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Abstract

Selection bias among galaxy clusters is one of the most prevalent issues in observation,

and with extensive galaxy cluster surveys on the horizon with implications for cosmolog-

ical models, our understanding of these biases is crucial. We aim to continue to push the

understanding of how the properties of galaxy clusters can result in evaded direct detec-

tion, specifically in the X-ray, as a function of redshift. Using the selected Spitzer Adap-

tation of the Red Sequence Cluster (SpARCS) survey, XMM-XXL X-ray cluster surveys,

and XMM-Newton X-ray maps of the XMM-LSS field, W-CDF-S, and ELAIS-S1 fields, we

examine the LX vs. optical richness scaling relation at different redshifts for X-ray faint

and bright clusters. We use the optically/IR-selected SpARCS cluster positions combined

with stacking in the X-ray to explore the average properties of X-ray undetected clusters.

Our stacking analysis allows us to incorporate a large range of properties in our cluster

sample, specifically allowing us to push to low richnesses and higher redshifts (z ∼ 2).

We use principal component analysis to examine the homogeneity of the population of

clusters going into our stacks and Bayesian linear regression to fit our scaling model.
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Abrégé

Le biais de sélection parmi les amas de galaxies est l’un des problèmes les plus répandus

en observation, et avec de vastes enquêtes sur les amas de galaxies à l’horizon avec des

implications pour les modèles cosmologiques, notre compréhension de ces biais est cru-

ciale. Nous visons à continuer à pousser la compréhension de la façon dont les propriétés

des amas de galaxies peuvent entraı̂ner une détection directe éludée, en particulier dans

les rayons X, en fonction de redshift. À l’aide de Spitzer Adaptation of the Red Sequence

Cluster (SpARCS), des études XMM-XXL X-ray cluster, et des cartes de rayonnement

XMM-Newton du champ XMM-LSS, W-CDF-S et ELAIS-Champs S1, nous examinons la

relation de mise à l’échelle LX par rapport à la richesse optique à différents redshifts

pour les faisceaux de rayons X faibles et brillants. Nous utilisons les positions de amas

SpARCS sélectionnées optiquement/IR combinées à l’empilage dans les rayons X pour

explorer les propriétés moyennes des amas non détectées dans les rayons X. Notre analyse

de cumul nous permet d’intégrer une large gamme de propriétés dans notre échantillon

de amas, ce qui nous permet de pousser vers des richesses inférieures et des redshifts

plus élevés (z ∼ 2). Nous utilisons l’analyse des composantes principales pour exam-
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iner l’homogénéité de la population de amas entrant dans notre empilage et la régression

linéaire bayésienne pour adapter notre modèle d’échelle.
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Chapter 1

Introduction

One of the largest challenges when studying galaxy clusters is studying the populations at

z > 1. This analysis is even more difficult when comparing observational selection meth-

ods and examining the biases that they induce in cluster surveys and scaling relations.

However, understanding these biases at high z is becoming increasingly important as

next-generation X-ray instruments become available and unparalleled numbers of galaxy

clusters are identified. There are several unanswered questions in the field, such as how

do observational biases affect certain scaling relations at high redshift? Are X-ray faint

galaxy clusters represented in selection models? Do galaxy clusters’ ability to turn gas

into stellar mass change over time? This work aims to contribute to these questions using

various analysis methods.

The main objectives of this thesis are as follows. Use stacking analysis to examine the

average X-ray properties of galaxy clusters detected in the optical and infrared but not

individually detected in the X-ray. Examine where this cluster population resides on the

X-ray luminosity vs. optical richness (LX-Ngal) scaling relation, especially compared to
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clusters that are detectable in the X-ray and the optical. Identify the presence or lack of

observational bias in the LX-Ngal relation when clusters are selected with optical methods

versus with X-ray and compare findings with literature. Examine the evolution of the

LX-Ngal up to z ∼ 2 and compare with previous findings of its evolution up to z ∼ 0.3

(Rykoff et al. (2008)).

This thesis is laid out as follows. In Chapter 2, the relevant literature in the field is

summarized. Chapter 3 includes the selection process of the optical/infrared and X-ray

data, methods used for stacking analysis, principal component analysis, bootstrapping,

and our results for the LX- Ngal relation. Section 4 includes a discussion of findings, com-

pares results with those found in the literature, addresses caveats, and indicates the next

steps for this research. Section 5 includes an overall summary. We assume a flat ΛCDM

cosmology with H0=67.77 km/sec/Mpc and Ω0=0.307115 (Soumya Shreeram, private cor-

respondence).
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Chapter 2

Literature Review

2.1 Background

2.1.1 Galaxy clusters

Galaxy clusters are the largest virialized structures in the universe. A key application of

galaxy clusters is their prevalence in cosmological models (Kaiser (1986), Böhringer et al.

(2004), Henry et al. (2009), De Martino and Atrio-Barandela (2016b), Migkas et al. (2021)).

From the dark matter detections in 1933 to using the brightest cluster galaxy as standard

candles, clusters have historically been fundamental to understanding dark matter, struc-

ture formation, and evolution (Allen et al. (2011)). When clusters are assumed to form

from spherically symmetric mass perturbations, their growth is an ideal proxy for un-

derstanding the evolution of dark matter and energy in the universe (Kaiser (1986), Voit

(2005)). Large-scale evolution can also be examined by studying the properties of clusters

at different epochs (Voit, 2005). In addition to cosmological applications, the highly dense
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and gravitational bound populations of galaxies in a cluster provide contrast to galaxies

residing in the field. This contrast allows for the study of environmental influence on

galaxies which has been shown to have had impacts on galaxy formation models (Peng

et al. (2010), Scoville et al. (2013)).

Many techniques and wavelengths are used to detect and measure the properties

of galaxy clusters. X-ray observations probe the extremely hot and ionized intracluster

medium (ICM) and AGN activity while optical traces the overdensities of cluster mem-

bers (Byram et al. (1966), Abell et al. (1989), Dalton et al. (1997), Scharf et al. (1997), Bor-

gani et al. (2002)). The Sunyaev-Zeld’ovich (SZ) effect measures the distortion of the cos-

mic microwave background (CMB) spectrum after passing through clusters and receiv-

ing a boost of energy due to inverse-compton scattering (Sunyaev and Zeldovich (1972)).

The different observational techniques probe varying physical processes occurring within

clusters and their evolution as a population (Giodini et al. (2013)). It is, therefore, impera-

tive to understand how the different properties of clusters are related, not only to discern

the physics of cluster formation and evolution but to calibrate cosmological models.

2.1.2 Scaling relations

Scaling relations are one of the most essential tools for exploring the connections be-

tween properties of clusters observed at different wavelengths and for measuring non-

observable quantities such as cluster mass (Giodini et al. (2013)). Galaxy cluster scaling

relations have been studied since the early 1970s (Mitchell et al. (1977)). Their scatter and

disagreements with theory can also tell us more about the thermodynamic histories of
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clusters as the physical processes that occur within these structures make them a prime

laboratory for studying high energy physics (Morandi et al. (2007), De Martino and Atrio-

Barandela (2016a), Giodini et al. (2013)). A historical assumption that is often made of

galaxy clusters is that they follow self-similarity, which assumes that the primary source

of thermal energy of the ICM is the gravitational energy lost due to the gravitational po-

tential well of the cluster (Kaiser (1986), Molendi (2004)). Because this relationship can

probe the nature of dark matter halos, and since dark matter follows self-similarity, rel-

atively simple relationships can be established between cluster properties such as mass,

luminosity, and temperature (Kaiser (1986)). The evolution at different redshifts in the

self-similar model can also be captured using the mean and critical density of the universe

(Kaiser (1986), Böhringer et al. (2012)). Tensions between self-similar model predictions

and observations have furthered our knowledge of cluster physics, such as the presence

of non-gravitational heating sources (Borgani et al. (2002)). Departure from theory has

also been shown to significantly impact cosmological parameters, such as H0 (Migkas

et al. (2021)). Therefore, observational scaling relations must continue to be examined

against theory, especially as a function of z.

