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Abstract 

Under the pressure of climate change, Western conservationists are 

increasingly using remote sensing to monitor the state and status of ecosystems. In 

efforts to derive meaning from remotely-sensed imagery, many use landscape 

metrics as they can quantify the composition and configuration of different patches 

on land cover maps and are used to assess ecological processes. Considering the 

abundant use of landscape metrics, ensuring their reliability is crucial. In this thesis, I 

build upon past landscape metric validation studies which assessed the general 

behaviour of metrics when applied to land cover maps. Ultimately, all these works 

have tried to improve the ‘statistical context’ for calculating metrics, analysing scores, 

and acting upon them in sustainability policy. In Chapters 1 and 2, I revisit the origins 

of landscape ecology in ecology broadly, their history in global sustainability policy, 

and review past validation studies in landscape metric behaviour. In Chapter 3, I 

advance a validation study to assess previous gaps in landscape metric behaviour, 

including (1) the ranges of values in real landscapes, (2) the variability and (3) 

consistency in variability across landscapes, (4) the distributions best typifying 

responses, and (5) the predictability of metrics.  

Procedurally, this study used Google Earth Engine, a cloud-computing 

geographic information system to composite sequential land cover maps for various 

unchanging landscapes, on which we computed landscape metrics. While general 

assumptions of landscape metric behaviour are often used, our results suggest 

landscape metric responses were not always generalizable, across all measures of 

statistical context we assessed. Considering the relieved computational burden, we 

argue future work should revisit early validation studies, while continuing to address 

pre-established gaps in knowledge. This is because a lack of statistical context to 

landscape metrics may undermine if they can be relied upon. In Chapter 4, I draw a 

comparison to past validation studies, and harken back to the data-driven 

multidisciplinary vision of landscape ecology at its seminal conference in Allerton 

Park, 1983. Ultimately, it is the goal of this thesis to assess landscape metric 

behaviour, as to provide epistemological development in the models of landscape 

ecology, while aiding practitioners who continue to use landscape metrics in modern 

sustainability decision-making.  
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Résumé 

Sous la pression du changement climatique, les conservateurs de l'Ouest 

utilisent de plus en plus la télédétection pour surveiller l'état et le statut des 

écosystèmes. Pour donner un sens aux images à distance, beaucoup utilisent des 

métriques de paysage car elles peuvent quantifier la composition et la configuration 

de différentes zones sur les cartes de couverture terrestre et être utilisées pour 

évaluer les processus écologiques. Étant donné l'utilisation abondante des 

métriques de paysage, il est crucial d'assurer leur fiabilité. Dans cette thèse, je 

m'appuie sur les études de validation de métriques de paysage passées, qui visaient 

à évaluer le comportement général des métriques lorsqu'elles étaient appliquées à 

des cartes de couverture terrestre. En fin de compte, tous ces travaux ont cherché à 

améliorer le "contexte statistique" pour le calcul des métriques, l'analyse des scores 

et l'action en matière de politique de durabilité. Dans les chapitres 1 et 2, je revisite 

les origines de l'écologie du paysage dans l'écologie de manière générale, leur 

histoire dans la politique mondiale de durabilité, et je passe en revue les études de 

validation passées sur le comportement des métriques de paysage. Dans le chapitre 

3, j'avance une étude de validation pour évaluer les lacunes précédentes dans le 

comportement des métriques de paysage, notamment (1) les plages de valeurs dans 

les paysages réels, (2) la variabilité et (3) la cohérence de la variabilité entre les 

paysages, (4) les distributions qui représentent le mieux les réponses, et (5) la 

prévisibilité des métriques.  

Procéduralement, cette étude utilise ‘Google Earth Engine’, un système 

d'information géographique de cloud computing pour composer des cartes de 

couverture terrestre séquentielles pour divers paysages immuables, sur lesquelles 

nous calculons des métriques de paysage. Bien que des hypothèses générales sur 

le comportement des métriques de paysage soient souvent utilisées, nos résultats 

suggèrent que les réponses des métriques de paysage n'étaient pas toujours 

généralisables quelle que soit la mesure du contexte statistique que nous avons 

évalué. À la lumière du soulagement de la charge de calcul, nous soutenons que les 

travaux futurs devraient revisiter les études de validation précoces, tout en 

continuant à combler les lacunes préétablies dans la connaissance. Cela est dû au 

fait qu'un manque de contexte statistique pour les métriques de paysage peut 
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compromettre leur fiabilité. Dans le chapitre 4, je compare les études de validation 

passées et je me réfère à la vision multidisciplinaire axée sur les données de 

l'écologie du paysage lors de sa conférence phare à Allerton Park en 1983. En fin de 

compte, l'objectif de cette thèse est d'évaluer le comportement des métriques de 

paysage, afin de fournir un développement épistémologique dans les modèles de 

l'écologie du paysage tout en aidant les praticiens qui continuent à utiliser les 

métriques de paysage dans 
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1. Introduction 

Landscape metrics have an extensive record of use in conservation 

management (Leitao and Ahern 2002; Sundell-Turner and Rodewald 2008; Wiens 

2002), as practitioners use them to quantify landscape patterns to elucidate the state 

and status of ecological systems (Turner 1989). At the turn of the century, a 

concerted effort to monitor ecological resources led to the development of many 

landscape metrics, which are the statistical models applied to categorical land cover 

maps to characterise landscape composition and configuration (Forman and Godron 

1986). Foundationally, landscape metrics assume a relationship between landscape 

structure and ecological processes (Turner 1989). Landscape metrics have been 

used in various applications, including land cover description, ecological inventorying 

(e.g., amount of forest), change analysis, assessing the fragmentation of natural 

areas and effects to ecological connectivity, in addition to relating structural metric 

responses to individual species- through metapopulation processes (Uueema et al. 

2009). Most popularly, landscape metrics are used in North America’s 30-in-30, to 

determine which 30% of land should be protected by 2030 (Davis et al. 2022; Pither 

et al. 2019).  

While used extensively, implicit assumptions of universal behaviour, as 

opposed to rigorous and environmentally-relevant validity testing, has supported a 

broad adoption of landscape metrics. Over the last 30 years, isolated works by 

conservation practitioners and academics have attempted to quantify the behaviour 

of landscape metrics (Bogaert 2003; Cardille et al. 2005; Cushman et al. 2008; Fortin 

et al. 2003; Hargis et al. 1998; Neel et al. 2004; Tischendorf 2001; Wu et al. 2002); 

however, we still do not have a general description of landscape metric responses, 

thus limiting their interpretability. What remains unknown is the expected range of 

landscape metric responses, the expected distribution of landscape metric 

responses, and the attendant models which best typify landscape metrics over time.  

Concomitantly, these knowledge gaps make it difficult to know when a score 

on a given day can be relied upon, where it sits within a range of expected values, or 

if it is an outlier. Subsequently, this means conservation practitioners can be using 

measurements subject to Type 1 and Type 2 hypothesis errors: where metric scores 
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suggest a change when the landscape is unchanging, or where a landscape metric 

response remains stable despite landscape change, respectively (Gardner and 

Urban 2007). Compounded with adverse amounts of conservation decisions being 

made in our critical decade of climate action (Steffen et al. 2017), ensuring their 

reliability is thereby crucial.     

Building upon past landscape metric validation studies, I aim to assess the 

general trends of landscape metrics across the various elements of statistical 

context. These include (1) measurements of the range and general dispersal across; 

(2) measurements of the consistency in variability of metric responses, across all 

landscapes; (3) the distributions of metric responses, across all landscapes; and (4) 

the predictability of metric responses, using the acquisition date of the land cover 

maps on which metric scores are derived. In this thesis I present the development of 

a validation study to assess metric behaviour across sequential images for many 

landscapes in North America.   

1.1 Thesis Objectives 

My thesis aims to contribute to the body of knowledge on the statistical 

context of landscape metrics. The specific objectives for each chapter are as follows:  

● Chapter 1: To review the origin of landscape ecology in ecology broadly, 

review the history of past landscape metric behaviour studies, in addition to 

the current context on which landscape metrics are used.  

● Chapter 2: To assess whether general trends exist in measures of landscape 

metric statistical context across: (1) the range, central tendency, and 

distribution of metrics responses; (2) the consistency in variability of metric 

responses; (3) the distributions of metric responses and (4) the predictability 

of metric responses, using the acquisition date of the land cover maps on 

which metric scores are derived. 

● Chapter 3: To discuss the historical multi-disciplinary and data-driven impetus 

for landscape ecology, broad implications for future landscape metric 

validation studies.  
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1.2 Literature Review 

1.2.1 Origins of Ecology 

To first understand landscape ecology, it is essential to understand the origins 

on which the field was derived from ecology and first principles, its relationship to 

design and land use planning, and the subsequent emergence of computational 

tools to assess land cover patterns and explore ecological processes.  

Foundationally, ecology is the study of interactions between organisms with 

each other and the abiotic and biotic environment. Intentionally broad, ecology was 

defined holistically to encompass the variety of natural processes occurring in the 

natural environment. It is meant to be grounded in first principles of biology, 

chemistry, and physics which enable many of the species-environment interactions, 

and on which deductions about the state and status of ecological processes can be 

meaningfully built (Odum and Barrett 1971).  

Initially, the interest in ecology grew out of humankind’s interest in curiosity 

and epistemological advances of knowledge, broadly. This is noted among early 

writings in ecology including Carl von Linnaeus’ Systema Naturae (1762), von 

Humbolt & Bonpland’s Essay on the Geography of Plants (1807) and White’s The 

Natural History of Selborne (1890). Ecology has since become the basis to 

understand how anthropogenic, western-initiated human influences impact the 

natural environment (Bazzaz 1998). However, ecological systems are innately 

complex, hierarchical (Miller III 2008), and thus difficult to comprehensively frame 

(Meadows 2008). With a growing knowledge of natural systems there was an 

attendant emergence of ecology subdisciplines, assessing ecological systems at 

various scales and contexts (e.g., population, community, landscape, and global 

ecology).  

1.2.2 Origins of Landscape Ecology 

As the subdiscipline of ecology, landscape ecology examines the patterns 

among the landscape, and their interaction with ecological systems. It is considered 

a coarse assessment of ecological organisation, larger than the individual, 
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population- or community-ecology scale. Procedurally, landscape ecologists are 

looking top-down and ex situ, describing how different types of patches (i.e., like-land 

covers) are composed and configured within a matrix (i.e., surrounding area 

composed of different land covers). Often, approaches include measuring the 

amount of area (e.g., how much of Canada is forested), how diverse is the 

landscape (e.g., is it all forest, or are other land cover types common, and in what 

proportion), in addition to how the configuration of patches influence organism 

function(s) (e.g., home range size, genetic diversity and flow). While landscape 

ecology textbooks often reference Troll (1950) as the first instance where ecological 

processes were examined at the landscape scale (Wiens et al. 2007), foundations of 

hierarchically classifying ecological systems are seen earlier in the 1930s among 

geography journals.  

In Western countries, geographers argued that separating systems into 

discrete scales, based on their functional relationships, allowed further examination 

of processes (James 1933; Unstead 1935). Through isolating ecological systems, 

such as, in the case of community-ecology, allowed the examination of community-

specific effects (e.g., predation and prey dynamics, carrying capacity). However, this 

would garner less focus on the nested organism-level or population-level processes 

(e.g., genetic diversity among the population). This presumption of isolation allowing 

deeper investigation of ecological systems was readily adopted at the landscape 

scale. By the 1950s, Troll (1950) had parsed the natural environment into 

hierarchical landscape units, which presumed specific functions occurred at discrete 

scales. Troll (1950) included a list of common landscape hierarchies, such as K. H. 

Paffen’s eight-tier system of “landscape cell-small landscapes - singular landscape - 

large landscape - landscape group- landscape region - landscape zone - landscape 

belt”, or P. E. James’ four-tier hierarchy “locality - district - subregion - region” (1950, 

pg 80). From Troll (1950), it became common that ecosystems could be evaluated 

and described at the landscape scale, which predicates that ecological patterns can 

discern ecological functions. The notion that form follows function has been 

evidenced by evolution through natural selection at the species and community-level, 

not necessarily at the landscape level. 
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At the organism-, population- and community-level, it is known that the form of 

an organism is subject to evolution through the process of natural selection, where 

preferential individual traits permit persistence in a given environment. Thus, 

organisms with these traits, evolved through cladogenisis or andogenisis, are those 

more likely to persist. Ecology textbooks provide early evidence for this relationship, 

including how species of Galapagos finches, through adaptive radiation and 

convergent evolution, had shorter and tougher beaks to crack through shells and 

access food (Odum and Barret 1971). Another common example is how a darker-

coloured peppered moth began to outpace light-bodied moths, as this pigmentation, 

a product of natural selection through industrial melanism (Cook 2018), provided 

these varieties a competitive advantage among the soot-covered habitat of Industrial 

England (Odum and Barrett 1971). In evolution through natural selection, at the 

organism- through community-level, these examples illustrate how fundamental the 

notion of form follows function is to natural systems. While not explicitly said, this 

notion has been adapted to the other scales and contexts of ecology, including 

landscape ecology, where visual ecological patterns at the landscape-scale are 

assumed as indicative of ecological processes at the landscape-scale (Forman 

2011; Gustafson 2019; Turner 1989, 2005). For example, Forman (1995) wrote how 

landscape patterns, or “what we see today, was produced by flows yesterday” 

(Forman 1995). Like any other sub-discipline of ecology, Forman (1995) has long-

believed landscape ecology has “roots in ‘first principles’ or background theory, and 

also [is] supported by a reasonable amount of empirical evidence”. In support of his 

claim, he convened the 1983 Allerton Park Workshop, which has since been 

summarised by Turner (1989). Since the 90s, there is extensive case-specific proofs 

to support this relationship between landscape patterns and ecological function (Cui 

et al. 2021, Davies et al. 2021; DiFiore et al. 2019; Fronhofer and Altermatt 2015; 

Huber et al. 2014; Keane et al. 2017; Miguel et al. 2018; Wiersma 2022; Yuan et al. 

2015), in addition to several books and educational materials on how ecologists 

could benefit from a landscape ecology approach (Gergel and Turner 2002; Turner 

et al. 2001).  
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1.2.3 Landscape Metrics 

Landscape metrics are the statistical models ecologists employ on land use 

and land cover maps to study the composition and configuration of the landscape 

(Forman and Godron 1981). Compositionally, this involves assessing what patches 

or values are present, and in what abundance. Configurationally, ecologists 

investigate the spatial structure of the landscape, such as the orientation, placement, 

and shape of patches. Although there are different methods to represent landscapes, 

landscapes are still predominantly viewed as discrete patches (i.e., as in the Patch-

Matrix Model) (Antrop 2021; Driscoll et al. 2013; McGarigal et al. 2009). More 

comprehensive models of landscapes exist, such as viewing the surface as a series 

of continuous values as opposed to discrete categories (i.e., percent forested vs 

binarily classified as forest or not). Nevertheless, the focus of this thesis is on the 

use of Patch-Matrix Model metrics (Kupfer 2012).  

