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ABSTRACT

This study sought to investigate the application of artificial neural networks

(ANN) and fuzzy inference systems (FIS) to variably saturated soil moisture

(VSSM) redistribution modelling. An enhanced approach to such modelling, that

lessens computation costs, facilitates input preparation, handles data uncertainty,

and realistically simulates soil moisture redistribution, was our main objective.

An initial review of existing soil hydrology models provided greater insight into

current modelling challenges and a general classification of the models. The

application of AI techniques as alternative tools for soil hydrology modelling

was explored.

A one-dimensional (10) model based on ANN and FIS was developed. To

estimate fluxes more accurately, multiple ANNs were trained and combined by

way of an FIS. The main body of the model employed the ANN-FIS module to

model soil moisture redistribution throughout the profile. When tested against

the SWAP93 mode!, the ANN-FIS model gave a good match and maximum error

of <8%; however, it did not show a notable computation cost shift.

The investigation proceeded with development of another ANN-based 10

modelling approach. This time, the soil profile or flow region, regardless of its

depth, was divided into ten equal parts (compartments). The ANN was trained

ta estimate moisture patterns for a whole soil profile, from the previous day's soil

moisture pattern and boundary conditions, and the current day's boundary

conditions. The model was tested against SWAP93 where an average SCORE of

90.4 indicated a good match. The computation cost of the ANN-based model was

about one-third that of SWAP93.

At this point the study sought to develop a 3D modelling approach. The ANN

was trained to estimate the nodal soil moisture changes through time under the
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influence of six neighbouring nodes (in a 3D space, two on each axis). The

model's accuracy was tested against the SWMS-3D model. An average SCORE of

91 and a 15-fold decrease in computation costs showed a quite acceptable

performance. Results suggest that this approach is potentially capable of

realisticaUy modelling 3D VSSM redistribution with less computation time.

Finally, pros and cons of these ANN-based modelling approaches are compared

and contrasted, and sorne recommendations on future work are given.
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RESUMÉ

Cette étude vise à investiguer l'enquête de l'application de réseaux neuronaux

artificiels (RNA) et de systèmes d'inférence floue (SIF) à la modélisation de

l'évolution du profil hydrique du sol sous des conditions de saturation variable.

Une approche améliorée à cette modélisation qui réduirait les coûts de calcul,

faciliterait la préparation de données, pourrait tenir compte de leur incertitude,

et simulerait de façon réaliste l'évolution du régime hydrique du sol, est le

principal objectif.

Une ètude des présents modèles de régime hydrique du sol nous a permis une

compréhension plus approfondie des présents défis de modélisation et une

classification générale des modèles. L'application de techniques d'intelligence

artificielle comme alternatives de modélisation pour le régime hydrique du a sol

a été explorée.

Un modèle unidimensionnel (10) à base de RNA et de SIF a été développé. Afin

de mieux évaluer l'évolution du profil hydrique, plusieurs RNA o~t été entrainés

et combinés grâce au 5IF. Le module RNA-SIF représenta la plus grande partie

du modèle consacrée à modeliser le régime hydrique du sol à travers le profil du

sol. Lorsque comparé au modèle SWAP93, the modèle RNA-SIF corresponda

bien, avec une erreur maximale inférieure 8%. Cependant, les coûts de calcul

n'ont pas été réduits de façon appreciable.

L'étude continua avec le développement d'un autre approche de modélisation 10

à base de RNA. Cette fois ci, le profil du sol ou la région d'écoulement a été

divisée en 10 parties (compartiments) égales, peu importe la profondeur du

profil. La RNA fut entraînée à estimer le profil hydrique de tout un profil à

partir de celui du jour précédant et des conditions limites du jour précédant et du

jour présent. Le modèle fut comparé au modèle SWAP93 et reçu un SCORE de
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90A, indiquant une bonne correspondance. Les coûts de calcul furent environ le

tiers de ceux pour SWAP93.

L'étude visa alors le développement d'une modélisation 3D. La RNA fut

entraînée à simuler l'évolution dans le temps de la teneur en eau à différents

noeuds, sous l'influence des six noeuds les plus rapprochés (dans une espace 3D,

deux noeuds par axe). L'exactitude du modèle fut évalué par rapport au modèle

SWMS-3D. Un SCORE de 91 et des coûts de calcul quinze-fois moins élevés

représent une très bonne performance. Nos résultants suggèrent que cette

approche a le potentiel de permettre une simulation réaliste et plus rapide de

l'évolution du régime hydrique du sol sous des conditions de saturation variable.

Finalement, les avantages et désavantages de l'utilisation de la modélisation par

RNA sont comparés et contrastés, et des recommendations pour les recherches

futures sont énoncées.



•

•

•

ACKNOWLEDGEMENT

l am sincerely thankful to my thesis supervisor, Dr. R.B. BonneIl, for all of rus

cantinuous support, understanding, and patience aver the years. He has never

denied his assistance ta me whenever l have asked far it. Specially, l appreciate

rus patience and tireless efforts helping me in technical elucidation of this thesis

manuscripts.

l feel greatly indebted to Dr. s.a. Prasher on account of his advice, and generous

heIp. l have taken many haurs of his time ta discuss sorne difficulties of my

wark. He has, also, supported me by granting access ta sorne softwares.

I acknowledge /1 the Iranian Ministry of Science, Research, and Technology" far

their bursary that empowered me to study in Ph.D. leve!. Alsa, I would like ta

express my appreciation of McGill's ISAS financial help.

During my study at the Macdanald Campus of McGill University, l have enjoyed

the pleasant and supportive environrnent of the Agricultural and Biosystems

Engineering Oepartment. Therefore, 1 express my gratefulness to aIl present and

priar people who have, directly or indirectly, been involved in forming such an

environment. Specially, 1 am thankful to Dr. R.5. Brougthon, Dr. R. Kok, Dr.

G.S.V. Raghavan; and also to !vIs. R. Boyle, Ms. S. Nagy, Ms. S. Gregus, and rvfs.

D. Chan-Hum.

Through my life, my parents have supparted me strangly and vastly. They have

made many sacrifices for me, as they are doing 50 now, while having an eye on

me from a long distance and anather on my children, who are with them. I pray

to the almighty Gad for them, and am hopeful to have thern with me far several

mare years. AIsa, l would like ta express my gratitude to ather members of my

familY who bear with me and supported me over these years, especially ta

Kambiz~ ~atayoun, Samineh, and AmirAli. Finally l express my special gratitude

VI



•

•

•

to my beloved departed wife, Jinous, whose companionship 1 enjoyed for 18

years.

After aIl the pains 1went through during Jinous' illness and eventually her death

in spring 1998, my destiny took me back to the joy of life by acquainting me with

Saadat in summer 1999. Since then, she has been taking very good care of me. 1

love her and am truthfully grateful to her.

vii



•

•

•

GUIDE LINES FOR A MANUSCRIPT BASED THESIS
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/1 As an alternative to the traditional thesis format, the dissertation can consist of a

collection of papers that have a cohesive, unitary character making them a report

of a single program of research."

/1 ••• The thesis must he more than a collection of manuscripts. AlI components

must be integrated into a cohesive unit with a logical progression from one

chapter to the next In order to insure that the thesis has continuity, connecting

texts that provide logical bridges between the different papers are mandatory."

/1 ••• In general, when co-authored papers are included in a thesis the candidate

must have made a substantial contribution ta all papers induded in the thesis. In

addition, the candidate is required to make an explicit statement in the thesis as
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appear in a single section entitled 'Contribution of Authors' as a preface to the
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CHAPTER ONE: GENERAL INTRODUCTION

The study reported in this thesis is an exploration of an alternative simulation

modeling approach for variablv saturated sail moisture redistribution; \vhich

employs two artificial intelligence techniques. namely artificial neuronets and

fuzzv inference systems. The adopted alternative approach is of empirical nature,

rather than mechanistic. This chapter attempts ta provide a background ta the

reader on ho\v the study was initiated. It explains the importance of simulation

models, discusses the problems associated with conventional modeIing

approaches, introduces the alternative approach that was developed during the

course of this study, and presents a list of study objectives.

SllVlULATION iVlODELING

Emergence of computers in the middle of 2üth century has revolutionized

engineering, including Agricultural and Environmental SYstem (AES)

engineering. Combining expert kno\Nledge of Sail Hydrology Processes (SHP)

with the po\ver of computers has led to development of many simulation

models. With the ever increasing po\ver of computers and innovations in

nume.rical methods, 5HP simulation models have been ever-rapidly evolving

during the last thirty years.

During the last decade sorne critiques were issued on SHP models, \vhich

questioned their reliability and inherent limitationslO . These critiques,

emphasised the originality of physical experiments and were oriented toward a

growing gap seeming ta exist between computer simulations and the physical

sense of a real phenomenon. While model caveats are real, it still seems that SHP

simulation models are tools potentially capable of helping researchers expand

their understanding of real world processes in new and efficient ways. SHP
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simulation models continue to be re-examined and refined through model

verification against field observations.

ft is perceived by most modellers, that sorne understanding of real system

behaviour can be achieved through less costly modelling exercises rather than by

traditional field \vork and/ or lab experimentation9. In essence, this is a valid

conclusion, but it is necessary to note that as of yet nothing can compLetely

replace field observations. At the same time, it cannot be denied that end-users of

simulation modeIs, who usually are not fully aware of model assumptions and

limitations, may misuse or abuse models and/or modelling results. Although,

this fact cannot be counted as a demerit point for simulation models, it should be

regarded as a warning that directs modellers ta provide transparent and all

inclusive information to users.

Generally speaking, 5HP rnodelers have been successful in developing faster and

more comprehensive models. Simulation models have expanded the decision

making abilities of AES engineers toward stronger environmental accounting

and more comprehensive project planning. These models empo\ver AE5

engineers to assess different planning/designing/ operating scenarios for

projects \vith much less effort and ta get more insight into the probable

consequences of each scenario. This eventually minimizes the rise of possible

drawbacks and maximizes the expected benefits of the project. HO\NeVer, existing

SHP simulation approaches still suifer from sorne problems and there is need for

impravement. Sorne of these problems which faIl within the scope of this study

are discussed below.

VARIABLY SATURATED SOIL ~IOISTURE REDISTRIBUTION

Many SHP deal with Variably Saturated Soil tvIoisture (VSSM), for instance:

drainage, infiltration/seepage, and sail surface evaporation. There are various

examples of simulation cases, which are based on these VSSM processes. Sorne
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examples are: root zone moisture loss through bare soil evaporation and plants

transpiration, contaminant transport and degradation in the vadose zone, and

design of clay barriers for waste disposaI sites. Inasmuch as VSSrvI redistribution

is a key sub-process of many 5HP, a realistic simulation of these processes

requires a reliable VSSM redistribution module.

Human knowledge of VSS~I was first expressed as a mathematical formula by

Buckingham5 in 1907. He introduced the concept of the "unsaturated hydraulic

conductivity function" and modified the weIl known Darcy's equation ta

describe steady-state unsaturated flol,v8. Richardsl1 formulated a general non

linear parabolic partial differential equation (pde) to represent the non-steady

state movement of water in an unsaturated sail. The non-linearity of pde is due

to the fact that its coefficients (unsaturated hydraulic conductivity or differential

soil moisture capaeity) are funetions of the dependent variable (Le.; l,vater

potential, or moisture content). Moreover, Richards equation is a stiff pde,

because the rate of change of 'hydraulic conductivity' and that of 'hydraulic head'

are quite different. In a general three-dimensional (3D) form, Richards' equation

describes VSSM flow in an anisotropie and non-homogeneous soil matrix.

Inasmuch as it is a meehanistieal mode!, its usage may be extended to any Huid

flow ~ithin a porous medium, or even to multi-phase flow cases. t\;[ost existing

VSSM simulation models are based on numerical (Finite Difference or Finite

Element techniques) solutions of the Richards' equation. These models usually

sufter from laborious programming efforts and high computation cast, especially

for 3D cases2.

Natural soil is a porous system with spatio-temporal variabilities. vssrv[
redistribution is a natural process that intensifies the variabilities of the soil

perous system. Spatial non-uniformity of the soil moisture demain yields a

• A differential equation is called stiff when any two -or more- of its solution components has very
different time scal~. That is: the rate of growth or decay of the two components are very different3.

3
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higher non-uniformity in the unsaturated hydraulic conductivity domaine

Simulation modelling of 3D VSSM is a requisite in dealing with spatial

variabilities both on the field surface and through the soil profile. The spatial

variabilities when aggregated with the temporal variabilities introduce high data

uncertainty. Sorne common instances of observed data with high field and/or

seasonal variabilities (that causes high variance and high data uncertainty) are

unsaturated hydraulic conductivity, infiltration rate, and macro-pores (size and

shape). It is essential to appreciate the fact that data uncertainty for measured (or

estimated) field scale soil characteristics is inherent and unavoidable.

Uncertainty is originally related to natural complexity and spatial-temporal

variabilities of real soil systems and processes. In addition, with computer

models, other sources of uncertainty should be taken into account. Three such

sources may be named as: model simplifications 1 inadequacies, model

parameter estimation, and flow domain / time span discretization. The last

source only can be avoided if an analytical model is employed. The first and

second source are inherent to any mathematical model or any simulation model

based on them. Inasmuch as conventional simulation models are associated with

such sources of uncertainty, their results can only be regarded as rough

approximations of the real system behaviour. The alternative approach,

addressed in this thesis, is aimed at elimination of the first and second sources of

uncertainty mentioned above.

EMPIRICAL VS MECHANISTIC

Engineering has two faces: scientific and pragmatic. Engineering as a pragmatic

art is practical and aimed at solving daily problems man is faced with; however,

engineering as a science is committed to exactness and is aimed at finding the

truth of phenomena. Moreover, as a pragmatic art it is rooted in historical

experiences (bial-error) and is empirically based; however, as a science it is

rooted in scientific method (analysis-synthesis) and is mechanistically based. A

4
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pragmatic engineer uses science but only ta fulfill rus duties, by taking advantage

of everything that seems applicable ta rus profession. He is only interested in

thase scientific results which he considers most practical and leaves the rest for

scientists-l.

Niost existing 5HP simulation approaches during their course of evolution have

embraced more and more scientific detail and gradually have become good

research tools. These models usually need several input parameters \vhich may

be measured and collected, but this measurement consumes time and financial

resaurces. There are a few simulation models, such as DRAINMüD12, \vhich are

partIy based on empirical approaches. VVhi.le the results of these models are quite

comparable with the latter, they are usually more simple (i.e.; more lucid code,

less input) and have less computation cost.

LVlost current scientific simulation models are rnechanistic and need predefined

mathematical rnodels as their base. Besides, mathematical models are only our

abstractions of real systems and do not, necessarily, incIude aIl details of the

system. In fact, an ideal mathematical model that truthfully expresses the VSSLVt

of a sail matrix, incIuding its variabilities, has yet ta be developed. Until then, the

most trustworthy representation of real systems is our observations as hard

(numeric) or soft (linguistic) data. When mathematical rnodels are used, sorne

facts about the real system will be lost. At least nvo reasons can be claimed for

this loss. Firstly, the real system is impelled ta fit in an imperfect predefined

mathematical mode!. Secondly, mathematical models cannot receive soft data;

therefore, qualitative information may nat be used.

To comply with the aforementioned uncertainties, VSSM field scale (3D) input

data have to be treated as functions of time and spacei . The major current routine

for introduction of spatio-temporal variabilities of VSSM input data into a

mathematical model is ta consider the data as stochastic quantities. Such an

inclusièn" of the variabilities into mathematical models increases the computation

5
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cost Instead of being used as a direct design tool, the simulation models can be

best used as subsets of a Decision Support System (DSS). This situation gives rise

to a dilemma; on one hand, DSS requires many runs of a simulation model; and

on the other hand, computation cost is high. This is a serious barrier in

applicability of conventional 3D VSSM redistribution simulation models.

The alternative simulation modeling approach, as addressed in this thesis, does

not need a predefined mathematical model and requires fewer inputs. The

approach also has the potentiality ta receive soft data and to deal with data

uncertainty. As described in the next section, such an approach utilizes artificial

intelligence techniques and provides a more efficient routine for information

abstraction obtained from the observations.

ARTIFICIAL INTELLIGENCE

There is a need for a 3D unsteady VSSM redistribution simulation mode!, that

overcomes the pitfalls discussed above. Such a model would bestow upon

engineers the ability ta more realistically and easily simulate SHP. Field scale

simulation of 'salt accumulation al the soil surface' or 'salt leach-out from the soil

profile' under uneven topography with soil heterogeneities is an instance; where

ignorance of spatial variabilities may lead ta unreliable results.

There are a number of novel problem solving methodologies (e.g., Fractals,

Expert Systems, Fuzzy Logic, Artificial NeuroNets) that can help SHP modeUers

to deal with the above mentioned difficulties. This study has employed Fuzzy

Logic and Artificial NeuroNets to model VSSM redistribution.

Fuzzy logic has provided a new way to deal with the vagueness and uncertainty

of real world data. Bardossy and Duckstein1 have described fuzzy rule-based

modelling as a new way to model complex physical processes of the real world.

They were the first modellers who applied fuzzy rule-base techniques to SHP

modelling. The current study has aIso applied fuzzy logie in the farm of a fuzzy

6
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inference system (FIS) to deal with data uncertainty and the complexity of real

VSSM problems.

Artificial NeuroNets (ANN) are able ta capture knowledge that is vague,

complex, and not explicitly expressed by mathematical or symbolic (e.g., rule

based) meansÔ• It is a 'data-driven' and 'predefined-model free' simulation tool

that enables us ta efficiently extract information from the observed data. The

approach addressed in this study has employed ANN, and has achieved a much

lower computation cast. The approach did nat require unsaturated hydraulic

conductivity as an input data. Integration between ANN and FIS helped the

model ta overcome data uncertainty and enhanced its output.
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STUDY GOAL AND OBJECTIVES

The goal of this study was to develop a 3D vssrvt redistribution simulation

modelling approach that ernploys artificial neuronet.

The thesis objectives were:

T0 explore applicability of ANN and FIS to unsteadv VSSM

redistribution simulation modelling via development of unsteady

state VSSM redistribution simulation modeling approaches, in hvo

foids for:

• One dimensionai Bo\v domain; and

• Three dimensional Bo\v domain.

Specifie ta ANN and FIS application objectives \Nere:

1. Ta decrease computation cast of the 3D nlodel in comparison ta

conventional numerical models;

2. Ta simplify the modei input requirements via elimination of

sorne inputs, or substitution of sorne others by more simple

input data; and

3. Ta increase the quantity of information abstraction obtained

from observed data via use of ANN.

8
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CONNECTING TEXT: CHAPTERS ONE & TWO

Chapter one, the general introduction of the thesis, gave sorne ideas on how this

study started. Concerns on limited abilities of customary VSSM redistribution

simulation models. specially about 3D models were briefly discussed. Possible

utilization of AI technologies were mentioned and at the end section, the study

objectives are listed. The main goal of this study is named as: exploring

applicability of ANN and FIS for unsteady VSSM redistribution modelling in

order to develop an ANN-based 3D simulation approach.

Chapter two serves the thesis as a literature review. ft is a review on existing

SHP modeling approaches which is concluded with a classification of these

approaches. Inasmuch as the approach proposed (on modeling of VSSM

redistribution) in this thesis is novel, no literature was found on this specifie

domain; however, relevant literatures (i.e., on any application of AI components

to SHP) were reviewed.
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CHAPTER TWO: A REVIEW OF THE EXISTING MODELING
APPROACHS

ABSTRACT: Existing approaches in variably saturated sail moisture (VSS~I)

movement modeling, with an emphasis on the recent trends, are reviewed in this

chapter. The review is presented in a brief format and has considered the models

in three parts: classical approaches, alternative approaches, and approaches

based on two artificial intelligence techniques, namely fuzzy logic and artificiaI

neuronets. In a general view, classification of models aIong "vith pros and cons of

different categories is discussed. The chapter ends with a short conclusion.

