
Representation Learning for Vulnerability

Detection on Assembly Code

Ashita Diwan

School of Computer Science

McGill University, Montreal

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science in Computer Science

©Ashita Diwan, 2021

Abstract

Software vulnerability detection is one of the most challenging tasks faced by re-

verse engineers. Recently, vulnerability detection has received a lot of attention

due to a drastic increase in the volume and complexity of software. Reverse en-

gineering is a time-consuming and labor-intensive process for detecting malware

and software vulnerabilities. However, with the advent of deep learning and ma-

chine learning, it has become possible for researchers to automate the process of

identifying potential security breaches in software by developing more intelligent

technologies. This has indeed opened a new paradigm for researchers in the area of

software security, and it has helped to alleviate the cumbersome process of reverse

engineering. In this research, we propose VDGraph2Vec, an automated deep learn-

ing method to generate representations of assembly code for the task of vulnerabil-

ity detection. Previous approaches failed to attend to topological characteristics of

assembly code while discovering the weakness in the software. VDGraph2Vec em-

beds the control flow and semantic information of assembly code efficiently using

the expressive capabilities of message passing neural networks and the RoBERTa

i

model. Our model is able to learn the important features that help distinguish

between vulnerable and non-vulnerable software. We carry out our experimental

analysis for performance benchmark on three of the most common weaknesses and

demonstrate that our model can identify vulnerabilities with high accuracy and

outperforms the current state-of-the-art binary vulnerability detection models.

ii

Abrégé

La détection des vulnérabilités logicielles est l’une des tâches les plus difficiles

auxquelles sont confrontés les ingénieurs inverses. Récemment, la détection de

vulnérabilités a reçu beaucoup d’attention en raison de l’augmentation drastique

du volume et de la complexité des logiciels. L’ingénierie inverse est un processus

long et laborieux pour détecter les logiciels malveillants et les vulnérabilités logi-

cielles. Cependant, avec l’avènement de l’apprentissage profond et de l’apprentissage

automatique, il est devenu possible pour les chercheurs d’automatiser le processus

d’identification des failles de sécurité potentielles dans les logiciels en développant

des technologies plus intelligentes. Cela a effectivement ouvert un nouveau paradigme

pour les chercheurs dans le domaine de la sécurité logicielle, et cela a permis

d’alléger le processus lourd de l’ingénierie inverse. Dans cette recherche, nous

proposons VDGraph2Vec, une méthode d’apprentissage profond automatisé pour

générer des représentations de codes assembleurs pour la tâche de détection de

vulnérabilité. Les approches précédentes ne tenaient pas compte des caractéristiques

topologiques des codes assembleurs lors de la découverte des faiblesses du logi-

iii

ciel. VDGraph2Vec intègre efficacement le flux de contrôle et les informations

sémantiques des codes assembleurs en utilisant les capacités expressives des réseaux

de neurones à passage de messages et le modèle RoBERTa. Notre modèle est capa-

ble d’apprendre les caractéristiques importantes qui permettent de distinguer les

logiciels vulnérables des logiciels non vulnérables. Nous effectuons notre analyse

expérimentale pour une comparaison de performance sur trois des faiblesses les

plus courantes et nous montrons que notre modèle peut identifier les vulnérabilités

avec une grande précision et qu’il surpasse les modèles binaires de détection des

vulnérabilités actuellement à la pointe de la technologie.

iv

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor,

Prof. Benjamin Fung, for his invaluable contributions and generous suggestions

during the research. I appreciate his kindness, patience, and the amount of time

he spent to provide his insightful feedback. I feel privileged and honoured to have

worked under him, and to be part of the Data Mining and Security (DMaS) lab.

I am immensely grateful to Miles Li and Prof. Steven Ding for guiding me at each

step with their abundant pool of knowledge and expertise in the topic. I would also

like to thank Guillaume Breyton for helping me with the French abstract, and all my

colleagues in the DMaS lab for the fruitful discussions in our weekly meetings.

Last but not least, I would like to specially thank my family and friends for their

unconditional love and support. They kept me motivated throughout my research,

especially during the pandemic.

v

Contents

Abstract . i

Abrégé . iii

Acknowledgements . v

List of Figures . x

List of Tables . xii

1 Introduction 1

2 Related Work 6

2.1 Vulnerability Detection . 6

2.2 Source Code Representation . 9

2.3 Assembly Code Representation . 10

3 Problem Description 14

4 Graph-based Assembly Code Representation Learning for Vulnerability

Detection 17

vi

4.1 Preliminaries . 17

4.2 Graph Neural Networks . 20

4.2.1 Node embeddings . 21

4.2.2 Message Passing Neural Networks 27

4.2.3 Graph Convolutional Network 29

4.2.4 Gated Graph Neural Networks 31

4.3 Word Embeddings . 36

4.3.1 Word2Vec . 37

4.3.2 Transformer . 39

4.3.3 RoBERTa . 43

4.4 VDGraph2Vec . 47

5 Experiments 51

5.1 Data Preparation . 52

5.2 Evaluation Metrics . 54

5.3 Models for Comparison . 57

5.4 Results and Analysis . 59

6 Conclusion and Future Work 64

vii

List of Figures

3.1 Workflow of our VDGraph2Vec model. 15

3.2 Vulnerability detection as a binary classification problem. 16

4.1 Extraction of CFG and its preprocessing using angr. 18

4.2 The concept of defining the encoding function for node embeddings

such that neighboring nodes in a graph have their feature vectors

close to one another in the d-dimensional space as well. 22

4.3 A 2-layer message aggregation in an MPNN framework. It provides

an overview of how a single node aggregates messages from its local

neighborhood. 28

4.4 Difference in the architectures of the LSTM and GRU cells. LSTM

uses an additional cell state, whereas GRU uses only the hidden states. 32

4.5 The architecture of an LSTM cell. 34

4.6 The architecture of a GRU cell. 35

viii

4.7 Architecture of the Word2Vec models. The CBOW architecture pre-

dicts the target word based on the context, and the Skip-gram pre-

dicts surrounding words given the target word. 38

4.8 Transformer architecture. 40

4.9 Scaled dot-product attention. 42

4.10 Multi-head attention. 43

4.11 Pre-training the BERT model. 45

4.12 Architecture of the RoBERTa model with its stacked encoders. 46

4.13 An example of a control flow graph created using angr for the en-

tire binary file. We connect the edges between the basic blocks of

functions that call one another. 48

4.14 Architecture of the VDGraph2Vec model. The first part of the model

captures the initial node embeddings using the RoBERTa model.

These embeddings are fed to the message passing neural network

that further enhances the representations for each node by aggregat-

ing the messages from its neighbors. Lastly, the final node embed-

dings are passed through the readout layer to generate the graph

embedding for the entire control graph of the assembly code. 50

5.1 Average number of nodes in the datasets. 53

5.2 Average number of edges in the datasets. 54

ix

5.3 Confusion matrix depicting how to find TP, FP, FN, and TN from the

actual and predicted values for the task of binary classification. For

vulnerability detection, FN is more critical than FP since we want

the models to not misclassify any vulnerable cases. 55

5.4 Example of a vulnerable and non-vulnerable sample from CWE-121. 63

x

List of Tables

5.1 Statistics of our datasets used for the empirical analysis. 54

5.2 Different set of hyper-parameter settings used our model. 57

5.3 Vulnerability detection results on CWE-121 (Juliet Test Suite). ∗ de-

notes the performance of our proposed model, VDGraph2Vec. • and

◦ respectively denote whether the difference in accuracy between

VDGraph2Vec and baseline models is statistically significant or not. . 60

5.4 Vulnerability detection results on CWE-190 (Juliet Test Suite). ∗ de-

notes the performance of our proposed model, VDGraph2Vec. • and

◦ respectively denote whether the difference in accuracy between

VDGraph2Vec-GGNN and baseline models is statistically significant

or not. 61

xi

5.5 Vulnerability detection results on CWE-119 (NDSS dataset). ∗ de-

notes the performance of our proposed model, VDGraph2Vec. • and

◦ respectively denote whether the difference in accuracy between

VDGraph2Vec-GGNN and baseline models is statistically significant

or not. 61

5.6 Cross dataset results on CWE-121 with the model trained on sam-

ples from the Juliet Test Suite and tested on samples from another

dataset. ∗ denotes the performance of our proposed model, VDGraph2Vec-

GGNN. • and ◦ respectively denote whether the difference in accu-

racy between VDGraph2Vec-GGNN and baseline models is statisti-

cally significant or not. 62

xii

Chapter 1

Introduction

In today’s digital era, massive volumes of open source software code are readily

available on the Internet. They are susceptible to malicious use by hackers; hence

it has become easy to exploit the vulnerabilities present in these code, posing se-

rious security threats to systems and users. Software vulnerabilities are defects or

weaknesses in system design, implementation, or operation management that, if

exploited, can lead to various attacks or can even cause the systems to crash [37].

The ramifications of these attacks and crashes can be outrageous and catastrophic.

Each year, large numbers of software vulnerabilities are being detected in produc-

tion software, either released publicly through the Common Vulnerabilities and Ex-

posures (CVE) database1 or internally discovered in proprietary code [32]. Thus,

the detection of software vulnerabilities garners significant interest from the soft-

ware security community. Traditionally, software vulnerabilities were detected by

1https://cve.mitre.org/

1

reverse engineering, which is the process of analyzing the design of software from

its binary executables [65]. Reverse engineering is a complex and time-consuming

process that requires expert knowledge and extensive experience [20]. Security ex-

perts often apply this technique to understand the software, especially when the

source code is not available. However, this process is manually intensive, mak-

ing it unfeasible, especially for mitigation of zero-day vulnerabilities. Therefore,

we require automated tools to expedite the process for reverse engineers. Recent

achievements in machine learning in computer vision, speech recognition, and nat-

ural language processing have encouraged researchers in cybersecurity to gauge its

effectiveness for vulnerability detection.

There have been several advances in the recent literature on vulnerability de-

tection using machine learning. The majority of the recent work in this direction fo-

cuses on the use of classical machine learning, requiring extraction of handcrafted

features from the code [12]. Identifying the important features is time-consuming

and requires immense human efforts as well. Deep learning has shown its prowess

in automatically learning these features from the plain code. Thus, there have

been several attempts to detect vulnerabilities using deep learning [6, 46, 47, 74].

Furthermore, researchers tend to detect vulnerabilities mostly at the source code

level [12, 32, 61]. Despite the increasing amount of insightful work, vulnerability

detection remains a challenging and arduous task, and we need more efficient au-

tomated approaches to tackle it, particularly when the source code is unavailable.

2

There have been a few research studies on vulnerability detection at the assembly

code level [15, 42]. Though these studies offer promising results, they are tailored

to apprehend only to the semantics of the binaries by capturing the relationships

between the different tokens in an assembly instruction as an embedding. These

studies do not incorporate the important information available in the topological

structure of the assembly code. Thus, we propose to identify the vulnerabilities in

software at the assembly code level through deep learning by capturing its mean-

ings as well as structure.