2.2 Application

2.2.1 Clusters in the X-ray

The extremely hot and ionized plasma of the intracluster medium (ICM) of clusters has

long been used to detect and measure galaxy clusters (Mitchell et al. (1977)). The bremsstrahlung
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emission from accelerated free electrons in the gas can directly trace properties such as

gas temperature, mass, and the nature of the dark matter halos in which clusters reside.

It has previously been a challenge to extend cluster analysis to z > 1 because X-ray lu-

minous clusters are rare at these redshifts (Henry et al. (1992), Rosati et al. (2002)). While

data from the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) is

pushing to extend X-ray detection z > 1, this data has only become available in the last

year, and the current surveys do not include enough passes to contain large numbers of

clusters at these higher redshifts (Li et al. (2023)). Therefore, it was and remains pertinent

to use additional detection methods to supplement the redshift and mass-limited X-ray

data.

2.2.2 Clusters in the Optical and Infrared

Since the early 2000s, optical detection of clusters using the cluster-red-sequence method

(CRS) and infrared coverage have become powerful tools for finding clusters, especially

at higher redshift (Gladders and Yee (2000), Gladders and Yee (2005), Wilson et al. (2009),

Muzzin et al. (2009)). As proposed by Gladders and Yee (2000), the CRS selection tech-

nique relies on the fact that all rich clusters have a population of early-type, elliptical

galaxies.

These ”red-sequence” populations not only have low scatter on a color-magnitude re-

lation but they are also formed at higher redshifts making their evolution particularly

homogeneous for clusters z < 2 (Bower et al. (1992),Gladders and Yee (2000)). With red-

sequence populations being a unanimous signature within and between clusters, identi-
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fying the over-densities of the populations is a powerful way to detect clusters and ac-

curately measure their photometric redshifts (Gladders and Yee (2000)). CRS and other

detection algorithms use the intrinsic signature of the 4000Å break to trace the old stellar

population (Poggianti and Barbaro (1997), Gal et al. (2000)). However, unlike other cluster

selection algorithms, the CRS aims to select clusters in a way that reduces the presence of

projection effects, and uses only two color filters to sample the 4000Å break (Gladders and

Yee (2000)). The red-sequence cluster survey (RCS), the first to exploit CRS, used the two

optical filters Rc (centered at ∼ 6500Å) and z’ (centered at ∼ 9100Å) to identify 67 cluster

candidates over a redshift of 0.9 < z < 1.4 (Gladders and Yee (2005)). While the RCS was

able to examine clusters at z ∼ 1, to push to even higher redshifts and adequately cover

the 4000Å break, infrared (IR) data is necessary.

Spitzer fields provided sufficient deep and wide IR coverage to supplement the optical

and X-ray data. The 3.6 µm IRAC band provided the red filter to span the 4000Å break at

higher redshifts (Wilson et al. (2009), Muzzin et al. (2009)). Initially, the Spitzer first look

survey (FLS) found 99 cluster candidates with the adapted CRS technique spanning 0.1 <

z < 1.3 (Muzzin et al. (2008)). However, Spitzer 3.6 µm data from the even deeper SWIRE

Legacy fields combined with ground-based z′ imaging filter pushed the redshift of cluster

detection z > 1.6 in the Spitzer Adaptation of the Red-sequence Custer Survey (SpARCS

) (Muzzin et al. (2009), Wilson et al. (2009)). The SpARCS -South cluster survey, with an

area of 13.6 deg2, utilizes observations from CTIO/MOSAICII and covers the ELAIS-S1

and Chandra-S SWIRE fields (Wilson et al. (2009)). The SpARCS - North cluster survey

with an area of 28.3 deg2 covers the ELAIS-N1, ELAIS-N2, XMM-LSS, and Lockman-Hole

fields using data from CFHT (Muzzin et al. (2009)).
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2.2.3 Brightest Cluster Galaxies

One challenge in the optical/IR selection of galaxy clusters is defining the position of the

cluster. In the X-ray, the center is easily identified by the X-ray peak, which accurately

traces the bottom of the cluster’s gravitational potential. However, in the optical, the

position can be defined as either the red-sequence center, which occurs at the color peak

in the red filter, or the brightest cluster galaxy (BCG). The BCG is the preferred position

because red-sequence centers are often poorly defined and do not always correlate with

a single galaxy in the cluster (Willis et al. (2018)). For the SpARCS catalog, BCGs are

identified by selecting the brightest galaxy in the 3.6 µm channel with a color within ±0.5

mag of the red sequence, which is predicted using the z’-3.6 µm as previously discussed

(Muzzin et al. (2009),Webb et al. (2015)).

However, there are caveats to the detection and use of BCGs as an accurate cluster

position. One such bias is that the SpARCS BCG identification is preferential towards

BCGs with colors consistent with the red sequence, which can result in the omission of

BCGs that are undergoing star formation or are obscured by dust (Webb et al. (2015)).

Another concern is the potential offset between the well-defined X-ray emission peak

and the BCG. This offset has been shown to be, overall, negligible for relaxed clusters

indicating that the BCG is a good proxy for the cluster center (Jones and Forman (1984),

Lin and Mohr (2004), Lin et al. (2017), Lopes et al. (2018)). However, at higher redshifts,

cluster morphology can be less homogeneous, and clusters may not be in equilibrium

leading to higher offsets (> 0.01 × R500) between the X-ray centroid and the BCG (Webb
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et al. (2015), Willis et al. (2018), Lopes et al. (2018)). The potential implications of these

biases will be addressed in the discussion section.

2.2.4 Observational Biases

While detecting clusters with different observational techniques can be complementary,

there are limitations for every method. These limitations have been shown to introduce

non-negligible bias to cluster surveys and, therefore, to scaling relations (Rykoff et al.

(2008), Willis et al. (2018)). X-ray surveys are typically flux-limited, which impacts study-

ing scaling relations at different redshifts and causes bias towards X-ray bright clusters

which can depend on cluster morphology (Böhringer et al. (2004), Willis et al. (2018)). Se-

lection effects are well studied at low redshift (z < 0.3) but are lacking at higher redshifts

due to limited large area surveys and sample sizes (Rozo et al. (2014), Willis et al. (2018)).

An initial examination of the XMM-LSS field SpARCS clusters in the X-ray is con-

ducted by Willis et al. (2018), however, using relatively shallow XMM-LSS X-ray field

data. A key result of this study is tentative evidence that the red-sequence population in

X-ray selected clusters is smaller than the red-sequence population in optically selected

clusters, even if the clusters are X-ray bright (Willis et al. (2018)). They also find larger

offsets in the BCG- barycentre positions for clusters that are X-ray faint but bright in the

optical, indicating that these clusters may represent a population of clusters that recently

underwent a merger or another dynamic disturbance (Willis et al. (2018)). As X-ray faint

clusters are much less likely to be detected by X-ray selection methods, this implies that

X-ray cluster surveys may also be biased against systems that are not in equilibrium. This
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study, along with others, highlights the importance of furthering our understanding of X-

ray faint cluster populations and their inclusion in cluster selection functions and scaling

relation models (Lopes et al. (2006), Rossetti et al. (2017), Willis et al. (2018)).

2.2.5 The LX- Richness relation

Many scaling relations and their associated observational biases have been studied over

the last 30 years. However, many relations and how the physical properties of cluster

samples depend on observational methods, still need to be an examined above z ∼ 1

(Willis et al. (2018)). Looking at scaling relations between two observables to avoid in-

ducing additional errors is especially meaningful. Variations of the LX-Ngal relation have

been reasonably well examined at z < 0.4 using direct observables for both LX and opti-

cal richness (Gilbank et al. (2004), Lopes et al. (2006), Dai et al. (2007), Rykoff et al. (2008),

Gal et al. (2009)). This relation and similar proxies contain information about cluster mor-

phology, substructure, and the X-ray luminosity function of clusters ( Lopes et al. (2006),

Rykoff et al. (2008), Willis et al. (2018), Popesso et al. (2023)). The biases present in the LX-

richness relation are especially important to identify and constrain as this relation also

contains intrinsic scatter due to the Poisson scatter in richness (Lopes et al. (2006), Rettura

et al. (2018)).

