
Trajectory Generation and

Controller Design for a

Quadrotor-Slung Load System

Sean Fielding

The Department of Mechanical Engineering

McGill University, Montreal

November 2019

A thesis submitted to McGill University in partial fulfilment of the

requirements for the degree of Master’s of Engineering.

c©Sean Fielding, 2019

Abstract

Unmanned aerial vehicles (UAVs), in particular quadrotors, have received increased in-
terest recently for a variety of applications including aerial photography and payload
transportation. Unlike fixed wing aircraft, quadrotors are well suited to flying in crowded
urban environments due to their ability to hover as well as takeoff and land vertically.
These drones are inherently difficult to fly though and typically require skilled pilots
or assistive controllers. This presents significant barriers for companies looking to use
quadrotors for novel applications. In response to this limitation, there has been a sig-
nificant focus on developing flight controllers and flight trajectory generators to enable
autonomous operation of quadrotor drones.

While aerial photography applications are already well established for quadrotors, au-
tonomous payload delivery presents an ongoing challenge. Currently, parcel delivery with
quadrotors typically requires mounting a rigid container to the underside of the vehicle
and filling this container with items. This configuration limits the size and shape of ob-
jects that can be transported, adds weight to the vehicle and adversely affects its attitude
dynamics. A compelling alternative, inspired from military helicopters, is to suspend the
payload from the underside of the quadrotor via one or more cables. Doing so saves
weight and significantly reduces the impact that the payload has on the vehicle’s attitude
dynamics. The resulting quadrotor-slung load system also offers versatility in terms of
the size and shape of payload that can be transported

The deployment of autonomous quadrotor-slung load systems presents numerous chal-
lenges though. A slung load will inherently tend to swing underneath the drone when
acted upon by external disturbances like wind gusts. This can lead to instability in the
system and potentially cause the drone to crash. It is thus critical to develop robust flight
controllers for quadrotor-slung load systems that can autonomously track prescribed de-
livery routes while suppressing the swinging motion of the payload. Significant swinging
motion can also be induced in the slung load as a result of the flight trajectory of the
quadrotor drone. We should thus specifically design flight trajectories that help to prevent
swinging motion from being induced.

At its core, this thesis seeks to develop techniques to both prevent and actively sup-
press swinging motion for an autonomous slung load system. In the following chapters
we begin by exploring how quadrotor flight trajectories affect the swinging motion of a
slung payload. In particular we focus on the technique of input shaping desired flight
trajectories to help prevent induced payload swinging. We demonstrate how this con-
cept can be extended to non-rest to rest flight trajectories and develop a computationally
simple algorithm for generating these flight trajectories onboard a quadrotor as it flies.
We next develop a flight controller to enable an autonomous quadrotor-slung load system
to track these prescribed input-shaped flight trajectories. We explore existing designs
for such controllers and develop a novel approach that distinguishes between swinging
motion caused by tracking a prescribed flight trajectory and that caused by external dis-
turbances. We demonstrate in simulation how this proposed controller is able to manage

iv

swinging disturbances while tracking an input-shaped flight trajectory better than two
baseline controller designs. We later demonstrate how the underlying concepts behind this
controller can be used to develop a model predictive controller for tracking input-shaped
trajectories with a quadrotor-slung load system. We also discuss the implementation of
the proposed trajectory generator and controller onto an actual quadrotor drone and some
of the challenges faced during this process. We conclude by making recommendations for
future work for this project.

Résumé

Les véhicules aériens autonomes, en particulier les quadricoptères, sont de plus en plus
utilisés pour une grande variété de tâches tels que la photographie aérienne et le transport
de charges utiles. Comparativement aux drones à voilure fixe, les quadricoptères peu-
vent atterrir et décoller verticalement ainsi que maintenir un vol stationnaire. Ceci leur
permet d’opérer dans des environnements encombrés. La commande de ces drones peut
présenter de nombreux défis et donc nécessite souvent un pilote expérimenté ou l’aide d’un
contrôleur. Ceci rends plus difficile l’intégration de ces machines au sein d’entreprises qui
aimeraient les utiliser pour de nouvelles applications. Il est donc important de développer
des algorithmes pour permettre plus d’autonomie dans ces systèmes.

Le transport de charges utiles avec des quadricoptères autonomes présente un défi im-
portant que plusieurs compagnies aimeraient surmonter. À présent, plusieurs prototypes
commerciaux utilisent un contenant rigide attaché au drone pour tenir la charge utile.
Ceci ajoute un poids supplémentaire à notre système et limite la grandeur d’objets qu’on
peut transporter. De plus, il rend plus difficile la tâche de réorienter le quadricoptère en
vol. Il serait donc important d’explorer si d’autres options pour transporter des charges
utiles pourraient être utilisées. Dans le domaine militaire par exemple les hélicoptères
transportent souvent des charges suspendues par des câbles. Ceci permet de diminuer
le poids du système et réduit l’impact de la charge utile sur la capacité du véhicule
de se réorienter. Nous allons donc étudier le transport d’une charge suspendue par un
quadricoptère autonome.

Le transport de charges suspendues présente de nombreux défis. Par exemple, la charge
aura tendance à osciller sous l’effet du vent. Ces mouvements peuvent déstabiliser le
quadricoptère et entrainer un écrasement dangereux. Il est donc très important d’atténuer
les oscillations de notre charge suspendue avec le contrôleur de notre drone. En même
temps, ce contrôleur doit bien suivre une trajectoire prescrite pour compléter une livrai-
son. Nous devons aussi tenir compte du fait que des mouvements oscillants peuvent
être causés par le trajet de vol du quadricoptère. Il est donc important de choisir des
trajectoires qui n’entraineront pas de grands mouvements oscillants.

Dans cette thèse, nous étudions des techniques pour éviter et atténuer les mouvements
oscillants d’une charge suspendue transportée par un quadricoptère autonome. Tout
d’abord, nous examinons comment calculer des trajectoires de vols qui nous permettront
de livrer notre charge sans causer des mouvements oscillants dangereux. En particulier,
nous utilisons une technique de modifications de commandes. Nous démontrons com-
ment appliquer cette technique à une grande variété de trajectoires et nous présentons
un algorithme pour calculer nos trajectoires de vol. Par la suite, nous développons un
nouveau contrôleur pour permettre à notre système de suivre ces trajectoires. En par-
ticulier, notre contrôleur est capable de différencier entre un mouvement oscillant causé
par le trajet de vol ou par des sources externes comme le vent. Nous démontrons avec
des simulations que ce nouveau contrôleur est capable de mieux suivre une trajectoire
de vol en atténuant des mouvements oscillants néfastes. Nous nous inspirons aussi de ce

vi

nouveau contrôleur pour développer un contrôleur prédictif pour ce système. Par la suite,
nous discutons les difficultés rencontrées pour faire des vols d’essai. Nous concluons avec
des recommandations pour des travaux futurs.

Acknowledgements

Firstly, I’d like to thank my supervisor, Professor Meyer Nahon for all of his guidance and

support throughout my graduate studies. Pursuing this degree has been a tremendous

growth experience for me and I am immensely grateful for having had the opportunity

to work in his research group. Our meetings together and his feedback throughout this

project were instrumental in guiding me from the early conceptual phase through to this

finished thesis. I so appreciated being able to learn about robotics and research from

Professor Nahon.

I would also like to thank my friends and colleagues in the Aerospace Mechatronics Lab

for all of their support over these last two years. I was very fortunate to be able to

share a lab with so many talented researchers who were always willing to lend a hand. I

particularly want to thank Eitan Bulka, Juan Carlos Hernández Ramı́rez, Fares El Tin,

Walter Jothiraj, Corey Miles and Romain Chiappinelli for their assistance with imple-

menting my work. Your experience and guidance was invaluable throughout this project

and I really appreciated how you all took time to help me troubleshoot my system and

brainstorm solutions to technical challenges. I would also like to thank Talha Tariq and

Christian Patience for their tireless work setting up the motion capture test environment

for me. I would not have been able to get my quadrotor off the ground without your

assistance. A special thanks also to Siddharth Kumanduri, Shatil Rahman and Jad We-

hbeh for your assistance with conducting flight tests of my system. It was also a pleasure

getting to share a work space with Sahand Rezaei-Shoshtari, Kieran Ratcliffe, Hunter

Song, Mikkel Jorgensen, Sam El Toufaili, Tim Thompson, Catherine Massé, Yunpeng

Hu, Denis Kartachov and Professor Inna Sharf.

I would also like to extend a special thanks to my parents, Allan Fielding and Marilyn

Alfano for all of their love and support throughout my graduate studies. You have always

encouraged me to pursue my goals and I would not have been able to complete this degree

without you by my side.

The work presented in this thesis was made possible with the financial support of the

Canada Graduate Scholarships-Master’s Award from the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), the Bourse de mâıtrise en recherche from the

Fonds de recherche du Québec - Nature et technologies (FRQNT), the McGill Engineer-

ing Undergraduate Student Masters Award (MEUSMA) and the McGill Masters Top-Up

award.

vii

Dedicated to my Nanna and Grampy, I love you always

viii

Contents

Abstract iii

Résumé v

Acknowledgements vii

Table of Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Objectives . 4

1.2 Thesis Organization . 5

2 Input-Shaped Trajectory Generation 7

2.1 Flight Trajectory Generation for Quadrotor-Slung Load Systems 7

2.2 Input Shaping Theory . 8

2.2.1 Types of Input Shapers . 10

2.2.2 Input Shaping for Quadrotor-Slung Load Systems 17

2.2.3 Implementation . 18

2.3 Non-Rest to Rest Input-Shaped Trajectory Generation 21

2.3.1 Generating an Unshaped Flight Trajectory 24

2.3.2 Summary of Trajectory Generator 26

2.3.3 Simulation Results . 28

2.4 Natural Frequency of a Quadrotor-Slung Load System 34

3 Controller Design 41

3.1 Survey of Quadrotor-Slung Load Flight Controller Designs 41

3.1.1 Payload Trajectory Following Controllers 42

3.1.2 Quadrotor Trajectory Following Controllers 43

3.1.3 Quadrotor Trajectory Following + Payload Swing Feedback Con-
trollers . 45

3.2 Quadrotor-Slung Load System Simulation Model 47

3.2.1 Simulator setup . 51

ix

Contents x

3.3 Geometric Controller . 52

3.3.1 Oscillation Controller . 54

3.3.1.1 Swing Prediction . 55

3.3.2 Position Controller . 57

3.3.3 Attitude Controller . 58

3.3.4 Thrust Allocation and Saturation 60

3.4 Controller Evaluation . 62

3.4.1 Controller Tuning Process . 62

3.4.2 Baseline Flight Controllers . 66

3.4.3 Simulation Results . 67

3.4.4 Cable Length and Payload Mass Changes 75

4 Model Predictive Controller Design 81

4.1 Model Predictive Control for Quadrotor-Slung Load Systems 81

4.2 Implementation . 83

4.2.1 Prediction Model . 84

4.2.2 Constraints and Cost Function 86

4.2.3 Simulator Setup . 88

4.2.4 Controller Tuning . 89

4.3 Simulation Results . 90

5 Experimental Setup 101

5.1 Trajectory Generator and Controller Implementation 101

5.2 Test Setup . 104

5.3 Payload Detection . 105

5.4 Drone Characterization . 108

5.4.1 Propeller Characterization . 109

5.4.2 Motor Characterization . 110

5.5 Real-Time Implementation and Preliminary Flight Testing 113

6 Conclusion 117

6.1 Future Work . 118

A Differential Flatness of a Quadrotor 121

Bibliography 127

List of Figures

1.1 Quadrotor-Slung Load System . 2

1.2 Hierarchical Quadrotor Controller Design 4

2.1 Input-Shaped Step Response Example 9

2.2 Destructive Interference Example . 10

2.3 PRV Versus Angular Velocity Error for Common Input Shapers 15

2.4 PRV Versus Damping Ratio Error for Common Input Shapers 16

2.5 Improper Input Shaping of Non-Rest to Rest Trajectory 21

2.6 Proper Input Shaping of Non-Rest to Rest Trajectory 22

2.7 Rest to Rest Motion Trajectory Comparison 31

2.8 Rest to Rest Motion Swing Comparison 31

2.9 Non-Rest to Rest Motion Trajectory Comparison 32

2.10 Non-Rest to Rest Motion Swing Comparison 33

2.11 Non-Rest to Rest Motion with Design Error Swing Comparison 34

2.12 Rigid Body Pendulum Model . 36

2.13 (Top) Comparison of Predicted Td Values, (Bottom) Percent Error Between
Point Mass and Rigid Body ω2 . 38

3.1 Model Frame Setup and Nomenclature 48

3.2 Proposed Flight Controller Overview . 54

3.3 Predicted Swinging Motion (blue) due to Prescribed Input-Shaped Flight
Trajectory (red) . 56

3.4 Quadrotor Motor Naming Convention . 61

3.5 Simulation 1: Time History of Swing Angle 68

3.6 Simulation 1: Time History of Quadrotor Trajectory Tracking Error Mag-
nitude . 68

3.7 Simulation 2: Top View of Quadrotor Motion 69

3.8 Simulation 2: Time History of Swing Angle 70

3.9 Simulation 2: Time History of Quadrotor Trajectory Tracking Error Mag-
nitude . 70

3.10 Simulation 2: Oscillation Feedback Force 71

3.11 Simulation 3: Top View of Quadrotor Motion 72

3.12 Simulation 3: Time History of Swing Angle 73

3.13 Simulation 3: Time History of Quadrotor Trajectory Tracking Error Mag-
nitude . 73

3.14 Simulation 3: Oscillation Feedback Force 74

xi

Figures xii

3.15 Simulation 3: Position Feedback and Feedforward Force 74

3.16 0.6m Cable: Time History of Swing Angle 77

3.17 1.35kg Payload: Time History of Swing Angle 79

4.1 Simulation 4: Time History of Swing Angle 91

4.2 Simulation 4: Time History of Quadrotor Trajectory Tracking Error Mag-
nitude . 91

4.3 Simulation 4: Time History of Motor Thrust Forces 92

4.4 Simulation 5: Top View of Quadrotor Motion 93

4.5 Simulation 5: Time History of Swing Angle 94

4.6 Simulation 5: Time History of Quadrotor Trajectory Tracking Error Mag-
nitude . 94

4.7 Simulation 5: Time History of Motor Thrust Forces 95

4.8 Simulation 6: Top View of Quadrotor Motion 96

4.9 Simulation 6: Time History of Swing Angle 96

4.10 Simulation 6: Time History of Quadrotor Trajectory Tracking Error Mag-
nitude . 97

4.11 Simulation 6: Time History of Motor Thrust Forces 97

5.1 Modified AscTec Pelican used for Flight Testing 105

5.2 VICON Motion Capture Flight Test Setup 105

5.3 Payload Tracking with Camera Nomenclature 106

5.4 Thrust Application Process . 109

5.5 Thrust Versus RPM2 for APC 10× 4.7 Propeller 110

5.6 Moment Versus RPM2 for APC 10× 4.7 Propeller 111

5.7 PWM to RPM Experimental Setup . 111

5.8 PWM to RPM Experimental Setup . 113

5.9 VICON Communication Setup . 115

A.1 Decomposition of Transformation from Inertial Frame to the Quadrotor
Frame . 122

List of Tables

3.1 Properties of the Pelican Quadrotor and Slung Load. 63

3.2 Controller Gains for Simulated Pelican Quadrotor and Slung Load. . . . 65

3.3 Cable Length Analysis . 76

3.4 Mass Robustness Analysis . 78

xiii

Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), in particular quadrotors have received increased in-

terest recently for a variety of applications including aerial photography, inspection and

payload transportation. A major advantage of quadrotors compared to fixed wing UAVs

is that, like helicopters, they can hover as well as takeoff and land vertically. Compared

to helicopters though, quadrotors are significantly less complex mechanically with fewer

moving parts in their rotor assemblies [1]. Overall, quadrotor drones are particularly well

suited to operation in dense urban environments or areas otherwise lacking unobstructed

flat surfaces to use as a runway. A quadrotor is an inherently unstable underactuated

system and as such can be difficult to fly. As a result, skilled operators are typically

required to operate these vehicles and many consumer-grade systems provide an assistive

control structure to simplify the flying process. Increasingly, there is a push towards

automating the flight operations of quadrotors so that they can complete missions with

minimal human oversight. Doing so will enable quadrotor drones to be better used in

disaster relief and other emergency situations where manpower is a vital resource and

timely information is key to decision making processes. Autonomous quadrotors also

have the potential to be used for commercial payload transportation applications and

indeed numerous companies are exploring their use for short-distance deliveries. A ma-

jor requirement for achieving autonomous operation of quadrotors is the development of

robust flight controllers and path planning algorithms. Both these topics have received

extensive focus for many years within academic research communities.

In this thesis, we narrow our focus to payload delivery applications for quadrotor drones.

This represents a newer application that has seen limited commercialization thus far but

has the potential to dramatically alter how goods are delivered. Current prototypes for

achieving parcel delivery with quadrotors typically store payload in a container rigidly

1

Chapter 1. Introduction 2

Figure 1.1: Quadrotor-Slung Load System

mounted to the underside of the vehicle. A major drawback of this approach is that

it inherently limits the size and shape of objects that can be transported. The rigid

container also adds weight to the drone thereby reducing its already limited payload

carrying capacity. This mounting setup also increases the inertia of the quadrotor making

it more difficult for the vehicle to change its attitude. The ability to quickly change

attitudes is particularly critical for quadrotors since, like helicopters, they need to pitch

and roll in order to accomplish horizontal maneuvers. An alternate mounting strategy is

to use one or more cables to suspend the payload underneath the vehicle. The resulting

quadrotor-slung load system, shown in Figure 1.1 reprinted from [2], is lightweight, simple

to set up, and provides significant versatility in terms of the size and shape of object that

can be transported. Slung load transportation has also been studied and implemented

with manned helicopters, especially for military applications, for decades [3] [4] [5]. A

key benefit of using a cable to mount a load onto a quadrotor is that this reduces the

payload’s impact on the vehicle’s attitude dynamics compared to a rigid mounting setup

[6] [7]. Another key benefit of slung load systems is that multiple quadrotors can be

tethered to a common load. This means that payloads that would normally be too heavy

for a single quadrotor to lift can still be transported without having to design a new

quadrotor with increased carrying capacity. Collaborative load transportation is beyond

the scope of this thesis but is increasingly being studied in academia such as in [8], [9]

and [10].

Transporting a slung load, even in manned helicopter operations, presents numerous

challenges. The slung load will inherently tend to swing underneath the vehicle due to

external disturbances such as the wind, rotor downwash, collisions with the environment

or even due to the motion of the vehicle. In helicopter-slung load systems, this swinging

motion is particularly difficult to manage even for experienced pilots and can lead to

crashes [5]. Swing management can also become critical during landing operations where

there might be an increased risk of colliding with the environment leading to damage

Chapter 1. Introduction 3

or even cable entanglement. In [5], the author attempts to address these issues by de-

veloping a feedback controller to assist pilots by damping the swinging of the payload.

For unmanned systems, we would need to extend this concept further by having robust

flight controllers that can simultaneously manage flight trajectory tracking and swing

suppression requirements.

Due to the potential dangers of swinging motion in slung load systems, it makes sense to

look at potential strategies for preventing payload swinging. A good starting point is to

consider how the motions of our quadrotor along its delivery route affect load oscillations.

Quadrotor-slung load systems are inherently underactuated and thus lateral accelerations

of the quadrotor will inevitably cause some form of swinging motion in the payload. In

a realistic flight scenario, a quadrotor may have an assigned geometric flight path but

could fly along that path using any number of trajectories involving different accelerations

and velocities. Ultimately, we would like to ensure that whenever the quadrotor stops

accelerating there is no relative swinging motion between it and its payload. To gain some

intuition into this problem, we can conduct a simple experiment by moving a pendulum

by hand. The goal is to move our hand a set distance and have no residual swinging in

the pendulum at the end of the motion. With a bit of practice, one can quickly establish

a successful motion strategy of selectively speeding up and slowing down the movement

in time with the swinging of the pendulum. Ideally, we’d now like implement this same

strategy in the design of flight trajectories for a quadrotor carrying a slung load. It turns

out that we can do this by using input shaping. Input shaping is a process whereby a signal

is modified such that it no longer will excite oscillations in a system at a prescribed target

frequency. Here, we want to input shape flight trajectories for quadrotors transporting

slung loads such that once the vehicle stops accelerating, the payload will not swing.

Input shaping is based on exploiting destructive interference and has been demonstrated

in numerous papers dealing with helicopter and quadrotor-slung load systems. Swing

prevention strategies such as input shaping can have limited effectiveness for realistic

systems due to measurement uncertainty though. Unpredictable external disturbances

will also act on the payload and will need to be managed. For this reason, we typically

will need to augment our system by incorporating active swing suppression as part of the

flight controller design.

Flight controllers for quadrotors and quadrotor-slung load systems have been developed

and demonstrated in numerous previous works. An excellent summary of the current state

of the art is presented in [11]. These controllers typically take on the hierarchical form

shown in [11], reprinted here as Figure 1.2. Figure 1.2, illustrates how the desired position

and yaw motion of the quadrotor is converted into a desired attitude and thrust force

Chapter 1. Introduction 4

Figure 1.2: Hierarchical Quadrotor Controller Design

by a Position controller. The desired attitude is used to compute a desired moment by

the Attitude controller and this resulting thrust and moment are then allocated to forces

for each motor on the vehicle. This control strategy is motivated by the underactuated

nature of the quadrotor where attitude changes are required to make positional changes.

A conceptually similar design will also hold for quadrotor-slung load systems. In many

cases, these controllers make use of the property of differential flatness for quadrotors

and quadrotor-slung load system models. In essence, a differentially flat system is one in

which the states and inputs can be defined as a function of a limited set of outputs and

their higher derivatives. For a quadrotor for instance we find that the thrust, attitude

and angular velocity can all be expressed as functions of the desired position, yaw and

their higher derivatives. This idea will be discussed in more detail in Appendix A. In

this thesis, we exploit differential flatness in our development of a flight controller for a

quadrotor-slung load system.

A key limitation with quadrotor-slung load systems is that the only way to suppress

payload swinging is through motions of the quadrotor. Thus during a flight trajectory

tracking operation, suppressing swinging motion will almost inevitably result in larger

tracking errors. These errors become more critical when tracking input-shaped flight

trajectories though since we carefully design these trajectories in order to achieve swing

prevention. We thus need to carefully balance when our controller makes swing suppres-

sion motions in order to achieve the full benefit of our input-shaped trajectory. This can

be challenging though since input-shaped motion trajectories will induce some swinging

motion in the payload during accelerating portions but will ultimately help eliminate

residual swinging motion.

1.1 Objectives

The goal of this thesis is to improve the autonomy of quadrotor-slung load systems by

developing techniques to prevent and actively suppress swinging in a suspended payload.

Chapter 1. Introduction 5

For swing prevention, we focus on developing quadrotor flight trajectories that inherently

avoid inducing swinging motion in the slung load through the use of input shaping. In this

work we develop a method to extend the concept of input shaping to generate non-rest

to rest flight trajectories while maintaining a computationally simple framework that can

readily be implemented on a quadrotor drone with limited computational resources. We

next develop a flight controller for a quadrotor-slung load system that can effectively track

this input-shaped flight trajectory while also actively suppressing swinging disturbances.

Unlike previous controllers presented in the literature, in this thesis we develop a novel

formulation that attempts to distinguish between swinging motion caused by the accelera-

tions inherent to a prescribed flight trajectory and those caused by external disturbances.

Once this distinction is made, our controller only attempts to suppress swinging motion

due to external disturbances. We compare this proposed controller in simulation to two

simpler designs to assess their ability to track input-shaped flight trajectories both with

and without external disturbances acting on the payload.

1.2 Thesis Organization

This thesis has the following structure: Chapter 2 presents a literature review of tra-

jectory generation and input shaping for quadrotor-slung load systems as well as the

development of a computationally simple input-shaped trajectory generator for non-rest

to rest motions. Chapter 3 presents a literature review of control strategies for quadrotor-

slung load systems and subsequently discusses the development of our novel controller.

Simulation results are also presented comparing our controller to baseline designs. Chap-

ters 2 and 3 are based on work presented in [2]. Chapter 4 presents the development of

a model predictive controller for tracking input-shaped flight trajectories inspired by the

controller developed in Chapter 3. These two controllers are then compared in simulation.

Chapter 5 discusses the implementation process of taking our trajectory generator and

controller from Chapters 2 and 3 and implementing them on an actual quadrotor drone.

Chapter 6 provides a conclusion and discusses future work.

Chapter 2

Input-Shaped Trajectory Generation

This chapter briefly introduces the problem of generating flight trajectories for quadrotor-

slung load systems. We then introduce the technique of input shaping and subsequently

present a novel formulation for how to extend this concept to non-rest to rest flight

trajectories.

2.1 Flight Trajectory Generation for Quadrotor-Slung

Load Systems

A key requirement for autonomous payload delivery systems with quadrotor drones is

developing a robust method to autonomously plan flight routes for the drone. As dis-

cussed in [11], numerous papers have demonstrated the capability for quadrotor drones to

autonomously navigate through previously unknown environments at high speeds. How-

ever, extending these capabilities to quadrotor-slung load systems remains an ongoing

challenge.

A key distinction that appears in the literature is whether papers focus on generating

desired motion trajectories for the payload or for the quadrotor drone itself. In some

sense, the decision between which strategy to employ comes down to a matter of per-

spective; is our payload a carriage being drawn by a quadrotor or is our drone towing a

suspended load. In [12], the authors formulate the quadrotor flight trajectory problem

as a mathematical program with complementarity constraints subject to the full system

dynamics of the quadrotor-slung load system. The resulting optimization problem can

accommodate constraints on the payload’s motion, control inputs, as well as obstacle

7

Chapter 2. Input-Shaped Trajectory Generation 8

avoidance. The authors also demonstrate how their algorithm can be applied to way-

point navigation and payload throwing tasks and inherently generates flight trajectories

where the cable remains taut. An alternate approach focusing on payload trajectories

is developed in [13]. The problem is formulated as a mixed integer quadratic program

with a goal of navigating a prescribed set of waypoints and avoiding collisions between

the environment and any part of the slung load system. The algorithm is meant to allow

the cable to go slack during portions of the motion trajectory. Both these methods are

computationally intensive though and require global information about the environment.

There have also been numerous papers that attempt to generate swing-free maneuvers

for slung load systems such as in [14] and [15]. In [14], dynamic programming is used

to generate a swing-free quadrotor flight trajectory. Dynamic programming essentially

involves recursively solving for an optimal motion that will minimize residual swinging.

Their method showed promising swing mitigation results in simulation but the experi-

mental results suffered a bit due to trajectory tracking difficulties. In [15], approximate

value iteration reinforcement learning is used to develop a system that can generate flight

trajectories between waypoints that minimize residual swinging motion of the payload.

The resulting learned trajectory outperformed cubic polynomial flight trajectories and

achieved similar results to a dynamic programming approach for swing mitigation.

Ultimately, though the trajectory generation methods in [12], [13] and [14] rely on solv-

ing an optimization problem to generate flight trajectories. The trajectory generation

method in [15] on the other hand requires training the system for its payload first. These

requirements are problematic since ultimately our goal is to generate flight trajectories

that will mitigate swinging in our slung load onboard our quadrotor drone in real time.

Input shaping offers a compelling alternative strategy that is computationally simple to

implement and helps to manage swinging motion in a slung load system.

2.2 Input Shaping Theory

By itself, a quadrotor drone is inherently underactuated with four control inputs and six

degrees of freedom. The addition of a slung load to this system introduces at least two

more degrees of freedom, further solidifying the underactuated nature of the resulting

quadrotor-slung load system. From a practical standpoint, this means that lateral accel-

erating maneuvers of the quadrotor such as speeding up, slowing down or performing a

turn at speed will inevitably induce some level of relative swinging motion between the

payload and the drone. Even when the drone stops accelerating, this induced swinging

Chapter 2. Input-Shaped Trajectory Generation 9

Figure 2.1: Input-Shaped Step Response Example

motion can persist, leading to instability in the system. The best case scenario would

be that this swinging motion no longer occurs once the quadrotor stops accelerating and

either comes to rest or reaches a new steady state velocity. Input shaping is specifically

meant to achieve this best case scenario.

Input shaping is a process whereby a reference signal given to a flexible system is convolved

with a sequence of impulses, known as an input shaper, in order to cancel the system’s

vibration modes [16]. Early derivations of the concept such as that presented in [17] are

based on first assessing the oscillations of a linear second order system due to a sequence

of impulses. The amplitudes and timing of these impulses could then be optimized to

find the shortest set of impulses that would result in zero residual swinging motion of

the system. A critical observation discussed in [17] is that this same vibration reduction

can be achieved by convolving any input with this sequence of impulses to obtain a

shaped input. Furthermore, by normalizing the impulses to sum to a value of one, we

can guarantee that the convolution process will not cause the shaped input to exceed the

value of the original input. An early example of this concept called the Posicast input

was developed in 1958 [17].

An example of the input shaping process for a simple step input signal is given in [18]

reprinted here as Figure 2.1. As demonstrated in Figure 2.1, the original step input

command induces an undesirable oscillating response in the system. After convolving the

original step command with an input shaper and applying the resulting shaped command

to the system, the shaped response now shows no residual oscillation. As will be shown,

the amplitudes and timing of the impulses in the input shaper are based on the properties

of the oscillating system. A typical application of input shaping is to modify the desired

motion trajectory of an actuated body connected via cable to a passive body. For example,

input-shaped motion trajectories have been employed to mitigate swinging in gantry

cranes [19] as well as helicopter [20] [21] [22] [23] and quadrotor-slung load systems [10]

[24] [25] [26]. In [10], input shaping is even applied to collaborative load transport using

multiple aerial vehicles tethered to a common payload.

Chapter 2. Input-Shaped Trajectory Generation 10

Figure 2.2: Destructive Interference Example

At its most basic level, input shaping works by exploiting destructive interference between

impulse responses for an oscillatory system. This is demonstrated visually in an example

presented in [23], reprinted here as Figure 2.2. The example shown in Figure 2.2 involves

only two impulses however similar results can be obtained with three or four impulses.

Like a notch filter, input shaping is specifically designed to target and suppress swinging

at a chosen frequency. An alternative form that behaves more like a low pass filter for

swing mitigation using an embedded prefilter is presented in [27]. In the following sections

we will provide an overview of some of the various types of input shapers presented in

the literature as well as discussing how the convolution process shown in Figure 2.1 is

implemented mathematically. We will then examine the current state of the art for

input-shaped flight trajectories in quadrotor-slung load systems in order to motive our

subsequent work.

