between the current vertex in A2 and its neighbour in

A3 as in Theorem 3.3.

v Follow the newly reversed edge to A3 and immediately follow the edge

leading to A1.

6. Repeat Steps 4 and 5 until Zn−2’s path is complete.

This construction defines a large family of AUSOs.
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Figure 3–3: An example of the Fibonacci construction of Z4 from Z2 and Z2’s
path. (a) Z2 and its path. (b) Step 1. (c) Step 2. (d) Step 3. At vertex 3 the nv
vector is (0, 0, 1, 1). As a result the LUD rule’s only option is to select direction 3.
(e) Steps 4 and 5.
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Figure 3–4: An example of the Fibonacci construction of Z5 from Z3 and Z3’s
path. (a) Z3 and its path. (b) Step 1. (c) Step 2. (d) Step 3. At vertex 7 the nv
vector is (0, 0, 1, 1, 1). As a result the LUD rule’s only option is to select direction
4.(e) Steps 4 and 5.
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The family of AUSOs defined by the Fibonacci construction has three prop-

erties that are desirable in the search for exponential paths. Firstly, it guarantees

that the (n − 2)-dimensional path can be completed on the n-dimensional AUSO;

therefore, Ln ≥ Ln−2. Secondly, in completing the (n − 2)-dimensional path, the

edges of B are never used. Lastly, the orientation of B may be that of any AUSO.

The last two properties leave great freedom to define subfamilies of AUSOs that

will perhaps extend the n-dimensional path to Ln ≥ Ln−2 + Ln−a for some a ≥ 2.

If the nv vector were completely balanced before entering B, then the path

could be extended by Ln−2 simply by ensuring that the orientation of B is that

of Zn−2 rotated so that the path arrives on its starting vertex, but this is not

possible. To be completely balanced either the path has returned to the starting

vertex (each direction is used an even number of times) or the path has reached

the vertex antipodal to the starting vertex (each direction is used an odd number

of times). The former is not possible because the hypercube is an AUSO. The

latter is not possible because directions (n − 1) and n are always used an even

number of times. Therefore, the nv vector cannot be completely balanced going

into B.

Examination of the nature of the unbalanced nv vector before entering B

reveals some general properties. The directions 1, ..., (n− 2) will be precisely Zn−2’s

final nv vector, and the directions (n − 1) and n are used the same number of

times. The directions (n − 2) and (n − 3) will be under-used compared to the

others because in the previous iteration, they are not used after the path moves

into its B hypercube.
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3.2 Implementation

The most straight-forward implementation of the Fibonacci construction that

addresses the issue of two under-used directions is one that attempts to complete

Zn−4’s path in B. For this, the construction of B is as follows:

1. Divide B into four identical hypercubes, b1, b2, b3, and b4 where b4 contains

the vertex that the path arrives on.

The edges between b1 and b2 are direction n − 2 and are directed towards b1.

The edges between b1 and b3 are direction n − 3 and are directed towards b1.

The edges between b2 and b4 are direction n − 3 and are directed towards b2.

The edges between b3 and b4 are direction n − 2 and are directed towards b3.

2. Ignoring the two under-used directions, order the remaining n − 4 directions

from least-used to most-used and order directions that have been used the

same number of times numerically from smallest to largest. This gives a

mapping of the directions of Zn−4 to the directions of bi. Direction 1 of Zn−4

is mapped to the the first direction of bi in the ordering, direction 2 to the

second, and so on.

3. Set the starting vertex of each bi to the vertex corresponding to the arrival

vertex in b4. From the starting vertex, direct the edges of bi according to

Zn−4 using the mapping in Step 2.

4. Map Zn−4’s path using the mapping in Step 2.

5. In the current bi, follow the mapped path from Step 4 until the LUD rule is

left with no option but to take different direction.
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6. Follow the least-used direction with the smallest subscript; reverse any edges

between b2 and b4 and between b3 and b4 as necessary using Theorem 3.3.

7. Repeat Steps 5 and 6 until the path of Step 4 is complete or upon reaching

the sink.

This construction gives Zn. If the stopping condition is the completion of the

mapped path, then this is an exponential construction. Otherwise, the stopping

condition is reaching the sink of Zn before completing the mapped path; in this

case, this may not be an exponential construction if the sink is reached too quickly.

Smaller dimensional cases can be done by hand, but for larger dimensions

and for greater accuracy a computer program is more useful. Therefore, one was

written that follows the above construction with various base cases [10].

A typical example starts with the base cases in Figure 3–5.

