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ABSTRACT

This thesis focuses on the development of methods for forecasting and managing

the spread of non-native species. By combining statistical modelling and computa-

tional simulations with both biological and sociological data, this research aims to

provide decision support tools to resource managers and policy makers. With an em-

phasis on the quantification and propagation of uncertainty through the construction

of both classical and Bayesian models, I analyse the implications of various human

and biological factors on forecasting the spread of fresh water invasive species. These

include: 1) dispersal network structure, 2) population dynamics, 3) environmental

suitability, and 4) human behavioural feedbacks to policy interventions.

The first section compares two current approaches to predicting the secondary spread

of aquatic invasive species and introduces a novel methodology for the quantitative

validation of such predictions. Chapter 2 compares alternative models of human-

mediated dispersal and assesses the consequences of the resulting dispersal network

structures for predictions of invasion risk at both the local and landscape level. A

new approach to validating the predictions made by models of spreading species

is developed in Chapter 3. The new approach accommodates both stochastic and

epistemic prediction uncertainty and I demonstrate that it has both the appropriate

expected error rates as well as increased power compared to existing methods. Appli-

cation to a published forecast model of Bythotrephes longimanus in central Ontario

confirms the predicted invasion pattern.
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The second section deals with the development and application of new forecasting

and management models which are applicable in common situations of limited data

availability and limited management resources. Chapter 4 solves problems posed by

presence-only data by extending current approaches to species distribution modelling

using an observation model of the detection process. Application of this approach

to 10 aquatic invasive species in Ontario revealed that the number of sites at which

species are detected is not alone predictive of their current and potential range. By

quantifying between-species differences in prevalence and detectability, this approach

can provide guidance for sampling efforts and management interventions. Finally,

Chapter 5 addresses the predicted efficacy of specific management interventions by

modelling the human behavioural responses to such interventions. By integrating

behavioural responses into a gravity model formulation, the predicted consequences

of various policy scenarios on the future spread of aquatic invasives in Ontario is com-

pared. Together, this research provides novel insights into both ecological processes

and environmental policy.
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ABRÉGÉ

Cette thèse repose sur le développement de méthodes visant à prédire et gérer la

propagation des espèces non-indigènes. Combinant modélisation statistique et sim-

ulations informatiques sur des données biologiques et sociologiques, cette recherche

vise à fournir une aide à la décision aux décideurs et gestionnaires de ressources.

En mettant l’accent sur la quantication et la propagation de l’incertitude par la

construction de deux modèles classique et Bayesian, j’analyse les implications de

différents facteurs humains et biologiques pour la prédiction de la propagation des

espèces envahissantes d’eau douce. Il s’agit notamment de: 1) la structure du réseau

de dispersion, 2) les dynamiques de population, 3)la qualité de l’environnement, et

4) la réponse aux interventions politiques.

La première section compare deux approches actuellement employées pour prédire la

propagation secondaire d’espèces aquatiques envahissantes et introduit une nouvelle

méthodologie de validation quantitative de ces prédictions. Le chapitre 2 compare

d’autres modèles de dispersion par médiation humaine et évalue les conséquences des

structures de réseau de dispersion obtenues pour les prédictions de risques d’invasion,

à la fois au niveau local et à l’échelle du paysage. Le chapitre 3 développe une nou-

velle approche de validation des prédictions issues de modèles de propagation. Cette

nouvelle approche intègre les incertitudes de prédiction stochastique et épistémique

et je démontre qu’elle conduit aux taux d’erreur attendus et est plus puissante que

les méthodes existantes. Appliquée à un modèle de prévision publié de Bythoterphes
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longimanus dans le Centre de l’Ontario, cette approche confirme le schéma d’invasion

prédit.

La deuxième section porte sur le développement et l’application de nouveaux modèles

de prévision et de gestion utilisables dans les limites ordinaires de disponibilité

de données et de ressources de gestion. Le chapitre 4 résout les problèmes as-

sociés aux données signalant seulement la présence d’une espèce et élargit le champ

des approches actuelles de modélisation de distribution d’espèces parl’utilisation

d’un modèle d’observation du processus de détection. L’application de cette ap-

proche sur 10 espèces aquatiques envahissantes en Ontario révèle que l’usage seul

du nombre de sites où les espèces sont détectées ne permet pas de prédire leur dis-

tribution actuelle et potentielle. En quantiant les différences inter-spécifiques de

prévalence et de détection, cette approche peut aider au développement de méthodes