In this thesis, we perform all our experimental analysis at the binary level. Us-

ing a disassembler, we can easily disassemble binary executable files to their corre-

sponding assembly code required for our task. We explore a novel representation

learning approach that leverages graph neural networks [62]. We focus explicitly

on Message Passing Neural Networks (MPNN) [27], which have achieved state-of-the-

art performance in various tasks. Our research highlights that by employing them,

we are able to generate improved representation of our code as for each node, they

aggregate the messages from all its neighbors. We also ensure that semantically

similar instructions have embeddings close to each other by using the capability of

a pre-trained Transformer model, RoBERTa [49]. This is the first work that utilizes

the RoBERTa model for assembly instruction representation. To encapsulate, the

workflow of our model is organized as follows: i) Disassembling the software and

creating the control flow graphs of the assembly codes, ii) Generating the initial

3

basic block embeddings using RoBERTa, iii) Using MPNN to generate representa-

tions of the entire assembly code, and iv) Detecting the vulnerabilities using those

embeddings. We also compare the performance of our model with the state-of-

the-art for vulnerability detection. This research also seeks to address some of the

additional questions raised in those previous studies and we show our proposed

solution is superior to the state-of-the-art solutions. The primary focus of the study

is a representation learning problem where we are trying to generate effective rep-

resentations of assembly code. Additionally, in this research we work on the task

of binary vulnerability detection; it is possible to further extend this study by prov-

ing the efficiency of these vector representations for other downstream tasks such

as binary clone detection [18, 21, 22, 59].

Specifically, our contributions are:

• We propose a novel approach for assembly code representation. It is the first

work that employs a hybrid structural and semantic representation learning

model at the assembly code for vulnerability detection.

• Our model, VDGraph2Vec, is able to generate a latent representation for the

entire assembly code, rather than for just an assembly function. It is easier to

utilize it for both function-level and code-level analysis. Previous approaches

mostly cater to representation at the function-level [19]. Also, this approach

is especially useful when source code is unavailable.

4

• Extensive experiments on publicly available datasets illustrate the efficacy of

the semantic and structural components of our proposed model. We capture

the semantics by using a language model to learn the instruction embeddings.

Further, we demonstrate that using a control flow graph with a message pass-

ing neural network helps in attaining enhanced learned representations. By

combining these two aspects, our model significantly outperforms current

state-of-the-art vulnerability detection methods at the assembly code level.

The rest of the thesis is structured as follows: Chapter 2 discusses the relevant

work in the literature and how our model differs from the current models. Chap-

ter 3 provides a formal formulation for the research problem. In Chapter 4 we de-

scribe the relevant concepts and systematically present our representation learning

model. In Chapter 5 we elaborate on our experimental results and analysis. Finally,

Chapter 6 summarizes our thesis and suggests future directions of research.

5

Chapter 2

Related Work

In this chapter we explore a review of recent works on vulnerability detection,

source code, and assembly code representations. Due to the severity of the prob-

lem, researchers are developing automated methods for detecting vulnerability de-

tection. Previous work on vulnerability detection is mostly at the source code level.

In our work, we investigate vulnerability detection as a representation learning

problem at the assembly code level. We primarily focus on the research works that

employ machine learning and deep learning, and we explain how our proposed

methodology differs from the existing literature.

2.1 Vulnerability Detection

With the advances in machine learning, it has become pivotal to assess its capabil-

ity in the field of cybersecurity. Harer et al. [32] elucidated on two approaches to

6

detect vulnerabilities in C/C++ code. The first uses features obtained from the in-

termediate representation, while the second operates directly on source code. The

authors used Clang and LLVM [38] tools to extract the control flow graphs to obtain

features of the operations and variables. They also implemented a custom C/C++

lexer to get the representations of the tokens, and then converted the lexed tokens

into their vector representations using Bag-of-Words and Word2Vec [52] representa-

tions. They further used a TextCNN [35] for learning more enhanced features along

with an extremely randomized trees classifier [26]. Russell et al. [61] proposed a

vulnerability detection tool based on deep feature representation learning. They

created a custom C/C++ lexer to capture the relevant meanings of the 156 critical

tokens as useful features. For generating the embeddings of these tokens, the au-

thors used Word2Vec [52] and then employed convolution and recurrent feature

extractors. Using the neural features as inputs, they finally applied the random

forest classifier [8] to classify vulnerabilities. Additionally, the authors built an ex-

tensive C/C++ source code dataset, called Draper, which is mined from Debian

and GitHub repositories. They labeled the dataset using three static analysis tools,

and combined these findings with the SATE IV Juliet Test Suite to create a large

dataset. Chernis and Verma [12] demonstrated the effectiveness of extracting text

features from functions in C source code and analyzing them with a machine learn-

ing classifier. Their experimentation shows that simple features (character count,

entropy, and arrow count) achieve a better accuracy than complex features (char-

7

acter n-grams, word n-grams, and suffix trees). Several researchers also presented

comprehensive surveys outlining automated ways to detect software vulnerabil-

ity [45, 48, 80].

Li et al. [47] developed VulDeePecker that relies on the generation of code gad-

gets, which are a group of semantically related program statements. These code

gadgets are transformed into symbolic representations that are used for detect-

ing vulnerabilities using Bidirectional Long Short-Term Memory [28]. It was found

that deep learning provides higher accuracy compared to pattern-based and code-

similarity-based vulnerability detection systems. They also introduced the Sy-

SeVR [46] framework, which focuses on obtaining program representations that

can accommodate syntactic and semantic information pertinent to vulnerabilities

by leveraging the abstract syntax trees and program dependency graphs. They

conducted empirical studies to show the potential of a Bidirectional Gated Recur-

rent Unit (BGRU) [51] for vulnerability detection. A major contribution from the

authors is a vulnerability detection dataset 1, collected from two data sources, the

National Vulnerability Database (NVD)2 and the Software Assurance Reference Dataset

(SARD)3.

At the assembly code level, Zheng et al. [81] proposed a study to evaluate the

performance of recurrent neural networks (RNNs) [60] for binary vulnerability detec-

tion. They performed their experimental analysis on four types of vulnerabilities

1https://github.com/SySeVR/SySeVR
2https://nvd.nist.gov/
3https://samate.nist.gov/SRD/index.php

8

using RNNs such as simple RNN (SRNN) [60], bidirectional SRNN (BSRNN) [63],

long short-term memory (LSTM) [33], bidirectional LSTM (BLSTM) [28], gated re-

current unit (GRU) [13] and bidirectional GRU (BGRU) [51]. Their results high-

lighted that BSRNN is a better RNN model for vulnerability detection as compared

to the other models. Dahl et al. [15] conducted research that demonstrates the fea-

sibility of RNNs for stack based buffer overflow vulnerability detection. They gen-

erated their own dataset by defining safe and vulnerable functions, built around

the C system calls. They hypothesized that assembly code can be treated as natural

language, and to assess this hypothesis, they applied RNNs on the vulnerability

data to capture the differences between the functions based on their context. They

concluded that not very deep RNNs were able to satisfactorily detect the stack-

based vulnerabilities.

2.2 Source Code Representation

Recent research demonstrates the success of message passing neural networks for

source code representation. Zhou et al. [83] explored the efficacy of using Graph

Neural networks for detecting software vulnerabilities by developing a model called

Devign. Their model encodes the raw source code of a function into a joint graph

structure consolidating the syntax via abstract syntax trees (AST) and semantics via

dependency and control flow graphs. The authors implemented a gated graph

neural network [44] model for generating the embeddings of each node. This is fur-

9

ther utilized by the Conv module for graph-level classification. In another work,

Wang et al. [73] constructed graph representation of programs called flow-augmented

abstract syntax tree (FA-AST) for detecting code clones. They generated FA-AST by

augmenting the abstract syntax trees with explicit control and data flow edges. The

authors applied two different types of graph neural networks, gated graph neural

networks [44] and graph matching networks [43], on FA-AST to measure the simi-

larity of code pairs. A prominent work by Allamanis et al. [3] introduced strategies

to learn program structures using graph-based deep learning. They demonstrated

the scalability of gated graph neural networks on two tasks, VARNAMING, which

predicts the name of the variable depending on its usage, and VARMISUSE, which

seeks to select the correct variable that should be used at a given program location.

In this work, programs are represented as graphs by capturing the syntax and se-

mantic relationships between the tokens using different edge types from AST. Our

proposed work is significantly different from these approaches because we work

at the assembly code level. We aim to improve the performance of graph neu-

ral networks models by experimenting with different pre-trained models such as

RoBERTa [49] for the initial node representations of the basic blocks.

2.3 Assembly Code Representation

Since an assembly code shares some commonalities with natural text, researchers

often employ natural language processing models on programs. Lee et al. [42] intro-

10

duced Instruction2Vec, a framework for modeling assembly code. It is an improved

version of the Word2Vec [52] model that considers the syntax of the assembly code

as well. It uses Word2Vec to generate a lookup table, through which each in-

struction is represented as a fixed dimension vector containing an opcode and two

operands. Furthermore, their model deliberates on the potential of TextCNN [35]

for detecting software vulnerabilities. Another research work that deliberates on

using the word2vec model for embedding the assembly instructions is by Red-

mond et al. [58]. This work explored techniques adopted from natural language

processing to jointly learn multilingual word embeddings [50], and adapted it for

cross-architectural binary code analysis. Ding et al. [19] proposed an assembly code

representation method based on the PV-DM model [39] incorporating the rich se-

mantic information between the tokens. However, all these approaches are only

catering to the semantics of the code and not to the actual flow of code execution.

Researchers are now utilizing graph embedding networks to learn representa-

tions of assembly functions. Genius was one of the first scalable graph based bug

search model for firmware images, implemented by Feng et al. [23]. The model

converted the CFGs of the binary functions to high-level numeric feature vectors

and performed the searching by using state-of-the-art hashing techniques with the

learned feature vector, rather than performing pair-wise matching. Further, Xu

et al. [77] developed a neural-based graph embedding model for cross-platform

binary code similarity detection, called Gemini. Gemini utilized the control-flow

11

graph and represented it with attributes attached to each node, and used struc-

ture2Vec [66] as a graph embedding network to convert the graph into an embed-

ding for similarity detection. They did it by combining the graph embedding net-

work into a Siamese network [10], which captures the objective that similar graph

embeddings should be close to each other. Yan et al. [78] presented a model that

uses deep graph convolutional neural network (DGCNN) to embed the structural in-

formation inherent in a CFG for malware classification. They also first convert

their CFG into attributed CFG (ACFG), where each vertex is represented by cer-

tain block-level attributes. Finally, DGCNN is applied on the graph data which

transforms it for classification.

Baldoni et al. [5] proposed an unsupervised feature learning approach to auto-

matically extract features from a CFG of an assembly function. Their graph em-

bedding network is the union of two main elements, the vertex feature extraction

and structure2Vec network. The first element is responsible for associating a fea-

ture vector with each vertex, and the second element combined the feature vectors

through a deep neural architecture to generate the final embedding of the graph.

For the feature extractor, they compared manual feature engineering with unsu-

pervised feature learning ideas adopted from natural language processing. The

authors investigated two instruction embedding aggregation techniques for gener-

ating vertex embeddings. They utilized the Word2Vec [52] model (i2v) for obtain-

ing instruction embeddings and combined them using, attention (i2v attention) and

12

RNN (i2v RNN). Further, they used a structure2vec deep neural network module

for updating the vertex vectors according to the graph topology and vertex fea-

tures. The final graph embedding is generated by aggregating the vertex vectors

obtained after several rounds. The authors conducted an experimental study to

evaluate their model on the tasks of binary similarity and compiler provenance.

