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Abstract

Under the pressure of climate change, Western conservationists are
increasingly using remote sensing to monitor the state and status of ecosystems. In
efforts to derive meaning from remotely-sensed imagery, many use landscape
metrics as they can quantify the composition and configuration of different patches
on land cover maps and are used to assess ecological processes. Considering the
abundant use of landscape metrics, ensuring their reliability is crucial. In this thesis, |
build upon past landscape metric validation studies which assessed the general
behaviour of metrics when applied to land cover maps. Ultimately, all these works
have tried to improve the ‘statistical context’ for calculating metrics, analysing scores,
and acting upon them in sustainability policy. In Chapters 1 and 2, | revisit the origins
of landscape ecology in ecology broadly, their history in global sustainability policy,
and review past validation studies in landscape metric behaviour. In Chapter 3, |
advance a validation study to assess previous gaps in landscape metric behaviour,
including (1) the ranges of values in real landscapes, (2) the variability and (3)
consistency in variability across landscapes, (4) the distributions best typifying
responses, and (5) the predictability of metrics.

Procedurally, this study used Google Earth Engine, a cloud-computing
geographic information system to composite sequential land cover maps for various
unchanging landscapes, on which we computed landscape metrics. While general
assumptions of landscape metric behaviour are often used, our results suggest
landscape metric responses were not always generalizable, across all measures of
statistical context we assessed. Considering the relieved computational burden, we
argue future work should revisit early validation studies, while continuing to address
pre-established gaps in knowledge. This is because a lack of statistical context to
landscape metrics may undermine if they can be relied upon. In Chapter 4, | draw a
comparison to past validation studies, and harken back to the data-driven
multidisciplinary vision of landscape ecology at its seminal conference in Allerton
Park, 1983. Ultimately, it is the goal of this thesis to assess landscape metric
behaviour, as to provide epistemological development in the models of landscape
ecology, while aiding practitioners who continue to use landscape metrics in modern

sustainability decision-making.



Résumé

Sous la pression du changement climatique, les conservateurs de I'Ouest
utilisent de plus en plus la télédétection pour surveiller I'état et le statut des
écosystemes. Pour donner un sens aux images a distance, beaucoup utilisent des
métriques de paysage car elles peuvent quantifier la composition et la configuration
de différentes zones sur les cartes de couverture terrestre et étre utilisées pour
évaluer les processus écologiques. Etant donné I'utilisation abondante des
métriques de paysage, il est crucial d'assurer leur fiabilité. Dans cette these, je
m'appuie sur les études de validation de métriques de paysage passées, qui visaient
a évaluer le comportement général des métriques lorsqu'elles étaient appliqguées a
des cartes de couverture terrestre. En fin de compte, tous ces travaux ont cherché a
améliorer le "contexte statistique" pour le calcul des métriques, l'analyse des scores
et I'action en matiéere de politique de durabilité. Dans les chapitres 1 et 2, je revisite
les origines de I'écologie du paysage dans I'écologie de maniere générale, leur
histoire dans la politique mondiale de durabilité, et je passe en revue les études de
validation passées sur le comportement des métriques de paysage. Dans le chapitre
3, j'avance une étude de validation pour évaluer les lacunes précédentes dans le
comportement des métriques de paysage, notamment (1) les plages de valeurs dans
les paysages réels, (2) la variabilité et (3) la cohérence de la variabilité entre les
paysages, (4) les distributions qui représentent le mieux les réponses, et (5) la
prévisibilité des métriques.

Procéduralement, cette étude utilise ‘Google Earth Engine’, un systéme
d'information géographique de cloud computing pour composer des cartes de
couverture terrestre séquentielles pour divers paysages immuables, sur lesquelles
nous calculons des métriques de paysage. Bien que des hypotheses générales sur
le comportement des métrigues de paysage soient souvent utilisées, nos résultats
suggerent que les réponses des métriques de paysage n'étaient pas toujours
généralisables quelle que soit la mesure du contexte statistique que nous avons
évalué. A la lumiére du soulagement de la charge de calcul, nous soutenons que les
travaux futurs devraient revisiter les études de validation précoces, tout en
continuant a combler les lacunes préétablies dans la connaissance. Cela est d(i au

fait qu'un manque de contexte statistique pour les métriques de paysage peut



compromettre leur fiabilité. Dans le chapitre 4, je compare les études de validation
passées et je me réfere a la vision multidisciplinaire axée sur les données de
I'écologie du paysage lors de sa conférence phare a Allerton Park en 1983. En fin de
compte, l'objectif de cette thése est d'évaluer le comportement des métriques de
paysage, afin de fournir un développement épistémologique dans les modéles de
I'écologie du paysage tout en aidant les praticiens qui continuent a utiliser les

meétriques de paysage dans
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1. Introduction

Landscape metrics have an extensive record of use in conservation
management (Leitao and Ahern 2002; Sundell-Turner and Rodewald 2008; Wiens
2002), as practitioners use them to quantify landscape patterns to elucidate the state
and status of ecological systems (Turner 1989). At the turn of the century, a
concerted effort to monitor ecological resources led to the development of many
landscape metrics, which are the statistical models applied to categorical land cover
maps to characterise landscape composition and configuration (Forman and Godron
1986). Foundationally, landscape metrics assume a relationship between landscape
structure and ecological processes (Turner 1989). Landscape metrics have been
used in various applications, including land cover description, ecological inventorying
(e.g., amount of forest), change analysis, assessing the fragmentation of natural
areas and effects to ecological connectivity, in addition to relating structural metric
responses to individual species- through metapopulation processes (Uueema et al.
2009). Most popularly, landscape metrics are used in North America’s 30-in-30, to
determine which 30% of land should be protected by 2030 (Davis et al. 2022; Pither
et al. 2019).

While used extensively, implicit assumptions of universal behaviour, as
opposed to rigorous and environmentally-relevant validity testing, has supported a
broad adoption of landscape metrics. Over the last 30 years, isolated works by
conservation practitioners and academics have attempted to quantify the behaviour
of landscape metrics (Bogaert 2003; Cardille et al. 2005; Cushman et al. 2008; Fortin
et al. 2003; Hargis et al. 1998; Neel et al. 2004; Tischendorf 2001; Wu et al. 2002);
however, we still do not have a general description of landscape metric responses,
thus limiting their interpretability. What remains unknown is the expected range of
landscape metric responses, the expected distribution of landscape metric
responses, and the attendant models which best typify landscape metrics over time.

Concomitantly, these knowledge gaps make it difficult to know when a score
on a given day can be relied upon, where it sits within a range of expected values, or
if it is an outlier. Subsequently, this means conservation practitioners can be using

measurements subject to Type 1 and Type 2 hypothesis errors: where metric scores
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suggest a change when the landscape is unchanging, or where a landscape metric
response remains stable despite landscape change, respectively (Gardner and
Urban 2007). Compounded with adverse amounts of conservation decisions being
made in our critical decade of climate action (Steffen et al. 2017), ensuring their
reliability is thereby crucial.

Building upon past landscape metric validation studies, | aim to assess the
general trends of landscape metrics across the various elements of statistical
context. These include (1) measurements of the range and general dispersal across;
(2) measurements of the consistency in variability of metric responses, across all
landscapes; (3) the distributions of metric responses, across all landscapes; and (4)
the predictability of metric responses, using the acquisition date of the land cover
maps on which metric scores are derived. In this thesis | present the development of
a validation study to assess metric behaviour across sequential images for many

landscapes in North America.
1.1 Thesis Objectives

My thesis aims to contribute to the body of knowledge on the statistical
context of landscape metrics. The specific objectives for each chapter are as follows:

e Chapter 1: To review the origin of landscape ecology in ecology broadly,
review the history of past landscape metric behaviour studies, in addition to
the current context on which landscape metrics are used.

e Chapter 2: To assess whether general trends exist in measures of landscape
metric statistical context across: (1) the range, central tendency, and
distribution of metrics responses; (2) the consistency in variability of metric
responses; (3) the distributions of metric responses and (4) the predictability
of metric responses, using the acquisition date of the land cover maps on
which metric scores are derived.

e Chapter 3: To discuss the historical multi-disciplinary and data-driven impetus
for landscape ecology, broad implications for future landscape metric

validation studies.
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1.2 Literature Review
1.2.1 Origins of Ecology

To first understand landscape ecology, it is essential to understand the origins
on which the field was derived from ecology and first principles, its relationship to
design and land use planning, and the subsequent emergence of computational

tools to assess land cover patterns and explore ecological processes.

Foundationally, ecology is the study of interactions between organisms with
each other and the abiotic and biotic environment. Intentionally broad, ecology was
defined holistically to encompass the variety of natural processes occurring in the
natural environment. It is meant to be grounded in first principles of biology,
chemistry, and physics which enable many of the species-environment interactions,
and on which deductions about the state and status of ecological processes can be
meaningfully built (Odum and Barrett 1971).

Initially, the interest in ecology grew out of humankind’s interest in curiosity
and epistemological advances of knowledge, broadly. This is noted among early
writings in ecology including Carl von Linnaeus’ Systema Naturae (1762), von
Humbolt & Bonpland’s Essay on the Geography of Plants (1807) and White’s The
Natural History of Selborne (1890). Ecology has since become the basis to
understand how anthropogenic, western-initiated human influences impact the
natural environment (Bazzaz 1998). However, ecological systems are innately
complex, hierarchical (Miller 111 2008), and thus difficult to comprehensively frame
(Meadows 2008). With a growing knowledge of natural systems there was an
attendant emergence of ecology subdisciplines, assessing ecological systems at
various scales and contexts (e.g., population, community, landscape, and global

ecology).
1.2.2 Origins of Landscape Ecology

As the subdiscipline of ecology, landscape ecology examines the patterns
among the landscape, and their interaction with ecological systems. It is considered

a coarse assessment of ecological organisation, larger than the individual,
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population- or community-ecology scale. Procedurally, landscape ecologists are
looking top-down and ex situ, describing how different types of patches (i.e., like-land
covers) are composed and configured within a matrix (i.e., surrounding area
composed of different land covers). Often, approaches include measuring the
amount of area (e.g., how much of Canada is forested), how diverse is the
landscape (e.g., is it all forest, or are other land cover types common, and in what
proportion), in addition to how the configuration of patches influence organism
function(s) (e.g., home range size, genetic diversity and flow). While landscape
ecology textbooks often reference Troll (1950) as the first instance where ecological
processes were examined at the landscape scale (Wiens et al. 2007), foundations of
hierarchically classifying ecological systems are seen earlier in the 1930s among

geography journals.

In Western countries, geographers argued that separating systems into
discrete scales, based on their functional relationships, allowed further examination
of processes (James 1933; Unstead 1935). Through isolating ecological systems,
such as, in the case of community-ecology, allowed the examination of community-
specific effects (e.g., predation and prey dynamics, carrying capacity). However, this
would garner less focus on the nested organism-level or population-level processes
(e.g., genetic diversity among the population). This presumption of isolation allowing
deeper investigation of ecological systems was readily adopted at the landscape
scale. By the 1950s, Troll (1950) had parsed the natural environment into
hierarchical landscape units, which presumed specific functions occurred at discrete
scales. Troll (1950) included a list of common landscape hierarchies, such as K. H.
Paffen’s eight-tier system of “landscape cell-small landscapes - singular landscape -
large landscape - landscape group- landscape region - landscape zone - landscape
belt’, or P. E. James’ four-tier hierarchy “locality - district - subregion - region” (1950,
pg 80). From Troll (1950), it became common that ecosystems could be evaluated
and described at the landscape scale, which predicates that ecological patterns can
discern ecological functions. The notion that form follows function has been
evidenced by evolution through natural selection at the species and community-level,
not necessarily at the landscape level.

14



At the organism-, population- and community-level, it is known that the form of
an organism is subject to evolution through the process of natural selection, where
preferential individual traits permit persistence in a given environment. Thus,
organisms with these traits, evolved through cladogenisis or andogenisis, are those
more likely to persist. Ecology textbooks provide early evidence for this relationship,
including how species of Galapagos finches, through adaptive radiation and
convergent evolution, had shorter and tougher beaks to crack through shells and
access food (Odum and Barret 1971). Another common example is how a darker-
coloured peppered moth began to outpace light-bodied moths, as this pigmentation,
a product of natural selection through industrial melanism (Cook 2018), provided
these varieties a competitive advantage among the soot-covered habitat of Industrial
England (Odum and Barrett 1971). In evolution through natural selection, at the
organism- through community-level, these examples illustrate how fundamental the
notion of form follows function is to natural systems. While not explicitly said, this
notion has been adapted to the other scales and contexts of ecology, including
landscape ecology, where visual ecological patterns at the landscape-scale are
assumed as indicative of ecological processes at the landscape-scale (Forman
2011; Gustafson 2019; Turner 1989, 2005). For example, Forman (1995) wrote how
landscape patterns, or “what we see today, was produced by flows yesterday”
(Forman 1995). Like any other sub-discipline of ecology, Forman (1995) has long-
believed landscape ecology has “roots in ‘first principles’ or background theory, and
also [is] supported by a reasonable amount of empirical evidence”. In support of his
claim, he convened the 1983 Allerton Park Workshop, which has since been
summarised by Turner (1989). Since the 90s, there is extensive case-specific proofs
to support this relationship between landscape patterns and ecological function (Cui
et al. 2021, Davies et al. 2021; DiFiore et al. 2019; Fronhofer and Altermatt 2015;
Huber et al. 2014; Keane et al. 2017; Miguel et al. 2018; Wiersma 2022; Yuan et al.
2015), in addition to several books and educational materials on how ecologists
could benefit from a landscape ecology approach (Gergel and Turner 2002; Turner
et al. 2001).