The Patch-Matrix Model (Forman and Gordon 1981,1986) is derived from 

Clementsian ecology, where similar groupings of species are thought to have similar 

ecological functions, and thus, can be grouped accordingly. This is a means of 

simplifying ecological systems. The Clementsian model was originally used to 

describe the succession of plant communities towards a climax ecological 

community, through autogenic (i.e., forces internal to a biotic community, such as 

soil nutrients and texture) and allogenic processes (e.g., forces external to the biotic 

community, such as anthropogenic global warming) (Naveh and Liebermann 2013). 

The Clementsian model asserts that at any given point, the composition of an area 

can be used to stratify it into a discrete ecological category (e.g., as forest, 

shrubland, wetland, or marsh). Readily, this idea has been adopted by categorical 

land cover maps, and the metrics thereunto qualifying landscape composition and 

configuration (Hakkenberg et al. 2017; Oberg 2019).  

Under the Clementsian model, the metrics applied to land cover maps are 

interchangeably defined as ‘surface metrics’ and ‘landscape indices’ (Uuemaa et al., 

2009). Some researchers describe them as surrogates for ecological processes (see 

Lindenmayer and Franklin 2002). While an inference, or assumed ‘surrogate’ (2002), 

all methods ultimately abstract and further reduce the complexity of natural systems 
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into a score (Kupfer 2012; Riitters et al. 1995; Sanderson 2020; Turner and 

Gardener 2015; Wu and Hobbs 2002). 

In practice, landscape metrics are used to both describe landscapes and 

deduce ecological function. In the former, metrics can be used to, for instance, 

quantify the amount of habitat area or habitat fringe, the clumpiness or intactness of 

habitats, the density of patches, the variability of land cover types, the interspersion 

of patches within unlike patches (e.g., fen ecosystems within a coniferous forest), in 

addition to the diversity of land cover types (McGarigal and Marks 1995). The latter 

are used to explain, for instance, how fragmented a landscape is, how connected a 

habitat is. Since the outset of the landscape ecology, there has been a concerted 

effort to not just describe landscape patterns but understand ecological processes, 

including “the functional interactions of the natural landscape” (Troll 1950). In effect, 

landscape metrics rely upon the assumption of a reciprocal relationship between 

spatial patterns and ecological function (Gustafson 2019).  

1.2.4 Landscape Metrics in Conservation Planning and Decision-Making 

There is nearly a fifty-year history of using landscape metrics within global 

sustainable development, both directly (e.g., using metrics from FRAGSTATS 

software, per McGarigal and Marks (1995)) and indirectly through monitoring and 

quantifying global land cover change. Briefly, we recount the history below. 

In 1983-85, the Brundtland commission worked with United Nations countries 

to categorise land as worthy of enhancement, prevention, and restoration using 

satellite monitoring (Imperatives 1987). The Brundtland commission built upon the 

motive of the first UN convention on the environment a decade prior, which was one 

of the first instances where international unity sought to work towards sustainable 

development (McNamara 1972). In their seminal report, Our Common Future, there 

was an express interest to inventory the abundance of land covers in each of these 

categories (Imperatives 1987). Moreover, the United Nations Environmental 

Programme’s (UNEP) Earthwatch Subprogram (Sec. 4.3), monitored the connectivity 

and interspersion of these habitats (i.e., examining potential habitat refuges for 

species departing disturbed and/or modified areas) (Imperatives 1987; UNEP 1975). 
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More, the report indicated the importance of identifying the “many ecosystems that 

are rich biologically” and “severely threatened”, (Imperatives 1987, pg 125-128). In 

1992, the United Nations Sustainable Development (UNSD) organisation convened 

the Rio Summit or the Earth Summit, where 178 governments committed to 

improving monitoring efforts of ecological systems, namely fragmentation, 

connectivity, in addition to the abundance of resources (e.g., area as forested, forest 

change) (Lafferty and Eckerberg 2013). In 2004, the Organization for Economic 

Development (OECD) countries agreed upon a universal set of environmental 

indicators, which supported the use of metrics to capture “habitat alteration and 

fragmentation through [summarised] changes in land use and land cover” (OECD 

2004, pg 30). Most recently, the Terra Carta, per the One Planet Summit, gave 

explicit mention to “monitoring natural resource capital, including by satellite” (HRH 

the Prince of Wales 2021, pg 17). Indeed, policy instruments have and continue to 

uphold the utility of landscape metrics not solely for monitoring but assessing and 

evaluating the integrity of natural systems (Gökyer 2013; Mayer et al. 2016).   

Building upon extensive top-down multinational support, landscape metrics 

are also used in modern conservation planning, environmental policy, and land-use 

planning applications (Leitão and Ahern, 2002; Sundell-Turner and Rodewald, 2008). 

Pragmatically, their use spans scales of global efforts through to local conservation 

entities. For instance, the joint effort of Canada and the United States, the Great 

Lakes Commission (GLC), uses changes in extent and proximity of land covers to 

water bodies to predict changes in water quality (Lopez 2005). The organisation 

supports how a “GIS-derived landscape metric, such as percentage of cropland area 

among watersheds, can be correlated with water quality parameters… [and] be 

analysed as a causal (predictive) relationship” (Lopez 2005, pg 11). Other 

multinational efforts include the Joint Research Commission (JRC) of the European 

Union (EU), where landscape metrics were used as biodiversity indicators (reviewed 

in Cassatella and Peano 2011).  

At the national scale, the United States Environmental Protection Agency set 

forth a proposal to use landscape metrics, as some, “such as dominance, fractal 

dimension, and contagion have been proposed in the USA as indicators of 

watershed integrity, landscape stability and resilience, and biotic integrity and 
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diversity” (Lopez et al. 2006). To date, many are still used in local hydrology 

management divisions of the United States Environmental Protection Agency 

(reviewed in Lopez and Frohn 2017). In Canada, the Forest Service used landscape 

metrics as indicators, as the patterns and their change provided insight into “land 

use, habitat, and biodiversity” (Wulder et al. 2008); the perceived utility of landscape 

metrics for forest monitoring and forecasting has since been echoed in other 

countries, such as the United States (Kupfer et al. 2012), India (Reddy et al. 2013), 

and China (Li et al. 2021). As evidenced above, landscape metrics are used in a 

variety of conservation contexts to both monitor and assess the integrity of ecological 

systems. Thus, the importance of ensuring landscape metrics is reliable is axiomatic. 

1.2.5 Assessing Behaviour of Landscape Metrics 

In addition to the profuse use of landscape metrics in conservation ecology 

and land management contexts, there is an attendant body of literature calling into 

question the reliability of landscape metrics. Mostly, implicit assumptions about 

general landscape metric behaviour, as opposed to rigorous and environmentally-

relevant validity testing, has been used to substantiate landscape metric validity. In 

2004, Neel et al. echoed McGarigal et al. 's (2002) concern on how “the ecological 

interpretation of [landscape] metrics has been plagued by a lack of thorough 

understanding of their theoretical behaviour” (Neel 2004, pg 435). Research has only 

evaluated landscape metrics’ behaviour, such as through metrics’ generalised 

responses to changing scales (Wu et al. 2002), examining landscape metric self-

similarity (e.g., collinearity and explanation of variation) (Riiters et al. 1995; Cushman 

et al. 2008), and how metrics respond to aggregation of patches in the landscape 

(i.e., are forest patches dispersed throughout a landscape or contained in one area) 

(Neel et al. 2004).  

In 2002, Wu et al. introduced general measures as to how landscape metrics 

should respond to changes in scale, dubbed “scalograms”. The authors measured 

landscape metric responses in four landscapes within the United States, and 

categorised landscape metric responses according to three “types” depending on 

how a line of best fit could be matched to a plot of metric score by an independent 

scale parameter (spatial extent or spatial grain) (2002). These types of response 
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include i) linear or exponential, ii) 2nd and 3rd order polynomials and iii) erratic 

responses (where no line of best fit can be assigned) (2002). Problematically, since 

publication, the generalised conclusions about how landscape composition and 

configuration metrics respond to changes in scale, has served as the basis for 

uncertainty estimates for landscape scores (Šímová and Gdulová 2012), and has 

been used to rescale metric scores for environmental analysis (Argañaraz and 

Entraigas 2014). More, while expectations of landscape metric responses to spatial 

extent and grain are largely accepted, research has found discursive metric 

responses when applied to different imagery products and different study contexts 

(Corry and Lafortezza 2007; Frazier 2016; Peng et al. 2010; Shen et al. 2004) this 

draws into question the universality of scaling dynamics and the work which has 

used the general scaling behaviour. Beyond spatial resolution and extent, select 

works have examined temporal responses of metrics; however, the scale as a 

predictor to metric response is typically assessed singly (e.g., just by spatial scale), 

rarely concurrently with spatial extent, resolution, and time (Gustafson 2019; 

Newman 2019): this negates the potential interaction of different scale parameters to 

influence landscape metric behaviours.  

In 2008, Cushman et al. assessed the collinearity of landscape metrics, given 

how interrelated and redundant landscape metrics are often applied for landscape 

monitoring efforts. Out of the FRAGSTATS library of class- and landscape-level 

metrics, Cushman et al. (2008) identified 24 and 17 independent configurations, 

respectively. In part, this was done to combat the ‘shotgun-approach’ of computing 

landscape metrics, where all metrics within the FRAGSTATS platform are computed, 

regardless of their relevance to the study at hand. Examples of a shotgun approach 

are numerous (Blaschke and Drăguţ 2003). For instance, Lustig et al. (2017) used 

twenty-five different landscape metrics as to examine which patterns best predict 

allochthonous species spread in novel environments. 

Finally, Neel et al. (2004) assessed the response of landscape metrics to 

different aggregation dynamics. Ideally, this was to elucidate if metric responses 

were related to the aggregation of patches in a landscape and the size of area 

included in a computational window. Neel et al. (2004) note how there were also 

individual efforts to assess the responses to aggregation with specific metrics 
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(Gustafson and Parker 1992; Hargis et al. 1997; Riiters et al. 1995; Saura and 

Martínez-Millán 2001). The consummate of all these works then, and since, hold that 

there remains limited understanding of metric behaviour. This is important because if 

practitioners can understand landscape metric behaviour, it may “aid in selecting and 

interpreting metrics that are sensitive to changes resulting from a phenomenon of 

interest” (Neel 2004, pg 454).  

Worth noting, there have been other efforts to assess landscape metric 

general behaviour, including the doctoral dissertation of Porter (2011) who measured 

the effect of classification noise (i.e., the certainty in a pixel being classified as one 

category as opposed to another) and how it may translate into landscape metric 

scores, in Iowa, USA (2011).  

Notwithstanding these works, there has not been further research into 

landscape metric behaviour (personal communication, Cushman, February 15, 

2022). Rather, the discussion on landscape metrics has shifted to developing new 

methods (Hanson et al. 2022; Saura et al. 2017). As evidenced by the lack of 

discourse since these works, there is perceivably less interest in assessing whether 

the growing amount of landscape metrics, including older methods which are 

consistently used (Kedron et al. 2018; Uueema et al. 2009), are suitable for 

environmental monitoring and modelling.  

1.2.6 Published Concerns on Landscape Metric Use  

To date, there have been instances in the literature where practitioners voice 

concern on the use of landscape metrics. For example, Sawyer et al. (2011) notes 

how “conservation planners are faced with a critical question: will [landscape metrics] 

improve placement of linkages/corridors by explicitly incorporating habitat effects on 

movement, or will they result in misleading and potentially costly recommendations 

for conservation by concealing invalidated assumptions?” (2011, pg 669). 

Considering the overview of programs using landscape metrics (Section 1.2.4), the 

magnitude of impact that using landscape metrics will have on pivotal conservation 

decisions has grown. 
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Indeed, landscape metrics’ results are still considered tangible to explain 

ecological concepts to policy makers, decision makers, and the voting public 

composed predominantly of Western non-scientists (Nassauer and Corry 2004; 

Mayer et al. 2016). However, there is a “lack of evidence that pattern indices imply 

ecological processes”, and that “planners and designers should be exceedingly 

cautious in making ecological inferences from landscape pattern index values” 

(Corry and Nassauer 2005). Rather, the variability or the uncertainty is not 

adequately incorporated into a reported landscape metric value (Lechner et al. 

2012).  

In addition to the assumption about the reciprocal relationship of pattern and 

process, there are concerns about how individuals contextualise a score for their 

landscape. For example, Cardille et al. (2005) note how the “inability of potential 

[landscape metric] users to establish the spatial or statistical context of real-world 

landscapes appears to be a major factor inhibiting a full exploration of and 

experimentation with the ever-growing library of satellite-derived land-cover data'' 

(Cardille et al. 2005, pg 987).  

More, Leitao et al. (2012) notes how “through the use of tools like 

FRAGSTATS we have the power to measure and report more about landscape 

pattern than we can interpret in terms of effects on ecological processes” (2012, pg 

62); however, the authors still suggest landscape metrics can be used in planning 

contexts despite this link.  

Recently, I critiqued some of the Western logic which underlies landscape 

ecology broadly (Serre 2021), arguing how some individuals advance the use of 

landscape metrics, often out of ease of application and interpretation as a substitute 

for the evidence necessary to support a link between what a metric is measuring, 

and the ecological process under investigation. Since, Wiersma (2022) has provided 

a comprehensive review of individual studies supporting a link between landscape 

pattern and ecological phenomena. However, as there are conflicting landscape 

metric validation results (specifically with regards to scale), many of these individual 

case studies, such as the 87 referenced in Wiersma (2022), are thought to “not be 

fully replicable experiments” (2022, pg 8). Beyond these few examples, the debate 
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on the utility of landscape metrics is limited: metrics are assumed to be sound 

measurements of ecological processes. Putting aside contention over whether land 

cover patterns can help ascertain the underlying ecological processes occurring in a 

landscape, continued validation is needed to address gaps in metric behaviour and 

build external validity for existing landscape ecology studies. Indeed, all disciplines 

which subscribe to the Western scientific method, cannot use clout to supersede 

empirical evidence: continual, rigorous, and repeatable evidence is needed 

(Ioannidis 2005).  