2.2.1 Types of Input Shapers

Numerous different types of input shapers with varying numbers of impulses have been

presented. At first glance this might seem odd since from Figures 2.1 and 2.2 two im-

pulses appear to be sufficient to obtain the desired oscillation mitigation. The motivation

behind creating more complicated input shapers with additional amplitudes is to improve

robustness. Figures 2.1 and 2.2 present an idealized scenario where the natural frequency

and damping of the oscillatory system are known perfectly and an input shaper is designed

based on this knowledge. In reality, these properties will be estimated based on models

or experimental data and this can in turn introduce error, degrading the effectiveness of

the input-shaped trajectory for mitigating oscillations in the shaped response. Consider

Chapter 2. Input-Shaped Trajectory Generation 11

for instance the extreme case where instead of applying a second impulse after one half

period of oscillation, as done in Figure 2.2, we applied the second impulse after a full

period of oscillation. In this situation, the input-shaped trajectory would amplify the os-

cillations of the system. As will be shown, adding additional impulses to the input shaper

allows for greater errors between the true system natural frequency and damping and the

values used to design the shaper while maintaining oscillation mitigation performance.

The main drawback of using additional impulses is that this lengthens the duration of

the input shaper and slows down the reference trajectory. In Figure 2.1 for instance, the

unshaped step command reaches its maximum value instantaneously at time 0. After

shaping with an input shaper of duration ∆ s though, the resulting shaped command now

only reaches the same maximum value after ∆ s. As will be shown, the value of ∆ is pro-

portional to the system’s period of oscillation. From a practical standpoint, this means

that oscillating systems with large periods such as slung loads attached to long cables

will require input shapers with longer durations resulting in slower shaped commands. It

is thus important to balance robustness to uncertainty with shaper duration in selecting

an input shaper to use for a given problem.

The derivation of the amplitudes and timing of an input shaper’s impulses is based on the

impulse response of a basic second order system with undamped natural frequency ω and

damping ratio ζ. From [16] and [24], the amplitude of oscillation AΣ of an underdamped

second-order system due to a sequence of n impulses (A1, A2, ..., An) at times (0, t2, ..., tn)

is given by

AΣ =
ω√

1− ζ2
e−ζωtn

√√√√(n∑
i=1

Aieζωti cos
(
ωti
√

1− ζ2
))2

+

(
n∑
i=1

Aieζωti sin
(
ωti
√

1− ζ2
))2

(2.1)

From equation (2.1) we also have that for a single unit-magnitude impulse at time zero

the resulting amplitude of residual oscillation A↑ would be

A↑ =
ω√

1− ζ2
(2.2)

The value of AΣ can be divided by A↑ in order to obtain the Percentage Residual Vibration

(PRV) as done in [16] and [18].

PRV
.
= e−ζωtn

√√√√(n∑
i=1

Aieζωti cos
(
ωti
√

1− ζ2
))2

+

(
n∑
i=1

Aieζωti sin
(
ωti
√

1− ζ2
))2

(2.3)

Chapter 2. Input-Shaped Trajectory Generation 12

The PRV essentially tells us how effective the input shaper is at eliminating residual

oscillations in our second order system. When PRV = 0, this corresponds to the ideal

scenario where our sequence of impulses completely avoid exciting residual oscillations in

the system after the final impulse. We can derive the value of our input shaper’s impulses

by imposing constraints on equation (2.3). For example, consider a two impulse input

shaper with impulses (A1, A2) at times (0, t2). We would like to impose the constraint

that PRV = 0 and solve equation (2.3) for A1, A2, t2. From Figure 2.2 though we expect

a solution to exist if we impose that the second impulse A2 occur after one half period.

That is t2 = Td/2, where Td is the damped period of oscillation of our second order

system.

Td =
2π

ωIS
√

1− ζ2
IS

(2.4)

In equation (2.4), ωIS and ζIS are the estimated values of the true undamped natural

frequency and damping ratio of our second order system used to compute the parameters

of our input shaper. Under ideal circumstances, these values would match perfectly with

the system’s true values of ω and ζ that appear in equations (2.1), (2.2) and (2.3). If we

assume a perfect scenario where ωIS = ω and ζIS = ζ and substitute t1 = 0 and t2 = Td/2

into equation (2.3), with n = 2 we obtain the following result.

PRV = 0 = e

−ζISπ√
1− ζ2

IS

√√√√√(A1 − A2e

ζISπ√
1− ζ2

IS

)2

(2.5)

We can further impose the constraint that A1 + A2 = 1 and A1 > 0, A2 > 0. This first

constraint ensures that the input shaping process will not alter the overall amplitude of

our reference signal. We thus find that

A1 =
1

1 + e

−ζISπ√
1− ζ2

IS

, A2 =
e

−ζISπ√
1− ζ2

IS

1 + e

−ζISπ√
1− ζ2

IS

(2.6)

Notice for example if we have an undamped system with ζ = 0 that we obtain A1 =

A2 = 0.5 and t1 = 0, t2 = Td/2 corresponding to a situation with two impulses of equal

amplitude spaced out by one half period. In the above process we have essentially derived

the values for the simplest type of input shaper, the Zero Vibration (ZV) input shaper

[16] [24]. This derivation can be traced back to earlier works such as [17]. Throughout

Chapter 2. Input-Shaped Trajectory Generation 13

this paper we will denote this input shaper as hZV [t] where

hZV [t] =


1

1 +K
, if t = 0

K

1 +K
, if t =

Td
2

0, otherwise

(2.7)

K
.
= e

−ζISπ√
1− ζ2

IS (2.8)

where the value of Td is obtained from equation (2.4). A basic ZV input shaper can

produce favourable swing mitigation if ωIS and ζIS in equations (2.7) and (2.8) perfectly

match the true values ω and ζ for our system.

We can apply a similar technique to derive input shapers with more than two impulses.

Suppose that we imposed as constraints that PRV = 0 and ∂PRV/∂ω = 0 for a three

impulse system. Solving the resulting system would yield the values for the Zero Vibration

and Derivative (ZVD) input shaper hZV D[t] as done in [16].

hZV D[t] =



1

1 + 2K +K2
, if t = 0

2K

1 + 2K +K2
, if t =

Td
2

K2

1 + 2K +K2
, if t = Td

0, otherwise

(2.9)

where the value of K comes from equation (2.8). Notice though that compared to hZV [t],

hZV D[t] lasts twice as long with its final impulse occurring at t = Td. We can continue in

a similar manner to derive the Zero Vibration and Double Derivative (ZVDD) and Zero

Vibration and Triple Derivative (ZVDDD) input shapers. The resulting amplitude values

are presented in [10] and [16].

A separate category of input shapers can be derived by forcing PRV = 0 at frequencies

above and below the natural frequency of the system [28]. The resulting Extra Insensitive

(EI) input shapers are designed with a chosen tolerable PRV level Vtol and attempt to

maintain the PRV below this level for as wide a range of natural frequencies as possible.

This concept can also be extended to multi-hump EI shapers as done in [28]. One such

example is the the two-hump EI input shaper. The main benefit of these types of input

shapers is that they provide added robustness to model uncertainty compared to ZV

shapers while using the same number of impulses. From [16], for an undamped system

Chapter 2. Input-Shaped Trajectory Generation 14

the EI and two-hump EI shapers hEI [t] and h2EI [t] have the following forms.

hEI [t] =



1 + Vtol
4

, if t = 0

1− Vtol
2

, if t =
Td
2

1 + Vtol
4

, if t = Td

0, otherwise

(2.10)

h2EI [t] =



A12H , if t = 0
1

2
− A12H , if t =

Td
2

1

2
− A12H , if t = Td

A12H , if t =
3Td
2

0, otherwise

(2.11)

A12H
.
=

3X2 + 2X + 3V 2
tol

16X
, X

.
=

3

√
V 2
tol

(√
1− V 2

tol + 1
)

(2.12)

Throughout this work, unless otherwise indicated we will chose the value Vtol = 0.05

corresponding to a five percent allowable PRV for our EI and two-hump EI input shapers.

Our choice of Vtol was based on the value used in [16].

A useful way to understand the benefit of one shaper compared to another is to assess their

robustness to errors between ωIS and the true ω value for the second order system under

consideration. A more robust input shaper will have a lower PRV value for larger errors.

From a practical standpoint this means that our input-shaped motion trajectory will still

mitigate swinging even if we design it for the wrong undamped natural frequency. A

standard graph that is typically presented in the literature is a plot of PRV versus ω/ωIS.

In Figure 2.3 the PRV is computed using equation (2.3) for a second order system with

ω = 0.5rad s−1 and ζ = ζIS = 0 for a ZV, ZVD, ZVDD, EI and two-hump EI input shaper.

Both the EI and two-hump EI shapers were designed for Vtol = 0.05 corresponding to a

five percent allowable PRV value shown in the plot. Figure 2.3 illustrates the tradeoff

that is present when selecting an input shaper with additional impulses. The ZV input

shaper for instance will have good vibration mitigation performance when ωIS closely

matches the true ω value for our system but this performance quickly degrades as this

error increases. The sharp “v” shape of the ZV shapers curve is due to the fact that we

only derived it with a PRV = 0 constraint. Adding the ∂PRV/∂ω = 0 constraint for the

ZVD shaper causes the its curve to take on a more gradual “u” shape in figure 2.3. We

in turn can observe how adding this constraint causes the PRV value for the ZVD shaper

Chapter 2. Input-Shaped Trajectory Generation 15

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

ω/ωIS

0

5

10

15

20

25

30

P
R

V
 (

%
)

ZV ZVD ZVDD EI 2-hump EI Vtol

Figure 2.3: PRV Versus Angular Velocity Error for Common Input Shapers

to increase much more gradually than the ZV shaper and the ZVDD shaper increases

even more gradually. This improved robustness comes at a cost of a longer input shaper

with more impulses which will extend the duration of our shaped trajectory as previously

discussed. In Figure 2.3 notice also how the performance of the EI and two-hump EI

shapers differ from the ZV, ZVD and ZVDD shapers. The EI shaper in particular does

not achieve a 0 PRV value when its design angular velocity ωIS perfectly matches the

true system value ω. Instead, its PRV value starts at the prescribed tolerance level and

remains below this level for a wide range of errors. Notice that from equations (2.9) and

(2.10) both the ZVD and EI input shapers have the same number of impulses with the

same overall duration. In Figure 2.3 though we can see that the EI shaper stays below

our tolerance PRV level over a wider range of error in the design angular velocity than

the ZVD shaper. Similarly, the ZVDD shaper and the two-hump EI shaper both have

the same number of impulses and duration but the two-hump EI shaper demonstrates

improved robustness to error compared to the ZVDD shaper. The two-hump EI shaper

gets its name from the distinctive behaviour that it presents in this graph with humps

reaching the prescribed tolerance level at error values around 0.8 and 1.2. An advantage

of the two-hump EI shaper compared to the EI shaper is that it achieves a PRV value of

0 when ωIS perfectly matches the true ω.

We can also create a similar plot looking at errors in ζIS versus the true ζ value for our

Chapter 2. Input-Shaped Trajectory Generation 16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ζ

0

5

10

15

20

25

30

P
R

V
 (

%
)

ZV ZVD ZVDD EI 2-hump EI Vtol

Figure 2.4: PRV Versus Damping Ratio Error for Common Input Shapers

system. In Figure 2.4 we again compute the PRV value for our input shapers but this

time we set ωIS = ω = 0.5rad s−1, ζIS = 0 and we vary the true value of ζ for our second

order system. In Figure 2.4 we can see that the ZVDD shaper maintains a PRV value

below the chosen tolerance of five percent for a wide range of true damping ratios despite

being designed for ζIS = 0. The two-hump EI shaper manages to maintain a PRV below

the prescribed tolerance for up to around ζ = 0.2 and overall appears to have slightly

better performance than the ZVD shaper throughout the range considered. Once again,

the ZV input shaper demonstrates poor robustness to error. Overall, by using Figures 2.3

and 2.4 we can make an informed design decision in terms of which shaper to apply to a

given design problem based on how accurately we know our system’s design parameters.

Additional types of input shapers are also found in the literature. Specified Insensitivity

(SI) shapers for instance can be created with PRV versus ω/ωIS curves that are not

symmetric about 1 like the curves shown in Figure 2.3. This form of input shaper offers the

greatest possible robustness but at the cost of requiring the user to solve an optimization

problem to obtain the input shaper’s amplitudes and timing as opposed to the closed

forms for other shapers [16]. Another class of input shapers can be developed by allowing

certain impulses to have negative magnitudes as discussed in [18]. In this thesis however,

we will focus primarily on the input shapers presented in Figures 2.3 and 2.4 due to their

Chapter 2. Input-Shaped Trajectory Generation 17

simple closed form equations and the fact that they appear to be the most commonly

used shapers.

2.2.2 Input Shaping for Quadrotor-Slung Load Systems

A potential concern with implementing input shaping for a quadrotor-slung load system is

the fact that our derivation of input shapers is based on impulse response characteristics

for linear second order systems. In reality, a quadrotor-slung load system will exhibit

nonlinearity, which brings into question how effective the technique will be at swing

mitigation. In [29], the authors assert that robust input shapers such as the ZVD and

EI shapers will work well even for systems with “moderate nonlinearities”. The authors

also discuss how nonlinearities can be dealt with by adaptive input shapers which employ

sensor feedback in order to tune the shaper parameters online [29]. In [29] the authors

further explored how well ZV and ZVD shapers would perform for systems with changing

natural frequencies due to nonlinearities. They found that, as with a linear system, the

ZVD shaper generally had lower PVR than the ZV shaper. Based on this result, they

argue that a shaper that is designed to be robust to errors in the system natural frequency

of a linear system, would naturally be robust in changes of the system behaviour due to

nonlinearity, i.e., that “the robustness of a shaper in the linear domain transfers into

robustness for nonlinear systems” [29]. These results help to alleviate the concern with

applying input shaping to swing management in quadrotor-slung load systems.

In surveying the existing literature on the use of input shaping in quadrotor-slung load

systems there are a few key limitations that appear. A major limitation is that input

shaping is typically only applied to rest to rest maneuvers such as in [10] [20] [21] [22]

[24] [25] [30]. The concept of an input-shaped trajectory for going from rest to a forward

velocity was discussed in [20], but ultimately the paper only explored rest to rest motions.

These papers also did not place significant emphasis on performing the input shaping

process onboard the drone in real time. Generating non-rest to rest input-shaped flight

trajectories onboard a quadrotor drone as it flies could offer significant advantages. In a

realistic flight scenario for instance, a quadrotor carrying a slung load may be following

a predefined delivery route and encounter an unexpected obstruction. In this scenario,

it would be advantageous to be able to generate a non-rest to rest input-shaped flight

trajectory that would link the quadrotor’s current state to a desired end state. The

resulting motion could be used to turn the drone around, have the drone come to rest or

even have it deviate laterally while maintaining the same overall heading and flight speed.

Chapter 2. Input-Shaped Trajectory Generation 18

In any case, the drone would need to accelerate and input shaping could help mitigate

residual swinging caused by these accelerations.

In order to extend the concept of input shaping to non-rest to rest maneuvers and imple-

ment the method in real time, we must first examine more closely how the convolution

step is evaluated mathematically.

2.2.3 Implementation

This section focuses on the details of how to properly implement the convolution shown

in Figure 2.1 for any input signal in discrete time. The motivation behind examining this

process in more detail is that we would like to be able to generate input-shaped flight

trajectories onboard our drone and in real time in response to new target waypoints being

generated by high level navigation algorithms.

Implementing input shaping in discrete time is summarized in [24] and [31]. Along the

x axis, suppose that we are given an unshaped flight trajectory x[t] defining the desired

motion of our quadrotor over a closed time interval t ∈ [0, TU]. In this example x[0], ẋ[0]

... correspond to the current state of the quadrotor and x[TU], ẋ[TU] ... would be the

desired state for the drone to reach along the x axis after TU seconds. We will now input

shape x[t] using a ZV input shaper. For simplicity, we will recast the equation of our

ZV input shaper hZV [t] in equation (2.7) into the more general form shown in equation

(2.14). The discrete time convolution between x[t] and hZV [t] can be evaluated as follows.

xISZV [t]
.
= x[t] ? hZV [t] =

∞∑
k=−∞

x[k]hZV [t− k] (2.13)

hZV [t] =


A1, if t = 0

A2, if t = t2

0, otherwise

, A1 + A2 = 1 (2.14)

Given that t2 > 0 we find that TS = t2 where TS is the duration of our input shaper. We

can combine equations (2.13) and (2.14) to get

xISZV [t] = A1x[t] + A2x[t− t2] (2.15)

We can also extend the results in equation (2.15) for higher derivatives of x[t].

d

dt
(xISZV [t]) =

d

dt
(x[t] ? hZV [t]) =

d

dt
(x[t]) ? hZV [t] (2.16)

Chapter 2. Input-Shaped Trajectory Generation 19

ẋISZV [t] = A1ẋ[t] + A2ẋ[t− t2] (2.17)

Similar results also hold for input shapers with more impulses such as the two-hump EI

shaper h2EI [t] with 0 = t1 < t2 < t3 < t4, TS = t4. Again, we recast the equations for the

amplitudes and timing of the shaper’s impulses in equation (2.11) in the more general

form given in equation (2.19).

xIS2EI [t]
.
= x[t] ? h2EI [t] =

∞∑
k=−∞

x[k]h2EI [t− k] (2.18)

h2EI [t] =



A1, if t = 0

A2, if t = t2

A3, if t = t3

A4, if t = t4

0, otherwise

, A1 + A2 + A3 + A4 = 1 (2.19)

xIS2EI [t] = A1x[t] + A2x[t− t2] + A3x[t− t3] + A4x[t− t4] (2.20)

An important consequence of the convolution process in equations (2.13) and (2.18) is

that the duration of the resulting shaped trajectory (xISZV [t] or xIS2EI [t]) will equal the sum

duration of the original trajectory x[t] and the duration of the input shaper. That is, if

x[t] defines a motion trajectory on the closed interval t ∈ [0, TU] then in equation (2.13),

xISZV [t] will now be defined for t ∈ [0, TU + t2]. For the two-hump EI shaper h2EI [t] in

equation (2.18) we find that xIS2EI [t] is defined for t ∈ [0, TU + t4]. This result was shown

visually in Figure 2.1.

Equipped with this information we can now evaluate equation (2.15) at its boundary

conditions.

xISZV [0] = A1x[0] + A2x[−t2] (2.21)

xISZV [TU + t2] = A1x[TU + t2] + A2x[TU] (2.22)

Notice how in the above two equations, we need to make evaluations of x[t] that fall

outside of its original range of definition [0, TU]. We thus need to develop an extended

version of our function x[t], which we will call xex[t], defined for any t. For rest to rest

motion trajectories this extension process is straight forward and we can simply propagate

Chapter 2. Input-Shaped Trajectory Generation 20

the initial and final positions of x[t].

xex[t] =


x[0], if t < 0

x[t], if t ∈ [0, TU]

x[TU], if t > TU

, ẋex[t] =


0, if t < 0

ẋ[t], if t ∈ [0, TU]

0, if t > TU

(2.23)

Using this new form we can recast equations (2.13) and (2.18) as convolutions between

xex[t] and our input shaper to obtain the following results.

xISZV [t] = A1xex[t] + A2xex[t− t2] (2.24)

ẋISZV [t] = A1ẋex[t] + A2ẋex[t− t2] (2.25)

xIS2EI [t] = A1xex[t] + A2xex[t− t2] + A3xex[t− t3] + A4xex[t− t4] (2.26)

ẋIS2EI [t] = A1ẋex[t] + A2ẋex[t− t2] + A3ẋex[t− t3] + A4ẋex[t− t4] (2.27)

The above equations are very useful from an onboard implementation standpoint. We

can use these equations to solve for the required position of the quadrotor along our

input-shaped motion trajectory at any time t as long as we have enough information to

evaluate xex[t] at any time t. Furthermore, because of the constraints on the Ai values

presented in (2.14) we get the following results for the boundary conditions of our shaped

flight trajectory.

xISZV [0] = x[0] , ẋISZV [0] = ẋ[0] = 0 (2.28)

xISZV [TU + t2] = x[TU] , ẋISZV [TU + t2] = ẋ[TU] = 0 (2.29)

Similar results will also hold for xIS2EI [t] and its derivatives at t = 0 and t = TU + t4.

The results in equations (2.28) and (2.29) are helpful for implementation in that they

provide guarantees for how the boundary conditions of our chosen x[t] will affect the

resulting input-shaped trajectory that we will ultimately have our drone fly. As we will

discuss in the subsequent section though, the extension technique in equation (2.23) does

not produce good results for non-rest to rest maneuvers. We will also demonstrate that

the favourable boundary condition properties in equations (2.28) and (2.29) no longer

hold. These difficulties motivate creating a new approach for generating input-shaped

trajectories for non-rest to rest maneuvers.

Chapter 2. Input-Shaped Trajectory Generation 21

-1 0 1 2 3 4

Time (s)

-2

-1

0

1

2

3

P
o
si
ti
o
n
(m

)

Shaped Position and Velocity Profile

xIS [t]
xex[t]

-1 0 1 2 3 4

Time (s)

-4

-2

0

2

V
el
o
ci
ty

(m
/s
)

ẋIS [t]
ẋex[t]

Figure 2.5: Improper Input Shaping of Non-Rest to Rest Trajectory

2.3 Non-Rest to Rest Input-Shaped Trajectory Gen-

eration

The goal of this section is to investigate how to apply input shaping to non-rest to rest

flight trajectories in real time. In the previous section we established that our starting

motion trajectory x[t] needed to be extended into the new form xex[t] in order to properly

evaluate the resulting convolution. We proposed a basic extension technique in equation

(2.23). If we apply this same technique to a non-rest to rest x[t] trajectory though we will

get unfavorable results as demonstrated in Figure 2.5 where we use a ZV input shaper

with t2 = 1. In Figure 2.5, xex[t] is continuous but ẋex[t] has jump discontinuities which

are multiplied by the convolution process illustrated here. This results in an input-shaped

velocity trajectory ẋIS[t] that is not feasible to track. We thus proposed propagating x[t]

by assuming a constant acceleration motion. Assuming that x[t] has boundary conditions

x0, ẋ0, ẍ0, xU , ẋU , ẍU at t = 0 and t = TU respectively we thus get

xex[t] =


x0 + ẋ0t+ 1

2
ẍ0t

2 if t < 0

x[t] if t ∈ [0, TU]

xU + ẋU(t− TU) + 1
2
ẍU(t− TU)2 if t > TU

Chapter 2. Input-Shaped Trajectory Generation 22

-1 0 1 2 3 4

Time (s)

-4

-2

0

2

4

P
o
si
ti
o
n
(m

)

Shaped Position and Velocity Profile

xIS [t]
xex[t]

-1 0 1 2 3 4

Time (s)

-5

0

5

V
el
o
ci
ty

(m
/
s)

ẋIS [t]
ẋex[t]

Figure 2.6: Proper Input Shaping of Non-Rest to Rest Trajectory

ẋex[t] =


ẋ0 + ẍ0t if t < 0

ẋ[t] if t ∈ [0, TU]

ẋU(t− TU) + ẍU(t− TU) if t > TU

, ẍex[t] =


ẍ0, if t < 0

ẍ[t] if t ∈ [0, TU]

ẍU , if t > TU
(2.30)

For rest to rest motions, equation (2.30) collapses back to (2.23). Applying the extension

technique from equation (2.30) to the example in Figure 2.5, we now obtain the input-

shaped trajectory in Figure 2.6. Notice how in Figure 2.6 our input-shaped trajectories for

position and velocity are continuous. At the same time though, the boundary conditions

for our input-shaped trajectory and unshaped x[t] function no longer match as they did

previously with rest to rest motions in equations (2.28) and (2.29). This is problematic

since we ultimately want to ensure that our input-shaped trajectory starts where the

quadrotor currently is and ends where we want it to be.

It turns out though that we can predict how much these boundary conditions will change

as a result of the extension and input shaping process. Specifically, we can generate

a closed form mapping between the desired boundary conditions of our resulting input-

shaped trajectory and those required for our starting trajectory. For a two-impulse shaper

Chapter 2. Input-Shaped Trajectory Generation 23

such as the ZV shaper for instance, we find that

TF =TU + TS = TU + t2 (2.31)

xIS[0] = xIS0 =A1xex[0] + A2xex[−t2]

=A1x0 + A2(x0 − ẋ0t2 +
1

2
ẍ0t

2
2)

=x0 + A2(−ẋ0t2 +
1

2
ẍ0t

2
2) (2.32)

ẋIS[0] = ẋIS0 =ẋ0 − A2ẍ0t2 (2.33)

ẍIS[0] = ẍIS0 =A1ẍ0 + A2ẍ0 = ẍ0 (2.34)

xIS[TF] = xISF =xU + A1(ẋU t2 +
1

2
ẍU t

2
2) (2.35)

ẋIS[TF] = ẋISF =ẋU + A1ẍU t2 (2.36)

ẍIS[TF] = ẍISF =ẍU (2.37)

Similarly, for a four-impulse shaper we have:

TF =TU + TS = TU + t4 (2.38)

xIS0 =x0 + A2

(
− ẋ0t2 +

1

2
ẍ0t

2
2

)
+ A3

(
− ẋ0t3 +

1

2
ẍ0t

2
3

)
+ A4

(
− ẋ0t4 +

1

2
ẍ0t

2
4

)
(2.39)

ẋIS0 =ẋ0 − ẍ0

(
A2t2 + A3t3 + A4t4

)
(2.40)

ẍIS0 =ẍ0 (2.41)

xISF =A1

(
ẋU t4 +

1

2
ẍU t

2
4

)
+ A2

(
ẋU(t4 − t2) +

1

2
ẍU(t4 − t2)2

)
+ A3

(
ẋU(t4 − t3) +

1

2
ẍU(t4 − t3)2

)
+ xU (2.42)

ẋISF =ẋU + A1ẍU t4 + A2ẍU(t4 − t2) + A3ẍU(t4 − t3) (2.43)

ẍISF =ẍU (2.44)

These equations present a closed form solution for how the process of input shaping will

change the boundary conditions and duration of our flight trajectories as seen in Figure

2.6. We can in turn use these relations to map a desired duration TF and boundary

conditions xIS0 , ẋIS0 , ẍIS0 , xISF , ẋISF , ẍISF for our input-shaped trajectory to those required

for our unshaped trajectory x[t]. This forms the basis for our novel trajectory generation

algorithm. Notice how for a rest to rest input-shaped trajectory we would again recover

the relations we found in equations (2.28) and (2.29).

From testing, this trajectory generation method works best when the duration of the

Chapter 2. Input-Shaped Trajectory Generation 24

unshaped trajectory TU is longer than the duration of the input shaper TS. For a ZV

shaper for instance this imposes the requirement TU > t2 and for the two-hump EI shaper

we get that TU > t4. The extension technique proposed in (2.30) means that we can still

evaluate our input-shaped trajectory if this condition is not met however this tends to

produce more aggressive motion trajectories.

It is important to highlight here how this mapping technique differs from conventional

approaches to input shaping. As was previously shown, for rest to rest motions we can

employ the basic extension technique in equation (2.23) and the resulting shaped trajec-

tory’s boundary conditions will perfectly match those of the unshaped motion trajectory

x[t]. For this reason, papers exploring input-shaped rest to rest maneuvers for swing

mitigation in slung load systems will typically compare simulations and flight tests of

tracking x[t] to tracking the input-shaped version of x[t]. Both are viable flight trajecto-

ries that will bring the system from its current position to the desired end position. In

our approach, we no longer treat x[t] as a viable flight trajectory for the quadrotor. Its

boundary conditions are computed based on a mapping process and no longer correspond

to where the drone starts or should end up. In our system, x[t] is purely a tool for creating

a non-rest to rest input-shaped flight trajectory that meets our design needs and that we

will ultimately want to fly.

2.3.1 Generating an Unshaped Flight Trajectory

Numerous options are available for generating an unshaped quadrotor flight trajectory

x[t] defining the motion along the x axis over time interval [0, TU] with boundary condi-

tions x0, ẋ0, ẍ0, xU , ẋU , ẍU . Our goal here is to identify a suitable approach that will

be computationally simple enough to implement onboard a quadrotor drone. In [32] for

instance, B-splines are used to generate dynamically feasible smooth flight trajectories

for quadrotor drones. Another popular trajectory generation method is to use polyno-

mials of varying degree [11]. The use of polynomials is typically tied to the differentially

flat nature of quadrotor drones. A shown in Appendix A, for a simple quadrotor drone

the applied moment is a function of the fourth derivative of the motion trajectory and

the second derivative of the desired yaw trajectory [11] [33]. Solving for the trajectory

that minimizes the norm of these two values yields constraints on the derivatives of the

position and yaw trajectories of the quadrotor drone and informs the selected polyno-

mial order [11]. We thus typically see 5th order polynomials used as quadrotor flight

trajectories. In [34] for instance, multiple fifth order polynomials are stitched together to

form a position trajectory. Doing so enables the system to generate motion trajectories

Chapter 2. Input-Shaped Trajectory Generation 25

that can dwell at the system’s maximum velocity for long durations. Generating these

trajectories though requires assessing whether the quadrotor will actually be able to reach

its maximum velocity in the allotted time. As such, this technique would likely be better

suited to generating longer flight trajectories. A similar approach using a single fifth

order polynomial to define the motion trajectory is presented in [35]. In [35] though, the

proposed trajectory must be validated using a series of pass fail tests to ensure that it

does not exceed the physical limits of the quadrotor. If this does occur, the time scale

of the trajectory can be modified such that the same path is followed but over a longer

motion time [11].

Given the boundary conditions specified in this section, it makes sense to use a single fifth

order polynomial for the motion trajectory as done in [35]. A benefit of this approach is

that it is computationally simple to implement. As demonstrated in [35], hundreds of fifth

order polynomials can be generated and evaluated using onboard computational power in

order to select a viable motion path. This approach differs from an optimization strategy

which would seek to find one viable trajectory that minimizes a given cost function.

From [35] we express our fifth order polynomial for x[t] and its higher derivatives as

x[t] =
α

120
t5 +

β

24
t4 +

γ

6
t3 +

ẍ0

2
t2 + ẋ0t+ x0 (2.45)

ẋ[t] =
α

24
t4 +

β

6
t3 +

γ

2
t2 + ẍ0t+ ẋ0 (2.46)

ẍ[t] =
α

6
t3 +

β

2
t2 + γt+ ẍ0 (2.47)

To solve for the unknown coefficients α, β, and γ we first solve for the following terms.

∆p = xU − x0 − ẋ0TU −
1

2
ẍ0TU

2 (2.48)

∆v = ẋU − ẋ0 − ẍ0TU (2.49)

∆a = ẍU − ẍ0 (2.50)

When can then evaluate equations (2.45) through (2.47) at time t = TU and substitute

∆p, ∆v and ∆a to obtain the following system of equations.

1

120
TU

5 1

24
TU

4 1

6
TU

3

1

24
TU

4 1

6
TU

3 1

2
TU

2

1

6
TU

3 1

2
TU

2 TU


 α

β

γ

 =

 ∆p

∆v

∆a

 (2.51)

Chapter 2. Input-Shaped Trajectory Generation 26

Notice that the matrix in equation (2.51) has determinant −TU 9/8640 and is thus invert-

ible as long as TU 6= 0. Solving for this inversion yields

1

TU
5

 720 −360TU 60TU
2

−360TU 168TU
2 −24TU

3

60TU
2 −24TU

3 3TU
4


 ∆p

∆v

∆a

 =

 α

β

γ

 (2.52)

Evaluating equation (2.52) allows us to fully solve for all the coefficients required to

construct our unshaped motion trajectory x[t] in (2.45) with a 5th order polynomial.