We use the model described in this paper as one of our baselines, and we compare

its performance with our model on the task of vulnerability detection.

As compared to these research methods, we analyze the assembly code for the

entire file, instead of restraining to only a function. Moreover, our research caters

to the task of vulnerability detection. It is also the first work to experiment with

RoBERTa for initial node embeddings, which is further used by a message passing

neural network.

13

Chapter 3

Problem Description

In this chapter we provide a formal definition to our problem along with the used

notations. The input to our model is a binary file. Using a disassembler, we can

retrieve the Control Flow Graph (CFG) of a function. To construct the CFG of the

entire program, we create edges between the basic blocks of a function that call

the other function’s blocks. For the input to our Message Passing Neural Network

(MPNN), we need to represent our graph as G = (X,E), where X is the set of

the initial representations of the basic blocks in the CFG, and E is the set of edges

between the basic blocks. Each basic block v is represented by a feature vector xv.

The sequence of instructions in a basic block, Iv are mapped to their corresponding

feature vector xv by an embedding function fE .

fE(Iv) = xv

14

After obtaining the initial block embeddings (xv) and edge connections between

the blocks, we apply a graph neural network fg that transforms the block embed-

dings (x′
v). Further, we apply a global pooling (readout) layer to generate the em-

bedding for the entire control flow graph, θg, which is used for our downstream

task of binary vulnerability detection to yield a label, ŷ ∈ {0, 1}.

fg(G) = ŷ

Figure 3.1: Workflow of our VDGraph2Vec model.

15

The workflow of our VDGraph2Vec model is illustrated in Figure 3.2. Finally,

we define our vulnerability detection research problem as follows,

Definition 1 (Vulnerability Detection). Consider a collection of binary filesB along

with their labels Y signifying whether the binary files contain a certain type of

vulnerability or not. Let b be an unknown binary such that b /∈ B. The vulnerability

detection problem is to build a classification model M based on B and Y such that

M can be used to determine whether the binary, b, is vulnerable (ŷ = 1) or non-

vulnerable (ŷ = 0).

Figure 3.2: Vulnerability detection as a binary classification problem.

16

Chapter 4

Graph-based Assembly Code

Representation Learning for

Vulnerability Detection

Before diving into the experimental section, we first explicate more on graph rep-

resentation learning and how it can be leveraged for efficient assembly code repre-

sentation and detection of software vulnerabilities. In this chapter we discuss the

preliminaries requisite for understanding the model.

4.1 Preliminaries

Given a dataset in binary format, first the files are disassembled into their equiv-

alent assembly code. A disassembler translates the binary machine code into as-

17

Figure 4.1: Extraction of CFG and its preprocessing using angr.

sembly code. There are a variety of disassemblers including IDA Pro1 and Ghidra2

that can be used for obtaining the CFG. We use angr3 in our research because it is

open source, and hence it is easier to replicate results. Therefore, we start by ex-

tracting the Control Flow Graph (CFG) of the program. A CFG [14] is a graphical

representation of the different execution paths of a program. Each basic block (a

group of sequential statements) of the control flow graph is represented by a node.

The edges of the graph connect basic blocks that can flow into each other dur-

ing execution. The process of extracting CFG using angr is depicted in Figure 4.1.

At the high level, this representation is especially beneficial for vulnerability de-

tection because it has the ability to uncover risky and unsafe program execution

1https://www.hex-rays.com/products/ida/
2https://ghidra-sre.org/
3https://angr.io/

18

topologies. Further, we use a Message Passing Neural Network (MPNN) [27] to

obtain the representation of the assembly code. Conceptually, it works better be-

cause for each node, it accumulates the messages (hidden layer representations)

from all of its neighbors and aggregates them to get the final node embeddings. In

order to pass the CFG as an input to the MPNN, we need to represent the sequence

of instructions in the basic block, Iv, as an embedding. Pre-trained language mod-

els [57] have achieved impressive results for various tasks in both natural language

processing and in source code representation [24]. To capture the meaning of the

assembly instructions, we utilize pre-trained language models (fE) to extract the

initial block embeddings, xv. In the machine learning community, we generally be-

lieve that the semantics of a token (e.g., word, sentence, or instruction, function) is

captured by its relationships with other tokens. Embedding captures the relation-

ships, hence we often mention that the embedding captures the semantics, but the

software engineering community may have a different interpretation on the term

“semantic”. Assembly code follows a grammar for writing the instructions and

relationship between the operation and operands is important to be captured by

the embeddings. We do not want to lose the semantic information available in the

assembly instructions. In this work, we use semantics to imply that our embed-

dings are taking into account the crucial relationships among different tokens in an

assembly instruction.

19

4.2 Graph Neural Networks

Neural networks have shown remarkable progress in computer vision [72], natural

language processing [79], and speech recognition [53]. However, we may find other

complex data which does not fall under the domain of images, text or speech. If we

consider the case of social media networks, the data is highly irregular but it can be

easily represented as graphs with nodes as the users and the edges as connections.

Thus, this complexity in data structures led to several advancements in machine

learning with the introduction of graph neural networks. Owing to the immense

expressive power of graphs, these graph representations are extremely useful for

non-euclidean data, and hence graph neural networks have attained state-of-the-

art results for many tasks [82].

Before probing into graph neural networks, we first explain the representation

of graph. A graph G = (X,E) where E is the set of edges and X is the set of nodes,

which can either be directed or undirected based on the dependencies between dif-

ferent nodes. Furthermore, a graph can be homogeneous or heterogeneous. Nodes

and edges in homogeneous graphs have same types, while nodes and edges have

different types in heterogeneous graphs. A graph structure can be a useful repre-

sentation for many domains — social media networks, molecules, recommender

systems, knowledge graphs, etc. These graphs can contain large numbers of edges

and nodes, hence requiring them to be represented as latent feature vectors with-

out losing the crucial information inherent in their hierarchical graphical structure.

20

Therefore, in order to achieve this, we need to adopt machine learning techniques

for encoding the nodes, edges, and graphs. Hence, there can be three kinds of

loss functions and learning tasks associated with graphs: node-level, edge-level, and

graph-level. Node-level tasks focus on nodes, which include node classification,

node regression, node clustering, etc. Edge-level tasks include edge classification

and link prediction. Finally, graph-level tasks include graph classification, graph

regression, and graph matching. GNNs are neural networks that can be directly ap-

plied to graphs, and provide an easy way to do node-level, edge-level, and graph-

level prediction tasks.

4.2.1 Node embeddings

The rationale behind the concept of node embeddings is that we want to map nodes

to a d-dimensional embedding space such that similar nodes in the graph are em-

bedded close to each other. Therefore, if zu and zv are the feature vectors associated

with the neighboring nodes u and v in the d-dimensional space, we want to de-

fine the encoding function such that similarity(u, v) ≈ zTu zv (similarity of the em-

bedding). Nodes that are connected by an edge between them are considered as

neighboring nodes in the graph. This concept is illustrated in Figure 4.2. We can

think of it as an encoder-decoder architecture, where the encoder maps the nodes

to embeddings and the decoder maps from embeddings to the similarity score.

21

Figure 4.2: The concept of defining the encoding function for node embeddings

such that neighboring nodes in a graph have their feature vectors close to one an-

other in the d-dimensional space as well.

Shallow Embeddings

DeepWalk [56] is the one of the first proposed algorithms to learn node embeddings

in an unsupervised manner. It is based on the idea that the distribution of nodes in

a graph follow a power law [1]. It resembles the word embedding in terms of the

training process. DeepWalk uses local information obtained from truncated ran-

dom walks to learn latent representations. It consist of two phases: 1) identifying

the context of a target node and 2) learning embeddings that maximize the like-

lihood of predicting context nodes. The method that is used to make predictions

is skip-gram model [52]. DeepWalk regards the nodes in the network as words in

the sentence, and the sequence obtained by the random walk of the network cor-

22

responds to the sequence of sentences. However, unlike words in a sentence, the

order of the nodes in a context window for the random walks is not important.

Grover and Leskovec [29] introduced the idea of flexible and biased random walks

that can trade off between the local and global views of the network. The Node2Vec

model uses parameters that allow the random walk probabilities to smoothly in-

terpolate between walks like the breadth-first search (BFS) or depth-first search

(DFS) over the graph. BFS is ideal for learning local neighbors, while DFS is bet-

ter for learning global variables. Node2Vec model also emphasizes that a good

network representation learning algorithm must satisfy two conditions: 1) nodes

in the same community should be similar, and 2) nodes with similar structural

features indicate similarity. These two characteristics are called homogeneity and

structural similarity, respectively.

However, these node encoding models utilize shallow encoders that are inher-

ently transductive and the encoders do not incorporate node features. These meth-

ods can only generate embeddings for nodes that were present during the training

phase [30]. To overcome these aforementioned problems, GNNs were proposed to

encode the information in a graph inductively. Some of the popular graph neu-

ral networks include Graph Convolutional Network (GCN) [36], GraphSAGE [31], and

Graph Attention Network (GAT) [71]. Unlike the shallow node embedding methods,

the GNN framework requires that we input the node features xv,∀v ∈ X to the

model.

23

Graph Neural Networks

The GNNs generate node embeddings based on local network neighborhoods. Nodes

aggregate information from their neighbors using neural networks, and every node

defines its computation graph based on its neighborhood. This is known as neigh-

borhood aggregation. A basic approach for it is to average neighbor messages for

each node, and apply a neural network. For node v in a graph G with node fea-

tures xv and its neighbors N(v), its hidden state at layer t+ 1, ht+1
v is given by,

ht+1
v = σ

Wt

∑
u∈N(v)

htu
|N(v)|

+Bth
t
v

where σ is a non-linear activation function, and Wt and Bt are trainable weight

matrices that we learn. Wt is the weight matrix for neighborhood aggregation and

Bt is the weight matrix for transforming the hidden vector of self. The initial layer

embeddings are initialized to the node features, hence

h0v = xv

GraphSage

Hamilton et al. [31] introduced more flexible aggregation with GraphSage. Instead

of mean, it provides a simple aggregation function and concatenates the neighbors

embedding with its own embedding. The hidden layer at layer t+ 1 is given by,

24

ht+1
v = σ

[
Wt · AGG(htu, u ∈ N(v)), Bth

t
v

]
Some of the popular variants for the aggregation function (AGG) are:

• Mean - It takes a weighted average of neighbors,

AGG =
∑

u∈N(v)

htu
|N(v)|

• Pooling - It transforms the neighbor vectors and applies a symmetric vector

function,

AGG = γ(MLP (htu),∀u ∈ N(v))

where γ is element-wise mean or maximum operation.

• LSTM - It applies LSTM [33] to reshuffled neighbors,

AGG = ([LSTM(htu), ∀u ∈ π(N(v))])

Graph Attention Networks

Velvickovic et al. [71] argued that all neighbors of a node are not equally important.