Examining two observables is an ideal time to investigate the presence of selection

effects. Rykoff et al. (2008) examines the LX- Richness relation between clusters that were

selected in the X-ray versus the optical from 0.1 < z < 0.3 using the optically selected

maxBCG catalog. While they use X-ray data from sources matched to their maxBCG sam-
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ple instead of direct X-ray properties of the optical sources, their strict matching criteria

allow for meaningful comparisons. Even though their X-ray-selected clusters have X-ray

luminosities below what they would expect, they are still higher at a given richness than

the optically selected clusters (Rykoff et al. (2008)). This is relatively unsurprising since

the X-ray selection should pick out the most X-ray bright clusters yet is still meaningful,

especially at low z where, due to evolution, clusters are less X-ray luminous (Rykoff et al.

(2008), Kaiser (1986)).

Another natural progression is to examine the evolution of the relation as a function

of z. Although they are restricted by the relative local redshift span, Rykoff et al. (2008)

also examines this. They find the optically selected higher redshift clusters are signif-

icantly more luminous than the lower redshift optically selected clusters (Rykoff et al.,

2008). While this result is generally expected due to self-similarity, they note that the

difference is more extensive than expected (Kaiser (1986), Rykoff et al. (2008)). This differ-

ence is partly due to the poor understanding of the redshift evolution of optical richness

when measured with a scaled aperture (Rettura et al. (2018)). To further understand how

this relation evolves and if selection effects impact that evolution, we must push above

z ∼ 0.4. Since the peak of global star formation occurred at z ∼ 2, pushing a scaling rela-

tion such as LX- richness to these redshifts means we are probing cluster evolution over

epochs crucial to large-scale structure formation and examining galaxy cluster efficiency

over time (Madau and Dickinson (2014)).
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Chapter 3

Body

3.1 Data

3.1.1 SpARCS Cluster Selection

Our main sample is comprised of clusters that are optically/FIR selected from the SpARCS

catalog. This catalog includes 1343 clusters from the XMM-LSS, W-CDF-S, and ELAIS-S1

fields. The XMM-LSS field is centered on (02:21:20 RA, -04:30:00 DEC) with a SWIRE 3.6

µm (”red” filter) coverage area of 9.4 deg2, and a z′ band (”blue” filer) coverage area of

11.7 deg2 (Wilson et al. (2009)). The W-CDF-S field is centered on (03:32:00 RA, -28:16:00

DEC) with a SWIRE 3.6 µm coverage area of 8.1 deg2, and a z′ band coverage area of

7.9 deg2 (Wilson et al. (2009)). The ELAIS-S1 field is centered on (00:38:30 RA,-44:00:00

DEC) with a SWIRE 3.6 µm coverage area of 7.1 deg2, a z′ band coverage area of 8.3 deg2

(Wilson et al. (2009)).
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Unless otherwise specified, the SpARCS positions used and referenced herein is coor-

dinates of the BCG as detected using the methods described in section 2.2.3. All SpARCS

clusters are assigned an optical richness measurement (herein referred to as Ngal). Ngal

is defined as the number of background-subtracted galaxies within an aperture of 500

kpcs above a limit of M∗
3.6µm + 1 (Webb et al. (2015)). We limit our sample to clusters with

Ngal > 0, as all other clusters are assumed to be non-physical. While other analyses done

using the SpARCS catalog use a slightly higher Ngal cut of 5 or 10 (Willis et al. (2018)),

we choose to leave in the low richness clusters due to our stacking analysis and the aim

to push to lower richnesses. The richnesses and redshifts covered by our sample for each

field are represented in figure 3.1. We note that the expected slight increase in richness at

higher redshifts is observed in each field due to selection effects.
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Figure 3.1: Distribution of clusters in richness vs. redshift space for each field, created

using kernel density estimation (Waskom (2021)). Binned averages are shown in black

scatter points to demonstrate the slight increase in richness at higher redshifts. Errors on

the redshifts show bin sizes and errors in richness are Poisson errors. Richness error bars

are small compared to marker size.

To first order, local galaxy clusters have similar angular diameter distances. However,

our SpARCS sample probes a range of redshifts that cover a significant range of angular
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diameter distances. For the purposes of conducting stacking analysis in physical space

and examining redshift evolution, we chose to put our cluster sample into redshift bins.

Bounds on the redshift bins were chosen to maximize and equalize the number of clusters

in each bin while minimizing the spread of the angular diameter distances. The redshift

bins and the number of SpARCS clusters in each are summarized in table 3.1. We also

show our sample’s angular diameter distance distribution as a function of redshift in

figure 3.2 for our given cosmology.
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Figure 3.2: Angular diameter distance as a function of redshift for all SpARCS clusters in

our sample. Each redshift bin is highlighted.
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Table 3.1: Summary of redshift bin bounds and the number of SpARCS clusters included

in each bin.

z bin Number of SpARCS clusters
1 (0.4 ≤ z ≤ 0.6) 103
2 (0.6 < z ≤ 1.1) 198
3 (1.1 < z ≤ 1.9) 172

3.1.2 X-ray Field and Source Catalogs

Instead of using the properties from an X-ray clusters survey matched to our SpARCS

sample to obtain a LX measurement for each cluster, we directly analyze X-ray data. We

obtain X-ray image data for our optically selected sample from two surveys conducted

in the three fields of interest with data from XMM-Newton. We use Chen et al. (2018)’s

medium deep X-ray survey, including their 5242 X-ray detected point source catalog, over

a 5.3 deg2 area in the XMM-LSS region. Chen et al. (2018) uses 1.3 Ms of new XMM-

Newton observations and archival data to create uniform X-ray count, background, and

exposure maps. The maps used in this analysis are in the soft band with an energy band of

0.5 - 2 keV and a flux limit of 1.7×10−15 erg/cm2/s (Chen et al. (2018)). In addition to the

image maps, the extensive point source catalog from Chen et al. (2018) is used to identify

contaminating point sources and potentially misclassified point sources. The rectangular

point source region is centered on RA = 35.580◦ and DEC = -4.965◦ and has a depth of

46 ks. Source detection was done using the SCIENCE ANALYSIS SOFTWARE (SAS) tasks

EVWAVELET and ELMDETECT. SAS is the primary analysis software used to process the

data taken with the instruments on XMM-Newton. The EVWAVELET task detects sources

using the ”Mexican hat” wavelet algorithm and the ELMDETECT task fits maximum like-
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lihood multi-source point spread functions. Chen et al. (2018)’s spurious source detection

is ≤ 1% and 93% of the X-ray sources have a reliable optical- to-near-IR counterpart from

the SERVS, VIDEO, CFHTLS, and HSC-SSP catalogs.

A similarly conducted survey was done in 2021 by Ni et al. (2021) covering the W-

CDF-S and ELAIS-S1 fields. Again, using new XMM-Newton data combined with archival

XMM-Newton and Chandra data, Ni et al. (2021) creates relatively uniform X-ray count,

exposure, and background maps. The 4053 W-CDF-S point source catalog covers an area

of 4.6 deg2, with a depth of 84 ks and a soft band flux limit of 1.0× 10−14 erg/cm2/s. The

2630 ELAIS-S1 point source catalog covers an area of 3.2 deg2, with a depth of 80 ks and

a soft band flux limit of 1.3× 10−14 erg/cm2/s. Detection, counterpart identification, and

redshift confirmation were done similarly to Chen et al. (2018).

Both sets of catalogs conduct AGN classification using optical counterpart color cut-

offs and spectra when available (see Chen et al. (2018) and Ni et al. (2021) for additional

details on this analysis). AGN classification is important for this analysis, as it allows

for easy identification of sources with X-ray emission dominated by ICM emission as op-

posed to AGNs. The catalogs also only include sources without extended X-ray emission,

as defined by ELMDETECT extended source flag. While the ELAIS-S1 and W-CDF-S X-ray

point source catalogs have extensive coverage over their prospective fields, the XMM-LSS

point sources are concentrated in a rectangular area in the center of the field (Chen et al.