Combined with the proposed constant acceleration propagation technique in equation

(2.30) we can now essentially evaluate xex[t] and all of its higher derivatives at any time

t. This is significantly less memory intensive than storing xex[t] as a lookup table of

desired positions, velocities, accelerations etc. for select times.

2.3.2 Summary of Trajectory Generator

This section summarizes how our approach generates flight trajectories as a precompu-

tation step and subsequently solves for the desired position, velocity and acceleration of

the drone at any time step along the flight trajectory. For simplicity we will present the

algorithm only for generating the motion along the x axis. The entire process can be

repeated along the y and z axes to generate the input-shaped flight trajectories for those

motions.

Algorithm 1 provides a pseudocode implementation of the precomputation step. This

algorithm gets run one time when the quadrotor receives a new target state to reach.

All the computations are performed onboard the quadrotor using information about the

quadrotor’s current state and the desired state. The desired states for the quadrotor

would normally be chosen by a high level system responsible for obstacle detection and

avoidance. The development of this high level system is beyond the scope of this thesis.

The outputs from Algorithm 1 provide all the information needed to evaluate the xex[t]

function specific to the required maneuver at any time teval. Any time we want to fly a new

maneuver to a new target end state, we must rerun Algorithm 1 to generate a new xex[t]

function. By convention we define t = 0 to be the start of a given flight trajectory and

measure teval as the time elapsed since then. Algorithm 2 uses the information provided

by Algorithm 1 to solve for the desired state of the drone at t = teval.

Algorithm 2 gets evaluated with every loop of the flight controller onboard the system to

supply the desired position, velocity, acceleration, jerk and snap that the drone should

Chapter 2. Input-Shaped Trajectory Generation 27

Algorithm 1: Input-Shaped Trajectory Precomputation

input : Current drone state (xIS0 , ẋIS0 , ẍIS0), Desired drone state (xISF , ẋISF , ẍISF),
Desired motion duration (TF), Period of oscillation for natural frequency of
swinging (Td), ζIS = 0, Vtol = 0.05, Input shaper type (ZV, two-hump EI)

if Input shaper type == ZV then
Solve for A1, A2, t2 from equation (2.14) using equations (2.7) and (2.8)
Solve for x0, ẋ0, ẍ0, xU , ẋU , ẍU and TU using equations (2.31) through (2.37)

else
if Input shaper type == two-hump EI then

Solve for A1, A2, A3, A4, t2, t3, t4 from equation (2.19) using equations (2.11)
and (2.12)

Solve for x0, ẋ0, ẍ0, xU , ẋU , ẍU and TU using equations (2.38) through (2.44)
else

Error: Invalid Shaper Type
end

end

Solve for ∆p, ∆v, ∆a using equations (2.48) through (2.50)
Solve for α, β, γ using equation (2.52)

output: α, β, γ, x0, ẋ0, ẍ0, xU , ẋU , ẍU , TU , Input shaper impulse amplitudes (Ai) and
timing (ti)

Algorithm 2: Input-Shaped Trajectory Evaluation

input : α, β, γ, x0, ẋ0, ẍ0, xU , ẋU , ẍU , TU , Input shaper type (ZV, two hump EI),
Input shaper impulse amplitudes (Ai) and timing (ti), teval

if Input shaper type == ZV then
Evaluate xISZV [teval] and its higher derivatives using equation (2.24), where xex[t] is
given by equation (2.30) and x[t] is given by equation (2.45).

else
if Input shaper type == two-hump EI then

Evaluate xIS2EI [teval] and its higher derivatives using equation (2.26), where xex[t]
is given by equation (2.30) and x[t] is given by equation (2.45).

else
Error: Invalid Shaper Type

end

end

output: xIS[teval], ẋ
IS[teval], ẍ

IS[teval],
...
x IS[teval],

....
x IS[teval]

Chapter 2. Input-Shaped Trajectory Generation 28

have along the x axis at time teval. This entire process is also run for the y and z axis

motion in order to compute the full desired state of the drone. The desired position r dq,
velocity v dq and acceleration a dq will all be used as part of the flight controller for feedback

and feedforward control elements in Section 3.3. The desired jerk and snap values will

be used as part of the Attitude Controller for a set of differential flatness computations.

This will be discussed in Appendix A.

One of the benefits of this trajectory generation method is that it is computationally

simple to implement. The extended polynomial motion trajectories for each axis xex[t],

yex[t], zex[t] and their higher derivatives are are easy to evaluate due to the use of simple

polynomial elements. Furthermore, the input shaping process has been simplified to a

weighted sum. This facilitates implementing these algorithms onboard a quadrotor drone

with limited memory. The requirements for implementing this system are negligible

compared to the memory requirements to store the entire time history of the desired

flight trajectory and its higher derivatives in a discretized lookup table format.

Although it was not included in our original formulation of the trajectory generator,

an additional verification step can be added between Algorithm 1 and Algorithm 2 to

validate that the proposed motion trajectory will not violate physical constraints on our

system. A series of conservative computationally efficient pass/fail tests for doing so are

presented in [35]. The extension and input shaping techniques presented in this work

does complicate this process. However, from [17], since we impose that the amplitudes of

all the impulses in our shaper sum to one, we know that the input shaping process will

not alter the feasibility of our motion trajectory. Thus as long as we can verify that xex[t]

is feasible using the methods in [35], we can guarantee that the resulting input-shaped

version is also feasible.

2.3.3 Simulation Results

This section studies the effectiveness of the proposed trajectory generation method for

swing management in a slung load system. To do so, we create a simulated gantry

crane transporting a slung load. The upper portion of the crane will perfectly track

the prescribed input-shaped motion trajectory from our algorithm and we will assess the

effect that this has on the resulting motion of the payload. In essence, this simulation

attempts to replicate the behavior that a quadrotor-slung load system would have if it

achieved perfect flight trajectory tracking. For our gantry crane model, we will use an

inelastic, constant length cable model presented in [19].

Chapter 2. Input-Shaped Trajectory Generation 29

Within this model, the position of the upper gantry resolved in the inertial frame is

specified using [ξ ζ η]T while the motion of the point mass payload is given by [x y z]T. An

inelastic cable of length l connects the gantry to the point mass. We will compute the

angular velocity corresponding to the natural frequency of the system as ω = ωIS =
√
g/l.

Neglecting damping we get from [19] that the equations of motion of the payload are given

as

ẍ+ ω2x =ω2ξ − x− ξ
l

η̈ − ω2x− ξ
2l2

(
(x− ξ)2 + (y − ζ)2

)
− x− ξ

l2

(
(ẋ− ξ̇)2

+ (ẏ − ζ̇)
2

+ (x− ξ)(ẍ− ξ̈) + (y − ζ)(ÿ − ζ̈)
)

(2.53)

ÿ + ω2y =ω2ζ − y − ζ
l

η̈ − ω2y − ζ
2l2

(
(x− ξ)2 + (y − ζ)2

)
− y − ζ

l2

(
(ẋ− ξ̇)2

+ (ẏ − ζ̇)
2

+ (x− ξ)(ẍ− ξ̈) + (y − ζ)(ÿ − ζ̈)
)

(2.54)

Equations (2.53) and (2.54) can be rearranged and combined together to isolate for ẍ and

ÿ in order to create a simulation model in MATLAB. At each time step, the position,

velocity and acceleration of the gantry (ξ, ξ̇, ξ̈, ζ, ζ̇, ζ̈, η̈) are computed using our

trajectory generation algorithm and used to numerically solve for the resulting motion

history of the payload.

In the following examples we consider a slung load system with chosen cable length

l = 0.5m. This yields ω = 4.427s−1 and Td = 1.4192s. Thus for a ZV input shaper we

have Ts = 0.7096s and for a two-hump EI shaper we have Ts = 2.1288s. If we employ the

latter shaper, we can safely use our trajectory generation technique for shaped motion

trajectories of duration longer than 4.26s.

A consequence of the convolution process required for input shaping is that it necessar-

ily extends the duration of the flight trajectory. Most papers that study the benefits of

input shaping however do not take this into account when comparing the swing mitiga-

tion performance of shaped and unshaped flight trajectories. For example, if an input

shaper has duration 1s and it is used to shape a motion trajectory that normally lasts

5s, most papers would compare the performance of tracking the original 5s trajectory to

the performance for the input-shaped 6s trajectory. This raises the question of whether

an unshaped trajectory might achieve favourable swing mitigation if it lasted as long as

the shaped trajectory did. Consider a scenario where we have a fixed start and end state

as well as a fixed time to reach that end state. An interesting question to ask would be

whether it is better to generate an unshaped smooth trajectory that uses the full allotted

Chapter 2. Input-Shaped Trajectory Generation 30

time to reach the end state or whether it would be better to generate a more aggressive

unshaped trajectory that reaches its end state faster but is then input-shaped to com-

pletely use the allotted time. We believe that this scenario constitutes a fairer way to

evaluate the performance of an input-shaped motion trajectory and this will form the

basis of our approach in this section.

To begin with, we will consider a rest to rest motion of our simulated gantry crane system

covering a lateral distance of 20m meters in a time of 5s. Our baseline motion trajectory

will be a simple fifth order polynomial with coefficients chosen such that the trajectory

reaches the end state in 5s. We will compare this motion trajectory against input-shaped

motion trajectories created using ZV and two-hump EI input shapers using Algorithms

1 and 2.

Figure 2.7 shows the x and y motion trajectory generated for this rest to rest motion

for all three options. Notice how both input-shaped motion trajectories require higher

velocities than the unshaped motion trajectory. This is a direct consequence of the fact

that we are constraining all three motion trajectories to take 5s. The convolution process

also causes the desired acceleration profile for both shaped trajectories to have a number

of sharp corners especially for the two hump EI input shaper. Figure 2.8 shows the

magnitude of the swing angle of the payload for all three motion trajectories. From

this figure, it is apparent how effective the input shaping process has been at mitigating

swinging in the payload after the motion is completed. It is important to highlight that

input shaping does not eliminate all swinging motion in the payload. Indeed there is

significant swinging in the payload between times 0s to 5s for all three trajectories. This

swinging motion is inevitable though because the upper portion of our gantry system

is accelerating. Once the accelerating maneuver finishes though, we can see that the

use of input shaping has helped to mitigate swinging. Notice how there is a roughly

fourfold decrease in swing amplitude for both input-shaped trajectories compared to the

unshaped trajectory from 5s onwards. This illustrates how even though the input-shaped

trajectories required higher velocities and had more aggressive acceleration profiles they

still managed to mitigate swinging. While these kinds of results for rest to rest motion

trajectories have been presented in numerous papers, it is important to note that the

time normalization step we present here has not previously been considered. We believe

that this further strengthens the argument for using input shaping motion trajectories.

The results in Figure 2.8 are also interesting in that the input-shaped trajectories did

not perfectly eliminate residual swinging motion in the payload from 5s onwards. From

Figures 2.3 and 2.4 we might expect our input-shaped trajectory to result in no residual

swinging since we matched the natural frequency and damping ratio for our shaper and

Chapter 2. Input-Shaped Trajectory Generation 31

0 5 10

Time (s)

0

5

10

15

20

25

P
o
si
ti
o
n
(m

)

X Motion Trajectory

0 5 10

Time (s)

-1

-0.5

0

0.5

1

P
o
si
ti
o
n
(m

)

Y Motion Trajectory

0 5 10

Time (s)

0

2

4

6

8

10

V
el
o
ci
ty

(m
/
s)

0 5 10

Time (s)

-1

-0.5

0

0.5

1

V
el
o
ci
ty

(m
/
s)

0 5 10

Time (s)

-10

-5

0

5

10

A
cc
el
er
a
ti
o
n
(m

/
s2
)

0 5 10

Time (s)

-1

-0.5

0

0.5

1
A
cc
el
er
a
ti
o
n
(m

/
s2
)

Unshaped ZV Two Hump EI

Figure 2.7: Rest to Rest Motion Trajectory Comparison

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

5

10

15

20

25

30

35

40

45

S
w
in
g
A
n
gl
e
(◦
)

Unshaped ZV Two Hump EI

Figure 2.8: Rest to Rest Motion Swing Comparison

Chapter 2. Input-Shaped Trajectory Generation 32

0 5 10 15

Time (s)

-10

0

10

20

30

P
o
si
ti
o
n
(m

)

X Motion Trajectory

0 5 10 15

Time (s)

-30

-20

-10

0

10

P
o
si
ti
o
n
(m

)

Y Motion Trajectory

0 5 10 15

Time (s)

-5

0

5

10

V
el
o
ci
ty

(m
/
s)

0 5 10 15

Time (s)

-6

-4

-2

0

2

4

V
el
o
ci
ty

(m
/
s)

0 5 10 15

Time (s)

-4

-2

0

2

4

A
cc
el
er
a
ti
o
n
(m

/
s2
)

0 5 10 15

Time (s)

-4

-2

0

2

4

A
cc
el
er
a
ti
o
n
(m

/
s2
)

Unshaped ZV Two Hump EI

Figure 2.9: Non-Rest to Rest Motion Trajectory Comparison

the gantry model. It is important to keep in mind though that input shaping is derived

based on a second order linear model while our gantry system, given in equations (2.53)

and (2.54), is a second order nonlinear model. Thus while input shaping still achieves

swing mitigation, it will not necessarily guarantee a perfect swing-free behaviour once the

gantry stops accelerating. In testing with this gantry model, we found that input-shaped

trajectories with higher accelerations tended to still have some residual swinging. This

swinging was always worse for the corresponding unshaped trajectory.

We will now consider a more complicated non-rest to rest motion trajectory for the simu-

lated gantry crane system. In this situation, the gantry system will start at the origin with

an initial velocity of [−3 0 0]Tm s−1 and reach a target velocity of [−2 3 0]Tm s−1

at position [20 − 15 0]Tm in 10s. In this simulation there is no initial relative velocity

between the payload and the upper gantry. The motion trajectories using both input

shapers and without any input shaping are presented in Figure 2.9.

As with Figure 2.7, in Figure 2.9 we see that the input-shaped motion trajectories reach

higher velocities and accelerations than the unshaped trajectory. In Figure 2.10 though,

we can see that the input shapers have effectively eliminated all residual swinging motion

of the payload once the gantry system enters steady state motion after 10s. In contrast,

Chapter 2. Input-Shaped Trajectory Generation 33

0 5 10 15

Time (s)

0

5

10

15

20

25

30

S
w
in
g
A
n
gl
e
(◦
)

Unshaped ZV Two Hump EI

Figure 2.10: Non-Rest to Rest Motion Swing Comparison

the unshaped trajectory has a consistently non-zero swing magnitude suggesting that the

payload is spinning about the z axis in addition to oscillating. These results highlight

the effectiveness of our proposed technique for generating non-rest to rest input-shaped

motion trajectories to mitigate swinging motion.

The results presented in Figures 2.8 and 2.10 raise an important question of which shaper

would be best to select. For the rest to rest motion for instance, the ZV input shaper

produced slightly smaller residual oscillations and for both simulations presented, the ZV

input shaper has a consistently lower swinging magnitude during the motion trajectory.

The ZV input-shaped trajectories also require lower velocities and accelerations than the

two hump EI shaped trajectories. As discussed previously in Section 2.2.1 though, the

two-hump EI shaper is more robust to uncertainty in the natural frequency of our system.

In the previous simulations we used a cable length of l = 0.5m with Td = 1.4192s. We now

repeat the non-rest to rest simulation with the same cable length but we will introduce

error into our system by designing our input shapers for Td = 1.1354s. The resulting swing

angle magnitudes are presented in Figure 2.11. Notice how when we compare Figures 2.10

and 2.11 that the swing mitigation performance of the ZV shaper is degraded by this error

while the performance of the two-hump EI shaper remains essentially unchanged. This

makes sense since as we previously saw with Figure 2.3, the PRV for a ZV input shaper

increases significantly faster than the PRV for a two-hump EI shaper as we introduce

Chapter 2. Input-Shaped Trajectory Generation 34

0 5 10 15

Time (s)

0

5

10

15

20

25

S
w
in
g
A
n
gl
e
(◦
)

Unshaped ZV Two Hump EI

Figure 2.11: Non-Rest to Rest Motion with Design Error Swing Comparison

error between the true natural frequency of our system and the value used to design our

shaper. These results highlight the potential benefits of using more robust input shapers

even for non-rest to rest motions.

In summary, this section has demonstrated how our input-shaped trajectory generation

technique can effectively mitigate swinging in a simulated gantry system with both rest

to rest and non-rest to rest motions. The results presented herein also highlights how

uncertainty in the natural frequency of the system can affect the performance of certain

input shapers. We can manage this uncertainty by using more robust input shapers. In

the next section we will explore the issue of identifying the natural frequency of oscillation

of a slung load in more detail.

2.4 Natural Frequency of a Quadrotor-Slung Load

System

Implementing input shaping on a quadrotor-slung load system inherently requires knowl-

edge of the natural frequency and damping ratio for the system. These values affect the

Chapter 2. Input-Shaped Trajectory Generation 35

magnitudes and timing of the impulses that form the input shaper as previously dis-

cussed in Section 2.2.1. In this section, we discuss how to estimate the natural frequency

of oscillation of the slung load in a quadrotor-slung load system.

A basic starting point for this process is to model our cable as a rigid link of length l and

model our slung load as a point mass. For simplicity we can also assume no damping

is present in our system. This approach yields a period Td corresponding to the natural

frequency of oscillation given in equation (2.56).

ω =

√
g

l
(2.55)

Td = 2π

√
l

g
(2.56)

Equations (2.55) and (2.56) only capture one oscillation mode for the payload. Exper-

iments with manned helicopters transporting slung loads often explore a wider set of

swinging behaviour. In [3] for instance, the author discusses yawing motion of slung

loads as well as secondary oscillations of the load about its center of gravity. We can

capture the latter oscillation mode by treating our payload as a rigid body where the

cable mounting point is not collocated with the payload’s center of mass. This new con-

figuration could in turn affect the natural frequency of our system and introduce error

into our input shaper. It is thus worth exploring this effect to see if a more advanced

prediction model is warranted here. Specifically we will consider a two dimensional pen-

dulum consisting of a rigid rod of length l1 with a mounting point offset from its center

of mass by distance l2 as shown in Figure 2.12.

Using the nomenclature defined in Figure 2.12 we can derive the equations of motion of

our system and solve for the natural frequency of its two modes of oscillation. Using

the Lagrangian approach for solving the dynamics of our system we obtain the following

results.

T =
mpvp

2

2
+
Ipα̇2

2

2
(2.57)

V = −mpg(l1 cos(α1) + l2 cos(α2)) (2.58)

L = T − V =
mpvp

2

2
+
Ipα̇

2
2

2
+mpg(l1 cos(α1) + l2 cos(α2)) (2.59)

Where T and V are the kinetic and potential energy of our system. Assuming that the

values of lengths l1 and l2 remain unchanged we can decompose the payload velocity vp

Chapter 2. Input-Shaped Trajectory Generation 36

Figure 2.12: Rigid Body Pendulum Model

along the x and y axes and obtain an expression for vp
2.

vpx = l1 cos(α1)α̇1 + l2 cos(α2)α̇2 (2.60)

vpy = l1 sin(α1)α̇1 + l2 sin(α2)α̇2 (2.61)

vp
2 = vpx

2 + vpy
2 (2.62)

= l1
2α̇2

1 + l2
2α̇2

2 + 2l1l2α̇1α̇2(sin(α1) sin(α2) + cos(α1) cos(α2)) (2.63)

= l1
2α̇2

1 + l2
2α̇2

2 + 2l1l2α̇1α̇2 cos(α1 − α2) (2.64)

We can now substitute this result into equation (2.59) to express L solely as a function

of the lengths and angles in Figure 2.12.

L =
mp

2
(l1

2α̇2
1+l2

2α̇2
2+2l1l2α̇1α̇2 cos(α1−α2))+

Ipα̇
2
2

2
+mpg(l1 cos(α1)+l2 cos(α2)) (2.65)

Assuming small angles α1 and α2 and using the Taylor series expansion of the cosine

function we can make the following simplifications.

cos(α1) ≈ 1− α1
2

2
, cos(α2) ≈ 1− α2

2

2
, cos(α1−α2) ≈ 1− α1

2 − α2
2

2
≈ 1 (2.66)

We then substitute these simplifications into equation (2.65).

L =
mp

2
(l1

2α̇2
1 + l2

2α̇2
2 + 2l1l2α̇1α̇2) +

Ipα̇
2
2

2
+mpg(l1(1− α2

1

2
) + l2(1− α2

1

2
)) (2.67)

Chapter 2. Input-Shaped Trajectory Generation 37

Using this result we can obtain the equations of motion of our system.

d

dt
(
∂L

∂α̇1

)− ∂L

∂α1

= 0 ,
d

dt
(
∂L

∂α̇2

)− ∂L

∂α2

= 0 (2.68)

mpl1
2α̈1 +mpl1l2α̈2 +mpgl1α1 = 0 (2.69)

(Ip +mpl2
2)α̈2 +mpl1l2α̈1 +mpgl2α2 = 0 (2.70)

Equations (2.69) and (2.70) can be recast into matrix form Mα̈ + Kα = 0 in order to

identify the oscillation modes and their natural frequency.[
mpl1

2 mpl1l2

mpl1l2 Ip +mpl2
2

][
α̈1

α̈2

]
+

[
mpgl1 0

0 mpgl2

][
α1

α2

]
=

[
0

0

]
(2.71)

Solving for det(K− ω2M) = 0 allows us to identify the natural frequencies of oscillation

of the system.

ω4(mpl1
2Ip)− ω2(mp

2gl1l2(l1 + l2) + Ipmpgl1) +mp
2g2l1l2 = 0 (2.72)

ω2 =
(mp

2gl1l2(l1 + l2) + Ipmpgl1)±
√

(mp
2gl1l2(l1 + l2) + Ipmpgl1)2 − 4(mp

3l1
3l2g2Ip)

2mpl1
2Ip

(2.73)

For our system, we are primarily concerned with eliminating the pendulous oscillation

mode with the lower natural frequency. Compared to equation (2.55), equation (2.73) re-

quires additional information to predict the natural frequency of oscillation of the system.

Having a rough knowledge of the mass of the payload mp for a parcel delivery application

would be reasonable. The exact moment of inertia of the parcel about its center of mass

Ip would however be more difficult to obtain. If we assume a uniform mass distribution

within the parcel and a square cross section of side length 2l2 we find that Ip =
2mpl

2
2

3
.

Substituting this result into (2.73) yields

ω2 =
(mp

2gl1l2(l1 + l2) +
2

3
mp

2gl1l2
2)±

√(
mp

2gl1l2(l1 + l2) +
2

3
mp

2gl1l2
2
)2

− 8

3
(mp

4l1
3l2

3g2)

4

3
mp

2l1
2l2

2

(2.74)

ω1
2 =

(gl1l2(l1 + l2) +
2

3
gl1l2

2) +

√(
gl1l2(l1 + l2) +

2

3
gl1l2

2
)2

− 8

3
(l1

3l2
3g2)

4

3
l1

2l2
2

(2.75)

Chapter 2. Input-Shaped Trajectory Generation 38

10
-2

10
-1

10
0

l2/l1

0

0.5

1

1.5

2

2.5

3

3.5

P
re
d
ic
te
d
T
d

Point Mass Rigid Body w1 Rigid Body w2

10
-2

10
-1

10
0

l2/l1

0

2

4

6

8

10

P
e
rc
e
n
t
E
rr
o
r

Figure 2.13: (Top) Comparison of Predicted Td Values, (Bottom) Percent Error Be-
tween Point Mass and Rigid Body ω2

ω2
2 =

(gl1l2(l1 + l2) +
2

3
gl1l2

2)−
√(

gl1l2(l1 + l2) +
2

3
gl1l2

2
)2

− 8

3
(l1

3l2
3g2)

4

3
l1

2l2
2

(2.76)

where ω1 corresponds to the oscillation mode of the payload about its mounting point

to the cable and ω2 corresponds to the main pendulous oscillation mode. As illustrated,

with the proposed simplification, the mass of the payload no longer affects the computed

value of ω. A similar result would hold even if we allow the cross section of the rigid

body to be rectangular instead of square. In order to compare this result against equation

(2.55) we will chose l = l1 + l2. We can thus assess the difference in the predicted Td

values for both models under consideration here. In Figure 2.13 we chose l = 1m and

compute the value of Td for both models for a range of values for
l2
l1

. Figure 2.13 also

shows the percent error between the predicted Td value from equation (2.56) and that

obtained from ω in equation (2.76). As expected, both models predict similar values for

Td as l2 approaches zero. The difference between the predicted pendulous period only

becomes significant when l2 approaches the same order of magnitude as l1. Similar results

hold for other values of l1 that were tested but not shown here. In general, we expect

l1 > l2 which suggests that there is little benefit to using the more complicated rigid body

Chapter 2. Input-Shaped Trajectory Generation 39

pendulum. We thus propose using the simpler prediction model given in equation (2.56)

to predict the natural frequency of our slung load system for all subsequent input shaper

computations. If l2 were to approach the same order of magnitude as l1, we could employ

a more robust input shaper such as a ZVDD shaper and continue to use equation (2.56)

to compute Td. Alternatively we could try using equation (2.76) with a less robust input

shaper such as the ZV shaper.

Chapter 3

Controller Design

This chapter presents the development of a flight controller specifically designed to track

input-shaped flight trajectories. We begin with a literature review focusing on controller

design for a quadrotor-slung load systems to identify key trends and motivate the de-

velopment of a new controller specifically for this problem. We next present a model

for a quadrotor-slung load system that we can use to create a simulation environment

for assessing the performance of various controllers. Afterwards we present a detailed

breakdown of our proposed controller and conclude by comparing this novel controller to

a series of baseline designs using our simulation environment. These simulations high-

light how our proposed controller outperforms baseline controller designs for tracking

input-shaped flight trajectories while rejecting external disturbances acting on the slung

load.

3.1 Survey of Quadrotor-Slung Load Flight Controller

Designs

There have been numerous papers which have proposed controller designs for quadrotor-

slung load systems. In this work, we group these controllers into the following categories

based on the overarching control strategy as done in [2]. In the subsequent subsections

we will discuss these categories in greater detail.

1. Payload Trajectory Following [36] [37] [38] [39]

2. Quadrotor Trajectory Following [7] [10] [20] [22] [30] [40] [41]

3. Quadrotor Trajectory Following + Payload Swing Feedback [21] [24] [25] [26] [42]

[43] [44] [45] [46]

41

Chapter 3. Controller Design 42

3.1.1 Payload Trajectory Following Controllers

The first category encompasses flight controller designs that are based around tracking a

prescribed payload motion trajectory as opposed to a quadrotor flight trajectory. In [37]

for instance, the desired trajectory of the payload is transformed into a required cable

orientation time history using differential flatness. The cable is treated as a massless

rod mounted on one end to the quadrotor center of mass and to a point mass payload

at the other end. The error between the measured cable state and this desired state

is used to compute a desired thrust vector whose orientation is tracked by an attitude

controller. The proposed geometric controller demonstrates robustness to different cable

lengths and is able to maintain control during flight testing with aggressive maneuvers

requiring swing angles of up to 53◦. Both [36] and [38] are precursors to [37] and present

the development of this controller design. In particular [38] shows the robustness of the

proposed controller in simulated scenarios with even higher swing angles. A finite horizon

linear quadratic regulator controller for payload trajectory tracking is presented in [39]. A

major difference that separates this work from the others in this section is that it models

the cable as a chain of rigid links. As with [37], the resulting system is also shown to

be differentially flat with respect to the position of the point mass payload and the yaw

angle of the quadrotor. The controller in [39] is shown in simulation to be able to track

prescribed payload trajectories in spite of large differences between the true and desired

starting states.

One limitation of these works is that the differentially flat model being used assumes

that the cable is mounted at the center of mass of the quadrotor. This assumption

means that the payload will not affect the attitude dynamics of the system and that

changing the attitude of the quadrotor will not affect the motion of the payload. Another

potential concern with this proposed controller design is how it would function in a

scenario where the payload might temporarily be difficult to detect. In [37] for instance,

the authors employ a downwards facing camera to feed position readings into a custom

Extended Kalman Filter for payload state estimation. The authors note though that

payload detection becomes more challenging with more aggressive maneuvers and with

a longer cable. While [37] was able to achieve low estimation errors in all experimental

setups it is unclear how their system would perform in a scenario where the payload was

no longer detectable by the camera. This scenario could conceivably occur if the drone

were to make aggressive changes in attitude or due to external disturbances such as wind

gusts. While this issue would be inherent to almost any quadrotor-slung load system,

the effect of payload detection loss would arguably be more critical in a system where

the controller is based around tracking a prescribed payload flight trajectory instead of

Chapter 3. Controller Design 43

a quadrotor flight trajectory. A further potential complexity with implementing these

control strategies for parcel delivery is that the controller would need to be changed mid

flight to allow the drone to operate without a payload such as for return flights.

Tracking a payload motion trajectory is not without merits though and indeed for cer-

tain applications might be preferable. If the drone’s slung payload is a sensor meant

to take readings while in flight, it might make sense to develop a flight controller that

attempts to track a payload motion trajectory. Such a setup has notably been proposed

for landmine clearing operations where a quadrotor drone would carry a metal detector

suspended below it and sweep over areas to detect possible mines [21]. Alternatively, if

the drone is transporting a slung load in an environment with obstacles at payload height

during flight it might make more sense from a trajectory generation standpoint to create

feasible payload motion trajectories to track. In [13] for instance, the authors employ the

geometric controller proposed in [38] and develop flight trajectories for payload throw-

ing and having the slung load pass through narrow openings. In this work though, we

primarily envision a commercial delivery situation where our payload is simply a load to

be transported from one location to another through a relatively unobstructed environ-

ment. The use of input shaping also inherently generates quadrotor flight trajectories to

be tracked. The form of the geometric controller used for swing management in [37] and

[38] though remains a compelling option due to its coordinate-free design.

3.1.2 Quadrotor Trajectory Following Controllers

The second category of controllers encompasses designs that attempt to track a prescribed

quadrotor flight trajectory without employing feedback control to dampen the swinging

motion of the payload. Within this category, a first set of papers employ basic quadrotor

flight controllers and rely entirely on input-shaped flight trajectories to manage payload

swinging [10] [20] [22]. In [10], the authors rely on a ZVDD input shaper for a simulated

2D quadrotor-slung load system. In [20], the authors use a ZVD shaper for a helicopter-

slung load system. These papers demonstrate that input-shaped motion trajectories

are effective at preventing swinging motion due to accelerations of the drone along a

prescribed flight trajectory.