d’échantillonnage et à la mise en place d’interventions de gestion. En dernier lieu,

le chapitre 5 traite de l’efficacité prédite d’interventions de gestion spécifiques en

modélisant les réponses comportementales des individus à ces interventions. Intégrant

les réponses comportementales dans une formule de modèle de gravité, je compare

les effets prédits de différents scenarios d’intervention sur la future propagation des

espèces envahissantes aquatiques en Ontario. Cette recherche ouvre de nouvelles

perspectives aussi bien sur les processus écologiques que les politiques de gestion de

l’environnement.
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ability of establishment and spread of biological organisms: Presence-only data, hid-

den states, and the observation process.
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agement intervention for controlling the spread of freshwater invasives.
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0.3 Original Contributions to Knowledge

In Chapter 2, I evaluate two alternative formulations of human-mediated disper-

sal of aquatic invasive species and investigate the interaction between the resulting

dispersal networks and the population dynamics of the invading species. The chap-

ter adds to the field of secondary spread prediction by describing the consequences

of alternative model formulations on predictions of invasion risks at both the land-

scape and local levels. This study represents the first comparison of these alternative

human-mediated dispersal models using empirical data and is the first to demonstrate

the importance of the interaction between the resulting dispersal networks and Allee

effects.

I present a novel approach to evaluating and validating the calibration of binary

prediction models in Chapter 3. While applicable to the present focus of spreading in-

vasive species, the Validation Metric Applied to Probabilistic Predictions (VMAPP)

presented in this chapter represents a general advancement in the field of predic-

tive model validation and is applicable to a wide array of ecological prediction prob-

lems including Population Viability Analysis, general Species Distribution Modelling

(SDM), metapolulation analysis, and any other realm of ecology in which predictions

about binary outcomes is prevalent. The results in this chapter suggest that in many

realistic situations, VMAPP is more powerful and less prone to error than previously

available methods.

In Chapter 4, I develop a novel modelling framework for building Species Distri-

bution Models (SDMs) when the standard assumptions made by the most common

xxiv



currently employed methods are violated and using this framework I provide a solu-

tion to the common problem of presence-only data. This chapter not only represents

a significant contribution to the invasion literature, but also yields important results

for the field of Biogeography more generally.

Finally, Chapter 5 contributes important insights into the consequences of be-

havioural feedbacks which may result due to management interventions aiming to

mitigate the spread of aquatic invasive species. A major contribution of this chapter

is a new decision support tool for managers and policy makers dealing with limited

resources available for the management of invasive species.
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Introduction
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1.1 Introduction

Human activities involving the large-scale movement of people and goods have

brought massive benefits to human societies around the globe. As we transport ever

more cargo, however, we move with it an unprecedented number of species both

purposefully and inadvertently. The geographic extent of these biotic displacements

are far beyond that which was previously possible, and are occurring at rates which

far outstrip the ecological and evolutionary time-scales on which the processes of

natural dispersal operate (Ricciardi, 2007). This effective removal of long-standing

biogeographical barriers to dispersal represents a major driver of global change (Vi-

tousek et al., 1997). The resulting global-scale ’biotic homogenization’ (Olden et al.,

2004; Rahel, 2007) has had considerable ecological (Parker et al., 1999; Occhipinti-

Ambrogi and Savini, 2003; Landis, 2004; Dextrase and Mandrak, 2006) and economic

consequences (Pimentel et al., 2005; Pejchar and Mooney, 2009; Aukema et al., 2011).

In one instance – freshwater invasives in the North American Great Lakes re-

gion – new species have been arriving and establishing reproducing populations at

an accelerating rate over the last century (Ricciardi, 2006). Many of the established

invasives which have arrived over that last 50 years are believed to have been in-

troduced via ballast water exchange undertaken by international cargo ships (Keller

et al., 2011), although the opening of a major canal (Ricciardi, 2006), as well as

the aquarium (Padilla and Williams, 2004; Semmens et al., 2004; Duggan et al.,

2006; Gertzen et al., 2008; Strecker et al., 2011; Bradie et al., 2013) and ornamental

garden trades (Kay and Hoyle, 2001; Dehnen-Schmutz et al., 2007) have also been

implicated.
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While many of these introduced freshwater species have been relatively innocu-

ous, some have had substantial economic and ecological impacts. These impacts

may arise in the form of direct detrimental effects due to increased competition and

predation pressure on native flora and fauna (Dextrase and Mandrak, 2006). For

example the invasive predatory zooplankton Bythotrephes longimanus, native to the