INTRODUCTION

During the last four decades computer simulation modeIs have played an

increasingly important raIe in the study of agricultural and environmental

systems (AES). Since then, model limitations, reliability flaws, and their misuse

have inspired sorne sagacious critiques on AES modeling practices60.1ùO.133. [n fact,

when used properly, models are capabLe tools that help researchers expand our

understanding of AES. Compared to field/laboratory experiments, modeling is

quick and inexpensiveï2•91 • Of course, they cannot completely substitute

expensive and time consuming physical (fieldjlaboratory) experiments. But,

mûdels can lower, to a large extent, the number of real-life experiments needed

for a given research project, provided that they are considered in the

If experimental design". Moreover, by enabling us ta perform several simulations,

models provide more insight into the phenomena and the way different

combinations of variables and parameters int1uence the results60.91 . Generally

speaking, models are helpful, powerful tools for predictive and decision-rnaking

processes, if used cautiously and knowingly.

Mûdeling of soil hydrology processes (SHP), a major component of an AES, has

be~n at the'center of attention of soil hydrologists for many years. ~lodels have
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been continuously evolving since the start of the computer era in SHP modeling.

Use of modeling has changed our perception of soUs. From a simple detachable

sub-system with static parameters; we now conceive soils as an open, dynamic

and heterogeneous system, which is an integral part of a continuous

environment2,60,69,94. Its parameters are uncertain and have spatio-temporal

variability originated by stochastic/deterministic causes72,99.

In an effort to achieve a IIperfect moder', numerous models have been developed

and many of these have undergone several successive improvements. Their

evolutions have proceeded through severa! upgrading pathways: from empirical

to mechanistical formulations, from tinte-invariant to time-variant

conceptualizations, from one- ta multi-dimensional models, from single- to

multi-process simulations, from simple to advanced computation algorithms,

and frOID confusing codes ta more structured/modular and lucid codes. In other

words, the desire to model reality as precisely as possible, has motivated

modelers ta develop more comprehensive and complex, yet structured models.

Complex (multi-process / multi-dimensional / mechanistical) models have

inherent problems2,60. One such problem is the need for large input data sets,

while at the same time, physical, expense, and time limitations oblige us to use

estimates of these parameters. Tedious programming efforts and high

computational costs are nvo other problems. More important, complex models

suffer from inherent accuracy limitations10,45. That is, inasmuch as factual values

of many parameters are not known, errors are introduced to the models via

estimated values. Also, parameters spatio-temporal variations, which are not

easy ta capture minutely, contribute ta the total input error to these complex

models. That is not to say they are useless, but they have failed to serve us as

IIperfect models". Yet, complex models can promote our insight into different

cases if they are used wisely. It is interesting to note that verification and
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validation of these models is impossible9-l. Hence, veracity and reliability of these

models are unknown.

Variablv-Saturated Soil-rvloisture (VSSrvI) movement has a key role in many

SHP38. For example "vithout knowing the moisture content/ potential/spatial

variation, we are not able to modei solute transport. Obviously, vssrvr model

inaccuracies would affect, in tum, the veracity of other 5HP models. Infiltration,

evaporation from bare soil, evapotranspiration, redistribution, preferential flow,

deep percolation, crop root development and root uptake of water are different

components of VSSM modeis. Richards' Partial DifferentiaI Equation (POE) is

customarily used, via numerical modeling techniques (such as Picard's or

Newton'5), to integrate most of these components. This POE shows high non

linearity since its coefficient, the hydraulic conductivity (K(h)), is a nonlinear

function of the sail water pressure head73. In "far from equilibrium" real

situations, where flow region pararneters are highly variable, spatially and/ or

temporally, solution of this POE is not easy. This approach is even more

complicated for multi-dirnensional and for very dry cases. The aforementioned is

a likely reason why most popular VSSM models are still one-dimensional.

In order to resolve the problems of complex models, a shift in our approach ta

VSSM modeling seems necessary. Needed are models "vith shorter execution

times, to be used for optimization tasks; and models with much more lucid

codes. To-date our customary approach is ta interpret VSSM as a deterministic

phenomena. However, the recognized high non-linearitv of the VSSM

components (bath in reality and in a model) suggests the possible chaotic

behavior of these phenomena239 . Therefore, a new approach based on chaos

theory may be more fruitful. In fact, the shift has aIready started. New schools of

VSSM modeling, here called alternative models, have arisen. These alternative

models are usuaHy based on sorne new computational technique sueh as:

fraetals,.a!t#icial neuronets, fuzzy logie/ mathematics, and rule bases.
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This paper focuses on VSSM models and their components, browses through

different types of VSSM models, both customary and alternative, with an

emphasis on the most recent ones. Then a classification of VSSrvl models is

presented, which is done through consideration of differences among models on

the basis of the conceptualization, the formulation and the algorithm used.

Finally, an alternative approach, that utilizes Artificial NeuroNet (ANN) and

Fuzzy Inference System (FIS) technologies, is introduced.

A REVIEW OF VSSM ~IODELS

Many attempts have been executed to model VSSM via several approaches. rvlost

of these have used various numerical methods to solve the VSSrvl governing

POE, Richards' equation. Sorne other models have used simplified forms of this

POE, ta accede analytically solvable equations. A third class may be named

Ilconceptual models" such as multi-reservoir conceptual models, based on

balance equatians.

Accepting 5HP complexities, as discussed earlier, modelers have tried ta cope

with this fact. One issue was the inherent uncertaintv associated "vith the

complex system's parameters. To embed this uncertainty into VSSivl models,

some.modelers have treated the flow parameters as stochastic variables. Others

have tried alternative approaches. A selective review of VSSrvl modeling efforts

is given here in two parts. First, classical approaches are reviewed, and then

alternative appraaches are introduced.

Classical Approaches

Computer simulations via numerical solutions of Richards' POE were the most

popular taken among classical approaches. The first VSSrvl models developed

during the early sixties were based on the Finite Difference (FD) method (e.g.,

Hanks and Bowers52); and followed, only one decade later, by the Finite Element

(F~) method· (e.g., Bruch and Zyvoloski1ï). The most notable advantage of FE
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over FD is the capability to accurately map irregular system boundaries in multi

dimensional simulations, as weIl as to more easily include non-homogeneous

medium properties92• Yet, in terms of numerical stability and accuracy of the

solutions, it has been shown for one-dimensional unsaturated flow, that FD

methods are preferred over FE methods19• Celia et al.19 showed that a mixed form

of the Richards' equation is a general mass conservative numerical solution for

VSSM flow. Some selected VSSM modeling examples from the 80s follows.

Faced with numerical problems to solve 1D Richards' equation via a FD scheme,

Dane and Mathis33 developed the Ispace step size adaptive' scheme. Meaning

that, a fixed number of nodes were automatically redistributed to establish fine

grids where large soil moisture pressure head gradients occur. Moldrup et al.88

promoted a rapid and numerically stable method that had been fust proposed by

Wind and van Doorne139• The model was labeled: the moving mean slope,

because the model uses the average slope of natural log of hydraulic

conductivity. Despite promising features, the model had two shortcomings: it

was developed for 1D cases only, and for coarse soils it was not rapid any more.

Jensen66 and Ammentorp et al.5 reported their work on the unsaturated zone

component of the SHE (Système Hydrologique Européen) watershed scale

model. The VSSM flow component, based on one-dimensional (ID) numerical

solution of Richards' equation, deals with heterogeneity through separate model

runs for each typical soil profile. Another watershed model with a pioneer 3D

VSSM component in its time, based on FD solution of the Richards' equation,

was developed by Al-SoufP. Inasmuch as the model was 3D, soil heterogeneities,

were directly taken care of. Both models did not consider any measures for data

uncertainty. Ta express soil data uncertainties, Chung and Austinv used

stochastic inputs for their ID model. The model considers a heterogeneous

layered soil profile, and uses Monte Carlo simulation to produce stochastic input

parameters for each sail layer, including hydraulic conductivity.
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A comprehensive review of sail water dynamics modeling in the unsaturated

zone was presented by Feddes et aI.43• To know more on modeling practices

before 1988 one may refer to this article. No such review has been published

since 1988, however number of novel approaches and new models proposed and

developed for VSSM flow from then has increased rapidly.

During the last decade, many modelers have developed their own versions of

numerical computer simulation models, each with ils pros and cons. They have

dealt with VSSM modeling complications (soil-water nonlinear dynamics, soil

plant-atmosphere continuum, ...) in different ways. One noteworthy model

(even if not a computer simulation model) in this decade is the electrical analog

proposed by Hille159• It is a didactic tool that helps to conceptualize the soil

plant-atmosphere as an integrated system and presents the complexities of such

a system very weIl.

Some examples of more general models are: PESTFADE30, 5ESOIL58 and

UN5ATCHEM121. However, many others developed models specificaUy aimed at

certain cases or sites. These have not received the same publicity/ attention as

more general approaches. Innovative numerical models use approaches that

have never been used earlier in VSSM modeling. An example is the model

developed by Rieder and Pruntyl03. The model, based on a simple coupled

differential equation set, salves heat and mass transfer instantaneously. Another

example is the model based on the "Lie group" method of differential equations

classification9• In recent years as the parallel processing becomes more available

the number of VSSM models that make use of this advantage has increased. The

model developed by Thomas and Lil27,128 is an example of such models. To

attenuate the numerical difficulties, Prevedello et al. 101 introduced

"gravitational" and "global" soil moisture diffusivities that substitutes the

Richards' equation for vertical flow with a diffusivity type equation for which

many solutions are available. However, their model is not applicable to a
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positive pressure (saturation), which is a commonly occurring situation

(infiltration/ water-table). AIso, in the same direction, to lessen the nonlinearity

of the VSSrvl flow, Amok.rane and Villeneuve6 used a variable transformation,

which reduces the Richards' equation into a diffusion format. But, inasmuch as

this model is a diffusion type, as weIl as the other model just mentioned above, it

is not applicable to saturated cases. Ta speed up computations a number of

modelers have tried ta establish more accurate explicit numerical methods,

usually using a kind of predictor-corrector scheme.

Sorne well-known VSSM ID models based on FD methods are LEACHM6-l,

SWAP132, RZWQMï9, Opus117 and GLEAMSï5. Each of these models has a long

history of improvements. For instance SWAP, a new version of SWACROP and

SWATRE, has been improved by a change of Richards' equation solution scheme

from "head-basedll to llmixed-based tl due ta the recommendations of Celia et al. 19.

AIso, it has been improved by the addition of ne\v components such as

adsorption-decomposition of solutes and heat transfer; as weIl as by attachment

of hysteresis ta the \vater retention function132. The GLEAMS model is another

example, wruch has recently been modified for flovv through cracking clay soUs

by lVlorari and KniseI9o. AIso, the ADAPT modeP8 was developed by combining

algorithms from GLEAMS and the \vell knov\l'TI conceptual modeI

DRAINMOD1H,115. This hybrid water table management modeI considers

macropore flow as a component of VSSM flow.

On the other hand, an example of modeIs based on the FE scheme is the one

developed by Antonopoulos and Papazafiriouï . They used the Galerkin FE

method, the most common FE scheme used in soil hydrology, to solve

one-dimensionaI, vertical transient How of water and mass transport of

conservative solutes in variably saturated media. Another example is the

SAWAH modell-lo, which sirnulates simultaneously saturated and unsaturated

flows ir:.~ ~oil profile, including the case \vhere moving saturated horizons exist
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above the water-table level. SAWAH operates with variable time-steps and uses

implicit and explicit schemes for unsaturated and saturated t10\V respectively.

Another FE method is boundary integral equation, aiso kno\vn as Boundary

Element (BE), that lessens the dimensionality of the problem by one, and initially

solves the problem on the boundary of its domain only. An interior solution can

then be sought from the boundary solution. Taigbenu1:21 and rvlontas et a1.89 have

applied this method to solute transport and preferential t10w problems

respectively. Ju and Kung68 have compared lumped mass "vith consistent mass,

and linear elements with quadratic/ cubic elements in FE VSSNI models. For a

time-dependent problem with a large and complex domain, they suggest the use

of a lumped mass scheme with linear elements. They also concluded that in such

a case the time step should not be constant.

In any case, sorne general problems face bath FD and FE methods. Difficulties in

estimation of the effective value of hydraulic conductivitv (K(h)), v~·hich. .

significantly controls the model outputs, is one example of such general

problems. Moreover, knowing the rightful spatial/ temporal average values of

K(h) in the discretized domain is important. Especially \vhen soil-moisture

differs sharply between two adjacent nodes or \vhen rapid temporal changes

happen. Admitting the importance of inter-node hydraulic conductivity

calculation methods on numerical models, Liï7 recommended the use of a

composite integration formula, where each increment is subdivided into a

number of intervals, ta gain the best results. Another general problem is the high

computational cast, especially in 3D VSSM flow simulations. Ta reduce the

computational cost, Huang et al.62 established a nev~' convergence criterion for

the nurnerical solution of the Il mixed based" VSSIvI governing PDE. They

compared this with standard and mixed conversion criteria and found a

considerable decrease in the computational cost; especially, when the initial soil

conditionS are very dry or when sail hydraulic characteristics were extremely
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nonlinear. In fact, these are conditions where numerical solutions with standard

or mixed conversion criteria fail to converge, become unstable, or only slowly

convergent The most important advantage of FE over FD schemes may be

conceived as flexibility of the FE grid that can he adapted to irregularities of the

external and internai boundaries of the flow domain. However, FD schemes may

he preferred due to their better stability for VSSM flow problems, as found by

Celia et a1. 19• A hybrid approach, crossed froID FE and integrated FD, in VSSM

modeling is 1control volume FE' as described by Patankar98 and employed by Di

Giammarco et a1.37• Hence, the model is conservative at local scales, and capable

of dealing with irregular and complex geometries.

Concurrent to modeling practices on VSSM flow, many researchers have bled to

simulate VSSM flow components in separate roodels or with an emphasis on a

single component. Sorne instances of such components and research works are

listed here: infiltration (Basha13, Castelli18, Cho et al.25, and ChU26); actual

evaporation from bare soil and/or actual transpiration (Droogers40,

Yakirevichl43, and Yamanaka et aI. 145); preferential flow (DiCarlo et al.36, Gerke

and van Genuchten47, and Workman and Skaggs141); soil deformation and/or

swelling (Chertkov and Ravina24, Garnier et a1.46, and Tariq and Durnfordl25);

redistribution (Mitchell and Mayer86, and Ogden and Saghafian93); and hysteresis

(Hopmans et al.61, and van Dam et aI.131). Effective parameters and data

uncertainty were two important issues in VSSM fIow research works during

these years. Both issues aimed to provide more realistic estirnates of VSSM flow

parameters that explain the real world situations to the model in a better way.

Among researches of these kind use of so called "inverse methods" (e.g.,

Hughson and Yeh63, Lehmann and Ackerer73, and Takeshita and Kohnol23) and

Ilstatistical and stochastical measures" (e.g., Mishra and Parker85, and Zacharias

and Heatwolel52) were dominant. Wildenschild and Jensen137 have studied and

compared different effective parameter estimation methods for soil hydraulic
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characteristics. They concluded that none of the practical methods performed

weil, but among other field feasible methods, stochastic methods were found

more reliable.

Sail Hvdraulic Characteristic (SHC) functions are hvdraulic conductivitv
, ~-

function and soil-water retention function. Analytical equations for SHC have

improved ta become more accurate and/ or generaL vVork by Assouline et aI.8,

Green et aL50, Nlace et aI.~n, Mallants et a1.83, rvlohanty et aI.87, and Tzimopoulos

and Sakellariou-Makrantonaki13o are instances in this research category. Leang

and Rahardjo76 reviewed and compared most popular soiI-water retention

equations. They found Fredlund-Xing+I equations more favorable. Leij et aI. 74,

also, reviewed 5HC functions; ho\vever, they did not concIude upon a single

method as the best. Sorne other noteworthy research \-vorks on 5HC functions

and the SHC parameters have been done by: Ra1;NIs et al. 102, 5hao and Horton108,

5idiropoulos and Yannopoulosl1O, and Simunek et aI.112.

Knowledge of soil-plant relationships is essential in many AE5 simulation cases;

therefore, sorne VSSM modelers have considered plants interactions \-vith soil in

their models. For example, kno\ving that root distribution affects soil-\vater Ho\\-"

and plant water uptake pattern21.70 mechanisms of root gro\vth and soil-\\'ater

uptake have become modeling subjects. Jonse et a1. 67 have proposed a conceptual

approach to model main root gro\-vth properties. They have taken into account

different soil factors affecting rooting. Clausnitzer and Hopmans29 have

developed a transient 3-D model of root growth and soil water t1ow, \-vhere root

elongation of a single plant is simulated via translocation of the root apices in

individual growth events as a function of current local soil conditions.

The surrounding environment is detached from simulation domain and replaced

by boundary conditions (Be). Therefore proper setup of the BC has key

importance in the modeling process. The soil surface, usually selected as the

upper b'oùridary, is the interface behveen soil and atmosphere; where infiltration
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and evaporation or evapotranspiration takes place. From models that have been

developed for the upper boundary interface processes, few examples are

mentioned here. A conceptual infiltration model with redistribution, which was

developed first by Smith et al.1l8 was improved by Corradini et al.31 to become

faster and simpler. The model is an analytical approximation of a single ordinary

differential equation, and is claimed to he fast and accurate enough for most

hydrological applications. Wilson138 has proposed a model for surface flux

boundary, which is based on a system of equations for heat and mass transfer in

the soil-abnosphere continuum. In contrast to Wilson's approach, most other

models totally discretise the soil from the atmosphere, even though it is not the

case in reality.

Generally, 10 models have been evolved via two paths; first, expanding by

embracement of more processes; and second, reinforcing by inclusion of more

details ofVSSM f10w realities. However, their application is logically restricted to

the pedon scale. Examples of multi-dimensional (2Dj3D) models, generally not as

popular as ID models, are discussed hereafter. More FE based models may he seen

among these models. In contrast to their ability to simulate more complex cases,

their serious disadvantage is high computation cost FLAMINCO, a 3D model

developed by Huyakorn et al.65, is based on the Galerkin FE scheme, that simulates

water flow and migration of non-eonservative contaminants in a variably saturated

and anisotropic porous media. The required CPU time to solve an example of 3D

transient flow (a sudden drop in the drain's water level) in a drained field (200m x

200m x 20m) discretised into 1200 finite elements and 1584 nodes, was 100 minutes

on a VAX 11/750 minicomputer. A second example is LINI<FLOW54,ss, a quasi-3D

saturated-unsaturated model based on FD, which was developed to simulate

movement of soil water under a cropped field during various water table

management practices. It is comprised of two main components: a one-dimensional

unsaturated flow module, and MODFLOWao that funetions as a 3D saturated flow
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module. The model requires 60 hours to simulate a 6o-day period on a 33 MHz 486

PC machine. Almost the same approach bas been pursued by Yakirevich et al. l44 to

develop the QUASI-3D mode!. In their fust paper, implementation of the QUASI

2D model, they have reported their 2D model being several limes faster than two

well-known 20 models: the SUTRA modeI119.134 and the 2DSOIL96 mode!.

Sorne selective examples of multi-dimensional models are tisted here; even

though, no information on their computation cost were given. The model

developed by WU142 is a complex numerical model to simulate 1-, 2- and 3D

simultaneous transport of water, heat, and multi-component reactive chemicals

in saturated-unsaturated soils. The model is based on the Galerkin FE method.

No declaration has been stated about the required CPU time, but the author has

mentioned that the model has been developed and tested on a 486DX2-66

Personal Computer under a LINUX operating system. GregersenSl developed the

5IM2D mode!, a 2D VSSM fIow model that is based on a FE (Galerkin) scheme

for the time-independent part of the Richards' equation, while employing a fully

implicit FD scheme to estimate time derivatives. The VS2DT model, a 2D-FD

model by the V.S. Geological Survey, was developed to simulate the interactions

between surface water and ground water. The model may be used to simulate

river and groundwater interactions as weIl as transports between the root zone

and groundwater2o,56. Russo et a1. 104 developed a 3D-FD model, intending to

improve the knowledge of fIow/ transport through a 3D heterogeneous porous

media at real field scale. The model is based on a 3D mixed form of Richards'

equation solved by a modified Picard method19. Flow field hydraulic properties,

assumed as statistically anisotropie random space functions, were generated

stochastically.