1.2.7 Anecdotal Concerns on Landscape Metrics from Practitioners  

Considering the minimal published discourse, we sought to speak with 

conservation practitioners directly. From October 2021 to February 2022, we 

conducted twenty-eight semi-structured individual and group interviews with Western 

conservation practitioners who use landscape metrics.  

Overall, the goal of these interviews was to capture the perspectives on the 

reliability of landscape metrics in Western conservation management, given the 

dearth of published rhetoric since 2010. We interviewed a total of forty-three 

conservation practitioners who work at local and regional levels (Niagara 

Escarpment Commission, Toronto and Region Conservation Authority), in addition to 

national (incl. United States Environmental Protection Agency, Environment and 

Climate Change Canada, Canadian Forest Service, United States Department of 

Agriculture, United States Fish and Wildlife Service), and international scales (incl. 

the International Joint Commission, Ducks Unlimited, Yellowstone to Yukon, Centre 

for Large Landscape Conservation, the Nature Conservancy). Through thematic 

coding of all interview responses, all forty-three Western practitioners identified how 

there is still a lack-of knowledge in landscape metric behaviour, and a decrease in 

overall discourse around how to meaningfully interpret a landscape metric score. 

Moreover, some practitioners identified how metrics are assumed to be 

environmentally-relevant, not proven as such (~81% of individuals).  

It is important to acknowledge the bias this presents to the thesis as the 

perspectives shared by practitioners helped to guide this research. Even if we do not 
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interpret these interview responses as objective evidence, and solely 

unsubstantiated anecdotal accounts, it was from talking with these practitioners that 

we sought out the foundational literature and evidence, that is peer-reviewed, to 

support whether generalised trends in landscape metrics exist. More, it is from 

conversation with these individuals that I seek to take a deep dive into the early 

foundations and assumptions of landscape ecology. While these perspectives 

helped guide the context for this review, the information presented within this thesis 

is solely the summation of published, peer-reviewed work, not these anecdotal 

accounts.  

1.2.8 Ease in Computing Landscape Metrics 

Landscape metrics were first seen as a unified set of analytical tools in 

FRAGSTATS, a program released by McGarigal and Marks (1995) which sought to 

integrate the variety of landscape-, class-, and patch-level metrics into a unified 

software for both experts and non-experts. Since the launch of FRAGSTATS, 

landscape metrics have been integrated into a variety of programs, including 

common statistical analysis software of R (R Core Team 2016), through the 

SDMtools (VanDerWal et al. 2019) and landscapemetrics (Hesselbarth et al. 2019) 

packages. There are also numerous standalone platforms to calculate landscape 

metrics, including APACK (Mladenoff and DeZonia 2000) and PatchAnalyst (Rempel 

et al. 1999). Simultaneously, software plugins have been written to link into common 

geographic information systems (GIS) of ArcMap (Yu et al. 2019), ArcGIS 

(Adamczyk and Tiede 2017), and QGIS (Jung 2013). Most recently, this list includes 

cloud-computing platforms (Deng et al. 2019) and cloud-computing GIS, such as 

Google Earth Engine (Theobald 2022). Together, the variety of means to calculate 

landscape metrics with existing programs makes their application to categorical map 

analysis significantly easier for users. However, when FRAGSTATS was launched, 

McGarigal and Marks (1995) included an extensive rhetoric on the potential misuse 

of landscape metrics, and the importance of context in metric selection and 
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interpreting a score. Upon review of the documentation and publications surrounding 

each of these programs, this dialogue has not been carried forth.    

1.3 Conclusion 

Landscape metrics have been, and continue to be, commonplace in 

conservation ecology, land management and sustainability policy as they measure 

habitat composition, configuration, in addition to assessing ecological function. 

Supporting their use, several works have identified general trends in landscape 

metric behaviour; however, landscape ecologists and practitioners are still operating 

without sufficient knowledge of landscape metric behaviour, which may undermine 

the reliability of metric scores. Building upon these past landscape metric behaviour 

studies, there is a need to continue assessing landscape metric behaviour. This 

would contribute epistemologically to the development of landscape metrics and 

computational landscape ecology tools. However, more broadly under the pressure 

of Western-initiated climate change, practitioners ought to have greater knowledge 

about the tools they are using to evaluate what land should be protected, where 

biodiversity hotspots are, and which landscapes best facilitate habitat connectivity.  
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Abstract  

To date, many patch-matrix-model (PMM)-derived landscape metrics are still 

used in conservation management and land management decisions. While past 

studies have assessed the generalised behaviour of landscape metrics, gaps in 

metric behaviour remain. It was our objective to address some of the gaps in the 

generalised behaviour of landscape metrics. These include: the range of values for 

metrics in real landscapes, the consistency among the variability of landscape 

metrics across landscapes, the distributions which best typify responses, in addition 

to assessing how predictable metric responses are using the acquisition date for the 

land cover maps in which scores are derived. Together, all of these measures go to 

advance our statistical context of landscape metrics. Procedurally, we computed 65 

landscape-level metrics across large (>150), successional land cover collections for 

N = 680 landscapes across North America in Google Earth Engine (108,922 total 

land cover maps). Subsequently, we assessed the distributions and model fit using 

generalised linear models. In part, our results are to provide preliminary estimates to 

expected ranges, variability, and consistency of variability for landscape metric 

values across many real landscapes. However, across all measures of statistical 

context, landscape metrics did not always exhibit generalizable trends. Most notably, 

we found landscape metrics only seldom were described by a normal distribution 
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(30% of metrics): an implicit assumption of many studies that use PMM-derived 

metrics. We discuss how these various components of statistical context, namely the 

lack of generalizability, may undermine the reliability of landscape metrics to 

practitioners and how contingent assessments of behaviour are necessary. 

2.1 Introduction 

Conservationists and land managers are increasingly using remote sensing 

technologies to monitor the state and status of ecosystems (Cavender-Bares et al. 

2022; Kerr and Ostrovsky 2003). In efforts to derive meaning from remotely sensed 

imagery, many use landscape metrics as they can purportedly quantify the 

composition and configuration of different patches on categorical landscape maps, 

and then be used to understand ecological processes (Forman and Godron 1981; 

Lindenmayer and Franklin 2002; Turner 1989). Compositionally, this involves 

assessing what patches (or similar land covers) are present, and in what abundance 

(Forman and Godron 1981). Configurationally, the patterns and arrangement of 

patches are examined for how they affect function (e.g., organism movement) 

(1981). In this context, we are referring to the subset of landscape metrics which are 

computed on categorical land cover maps at the patch-, class- and landscape-level.  

The adoption of landscape metrics echoes the growing and global 

environmental monitoring effort. For instance, in Canada, the federal government 

committed to “30-in-30:” to protect 30% of land and water resources by 2030 

(Environment and Climate Change Canada 2022). Similarly, in the Convention on 

Biodiversity (CBD) post-2020 Biodiversity Framework, they aim to improve “the 

integrity of all ecosystems… with an increase of at least 15 percent in the area, 

connectivity and integrity of natural ecosystems” (Power 2022). Indeed, landscape 

metrics are tools we use to measure progress towards connectivity targets, in 

addition to what constitutes ecological integrity and which natural areas to protect 

(Pither et al. 2021). Thus, if we are to continue using landscape metrics, assuring 

their reliability is crucial.   

However, many argue that implicit assumptions, as opposed to rigorous and 

environmentally-relevant validity testing, have been used to substantiate landscape 
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metric validity. For instance, Neel et al. (2004) voiced concern on how “the ecological 

interpretation of [landscape] metrics has been plagued by a lack of thorough 

understanding of their theoretical behaviour” (Neel 2004, pg 435). Cumulatively, 

research has evaluated landscape metrics’ behaviour through their response to 

changing scales (Wu et al. 2002), examining landscape metric self-similarity (e.g., 

collinearity and explanation of variation) (Cushman et al. 2008; Riiters et al. 1995), 

and how metrics respond to aggregation of patches in the landscape (i.e., are forest 

patches dispersed throughout a landscape or contained in one area) (Neel et al. 

2004). Furthermore, as landscape metrics are often derived from classified satellite 

imagery, Porter (2011) suggested that classification noise (i.e., the certainty in a 

pixel being classified as one category as opposed to another) may translate into 

landscape metric scores (2011). However, these landscape metric behaviour studies 

subscribe to the notion of universal landscape metric behaviour: that there are 

universal scaling patterns, and typical distributions of metrics, typical covariances 

among metrics, and consistent responses to classification noise, no matter where a 

metric is applied.  

Fundamentally, this abuts against the purpose for which landscape metrics 

were derived. In the documentation of FRAGSTATS, the original program to 

calculate land cover metrics, McGarigal (1995) noted how “In a real landscape, the 

distribution of patch sizes may be highly irregular” and how summary statistics such 

as [mean and standard deviation] make assumptions about the distribution [of a 

metric] and therefore can be misleading” (1995, pg 13) By design, landscape metrics 

were intended to measure individual responses in landscapes. Over 25 years ago, 

Hargis (1997) harkened back to this original documentation, calling for an 

understanding of “the attainable values of each metric, and how these values are 

altered within landscapes containing different sizes and shapes of patches, and 

different modes of disturbance” (1997, pg 185). In 2005, Cardille et al. noted how we 

still do not understand the “frequency distribution of metric [responses] in relevant 

subsets of landscapes”, which limits landscape metric users in their ability to 

contextualise a score they derive from any given landscape (2005, pg 984): this call 

remains unanswered. Rather, individual papers report the ranges of values in their 

landscapes of interest. Consequently, we do not know whether universal ranges 
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exist or not, and in what frequency. Thus, many practitioners are operating without 

the adequate statistical context, including the expected ranges of their values and 

the distributions best typifying responses. This may undermine their ability to draw 

meaningful inference from landscape metrics in their area of interest. Thus, there is a 

need to assess whether the growing amount of landscape metrics, including older 

methods which are consistently used (see Kedron et al. (2018) and Uueema et al. 

(2009) for review), meet assumptions of universal behaviour.  

In this study, we seek to meaningfully build upon the foundational efforts 

which have called-for or attempted-to assess the universal behaviour of landscape 

metrics. The goal of this study was to (1) describe the variability of landscape metric 

responses, across different landscapes, in addition to (2) describe the distribution of 

landscape metrics in a variety of real landscapes, over time. More, we (3) intended 

to explore how predictable landscape metric responses are. 

Exploratorily, we devised a validation study, where we assessed the variance 

explained by each landscape metric, and how consistent this variance was across a 

variety of sample landscapes in North America. Then, we assessed which 

distributions best typify landscape metric responses, over time, in each landscape. 

We hypothesised that within a given landscape, repeated metric responses for a 

landscape would be best-described by a normal distribution, as this is the universal 

and implicit assumption governing their current use. We also assessed how often 

landscape metric scores of a repeated area were predictable, when accounting for 

seasonality and inter-year changes. We hypothesised landscape metrics in 

unchanging landscapes would be predictable by seasonality, as this would suggest 

real landscape signals driving a score, rather than error caused by noise among the 

land cover classification or metric. Concomitantly, these tests aim to address 

whether universal trends in landscape metric behaviour exist. Additionally, we hope 



 

30 

to contribute to a body of ‘statistical context’, which may be used by ecologists and 

land managers who employ landscape metrics.  

2.2 Methods 

We computed landscape-level metrics on a variety of landscapes within 

Southern Canada and the United States. We included areas within 25o to 50o in 

latitude and -126o to -58o in longitude, encompassing a total of 16,182,053.77km2. 

This includes landscapes across many of the ecological regions of North America, 

including northern forests, north-western forested mountains, marine west coast 

forests, eastern temperate forests, great plains, deserts, mediterranean California, 

tropical wet forests, and southern semi-arid highlands (Bailey 1998). We started with 

N = 1000, 5120m x 5120m terrestrial landscapes (256 Sentinel-2 pixels in width and 

length), which cover ~26,215 km2 of this vast and different area.  

 

Figure 2.1 Stratified sample locations (N = 1000) across the global human 
development index (gHM) (Kennedy et al. 2020). Inset maps are 1:200000 scale, 
Dynamic World (Brown et al. 2022) land cover maps for (a) Houma, LA, (b) San 
Antonio, TX, (c) Charlotte, NC, and (d) Atlanta, GA.   

2.2.1 Sampling Procedure 

Within this terrestrial boundary, we selected sample landscapes with a high 

frequency of repetitious land cover maps, and those subject to different 

anthropogenic pressures. As our land cover maps are from Dynamic World (Brown 
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et al. 2022), a database of classified land cover maps for every sequential Sentinel-2 

image, we first isolated areas with a high-frequency of Sentinel-2 images. Tiling all 

yearly images of Sentinel-2 in the study extent for each year, we masked unsuitable 

areas scenes where the yearly return was less than 30 images/annum. 

Subsequently, we sought to represent a variety of anthropogenic stressors and the 

degree of anthropogenic modification (from 0-1) that conservation practitioners work 

within, from completely naturalised to highly urbanised, for instance. We then 

conducted a stratified sample of points within these high-imagery coverage zones, 

using the global human modification (gHM) dataset. This dataset is a 1km x 1km cell 

raster layer, which culminates how modified a landscape is across various indicators. 

These include predominantly-western human settlement, agriculture (presence of 

livestock, cropland), transportation (road and rail infrastructure), mining and energy 

production, in addition to electrical infrastructure (power lines, night time lights) circa 

2016 (Kennedy et al. 2020). The resulting landscapes were used in image 

compositing.  

2.2.2 Image Collection Assembly  

We assembled all landscape composites in Google Earth Engine. Google 

Earth Engine is a cloud-computing geospatial platform (Gorelick et al. 2017), which 

enabled us to retrieve classified images, filter collections, and subsequently 

compositing the time series of land cover maps for each landscape. The Dynamic 

world catalogue was filtered for images within each landscape’s extent, and for 

images captured between May 1st and November 30th, for each year, from 2017-

2021. Each image collection was then filtered to exclude images with more than 10% 

cloud cover in the entire scene, using the Sentinel-2 cloud-detection quality band.  

Dynamic World is a near-real time classification algorithm applied to incoming 

Sentinel-2 imagery, which maintains the source spatial resolution (i.e., pixel size) of 

10m (Brown et al. 2022). Dynamic World images are land cover maps, with a 

thematic resolution of nine, including (1) water, (2) trees, (3) grass, (4) flooded 

vegetation, (5) crops, (6) shrub and scrub, (7) built, (8) bare, in addition to (9) snow 

and ice (2022). The data product has a time frame matching the launch of Sentinel-2 

LIC, to current day (circa June 27, 2015). Dynamic World has a revisit time of 2-5 
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days, allowing for frequent land cover-maps of the same landscapes. See Figure 

2.2. 