15



1.2.3 Landscape Metrics

Landscape metrics are the statistical models ecologists employ on land use
and land cover maps to study the composition and configuration of the landscape
(Forman and Godron 1981). Compositionally, this involves assessing what patches
or values are present, and in what abundance. Configurationally, ecologists
investigate the spatial structure of the landscape, such as the orientation, placement,
and shape of patches. Although there are different methods to represent landscapes,
landscapes are still predominantly viewed as discrete patches (i.e., as in the Patch-
Matrix Model) (Antrop 2021; Driscoll et al. 2013; McGarigal et al. 2009). More
comprehensive models of landscapes exist, such as viewing the surface as a series
of continuous values as opposed to discrete categories (i.e., percent forested vs
binarily classified as forest or not). Nevertheless, the focus of this thesis is on the
use of Patch-Matrix Model metrics (Kupfer 2012).

The Patch-Matrix Model (Forman and Gordon 1981,1986) is derived from
Clementsian ecology, where similar groupings of species are thought to have similar
ecological functions, and thus, can be grouped accordingly. This is a means of
simplifying ecological systems. The Clementsian model was originally used to
describe the succession of plant communities towards a climax ecological
community, through autogenic (i.e., forces internal to a biotic community, such as
soil nutrients and texture) and allogenic processes (e.g., forces external to the biotic
community, such as anthropogenic global warming) (Naveh and Liebermann 2013).
The Clementsian model asserts that at any given point, the composition of an area
can be used to stratify it into a discrete ecological category (e.g., as forest,
shrubland, wetland, or marsh). Readily, this idea has been adopted by categorical
land cover maps, and the metrics thereunto qualifying landscape composition and
configuration (Hakkenberg et al. 2017; Oberg 2019).

Under the Clementsian model, the metrics applied to land cover maps are
interchangeably defined as ‘surface metrics’ and ‘landscape indices’ (Uuemaa et al.,
2009). Some researchers describe them as surrogates for ecological processes (see
Lindenmayer and Franklin 2002). While an inference, or assumed ‘surrogate’ (2002),
all methods ultimately abstract and further reduce the complexity of natural systems
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into a score (Kupfer 2012; Riitters et al. 1995; Sanderson 2020; Turner and
Gardener 2015; Wu and Hobbs 2002).

In practice, landscape metrics are used to both describe landscapes and
deduce ecological function. In the former, metrics can be used to, for instance,
guantify the amount of habitat area or habitat fringe, the clumpiness or intactness of
habitats, the density of patches, the variability of land cover types, the interspersion
of patches within unlike patches (e.g., fen ecosystems within a coniferous forest), in
addition to the diversity of land cover types (McGarigal and Marks 1995). The latter
are used to explain, for instance, how fragmented a landscape is, how connected a
habitat is. Since the outset of the landscape ecology, there has been a concerted
effort to not just describe landscape patterns but understand ecological processes,
including “the functional interactions of the natural landscape” (Troll 1950). In effect,
landscape metrics rely upon the assumption of a reciprocal relationship between

spatial patterns and ecological function (Gustafson 2019).
1.2.4 Landscape Metrics in Conservation Planning and Decision-Making

There is nearly a fifty-year history of using landscape metrics within global
sustainable development, both directly (e.g., using metrics from FRAGSTATS
software, per McGarigal and Marks (1995)) and indirectly through monitoring and

guantifying global land cover change. Briefly, we recount the history below.

In 1983-85, the Brundtland commission worked with United Nations countries
to categorise land as worthy of enhancement, prevention, and restoration using
satellite monitoring (Imperatives 1987). The Brundtland commission built upon the
motive of the first UN convention on the environment a decade prior, which was one
of the first instances where international unity sought to work towards sustainable
development (McNamara 1972). In their seminal report, Our Common Future, there
was an express interest to inventory the abundance of land covers in each of these
categories (Imperatives 1987). Moreover, the United Nations Environmental
Programme’s (UNEP) Earthwatch Subprogram (Sec. 4.3), monitored the connectivity
and interspersion of these habitats (i.e., examining potential habitat refuges for

species departing disturbed and/or modified areas) (Imperatives 1987; UNEP 1975).
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More, the report indicated the importance of identifying the “many ecosystems that
are rich biologically” and “severely threatened”, (Imperatives 1987, pg 125-128). In
1992, the United Nations Sustainable Development (UNSD) organisation convened
the Rio Summit or the Earth Summit, where 178 governments committed to
improving monitoring efforts of ecological systems, namely fragmentation,
connectivity, in addition to the abundance of resources (e.g., area as forested, forest
change) (Lafferty and Eckerberg 2013). In 2004, the Organization for Economic
Development (OECD) countries agreed upon a universal set of environmental
indicators, which supported the use of metrics to capture “habitat alteration and
fragmentation through [summarised] changes in land use and land cover” (OECD
2004, pg 30). Most recently, the Terra Carta, per the One Planet Summit, gave
explicit mention to “monitoring natural resource capital, including by satellite” (HRH
the Prince of Wales 2021, pg 17). Indeed, policy instruments have and continue to
uphold the utility of landscape metrics not solely for monitoring but assessing and

evaluating the integrity of natural systems (Gokyer 2013; Mayer et al. 2016).

Building upon extensive top-down multinational support, landscape metrics
are also used in modern conservation planning, environmental policy, and land-use
planning applications (Leitdo and Ahern, 2002; Sundell-Turner and Rodewald, 2008).
Pragmatically, their use spans scales of global efforts through to local conservation
entities. For instance, the joint effort of Canada and the United States, the Great
Lakes Commission (GLC), uses changes in extent and proximity of land covers to
water bodies to predict changes in water quality (Lopez 2005). The organisation
supports how a “GIS-derived landscape metric, such as percentage of cropland area
among watersheds, can be correlated with water quality parameters... [and] be
analysed as a causal (predictive) relationship” (Lopez 2005, pg 11). Other
multinational efforts include the Joint Research Commission (JRC) of the European
Union (EU), where landscape metrics were used as biodiversity indicators (reviewed

in Cassatella and Peano 2011).

At the national scale, the United States Environmental Protection Agency set
forth a proposal to use landscape metrics, as some, “such as dominance, fractal
dimension, and contagion have been proposed in the USA as indicators of

watershed integrity, landscape stability and resilience, and biotic integrity and
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diversity” (Lopez et al. 2006). To date, many are still used in local hydrology
management divisions of the United States Environmental Protection Agency
(reviewed in Lopez and Frohn 2017). In Canada, the Forest Service used landscape
metrics as indicators, as the patterns and their change provided insight into “land
use, habitat, and biodiversity” (Wulder et al. 2008); the perceived utility of landscape
metrics for forest monitoring and forecasting has since been echoed in other
countries, such as the United States (Kupfer et al. 2012), India (Reddy et al. 2013),
and China (Li et al. 2021). As evidenced above, landscape metrics are used in a
variety of conservation contexts to both monitor and assess the integrity of ecological

systems. Thus, the importance of ensuring landscape metrics is reliable is axiomatic.
1.2.5 Assessing Behaviour of Landscape Metrics

In addition to the profuse use of landscape metrics in conservation ecology
and land management contexts, there is an attendant body of literature calling into
guestion the reliability of landscape metrics. Mostly, implicit assumptions about
general landscape metric behaviour, as opposed to rigorous and environmentally-
relevant validity testing, has been used to substantiate landscape metric validity. In
2004, Neel et al. echoed McGarigal et al. 's (2002) concern on how “the ecological
interpretation of [landscape] metrics has been plagued by a lack of thorough
understanding of their theoretical behaviour” (Neel 2004, pg 435). Research has only
evaluated landscape metrics’ behaviour, such as through metrics’ generalised
responses to changing scales (Wu et al. 2002), examining landscape metric self-
similarity (e.g., collinearity and explanation of variation) (Riiters et al. 1995; Cushman
et al. 2008), and how metrics respond to aggregation of patches in the landscape
(i.e., are forest patches dispersed throughout a landscape or contained in one area)
(Neel et al. 2004).

In 2002, Wu et al. introduced general measures as to how landscape metrics
should respond to changes in scale, dubbed “scalograms”. The authors measured
landscape metric responses in four landscapes within the United States, and
categorised landscape metric responses according to three “types” depending on
how a line of best fit could be matched to a plot of metric score by an independent
scale parameter (spatial extent or spatial grain) (2002). These types of response
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include i) linear or exponential, ii) 2"@and 3" order polynomials and iii) erratic
responses (where no line of best fit can be assigned) (2002). Problematically, since
publication, the generalised conclusions about how landscape composition and
configuration metrics respond to changes in scale, has served as the basis for
uncertainty estimates for landscape scores (Simova and Gdulova 2012), and has
been used to rescale metric scores for environmental analysis (Argafiaraz and
Entraigas 2014). More, while expectations of landscape metric responses to spatial
extent and grain are largely accepted, research has found discursive metric
responses when applied to different imagery products and different study contexts
(Corry and Lafortezza 2007; Frazier 2016; Peng et al. 2010; Shen et al. 2004) this
draws into question the universality of scaling dynamics and the work which has
used the general scaling behaviour. Beyond spatial resolution and extent, select
works have examined temporal responses of metrics; however, the scale as a
predictor to metric response is typically assessed singly (e.g., just by spatial scale),
rarely concurrently with spatial extent, resolution, and time (Gustafson 2019;
Newman 2019): this negates the potential interaction of different scale parameters to

influence landscape metric behaviours.

In 2008, Cushman et al. assessed the collinearity of landscape metrics, given
how interrelated and redundant landscape metrics are often applied for landscape
monitoring efforts. Out of the FRAGSTATS library of class- and landscape-level
metrics, Cushman et al. (2008) identified 24 and 17 independent configurations,
respectively. In part, this was done to combat the ‘shotgun-approach’ of computing
landscape metrics, where all metrics within the FRAGSTATS platform are computed,
regardless of their relevance to the study at hand. Examples of a shotgun approach
are numerous (Blaschke and Dragut 2003). For instance, Lustig et al. (2017) used
twenty-five different landscape metrics as to examine which patterns best predict

allochthonous species spread in novel environments.

Finally, Neel et al. (2004) assessed the response of landscape metrics to
different aggregation dynamics. Ideally, this was to elucidate if metric responses
were related to the aggregation of patches in a landscape and the size of area
included in a computational window. Neel et al. (2004) note how there were also

individual efforts to assess the responses to aggregation with specific metrics
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(Gustafson and Parker 1992; Hargis et al. 1997; Riiters et al. 1995; Saura and
Martinez-Millan 2001). The consummate of all these works then, and since, hold that
there remains limited understanding of metric behaviour. This is important because if
practitioners can understand landscape metric behaviour, it may “aid in selecting and
interpreting metrics that are sensitive to changes resulting from a phenomenon of
interest” (Neel 2004, pg 454).

Worth noting, there have been other efforts to assess landscape metric
general behaviour, including the doctoral dissertation of Porter (2011) who measured
the effect of classification noise (i.e., the certainty in a pixel being classified as one
category as opposed to another) and how it may translate into landscape metric
scores, in lowa, USA (2011).

Notwithstanding these works, there has not been further research into
landscape metric behaviour (personal communication, Cushman, February 15,
2022). Rather, the discussion on landscape metrics has shifted to developing new
methods (Hanson et al. 2022; Saura et al. 2017). As evidenced by the lack of
discourse since these works, there is perceivably less interest in assessing whether
the growing amount of landscape metrics, including older methods which are
consistently used (Kedron et al. 2018; Uueema et al. 2009), are suitable for

environmental monitoring and modelling.
1.2.6 Published Concerns on Landscape Metric Use

To date, there have been instances in the literature where practitioners voice
concern on the use of landscape metrics. For example, Sawyer et al. (2011) notes
how “conservation planners are faced with a critical question: will [landscape metrics]
improve placement of linkages/corridors by explicitly incorporating habitat effects on
movement, or will they result in misleading and potentially costly recommendations
for conservation by concealing invalidated assumptions?” (2011, pg 669).
Considering the overview of programs using landscape metrics (Section 1.2.4), the
magnitude of impact that using landscape metrics will have on pivotal conservation

decisions has grown.
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Indeed, landscape metrics’ results are still considered tangible to explain
ecological concepts to policy makers, decision makers, and the voting public
composed predominantly of Western non-scientists (Nassauer and Corry 2004;
Mayer et al. 2016). However, there is a “lack of evidence that pattern indices imply
ecological processes”, and that “planners and designers should be exceedingly
cautious in making ecological inferences from landscape pattern index values”
(Corry and Nassauer 2005). Rather, the variability or the uncertainty is not
adequately incorporated into a reported landscape metric value (Lechner et al.
2012).

In addition to the assumption about the reciprocal relationship of pattern and
process, there are concerns about how individuals contextualise a score for their
landscape. For example, Cardille et al. (2005) note how the “inability of potential
[landscape metric] users to establish the spatial or statistical context of real-world
landscapes appears to be a major factor inhibiting a full exploration of and
experimentation with the ever-growing library of satellite-derived land-cover data"
(Cardille et al. 2005, pg 987).

More, Leitao et al. (2012) notes how “through the use of tools like
FRAGSTATS we have the power to measure and report more about landscape
pattern than we can interpret in terms of effects on ecological processes” (2012, pg
62); however, the authors still suggest landscape metrics can be used in planning
contexts despite this link.

Recently, | critiqued some of the Western logic which underlies landscape
ecology broadly (Serre 2021), arguing how some individuals advance the use of
landscape metrics, often out of ease of application and interpretation as a substitute
for the evidence necessary to support a link between what a metric is measuring,
and the ecological process under investigation. Since, Wiersma (2022) has provided
a comprehensive review of individual studies supporting a link between landscape
pattern and ecological phenomena. However, as there are conflicting landscape
metric validation results (specifically with regards to scale), many of these individual
case studies, such as the 87 referenced in Wiersma (2022), are thought to “not be
fully replicable experiments” (2022, pg 8). Beyond these few examples, the debate
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on the utility of landscape metrics is limited: metrics are assumed to be sound
measurements of ecological processes. Putting aside contention over whether land
cover patterns can help ascertain the underlying ecological processes occurring in a
landscape, continued validation is needed to address gaps in metric behaviour and
build external validity for existing landscape ecology studies. Indeed, all disciplines
which subscribe to the Western scientific method, cannot use clout to supersede
empirical evidence: continual, rigorous, and repeatable evidence is needed
(loannidis 2005).