A key limitation of the proposed approach is that it is not meant to actively cancel out

swinging disturbances. This issue was noted in [22] where they achieved poorer swing

mitigation results during test flights as compared to simulations. Conventional input

shapers are designed to avoid inducing swinging motion in systems that are not already

swinging. More recent works have proposed input shaper designs that are meant to

Chapter 3. Controller Design 44

cancel out an initial swinging disturbance such as [47] and [48]. These works focused on

crane applications although the technique should likely be applicable to quadotor-slung

load systems. While this new form of input shaper was demonstrated to be effective in

experimental setups, it remains an open loop trajectory generation technique for swing

management. It will thus not extend well to cancelling a swinging disturbance while

attempting to hold a given position such as during a landing operation. In this scenario,

an active feedback controller would likely be preferable due to the risk of a payload

collision or cable entanglement with the surrounding environment.

Another set of papers within this category attempt to achieve trajectory tracking in spite

of the swinging motion of the payload [7] [30] [40] [41]. For these controllers, the tension

from the cable attached to the payload is treated as a disturbance force to be estimated

and cancelled. This differs from controllers in the third category which will deliberately

deviate from their prescribed flight trajectory in order to try to actively cancel out swing-

ing motions of their payload. In [41], the quadrotor-slung load system is treated as an

unbalanced quadrotor problem. An adaptive controller is developed to track aggressive

maneuvers while managing the changing center of gravity of the system. The proposed

controller was not able to dampen the swinging motion of the payload though and the

authors used dynamic programming to generate swing free flight trajectories in order to

suppress swinging. In [7], the presence of the slung load is treated as an external distur-

bance to be rejected during the course of a trajectory tracking operation. The proposed

controller is later applied to a delivery scenario in a simulated forest environment [1].

In [40], the proposed controller estimates the force and moment acting on the quadrotor

due to the tensile force in the cable and attempts to cancel their effect with an adaptive

controller. The resulting simulated behaviour of the quadrotor-slung load system shows

good stability even in the presence of payload swinging. In [30], the authors propose a

controller that demonstrates robust trajectory tracking in spite of the swinging of the pay-

load. The authors go on to demonstrate the effect of tracking an input-shaped trajectory

for swing management and highlight how active swing management could be achieved by

including feedback into the proposed controller design.

A major question regarding the controllers presented in this category is how well they

will be able to react to an external swinging disturbance on the payload compared to a

controller that is actively trying to regulate the payload to not swing. In [7] the authors

demonstrated the ability to dampen an initial swinging disturbance acting on the load. In

[41] however, experimental results demonstrate that the controller by itself was ineffective

at damping swinging motion. Similarly, in [45], a quadrotor-slung load controller with-

out payload stabilization is simulated and is shown to be unable to effectively dampen

Chapter 3. Controller Design 45

the swinging motion. The mass of the payload relative to the quadrotor likely plays an

important role in this swing damping behaviour. In [41] for instance, the payload had a

mass of 47g while the AscTec Hummingbird used for testing has a minimum takeoff mass

of 510g [49]. A swinging slung load of sufficient mass will be able to impart some of its

kinetic energy onto the connected quadrotor by pulling it away from its desired position.

The quadrotor’s controller may dissipate this energy by counteracting the tension force

that pulls it aside in a process that could eventually cause the payload to stop oscillating.

This effect is not guaranteed to occur though and likely depends on the interplay between

the controller’s gain as well as the cable length and mass of the payload. In [45] their sim-

ulation involved a 408g quadrotor transporting a 100g load and yet there was no effective

swing damping. From a practical standpoint, the main difference between controllers in

this category and the third category is that controllers in this category will tend to move

opposite the direction of the swinging payload while controllers in the later will try to

catch up to the swinging payload. As noted in [50] though, having the quadrotor apply

a force in the opposite direction of the swinging of the payload can increase the swinging

motion leading to a chain reaction that creates instability in the overall system. Given

that we would ultimately like our controller to reliably dampen swinging disturbances

acting on the payload regardless of the parameters of our slung load system, it appears

that controllers in this category would not necessarily be a good starting point for our

controller design.

3.1.3 Quadrotor Trajectory Following + Payload Swing Feed-

back Controllers

The third category of controllers incorporate feedback control over the swinging motion

of the payload to dampen its motion while tracking a quadrotor flight trajectory. Neither

[42], [43], [44], [45] or [46] employ input-shaped flight trajectories to help manage pay-

load swinging and instead relied solely on feedback control. In [44], a H∞ controller is

developed for trajectory tracking and is then augmented with an additional control law

to dampen the swinging motion of the payload. The augmented controller is shown in

simulation to significantly improve the swing damping of a lightweight payload subject to

wind effects. In [42], the authors use a nonlinear control law for managing the swinging

motion of the payload in an autonomous helicopter-slung load system. The payload po-

sition relative to the helicopter is projected onto the XY plane of the inertial frame and

the resulting vector is decomposed into components along each axis to determine con-

trol accelerations using a PD control law. The proposed controller estimates the steady

state deflection due to wind drag and treats this as a reference swing angle. A similar

Chapter 3. Controller Design 46

approach is presented in [45] for a quadrotor-slung load system. In [45], the proposed

controller is compared against a simpler design without swing stabilization and is shown

to outperform the latter in simulation. Disturbance rejection was also demonstrated in

with hovering flight tests. A more complex controller is presented in [43] and [46]. In

these papers, the cable is discretized into a series of interconnected links as done in [39]

and the orientation and angular velocity of each link is used to create a PD control law

for damping the swinging motion of the slung load. The authors prove in [46] that their

proposed control law is exponentially stable for the hanging equilibrium and demonstrate

its effectiveness in both simulation and with an actual drone. Obtaining measurements

of the cable at multiple locations along its length can be tricky to implement in an actual

slung load system though as discussed in [39]. Indeed in [46], the authors simplified their

model for implementation on an actual drone such that the cable was treated as a single

rigid link.

Within this third category, a popular approach found in the literature is to track input-

shaped trajectories while employing delayed feedback to eliminate swinging motion in the

slung load as done in [21], [24], [25] and [26]. Delayed feedback, such as that employed

in [24], computes a quadrotor motion to cancel the payload swinging as defined by the

angle between the cable and the z axis of the inertial frame. Additional details regarding

this controller and its tuning can be found in [21]. This motion is then appended to the

desired state obtained from the input-shaped trajectory to obtain a new desired state for

the quadrotor position controller to track. An advantage of the proposed controller is that

its tuning parameters are independent of the cable length. The authors in [24] though

noted that the delayed feedback and input shaping strategies appeared to conflict with

each other. The proposed solution was to delay the activation of the delayed feedback

control element until after the input shaper has induced the initial swinging motion in

the payload. A similar issue was noted in [25]. In this paper, the authors used a nonlinear

trajectory tracking controller for a quadrotor with the desired motion computed using

a combination of input shaping and delayed feedback. The proposed solution in [25] to

the conflict between the input-shaped trajectory and the feedback controller was to gain

schedule the delayed feedback element based on the desired acceleration of the input-

shaped trajectory. Functionally this resulted in a system where the delayed feedback

system was only active during constant velocity portions of the desired motion trajectory.

The conflict between a swing suppression strategy like delayed feedback and input shap-

ing noted in [24] and [25] makes sense because input shaping is based on the concept

of inducing and then eliminating swinging via destructive interference as discussed in

Section 2.2. As was shown in Section 2.3.3, tracking an input-shaped trajectory can

Chapter 3. Controller Design 47

induce significant swinging motion during accelerating phases of the trajectory but re-

sults in minimal swinging motion during non-accelerating phases. Conventional swing

suppression control strategies however treat any swinging motion as an error and seek to

correct it by modifying the motion of the drone. This can degrade the effectiveness of

using input-shaped trajectories since they are only effective for swing management when

accurately tracked. We thus need to effectively instruct the swing suppression element of

the controller to ignore the swinging motions of the payload that are caused by tracking

our input-shaped trajectory. Both [24] and [25] accomplish this by effectively turning off

all swing feedback control during accelerating portions of the input-shaped trajectory.

This strategy has some significant drawback though as the flight controller effectively

degrades its ability to react to external disturbances acting on the payload for portions

of its flight. If the payload were to collide with its environment just as the drone began

an accelerating phase of its prescribed trajectory, the swing feedback element of the con-

troller would only properly react to this once that accelerating phase was complete. This

delay could prove critical especially if longer input-shaped accelerating maneuvers are

employed. Accelerating maneuvers such as transitioning from hover to forward flight or

performing turns could also pose an increased risk for collisions between the payload and

its environment. An alternate strategy would be to supply the controller with both an

input-shaped quadrotor flight trajectory and the corresponding swing trajectory. Thus

instead of instructing the drone to ignore swinging motion over certain time intervals,

the controller could naturally ignore swinging that closely matches the given reference

while reacting to swinging motion that deviates from it for any reason. The controller

would thus maintain the ability to react to an external disturbance at any point during

its input-shaped flight trajectory instead of needing to wait to complete an accelerating

portion of the motion before reacting to the swinging disturbance. This idea forms the

core concept behind the proposed controller in this chapter.

3.2 Quadrotor-Slung Load System Simulation Model

In order to assess the performance of our proposed flight controller, we first develop

a model for a quadrotor-slung load system. This model will then be used to create a

simulator for our system in MATLAB to enable simulation testing of our novel controller

as well as baseline controllers. Modelling of slung load systems is discussed in depth in

[21] as well as in [51]. One main area in which models diverge is how they handle the

cable(s) connecting the payload and the quadrotor. A conventional approach for single

cable systems is to treat the cable as an inelastic link connecting the center of mass of

Chapter 3. Controller Design 48

Figure 3.1: Model Frame Setup and Nomenclature

the quadrotor to a point mass payload such as in [25] [36] [37] [38] [44]. This approach

neglects any effect that the payload may have on the vehicle’s attitude dynamics. This

effect is captured in [26], [40], [45], [52] where the authors use an inelastic model but

allow the cable mount to be offset from the drone’s center of mass. Overall though, the

inelastic cable assumption is potentially problematic in that it could artificially generate

compressive loads acting on the payload during maneuvers. Using inelastic cables can

also become overly restrictive if we consider a scenario with multiple cable connecting

a quadrotor drone to its payload. A more advanced approach involves discretizing the

cable into a series of elastic or inelastic links to form a chain-like structure as done in [39]

and [43]. This approach captures the potential slack cable behaviour in the system but

adds computational complexity to the model.

In this work we model each cable as having extensible elasticity and damping while

constraining the tension force to always be positive. The payload is treated as a rigid

body and cable mounting points can be assigned to any point on the drone or payload.

The proposed model is based on [51] and can accommodate multiple cables linking the

quadrotor to its payload to allow for studying multi-cable systems. We will present the

equations of motion for a multi-cable system however in this work we only focus on a

single-cable configuration. Figure 3.1, reprinted from [2], presents an overview of the

frames of reference and nomenclature used for the model.

In Figure 3.1, FI is the inertial frame while FP and FQ are body-fixed frames connected

to the payload and quadrotor. We define the direction cosine matrices RQI and RPI to

denote the attitude of the quadrotor and payload frames relative to the inertial frame.

Throughout this chapter, subscripts on boldface lowercase letters will be used to clarify

which frame vectors are being resolved in. The attitude of the quadrotor and payload

Chapter 3. Controller Design 49

frames can also be parameterized with quaternions qQ and qP . The following equations

summarize how to convert from a quaternion to a direction cosine matrix.

qQ =

[
ηQ

εQ

]
=

[
cos(θQ/2)

sin(θQ/2)âQ

]
(3.1)

RIQ = (1− 2εQ
T
εQ)1 + 2εQεQ

T
+ 2ηQεQ

×
(3.2)

RQI = RIQ
T (3.3)

where âQ and θQ define the axis of rotation and angle of rotation defining the orientation

of FQ relative to FI . 1 denotes the three by three identity matrix and the × superscript

denotes the conversion of a column vector to a cross product matrix for example

εQ
×

=

 εQ1

εQ2

εQ3


×

=

 0 −εQ3 εQ2

εQ3 0 −εQ1
−εQ2 εQ1 0

 (3.4)

We denote the position and velocity of the centers of mass q and p of the quadrotor and

payload resolved in the inertial frame FI as rq, vq, rp and vp respectively. r q1Q and r p1P
denote the position of attachment points q1 and p1 for cable 1 on the quadrotor and

payload relative to the center of masses for each body. Each relative position vector is

resolved in the appropriate body fixed frame. r pq1I is the vector linking mounting points

q1 and p1 resolved in frame FI . Its associated unit vector resolved in FI is denoted r̂ pq1I .

Using this nomenclature we can define the Newton–Euler equations of motion for both

the quadrotor and the payload.

mqv̇q = f q, mpv̇p = f p (3.5)

Jqω̇Q + ωQ
×JqωQ = mq, Jpω̇P + ωP

×JpωP = mp (3.6)

where mq and mp are the mass of the quadrotor and payload. Jq and Jp are the inertia

matrices for the second moment of mass of the quadrotor and payload relative to their

center of mass resolved in the body frame of each body. ωQ and ωP are the angular

velocity of FQ and FP relative to FI resolved in their respective body fixed frames. f q

and f p denote the overall force vector acting on the quadrotor and payload resolved in

the inertial frame. mq and mp denote the overall moment acting on the quadrotor and

payload resolved in their respective body frames FQ and FP .

Chapter 3. Controller Design 50

For this model, we consider forces and moments acting on the quadrotor and payload

due to gravity, the tension force in each cable and the thrusters. We neglect aerodynamic

effects for simplicity. We can thus express the overall force vectors acting on the quadrotor

and payload as follows.

f q = mqg + RIQfTQ + fC , fTQ = F thrust

 0

0

−1

 , f p = mpg− fC (3.7)

where g is the gravitational acceleration vector resolved in FI . fTQ is the thrust force

acting on the quadrotor resolved in the quadrotor frame FQ. F thrust is a positive scalar

denoting the total thrust force acting on the quadrotor. fC is the sum of the tension

force in each cable within the system. For this thesis, we chose to model the cables as

a single massless link with extensible elasticity and damping while imposing a constraint

to avoid compressive loads. While this approach does allow the modelled cables to lose

tension, it does not capture the resulting behaviour of the slack cable. This approach

also assumes negligible inertia for the cable. We deem this assumption to be reasonable

in this situation since our envisioned test setup will involve moderately sized quadrotor

drones using lightweight cables likely made from fishing line. Using these assumptions

we obtain the following results.

fC =
Ntot∑
N=1

TN r̂ pqNI (3.8)

TN = max(0, kN(lN − l0N) + bN l̇N) (3.9)

where kN , bN and l0N are the spring constant, damping constant and unstretched length

of the Nth cable.

lN =

√
r pqNI

T

r pqNI (3.10)

r pqNI = r p + RIP r pNP − RIQr qNQ − r q (3.11)

r̂ pqNI =
r pqNI

lN
(3.12)

l̇N = (v pN − v qN)
Tr̂ pqNI (3.13)

v qN = v q + RIQ(ωQ
×r qNQ) , v pN = v p + RIP (ωP

×r pNP) (3.14)

Similarly, we can compute the moments acting on the quadrotor and payload as follows.

m q = mT
Q + mCq, m p = mCp (3.15)

Chapter 3. Controller Design 51

where mT
Q is the moment acting on the quadrotor resolved in FQ generated by the the

input thrust. mCq and mCp are the moment exerted on the quadrotor and payload due

to the sum of all tension forces in the system. This term in essence allows the payload to

affect the attitude dynamics of the quadrotor. This effect is often neglected in simulation

models but it could have a significant effect on the drone’s flight performance if the

payload is not perfectly attached at the center of gravity of the drone. Using the values

from equations (3.9) and (3.12) we can compute these moments as follows.

mCq = RQI

(
Ntot∑
N=1

((RIQr qNQ)×(TN r̂ pqNI))

)
(3.16)

mCp = RPI

(
Ntot∑
N=1

((RIP r pNP)×(−TN r̂ pqNI))

)
(3.17)

We complete the required equations for our simulation with the time derivative of the

quaternions

q̇Q =
1

2
qQ ⊗

[
0

ωQ

]
, q̇P =

1

2
qP ⊗

[
0

ωP

]
(3.18)

where ⊗ denotes quaternion multiplication. For example

qA ⊗ qB =


ηA

εA1

εA2

εA3

⊗

ηB

εB1

εB2

εB3

 =


ηA −εA1 −εA2 −εA3
εA1 ηA −εA3 εA2

εA2 εA3 ηA −εA1
εA3 −εA2 εA1 ηA



ηB

εB1

εB2

εB3

 (3.19)

As previously discussed in Section 2.4, we employ a basic point mass pendulum model to

predict the natural frequency of oscillation of our slung payload. For this work, we will

primarily focus on a single cable system and we thus choose l to be the distance between

the cable mounting point on the quadrotor and the payload center of mass.

l = l01 + ‖ r−→
p1‖

2
, Td = 2π

√
l/g (3.20)

3.2.1 Simulator setup

Equations (3.5) through (3.18) were implemented in MATLAB in order to generate a

simulation environment for testing flight controllers. Any time we simulated a flight,

we first performed an initial hovering simulation to establish the stretching required in

Chapter 3. Controller Design 52

the cable(s) that support the payload in a hovering equilibrium. This becomes especially

useful when multi-cable systems are being simulated. We started this hovering simulation

with the quadrotor center of mass at the origin and our payload located some distance

above the expected hanging equilibrium. We then set F thrust = (mq + mp)g and mT
Q =

−mCq and simulated the resulting motion of the quadrotor-slung load system. During

this simulation, the payload naturally settles into an equilibrium state where the cable(s)

that hold it to the quadrotor become taut. The damping in the cable(s) helps to ensure

that this initial simulation converges quickly. From this hovering equilibrium solution, we

extract the relative position between the payload and the quadrotor. We then simulate the

actual flight by prescribing a motion trajectory for the quadrotor and allowing our flight

controller to compute values for F thrust and mT
Q. For our simulated flight, the quadrotor

initial state is dictated by our desired trajectory. The initial position of the payload is

computed using the relative position value we found from the hovering equilibrium. We

can simulate flights with a swinging disturbance by adjusting the initial velocity of the

payload.

All code elements were written in MATLAB scripts and the differential equations were

solved using the ode15s solver with parameters RelTol = 1e − 6 and AbsTol = 1e − 8.

The simulator was set up to generate 200 data points per second of simulated flight time.

The core state of our ode solver being integrated consisted of rq, vq, rp, vp, ωQ, ωP , qQ

and qP . Additional terms were added to accommodate integral control elements.

As part of our simulations, we also incorporated measurement noise into the payload

position and velocity signals being used for our controllers. To implement this, a set

of Gaussian noise data is pre generated for each time step in the simulation based on

prescribed mean and variance values. This noise data is saved and reused for subsequent

simulations to allow for comparison of multiple controllers with the same noise effects.

Since ode15s is a variable step solver, we had MATLAB interpolate the provided noise

data in order to establish the required values. We also lowpass filtered the generated noise

using a discretized first order filter with cutoff frequency 31.8Hz to ensure that the values

would not create issues within our solver. An overview of this simulator is provided in

Algorithm 3.

3.3 Geometric Controller

The goal of our flight controller is to accurately track a prescribed input-shaped flight

trajectory while also being able to react to unexpected swinging disturbances acting on

Chapter 3. Controller Design 53

Algorithm 3: Quadrotor-Slung Load Simulator Overview

input : Quadrotor-Slung Load System parameters (see Table 3.1),
ControlLaw(system state, desired state) to solve for F thrust and mT

Q,

Quadrotor initial state (rq0, vq0, ωQ0 , qQ
0), Payload initial velocity (vp0), Initial

guess for settled position of payload relative to quadrotor (rpguess),
Precomputed payload position and velocity signal noise (noise)

Function ode15s():
system state: (rq, vq, rp, vp, ωQ, ωP , qQ, qP)
initial conditions: (0, 0, rpguess, 0, 0, 0, [1, 0, 0, 0], [1, 0, 0, 0])

differential equations: (3.5) through (3.18)
properties: RelTol = 1e− 6 , AbsTol = 1e− 8
system inputs: F thrust = (mq +mp)g , mT

Q = −mCq

return EquilibriumState

Using EquilibriumState measure distance d = rp − rq

Solve for the starting position of the payload rp0 = rq0 + d

Function ode15s():
system state: (rq, vq, rp, vp, ωQ, ωP , qQ, qP)

initial conditions: (rq0, vq0, rp0, vp0, ωQ0 , 0, qQ
0 , [1, 0, 0, 0])

differential equations: (3.5) through (3.18)
properties: RelTol = 1e− 6 , AbsTol = 1e− 8
system inputs: F thrust , mT

Q = ControlLaw(system state + noise, desired state)
return MotionT imeHistory

Post process MotionT imeHistory to capture control effort, error, forces etc.

output: MotionT imeHistory, post processed data, plots of data

the payload. As discussed in Section 3.1.3, the key element that separates our proposed

controller from other such designs is that our controller uses both the desired input-shaped

flight trajectory and the corresponding swinging trajectory in its computations. This

corresponding swinging trajectory is computed within the controller during each loop.

Thus by comparing the actual swinging motion to this swing trajectory our controller can

differentiate between swinging caused by accurate trajectory tracking versus that caused

by disturbances. Our controller only tries to eliminate the latter. This differs from the

more conventional approach discussed in Section 3.1.3 where the controller effectively

tries to eliminate all swinging motion observed in the payload while tracking a prescribed

trajectory. A preliminary version of our controller is presented and analyzed in [2].

Figure 3.2, reprinted from [2], presents an overview of the core elements of the proposed

controller that we developed. At every time step the controller receives the desired

state of the quadrotor from our trajectory generator as discussed in Section 2.3.2. This

information gets passed to the Oscillation Controller and Position Controller elements

Chapter 3. Controller Design 54

Figure 3.2: Proposed Flight Controller Overview

which ultimately determine a required force vector resolved in the inertial frame f des that

the drone must exert to 1) eliminate unwanted swinging motion and 2) track the desired

flight trajectory. The Oscillation Controller element is also responsible for predicting

the swinging motion induced by the prescribed input-shaped trajectory. The desired

thrust vector is then decomposed into a heading and an overall thrust magnitude. The

Attitude Controller in turn computes a required moment mT
Q that the drone should exert

to reach the desired heading. The overall thrust force and moment are then handed over

to a Thrust Allocation and Saturation module which determines the required thrust that

each motor should produce. The controller receives feedback information in the form

of the measured position and velocity of the quadrotor and its payload as well as the

quadrotor’s attitude and angular velocity.

The main limitation of the proposed controller is that it is only meant to track input-

shaped quadrotor flight trajectories. One could replace the swing prediction element of

this controller with a desired swing trajectory generated by alternate means in order

to apply the proposed controller to different cases. For example, a reference swinging

trajectory could be generated in order to achieve a payload throwing motion as described

in [12] and [13]. We feel that this is a reasonable limitation however considering the

advantages that input-shaped trajectories present. Due to the underactuated nature of

quadrotor-slung load system, anytime the quadrotor performs an accelerating maneuver,

this will inevitably induce some level of swinging motion in the slung load. The best case

scenario from a swing mitigation standpoint would be that once the quadrotor drone stops

accelerating and either returns to rest or reaches a steady state velocity, no more residual

swinging motion exists in the payload. As demonstrated in the Chapter 2, input-shaped

motion trajectories achieve this exact behaviour.

3.3.1 Oscillation Controller

The Oscillation Controller is a geometric PD control law based on [38]. In [38], the authors

use this geometric control law as part of a flight controller which receives as an input the

Chapter 3. Controller Design 55

desired payload flight trajectory. Their controller converts the payload trajectory into a

desired swing angle and uses this control law to have the quadrotor cause this desired

swinging motion in the payload. As shown in Figure 3.2, this control element takes in

information about the state of the system and the desired motion trajectory and computes

a desired force vector f oscil. We use the following relations to compute f oscil.

f oscil = K oscil
p ε oscilp + K oscil

d ε oscild (3.21)

ε oscilp = (ĉ×)2ĉd (3.22)

ε oscild = ˙̂c− (ĉd× ˙̂cd)
×

ĉ (3.23)

ĉ =
c√
cTc

, ĉd =
cd√
cdTcd

(3.24)

˙̂c =
ċ√
cTc
− ccTċ

(
√

cTc)
3 (3.25)

c = r p − r q , cd = r dp − r dq (3.26)

ċ = v p − v q , ċd = v dp − v dq (3.27)

f oscil is the thrust force vector resolved in the inertial frame that the quadrotor should

apply to correct the swinging motion of the payload. K oscil
p and K oscil

d are diagonal control

gain matrices. ĉ is a unit vector resolved in the inertial frame pointing from the measured

quadrotor position r q to that of the payload r p. ĉ thus approximates the orientation of

the assumed taut cable. The unit vector ĉd represents the desired orientation of this

cable. The desired position and velocity of the quadrotor (r dq, v dq) are computed from

the prescribed input-shaped trajectory as discussed in Section 2.3.2. The controller also

requires the expected position and velocity of the payload (r dp, v dp). These elements

are computed by a swing prediction element in our controller detailed in the subsequent

section.

3.3.1.1 Swing Prediction

Our controller has a prediction element within it to compute the expected swinging motion

that a pendulum would have if its upper mounting point perfectly tracked the prescribed

input-shaped flight trajectory. This processes is illustrated visually in Figure 3.3.

Mathematically, this prediction step is accomplished using a set of differential equations.

For our MATLAB simulation, these equations are numerically integrated as part of the

main set of states in the simulator. For an actual drone, the numerical integration step

is performed onboard the drone with each loop of the flight controller.

Chapter 3. Controller Design 56

Figure 3.3: Predicted Swinging Motion (blue) due to Prescribed Input-Shaped Flight
Trajectory (red)

For this work we use a second order system to predict the swinging motion of the pen-

dulum along the x and y axes. We then impose two constraint equations to solve for the

motion along the z axis. The following differential equations are used for this prediction.

r dq =

 x dq

y dq

z dq

 , r dp =

 x dp

y dp

z dp

 , v dp =

 ẋ dp

ẏ dp

ż dp

 (3.28)

d

dt
(x dp) = ẋ dp,

d

dt
(y dp) = ẏ dp (3.29)

d

dt
(ẋ dp) =

(
2π

Td

)2

(x dq − x dp), d

dt
(ẏ dp) =

(
2π

Td

)2

(y dq − y dp) (3.30)

where r dq is the desired quadrotor position resolved in the inertial frame defined by

evaluating the prescribed input-shaped flight trajectory at the given point in time. r dp

and v dp are the predicted payload position and velocity resolved in the inertial frame to

be computed. With each numerical integration step, new values for x dp, y dp, ẋ dp and ẏ dp

are obtained. The initial conditions used for this integration process are xdp(t = 0) =

xdq(t = 0) and ẋdp(t = 0) = ẋdq(t = 0) for both the x and y axes. We impose the following

constraint equations to solve for z dp and ż dp.

(x dp − x dq)2 + (y dp − y dq)2 + (z dp − z dq)2 = l2 (3.31)

(r dp − r dq)T(v dp − v dq) = 0 (3.32)

The value of Td and l in equations (3.30) and (3.31) are chosen to match the values used

for creating the input shaper in equation (3.20).

Chapter 3. Controller Design 57

For times when the drone is no longer flying an accelerating input-shaped trajectory we

no longer need to use the above equations and can simply set

r dp =

 x dq

y dq

z dq + l

 , v dp = v dq (3.33)

This corresponds to the situation where the payload is directly underneath the drone

as seen in the inertial frame and there is no relative velocity between the payload and

quadrotor.

Initially while developing this prediction step more complicated models were used. When

tested though, we found that these models had a tendency to predict a payload trajectory

that had some residual payload swinging. In Section 2.3.3 for instance, we presented

equations for an inelastic cable model in order to test the effectiveness of our input shaper.

We could easily run this model onboard our quadrotor drone to predict the swinging

motion of the payload due to our input-shaped motion trajectory. Notice though that

in Figure 2.8 when we use this model with an input-shaped motion trajectory we still

get some residual swinging amplitude. This is problematic since we would be using this

swinging motion as a reference for our controller to track. In turn, that means that our

controller may be trying to induce a slight residual oscillation in our payload which is

not desirable. In essence, we would like a prediction model that is accurate but that also

converges to zero residual swinging motion so that we can use its prediction values as a

tracking reference for our controller. We found that using a second order model with an

undamped natural frequency and damping ratio that matched those used to design our

input shaper produced exactly these kinds of results.

As shown in Figures 2.3 and 2.4, both the ZV and two-hump EI input shapers achieve

a PRV of 0 when the design angular velocity and damping ratio perfectly match those

of the second order linear system subjected to the input shaper’s impulses. This means

that our prediction model will have no residual swinging motion if it were subjected to

the impulses for either input shaper. Furthermore, because our input to this second order

system is a motion trajectory that has been convolved with our input shaper we know

from [17] that our output should also have no residual swinging motion.

3.3.2 Position Controller

The proposed Position Controller is based on [11] and [42] and computes a desired thrust

vector f des resolved in the inertial frame. In keeping with the approach taken in [42]

Chapter 3. Controller Design 58

this thrust vector is a weighted sum of the feedback force computed from the Oscillation

Controller computed with equation (3.21) and a feedback control law for position tracking.

Unlike [42] though, we employ a PID control law instead of a PD control law in order to

manage steady state altitude errors.

f des = kpathf path + koscilf oscil + fweight + f acc (3.34)

f path = K path
p (r dq − rq) + K path

d (v dq − vq) + K path
i

∫ t

0

(r dq(τ)− rq(τ))dτ (3.35)

fweight = −(mp +mq)g (3.36)

f acc = (mp +mq)a dq (3.37)

where kpath and koscil are scalars which can be used to emphasize position tracking or

oscillation management. In [42], these scalars are set to different values during different

portions of the flight envelope to alter the performance of the system. For our controller,

we keep all gains fixed throughout a given flight. K path
p , K path

d and K path
i are diagonal

control gain matrices for the PID control law. This marks a slight departure from con-

trollers typically found in the literature which would assign a single scalar for each gain.

We opted for a diagonal matrix form here to allow for assigning different gains for hori-

zontal and vertical motions of the drone. a dq is the desired quadrotor acceleration vector

computed from the input-shaped flight trajectory for the drone.

Once computed, f des can be projected onto the current heading of the quadrotor resolved

in FI , ĥ, to establish the thrust magnitude F thrust.

ĥ = −RIQ([0 0 1]T), F thrust = f desTĥ (3.38)

During initial development we tried to set F thrust equal to the magnitude of the fdes−−→
vector but this produced unstable results. The approach given in (3.38) is typically used

for quadrotor drones such as in the controller presented in [11]. Throughout this chapter

we employ the North East Down convention for our coordinate frames and thus the

heading direction for the quadrotor is parallel to the negative z axis of the FQ frame.

3.3.3 Attitude Controller

The Attitude Controller is based on the nonlinear geometric PID controller originally

developed for a quadrotor drone in [53]. A similar controller is also presented in [11]. The

Chapter 3. Controller Design 59

goal of this control element is to drive the quadrotor’s heading to be parallel to the desired

thrust vector fdes−−→ computed previously by the Position Controller using equation (3.34).