Figure 2.2: Illustrating the successional Dynamic World (Brown 2022) land cover 
maps, derived from Sentinel-2 imagery, for Kearney, NE; maps are at a 1:200000 
scale.  

As a near-real-time classified imagery product, Dynamic World is subject to having 

masked pixels when cloud cover is present in Sentinel-2 images. As full land cover 

maps are required for landscape metrics, we excluded images with more than 5% of 

masked pixels in our landscape analysis window. For images with less than 5% of 

masked pixels, these images could be ‘backfilled’ to create the complete land cover 

maps requisite for calculating landscape-level metrics. We illustrate the process 

below in Figure 2.3. 

Figure 2.3: Demonstrating how masked clouds were filled in Dynamic World (Brown, 
2022) images. In this instance, a prior scene (left) is used to fill the masked pixels in 
the bottom-right of a July 27th image (middle); the ‘backfilled’ scene has no masked 
pixels (right): all maps are to 1:114286 scale.  

Images were backfilled if there was an unmasked image within one month 

prior to the image requisition date; this was to minimise the potential influence of 

intra-year change (i.e., plant growth and senescence). If there were not any images 

to perform the backfill, the partially-masked land cover image was removed from the 
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composite of images in each landscape. Images were masked to the sample 

landscape bounds and exported from Google Earth Engine. We note this as a 

limitation as it generates some amount of self-similarity of sequential land cover 

maps within each landscape.  

Once backfilled, we visually inspected all images (N = 109,100). Some image 

collections had scenes with pixels classified as snow and ice, which was inconsistent 

with our seasonal filtering, climate normals for the geography, and our visual 

inspection of true-colour images which suggested cloud cover was being falsely 

classified. These images were systematically removed from collections using a 

threshold median absolute deviation (MAD) on landscape metric scores. In total, N = 

178 images were misclassified (>0.2%). A full procedure for misclassified image 

removal is provided in Supplemental Information (see Section 6.1) 

Subsequently, landscapes with less than n = 30 images in any given year 

were excluded. This ensured each landscape had a minimum of n = 150 

successional land cover observations, on which summary statistics and model fit 

could be computed for each of the sixty-five landscape-level metrics. In total, N = 

108,922 Dynamic World images were used across N = 680 landscapes.  

2.2.3 Generating Landscape-level Metric Results 

Using the landscapemetrics R package (Hesselbarth et al. 2019), we 

computed all sixty-five landscape-level composition and configuration metrics for 

each image, within each landscape. Categorically, landscape-level metrics can be 

divided into aggregation metrics (n = 15), area and edge (n = 8), core are metrics (n 

= 12), shape metric (n=16), entropy (n= 3), diversity (n = 8) and unique metrics (n = 

2) (e.g., mutual information and relative mutual information): this does not mean they 

do not overlap. A full list of metrics and their respective calculations is provided in 

Hesselbarth et al. (2019). Landscapemetrics is used to supplement the since-

deprecated FRAGSTATS program. It includes all the original landscape-level metrics 

first synthesised in McGarigal and Marks (1995). In this study, we focussed explicitly 

on landscape-level metrics, not class- or patch-level metrics. All patch adjacencies 

were calculated using queen’s case rules (direct and corner adjacency), more, the 
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sample boundary was not included as a habitat edge as these were subsamples of 

real landscapes. All other parameters were default per the calculate_lsm function 

(Hesselbarth et al. 2019).  

2.2.4 Describing Landscape Metric Behaviour 

For each metric response, in each landscape, we computed summary 

statistics, including median and coefficient of variation (CV). We preferred non-

parametric summary statistics as we did not want to assume any normality when 

describing landscape metric results (Baskent and Jordan 1995; McGarigal and 

Marks 1995). While we could have used a median absolute deviation (MAD) or 

interquartile range (IQR), the requisite transformations to get metrics to the same 

scale (all metrics to 0-100) use parameters that assume a normal distribution. In this 

study, we wanted to measure the metric’s tendency of the distribution towards its 

mean as it is measured by practitioners, not once results are normalised (thereby 

redistributing the data from what is measured). Thus, we used a stringent CV of 10% 

to classify metrics as either tightly dispersed or variable. We then aggregated to the 

median CV value, across all landscapes, as a measure of how generally dispersed a 

metric is.  

More, we assessed the consistency of the CV measurements for each metric, 

across all landscapes, using a coefficient of quartile deviation (CQD) thereunto all 

responses for a given metric. The coefficient of quartile deviation (CQD) is a 

percentage to quantify a non-parametric measure of dispersion from the median 

value (Arachinge et al. 2022). To calculate CQD, for each metric, we used the 

difference between the 75th percentile and 25th percentile CV measurements, 

divided by the sum of these percentiles (Arachinge et al. 2022). As the CQD is 

measured on each metric, we could summarise the consistency in dispersal (as CV) 

across all real landscapes. As a standardised ‘variance of variances’, a high CQD 

signalled metrics where, across all landscapes, the variability in metric response is 

inconsistent (i.e., some landscapes have a small variance in a metric value, others 

may be large). Comparatively, a low CQD signalled metrics where the variability in 

any given landscape is consistent (i.e., the exact range of values may not be the 

same, but the variance explained is similar). In this study, we used the often-used 
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threshold of CQD = 0.5 to separate instances where variances are considered 

preferable (or consistent) or not preferable (or inconsistent variability) (Montgomery 

2020). Ratifying support, this value of 0.5 is the generic threshold for CQD values in 

statistical software, Minitab (Alin 2010), derived from the McKay–Vangle confidence 

interval of CQD <= 0.5 (Bonnet 2006). Lower thresholds may be used; however, we 

chose the more conservative threshold to allow metrics to be more variable across 

landscapes, which would permit more context-specificity, which is the intent under 

which landscape metrics were derived. For example, metrics with a CQD > 0.5 

represented inconsistent variability in a metric response, across landscapes; metrics 

with CQD <= 0.5 indicated consistency in the variability for a metric, across all 

landscapes.  

Subsequently, to assess the predictability of landscape metric responses in 

each landscape, observations for each metric were fit using generalised linear 

regression models. We used these models as they seek to fit a variety of common 

functions (e.g., Log, Logit, CDFLink, identity, inverse power, inverse squared, and 

power) to different possible distributions of the data (incl. binomial, gamma, 

gaussian, inverse gaussian, negative binomial, poisson, and tweedie). Both the 

image’s day-of-year and year of each image were used as model predictors for 

landscape metric scores. Day-of-year was fit as a random effect, as the intended use 

of any validation study is to extrapolate beyond the study subset: in our case, we 

wanted to discuss metric behaviour in North American landscapes, broadly. More, 

we had a sufficiently large number of observations for each metric, afforded through 

prefiltering of suitable geographies. Further, using day-of-year as a random effect 

does not assume true homogeneity among the dependent variable of metric 

response; allowing for one landscape to change appearance differently from other 

landscapes. This applies to the patterns of change, rate, and overall timing. This 

rightfully permits the assumption of ecological heterogeneity, which is foundational to 

any landscape ecology research (Lack 1969; Tews et al. 2004; Wiens 1997). Year 

was fit as a continuous, fixed-effect.  

For each landscape, per metric, best-fit models were determined using the 

lowest Bayesian information criterion. Further, we required day-of-year to be a 

statistically-significant predictor at an 𝛼 =  0.05 (95% CI). From the tests for best-fit, 
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we could derive which distributions best typified a landscape metrics’ response in a 

given landscape.  

Subsequently, we computed the proportion of observations as significant 

outliers using a Student's-t statistic. We calculated studentized residuals for each 

best-fit model, where the expected value from the model is subtracted from the 

observed target value at each increment of the predictor variable (i.e., days of year, 

years). Then, the residuals are divided by the adjusted standard error. We employed 

a threshold for significant studentized residuals, where observations greater than 

1.96 were labelled as significant-outliers to the model with 95% confidence (per 

Cardille et al. 2001; Deutsch et al. 2021). In terms of a landscape metric score, the 

proportion of observations as significant outliers was used to interpret the number of 

days where metric values cannot be adequately predicted using the best-fit model. 

Thus, the relative proportion of observations as externally studentized residuals is 

used to describe the reliability of a score when predicting landscape metric 

responses. Herein, these results are only described comparatively to other 

landscape metrics observations, calculated with the same number of observations, 

and the same number of landscapes.  

2.3 Results  

By all measures of statistical context we assessed, there is varying evidence 

for either general behaviour or site-specific contexts of metrics. First, we describe the 

range of values for different landscape metrics, their spread, and the consistency 

among landscapes. Second, we describe the distribution of landscape metric 

responses with successional images of the same landscapes. Third, we present the 

results of the generalized linear models and how well landscape metrics are 

predicted by seasonality.  

2.3.1 Variability in Metric Values 

From our assessment of median coefficient of variation (CV) for each 

landscape metric, using a stringent CV <= 10% threshold to typify dispersal, thirty-

nine metrics were considered highly dispersed from the central tendency, on most 

instances. Inversely, twenty-six metrics had a high tendency of values around the 
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central tendency. More, to describe the variability in landscape metric responses, we 

include the real ranges of metric responses across real landscapes (see Table 6.1). 

In many instances, the number of observations for each metric (>100,000) 

approaches the central limit theorem, as the frequency distributions for most metrics 

appear normally-distributed. In aggregate, metrics varied on the size of the dispersal 

kernel, and potential skew. There are select instances where metrics do not appear 

normal in aggregate, including division, mesh, msidi, msiei, siei, and sidi. 

Conversely, patch richness density (prd) had gaps within its distribution, suggesting 

certain values would never occur. Nevertheless, the number of observations 

comprising these distributions (>100000), limit any use of these general distributions 

to contextualise the expected frequency of a landscape metric response within a 

given landscape.  

Out of all 65 landscape-level metrics, fifty-five were consistent in their 

variability across landscapes, as determined by being below this threshold (see 

Table 6.2). Predominantly, metrics (n = 30) had a high median CV across all 

landscapes, while being consistent in this variability across landscapes. Examples 

include the measures of the adjacency of ‘like’ patches (pladj), the number of 

patches (np), the patch complexity (parfrac), the thematic complexity of patches 

(ent), proportion of disjunct core areas (dcad), and the probability of cells have ‘like’ 

class distinctions (contag). Some metrics (N = 24) had a low median CV 

measurement, across the landscape measured, indicating consistently low variability 

from the central tendency. There were two instances where metrics were 

inconsistent in a low median CV value across different landscapes (e.g., the 

complexity of landscape pattern (condent) and the total core area (tca)). Eight 

metrics had a high median CV value and were inconsistent in their variability across 

landscapes. In other words, metrics that, in aggregate, tend to be tight or distributed 

to the central tendency can either be consistent or inconsistent in that variability 

across landscapes.  

2.3.2 Distributions of Landscape Metrics 

Per the lowest Bayesian information criterion, our data suggests that metrics 

were either exclusively or near-exclusively described by one type of distribution, 
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described by several distributions, or rarely and inconsistently described by any 

distributions. Only in instances where metrics are exclusively described by one 

distribution do we consider this a generalised behaviour.  

Of all the landscape-level metrics, we could describe fifty-five metric’s 

distribution in all instances (see Table 6.3). There are exemptions to this, such as in 

landscape metrics describing the distance to nearest ‘like’ neighbours (enn_cv, 

enn_mn, enn_sd), which were described 99% of the time. Most often, landscape 

metrics were best described by one kind of distribution; for instance, twenty metrics 

were described exclusively by one distribution, and twenty-five were described 

predominantly by one distribution with minimal description from other distributions 

(=<5% of instances).  In some metrics, not all landscapes could be typified under the 

distribution types permitted by generalised linear models. These include the 

measures of size and abundance of patches (area_mn and area_sd), the size of 

core areas (core_mn and core_sd), in addition to the size of all core areas (tca). 

 In general, our results do not agree with the working presumption that 

landscape metrics can be used under a general assumption of normality. Of the 65 

landscape-level metrics we evaluated at this spatial (~25km2) and temporal scale (5 

years), nineteen metrics’ distributions were best-described as gaussian, across all 

landscapes: only nine metrics were described exclusively by gaussian distributions, 

across all landscapes. These nine included metrics describe the compactness of a 

landscape patches (circle_mn circle_sd), the complexity of patch configuration 

(condent), the spatial connectedness of patches (contig_sd), patch area and overall 

landscape compactness (gyrate_mn, gyrate_sd), in addition to measures of 

deviation from a maximum compactness of patches (shape_mn and shape_sd).  

 Typically, landscape metrics were best typified by gaussian, inverse-gaussian 

and negative-binomial distributions. Select instances occur where a metric was 

described by one of the aforementioned distributions, in addition to a binomial 

distribution, such as with enn_sd (0.15% of instances) and tca (30.5%), in addition to 

those describing patch richness (pr = 0.30%) and relative patch structure (mesh = 
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2.84%). Similarly, eight metrics are, though selectively, described by poisson and 

tweedie distributions: this never exceeded 1% of landscapes.  

As landscape metrics are often used under the guise of normality, there is 

seldom published research as to whether landscape metrics are normal or not. In a 

rare example, a report to the European Commission on assessing the ability of 

landscape metrics to quantify heterogeneity in remote sensing data for the global 

human settlement layer project, Degen et al (2018) suggested pr, shdi, ta (total 

area), and prd (as patch richness density) are four metrics that are not normally 

distributed within their study extent. While we did not evaluate total area (as the 

landscape window is consistent in every image, every landscape), our results 

support the claim that these three metrics are not normally distributed. Specifically, 

shdi was better typified by a negative binomial function (78.38% of instances), pr and 

prd were never best-fit as a gaussian distribution. Ultimately, minimal published 

rhetoric on metric distributions limits comparability of these results. Landscape metric 

distributions are often evaluated using the aggregation of landscape metric 

responses across a single landcover product (see Cardille et al. 2005), rather than 

typifying responses in successional land cover maps for a single area.  

2.3.3 General Linear Model Fit  

 In general, no metric response was consistently predictable using day-of-year 

and year as predictors (see Table 6.4). Year was significant on the best-fit models 

only minimally (9.2% of instances); the inclusion of year rarely improved the best-fit 

model type (0.47% of instances). This supports our assumption that the landscapes 

we sampled, for the most part, were not predictably changing over the study years. 

In this context, this was interpreted as the landscapes remaining stable throughout 

the evaluation period, and the reflected variability in landscape metric scores being a 

product of seasonal variation.  

On average, metric responses were 46% predictable. This varied across 

metrics: some were highly predictable, such as the difference in size (area_cv = 

83%) and core area among patches (core_cv = 83%), the number of patches (np = 

82%), in addition to the perimeter-area ratio of metrics (para_mn = 87%). Others 
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were less predictable: including area_mn (0.5%) and area_sd (4.0%), core_mn 

(0.5%) and core_sd (4%), pr (12%), prd (19%) and tca (18%).  