(2018), Ni et al. (2021)). We thus further restrict our optically selected sample to SpARCS

clusters with positions within the X-ray point source coverage for each field. The X-ray

maps from Ni et al. (2021) and Chen et al. (2018) overlaid with the spatial distribution of

the SpARCS clusters included in our sample are shown in figure 3.3.
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Figure 3.3: Left: X-ray coverage (grey) of the XMM-LSS field from Chen et al. (2018). Red

points are SpARCS clusters included in our sample, blue points are SpARCS clusters with

positions outside of the X-ray point source coverage. Middle: X-ray coverage (grey) of the

W-CDF-S field from Ni et al. (2021). Red points are SpARCS clusters included in our

sample, blue points are SpARCS clusters with positions outside of the X-ray point source

coverage. Right: X-ray coverage (grey) of the ELAIS-S1 field from Ni et al. (2021). Red

points are SpARCS clusters included in our sample.

In addition to the X-ray point sources in the three fields, we identify any confirmed

X-ray detected clusters. We obtained 302 X-ray-detected clusters in the XMM-LSS field

from the pubic XMM-XXL survey (Chiappetti et al. (2018)). As there is no X-ray detected

cluster catalog for the W-CDF-S and ELAIS-S1 fields, we relied on an object search in

NASA Extragalactic Database (NED) for X-ray observed clusters. Only two relevant X-

ray clusters were found in the W-CDF-S and ELAIS-S1 fields.
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3.2 Methods

3.2.1 Source Matching

Many of the SpARCS clusters have a counterpart in the X-ray. We expect this, especially

of the SpARCS clusters that are bright in the X-ray (Anderson et al. (2015)). However,

since we are exploring observational biases between detection methods, it is crucial to

identify which SpARCS clusters are only detected using optical methods and which are

detected with optical and X-ray. We, therefore, create two sub-samples in each redshift

bin of our selected SpARCS clusters; the first is comprised of the clusters that have a

counterpart in the X-ray (furthermore referred to as DXsC), and the second is comprised

of the clusters that do not have a counterpart in the X-ray (furthermore referred to as

UXsC). For a cluster to be in the DXsC sub-sample, we require that the cluster position

either match with a confirmed X-ray detected cluster or with an X-ray point source.

We define a source match between a SpARCS cluster and a confirmed X-ray cluster

as being within a radius of 120”. This radius was chosen to maximize accurate matches,

which we confirm by comparing redshifts, but avoid spurious associations. We define

a source match between a SpARCS cluster and an X-ray point source as being within a

radius of 25”. The SpARCS clusters that are matched with a point source are characterized

as an X-ray detected cluster because it has been shown that many X-ray point sources

are misclassified clusters, especially when the cluster is compact and the point source

function (PSF) of the X-ray instrument is large (Bulbul et al. (2021)). The 25” search radii

were chosen to ensure association and reduce the possibility of spurious matches along

the line of sight. To further quantify this, we conduct a random matching experiment to
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Figure 3.4: Probability of a spurious match with a SpARCS cluster in each field as a func-

tion of search radii. Solid line represents the mean percentage and shaded area represents

1σ error.

explore the number of SpARCS clusters matched with randomly placed positions within

the field as a function of search radii. As shown in figure 3.4, less than 20% of our matches

are spurious in all fields. We take the population of spurious matches into account later

in the analysis.

During our analysis, we often see multiple SpARCS clusters matched to the same X-

ray source or vice-versa. Our matching is fully comprehensive and classifies any SpARCS

cluster within the search radii of at least one source as a member of the sub-sample DXsC.

Table 3.2 summarizes the sub-sample numbers in each redshift bin.
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Table 3.2: Summary of the SpARCS clusters included in each sub-sample of each z bin.

z bin Number of clusters in DXsC Number of clusters in UXsC
1 (0.4 ≤ z ≤ 0.6) 41 62
2 (0.6 < z ≤ 1.1) 52 146
3 (1.1 < z ≤ 1.9) 45 127

3.2.2 Stacking

Following separating the SpARCS cluster sample into clusters that were previously de-

tected in the X-ray and clusters only detected in the optical/IR, we aim to directly mea-

sure the X-ray luminosity of clusters in both sub-samples and all z-bins to examine their

location on our LX-Ngal relation. The SpARCS clusters in the DXsC sub-sample are often

bright in the X-ray resulting in their independent X-ray luminosity being easily measur-

able. However, many of the SpARCS clusters in the UXsC sub-sample are X-ray faint,

and we cannot directly measure their X-ray luminosity. Therefore, we turn to stacking, a

technique especially useful in the X-ray where increased exposure time is linearly related

to the number of photons detected. By stacking, we can increase the individual exposure

times on average from 104 to 107 seconds. We can then evaluate the stack’s properties as

an average of the stack members.

Using the X-ray counts, background, and exposure maps described in section 3.1.2, we

first create masks to remove all point sources from each of the three fields. The creation

of the masks is done by cutting out 68 arcsec regions around each X-ray point source,

setting the pixels in the masked region to 0, and setting all other pixels to 1. 68” is chosen

as a region size to mask the average size of the point sources. Three masks are made; an

example of the mask made for the XMM-LSS field is shown in figure 3.5.
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Figure 3.5: One of three whole field masks used to eliminate the X-ray detected point

sources that lie outside a 25” radius from of the SpARCS clusters selected for stacking

analysis. This mask is for the XMM-LSS field. Purple represents a value of 0, yellow a

value of 1, and any additional colors are functions of the image.

Stacking is conducted by creating a 2D cutout of the counts, background, exposure,

and mask maps centered on the SpARCS position of the clusters in the UXsC sub-sample.

All cutouts preserve the original image scale of 4”/pixel. The size of each cutout is 2 Mpc

× 2 Mpc, with the physical to image scale conversion done using the average redshift of

each z bin. The dimensions of the z bin 1, z bin 2, and z bin 3 stacks are (316” × 316”),

(248” × 248”), and (228” × 228”) respectively. Each cutout’s pixels associated with a zero-

value pixel in the mask are filled with random Poisson noise from smoothed (σ = 25)

surrounding counts (Soumya Shreeram, private correspondence). This process ensures

that the X-ray point sources do not contaminate the stacks and are instead modeled as

background noise.

21



We correct each exposure cutout by a redshift dimming factor, ϕ, by using the equation

ϕ =
(1 + z)4

(1 + zref)4
(3.1)

where zref is the average redshift of the z bin. Finally, we do a 3σ clip of the pixel

values in the counts cutouts along the stacking axis to remove outlier pixel values. We

follow the stacking procedure described in Willis et al. (2018) and create our final count

rate stack, S, by using the equation

S =

∑n
i Ci −

∑n
i Bi∑n

i Ei

(3.2)

where C is a counts cutout, B a background cutout, E a exposure map and n the number

of clusters in the stack. S1 is the count rate stack for z bin 1, with a total exposure time

of 5.439 × 106 seconds. S2 is the count rate stack for z bin 2, with a total exposure time

of 1.379 × 107 seconds. S3 is the count rate stack for z bin 3, with a total exposure time

of 1.264× 107 seconds. In addition to making cutouts centered on the SpARCS positions,

error maps were made by performing the same analysis on random positions throughout

the map. By using the same number of random positions from each field as clusters in the

stacks, we can identify the intrinsic structures that emerge as a result of stacking within

the maps, further demonstrating the presence of a significant signal in the cluster stacks.

S1, S2, and S3 along with their associated error maps are demonstrated in figure 3.6.
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Figure 3.6: All images have been smoothed with a Gaussian kernel with σ = 1.5, pixel

scale is 4”/pixel and physical scale is calculated using the mean redshift of each stack.

Top Pair: S1 count rate stack and error map. Mid Pair: S2 count rate stack and error map.