The authors introduced graph attention networks in which attention weights are

used to specify importance of the different neighbors of each node in the graph. If

25

αvu represents the attention weight of neighbor u for node v, then the hidden layer

at layer t+ 1 is given by,

ht+1
v = σ

 ∑
u∈N(v)

αvuWth
t
v

The attention mechanism was first introduced by Bahdanau et al. [4] for neu-

ral machine translation. Prior to that, neural machine translation was based on

encoder-decoder RNNs [68]. These models are also known as sequence-to-sequence

(seq2seq). Both the encoder and decoder are stacks of RNN units. The encoder is

used to read the input sentence and encodes it into a context vector which sum-

marizes the input. This context vector is passed to the decoder which translates

it to a sequence. However, it fails to capture the long-range dependencies. Cho et

al. [13] also demonstrated that the performance of the encoder-decoder network

degrades as the length of the input sequence increases. Attention mechanism was

proposed as a solution to overcome the problem. For generating a sentence, the

model searches for a set of positions in the encoder hidden states where the most

relevant information is available. The attention mechanism retains and utilizes all

the hidden states of the input sequence during the decoding process. Given the

impressive improvement in results for machine translation by attention, its effec-

tiveness was also gauged in the field of computer vision [76]. In the recent times,

researches have experimented and explored various other forms of attention mech-

anisms [9, 11, 50, 70].

26

For GNNs, the attention weights αvu are computed using the attention coeffi-

cients evu across the pair of nodes u and v based on their messages:

evu = a(Wth
t
u,Wth

t
v)

where a is the attention mechanism and evu indicates the importance of neigh-

bor u for node v. The attention coefficients are normalized into the final attention

weights using the softmax function such that
∑

u∈N(v) αvu = 1,

αvu =
exp(evu)∑

k∈N(v) exp(evk)

The attention mechanism a has trainable parameters, which can be learned

jointly with the weight matrices in an end-to-end manner. Additionally, we can

use the multi-head attention approach also which will use K heads instead of one

and finally take the average (or concatenate) of all the feature vectors learned from

the K heads.

Next, we discuss the MPNN framework and its two popular algorithms that

we use in our research.

4.2.2 Message Passing Neural Networks

MPNN [27] is a popular framework that generalizes most graph neural models

based on the idea of getting enhanced node representations by aggregating infor-

27

mation from the neighbors. An overview of the concept of message aggregation is

illustrated in Figure 4.3.

Figure 4.3: A 2-layer message aggregation in an MPNN framework. It provides an

overview of how a single node aggregates messages from its local neighborhood.

The architecture of an MPNN consists of two primary phases: a message phase

and a readout phase. A graph G has node features xv and edge features evw. At

every time step t, a node has an associated hidden state, htv. During the message

passing phase, the hidden states are updated based on the messages mt+1
v obtained

from the neighbors.

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw)

ht+1
v = Ut(h

t
v,m

t+1
v)

The readout phase computes the feature vector for the entire graph using a

readout function R.

ŷ = R({hTv |v ∈ G})

28

The message update function Mt, the node update function Ut, and the readout

function R are all learned differentiable functions. This framework is quite robust

because it provides the feasibility to use different messages and update functions.

In this work, we perform our experiments specifically with two graph neural net-

works, Graph Convolutional Networks (GCNs) [36] and Gated Graph Neural Networks

(GGNNs) [44].

4.2.3 Graph Convolutional Network

GCN generalizes the idea of convolutional neural networks (CNNs) [41] to the com-

plex graph networks. In a GCN layer, the weights are shared for all nodes, and the

feature vector for a node is computed by performing mathematical operations on

its neighborhood nodes. If A is the adjacency matrix for the graph, and xv repre-

sents the initial representation for node v, GCN computes the feature vector ht+1
v

for t+ 1 layer as,

ht+1
v = σ

(∑
w∈N(v)

h(t)w W
(t)
)
= σ

(
Ah(t)w W

(t)
)

where W (t) is the weight matrix used for the layer t, and h0v = xv.

As we can see, the weights are shared for all the nodes in a given layer similar

to conventional convolutional filters, and the feature vector of a node is computed

upon performing some mathematical operation on its neighbourhood nodes like

in a CNN. CNNs cannot be directly applied on graphs because of the complex

29

topology of the graph, implying that there is no spatial locality. Moreover, two

problems are evident with the update function here: 1) while computing the feature

vector for a node, we do not consider its own feature vector unless a self-loop

is there, and 2) the adjacency matrix used here is not a normalized one, hence

it can cause scaling problem or gradient explosion due to the large values of the

parameters.

To overcome these problems,

• The self loops are enforced using the identity matrix I , which is of the shape

of A,

Â = A+ I

• The adjacency matrix A is normalized to avoid the scaling problem by,

Â = D(−1/2)ÂD(−1/2)

where D is the diagonal matrix with the degrees of all nodes in Â.

In each layer, the information is passed to a node from its neighborhood result-

ing in neighborhood aggregation.

30

4.2.4 Gated Graph Neural Networks

Gated graph neural networks are used to build sequential models in which each

node v is updated using the previous node state (htv) and the current message state

(mt+1
v) with a gated recurrent unit (GRU) [13].

ht+1
v = GRU(htv,m

t+1
v)

Further, we can experiment with other techniques such as batch normalization

[34] to stabilize neural network training, dropout [67] to prevent overfitting, and

attention to control the importance of a message.

GRU cell

A GRU is a variant of the recurrent neural network [13]. In fact, LSTM and GRU

cells are proposed to address two main drawbacks of the recurrent neural network,

which are to deal with long-term dependencies and with the vanishing and explod-

ing gradient issue. GRU is similar to LSTM as it also uses gates to control the flow

of information. However, unlike LSTM, it does not have a separate cell state Ct. It

only has a hidden state ht. Due to the simpler architecture, GRUs are faster to train.

On the other hand, an LSTM cell also manages the cell state Ct, which is updated

additively. In an LSTM, the hidden state ht can be seen as short-term memory,

while the cell state Ct can be interpreted as long-term memory. Furthermore, for-

got and input gates control the information in both short and long-term memory.

31

GRU combines the forget and input gates into a single update gate in order to re-

duce computational cost while maintaining power of representation. Moreover, it

merges the cell state and short-term memory into one hidden state. The differences

in the architecture of the two cells is depicted in Figure 4.4.

(a) LSTM architecture (b) GRU architecture

Figure 4.4: Difference in the architectures of the LSTM and GRU cells. LSTM uses

an additional cell state, whereas GRU uses only the hidden states.

An LSTM cell is composed of three gates: input gate, output gate, and forget

gate. The detailed architecture of the LSTM cell is shown in Figure 4.5. If we

represent hidden state as ht, input as xt, cell state as Ct, Wj and bj as the weight

and bias used for gate j, then the formal equations for the LSTM gates are given

by,

• Forget gate: It is responsible for removing information from the cell state.

ft = σ(Wf · [ht−1, xt] + bf)

• Input gate: It is responsible for the addition of information to the cell state.

It is done in three steps. First, a sigmoid layer called the input gate layer

32

decides the values to be updated.

it = σ(Wi · [ht−1, xt] + bi)

A tanh layer creates a vector of new candidate values, C̃t, that could be added

to the state.

C̃t = tanh(Wc · [ht−1, xt] + bc)

Next, we need to update the old cell state Ct−1 into the new cell state, Ct. This

is done by multiplying the old state by ft, forgetting the things decided by

the forget gate. Then, the new candidate values are scaled by how much we

update each state.

Ct = ft ∗ Ct−1 + it ∗ C̃t

• Output gate: It is responsible for deciding the output of the cell. A sigmoid

layer is used, which decides the parts of the cell state that will go to the out-

put.

ot = σ(Wo · [ht−1, xt] + bo)

Finally, a tanh layer is used for the cell state and it is multiplied by the output

of the sigmoid gate.

ht = ot ∗ tanh(Ct)

33

Figure 4.5: The architecture of an LSTM cell.

On the other hand, a GRU cell does not need to maintain the cell state. Instead,

GRU uses only two gates: update gate and reset gate. These are the two vectors

that decide on the information that should be passed to the output. The detailed

architecture of the GRU cell is shown in Figure 4.6.

• Update gate: It helps the model to determine the past information that needs

to be passed to the future.

zt = σ(Wz · [ht−1, xt])

34

Figure 4.6: The architecture of a GRU cell.

• Reset gate: It is used to decide how much of the past information to forget.

rt = σ(Wr · [ht−1, xt])

• Candidate hidden state: It takes in the input and the hidden state from the

previous timestamp, which is multiplied by the reset gate output. A tanh

layer is applied to it for the candidate hidden states.

h̃t = tanh(W · [rt ∗ ht−1, xt])

35

• New hidden state: The new hidden state is calculated using the update gate,

previous hidden state and the candidate hidden states.

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

It is evident that only one gate controls how much information can come from

the old hidden state and from the new state.

Therefore, in gated graph neural networks, a GRU cell is used which allows

for neighborhood aggregation with recurrent state update. GGNNs are useful for

complex networks representation including logical formulas and programs.

4.3 Word Embeddings

In natural language processing, we often employ methods to efficiently represent

words as a meaningful feature vector, such that the complex relationships of a

word in a text are captured carefully. These meaningful feature representations

are termed as word embeddings. Initially, vector space models and other meth-

ods such as Latent Dirichlet Allocation (LDA) [7] and Latent Semantic Analysis

(LSA) [16] were used for estimating continuous representations of words. Neural

networks have taken over the mainstream NLP since 2014 with the introduction of

Word2Vec [52] and GloVe [55] models for generating the word embeddings.

36

4.3.1 Word2Vec

Word2Vec [52] is an extremely popular algorithm in natural language processing

to capture dense learned representations of text in such a way that words with the

same meaning tend to have similar representations. The word2vec model is based

on the idea of distributional similarity. It is a shallow neural network with a sin-

gle hidden layer, where the hidden layer is a fully-connected layer whose weights

are the word embeddings. There are two types of methods described in this paper

to learn a low dimensional feature vector for each word: skip-gram and continuous

bag-of-words (CBOW) models. The idea of the skip-gram model is to use the current

word to predict words around it. The continuous bag-of-words model works on

the reverse principle, it predicts the current word on the basis of the neighboring

words. In both skip-gram and CBOW, we learn the embedding of the target word.

However, CBOW works well for smaller datasets, while the skip-gram model per-

forms better with larger data. The architectures of both models are shown in Fig-

ure 4.7.

If we represent the target word vector as vj , context word vectors as ck, then

using the skip-gram model we are trying to learn the following objective function

to predict the context word wk, given the target word wj :

p(wk|wj) =
exp(ck|vj)∑

i∈|V | exp(ci|vj)

37

(a) CBOW model architecture

(b) Skip-gram model architecture

Figure 4.7: Architecture of the Word2Vec models. The CBOW architecture pre-

dicts the target word based on the context, and the Skip-gram predicts surrounding

words given the target word.

However, the denominator is too expensive to compute. To overcome this, we

employ the negative sampling technique. For this, we sample a target word j, true

38

context word c, and some negative context words from the entire vocabulary. We

try to optimize the function,

log(σ(c · vj)) +
∑
i

Ewi≈p(w)[log(σ(−ci · vj))]

where σ is the logistic function. Gradient descent is used to learn the parameters.