                                        (a)

                                                (b)
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Figure 3–5: The base cases for the example of the implemented Fibonacci con-
struction. (a) Z2 and its path. (b) Z4 and its path.
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The example continues with the construction of Z6 (see Figure 3–6) and Z8 (see

Figure 3–7).

Vertex 6 5 4 3 2 1

... ... ... ... ... ... ...

43 3 2 3 2 3 3

47 3 2 3 3 3 3

45 3 2 3 3 4 3

37 3 2 4 3 4 3

33 3 2 4 4 4 3

32 3 2 4 4 4 4

34 3 2 4 4 5 4
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Figure 3–6: An example of the implemented Fibonacci construction. The con-
struction of Z6 and its path. Both the 4-dimensional path and the 2-dimensional
mapped path are completed. The chart shows the nv vector at each step of the
path after reaching B.
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Vertex 8 7 6 5 4 3 2 1

... ... ... ... ... ... ... ... ...

162 5 4 3 2 4 4 5 4

178 5 4 3 3 4 4 5 4

179 5 4 3 3 4 4 5 5

163 5 4 3 4 4 4 5 5

131 5 4 4 4 4 4 5 5

135 5 4 4 4 4 5 5 5

143 5 4 4 4 5 5 5 5

175 5 4 5 4 5 5 5 5

191 5 4 5 5 5 5 5 5

189 5 4 5 5 5 5 6 5

188 5 4 5 5 5 5 6 6

180 5 4 5 5 6 5 6 6

176 5 4 5 5 6 6 6 6

160 5 4 5 6 6 6 6 6

128 5 4 6 6 6 6 6 6

129 5 4 6 6 6 6 6 7

133 5 4 6 6 6 7 6 7

165 5 4 7 6 6 5 6 7
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Figure 3–7: An example of the implemented Fibonacci construction. The B hy-
percube of the construction of Z8 and its path. The 4-dimensional mapped path is
not completed in B. The chart shows the nv vector at each step of the path after
reaching B.
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The results in Figure 3–8 are produced by using the computer program [10] to

continue the example in Figures 3–5, 3–6, and 3–7.

dim 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Total 

path 

length

Finishes 

both paths

> length of 

both paths

2 1 2 3 N/A N/A

4 3 2 3 3 11 N/A N/A

6 3 2 4 4 5 4 22 Yes Yes

8 5 4 7 6 6 7 6 7 48 No Yes

10 7 6 9 8 8 8 9 9 9 9 82 No No

12 9 8 11 12 10 11 10 11 11 12 11 11 127 No No

14 13 12 13 14 12 13 13 13 13 13 13 12 14 14 182 No No

16 15 14 17 15 15 15 16 16 15 16 16 17 16 18 14 17 252 No No

18 19 18 18 18 17 18 19 19 18 19 19 19 19 18 19 19 20 17 333 No No

20 21 20 21 22 23 22 23 22 22 22 22 22 22 23 23 23 22 23 21 25 444 No No

22 25 24 23 26 24 25 23 26 25 25 25 25 25 26 25 23 26 27 25 26 27 26 552 No No

Figure 3–8: A typical example of the final nv vectors of the 6- to 22-dimensional
AUSOs produced from the implemented Fibonacci construction with cases from
3–6.

This subfamily does not appear to give an exponential LUD path.



CHAPTER 4

Lower Bound

The aim of this chapter is to show that the least-used (orientation, direction)-

pair is used an exponential number of times on Hamiltonian paths that follow

Zadeh’s rule.

Hamiltonian paths are very special. Not only does one give an exponential

path, but it also completely defines an AUSO. Suppose that the vertices of the

Hamiltonian path were ordered from 0 to (2n − 1). This is a completely unimodal

numbering of the n-dimensional hypercube. All edges of the AUSO will be directed

from the lower-numbered vertices to the higher-numbered vertices. This is more

memory efficient as an AUSO defined by a Hamiltonian path need only remember

the order of the vertices rather than the direction of every edge.

If the least-used pair grows subexponentially while the most-used pair grows

exponentially then the imbalance in the nv vector would prevent constructions

from relying on a balanced vector. Therefore, the following exponential lower

bound on the least-used (orientation, direction)-pair is important.

Theorem 4.1. In any Hamiltonian path following Zadeh’s rule on an

n-dimensional AUSO, every (orientation, direction)-pair is used at least

2n−2n−1−1

2n
times.
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Proof. Partition the n-dimensional AUSO into two (n − 1)-dimensional hypercubes

C1 and C2 where the direction d separates the two (see Figure 4–1).