Bottom Pair: S3 count rate stack and error map.
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3.2.2.1 DXsC sub-sample

In addition to the stacks, the same procedure described above was done for the SpARCS

clusters in the DXsC sample. However, any X-ray point sources matched with a SpARCS

cluster are not masked out, and stacking is not required to measure the LX of these clus-

ters. Instead, we create a count rate map for each cluster individually. 140” cutouts are

made, centered on the SpARCS cluster position unless the SpARCS cluster has a match

with an X-ray confirmed cluster, in which case the position of the X-ray cluster is used.

Each cluster’s final count rate map is made by subtracting the background map from the

count map and then dividing by the exposure map, similarly to equation 3.2, for the 2D

cutouts.

3.3 Analysis

3.3.1 Principal Component Analysis

Although S1, S2, and S3, to the best of our knowledge, do not contain X-ray point sources

or confirmed clusters, we want to ensure that the X-ray emission seen in the stacks is com-

ing from the stacked ICM rather than other sources of X-ray such as AGNs or additional

X-ray point sources. The contamination of AGN in the initial SpARCS sample is expected

to be insignificant (Webb et al. (2015)), but we still want to properly examine our stacks

for the presence of clusters that may be dominating the stacked signal. We thus perform

principal component analysis (PCA) on S1, S2, and S3 to identify the dominant patterns of

variation over the spatial dimension and along the stacked axis. PCA allows us to identify
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any variation in the final stacked count rate map and localize which cluster(s) contribute

to the variation.

We conduct PCA for a singular field by computing the empirical orthogonal functions

(EOF) and the associated principal components (PC) of the data set. There are multiple

ways to compute the EOFs, including Singular Value Decomposition and computation of

the covariance matrix (Bjornsson and Venegas (1997)). In our analysis, we do the latter.

First, the normalized matrix A is formed

A =



Cpn,t1 Cpn,t2 · · · Cpn,tm

...
... . . . ...

Cp2,t1 Cp2,t2 · · · Cp2,tm

Cp1,t1 Cp1,t2 · · · Cp1,tm


(3.3)

where (p1 · · · pn) represents all pixels in a map of a singular cluster in the stack, (t1 · · · tm)

represents the different clusters in the stack, and each corresponding C value represents

the counts value at that pixel. We use the Peixoto and Oort (1992) definition of covariance

to calculate cov(A)

cov(A) =
1

m
ATA (3.4)

which includes an additional factor related to the number of clusters in a stack, 1
m

(Bjorns-

son and Venegas (1997)). The real component of the eigenvalues and eigenvectors of

cov(A) are computed. The sorted eigenvalues and vectors represent the percentage of

variability and the map of spatial variability respectively. The PCs are calculated by us-
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ing the equation (Bjornsson and Venegas (1997))

p⃗c1 = Ax⃗1 (3.5)

where p⃗c1 is the first principal component for the associated eigenvector x⃗1. By examining

the final EOF maps that encompass at least 50% of the variance we can identify if there

are contaminating X-ray sources anywhere in our stacks. See figures 3.7, 3.8, 3.9 for initial

PCA results.

0 5 10 15 20
Eigenvalue

101

Pe
rc

en
t

Individual variance
Cumulative variance

0 50

0

20

40

60

0.005

0.010

0.015

0 10 20 30 40 50 60
Cluster number

50

0

50

1st principal component
Mean ±

Figure 3.7: Principal component analysis results for stack S1. Left panel: First 20 eigenval-

ues and their associated contribution to variance in the stack. The 1st eigenvalue dom-

inates the variance. Top right panel: Empirical orthogonal function associated with the

1st eigenvalue for the stack, demonstrating the spatial variance. Bottom right panel: First

principal component of each cluster.
.

For all three redshift bins, the first eigenvalue dominates the variance at ∼ 25%, so

we focus on the spatial variance captured in the first EOF. A stack with little to no spatial
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Figure 3.8: Same results as figure 3.7 for stack S2.

0 5 10 15 20
Eigenvalue

100

101

Pe
rc

en
t

Individual variance
Cumulative variance

0 20 40

0

20

40

0.0100

0.0125

0.0150

0.0175

0.0200

0 20 40 60 80 100 120
Cluster number

25

0

25

50

1st principal component
Mean ±

Figure 3.9: Same results as figure 3.7 for stack S3.

variation, indicating an underlying homogeneous population, would have an EOF map

with a constant value and no hot spots. As seen in figures 3.7, 3.8 and 3.9, there is slight to

significant spatial variation occurring in each stack. For example, in the S1 stack (figure
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3.7) we see overall homogeneity with variation spikes in the EOF to a normalized value

of ∼ 0.017, but in the S2 stack (figure 3.8) we see centralized EOF values up to > 0.021.

This demonstrates that some or many clusters in each stack are contributing more to the

the final stacked signal than others. The principal components (bottom right pannels in

figures 3.7, 3.8 and 3.9) indicate that there is not a clear dominating culprit in the stacks,

therefore requiring a second look at the clusters going into the stacks.

Individual cluster counts images with the largest 1st principal components were ex-

amined, resulting in additional X-ray point sources and X-ray-confirmed clusters being

identified. These sources were added to the mask, and the associated SpARCS clusters

moved from the UXsC sub-sample to the DXsC sub-sample.

In addition to contaminating sources, some SpARCS clusters in the UXsC sample were

found to be X-ray bright and dominating the variance. We, therefore, define an additional

condition for SpARCS clusters if they are to be included in the UXsC sample and hence the

X-ray undetected stack. We use the low count statistics of Kraft et al. (1991) for a general

definition of X-ray detection. For events that follow a Poisson distribution, a Bayesian

confidence interval can be calculated for a given confidence level, number of observed

counts, and number of background counts (Kraft et al. (1991)). We use the confidence

intervals for the 0.90 confidence level, which are tabulated for a range of counts and back-

grounds (see Kraft et al. (1991)). We linearly interpolate the Kraft table and extract the

mean number of counts and background counts for a 150 kpc radius aperture centered on

each SpARCS cluster position. We define a detectable source as having a lower confidence

interval of > 0.1 and move any SpARCS clusters that meet this criterion from the UXsC to

the DXsC sub-sample. Many, but not all, of the clusters, identified as X-ray detectable by
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the lower confidence level were already in the DXsC sub-sample as the cluster positions

were matched with an X-ray source or a confirmed cluster prior to the PCA.

We re-do the stacking procedure described in section 3.2.2 with the updated UXsC

sample of non-detected X-ray clusters after removing new SpARCS associated X-ray sources

found with PCA and SpARCS clusters that meet the Kraft criterion. These stacks will be

referred to as S1,final, S2,final and S3,final and are shown in figure 3.13. Updated PCA done

on the S1,final, S2,final and S3,final stacks are demonstrated in figures 3.10, 3.11 and 3.12.

Compared to the PCA done on S1, S2, and S3, the new stacks show equal or less spa-

tial variance. Finding additional associated sources and adding the Kraft criterion gives

more confidence, particularly in the S2,final stack, that the signal is not dominated by only

a few X-ray-detected clusters. With reduced EOF map values, we conclude that to first

order, the population of clusters in each stack is relatively homogeneous. Unless other-

wise specified, the updated UXsC sub-sample resulting in the S1,final, S2,final, and S3,final

stacks is used in the remainder of the analysis.
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Figure 3.10: Principal component analysis results for stack S1,final. Left panel: First 20

eigenvalues and their associated contribution to variance in the stack. The 1st eigenvalue

dominates the variance. Top right panel: Empirical orthogonal function associated with

the 1st eigenvalue for the stack, demonstrating the spatial variance. Bottom right panel:

First principal component of each cluster.
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Figure 3.11: Same results as figure 3.10 for stack S2,final
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Figure 3.12: Same results as figure 3.10 for stack S3,final
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Figure 3.13: All images have been smoothed with a guassian kernal with σ = 1.5, pixel

scale is 4”/pixel and physical scale is calculated using the mean redshift of each stack.