Ponto-Caspian region and introduced to the Great Lakes in the early 1980’s, induces

major changes in the structure of existing food webs, and may have caused multiple

extirpations of native zooplankton species in inland lakes in and around the Great

Lakes basin (Bourdeau et al., 2011; Yan et al., 2011). Other ecological impacts may

arise due to habitat alterations induced by the introduced species. For instance,

the invasive carp Cyprinus carpio is known to increase turbidity and degrade water

quality, reducing macrophyte and benthic invertebrate densities (Kulhanek et al.,

2011). In addition to – and sometimes resulting from – the ecological impacts, some

introduced freshwater species have been documented to have adverse impacts on

ecosystem services. The largest impacts are likely borne by commercial and recre-

ational fisheries, as species such as the parasitic sea lamprey (Petromyzon marinus)

reduce the population growth rates of many game fish species (Lupi et al., 2003;

Rothlisberger et al., 2012). In addition to the considerable realised and potential

economic impacts of freshwater invasives on the fisheries industry, other segments of

the economy are also affected. Two examples include zebra mussels (Dreissena poly-

morpha) which have direct impacts on power plants and other shoreline industrial

operations by fouling water intake pipes (Leung et al., 2002), and the diminishing by
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up to 16% of lakefront residential property values as a result of Eurasian watermilfoil

(Myriophyllum Spicatum) infestation (Zhang and Boyle, 2010).

As the potential for harm is quite high, much research has been devoted to de-

veloping forecast models and risk assessments for non-native species (Stohlgren and

Schnase, 2006; Keller and Lodge, 2007). While some assessments focus on evalu-

ating risks posed by individual target species or specific areas of potential impact

(Schneider et al., 1998; Landis, 2004; Chan et al., 2012), there has been a growing

recognition that integrative approaches to assessing risk for multiple species at each

level of the invasion process can provide more comprehensive, and actionable insights

(Leung et al., 2012; Ibáñez et al., 2014). Ultimately, the process of undertaking a

risk assessment is to inform management decisions. Possible management actions

for invasive species will depend on the stage of the invasion in question and can

include measures to prevent the introduction of potential invaders in the first place

(Jerde and Lewis, 2007; Meyerson and Mooney, 2007; Bailey et al., 2011), moni-

toring to improve early detection and eradication of newly established populations

(Edwards and Leung, 2009; Keith and Spring, 2013), and/or efforts to limit the im-

pact of established species by halting or reducing the rate at which species spread in

the introduced range (Vander Zanden and Olden, 2008; Rothlisberger et al., 2010;

Epanchin-Niell and Hastings, 2010). In this thesis, I focus on the forecasting and

management of biological invasions in this latter stage, referred to as ’secondary

spread’.
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1.2 Secondary spread

Conceptually, the process of biological invasion can be divided into a series of

stages. At each stage there are barriers, both physical and biological, that need to

be overcome for a species or population to continue to the next stage (Colautti and

MacIsaac, 2004; Blackburn et al., 2011). In the most general formulation of this con-

ceptual framework, the stages are: 1) Transport, 2) Introduction, 3) Establishment,

and 4) Spread. At the secondary, or landscape level, where the focus of the research

in this thesis is placed, the final stage of this process can itself be conceptualized as

a microcosm of the entire framework, operating at a landscape scale.

In freshwater invasions, natural dispersal is typically constrained (on an ecolog-

ical time-scale) within the boundaries of a given body of water (Gertzen and Leung,

2011), yet there are additional transport vectors operating at the landscape scale,

facilitating the spread of species to inland lakes following the initial introduction and

establishment at some location(s) within a region. The primary mode of dispersal

across a landscape of inland lakes has repeatedly been found to be human-mediated

via transient recreational boaters (Bossenbroek et al., 2001; MacIsaac et al., 2004;

Muirhead and Macisaac, 2005; Kerr et al., 2005; Timar and Phaneuf, 2009). As such,

aquatic organisms spread among hydrologically disconnected lakes via occasional

discrete jumps from invaded to uninvaded sites. These newly colonized locations

then form ’disjunct foci’ which subsequently become a population source emanating

propagules which can proceed to colonize additional locations (Moody and Mack,

1988). This pattern stands in contrast to the continuously radiating wavefront asso-

ciated with some range expansions, where the square root of the area invaded grows
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linearly with time (Skellam, 1951; Hastings, 1996). Instead, the range expansion of

aquatic invasives is characterized the stochastic colonization of discrete patches of

suitable habitat (lakes) in a heterogeneous landscape (Hastings et al., 2005).