There are more multi-dimensional models not listed here, but none of them are

as popular as most ID models. Theoretically, unsteady multi-dimensional

numerical models have the ultimate capability of dealing with real world
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temporal and spatial variabilities; however, sorne problems are practically

encountered. In addition to laborious work needed ta develop such models, the

lengthy execution tinte for these models is a matter of concem for practical

applications, especially whenever several runs are required. Moreover, 3D

models require a great deal of input data. This means that the quality of the

model results is greatly dependent on the quality of input data. In other words, if

each input data carries a smaU error then the accurnulated error might discredit

the model results.

Most important factors affeeting the input data quality may be addressed as

foUow. The fust factor is the extension of point values to the surrounding areas.

Although, the assumption associated with this extension (Le. hornogeneous field)

is not true for most cases, but it also is not practicaUy feasible to measure the

characteristics of a field (real heterogeneous system) at any point. Secondly,

temporal variabilities make point measurements even less factual. Finally,

measured data intrinsically are associated with errors to a degree and sorne input

data are only estimated values assessed upon point-measured data. The first and

second factors are due to the heterogeneity/ complexity of natural systems,

which neither can be captured minutely nor removed. In fact, comprehensive

simulation of AES and satisfactory result interpretation requires that

heterogeneities of these systems to be taken into account. Therefore, highly

accurate results may not he expected when deterministic models are used to

simulate non-deterministic systems, as is the case for most of the numerical

models discussed. Yet, having not achieved the "perfeet model", sorne

researchers have started to look in totally different directions. They have been

seeking for sorne other approximate methods, that need less or simpler input

data and/or have less computational cost, to be employed instead of 3D

numerical models, provided that the results accuracy remains the same. A brief

review of their attempts is given in the next two parts.
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Alternative Approaches

Progress in computer science, applied mathematics, and numerical computation

methods have helped and promoted the VSSM modeling practices. LVlost of the

alternative models are inspired from those impressions such as fuzzy logic,

artificial neuronet, expert systems, fractals, and parallel computing. Tim129

discussed sorne such computer technologies in relation to hydrology and water

quality modeling; and has foreseen the impact of these technologies on those

models. The technologies examined were: user interfaces, virtual reality,

animation, remote sensing, geographical information systems, global positioning

system, knowledge base systems, and object oriented programming. In rus

opinion'scale problems in models' and 'data collection techniques' need more

considerations and improvements. He also reconunended the incorporation of

a11, or at least most, of the above-mentioned components in a comprehensive

decision support system. This is a definite challenge to researchers.

Bertuzzi and Brucklerl~ adopted the scaling method proposed by Warrick136 ta

estimate field-scale 5HC from point measured values. With the scaled-up 5HC,

Pedon-scale models may be used as a lumped model to simulate field-scale

problems. The method needs improvements and more field experiments for its

validation. Yet, lumped methods are obsolete if spatial information at a minor

scale is required.

Fractal models, which describe self-similar hierarchical systems as ne\v taals, are

suitable models to describe sail structure, and therefore SHC. For instance,

Chen22 developed a conceptual capillary model based on fractals that generated

conductivity curves (K(h)) very close to the measured values. A good revie\v on

5HC fractal models is done by Gimenez et al.~9. This novel approach faces lots of

unanswered questions that need more research. How ta merge saturated and

unsaturate~ fractal models is one such a question. In fact, the total model

(saturated-unsaturated) may require more than one fractal dimension for
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different scaling regions. In other words, the geometrical interpretation for

different soil moisture conditions may vary, as in dry soils SHC mainly could he

determined by surface area, whereas near saturation 5HC is primarily a function

of pore structure32• Kravchenko and Zhang71 pursued such an idea using two

fractal dimensions for wet and dry parts of SHC. How to parameterize soil pores

system is another question in this domain. A study of this kind was the fractal

model of soil-water retention function with a randomly connected network,

developed by Bird and DexterlS, that revealed the pore connectivity importance

in addition to importance of pore size distribution. Fractal modeling approach

for SHC estimation is still recruiting and needs more explorations and

improvements in different ways.

Simonsl11 tried to describe the soil matrix as a permeable pore structure via u pore

tree" mode!. The model simulates the pore structure via tree-shape porous sub

systems that are randomly interconnected through common branches. The model

may he seen as an a1ternate mathematical explanation of sail matrix, in

comparison with fractals. Simons has expressed bis future plan to improve the

model ta couple convective and small scale diffusive transport.

Portraying VSSM flow as a diffusion-convection wave process and simplifying

vertical soil-water flow, Smith1l6 approximated the VSSM flow via an analytical

model based on kinematic wave. The idea has tempted sorne other researches ta

pursue this path ta VSSM flow modeling. Sorne examples are: Germann48 on

macropore flow; Mdaghrialaoui and Germann84 on macropore and diffusive

flow; and Singh and Joseph113 on VSSM flow with crop-roots uptake. It worth ta

be mentioned that short execution time, main advantage of analytical models, is

counterbalanced with the fact that analytical models are only applicable to

simplified cases that may be accepted as rough estimates of real situations.

Ewen42 developed a novel VSSM f10w model, named SAMP (subsystems and

moving packets). The model is approximate and stochastic due to random
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movements of soil-water packets within and behveen the flow-field ceUs. Ewen

claimed that his model is capable of improving the realism of simulations,

especially for non-equilibrium VSSM conditions. Vollmayr et al. l33 employed

stochastic modeling via application of a 2D Monte Carlo tecluùque, where

particles hop between the sites of a square lattice that represents the soil matrix.

The model suites for parallel computing purposes and its results were acceptable

for a simple 2D problem. Future practices will reveal capabilities of both models.

Harter and Yeh53 have proposed a numerical-stochastic model with high

resolution Monte Carlo simulations. They concluded that the stochastic

unsaturated flow theory, despite its simplifications, captures many fundamental

principles of VSSM flow. The hybrid stochastic model developed by LoU and

Moldrup78 is based on two steps; fust, a deterministic model using stratified data

to produce a deterministic response surface, and second, a stochastic model

through a Monte Carlo method using the deterministic response surface to

provide the total model response. The model was tested for a 1D case

successfully. A major contribution is claimed to be the ability to provide a fast

and time efficient way to analyze the sensitivity of the stochastic model response

ta different inputs. Recently, Tartakovsky et al. 126 has described a deterministic

alternative ta the Monte Carlo simulation, without any up scaling. They

developed analytical non-local (integro-differential) conditional moment

equations. This is for cases where the scaling parameter of pressure head is a

random variable independent of location. It was assuLled that hydraulic

conductivity is an exponential function of pressure head. The results compare

weU with Monte Carlo results and coïncide with theoretical analysis.

Another novel approach in VSSM flow modeling is based on fractals, as

employed for SHC and mentioned above. Pachepsky and Timlin95 have

developed an equation for VSSM flow as in fractal medium that differs from

Richards' equation in its diffusion coefficient, which is a function of both soil-
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water content and pore connectivity. This novel approach still needs more

research and exploration.

Boufadel et al. 16 proposed a novel dimensionless formulation for 2D-VSSM flow

that provides a guideline for scaling and designing physical models. They

employed Bayesian estimations to fit the model to experimental data and found

that VSSM flow scaling requires conservation of the ratio between capillary and

gravity forces. Satisfactory results have implied that the model deserves more

attention. Bayesian framework has been employed aIso by Abbaspour et al.1 in

an inverse procedure for subsurface flow parameter estimation. Their method is

potentially applicable to VSSM flow parameters as welle The procedure is called

sequential, inasmuch as one more iteration can always be made to get a final

estimation of parameters.

Another set of promising alternative methods, in VSSM flow

modeling/parameter estimation, is the application of Artificial NeuroNets

(ANN) and Fuzzy Systems (FS). To emphasize on these approaches they are

reported in the next part of titis review separately.

Application of ANN and FS to VSSM Flow Modeling

Need for a better model approach able to imitate the real world with its

complexity, dynamism and non-linearity, has motivated AES modelers to

investigate any novel simulation technique. ANN and FL, two new

computational intelligence technologies have received increased attention from

A5E modelers. Utilization of ANN and FL technologies is new in modeling of

SHP. Reported applications are, yet, few but increasing and promising. One of

the first studies of this kind was reported by Altendorf et al.4, who used ANN to

predict soil moisture from soil temperature data. They preferred the use of ANN

because of its "black box' (or regression type) nature, which leads to a minimum

number of input parameters, in contrast ta "mechanistical" approach.
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Bardassy and Dissel1 develaped two fuzzy rule-based models for infiltration.

The models, which are based on Green-Ampt and Richards' equations, are

mechanistical but non-numerical. The authors concluded that their model need

less input parameters and run much faster in camparison to classical models,

however, the model was very sensitive ta mIe consequences (Le. fluxes), \vhich

were not easy to be tuned/calibrated, Later, Bardossy et al.ll extended the idea to

model VSSM 3D-flow via fuzzy mIes. The model was much faster than cIassical

models and the resulting accuracy was acceptable, besides less input parameters

were needed. However, still the same prablem persists: a difficulty establishing

proper ruIe consequences. ~Ioreover, the model is sensitive ta the number and

definition of the fuzzy sets.

Shukla et a1.1D9 trained an ANN ta rnirnic the Boussinesq equatian in prediction

of water table Ievel. In camparison ta the numerical Boussinesq model the ANN

model was much faster. This trail was pursued by Yang et aL146-149 who have

developed several ANN models far prediction of \ovater table depths and/ or

drainage outflow', Yang et al. have also applied ANN to siffiulate soil

temperature150, and to simulate pesticide concentrations in SOiP51", Sreekanth et

aL120 analyzed sorne of papers on ANN modeling of \o\'ater table depth and

investigated the importance of input parameters in such models. A general

conclusion drawn from ANNs fast execution and their generalization abilities is

that they can be employed as ideal models/ tools for many AE5 real-time

problems such as automated water table management systems1-!6 and precision

farmingl1.

A novel approach, suggested by Davary et al.34•35 applies Artificial NeuroNet

(ANN) and Fuzzy Inference System (FIS) ta VSSM problems. The method helps to

speed-up model executian as weIl as ta facilitate input data preparation in two

ways: via usage of soft data along with hard data; and via minimization of

29



•

•

•

number of input variables. The approaeh seems promising in speeding-up 2- and

3-dimensional VSSM models.

Paehepsky et al. (1996) developed an ANN model for soil-water retention

relationships from easily measurable data. Coneurrently, Tamari et al.124 and

Schaap and Bouten106, worked on the same subject. AlI three, studied and

compared ANN with regression models and found the ANN models superior

and more favorable. In faet ANN models has been replacing regression pedo

transfer funetions in different VSSM domains due to their flexibility. For

example, Schaap et a1.105 developed alternative ANN mode1s, eaeh with a

different number of independent variables, to estimate soil-water retention and

unsaturated hydraulic eonduetivity. They found ANN based funetions

performance superior to existing pedotransfer functions in two ways: enhaneed

aeeuraey, and availability of alternative funetions for cases with different

numbers of independent/ input parameters. However, compared to regression

equations, one disadvantage of ANN models is that the mathematical

formulation does not symbolize any meaningful/physical relationship between

inputs and outputs.

Acknowledging uncertainty of soil/aquifer parameters and to avoid expensive

yet inadequate field parameter evaluations, Chen and Kao23 adopted fuzzy

variables within a geographical information system to generate parameter needs

for groundwater pollution potentiality assessments. Same approach may be

adopted to provide parameters needed for 2D/3D VSSM flow modeling based

on easily measurable soil physical characteristics (soft/hard). Perret et al.99

defined input variables as "fuzzy variables" ta incorporate the uncertainty of

these variables (namely: saturated hydraulic conductivity, drainage coefficient,

and depth to an impermeable layer) into the drainage design process to find the

mid-span water-table depth. The authors daim their model is considerably

simpler than fully stochastic methods. Schulz and Huwe107, following a similar
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logic, have assumed VSSM flow parameters (namely: saturated hydraulic

conductivity, upper boundary water flux, and Gardener's coefficient for

unsaturated hydraulic conductivity) as fuzzy variables and solved the ID steady

state VSS~I flow. They compared fuzzy with stochastic approaches and

concluded the fuzzy one as a very flexible tool for expression of modeI parameter

vagueness or for introduction of soft data- or linguistic parameters ta the mode!.

Almost in the same direction, Freissinet et aI.-1S explained a fuzzy-lagic-based

approach ta assess imprecision. Their method is ta compute the output of a

deterministic VSSM model as "mean response", then ta estimate the imprecision

range of the mean value via fuzzy computations using fuzzy variables. They

described their methad as a simple and flexible tool for risk analysis studies.

Overall, employing fuzzy variables and fuzzy mathematics has braught into the

opportunity to use soft data and has facilitated the inclusion of uncertainty for

VSSM parameters.

In the quest for the "perfect modeI" numerous SHP computer simulation models

have been developed, many of those reviewed in this paper, during last decades.

Ta drive a single conclusion from these vast efforts and diverse achievements

seems almost impossible. Then, in order to comprehend the \vide spectrum of

SHP· modeIs, a worthwhile sum-up is to classifv these models into fe\v

categories, as is presented in the next part of this paper. This facilitates

camparison of models and helps ta drive an inclusive conclusion.

GENERAL CLASSIFICATION OF SHP MODELS

Before getting into classification of the models few points have ta be clarified.

Firstly, models may be classified as single-process versus multi-process. SHP

computer simulation models, mostly, are multi-process models. Such multi

process models include different parts or processes, usually referred ta as sub-

. "Soft" data is qualitative information, in contrast to "Hard" data or quantitative information.
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models, which may he modeled technically in a different way. Therefore, most

often, classification of multi-process models is impossible. However, a single

process model or any sub-model can he categorized in a certain c1ass. Secondly,

models may be dassified from different points of views. In fact, different systems

of classifications have been suggested and inaugurated; most of those are not

contradictory to each other, but complementary. Thirdly and the last, to consider

any model in a certain class a minimum information is required, and to compare

models to each other even more information, especially on model performance,

is needed. Unfortunately, most of the model reports do not provide fuis

information, while they present supportive information on their pros. It seems

that a kind of umodel report guideline" would he very benefidal if followed by

authors of papers on newly developed or enhanced models. The information

offered in such papers should, for instance, include facts on: the model

computation cost, the algorithm employed, and the platform used. Now that the

initiative points are addressed, the proposed 'model classification' is described

next.

At the root level, models may be classified as UphysicaI", including "analog" and

"replica" models, versus "noll-physical" models. In the latter case, also called

U abstract" or "conceptual" models, the modeled relationship may be presented via

different means such as equations, graphs, databases or tables, rules, and

linguistic knowledge-bases. Regarding the point of view adopted, non-physical

computer simulation models in turn, as discussed below, may be categorized in

different ways.

First way to classify non-physical models is to consider them in two sub-classes:

"black-box" and "white-bor'. Between these two extremity there lay "gray-bor'

models which are not purely white. Models that are originated from phenomenal

explanations are admitled as white- or gray-box models. Then, most of SHP non

physical models are of titis kind, and black-box models are rare. However, black-box
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models are favorable for simulation of very complex phenomena that are not yet,

even partiaUy, comprehend or explained. They model the relationship between

inputs and outputs bLindly, Le. the model does not explain the real physical link

between inputs and outputs, and is not informative about the internaI processes

of the prototype. MostIy, regression and ANN techniques have been employed to

define black-box models. fi neither model formulation nor its parameters are

known beforehand and they are expected to he determined from data then the

model is a pure black-box model. Rules or linguistic knowledge-bases may also be

used to define a black box model.

From a second angle of view, non-physical models may he categorized in sub

classes as "mathematical" versus Unon-mathematical". The fact that computer

technology is based on binary digit system has led the modelers to deal with the

continuous processes in a discrete manuer. Moreover, soft data or qualitative

variables had to be expressed as hard data or quantitatively (i.e., translated into

numbers). It was not easy for model users to adopt these artificial views. Not

exceptions, 5HP computer simulation models, too, have been based on

mathetuatical expressions that only accept numbers as their inputs. In many cases

these modeis have aiso been based on nunlerically expressed modeis that

discretize the model domain (spacej time). Along with the innovations in

computer technology (such as fuzzy logic, expert systems, paraliei computing,

and fuzzy based processors) graduaUy new computer simulation models based

on non-mathematical expressions are emerging. On the other hand, mathematical

modeis have been evolving to become capable of handling the real world

uncertainty through utilization of different tools such as Monte-Carlo simulation,

Bayesian estimation, and fuzzy mathematics. These breakthroughs have

bestowed upon computer simulation models the ability to, somewhat, handle

soft data as inputs and/or outputs. Sub-elasses of the mathematical modeis are

"analytical" and "numerical" models.
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Thirdly, non-physical models may be grouped into U deternzinistié' and "1l0tl

deterministié' models. Deterministic models are founded on the premise that an

aImost accurate anticipation of a 5HP response, due to any certain excitation, is

achievable. The conflict between deterministic approach and sail heterogeneity

bas restricted the application of deterministic models mostly to very small-scale

problems. To overcome the scale barrier, deterministic models have evolved via

adoption of the ueffective parameter" concept The concept is ta estimate lumped

parameters from a heterogeneous domain in a way to assure the proper model

output, possibly using inverse methods. But, as the domain gets larger and/or

more heterogeneous and also as the share of deternzinistic sources decreases in the

domain heterogeneity, the model inputs become more uncertain, which leads to

a more non-deterministic mode!. Hence, due to the scale dependency

categorization of models is somewhat confusing for the two classes. The

traditional non-deterministic modeling approach, stochastic modeling, which has

been in practice during the last three decades, resolves the scale barrier

statistically. Altematively, a novel non-deter11linistic approach employs Juzzy

variables as inputs to model.

The last view, which is very similar to the first one, classifies SHP models into

uempirical" and 1/mechanistié' sub-elasses. The crudest empirical models are pure

black-box models. Other empirical models consider sorne physical aspects of the

prototype to define the model formulation, at least partiaUy. These models are

still dependent on the data, rnostly for the determination of model parameters.

Inasmuch as the empirical models are in debt of data for their existence they are

also caUed "data driven" models. As much as a model considers physics of the

process modeled, it becomes more independent of data and more nzechanistic. In

contrast to a "pure black box" model, the other extreme end of this classification is

a "[ully mechanistié' or "pure white box" model. A UfuUy mechanistié' model breaks

down the main process, reducing it repeatedly to sub-processes. Eventually, the
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most basic components of the system are revealed, then it executes the modeling

task, followed with an integration of the results to get back ta the main pracess

level. Figure (2.1) graphically explains sorne of classification aspects discussed

here. It is obvious that no distinctive partition exists between empirical and

mec1zanistic models.

Any single process model can be classified according ta a11 the views mentioned

above simultaneously. For example DRAINMODl1·t115 developed by Skaggs, is

an original concephml model that employs water balance analytical equation in a

soil profile confined between the soil surface and a shallow water table. The

model executes quite fast on a PC, but has limitations: it does not provide sail

moisture content data through the sail profile, and its concept has been

developed for only one-dimensional vertical t10\v. DRAINNI00, then, is

classified as a conceptual, white-box, detenninistic, and analytical-matlzematical

mode!. It may be considered at the same time as mechanistic (notJully nzeclzanistic)

too.

Models may, also, be categorized under sorne other groupings. For instance:

discrete versus contil1llOlls models (regarding the events duration and sequence),

steady versus ulIstendy or tral1sielIt models (considering dynamics of the model),

one- or two- or three-dimensional (with respect to the model spatial extent), and

researcJz- versus practice-oriented (due to the luodel utilization mode).

CONCLUSIONS

Periodical comprehensive technical reviews ar:l.d summing-ups on soil hydrology

models, such as one published by Feddes et al.-l3, are very useful and necessary

for SHP modelers and model users. In the lack of such review papers, present

paper has tried ta present a brief review; however, it tends to emphasize on

alternative modeling approaches.
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Reviewed models in this paper show that existing SHP models mostly can he

classified as deterministic-mathematicaI(-numerical)-mechanistic. However, in recent

years, alternative models have gradually become a visible trend in SHP

modeling. Along this trend number of non-deterministic, and notL-numericaI SHP

models has been growing due to new opportunities provided. For example, use

of fuzzy variables in VSSM modeling has opened a way to employ linguistic

variables. Also, use of ANN models has facilitated modeling of highly complex

and non-linear relationships with reasonable error, even when data is

uncertainjnoisy.

ANN models are data driven type models where in order ta obtain the best

match between the historicaI data set and the sïmulated data set, model

parameters (weights) has to he adjusted while minimizing the error.