Moreover, whenever a model could be fit, the base function varied across 

landscapes. Of all possible generalised linear model functions, log, identity, inverse-

power, and inverse-squared functions best fit the shape of landscape metric 

responses. CDFLink and Logit functions were rarely fit to landscape metric results 

(e.g., prd was best-fit by a CDFLink function <1% of instances). For instance, 

area_cv is a metric consistently predicted (83% of instances); however, it is best-fit 

by log and inverse-squared functions, on 63.9% and 36.0% of instances, 

respectively. The relative abundance of which function best fit responses were 

variable across all landscape-level metrics.  

Of the models that fit landscape metric responses, we then compared the 

average proportion of significant studentized residuals (when the observation was >= 

1.96). For most landscape metrics (82%), the average proportion of observations as 

significant outliers was less than 5%. This signifies on the instances where a metric 

is significantly predicted by seasonality, the best-fit model has a low proportion of 

outliers, while maintaining, on average, significance in the predicted score. 

Comparatively, ten metrics had an average of over 5% of observations that were 

significant outliers. For these metrics, the high proportion of outliers violates the 95% 

confidence interval of the Student’s-t test that would suggest these metrics are 

predictable. 

2.4 Discussion 

Throughout this study, we made an explicit focus to just describe landscape 

metric behaviour using a sample of landscapes across parts of North America. 

Firstly, we described the range of expected values for a metric. Secondly, we 

described the magnitude and consistency in the variability of a metric (how variable, 

on average, and how consistently variable, among all landscapes). Finally, we 

described the distribution of landscape metric values, and how well they can be 

predicted when controlling for seasonality in responses. Together, all these efforts 
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aim to expand the statistical context to landscape metrics which are used by experts 

and non-experts alike.  

This builds upon the numerous efforts which have tried to quantify landscape 

metric behaviour in both simulated and real-world landscapes (Bogaert 2003; 

Cardille et al. 2005; Cushman et al. 2008; Fortin et al. 2003; Hargis et al. 1998; Neel 

et al. 2004; Tischendorf 2001; Wu et al. 2002). Despite the tremendous efforts to 

date, we still do not have a comprehensive understanding of landscape metric 

behaviour. As we argue, these elements of statistical context we assessed may work 

independently and concurrently to influence how an ecologist or land manager (or 

“practitioner”) may view the reliability of a landscape-level metric.  

Within this discussion, we will discuss (1) the results of landscape metric 

behaviour in aggregate (incl. variability, ranges of values in real landscapes, and 

aggregate distributions of metric observations across all landscapes); (2) how the 

consistency among the variability in landscape metric responses lend predictability; 

(3) how information about the distribution of a metric can improve how 

contextualising whether a score is frequent or rare for a landscape; and (4) the value 

of being able to predict a metric score using information about the image acquisition 

date. 

2.4.1 Aggregate Landscape Metric Behaviour 

Firstly, in aggregate, the frequency distributions for metrics revealed that most 

metrics approached normality, as stipulated in the central limit theorem. However, 

this was likely as a product of the number of observations (~100,000) (LaPlace 

1810). Our responses confer with Cushman (2018), who used 25 different landscape 

areas, varying in size and thematic resolution, and computed 100,000 different 

analysis windows within these areas. Using the length of total edge (te) metric, 

Cushman (2018) showed how the frequency distribution of this metric response 

converges to normal or gaussian, per central limit theorem. We build upon 

Cushman’s (2018) analysis through showing the aggregate distributions of all 

metrics (see Figure 6.1). Predominantly, most metrics exhibited similar convergence 

to a normal distribution. There were some instances where metrics had visible gaps 
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within their distribution, when not relict of the incrementation of possible values (i.e., 

patch richness density (prd)). While most metrics converged on central limit theorem 

in aggregate, the application of metrics to individual real landscapes did not always 

meet a normal distribution.  

2.4.2 Consistency and Generalizability of Landscape Metrics 

Secondly, we assessed the consistency among landscape metrics’ variability. 

For the most part, metrics were consistent in their variability across landscapes. 

However, there are nuances in what consistency among responses tells us about a 

landscape metric, which are worthy of discussion. At a foundational level, we do not 

know whether inconsistency among the variability of metric responses means that a 

metric is more sensitive to a wide range of landscape composition and configuration 

elements (i.e., number of edges, interspersion of patches), and thus a better 

measurement. Nor do we know whether the high variability indicates inconsistency in 

how a metric responds to signals in a landscape, and thus is less reliable. Often, low 

CQD values are interpreted as indicating model stability (Bonett 2006; Roach and 

Griffith 2015); following this hypothesis, if the variability is consistent in one metric, 

this would be comparatively more stable than landscape metrics exhibiting 

inconsistent variability. This predicates, however, that the measured response from a 

metric is accurate: this is something we did not measure. While some have 

attempted to quantify or describe the effects of land cover classification noise 

(Griffith 2004), even suggesting ways to reduce it (Brown et al. 2000), these 

exploratory approaches are not enough to infer how our landscape metric scores are 

determined by product of classification noise, the metric, and or actual signals from 

the landscape.  

As the precision of the metric cannot be ascertained, we believe it is thus 

important to assess the predictability of responses. For example, if a practitioner 

knew the variability of their chosen metric in each landscape is consistent with the 

expectation in other landscapes, they may have higher confidence in correctly 

interpreting a score. We believe this, as the inverse, would be no certainty in what to 

expect for a range of values of a metric, as the variability is different across 

landscapes.  
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This is further muddied when considering the downside to consistency. If a 

given metric’s central tendency and variance is very consistent across all 

landscapes, this may undermine the reliability of the metric, as it would suggest a 

lack of an ability to respond to individual contexts. This was the purpose by which 

landscape metrics were derived (McGarigal and Marks 1995). Furthermore, a low 

CQD indicates only consistency in variance, not whether the responses are very 

distributed (high median CV) or proximate (low median CV) to the central tendency.  

Given these limits, we therefore cannot conclude whether certain metrics are 

more reliable based on their central tendency, range of values, and consistency 

among the variability metrics exhibit across landscapes. We only can say some 

metrics are more predictable than others; though, whether the predicted response is 

an actual landscape signal or propagated noise from the land cover classification or 

the metric itself is indeterminable solely using this information.  

2.4.3 Further Contextualizing Scores with Distributions 

Thirdly, we aimed to describe the distribution of landscape metric responses. 

Most often, landscape metrics were typified by just one, general, distribution; rather, 

they were described by many different distributions, or there were instances where 

metrics were rarely matched to any suitable distribution within a generalised linear 

model at all. Most notably, we found our landscape metrics, in each individual 

landscape, did not exclusively meet a normal distribution. We recognize that select 

studies have used non-parametric measures to summarise landscape metric 

responses (e.g., Baskent and Jordan 1995; Betts 2000; Shaker et al. 2020), or show 

how in their individual contexts, landscape metrics responses were not normally 

distributed (Hasset et al. 2012; Remmel and Fortin 2013). Nevertheless, landscape 

metrics are still used as if they follow a normal distribution extensively (D. Theobald; 

University of Colorado Boulder, personal communication, December 16, 2022).  

We assert that metrics best-typified by one distribution, most of the time, may 

be easier for practitioners to contextualise than metrics typified by multiple 

distributions most of the time, or those unable to be fit to a distribution at all. In the 

previous section, we described the expected spread from central tendencies (median 
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CV) for each landscape metric, in addition to the consistency and magnitude of 

variability among values (CQD). Equipped with this knowledge, an individual could 

compute a metric like cai_mn, one consistently predicted by a gaussian distribution, 

and compare the result to the expected frequency of that measurement to elucidate 

if that response is more expected or rare. With a metric like patch richness density 

(prd), which is determined by inverse gaussian and negative binomial distributions 

(56% and 44% of instances, respectively), even where the individual has a low 

median CV in addition to consistency in the variability across landscapes, they may 

not be able to elucidate if their score is likely or unlikely, as practitioners often do not 

have frequency distributions for metric responses (K. Zeller, United States 

Department of Agriculture, February 7 2022). See Figure 2.4 below.  

 

Figure 2.4. Successive Dynamic World images for Pasadena, CA with their 
respective patch richness density scores (left): images are at 1:200000 scale 
(25km2). In this landscape, the frequency distribution indicates these ‘prd’ scores are 
common and possible (top right, n = 229 images); in nearby Anaheim, CA these ‘prd’ 
scores, while possible, are rare (bottom right, n = 151 images).  

The consequences of a practitioner not being able to discern if values are expected 

or unexpected are twofold. Primarily, we worry that when real changes in landscapes 

do occur, responses that should be considered in low (or rare) frequency are 
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contextualised as often, conflating a false-negative to no change (Type II error). 

Additionally, when no change is happening in a landscape, a common frequency 

distribution may suggest a value is rare, when it is in fact, frequent: this could be 

used to suggest landscape change when the environment remains stable (as a Type 

I error).  

Thus, based on comparative reliability, when scores are variably described by 

different frequency distributions, a practitioner’s inference of a score, on any given 

day, will have less context than one consistently described by one distribution. 

Again, if the result of a metric is relied upon, this may lead to individuals falsely 

inferring change in an unchanging landscape, or falsely indicating stationarity in a 

changing landscape, respectively.   

2.4.4 Predictability and Reliability of Landscape Metrics 

Fourthly, we aimed to explore how predictable landscape metric responses 

were using day-of-year (accounting for seasonal change) and year (isolating inter-

year change) as predictors. As we have shown metric scores vary within a given 

year, understanding apparent trends in seasonality and year-to-year change are 

important to assessing whether a response is expected or unexpected. As 

mentioned above, the absence of understanding the expectation of a response can 

lead to practitioners making Type I and II hypothesis errors. Often, landscape 

metrics were not predictable using either variable. In all instances where model 

responses are predicted, the variability exhibited by landscape metrics is best 

determined by landscape responses to seasonality (as the most significant 

predictor), and seldom improved by predictors of year. When the response is not fit 

by model, it is also possible that seasonality and year has some effect (though non-

significant); however, it is not clear how the metric response is affected by other 

variables. Again, we do not know whether the score is a real landscape signal or 

predicted better by other variables not included in the models (such as classification 

noise).  

As metric responses were predictable only in 46% of instances, on average, 

there is not sufficient confidence to say that landscape metrics predictably respond 
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to either seasonality or year. Using these predictors to assess whether a metrics’ 

score is expected or unexpected (from classification noise, effect of a metric to 

maximise or minimise the effect, or real change) is effectively up to a coin toss.  

More, as part of evaluating the comparative fit of models, we assessed their 

proportion of significant studentized residuals. For most metrics (n = 53), when a 

landscape metrics’ response to seasonality is predictable, the average number of 

observations as outliers does not violate the 95% confidence interval in the estimate 

of a metric response. This means that when metrics were predictable, the model 

significance was often not violated. However, ten metrics had a proportion of 

observations as significant studentized residuals (or outliers), greater than 5%. 

Concerningly, these ten metrics were also those best-fit by a function most often.  

However, as no metric was predicted by a single function, or consistently 

across all landscapes, the proportion of observations that are fit is irrelevant, as a 

metric response is unpredictable. The practitioner is both not able to know, in which 

instance, their landscape is or is not fit by the predictors, but they also do not have a 

sense of the base function that fits metric behaviour. This limits one’s ability to 

determine if a score is a product of seasonality or other influence(s) (i.e., from 

classification noise, effect of a metric to maximise or minimise the effect, or real 

change in the landscape). 

Overall, some metrics have consistency among their range of variability and 

the distributions which best-typify a response on a given day. As discussed above, 

many metrics are often consistent in their ranges of variability, but all are not. 

Moreover, individual metrics are predominantly typified by multiple distributions at 

varying frequencies, which would suggest not all landscape metrics exhibit 

generalised behaviour. These factors combine to limit the predictability and precision 

of landscape metric responses. Furthermore, no metric is consistently best-fit by any 

generalised linear model function. What is therefore necessary is further work to 

assess the statistical context of landscape metrics, using different data products, and 

landscapes of interest, as to examine what site-specific contingencies there are to 

landscape metric behaviour. Only then can any practitioner have sufficient statistical 
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context to interpret a landscape metric value, from an image acquired on any given 

day, and know if it is expected or not. 

2.4.5 Limitations 

Most of our limitations within our study are consistent with other landscape 

metric behaviour validation studies (see Wu et al. 2002). Predominantly, our 

analyses are subject to the modifiable areal unit problem in both zonal (size of 

landscape included for analysis) and scale (classification resolution and the 

simplification of landscape details) (Jelinski and Wu 1996). While we controlled for a 

consistent landscape size and resolution, future research should assess the ranges 

of values, distributions, and predictability of landscape metrics at different landscape 

study sizes and land cover resolutions. For instance, we do not know how metrics 

tend towards normality with the size of the study extent or pixel size.  

Second, our image collections allowed scenes with >5% of masked pixels to 

be backfilled by a previous image and included. While a common procedure in 

assembling consecutive land cover classifications for large areas (Pasquarella et al. 

2022; Zhou et al. 2022), backfilling images permits self-similarity throughout the time 

series. However, this would have only minimised the variability among landscape 

metrics, representing a conservative estimate of metric uncertainty. 

More, while we aimed to systematically sample land covers across North 

America, certain land covers may be less frequently sampled due to cloud cover. 

These include mountainous regions with clouds (as a product of orographic lift), 

waterbody-adjacent areas (as a product of the lake-effect), or land covers with smog 

and haze (Jombo et al. 2023; Taylor et al. 2023).   

Fourth, we used a specific land cover product, Dynamic World (Brown et al. 

2022), as it was a ready-made land cover classification. Like other land cover 

classifications, Dynamic World has inaccuracies in the land cover classification. 

Thus, any attempt to quantify landscape composition and configuration are 

undoubtedly affected by the accuracy of this imagery product. To parse the effect of 

noise caused by the image classification, future work assessing the behaviour of 

landscape metrics should assess responses across varying classification accuracies.  



 

48 

Finally, we used the global human modification index (gHM) (Kennedy et al. 

2020) to represent different scenarios in which landscape metrics may be applied in 

conservation applications. An assumption we are making is that no real change 

occurred after this data layer was assembled in 2016. While year was often an 

insignificant predictor (suggesting no change since 2016), this could also be that 

noise percolation had a stronger effect, thus nullifying the predictive ability of year as 

a variable.      

2.5 Conclusion  

When landscape metrics were originally developed, their purpose was to 

capture signals of what is happening in the landscape (McGarigal and Marks 1995). 