A PID attitude control law was chosen for this system as a slung load could induce a

steady state moment acting on the drone due to the positioning of the attachment point

for the cable. To begin, we convert our desired thrust vector and yaw attitude ψQd into

an overall desired quadrotor attitude quaternion qQd.

θQd = arccos

(
− [0 0 1]

f des√
f desTf des

)
(3.39)

âQd =
aQd√

aQdTaQd
, aQd =

 0

0

−1


×

f des (3.40)

qQd =

[
cos(θQd/2)

sin(θQd/2)âQd

]
⊗


cos(ψQd/2)

0

0

− sin(ψQd/2)

 (3.41)

where the × superscript was previously defined in equation (3.4) and the quaternion

multiplication operator ⊗ was defined in equation (3.19). Once we have computed qQd,

we can convert it into a desired direction cosine matrix attitude Rd
IQ using equation (3.2).

We then apply the following control law using the measured attitude RIQ and angular

velocity ωQ of the drone.

mT
Q = −Katt

R eR −Katt
Ω eΩ −Katt

I eI + JqRIQ
TRd

IQω̇
Qdf

+ (RIQ
TRd

IQω
Qdf)×Jq(RIQ

TRd
IQω

Qdf) (3.42)

eR =
1

2
(Rd

IQ

TRIQ − RIQ
TRd

IQ)∨ (3.43)

eΩ = ωQ − RIQ
TRd

IQω
Qdf (3.44)

eI =

∫ t

0

(eΩ(τ) + C2eR(τ))dτ (3.45)

where Katt
R , Katt

Ω , Katt
I and C2 are diagonal control gain matrices. The use of diagonal

matrices marks an important difference between the Attitude Controller presented in this

work and that presented in [2] and [53]. In [53], scalars are used which means that the

same gains are applied for controlling pitch, roll and yaw errors. The authors then develop

a constraint on the C2 value that ensures asymptotic stability of the resulting controller.

For most quadrotors though, it is far easier to generate large pitching and rolling moments

Chapter 3. Controller Design 60

than it is to generate large yawing moments. While developing our proposed controller,

we found that favourable gains for pitch and roll moments resulted in requested yaw

moments that could not be generated. This led to significant motor saturation issues

which hampered the drone’s ability to fly properly. One potential solution to this issue

is to rework the drone’s mixer so as to prioritize pitching and rolling moment generation

and deprioritize yaw moment generation as done in [54]. An alternate solution though

was to introduce diagonal control gain matrices such that yaw gains could be decoupled

from those required for pitching and rolling. This approach also helped solve an integral

windup problem that became apparent during preliminary gain tuning. Specifically, we

could eliminate the integral control element for yaw moments while leaving it in place for

pitch and roll moments. This strategy makes sense physically since it is unlikely that a

steady state yawing moment would be generated on the quadrotor.

A key element of the proposed Attitude Controller is the feedforward terms. These require

the desired angular velocity ωQdf and angular acceleration ω̇Qdf of the drone resolved in

FQ. These two values are computed based on the desired flight trajectory of the drone

using differential flatness equations. In [11] differential flatness equations are also used

to compute ω̇Qdf for a feedforward attitude control term. The equations for computing

these values are summarized in Appendix A.

3.3.4 Thrust Allocation and Saturation

At this stage the controller has computed a desired moment mT
Q and overall thrust force

F thrust using equations (3.42) and (3.38). Ultimately though for a real quadrotor, the

controller must supply a command to each of the four motors on the drone. The resulting

four thrusts can generate an overall thrust and moment acting on the drone but due to

actuator saturation these values may not match the desired values. For our quadrotor

drone we will assume a square configuration of the thrusters where the distance of each

propeller from the x and y axes is a as shown in Figure 3.4.

In general, we will model the the vertical thrust and moment about the axis of rotation

generated by our propeller spinning at a given number of revolutions per minute (RPM),

Ω, using the following relations.

f iQ =

 0

0

−ktΩi
2

 (3.46)

Chapter 3. Controller Design 61

Figure 3.4: Quadrotor Motor Naming Convention

m i
Q =

 0

0

±kqΩi
2

 (3.47)

We assign a negative sign in equation (3.46) to account for the fact that we are using

the North East Down convention for our quadrotor. The sign of the moment generated

in equation (3.47) depends on the direction that the propeller is spinning. kt and kq are

assumed to be approximately constant and are specific to the propellers being used for

our drone. For our drone we assume that propellers 0 and 1 spin counterclockwise while

propellers 2 and 3 spin clockwise.

Using this naming convention, we can establish a mapping between the desired control

moment mT
Q and thrust magnitude F thrust and the required RPM of each motor.

[
F thrust

mT
Q

]
=


kt kt kt kt

−kta kta kta −kta
kta −kta kta −kta
kq kq −kq −kq




Ω0
2

Ω1
2

Ω2
2

Ω3
2

 (3.48)

We can invert the four by four matrix in equation (3.48) in order to obtain a mapping

between the desired control force and moment and the required RPM values for each

motor. In our controller setup, we take mT
Q and F thrust and convert these into a prelimi-

nary set of motor RPMs Ω0, Ω1, Ω2, Ω3. We then clip these RPM values to ensure that

they fall within the attainable range of RPM values for our system that is we constrain

Ωmin ≤ Ωi ≤ Ωmax. After performing this clipping process, we pass the resulting RPM

values back through equation (3.48) to obtain values of mT
Q and F thrust. This process

ensures that our controller does not exceed the motor limits of our system.

Chapter 3. Controller Design 62

The technique presented above is fairly rudimentary and indeed other papers such as [54]

have explored more advanced methods for allocating thrust to the motors of a quadrotor

that prioritize achieving pitching and rolling moments.

3.4 Controller Evaluation

In this section we present simulation results for our proposed controller and trajectory

generator created using a MATLAB implementation of the quadrotor-slung load system

presented in Section 3.2. We first discuss the tuning process for all the control gains

required in the system and then present two baseline controller designs that will be

compared against our proposed design. Afterwards we present a series of simulations

with all three controllers tracking a variety of input-shaped maneuvers both with and

without swinging disturbances. An analysis of these results will follow to assess the

merits of our proposed controller design compared to the baseline versions presented.

Table 3.1 presents the physical properties used for our quadrotor-slung load system. We

will use a modified Pelican quadrotor for all testing in this project. The values for kt,

kq, Ωmax and Ωmin in Table 3.1 were determined experimentally as will be discussed in

Section 5.4.

3.4.1 Controller Tuning Process

The proposed controller in this paper requires tuning numerous gains for the Position,

Oscillation and Attitude Controllers. This process can be further complicated by the fact

that the Position and Attitude Controllers need to work in tandem in order to achieve

horizontal motions of the drone. The Oscillation Controller requires selecting gains for

the diagonal control gain matrices K oscil
p and K oscil

d in equation (3.21). For the Position

Controller, scalars kpath and koscil and diagonal control gain matrices K path
p , K path

d , and

K path
i in equations (3.34) and (3.35) need to be tuned. For the Attitude Controller,

diagonal control gain matrices Katt
R , Katt

Ω , Katt
I and C2 in equations (3.42) and (3.45)

need to be selected. Assuming that the same gains are used for x and y position control

elements as well as for pitch and roll attitude elements we have a total of 20 gains to tune

for this controller.

In this work, we divided the tuning process into four parts. The first tuning step focused

on tuning the components of K path
p , K path

d , and K path
i required for vertical motion of the

quadrotor. For this tuning process, we set the quadrotor to hold its current position and

Chapter 3. Controller Design 63

Table 3.1: Properties of the Pelican Quadrotor and Slung Load.

Parameter Symbol Value Unit
Quadrotor mass mq 1.35 kg
Payload mass mp 0.4 kg

Quadrotor moment of inertia Jq

 6 0 0
0 6 0
0 0 6

× 10−2 kg m2

Payload moment of inertia Jp

 2.4 0 0
0 2.4 0
0 0 2.4

× 10−5 kg m2

Number of cables Ntot 1
Cable unstretched length l01 1 m
Cable elasticity k1 6.2832× 103 N m−1

Cable damping b1 300 N s m−1

Quadrotor cable attachment point r q1Q

 0
0

0.15

 m

Payload cable attachment point r p1P

 0
0

−0.05

 m

Motor xy arm length a 0.1414 m
Propeller thrust coefficient kt 1.993× 10−7 NRPM−2

Propeller moment coefficient kq 3.3× 10−9 N mRPM−2

Max propeller RPM Ωmax 7800 RPM
Min propeller RPM Ωmin 840 RPM

set the mass of the drone and payload used for computing fweight in equation (3.36) to be

10 percent higher than the values shown in Table 3.1. In simulation, this causes the drone

to initially fly upwards along the negative z axis. We first set the z element of K path
i to

zero and manually adjusted the z values of K path
p and K path

d . Our criteria for selecting

these gains was to minimize the time it took the drone to stabilize to a new altitude while

avoiding overshoots. The behaviour of the system closely followed that of a classic second

order system with both underdamped and overdamped behavior. In the end we settled

for values that yielded approximately critical damping. Once we achieved satisfactory

results, we then added back in the z element of K path
i and incrementally increased it. Our

evaluation criteria were the maximum altitude error plus the time it took the drone’s

altitude to settle to within ±1 centimeter of the original value.

The next step in the tuning process was to tune the x and y elements of K path
p and

K path
d as well as the pitching and rolling moment components of Katt

R , Katt
Ω , Katt

I and

C2. We elected to set the x and y values of K path
i to zero as we intended the integral

position element to primarily compensate for uncertainties in the system’s mass. We

Chapter 3. Controller Design 64

had the quadrotor perform a lateral rest to rest maneuver, set kpath = 1, koscil = 0 and

reduced the weight of the payload to 1 gram in order to eliminate its effect on the drone’s

flight. We started off with low gains for K path
p and K path

d . A typical cycle would then

involve adjusting the Attitude Controller gains to achieve good tracking of the desired

attitude generated by the Position Controller. We would then make the position control

gains more aggressive to improve the trajectory tracking performance. This sometimes

required us to revisit the Attitude Controller gains to ensure that we were still achieving

satisfactory performance. A key element of this process involves accurately diagnosing

which control element is leading to undesirable performance of the system. One strategy

that proved useful for this process was to convert the current and desired attitude of the

drone into Euler angles and to plot these on top of each other. The resulting plots were

much easier to interpret than plots of the attitude error components in equation (3.42) or

plots of the components of the true and desired quaternion elements. The ultimate goal

was to minimize the trajectory tracking error throughout a given flight trajectory for the

drone. This typically requires achieving good tracking of the desired drone attitude. The

tuning was then verified for a more aggressive non-rest to rest maneuver in simulation to

validate that it achieved satisfactory trajectory tracking and attitude tracking.

The third step in the tuning process focused on tuning the Oscillation Controller’s gains.

For this step we set the quadrotor to hold its starting position and introduced an initial

velocity between the payload and the quadrotor. We first performed a baseline test setting

koscil = 0 to assess how long it would take the drone to dampen the swinging disturbance

to within ±1deg using only its Position Controller. This effect was previously discussed

in Section 3.1.2. We then set koscil = 1 and began the tuning process for the x and y

components of K oscil
p and K oscil

d . The metric for assessing the tuning was how much of

an improvement in swing disturbance damping we were able to achieve in comparison to

the baseline test. We found that the z component of K oscil
p and K oscil

d had a negligible

effect on the swing damping performance for this test. We performed an additional test

with a rest to rest maneuver with an initial swinging disturbance and saw no improved

performance from adding a z component to K oscil
p and K oscil

d .

The final tuning step involved the yawing moment components of Katt
R , Katt

Ω , Katt
I and

C2. When performing preliminary flight testing on an actual quadrotor drone, we found

significant performance issues with the drone due to its yaw control elements. The pro-

pellers on the Pelican have a low kq value which means that the drone has a limited ability

to generate yawing moments. This meant that the drone could easily reach saturation

when trying to correct for yaw errors if the gains were too high. We also encountered

significant integrator windup issues for the yaw gains in our system. Similar results were

Chapter 3. Controller Design 65

Table 3.2: Controller Gains for Simulated Pelican Quadrotor and Slung Load.

Control Gain Equation Value Unit

K oscil
p (3.21)

 3 0 0
0 3 0
0 0 0

 N

K oscil
d (3.21)

 1 0 0
0 1 0
0 0 0

 N s

kpath (3.34) 1
koscil (3.34) 1

K path
p (3.35)

 5.5 0 0
0 5.5 0
0 0 16

 N m−1

K path
d (3.35)

 4 0 0
0 4 0
0 0 9

 N s m−1

K path
i (3.35)

 0 0 0
0 0 0
0 0 16

 N s−1 m−1

Katt
R (3.42)

 20 0 0
0 20 0
0 0 0.4

 N m

Katt
Ω (3.42)

 0.5 0 0
0 0.5 0
0 0 0.2

 N m s

Katt
I (3.42)

 1 0 0
0 1 0
0 0 0

 N m

C2 (3.45)

 4 0 0
0 4 0
0 0 0

 s−1

found in the simulator and the yaw gains needed to be set significantly lower than the

attitude gains for pitching and rolling moments. Based on these observations, we opted

to eliminate the yaw component of Katt
I and C2. For tuning the remaining Katt

R , Katt
Ω

components, we prescribed a step input in the desired yaw value for the drone while

having it maintain its current position. The main criteria for assessing the tuning was

the time it took for the drone to reach the desired yaw value while also avoiding actuator

saturation. We progressively increased the size of the yaw setpoint step up to 45 deg and

selected a set of tuning values that offered good settling time without initial saturation.

A summary of the controller gains resulting from this process is presented in Table 3.2.

Chapter 3. Controller Design 66

3.4.2 Baseline Flight Controllers

In order to assess the performance of our proposed controller we will compare it against

two baseline controller designs. As previously discussed in Section 3.1, there are numerous

flight controller designs for quadrotor and quadrotor-slung load systems. For this work,

our goal was to establish as fair a comparison as possible. In particular, we were concerned

about how differences in the Attitude Controller might impact our results. The main

novelty of our proposed controller is the use of a swing prediction model for tracking

input-shaped flight trajectories. We thus want to make sure that differences in the flight

performance are due to this change and not due to differences in the Attitude Controller

used in this work compared to others. Another important point was the potential for

bias during the tuning process for baseline controller designs. One might be able to argue

for instance that differences between the performance of our controller versus a baseline

design are due to the fact that the baseline controller was not adequately tuned for the

properties of our specific drone.

With these points in mind, we opted to create baseline controllers by simplifying our

proposed controller design. We created a first baseline controller design by simply setting

koscil = 0 in equation (3.34). The resulting controller, henceforth referred to as Controller

A, essentially ignores the swinging motion of the payload and solely attempts to track a

prescribed flight trajectory. This baseline controller design is based on the fact that, in

Section 3.1.2, numerous papers dealing with the use of input shaping for quadrotor-slung

load systems had no active swing damping elements. The swinging motion of the payload

is purely managed through the use of an input-shaped flight trajectory. Controller A also

represents the simplest possible controller design for a quadrotor-slung load system as it

is essentially a generic quadrotor flight controller.

Our second baseline controller, Controller B, eliminates the swing prediction element in

our proposed controller and always uses equation (3.33) in order to compute the desired

position and velocity of the payload. This simplification means that this controller con-

stantly attempts to eliminate any swinging motion in the payload as seen in the inertial

frame. This strategy is similar to numerous controller designs presented in Section 3.1.3,

where the drone attempts to constantly eliminate any swinging motion of the payload

as the drone flies along a prescribed flight trajectory. Our novel controller will be re-

ferred to as Controller C. Controller B is computationally simpler than Controller C and

thus provides a good opportunity to assess the merits of our proposed swing prediction

element.

Chapter 3. Controller Design 67

Apart from these changes, all three controllers use the exact same equations and control

gains. This eliminates the potential effect of tuning bias and the use of different attitude

controllers. This same approach was used in [2] to generate baseline comparisons for our

proposed controller. The following subsection presents simulation results for all three

controllers for a series of tests to assess their performance.

3.4.3 Simulation Results

In order to verify the performance of the proposed controller, we performed simulations

comparing our controller against the baseline designs proposed in Section 3.4.2. The

properties of our quadrotor-slung load system are given in Table 3.1. In order to test the

robustness of the proposed controller we scaled the values of mq, mp and Jq by a factor

of 0.9 whenever these values were used within any control equations. We also introduced

zero mean measurement noise for the position rp and velocity vp of the payload. The

noise values had standard deviations of 0.005m and 0.02m s−1 respectively. In order to

avoid complications with MATLAB’s variable step size solvers we passed our noise values

through a discrete time low pass filter using a critical frequency of 31.8Hz. A single set of

noise values was generated and then applied to each trial considered in order to maintain

consistency between trials.

For the purposes of comparison throughout this section, we define the swing angle of

the payload based on the vector rcableI between the quadrotor’s mounting point and the

payload’s center of mass resolved in the inertial frame.

rcableI = rp − RIQrq1Q − rq (3.49)

We then solve for the angle between rcableI and the z axis of the inertial frame.

For Simulation 1, we have the drone dampen an initial swinging disturbance on the

payload while attempting to hold its starting position. We introduced a relative velocity

of [4 0 0]Tm s−1 between the center of mass of the payload and the quadrotor. Figure

3.5 shows the resulting swing angle of the payload for this simulation. Figure 3.6 shows

the magnitude of the error in the XY plane between the quadrotor’s actual position and

the desired position.

In both Figures 3.5 and 3.6, the performances of Controller B and C are identical since

Controller C’s reference swing angle is zero throughout this simulation. Controller A is

still able to dampen the swinging motion of the pendulum over time, but this happens

much slower than for Controllers B and C. Controller A achieves its swing damping

Chapter 3. Controller Design 68

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

10

20

30

40

50

60

70

S
w
in
g
A
n
g
le

(◦
)

Controller A
Controller B
Controller C
Reference

Figure 3.5: Simulation 1: Time History of Swing Angle

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

X
Y

T
ra
je
ct
o
ry

T
ra
ck
in
g
E
rr
o
r
M
a
g
n
it
u
d
e
(m

)

Controller A
Controller B
Controller C

Figure 3.6: Simulation 1: Time History of Quadrotor Trajectory Tracking Error
Magnitude

Chapter 3. Controller Design 69

-10 -5 0 5 10 15

X (m)

0

1

2

3

4

5

6

7

8

Y
(m

) Target Path
Controller A
Controller B
Controller C

Figure 3.7: Simulation 2: Top View of Quadrotor Motion

due to the fact that, as the payload swings, it shares some of its kinetic energy with

the quadrotor drone by pulling it away from its target position. The flight controller

dissipates this kinetic energy by attempting to bring the quadrotor back to rest at its

starting position. Controllers B and C instead make a large initial displacement in order

to dissipate the swinging motion of the payload.

Simulation 2 involves an input-shaped non-rest to rest u-turn maneuver. In this sim-

ulation, the drone and its payload start off at the origin with an initial velocity of

[6 0 0]Tm s−1 and we generate an input-shaped trajectory to reach final position [3 7 0]Tm

with velocity [−3 0 0]Tm s−1 in a total time of 7s. We employ a two-hump EI shaper

for this maneuver and the initial and final accelerations of the drone are set to zero. We

simulate the resulting behaviour for a total of 10s. Figure 3.7 shows a top view of the

motion of the drone for all three controllers. Figure 3.8 compares the swing angle for

all three controllers throughout the maneuver. Figure 3.9 shows the position tracking

error magnitude for the XY plane. Figure 3.10 shows the magnitude of (koscilf oscil) from

equations (3.21) and (3.34) throughout the simulation, as an indication of the control

effort being expended.

The results from Simulation 2 help to highlight some of the potential benefits of our

proposed controller (C) as compared to the two baseline designs (A and B). Figure 3.8

for instance shows how both Controller B and C are able to achieve similar swing damping

Chapter 3. Controller Design 70

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

5

10

15

20

25

S
w
in
g
A
n
g
le

(◦
)

Controller A
Controller B
Controller C
Reference

Figure 3.8: Simulation 2: Time History of Swing Angle

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X
Y

T
ra
je
ct
o
ry

T
ra
ck
in
g
E
rr
o
r
M
a
g
n
it
u
d
e
(m

)

Controller A
Controller B
Controller C

Figure 3.9: Simulation 2: Time History of Quadrotor Trajectory Tracking Error
Magnitude

Chapter 3. Controller Design 71

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

F
o
rc
e
(N

)

Controller A
Controller B
Controller C

Figure 3.10: Simulation 2: Oscillation Feedback Force

performance. However, as shown in Figure 3.9, Controller B has more difficulty tracking

the desired input-shaped flight trajectory and experiences higher tracking errors than A

or C throughout. Controller B is trying to constantly eliminate the swinging motion

of the payload while tracking the prescribed flight trajectory. Clearly from Figure 3.8,

Controller B fails to eliminate all swinging in the payload during the accelerating portion

of the prescribed trajectory over first seven seconds of the flight. This makes sense

since horizontal accelerations will inevitably induce swinging motion in our underactuated

system. As the payload swings outwards during the u-turn, a high control effort is

computed by the Oscillation Controller to have the quadrotor chase after the payload.

This results in Controller B making a wider u-turn than than Controller A or C as shown

in Figure 3.7. Ultimately, the wider u-turn flown by Controller B induces the swinging

motion seen in Figure 3.8. The higher control effort for Controller B is demonstrated in

Figure 3.10. Notice for instance how the timing of the peak in control effort in Figure

3.10 matches the timing of the peak in the swing angle shown in Figure 3.8. The swinging

motion of the pendulum for Controller C shown in Figure 3.8 closely matches that of the

second order prediction model shown as the Reference. This leads to minimal control

effort for Controller C in Figure 3.10 and allows its trajectory tracking error to approach

the performance of Controller A. The results of this first simulation also highlight the

effectiveness of input shaping for swing prevention in the absence of external swinging

disturbances. In Figure 3.8 for instance, Controller A has almost no residual swing angle

Chapter 3. Controller Design 72

-10 -5 0 5 10 15

X (m)

0

1

2

3

4

5

6

7

8

Y
(m

) Target Path
Controller A
Controller B
Controller C

Figure 3.11: Simulation 3: Top View of Quadrotor Motion

after the 7s mark of the simulation once the drone has completed the accelerating phase

of the motion.

Simulation 3 repeats the scenario in Simulation 2 but this time introduces an initial rela-

tive velocity between the payload and the quadrotor centers of mass of [−2 4 0]Tm s−1.

For this simulation, Figure 3.11 shows a top view of the resulting motion of the drone

for all three controllers. Figure 3.12 compares the swing angle for all three controllers

throughout the maneuver. Figure 3.13 shows the position tracking error magnitude for

the XY plane. Figure 3.14 shows the magnitude of the feedback oscillation force.

Compared to Simultation 2, the addition of a swinging disturbance causes increased pay-

load motion for Controller A throughout Figure 3.12. The swinging motion does appear

to be gradually dampening out however it continues to oscillate much longer than with

Controllers B or C. This result highlights one of the weaknesses of turning off the swing

dampening control element during accelerating portions of an input-shaped maneuver as

proposed in [24] and [25]. Had we employed that strategy here, the results would have

mirrored those of Controller A over the first 7s of simulation. Figure 3.15 shows the

magnitude of the XY component of (kpathf path) for all three controllers for Simulation

3. From Figure 3.15 it becomes apparent that Controller A is expending a large control

effort with its Position Controller in order to dampen the swinging motion of the payload.

It is also important to recognize that the damping performance of Controller A is due to

Chapter 3. Controller Design 73

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

10

20

30

40

50

60

70

80

S
w
in
g
A
n
g
le

(◦
)

Controller A
Controller B
Controller C
Reference

Figure 3.12: Simulation 3: Time History of Swing Angle

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X
Y

T
ra
je
ct
o
ry

T
ra
ck
in
g
E
rr
o
r
M
a
g
n
it
u
d
e
(m

)

Controller A
Controller B
Controller C

Figure 3.13: Simulation 3: Time History of Quadrotor Trajectory Tracking Error
Magnitude

Chapter 3. Controller Design 74

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
o
rc
e
(N

)

Controller A
Controller B
Controller C

Figure 3.14: Simulation 3: Oscillation Feedback Force

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

1

2

3

4

5

6

F
o
rc
e
(N

)

Controller A
Controller B
Controller C

Figure 3.15: Simulation 3: Position Feedback and Feedforward Force

Chapter 3. Controller Design 75

the payload being heavy enough to drag the quadrotor off course. Comparing Controllers

B and C, we can see in Figure 3.12 that their swing damping performance is again almost

identical for the maneuver being considered. However, in Figure 3.13 we see that the

trajectory tracking error of Controller B is much higher than C between 2s through 7s.

During this portion of the maneuver, Controller B at times reaches more than double

the position error that Controller C had while requiring consistently higher oscillation

feedback forces as shown in Figure 3.14. The trajectory tracking force requirements for

Controller B mirror the position error magnitude terms as shown in Figure 3.15. This

suggests that Controller C was able to achieve similar swing damping performance to

Controller B but with reduced control effort. We believe that this is a direct result of

Controller C making better use of the properties of the prescribed input-shaped flight tra-

jectory. During the first three seconds of motion, Controller C exerts large control forces

in order to compensate for the significant swinging disturbance acting on the payload.

Afterwards though, once the swinging disturbance has been dissipated, the controller

exerts minimal oscillation feedback control force and allows the input-shaped trajectory

to prevent additional oscillations from occurring after the maneuver is completed. In

essence, the controller effectively shifts its priorities from swing damping to trajectory

tracking.

Overall, the simulations presented here suggest that our proposed controller is able to

effectively dampen swinging disturbances in a quadrotor-slung load system while tracking

an input-shaped flight trajectory. We have shown in simulation that our controller (C)

outperforms simpler baseline control designs (A and B) by better managing the interplay

between swing suppression control and tracking input-shaped flight trajectories. The

results in this section are similar to those we obtained with a preliminary version of

Controller C presented in [2].

3.4.4 Cable Length and Payload Mass Changes

The results presented Section 3.4.3 are a somewhat idealized scenario in that the cable

length and payload mass used in our simulation are the same as those used during the

controller tuning process. In a realistic scenario, the quadrotor will need to be able

to transport a variety of slung loads with different masses and potentially different cable

lengths. Our goal in this section is thus to investigate how well the control gains developed

in Section 3.4.1 for a 1m cable with a 0.4kg payload will perform when the cable length

and mass are changed in the simulation of the system.

Chapter 3. Controller Design 76

To begin with, we will assess the effect of changing the unstretched cable length l01 of

our system on the swing damping performance of our controller. We will replicate the

scenario from Simulation 1 in Section 3.4.3 where we begin our simulation with a relative

velocity between the payload and quadrotor and assess how well the system dampens

out this swinging motion. As shown previously in Figure 3.5, the performance of our

proposed controller (C) and the simplified B controller are identical for this scenario. We

thus compare the swing damping performance of our controller against the A controller

which has no swing feedback terms. We will reuse the same tuning gains presented in

Table 3.2 for these trials as well as the same payload measurement noise applied in Section

3.4.3. We once again scale the values of mq, mp and Jq by a factor of 0.9 anytime they

appear in our controller. The relative velocity between the payload center of mass and

the quadrotor takes the form [v 0 0]Tm s−1. For our trials, we normalize the initial

velocity applied based on the cable length being investigated. Specifically, we impose

the constraint that 0.5v2 = gl01. This corresponds to the requirement that a point mass

attached to a fixed pendulum of length l01 with initial velocity v will have just enough

kinetic energy to swing to 90◦. We will then compare the performance of Controllers

A and C based on three metrics. First we examine the maximum swing angle of the

slung load relative to the z axis of our inertial frame. We also consider the maximum

displacement of the quadrotor along the x axis. Finally, we assess how long it takes the

quadrotor to dampen the pendulum’s swinging to be within ±3◦. The results from these

trials are presented in Table 3.3

Table 3.3: Cable Length Analysis

l01 v Max Swing Angle Max Quad Displacement Time to dampen to ±3◦

(m) (m s−1) (◦) (m) (s)

A C A C A C
0.2 1.98 65 Unstable 0.171 Unstable 4.94 Unstable
0.4 2.8 69 63 0.255 0.383 6.62 2.365
0.6 3.429 71 64 0.315 0.486 7.3 2.845
0.8 3.96 72 66 0.36 0.558 7.61 3.225
1 4.427 73 67 0.393 0.608 8.435 2.99

1.4 5.238 74 68 0.438 0.669 9.11 4.645
1.8 5.94 75 69 0.464 0.702 10.565 5.81
2 6.261 75 70 0.473 0.712 11.315 7.53

A key issue that we observed in these trials is that our controller (C) was unstable for

cable lengths of 0.2m and lower. On closer inspection of these simulations we found that

our Oscillation Controller was computing large values for foscil from equation (3.21) due

to the high velocity of the payload. Furthermore, due to the short cable length, these

Chapter 3. Controller Design 77

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

10

20

30

40

50

60

70

80

S
w
in
g
A
n
g
le

(◦
)

Controller A
Controller C
3◦

Figure 3.16: 0.6m Cable: Time History of Swing Angle

requested force values change sign at a high frequency. The resulting desired attitude

changes for the drone were too aggressive for our Attitude Controller to track and our

system experienced saturation on all four motors. We would likely need to reduce the

controller gains in equation (3.21) in order to manage this kind of scenario. Realistically

though, we doubt that cable lengths of 0.2m or lower would be implemented for quadrotor-

slung load systems. Aside from these trials though, the results in Table 3.3 suggest that

our tuning can maintain a good performance across a wide range of cable lengths. Our

controller (C) consistently dampens the swinging motion of the payload much faster than

the A controller but at the cost of larger displacements of the quadrotor. This makes

sense since our controller essentially chases the swinging load while the A controller is

simply pulled away from its starting position by the cable tension. There also appears to

be a minimal reduction in the maximum swinging angle of the payload from using our

controller. The performance of our controller for a wide range of cable lengths makes

sense given that our Oscillation Controller relies on unit vectors instead of the position of

the payload to determine control inputs. Figure 3.16 shows the swing angle time history

for the 0.6m cable length trial. This figure clearly demonstrates the improved swing

damping of Controller C compared to Controller A.

We will now assess the effect of changing the payload mass on our controllers performance.

We replicate the same test scenario as above but this time alter the payload mass mp as

well as the initial relative velocity v along the x axis. For all trials presented here we

Chapter 3. Controller Design 78

once again use a 1m long cable. For this set of trials, we normalize v to ensure that the

payload always has the same starting kinetic energy of 5J regardless of how the payload

mass is changed. That is we impose the constraint 0.5mpv2 = 5. Once again we compare

Controllers A and C based on the maximum cable swing angle, quadrotor displacement

and time to dampen swinging to ±3◦. Our original controller was tuned based on a

1m cable, 0.4kg payload and a 1.35kg quadrotor. The results from this analysis are

summarized in Table 3.4.