Mathematicians have shown that multi-layer feed forward ANNs have the

powerful capability of being universai function approximatorsS7; hence, they are

best suited for modeling complex relations82• ParticularIy, ANN models are very

useful when data are vague. These specifications are pivotaI to the modeling of

SHP, especially the complex VSSM flow probIem, with uncertain and noisy data.

FIS, in the other hand, brings the possibility of soft data acceptance as inputs and

also provides a simple method to deal with the non-determinism of the VSSM

flow parameters.
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CONNECTING TEXT: CHAPTERS TWO & THREE

Chapter two presented a review on SHP simulation models with an emphasis on

recent novel approaches. From this the reader is exposed ta the general evolution

of SHP models and the problems with customary types of models. At the end of

this chapter, a novel modeling approach is mentioned that is based on ANN and

FIS utilization. Chapter three introduces this novel approach developed in the

course of this study. It aIso contains an introduction to ANN and FIS and how

they have been employed in VSSM redistribution modeling. Chapter three

presents the first ID ANN-based VSSM redistribution model. This model was

developed ta test the ANN-FIS based approach. ANN training results and the ID

model test results (against the SWAP93) are given at the end of chapter three.

H VSSM flow is to he modeled numericaUy, then the Richards' equation is

employed. This equation is derived from the 'continuity' equation and 'Darcy

Buckingham' equations. Therefore Richards' equation is subject to the

assumptions of the source equations. On the other hand, the ANN-FIS based

model, introduced in the next paper, is not based upon equations but learns from

data, hence no assumptions need to he considered. This novel approach has the

potential of more dosely modeling reality. AIso, phenomenon such as

preferential flow may he incorporated directly into the model if the records

(observed data) contain the relevant information.
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CHAPTER THREE: A NON-NUMERICAL ID MODEL

ABSTRACT: This chapter explains a novel approach to variably saturated sail

moisture (VSSM) movement modeling. In contrast to the conventional numerical

approach, based on solution of Richards' equation, the novel method employs

artificial neuronet (ANN) and fuzzy inference system (FIS) techniques to solve

the flow between two adjacent soil compartments. This chapter also presents a

VSSM one-dimensional transient flow model as an example of the novel

approach. The Darcy-Buckingham equation for steady VSSlYl flow was employed

to generate training data for the ANN. The model was then tested against

SWAP93. A good match with the numerical model output "vas found. !vIaximum

error was less than 8%, which in comparison ta the variance usually associated

with the input parameters, seems quite acceptable.

INTRODUCTION

Variably Saturated Soil Moisture (VSSNI) flo\v modeIs are powerful taols, which

can serve in planning, designing, and managing irrigation/drainage or any other

soil-water related process. For instance, these models are often used for

simulation of project alternative scenarios to give more insight inta likely

benefits and drawbacks. If the spatial/ temporal environmental impacts of the

alternative project settings converge, then selection of the safer and more

environmentally friendly scenario is possible.

Richards' equation, the governing partial differential equation (pde) for

unsteady-variably saturated flow in an anisotropic-heterogeneous

multidimensional porous media, has been commonlv used as the kernel for

VSSM flow computer simulation models. The unsaturated hydraulic

conductivity function, a coefficient in the governing pde, is rarely measured, but

is usua~Ir ~stimated and used by the model as a typical regional value. At best,
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the function is estimated from point-measured values of IIsaturated hydraulic

conductivity" and Il a sail moisture retention function". Even the latter one is

usually measured from disturbed soil samples in the laboratory. Solution of

Richards' pde is associated with many programming efforts, and often has high

computation costs. Results, however, are merged in great detail with uncertainty

due to temporal!spatial diversities, intrinsic to the VSSwI input parameters.

These problems are evident, ta a greater degree, for more complex models such

as three-dimensional (3-D) models. Therefore, results of such models can onlv be

regarded as rough approximations of realityl.

A novel apFroach, based on application of Artificial Neuro-Net (ANN) and

Fuzzy Inference System (FIS) techniques, was suggested by Davary et a1.4 that

seems persuasive in resolving at least sorne of the above mentioned problems.

This paper introduces the novel approach in detaiI, by presenting a one

dimensional VSSM flow model named ANN-FI5-1D that lowers programming

efforts. For multi-dimensional cases it is also expected ta lessen the computation

cost, as well as to facilitate the preparation of inputs, via acceptance of Isoft' data

and a decrease in the number of inputs. This paper aIso presents a simple 1-0

transient ANN-FIS-ID mode!. The paper starts \vith a brief review of foundation

concepts of ANN and FIS techniques. Then, development of the sample model

and its sub-modules, including the ANN and the FIS, is explicated. FinaUy,

results of the model and that of SWAP9315 are compared.

FOUNDATION CONCEPTS

The main idea is based on the usage of ANN, which is known to have a powerful

capability of being a universal function approximator7,8, used in place of

Richards' equation as the heart of a mode!. Richards' equation was originally

derived from "Darcy-Buckingham" and Il continuity" equations. Therefore, it is

subject to the Darcy equation limitations. Moreover, Richards' equation does not

count for other forms of flow other than Darcian t1ow, such as preferential flow
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and salinity induced flow. Traditionally, VSSM flow numerical modeIs, based on

Richards' equation, utilize other equations far these additianaI circumstances.

However, the ANN model can overcome such limitations, if trained \vith a

comprehensive set of field data including information on macropores, salinity,

.. , etc.

To minimize the ANN approximation error on the highly non-linear VSSM flow,

usage of multiple overlapped ANN ranges was adapted. Consequently, the need

for several ANNs, and integration of the outputs brings FIS into the framework.

The next two sub-sections briefly introduce these ANN and FIS techniques.

Artificial Neural Networks

Artificial Neural Networks (ANN) are brain-like information processing systems.

They are composed of several simple "Processing Elements" (PE) called

"neurodesll, which are models of human nervous system ceUs, "neurons"2.

Analogous to a brain, an ANN is a highly paralleI, intensively interconnected

processing system12. The resemblance of the model (neurode) to the prototype

(neuron) is obvious in Figure (3.1).

ANN IIlearnsli from examples (sets of conjugated input-output data). The process

through wruch ANN captures the relationship between input and output vectors

via its weights (= parameters) as well as its structural architecture (= formulation)

is called training. Figure (3.2) demonstrates a muIti-Iayer feed forward ANN. The

expanded layout, at the top, shows aIl neurodes and their connections. In the

middle the same network is shown in a more compact fashion using matrix

notation. Mathematical expression of the same ANN is presented at the bottom.

Usually subscript notation is used for labeling weights, for instance VVL(i,j), \vhere

L is the layer index, i is the current layer neurode index, and j is the previous

layer neurode index. Structural components are number of inputs, outputs,
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layers, and neurodes of the ANN, and also the neurodes architecture (i.e.

arrangement and connection layout).

The fact that ANN learns by means of training offers a powerful alternative to

programming. Training is accomplished through weight adjusbnent, while it

seeks the minimum network error (the difference between the desired output

and the nenvork estimate). Training is an iterative process composed of two

main steps in each iteration. First, sorne input vectors are introduced to the

network to estimate relevant output vectors. This is ca1led 'feed forward' activity.

Then, comparison of estimated and desired output vectors produces error

signaIs, which are directed back to the ANN for modification of the weights. This

is called 'back propagation' activity. There are different methods used for

modification of the network weights, called learning roles or leaming

algorithms. The 'delta role' is one popular learning rule. Basically, it is a 'least

sum of squares of errors' (lSE) method, and is usually improved by a

momentum terme The mornentum term is added to give the algorithm a breakout

chance, if found to he trapped in a local minima instead of the global minima.

Fuzzy Inference System

Complexity (non-linear and chaotic behavior) and dynamics (spatial and

temporal changes) of reai world systems can not be easily captured via

observation and may not be precisely explained by point-wise coUected data (in

time and space). Therefore, data uncertainty is unavoidable. The degree of

fuzziness or vagueness in the uncertain data depends on the degree of system

complexity, acuteness of system heterogeneity, precision of data measurement

method, and intensity of data collection points. In general, as stated by Zadeh17:

"As complexity rises, precise statements loose meaning and meaningful

statements loose precision./f To consider this vagueness in the course of

reasoning and calculations Zadeh16 introduced 'fuzzy logic'. An FIS is a

combination of roles with fuzzy premises and/or consequences that employs
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fuzzy logic for its inference task. Elements and steps involved in a FIS are

introduced below.

A fuzzy set is a set that can contain elements with partial degrees of

membership6 meaning that it has graded (not c1early defined) boundaries. This is

in contrast to ordinary sets with rigidjcrisp memberships (ooly 0 or 1). A

membership function, for a given fuzzy set, is the function that assigns

appropriate membership degrees (0 to 1) to each point in the universe of

discourse. Classic logical operators and their operations on fuzzy sets are

presented in Figure (3.3). Fuzzy sets, membership functions, and logical

operators are elements of 'if-then' mIes that in turn are main components of an

FIS. Stages of an inference process (Figure 3.4) may he described in five stepsl,9,13

as follow:

a. Fuzzifieation of the input(s): to resolve ail fuzzy statements in the antecedent

to a degree of membership ( 0 ta 1 ).

b. Application of fuzzy operator(s): to apply fuzzy logie operators to eomponents

of the antecedent, and resolve the anteeedent to a single number ( 0 to 1 ), this is

the degree of fulfillment (DOF) for that rule.

c. Implication: to fire the rules \Vith non-zero DüF and find the consequences or

outputs of these rules.

d. Aggregation of the rules outputs: to unify or integrate ail outputs together to

make a eombined output for the FIS.

e. Defuzzification of the output in most cases a fuzzy output is not a suitable

output format Therefore, this step transforms the aggregated output, which is

fuzzy, to a single crisp value. There are different defuzzification methods

available sueh as: centroid, middle of maximum, and Sugeno.
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MODEL DEVELOPl\'[ENT

To demonstrate the novel VSSM flow modeling approach used in this paper, a

sarnple model was developed. This was done in three main steps, namely:

development of the ANN module, development of the FIS module, and

integration of these modules into the main model which simulates the VSS~[

flow through tirne (simulation period) and space (flow region). Then, the

performance of the model for a simple soil-moisture redistribution case has been

tested and compared against the results of SWAP93 mode!, an off-spring version

of the well-known SWATRE modep,5. While the results and discussions are

presented in a following section, the subsequent section provides details on the

different model development stages.

The ANN Module

Original soil data, taken from a table in the DRAINMOD reference report1-l,

contains: ' soil-water content' associated with relevant ' soil-water head' and

'unsaturated hydraulic conductivity' values. In order to provide enough tabular

points for data generation, this table was extended from 42 to 153 data ro,vs,

using 'CurveExpert'lO, a curve fitting software.

The ANN structure (Figure 3.5) was selected, via trial and error, to have t,vo

hidden layers with five and three neurodes in the first and second layer, hvo

inputs (Le., head values of two adjacent nodes in the sail) and one output (i.e.,

steady flux between the two nodes). Accordingly, aIl records in the ANN

training data must have three values (two heads and a flux). A small FORTRAN

program based on the Darcy-Buckingham equation, with an arbitrary fixed nodal

distance equal to five centimeters, was developed to generate 23,562 records to

be used as ANN training data. In this study, 'Microsoft PowerStation FORTRAN

compiler - Vl.O', was used for this and other programming purposes. The ANN

module was trained bv 'Neural Works Professional II/Plus - V5.23', software.. ..
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lnitially, training was done for the whole range of fluxes (-0.00020278 to

0.00014167 mls, negative sign denotes down\vard flux). Ho\vever, due to

unsatisfactory results it was decided to divide the flow rates into sub-classes in

order to decrease nonlinearity and provide a better chance for ANN training.

Taking inflection points of the soil hydrodynamic functions (Figure 3.6) as

general guides, five sub-classes within the original soil moisture content range

(O.?? to 0.63 m/m) were established as fuzzy sets (Figure 3.7). Hence, moisture of

any point in the soil profile may be expressed with linguistic variables, namely:

Very Wet (VW), Wet (W), Moderate (M), Dry (0), and Very Dry (VD). Second,

for any pair of adjacent soil compartments, each with five possible wetness

levels, 25 (=5*5) different t10w classes were defined (Table 3.1). Due to these t10\V

classes, generated data were split into 25 sets and each set was split randomly

into training and testing sets (Table 3.2). Third, while the ANN structure \vas

kept constant, 25 specialized ANNs were trained. Performances of these ANNs

were evaluated using the different indicators described belo~N.

a. Error (0 - E) and absolute relative error (ID - El 1 D) \vere calculated and

plotted versus desired flux, where 0 is desired (Darcy-Buckingham) and E is

estimated (ANN) fluxes. These graphs reveal if errors follo\v a pattern. Root

Mean Square SUffi (R~IS = [~ (D - E) 21 n] 0.5) and Mean Absolute SUffi (!vIA= 2:

ID - Elin) of errors were also calculated and used as lumped performance

indicators, where n is the number of records used for ANN testing.

b. A good match between estimated and desired values is detectable if the scatter

diagram shows a 1:1 linear relationship. Forced (through the origin) and free

linear regressions, of estimated on desired values, may acceptably substitute the

scatter diagram. Hence, regression line 'slope' and ' intercept' were used as

performance indicators by comparing them with 'one' and 'zero' respectively.

AIso, a co~elation coefficient was used as another informative indicator jointly

w~th the r.egression line coefficient(s).
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• Table 3.1. Flow classes due to upper and lower comparbnent soil-moisture

Class # Soil-moisture Class Code Class # Soil-IDoisture Class Code

Upper Lower Upper Lower

VW VW NA 14 M D CID

2 VW W NB 15 M VD CIE

3 VW M NC 16 D VW DIA

4 VW D ND 17 D W DIB

S VW VD AIE 18 D M DIC

6 W VW BIA 19 D 0 DIO

7 W W BIB 20 D VD DIE

• 8 W M BIC 21 VD VW ElA

9 W 0 BID 22 VD \V EIB

10 W VD BlE 23 VD M E/C

Il M VW CfA 24 VD D EID

12 M W CIB 2S VD VD EIE

13 M M CIC

•
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• Table 3.2 Number of records used for training and testing of the ANN modules.

Class # Records for Class Code Class # Records for Class Code

Training Testing Training Testing

562 140 AlA 14 2885 723 CID

2 179 45 AIB 15 3460 864 CIE

3 296 72 AlC 16 491 125 DIA

4 484 124 AID 17 1665 417 DIB

5 587 149 AIE 18 2864 715 DIC

6 179 45 B/A 19 4743 Il85 DID

7 256 66 BIB 20 5699 1425 DIE

• 8 1003 251 BIC 21 531 133 ElA

9 1644 410 BID 22 1793 448 EIB

JO 1958 490 BlE 23 3053 765 E/C

Il 299 77 CIA 24 5073 1266 EID

12 1025 257 C/B 25 6176 1543 EIE

13 1766 442 CIC

•
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c. Suggested first by Kok et. all1, 'SCORE' is a lumped measure of agreement,

between 0 (no match) to 100 (complete match). SCORE is a complement to a kind

of standardized relative error. The original procedure considers a filtration step

ta remove high frequency components. In this study, however, in order ta make

the schedule less conservative, the filtration step was not taken into account.

SCORE = {1 - (~ (0 - E) 2 / L 02] OoS} * 100

After checking ANN performances and finding them acceptable, a module was

coded ta simulate the unique ANN structure. For each flux class, the program

receives pairs of soil-moisture suctions, then yields flow rates using weights and

transformation factors that are extracted from the trained ANN. At this point, the

model was ready ta be shifted to the next stage, i.e. FIS development.

The FIS Module

Defining soil-moisture classes as fuzzy sets was the very first step in this stage.

As aforementioned, the number of fuzzy sets (five), their shape (trapezoidal),

and their boundary values (Figure 3.6) were selected based on inspection of the

soil hydrodynamic functions (Figure 3.7). These fuzzy sets, in turn, raised (5*5)

25 fuzzy mIes, each leading to one flux class. Without fuzzy sets and FIS, transfer

fromone flux class ta another could produce an abrupt change.

Details of the FIS used in this study are shown in the five steps of Figure (3.8).

The first step, fuzzification, interprets the sail moisture contents of sail

compartments as fuzzy variables. In fact, comparison of moisture contents with

the five soil-moisture fuzzy sets yields five membership values, betvveen 0 to 1.

For each compartment, zero indicates irrelevancy of the soil-moisture to the set

and a non-zero value expresses the level of soil-moisture affiliation to the set. By

way of the second step ,AND' fuzzy operator is used to define DOF for each rule.

That is ta set the DOF equal to the smallest membership value introduced to the
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role antecedent. The third step, implication, executes the roles with non-zero

DOf, and yields the ruIes consequences via excitement of the appropriate ANN

and thus getting back their responses, the flux. The fourth step, aggregation, is

used to unify or integrate all outputs to make a combined output for the FIS.

Finally, defuzzification, employs the Sugeno algorithm to produce a single value

flux as the FIS output As the last step in FIS development stage, a FORTRAN

code for the FIS was written to he used as a part of main model. Having the

ANN and FIS ready, it was time for development of the main model.

The Main Program

The main program, coded in FORTRAN, employs the ANN and FIS modules

while marching through space (flow region) and lime (simulation duratian) for

calculation of the soil-moisture heads and contents. The flowchart presented in

Figure (3.9) shows how this task is accomplished. Collectively, the main program

with the ANN and the FIS modules constitute the sample modeI. The new

modeling approach is termed JIANN- and FIS-based VSSM redistribution 1D

simulation model" and is abbreviated as "'ANN-fIS-ID".

A transient VSSM flow in an assumed soil profile depth of l.5m, descretized into

31 nodes (30 compartments each Scm thick), with the following boundary and

initial conditions was set as a simple case ta test the ANN-FIS-ID model against

the SWAP93 model.

t = 0 ; Si = 3 m (1 ~ i ~ 31)

t > 0; S1 = 15 m and S31 = 3 m

Where: t is time, i is the Dode number, and 5 is the sail suction. The results are

presented and discussed below.
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• Table 3.3. Performance indicalors for the ANN modules

Row# Flow Regression Parameters Correl. RMS SCORE
Class Coeff.

Coust. Slope

Ideal value => 0 1 0 100

NA 0.023031 1.001899 0.9992 0.46668 96.17

2 NB 0.051445 0.999606 0.9992 0.46867 96.80

3 NC -0.010408 1.000007 0.9997 0.29756 98.18

4 AID -0.018623 0.999738 0.9999 0.19603 99.18

5 AIE -0.001975 0.999814 0.9998 0.30769 98.81

6 BIA -0.047898 0.988403 0.9993 0.47683 96.12

7 BIB -0.050920 0.977096 0.9964 0.72246 91.52

8 BIC 0.000350 0.996809 0.9994 0.27364 96.83

9 BID -0.081167 0.995672 0.9993 0.40947 96.61

• 10 BlE -0.021805 0.996727 0.9997 0.32579 97.82

11 CIA 0.041014 0.993804 0.9993 0.17549 97.80

12 CIB 0.032851 0.988288 0.9972 0.29471 93A9

13 CIC 0.001050 0.995010 0.9992 0.01116 95.91

14 CID -0.000542 0.996658 0.9996 0.00988 97.67

15 CIE -0.000971 0.995923 0.9994 0.01449 97.39

16 DIA 0.010080 1.000186 0.9999 0.17340 98.91

17 DIB 0.042174 0.994226 0.9996 0.23651 97.36

18 D/C 0.000955 0.995465 0.9994 0.01044 97.03

19 DID 0.000116 0.996933 0.9996 0.00453 97.33

20 DIE -0.000335 0.998126 0.9997 0.00306 98.38

21 ElA 0.040737 0.997949 0.9998 0.26353 98.66

22 EIB 0.011512 0.995778 0.9989 0.42309 96.01

23 E/C 0.002312 0.993424 0.9993 0.01254 97.48

24 EID 0.000304 0.998886 0.9996 0.00332 98.23

25 EIE 0.000126 1.008498 0.9993 0.00330 96.16•
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RESULTS Al'iD DISCUSSION

From the Iiterature data, plotted in Figure (3.6), it is obvious that the behavior of

the curve siopes contradict each other. In fact, this makes the Richards' equation

difficult to solve numerically. These graphs were used as general guidelines for

selection of the boundaries and shapes of the fuzzy sets. Choice of fuzzy set

ranges can have an impact upon model results. Defining a large number of sets

may alleviate the problem, but this leads to laborious program coding and

lengthy computation time. One way ta select suitable ranges for fuzzy sets, as

was employed in this study, is to emphasize physical guidelines, such as sail

hydrodynamic functions, and use trial and error.