1.2.7 Anecdotal Concerns on Landscape Metrics from Practitioners

Considering the minimal published discourse, we sought to speak with
conservation practitioners directly. From October 2021 to February 2022, we
conducted twenty-eight semi-structured individual and group interviews with Western

conservation practitioners who use landscape metrics.

Overall, the goal of these interviews was to capture the perspectives on the
reliability of landscape metrics in Western conservation management, given the
dearth of published rhetoric since 2010. We interviewed a total of forty-three
conservation practitioners who work at local and regional levels (Niagara
Escarpment Commission, Toronto and Region Conservation Authority), in addition to
national (incl. United States Environmental Protection Agency, Environment and
Climate Change Canada, Canadian Forest Service, United States Department of
Agriculture, United States Fish and Wildlife Service), and international scales (incl.
the International Joint Commission, Ducks Unlimited, Yellowstone to Yukon, Centre
for Large Landscape Conservation, the Nature Conservancy). Through thematic
coding of all interview responses, all forty-three Western practitioners identified how
there is still a lack-of knowledge in landscape metric behaviour, and a decrease in
overall discourse around how to meaningfully interpret a landscape metric score.
Moreover, some practitioners identified how metrics are assumed to be

environmentally-relevant, not proven as such (~81% of individuals).

It is important to acknowledge the bias this presents to the thesis as the

perspectives shared by practitioners helped to guide this research. Even if we do not
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interpret these interview responses as objective evidence, and solely
unsubstantiated anecdotal accounts, it was from talking with these practitioners that
we sought out the foundational literature and evidence, that is peer-reviewed, to
support whether generalised trends in landscape metrics exist. More, it is from
conversation with these individuals that | seek to take a deep dive into the early
foundations and assumptions of landscape ecology. While these perspectives
helped guide the context for this review, the information presented within this thesis
is solely the summation of published, peer-reviewed work, not these anecdotal

accounts.
1.2.8 Ease in Computing Landscape Metrics

Landscape metrics were first seen as a unified set of analytical tools in
FRAGSTATS, a program released by McGarigal and Marks (1995) which sought to
integrate the variety of landscape-, class-, and patch-level metrics into a unified
software for both experts and non-experts. Since the launch of FRAGSTATS,
landscape metrics have been integrated into a variety of programs, including
common statistical analysis software of R (R Core Team 2016), through the
SDMtools (VanDerWal et al. 2019) and landscapemetrics (Hesselbarth et al. 2019)
packages. There are also numerous standalone platforms to calculate landscape
metrics, including APACK (Mladenoff and DeZonia 2000) and PatchAnalyst (Rempel
et al. 1999). Simultaneously, software plugins have been written to link into common
geographic information systems (GIS) of ArcMap (Yu et al. 2019), ArcGIS
(Adamczyk and Tiede 2017), and QGIS (Jung 2013). Most recently, this list includes
cloud-computing platforms (Deng et al. 2019) and cloud-computing GIS, such as
Google Earth Engine (Theobald 2022). Together, the variety of means to calculate
landscape metrics with existing programs makes their application to categorical map
analysis significantly easier for users. However, when FRAGSTATS was launched,
McGarigal and Marks (1995) included an extensive rhetoric on the potential misuse

of landscape metrics, and the importance of context in metric selection and
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interpreting a score. Upon review of the documentation and publications surrounding

each of these programs, this dialogue has not been carried forth.
1.3 Conclusion

Landscape metrics have been, and continue to be, commonplace in
conservation ecology, land management and sustainability policy as they measure
habitat composition, configuration, in addition to assessing ecological function.
Supporting their use, several works have identified general trends in landscape
metric behaviour; however, landscape ecologists and practitioners are still operating
without sufficient knowledge of landscape metric behaviour, which may undermine
the reliability of metric scores. Building upon these past landscape metric behaviour
studies, there is a need to continue assessing landscape metric behaviour. This
would contribute epistemologically to the development of landscape metrics and
computational landscape ecology tools. However, more broadly under the pressure
of Western-initiated climate change, practitioners ought to have greater knowledge
about the tools they are using to evaluate what land should be protected, where

biodiversity hotspots are, and which landscapes best facilitate habitat connectivity.
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Abstract

To date, many patch-matrix-model (PMM)-derived landscape metrics are still
used in conservation management and land management decisions. While past
studies have assessed the generalised behaviour of landscape metrics, gaps in
metric behaviour remain. It was our objective to address some of the gaps in the
generalised behaviour of landscape metrics. These include: the range of values for
metrics in real landscapes, the consistency among the variability of landscape
metrics across landscapes, the distributions which best typify responses, in addition
to assessing how predictable metric responses are using the acquisition date for the
land cover maps in which scores are derived. Together, all of these measures go to
advance our statistical context of landscape metrics. Procedurally, we computed 65
landscape-level metrics across large (>150), successional land cover collections for
N = 680 landscapes across North America in Google Earth Engine (108,922 total
land cover maps). Subsequently, we assessed the distributions and model fit using
generalised linear models. In part, our results are to provide preliminary estimates to
expected ranges, variability, and consistency of variability for landscape metric
values across many real landscapes. However, across all measures of statistical
context, landscape metrics did not always exhibit generalizable trends. Most notably,

we found landscape metrics only seldom were described by a normal distribution
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(30% of metrics): an implicit assumption of many studies that use PMM-derived
metrics. We discuss how these various components of statistical context, namely the
lack of generalizability, may undermine the reliability of landscape metrics to

practitioners and how contingent assessments of behaviour are necessary.
2.1 Introduction

Conservationists and land managers are increasingly using remote sensing
technologies to monitor the state and status of ecosystems (Cavender-Bares et al.
2022; Kerr and Ostrovsky 2003). In efforts to derive meaning from remotely sensed
imagery, many use landscape metrics as they can purportedly quantify the
composition and configuration of different patches on categorical landscape maps,
and then be used to understand ecological processes (Forman and Godron 1981;
Lindenmayer and Franklin 2002; Turner 1989). Compositionally, this involves
assessing what patches (or similar land covers) are present, and in what abundance
(Forman and Godron 1981). Configurationally, the patterns and arrangement of
patches are examined for how they affect function (e.g., organism movement)
(1981). In this context, we are referring to the subset of landscape metrics which are
computed on categorical land cover maps at the patch-, class- and landscape-level.

The adoption of landscape metrics echoes the growing and global
environmental monitoring effort. For instance, in Canada, the federal government
committed to “30-in-30:” to protect 30% of land and water resources by 2030
(Environment and Climate Change Canada 2022). Similarly, in the Convention on
Biodiversity (CBD) post-2020 Biodiversity Framework, they aim to improve “the
integrity of all ecosystems... with an increase of at least 15 percent in the area,
connectivity and integrity of natural ecosystems” (Power 2022). Indeed, landscape
metrics are tools we use to measure progress towards connectivity targets, in
addition to what constitutes ecological integrity and which natural areas to protect
(Pither et al. 2021). Thus, if we are to continue using landscape metrics, assuring

their reliability is crucial.

However, many argue that implicit assumptions, as opposed to rigorous and

environmentally-relevant validity testing, have been used to substantiate landscape
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metric validity. For instance, Neel et al. (2004) voiced concern on how “the ecological
interpretation of [landscape] metrics has been plagued by a lack of thorough
understanding of their theoretical behaviour” (Neel 2004, pg 435). Cumulatively,
research has evaluated landscape metrics’ behaviour through their response to
changing scales (Wu et al. 2002), examining landscape metric self-similarity (e.g.,
collinearity and explanation of variation) (Cushman et al. 2008; Riiters et al. 1995),
and how metrics respond to aggregation of patches in the landscape (i.e., are forest
patches dispersed throughout a landscape or contained in one area) (Neel et al.
2004). Furthermore, as landscape metrics are often derived from classified satellite
imagery, Porter (2011) suggested that classification noise (i.e., the certainty in a
pixel being classified as one category as opposed to another) may translate into
landscape metric scores (2011). However, these landscape metric behaviour studies
subscribe to the notion of universal landscape metric behaviour: that there are
universal scaling patterns, and typical distributions of metrics, typical covariances
among metrics, and consistent responses to classification noise, no matter where a

metric is applied.

Fundamentally, this abuts against the purpose for which landscape metrics
were derived. In the documentation of FRAGSTATS, the original program to
calculate land cover metrics, McGarigal (1995) noted how “In a real landscape, the
distribution of patch sizes may be highly irregular” and how summary statistics such
as [mean and standard deviation] make assumptions about the distribution [of a
metric] and therefore can be misleading” (1995, pg 13) By design, landscape metrics
were intended to measure individual responses in landscapes. Over 25 years ago,
Hargis (1997) harkened back to this original documentation, calling for an
understanding of “the attainable values of each metric, and how these values are
altered within landscapes containing different sizes and shapes of patches, and
different modes of disturbance” (1997, pg 185). In 2005, Cardille et al. noted how we
still do not understand the “frequency distribution of metric [responses] in relevant
subsets of landscapes”, which limits landscape metric users in their ability to
contextualise a score they derive from any given landscape (2005, pg 984): this call
remains unanswered. Rather, individual papers report the ranges of values in their

landscapes of interest. Consequently, we do not know whether universal ranges
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exist or not, and in what frequency. Thus, many practitioners are operating without
the adequate statistical context, including the expected ranges of their values and
the distributions best typifying responses. This may undermine their ability to draw
meaningful inference from landscape metrics in their area of interest. Thus, there is a
need to assess whether the growing amount of landscape metrics, including older
methods which are consistently used (see Kedron et al. (2018) and Uueema et al.

(2009) for review), meet assumptions of universal behaviour.

In this study, we seek to meaningfully build upon the foundational efforts
which have called-for or attempted-to assess the universal behaviour of landscape
metrics. The goal of this study was to (1) describe the variability of landscape metric
responses, across different landscapes, in addition to (2) describe the distribution of
landscape metrics in a variety of real landscapes, over time. More, we (3) intended
to explore how predictable landscape metric responses are.

Exploratorily, we devised a validation study, where we assessed the variance
explained by each landscape metric, and how consistent this variance was across a
variety of sample landscapes in North America. Then, we assessed which
distributions best typify landscape metric responses, over time, in each landscape.
We hypothesised that within a given landscape, repeated metric responses for a
landscape would be best-described by a normal distribution, as this is the universal
and implicit assumption governing their current use. We also assessed how often
landscape metric scores of a repeated area were predictable, when accounting for
seasonality and inter-year changes. We hypothesised landscape metrics in
unchanging landscapes would be predictable by seasonality, as this would suggest
real landscape signals driving a score, rather than error caused by noise among the
land cover classification or metric. Concomitantly, these tests aim to address

whether universal trends in landscape metric behaviour exist. Additionally, we hope
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to contribute to a body of ‘statistical context’, which may be used by ecologists and

land managers who employ landscape metrics.

2.2 Methods

We computed landscape-level metrics on a variety of landscapes within

Southern Canada and the United States. We included areas within 25° to 50° in
latitude and -126°to -58°in longitude, encompassing a total of 16,182,053.77km?.

This includes landscapes across many of the ecological regions of North America,

including northern forests, north-western forested mountains, marine west coast

forests, eastern temperate forests, great plains, deserts, mediterranean California,

tropical wet forests, and southern semi-arid highlands (Bailey 1998). We started with
N = 1000, 5120m x 5120m terrestrial landscapes (256 Sentinel-2 pixels in width and

length), which cover ~26,215 km? of this vast and different area.

LEGEND

Water [

Forest [l

Grass [
Flooded Veg [
Crops []

Shrub & Scrub []
Built [l

Bare Ground []
Snow & Ice []

ONTARIO QUEBEC

d

-aﬁrmo;d r4
Mome* Gulf of

Mexlco ) 500 km

Figure 2.1 Stratified sample locations (N = 1000) across the global human
development index (gHM) (Kennedy et al. 2020). Inset maps are 1:200000 scale,
Dynamic World (Brown et al. 2022) land cover maps for (a) Houma, LA, (b) San
Antonio, TX, (c) Charlotte, NC, and (d) Atlanta, GA.

2.2.1 Sampling Procedure

Within this terrestrial boundary, we selected sample landscapes with a high

frequency of repetitious land cover maps, and those subject to different

anthropogenic pressures. As our land cover maps are from Dynamic World (Brown
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et al. 2022), a database of classified land cover maps for every sequential Sentinel-2
image, we first isolated areas with a high-frequency of Sentinel-2 images. Tiling all
yearly images of Sentinel-2 in the study extent for each year, we masked unsuitable
areas scenes where the yearly return was less than 30 images/annum.
Subsequently, we sought to represent a variety of anthropogenic stressors and the
degree of anthropogenic modification (from 0-1) that conservation practitioners work
within, from completely naturalised to highly urbanised, for instance. We then
conducted a stratified sample of points within these high-imagery coverage zones,
using the global human modification (gHM) dataset. This dataset is a 1km x 1km cell
raster layer, which culminates how modified a landscape is across various indicators.
These include predominantly-western human settlement, agriculture (presence of
livestock, cropland), transportation (road and rail infrastructure), mining and energy
production, in addition to electrical infrastructure (power lines, night time lights) circa
2016 (Kennedy et al. 2020). The resulting landscapes were used in image

compositing.
2.2.2 Image Collection Assembly

We assembled all landscape composites in Google Earth Engine. Google
Earth Engine is a cloud-computing geospatial platform (Gorelick et al. 2017), which
enabled us to retrieve classified images, filter collections, and subsequently
compositing the time series of land cover maps for each landscape. The Dynamic
world catalogue was filtered for images within each landscape’s extent, and for
images captured between May 1st and November 30th, for each year, from 2017-
2021. Each image collection was then filtered to exclude images with more than 10%

cloud cover in the entire scene, using the Sentinel-2 cloud-detection quality band.