The sampling procedure of negatives during the training impacts the performance

of the model, and hence, p
3
4 (w) works better than the standard p(w). The word2Vec

pre-trained word embeddings are used for various downstream tasks like analog-

ical reasoning. Despite this, the word2Vec model fails to capture differences like

polysemy. This distributional similarity gives us a measure of relatedness, which

often works well, but it suffers from the problem that antonyms and synonyms

share similar distributional properties. To overcome this shortcoming, context in-

formed word embeddings were introduced with Transformer [70] models.

4.3.2 Transformer

Transformer is a novel architecture that solves the problem of long-range depen-

dencies with ease. It is the first transduction model which relies entirely on self-

attention to compute representations of its input and output. The transformer

model consists of encoders and decoders stacked up. Both the encoder stack and

the decoder stack have the same number of units. The architecture of the encoder

and decoder is shown in Figure 4.8. The encoder block has one layer of a multi-

39

head attention, followed by a layer of feed forward neural network. The decoder,

on the other hand, has an extra multi-head attention, that helps the decoder to fo-

cus on relevant parts of the input sentence. As there is no recurrence, the position

of each token in a sequence is represented with the positional encodings. The word

embeddings of the input sequence are passed to the first encoder, where they are

transformed and propagated to the next encoder. The output from the last encoder

in the encoder-stack is passed to all the decoders in the decoder-stack.

Figure 4.8: Transformer architecture.

40

Multi-headed attention-mechanism is used in creating the transformer model.

To understand multi-head attention, we first explicate on self-attention. Self-attention

is an attention mechanism that relates different positions of a single sequence in or-

der to compute a representation of the sequence. For calculating the self-attention,

we first create three vectors from each of the encoder’s inputs: Query Vector (Q),

Key Vector (K) and Value Vector (V). The query is the hidden state of the decoder.

Key is the hidden state of the encoder, and the corresponding value is a normal-

ized weight, representing how much attention a key gets. The input consists of

queries and keys of dimension dk, and values of dimension dv. We compute the

dot products of the query with all keys, divide each by
√
dk, and apply a softmax

function to obtain the weights on the values.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V

However, this calculation is actually done using the matrix form for faster pro-

cessing. The process to calculate the scaled-dot product attention is depicted in

Figure 4.9.

Self-attention is computed not once but multiple times in the Transformer’s ar-

chitecture, in parallel and independently. It is referred to as Multi-head Attention.

The attention mechanism is repeated h times with linear projections of Q, K and

V, yielding do dimensional output values. The outputs are then concatenated, and

once again projected. This allows the model to jointly attend to information using

41

Figure 4.9: Scaled dot-product attention.

different key, value and query matrix for each encoder, thus creating different sub-

spaces. The multi-attention mechanism is shown in Figure 4.10. Therefore, Trans-

former architectures can learn longer-term dependency by using the multi-head

attention mechanism. Al-Rfou et al. [2] proposed to use the Transformer model

for language modeling. The impressive results of transfer learning for computer

vision motivated research for language model pre-training for improving the per-

formance of natural language processing tasks. Next, we discuss the deep learning

models that have given state-of-the-art results on a wide variety of natural lan-

guage processing tasks which utilize the Transformer architecture.

42

Figure 4.10: Multi-head attention.

4.3.3 RoBERTa

A model that revolutionized pre-trained language models in NLP is BERT [17].

The key innovation of the model is the bidirectional training of Transformer for

language modeling. The model takes into consideration both left and right context

of the words, resulting in more accurate feature representations. BERT utilizes the

Transformer with its attention mechanism to learn contextual relations between

words in a text. Since BERT’s goal is to generate a language model, only the en-

coder mechanism is necessary. There are two steps in the framework: pre-training

and fine-tuning. The model has been pre-trained on Wikipedia (2,500M words)

and BooksCorpus (800M words) [84] over two pre-training tasks: masked language

modeling (MLM) and next sentence prediction (NSP). The authors of this paper in-

vestigate a novel technique called MLM, in which some of the tokens from the

43

input are masked, and the objective is to predict the original vocabulary ID of the

masked token. Before feeding word sequences into BERT, 15% of the words in

each sequence are chosen at random. 80% of the time tokens are actually replaced

with the token [MASK], 10% of the time tokens are replaced with a random to-

ken, and 10% of the time tokens are left unchanged. The model then attempts to

predict the original value of the masked words, based on the context provided by

the other, non-masked, words in the sequence. Next sentence prediction task is a

binary classification task in which, given a pair of sentences, it is predicted if the

second sentence is the next sentence of the first sentence. For fine-tuning, the BERT

model is first initialized with the pre-trained parameters, and all of the parameters

are fine-tuned using labeled data from the downstream tasks. Each downstream

task has separate fine-tuned models, even though they are initialized with the same

pre-trained parameters.

In BERT, a WordPiece tokenizer [75] is used with 30,000 token vocabulary. The

first token of every sequence is always a special classification token [CLS]. The final

hidden state corresponding to this token is used as the aggregate sequence repre-

sentation for classification tasks. Sentence pairs are packed together into a single

sequence. The sentences are separated using a special token [SEP]. Addition-

ally, a learned embedding is added to every token indicating whether it belongs

to sentence A or sentence B. The pre-training of the BERT model is illustrated in

Figure 4.11.

44

Figure 4.11: Pre-training the BERT model.

Based on BERT’s masking strategy, RoBERTa is an optimized pre-training lan-

guage model that has made breakthroughs in NLP. RoBERTa allows training with

much larger mini-batches and learning rates by tuning the BERT model. This al-

lows RoBERTa to improve on the masked language modeling objective, compared

with BERT. Instead of the WordPiece tokenizer, RoBERTa uses a Byte-Pair Encod-

ing (BPE) [64]. In both cases, the vocabulary is initialized with all the individual

characters in the language, and then the most frequent combinations of the sym-

bols in the vocabulary are iteratively added it. The difference between BPE and

WordPiece lies in the way the symbol pairs are chosen for adding to the vocabu-

lary. The BPE algorithm counts the occurrence of every symbol pair and chooses

45

the one with the highest frequency, while WordPiece chooses the one which max-

imizes the likelihood of the training data. RoBERTa model is trained with a larger

byte-level BPE vocabulary containing 50K subword units.

Figure 4.12: Architecture of the RoBERTa model with its stacked encoders.

RoBERTa removes the NSP task from BERT’s pre-training and introduces dy-

namic masking so that the masked token changes during the training epochs. More-

over, RoBERTa uses 160 GB of text for pre-training, including 16GB of BooksCor-

pus and Wikipedia used in BERT. The additional data included CC-News dataset4

(63M articles, 76 GB), OpenWebText corpus5 (38 GB) and Stories from Common

Crawl [69] (31 GB). Specifically, RoBERTa is trained with dynamic masking, full

4http: //web.archive.org/save/http://commoncrawl.org/2016/10/newsdataset-available
5http://web.archive.org/ save/http://Skylion007.github.io/ OpenWebTextCorpus.

46

sentences without NSP loss, large mini-batches and a larger byte-level BPE. The

inputs of the model take pieces of 512 contiguous token that may span over docu-

ments. The beginning of a new document is marked with < s > and the end of one

by < /s >. The BASE model contains 12 bidirectional transformer encoders with

large feed-forward units (768 hidden states) and 12 attention heads. The architec-

ture of the model is shown in Figure 4.12. As input RoBERTa takes a sequence of

words that keep flowing up the stack. Each layer applies self-attention, passes its

results through a feed-forward network, and then hands it off to the next encoder.

4.4 VDGraph2Vec

We leverage and integrate the above discussed concepts and knowledge for build-

ing our model, VDGraph2Vec, which is used for ”Vulnerability Detection” by uti-

lizing graph neural networks on control flow graphs and generating their vector

representations. In order to get effective representations of assembly code, VD-

Graph2Vec learns both the structural and semantic aspects of the assembly code.

We are able to accomplish this using a graph structure, such as CFG, and represent-

ing each of its basic blocks with a dense vector representation by using a language

model. Further, both these components are integrated by using a graph neural

network that assimilates the messages from neighbouring nodes to give richer em-

beddings for the graph. Finally, we use these enriched embeddings for our task of

vulnerability detection.

47

Figure 4.13: An example of a control flow graph created using angr for the entire

binary file. We connect the edges between the basic blocks of functions that call

one another.

We begin by disassembling the binary file to get its CFG and use angr6 to create

the CFG of the entire assembly file by connecting the basic blocks between differ-

ent functions that call one another. An example of a CFG generated by angr for an

entire binary file is shown in Figure 4.13. To train our language model, we consider

an assembly instruction as a word and the entire basic block with its instructions as

a sentence. We employ Word2Vec in our setting for learning the block embeddings

by taking the average of all the instruction embeddings in the block. Following [5],

we also experiment by applying attention to acquire the basic block representa-

tions. However, averaging over the block instructions works better in our case,

and hence we report our results in the experimental section using an average. A

6https://github.com/angr/angr

48

possible reason for this is that every block contains a different number of instruc-

tions. Unlike other approaches, we do not set a maximum limit for the number of

instructions in a basic block.

For training the RoBERTa model on assembly code, a corpus containing one

million x86 assembly instructions was built. We train the model on the MLM objec-

tive, and we retrieve the block (sentence) representations from it by averaging the

tokens and concatenating the last four hidden states of the model. We train our lan-

guage models on the x86 assembly instructions. A possible limitation of our model

is that it is mono-architecture based. Other architectures and optimization levels

were not taken into consideration, but it is feasible to extend it. Additionally, data

dependency edges can be employed along with the control flow execution paths to

incorporate more structural information of the assembly codes.

The connectivity between the blocks (edges) and the embeddings for each block

(nodes) serve as inputs to our message passing neural network. The MPNN frame-

work accumulates the information from the neighbouring blocks and uses it to gen-

erate enriched block representations. For obtaining a graph embedding, we apply a

global pooling (readout) layer. We experiment with {add, average, attention} read-

out layers, and average worked better in the case of GCN, and attention worked bet-

ter for gated graph neural network. We then train our embeddings for the down-

stream task of vulnerability detection using the objective function of minimizing

the cross entropy loss between the predicted and actual labels.

49

L(y, ŷ) = − 1

N

N∑
(y · log(ŷ) + (1− y) · log(1− ŷ))

The weights of the neural network are optimized using Adam optimizer, which

is the de-facto optimization method used for training deep learning models. The

neural architecture of the VDGraph2Vec model is shown in Figure 4.14.

Figure 4.14: Architecture of the VDGraph2Vec model. The first part of the model

captures the initial node embeddings using the RoBERTa model. These embed-

dings are fed to the message passing neural network that further enhances the rep-

resentations for each node by aggregating the messages from its neighbors. Lastly,

the final node embeddings are passed through the readout layer to generate the

graph embedding for the entire control graph of the assembly code.