This would suggest landscape metrics were intended to be site-specific. In various 

areas of interest, landscape metrics have been applied to understand how the suite 

of abiotic, biotic, anthropogenic processes culminates into signals detected from land 

cover maps (Turner 1989). In this study, we aimed to build upon the foundations of 

other works which assessed the statistical context of landscape metrics and assess 

whether universal trends in metrics exist. Most notably, our evidence conflicts with 

the existence of universal trends in the statistical context of landscape metrics. For 

instance, prior to our study, there was an implicit assumption that landscape metrics 

meet a normal distribution: our results suggest only some metrics meet this general 

behaviour. Beyond normality, we presented many logical considerations considering 

the various elements of statistical context we assessed. In other words, landscape 

metric responses were neither entirely general nor site-specific. 

In addition to others who assessed the behaviour of landscape metrics (e.g., 

Neel et al. 2004), we harken back to Cardille et al. (2005) who asserted “we do not 

think that landscape metrics, as currently understood, are a panacea for ecological 

analysis”, and rather “the inability of potential users to establish the spatial or 

statistical context of real-world landscapes appears to be a major factor inhibiting a 

full exploration of and experimentation with the ever growing library of satellite-

derived land-cover data” (2005, pg 987). We sustain Cardille et al.’s perspective as 

there were minimal generalizable trends among landscape metrics. Moreover, when 

metric behaviour is generalizable, it may be that certain metrics will propagate similar 
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ranges of values, or populate a similar distribution, no matter where they are applied, 

and thus are not sensitive to the environment in which they are used. While 

consistency among metrics in their explained variability and the distribution best-

typifying responses can lend predictability, we still do not know whether the response 

is from the actual landscape. Thus, while some metrics may be more predictable, 

further work is necessary to build upon our understanding of predictability and 

consistency, to assess metric accuracy. To assess accuracy of a measurement, we 

encourage future works to isolate the effects of (1) land cover classification 

inaccuracy and (2) thematic resolution on landscape metric responses. While 

landscape metrics will undoubtedly still be used in conservation decisions, a 

concerted and attendant effort needs to be made to continue building an 

understanding of their statistical context and behaviour. 
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3. Discussion  

3.1 Overview 

Landscape metrics are commonly used to assess the patterns and 

functionality of ecological systems, consistently applied in modern conservation 

management, ecology, and land-management decisions (Leitao and Ahern 2002; 

Sundell-Turner and Rodewald 2008; Wiens 2002). Indeed, the use of landscape 

metrics will ultimately affect how humankind adapts and mitigates the effects of our 

Western-initiated climate change. As landscape metrics constitute elements of this 

decision-making process, the importance of ensuring their reliability is self-evident.  

Though, it is only because of the profligate legacy of white males in positions 

of power, who have degraded the environment, that we must now address the 

environmental issues of today. While it is often cast that all science has systemic 

gender bias and exclusion, the notion of it being widespread is not sufficient reason 

to ignore it now in a discussion of landscape ecology. In 1987, Jim Thorne had 

reviewed one of the foundational texts in landscape ecology to argue how the field of 

landscape ecology is “refreshing and imaginative because of the use of personal 

observation, the lack of gender bias, and the clear well-illustrated examples (Thorne 

1987, pg 154). However, a deep examination of Forman and Gordon (1986) reveals 

sparse mention of research conducted by women, nor were there any women in 

attendance of the first meeting of landscape ecology in Allerton Park, Illinois three 

years prior (see Rissler et al. 1984 for attendees). It has only been recently that 

landscape ecology has accepted scholarship through women, which has advanced 

the foundations established by men.  

It is in this informed context of historical bias that we may now contextualise 

how the results of this thesis fit within the scope of past landscape-metric validation 

studies. Moreover, I hope to articulate how future research can expand our 

understanding of landscape metric behaviour. More generally, I will discuss the need 

for future validation studies under the context of landscape ecology’s origin: a field 

poised to be a multidisciplinary, data-driven field not dissimilar to others in the 

environmental sciences.   
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3.2 Modern Assessments of Landscape Metric Behaviour  

As mentioned, landscape metrics are used in a variety of modern, pivotal, 

conservation management policies and global agreements. This is evidenced by the 

numerous programs which have employed landscape metrics over the last two 

decades (Kupfer et al. 2012; Li et al. 2021; Lopez et al. 2005; Lopez et al. 2006; 

Lopez and Frohn 2017; Reddy et al. 2013; Wulder et al. 2008). Qualifying their use, 

there are several landscape metric validation studies where the responses of metrics 

to different contexts is assessed and generalised, such as (1) in varying spatial 

extents and (2) spatial resolutions of land cover maps, (3) in the collinearity of 

metrics, and (4) in how metrics respond to different aggregations of landscape 

patches (Cushman et al. 2008; Neel et al. 2004; Wu et al. 2002). This harkens back 

to the original focus of landscape ecology in which practitioners sought to deduce 

general patterns of ecological processes using information from the landscape 

mosaic (Wiens 2008).  

While past studies support generalised behaviours among landscape metric 

responses, which may improve how we understand metric scores, there is an 

attendant 20+ year-long discourse which has stressed the need to continually 

evaluate these assumptions to ensure landscape metrics can be relied upon 

(reviewed in Gustafson 1998, 2019). In hopes to contribute to this discourse, this 

thesis aimed to assess the statistical behaviour of landscape metrics, including 

addressing some of the common gaps in knowledge previously identified (Cardille et 

al. 2005; Gustafson 2019; Turner 2005). Namely, these include the range of values 

for metrics, an understanding in the consistency of metric responses across different 

landscapes, in addition to the distributions which best typify landscape metric 

responses. Moreover, we sought to understand how predictable landscape metric 

scores are, using information about the time of acquisition, per the land cover maps 

from which they are derived.  

In contrast to past findings of general behaviour, our results indicated 

landscape metrics were not always consistent in their variability across landscapes 

(84% of landscape-level metrics were consistent). Metric responses were also often 

typified by multiple distributions; namely, landscape metrics were rarely described as 
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gaussian. Using generalised linear models, we assessed how likely metric scores 

could be predicted using information about the acquisition date of the image. As 

metric scores varied within a given year, we thought there may be effects of 

seasonality which drive variability within a score. Using generalised linear models, 

we tried to predict the response of a metric score, in landscapes that seemingly do 

not change over time, as to help practitioners contextualise whether a score on a 

given day can be predicted, and is within the expectation of seasonal variation, or if it 

is unpredictable. Fortunately, landscape metrics were mostly insensitive to the image 

acquisition year (predicted responses 9.2% of instances with a best-fit model): this 

lends support to our study approach where we focused on landscapes not changing 

over time. By day-of-year, metric responses were predicted around half the time 

(54% of the time, on average, across metrics): this suggests that metric responses 

may have seasonal variability, and thus influence a score depending on when the 

land cover map is composited. In Chapter 3, I argued how these various elements of 

statistical context interconnect, and showed some examples where both expert and 

non-expert users of landscape metrics may be limited in knowing what distribution or 

function predicts a score, and thus, how they would evaluate whether a response is 

expected or unexpected. 

In part, our conflicting results may be a product of a larger sample size and 

the use of a ready-to-use classified land cover product. Previously, landscape 

ecologists were working under the impressions that to answer larger theoretical 

“questions in landscape ecology [would] require the ability to acquire and manage 

large quantities of data;” namely, the high cost of computing and storage needs were 

cited as limiting factors to advancing the field of landscape ecology (Risser et al. 

1984, pg 6). It has not been until recently that frequent land cover information is both 

accessible and easily interpretable by landscape ecologists (Crowley and Cardille 

2020). With the privilege of access to cloud-computing software (Gorelick et al. 

2017) and a near-real-time land cover product (Brown et al. 2022), we were able to 

conduct a large-scale study of metric behaviour. This allowed us to interpret 

~100,000 land cover classifications, across 680 real landscapes, to describe the 

behaviour of 65 landscape-level metrics across our study area. 
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Previous related studies of metric behaviour occurred in a setting of 

substantially more limited data availability. Working in the early 2000s, when Landsat 

data was not freely available, Wu et al. (2002) were able to test only “five landscapes 

with contrasting natural and socioeconomic settings'', with only a single 

corresponding land cover map for each landscape they assessed the changes in 

pixel size and spatial extent on the response of 19 landscape metrics. Upon their 

analysis of these landscapes, they advanced that “metrics fell into three general 

categories: Type I metrics showed predictable responses with changing scale, and 

their scaling relations could be represented by simple scaling equations (linear, 

power-law, or logarithmic functions); Type II metrics exhibited staircase-like 

responses that were less predictable; and Type III metrics behaved erratically in 

response to changing scale” (2002, pg 761). The authors suggested their results 

need to be “verified by additional studies with both real and artificial landscapes'' (Wu 

et al. 2002, pg 778).  

Despite their admonition to use their results only as preliminary evidence of 

landscape metric behaviour, the dearth of subsequent tests of metric behaviour led 

landscape ecologists to interpret their results as evidence of general landscape-

metric scaling behaviour (Frate et al. 2014; Frazier and Wang 2013; Ma et al. 2018; 

Rutchey and Godin 2009; Zhang and Li 2013), in spite of studies reporting conflicting 

evidence to scaling trends (Corry and Lafortezza 2007; Frazier 2016; Peng et al. 

2010; Shen et al. 2004). While the concept of general behaviour is now widely 

accepted, the process through which it gained acceptance appears to contradict the 

original principles of a multidisciplinary and data-driven field of landscape ecology. 

3.3 Revisiting Landscape Ecology at Allerton Park, Illinois  

In April 1983, the first unified meeting of landscape ecologists was convened 

in Allerton Park, within Piatt Country, Illinois. In efforts to formalise a discipline and 

the research direction of this new field, this meeting brought together a diverse 

expertise of scientists, largely as landscape ecology was not thought of as “a 

discrete discipline or simply a branch of ecology, but rather the synthetic intersection 

of many related disciplines” (Risser et al. 1984, pg 9). Members of the Allerton Park 

workshop knew that if this emerging field sought to address a “broad range of issues 
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and scientific questions”, that it would need to build “upon data and ideas from 

diverse fields such as ecology, geography, and wildlife management” (Risser et al. 

1984, pg 10). It may be worthwhile to remind the reader that this field was initiated by 

a botanist-turned-landscape architect and an economist (Forman and Godron 1981), 

who went back to the foundational work in geography and climatology (see Troll 

1950). It was only upon this varied expertise that data from all ecologists and 

biologists could then be used to advance theories, namely in the fundamental 

assumption that landscape patterns are a product of ecological functions (Forman 

2011; Gustafson 2019; Turner 1989, 2005).  

More, landscape ecology was emerging at a time where, for nearly a century 

the field of ecology had been critiqued by male physicists, chemists, and biologists 

for reducing the complexity of systems for the purpose of comprehension, and for the 

early assumptions which transferred this study and description of Nature into a 

science (Cowles 1904; Cragg 1966; Fretwell 1975; McIntosh 1980; Rosenzweig 

1976; Stauffer 1957). Notably, Peters (1976) critiqued how this line of inquiry in 

ecological sciences had conflated “several major tenets of modern ecological 

thought”, including theories of evolution through natural selection with concepts of 

landscape diversity and spatial heterogeneity, in ultimately unscientific ways. (i.e., 

without the burden of evidence to support) (Peters 1976, pg 8).  

However, the goal of landscape ecology was never to reduce ecological 

complexity, rather, it was the opposite. At Allerton Park, landscape ecologists had 

asked these critics to “eschew parochial views about landscape ecology” and 

instead, come to them in the pursuit of “intellectual development of this complex, 

interdisciplinary field” (Rissler et al. 1984, pg 10). While the impacts of anthropogenic 

climate change were not thoroughly recognized in the mid-80s, landscape ecology 

rightly galvanised upon the two decades prior of environmental action within both the 

United States and Canada. In the 1970s, the United States had celebrated its first 

Earth Day with bipartisan support (Beyl 1992), and North America saw the 

establishment of paramount environmental regulators and researchers, including the 

United States Environmental Protection Agency and the Canada Centre for Inland 

Waters (Beyl 1992). It was on this society-wide goal to improve the state of the 
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natural environment (Flippen 2000) that landscape ecology brought together broad 

interdisciplinary expertise.  

As with any science, it is known that differing expertise permits the ability for 

different interpretations of the data one has in front of them (Bammer et al. 2020; 

National Academy of Sciences and National Academy of Engineering & Institute of 

Medicine 2005). Indeed, addressing complex environmental issues requires the 

collective expertise of multiple disciplines and lived experiences among individuals, 

as it is this diversity that allows for a more comprehensive framing of ecological 

systems, and thus, more accurate interpretations of ecological phenomena (National 

Resources Council 2001). Understanding this, landscape ecologists held that there 

need be a standard for all intellectual development in the field, where any hypothesis 

must “withstand the scrutiny of interest groups and be generalizable over large 

geographic areas” (Rissler et al. 1984, pg 10). This initial effort can be directly linked 

to the many studies to date which support (1) the link between ecological processes 

and the resulting landscape patterns (reviewed in Wiersma 2022), in addition to (2) 

general trends in metric behaviour (Bogaert 2003; Cardille et al. 2005; Cushman et 

al. 2008; Fortin et al. 2003; Hargis et al. 1998; Neel et al. 2004; Tischendorf 2001; 

Wu et al. 2002).  

I harken back to this with the intent of showing the value that cross-

disciplinary expertise brought to landscape ecology. It evidences the importance of 

widespread data to support the claims on which we continue in the pursuit of 

knowledge within this field. Even broadly, to support any scientific advancement, all 

theories must be subject to “ultimate destruction when it is proven wrong, or to 

logically justified acceptance when finally [they are] vindicated by facts” (Opik 1977). 

In 2008, Wiens’ review of Allerton Park embodies this notion, as he argues the 

landscape ecologists of today often use general principles, despite how the 

ecological “complexities and contingencies of landscapes make generalisation 

difficult” (2008, pg 128). To ‘course correct’ the field, Wiens (2008) suggested that 

with the diverse expertise in modern landscape ecology, landscape ecologists 

should instead return to “develop[ing] contingent principles and theories, [in addition 

to] ideas that may apply to a suite of landscapes that share common features or to 

particular domains of scale, but not more generally” (2008, pg 128). Beyond 



 

61 

landscape ecology, the value of trans-disciplinarity is not unique; rather, it echoes a 

broader historical lineage of intellectual development in natural science research, 

such as in the field of limnology.  