Dynamic World is a near-real time classification algorithm applied to incoming
Sentinel-2 imagery, which maintains the source spatial resolution (i.e., pixel size) of
10m (Brown et al. 2022). Dynamic World images are land cover maps, with a
thematic resolution of nine, including (1) water, (2) trees, (3) grass, (4) flooded
vegetation, (5) crops, (6) shrub and scrub, (7) built, (8) bare, in addition to (9) snow
and ice (2022). The data product has a time frame matching the launch of Sentinel-2

LIC, to current day (circa June 27, 2015). Dynamic World has a revisit time of 2-5
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days, allowing for frequent land cover-maps of the same landscapes. See Figure
2.2.

Oct 24, 2018 Oct29,2018  Nov 03,2018  Nov 10, 2018 Nov 28, 2018

Figure 2.2: lllustrating the successional Dynamic World (Brown 2022) land cover
maps, derived from Sentinel-2 imagery, for Kearney, NE; maps are at a 1:200000
scale.

As a near-real-time classified imagery product, Dynamic World is subject to having
masked pixels when cloud cover is present in Sentinel-2 images. As full land cover
maps are required for landscape metrics, we excluded images with more than 5% of
masked pixels in our landscape analysis window. For images with less than 5% of
masked pixels, these images could be ‘backfilled’ to create the complete land cover

maps requisite for calculating landscape-level metrics. We illustrate the process

below in Figure 2.3.

("

July 27, 208 Backfilled

Figure 2.3: Demonstrating how masked clouds were filled in Dynamic World (Brown,
2022) images. In this instance, a prior scene (left) is used to fill the masked pixels in
the bottom-right of a July 27th image (middle); the ‘backfilled’ scene has no masked
pixels (right): all maps are to 1:114286 scale.

Images were backfilled if there was an unmasked image within one month
prior to the image requisition date; this was to minimise the potential influence of
intra-year change (i.e., plant growth and senescence). If there were not any images
to perform the backfill, the partially-masked land cover image was removed from the
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composite of images in each landscape. Images were masked to the sample
landscape bounds and exported from Google Earth Engine. We note this as a
limitation as it generates some amount of self-similarity of sequential land cover

maps within each landscape.

Once backfilled, we visually inspected all images (N = 109,100). Some image
collections had scenes with pixels classified as snow and ice, which was inconsistent
with our seasonal filtering, climate normals for the geography, and our visual
inspection of true-colour images which suggested cloud cover was being falsely
classified. These images were systematically removed from collections using a
threshold median absolute deviation (MAD) on landscape metric scores. In total, N =
178 images were misclassified (>0.2%). A full procedure for misclassified image

removal is provided in Supplemental Information (see Section 6.1)

Subsequently, landscapes with less than n = 30 images in any given year
were excluded. This ensured each landscape had a minimum of n = 150
successional land cover observations, on which summary statistics and model fit
could be computed for each of the sixty-five landscape-level metrics. In total, N =
108,922 Dynamic World images were used across N = 680 landscapes.

2.2.3 Generating Landscape-level Metric Results

Using the landscapemetrics R package (Hesselbarth et al. 2019), we
computed all sixty-five landscape-level composition and configuration metrics for
each image, within each landscape. Categorically, landscape-level metrics can be
divided into aggregation metrics (n = 15), area and edge (n = 8), core are metrics (n
= 12), shape metric (n=16), entropy (n= 3), diversity (n = 8) and unique metrics (n =
2) (e.g., mutual information and relative mutual information): this does not mean they
do not overlap. A full list of metrics and their respective calculations is provided in
Hesselbarth et al. (2019). Landscapemetrics is used to supplement the since-
deprecated FRAGSTATS program. It includes all the original landscape-level metrics
first synthesised in McGarigal and Marks (1995). In this study, we focussed explicitly
on landscape-level metrics, not class- or patch-level metrics. All patch adjacencies

were calculated using queen’s case rules (direct and corner adjacency), more, the
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sample boundary was not included as a habitat edge as these were subsamples of
real landscapes. All other parameters were default per the calculate_Ism function
(Hesselbarth et al. 2019).

2.2.4 Describing Landscape Metric Behaviour

For each metric response, in each landscape, we computed summary
statistics, including median and coefficient of variation (CV). We preferred non-
parametric summary statistics as we did not want to assume any normality when
describing landscape metric results (Baskent and Jordan 1995; McGarigal and
Marks 1995). While we could have used a median absolute deviation (MAD) or
interquartile range (IQR), the requisite transformations to get metrics to the same
scale (all metrics to 0-100) use parameters that assume a normal distribution. In this
study, we wanted to measure the metric’s tendency of the distribution towards its
mean as it is measured by practitioners, not once results are normalised (thereby
redistributing the data from what is measured). Thus, we used a stringent CV of 10%
to classify metrics as either tightly dispersed or variable. We then aggregated to the
median CV value, across all landscapes, as a measure of how generally dispersed a

metric is.

More, we assessed the consistency of the CV measurements for each metric,
across all landscapes, using a coefficient of quartile deviation (CQD) thereunto all
responses for a given metric. The coefficient of quartile deviation (CQD) is a
percentage to quantify a non-parametric measure of dispersion from the median
value (Arachinge et al. 2022). To calculate CQD, for each metric, we used the
difference between the 75th percentile and 25th percentile CV measurements,
divided by the sum of these percentiles (Arachinge et al. 2022). As the CQD is
measured on each metric, we could summarise the consistency in dispersal (as CV)
across all real landscapes. As a standardised ‘variance of variances’, a high CQD
signalled metrics where, across all landscapes, the variability in metric response is
inconsistent (i.e., some landscapes have a small variance in a metric value, others
may be large). Comparatively, a low CQD signalled metrics where the variability in
any given landscape is consistent (i.e., the exact range of values may not be the
same, but the variance explained is similar). In this study, we used the often-used
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threshold of CQD = 0.5 to separate instances where variances are considered
preferable (or consistent) or not preferable (or inconsistent variability) (Montgomery
2020). Ratifying support, this value of 0.5 is the generic threshold for CQD values in
statistical software, Minitab (Alin 2010), derived from the McKay—Vangle confidence
interval of CQD <= 0.5 (Bonnet 2006). Lower thresholds may be used; however, we
chose the more conservative threshold to allow metrics to be more variable across
landscapes, which would permit more context-specificity, which is the intent under
which landscape metrics were derived. For example, metrics with a CQD > 0.5
represented inconsistent variability in a metric response, across landscapes; metrics
with CQD <= 0.5 indicated consistency in the variability for a metric, across all

landscapes.

Subsequently, to assess the predictability of landscape metric responses in
each landscape, observations for each metric were fit using generalised linear
regression models. We used these models as they seek to fit a variety of common
functions (e.g., Log, Logit, CDFLIink, identity, inverse power, inverse squared, and
power) to different possible distributions of the data (incl. binomial, gamma,
gaussian, inverse gaussian, negative binomial, poisson, and tweedie). Both the
image’s day-of-year and year of each image were used as model predictors for
landscape metric scores. Day-of-year was fit as a random effect, as the intended use
of any validation study is to extrapolate beyond the study subset: in our case, we
wanted to discuss metric behaviour in North American landscapes, broadly. More,
we had a sufficiently large number of observations for each metric, afforded through
prefiltering of suitable geographies. Further, using day-of-year as a random effect
does not assume true homogeneity among the dependent variable of metric
response; allowing for one landscape to change appearance differently from other
landscapes. This applies to the patterns of change, rate, and overall timing. This
rightfully permits the assumption of ecological heterogeneity, which is foundational to
any landscape ecology research (Lack 1969; Tews et al. 2004; Wiens 1997). Year

was fit as a continuous, fixed-effect.

For each landscape, per metric, best-fit models were determined using the
lowest Bayesian information criterion. Further, we required day-of-year to be a

statistically-significant predictor at an « = 0.05 (95% CI). From the tests for best-fit,
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we could derive which distributions best typified a landscape metrics’ response in a

given landscape.

Subsequently, we computed the proportion of observations as significant
outliers using a Student's-t statistic. We calculated studentized residuals for each
best-fit model, where the expected value from the model is subtracted from the
observed target value at each increment of the predictor variable (i.e., days of year,
years). Then, the residuals are divided by the adjusted standard error. We employed
a threshold for significant studentized residuals, where observations greater than
1.96 were labelled as significant-outliers to the model with 95% confidence (per
Cardille et al. 2001; Deutsch et al. 2021). In terms of a landscape metric score, the
proportion of observations as significant outliers was used to interpret the number of
days where metric values cannot be adequately predicted using the best-fit model.
Thus, the relative proportion of observations as externally studentized residuals is
used to describe the reliability of a score when predicting landscape metric
responses. Herein, these results are only described comparatively to other
landscape metrics observations, calculated with the same number of observations,

and the same number of landscapes.
2.3 Results

By all measures of statistical context we assessed, there is varying evidence
for either general behaviour or site-specific contexts of metrics. First, we describe the
range of values for different landscape metrics, their spread, and the consistency
among landscapes. Second, we describe the distribution of landscape metric
responses with successional images of the same landscapes. Third, we present the
results of the generalized linear models and how well landscape metrics are

predicted by seasonality.
2.3.1 Variability in Metric Values

From our assessment of median coefficient of variation (CV) for each
landscape metric, using a stringent CV <= 10% threshold to typify dispersal, thirty-
nine metrics were considered highly dispersed from the central tendency, on most

instances. Inversely, twenty-six metrics had a high tendency of values around the
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central tendency. More, to describe the variability in landscape metric responses, we
include the real ranges of metric responses across real landscapes (see Table 6.1).
In many instances, the number of observations for each metric (>100,000)
approaches the central limit theorem, as the frequency distributions for most metrics
appear normally-distributed. In aggregate, metrics varied on the size of the dispersal
kernel, and potential skew. There are select instances where metrics do not appear
normal in aggregate, including division, mesh, msidi, msiei, siei, and sidi.
Conversely, patch richness density (prd) had gaps within its distribution, suggesting
certain values would never occur. Nevertheless, the number of observations
comprising these distributions (>100000), limit any use of these general distributions
to contextualise the expected frequency of a landscape metric response within a

given landscape.

Out of all 65 landscape-level metrics, fifty-five were consistent in their
variability across landscapes, as determined by being below this threshold (see
Table 6.2). Predominantly, metrics (n = 30) had a high median CV across all
landscapes, while being consistent in this variability across landscapes. Examples
include the measures of the adjacency of ‘like’ patches (pladj), the number of
patches (np), the patch complexity (parfrac), the thematic complexity of patches
(ent), proportion of disjunct core areas (dcad), and the probability of cells have ‘like’
class distinctions (contag). Some metrics (N = 24) had a low median CV
measurement, across the landscape measured, indicating consistently low variability
from the central tendency. There were two instances where metrics were
inconsistent in a low median CV value across different landscapes (e.g., the
complexity of landscape pattern (condent) and the total core area (tca)). Eight
metrics had a high median CV value and were inconsistent in their variability across
landscapes. In other words, metrics that, in aggregate, tend to be tight or distributed
to the central tendency can either be consistent or inconsistent in that variability

across landscapes.
2.3.2 Distributions of Landscape Metrics

Per the lowest Bayesian information criterion, our data suggests that metrics
were either exclusively or near-exclusively described by one type of distribution,
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described by several distributions, or rarely and inconsistently described by any
distributions. Only in instances where metrics are exclusively described by one

distribution do we consider this a generalised behaviour.

Of all the landscape-level metrics, we could describe fifty-five metric’s
distribution in all instances (see Table 6.3). There are exemptions to this, such as in
landscape metrics describing the distance to nearest ‘like’ neighbours (enn_cyv,
enn_mn, enn_sd), which were described 99% of the time. Most often, landscape
metrics were best described by one kind of distribution; for instance, twenty metrics
were described exclusively by one distribution, and twenty-five were described
predominantly by one distribution with minimal description from other distributions
(=<5% of instances). In some metrics, not all landscapes could be typified under the
distribution types permitted by generalised linear models. These include the
measures of size and abundance of patches (area_mn and area_sd), the size of

core areas (core_mn and core_sd), in addition to the size of all core areas (tca).

In general, our results do not agree with the working presumption that
landscape metrics can be used under a general assumption of normality. Of the 65
landscape-level metrics we evaluated at this spatial (~25km?) and temporal scale (5
years), nineteen metrics’ distributions were best-described as gaussian, across all
landscapes: only nine metrics were described exclusively by gaussian distributions,
across all landscapes. These nine included metrics describe the compactness of a
landscape patches (circle_mn circle_sd), the complexity of patch configuration
(condent), the spatial connectedness of patches (contig_sd), patch area and overall
landscape compactness (gyrate_mn, gyrate _sd), in addition to measures of

deviation from a maximum compactness of patches (shape_mn and shape_sd).

Typically, landscape metrics were best typified by gaussian, inverse-gaussian
and negative-binomial distributions. Select instances occur where a metric was
described by one of the aforementioned distributions, in addition to a binomial
distribution, such as with enn_sd (0.15% of instances) and tca (30.5%), in addition to

those describing patch richness (pr = 0.30%) and relative patch structure (mesh =
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2.84%). Similarly, eight metrics are, though selectively, described by poisson and

tweedie distributions: this never exceeded 1% of landscapes.