The performance of the 25 ANN modules were monitored via several

performance indicators (such as regression coefficients, correlation coefficient,

RMS, and SCORE) reported in Table 3.3. AIso, plots of estimated vs. desired

fluxes (to visualize the match between the hvo) and errors vs. desired fluxes (to

track any non-random trend in the errors) were used. The plots, presented in

Figure (3.10), reaffirmed the results of Table 3, strengthening approval of the

ANN modules. Iwo general trends may be noticed in the error plots. Fust is an

increase in the absolute error as the flux increases. Yet, this coincides \Jvith a

decreasing trend in the relative error. Second, is an apparent sinusoidal trend in

Figure (3.10). This is a result of the non-unuorm distribution of the training data.

Next, the ANN-FIS-ID model and SWAP93 models were executed for a 3D-day

simulation period and outputs were compared. After the 12th day results show

that steady state, under constant boundary conditions, had been re-established.

A good match was found between the models (Figure 3.11) with a maximum

error of less than 8%. The error magnitude should be assessed cognizant that the

level of inherent uncertainty in VSSM flow input parameters is usually much

higher. The satisfactory result of the sample model demonstrates the acceptable
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performance and the capability of the ANN-FI5-1D approach for simulation of

VSSM flow.

An unsaturated hydraulic conductivity function, an input to conventional

models such as SWAP93, was not required for the ANN-FI5-1D based mode!. In

fact, reducing the number of inputs is an advantage of the ANN-FIS-IO

approach that may generally be called 1 input simplification'. Two other possible

ways for input simplification are acceptance of soil structural and texturaI

properties instead of soil hydrodynamic parameters, and application of

qualitative variables. Another expected advantage of the ANN-FI5-1D approach

over conventional nurnerical methods is less computational time especially for

more complex (20, 3D, non-homogeneous) cases. Potentially, ANN-FIS-ID is

very promising but at least in the short tenn, is not a complete substitute for

numerical models. A universal and fully operational version of a ANN-FIS-ID

model, inc1uding all its expected advantages, may become accessible \vhenever a

comprehensive soiljVSSM database becornes availabLe for training.

CONCLUSIONS

ANN-FIS-IO, a ne"" VSSl'vI flow modeling approach that applies FIS and AN!\;

techniques, was introduced and its basic concepts and components discussed.

Based on this approach, a transient VSSl'vl 10 flow model "vas developed and

tested for comparison against SWAP93, and a good match was faund between

the two madeLs results. The maximum en-or was less than 8%. The satisfactory

performance of the sample model demonstrates the potential capability of the

ANN-FIS-ID approach for simulation of VSSM flow.

80



• REFERENCES

1. Bardossy, A., Bronstert, A. and Merz, B. 1995. 1-, 2- and 3-dinletlsional

modeling of water nlovement in the unsaturated sail matrix using a fuzzy

approach. Advances in Water Resources, 18, 237-251.

2. Caudill, M., and Butler, C. 1992. Understanding ofneural networks: computer

explorations, Vo1.1, Basic Networks. MIT Press, London.

3. Clemente, R.S., De Jong, R., Hayhoe, H.N., Reynolds, W.D. and Hares, M.

1994. Testing and Comparïson of three unsaturated sail water flaw models.

Agricultural Water Management, 25, 135-152

4. Davary, K, Bonnell, R.B. and Prasher, S.O. 1997. A non-numenc computer

model far unsaturated sail water movement. Poster presentation in: 9th World

Water Congress of !WRA, 1-6 Sep. 1997, Montreal, Canada.

• 5. Feddes, R.A., Kowalik, P.J. and Zaradny, fi 1978. Simulation offield water

use and crop yield. Center for Agricultural Publishing and Documentation,

Wageningen.

6. Gulley, N. and Jang, J.-S.R. 1996. Fuzzy logic toolbox for use with NfATLAB.

The Math Works Ine.

7. Hecht-Nielsen, R 1991. Neurocomputing. Addison-Wesley Publishing Co.,

New York.

8. Hsu, K., Gupta, H. V. and Shorooshian, S. 1995. Artifidal neural nefwork

modeling of the rainfall-nlnoff proœss. Water Resourees Researeh, 31, 2517

2530.

•
9. Hung, D.H. 1996. Hardware Juzzy inference systems - architecture, design, and

implementation. In: "Fuzzy logie and neural network handbook", Chen,

C.R., Editor. McGraw-Hill.

81



•

•

•

10. Hymas, D. CURVEEXPERT, A comprehensive olrve fttting system for

windaws. Version 1.31, <www.eng.clemson.eduj.....dhyams/cvxpt.htm>.

Il. Kok, R., Lacroix, R, Clark, G. and Taillefer, E. 1994. Imitation ofa procedural

greenhouse lnodel with an artiftcial neural network. Canadian Agricultural

Engineering, 36, 117-126.

12. NeuralWare. 1993. Neural COl1tputing, a technology handbook. NeuralWare

Inc., Pittsburgh.

13. Panigrahi, S. 1998. Neuro-fuzzy systel1ls: applications and potentiaf in biology

and agriculture. AI Applications, 12(1-3), 83-95.

14. Skaggs, R. W. 1981. DRAINMOD referenœ report, methods for design and

evaluation of drainage-water managelllent systems for soils with high water

tables. USDA-SCS.

15. van den Brook, B. J., van Dam, J. C., Elbers, J. A., Feddes, R. A., Huygen, J.,

Kabat, P. and Wesseling, J. G. 1994. SWAP93: input instructions manual.

Wageningen.

16. Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8, 338-353.

17. Zadeh, L.A. 1973. Outfine ofa new approach to the analysis ofcomplex systems

and decision processes. IEEE Trans., 5MC, 3, 28-44.

82



•

•

•

CONNECTING TEXT: CHAPTERS THREE & FOUR

Chapter three demonstrated the ANN-FIS-ID simulation mode!. The ANN was

trained to estimate a flux between two adjacent nodes based on their soil

moisture heads. To enhance the ANN estimations, 25 specialized ANNs were

trained (instead of one) and combined via FIS.

While developing the ANN-FIS-lD approach, a totally different point of view

emerged with regards to the use of an ANN for the VSSM redistribution

modeling. This alternative approach, ANN-ID, is presented in chapter four. The

ANN for this method was trained to estimate soil moisture heads for a whole soil

profile based on antecedent moisture and boundary conditions. Inasmuch as the

boundary conditions are given to the ANN it was possible to train the ANN for

larger time steps (equal to boundary conditions renewal intervals). In fact, the

ANN-FI5-1D and ANN-ID are two completely different approaches which are

almost in total contrast with each other. These methods are compared and

contrasted in chapter 6.
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CHAPTER FOUR: THE SECOND ID MODEL

ABSTRACT: This chapter explains two nearly related non-numerical modeling

approaches for variably saturated soil moisture (VSSM) movement Both

methods employ artificial neuronet (ANN) technique to find soil profile moisture

upon receiving the soil profile antecedent moisture pattern, as weU as present

and previous boundary conditions. SWAP93 model, which is based on Richards'

equation, was employed to generate daily data for ANN training task. The

trained ANNs, then, evolved into one-dimensional unsteady VSSM flow models

that require less detailed input. The models simulate soil profile moisture

redistribution, stepwise and forward through time, and their output compared

with that of SWAP93, and good matches were found. Overall, in comparison to

the variance usually associated with VSSM parameters, the errors seem quite

acceptable.

INTRODUCTION

Variably Saturated Soil Moisture (VSSM) f10w models can be used as planning,

designing, and managing tools for irrigation/drainage or any other soil-water

related process. Often, they are used to simulate alternative scenarios to provide

more insight into likely benefits and drawbacks.

Common practices in VSSM flow modeling are based on numerical solution of

the Richards' equation. However, numerical solutions are associated with many

programming efforts and often have high computation costs. Ais0, results are

inherently combined with high uncertainty due to temporal/spatial diversities,

intrinsic to the VSSM input parameters. For instance, unsaturated hydraulic

conductivity, an important input parameter, is a function of sail type and also is

a function of soil moisture with sharp variations. Unsaturated hydraulic

conductivity is rarely measured, but is usuaUy estimated. At best, the function is
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estimated from point-measured values of 1/saturated hydraulic conductivity" and

/1 a soil moisture retention function"; where the latter one is usually measured

from disturbed sail samples in the laboratory. These problems contribute to

model uncertainty to an extent that results of the models can only be regarded as

approximations of realityl.

Ta circurnvent these problems the authors presented an ANN-based VSSivl

mode!. This approach lowers programming efforts as weIl as facilitates the

preparation of inputs via acceptance of 'soft' data and a decrease in the number

of inputs. The model development, as reported in this chapter, was based on hvo

other steps. First, data were generated via Richards' equation. Second, two

ANNs were trained ta estimate sail profile moisture distribution. Then, hvo

transient one-dimensional (10) models were developed that utilize the ANN -at

any time step- to compute final sail profile moistures. This chapter explains bath

models and their results. Results of the two models \-vere compared \-vith

S"VAP936 outputs.

THE IDEA, PROS AND CONS

Non-numerical solutions for VSSM flow are favored if they overcome the

problems associated with numerical solutions. The idea introduced in this

chapter leads ta a very lucid code. And inasmuch as its computation cost is very

small, the sample models presented here were executed at least three times faster

than that of SWAP93. The method has, also, the potential to employ real world

data (VSSM flow observations) for ANN training. This offers the idea that

estimation of the highly uncertain VSSM flow parameters can be bypassed.

Inasmuch as these models are non-numeric with no iteration, utilizing the

trained ANNs within the entailed ranges, their computation is speedy and stable.

Although results of any model are approximations, but errors of tested sample

models. ~r~ small and reasonable compared to uncertainties associated with
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numerical flow models. Besides these pros, the model has sorne cons too. An

important one is the fact that the trained ANN does not pay attention to

preservation of mass; therefore, correction of minor imbalances -at the end of

any time step- need. separate consideration. Another disadvantage is the long

time and tedious efforts needed to train ANNs for such nonlinear cases. In fact, if

a comprehensive data set is available the lime and efforts needed to train an

ANN, as an 'universal VSSM flow estimator', might pose a serious barrier.

However, such an estimator would he fast, would promote uncertainty handling,

and would facilitate the input preparation.

MODEL DEVELOPMENT

The approach suggested in this chapter is demonstrated via sample models

through simulation of sorne unsteady VSSM flow cases. Development of sample

models had three distinct stages, namely: data generation, ANN training, and

model implementation. Hereafter, for convenience, the two sample models are

called Ml and M2. The main difference between Ml and M2 is due to the

representation of soil-water distribution by their ANN modules. While Ml

employs an ANN (MI-ANN) that provides soil-water heads at 10 equally spaced

nodes, the ANN module of M2 (M2-ANN) returns coefficients of a 5th degree

polynomial that describes the soil-water distribution (in term of head) through

the sail profile. More details of bath ANNs are given later on. Performance of Ml

and M2 has been tested and compared with the results of SWAP936 mode), an

offspring of the well-known SWATRE2 model. While the results are presented at

the end of this paper, the subsequent sections provide details on the three

modeling stages.

Data Generation

Data generation was the fust step in this study. Original soil data for this study

was taken from a table in DRAINMOO reference reports that contains soil
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moisture 'content', 'head', and 'unsaturated hydraulic conductivity' records.

Assuming la different profile depths (from 25cm ta 250cm), each discretized ta

la equal compartments, along with 12 initial conditions (uniform and non

uniform soil moisture heads from -200 to -7000 cm-H20), 5 lower boundary

conditions (4 sets of defined daily heads from -200 ta -4000 cm-H20, and free

drainage), and 8 upper boundary conditions composed of pre-defined sets of

daily potential sail evaporations (from 0.05 ta 0.95 cm) and daily rainfalls (from

0.00 ta 2.00 cm), aIl together 4800 (=10*12*8*5) separate input files were prepared

for SWAP93 mode!. The simulation period \-vas set to 25 days and SWAP93 \-vas

executed for aIl input files. Simulation outputs were saved at the end of each

simulation day.

For MI-ANN pairs of 10 nodal soil-water heads -for any two successive days

extracted from SWAP93 output files, along with boundary conditions form

records that were arranged in new files with a suitable format for ANN training

task. Inasmuch as pairs of daily heads (initial state and desired output at any

time step) are needed for each record, total records produced was 115200 (=[25

1]*4800) lines.

MI-ANN was trained ta predict la head values at uniformly spaced nodes

through the soil profile. For training purpose, desired outputs for the ANN "vere

10 final nodal heads. Inputs are composed of 10 initial nodal heads, 4 initial and

final upper boundary conditions (includes rainfalls and soil potential

evaporations), 2 initial and finallùwer boundary conditions (heads at the bottom

of the sail profile), and sail compartment thickness. Then each record is

composed of 27 values. AIl together 115200 record lines were extracted and

prepared. Furthermore, the data were randomly assigned to three separate files

as follow; 58491 lines or 50.77% of records for training, 27878 lines or 24.20% of

records fC?r testing, and 28831 lines or 25.03% of records for verification use

(target.per.centages were 50, 25, and 25).
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To make the ANN module capable of prediction of heads anywhere within the

soil profile, 10 nodal values can be substituted by coefficients of a polynomial

that expresses 'head' as a function of 'depth' (h = f[z]). To find the best-fit

polynomial degree, veracity of polynomials of degrees three to seven was

checked and the best-fit was found a 5th degree polynomial (with six

coefficients). Then, M2-ANN was trained to predict these six coefficients that

represent moisture distribution in the soil profile. Inputs are exactly as those of

Ml-ANN, mentioned above. However, outputs are just those six coefficients,

which leads to record lines of 23-value length each. Using extracted records for

MI-ANN, a polynomial was fit to each set of 10 final head values (each record)

and coefficients obtained were substituted as desired outputs instead of final

heads.

ANN Training

Having the training data ready means the number of input layer nodes (1ï) and

output layer nodes (10 and 6) for neuronets are kno\vn. Ho\vever, ta find the best

ANN architecture (i.e. number of hidden layers and neurons, and the \vay they

are connected) many experiments on several ANN architectures ,"vere performed.

ANN modules were trained with 'Neural Works Professional II/Plus', version

5.23, -software-l. 'Normalized cumulative delta learning ruIe' and 'sigmoid

transfer function' were found best via trial and errors, and used in aU neurons.

While training, neuronet 'weights' and overall 'root mean square' (RMS) error

for testing data set was used as training performance indicators/controllers, and

eventually RMS error for verification data set was used. Noteworthy is that R!v15

values, as calcuIated by the software, are Iumped (for aIl ten outputs together)

performance indicators and for the scaled (between 0 and 1) data.

Preferred structure for MI-ANN, only with its particular connections (for the

sake of clarity standard connections are not shown), is sho\vn in Figure (4.1). The

[l~yer(node), ~ .. l structure may aIso be given in a linear format as: [I(lï), Hl(3),
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H2(lO), H3(lO), O(lO)r. Preferred structure for M2-ANN has only standard

connections and in linear format is given here: [1(17), Hl(12), H2(10), H3(8),

0(6)]. While training, these two ANNs were approved and preferred over other

ones not only due to smalliumped RMS values based on scaled data, but aiso

due to satisfactory values of other error indexes which are based on unscaied

data. These errar indexes, performed after training, are described below.

Node-wise errors are checked to make sure that errors are almost the same

throughout the soil profile. Linear regressions, forced-through-origin (Y=b*X) and

simple (Y=a+b*X), were performed to check 1:1 relationc;hip between ANN

outputs (Y) and desired outputs (X). A perfect 1:1 match would have a slope (b)

equal to one, an intercept (a) equal to zero. Correlation coefficients, a measure of

paired data scattering with a value of one for perfect case, were aiso calculated.

Mean absolute errar (MAE) and RMS values are other node-wise error measures

that are calculated due ta following definitions.

MAE = lI: 1 0 - El] / n

RM5 = {lI: ( D- E )2] / n}o.s

vVhere D and E are desired and estimated soil moisture heads respectively, and n

is the number of records. In addition, 'SCORE'3, a Iumped measure of agreement,

was aiso calculated. In the original procedure for SCORE ta remove high

frequency components a filtration step is considered. In this study, however, in

order to make the schedule less conservative the filtration step was nat taken into

account. The formula used for SCORE is defined below, where it yields 100 far a

perfect mach.

• [tayer(node #), .... ); I: input, Hl: hiddenl, 0: output.
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Values found for these error indicators are reported under results and

discussions. After the approval process, preferred ANNs were coded as soiI

water head estimation modules and made ready for the next (model

implementation) stage.

l\'lodellmplementation

Ta march through time and simulate soil-water distributions - using ANN

modules at any step - two computer models (Ml and M2) were coded. At each

time-step, known initial and boundary conditions are used by the main

programs to excite ANN modules and receive their responses; vvhich are 10 new

soil-moisture heads for MI-ANN and six coefficients for J\rI2-ANN. In the latter

case a fifth degree polynomial is used to find new soil-moisture heads at 10

uniformly spaced internaI nodes.

Before leaving the current time step, another module checks the soil-moisture

balance for the vvhole soil profile (.1storage = Linput - LOUtput) and corrects

minor imbalances, if there are any. Imbalances at each time step vvere not

noteworthv due to the ANNs small errors. Over time, ho\vever, imbalances ma\'.. . .
amplify themselves through repetitive calculations. The corrective measure

assumes that the final soil-moisture distribution pattern is correct. Thereiore, ta

abolish the imbalance quantity, it is distributed ta aIl nodes, not uniformly, but

imitating the soil-moisture pattern. As an example a large corrective share is

assigned to a \vet node and a small one to a dry node. Other corrective measures

were aIso tried, but the best result was found using the aforementioned method.

The sampie models outputs were tested against that of SWAP93 model and good

matches were found. The results are presented and discussed next.

RESULTS AND DISCUSSION

The prefe~ed Ml-ANN and M2-ANN, each with three hidden layers, had

achieved.to scaled data RMS values equal ta O.016i and 0.0134 respectively.
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Table 4.4. MI-ANN performance indicators for training data set.

N a b b' R RM5 MAE

1 -405.1 0.784 0.841 0.923 615.3 261.6

2 -202.0 0.877 0.943 0.952 236.2 159.2

3 -137.8 0.913 0.962 0.969 175.8 119.7

4 -88.4 0.947 0.979 0.984 118.7 80.4

5 -68.5 0.961 0.983 0.988 90.6 57.8

6 -61.8 0.964 0.988 0.990 86.4 55.2

7 -81.7 0.947 0.982 0.983 108.4 72.1

8 -116.1 0.917 0.967 0.968 146.2 100.1

9 -60.5 0.958 0.984 0.984 103.6 78.1

10 -90.4 0.934 0.974 0.978 122.3 95.0
a & b: intercept & slope ( of linear regression ), b': sJope ( ofregression through origin )

R: correlation coefficient, RM:S: root mean square of errors, MAE: mean absolutc of errors•
Table 4.5. M2-ANN performance indicators for training data set.