50

Chapter 5

Experiments

In this research, we conduct extensive experimentation by examining different

node embedding methods and graph neural networks. In this chapter we demon-

strate why it is important to incorporate the syntax as well as the semantics of the

assembly code in our vector representations. Thus, the objectives of the experi-

ments are to evaluate the performance of VDGraph2Vec for vulnerability detection

and to compare our methodology with the state-of-the-art vulnerability detection

works. We consider vulnerability detection as a binary classification task for each

Common Weakness Enumeration (CWE). CWE1 is a categorization of software weak-

nesses and vulnerabilities. Each of the weaknesses has its separate characteristics,

and hence it is better if we train models separately to learn these distinguishing

features. Thus, we test the effectiveness of VDGraph2Vec on the three most com-

monly encountered weaknesses. We use PyTorch [54] and PyTorch Geometric [25] to

1http://cwe.mitre.org/about/index.html

51

implement our models. We train the models on a server with two Xeon E5-2697

CPUs, 384 GB RAM, and four Nvidia Titan XP graphics cards.

5.1 Data Preparation

Data collection is a preliminary task of any research. Thus, we first collect a dataset

that contains examples of vulnerable versions of the software. The Juliet Test Suite2

is a collection of vulnerability datasets created by the National Institute of Standards

and Technology (NIST) and organized into 118 different CWEs. The code is catego-

rized into good and bad cases to make it suitable for supervised learning. Since

the Juliet Test Suite contains more synthetic examples, we also evaluate our model

in a more challenging and realistic scenario. We use the NDSS18 dataset, which is

also maintained by NIST and extracted from the National Vulnerability Database

(NVD)3 and Software Quality Assurance Dataset (SARD)4. This dataset was orig-

inally available in source code format [47]. Le et. al [40] compiled the source code

into binaries for Windows OS and Linux OS platforms. The NDSS18 dataset con-

tains a total of 32,281 binary files for CWE-119 and CWE-322 over both platforms.

We conduct our analysis on three of the CWEs obtained from two different

datasets. Particularly, we use CWE-121 and CWE-190 from the Juliet Test Suite,

and CWE-119 from the NDSS18 dataset to benchmark our model’s performance.

2https://samate.nist.gov/SARD/testsuite.php
3https://nvd.nist.gov/
4https://samate.nist.gov/SARD/

52

CWE-121 is a weakness caused by stack-based buffer overflow. An integer over-

flow or wraparound results in the vulnerability CWE-190. CWE-119 is related to

improper restriction of operations within the bounds of a memory buffer. Buffer

overflow and integer overflow vulnerabilities are commonly encountered in soft-

ware and exploited, leading to various adverse attacks. Additionally, these vulner-

abilities usually span more than one function. Consequently, a graph structure is

more suitable for discovering these vulnerabilities. Moreover, we also note from

Figures 5.1 and 5.2 that these datasets have a varying number of edges and nodes.

CWE-121 and CWE-190, from the Juliet Test Suite, have a higher average num-

ber of nodes and edges as compared to CWE-119, from the NDSS18 dataset. The

statistics of these datasets are listed in Table 5.1.

Figure 5.1: Average number of nodes in the datasets.

As assembly code shares similarities with normal text, it is important that we

perform pre-processing on assembly codes, similarly to the case of textual data.

53

Figure 5.2: Average number of edges in the datasets.

Table 5.1: Statistics of our datasets used for the empirical analysis.

CWE Vulnerable
samples

Non-vulnerable
samples

CWE-121 3100 3100
CWE-190 3960 3960
CWE-119 6521 5861

Thus, we first convert all instructions to lower case. In order to avoid learning

different representations for all different hexadecimal addresses, we replace the

hexadecimal addresses with the token 〈ADDR〉, and the numerical constants with

〈CONST〉. This improves the semantic quality of our embeddings.

5.2 Evaluation Metrics

We evaluate the performance of our models by splitting the datasets as follows:

80% training, 10% validation, and 10% testing. We initialize different random

seeds, and results are averaged for 5 runs. The vulnerability detection task that

54

we consider here is a binary classification task, where we treat vulnerable samples

as positive and non-vulnerable as negative. The following evaluation metrics were

used to examine the performance of our models:

Figure 5.3: Confusion matrix depicting how to find TP, FP, FN, and TN from the

actual and predicted values for the task of binary classification. For vulnerability

detection, FN is more critical than FP since we want the models to not misclassify

any vulnerable cases.

• Accuracy: The proportion of true predictions among the total number of sam-

ples considered. It is a fair measure to compare the performance of models

when the datasets are not skewed or imbalanced.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: The proportion of predicted positives that are actually positive. It

is a good measure to compare model performance when there is a high cost

55

associated with false positives.

Precision =
TP

TP + FP

• Recall: The proportion of actual positives that are correctly predicted. It is

a good measure to compare model performance when there is a high cost

associated with false negatives.

Recall =
TP

TP + FN

• F1-score: The harmonic mean of precision and recall, which is used to main-

tain a balance between the precision and recall. There is always a trade-off

between recall and precision, and the F1-score seeks to ensure a balance be-

tween the precision and recall.

F1 = 2× Precision×Recall
Precision+Recall

• AUC-ROC score: ROC (Receiver operating characteristic) is a probability

curve between sensitivity (false positive rate) and (1-specificity) (true positive

rate), and AUC (Area under curve) represents the degree or measure of sep-

arability. Thus, AUC is calculated by plotting the false positive rate against

56

the true positive rate at various threshold settings. It indicates the capability

of the model to distinguish between the classes.

We also study the impact of hyper-parameter tuning by evaluating the models

on the validation set. We try different settings of learning rate, batch size, epochs,

channels for a GCN convolution layer, number of layers for gated graph neural

networks, and dropout. The different hyper-parameter settings are enlisted in Ta-

ble 5.2. We select the setting that results in the best accuracy on the validation

set. The highest achieved accuracies obtained on different parameter settings are

reported for each model.

Hyper-parameters Set of Values
Batch Size [100, 128, 256]

Learning Rate [0.01, 0.001, 0.0001]
Epochs [50, 75, 100, 150]

Channels in GCN [16, 32, 64, 128]
Layers of GGNN [2, 3]

Dropout [0, 0.3, 0.4, 0.5]

Table 5.2: Different set of hyper-parameter settings used our model.

5.3 Models for Comparison

We implement the state-of-the-art binary vulnerability detection models to com-

pare with our VDGraph2Vec model. In order to demonstrate the competence of our

semantic and structural components, we compare the potential of our model at the

node embedding and classification level. As in [77], we investigate an approach

57

based on employing handcrafted features for generating our basic block embed-

dings. We use the following features for our basic blocks: 1) number of transfer in-

structions, 2) number of function calls, 3) total number of instructions in the block,

4) number of arithmetic instructions, 5) number of logical operations in the block,

6) number of constants, and 7) number of strings. However, using this represen-

tation we lose all the pivotal information expressed in the assembly instructions.

We also compare our model against our baseline model presented in [42], which

uses Instruction2Vec5 for embedding the assembly instructions and TextCNN for

classifying the samples into benign and vulnerable. We try all possible settings

and report the best results these methods can achieve to compare with our model.

Following [5], we use another state-of-the-art model for binary code representa-

tion based on word2vec for node representation and Structure2Vec [66] for CFG

representation. Although the authors evaluate their model for binary clone detec-

tion and compiler provenance on different datasets, we will analyze the effective-

ness of these embeddings for vulnerability detection. Thus, we incorporate Struc-

ture2Vec in our experiments to compare it with GCN and Gated Graph Neural

Network (GGNN), and Word2Vec to contrast it with RoBERTa node embeddings.

We seek to try different variations of node embeddings and classification models to

gauge the subtle differences in performances caused by each of these components.

Specifically, we compare the two variants of our model, VDGraph2Vec-GCN and

VDGraph2Vec-GGNN, with the following variants:

5https://github.com/firmcode/instruction2vec

58

• Handcrafted features with GCN (HF-GCN)

• Handcrafted features with GGNN (HF-GGNN)

• Instruction2Vec with TextCNN (i2V-TCNN)

• Word2Vec with Structure2Vec (w2v-s2v)

• Word2Vec with GCN (w2v-GCN)

• Word2Vec with GGNN (w2v-GGNN)

• RoBERTa with Structure2Vec (RoS2v)

The VDGraph2Vec-GCN model utilizes a GCN for the message passing com-

ponent, while VDGraph2Vec-GGNN employs a gated graph neural network.

5.4 Results and Analysis

The results of vulnerability detection on CWE-121, CWE-190, and CWE-119 for

various combinations of node embeddings and classification methods are shown

in Tables 5.3, 5.4, and 5.5, respectively. The last two rows of the tables denote the

performance of our VDGraph2Vec model. We also investigate if the difference in

accuracies between our model and other state-of-the-art methods is statistically

significant. Furthermore, when the models are deployed for real world applica-

tion, they are often trained on a different dataset and evaluated on the actual data.

59

Therefore, we perform a cross-dataset evaluation to assess the generalization capa-

bility of the models. For this experimental setting we collect a test dataset contain-

ing 1,000 samples obtained from [15]. We train our models on the entire CWE-121

dataset from the Juliet Test Suite and evaluate it on the test dataset6. The results of

the experiment are reported in Table 5.6.

Model Accuracy Precision Recall F1-score
AU-ROC

score
p-value

HF-GCN 70.96 79.28 60.85 68.85 71.55 •
HF-GGNN 71.77 66.81 92.35 77.53 70.58 •
i2v-TCNN 94.83 97.12 92.96 95.0 94.94 •
w2v-s2v 95.32 94.08 97.24 95.63 95.21 •

w2v-GCN 95.81 94.13 98.16 96.11 95.66 •
w2v-GGNN 97.58 98.14 97.24 97.69 97.59 •

RoS2v 97.90 100.0 96.02 97.97 98.01 •
VDGraph2Vec-GCN∗ 100.0 100.0 100.0 100.0 100.0 ◦

VDGraph2Vec-GGNN∗ 100.0 100.0 100.0 100.0 100.0 N/A

Table 5.3: Vulnerability detection results on CWE-121 (Juliet Test Suite). ∗ denotes

the performance of our proposed model, VDGraph2Vec. • and ◦ respectively denote

whether the difference in accuracy between VDGraph2Vec and baseline models is

statistically significant or not.

VDGraph2Vec achieves statiscally significantly better accuracy than the other

models in all experiments, as the p-values in t-test are much smaller than 0.01.

Thus, our model outperforms all other models on all three CWEs. Moreover, it

is evident from our results that manually extracted features do not offer good

representational quality for the assembly code; hence it is important to incorpo-

rate the meaningful contextual representations of the assembly instructions. We

6https://github.com/williamadahl/RNN-for-Vulnerability-Detection

60

Model Accuracy Precision Recall F1-score
AU-ROC

score
p-value

HF-GCN 67.67 69.02 72.89 70.90 67.21 •
HF-GGNN 69.19 71.19 72.19 71.69 68.92 •
i2v-TCNN 90.78 90.06 93.22 91.61 90.56 •
w2v-s2v 93.43 93.11 94.85 93.98 93.31 •

w2v-GCN 95.07 94.71 96.26 94.97 95.48 •
w2v-GGNN 95.41 95.58 96.02 95.81 95.40 •

RoS2v 94.57 94.25 95.79 95.01 94.46 •
VDGraph2Vec-GCN∗ 99.74 99.53 100.0 99.76 99.72 ◦

VDGraph2Vec-GGNN∗ 100.0 100.0 100.0 100.0 100.0 N/A

Table 5.4: Vulnerability detection results on CWE-190 (Juliet Test Suite). ∗ denotes

the performance of our proposed model, VDGraph2Vec. • and ◦ respectively de-

note whether the difference in accuracy between VDGraph2Vec-GGNN and baseline

models is statistically significant or not.