As landscape metrics are often used under the guise of normality, there is
seldom published research as to whether landscape metrics are normal or not. In a
rare example, a report to the European Commission on assessing the ability of
landscape metrics to quantify heterogeneity in remote sensing data for the global
human settlement layer project, Degen et al (2018) suggested pr, shdi, ta (total
area), and prd (as patch richness density) are four metrics that are not normally
distributed within their study extent. While we did not evaluate total area (as the
landscape window is consistent in every image, every landscape), our results
support the claim that these three metrics are not normally distributed. Specifically,
shdi was better typified by a negative binomial function (78.38% of instances), pr and
prd were never best-fit as a gaussian distribution. Ultimately, minimal published
rhetoric on metric distributions limits comparability of these results. Landscape metric
distributions are often evaluated using the aggregation of landscape metric
responses across a single landcover product (see Cardille et al. 2005), rather than
typifying responses in successional land cover maps for a single area.

2.3.3 General Linear Model Fit

In general, no metric response was consistently predictable using day-of-year
and year as predictors (see Table 6.4). Year was significant on the best-fit models
only minimally (9.2% of instances); the inclusion of year rarely improved the best-fit
model type (0.47% of instances). This supports our assumption that the landscapes
we sampled, for the most part, were not predictably changing over the study years.
In this context, this was interpreted as the landscapes remaining stable throughout
the evaluation period, and the reflected variability in landscape metric scores being a

product of seasonal variation.

On average, metric responses were 46% predictable. This varied across
metrics: some were highly predictable, such as the difference in size (area_cv =
83%) and core area among patches (core_cv = 83%), the number of patches (np =

82%), in addition to the perimeter-area ratio of metrics (para_mn = 87%). Others
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were less predictable: including area_mn (0.5%) and area_sd (4.0%), core_mn
(0.5%) and core_sd (4%), pr (12%), prd (19%) and tca (18%).

Moreover, whenever a model could be fit, the base function varied across
landscapes. Of all possible generalised linear model functions, log, identity, inverse-
power, and inverse-squared functions best fit the shape of landscape metric
responses. CDFLink and Logit functions were rarely fit to landscape metric results
(e.g., prd was best-fit by a CDFLink function <1% of instances). For instance,
area_cv is a metric consistently predicted (83% of instances); however, it is best-fit
by log and inverse-squared functions, on 63.9% and 36.0% of instances,
respectively. The relative abundance of which function best fit responses were

variable across all landscape-level metrics.

Of the models that fit landscape metric responses, we then compared the
average proportion of significant studentized residuals (when the observation was >=
1.96). For most landscape metrics (82%), the average proportion of observations as
significant outliers was less than 5%. This signifies on the instances where a metric
is significantly predicted by seasonality, the best-fit model has a low proportion of
outliers, while maintaining, on average, significance in the predicted score.
Comparatively, ten metrics had an average of over 5% of observations that were
significant outliers. For these metrics, the high proportion of outliers violates the 95%
confidence interval of the Student’s-t test that would suggest these metrics are

predictable.
2.4 Discussion

Throughout this study, we made an explicit focus to just describe landscape
metric behaviour using a sample of landscapes across parts of North America.
Firstly, we described the range of expected values for a metric. Secondly, we
described the magnitude and consistency in the variability of a metric (how variable,
on average, and how consistently variable, among all landscapes). Finally, we
described the distribution of landscape metric values, and how well they can be

predicted when controlling for seasonality in responses. Together, all these efforts

40



aim to expand the statistical context to landscape metrics which are used by experts

and non-experts alike.

This builds upon the numerous efforts which have tried to quantify landscape
metric behaviour in both simulated and real-world landscapes (Bogaert 2003;
Cardille et al. 2005; Cushman et al. 2008; Fortin et al. 2003; Hargis et al. 1998; Neel
et al. 2004; Tischendorf 2001; Wu et al. 2002). Despite the tremendous efforts to
date, we still do not have a comprehensive understanding of landscape metric
behaviour. As we argue, these elements of statistical context we assessed may work
independently and concurrently to influence how an ecologist or land manager (or

“practitioner”) may view the reliability of a landscape-level metric.

Within this discussion, we will discuss (1) the results of landscape metric
behaviour in aggregate (incl. variability, ranges of values in real landscapes, and
aggregate distributions of metric observations across all landscapes); (2) how the
consistency among the variability in landscape metric responses lend predictability;
(3) how information about the distribution of a metric can improve how
contextualising whether a score is frequent or rare for a landscape; and (4) the value
of being able to predict a metric score using information about the image acquisition

date.
2.4.1 Aggregate Landscape Metric Behaviour

Firstly, in aggregate, the frequency distributions for metrics revealed that most
metrics approached normality, as stipulated in the central limit theorem. However,
this was likely as a product of the number of observations (~100,000) (LaPlace
1810). Our responses confer with Cushman (2018), who used 25 different landscape
areas, varying in size and thematic resolution, and computed 100,000 different
analysis windows within these areas. Using the length of total edge (te) metric,
Cushman (2018) showed how the frequency distribution of this metric response
converges to normal or gaussian, per central limit theorem. We build upon
Cushman’s (2018) analysis through showing the aggregate distributions of all
metrics (see Figure 6.1). Predominantly, most metrics exhibited similar convergence

to a normal distribution. There were some instances where metrics had visible gaps
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within their distribution, when not relict of the incrementation of possible values (i.e.,
patch richness density (prd)). While most metrics converged on central limit theorem
in aggregate, the application of metrics to individual real landscapes did not always

meet a normal distribution.
2.4.2 Consistency and Generalizability of Landscape Metrics

Secondly, we assessed the consistency among landscape metrics’ variability.
For the most part, metrics were consistent in their variability across landscapes.
However, there are nuances in what consistency among responses tells us about a
landscape metric, which are worthy of discussion. At a foundational level, we do not
know whether inconsistency among the variability of metric responses means that a
metric is more sensitive to a wide range of landscape composition and configuration
elements (i.e., number of edges, interspersion of patches), and thus a better
measurement. Nor do we know whether the high variability indicates inconsistency in
how a metric responds to signals in a landscape, and thus is less reliable. Often, low
CQD values are interpreted as indicating model stability (Bonett 2006; Roach and
Griffith 2015); following this hypothesis, if the variability is consistent in one metric,
this would be comparatively more stable than landscape metrics exhibiting
inconsistent variability. This predicates, however, that the measured response from a
metric is accurate: this is something we did not measure. While some have
attempted to quantify or describe the effects of land cover classification noise
(Griffith 2004), even suggesting ways to reduce it (Brown et al. 2000), these
exploratory approaches are not enough to infer how our landscape metric scores are
determined by product of classification noise, the metric, and or actual signals from

the landscape.

As the precision of the metric cannot be ascertained, we believe it is thus
important to assess the predictability of responses. For example, if a practitioner
knew the variability of their chosen metric in each landscape is consistent with the
expectation in other landscapes, they may have higher confidence in correctly
interpreting a score. We believe this, as the inverse, would be no certainty in what to
expect for a range of values of a metric, as the variability is different across

landscapes.
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This is further muddied when considering the downside to consistency. If a
given metric’s central tendency and variance is very consistent across all
landscapes, this may undermine the reliability of the metric, as it would suggest a
lack of an ability to respond to individual contexts. This was the purpose by which
landscape metrics were derived (McGarigal and Marks 1995). Furthermore, a low
CQD indicates only consistency in variance, not whether the responses are very

distributed (high median CV) or proximate (low median CV) to the central tendency.

Given these limits, we therefore cannot conclude whether certain metrics are
more reliable based on their central tendency, range of values, and consistency
among the variability metrics exhibit across landscapes. We only can say some
metrics are more predictable than others; though, whether the predicted response is
an actual landscape signal or propagated noise from the land cover classification or
the metric itself is indeterminable solely using this information.

2.4.3 Further Contextualizing Scores with Distributions

Thirdly, we aimed to describe the distribution of landscape metric responses.
Most often, landscape metrics were typified by just one, general, distribution; rather,
they were described by many different distributions, or there were instances where
metrics were rarely matched to any suitable distribution within a generalised linear
model at all. Most notably, we found our landscape metrics, in each individual
landscape, did not exclusively meet a normal distribution. We recognize that select
studies have used non-parametric measures to summarise landscape metric
responses (e.g., Baskent and Jordan 1995; Betts 2000; Shaker et al. 2020), or show
how in their individual contexts, landscape metrics responses were not normally
distributed (Hasset et al. 2012; Remmel and Fortin 2013). Nevertheless, landscape
metrics are still used as if they follow a normal distribution extensively (D. Theobald;

University of Colorado Boulder, personal communication, December 16, 2022).

We assert that metrics best-typified by one distribution, most of the time, may
be easier for practitioners to contextualise than metrics typified by multiple
distributions most of the time, or those unable to be fit to a distribution at all. In the

previous section, we described the expected spread from central tendencies (median
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CV) for each landscape metric, in addition to the consistency and magnitude of
variability among values (CQD). Equipped with this knowledge, an individual could
compute a metric like cai_mn, one consistently predicted by a gaussian distribution,
and compare the result to the expected frequency of that measurement to elucidate
if that response is more expected or rare. With a metric like patch richness density
(prd), which is determined by inverse gaussian and negative binomial distributions
(56% and 44% of instances, respectively), even where the individual has a low
median CV in addition to consistency in the variability across landscapes, they may
not be able to elucidate if their score is likely or unlikely, as practitioners often do not
have frequency distributions for metric responses (K. Zeller, United States

Department of Agriculture, February 7 2022). See Figure 2.4 below.
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Figure 2.4. Successive Dynamic World images for Pasadena, CA with their
respective patch richness density scores (left): images are at 1:200000 scale
(25km?). In this landscape, the frequency distribution indicates these ‘prd’ scores are
common and possible (top right, n = 229 images); in nearby Anaheim, CA these ‘prd’
scores, while possible, are rare (bottom right, n = 151 images).

The consequences of a practitioner not being able to discern if values are expected
or unexpected are twofold. Primarily, we worry that when real changes in landscapes

do occur, responses that should be considered in low (or rare) frequency are
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contextualised as often, conflating a false-negative to no change (Type Il error).
Additionally, when no change is happening in a landscape, a common frequency
distribution may suggest a value is rare, when it is in fact, frequent: this could be
used to suggest landscape change when the environment remains stable (as a Type

| error).

Thus, based on comparative reliability, when scores are variably described by
different frequency distributions, a practitioner’s inference of a score, on any given
day, will have less context than one consistently described by one distribution.
Again, if the result of a metric is relied upon, this may lead to individuals falsely
inferring change in an unchanging landscape, or falsely indicating stationarity in a

changing landscape, respectively.
2.4.4 Predictability and Reliability of Landscape Metrics

Fourthly, we aimed to explore how predictable landscape metric responses
were using day-of-year (accounting for seasonal change) and year (isolating inter-
year change) as predictors. As we have shown metric scores vary within a given
year, understanding apparent trends in seasonality and year-to-year change are
important to assessing whether a response is expected or unexpected. As
mentioned above, the absence of understanding the expectation of a response can
lead to practitioners making Type | and Il hypothesis errors. Often, landscape
metrics were not predictable using either variable. In all instances where model
responses are predicted, the variability exhibited by landscape metrics is best
determined by landscape responses to seasonality (as the most significant
predictor), and seldom improved by predictors of year. When the response is not fit
by model, it is also possible that seasonality and year has some effect (though non-
significant); however, it is not clear how the metric response is affected by other
variables. Again, we do not know whether the score is a real landscape signal or
predicted better by other variables not included in the models (such as classification

noise).

As metric responses were predictable only in 46% of instances, on average,

there is not sufficient confidence to say that landscape metrics predictably respond
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to either seasonality or year. Using these predictors to assess whether a metrics’
score is expected or unexpected (from classification noise, effect of a metric to

maximise or minimise the effect, or real change) is effectively up to a coin toss.

More, as part of evaluating the comparative fit of models, we assessed their
proportion of significant studentized residuals. For most metrics (n = 53), when a
landscape metrics’ response to seasonality is predictable, the average number of
observations as outliers does not violate the 95% confidence interval in the estimate
of a metric response. This means that when metrics were predictable, the model
significance was often not violated. However, ten metrics had a proportion of
observations as significant studentized residuals (or outliers), greater than 5%.

Concerningly, these ten metrics were also those best-fit by a function most often.

However, as no metric was predicted by a single function, or consistently
across all landscapes, the proportion of observations that are fit is irrelevant, as a
metric response is unpredictable. The practitioner is both not able to know, in which
instance, their landscape is or is not fit by the predictors, but they also do not have a
sense of the base function that fits metric behaviour. This limits one’s ability to
determine if a score is a product of seasonality or other influence(s) (i.e., from
classification noise, effect of a metric to maximise or minimise the effect, or real

change in the landscape).

Overall, some metrics have consistency among their range of variability and
the distributions which best-typify a response on a given day. As discussed above,
many metrics are often consistent in their ranges of variability, but all are not.
Moreover, individual metrics are predominantly typified by multiple distributions at
varying frequencies, which would suggest not all landscape metrics exhibit
generalised behaviour. These factors combine to limit the predictability and precision
of landscape metric responses. Furthermore, no metric is consistently best-fit by any
generalised linear model function. What is therefore necessary is further work to
assess the statistical context of landscape metrics, using different data products, and
landscapes of interest, as to examine what site-specific contingencies there are to

landscape metric behaviour. Only then can any practitioner have sufficient statistical
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context to interpret a landscape metric value, from an image acquired on any given

day, and know if it is expected or not.
2.4.5 Limitations

Most of our limitations within our study are consistent with other landscape
metric behaviour validation studies (see Wu et al. 2002). Predominantly, our
analyses are subject to the modifiable areal unit problem in both zonal (size of
landscape included for analysis) and scale (classification resolution and the
simplification of landscape details) (Jelinski and Wu 1996). While we controlled for a
consistent landscape size and resolution, future research should assess the ranges
of values, distributions, and predictability of landscape metrics at different landscape
study sizes and land cover resolutions. For instance, we do not know how metrics

tend towards normality with the size of the study extent or pixel size.