N a b b' R RMS MAE

1 -195.5 0.811 0.864 0.945 151.4 87.7

2 -162.1 0.883 0.932 0.958 138.6 85.1

3 -128.6 0.907 0.940 0.966 126.1 77.8

4 -117.0 0.938 0.975 0.978 114.5 69.4

5 -121.1 0.955 0.983 0.989 107.7 73.3

6 -75.0 0.972 0.991 0.994 68.8 54.9

7 -118.3 0.953 0.977 0.980 110.7 67.6

8 -108.9 0.934 0.970 0.971 123.2 75.8

9 -146.7 0.921 0.967 0.965 135.7 83.4

10 -157.2 0.913 0.961 0.953 143.0 86.3

•
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•
Table 4.6. MI-ANN performance indicators for testing data set

N a b b' R RMS MAE

1 -341.3 0.825 0.877 0.918 588.0 259.2

2 -193.4 0.884 0.946 0.953 233.5 157.5

3 -130.6 0.919 0.965 0.969 174.5 118.8

4 -82.2 0.951 0.982 0.984 118.9 80.2

5 -59.6 0.967 0.990 0.990 91.3 58.0

6 -55.2 0.968 0.990 0.990 85.9 54.9

7 -74.8 0.951 0.982 0.984 107.5 71.8

8 -109.8 0.920 0.967 0.968 146.2 100.2

9 -52.7 0.964 0.987 0.984 102.5 78.0

10 -82.9 0.940 0.976 0.978 121.5 94.6

•
Table 4.7. M2-ANN performance indicators for testing data set

N a b b' R RMS MAE

1 -208.2 0.807 0.858 0.936 163.1 89.5

2 -180.5 0.851 0.907 0.945 144.3 86.6

3 -135.4 0.893 0.935 0.958 131.6 79.5

4 -106.7 0.940 0.977 0.981 109.5 62.1

5 -77.1 0.962 0.993 0.993 90.4 50.6

6 11.5 1.026 0.997 0.998 59.3 37.3

7 -112.8 0.958 0.982 0.989 102.1 59.6

8 -125.8 0.940 0.976 0.975 118.7 66.7

9 -138.3 0.932 0.971 0.969 125.8 78.2

10 -143.6 0.927 0.968 0.952 132.4 82.9

•
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Table 4.8. MI-ANN performance indicators for verification data set

N a b b' R RMS MAE

1 -386.7 0.798 0.852 0.924 613.3 258.1

2 -195.4 0.882 0.944 0.955 232.0 156.5

3 -135.3 0.916 0.963 0.970 173.5 118.2

4 -87.8 0.948 0.980 0.985 117.7 79.9

5 -65.1 0.964 0.989 0.990 90.3 57.9

6 -60.8 0.965 0.989 0.990 86.1 55.2

7 -79.5 0.948 0.981 0.984 108.4 72.0

8 -111.9 0.918 0.966 0.969 146.3 99.9

9 -56.7 0.961 0.985 0.985 103.4 77.8

10 -85.3 0.938 0.974 0.979 122.5 94.8

•
Table 4.9. M2-ANN performance indicators for verification data set.

N A Bi B2 R RMS MAE

1 -188.7 0.857 0.873 0.943 148.4 79.1

2 -165.2 0.879 0.928 0.955 137.3 81.7

3 -136.8 0.893 0.934 0.961 131.5 80.3

4 -124.4 0.931 0.972 0.977 122.6 62.8

5 -115.3 0.961 0.994 0.991 96.5 70.4

6 -68.7 0.976 0.990 0.995 67.6 48.3

7 -120.2 0.960 0.971 0.975 128.3 72.2

8 -121.3 0.929 0.962 0.968 137.1 74.6

9 -134.1 0.933 0.965 0.966 128.7 73.6

10 -148.8 0.907 0.948 0.951 156.3 79.3

•
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ANNs predictions were also verified in detail with unscaled data via RMS, MAE,

SCORE, regression !ine slope and intercept, and correlation coefficient. These are

reported in Tables 4.1 through 4.6 for training, testing, and verification data sets,

where each row reports the error for a certain node (1 to 10) in the flow region.

Tables (4.1) to (4.6) also represent correlation coefficients and slopes and

intercepts for linear regression lines (forced-through-origin [E = b' * Dl and

simple [E = a + b * Dl). ft is obvious from the tables that regression slopes

(forced and simple) and intercepts for aIl nodes other than first and second nodes

(near the top boundary) are very near to one and zero, respectively and

proportionally. The correlation coefficients are weIl close to one too.

Another error indicator used was SCORE as a lumped measure, \vith a value of

100 for a perfect match. SCOREs related ta training, testing, and verification data

sets were calculated equal to 89.4, 89.1, and 89.5 respectively for MI-ANN, and

93.8, 93.2, and 92.6 respectively for M2-ANN, "vhich denote good matches for

bothANNs.

Due to the nature of ANN training process achievement to uniform error pattern

for aIl ANN outputs may be impossible or very castly. For both rvn-ANN and

M2-ANN error patterns are obvious from Tables (4.1) ta (4.6). Commonly in aIl

tables error is minimum for the mid-profile nodes (#5 and #6); moreover, errar is

maximum for the upmost nodes (#1 and #2). These may be postulated due to

large variation of soil-water heads at the upper flow region (near sail surface,

under imposed top boundary conditions), comparing to much milder variations

in the mid-profile. In fact at the middle of flow region, nodes 5 and 6, disturbance

from boundaries is minimum. In the lower hall of the flow region, error patterns

for MI-ANN and M2-ANN are different. For M2-ANN, errors get larger to\vard

the lower boundary, which is due to larger variations near the boundary. For

MI-ANN, 'error behavior may be deemed strange around node number eight.

Through the course of ANN training, sorne other tried ANN structures did not
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Table 4.7. Typical correction calculations.

Initial Condition Final Condition Correction
N h

1
e h

1
e e/1:e

1
e

1
h

(cm) (cm/cm) (cm) (cm/cm) o/a (cm/cm) (cm)

1 -557.635 0.4673 -688.171 0.4651 9.991 0.4646 -712.792

2 -527.387 0.4678 -644.037 0.4658 10.007 0.4654 -668.698

3 -512.696 0.4681 -628.090 0.4661 10.013 0.4657 -652.766

4 -512.910 0.4681 -622.768 0.4662 10.015 0.4658 -647.448

5 -527.184 0.4678 -631.166 0.4660 10.011 0.4656 -655.839

6 ..554.756 0.4674 -647.366 0.4658 10.006 0.4653 -672.024

7 ..595.205 0.4667 -662.489 0.4655 10.000 0.4651 -687.133

8 -648.525 0.4657 -674.580 0.4653 9.996 0.4649 -699.213

9 -685.140 0.4651 -699.120 0.4649 9.986 0.4645 -723.731

10 -719.265 0.4645 -726.294 0.4644 9.977 0.4640 -749.881
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show such an error pattern; however, due to their overall inferior performances

they were not approved and therefore omitted. This shows the problem is of

'ANN structure related' kind that might be resolved by doing much more trials

to finding a flawless ANN structure. After all, the results of Ml model tests,

reported later in this paper, implies that total performance of the model is

acceptable. In general, the performance of tvf2-ANN is better than MI-ANN.

Therefore, at this point both ANNs were retained to be used as the soil-moisture

estimator modules within the sample programs.

To improve the model accuracy, the corrective module was aimed to eliminate

the imbalances in the soil profile moisture (estimated via the ANN). A typical

correction calculation is presented in Table (4.7). Any estimation starts from

known 'initial and boundary conditions' and the ANN output is the 'final

condition'. Both initial and final conditions are in terms of soil-moisture heads

(h). Then, the first step was to find the soil-moisture contents (8) for both

conditions and aIl nodes. As the second step the total soil-moisture

content/storage (equal to: 70.0272cm, and 69.8260cm; where LiZ=15cm) and the

bottom fluxes (equal to: -O.002915cm/h, and -O.002461cm/h) 'Nere calculated for

bath conditions, initial and final. A daily average bottom t1ux, and thence daily

battom flow (equal to: -O.0645D9cm) is calculated. The third step emplays the sail

profile balance equation to find the Total Moisture Correction (TMC) as follow:

TMC = (Moisture inputs - Moisture outputs> - (Change in moisture storage>

TMC = <bottom flux + rain - soil evaporation) - (Final storage - Initial storage>

TMC = <-0.0645 + 0.0 - 0.2) - <69.8260 - 70.0272>

TMC = -0.0633 cm

Negative and positive signs in TMC denote a need to decrease or increase the

final soil-moisture, respectively. The final step was ta use the soiI-moisture

d~tribution pattern as a guide ta dispense the lumped correction to nodes.
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Therefore, ta find the corrected nodal moisture contents, each node receives a

share equal ta the percentage of its moisture to that of whole profile (= 100 * [8 /

re]).

At this point, the overall performance of both models, Ml and M2, were tested

against SWAP93 model through simulation of two illustrative cases, each for a 25

day period, and comparison of the models results. Soil profile depths equal ta

150 cm and 250 cm were assumed for first and second cases, respectively.

Boundary conditions (upper and lo\ver) for first and second simulations are

given in Tables (4.8) and (4.9), while initial soil-moisture head values for nodes

number 1 ta 10 (from top to bottom of soil profile) were set to [-2000.0, -1777.8,

-1555.6, -1333.3, -111.1, -944.4, -833.3, -722.2, -611.1, -500.0], and [-2000.0,

-2666.7, -3333.3, -4000.0, -4666.7, -4500.0, -3500.0, -2500.0, -1500.0, -500.0}

centimeters respectively.

Figures (4.2) and (4.3), each composed of 25 daily graphs, visualize continuous

moisture alterations through the soil profile for bath simulated cases. Each graph

compares results of simulations performed by Nl1, ~12, and SvVAP93 models.

Based on SWAP93 -assumed as observed/desired- outputs RtvI5 and SCORE

were calculated for Ml and found equal ta 115.23 and 86.11 for the first, and

??7.13 and 89.98 for the second case simulated, respectively. For M2, R!v15 and

SCORE were faund equal to 54.69 and 93.41 for the first, and 172.78 and 92.38 for

the second case simulated, respectively. OveraIl, these indicators and graphs

render evidences on the fact that outputs of Ml and M2 modeIs match weIl with

SWAP93 outputs. However, sorne features of the output graphs need to be

discussed in more detai!.

If the daily soil-moisture graphs for Ml, especially for the first simulation (Figure

4.2), are inspected in more detail, a minor random serrated behavior can be

detected. Inasmuch as ANN is not a mechanistical, but a data-driven modeling
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Table 4.8. Boundary conditions for the first case solved .

Day Rain Soil Evaporation Lower Boundary Head (cm)
(cm) (cm)

1 0.0 0.20 -200

2 0.0 0.25 -250

3 0.5 0.05 -300

4 0.7 0.12 -350

5 1.0 0.10 -400

6 0.4 0.10 -450

7 0.3 0.10 -500

8 1.0 0.10 -550

9 0.0 0.30 -soo
10 0.0 0.25 -S50

• 11 0.0 0.35 -700

12 0.0 0.25 -750

13 0.0 0.30 -800

14 0.0 0.35 -850

15 0.0 0.45 -900

16 0.0 0.35 -950

17 0.0 0.25 -1000

18 0.0 0.35 -1050

19 0.0 0.30 -1100

20 0.0 0.30 -1150

21 0.0 0.35 -1200

22 0.0 0.30 -1250

23 0.0 0.40 -1300

24 0.0 0.30 -1350

25 0.0 0.40 -1400

•
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• Table 4.9. Boundary conditions for the second case solved.

Day Rain Soil Evaporation Lower Boundary Head (cm)
(cm) (cm)

1 0.0 0.90 -1400

2 0.0 0.85 -1350

3 0.0 0.75 -1300

4 0.0 0.82 -1250

5 0.0 0.85 -1200

6 1.5 0.10 -1150

7 0.0 0.80 -1100

8 0.0 0.90 -1050

9 0.0 0.90 -1000

10 0.0 0.95 -950

11 0.0 0.95 -900• 12 1.5 0.05 -850

13 0.0 0.60 -800

14 0.0 0.85 -750

15 0.0 0.95 -700

16 0.0 0.85 -650

17 0.0 0.75 -600

18 0.0 0.65 -550

19 1.0 0.15 -500

20 0.0 0.80 -450

21 0.0 0.85 -400

22 0.0 0.60 -350

23 0.0 0.70 -300

24 0.0 0.80 -250

25 0.0 0.90 -200

•
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technique these errors should not be surprising. In fact, errors of this kind should

not be exaggerated while the overal1 trend of the model output matches that of

desired output and error indicators are satisfactory. On the other hand, tvI2

curves are smooth and do not show such a behavior. At least to a large degree

this is due ta utilization of a polynomial curve by M2. Therefore, advantages of

M2 over Ml may be stated in three folds. These are superiar error indicatars,

more smooth curves, and capability ta produce outputs at any points thraughout

the soil profile.

Finally, the execution times for models were recorded. This was accomplished on

a PC platform with AMD-K6-II pracessor at 380 MHz for rvIl. PC platform used

for M2 had a P-III processor at 600 MHz. The average execution times found for

Ml were equal to 532 ms for SWAP93 and almost 184 ms far the ANN-based

mode!. Almost the same proportion found for M2 and SWAP93 execution times 

on P-III platform- with 458 ms and 156 ms, respectively. These results may be

affirmed by knowing that the ANN-based models have much less camputation

steps than that of SWAP93 mode!.

101



•

-2500 -2000 -1500 ·1000 -500 0 -2500 -20(]0 ·1500 -1000 -500 0
0 0

.JO

-60

-90 -90

• ·120 -120

-150 -150

-1100 -700 -500 -300 .soo -400 -300

0 0

.a

6.~

-30 -30• .-
.' .-

• 6. .tJ-

~ 6 ~

-., 6. <I!
-90 ·90•. 6. •..- .6 -..
·120 ·120

•.,6 ~

Day 3
-150

Day 4
-150

•
Figure 4.2. Daily results (day 1 to day 25) for the first simulated case.
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Figure 4.3. Daily results (day 1 to day 25) for the second simulated case.
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CONCLUSIONS

VSSM simulation models are expressions of the reaI world that may explain the

reality to a great extent, but not entirely. Moreover, they need to be provided by

parameters such as hydraulic conductivity, which are again estimations of real

world specifications. ANN learns via examples and is a model-free simulation

tool, which helps simulation to get more and more independent of pre-cast

models, their limitations, and their parameters. In the lack of real observations,

data were generated in this study; however, one of the pros of this approach is

that the real world observations can be used to train the ANN. Providing

observed records for ANN training incorporates the reaI world spatio-temporal

diversities directly into the mode!.

Training was cumbersome and time consuming. To find proper ANN structures

many trials were done. Preferred ANNs both have three hidden layers and were

approved due to their superior performance (Tables 4.1 to 4.6). These ANNs only

receive soil-water heads for 10 internaI nodes plus sorne boundary information

to estimate new soiI-\vater distribution throughout the soil profile. As a matter of

fact, neither hydraulic conductivity nor soil-moisture content is given to the

ANNs.

The unsteady ANN-based VSSM flow modeling approach introduced in this

paper was capable to mimic the SWAP93 model weIl. This conclusion may be

justified via comparisons provided in Figures (4.2) and (4.3) for sample models

Ml and M2. AIso, error indicators such as RrvlS and SCORE were calculated and

reported that shows satisfactorily performance of Ml and M2. The execution

times for the ANN-based models were almost three times faster than that of

SWAP93.

This study bears out the idea that ANN-based models are competent VSSNI flo\v

simulat~~s .. However, total substitution of a universal ANN-based modeI instead
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of numerical models, needs huge amount of observed data (Le. a comprehensive

/ universal VSSM flow database). Such an ANN, which is capable to map all the

VSSM flow realities, is a type of huge model-free regression with more

individual-data tendency (due to the iterative least square technique used in

ANN training) rather than mean tendency. Inasmuch as ANN is sensitive to

individual records, it is capable of dealing with real world diversities and data

uncertainties. In fact, one of the main motives in employing ANN was to develop

a model that has the ability to easily cope with the uncertainty involved in VSSM

modeling.
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CONNECTING TEXT: CHAPTERS FOUR & FIVE

This study was planned to be carried out in two parts: ID, and 3D modeling

investigations. The ANN-based approaches developed in the first part are

presented in chapters three (ANN-FIS-lO) anà four (ANN-lD). The two methods

used for ANN inclusion in these 10 models were completely different. ANN-FIS

10 applies ANN in a node-wise manner; i.e., the ANN is trained to estimate a

flux only under the intluence of a pair of neighboring nodes. Ho\vever, ANN-ID

applies ANN in a profile-wise manner; i.e., the ANN estimates ten nodal sail

moisture heads for uniformly distributed nodes across a soil profile.

The second part of the investigation was focused on 3D modeling approaches. In

addition to the experience gained in part one, several other ANN inclusion

tactics were assessed and eventually one was selected. Chapter five presents a 3D

ANN-based approach, ANN-3D, that was developed based on the selected tactic.

AIso, this chapter presents a 3D simulation model that \vas tested against the

SWMS-3D numerical mode!.

Inasrnuch as the 3D model adopted a node-\vise ANN-inclusion tactie, it is in

sorne ways similar to ANN-FI5-1D. Similarities, differences, pros, and cons of the

three ANN-based approaehes are discussed in chapter 6.
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CHAPTER FIVE: A 3D NON-NUMERICAL MODEL

ABSTRACI: A three-dimensional non-numerical model for variably saturated

sail moisture (VSSM) movement is presented. The model employs artifida1

neuronet (ANN) techniques to find nodal soil moisture values upon neighboring

node soil-moisture values. The Darcy-Buckingham equation was employed to

generate data for ANN training. Marching through time and space, the model

redistributes soil moisture throughout the flow domain at any time step via

recursive excitations of the trained ANN. The ANN, does not require hydraulic

conductivity as an input but only the sail moisture content. Two simulation cases

were tried, and modeling results were checked with the results of the SWMS

model, a three-dimensional model that solves Richards' equation via the finite

element approach. Overall good matches were found (SCORE values equal ta 93

and 89). Moreover, ANN-based model execution times recorded were three to

eight times less than those of SWMS.

INTRODUCTION

A simulation model for Variably Saturated Sail Moisture (VSSM) that is fast and

capable of properly handling data uncertainties would serve plannersjdesigners

in examining more alternative scenarios ta find options that best match their

goals. Such a model bestows agriculturaljenvironmental managers the ability to

carry out their optimization tasks more comprehensively. Accordingly,

development of a simulation model that accepts data uncertainty and lessens

computation cost was set as the goal of this study. In titis paper, the authors

present a simulation model that employs ANN for evaluation of soil moisture

variations. The ANN-based approach lowers programming efforts as weIl as

facilitates the preparation of inputs. The model development, as reported in this

paper, was based on two pre-modeling steps. Firstly, due to lack of field data,

data was generated via Richards' equation. Secondly, an ANN was trained to
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estimate soil moisture changes at a node in a three dimensional (3D) space due to

the wetness of its six neighboring nodes. Then, a transient 3D model was

developed that utilizes the ANN -at any node and any time step- to compute

final soil profile moistures. Ta show how weIl the new model performed, this

paper also presents and discusses the results of two simulation cases using both

the ANN-based model and the numerical model, SWMS-3D5.

NUl\'[ERICAL AND NON-NUl\'IERICAL VSSM l\'IODELS

Almost aIl existing VSSM-3D fIow simulation models are based on numerical

solution of the Richards' equation. To develop such models tedious coding effort

is needed; however, while employed to simulate natural soil systems high

accuracy may not be achieved. This is due ta notable uncertainty in the VSSrvl

input parameters, especially for a heterogeneous and non-isotropie 3D flo\v

domain under an undulating soil surface. In fact, 3D simulation results can only

be regarded as rough approximations of the real system behavior1• 3D-VSSrvl

numerical simulation models are few and are not validated enough to become

widely accepted. This is mainly because of two chief obstacles they are faced

with: their high computation cost, and data preparation difficulty for their

inputs. The computation cost especially magnifies if amply Huctuating boundary

conditions and/or sharp moisture gradients occur; bath result in the need for

several iterations.

To solve the aforementioned problems, a non-numerical approach has been

considered as an alternative. The approach introduced in this paper leads to a

very lucid code and requires much less execution time compared to that of

SWMS-3D. In fact, the proposed non-numeric model has no it~rations and

utilizes the trained ANN within the entailed ranges for soil moisture variation

evaluation. Therefore, its computation is speedy and stable.
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The methed alse has the potential to modei real world data directly via ANN

training. In fact, ANNs learo directly from examples (Le. VSSivl flo\v

observations), without need for any predefined mode!. This ability suggests that

highly uncertain VSSM flow parameters, such as hydraulic conductivity, may be

replaced with sorne other sail texturaI and/ or structural characteristics that have

less inherent variance.

MODEL DEVELOPl\'(ENT

The proposed non-numerical VSSM modeling approach has two phases. Phase

one deals with training of several ANNs with the objective of defining the

structure of the best ANN. Due ta the lack of sufficient field observations, data

were generated for this study; therefare, phase one is discussed in two parts:

data generation and ANN training. Phase twa deals with the main model

development (that employs the best ANN), henceforth referred ta as ANN-3D.