Clusters detected with Kraft criterion are excluded from stack. Top Pair: S1,final count rate

stack and error map. Mid Pair: S2,final count rate stack and error map. Bottom Pair: S3,final

count rate stack and error map.
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3.3.2 Radial Brightness plots

With a robust signal from stacking not dominated by a single cluster or contaminating

point source, an average X-ray luminosity can be extracted for clusters not individually

detected in the X-ray. To calculate these luminosities we use the S1,final, S2,final and S3,final

stacks. To convert from a count rate to a flux, we used an energy conversion factor (ECF).

Each field and XMM-Newton detector (PN, MOS1, MOS2) has a different ECF and is sum-

marized in table 3.3.

Table 3.3: Summary of energy conversion factors for the soft X-ray band (0.5-2 keV) fluxes

for each detector and field as identified in Chen et al. (2018) and Ni et al. (2021). All factors

have units of 10−11 erg cm−2 s−1/counts s−1.

Field PN MOS1 MOS2
XMM-LSS 1

6.23
1

1.78
1

1.76

W-CDF-S 1
8.57

1
2.27

1
2.28

ELAIS-S1 1
8.03

1
2.21

1
2.21

Three ECFs (ECFXMM, ECFCDFS, ECFES) are calculated for each field from an average

of the three detectors. For each stack, the final ECF is calculated by averaging the three

field ECFs for a final value of 3.684× 10−12 erg s−1 cm−2/counts s−1, which is multiplied

by the final count rate maps. Using the software package PYPROFFIT (Eckert et al. (2020)),

each stack is used to create a surface brightness profile as a function of radii using circular

annuli centered on the map’s brightness peak. PYPROFFIT is the python version of Proffit

C++. Both packages allow for the analysis of X-ray brightness profiles of galaxy clusters.

In addition to the surface brightness of the signal, we include the surface brightness of

the error maps (as seen in figure 3.13) and an average point-spread function (PSF) for

our three fields. We follow a method discussed in Anderson et al. (2015) and use the
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point source catalog in each field to create a point source stack and measure the surface

brightness to obtain the PSF. The PSF is normalized to the central signal brightness.

We use the Fitter class in PYPROFFIT, which performs maximum-likelihood optimiza-

tion for a given model. β- models are commonly used to capture the shape of an X-ray

radial profile of a galaxy cluster, which is extended out to large radii due to the hot ICM

gas emission (Arnaud (2009)). We thus fit the β-model in PYPROFFIT

I(r) = I0(1 + (x/rc)
2)−3β+0.5 +B (3.6)

to the surface brightness of our signal maps to obtain best-fit values for parameters I0,

rc, β, B and a reduced χ2 value of the model fit. See figures 3.14, 3.15, 3.16.

34



10 1

0

1

2

3

4

SB
 [e

rg
s/

s/
cm

2 /a
rc

m
in

2 ] 1e 15

Model
Error
PSF
Brightness

10 1

Radius [arcmin]
2
1
0
1
2
3

Figure 3.14: Surface brightness radial plot for the S1,final stack. The early fall-off of the

centrally-normalized point spread function (PSF) relative to the signal demonstrates the

extended nature of the X-ray emission from the stacked clusters out to order hundreds of

kpc. β-model fit residuals are shown in the bottom panel.
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Figure 3.15: Surface brightness radial plot for the S2,final stack. The early fall-off of the

centrally-normalized point spread function (PSF) relative to the signal demonstrates the

extended nature of the X-ray emission from the stacked clusters out to order hundreds of

kpc. β-model fit residuals are shown in the bottom panel.
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Figure 3.16: Surface brightness radial plot for the S3,final stack. The early fall-off of the

centrally-normalized point spread function (PSF) relative to the signal demonstrates the

extended nature of the X-ray emission from the stacked clusters out to order hundreds of

kpc. β-model fit residuals are shown in the bottom panel.

For each redshift bin stack, the model is integrated along the solid angle of the cluster

out to a radius of 300 kpcs converted to arcminutes using the average redshift of each

stack. The final integrated flux, F , is then converted to an X-ray luminosity, LX , using the

equation

LX = (4πDL)F (3.7)
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where DL is the angular diameter distance obtained from the average redshift of the

stack. Errors on the luminosity are calculated by fitting another β- model to the upper

error bars on the signal profile, integrating along the same radii, and doing the same flux

to luminosity conversion. Section 3.3.3 contains an additional discussion of errors in the

stacks. Luminosity measurements for each redshift bin are summarized in table 3.4.

Table 3.4: Final luminosities measured from the integrated β-model fit to the radial

brightnesses of the stack for each z bin inlucding reduced χ2 values for each fit. Error

listed for luminosities are errors induced measuring the surface brightness and do not

reflect the global error of the underlying population.

Stack LX (0.5-2 keV)
[×1042 erg s−1] χ2/ν Avg Ngal

S1,final 2.005± 0.206 21.455/21 7.427± 4.794
S2,final 5.868± 0.449 17.831/21 9.272± 5.578
S3,final 12.477± 1.043 114.308/21 11.428± 6.847

The same process described above is repeated for the individual count-rate maps

made for the DXsC sub-sample clusters. The X-ray luminosity is measured to the same

radii of 300 kpcs, with the physical to image conversion done using the redshift of the

individual cluster. Errors on the individual luminosities are measured in the same way

as described above. DXsC luminosities dominated by their errors are discarded and not

included in the remainder of the analysis.

3.3.3 Bootstrapping

Although the S1,final, S2,final and S3,final stacks provide average LX and Ngal measure-

ments for clusters not detected in the X-ray, we want to fully understand the spread of

richness and X-ray luminosities of the underlying population in these stacks. We rely
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on bootstrapping to examine the errors in the X-ray luminosity calculation induced by

slight differences in our stacking population. In each redshift bin, 1,000 bootstrap stacks

are created, with replacement, from the final population of clusters used to create the

S1,final, S2,final and S3,final respectively. The average richness and redshift of the clusters

randomly picked for each stack are measured. The analysis described in section 3.3.2

is repeated to create a surface brightness profile and measure the luminosity from each

bootstrap stack. The result is 1,000 X-ray luminosities and associated average richnesses

for each redshift bin. Bootstrapping analysis examines what the luminosity of a stack

could be given that the central X-ray brightness of each cluster may be varied due to a

range of physical differences in the cluster population.

In figure 3.17, we compare the spread of LX and richnesses calculated with the boot-

strapping analysis to the results listed in table 3.4 using kernel density estimation (KDE)

plots (Waskom (2021)). We note that our average values of LX and Ngal, as listed in table

3.4 align well with the peaks of the probability distributions for both variables. However,

the bootstrapping allows for a transparent display of the global error present in each

stack’s LX calculation, which is not captured by the measurement errors reported in table

3.4.
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Figure 3.17: Bootstrap results for final stacks. Darker contours represent higher proba-

bilities that the randomly stacked underlying population will generate the associated LX

and Ngal values. Stars represent the average values for each stack as listed in table 3.4.
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3.4 Results

3.4.1 LX-Ngal Relation

Given our DXsC sub-sample with directly measured LX and the bootstrap results from

our UXsC sub-sample stacks, we can directly compare where each sub-samples lie in the

LX vs. Ngal space. This allows us to directly examine how the populations of optically

and X-ray-detected clusters compare with those only detected in the optical. We show the

DXsC sub-sample for each redshift bin as individual points and the bootstrap results as a

KDE.

For the individual points of the DXsC sub-sample, we conduct a Bayesian linear re-

gression using a Python adaption of Kelly (2007)’s LINMIX IDL package. This fitting rou-

tine is often used for the LX-Ngal relation as the routine handles measurement errors on

both X and Y and intrinsic scatter present in the relation (Rykoff et al. (2008)). During

the regression, Bayesian inference is employed, and a Markov chain containing random

draws from the posterior is developed (Kelly (2007)). Convergence of the MCMC is even-

tually achieved, which is defined as a R-hat (potential scale reduction factor) of < 1.1 (see

Gelman and Buja (2004), Kelly (2007)).