As human actors are the primary dispersal vector for aquatic invasive species,

modelling dispersal requires modelling human behavioural patterns. To this end, ap-

proaches adopted from the human demography and transportation literature called

Gravity Models (GMs) have been widely employed (Bossenbroek et al., 2001; MacIsaac

et al., 2004; Leung et al., 2004, 2006; Gertzen and Leung, 2011). While there are

various forms, in general these models characterise the movement of recreational

boaters by describing individual lakes as having ’pull’ relative to others based on

their size, distance from population centres, and any other factors which may influ-

ence a boater’s decision to visit a given lake. More recently, an alternative family of

models called Random Utility Models (RUMs), which originated in the econometrics

literature to model recreational demand (Smith and Kaoru, 1986), have also been

applied to modelling human-mediated dispersal (MacPherson et al., 2006; Timar and

Phaneuf, 2009). RUMs are derived from a different set of assumptions than GMs,

but can be reduced to alternative functional forms used to describe the probability

distributions of individual boaters’ trip choices (see Chapter 2). Once the behaviour

of individual boaters has been characterized, the strength of the dispersal corridors

between lakes can be easily estimated by aggregating all of the individual trips.

Forecasting the secondary spread of aquatic invasive species requires linking

models of dispersal, which describe the the number of individuals arriving per unit

time (eg. propagule pressure), with models describing how propagule pressure relates
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to the probability of a species establishing a reproducing population, and therefore

going on to become a source of new propagules dispersing out to new, uncolonized

locations. There are several challenges associated with building these joint models

and linking them with data. First, dispersal and establishment are both stochastic

processes and rare events, making prediction difficult, especially during the early

stages of spread (Smith et al., 1999). Second, our understanding of the processes

involved is limited. While reality is high dimensional, our models are simplified

abstractions of the real world and are therefore necessarily incomplete (Hilborn and

Mangel, 1997). And finally, we are often dealing with incomplete data characterised

by low and often patchy spatio-temporal resolution (Leung and Delaney, 2006; Ibáñez

et al., 2014).

1.3 Why uncertainty matters

When forecasting spread, we are making predictions about future outcomes

(states of nature), and any such predictions will inherently have uncertainty associ-

ated with them (Clark et al., 2001). In order to inform sound management decisions,

it is important to acknowledge, attempt to quantify, and communicate prediction un-

certainty in it’s various forms (Elith et al., 2002; Beale and Lennon, 2012; Yemshanov

et al., 2013). As it comprises the basis of decision theory, throughout this thesis I

take a probabilistic approach to uncertainty wherever possible by describing un-

certainty about potential future outcomes as probability distributions. In resource

and ecological management, as in many other decision making domains, outcomes

are neither equally likely, nor equally valuable and thus the decision maker wishes

to choose an action from the set of alternatives which will maximise the expected
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value, or net benefit, associated with the set of possible outcomes. The expected

value is simply the sum of the net benefits associated with each possible outcome,

weighted by the conditional probability of each outcome given the action taken by

the decision maker (Polasky et al., 2011). This forms the standard objective of de-

cision theory: to choose the alternative which maximizes the expected (or average)

net benefit, given that outcomes themselves are uncertain. By representing potential

outcomes as probability distributions, decision theory provides the mechanisms for

making optimal decisions subject to imperfect information (Dorazio and Johnson,

2003).

1.3.1 Jensen’s inequality

Of particular importance to the incorporation of various sources and types of

uncertainty into our models of species spread is Jensen’s inequality (Ruel and Ayres,

1999; Bolnick et al., 2011). Jensen’s inequality is a mathematical property of non-

linear functions. It states simply that for a non-linear function f(x), and a sample

of x values, the expected value of the function is not equal to the function evaluated

at the expected value of x, or E[f(x)] 6= f(E[x]). The direction of this inequality

depends on the shape of f(x). Specifically, if the function is concave (f ′′(x) > 0)

then E[f(x)] > f(E[x]), and if it is convex (f ′′(x) < 0) then E[f(x)] < f(E[x]) (See

Fig. 1–1).

This inequality can have several consequences for the prediction and manage-

ment of spreading invasions. As a simple but central example, the species establish-

ment probability as a function of propagule pressure is itself a non-linear function. In
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the case where establishment is not a density dependent phenomenon and each addi-

tional propagule contributes independently to the probability of establishment (e.g.

no Allee effect (Stephens et al., 1999)), then the curve is convex and the consequence

of uncertainty (variability) in propagule pressure will have a known directional effect.