To present the approach more pragmatically, a sample model \vas develaped

and its performance tested through simulation of two transient VSSlYI flo\\' cases.

The results are presented at the end of this paper, while the succeeding sections

give detaiIs on modeling stages.

Data Generation

In 3D space every node in a perpendicular mesh system has six neighboring

nodes, two on each axis. Any moisture variation in the central node is under the

influence of soii moistures in six surrounding nodes. This fact initiates directions

about the ANN architecture to be used. Let us name any set of seven nodes, one

central and six surroundings, as a Unit Pack (UP). The goal is to estimate final

soil moisture for the central node in a UP, when aIl (seven) initial moisture

values are known. To train an ANN that satisfies this goal, data must be

generated in a way to provide seven initial soil moisture values as input to the
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ANN, and a final (after a certain period of time) soil moisture for the central

node as the ANN desired output.

Original soil data for this study were taken from a table in a DRAINMOO

reference report6 that contains soil moisture 'content', 'head', and 'unsaturated

hydraulic conductivity' records. To generate data; first, a moisture level was

randomly assigned to the central node. Then, soil moistures for neighboring

nodes were determined semi-randomly. In other words, to enhance ANN

training, one has to consider that the training data set must have a fairly uniform

distribution in the universe of possibilities. This may be achieved by defining

different moisture classes and assigning moisture contents from these classes at

equal frequencies to each node. Then, nodal soil moisture values are assigned by

random pick from within the range of each class. Thence, it is called seffil

random.

To accomplish the semi-random moisture assignrnent scheme, the soil moisture

range was subdivided into eight arbitrary classes, from very dry to almost

saturated. Possible'moisture class' combinations for each UP (8 moisture classes

arranged in 7 nodes) were equal to 8 to the power of 7 (2097152). !vloreover,

random assignment of moisture contents within each class range creates a huge

number of possible. 'moisture content' combinatians. Ho"vever, due ta

computation resource limitations and based on experiencef practical applications

only 200000 record lines (each with seven volumetrie sail contents) \ve:e

randomly generated by use of a small computer program and considered. Then,

the Darcy-Buckingham equation was applied to each record case in arder to

calculate the flux between the central node and any of the neighboring nodes,

assuming a constant mesh spacing of five centimeters. Next, the soil moisture

redistribution in the UP under such fluxes for a time period equal to 15 minutes

was calculated, leading to the final soil moisture for the central node. At this

point e~c~ .record line has eight data, seven initial values and one final value.
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Finally, for the sake of ANN training, records were randomly split into three

parts, 50% for training data set, 25% for testing data set, and 25% for verification

data set, each saved in separate files.

ANN Training

As discussed above, the ANN architecture for its input (seven initial values) and

output (one final value) layers was fixed. However, to find the best ANN internaI

architecture (i.e. nurnber of hidden layers, number of neurons, and connections)

many experiments on severaI ANN architectures were performed. ANN

modules were trained with 'Neural Works Professional II/Plus', version 5.23,

software4. The 'Extended Delta-Bar-Delta (EDBD) Iearning ruIe' and the 1 sigmoid

transfer function' was found best via trial and errors and used for aIl neurons.

The EDBD learning rule uses past values of the gradient ta infer the local

curvature of the error surface, and autamatically calculates different Iearning

rates and momentum values for each connection. During the ANN training,

neuronet 'weights' and overaIl 'roat mean square' (RMS) errar for the testing

data set were used as training performance indicatars ta control the process. The

ANN training stopped when the testing data set R~IS sho\ved no more

irnprovement. Then, the trained ANN was tested against the verification data set

via RMS. Note that the RM5 values calculated at this stage are for scaled

(between 0 and 1, as required by the software) data.

Among aIl ANN architectures tried, a few were preferred over others due ta

smaller RM5 values based on the scaled data. To find and approve the superior

ANN among the preferred ANNs, other error indexes based on unscaled data

were checked after training. These error indexes are described below. A

structural presentation of the superior ANN, in a linear format, follows: [1(7),

HI(7), H2(15), O(l)r. In addition ta regular connections, the first element in the

ANN input layer, which represents initial soil moisture content for the central
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ANN input layer, which represents initial soil moisture content for the central

node, emits its output not only to the first hidden layer, but also to alllS neurons

in the second hidden layer. Thus, the ANN gives more attention to the

information carried by the central node in comparison to other nodes of the UP.

Linear regressions, forced-through-origin (Y=b"*X) and simple (Y=a+b*X), were

performed for unscaled data to check the relationship between ANN outputs (Y)

and desired outputs (X). A perfect 1:1 match would have a slope (b) equal to one,

an intercept (a) equal to zero. AIso, correlation coefficients, a measure of paired

data scattering with a value of one for perfect case, were calculated. Other error

indexes based on unscaled data were Mean Absolute Error (MAE) and RMs;

MAE = [r 1 0 - El] / n

RMS = {lL ( 0 - E )2] / n}o.s

Where, D and E are desired and estimated soil moisture heads respectively, and

n is the number of records. In addition, 'SCORE'3, a lumped measure of

agreement, was also calculated (where 100 is a perfect mach.) :

SCORE = {1 - lL (0 - E) 2/ L 02] O.S} * 100

Values found for these error indicators are reported under results and

discussions. After the approval process, the superior ANN was coded as the 'soil

moisture estimator' module. At this point phase one was complete and every

thing was ready for phase two, model implementation.

Modet Implementation

The main model, ANN-3D, computes moisture redistribution through the flow

domaine Ta achieve this, it advances the simulation through space and time

while employing the 'soil moisture estimator' module (based on the superior

ANN) at any node and at any time step recursively. At each time-step and for

each node within the flow domain, a UP is considered. Then, the main program
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each node within the flow domain, a UP is considered. Then, the main program

to excite the 'soil moisture estimator' module uses known initial sail moistures.

Then, the module yields its response, final soil moisture for the UP central node,

to the main mode!. The main model repeats this computation for all nodes for the

current time step.

To prevent amplification of errors and to improve model accuracy during

simulation, a corrective module was developed that was intended to eliminate

imbalances. At the end of each time step, this module calculates the soil moisture

balance for the whole flow domain (Llstarage = rinput - LOUtput). Then, it checks

for minar errors and corrects the imbalances, if there were any. The corrective

measure assumes that the final' soil moisture distribution pattern' is correct. Ta

abolish the imbalance quantity, it is distributed ta aIl nodes, not uniformly, but

confarmïng to the sail maisture pattern. For instance a wet node receives a large

corrective share, whereas a dry node receives a small one.

In more detail, the ANN-3D model perfarms several estimations, each from a UP

'initial condition' and the ANN output is the 'final condition' for the central

node. Initial and final conditions are in terms of sail moisture (8); therefore, the

first step was to find initial and final soil moisture heads (h) for boundary nodes.

The next step is to find initial and final boundary fluxes and overall boundary

flow (Moisture Inputs - Moisture Outputs) for the current time step. Total initial

and final soil moistures content/ storage were also calculated. As a result, one

may employ the sail profile balance equation to find the Total Moisture

Correction (TMC) as folIow:

TMC = (Moisture inputs - Moisture outputs) - (Change in moisture storage)

TMC = (8ottom flow + TOp flow + Lateral flow) - (Final storage -Initial storage)

Note that ~egativeor positive signs in TMC denote a need to decrease or increase

the finaI..soil-moistures, respectively. The next step was to use the soil-moisture
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moisture contents (St). This was done via corrective coefficients (= the ratio of

~nodal moisture' / 'total moisture') multiplied by TMC, as shown below:

With the ANN-3D model in hand, two transient cases were simulated, named as

Run-l and Run-2, with ANN-3D and SWMS-3D. The ANN-3D outputs were

tested against those of the SWM5-3D good matches were found. The SWMS-3D

model numerically solves the Richards' equation for saturated-unsaturated water

flow and the convection-dispersion equation for solute transport The governing

flow and transport equations are solved numerically using Galerkin-type linear

finite element schemes.

The results are presented and discussed in the next section. The flow domain

dimension, initial conditions, and boundary conditions for both simulations

follow. Note that Z is defined as zero at the bottom of the flow domain, and

maximum at the top or soil surface.

Aow domain dimensions:

lnitial conditions (t = 0):

Boundary conditions (t > 0):

x=10 cm;

h =-150 cm;

Y=10cm; Z = 2SOcm;

for ail X, Y, &. Z

Run-2.

db/dZ =0 (Free drainage);

db/d.X = 0 (no lateraI flux);

db/dY = 0 (no lateraI flux);

h= -2S00cm;

for Z =Ocm, allX &. Y;

for X = 0 cm or X = 10, all Y&. z;
for Y =0 cm or Y =10, all X &. z;
for Z = 250 cm, all X &.Y;

•
Aow domain dimensions:

lnitial conditions (t = 0):

Boundary conditions (t > 0):

X=50cm;

h = -150 cm;

Y = 50 cm; Z =250 cm;

for aIl X, Y, and Z
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db/dZ = 0 (Free drainage);

db/dX = 0 (no lateral flux);

dh/dY = 0 (no lateral flux);

h =-2500 cm;

h =-2300 cm;

h =-2100 cm;

h = -1900 cm;

h =-1700cm;

h =-1500 cm;

h = -1300 cm;

h = -1100 cm;

h= -900 an;

h = -700 an;

h =-500 an;

RESULTS AND DISCUSSION

for Z =0 cm, all X & Y;

for X = 0 cm or X = 50, all Y & Z;

for Y=0 cm or Y=SO, all X & Z;

for Z =250 cm, X = 0, all y;

for Z = 250 cm, X =5, aU y;

for Z = 250 cm, X = 10, all Y;

for Z =250 cm, X = 15, ail Y;

for Z =250 cm, X = 20, all Y;

for Z =250 cm, X =25, all y;

for Z =250 cm, X =3D, all Y;

for Z = 250 an, X = 35, all Y;

for Z = 250 cm, X =40, all Y;

for Z =250 cm, X = 45, all y;

for Z =250 cm, X =50, all y;

•

The ANN-3D model is based on an ANN which excites via seven 'initial soil

moistures' of a UP, and estimates the lfinal soit moisture' for the UP central node.

Table 5.1. Performance indicators of the superior ANN, based on the three data
sets used. Perfeet values for these indicators are reported in the first row.

a b b' R RMS MAE SCORE

Perfect value 0.0 1.0 1.0 1.0 0.0 0.0 100

Training 0.03725 0.9128 0.9963 0.9561 0.02309 0.01694 94.74

Testing 0.01802 0.9215 0.9969 0.9588 0.02244 0.01643 95.36

Verification 0.03561 0.9097 0.9952 0.9556 0.02351 0.01721 94.73

The superior ANN, (1(7), Hl(7}, H2(15), 0(1)], achieved an RM5 value equal to

0.0032 (for scaled data). As mentioned earlier, the unscaled ANN outputs were

also verified in detail with SCORE, RMS, MAE, correlation coefficient, and

regression Unes ([E = a + b * 0], and forced-through-origin lE = b' * Dl> slopes
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and intercept These indicators are reported in Table (5.1) for training, testing,

and verification data sets. Perfeet values for ail indicators is given in the first

row. As the indicators in the table show, the ANN performance is quite

acceptable.

The initial plan for ANN training was to train and employ an ANN that

estimates soil-moisture heads. However, due to high variation in the range of soil

moisture heads (with differences of up to four orders of magnitude) and the

huge number of possible combinations, training trials failed to bring forth an

appropriate ANN. In fact, training tasks for this study were tedious and time

consuming. Obviously, in comparison to a ID flow domain (each UP has only

three nodes), for a 3D case (with seven nodes in each UP) complexity of the

problem increases drasticaUy. On the other hand, despite the hypothetical belief

that ANNs are universal estimators and are theoretically capable of achieving

zero error, for most cases it is practically impossible to train an error-free ANN.

Therefore, an amendment was necessary. Then, instead of using 'soil moisture

head' data the feasible solution adopted was to use 'soil moisture content' data.

The advantage is that ANN training would he faster due to the smaller range of

variation of soi! moisture contents (with only one order of magnitude). However,

a disadvantage is the inability of such an ANN to solve saturated flow problems.

In other word, when ANN receives its inputs in terms of 'soil moisture content',

it fails to reflect soil water head variabilities in a saturated medium.

As aforementioned, the overaII performance of the ANN-3D model was tested

against the 5WMS-3D model through two illustrative simulation cases, Run-l

and Run-2, each for a 25 day simulation periode Flow domain dimensions, initial

conditions, and boundary conditions for both runs are introduced above. Results

of both runs are presented separately and then discussed together below.

Run-l was designed as a ID vertical flow in a 3D flow domaine This provides an

easy way to visualize the results of both models, which in turn, helps us to

125



•

•

•

Run-l was designed as a 10 vertical flow in a 3D flow domain. This provides an

easy way to visualize the results of both modeIs, which in tum, helps us ta

compare and contrast the results in more detail. The results for Run-l simulation

case are presented in Figure (5.1) which includes 12 graphs for selected days. The

graphs compare results of simulations performed by both (ANN-3D, and SvV1tl5

3D) modeIs, and visualize continuous moisture alterations along the flo\v

domain depth (2 axis). Assuming SWMS-3D results as observed values (i.e.

desired outputs), RMS and SCORE for ANN-3D were calculated and faund equal

to 220.71 and 93.05 for the first case simulated, which interprets as a good match.

Relative errors for individual data points range from 0% to 35%, with an average

of 14.69% and a standard deviation of 7.82%.

Run-2 was designed as a 2D flow (X-Z plane) in a 3D flow domain. Results of this

run, as presented in Figure (5.2), are presented as contour graphs of sail moisture

heads in the X-Z plane. To compare and contrast results of bath (ANN-3D and

5WM5-3D) models, while tracking continuous moisture alterations through the

simulation period, Figure (5.2) presents four contour graphs for selected days. In

the same fashion as before, SWMS-3D results were assumed as observed values

(i.e. desired outputs). Thereupan, RMS and SCORE for ANN-3D \vere calculated

to be 131.04 and 89.05 for this case simulated, which denotes a good match.

Relative errors for individual data points range from 0% to 54%, with an average

of 11.32% and a standard deviation of 12.04%.

In order to be compared with 5WMS-3D results, ANN-3D outputs were tumed

into sail moisture head values via interpolation between tabulated data. From

the Run-l and Run-2 results graphed in Figures (5.1) and (5.2), several points

may be made. First of all, an over all good mach is attained in both cases. ANN

3D results are, in general, compliance with SWMS-3D results, and follo\v the

same trend..However, as the simulation proceeds, some local disagreements

magnify,..which are more intense in the case of Run-2. This may be the result of
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Another noteworthy point is the minor randomness seen in the ANN-3D results.

This is evident in the form of the scattered data points in Run-l graphs, and in

the forrn of closed pockets and rough irregular contour tines in Run-2 graphs.

Worth noting is that supervised back-propagation ANN training is a data driven

model (not a mechanistic one) that may he referred to as a ' superior regression

technique'. Therefore, these random deviations may he described as a direct

result of the ANN generalization, just in the same way as regression averaging.

AIso, it has to he mentioned that collected data from a real field soil profile, if

plotted, has little likelihood of exhibiting smooth lines, such as those in the

5WMS-3D graphs. Moreover, when real world data (with high variance and a

serious noise level) are of interest, the fact that ANN generalization is beneficial

should not he overlooked.

Finally, execution limes for both models were recorded. Simulation models,

ANN-3D and 5WMS-3D, were executed on a PC platform with P-ffi processor at

600 MHz. The ANN-3D model execution limes were 47.41 and 385.33 seconds,

with 200 and 5000 nodes, for Run-l and Run-2 respectively. The SWMS-3D

model execution times were 143 and 3237 seconds, with 720 and 8349 nodes, for

Run-1 and Run-2 respectively. Comparison of these timings show three to eight

times shorter execution times for the ANN-3D model. These results may be

affirmed by the fact that the number of computation steps for the ANN-3D

model were much less than those needed for the SWM5-3D model.

CONCLUSIONS AND RECOMENDATIONS

Customary 3D VSSM simulation models are based on numerical solution of

Richards' equation. High computation cos15 and the need of detailed data input

of these models are the most important drawback factors against their

popularization. Moreover, the parameters used, such as hydraulic conductivity,

generally have an inherently large variance. Measurement of these parameters

requires substantial time and money. This study was aimed at exploring an
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ANN-based alternative approach to these routine numerical simulation practices,

and to determine its feasibility in terms of veracity, computation cost, and input

facilitation.

Our interest in the ANN approach emanates from the fact that it learns from

examples and is a data-driven simulation tool capable of mimicking complex

patterns. This provides a direct link between real world observations and

modeling. This renders the possibility to adopt complexities of a real system by a

mode!. Further, ANN is a model-free simulation tool, which helps to minimize

dependence upon pre-cast algorithms and their rigid parameters. This study,

faced with the lack of real observations, did not have the chance to demonstrate a

direct link between real world observations and the mode!. However, it was

shown that the ANN approach is quite capable of such an advantage.

Veracity of the ANN-3D was checked against the SWMS-3D mode!. Results show

a good general match; however, relative errors for individual data (nodal soil

moisture values) were as high as 54%. Generally speaking, results show the

ability of the new approach to model the VSSM flow. However, much has yet to

be done to attain an ANN-based model with general applicability and higher

veracity. Future works on this issue are needed in two ways. First, collection of

real world data to form a universal 'VSSM redistribution' database. In fact, such

a database, which implicitly contains descriptions of higWy non-linear VSSM

redistribution phenomenon, would he a treasure for VSSM modelers that might

be used in several other ways. Second, development of ANN training methods,

which are faster and better (i.e. able to find the global minimum error on rough

multi-dimensional error surfaces). A drawback of the Isoil moisture estimator'

ANN-based module was that it did not heed preservation of masse With a better

ANN training method, it seems possible to incorporate mass balance as a factor

in ANN training as weIl. Another disadvantage was the long time and tedious

efforts needed to train ANNs and find the best ANN for nonlinear cases such as
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VSSM redistribution, even for a smaIl data set as used in this study. A faster

ANN training approach is a real need for any further work in this domain.

Otherwise, the lime and effort needed to train an ANN, as ' universal VSSM

redistribution estimator' will be a serious barrier.

.ANN-3D computation cos15 for both simulated cases were significantly lower

than those of 5WMS-3D. The size of the ANN structure is very infIuential with

respect to computation cast SmaUer or larger ANNs can directly decrease or

increase the model computation costs, respectively. Introduction of more data

sets (with different soil types) increases the number of inputs and complexity.

This in turn means a larger ANN size, which deteriorates the ANN-3D

superiority in computation cost A cure to this is possible through application of

Many ANNs, each speciaUy trained for different cases and therefore having a

smaller structure. These could then he connected via a FIS (Fuzzy Inference

System) to simulate VSSM redistribution. Any attempt to keep the ANN size

minimal would increase the speed of computation.

The 'soil moisture estimator' ANN-based module does not need hydraulic

conductivity values for VSSM redistribution caIculations. In fact, using only one

soil type gives ANN the chance to implicitly capture information, as a function of

soil moisture from soil moisture data. If more soil types are to be considered,

then instead of hydraulic conductivity, some soil texturai and structural data

(soft/qualitative or hardiquantitative) might he used to pass the information on

to the ANN. This is a great advantage because elimination of such highly

variable parameters, such as hydraulic conductivity, saves time and money.

Furthermore, this would aUow the model to find out more information about the

real system. That is, the model receives core information before being masked by

predefined models and their parameters.

Overall, this study showed that the ANN-3D approach is a potential VSSM

redisbibution simulation method. The method has a more lucid code, requires
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less execution time, needs fewer and more basic inputs, and is capable of

handling the uncertainty involved in VSSM modeling. However, there is a lot

more to be done before total substitution of numerical models is possible with

ANN-based models.
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CHAPTER SIX: GENERAL SUMMARY AND CONCLUSIONS

This study was an investigation on applicability of Artificial NeuroNet (ANN)

and Fuzzy Inference System (FIS) techniques for 'simulation modeling of

Variably Saturated Soil Moisture (VSSM) redisbibution', a main component of

Soil Hydrology Processes (SHP). This chapter presents four separate sections on

various topies to provide a general view of the study performance. The study

summary is given in the fust section. The second section compares the three

simulation models developed in this study in order to highlight pros and cons of

each approach adopted. Next, the third section draws sorne general conclusions

based on the whole context of the study. At the end, the fourth section contains

sorne remarks on potential practical benefits of application of ANN and FIS

techniques for simulation modeling of VSSM redistribution.