3.4 Parallels to Modern Limnology at Lac Leman, Switzerland 

 At the first meeting for limnology (Internationale Vereinigung für Limnologiae) 

in 1922, August Thienneman convened a variety of scientists, where he proposed 

Archiv für Hydrobiologie, a unified journal to publish on limnological studies (Berg 

1950). On Hydrobiologie, Thienneman served as sole editor for 40 years (Berg 

1950). Under his aegis, the discipline examined lakes as closed, simplified 

structures; it was the perspective that lakes are readily comprehensible and 

understandable in isolation to their surrounding watersheds (Berg 1950). At the time, 

in post WWI Europe, Thienneman’s observations were based solely on a few lakes 

in Germany, on which he then concluded generality to all freshwater lakes. It was 

later that multi-decadal observations of inland lakes in the Laurentian Great Lakes 

basin (Birge and Juday 1934), as synthesised by Evelyn G. Hutchinson, showed that 

lakes varied extensively. As Hutchinson’s analysis suggested, lakes were not closed, 

generalizable systems; rather, they were intrinsically linked to the surrounding 

watersheds’ morphology, geology, and climate which drives site-specific differences 

among lakes (Hutchinson 1957-1993). Through Birge and Juday’s data, and the 

collective expertise of chemists, biologists, bacteriologists, physicists, and 

instrument-makers that Hutchinson pulled together to analyse their lake observations 

(Kalff 2002), the original paradigm of lake classifications was rejected, and modern 

limnology emerged. Hutchinson’s work was exemplary for how it crossed not just 

disciplines, but cultures, levels of formal education, class, and gender as to build 

upon a foundation that was strong enough to incorporate all authentic knowledges of 

limnological work prior (Carpenter 1924; Merrill 1893; Monti 1929; Patrick 1948).  

Consequently, much of the effort that had gone into advancing limnological 

studies under Thienneman’s editorship of Hydrobiologie became irrelevant, as all 

research published in this journal had to vociferously subscribe to his general 

assumptions about lakes (Berg 1950). It is only in the re-establishment of “modern” 

limnology, that Hutchinson re-centred dialogue on how individual lakes is uniquely, 
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and comprehensively, affected from organism-level traits up to broad scale 

atmospheric conditions (Hutchinson 1957-1993). Hutchinson argued that (1) 

simplistic classifications of ecological processes were not enough, and that (2) 

individuals cannot examine an ecological system in isolation of other elements of 

their biotic and abiotic system(s) (Hutchinson 1957). Concomitantly to Hutchinson’s 

reorganisation of limnology, his student, Jack Vallentyne, had pleaded with 

Thienneman’s contemporaries to not just get fascinated by what a given organism 

can do, but go in, and deeply understand the notions of biology, chemistry, and 

physics which constitute pelagic systems (1957). To do so, would warrant 

tremendous interdisciplinary expertise. Vallentyne (1957) argued something as 

simple as water’s physics and chemistry are often the last study for the limnologists, 

as “the beginning student is attracted by the diversity of aquatic life: the whirligig 

beetles, bottom living insects, fish and other fantastic forms of life” (1957, pg 218).  

While this narrative serves to illustrate the complexity of ecological systems, it 

also emphasises the need for transdisciplinary expertise and contexts, as it was 

similarly expressed in the foundational meeting for landscape ecology. While the 

peer-based critique of scientists who fail to comprehensively frame ecological 

systems is both necessary and just, this could be avoided through transdisciplinary 

science. It is the collective expertise and diverse contexts that individuals bring to 

environmental science inquiries that historically permitted a more accurate 

understanding of ecological phenomena and improved the environmental-relevance 

of all research (Likens 2001; Lindenmeyer et al. 2012; Wetzel and Likens 2000). It is 

for this reason, over the last 40 years, some landscape ecologists have returned to 

the notions of Allerton Park and Wiens’ critique, arguing how an integrative field like 

landscape ecology requisites trans-disciplinarity (Brandt 2000; Field et al. 2003; 

Hobbs 1997; Nassauer 1995; Naveh 1978; Termorshuizen and Opdam 2009; Turner 

1987; Wu 2021). It is apt that many sources reference Jantsch’s (1970, 1972) 

definition of multidisciplinary, who was a classically trained astrophysicist.  

3.5 Future Research on Landscape Metric Behaviour 

Herein, we discuss several future research directions in landscape metric 

behaviour. Firstly, as the results do not support generalised trends in landscape 
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behaviour, it is rightly suspect that past assumptions of landscape metrics be re-

validated with greater amounts of evidence. Leveraging cloud-computing 

technologies, we have shown that there is sufficient capability to calculate landscape 

metric scores across North America; this could be scaled up to a global assessment. 

Indeed, evaluating landscape metric behaviour in this way would contribute to the 

development of “contingent principles and theories” of metric responses to 

geographic location and varying scale parameters (Wiens 2008, pg 128).  

Secondly, work should continue to return to the many unaddressed gaps in 

metric behaviour, posited by landscape ecologists over the last 20+ years (reviewed 

in Gustafson 1998, 2019). For example, this would include a more comprehensive 

assessment of response of scaling trends among landscape-metric scores in 

response to different (1) temporal scales (over time), (2) spatial scales (i.e., different 

sizes of the landscape analysis window), (3) pixel sizes (i.e., the size of pixels used 

in land cover classifications), in addition to (4) thematic scales (how many land cover 

categories are used). Moreover, we argue these impacts of scale should be tested 

concurrently, rather than independently. To date, the behaviour of a metric 

responses to scale is often measured by only one of these criteria (Bailey et al. 

2007; Du et al. 2006; González-Moreno et al. 2013; Moreno-De Las et al. 2011; 

Obeysekera and Rutchey 1997). Singly assessing scale knowingly reduces 

ecological complexity: for instance, if changing the spatial extent of observations, 

larger landscapes may exhibit different responses to resolution than smaller 

landscapes. In support, Holland et al. (2004) noted how “often little or nothing is 

known about the scales at which a species responds to structural characteristics of 

its environment”, which has consequences not only for “the effectiveness of study 

designs,” but on the then-inferred dynamics of the ecological processes which we 

are potentially misrepresenting (2004, pg 228). Devising a means to assess the 

interactive effects of multiple scale parameters on a metric score may improve the 

environmental-representativeness of both landscape metric validation studies and 

other landscape ecology studies generally (Bissonnette 2019; Frazier et al. 2014).   

Third, it is hoped future research of patterns in real landscapes can elucidate 

how classification error relates to landscape metric results. Classification error 

remains a fundamental issue in ascertaining the predictor of a landscape metric 
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score (Hess 1994; Lechner et al. 2012). For instance, if a practitioner had two 

images of the same landscape with different producers' accuracies (i.e., the reported 

accuracy of land cover map as validated through external observations), it is likely 

classifications within these two land cover maps would be different. As a product of 

this difference, we would expect landscape metric scores to vary. However, we do 

not have the ability, from either of these images, to discern the true, “accurate” 

signals from a landscape. If we could evaluate the impact of increasing or 

decreasing producers’ classification accuracy on landscape metrics, we may be able 

to better understand how much error responses are subject to. It is with these 

classifications (derived from remote-sensing practitioners) and real landscape 

observations (from conservation ecologists and local knowledge keepers who are 

boots-on-the-ground), constituting a transdisciplinary knowledge, that we may 

discern real signals in a landscape from scores influenced by classification error. 

This reduction of noise remains a prominent focus in remote sensing, and thus 

should be further examined in landscape ecology as landscape composition and 

configuration metrics ultimately derive their meaning from remotely-sensed imagery 

products (Cardille and Fortin 2016; Lee et al. 2018).  

3.6 Towards an Interdisciplinary and Data-driven Landscape Ecology 

To reiterate, metrics are increasingly utilised in both local and international 

sustainability policies. While general trends have lent confidence to interpreting 

scores, if wrong, the consequences may undermine the effectiveness of current 

adaptation and mitigation strategies to Western-initiated anthropogenic climate 

change. If any practitioner is to rely on a score, derived from a land cover map, 

which is a product of a specific image acquisition period, it is important for them to 

know if that score is something frequent and within a range of reasonable 

expectation or not. If a score is unexpected, this could indicate change in a 

landscape, which should be evaluated, with a broad interdisciplinary expertise, as to 

assess how this landscape change may affect ecological processes. However, 

practitioners are currently operating without this requisite understanding to determine 

what is expected, in addition to what is a real signal or a product of noise within our 

image classifications. Through these proposed future research directions, we 

acknowledge that ensuring the reliability of these metrics is not just crucial, but also 
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attainable if we return to the discipline's data-driven multi-disciplinarity. I cannot 

underscore enough the importance of continued dialogue, across disciplines, to 

ensure ecological processes are sufficiently and accurately captured in landscape 

metric scores, so that they may be relied upon for local-to-international sustainability 

strategies. Larger than landscape metrics, the success of our efforts to confront 

climate change will depend on our ability to genuinely embrace a transdisciplinary 

approach, to leverage the collective expertise and perspectives of diverse 

individuals, and to remain committed to the pursuit of scientific inquiry that is both 

data-driven and multidisciplinary in nature.   
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4. Conclusion 

This thesis seeks to contribute to the growing body of knowledge of landscape 

metrics’ behaviour in real landscapes. Ideally, we also hope to provide information 

that can situate the statistical context of landscape metrics to the many practitioners, 

conservation ecologists, land-managers, and policy makers, both expert and non-

expert, who employ these tools extensively. In 1.2 Literature Review, I reviewed the 

foundations on which landscape ecology sits in ecology and biology, the current 

assumptions of the discipline, past validation studies, as well as the many local 

through international uses of landscape metrics towards past and current 

conservation mandates. In Chapter 2, I put forward a novel landscape metric 

validation study, which aimed to address several gaps in knowledge of landscape 

metric behaviour. These include (1) the expected ranges of values for metrics in real 

landscapes, (2) metric variability in a given landscape, (3) the consistency of that 

variability across many landscapes, (4) the distributions which may typify metric 

responses, and (5) how often a score can be significantly predicted by seasonality. 

In all dimensions of statistical context, the results do not support that generalizable 

trends in landscape metrics always exist. Beyond epistemological development, I 

hope these results provide real information to practitioners, in which they can use to 

determine suitable metrics for use and interpret scores with. In the section      

3. Discussion, I discuss some of the broad and implicit assumptions of landscape 

ecology, in addition to the 20+ years long critiques of landscape ecology and the 

near century-long critiques in the study of ecology. In this chapter, I draw a parallel 

between the origins of landscape ecology at Allerton Park, in Illinois (USA) and 

limnology on the shores of Lac Leman (Switzerland). I do so with the intention of 

discussing the importance of transdisciplinary expertise to the root of many 

environmental scientific endeavours, and the value it may bring now to assessing 

whether landscape metrics are reliable. More, I discuss facets of western scientific 

advancement including the sufficient burden of evidence, the importance of 

questioning our underlying assumptions, and the holism of environmental factors 

which influence a metric’s score. This section ends on future research directions 

particularly in landscape metric validation studies, considering the work previously 

done, as conducted in this thesis, and the gaps in knowledge that practitioners 
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believe remain unresolved. It is on the rigorous foundations of knowledge about how 

metrics measure and respond to landscapes, that we may make more 

environmentally-representative and significant decisions to preserve land, restore 

biodiversity, and wholly fight against the effects our self-initiated anthropogenic 

climate change on human and natural environments alike. 
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6. Supplemental Information 

6.1 Procedure to Remove Misclassified Images 

As we visually screened all landscapes, and their image collections, we could 

see where the land cover classification was abnormal. Upon examination of 

abnormal instances, the near real time land cover product, Dynamic World (Brown et 

al. 2022), had misclassified several pixels as snow and ice, even in the middle of a 

growing season. Firstly, we manually verified the temperature normal for each of 

these days using climate data from governmental institutions pertaining to each 

landscape. We subsequently examined the corresponding true-colour Sentinel-2 

image on which that land cover map was derived. In all cases, the presence of 

normal climatology data and the visible presence of clouds suggested these 

instances were relict clouds cover or haze that was were not removed by (1) 

Dynamic World’s cloud masking algorithm, or (2) our filtering of Sentinel-2’s Cloud 

Probability and Cloud Cover Band (‘QA60’) metadata.  

Methodically, these outliers were removed for each landscape, using the 

median absolute deviation (MAD). The MAD approach avoids the influence of 

outliers on the measure of dispersion and does not assume a normal distribution 

among the data. The MAD identifies outlying observations through calculating the 

median absolute deviance from the difference of all given values and the median 

(Rindskopf and Shiyko 2010). For each metric, in each landscape, if observations 

were greater than or less than three times the median absolute deviation from the 

median, they were labelled as an outlier. These instances were all manually verified 

as instances where the scene consisted of snow and ice land cover and were 

subsequently removed from the time series.  
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6.2 Supplemental Figures 

Figure 6.1 Aggregate frequency distributions for all landscape-level metrics.  
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6.3 Supplemental Tables 

Table 6.1 Landscape metrics’ aggregate central tendency, range, variance for all 
observations (n = 108, 922). 