Table 3.4: Mass Robustness Analysis

mp v Max Swing Angle Max Quad Displacement Time to dampen to ±3◦

(kg) (m s−1) (◦) (m) (s)

A C A C A C
0.3 5.774 102 92 0.342 0.458 11.81 4.805
0.4 5 83 77 0.425 0.635 8.55 3.685
0.8 3.536 52 47 0.599 0.756 4.27 3.17
1.1 3.015 42 38 0.664 0.781 3.25 3.16
1.35 2.722 37 33 0.7 0.793 3.135 3.135

In these trials low payload mass results in significant swinging motion of the payload.

The trial with a payload mass of 0.3kg resulted in angles of 102◦ or 92◦ which would pose

a serious risk to the drone platform and likely lead to crashes simply due to collisions

between the cable or payload and the drone’s propellers. For this reason we did not

consider smaller payload masses in this set of trials. An interesting trend in these results is

that as the payload mass increases, the swing damping performance of Controllers A and C

appear to be converging as do the overall displacements induced in the quadrotor. Figure

3.17 shows the performance of the A and C controllers for the trial where mp = 1.35kg.

This represents a fairly extreme test case since the quadrotor itself has a mass of 1.35kg

in these simulations. From Table 3.4, both controllers appear to have roughly identical

swing dampening performance for this trial. Controller A reacts to being pulled away

from its target position by the tension force in the cable as the payload moves. It thus

makes sense that the A controller would take longer to dampen swinging disturbances

caused by a lighter payload that cannot as easily displace it. Overall, it appears that

the tuning we obtained using a 0.4kg payload stays robust for a wide range of payload

masses.

The results presented in this section for Controller A are somewhat surprising and likely

merit further investigation. Transporting slung payloads with manned helicopters is in-

herently difficult as discussed in [3], [4] and [5]. We would thus expect that a simple

controller design such as Controller A might have more difficulty transporting slung loads

Chapter 3. Controller Design 79

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

5

10

15

20

25

30

35

40

S
w
in
g
A
n
g
le

(◦
)

Controller A
Controller C
3◦

Figure 3.17: 1.35kg Payload: Time History of Swing Angle

and would be more prone to failure than Controller C. We also might expect Controller

A to inadvertently add energy to the slung load while trying to correct for displacement

errors. In our simulations though, we generally found that Controller A remained stable

for a wide range of simulated scenarios. One possible explanation is that our simulation

model does not limit how quickly thrust inputs can change. On a real quadrotor drone

though, the propellers will take time to change rotation speeds and cannot instantly sup-

ply a desired thrust force. In general, we found that the performance of both the A and

C controllers degraded quickly if motor saturation was consistently being reached. This

makes sense since motor saturation indicates that our motors will no longer supply the

desired thrust and moment requested by our controller. Controller A may be slightly less

prone to saturation than Controller C since it does not have a f oscil term contributing to

the desired thrust vector f des in equation (3.34). In addition to potentially increasing the

magnitude of f des, the swing feedback f oscil term can also change direction quickly if the

payload is swinging violently. This could in turn lead to a more aggressive desired atti-

tude trajectory that would require larger control moments to track. Ultimately though,

these controllers will need to be compared on an actual quadrotor drone.

Chapter 4

Model Predictive Controller Design

The controller developed in Chapter 3 is based on the idea that when tracking an input-

shaped flight trajectory for a quadrotor-slung load system one should simultaneously

track a swinging motion reference trajectory. In our proposed controller, Controller C,

flight trajectory and swing trajectory tracking are treated as separate objectives. We

compute required forces to accomplish each one and then sum the results together as

shown in equation (3.34) to obtain an overall desired thrust force vector. This value

is then passed on to an Attitude Controller and subsequently a Thrust Allocation and

Saturation element. As we developed this controller, we conjectured that it might be

possible to formulate this entire problem in a single step. At the same time, we wanted

to see if we could incorporate saturation directly into our controller’s design. This led us

to explore the use of model predictive control (MPC) for a quadrotor-slung load system.

In this chapter, we begin by briefly introducing the topic of model predictive control and

its applications to quadrotor-slung load systems. We then discuss the development of a

preliminary model predictive controller using MATLAB and conclude by comparing it to

Controller C developed in Chapter 3.

4.1 Model Predictive Control for Quadrotor-Slung

Load Systems

As explained in [55], model predictive control is based on using a model to predict a

system’s future states based on the current state and a selected sequence of future inputs.

In this work, we restrict ourselves to a linearized and discretized system model and

perform predictions over a finite number of steps called the prediction horizon [56] [57].

81

Chapter 4. Model Predictive Controller Design 82

For each step forward in the prediction horizon our controller must select a corresponding

step input. To simplify this problem, we typically limit the degrees of freedom of our

control inputs using a control horizon.

We can illustrate this setup mathematically as done in [58]. We begin by linearizing and

discretizing a system model with state x and input u to obtain the form

xj+1 = A∗xj + B∗uj (4.1)

Using equation (4.1), we can determine a future sequence of states x, denoted as x̄ given

a sequence of future inputs ū. We define N to be the number of steps in our prediction

horizon and M to be the number of steps in our control horizon. We thus have x̄ =

[x̄0, x̄1, ..., x̄N] and ū = [ū0, ū1, ..., ūN−1]. Ultimately, we will want our controller to track a

prescribed set of states and perhaps even a set of nominal input values. To do so, we can

supply our system with desired future state and input trajectories x̄des and ūdes. We now

need to select values for ū that will, based on our discretized model, help our system track

these desired values. More formally, our goal is to determine ū such that we minimize a

chosen cost function J .

min
ū
J(x̄, ū) (4.2)

As an example, we can use the form in [58]:

J(x̄, ū) = (x̄N−x̄desN)TM1(x̄N−x̄desN)+
N−1∑
j=0

(
(x̄j−x̄desj)TM2(x̄j−x̄desj)+(ūj−ūdesj)TM3(ūj−ūdesj)

)
(4.3)

We can now subject the optimization problem in equation (4.2) to constraints:

x̄j+1 = A∗x̄j + B∗ūj , x̄0 = xcurr (4.4)

ūj =

∈ U, if j ≤M

ūM , if j > M
(4.5)

U := {u ∈ Rm |umin ≤ u ≤ umax} (4.6)

x̄j ∈ X := {x ∈ Rn | xmin ≤ x ≤ xmax} (4.7)

Constraint (4.4) imposes the linearized and discretized dynamics of our prediction model

onto the optimization problem. Values n and m correspond to the number of states

and inputs in our system. Weighting matrices M1 through M3 can be used to prioritize

tracking certain state or input trajectories over others in the system. Constraint (4.5)

functionally restricts the number of independent control inputs in ū to be equal to the

Chapter 4. Model Predictive Controller Design 83

number of steps in our control horizon M that is ū = [ū0, ū1, ..., ūM , ..., ūM]. This signif-

icantly simplifies the optimization problem by decreasing the number of values to solve

for. Constraints (4.6) and (4.7) allow us to build input and state constraints directly into

our controller as opposed to the technique used previously in Section 3.3.4. With every

loop of our flight controller, we take in the current state of our system xcurr and solve

problem (4.2) subject to constraints (4.4) through (4.7). We then apply the first control

input ū0 from sequence ū to our actual system and repeat the whole process at the next

loop of the controller. Numerous different forms of cost function J can be used and we

can also apply additional constraints on our system’s inputs and states. A more detailed

summary of the equations for setting up a model predictive controller for a nonlinear

system that has been linearized and discretized is presented in [56].

MPC has previously been applied to quadrotor-slung load systems. In [58], the authors

linearized the equations of motion of the system about the hovering condition. Their

controller implements constraints on the thrust from each motor as well as the quadrotor’s

height, pitch, roll and angular velocity. As with baseline Controller B presented in Section

3.4.2, the proposed controller in [58] uses a desired payload motion history whereby the

payload is always directly below the quadrotor. The proposed controller is demonstrated

in simulation and with flight tests. It is important to highlight though that for the

flight tests the controller was implemented off-board and commands were streamed to

the vehicle. The authors do note though that MPC has been demonstrated using only

onboard computations for a quadrotor drone. Another implementation of MPC for a

quadrotor-slung load system is presented in [59]. Here the authors also used off-board

computations and incorporated a downward facing camera into their controller design

to detect the motion of the payload. In a more recent publication [60], a controller

was developed for a quadrotor-slung load system with a focus on obstacle avoidance

and navigation through cluttered environments. The authors performed flight tests with

their proposed system but encountered significant payload swinging throughout as their

controller was not trying to dampen payload swinging at all.

4.2 Implementation

In order to implement our model predictive controller we relied heavily on MATLAB’s

built in model predictive control toolbox. We first generated a model that could be

linearized and discretized to predict the behavior of our system. We then set constraints

and chose an appropriate cost function to complete the optimization problem. We then

Chapter 4. Model Predictive Controller Design 84

tuned the weights within our cost function to achieve a desirable overall performance of

the quadrotor-slung load system in simulation, as will be discussed in Section 4.2.4.

4.2.1 Prediction Model

A key requirement for a model predictive controller is developing a linearized model for

a quadrotor-slung load system. The model proposed in Section 3.2 is not well suited to

this process since it requires computing tension forces within each cable. This greatly

complicates the process of linearizing the model. We thus implemented a simpler model

of a quadrotor-slung load system that could more readily be linearized. The proposed

model is based on [38]. The main differences between this model and that presented in

Section 3.2 is that this model incorporates only a single cable and treats it as an inelastic

rod. The rod is also assumed to be mounted on one end at the quadrotor’s center of mass

and at the other end to a point mass payload. Thus the swinging motion of the payload

will not directly affect the attitude dynamics of the quadrotor. The proposed model also

employs a East North Up convention for the reference frames. We denote the unit vector

pointing from the quadrotor center of mass to the payload along the cable resolved in

the inertial frame as ĉ. We also parameterize the attitude of the quadrotor frame FQ
relative to the inertial frame FI using Euler angles (φ, θ, ψ) where φ is the roll angle, θ

is the pitch angle and ψ is the yaw angle. We follow the same convention used in the

model predictive controller presented in [58] to evaluate the direction cosine matrix RIQ

as a function of our Euler angles.

RIQ =

( 1 0 0

0 cosφ sinφ

0 − sinφ cosφ


 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

)T

(4.8)

RIQ =

 cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


(4.9)

Based on [38] and [58], the equations of motion of the quadrotor-slung load system can

be summarized as follows.

(mq +mp)(r̈q + gzI) = fRIQzQQ +
fmp

mq
(ĉ×RIQzQQ)×ĉ +mplΩTΩĉ (4.10)

Chapter 4. Model Predictive Controller Design 85

zI = zQQ =

 0

0

1

 (4.11)

˙̂c = Ω×ĉ (4.12)

mqlΩ̇ = −f ĉ×RIQzQQ (4.13) φ̇

θ̇

ψ̇

 =
1

cos θ

 cos θ sinφ sin θ cosφ sin θ

0 cosφ cos θ − sinφ cos θ

0 sinφ cosφ

ωQ (4.14)

Jqω̇Q + ωQ
×JqωQ = mq (4.15)

where zI and zQQ are unit vectors parallel to the z axes of frames FI and FQ resolved in

their respective frames. The angular velocity of the cable resolved in the inertial frame is

given as Ω. The angular velocity of the quadrotor resolved in FQ is ωQ. f is the overall

thrust force of the quadrotor’s motors. In this setup since the cable is mounted at the

center of mass of the quadrotor, mq is simply the applied moment from the quadrotor’s

motors resolved in FQ. We thus get the following mapping between the thrust input from

each of the four motors (f0, f1, f2, f3) and the resulting thrust and moment.

[
f

mq

]
=


f

mq
x

mq
y

mq
z

 =


1 1 1 1

−a a a −a
−a a −a a
kq

kt
kq

kt
−k

q

kt
−k

q

kt



f0

f1

f2

f3

 (4.16)

where a is the distance between the center of mass of the quadrotor and the motor along

the x or y axis. The final state x and inputs u for our model predictive controller are

x =



rq

ṙq

φ

θ

ψ

ωQ

ĉ
Ω


, u =


f0

f1

f2

f3

 (4.17)

Using equations (4.9) and (4.16) as well as the definition of the × superscript given in

equation (3.4) we can recast and expand equations (4.10) through (4.15) such that they

Chapter 4. Model Predictive Controller Design 86

are only a function of elements of state x and inputs u. Using MATLAB, the resulting

model can be linearized about the hovering condition with

xequilb =


012×1 0

0

−1


03×1

 , uequilib =
(mq +mp)g

4


1

1

1

1

 (4.18)

The only nonzero state in xequilib corresponds to the cable unit vector ĉ pointing directly

downwards based on an East North Up convention. We can thus express a linearized

model of quadrotor-slung load dynamics in the form

ẋ = Ax + Bu (4.19)

y = Cx =



rq

ṙq

φ

θ

ψ

ĉ


(4.20)

where for output y we select matrix C such that we extract elements rq, ṙq, φ, θ, ψ, ĉ
from state x. We then discretize our system using the zero order hold method to obtain

the form needed for equation (4.4).

4.2.2 Constraints and Cost Function

The other two main requirements for establishing our model predictive controller are to

impose constraints on the inputs and states of our system and to establish a cost function

for our optimizer to solve. In the example shown in Section 4.1 for instance we solve the

optimization problem (4.2) with cost function (4.3) subject to input constraint (4.6) and

state constraint (4.7).

A key constraint to include in this system is the maximum and minimum thrust values

each motor can supply. Thus for for inputs f0 through f3 we impose

ktΩ
2
min ≤ fi ≤ ktΩ

2
max (4.21)

Chapter 4. Model Predictive Controller Design 87

where the values of kt, Ωmin and Ωmax are taken from Table 3.1. The MATLAB imple-

mentation environment that we are using to create and simulate our model predictive

controller also allows us to impose limits on the maximum change in magnitude that an

input can have from one step to the next (i.e. input rate constraints). We initially did

not impose this type of constraint on our model predictive controller but during prelim-

inary simulations we found that this produced unrealistic results. The model predictive

controller’s inputs would jump between the maximum and minimum allowable thrust

values at a high frequency that would be unrealistic for a quadrotor to replicate. For this

preliminary investigation we chose to limit the control inputs such that it would take at

least one second for the thrust to go from the minimum to the maximum value. This was

a conservative estimate as we did not have experimental data to rely on for the true rate

limit. With both of these constraints in place, the requested thrust inputs for our model

predictive controller no longer oscillate between the maximum and minimum values at

high frequencies. During preliminary testing of our controller we also considered applying

constraints to the pitch (θ) and roll (φ) Euler angles within our state x shown in equation

(4.17). From MATLAB’s online resources though it was recommended to avoid state con-

straints unless absolutely necessary and to instead restrict the states through controller

tuning [61]. We thus did not include any state constraints in our implementation.

The general form of the cost function used in MATLAB’s model predictive toolbox is

given in [62]. Unlike the form presented in equation (4.3) MATLAB’s toolbox considers

errors between the predicted sequence of system outputs ȳ and their corresponding desired

values ȳdes. As mentioned previously, we have chosen output y such that it contains states

rq, ṙq, φ, θ, ψ, ĉ for our system. The MATLAB cost function thus takes on the following

form.

J(ȳ) =
N∑
j=0

(
(ȳj − ȳdesj)TMM(ȳj − ȳdesj)

)
(4.22)

where N is the number of steps in our control horizon and M is a diagonal weighting

matrix. Adjusting the values of each term in matrix M allows us to tune the model

predictive controller by emphasizing tracking certain outputs over others.

In order to obtain values for ȳdes we used the following approach. Reference values for

rq and ṙq are obtained directly from the trajectory generator by evaluating at future

time steps. The references trajectories for Euler angles φ, θ and ψ are obtained by

implementing the differential flatness computations in Appendix A to solve for Rdf
IQ at

every future time step and then using the parameterization given in equation (4.9). The

reference values for the cable unit vector ĉ are obtained using the same second order

model approach described in Section 3.3.1.1. Once we have solved for r dp, we find that

Chapter 4. Model Predictive Controller Design 88

at any time step

ĉ =
r dp − r dq√

(r dp − r dq)T(r dp − r dq)
(4.23)

For our MATLAB implementation of the model predictive controller we precompute all

desired values and save these as a large list. As the simulation proceeds, the controller

will access a subset of this list in order to obtain the ȳdes values based on the current

time and the number of steps into the future that it needs. This differs from our previous

implementation in Chapter 3 where we solved for the desired swinging motion of the

payload onboard the drone at each time step. From a practical standpoint this means

that our model predictive controller will require extra pre-computations compared to

Controller C. It would be important to ensure that these extra pre-computations can be

run fast enough so that the system can still safely recompute flight trajectories while

flying at speed. This requirement may also mean that we would need a flight computer

with more memory to be able to store this information for our model predictive controller.

4.2.3 Simulator Setup

Our model predictive controller is built around the model presented in Section 4.2.1

and in theory we could use this same model to create our simulation environment for

testing purposes. This would represent an idealized situation though and would not

necessarily capture the fact that our real world dynamics will never perfectly match

those of our controller’s model. Thus while our controller uses the quadrotor-slung load

system model presented in Section 4.2.1, we will use the model developed in Section 3.2

for our simulation environment. As mentioned before, the main difference between these

models is that our simulation environment allows for offsets between the mounting point

of the cable on both the quadrotor and the payload and it allows the cable to effectively go

slack. We reuse the same properties for our simulated quadrotor-slung load system given

in Table 3.1. Whenever inertial properties are required in our predictive model such as in

equations (4.10), (4.13) and (4.15) we scale these by a factor of 0.9 to introduce additional

error between our controller’s model and the simulated system dynamics. Based on our

experience with test flying actual quadrotors, we assumed that our model predictive

controller would run at 100Hz and thus discretized our model based on a sampling time

of 0.01s. We similarly break down the simulated motion into discretized steps of 0.01s.

Thus during pre computation steps, we solve for the reference output y for every time

step in the simulation and store these values for use within our controller.

Chapter 4. Model Predictive Controller Design 89

4.2.4 Controller Tuning

Our next step was to tune the proposed model predictive controller. In our cost function

(4.22) we can select the number of steps in the prediction horizon, N , as well as the

diagonal entries of weighting matrix M. Furthermore, in constraint (4.5) we can select

the number of steps in our control horizon, M . From preliminary testing we found that

values of N = 20 and M = 3 appeared to produce good results for our system. We

thus decided to lock in these values and concentrate the majority of our tuning efforts

on adjusting the entries of diagonal control matrix M. Matrix M has dimensions 12× 12

with the diagonal entries corresponding to weights for errors in x, y, z position, x, y, z

velocity, Euler angles φ, θ, ψ and the x, y, z components of unit vector ĉ. In order to tune

our controller we first considered a simple scenario where the quadrotor must maintain

its position while the payload is given an initial relative velocity of [3 0 0]Tm s−1. We

initially tested this setup with the velocity and Euler angle gains set to zero and found

that the controller quickly became unstable. In particular, we found that the quadrotor

was making large pitch and roll motions. Setting non-zero Euler angle gains significantly

improved the stability of our system in this setup by effectively penalizing deviations of

the pitch and roll angles away from zero. We also found that introducing non zero weights

for velocity errors significantly improved the speed at which the quadrotor recovered to

its original position. We further adjusted the relative magnitude of all elements to achieve

a good balance of swing suppression coupled with a quick recovery time to the starting

position. One observation that me made during this process is that our model predictive

controller tends to drop slightly in altitude. This makes sense since our controller does not

incorporate any integral control element for the z position and has an imperfect estimate

of its true weight. This was not a major issue though as we are primarily concerned with

accurate tracking of trajectories in the XY plane. During the tuning process, we found

that our model predictive controller was very sensitive to swinging disturbances and at

times went unstable when large initial relative velocities were imposed on the payload.

We found for instance that with our initial tuning, our model predictive controller was

unable to track the maneuver used in Simulation 3 in Section 3.4.3. We attempted to

manually adjust our gains for this simulated scenario but could not obtain a satisfactory

tuning. We ultimately opted to test our tuning on with a different maneuver with slightly

smaller swinging disturbances. This allowed us to make further adjustments to our tuning

before settling on a satisfactory solution. Our main goal was to achieve good trajectory

tracking for the quadrotor while also suppressing swinging motion in the payload. The

Chapter 4. Model Predictive Controller Design 90

final control gains along with their units are presented below:

M = diag

[
6 (1√

m
), 6 (1√

m
), 6 (1√

m
), 2 (

√
s
m

), 2 (
√

s
m

), 2 (
√

s
m

), 2 (1√
rad

), 2 (1√
rad

), 1 (1√
rad

), 9, 9, 9

]
(4.24)

4.3 Simulation Results

Our goal in this section is to compare Controller C from Chapter 3 to our new model

predictive controller. Building on the approach presented in Sections 3.4.2 and 3.4.3, we

create two model predictive controllers to compare against Controller C. Controller D is

a model predictive controller that uses the method outlined in Section 4.2.2 to compute

a reference swinging motion. Controller E is identical to Controller D except that when

computing unit vector ĉ for our reference trajectory we will impose ĉ = [0 0 − 1]T

instead of using equation (4.23). Functionally this means that Controller E will view any

swinging motion in the payload as an error to be corrected while Controller D will try

to track a reference swinging motion paired with the desired flight trajectory. This is

analogous to the setup we established in Sections 3.4.2 and 3.4.3 with Controllers B and

C.

Once our tuning was established, we ran Controllers C, D and E through a series of simu-

lations. Unlike the simulations in Section 3.4.3 though, we will not impose measurement

noise on any of the controllers. We opted for this modification since the implementation

of Controllers C, D and E in MATLAB are significantly different and this made it more

complicated to ensure that each was being affected by noise in the same way. The param-

eters of the quadrotor and its slung load are taken from Table 3.1. Controller C uses the

same gains outlined in Table 3.2 while Controllers D and E use the values from Section

4.2.4. For our first simulation, we will compare the capabilities of Controllers C, D and E

for damping out an initial swinging disturbance on the payload while maintaining their

current position. This disturbance is generated by imposing an initial relative velocity

between the center of mass of the quadrotor and payload of [−2 − 1 0]Tm s−1. Figure

4.1 shows the resulting swing angle of the payload for this simulation. Figure 4.2 shows

the magnitude of the error in the XY plane between the quadrotor’s actual position and

the desired position.

In Figures 4.1 and 4.2, the performance of Controllers D and E is identical as in this

simulation there is no requested quadrotor motion and thus no reference swinging motion

for Controller D. From Figure 4.1, it is apparent that our original controller (C) is able

Chapter 4. Model Predictive Controller Design 91

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

5

10

15

20

25

30

35

S
w
in
g
A
n
g
le

(◦
)

Controller C
Controller D
Controller E
Reference

Figure 4.1: Simulation 4: Time History of Swing Angle

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X
Y

T
ra
je
ct
o
ry

T
ra
ck
in
g
E
rr
o
r
M
a
g
n
it
u
d
e
(m

)

Controller C
Controller D
Controller E

Figure 4.2: Simulation 4: Time History of Quadrotor Trajectory Tracking Error
Magnitude

Chapter 4. Model Predictive Controller Design 92

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 0 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 1 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 2 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 3 Thrust

Controller C

Controller D

Controller E

Force Limits

Figure 4.3: Simulation 4: Time History of Motor Thrust Forces

to dampen the swinging disturbance faster than either model predictive controller. We

can also see from Figure 4.2 that the model predictive controllers (D and E) have slightly

more difficulty returning to the desired starting position than Controller C. Figure 4.3

shows the thrust force from each motor throughout this simulated flight. Once again, in

Figure 4.3 the performance of Controllers D and E are identical. We notice though that

the requested force values from the model predictive controllers change more gradually

than those from Controller C. This behaviour is due to the input rate constraint that

we imposed while designing Controllers D and E. Only Controller C appears to reach

thrust saturation on one of its motors at time zero. Upon further analysis we also found

that both Controllers D and E temporarily reach the imposed input rate limit for all four

motors within the first second of simulation but not afterwards.

We now compare the three controllers for tracking an input-shaped flight trajectory. In

this simulation we will have the quadrotor start at the origin with an initial velocity of

[6 0 0]Tm s−1. Our goal will be to perform an aggressive turn by reaching position

[3 − 4 0]Tm with a final velocity of [−2 4 0]Tm s−1 within a total time of 7s. The

initial and final accelerations of the quadrotor are set to zero and we do not impose any

relative velocity between the quadrotor and the payload at the start. We employ a two-

hump EI shaper for this maneuver and we simulate the system behaviour for a total of

10s. Figure 4.4 shows a top view of the resulting motion of the quadrotor for all three

Chapter 4. Model Predictive Controller Design 93

-4 -2 0 2 4 6 8 10 12

X (m)

-10

-8

-6

-4

-2

0

2

4

6

8

10

Y
(m

)

Target Path
Controller C
Controller D
Controller E

Figure 4.4: Simulation 5: Top View of Quadrotor Motion

controllers. Figure 4.5 compares the swing angle for all three controllers throughout the

maneuver. Figure 4.6 shows the position tracking error magnitude for the XY plane.

Figure 4.7 compares the thrust force requested for each motor by each controller.

From Figure 4.5 we can see that all three controllers experience nearly the same swinging

motion of their payload and that this motion closely resembles the computed reference. In

Figure 4.6 though we can see that all three controllers experienced significantly different

tracking errors. The large tracking error for Controller E compared to Controller D can

be seen in both Figures 4.4 and 4.6. We propose that this difference is due to the fact

that Controller E is constantly trying to eliminate any swinging motion that it sees in the

payload while Controller D has a reference swinging trajectory that it attempts to track.

More specifically, Controller E attempts to chase after the swinging payload causing it to

make a wider turning motion than Controller D as seen in Figure 4.4. This performance

mirrors the results from Simulation 2 in Section 3.4.3 where Controller B had difficulty

tracking an input-shaped u-turn trajectory because it too tried to eliminate any swinging

motion that it saw in the payload. From Figure 4.6 we can also see that Controller D has

lower tracking error than Controller C throughout the majority of the simulation. The

input force magnitude plots in Figure 4.7 show that the model predictive controllers can

produce requested inputs that do not change as aggressively or reach as high magnitudes

as Controller C. This is especially apparent for Motors 0 and 1.

Chapter 4. Model Predictive Controller Design 94

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

5

10

15

20

25

S
w
in
g
A
n
g
le

(◦
)

Controller C
Controller D
Controller E
Reference

Figure 4.5: Simulation 5: Time History of Swing Angle

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

X
Y

T
ra
je
ct
o
ry

T
ra
ck
in
g
E
rr
o
r
M
a
g
n
it
u
d
e
(m

)

Controller C
Controller D
Controller E

Figure 4.6: Simulation 5: Time History of Quadrotor Trajectory Tracking Error
Magnitude

Chapter 4. Model Predictive Controller Design 95

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 0 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 1 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 2 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 3 Thrust

Controller C

Controller D

Controller E

Force Limits

Figure 4.7: Simulation 5: Time History of Motor Thrust Forces

We now repeat this previous simulation but introduce an initial relative velocity between

the center of mass of the quadrotor and payload of [−2 −1 0]Tm s−1. For the resulting

simulation, Figure 4.8 shows a top view of the motion of the quadrotor for all three

controllers. Figure 4.9 compares the swing angle for all three controllers. Figure 4.10

shows the position tracking error magnitude for the XY plane. Figure 4.11 compares the

thrust force requested for each motor by each controller.

From Figure 4.9 we can see that all three controllers appear to perform equally well at

damping the initial swinging disturbance. Controllers D and E experience larger swing

amplitudes than C but they appear to be able to effectively recover. However, in Figure

4.10 we see that Controller E has significantly higher flight trajectory tracking error than

Controller D. This mirrors the performance of Controllers B and C from Simulation 3 in

Section 3.4.3. The trajectory tracking performance of Controller D appears to be better

than Controller C throughout most of the simulation and reaches a lower peak error value.

Once again, we can see in Figure 4.11 that the force requirements for Controllers D and

E tend to change more gradually than those of Controller C especially for Motors 0 and 1

for this simulation. The high initial forces in Controller C are due to the fact that it uses

a measurement of the high initial payload velocity in order to compute a control force to

apply.

Chapter 4. Model Predictive Controller Design 96

-4 -2 0 2 4 6 8 10 12

X (m)

-10

-8

-6

-4

-2

0

2

4

6

8

10

Y
(m

)

Target Path
Controller C
Controller D
Controller E

Figure 4.8: Simulation 6: Top View of Quadrotor Motion

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

5

10

15

20

25

30

35

40

S
w
in
g
A
n
g
le

(◦
)

Controller C
Controller D
Controller E
Reference

Figure 4.9: Simulation 6: Time History of Swing Angle

Chapter 4. Model Predictive Controller Design 97

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

X
Y

T
ra
je
ct
o
ry

T
ra
ck
in
g
E
rr
o
r
M
a
g
n
it
u
d
e
(m

)

Controller C
Controller D
Controller E

Figure 4.10: Simulation 6: Time History of Quadrotor Trajectory Tracking Error
Magnitude

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 0 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 1 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 2 Thrust

Controller C

Controller D

Controller E

Force Limits

0 5 10

Time (s)

0

5

10

15

F
o
rc
e
(N

)

Motor 3 Thrust

Controller C

Controller D

Controller E

Force Limits

Figure 4.11: Simulation 6: Time History of Motor Thrust Forces

Chapter 4. Model Predictive Controller Design 98

Overall, this section demonstrates that we can improve the input-shaped trajectory track-

ing performance of a model predictive controller by supplying it with a computed reference

swinging motion. In both Figures 4.6 and 4.10, we see that Controller D is able to track

the prescribed flight trajectory better than Controller E. This is due to the fact that Con-

troller D is given access to both a desired flight trajectory as well as the corresponding

desired swinging motion of the payload as computed by our second order model. The

fact that the quadrotor and payload swing trajectories are coupled together means that

Controller D will be more likely to find a feasible solution that will allow it to track both

when it tries to minimize the cost function in equation (4.22). In contrast, Controller

E’s desired swinging trajectory does not correspond to its desired quadrotor motion and

it will thus converge to solutions that balance trying to meet these competing demands.

This overall results in poorer trajectory tracking performance for Controller E. It is en-

couraging that these results mirror the performance improvement seen previously between

controllers C and B in Section 3.4.3.

We need to be cautious when comparing the performance of Controllers C and D though.

Controller C outperformed Controller D for the simulated position holding task subject

to an initial swinging disturbance. Specifically, Controller C suppressed swinging faster

and was able to recover to its starting position sooner than Controller D. For trajectory

tracking simulations though, Controller D had lower tracking error in the XY plane while

having similar swing suppression to Controller C. The main benefit of Controller D seen

throughout all simulations is that its inputs do not change as aggressively as those for

Controller C. Controller D is built with constraints on the rate of change of its inputs

which may overall lead to a more reasonable input trajectory for an actual quadrotor to

replicate. At the same time, the imposed constraint is conservative and may be hindering

the capabilities of the quadrotor to track prescribed paths. For example, during tuning

we found that we were unable to achieve good trajectory tracking and swing dampening

when we replicated the scenario in Simulation 3 from Section 3.4.3 with Controller D. We

also found upon further analysis that both Controllers D and E reached rate saturation

on each motor at least once in Simulations 4, 5 and 6. The thrust input rates never dwell

at this maximum rate for more than a few tenths of a second and usually decline as the

simulation progresses. At the same time, because these rate constraints are being used

within our optimization problem at every loop of the flight controller they may still be

effecting the chosen control inputs throughout the entire simulation. It would thus be

worth experimentally measuring the true limit for the rate of change of the quadrotor’s

thrust and using these values within our model predictive controller. This may improve

the performance of Controller D relative to Controller C. This preliminary analysis also

Chapter 4. Model Predictive Controller Design 99

did not explore how the performance of our model predictive controllers could potentially

be improved by increasing the number of steps in our prediction and control horizons.