To account for the probability that approximately 15% of the DXsC sub-sample points

were spurious matches, as discussed in section 3.2.1 and figure 3.4, we conduct 50 repe-

titions of the LINMIX fitting, each time randomly removing 15% of the DXsC points that

were classified as an X-ray point source match. The final coefficients (α, γ, ϵ) obtained for

the linear fit y = α+ γx+ ϵ are calculated from the average of the 50 α, γ and ϵ generated.

Final errors on each parameter are propagated from the 50 errors generated. This corrects
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for the presence of the spurious points as the final fits and errors contain the additional

scatter. Final coefficients and associated errors for each z bin are listed in table 3.5.

Table 3.5: For each z bin, mean of 50 best-fit slope (γ), y-intercept (α) and intrinsic scatter

(ϵ) coefficients from LINMIX linear regression fitting and associated propagated errors.

Fits describe scatter and measurement errors in the DXsC cluster sample.

z bin α γ ϵ

1 (0.4 ≤ z ≤ 0.6) 42.374± 0.358 1.282± 0.309 0.505± 0.082

2 (0.6 < z ≤ 1.1) 43.286± 0.421 0.257± 0.373 0.456± 0.061

3 (1.1 < z ≤ 1.9) 42.589± 0.325 0.671± 0.297 0.388± 0.072

Final results for the LX-Ngal relation, including results from the LINMIX fitting to the

DXsC points, are shown in figure 3.18, 3.19 and 3.20 for z bins 1, 2 and 3 respectively.
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Figure 3.18: Final LX-Ngal relation for the z 1 bin DXsC sub-sample (purple scatter

points) with the bootstrap results for the z 1 bin UXsC stack overlaid (green contours).

The best-fit linear regression to the DXsC is included.
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Figure 3.19: Final LX-Ngal relation for the z 2 bin DXsC sub-sample (purple scatter

points) with the bootstrap results for the z 2 bin UXsC stack overlaid (green contours).

The best-fit linear regression to the DXsC is included.
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Figure 3.20: Final LX-Ngal relation for the z 3 bin DXsC sub-sample (purple scatter

points) with the bootstrap results for the z 3 bin UXsC stack overlaid (green contours).

The best-fit linear regression to the DXsC is included.
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In addition, we examine the redshift evolution of the linear regression models for the

DXsC points. This redshift evolution is demonstrated in figure 3.21. We examine the red-

shify evolution for just the DXsC sources as the results from the UXsC stacks contribute

only a single point for each redshift bin to the relation and are, therefore, challenging to

examine independently.

Figure 3.21: DXsC for each z bin with associated linear regression fit shown. z bin 1

clusters (0.4 ≤ z ≤ 0.6) are represented by pink squares, z bin 2 clusters (0.6 < z ≤ 1.1)

are represented by purple diamonds, and z bin 3 clusters (1.1 < z ≤ 1.9) are represented

by orange crosses.
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Chapter 4

Discussion of Findings

4.1 Stacks and Radial Plots

Overall, we are able to find a significant X-ray signal by stacking on X-ray un-detected

clusters, with positions identified using optical and IR data. These stacks (as seen in fig-

ure 3.13) show extended spherical emission from the SpARCS positions with count rates

significantly higher than randomly stacked positions in the fields. These stacks do not

contain X-ray detected clusters, potential misclassified point sources, or clusters with X-

ray emission dominated by AGN, as demonstrated by our principal component analysis.

Therefore, the stacked signal represents the X-ray emission from the ICM of the underly-

ing clusters when observed in the X-ray at extended exposures. Our redshift bins ensure

that the significant variations in angular diameter distances between local and distant

clusters are accounted for and allow us to stack in image space.

With a large PSF, the high central flux of an X-ray observation can be smeared to high

radii. When this occurs, the fictitious flux, parading as extended emission, can be mis-
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taken for the ICM (Mohr et al. (1999)). The sustained high flux values in our radial sur-

face plots beyond the radii which signifies the PSF falloff of our fields (∼ 0.2 arcmin),

indicates the presence of physical emission and the confirmation that we are examining

cluster populations. In z bin 1 (0.4 ≤ z ≤ 0.6), we measure significant extended emission

out to a radius of 340 kpcs, in z bin 2 (0.6 < z ≤ 1.1) to a radius of 435 kpcs and in z bin 3

(1.1 < z ≤ 1.9) to a radius of 415 kpcs, all values well within the expected radii of a galaxy

cluster. The β- model fit to the radial profile of S1,final and S2,final have decent goodness

of fits of χ2= 21.455 for 21 d.o.f and χ2= 17.831 for 21 d.o.f respectively. The goodness

of fit for the S3,final radial profile is not as strong at χ2= 114.308 for 21 d.o.f, which we

attribute to the slightly non-spherical nature of the final stacked emission. Morphological

differences are expected of clusters in the z > 1.1 regime as the systems are still forming.

This may lead to increased dynamical disturbance and offsets between the BCG and X-

ray peak positions. However, from visual examination, the radial plot for S3,final (3.16)

still demonstrates physical extended emission and is still used in the remainder of the

analysis, with the caveat that the resulting LX may contain a higher amount of error.

In optical selection methods, projection effects can be a significant source of error

(Cohn et al. (2007), Costanzi et al. (2019), Sunayama et al. (2020)). However, our results

show that the clusters in our optically selected sample are either matched with a known

X-ray cluster, misclassified point source, or contribute to physical extended X-ray emis-

sion through stacking. We, therefore, regard projection effects as a minimal error in the

sample of optically selected clusters used.
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4.2 Observational biases in the LX-Ngal Relation

Overall, it is very challenging to directly compare our X-ray luminosity vs. optical rich-

ness scaling relation results to those that exist in the literature (see Rykoff et al. (2008),

Gal et al. (2009), Giles et al. (2022), Upsdell et al. (2023)). This is primarily due to the

differences in optical richness definitions. It is also non-trivial to convert different opti-

cal richness as many depend on the flux limit of the survey, the size of the aperture, and

whether the aperture size is measured in physical space or based on a z-dependent critical

radius (Rykoff et al. (2008)). Therefore our comparisons are made in a relative manner.

One of our guiding research questions is, do X-ray selected clusters agree with only

optically selected clusters in the LX-Ngal relation? In our lowest redshift bin (figure 3.18),

we see the bootstrap results of the UXsC clusters sitting more than a dex below the LX of

the DXsC clusters for a given redshift. However, it is challenging to conclude from these

results as the redshifts represented in this bin are highly prone to selection effects in the

X-ray. It is challenging to know if the scale of the X-ray luminosity of the DXsC clusters is

independent of the fact that the more X-ray luminous clusters are observationally favored

at these redshifts and if the UXsC clusters are, therefore, intrinsically less luminous in the

X-ray or fit within the scatter of the relation. However, in similar studies such as Giles

et al. (2022), a large sensitivity on selection methods was seen while identifying where a

population of clusters lie on the LX-Ngal relation at low redshift.

In the middle redshift bin (figure 3.19), we see a clearer picture of where the UXsC

clusters sit in relation to the DXsC population. The broader spread in the LX values of the

DXsC clusters indicates that the UXsC clusters are within the scatter of the relation. This
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same result is seen in our highest redshift bin (figure 3.20). However, it is less significant

as the UXsC cluster population has a much higher error on its X-ray luminosity.

For the higher redshift bins, we are seeing a result that is consistent with the literature,

that X-ray selection methods pick out clusters with a higher LX relative to the optical clus-

ters (Rykoff et al. (2008), Gal et al. (2009)). However, we see the populations of non-X-ray

detected clusters represented by the scatter of the scaling relations established with only

X-ray-selected clusters. At the lower redshifts (z < 0.6), we may be limited by selec-

tion effects when making this conclusion. However, the findings in this bin do indicate

that there does exist a population of clusters at the same richness that will represent the

lower end of the X-ray luminosity selection function. It is, therefore, imperative when

creating large-scale cluster surveys with X-ray detection methods that additional selec-

tion techniques are used to probe the low richness and X-ray luminous population. This

analysis, along with many others (Dai et al. (2007), Rykoff et al. (2008), Willis et al. (2018))

demonstrates the power of stacking in the X-ray to understand the X-ray properties of

the clusters that may lie below flux limits. This aids with identifying the ”floor” of cluster

luminosity and, therefore, mass, indicating that those models are incomplete with only

X-ray-selected clusters, especially at low redshift.