SUMMARY

Existing VSSM simulation modeling approaches were reviewed in Chapter two.

The review emphasized alternative approaches to conventional numerical

approaches. SHP models may he classified in many ways, such as: discrete

versus continuous, steady versus unsteady (transient), one- or twù- or three

dimensional, and research versus practice-oriented. In a general classification,

described at the end of chapter two, physical (including 'analog' and'replica') and

non-physical (also called 'abstract' or 'conceptual') models were taken as known

root level classes. Non-physical modeling may he done via different means such as

equations, graphs, databases or tables, rules, and linguistic knowledge bases.

Models in this category were dassified from four different points of view.

The fust point of view classifies non-physical models in two sub-classes: 'black-box'

versus 'white-box' and 'gray-box'. Models in the latter case are based on

phenomenal explanations and include most SHP non-physical models. Black-box
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models such as regression and ANN techniques, model the relationslùp between

inputs and outputs blindly; and are favorable for very complex phenomena which

are not cornprehended, nor yet explained.

From the second point of view, non-physical models were categorized in two sub

classes: 'mathematical' (including 'analytical' and 'numerical') versus 'non

mathematical'. Inasmuch as computers are based on binary digits, conventional

SHP simulation models have been based on mathematical expressions that only

accept nomeric (bard) data. Recent innovations in computer technology have,

somewhat, enabled computer simulation models to handle non-numeric (soft)

information as inputs and/or outputs.

Tlùrdly, non-physical models were grouped into 'deterministié versus 'non

deterministié models. Field soil heterogeneity has resbicted the application of

deterministic models mostly to very small-scale problems. The 'effective parameter'

concept was developed as a solution to the scale barrier. But, in the presence of

high field heterogeneity and random sources of data variation, uncertainty has to

he considered by non-deterministic modeling. Stochastic models, the traditional

non-deterministic modeling approach, has been in practice during the last three

decades and resolve the scale barrier statistically. Alternatively, novel non

deterministic approaches employ artificial intelligence techniques as data

uncertainty handling tools.

The fourth point of view classifies SHP models into 'empirical' or 'data driven'

versus 'mechanistié models. As much as a model considers physics of the process

to model, it becomes more mechanistic and independent of data. Two extreme

sides of this classification are 'fully mechanistié (pure white box) and 'fully data

driven' (pure black box) models.

Most conventional SHP models can he c1assified as deterministic-mathematical(

numerical)-mechanistic. In recent years due to new opportunities provided,
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alternative models (non-deterministic and non-numerical) have gradually

emerged in SHP modeling. For example, use of fuzzy variables in VSSM

modeling has provided the chance to employ soft data. Also, use of ANNs has

opened a way to model highly complex and non-linear relalionships with

reasonable error even when data is uncertain and noisy. ANNs are data driven

models that theoretically have the powerful capability of being universal

function approximation too1. Hence, they are best suited for modeling of VSSM

redistribution. However, ta find proper ANN structures many training trials,

each cumbersome and lime consuming, have to he done.

The strategic idea in the background of this study was based on the usage of ANN

in place of Richards' equation as the heart of the mode!. lnasmuch as Richards'

equation was originally derived frOID "Darcy-Buckingham" and ucontinuity"

equations, it is subject to the Darcy equation limitations. Therefore, Richards'

equation does not count for other forms of flow other than Darcian flow, such as

preferential flow and osmotic induced flow. Traditionally, VSSM flow numerical

models, based on Richards' equation, utilize other equations for these additional

circumstances. However, the ANN model can overcome such limitations, if trained

with a comprehensive set of field data including information on macro-pores,

salinity, ... etc.

Chapter three gives brief introductions ta ANN and FIS techniques, foUowed by

a complete report on the development of the fust ID VSSM redistribution

simulation model (ANN-FIS-ID). To minimize the ANN approximation error on

the highly non-linear VSSM flow, usage of multiple ANNs was adopted. In total 25

ANNs were trained, each for one of 25 fuzzy classes of flux. Consequently, to fulfill

the need for integration of the ANNs outputs, FIS came into the framework The

ANN does not require hydraulic conductivity as input The model was tested

against SWAP93 with a maximum error of less than eight percent This satisfactory

result demonstrates the capability of the ANN-FIS-ID approach in simulation of
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VSSM redismbution. The tactical method used for integrating ANN into the

ANN-fIS-ID model was 'binodal'; i.e., ANN estimates the flux between 'two

adjacent nodes' each lime it is referred to by the simulation model.

Chapter four is dedicated to report on the development of the second ID VSSM

redismbution model (ANN-ID). While the strategy was the same as before, two

tactical methods adopted were largely different from the one explained above. In

bath of these methods ANNs receive excitements from the simulation model as

ten soil moisture heads (of ten internai nodes spaced uniformly across the sail

profile), plus boundary conditions for last and current times. The ANNs

responses, however, were different. The fust one eslimates 'the sail moisture

heads for ten nodes uniformly spaced across the soil profile' and the other

estimates 1 the six coefficients of a fifth degree polynomial'. This model also does

not need hydraulic conductivity as input The unsteady ANN-ID approach

introduced in chapter four was able to mimic the SWAP93 model weil. This

conclusion may he justified by reviewing error indicators reported. The recorded

execution times for the ANN-ID models were almost three times faster than that

ofSWAP93.

The ANN-3D model development is reported in chapter five. The way ANN was

integrated into this model in essence follows the way adopted by the ANN-FIS

1D model (i.e, nodal); however they have many practical differences. At each

time step and for each node within the flow domain, ANN receives seven initial

1soil moisture contents' and estimates one final sail moisture content. The set of

seven nodes are defined as a central node and six neighboring nodes in 3D space

(two on each axis). Veracity of the ANN-3D was checked against the SWMS-3D

model. ResuUs show a good general match. Moreover, the recorded execution

times show a three to eight tintes decrease for the ANN-3D compared ta the

SWM5-3D mode!.
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Overall, this study showed that the ANN-based approaches are potential VSSM

redistribution simulation methods. These methods have more lucid code, require

less execution time, need fewer basic inputs, and are capable of handling the

uncertainty involved in VSSM modeling.

COMPARISON OF mE ANN-BASED MODELING APPROACHES

This section compares and contrasts the three ANN-based simulation approaches

developed in titis study. Ta do so, emphasis is given to: ANN inclusion tactic,

computation costs, and simplicity of the input data requirements of these

approaches.

OveraIl, four different ANN inclusion tactics were adopted in this study, where

hydraulic conductivity was not required by any of these ANNs as an input.

However, the sequences and types of inputs and outputs are different for each of

these ANNs.

The most simple ANNs were the two (Ml and M2) used in the ANN-ID models,

as described in chapter four. The Ml structure in linear format is [1(17), HI(3),

H2(10), H3(10), 0(10)]; and for M2 is [1(17), H1(12), H2(lO), H3(8), 0(6)]. The

ANNs were trained for a fixed time step equal ta one day (24 hours). Their input

vector includes the sail profile depth, ten initial soil moisture heads, and

information on upper and lower boundary conditions for the current time (t) as

weil as for one day before (t-l, initial state). The ANN used by Ml estimates ten

sail moisture heads for uniformly distributed nodes within the sail profile.

However, the other ANN (used by M2) predicts six coefficients of a fifth degree

polynomial that demonstrates a relationship between 'soil profile depth' and

1soil moisture head'. In fact, the polynomial provides access to knawn sail

moisture heads at any soil profile depth. Both ANN structures are large when

compared with the other ANNs, but the computation cost is very smalt which is
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due to the large time step and the fact that for each tinte step the ANN is excited

only once to renew the soil profile heads.

Both of the subsequent tactics used are different from the one discussed above in

that they only solve the problem for a single node (not the whole soil profile).

Therefore, the main program has to send several pulses (equal to the number of

nodes defined in the soil profile) to excite these ANNs for each time step.

The ANNs employed in ANN-FIS-1D as explained in chapter three aU have

similar structures as may be expressed in linear format as [I(2), Hl(S), H2(3),

0(1)]. They receive input vectors with ooly two soil moisture heads that

represent a pair of adjacent nodes within the soil profile. Then, the ANNs

approximate the steady state flux between the neighboring Dodes with a fixed

nodal distance equal to five centimeters. For anode within the soil profile, two

ANN excitements are required, one for each of its neighbors. Moreover, instead

of ooly one ANN, 25 specially trained ANNs were trained, and FIS was

employed to handle instant application of the 25 ANNs. Inasmuch as the ANN

estimates flux and no buHt-in time step is considered in its structure, any time

step may he used. However, it should be kept small enough to prevent large

errors, as such the sampIe simulation model was executed with 15 minute time

steps. A1though the structure of each ANN is quite small, most of the lime the

FIS excites more than one ANN concurrently. Overall, since the ANN-FIS-ID

model contains ~ severa! computational steps (caused by: small time steps,

multiple ANN excitements at each time step, and FIS computations), it has

higher computation cast than the ANN-ID modeI.

The ANN used in ANN-3D to solve the 3D problem, focuses on seven nodes at a

time (one central and six neighboring), and has a four layer structure that may he

presented linearly as follow: [1(7), H1(7), H2(15), 0(1)]. The time step and nodal

distance were both fixed values equal to 15 minutes and five centimeters

respectively. The ANN was trained to receive seven initial nodal soil moisture
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content values as its input vector, and to estimate the final soil moisture content

for the central node. Use of soil/moisture contents' instead of 'moisture heads'

decreased the variance and contained the 'universe of possible values' within a

single order of magnitude. This resulted in better ANN training. This ANN has

to be excited once for each node within the flow domain at each time step. The

ANN structure is smaUer than those of ANN-ID (Ml and M2) and larger than

that of ANN-FIS-ID. But, its computation cost is inversely related; i.e., larger

than those of ANN-ID (Ml and M2) and smaller than that of ANN-FIS-ID. This

is quite reasonable for the first comparison (with ANNs used in ANN-ID),

because of their large time steps and the fact that those ANNs are excited only

once per time step. It also makes sense for the latter comparison (with ANNs

used in ANN-FIS-ID), because of the fact that it needs at least two excitements

per node, plus the computation surcharge for FIS application.

Comparison of the ANN-based models reveals their pros and cons and this leads

to sorne general conclusions. As discussed above, the ANNs used in the ANN-ID

model, work with the whole soil profile. Inasmuch as the ANN is excited only

once per time step, this method is fast However, such an ANN is not mobile; Le.,

it is only trained for a certain kind of profile and is not applicable to other cases.

fi the goal is to develop universal ANN-based VSSM redistribution simulation

models, then this is a severe limitation. On the other hand, extension of this tactic

to field scale 3D flow domains infiates the ANN structure, that in turn increases

the computation expenses. The ANNs employed by ANN-FIS-ID model are very

basic and leave many calculations for the main model which elevates the

computation cost It is mobile and with the use of FIS has been shown to be

capable of solving the VSSM redistribution problem. Application of FIS has also

eliminated the minor random fluctuations frOID the outputs of the model; such as

the serration visible in ANN-3D graphs. These random oscillations are a direct

results of ANN usage. Finally, the ANN trained for the ANN-3D model is mobile
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and the most feasible tactic found in this study. This method provides the kernel

idea. Many more efforts and improvements are needed before development of a

universal ANN-based SHP simulation model is possible.

ANN-BASED MODELS vs. CUSTOMARY MODELS

This section discusses ANN-based models in contrast to customary VSSM

simulation models. Customary simulation models are based on Richards'

equation that in turn is an integration of 'Darcy-Buckingham' and 'Continuity'

equations; therefore, it only expresses the Dardan flow. To caver for other kinds

of flow, such as preferential flow and salt induced flow, customary VSSM

redistribution simulation models must adopt other modules. This make their

codes cumbersome and difficult to understand. AIso, for complex andjor 3D

cases their computation cost increases drastically. In general, these customary

models simulate the real world and attempt to explain reality to a great extent,

but are not yet entirely successful. Moreover, they need detailed parameters such

as hydraulic conductivity, which generally has an inherently large variance.

Measurement of these parameters requires substantial time and money. OveralI,

high computation costs and the need of detailed input data are the most

important drawback factors against customary models, specially for 3D models.

This study was aimed at exploring ANN-based alternative approaches to these

customary numerical simulation practices, and to determine its feasibility in

terms of veracity, computation cost, and input facilitation. ANNs learn from

observed data (examples) and incorporate the real world spatio-temporal

diversities directly into the model. ANN is a model-free simulation tool, which

helps to minimize dependence upon pre-cast algorithms, their limitations, and

their rigid parameters. It is a daia-driven simulation tool capable of mimicking

complex patterns and providing a direct link between real world observations

and the modeI. Thus, renders the possibility of adoption of complexities of the

real system by the model.
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This study brought forth the idea that ANN-based models are competent VSSM

flow simulators. If a comprehensive/universal VSSM flow database (form

observed data) become available, a universal ANN-based model may he trained

so as to substitute for customary numerical models. Such an ANN, is a type of

model-free regression which is sensitive to individual records. Thence, it is

capable of mapping aIl VSSM flow realities and to deal with real world

diversities and data uncertainties. In fact, one of the main motives in employing

ANN was to develop a model that has the ability to easily cope with the

uncertainty involved in VSSM modeling.

In conclusion, the results show the possibility to model VSSM redistribution via

ANN. Less computation cost, lucidity of code, simplidty of the input data

requirements, and the capability to handle VSSM data uncertainty show the

feasibility of the ANN-based models. However, there is a lot more to he done

before total substitution of numerical models is possible with ANN-based

models.

REMARKS

Although, it is theoretically admitted that multi-Iayer feed forward ANNs are

universal function approximators, current technology has not yet provided us

with a zero error ANN training tool. In fact, ANN training was found to be

cumbersome and to find proper ANN structures was time consuming. Therefore,

improvements in ANN training technology would he very helpful and would

enhance ANN-based modeling efforts.

The size of an ANN structure is very influential with respect to computation cost,

as a smaUer or larger structure can directIy decrease or increase the computation

cost Introduction of different soil types would increase the number of inputs and

thereupon the complexity of the ANN. This means a larger ANN structure and

an increase in its computation cost Note that ANNs learn via generalization of
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the regulations that relates inputs and outputs/ and does not memorize the data.

Break down of problem complexity is possible through application of many

ANNs, each with smaller structures and specially trained for a different sub..

domain of the universe of possibilities. These could then be connected via a FIS

(Fuzzy Inference System) to simulate VSSM redistribution. In fact, there is a trade

off here between fewer ANNs with larger structures and more ANNs with

smaller structures. Overall, the computational steps should he kept minimal to

increase the simulation speed.

The ANNs trained did not need the hydraulic conductivity as an input to

calculate VSSM redistribution. In fact, using only one soil type gives ANN the

chance to implicitly capture information, as a function of soil moisture from the

sail moisture data (content or head). If more soil types are to he considered, then

instead of hydraulic conductivity, sorne soil texturaI and structural data

(s0 ft/qualitative or hard/quantitative) might be used to allow the ANN to

differentiate among different flow domains. This is a great advantage because

elimination of such highly variable parameters saves time and money. It also

allows the mode! to discover more information about the real system, directly

from observed data.
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CHAPTER SEVEN: CONTRIBUTION TO KNOWLEDGE

This study investigates the usage of ANN technology, as weIl as FIS, as main

components of a novel simulation method for Variably Saturated Soil tvloisture

(VSSlVl) redistribution modeling. Three innovative simulation models were

developed and tested with simple VSSM redistribution cases in homogeneous

flow domains.

The following are contributions to kno\vledge made:

1. Unsteady state modeling ofVSSl\t1 redistribution phenomenon using ANN.

Explanation: In usual modeIing practices, the valueless information

concealed in raw observed VSSM data are partiaUy masked by the use of

pre-defined models. ANN, as a data driven modeling too!, provides a

direct connection between data and the mode!, without mediation of a

pre-defined mathematical mode!. Therefore, it besto\vs .a unique

opportunity ta capture \vhole spectra of the real \vorld reflected \vithin the

data used.

2. Application of FIS for one-dimensiooal modeling of VSS~I redistribution.

Explanation: Real worId VSSM observed data are usually associated with

large variar\ces. Therefore, temporal or spatial average representations

involve high uncertainties. FIS is a weIl matched technique for such a

situation, as it smoothes model output. Moreover, a fuzzy or linguistic

format may be used for input variables via employment of FIS.
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3. Elimination of hydraulic conductivity from the list of required inputs for VSSi\'1

redistribution modeling.

ExpIanation: Together, ANN and FIS, enabIe the modeI to eliminate or

replace sorne VSSM parameters. For exampIe, in a heterogeneous flow

domain hydraulic conductivity may be replaced with sorne simple soil

texturai and structural characteristics. This will be a great help since

hydraulic conductivity is highly variable through space and time, and its

measurements are costly, tedious, and inherently contain large variance.

.... Achievement of shorter executioD times, especially for the 3D simulation model,

in comparison to traditional Dumerical models.

Explanation: 5horter execution time is essential for real time applications

and/or for optimization tasks, where several executions have to be

performed. Inasmuch as the novel approaches introduced in this study

use ANN ta estimate soil moisture redistribution they speed up the

calculations. This becomes even more evident when simulating 3D cases

with long simulation periods.
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• CHAPTER EIGHT: RECOMMENDATIONS FOR FUTIJRE WORK

1. Improvement of ANN training methods: This is an essentiaI prerequisite for

development of a universal ANN-based VSSM redistribution mode!. Use of a

Genetic Algorithm. (GA) as an optimizer for ANN weights may decrease

estimation errors; however, its time consuming nature is a disadvantage.

Combination of GA and systematic optimization techniques may be usefuI. In

any case, a zero error ANN would enhance the output of the ANN-based

mode!.

2. Creation of a VSSM redistribution database: Another basic prerequisite for

development of a universai ANN-based VSSM redistribution madel is

availability of field data. Initiation of such an effort requires establishment of

a standard and inclusive format for record lines. The database project may be

• funded by an international agency, such as FAO or the Warld Bank. A very

good example of what is needed (in essence) is the Unsaturated Sail

Hydraulic Database (UNSODA). This project was established by the US.

Salinity Laboratory and is claimed as "the first truly international set of

retentian and conductivity data". It is compiled in a relational database

program published for use in the public damain. (\VWVv.ussl.ars.usda.gav)

3. Use of linguistic variables: Sail structural features with high spatia-temporal

variabilities (e.g., cracks and other preferential flaw paths) may be included

in the database quantitatively or qualitatively. First, a standard method has to

be established for any of these choices. Establishment of a linguisticl fuzzy

definition is much easier than the quantitative!crisp one. This would allow

inclusion of these features in the database, to eventually be used as inputs ta a

universal ANN-based VSSM redistribution model via FIS.

•
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4. Variable tinte step and nodal distance: The 3D ANN-based model

developed in this study used a fixed time step and nodal distance. A step

forward would be ta indude the time step and nodal distance as ANN inputs.

Faced with sorne computation limitations, this study used fixed values. Since,

without variable time step and nodal distance, there were 81\7 = 2097152

possible combinations). With the use of variable time steps and nodal spaces,

it is possible ta speed up calculations more. That is, in the absence of sharp

sail moisture gradients in space and!or time, larger values may he used for

both space and time steps. Certainly huge computer resources are needed to

develop an inclusive universai ANN-based VSSM redistribution model.

5. Use of FIS: To handle the complexity of the problem, it might be heIpfui to

employa FIS with multiple specially trained ANNs. This in tuen decreases

the size of the ANN and the computation cost It aiso enables the model to

receive fuzzy variables. Another advantage of using FIS is to reduce

randomness in the modei output, at least before a zero error ANN training

method is available.

6. Different ANNs for different events: To break down the complexity of the

problem, multiple ANNs might be trained for different events such as

downward movement of a saturated front (infiltration), unsaturated

downward flux, unsaturated upward flux (bare soil evaporation and!or

evapotranspiration), and unsaturated horizontal flux. Each category, with

certain physical similarities, limits the problem to a certain domain; therefore,

the problem is lessened to describe a less general case. This leads to ease of

ANN training because of less inherent generalization.
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