+d -d

C
1

C
2

Figure 4–1: The two halfcubes C1 and C2 separated by the direction d.

Let k be the number of times direction −d is used. Without loss of generality,

assume the Hamiltonian path starts in C1.

The Hamiltonian path must visit each of the 2n vertices. It has length 2n − 1,

so the sum of the values of the final nv vector is 2n − 1.

This sum can also be counted by looking at how high each individual (orienta-

tion, direction)-pair can be. Each of the 2n (orientation, direction)-pairs of the nv

vector can be either k or k + 1 while the vector remains balanced. This contributes

at most 2n(k + 1) − 1 to the sum of the values of the nv vector. Each vertex in

C1 has an adjacent vertex in C2. If the path reaches a vertex in C1 whose adjacent

vertex in C2 is already in the path or a vertex in C2 whose adjacent vertex is in

C1, then the path could potentially select a direction that has already been used

k + 1 times. This can occur only once for each pair of vertices, so contributes at

most 2n−1 to the sum of the values of the nv vector.
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Now count the sum of the nv vector in two different ways and solve for k:

2n − 1 ≤ 2n(k + 1) − 1 + 2n−1

k ≥
2n−1 − 2n−2

n
− 1

which is exponential in n.

The proof of Theorem 4 only holds when the path is Hamiltonian. It is

possible for a non-Hamiltonian exponential path to use an (orientation, direction)-

pair a subexponential number of times. It is even possible that a pair is never used

(see Figure 4–2). Since in some dimensions there are no Hamiltonian paths that

follow the LUD rule, Theorem 4 cannot be applied directly to the LUD rule.

+d

C
1

C
2

Figure 4–2: An example of a non-Hamiltonian exponential path where one (orien-
tation, direction)-pair is never used. When all the directions from one halfcube is
directed towards the other halfcube, then the exponential path consisting of all the
vertices in the second halfcube (n2

2
vertices) never uses the direction −d.



CHAPTER 5

Conclusion

The question of whether or not there exists an exponential path that obeys

the LUD rule on an AUSO is still open. It is an interesting problem whose solution

would be valuable for the field of linear programming as well as USOs. The aim

of this chapter is to summarize this thesis and to outline some areas of promising

future work.

The background material covered in Chapter 2 brings together linear pro-

gramming, the Simplex method, and AUSOs in a structured way. The dictionary

and geometrical representations of the feasible region and the concept of pivoting

are presented in a manner that allows them to be used directly on LP digraphs

and analogously on AUSOs. Definitions of the history-based pivot rules, namely

Zadeh’s rule, the least-used direction rule, the least-recently considered rule, the

least-recently basic rule, the least-recently entered rule, and the least iterations in

the basis rule, are given in the dictionary representation and, for AUSOs, in the

geometrical representation. An example AUSO is used to illustrate the differences

between these six history-based rules.

The Fibonacci construction presented in Chapter 3 can be used to produce

many different families of AUSOs depending on the construction of the B hy-

percube. Following the (n − 2)-dimensional path cannot work mainly because
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two directions will become vastly underused as n grows. Following the (n − 4)-

dimensional path in order does not succeed mainly because of the unbalanced

nature of the nv vector upon arriving to the B hypercube.

In related future work, the goal remains to complete a path in the B cube.

There are at least three ways in which this could be achieved. First, there are

multiple paths of dimension lower than (n − 4) that will produce superpolynomial

complexity results. One is to use some path of dimension (n − a) for some a > 4,

and another is to use some path of dimension n

d
where d > 1. Second, the path in

B may be performed in a different sequence. This could preserve the length of the

path, and might compensate for the unbalanced nv vector described in Chapter

3. Third, the path in B may be completed on, say, every second iteration of the

Fibonacci construction. As above, this could also preserve the length of the path

and might also compensate for the unbalanced nv vector. For example, when

building the B cube of the n-dimensional AUSO, rather than trying to complete

a path, try to re-balance the nv vector. If this can be done effectively, then upon

entering the B cube of the (n + 2)-dimensional AUSO there is a much more

balanced nv vector and following the (n − 2)-dimensional path in B might now be

possible.

The lower bound proven in Chapter 4 shows that the nv vector does not

get too far out of balance. However, this result is for Zadeh’s rule rather than

the LUD rule, and it assumes the existence of a Hamiltonian path that follows

it. A lower bound assuming the existence of any exponential path, not just a
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Hamiltonian one would be a major improvement. Under that assumption, the

result would hold for both Zadeh’s rule and the LUD rule.
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[28] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. Algorithmica, 16(4):498–516, 1996.
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