Second, our image collections allowed scenes with >5% of masked pixels to
be backfilled by a previous image and included. While a common procedure in
assembling consecutive land cover classifications for large areas (Pasquarella et al.
2022; Zhou et al. 2022), backfilling images permits self-similarity throughout the time
series. However, this would have only minimised the variability among landscape

metrics, representing a conservative estimate of metric uncertainty.

More, while we aimed to systematically sample land covers across North
America, certain land covers may be less frequently sampled due to cloud cover.
These include mountainous regions with clouds (as a product of orographic lift),
waterbody-adjacent areas (as a product of the lake-effect), or land covers with smog
and haze (Jombo et al. 2023; Taylor et al. 2023).

Fourth, we used a specific land cover product, Dynamic World (Brown et al.
2022), as it was a ready-made land cover classification. Like other land cover
classifications, Dynamic World has inaccuracies in the land cover classification.
Thus, any attempt to quantify landscape composition and configuration are
undoubtedly affected by the accuracy of this imagery product. To parse the effect of
noise caused by the image classification, future work assessing the behaviour of

landscape metrics should assess responses across varying classification accuracies.
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Finally, we used the global human modification index (gHM) (Kennedy et al.
2020) to represent different scenarios in which landscape metrics may be applied in
conservation applications. An assumption we are making is that no real change
occurred after this data layer was assembled in 2016. While year was often an
insignificant predictor (suggesting no change since 2016), this could also be that
noise percolation had a stronger effect, thus nullifying the predictive ability of year as

a variable.
2.5 Conclusion

When landscape metrics were originally developed, their purpose was to
capture signals of what is happening in the landscape (McGarigal and Marks 1995).
This would suggest landscape metrics were intended to be site-specific. In various
areas of interest, landscape metrics have been applied to understand how the suite
of abiotic, biotic, anthropogenic processes culminates into signals detected from land
cover maps (Turner 1989). In this study, we aimed to build upon the foundations of
other works which assessed the statistical context of landscape metrics and assess
whether universal trends in metrics exist. Most notably, our evidence conflicts with
the existence of universal trends in the statistical context of landscape metrics. For
instance, prior to our study, there was an implicit assumption that landscape metrics
meet a normal distribution: our results suggest only some metrics meet this general
behaviour. Beyond normality, we presented many logical considerations considering
the various elements of statistical context we assessed. In other words, landscape

metric responses were neither entirely general nor site-specific.

In addition to others who assessed the behaviour of landscape metrics (e.g.,
Neel et al. 2004), we harken back to Cardille et al. (2005) who asserted “we do not
think that landscape metrics, as currently understood, are a panacea for ecological
analysis”, and rather “the inability of potential users to establish the spatial or
statistical context of real-world landscapes appears to be a major factor inhibiting a
full exploration of and experimentation with the ever growing library of satellite-
derived land-cover data” (2005, pg 987). We sustain Cardille et al.’s perspective as
there were minimal generalizable trends among landscape metrics. Moreover, when

metric behaviour is generalizable, it may be that certain metrics will propagate similar
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ranges of values, or populate a similar distribution, no matter where they are applied,
and thus are not sensitive to the environment in which they are used. While
consistency among metrics in their explained variability and the distribution best-
typifying responses can lend predictability, we still do not know whether the response
is from the actual landscape. Thus, while some metrics may be more predictable,
further work is necessary to build upon our understanding of predictability and
consistency, to assess metric accuracy. To assess accuracy of a measurement, we
encourage future works to isolate the effects of (1) land cover classification
inaccuracy and (2) thematic resolution on landscape metric responses. While
landscape metrics will undoubtedly still be used in conservation decisions, a
concerted and attendant effort needs to be made to continue building an

understanding of their statistical context and behaviour.
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3. Discussion
3.1 Overview

Landscape metrics are commonly used to assess the patterns and
functionality of ecological systems, consistently applied in modern conservation
management, ecology, and land-management decisions (Leitao and Ahern 2002;
Sundell-Turner and Rodewald 2008; Wiens 2002). Indeed, the use of landscape
metrics will ultimately affect how humankind adapts and mitigates the effects of our
Western-initiated climate change. As landscape metrics constitute elements of this
decision-making process, the importance of ensuring their reliability is self-evident.

Though, it is only because of the profligate legacy of white males in positions
of power, who have degraded the environment, that we must now address the
environmental issues of today. While it is often cast that all science has systemic
gender bias and exclusion, the notion of it being widespread is not sufficient reason
to ignore it now in a discussion of landscape ecology. In 1987, Jim Thorne had
reviewed one of the foundational texts in landscape ecology to argue how the field of
landscape ecology is “refreshing and imaginative because of the use of personal
observation, the lack of gender bias, and the clear well-illustrated examples (Thorne
1987, pg 154). However, a deep examination of Forman and Gordon (1986) reveals
sparse mention of research conducted by women, nor were there any women in
attendance of the first meeting of landscape ecology in Allerton Park, lllinois three
years prior (see Rissler et al. 1984 for attendees). It has only been recently that
landscape ecology has accepted scholarship through women, which has advanced

the foundations established by men.

It is in this informed context of historical bias that we may now contextualise
how the results of this thesis fit within the scope of past landscape-metric validation
studies. Moreover, | hope to articulate how future research can expand our
understanding of landscape metric behaviour. More generally, | will discuss the need
for future validation studies under the context of landscape ecology’s origin: a field
poised to be a multidisciplinary, data-driven field not dissimilar to others in the

environmental sciences.
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3.2 Modern Assessments of Landscape Metric Behaviour

As mentioned, landscape metrics are used in a variety of modern, pivotal,
conservation management policies and global agreements. This is evidenced by the
numerous programs which have employed landscape metrics over the last two
decades (Kupfer et al. 2012; Li et al. 2021; Lopez et al. 2005; Lopez et al. 2006;
Lopez and Frohn 2017; Reddy et al. 2013; Wulder et al. 2008). Qualifying their use,
there are several landscape metric validation studies where the responses of metrics
to different contexts is assessed and generalised, such as (1) in varying spatial
extents and (2) spatial resolutions of land cover maps, (3) in the collinearity of
metrics, and (4) in how metrics respond to different aggregations of landscape
patches (Cushman et al. 2008; Neel et al. 2004; Wu et al. 2002). This harkens back
to the original focus of landscape ecology in which practitioners sought to deduce
general patterns of ecological processes using information from the landscape
mosaic (Wiens 2008).

While past studies support generalised behaviours among landscape metric
responses, which may improve how we understand metric scores, there is an
attendant 20+ year-long discourse which has stressed the need to continually
evaluate these assumptions to ensure landscape metrics can be relied upon
(reviewed in Gustafson 1998, 2019). In hopes to contribute to this discourse, this
thesis aimed to assess the statistical behaviour of landscape metrics, including
addressing some of the common gaps in knowledge previously identified (Cardille et
al. 2005; Gustafson 2019; Turner 2005). Namely, these include the range of values
for metrics, an understanding in the consistency of metric responses across different
landscapes, in addition to the distributions which best typify landscape metric
responses. Moreover, we sought to understand how predictable landscape metric
scores are, using information about the time of acquisition, per the land cover maps

from which they are derived.

In contrast to past findings of general behaviour, our results indicated
landscape metrics were not always consistent in their variability across landscapes
(84% of landscape-level metrics were consistent). Metric responses were also often

typified by multiple distributions; namely, landscape metrics were rarely described as
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gaussian. Using generalised linear models, we assessed how likely metric scores
could be predicted using information about the acquisition date of the image. As
metric scores varied within a given year, we thought there may be effects of
seasonality which drive variability within a score. Using generalised linear models,
we tried to predict the response of a metric score, in landscapes that seemingly do
not change over time, as to help practitioners contextualise whether a score on a
given day can be predicted, and is within the expectation of seasonal variation, or if it
is unpredictable. Fortunately, landscape metrics were mostly insensitive to the image
acquisition year (predicted responses 9.2% of instances with a best-fit model): this
lends support to our study approach where we focused on landscapes not changing
over time. By day-of-year, metric responses were predicted around half the time
(54% of the time, on average, across metrics): this suggests that metric responses
may have seasonal variability, and thus influence a score depending on when the
land cover map is composited. In Chapter 3, | argued how these various elements of
statistical context interconnect, and showed some examples where both expert and
non-expert users of landscape metrics may be limited in knowing what distribution or
function predicts a score, and thus, how they would evaluate whether a response is

expected or unexpected.

In part, our conflicting results may be a product of a larger sample size and
the use of a ready-to-use classified land cover product. Previously, landscape
ecologists were working under the impressions that to answer larger theoretical
“questions in landscape ecology [would] require the ability to acquire and manage
large quantities of data;” namely, the high cost of computing and storage needs were
cited as limiting factors to advancing the field of landscape ecology (Risser et al.
1984, pg 6). It has not been until recently that frequent land cover information is both
accessible and easily interpretable by landscape ecologists (Crowley and Cardille
2020). With the privilege of access to cloud-computing software (Gorelick et al.
2017) and a near-real-time land cover product (Brown et al. 2022), we were able to
conduct a large-scale study of metric behaviour. This allowed us to interpret
~100,000 land cover classifications, across 680 real landscapes, to describe the
behaviour of 65 landscape-level metrics across our study area.
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Previous related studies of metric behaviour occurred in a setting of
substantially more limited data availability. Working in the early 2000s, when Landsat
data was not freely available, Wu et al. (2002) were able to test only “five landscapes
with contrasting natural and socioeconomic settings", with only a single
corresponding land cover map for each landscape they assessed the changes in
pixel size and spatial extent on the response of 19 landscape metrics. Upon their
analysis of these landscapes, they advanced that “metrics fell into three general
categories: Type | metrics showed predictable responses with changing scale, and
their scaling relations could be represented by simple scaling equations (linear,
power-law, or logarithmic functions); Type Il metrics exhibited staircase-like
responses that were less predictable; and Type Il metrics behaved erratically in
response to changing scale” (2002, pg 761). The authors suggested their results
need to be “verified by additional studies with both real and artificial landscapes" (Wu
et al. 2002, pg 778).

Despite their admonition to use their results only as preliminary evidence of
landscape metric behaviour, the dearth of subsequent tests of metric behaviour led
landscape ecologists to interpret their results as evidence of general landscape-
metric scaling behaviour (Frate et al. 2014; Frazier and Wang 2013; Ma et al. 2018;
Rutchey and Godin 2009; Zhang and Li 2013), in spite of studies reporting conflicting
evidence to scaling trends (Corry and Lafortezza 2007; Frazier 2016; Peng et al.
2010; Shen et al. 2004). While the concept of general behaviour is now widely
accepted, the process through which it gained acceptance appears to contradict the

original principles of a multidisciplinary and data-driven field of landscape ecology.
3.3 Revisiting Landscape Ecology at Allerton Park, Illinois

In April 1983, the first unified meeting of landscape ecologists was convened
in Allerton Park, within Piatt Country, lllinois. In efforts to formalise a discipline and
the research direction of this new field, this meeting brought together a diverse
expertise of scientists, largely as landscape ecology was not thought of as “a
discrete discipline or simply a branch of ecology, but rather the synthetic intersection
of many related disciplines” (Risser et al. 1984, pg 9). Members of the Allerton Park
workshop knew that if this emerging field sought to address a “broad range of issues
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and scientific questions”, that it would need to build “upon data and ideas from
diverse fields such as ecology, geography, and wildlife management” (Risser et al.
1984, pg 10). It may be worthwhile to remind the reader that this field was initiated by
a botanist-turned-landscape architect and an economist (Forman and Godron 1981),
who went back to the foundational work in geography and climatology (see Troll
1950). It was only upon this varied expertise that data from all ecologists and
biologists could then be used to advance theories, namely in the fundamental
assumption that landscape patterns are a product of ecological functions (Forman
2011; Gustafson 2019; Turner 1989, 2005).

More, landscape ecology was emerging at a time where, for nearly a century
the field of ecology had been critiqued by male physicists, chemists, and biologists
for reducing the complexity of systems for the purpose of comprehension, and for the
early assumptions which transferred this study and description of Nature into a
science (Cowles 1904; Cragg 1966; Fretwell 1975; Mcintosh 1980; Rosenzweig
1976; Stauffer 1957). Notably, Peters (1976) critiqued how this line of inquiry in
ecological sciences had conflated “several major tenets of modern ecological
thought”, including theories of evolution through natural selection with concepts of
landscape diversity and spatial heterogeneity, in ultimately unscientific ways. (i.e.,
without the burden of evidence to support) (Peters 1976, pg 8).

However, the goal of landscape ecology was never to reduce ecological
complexity, rather, it was the opposite. At Allerton Park, landscape ecologists had
asked these critics to “eschew parochial views about landscape ecology” and
instead, come to them in the pursuit of “intellectual development of this complex,
interdisciplinary field” (Rissler et al. 1984, pg 10). While the impacts of anthropogenic
climate change were not thoroughly recognized in the mid-80s, landscape ecology
rightly galvanised upon the two decades prior of environmental action within both the
United States and Canada. In the 1970s, the United States had celebrated its first
Earth Day with bipartisan support (Beyl 1992), and North America saw the
establishment of paramount environmental regulators and researchers, including the
United States Environmental Protection Agency and the Canada Centre for Inland

Waters (Beyl 1992). It was on this society-wide goal to improve the state of the
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natural environment (Flippen 2000) that landscape ecology brought together broad

interdisciplinary expertise.