Model Accuracy Precision Recall F1-score
AU-ROC

score
p-value

HF-GCN 64.83 69.84 64.13 66.86 64.92 •
HF-GGNN 66.77 64.66 88.04 74.56 64.23 •
i2v-TCNN 81.41 83.72 82.50 83.11 81.32 •
w2v-s2v 85.0 85.91 87.17 86.54 84.74 •

w2v-GCN 89.03 90.32 89.79 90.05 88.94 •
w2v-GGNN 90.48 92.77 89.79 91.25 90.56 •

RoS2v 86.86 86.0 90.42 88.15 86.55 •
VDGraph2Vec-GCN∗ 92.9 93.08 94.16 93.61 92.58 •

VDGraph2Vec-GGNN∗ 95.48 95.65 96.21 95.92 95.27 N/A

Table 5.5: Vulnerability detection results on CWE-119 (NDSS dataset). ∗ denotes

the performance of our proposed model, VDGraph2Vec. • and ◦ respectively de-

note whether the difference in accuracy between VDGraph2Vec-GGNN and baseline

models is statistically significant or not.

also observe that RoBERTa block representations boost the performance more than

Word2Vec. Additionally, in comparison to TextCNN and Structure2Vec, message

passing neural networks are able to better embed the nuanced relationships be-

61

Model Accuracy Precision Recall F1-score
AU-ROC

score
p-value

HF-GCN 61.0 62.73 54.2 58.15 60.99 •
HF-GGNN 62.2 71.32 40.8 51.98 62.2 •
i2v-TCNN 75.7 100.0 51.4 67.89 75.7 •
w2v-s2v 72.2 100.0 44.4 61.4 72.2 •

w2v-GCN 83.8 100.0 67.6 80.66 83.8 •
w2v-GGNN 89.3 100.0 78.6 88.01 89.3 •

RoS2v 78.7 100.0 57.4 72.93 78.69 •
VDGraph2Vec-GCN∗ 91.1 100.0 82.2 90.23 91.1 •

VDGraph2Vec-GGNN∗ 94.9 100.0 89.8 94.6 94.9 N/A

Table 5.6: Cross dataset results on CWE-121 with the model trained on samples

from the Juliet Test Suite and tested on samples from another dataset. ∗ denotes

the performance of our proposed model, VDGraph2Vec-GGNN. • and ◦ respectively

denote whether the difference in accuracy between VDGraph2Vec-GGNN and base-

line models is statistically significant or not.

tween different parts of an assembly code with its flow of code execution. Even in

our different experimental setting of cross-dataset evaluation, VDGraph2Vec out-

performs the other methodologies. Most of the models are able to achieve a perfect

precision, implying that they are able to detect the vulnerable samples. In that

setting we also observe that the gated graph neural network surpasses the gener-

alizability power of the graph convolution network by a wide margin. Further, we

notice that our model is able to achieve 100% accuracy on the CWE-121 and CWE-

190 datasets from the Juliet Test Suite. Intuitively, we believe the reason for this is

that the samples in the dataset are synthetic and man-made, thus the distinguish-

ing characteristics between the vulnerable and benign samples are easily learned

by the model. As shown in Figure 5.4, the samples in Juliette Test Suite have small

62

Figure 5.4: Example of a vulnerable and non-vulnerable sample from CWE-121.

fixes and the difference between the vulnerable and non-vulnerable samples is easy

to learn. Also, the actual vulnerability is statically detectable. Nonetheless, our

model is able to perform better than the baseline models, which is further vali-

dated by its effective performance on the more natural dataset of CWE-119 from

the NDSS18 dataset.

63

Chapter 6

Conclusion and Future Work

In this thesis, we present our method, VDGraph2Vec, for vulnerability detection at

the assembly code level. We leverage message passing neural networks and com-

bine it with RoBERTa model to generate effective graph embeddings. We perform

thorough experimentation to investigate the performance of our model on vulner-

ability detection. We empirically prove that VDGraph2Vec is able to spot vulner-

abilities successfully because both semantics and the innate hierarchical structure

of assembly code are being taken into consideration. The control flow graph helps

in finding the vulnerable execution paths. MPNN gives better comprehensive rep-

resentations by aggregating messages from all neighbors. We also demonstrate the

effectiveness and generalization ability of VDGraph2Vec by conducting a cross-

dataset evaluation. Our model is able to achieve high performance in different

experimental settings, surpassing the recent works in this direction.

64

Despite these impressive results, we believe there are certain open challenges

that hinder research for vulnerability detection at the binary level.

• The datasets in this area mostly encompass the source code level. Further-

more, most of these datasets that are available in source code format cannot

be compiled to their equivalent binaries. In a real-world scenario, we gener-

ally do not have access to the source code. Therefore, there is a need to curate

datasets for binary vulnerability detection so that we have more data to train

our deep learning models.

• We can incorporate more structural information of the graph with the data

flow dependencies. This can lead to further improvement in the performance

of the model.

• Our work caters to x86 assembly instructions. In the future, we can extend

it for all target machine architectures. The lack of sufficient data hinders re-

search for cross-architecture vulnerability detection.

65

Bibliography

[1] ADAMIC, L. A., HUBERMAN, B. A., BARABÁSI, A., ALBERT, R., JEONG, H.,

AND BIANCONI, G. Power-law distribution of the world wide web. science

287, 5461 (2000), 2115–2115.

[2] AL-RFOU, R., CHOE, D., CONSTANT, N., GUO, M., AND JONES, L.

Character-level language modeling with deeper self-attention. In Proceedings

of the AAAI Conference on Artificial Intelligence (2019), vol. 33, pp. 3159–3166.

[3] ALLAMANIS, M., BROCKSCHMIDT, M., AND KHADEMI, M. Learning to rep-

resent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).

[4] BAHDANAU, D., CHO, K., AND BENGIO, Y. Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

[5] BALDONI, R., DI LUNA, G. A., MASSARELLI, L., PETRONI, F., AND QUER-

ZONI, L. Unsupervised features extraction for binary similarity using graph

embedding neural networks. arXiv preprint arXiv:1810.09683 (2018).

66

[6] BAN, X., LIU, S., CHEN, C., AND CHUA, C. A performance evaluation

of deep-learnt features for software vulnerability detection. Concurrency and

Computation: Practice and Experience 31, 19 (2019), e5103.

[7] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent dirichlet allocation. the

Journal of machine Learning research 3 (2003), 993–1022.

[8] BREIMAN, L. Random forests. Machine learning 45, 1 (2001), 5–32.

[9] BRITZ, D., GOLDIE, A., LUONG, M.-T., AND LE, Q. Massive exploration

of neural machine translation architectures. arXiv preprint arXiv:1703.03906

(2017).

[10] BROMLEY, J., GUYON, I., LECUN, Y., SÄCKINGER, E., AND SHAH, R. Sig-

nature verification using a” siamese” time delay neural network. Advances in

neural information processing systems 6 (1993), 737–744.

[11] CHENG, J., DONG, L., AND LAPATA, M. Long short-term memory-networks

for machine reading. arXiv preprint arXiv:1601.06733 (2016).

[12] CHERNIS, B., AND VERMA, R. Machine learning methods for software vul-

nerability detection. In Proceedings of the Fourth ACM International Workshop on

Security and Privacy Analytics (2018), pp. 31–39.

[13] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C., BAHDANAU, D.,

BOUGARES, F., SCHWENK, H., AND BENGIO, Y. Learning phrase represen-

67

tations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078 (2014).

[14] COOPER, K. D., HARVEY, T. J., AND WATERMAN, T. Building a control-flow

graph from scheduled assembly code. Tech. rep., 2002.

[15] DAHL, W. A., ERDODI, L., AND ZENNARO, F. M. Stack-based buffer overflow

detection using recurrent neural networks. arXiv preprint arXiv:2012.15116

(2020).

[16] DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND

HARSHMAN, R. Indexing by latent semantic analysis. Journal of the American

society for information science 41, 6 (1990), 391–407.

[17] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805 (2018).

[18] DING, S. H. H., FUNG, B. C. M., AND CHARLAND, P. Kam1n0: MapReduce-

based assembly clone search for reverse engineering. In Proceedings of the

22nd ACM International Conference on Knowledge Discovery and Data Mining

(SIGKDD) (August 2016), pp. 461–470.

[19] DING, S. H. H., FUNG, B. C. M., AND CHARLAND, P. Asm2vec: Boosting

static representation robustness for binary clone search against code obfus-

68

cation and compiler optimization. In Proceedings of the IEEE Symposium on

Security and Privacy (SP) (2019), IEEE, pp. 472–489.

[20] EILAM, E. Reversing: secrets of reverse engineering. John Wiley & Sons, 2011.

[21] FARHADI, M. R., FUNG, B. C. M., CHARLAND, P., AND DEBBABI, M. Bin-

Clone: Detecting code clones in malware. In Proceedings of the 8th IEEE In-

ternational Conference on Software Security and Reliability (SERE) (San Francisco,

CA, June 2014), IEEE Reliability Society, pp. 78–87.

[22] FARHADI, M. R., FUNG, B. C. M., FUNG, Y. B., CHARLAND, P., PREDA, S.,

AND DEBBABI, M. Scalable code clone search for malware analysis. Digital

Investigation (DIIN): Special Issue on Big Data and Intelligent Data Analysis 15

(December 2015), 46–60.

[23] FENG, Q., ZHOU, R., XU, C., CHENG, Y., TESTA, B., AND YIN, H. Scalable

graph-based bug search for firmware images. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security (2016), pp. 480–

491.

[24] FENG, Z., GUO, D., TANG, D., DUAN, N., FENG, X., GONG, M., SHOU,

L., QIN, B., LIU, T., JIANG, D., ET AL. Codebert: A pre-trained model for

programming and natural languages. arXiv preprint arXiv:2002.08155 (2020).

[25] FEY, M., AND LENSSEN, J. E. Fast graph representation learning with pytorch

geometric. arXiv preprint arXiv:1903.02428 (2019).

69

[26] GEURTS, P., ERNST, D., AND WEHENKEL, L. Extremely randomized trees.

Machine learning 63, 1 (2006), 3–42.

[27] GILMER, J., SCHOENHOLZ, S. S., RILEY, P. F., VINYALS, O., AND DAHL,

G. E. Neural message passing for quantum chemistry. arXiv preprint

arXiv:1704.01212 (2017).

[28] GRAVES, A., MOHAMED, A.-R., AND HINTON, G. Speech recognition with

deep recurrent neural networks. In Proceedings of the IEEE international confer-

ence on acoustics, speech and signal processing (2013), Ieee, pp. 6645–6649.

[29] GROVER, A., AND LESKOVEC, J. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining (2016), pp. 855–864.

[30] HAMILTON, W. L. Graph representation learning. Synthesis Lectures on Artifi-

cal Intelligence and Machine Learning 14, 3 (2020), 1–159.

[31] HAMILTON, W. L., YING, R., AND LESKOVEC, J. Inductive representation

learning on large graphs. arXiv preprint arXiv:1706.02216 (2017).