However, in the presence of an Allee effect the probability of establishment curve ex-

hibits both concave and convex behaviour across the range of propagule pressures

(Fig. 1–2). The resulting dynamics of spreading populations will therefore be in-

herently dependent on both the strength of the Allee effect and the nature of the

variability in the system. While I examine the effect that this has on forecasts gen-

erated using alternative models of spread explicitly in Chapter 2, this phenomenon

is also at play and taken into account in the models presented in Chapters 4 and 5.

1.4 Overarching methodology

The general methodological framework that I adopt in this thesis approaches

disparate problems in a unified way. Extending the concept of the ’Ecological De-

tective’ (Hilborn and Mangel, 1997), the elements of this methodology are laid out

in figure 1–3, which describes the process of going from data to decisions, making

ample use of in silico simulations along the way. A key step in the process focuses

on evaluating the inferential and predictive capacity of our models of biological phe-

nomena by repeatedly generating observations under controlled conditions where we

know the underlying reality. In so doing, we can assess the theoretical properties

of our statistical approaches given the same type, quantity, and structure of data

as that which we can observe in the real world. This step can also be critically

important as a safeguard against faulty logic. As models of biological phenomena
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become more complex, incorporating more realism with many component parts, they

also become increasingly difficult to reason with directly. Generating hypotheses and

experimenting with model behaviour using simulation is an invaluable tool for solidi-

fying our understanding of complex biological processes, as it allows us to reproduce,

manipulate, and explore large-scale systems in ways that would be infeasible to do

in the real-world (Peck, 2004). While following this methodology does not provide a

guarantee that our models are ’correct’, it does force us to confront and systematize

our assumptions about the underlying ecological processes which have led to the

patterns observed in data, and I have taken great care to do throughout this thesis.

1.5 Thesis outline

In the following chapters I investigate ecological and economic modelling ap-

proaches to the problem of predicting and managing the secondary spread of aquatic

invasive species. The sources, magnitudes, and consequences of uncertainty for our

ability to both understand and mitigate biological invasions are addressed through-

out. Beginning in Chapter 2, I investigate the consequences of human-mediated

dispersal model choice for our predictions of invasion risk at both the landscape and

local level. I test two approaches to modelling human-mediated dispersal from the

literature (Gravity and Random Utility models) and fit the observed behaviour of

recreational boaters in Ontario. I then demonstrate how when using these alterna-

tive models, the population dynamics and density dependence effects of the invading

species can interact with the structure of dispersal networks to significantly alter

projected risks at both the landscape and local level. In Chapter 3, I construct a

novel method for evaluating spatio-temporal risk predictions and compare this new
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method against two currently available approaches. I then look at a specific case

study of the spread of Bythotrephes longimanus in a watershed in Central Ontario.

In the case study I test the validity of a published model of Bythotrephes spread to

accurately predict future invasion risks across multiple sites.

In Chapter 4, I develop a modelling framework which solves a common problem

associated with the type of data which we often have available to us for predicting

the current and future ranges of invasive species – presence-only records. This form

of data, while ubiquitous, presents a particular challenge to modelling efforts aiming

to assess the risks posed to sites across space and time. I present a novel approach

for solving the unique problem posed by presence-only data which explicitly treats

observation as a stochastic process of detections and non-detections. I first demon-

strate the theoretical properties of this approach using simulations, then apply it to

10 species of aquatic invasive species in Ontario for which presence-only data are

available. Finally, in Chapter 5 I incorporate management interventions aimed at

spread-reduction into a gravity modelling framework. Using data that I collected as

a part of a survey of recreational boaters in Ontario, I fit a model of behavioural

responses to mandatory boat cleaning stations and then investigate the predicted

efficacy of such place-based interventions.