As with any science, it is known that differing expertise permits the ability for
different interpretations of the data one has in front of them (Bammer et al. 2020;
National Academy of Sciences and National Academy of Engineering & Institute of
Medicine 2005). Indeed, addressing complex environmental issues requires the
collective expertise of multiple disciplines and lived experiences among individuals,
as it is this diversity that allows for a more comprehensive framing of ecological
systems, and thus, more accurate interpretations of ecological phenomena (National
Resources Council 2001). Understanding this, landscape ecologists held that there
need be a standard for all intellectual development in the field, where any hypothesis
must “withstand the scrutiny of interest groups and be generalizable over large
geographic areas” (Rissler et al. 1984, pg 10). This initial effort can be directly linked
to the many studies to date which support (1) the link between ecological processes
and the resulting landscape patterns (reviewed in Wiersma 2022), in addition to (2)
general trends in metric behaviour (Bogaert 2003; Cardille et al. 2005; Cushman et
al. 2008; Fortin et al. 2003; Hargis et al. 1998; Neel et al. 2004; Tischendorf 2001,
Wu et al. 2002).

| harken back to this with the intent of showing the value that cross-
disciplinary expertise brought to landscape ecology. It evidences the importance of
widespread data to support the claims on which we continue in the pursuit of
knowledge within this field. Even broadly, to support any scientific advancement, all
theories must be subject to “ultimate destruction when it is proven wrong, or to
logically justified acceptance when finally [they are] vindicated by facts” (Opik 1977).
In 2008, Wiens’ review of Allerton Park embodies this notion, as he argues the
landscape ecologists of today often use general principles, despite how the
ecological “complexities and contingencies of landscapes make generalisation
difficult” (2008, pg 128). To ‘course correct’ the field, Wiens (2008) suggested that
with the diverse expertise in modern landscape ecology, landscape ecologists
should instead return to “develop[ing] contingent principles and theories, [in addition
to] ideas that may apply to a suite of landscapes that share common features or to

particular domains of scale, but not more generally” (2008, pg 128). Beyond
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landscape ecology, the value of trans-disciplinarity is not unique; rather, it echoes a
broader historical lineage of intellectual development in natural science research,

such as in the field of limnology.
3.4 Parallels to Modern Limnology at Lac Leman, Switzerland

At the first meeting for limnology (Internationale Vereinigung fur Limnologiae)
in 1922, August Thienneman convened a variety of scientists, where he proposed
Archiv fir Hydrobiologie, a unified journal to publish on limnological studies (Berg
1950). On Hydrobiologie, Thienneman served as sole editor for 40 years (Berg
1950). Under his aegis, the discipline examined lakes as closed, simplified
structures; it was the perspective that lakes are readily comprehensible and
understandable in isolation to their surrounding watersheds (Berg 1950). At the time,
in post WWI Europe, Thienneman’s observations were based solely on a few lakes
in Germany, on which he then concluded generality to all freshwater lakes. It was
later that multi-decadal observations of inland lakes in the Laurentian Great Lakes
basin (Birge and Juday 1934), as synthesised by Evelyn G. Hutchinson, showed that
lakes varied extensively. As Hutchinson’s analysis suggested, lakes were not closed,
generalizable systems; rather, they were intrinsically linked to the surrounding
watersheds’ morphology, geology, and climate which drives site-specific differences
among lakes (Hutchinson 1957-1993). Through Birge and Juday’s data, and the
collective expertise of chemists, biologists, bacteriologists, physicists, and
instrument-makers that Hutchinson pulled together to analyse their lake observations
(Kalff 2002), the original paradigm of lake classifications was rejected, and modern
limnology emerged. Hutchinson’s work was exemplary for how it crossed not just
disciplines, but cultures, levels of formal education, class, and gender as to build
upon a foundation that was strong enough to incorporate all authentic knowledges of
limnological work prior (Carpenter 1924; Merrill 1893; Monti 1929; Patrick 1948).

Consequently, much of the effort that had gone into advancing limnological
studies under Thienneman'’s editorship of Hydrobiologie became irrelevant, as all
research published in this journal had to vociferously subscribe to his general
assumptions about lakes (Berg 1950). It is only in the re-establishment of “modern”
limnology, that Hutchinson re-centred dialogue on how individual lakes is uniquely,
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and comprehensively, affected from organism-level traits up to broad scale
atmospheric conditions (Hutchinson 1957-1993). Hutchinson argued that (1)
simplistic classifications of ecological processes were not enough, and that (2)
individuals cannot examine an ecological system in isolation of other elements of
their biotic and abiotic system(s) (Hutchinson 1957). Concomitantly to Hutchinson’s
reorganisation of limnology, his student, Jack Vallentyne, had pleaded with
Thienneman’s contemporaries to not just get fascinated by what a given organism
can do, but go in, and deeply understand the notions of biology, chemistry, and
physics which constitute pelagic systems (1957). To do so, would warrant
tremendous interdisciplinary expertise. Vallentyne (1957) argued something as
simple as water’s physics and chemistry are often the last study for the limnologists,
as “the beginning student is attracted by the diversity of aquatic life: the whirligig

beetles, bottom living insects, fish and other fantastic forms of life” (1957, pg 218).

While this narrative serves to illustrate the complexity of ecological systems, it
also emphasises the need for transdisciplinary expertise and contexts, as it was
similarly expressed in the foundational meeting for landscape ecology. While the
peer-based critique of scientists who fail to comprehensively frame ecological
systems is both necessary and just, this could be avoided through transdisciplinary
science. It is the collective expertise and diverse contexts that individuals bring to
environmental science inquiries that historically permitted a more accurate
understanding of ecological phenomena and improved the environmental-relevance
of all research (Likens 2001; Lindenmeyer et al. 2012; Wetzel and Likens 2000). It is
for this reason, over the last 40 years, some landscape ecologists have returned to
the notions of Allerton Park and Wiens’ critique, arguing how an integrative field like
landscape ecology requisites trans-disciplinarity (Brandt 2000; Field et al. 2003;
Hobbs 1997; Nassauer 1995; Naveh 1978; Termorshuizen and Opdam 2009; Turner
1987; Wu 2021). It is apt that many sources reference Jantsch’s (1970, 1972)
definition of multidisciplinary, who was a classically trained astrophysicist.

3.5 Future Research on Landscape Metric Behaviour

Herein, we discuss several future research directions in landscape metric

behaviour. Firstly, as the results do not support generalised trends in landscape
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behaviour, it is rightly suspect that past assumptions of landscape metrics be re-
validated with greater amounts of evidence. Leveraging cloud-computing
technologies, we have shown that there is sufficient capability to calculate landscape
metric scores across North America; this could be scaled up to a global assessment.
Indeed, evaluating landscape metric behaviour in this way would contribute to the
development of “contingent principles and theories” of metric responses to

geographic location and varying scale parameters (Wiens 2008, pg 128).

Secondly, work should continue to return to the many unaddressed gaps in
metric behaviour, posited by landscape ecologists over the last 20+ years (reviewed
in Gustafson 1998, 2019). For example, this would include a more comprehensive
assessment of response of scaling trends among landscape-metric scores in
response to different (1) temporal scales (over time), (2) spatial scales (i.e., different
sizes of the landscape analysis window), (3) pixel sizes (i.e., the size of pixels used
in land cover classifications), in addition to (4) thematic scales (how many land cover
categories are used). Moreover, we argue these impacts of scale should be tested
concurrently, rather than independently. To date, the behaviour of a metric
responses to scale is often measured by only one of these criteria (Bailey et al.
2007; Du et al. 2006; Gonzalez-Moreno et al. 2013; Moreno-De Las et al. 2011,
Obeysekera and Rutchey 1997). Singly assessing scale knowingly reduces
ecological complexity: for instance, if changing the spatial extent of observations,
larger landscapes may exhibit different responses to resolution than smaller
landscapes. In support, Holland et al. (2004) noted how “often little or nothing is
known about the scales at which a species responds to structural characteristics of
its environment”, which has consequences not only for “the effectiveness of study
designs,” but on the then-inferred dynamics of the ecological processes which we
are potentially misrepresenting (2004, pg 228). Devising a means to assess the
interactive effects of multiple scale parameters on a metric score may improve the
environmental-representativeness of both landscape metric validation studies and

other landscape ecology studies generally (Bissonnette 2019; Frazier et al. 2014).

Third, it is hoped future research of patterns in real landscapes can elucidate
how classification error relates to landscape metric results. Classification error

remains a fundamental issue in ascertaining the predictor of a landscape metric
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score (Hess 1994; Lechner et al. 2012). For instance, if a practitioner had two
images of the same landscape with different producers' accuracies (i.e., the reported
accuracy of land cover map as validated through external observations), it is likely
classifications within these two land cover maps would be different. As a product of
this difference, we would expect landscape metric scores to vary. However, we do
not have the ability, from either of these images, to discern the true, “accurate”
signals from a landscape. If we could evaluate the impact of increasing or
decreasing producers’ classification accuracy on landscape metrics, we may be able
to better understand how much error responses are subject to. It is with these
classifications (derived from remote-sensing practitioners) and real landscape
observations (from conservation ecologists and local knowledge keepers who are
boots-on-the-ground), constituting a transdisciplinary knowledge, that we may
discern real signals in a landscape from scores influenced by classification error.
This reduction of noise remains a prominent focus in remote sensing, and thus
should be further examined in landscape ecology as landscape composition and
configuration metrics ultimately derive their meaning from remotely-sensed imagery
products (Cardille and Fortin 2016; Lee et al. 2018).

3.6 Towards an Interdisciplinary and Data-driven Landscape Ecology

To reiterate, metrics are increasingly utilised in both local and international
sustainability policies. While general trends have lent confidence to interpreting
scores, if wrong, the consequences may undermine the effectiveness of current
adaptation and mitigation strategies to Western-initiated anthropogenic climate
change. If any practitioner is to rely on a score, derived from a land cover map,
which is a product of a specific image acquisition period, it is important for them to
know if that score is something frequent and within a range of reasonable
expectation or not. If a score is unexpected, this could indicate change in a
landscape, which should be evaluated, with a broad interdisciplinary expertise, as to
assess how this landscape change may affect ecological processes. However,
practitioners are currently operating without this requisite understanding to determine
what is expected, in addition to what is a real signal or a product of noise within our
image classifications. Through these proposed future research directions, we

acknowledge that ensuring the reliability of these metrics is not just crucial, but also
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attainable if we return to the discipline's data-driven multi-disciplinarity. | cannot
underscore enough the importance of continued dialogue, across disciplines, to
ensure ecological processes are sufficiently and accurately captured in landscape
metric scores, so that they may be relied upon for local-to-international sustainability
strategies. Larger than landscape metrics, the success of our efforts to confront
climate change will depend on our ability to genuinely embrace a transdisciplinary
approach, to leverage the collective expertise and perspectives of diverse
individuals, and to remain committed to the pursuit of scientific inquiry that is both

data-driven and multidisciplinary in nature.

65



4. Conclusion

This thesis seeks to contribute to the growing body of knowledge of landscape
metrics’ behaviour in real landscapes. Ideally, we also hope to provide information
that can situate the statistical context of landscape metrics to the many practitioners,
conservation ecologists, land-managers, and policy makers, both expert and non-

expert, who employ these tools extensively. In 1.2 Literature Review, | reviewed the

foundations on which landscape ecology sits in ecology and biology, the current
assumptions of the discipline, past validation studies, as well as the many local
through international uses of landscape metrics towards past and current
conservation mandates. In Chapter 2, | put forward a novel landscape metric
validation study, which aimed to address several gaps in knowledge of landscape
metric behaviour. These include (1) the expected ranges of values for metrics in real
landscapes, (2) metric variability in a given landscape, (3) the consistency of that
variability across many landscapes, (4) the distributions which may typify metric
responses, and (5) how often a score can be significantly predicted by seasonality.
In all dimensions of statistical context, the results do not support that generalizable
trends in landscape metrics always exist. Beyond epistemological development, |
hope these results provide real information to practitioners, in which they can use to
determine suitable metrics for use and interpret scores with. In the section

3. Discussion, | discuss some of the broad and implicit assumptions of landscape

ecology, in addition to the 20+ years long critiques of landscape ecology and the
near century-long critiques in the study of ecology. In this chapter, | draw a parallel
between the origins of landscape ecology at Allerton Park, in Illinois (USA) and
limnology on the shores of Lac Leman (Switzerland). | do so with the intention of
discussing the importance of transdisciplinary expertise to the root of many
environmental scientific endeavours, and the value it may bring now to assessing
whether landscape metrics are reliable. More, | discuss facets of western scientific
advancement including the sufficient burden of evidence, the importance of
guestioning our underlying assumptions, and the holism of environmental factors
which influence a metric’s score. This section ends on future research directions
particularly in landscape metric validation studies, considering the work previously

done, as conducted in this thesis, and the gaps in knowledge that practitioners
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believe remain unresolved. It is on the rigorous foundations of knowledge about how
metrics measure and respond to landscapes, that we may make more
environmentally-representative and significant decisions to preserve land, restore
biodiversity, and wholly fight against the effects our self-initiated anthropogenic

climate change on human and natural environments alike.
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6. Supplemental Information
6.1 Procedure to Remove Misclassified Images

As we visually screened all landscapes, and their image collections, we could
see where the land cover classification was abnormal. Upon examination of
abnormal instances, the near real time land cover product, Dynamic World (Brown et
al. 2022), had misclassified several pixels as snow and ice, even in the middle of a
growing season. Firstly, we manually verified the temperature normal for each of
these days using climate data from governmental institutions pertaining to each
landscape. We subsequently examined the corresponding true-colour Sentinel-2
image on which that land cover map was derived. In all cases, the presence of
normal climatology data and the visible presence of clouds suggested these
instances were relict clouds cover or haze that was were not removed by (1)
Dynamic World’s cloud masking algorithm, or (2) our filtering of Sentinel-2’s Cloud
Probability and Cloud Cover Band (‘QA60’) metadata.