There are also some key implementation differences between Controllers C and D to

consider. Controller D is inherently more computationally demanding to implement as

it requires solving an optimization problem with each loop of the flight controller. This

may mean that Controller D would need to run at a lower frequency than Controller C on

an actual quadrotor drone which could alter its performance. As previously discussed, an

implementation of Controller D would also involve additional pre-compution steps and

may require additional flight computer memory to store reference data. Ultimately, we

believe that additional development work should be done in simulation for the proposed

model predictive controllers and that Controllers C and D should be compared with actual

flight tests.

Chapter 5

Experimental Setup

This chapter discusses the process of taking the trajectory generation algorithm developed

in Chapter 2 and the subsequent controller developed in Chapter 3 (Controller C) and

implementing both on an actual quadrotor drone for validation. We begin by discussing

the process of integrating both elements into the PX4 open source flight stack. We then

provide an overview of the flight hardware used in our setup including a discussion of

setting up a downward facing camera for payload detection. This chapter concludes with

a discussion of our preliminary flight testing.

5.1 Trajectory Generator and Controller Implemen-

tation

In order to apply our proposed trajectory generator and controller to an actual drone

we need to integrate these elements into a full flight stack and run them on a flight

computer. Our lab’s research drones all run the open source PX4 flight stack which is

compatible with the Pixhawk family of flight controllers. PX4 is an open source full stack

software package that enables remote control or autonomous operation of fixed wing and

quadrotor drones. The flight stack has a built-in state estimator to fuse sensor data

from an onboard inertial measurement unit (IMU), gyroscope and magnetometer while

also being able to accommodate global positioning system (GPS) and motion capture

data. The software stack is divided into modules that ultimately publish and read data

from a set of topics. The PX4 flight stack provides a solid foundation for implementing

our trajectory generator and flight controller. For this work we modified the baseline

flight controller to accommodate the controller from Chapter 3 and incorporated a new

101

Chapter 5. Experimental Setup 102

module to implement the trajectory generator from Chapter 2. The baseline controller is

similar in structure to the controller developed in Chapter 3 which facilitates this task.

In contrast, the model predictive controller developed in Chapter 4 (Controller D) would

be significantly more challenging to implement within PX4 as it requires additional code

to solve an optimization problem with each loop of the flight controller. For this reason

we decided to focus primarily on implementing the simpler controller from Chapter 3.

The baseline quadrotor controller provided as part of the PX4 stack is divided into a

position controller and an attitude controller which each have their own module. For our

implementation though, we constructed our full controller within one module. During

the implementation phase, we created three operating modes for our drone. The first

operating mode provides manual control over the quadrotor’s flight to facilitate takeoff

and landing. This mode also serves as an important safety feature during autonomous

flights. Autonomous takeoff with a slung payload presents its own set of challenges and

is beyond the scope of this thesis. An example of a controller and trajectory generator

dedicated to this problem is presented in [63]. Initially, we used the baseline PX4 flight

controller for this manual flight mode. We found that this created issues with the overall

code development process and later decided to implement this manual flight mode by

modifying our proposed flight controller. In our final implementation, the attitude joystick

inputs are scaled to obtain desired pitch, roll and yaw angles which are converted into

the desired attitude quaternion qQd and in turn the desired direction cosine matrix Rd
IQ

for subsequent use in our Attitude Controller from Section 3.3.3. For simplicity, during

this operating mode we also skip the differential flatness computations and set ωQdf

and ω̇Qdf to zero. The throttle joystick input is scaled to obtain F thrust. Our second

operating mode is an autonomous hovering mode. The position of the drone is sampled

when the hovering mode is activated and the measured value is used as a setpoint for

the drone’s position, bypassing the trajectory generator element of our system. In a

typical flight test, we takeoff and achieve hover under manual control then set the drone

to the autonomous hovering mode. We found that a hovering mode was useful for tuning

the flight controller’s gains. The final operating mode autonomously tracks a prescribed

motion generated using the techniques discussed in Chapter 2.

The process of implementing our flight controller and trajectory generator within the PX4

flight stack led us to make a series of changes to both elements. In our original presentation

of Controller C [2], the Position Controller had no integral control element in equation

(3.35). During preliminary flight trials, we found that the drone had difficulty maintaining

its altitude after transitioning from manual control to autonomous hovering. This issue

was largely resolved by adding an integral control element for the z motion of the drone

Chapter 5. Experimental Setup 103

as shown in equation (3.35). The performance of our controller could likely be further

improved by introducing a battery voltage compensation system as done in [64]. The

drop in voltage on the battery affects the thrust generated by the motors meaning that

over time larger control inputs will need to be requested to achieve hover. Our original

Attitude Controller in [2] also used scalar control gains instead of diagonal control gain

matrices in equations (3.42) and (3.45). This meant that the same gains were applied for

pitch, roll and yaw errors. Our quadrotor’s propellers though have a low moment constant

kq resulting in a limited ability to generate yawing moments. Combined with the high

control gains, this meant that our Attitude Controller would quickly reach saturation for

small yaw errors. The saturation problem was further compounded by integral windup for

yaw errors. Our solution was to decouple the yaw gains in our Attitude Controller from

the pitch and roll gains as well as eliminating the integral control element for our yaw

attitude. These changes dramatically improved the flight performance of our system and

are reflected in the Attitude Controller presented in Section 3.3.3. In our final controller

tuning, shown in Table 3.2, for instance notice how the proportional control gains for

pitch and roll errors in Katt
R are significantly higher than the gain for yaw error.

A further modification we made during this stage involved the trajectory generator. The

implementation done in MATLAB in order to perform simulations in Chapters 2 and 3 as

well as in [2] only allows for a single maneuver to be studied. In a realistic flight scenario

the algorithms developed in Chapter 2 would be used as part of a larger algorithm incor-

porating obstacle detection as well as information about the required task and allowable

flight paths. The development of such a system is beyond the scope of this thesis but we

still wanted to be able to have the drone perform flights involving multiple input-shaped

motion trajectories that need to be computed mid flight. We thus developed Algorithm 4

to schedule and run multiple maneuvers sequentially. Algorithm 4 incorporates the previ-

ously developed Algorithms 1 and 2 while allowing one maneuver to interrupt another to

simulate a scenario where a sudden course change is required. Algorithm 4 is run as a sep-

arate module in the PX4 flight stack for achieving autonomous flight when activated by

the pilot. To simulate an interrupted maneuver we simply need to set T 2
start−T 1

start < T 1
F

as an example. Maneuvers are always generated using the most recently measured state

of the drone. This ensures that even if the quadrotor cannot perfectly track a prescribed

motion its next flight trajectory will always begin at its current position. Furthermore,

the extension technique proposed in Section 2.3 means that our drone will still have a

prescribed flight trajectory even if there are gaps in the prescribed maneuver schedule.

In our implementation, the desired position, velocity, acceleration, jerk and snap of the

quadrotor drone are published to a topic within the flight stack which can then be read

by the controller module.

Chapter 5. Experimental Setup 104

Algorithm 4: Maneuver Scheduling Algorithm

input : Maneuver start times (T 1
start, T

2
start, ...), Maneuver durations (T 1

F , T 2
F , ...),

Maneuver end states:

 xIS 1
F

yIS 1
F

zIS 1
F

  ẋIS 1
F

ẏIS 1
F

żIS 1
F

  ẍIS 1
F

ÿIS 1
F

z̈IS 1
F

,

 xIS 2
F

yIS 2
F

zIS 2
F

  ẋIS 2
F

ẏIS 2
F

żIS 2
F


 ẍIS 2

F

ÿIS 2
F

z̈IS 2
F

, ... , Period of oscillation for natural frequency of swinging (Td),

ζIS = 0, Vtol = 0.05, Input shaper type (ZV, two-hump EI)

Initialization : Ttrigger = T 1
start, maneuverID = 1

Measure starting position of the drone rqstart = rq

while True do
Record current state of the drone: rq, vq, aq
Obtain current time tglobal, measured from when started autonomous flight mode

if tglobal < T 1
start then

Hold starting position: r dq = rqstart, v dq = a dq =
...r dq =

....r dq = 0
else

if tglobal > Ttrigger then
Run : Algorithm 1 for x, y and z axes using desired end state from
maneuver maneuverID, store all outputs
Tmaneuver start ← Ttrigger
maneuverID ← maneuverID + 1
Ttrigger ← TmaneuverIDstart

end
teval ← tglobal − Tmaneuver start
Run : Algorithm 2 for x, y and z axes to obtain r dq, v dq, a dq, ...r dq,r dq

end

output: r dq, v dq, a dq, ...r dq,r dq

end

5.2 Test Setup

Our flight test area uses a modified AscTec Pelican quadrotor drone [65] as our main ex-

perimental platform. The quadrotor, shown in Figure 5.1, is equipped with four MS2216-

11 KV 900 motors [66] each supplied by its own T Motor F20A 2-4S electronic speed

controller (ESC) [67]. The quadrotor uses APC 10 × 4.7 propellers [68] and typically

carries a single three-cell lithium polymer (LiPo) battery with a 2250mAh rating. We

updated the Pelican drone to run on a mRo PixRacer [69] flight computer that is com-

patible with the PX4 flight stack. In order to obtain position feedback for indoor flights

we outfit the drone with VICON markers as shown in Figure 5.2. VICON cameras in the

flight test area shown in Figure 5.2 capture the position of each marker on the quadrotor

Chapter 5. Experimental Setup 105

Figure 5.1: Modified AscTec Pelican used for Flight Testing

Figure 5.2: VICON Motion Capture Flight Test Setup

and transmit the data to a desktop computer. The computer matches the markers to a

configuration that has been calibrated for our quadrotor to solve for the vehicle’s position

and attitude. This information is then sent via wifi to an Odroid XU 4 mounted on the

Pelican drone. The Odroid passes the data to the PixRacer flight computer where it is

fed into the system’s state estimation algorithm. The drone is equipped with a metal

harness so that it can be tethered during indoor flights for added security.

5.3 Payload Detection

A critical hurdle in conducting flight tests of our proposed flight controller is to measure

the position of the payload relative to the quadrotor drone. For indoor flight testing,

a common approach is to use a motion capture environment such as a VICON system

to measure the position of the payload. This approach provides an unrealistic level of

measurement accuracy and would not properly simulate a typical slung load delivery

Chapter 5. Experimental Setup 106

Figure 5.3: Payload Tracking with Camera Nomenclature

application. A more realistic option is to use a downward facing camera mounted on the

drone to detect the motion of the payload as done in [37]. Another alternative is presented

in [50] where a load cell is mounted on the cable and the resulting force measurements

are fused with measurements from the drone’s accelerometer to estimate the angle of the

slung load. For this work we opted to use a Pixy Camera [70] mounted on our quadrotor

to detect the position of the slung load. The Pixy Camera is purpose built for basic object

detection and tracking in robotics applications. Furthermore, there is already existing

code within the PX4 flight stack for using this camera to detect infrared beacons for

autonomous landing operations [71]. For our project we removed a filter from the camera

to enable it to detect a payload marked with coloured tape and modified the existing

code in the PX4 flight stack for payload tracking.

Our Oscillation Controller in Section 3.3.1 requires measurements of the position rp and

velocity vp of the payload resolved in the inertial frame FI . Our camera system will make

measurements in its own coordinate frame FC though and these will need to be converted

to FI first. Figure 5.3 provides an overview of the nomenclature used throughout this

section. The Pixy Camera directly outputs the values for (tan θx) and (tan θy) in Figure

5.3 corresponding to the x and y position of the payload measured in frame FC . The

camera can provide an estimate of the object depth δ based on the size of the marker but

we felt that this would not be reliable given that the marker’s size will appear to change as

Chapter 5. Experimental Setup 107

its orientation shifts during a swinging motion. We thus developed an alternate method

for determining δ based on the known cable length in our system. To simplify this analysis

we will assume that the payload is treated as a point mass p. We will also assume that

the vector between the payload mounting point q1 and the camera lens c resolved in the

quadrotor’s frame, rcq1Q , is known. This value depends entirely on the geometry of the

quadrotor and would be hard coded into the flight computer. Furthermore, we assume

that the transformation between FC and FQ only involves a rotation about the z axis

by a known angle φc. This is reasonable assumption here since we will be mounting our

camera facing downwards along the positive z axis of the quadrotor but we may want

to rotate the camera’s frame relative to the quadrotor’s frame to optimize the available

field of view. We first parameterize the position of the payload as seen in the camera

frame using depth δ and angles θx and θy shown in Figure 5.3. The position of the

payload relative to the camera lens resolved in the camera frame, rpcC , thus takes the form

rpcC = [δ tan θx δ tan θy δ]T. Within this setup we have:

r−→
pq1 = r−→

pc + r−→
cq1 (5.1)

rpq1Q = rcq1Q + RQCrpcC = rcq1Q + RQC

 δ tan θx

δ tan θy

δ

 (5.2)

RQC =

 cosφc − sinφc 0

sinφc cosφc 0

0 0 1

 (5.3)

Defining rcq1Q = [∆x ∆y ∆z]
T, where all ∆ values are known, we find that

rpq1Q =

 ∆x + (cosφc tan θx − sinφc tan θy)δ

∆y + (sinφc tan θx + cosφc tan θy)δ

∆z + δ

 (5.4)

For a taut cable though, we expect that ‖ r−→
pq1‖

2
= l where l is computed using equation

(3.20). Defining a = (cosφc tan θx − sinφc tan θy), b = (sinφc tan θx + cosφc tan θy), we

find that

l2 = (∆x + aδ)2 + (∆y + bδ)2 + (∆z + δ)2 (5.5)

0 = (1 + a2 + b2)δ2 + (2a∆x + 2b∆y + 2∆z)δ + (∆2
x + ∆2

y + ∆2
z − l2) (5.6)

Chapter 5. Experimental Setup 108

δ =
−(2a∆x + 2b∆y + 2∆z)±

√
(2a∆x + 2b∆y + 2∆z)2 − 4(1 + a2 + b2)(∆2

x + ∆2
y + ∆2

z − l2)

2(1 + a2 + b2)
(5.7)

Equation (5.7) will always produce a single positive solution for δ. Having solved for δ,

we can now fully solve for rpq1Q in equation (5.4). We then obtain the required rp value

based on having access to measurements of the quadrotor’s position rq and orientation

RIQ as follows

rp = rq + RIQ(rq1Q + rpq1Q) (5.8)

where from Figure 3.1, rq1Q is the position of the cable mounting point on the quadrotor

relative to its center of mass resolved in the quadrotor’s frame.

In order to estimate the velocity of the payload vp as measured in the inertial frame,

we perform a finite difference computation based on the current and previously obtained

measurement for the payload’s position resolved in the camera frame.

vp = vq + RIQṙpq1 filteredQ + RIQ

(
ωQ
×

(rpq1Q + rq1Q)
)

(5.9)

ṙpq1Q = RQC

(rpcC current − rpcC previous
∆t

)
(5.10)

where ∆t is the time elapsed since the previous camera measurement was made. This

method relies on the fact that the quadrotor already has an estimate of its own velocity

vq and angular velocity ωQ. In our implementation we obtain ṙpq1 filteredQ by applying a

discrete first order lowpass filter to the computed values of ṙpq1Q . Our filter is designed

with a time constant of 0.125s. This process helps to offset the noise induced the finite

difference computation in equation (5.10). Rudimentary testing of the proposed method

was conducted but we were unable to compare the accuracy of the computed payload

position and velocity against a baseline such as VICON measurements. A more advanced

approach to estimate the state of the payload would be to develop a state estimator that

can fuse data from the drone’s sensors with camera information. In [37] for instance, the

authors develop an Extended Kalman Filter to perform payload state estimation for a

quadrotor-slung load system equipped with a downward facing camera.

5.4 Drone Characterization

This section discusses some of the characterization work that was done in order to prepare

the Pelican quadrotor drone for flight testing. The primary focus of this section is to

bridge the gap between the signals from the onboard controller and the resulting thrust

Chapter 5. Experimental Setup 109

Figure 5.4: Thrust Application Process

applied to the drone. While performing initial flight testing with the Pelican drone, we

found that there was a mismatch between the force values being requested by the flight

controller and the actual thrust being applied by the quadrotor’s motors. This meant

that during autonomous hovering for example the steady state force requested by the

controller did not match the actual weight of the drone. These observations motivated a

closer study of the process by which the commanded thrust force for a given motor gets

converted to an actual applied thrust force on the drone. A high level overview of this

process is presented in Figure 5.4. The blue blocks in Figure 5.4 are software elements

while the yellow blocks denote hardware elements. On the software side, we need to

convert the desired thrust force prescribed by our controller for a given motor into a

pulse width modulation (PWM) signal to send to the electronic speed controller (ESC).

We model this conversion process using empirical relations. Under ideal circumstances,

these empirical relations will perfectly mirror the behaviour of the hardware elements

resulting in a true thrust that matches our desired thrust. Section 5.4.1 discusses the

process of determining the empirical relation mapping a desired thrust to a desired motor

RPM . Subsequently in Section 5.4.2 we will develop an empirical relation linking the

desired RPM and the desired PWM signal.

5.4.1 Propeller Characterization

Typically we assume that for a propeller mounted with its axis of rotation pointing along

the z direction that the resulting thrust force Fz and reaction moment Mz are

Fz = ktRPM
2 (5.11)

Mz = ±kqRPM2 (5.12)

The kt and kq constants depend solely on the propeller geometry and are independent of

the motor and all other electric hardware being used. In order to obtain values for kt and

kq we removed one of the APC 10 × 4.7 propellers from the quadrotor and mounted it

on a test stand with a motor and load cell. The test stand is set up to cycle through a

range of PWM signals while recording the resulting RPM values as well as the generated

Chapter 5. Experimental Setup 110

0 1 2 3 4 5 6 7

RPM
2

×10
7

0

2

4

6

8

10

12

14

F
z
(N

)

Filtered data
Fit: Fz = ktRPM

2

Figure 5.5: Thrust Versus RPM2 for APC 10× 4.7 Propeller

forces and moments. The resulting RPM , force and moment data was filtered using a

Savitzky-Golay filter in MATLAB with polynomial order one. The frame size used for

the filter was 21 for the the RPM and force data and 101 for the moment data. We

passed the RPM data through the same filter two times due to the high amount of noise.

We then plotted the resulting filtered data against the square of the RPM data and

solved for the zero intercept line of best fit. These results are shown in Figures 5.5 and

5.6. From Figures 5.5 and 5.6 we obtain the values kt = 1.993 × 10−7NRPM−2 and

kq = 3.3× 10−9N mRPM−2 used in Table 3.1.

5.4.2 Motor Characterization

The relationship between the PWM signal and the resulting motor RPM is highly depen-

dent on the motor and propeller being used. The test stand used in the previous section

does not use the same motor or ESC as our quadrotor drone so we needed to develop a

new testing setup for determining the relationship. Our experimental setup is shown in

Figure 5.7. In Figure 5.7, the quadrotor is tied to a table in the lab so that it cannot

move when the propellers spin. We then sent the same PWM signal to each motor on the

drone with a modified flight controller. We put a piece of tape on each propeller and used

a strobe light to measure the RPM of each propeller by manually matching the strobe

Chapter 5. Experimental Setup 111

0 1 2 3 4 5 6 7

RPM 2
×10

7

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
z
(N

m
)

Filtered data
Fit: Mz = kqRPM 2

Figure 5.6: Moment Versus RPM2 for APC 10× 4.7 Propeller

Figure 5.7: PWM to RPM Experimental Setup

Chapter 5. Experimental Setup 112

frequency with the propeller RPM such that we had a stationary image. Care needs to be

taken during this stage as false positive readings can be achieved if the strobe frequency

is half that of the propeller’s true RPM . For each PWM signal tested, we recorded the

RPM of each propeller on the drone and then averaged these values. We found that two

of the four motors typically had very similar RPM values but that the remaining two

were consistently higher. Typically, the difference between the lowest and highest RPM

values recorded was on the order of 400RPM . Based on the kt value of our propeller

though, this corresponds to a relatively minor thrust difference on the order of 0.03N.

During preliminary tests we found that the process of manually identifying the RPM of

each motor tended to be time consuming and could easily deplete a fully charged battery

after a one or two data points. This raised concerns about how the drop in battery voltage

would affect our experimental results. To get around this issue, we modified our setup so

that the drone was powered using an external power supply set to 12.2V . Under normal

operating conditions, the drone would have a three-cell LiPo battery with a fully charged

voltage of 12.5V. The power supply was limited to a maximum current draw of 5A which

restricted our ability to test the full range of PWM values for our system. In order to

more fully test the available range of PWM values we conducted a limited number of tests

using LiPo batteries for higher PWM values. The batteries were charged up to 12.5V and

replaced when their voltage dropped below 11.8V. Another limitation we encountered

during the battery trials was that our strobe light’s measurement resolution decreases as

we get to higher frequencies. This made it more challenging to match the motor spinning

frequency with that of the strobe light. The results from this experiment are presented in

Figure 5.8. In Figure 5.8 we applied a quadratic best fit line to our data and obtained an

R2 value of 0.985. We verified higher order polynomial lines of best fit but felt that the

quadratic line was reasonable for the experimental behavior observed. The experimental

relationship obtained was

PWM = (1.661× 10−6)RPM2 + (1.49847× 10−1)RPM + 931.336 (5.13)

The lowest RPM recorded from any propeller at minimum throttle input was 840RPM

when a PWM signal of 1107 was used. We will thus use this value for Ωmin in Table 3.1.

The maximum PWM signal that our controller can supply is 2000, substituting this value

into equation (5.13) yields an expected maximum RPM value of 7800RPM . We thus

used this value for Ωmax in Table 3.1. In [64], a similar characterization is performed for

a quadrotor drone in order to obtain a mapping between PWM signals and motor RPM .

It is important to note that equation (5.13) is only valid for a supply voltage of 12.2V.

As discussed in [64], the relationship between PWM and RPM can change significantly

as battery voltage changes.

Chapter 5. Experimental Setup 113

1000 2000 3000 4000 5000 6000 7000

RPM

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

P
W

M

Power Supply Trials

Battery Trials

Quadratic Fit Line

Figure 5.8: PWM to RPM Experimental Setup

For implementing our controller in the PX4 flight stack we use equation (5.11) to convert

the desired motor force into a desired RPM value for the motor. We then use equation

(5.13) to compute the required PWM signal to output to the ESC. We found that using

this approach produced better results than a previous model that we had been using

to do this step and improved the performance of the drone’s controller. Ideally, a more

advanced model could be used to account for the effect of battery voltage drop during

flight. It would also be advisable to use a different RPM measurement setup as the

strobe light is not well suited to taking large numbers of measurements.

5.5 Real-Time Implementation and Preliminary Flight

Testing

We encountered significant challenges throughout the implementation phase of this project

which limited our ability to conduct experimental test flights to validate the results from

Section 3.4.3. The process of integrating the flight controller into PX4 required several

iterations due to the complexity of the flight stack and limited resources for effecting

significant changes to the flight controller. A key challenge during this process was man-

aging the limited computational resources available on the PixRacer flight computer.

Chapter 5. Experimental Setup 114

The PixRacer only has 256KB of RAM [69] and must simultaneously perform computa-

tions for state estimation, trajectory generation and control as well as running any other

background processes. After several months, we were eventually able to fully implement

Controller C and our trajectory generator in the flight stack. We then generated sample

computation results in MATLAB and compared these against our PX4 version to validate

that no errors were made during this integration process.

We then ran our controller in a hardware in the loop (HITL) testing environment to per-

form some preliminary validation. The core concept behind HITL testing is to replicate

the actual conditions of a flight from the Pixracer’s perspective. We load our modified

PX4 flight stack onto the Pixracer and connect it to a laptop running a simulation en-

vironment populated with a single simulated quadrotor. Sensor information is obtained

from this simulation and fed to the Pixracer in the same way it would be during an actual

flight. The Pixracer then performs all the required computations for state estimation,

trajectory generation and control in real time at 100 Hz and ultimately outputs a set of

motor commands. These commands are then fed to the simulated quadrotor creating a

closed loop. From the Pixracer’s perspective, there is no difference between HITL test-

ing and a real flight. We can thus accurately test whether the computational resources

of our flight computer are sufficient to run our proposed flight controller and trajectory

generator.

We started off by performing HITL testing of our flight stack with a simulated quadrotor

without any slung load. This testing allowed us to confirm that our controller, swing

prediction computation and the main while loop in Algorithm 4 could easily run at a

prescribed frequency of 100Hz on a PixRacer flight computer. Furthermore, we found

that running Algorithm 1 for all three axes took on the order of 1.5ms. These results

validate that our controller and trajectory generator are viable to run on a real quadrotor

drone with limited computational resources. These HITL tests also provided a safe testing

environment for debugging and tuning during the process of implementing our controller

and trajectory generator on the PX4 flight stack.

We next tried to modify the simulation environment to incorporate a quadrotor with

a slung payload. While we were able to implement the required simulation model, we

were unable to provide state feedback for the payload to the flight computer. We were

thus unable to compute f oscil in equation (3.21) of our controller. Another challenge

that we faced during this process was making sure that the properties of the simulated

quadrotor drone matched those of our Pelican quadrotor. In particular, we had difficulty

establishing how to properly set the kt and kq values for simulated quadrotor’s propellers.

Chapter 5. Experimental Setup 115

Figure 5.9: VICON Communication Setup

As a result, we found that controller gains tuned during HITL testing did not work well

for our actual drone during later flight tests.

After performing HITL testing, we next tested our controller using an actual quadrotor

drone. For this testing, we chose to fly indoors using our lab’s motion capture environ-

ment. Logistically, outdoor flights are more challenging to set up limiting the number

of trials we could perform. This would have been particularly problematic since a large

number of flight tests were needed in order to refine our controller’s tuning. Indoor flight

testing also provides an added level of security in that we can tether the drone and thus

safely cut power to the motors if the system becomes unstable. This was particularly

important given that we completely removed the existing controller within the PX4 flight

stack, including some of its safety features. Flying indoors also provides a more controlled

testing environment where we can better manage external disturbances such as the wind

on our system. Setting up our indoor flight tests presented several challenges though.

For indoor flights, our drone cannot locate itself using GPS and must instead rely on

data from our VICON motion capture setup. The communication pipeline required for

this process is shown in Figure 5.9. Establishing this link between the desktop computer

running the VICON software to the onboard Odroid to the PixRacer flight computer took

several iterations to debug.

Once established, we encountered issues with the onboard state estimator when it tried

to fuse the VICON data with accelerometer data. As soon as the quadrotor drone began

to move more aggressively within the VICON field, the state estimator would throw away

the position measurements coming from the VICON system and stop estimating the local

x and y position of the drone. We ultimately were able to resolve this issue by switching

the onboard state estimator on our drone to a legacy version that is included with the

PX4 flight stack but is no longer supported by the developers. Overall this was a lengthy

debugging process due to the number of elements communicating with each other and

the complexity of the state estimation algorithms within the PX4 flight stack.

Chapter 5. Experimental Setup 116

After resolving these issues we were able to conduct some preliminary flight tests with

the quadrotor drone. We started off with a tuning that produced favourable results in

HITL testing but quickly found that this did not produce satisfactory results during

actual flights. The drone had a tendency to drift laterally during autonomous hovering

and achieved poor trajectory tracking. We initially theorized that ground effects may be

adversely affecting our flight performance. To test this theory we had a skilled pilot fly

our drone in our test environment. The pilot was able to achieve significantly more stable

hovering than our autonomous system leading us to conclude that the drone’s tuning

was the problem. Tuning our controller on the actual quadrotor drone was significantly

more challenging than in previous simulations. Testing a given set of gains required

lengthy setup and post processing steps. We did develop procedures to streamline this

process where possible. Ultimately though, due to time limits we were unable to gather

meaningful flight test data for our proposed controller. Section 6.1 will suggest future

steps for flight testing our proposed controller.

Chapter 6

Conclusion

In this thesis we have explored how to prevent and actively suppress swinging motion

in the payload of an autonomous quadrotor-slung load system. For swing prevention,

we have exploited input shaping to generate flight trajectories that inherently avoid in-

ducing residual swinging motion in the payload. Specifically, we have demonstrated how

to extend the concept of input shaping to generate non-rest to rest motion trajectories.

Our algorithm for generating these non-rest to rest input-shaped trajectories is a closed

form solution that is easy to implement onboard a quadrotor drone. We have paired this

algorithm with fifth order polynomial motion trajectories in order to create a computa-

tionally simple flight trajectory generator. We have also demonstrated in simulation how

our proposed algorithm can effectively prevent swinging motion for a basic gantry sys-

tem. After implementing our algorithm on an actual quadrotor drone’s flight computer,

we validated that our algorithm could quickly compute new motion trajectories as well

as supply our controller with desired states at a rate of 100Hz.

In order to track our prescribed input-shaped trajectories we developed a novel controller

for a quadrotor-slung load system. We surveyed the literature to identify trends in con-

troller design for this system and motivated the need for a new controller specifically

tailored to track input-shaped motion trajectories. A key novelty that our controller in-

troduces is the use of a 2nd order prediction model to compute a desired swinging motion

trajectory based on the desired flight trajectory of the quadrotor. Our controller in turn

seeks to correct for differences between the actual swinging motion of the slung load and

this prediction model’s value. We demonstrated in simulation how our controller effec-

tively ignores swinging motion induced by accurate trajectory tracking while still reacting

to swinging motion induced by external disturbances. We also showed how, compared to

two simpler baseline designs, our controller was better able to simultaneously suppress

117

Chapter 6. Conclusion 118

swinging disturbances while accurately tracking a prescribed input-shaped flight trajec-

tory. We implemented this controller on an actual drone’s flight computer and validated

that it could run at 100Hz. We also provided a framework for using a downward-facing

camera mounted on our quadrotor to detect the state of our payload for use within our

controller. Unfortunately, we were unable to conduct flight tests to validate our proposed

controller due to a series of setbacks discussed in Chapter 5. Finally, we provided a

preliminary look at how the core concept from our proposed controller could be imple-

mented into a more complicated model predictive controller design for a quadrotor-slung

load system.

6.1 Future Work

As discussed in Section 4.3, additional development work is needed to study the proposed

model predictive controller. Firstly, we recommend setting up a test stand with the same

motor, propeller and ESC as our Pelican Quadrotor in order to assess the maximum rate

of change of the generated thrust force. This test stand would also allow us to repeat the

motor characterization work done in Section 5.4.2. Specifically we could cover a wider

range of RPM and PWM values as well as investigating the effect of battery voltage on

our emperical relation presented in equation (5.13). Once a suitable thrust rate limit has

been experimentally determined, we can revisit the performance of the model predictive

controller developed in Chapter 4. It would also be worth exploring a wider range of

values for the number of steps in the control horizon and prediction horizon to see if

better performance can be achieved. An integral control element could also be added

in to eliminate steady state altitude errors in our model predictive controller. Moving

forward, Controller D from Chapter 4 would also need to be implemented on an actual

flight computer to validate its feasibility.