[32] HARER, J. A., KIM, L. Y., RUSSELL, R. L., OZDEMIR, O., KOSTA, L. R.,

RANGAMANI, A., HAMILTON, L. H., CENTENO, G. I., KEY, J. R., ELLING-

WOOD, P. M., ET AL. Automated software vulnerability detection with ma-

chine learning. arXiv preprint arXiv:1803.04497 (2018).

70

[33] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural

computation 9, 8 (1997), 1735–1780.

[34] IOFFE, S., AND SZEGEDY, C. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the International

conference on machine learning (2015), PMLR, pp. 448–456.

[35] KIM, Y. Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882 (2014).

[36] KIPF, T. N., AND WELLING, M. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[37] KRSUL, I. V. Software vulnerability analysis. Purdue University West Lafayette,

IN, 1998.

[38] LATTNER, C., AND ADVE, V. Llvm: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the International Sympo-

sium on Code Generation and Optimization (2004), IEEE, pp. 75–86.

[39] LE, Q., AND MIKOLOV, T. Distributed representations of sentences and doc-

uments. In Proceedings of the International conference on machine learning (2014),

pp. 1188–1196.

[40] LE, T., NGUYEN, T., LE, T., PHUNG, D., MONTAGUE, P., DE VEL, O., AND

QU, L. Maximal divergence sequential autoencoder for binary software vul-

71

nerability detection. In Proceedings of the International Conference on Learning

Representations (2018).

[41] LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. Gradient-based

learning applied to document recognition. Proceedings of the IEEE 86, 11 (1998),

2278–2324.

[42] LEE, Y., KWON, H., CHOI, S.-H., LIM, S.-H., BAEK, S. H., AND PARK, K.-

W. Instruction2vec: Efficient preprocessor of assembly code to detect software

weakness with cnn. Applied Sciences 9, 19 (2019), 4086.

[43] LI, Y., GU, C., DULLIEN, T., VINYALS, O., AND KOHLI, P. Graph matching

networks for learning the similarity of graph structured objects. In Interna-

tional Conference on Machine Learning (2019), PMLR, pp. 3835–3845.

[44] LI, Y., TARLOW, D., BROCKSCHMIDT, M., AND ZEMEL, R. Gated graph se-

quence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[45] LI, Z., ZOU, D., TANG, J., ZHANG, Z., SUN, M., AND JIN, H. A comparative

study of deep learning-based vulnerability detection system. IEEE Access 7

(2019), 103184–103197.

[46] LI, Z., ZOU, D., XU, S., JIN, H., ZHU, Y., AND CHEN, Z. Sysevr: A frame-

work for using deep learning to detect software vulnerabilities. arXiv preprint

arXiv:1807.06756 (2018).

72

[47] LI, Z., ZOU, D., XU, S., OU, X., JIN, H., WANG, S., DENG, Z., AND ZHONG,

Y. Vuldeepecker: A deep learning-based system for vulnerability detection.

arXiv preprint arXiv:1801.01681 (2018).

[48] LIN, G., WEN, S., HAN, Q.-L., ZHANG, J., AND XIANG, Y. Software vulner-

ability detection using deep neural networks: a survey. Proceedings of the IEEE

108, 10 (2020), 1825–1848.

[49] LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O., LEWIS,

M., ZETTLEMOYER, L., AND STOYANOV, V. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).

[50] LUONG, M.-T., PHAM, H., AND MANNING, C. D. Bilingual word represen-

tations with monolingual quality in mind. In Proceedings of the 1st Workshop on

Vector Space Modeling for Natural Language Processing (2015), pp. 151–159.

[51] LYNN, H. M., PAN, S. B., AND KIM, P. A deep bidirectional gru network

model for biometric electrocardiogram classification based on recurrent neu-

ral networks. IEEE Access 7 (2019), 145395–145405.

[52] MIKOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[53] NASSIF, A. B., SHAHIN, I., ATTILI, I., AZZEH, M., AND SHAALAN, K. Speech

recognition using deep neural networks: A systematic review. IEEE access 7

(2019), 19143–19165.

73

[54] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z.,

LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic differenti-

ation in pytorch.

[55] PENNINGTON, J., SOCHER, R., AND MANNING, C. D. Glove: Global vectors

for word representation. In Proceedings of the conference on empirical methods in

natural language processing (EMNLP) (2014), pp. 1532–1543.

[56] PEROZZI, B., AL-RFOU, R., AND SKIENA, S. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining (2014), pp. 701–710.

[57] QIU, X., SUN, T., XU, Y., SHAO, Y., DAI, N., AND HUANG, X. Pre-trained

models for natural language processing: A survey. Science China Technological

Sciences (2020), 1–26.

[58] REDMOND, K., LUO, L., AND ZENG, Q. A cross-architecture instruction em-

bedding model for natural language processing-inspired binary code analysis.

arXiv preprint arXiv:1812.09652 (2018).

[59] ROY, C. K., CORDY, J. R., AND KOSCHKE, R. Comparison and evaluation of

code clone detection techniques and tools: A qualitative approach. Science of

computer programming 74, 7 (2009), 470–495.

[60] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning repre-

sentations by back-propagating errors. nature 323, 6088 (1986), 533–536.

74

[61] RUSSELL, R., KIM, L., HAMILTON, L., LAZOVICH, T., HARER, J., OZDEMIR,

O., ELLINGWOOD, P., AND MCCONLEY, M. Automated vulnerability de-

tection in source code using deep representation learning. In Proceedings

of the 17th IEEE International Conference on Machine Learning and Applications

(ICMLA) (2018), IEEE, pp. 757–762.

[62] SCARSELLI, F., GORI, M., TSOI, A. C., HAGENBUCHNER, M., AND MONFAR-

DINI, G. The graph neural network model. IEEE transactions on neural networks

20, 1 (2008), 61–80.

[63] SCHUSTER, M., AND PALIWAL, K. K. Bidirectional recurrent neural networks.

IEEE transactions on Signal Processing 45, 11 (1997), 2673–2681.

[64] SENNRICH, R., HADDOW, B., AND BIRCH, A. Neural machine translation

of rare words with subword units. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers) (Berlin,

Germany, Aug. 2016), Association for Computational Linguistics, pp. 1715–

1725.

[65] SINGH, A. Identifying malicious code through reverse engineering, vol. 44.

Springer Science & Business Media, 2009.

[66] SONG, L. Structure2vec: Deep learning for security analytics over graphs.

Atlanta, GA: USENIX Association (2018).

75

[67] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., AND

SALAKHUTDINOV, R. Dropout: A simple way to prevent neural networks

from overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.

[68] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Sequence to sequence learning

with neural networks. arXiv preprint arXiv:1409.3215 (2014).

[69] TRINH, T. H., AND LE, Q. V. A simple method for commonsense reasoning.

arXiv preprint arXiv:1806.02847 (2018).

[70] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L.,

GOMEZ, A. N., KAISER, L., AND POLOSUKHIN, I. Attention is all you need.

arXiv preprint arXiv:1706.03762 (2017).

[71] VELIČKOVIĆ, P., CUCURULL, G., CASANOVA, A., ROMERO, A., LIO, P., AND

BENGIO, Y. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).

[72] VOULODIMOS, A., DOULAMIS, N., DOULAMIS, A., AND PROTOPAPADAKIS,

E. Deep learning for computer vision: A brief review. Computational intelli-

gence and neuroscience 2018 (2018).

[73] WANG, W., LI, G., MA, B., XIA, X., AND JIN, Z. Detecting code clones with

graph neural network and flow-augmented abstract syntax tree. In 2020 IEEE

27th International Conference on Software Analysis, Evolution and Reengineering

(SANER) (2020), IEEE, pp. 261–271.

76

[74] WU, F., WANG, J., LIU, J., AND WANG, W. Vulnerability detection with deep

learning. In Proceedings of the 3rd IEEE International Conference on Computer and

Communications (ICCC) (2017), IEEE, pp. 1298–1302.

[75] WU, Y., SCHUSTER, M., CHEN, Z., LE, Q. V., NOROUZI, M., MACHEREY,

W., KRIKUN, M., CAO, Y., GAO, Q., MACHEREY, K., ET AL. Google’s neural

machine translation system: Bridging the gap between human and machine

translation. arXiv preprint arXiv:1609.08144 (2016).

[76] XU, K., BA, J., KIROS, R., CHO, K., COURVILLE, A., SALAKHUDINOV, R.,

ZEMEL, R., AND BENGIO, Y. Show, attend and tell: Neural image caption

generation with visual attention. In Proceedings of the International conference

on machine learning (2015), PMLR, pp. 2048–2057.

[77] XU, X., LIU, C., FENG, Q., YIN, H., SONG, L., AND SONG, D. Neural

network-based graph embedding for cross-platform binary code similarity

detection. In Proceedings of the ACM SIGSAC Conference on Computer and Com-

munications Security (2017), pp. 363–376.

[78] YAN, J., YAN, G., AND JIN, D. Classifying malware represented as control

flow graphs using deep graph convolutional neural network. In Proceedings

of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN) (2019), IEEE, pp. 52–63.

77

[79] YOUNG, T., HAZARIKA, D., PORIA, S., AND CAMBRIA, E. Recent trends in

deep learning based natural language processing. ieee Computational intelli-

genCe magazine 13, 3 (2018), 55–75.

[80] ZENG, P., LIN, G., PAN, L., TAI, Y., AND ZHANG, J. Software vulnerability

analysis and discovery using deep learning techniques: A survey. IEEE Access

(2020).

[81] ZHENG, J., PANG, J., ZHANG, X., ZHOU, X., LI, M., AND WANG, J. Recurrent

neural network based binary code vulnerability detection. In Proceedings of the

2nd International Conference on Algorithms, Computing and Artificial Intelligence

(2019), pp. 160–165.

[82] ZHOU, J., CUI, G., HU, S., ZHANG, Z., YANG, C., LIU, Z., WANG, L., LI, C.,

AND SUN, M. Graph neural networks: A review of methods and applications.

AI Open 1 (2020), 57–81.

[83] ZHOU, Y., LIU, S., SIOW, J., DU, X., AND LIU, Y. Devign: Effective vulnera-

bility identification by learning comprehensive program semantics via graph

neural networks. In Proceedings of the Advances in Neural Information Processing

Systems (2019), pp. 10197–10207.

[84] ZHU, Y., KIROS, R., ZEMEL, R., SALAKHUTDINOV, R., URTASUN, R., TOR-

RALBA, A., AND FIDLER, S. Aligning books and movies: Towards story-like

78

visual explanations by watching movies and reading books. In Proceedings of

the IEEE international conference on computer vision (2015), pp. 19–27.

79

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Related Work
	Vulnerability Detection
	Source Code Representation
	Assembly Code Representation

	Problem Description
	Graph-based Assembly Code Representation Learning for Vulnerability Detection
	Preliminaries
	Graph Neural Networks
	Node embeddings
	Message Passing Neural Networks
	Graph Convolutional Network
	Gated Graph Neural Networks

	Word Embeddings
	Word2Vec
	Transformer
	RoBERTa

	VDGraph2Vec

	Experiments
	Data Preparation
	Evaluation Metrics
	Models for Comparison
	Results and Analysis

	Conclusion and Future Work