Landscape-
level metric 

Summary Statistics 
 

 

Minimum 
  

Maximum 
  

Median 
  

Median absolute 
deviation (MAD) 

Coefficient of 
variation (CV) 

ai 91.03 100.00 97.59 1.01 72.18 

area_cv 141.18 2.40E+03 1.13E+03 213.07 3.75 

area_mn 0.00 0.00 0.00 0.00 0.22 

area_sd 0.00 0.00 0.00 0.00 1.17 

cai_cv 19.36 198.36 113.22 10.08 6.92 

cai_mn 11.45 99.31 27.28 3.08 5.20 

cai_sd 16.91 70.22 30.67 1.07 15.83 

circle_cv 11.10 52.04 25.42 0.77 18.91 

circle_mn 0.37 0.70 0.56 0.01 29.58 

circle_sd 0.05 0.27 0.14 0.01 15.13 

cohesion 97.58 100.00 99.64 0.14 357.52 

condent 0.00 0.68 0.23 0.09 2.02 

contag 38.80 99.99 74.80 7.55 7.27 

contig_cv 7.53 137.70 57.49 3.47 10.00 

contig_mn 0.37 1.00 0.53 0.03 11.49 

contig_sd 0.07 0.55 0.30 0.01 21.87 

core_cv 141.24 2.63E+03 1.17E+03 222.90 3.70 

core_mn 0.00 0.00 0.00 0.00 0.22 

core_sd 0.00 0.00 0.00 0.00 1.13 

dcad 3.64E+08 5.54E+11 1.01E+11 4.25E+10 1.67 

dcore_cv 0.00 583.76 139.56 27.72 2.83 

dcore_mn 0.31 2.00 0.74 0.04 11.77 

dcore_sd 0.00 4.44 1.04 0.21 2.84 

division 0.00 0.98 0.55 0.23 1.94 

ed 0.00 2.04E+07 5.68E+06 2.31E+06 1.89 

enn_cv 72.35 578.16 196.90 26.59 4.64 

enn_mn 0.00 0.01 0.00 0.00 2.06 

enn_sd 0.00 0.02 0.00 0.00 2.08 

ent 0.00 2.77 1.26 0.39 2.27 

frac_cv 0.21 9.07 5.49 0.35 8.25 

frac_mn 0.90 1.00 0.96 0.00 221.90 

frac_sd 0.00 0.09 0.05 0.00 8.40 

gyrate_cv 132.73 545.83 293.82 33.29 5.92 

gyrate_mn 0.00 0.02 0.00 0.00 1.01 

gyrate_sd 0.00 0.01 0.00 0.00 2.17 

iji 1.76 98.92 58.15 7.65 4.34 

joinent 0.00 3.42 1.50 0.47 2.26 
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lpi 4.93 100.00 65.71 19.54 2.67 

lsi 1.00 27.35 8.24 2.95 2.14 

mesh 0.00 0.00 0.00 0.00 1.79 

msidi 0.00 1.79 0.63 0.29 1.70 

msiei 0.00 0.98 0.31 0.14 1.74 

mutinf 0.00 2.19 1.02 0.32 2.27 

ndca 1.00 1.48E+03 261.00 111.00 1.66 

np 1.00 2.07E+03 350.00 149.00 1.65 

pafrac 1.00 1.31 1.22 0.02 39.44 

para_cv 48.73 163.11 70.68 4.05 10.38 

para_mn 76.90 2.62E+04 1.89E+04 1.19E+03 9.59 

para_sd 2.79E+03 2.31E+04 1.32E+04 3.56E+02 19.18 

pd 3.64E+08 7.99E+11 1.35E+11 5.73E+10 1.66 

pladj 90.67 99.83 97.27 1.04 70.08 

pr 1.00 9.00 8.00 1.00 6.37 

prd 3.64E+08 3.84E+09 2.99E+09 2.55E+08 6.23 

relmutinf 0.05 1.00 0.81 0.03 20.58 

shape_cv 128.17 1.39E+03 580.06 100.54 4.03 

shape_mn 0.00 0.05 0.00 0.00 1.83 

shape_sd 0.00 0.04 0.01 0.00 3.47 

shdi 0.00 1.92 0.88 0.27 2.28 

shei 0.00 0.99 0.43 0.13 2.38 

sidi 0.00 0.83 0.47 0.15 2.14 

siei 0.00 0.99 0.54 0.17 2.16 

split 1.00 61.38 2.23 0.97 0.87 

ta 0.00 0.00 0.00 0.00 31.52 

tca 0.00 0.00 0.00 0.00 20.39 

te 0.00 5.45 1.47 0.60 1.88 
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Table 6.2 Landscape metrics’ variability and the consistency in variability, across all 
landscapes (N= 680).   

Landscape-
level metric 

Summary Statistics 
 

 
Median Coefficient 

of variation (CV) 
Average CV 

 
Standard 

Deviation (SD) 
Coefficient of Quartile 

Deviation (CQD) 

ai                0.01* 0.01 0.00 0.44t 

area_cv                0.14 0.15 0.08 0.36 t 

area_mn                0.22 0.40 0.75 0.37 t 

area_sd                0.22 0.28 0.28 0.44 t 

cai_cv                0.07* 0.08 0.03 0.23 t 

cai_mn                0.09* 0.11 0.06 0.23 t 

cai_sd                0.03* 0.04 0.02 0.26 t 

circle_cv                0.03* 0.03 0.01 0.21 t 

circle_mn                0.02* 0.02 0.01 0.20 t 

circle_sd                0.03* 0.04 0.02 0.21 t 

cohesion                0.00* 0.00 0.00                0.57 

condent                0.15 0.21 0.18 0.46 t 

contag                0.04* 0.05 0.03 0.45 t 

contig_cv                0.06* 0.06 0.03 0.23 t 

contig_mn                0.04* 0.05 0.02 0.21 t 

contig_sd                0.03* 0.03 0.02 0.24 t 

core_cv                0.14 0.15 0.08 0.35 t 

core_mn                0.24 0.41 0.77 0.38 t 

core_sd                0.23 0.28 0.29 0.45 t 

dcad                0.23 0.28 0.21 0.38 t 

dcore_cv                0.16 0.18 0.09 0.32 t 

dcore_mn                0.06* 0.06 0.02 0.19 t 

dcore_sd                0.17 0.19 0.09 0.30 t 

division                0.16 0.22 0.23                0.53  

ed                0.17 0.23 0.20 0.45 t 

enn_cv                0.14 0.15 0.05 0.20 t 

enn_mn                0.17 0.20 0.12 0.30 t 

enn_sd                0.23 0.25 0.10 0.21 t 

ent                0.12 0.17 0.16 0.48 t 

frac_cv                0.05* 0.06 0.03 0.28 t 

frac_mn                0.00* 0.00 0.00 0.22 t 

frac_sd                0.05* 0.06 0.03 0.29 t 

gyrate_cv                               0.06* 0.07 0.03 0.30 t 

gyrate_mn                               0.10* 0.17 0.36 0.28 t 

gyrate_sd                0.11 0.14 0.14 0.32 t 

iji                0.10* 0.12 0.08 0.32 t 

joinent                0.13 0.17 0.16 0.48 t 

lpi                0.15 0.18 0.14                0.61 

lsi                0.15 0.19 0.14 0.45 t 
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mesh                0.24 0.27 0.20                0.55 

msidi                0.18 0.25 0.25                0.52 

msiei                0.17 0.25 0.24                0.51 

mutinf                0.12 0.16 0.16 0.49 t 

ndca                0.23 0.28 0.21 0.38 t 

np                0.23 0.29 0.21 0.36 t 

pafrac                0.01* 0.01 0.01 0.29 t 

para_cv                0.05* 0.05 0.02 0.23 t 

para_mn                0.05* 0.06 0.03 0.25 t 

para_sd                0.03* 0.04 0.02 0.23 t 

pd                0.23 0.29 0.21 0.36 t 

pladj                0.01* 0.01 0.00 0.44 t 

pr                0.08* 0.09 0.04 0.26 t 

prd                               0.08* 0.09 0.04 0.26 t 

relmutinf                0.02* 0.02 0.01 0.35 t 

shape_cv                0.13 0.13 0.07 0.36 t 

shape_mn                0.11 0.15 0.23 0.26 t 

shape_sd                0.14 0.15 0.07 0.31 t 

shdi                0.12 0.17 0.16 0.48 t 

shei                0.12 0.16 0.15 0.46 t 

sidi                0.13 0.19 0.20                0.58   

siei                0.12 0.19 0.20                0.58 

split                0.31 0.38 0.30                0.59 

ta                0.00* 0.00 0.00                0.53 

tca                0.02* 0.02 0.01 0.44 t 

te                0.17 0.23 0.20 0.45 t 

 
* Metrics with a median CV less than 0.1 are considered low variability, on aggregate 
t  Metrics with a Coefficient of Quartile Deviation (CQD) less than 0.5 are considered 
consistent in their variability across landscapes.  
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Table 6.3 Landscape metrics arranged according to how often they were best 
predicted by different frequency distribution types (N= 680).  

Landscap
e-level 
metric 

Distribution Type 
  

 Binomial  Gamma  Gaussian  

Inverse 
gaussian 

Negative 
binomial Poisson  Tweedie  

% 
Fit 

ai - - - 680 - - - 100 

area_cv - - - 679 1 - - 100 

area_mn - - 3 - - - - 0.44 

area_sd - - 54 2 - - 1 8.38 

cai_cv - - - 679 1 - - 100 

cai_mn - - - 680 - - - 100 

cai_sd - - - 679 1 - - 100 

circle_cv - - - 679 1 - - 100 

circle_mn - - 680 - - - - 100 

circle_sd - - 680 - - - - 100 

cohesion - - - 680 - - - 100 

condent - - 680 - - - - 100 

contag - - - 679 1 - - 100 

contig_cv - - - 680 - - - 100 

contig_mn - - 673 - 7 - - 100 

contig_sd - - 680 - - - - 100 

core_cv - - - 680 - - - 100 

core_mn - - 3 - - - - 0.44 

core_sd - - 55 2 - - 1 8.53 

dcad - - - 678 - 2 - 100 

dcore_cv - - - 676 4 - - 100 

dcore_mn - - 3 - 677 - - 100 

dcore_sd - - 2 33 645 - - 100 

division - - 375 - 305 - - 100 

ed - - - 674 5 1 - 100 

enn_cv - - - 676 3 - - 
99.8

5 

enn_mn - - 678 - - 1 - 
99.8

5 

enn_sd 1 - 677 - - - - 
99.7

1 

ent - - 67 180 433 - - 100 

frac_cv - - - 680 - - - 100 

frac_mn - - 3 - 677 - - 100 

frac_sd - - 680 - - - - 100 

gyrate_cv - - - 680 - - - 100 

gyrate_mn - - 680 - - - - 100 

gyrate_sd - - 680 - - - - 100 

iji - - - 679 1 - - 100 



 

91 

joinent - - 48 317 315 - - 100 

lpi - - - 680 - - - 100 

lsi - - - 678 2 - - 100 

mesh 18 1 595 - - - - 
90.2

9 

msidi - - 312 - 368 - - 100 

msiei - - 664 - 16 - - 100 

mutinf - - 105 44 530 - 1 100 

ndca - - - 680 - - - 100 

np - - - 679 1 - - 100 

pafrac - - - 2 678 - - 100 

para_cv - - - 680 - - - 100 

para_mn - - - 679 1 - - 100 

para_sd - - - 679 1 - - 100 

pd - - - 678 - 2 - 100 

pladj - - - 680 - - - 100 

pr 2 - - 185 493 - - 100 

prd - - - 381 297 2 - 100 

relmutinf - - 4 - 676 - - 100 

shape_cv - - - 679 1 - - 100 

shape_mn - - 680 - - - - 100 

shape_sd - - 680 - - - - 100 

shdi - - 141 6 533 - - 100 

shei - - 599 - 81 - - 100 

sidi - - 562 - 118 - - 100 

siei - - 450 - 230 - - 100 

split - - - 500 180 - - 100 

ta - - - - - - - 0 

tca 114 - 260 - - - - 55 

te - - 49 348 283 - - 100 
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Table 6.4 Landscape metrics according to their model fit, derived from the lowest 
Bayesian Information Criterion value per the Generalised Linear Models for all 
landscapes (N= 680). Studentized residuals are computed at a >=1.96 threshold. 

Landscape-
level metric Best-fit Function Types  

 

CDF 
Link Log  Identity  

Inverse
-power 

Inverse-
squared Power  %fit  

Average % 
obs. as 
studentized 
residuals 

ai - 72 - 4 297 11 56 1.50 

area_cv - 361 - - 204 - 83 14.29* 

area_mn - 1 1 - - 1 0 3.44 

area_sd - 2 22 - 2 2 4 3.60 

cai_cv - 119 - 3 165 - 42 2.60 

cai_mn - 187 - - 115 - 44 2.96 

cai_sd - 147 - 1 168 - 46 2.16 

circle_cv - 94 - 5 135 - 34 2.20 

circle_mn - 30 146 145 - - 47 2.41 

circle_sd - 127 114 59 - 3 45 2.39 

cohesion - 28 - 8 281 32 51 1.36 

condent - 78 131 165 - 4 56 3.06 

contag - 184 - 1 145 - 49 1.89 

contig_cv - 77 - 5 138 1 33 2.15 

contig_mn - 46 145 82 - 1 40 2.87 

contig_sd - 59 62 28 - - 22 2.11 

core_cv - 363 - - 200 - 83 14.63* 

core_mn - 1 1 - - 1 0 3.44 

core_sd - 2 22 - 2 2 4 3.66 

dcad - 106 - 13 230 - 51 3.65 

dcore_cv - 248 - - 114 - 53 10.21* 

dcore_mn - 20 82 53 - 2 23 2.55 

dcore_sd - 99 29 49 39 1 32 3.55 

division - 51 180 142 - 6 56 2.31 

ed - 184 1 11 212 - 60 6.26* 

enn_cv - 256 - - 84 - 50 10.94* 

enn_mn - 51 113 72 1 10 36 2.81 

enn_sd - 34 82 79 - 8 30 3.05 

ent - 105 57 46 166 2 55 2.84 

frac_cv - 173 - 1 122 - 44 2.45 

frac_mn - 126 73 62 2 - 39 2.16 

frac_sd - 113 158 30 - 5 45 2.53 

gyrate_cv - 212 - 2 135 1 51 3.90 

gyrate_mn - 106 135 51 - 6 44 3.04 

gyrate_sd - 95 200 61 - 6 53 2.50 
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iji - 123 - 11 189 - 48 2.94 

joinent - 122 37 28 187 6 56 2.98 

lpi - 231 - 4 159 - 58 3.42 

lsi - 176 - 16 186 - 56 3.41 

mesh - 22 312 1 - 12 51 2.42 

msidi - 65 127 132 39 8 55 2.69 

msiei - 73 155 135 - 6 54 2.62 

mutinf - 78 84 65 140 4 55 2.56 

ndca - 337 - - 186 - 77 12.08* 

np - 352 - 1 204 - 82 13.38* 

pafrac - 145 - 2 192 2 50 2.75 

para_cv - 148 - 1 144 - 43 2.81 

para_mn - 411 - - 180 1 87 22.51* 

para_sd - 389 - - 100 1 72 22.78* 

pd - 97 - 21 254 1 55 3.19 

pladj - 74 - 3 297 13 57 1.51 

pr - 20 - 5 60 - 13 2.41 

prd 2 32 - 5 93 - 19 7.33 

relmutinf - 33 166 152 - 1 52 1.75 

shape_cv - 340 - - 151 - 72 12.70* 

shape_mn - 96 181 37 - 9 48 2.97 

shape_sd - 89 204 40 - 11 51 2.74 

shdi - 64 98 102 107 6 55 2.82 

shei - 55 138 148 - 3 51 2.62 

sidi - 63 145 160 - 7 55 2.34 

siei - 59 157 148 - 6 54 2.22 

split - 189 - 8 166 1 54 3.35 

tca - 21 97 1 - - 18 1.18 

te - 125 53 35 161 5 56 3.27 

* Metrics with greater than 5% of observations as significant studentized residuals, 
on average, invalidate the 95% confidence interval of a Student’s t-test.  

 

 

 

 

 

 