4.3 Redshift Evolution

Another goal of this work is to examine the evolution of the LX-Ngal relation as a func-

tion of redshift. As we only have a single Ngal value for each redshift bin in the UXsC

population, we solely use the DXsC population and results from the linear regression for
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this result (figure 3.21). In a similar analysis, Rykoff et al. (2008) sees their high redshift

bin (avg z = 0.23) cluster stacks to be almost twice as bright at clusters at the same rich-

ness but lower redshift (avg z = 0.14). They note that this is more extreme than would be

expected of a change in LX for different redshifts at a given mass (a common proxy for

richness), which should follow LX ∝ ρc(z)
7/6 (Kaiser (1986), Rykoff et al. (2008)). They at-

tribute the significant variation in LX to the redshift variation present in their optical rich-

ness measurement (N200 = number of red-sequence galaxies brighter than 0.4 L∗ within

a scaled aperture R200) at fixed mass which would reduce the amount of dependence of

the LX-Ngal relation on redshift (Rykoff et al. (2008)). Unlike N200, our richness measure-

ment does not depend on redshift, so we can not make the same correction. However,

other sources of variation in the conversion from richness to mass could result in a non-

trivial comparison. This may explain our higher redshift LX at a given Ngal, even when

self-similarity predicts the opposite. Another reason for seeing lower X-ray luminosities

at higher z is the stellar mass bias present in this population. The DXsC population is

pre-selected based on Ngal and is sub-luminous compared to the clusters that would be

detected in the X-ray but not in the optical.

While we see slightly different slopes and intercepts for the fits at different redshifts,

the overlap is significant. The lack of strong dependence of the LX-Ngal relation on red-

shift has several interpretations. The first is that our sample does not have enough data

to accurately measure this, especially as low richness. Additional data, which could al-

low for finer redshift bins and clusters with larger Ngals, would confirm if the lack of z

dependence is legitimate or a function of our small sample size. The second is that, since

we are selecting clusters using the same technique, the same types of clusters are getting
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picked at each redshift, or progenitor bias is occurring. This would ensure that we cannot

directly measure the evolution over time. To correct this, we would need to select clus-

ters in a way that would create an evolutionary sequence. This would involve creating

lower mass cluster bins at high z and increasing the mass cutoff in the lower z bins. This

technique would also require a larger number of clusters in our sample.

4.4 Caveats

Several sources of error could potentially result in different results with our data. One

such source of error is the offset between the BCG position and the X-ray peak position.

As previously discussed, this is more likely to occur in clusters that have recently un-

dergone a merger, are dynamically un-relaxed, or have BCG positions associated with

proto-stellar masses in clusters that are still forming (Webb et al. (2015)). This source of

error is tightly connected with clusters with unusual morphologies that reside at high z.

We see this in our S3,fianl stack (figure 3.13) and the bootstrap results for that population,

which has a much larger spread in LX than the other stacks. Therefore, the greater agree-

ment we see with the S3,fianl population with DXsC population in figure 3.20 is difficult

to trust. We would need additional and higher resolution X-ray data to resolve this issue

and confirm if higher z X-ray undetected clusters are more likely to be directly described

by the LX- Ngal relation than X-ray undetected clusters at lower redshift.

Another solution to this issue, which would also improve results in the PCA and boot-

strap analysis, is to have a larger sample of optically selected clusters. This would allow

for binning in richness in addition to redshift, which would further ensure that the cluster
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population going into each stack is homogeneous in central brightness and morphology.

The stacks resulting from binning in additional dimensions would demonstrate less spa-

tial variability in their EOFs (figure 3.11). We also note that without the ability to stack

in richness space in our stacks, the average X-ray luminosities calculated for each stack

may not represent the underlying population. We address this using the bootstrapping

analysis and the probability distributions to display the LX values instead of using only

the average value of the stack. This limitation is again a function of the number of clusters

in our sample.

4.5 Future work

As previously discussed, the confirmation of many of our results depends on a larger

sample size of clusters. This is challenging, as we require a sample of optically selected

clusters up to z ∼ 2 on the order of several thousand. The hyper suprime-cam (HSC) has

a wide-field optical imaging survey that is already being used to compare optical clusters

to X-ray (Ota et al. (2023)). However, the redshift range of this survey is still limited to

z ∼ 1. We need the Roman Space Telescope to further push the optical data into the NIR

regime and to obtain higher z optically selected clusters (Eifler et al. (2021)). With a larger

sample, we could create more bins for stacking in the X-ray. The number of stacks created

in this analysis were restricted as fewer clusters in each stack resulted in a low SNR and

non-significant X-ray flux. Creating stacks at different richnesses in addition to redshifts

would allow us to examine the redshift evolution of the LX-Ngal relation established by

X-ray undetected clusters in addition to the detected clusters.
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In addition to more optical data, using eROSITA X-ray data instead of XMM-Newton

will result in the classification of more X-ray counterparts for optically selected clusters,

improved resolution, and greater depth. While the eROSITA All-Sky Survey (eRASS)

covers the three fields used in this analysis, only one out of eight passes are currently

available. The flux limit of the first data release is 5 × 10−14 erg s−1 cm−2 for the 0.5-2.0

keV energy band, which is similar or worse to the X-ray data used in this work (Ramos-

Ceja and the eSASS team). However, when the complete survey comes out, the deeper

X-ray data combined with stacking analysis will allow us to examine cluster populations

at low richnesses and fainter X-ray luminosities.
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Chapter 5

Final Conclusion and summary

In this thesis, we have motivated the need to compare multiple detection methods when

studying galaxy clusters. We also motivated the importance of fine-tuning galaxy cluster

scaling relations and evaluating their evolution with redshift. We examined the X-ray

properties of galaxy clusters in the SpARCS survey which are selected using optical tech-

niques up to z ∼ 2. We used stacking analysis to increase the exposure time in the X-ray

and detect extended X-ray emission from the ICM, which allowed us to measure an aver-

age X-ray luminosity for a population of previously un-detected clusters. We used source

matching and low-count statistics to identify which SpARCS clusters are also detected

in the X-ray, allowing us to compare properties of clusters detectable at different wave-

lengths. Principal component analysis was used to examine the spatial variance within

our stacks and aided in forming a more homogeneous sample. By measuring the surface

brightness of the X-ray flux maps created by our stacks, we were able to extract an X-

ray luminosity by integrating under a β-model fit to our data. We used bootstrapping to

understand further the spread of LX and Ngal in each stack.
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Using the directly and indirectly measured LX along with the optical richness (Ngal)

value assigned to every cluster in the SpARCS survey, we were able to establish an LX-

Ngal scaling relation for X-ray detected and undetected cluster populations.

Our main results are as follows:

• Our sample of undetected X-ray clusters had a large range of morphologies

and dynamical states, especially at z > 1.1. PCA is an extremely useful tool for

examining this limitation when conducting stacking analysis.

• Across all redshifts, we see the population of undetected X-ray SpARCS clus-

ters sitting on the lower end of the X-ray luminosities for a given richness in

the LX-Ngal relation compared to the detected X-ray clusters but still within

the scatter.

• Cluster surveys conducted solely using X-ray selection are biased towards clus-

ters with high LX . Additional detection methods are required to examine the

lower LX clusters at the same redshift and richness.

• There is minimal z evolution in our LX-Ngal relation. However, this could be

due to progenitor bias and a result of all clusters in our sample being chosen in

the same way.

A much larger sample of optically selected clusters spanning to high redshift is re-

quired to confirm many of our findings. Next-generation facilities will provide the neces-

sary data to continue examining galaxy clusters and their observational biases.
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