Methodically, these outliers were removed for each landscape, using the
median absolute deviation (MAD). The MAD approach avoids the influence of
outliers on the measure of dispersion and does not assume a normal distribution
among the data. The MAD identifies outlying observations through calculating the
median absolute deviance from the difference of all given values and the median
(Rindskopf and Shiyko 2010). For each metric, in each landscape, if observations
were greater than or less than three times the median absolute deviation from the
median, they were labelled as an outlier. These instances were all manually verified
as instances where the scene consisted of snow and ice land cover and were

subsequently removed from the time series.
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6.2 Supplemental Figures

Figure 6.1 Aggregate frequency distributions for all landscape-level metrics.
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6.3 Supplemental Tables

Table 6.1 Landscape metrics’ aggregate central tendency, range, variance for all

observations (n = 108, 922).

Landscape- Summary Statistics
level metric
Minimum Maximum Median Median absolute  Coefficient of
deviation (MAD) variation (CV)

ai 91.03 100.00 97.59 1.01 72.18
area_cv 141.18 2.40E+03 1.13E+03 213.07 3.75
area_mn 0.00 0.00 0.00 0.00 0.22
area_sd 0.00 0.00 0.00 0.00 1.17
cai_cv 19.36 198.36 113.22 10.08 6.92
cai_mn 11.45 99.31 27.28 3.08 5.20
cai_sd 16.91 70.22 30.67 1.07 15.83
circle_cv 11.10 52.04 25.42 0.77 18.91
circle_mn 0.37 0.70 0.56 0.01 29.58
circle_sd 0.05 0.27 0.14 0.01 15.13
cohesion 97.58 100.00 99.64 0.14 357.52
condent 0.00 0.68 0.23 0.09 2.02
contag 38.80 99.99 74.80 7.55 7.27
contig_cv 7.53 137.70 57.49 3.47 10.00
contig_mn 0.37 1.00 0.53 0.03 11.49
contig_sd 0.07 0.55 0.30 0.01 21.87
core_cv 141.24 2.63E+03 1.17E+03 222.90 3.70
core_mn 0.00 0.00 0.00 0.00 0.22
core_sd 0.00 0.00 0.00 0.00 1.13
dcad 3.64E+08 5.54E+11 1.01E+11 4.25E+10 1.67
dcore_cv 0.00 583.76 139.56 27.72 2.83
dcore_mn 0.31 2.00 0.74 0.04 11.77
dcore_sd 0.00 4.44 1.04 0.21 2.84
division 0.00 0.98 0.55 0.23 1.94
ed 0.00 2.04E+07  5.68E+06 2.31E+06 1.89
enn_cv 72.35 578.16 196.90 26.59 4.64
enn_mn 0.00 0.01 0.00 0.00 2.06
enn_sd 0.00 0.02 0.00 0.00 2.08
ent 0.00 2.77 1.26 0.39 2.27
frac_cv 0.21 9.07 5.49 0.35 8.25
frac_mn 0.90 1.00 0.96 0.00 221.90
frac_sd 0.00 0.09 0.05 0.00 8.40
gyrate_cv 132.73 545.83 293.82 33.29 5.92
gyrate_mn 0.00 0.02 0.00 0.00 1.01
gyrate_sd 0.00 0.01 0.00 0.00 2.17
iji 1.76 98.92 58.15 7.65 4.34
joinent 0.00 3.42 1.50 0.47 2.26
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61.38
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19.54
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0.00

0.29

0.14

0.32
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0.02

4.05
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3.56E+02
5.73E+10
1.04

1.00
2.55E+08
0.03
100.54
0.00

0.00

0.27

0.13

0.15

0.17

0.97

0.00

0.00

0.60

2.67
2.14
1.79
1.70
1.74
2.27
1.66
1.65
39.44
10.38
9.59
19.18
1.66
70.08
6.37
6.23
20.58
4.03
1.83
3.47
2.28
2.38
2.14
2.16
0.87
31.52
20.39
1.88
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Table 6.2 Landscape metrics’ variability and the consistency in variability, across all
landscapes (N= 680).

Landscape- Summary Statistics
level metric
Median Coefficient Average CV Standard Coefficient of Quartile
of variation (CV) Deviation (SD) Deviation (CQD)
ai 0.01* 0.01 0.00 0.44
area_cv 0.14 0.15 0.08 0.36"
area_mn 0.22 0.40 0.75 0.37!
area_sd 0.22 0.28 0.28 0.44!
cai_cv 0.07* 0.08 0.03 0.23!
cai_mn 0.09* 0.11 0.06 0.23"
cai_sd 0.03* 0.04 0.02 0.26!
circle_cv 0.03* 0.03 0.01 0.21"
circle_mn 0.02* 0.02 0.01 0.20!
circle_sd 0.03* 0.04 0.02 0.21"
cohesion 0.00* 0.00 0.00 0.57
condent 0.15 0.21 0.18 0.46"
contag 0.04* 0.05 0.03 0.45!
contig_cv 0.06* 0.06 0.03 0.23"
contig_mn 0.04* 0.05 0.02 0.21!
contig_sd 0.03* 0.03 0.02 0.24!
core_cv 0.14 0.15 0.08 0.35!
core_mn 0.24 0.41 0.77 0.38!
core_sd 0.23 0.28 0.29 0.45!
dcad 0.23 0.28 0.21 0.38!
dcore_cv 0.16 0.18 0.09 0.32!
dcore_mn 0.06* 0.06 0.02 0.19!
dcore_sd 0.17 0.19 0.09 0.30!
division 0.16 0.22 0.23 0.53
ed 0.17 0.23 0.20 0.45!
enn_cv 0.14 0.15 0.05 0.20"
enn_mn 0.17 0.20 0.12 0.30"
enn_sd 0.23 0.25 0.10 0.21!
ent 0.12 0.17 0.16 0.48"
frac_cv 0.05* 0.06 0.03 0.28"
frac_mn 0.00* 0.00 0.00 0.22!
frac_sd 0.05* 0.06 0.03 0.29!
gyrate_cv 0.06* 0.07 0.03 0.30!
gyrate_mn 0.10* 0.17 0.36 0.28"
gyrate_sd 0.11 0.14 0.14 0.32!
iji 0.10* 0.12 0.08 0.32!
joinent 0.13 0.17 0.16 0.48"
Ipi 0.15 0.18 0.14 0.61
Isi 0.15 0.19 0.14 0.45"

88



mesh
msidi
msiei
mutinf
ndca

np

pafrac
para_cv
para_mn
para_sd
pd

pladj

pr

prd
relmutinf
shape_cv
shape_mn
shape_sd
shdi

shei

sidi

siei

split

ta

tca

te

0.24
0.18
0.17
0.12
0.23
0.23
0.01*
0.05*
0.05*
0.03*
0.23
0.01*
0.08*
0.08*
0.02*
0.13
0.11
0.14
0.12
0.12
0.13
0.12
0.31
0.00*
0.02*
0.17

0.27
0.25
0.25
0.16
0.28
0.29
0.01
0.05
0.06
0.04
0.29
0.01
0.09
0.09
0.02
0.13
0.15
0.15
0.17
0.16
0.19
0.19
0.38
0.00
0.02
0.23

0.20
0.25
0.24
0.16
0.21
0.21
0.01
0.02
0.03
0.02
0.21
0.00
0.04
0.04
0.01
0.07
0.23
0.07
0.16
0.15
0.20
0.20
0.30
0.00
0.01
0.20

0.55

0.52

0.51

0.49!
0.38!
0.36"
0.29!
0.23!
0.25!
0.23!
0.36"
0.44!
0.26"
0.26"
0.35!
0.36"
0.26"
0.31"
0.48"
0.46"
0.58

0.58

0.59

0.53

0.44!
0.45"

* Metrics with a median CV less than 0.1 are considered low variability, on aggregate
t Metrics with a Coefficient of Quartile Deviation (CQD) less than 0.5 are considered

consistent in their variability across landscapes.
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Table 6.3 Landscape metrics arranged according to how often they were best
predicted by different frequency distribution types (N= 680).

Landscap
e-level Distribution Type
metric
Inverse Negative %
Binomial Gamma Gaussian gaussian hinomial Poisson Tweedie Fit

ai - - - 680 - - - 100
area cv - - - 679 1 - - 100
area_mn - - 3 - - - 0.44
area_sd - - 54 2 - - 1 8.38
cai_cv - - - 679 1 - - 100
cai_mn - - - 680 - - - 100
cai_sd - - - 679 1 - - 100
circle_cv - - - 679 1 - - 100
circle_mn - - 680 - - - - 100
circle_sd - - 680 - - - - 100
cohesion - - - 680 - - - 100
condent - - 680 - - - - 100
contag - - - 679 1 - - 100
contig_cv - - - 680 - - - 100
contig_mn - - 673 - 7 - - 100
contig_sd - - 680 - - - - 100
core_cv - - - 680 - - - 100
core_mn - - 3 - - - - 0.44
core_sd - - 55 2 - - 1 8.53
dcad - - - 678 - 2 - 100
dcore_cv - - - 676 4 - - 100
dcore_mn - - 3 - 677 - - 100
dcore_sd - - 2 33 645 - - 100
division - - 375 - 305 - - 100
ed - - - 674 5 1 - 100

99.8
enn_cv - - - 676 3 - - 5

99.8
enn_mn - - 678 - - 1 - 5

99.7
enn_sd 1 - 677 - - - - 1
ent - - 67 180 433 - - 100
frac_cv - - - 680 - - - 100
frac_mn - - 3 - 677 - - 100
frac_sd - - 680 - - - - 100
gyrate_cv - - - 680 - - - 100
gyrate_mn - - 680 - - - - 100
gyrate_sd - - 680 - - - - 100
iji - - - 679 1 - - 100
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Table 6.4 Landscape metrics according to their model fit, derived from the lowest
Bayesian Information Criterion value per the Generalised Linear Models for all
landscapes (N= 680). Studentized residuals are computed at a >=1.96 threshold.

Landscape-
level metric Best-fit Function Types

Average %

obs. as

CDF Inverse Inverse- studentized
Link Log Identity -power squared Power %fit residuals

ai - 72 - 4 297 11 56 1.50
area_cv - 361 - - 204 - 83 14.29*
area_mn - 1 1 - - 1 0 344
area_sd - 2 22 - 2 2 4 3.60
cai_cv - 119 - 3 165 - 42 2.60
cai_mn - 187 - - 115 - 44 2.96
cai_sd - 147 - 1 168 - 46 2.16
circle_cv - 94 - 5 135 - 34 2.20
circle_mn - 30 146 145 - - 47 2.41
circle_sd - 127 114 59 - 3 45 2.39
cohesion - 28 - 8 281 32 51 1.36
condent - 78 131 165 - 4 56 3.06
contag - 184 - 1 145 - 49 1.89
contig_cv - 77 - 5 138 1 33 215
contig_mn - 46 145 82 - 1 40 2.87
contig_sd - 59 62 28 - - 22 211
core_cv - 363 - - 200 - 83 14.63*
core_mn - 1 1 - - 1 0 344
core_sd - 2 22 - 2 2 4 3.66
dcad - 106 - 13 230 - 51 3.65
dcore_cv - 248 - - 114 - 53 10.21*
dcore_mn - 20 82 53 - 2 23 2.55
dcore_sd - 99 29 49 39 1 32 3.55
division - 51 180 142 - 6 56 2.31
ed - 184 1 11 212 - 60 6.26*
enn_cv - 256 - - 84 - 50 10.94*
enn_mn - 51 113 72 1 10 36 281
enn_sd - 34 82 79 - 8 30 3.05
ent - 105 57 46 166 2 55 2.84
frac_cv - 173 - 1 122 - 44 2.45
frac_mn - 126 73 62 2 - 39 2.16
frac_sd - 113 158 30 - 5 45 2.53
gyrate_cv - 212 - 2 135 1 51 3.90
gyrate_mn - 106 135 51 - 6 44 3.04
gyrate sd - 95 200 61 - 6 53 2.50

92



iji - 123 - 11 189 - 48 2.94

joinent - 122 37 28 187 6 56 2.98
Ipi - 231 - 4 159 - 58 3.42
Isi - 176 - 16 186 - 56 3.41
mesh - 22 312 1 - 12 51 2.42
msidi - 65 127 132 39 8 55 2.69
msiei - 73 155 135 - 6 54 2.62
mutinf - 78 84 65 140 4 55 2.56
ndca - 337 - - 186 - 77 12.08*
np - 352 - 1 204 - 82 13.38*
pafrac - 145 - 2 192 2 50 2.75
para_cv - 148 - 1 144 - 43 2.81
para_mn - 411 - - 180 1 87 22.51*
para_sd - 389 - - 100 1 72 22.78*
pd - 97 - 21 254 1 55 3.19
pladj - 74 - 3 297 13 57 151
pr - 20 - 5 60 - 13 241
prd 2 32 - 5 93 - 19 7.33
relmutinf - 33 166 152 - 1 52 1.75
shape_cv - 340 - - 151 - 72 12.70*
shape_mn - 96 181 37 - 9 48 2.97
shape_sd - 89 204 40 - 11 51 2.74
shdi - 64 98 102 107 6 55 2.82
shei - 55 138 148 - 3 51 2.62
sidi - 63 145 160 - 7 55 2.34
siei - 59 157 148 - 6 54 2.22
split - 189 - 8 166 1 54 3.35
tca - 21 97 1 - - 18 1.18
te - 125 53 35 161 5 56 3.27

* Metrics with greater than 5% of observations as significant studentized residuals,
on average, invalidate the 95% confidence interval of a Student’s t-test.