A main limitation of the work presented in this thesis is that we were unable to obtain

experimental data to validate the simulation results obtained for Controller C in Sec-

tion 3.4.3. As discussed in Chapter 5, we encountered numerous difficulties during the

implementation phase for this system which limited our ability to perform proper flight

tests. We were able to fully implement Controller C and our trajectory generator on a

flight computer and validate that they run properly. The main remaining challenge is to

properly tune the controller gains for an actual quadrotor system and to finish integrating

the downward facing camera system. The tuning methodology developed in Section 3.4.1

should likely be used as a template for proceeding with this work. A potentially useful

way to tune the controller would be to have a skilled pilot fly the drone in manual mode

Chapter 6. Conclusion 119

and look at the resulting magnitude of control inputs required to correct for disturbances.

These could help to establish the order of magnitude required for certain control gains.

We recommend first focusing on tuning the position and attitude control gains to estab-

lish hover in a quadrotor without any slung load. The gains could then be refined based

on tracking basic motion trajectories before introducing the downward facing camera and

slung load controller elements. The proposed payload detection method in Section 5.3

may also need to be revisited as part of this process.

In parallel, it would be useful to develop a better understanding of the hardware in the

loop (HITL) simulation environment for development of novel controllers. As part of

this project we investigated how to modify this environment so that the simulated drone

matched the properties of our actual vehicle but we ultimately found that control gains

tuned from HITL did not achieve good results on an actual quadrotor drone. We believe

that these difficulties are due to a lack of proper understanding of how the HITL flight

environment works and how experimentally measured motor and propeller properties ap-

pear within this setup. Unfortunately, there is a lack of documentation for how these

processes work within the PX4 HITL setup and this will likely require additional devel-

opment work moving forward. Similarly, for further development of quadrotor-slung load

controllers it would be beneficial to create a proper HITL simulation setup. Currently it is

possible to attach a suspended load to a simulated quadrotor carrying a downward facing

camera in the HITL environment. The main limitation though is having this simulated

camera capture the motion of the slung load and feed this information to the controller

in simulation. Bridging this gap would allow for easier troubleshooting and controller

tuning for quadrotor-slung load systems and reduce the number of flight tests required.

Moving forward, it would also be beneficial to extend this project to collaborative sys-

tems where multiple quadrotors are attached to the same payload. This problem presents

numerous technical challenges in terms of coordinating movement and passing informa-

tion from one system to another. At the same time, this system offers the potential

to transport larger, heavier payloads and could offer new avenues for commercial use of

quadrotors for payload transportation.

Appendix A

Differential Flatness of a Quadrotor

As discussed in [39], a system in the form ẋ = f(x,u) is differentially flat if there are flat

outputs y such that all sates x and inputs u can be written as functions of y and its higher

derivatives. Numerous proofs have been summarized in the literature for the differential

flatness of a quadrotor [33], as well as quadrotor-slung load system where the cable is

modelled as a single [37] or multiple links [39]. Additional differential flatness proofs

for collaborative load transportation with quadrotor drones are given in [39]. Typically,

the derivation of the differential flatness for these increasingly complex models are all

built upon the original proof for a simple quadrotor system. In this section we provide

a detailed walkthrough of the relations summarized in [33]. To this end, we show that a

basic quadrotor model is differentially flat with respect to the position of the drone rq and

its yaw ψQ. This means that we will obtain relations showing ωQ = g1(rq, ṙq, ..., ψQ, ψ̇Q...)
and ω̇Q = g2(rq, ṙq, ..., ψQ, ψ̇Q...). Since we will ultimately be applying these equations to

computing feedforward terms for our controller based on the desired position rdq and yaw

ψQd of the drone we will substitute rq = rdq, ψQ = ψQd and solve for the desired angular

velocity ωQdf and angular acceleration ω̇Qdf in equation (3.42).

For a quadrotor drone without any slung payload we have

mq(r̈dq − g) = Rdf
IQ

 0

0

1

Udf , g =

 0

0

g

 (A.1)

where Rdf
IQ is the attitude of the quadrotor that is required to achieve the desired quadrotor

acceleration r̈dq. Udf is a negative scalar representing the thrust required to achieve

r̈dq. Note that Udf is a negative value because we employ the NED convention in this

section. For this same reason g = 9.8m s−2. To solve for Rdf
IQ we perform the following

121

Appendix A 122

Figure A.1: Decomposition of Transformation from Inertial Frame to the Quadrotor
Frame

decomposition.

Rdf
IQ := [xQI yQI zQI] (A.2)

where xQI is a column matrix representing the x axis of frame FQ resolved in frame FI .
The same convention holds for yQI and zQI . Combining equations (A.1) and (A.2) yields

the following results.

r̈dq−→− g−→ =
Udf

mq
zQ−→ (A.3)

r̈dq − g =
Udf

mq
zQI =

(−Udf

mq

)
(−zQI) (A.4)

Udf = −mq

√
(r̈dq − g)T(r̈dq − g) (A.5)

zQI =
−(r̈dq − g)√

(r̈dq − g)T(r̈dq − g)
(A.6)

To solve for xQI and yQI we decompose the transformation from FI to FQ into three steps

as shown in Figure A.1. We first define an intermediate frame FC created by rotating

the inertial frame FI about the z axis by the desired quadrotor yaw angle ψQd. We then

rotate frame FC about its x axis to define a new frame FD. We finally rotate FD about its

y axis to obtain FQ. This yields the following relationships between the unit magnitude

coordinate axis vectors for the various frames.

zI−→ = zC−→ , xC−→ = xD−→ , yD−→ = yQ−→ (A.7)

xD−→ ⊥ yD−→ =⇒ xC−→ ⊥ yQ−→ (A.8)

zQ−→ ⊥ yQ−→ (A.9)

yQ−→ = zQ−→× x
C

−→ , yQI = zQI
×

xCI (A.10)

Appendix A 123

xCI =

 cosψQd

sinψQd

0

 (A.11)

xQI = yQI
×

zQI (A.12)

This parameterized approach requires that zQ−→ and xC−→ not be parallel. From a practical

standpoint this means that the drone cannot have a pitch of 90 degrees. This is a

reasonable assumption for a quadrotor drone doing parcel delivery. Taking the time

derivative of equation (A.4) with respect to the inertial frame yields the following results.

mq...r dq−−→ = U̇dfzQ−→+ UdfωQdf−−→× z
Q

−→ (A.13)

mq...r dq = U̇dfzQI + UdfωQdfI

×
zQI (A.14)

If we left multiply equation (A.14) by zQI
T

we get the following result.

U̇df = mqzQI
T...r dq = mq...r dqTzQI (A.15)

Combining together equations (A.15) and (A.14) yields

ωQdfI

×
zQI =

mq

Udf

(
...r dq − (

...r dqTzQI)zQI

)
(A.16)

Note that while the preceding equation contains ωQdfI , which is vector ωQdf−−→ resolved in

the inertial frame, we ultimately need to resolve ωQdf−−→ in frame FQ to obtain the desired

ωQdf . To do so we define vector h1

−→ := ωQdf−−→× z
Q

−→. We can then resolve this cross product

in frame FQ or FI to obtain

h1
Q = ωQdf

×zQQ , h1
I = ωQdfI

×
zQI (A.17)

Defining ωQdf := [p q r]T and using zQQ := [0 0 1]T we find

h1
Q =

 q

−p
0

 (A.18)

Rdf
QI = Rdf

IQ

T

(A.19)

h1
Q = Rdf

QIh
1
I = Rdf

QI(ω
Qdf
I

×
zQI) (A.20)

Appendix A 124

Combining equations (A.20), (A.18) and (A.16) yields a solution for components q and p

of ωQdf .  q

−p
0

 = Rdf
QI

(
mq

Udf

(
...r dq − (

...r dqTzQI)zQI

))
(A.21)

where zQI is solved using equation (A.6) and
...r dq comes from our trajectory generator.

The remaining r component of ωQdf can be found by again considering the relationship

between the angular velocities of reference frames FI , FC and FQ.

ωQdf−−→ = ωQC−−→+ ωCI−−→ (A.22)

where ωCI−−→ is the angular velocity of FC relative to FI and ωQC−−→ is the angular velocity

of FQ relative to FC . Given that the transformation from FC relative to FI is simply a

rotation about the z axis, we can resolve ωCI−−→ in FC or FI to obtain

ωCII = ωCIC =

 0

0

ψ̇Qd

 , ωCI−−→ = ψ̇QdzI−→ (A.23)

where ψ̇Qd is the desired yaw rate of the drone. Furthermore, we expect that the angular

velocity ωQC−−→ will have no z component when resolved in frame FQ [33]. We can thus

perform a dot product on all terms of equation (A.22) with zQ−→, the z vector of frame FQ.

ωQdf−−→ · z
Q

−→ = ωQC−−→ · z
Q

−→+ ωCI−−→ · z
Q

−→ (A.24)

= ωCI−−→ · z
Q

−→ (A.25)

= ψ̇QdzI−→ · z
Q

−→ (A.26)

In order to evaluate the dot product in equation (A.26), we resolve the computation in

frame FQ.

ωQdf
TzQQ = ψ̇QdzIQ

TzQQ (A.27)

[p q r]

 0

0

1

 = ψ̇QdzIQ
T

 0

0

1

 (A.28)

r = ψ̇QdzIQ
T

 0

0

1

 (A.29)

Appendix A 125

zIQ = Rdf
QIz

I
I = Rdf

QI

 0

0

1

 (A.30)

At this point we have fully solved for the components of ωQdf . In order to solve for ω̇Qdf

we take the time derivative of equation (A.14) with respect to the inertial frame FI .

mq....r dq

−−→ = ÜdfzQ−→+ Udf ω̇Qdf−−→× z
Q

−→+ 2U̇dfωQdf−−→× z
Q

−→+ UdfωQdf−−→×
(
ωQdf−−→× z

Q

−→
)

(A.31)

mq....r dq = ÜdfzQI + Udf ω̇Qdf
×

I zQI + 2U̇dfωQdfI

×
zQI + UdfωQdfI

×(
ωQdfI

×
zQI
)

(A.32)

If we left multiply equation (A.32) by zQI
T

we obtain an equation to solve for Üdf .

Üdf = mqzQI
T....r dq − UdfzQI

T

(
ωQdfI

×(
ωQdfI

×
zQI
))

(A.33)

We now define h2

−→ := ω̇Qdf−−→× z
Q

−→. This cross product can be resolved in frame FQ or FI
to obtain

h2
Q = ω̇Qdf

×zQQ , h2
I = ω̇Qdf

×

I zQI (A.34)

Defining ω̇Qdf := [α1 α2 α3]T and using zQQ := [0 0 1]T we find

h2
Q =

 α2

−α1

0

 (A.35)

h2
Q = Rdf

QIh
2
I (A.36)

Rearranging equation (A.32) we can isolate and solve for h2
I and use equations (A.36) and

(A.35) to solve for components α1 and α2 of ω̇Qdf . The final component α3 can be solved

by considering the relationship between angular accelerations of frames FI , FC and FQ.

ω̇Qdf−−→ = ω̇QC−−→+ ω̇CI−−→+ ωCI−−→× ω
QC

−−→ (A.37)

Appendix A 126

Exploiting the fact that zQ−→ · ω̇
QC

−−→ = 0 and zQ−→ · (ω
CI

−−→× ω
QC

−−→) = 0 [33] we can dot product

equation (A.37) with zQ−→ and resolve the result in frame FQ.

ω̇Qdf−−→ · z
Q

−→ = ω̇CI−−→ · z
Q

−→ (A.38)

ω̇CI−−→ = ψ̈QdzI−→ (A.39)

[α1 α2 α3]

 0

0

1

 = α3 = ψ̈QdzIQ
TzQQ (A.40)

where ψ̈Qd is the desired yaw angular acceleration for the quadrotor. Although not

necessary for our controller, we can also solve for the applied quadrotor moment mdf

using differential flatness.

Jqω̇Qdf + ωQdf
×JqωQdf = mdf (A.41)

In summary, this section has demonstrated how, given derivatives of the desired quadrotor

motion trajectory r̈dq, ...r dq and
....r dq resolved in the inertial frame as well as the desired yaw

ψQd and its higher derivatives ψ̇Qd and ψ̈Qd we can algebraically solve for all remaining

states and inputs of the system.

Bibliography

[1] Igor Henrique Beloti Pizetta, Alexandre Santos Brandão, and Mário Sarcinelli-Filho.

Control and obstacle avoidance for an uav carrying a load in forestal environments.

In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pages

62–67. IEEE, 2018.

[2] Sean Fielding and Meyer Nahon. Input shaped trajectory generation and controller

design for a quadrotor-slung load system. In 2019 International Conference on Un-

manned Aircraft Systems (ICUAS), pages 153–161. IEEE, 2019.

[3] N Matheson. Stability of helicopter slung loads. 1976.

[4] David T Liu. In-flight stabilization of externally slung helicopter loads. Technical

report, Northrop Corp Hawthorne CA Electronics Div, 1973.

[5] Christina Ivler. Design and flight test of a cable angle feedback control system for

improving helicopter slung load operations at low speed. Technical report, Army

Aviation and Missile Research Development and ENG CTR Moffett Field CA, 2014.

[6] Daniel KD Villa, Alexandre S Brandão, and Mário Sarcinelli-Filho. Load trans-

portation using quadrotors: A survey of experimental results. In 2018 International

Conference on Unmanned Aircraft Systems (ICUAS), pages 84–93. IEEE, 2018.

[7] Igor Henrique Beloti Pizetta, Alexandre Santos Brandão, and Mário Sarcinelli-Filho.

Modelling and control of a quadrotor carrying a suspended load. In 2015 Workshop

on Research, Education and Development of Unmanned Aerial Systems (RED-UAS),

pages 249–257. IEEE, 2015.

[8] Koushil Sreenath and Vijay Kumar. Dynamics, control and planning for coopera-

tive manipulation of payloads suspended by cables from multiple quadrotor robots.

Robotics: Science and Systems, 2013.

127

Bibliography 128

[9] Farhad A Goodarzi and Taeyoung Lee. Stabilization of a rigid body payload with

multiple cooperative quadrotors. Journal of Dynamic Systems, Measurement, and

Control, 138(12):121001, 2016.

[10] Nadia S Zúñiga, Filiberto Muñoz, Marco A Márquez, Eduardo S Espinoza, and

Luis R Garćıa Carrillo. Load transportation using single and multiple quadrotor

aerial vehicles with swing load attenuation. In 2018 International Conference on

Unmanned Aircraft Systems (ICUAS), pages 269–278. IEEE, 2018.

[11] Sarah Tang and Vijay Kumar. Autonomous flight. Annual Review of Control,

Robotics, and Autonomous Systems, 1:29–52, 2018.

[12] Philipp Foehn, Davide Falanga, Naveen Kuppuswamy, Russ Tedrake, and Davide

Scaramuzza. Fast trajectory optimization for agile quadrotor maneuvers with a

cable-suspended payload. In Robotics: Science and Systems, pages 1–10, 2017.

[13] Sarah Tang and Vijay Kumar. Mixed integer quadratic program trajectory genera-

tion for a quadrotor with a cable-suspended payload. In Robotics and Automation

(ICRA), 2015 IEEE International Conference on, pages 2216–2222. IEEE, 2015.

[14] Ivana Palunko, Rafael Fierro, and Patricio Cruz. Trajectory generation for swing-

free maneuvers of a quadrotor with suspended payload: A dynamic programming

approach. In 2012 IEEE International Conference on Robotics and Automation,

pages 2691–2697. IEEE, 2012.

[15] Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia.

Learning swing-free trajectories for uavs with a suspended load. In 2013 IEEE

International Conference on Robotics and Automation, pages 4902–4909. IEEE, 2013.

[16] Joshua Vaughan, Aika Yano, and William Singhose. Comparison of robust input

shapers. Journal of Sound and Vibration, 315(4-5):797–815, 2008.

[17] Neil C Singer and Warren P Seering. Preshaping command inputs to reduce system

vibration. Journal of dynamic systems, measurement, and control, 112(1):76–82,

1990.

[18] Joshua Vaughan, Aika Yano, and William Singhose. Robust negative input shapers

for vibration suppression. Journal of Dynamic Systems, Measurement, and Control,

131(3):031014, 2009.

[19] Eihab M Abdel-Rahman, Ali H Nayfeh, and Ziyad N Masoud. Dynamics and control

of cranes: A review. Modal Analysis, 9(7):863–908, 2003.

Bibliography 129

[20] Morten Bisgaard, Anders la Cour-Harbo, and Jan Bendtsen. Input shaping for

helicopter slung load swing reduction. In AIAA Guidance, Navigation and Control

Conference and Exhibit, page 6964, 2008.

[21] Morten Bisgaard. Modeling, estimation, and control of helicopter slung load system.

Department of Control Engineering, Aalborg University, 2008.

[22] James Potter, William Singhose, and Mark Costelloy. Reducing swing of model

helicopter sling load using input shaping. In Control and Automation (ICCA), 2011

9th IEEE International Conference on, pages 348–353. IEEE, 2011.

[23] Christopher Adams, James Potter, and William Singhose. Input-shaping and model-

following control of a helicopter carrying a suspended load. Journal of Guidance,

Control, and Dynamics, 38(1):94–105, 2014.

[24] Recep Cetin. Indoor navigation system and suspended load control for multirotors.

Master’s thesis, NTNU, 2015.

[25] Kristian Klausen, Thor I Fossen, and Tor Arne Johansen. Nonlinear control with

swing damping of a multirotor uav with suspended load. Journal of Intelligent &

Robotic Systems, 88(2-4):379–394, 2017.

[26] Morten Bisgaard, Anders la Cour-Harbo, and Jan Dimon Bendtsen. Adaptive con-

trol system for autonomous helicopter slung load operations. Control Engineering

Practice, 18(7):800–811, 2010.

[27] Chang-Wan Ha and Dongwook Lee. Analysis of embedded prefilters in motion pro-

files. IEEE Transactions on Industrial Electronics, 65(2):1481–1489, 2017.

[28] William E Singhose, Lisa J Porter, Timothy D Tuttle, and Neil C Singer. Vibration

reduction using multi-hump input shapers. Journal of dynamic systems, Measure-

ment, and control, 119(2):320–326, 1997.

[29] Jonathan Y Smith, Kris Kozak, and William E Singhose. Input shaping for a simple

nonlinear system. In Proceedings of the 2002 American Control Conference (IEEE

Cat. No. CH37301), volume 1, pages 821–826. IEEE, 2002.

[30] Kristian Klausen, Thor I Fossen, and Tor Arne Johansen. Nonlinear control of a

multirotor uav with suspended load. In Unmanned Aircraft Systems (ICUAS), 2015

International Conference on, pages 176–184. IEEE, 2015.

Bibliography 130

[31] Dan Kielsholm Thomsen, Rune Søe-Knudsen, David Brandt, Ole Balling, and Xup-

ing Zhang. Generating vibration free rest-to-rest trajectories for configuration de-

pendent dynamic systems via 3-segmented input shaping. In IEEE International

Conference on Robotics and Automation, 2018.

[32] Shupeng Lai, Kangli Wang, and Ben M Chen. Dynamically feasible trajectory gener-

ation method for quadrotor unmanned vehicles with state constraints. In 2017 36th

chinese control conference (CCC), pages 6252–6257. IEEE, 2017.

[33] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and con-

trol for quadrotors. In Robotics and Automation (ICRA), 2011 IEEE International

Conference on, pages 2520–2525. IEEE, 2011.

[34] Sonja Macfarlane and Elizabeth A Croft. Jerk-bounded manipulator trajectory plan-

ning: design for real-time applications. IEEE Transactions on Robotics and Automa-

tion, 19(1):42–52, 2003.

[35] Mark W Mueller, Markus Hehn, and Raffaello D’Andrea. A computationally efficient

motion primitive for quadrocopter trajectory generation. IEEE Transactions on

Robotics, 31(6):1294–1310, 2015.

[36] Koushil Sreenath, Nathan Michael, and Vijay Kumar. Trajectory generation and

control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages

4888–4895. IEEE, 2013.

[37] Sarah Tang, Valentin Wüest, and Vijay Kumar. Aggressive flight with suspended

payloads using vision-based control. IEEE Robotics and Automation Letters, 3(2):

1152–1159, 2018.

[38] Koushil Sreenath, Taeyoung Lee, and Vijay Kumar. Geometric control and dif-

ferential flatness of a quadrotor uav with a cable-suspended load. In CDC, pages

2269–2274. Citeseer, 2013.

[39] Prasanth Kotaru, Guofan Wu, and Koushil Sreenath. Differential-flatness and control

of quadrotor (s) with a payload suspended through flexible cable (s). In 2018 Indian

Control Conference (ICC), pages 352–357. IEEE, 2018.

[40] Ying Feng, Camille Alain Rabbath, Subhash Rakheja, and Chun-Yi Su. Adaptive

controller design for generic quadrotor aircraft platform subject to slung load. In

Electrical and Computer Engineering (CCECE), 2015 IEEE 28th Canadian Confer-

ence on, pages 1135–1139. IEEE, 2015.

Bibliography 131

[41] Ivana Palunko, Patricio Cruz, and Rafael Fierro. Agile load transportation: Safe

and efficient load manipulation with aerial robots. IEEE robotics & automation

magazine, 19(3):69–79, 2012.

[42] Keeryun Kang, JVR Prasad, and Eric Johnson. Active control of a uav helicopter

with a slung load for precision airborne cargo delivery. Unmanned Systems, 4(03):

213–226, 2016.

[43] Farhad A Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric control of a quadro-

tor uav transporting a payload connected via flexible cable. International Journal

of Control, Automation and Systems, 13(6):1486–1498, 2015.

[44] Guilherme V Raffo and Marcelino M de Almeida. Nonlinear robust control of a

quadrotor uav for load transportation with swing improvement. In 2016 American

Control Conference (ACC), pages 3156–3162. IEEE, 2016.

[45] Byung-Yoon Lee, Hae-In Lee, Dong-Wan Yoo, Gun-Hee Moon, Dong-Yeon Lee, Yun

young Kim, and Min-Jea Tahk. Study on payload stabilization method with the

slung-load transportation system using a quad-rotor. In 2015 European Control

Conference (ECC), pages 2097–2102. IEEE, 2015.

[46] Farhad Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric stabilization of a

quadrotor uav with a payload connected by flexible cable. In American Control

Conference (ACC), 2014, pages 4925–4930. IEEE, 2014.

[47] Daniel Newman, Seong-Wook Hong, and Joshua E Vaughan. The design of input

shapers which eliminate nonzero initial conditions. Journal of Dynamic Systems,

Measurement, and Control, 140(10):101005, 2018.

[48] Daniel Newman and Joshua Vaughan. Command shaping of a boom crane subject

to nonzero initial conditions. In 2017 IEEE Conference on Control Technology and

Applications (CCTA), pages 1189–1194. IEEE, 2017.

[49] AscTec Hummingbird. http://www.asctec.de/en/uav-uas-drones-rpas-roav/

asctec-hummingbird/, . Online; accessed 12 July 2019.

[50] Seung Jae Lee and H Jin Kim. Autonomous swing-angle estimation for stable slung-

load flight of multi-rotor uavs. In 2017 IEEE International Conference on Robotics

and Automation (ICRA), pages 4576–4581. IEEE, 2017.

[51] Luigi S Cicolani and Gerd Kanning. Equations of motion of slung-load systems,

including multilift systems. 1992.

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/

Bibliography 132

[52] Ying Feng, Camille Alain Rabbath, and Chun-Yi Su. Modeling of the dynamics of

a micro uav with a single slung load. Handbook of Unmanned Aerial Vehicles, pages

1–19, 2018.

[53] Farhad Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric nonlinear pid control

of a quadrotor uav on se (3). In Control Conference (ECC), 2013 European, pages

3845–3850. IEEE, 2013.

[54] Matthias Faessler, Davide Falanga, and Davide Scaramuzza. Thrust mixing, satura-

tion, and body-rate control for accurate aggressive quadrotor flight. IEEE Robotics

and Automation Letters, 2(2):476–482, 2016.

[55] Basil Kouvaritakis and Mark Cannon. Model predictive control: Classical, robust

and stochastic. Springer International Publishing, 2016.

[56] Pengkai Ru and Kamesh Subbarao. Nonlinear model predictive control for unmanned

aerial vehicles. Aerospace, 4(2):31, 2017.

[57] Understanding Model Predictive Control Part 3: MPC Design Parameters. https://

store.mrobotics.io/mRo-PixRacer-R14-Official-p/auav-pxrcr-r14-mr.htm,

. Online; accessed 30 July 2019.

[58] Stefan Notter, Alexander Heckmann, Aaron Mcfadyen, and F Gonzalez. Modelling,

simulation and flight test of a model predictive controlled multirotor with heavy

slung load. IFAC-PapersOnLine, 49(17):182–187, 2016.

[59] Markus Zürn, Kye Morton, Alexander Heckmann, Aaron McFadyen, Stefan Notter,

and Felipe Gonzalez. Mpc controlled multirotor with suspended slung load: System

architecture and visual load detection. In 2016 IEEE Aerospace conference, pages

1–11. IEEE, 2016.

[60] Clark Youngdong Son, Hoseong Seo, Taewan Kim, and H Jin Kim. Model predictive

control of a multi-rotor with a suspended load for avoiding obstacles. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 1–6. IEEE,

2018.

[61] Specify Constraints. https://www.mathworks.com/help/mpc/ug/

specifying-constraints.html, . Online; accessed 10 August 2019.

[62] Optimization Problem. https://www.mathworks.com/help/mpc/ug/

optimization-problem.html, . Online; accessed 10 August 2019.

https://store.mrobotics.io/mRo-PixRacer-R14-Official-p/auav-pxrcr-r14-mr.htm
https://store.mrobotics.io/mRo-PixRacer-R14-Official-p/auav-pxrcr-r14-mr.htm
https://www.mathworks.com/help/mpc/ug/specifying-constraints.html
https://www.mathworks.com/help/mpc/ug/specifying-constraints.html
https://www.mathworks.com/help/mpc/ug/optimization-problem.html
https://www.mathworks.com/help/mpc/ug/optimization-problem.html

Bibliography 133

[63] Patricio J Cruz and Rafael Fierro. Cable-suspended load lifting by a quadrotor

uav: hybrid model, trajectory generation, and control. Autonomous Robots, 41(8):

1629–1643, 2017.

[64] Chen Wang, Meyer Nahon, and Mike Trentini. Controller development and validation

for a small quadrotor with compensation for model variation. In 2014 International

Conference on Unmanned Aircraft Systems (ICUAS), pages 902–909. IEEE, 2014.

[65] AscTec Pelican. http://www.asctec.de/en/uav-uas-drones-rpas-roav/

asctec-pelican/, . Online; accessed 22 July 2019.

[66] T Motor MS2216 KV900 for Quads. https://www.hobbypartz.com/

02p-motor-376-ms2216-kv900.html. Online; accessed 22 July 2019.

[67] T Motor F20A 2-4S ESC. https://www.getfpv.com/

tiger-motor-f-20a-2-4s-esc-blheli-s-w-dshot.html. Online; accessed

22 July 2019.

[68] 10x4.7SF. https://www.apcprop.com/product/10x4-7sf/. Online; accessed 22

July 2019.

[69] PixRacer R14. https://store.mrobotics.io/mRo-PixRacer-R14-Official-p/

auav-pxrcr-r14-mr.htm, . Online; accessed 24 July 2019.

[70] Pixy Camera. https://pixycam.com/pixy-cmucam5/, . Online; accessed 23 July

2019.

[71] Precision Landing. https://docs.px4.io/v1.9.0/en/advanced_features/

precland.html. Online; accessed 23 July 2019.

http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
https://www.hobbypartz.com/02p-motor-376-ms2216-kv900.html
https://www.hobbypartz.com/02p-motor-376-ms2216-kv900.html
https://www.getfpv.com/tiger-motor-f-20a-2-4s-esc-blheli-s-w-dshot.html
https://www.getfpv.com/tiger-motor-f-20a-2-4s-esc-blheli-s-w-dshot.html
https://www.apcprop.com/product/10x4-7sf/
https://store.mrobotics.io/mRo-PixRacer-R14-Official-p/auav-pxrcr-r14-mr.htm
https://store.mrobotics.io/mRo-PixRacer-R14-Official-p/auav-pxrcr-r14-mr.htm
https://pixycam.com/pixy-cmucam5/
https://docs.px4.io/v1.9.0/en/advanced_features/precland.html
https://docs.px4.io/v1.9.0/en/advanced_features/precland.html

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Thesis Organization

	2 Input-Shaped Trajectory Generation
	2.1 Flight Trajectory Generation for Quadrotor-Slung Load Systems
	2.2 Input Shaping Theory
	2.2.1 Types of Input Shapers
	2.2.2 Input Shaping for Quadrotor-Slung Load Systems
	2.2.3 Implementation

	2.3 Non-Rest to Rest Input-Shaped Trajectory Generation
	2.3.1 Generating an Unshaped Flight Trajectory
	2.3.2 Summary of Trajectory Generator
	2.3.3 Simulation Results

	2.4 Natural Frequency of a Quadrotor-Slung Load System

	3 Controller Design
	3.1 Survey of Quadrotor-Slung Load Flight Controller Designs
	3.1.1 Payload Trajectory Following Controllers
	3.1.2 Quadrotor Trajectory Following Controllers
	3.1.3 Quadrotor Trajectory Following + Payload Swing Feedback Controllers

	3.2 Quadrotor-Slung Load System Simulation Model
	3.2.1 Simulator setup

	3.3 Geometric Controller
	3.3.1 Oscillation Controller
	3.3.1.1 Swing Prediction

	3.3.2 Position Controller
	3.3.3 Attitude Controller
	3.3.4 Thrust Allocation and Saturation

	3.4 Controller Evaluation
	3.4.1 Controller Tuning Process
	3.4.2 Baseline Flight Controllers
	3.4.3 Simulation Results
	3.4.4 Cable Length and Payload Mass Changes

	4 Model Predictive Controller Design
	4.1 Model Predictive Control for Quadrotor-Slung Load Systems
	4.2 Implementation
	4.2.1 Prediction Model
	4.2.2 Constraints and Cost Function
	4.2.3 Simulator Setup
	4.2.4 Controller Tuning

	4.3 Simulation Results

	5 Experimental Setup
	5.1 Trajectory Generator and Controller Implementation
	5.2 Test Setup
	5.3 Payload Detection
	5.4 Drone Characterization
	5.4.1 Propeller Characterization
	5.4.2 Motor Characterization

	5.5 Real-Time Implementation and Preliminary Flight Testing

	6 Conclusion
	6.1 Future Work

	A Differential Flatness of a Quadrotor
	Bibliography