Together, this thesis aims to deliver new techniques and modelling approaches

for predicting and managing the spread of invasive species under the ubiquitous dual

constraints of limited data and limited resources.
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Figure 1–1: Jensen’s inequality. For any non-linear function, the function evalu-
ated at the mean of a distribution of inputs is not equal to the mean of the function
evaluated over the distribution of inputs. A consequence of this is that failure to ac-
count for uncertainty not only leads to false precision, but also to systematic biases.
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Figure 1–2: Propagule pressure-probability of establishment relationships.
Blue line is the independence model which is convex over the entire range. Red line
is the relationship when an Allee effect is present. In the Allee case, the function is
concave for low propagule pressures, and becomes convex for high propagule pres-
sures. The consequence of variability will depend on the strength of the Allee effect,
and both the location and dispersion of the distribution of propagule pressures.
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2.1 Abstract

1. Human-mediated dispersal has been shown to be the most important vector for

the spread of invasive species, yet there has been little evaluation of alterna-

tive models of dispersal in terms of differences in their predictions of invasion

patterns. Moreover, no analyses have been attempted to elucidate the poten-

tial interaction between alternative models of human-mediated dispersal and

population dynamical characteristics, such as Allee effects, that are central to

the probability of an invasion.

2. Two prominent models in the literature which have previously been employed

to predict human movement patterns are explored: a) Gravity models, which

use the attractiveness of, and distance to a location to predict travel patterns,

and b) Random utility models, which assume that individuals decide where

to travel by maximizing the benefits which they receive according to some

partially observable function of individual and site characteristics.

3. While distinction is often drawn between them in the literature, we demon-

strate that these two approaches can be reduced to alternative functional forms

describing the trip taking decisions of individuals.

4. Each model was empirically parameterized using a survey of recreational boaters

in Ontario, Canada. Within each model, both boater and site specific charac-

teristics were important and the functional form provided by the gravity model

was significantly better at capturing the behaviour of recreational boaters.
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5. Synthesis and applications. The dispersal and establishment of species into

novel habitats are central components of the invasion process and of quanti-

tative risk assessments. However, predictions are dependent on the estimated

spatial structure of the dispersal network and its potential interactions with

species characteristics. This study demonstrates that Allee effects can interact

with dispersal network structure to significantly alter predicted spread rates

and that the consequences of these interactions manifest differently at the sys-

tem and site levels. These insights can be used to inform management inter-

ventions aimed at modifying human-mediated dispersal in order to reduce the

spread of invasive species.
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2.2 Introduction

Invasive species can cause ecological (Parker et al., 1999; Pejchar and Mooney,

2009) and economic impacts (Aukema et al., 2011). In order to prevent or limit

the spread of potentially harmful species, management efforts must be informed by

reliable estimates of where and when we expect new invasions to occur. The over-

land dispersal (lake to lake spread) of aquatic invasive species has been shown to

be driven primarily by inadvertent human-mediated transportation. Several species

have been observed ’hitchhiking’ on the hulls, and in the ballasts of recreational

water vessels, which are transported on trailers from lake to lake (Johnston et al.,

2001; Kraft et al., 2002). A recent study by Gertzen and Leung (2011) compar-

ing human-mediated and fluvial dispersal found that human-mediated dispersal of

an invasive species accounted for almost all of the propagules contributing to es-

tablishment probability. Understanding where species are likely to spread via this

key human-mediated pathway is therefore an important step toward implementing

mitigating measures.

There have been two general classes of modelling frameworks developed in the

literature to characterize the movement of individuals across a landscape of discrete

sites. Gravity models (GM) have been used extensively to characterize human move-

ment patterns, and have been applied successfully in several studies to the spread

of invasive species (Leung et al., 2004; Potapov et al., 2011; Muirhead et al., 2011).

They work by an analogy to Newtonian gravity, where individuals are attracted to

locations proportionally to their mass (which can be any set of measures of desirabil-

ity of the site) and inversely to the distance between an individual’s current location,
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and the site Schneider et al. (1998); Leung et al. (2004, 2006). An alternative spec-

ification, developed in the field of recreational demand econometrics, is the discrete

choice random utility model (RUM) (Smith and Kaoru, 1986; Smirnov and Egan,

2012). In this framework, individuals choose a destination from a suite of alter-

natives by maximizing a utility function based on any set of desirable traits, only

part of which is known to the analyst. This model has been used in several recre-

ational demand studies (e.g. Smith and Kaoru (1986), Champ et al. (2003)), but has

only recently been applied to the study of spread of invasive species (MacPherson

et al., 2006; Timar and Phaneuf, 2009). We show that these models are quite similar

and that they can be reduced to simply alternative functional forms to describe an

individual’s trip decisions.

While it is clear that human vectors are central to the invasion process, the

ramifications of employing alternative models of this vector on predicting spread is

less clear. Moreover, although it has not been previously examined, one might expect

that the consequences of dispersal models may interact with, and be determined

by the specific population dynamics of invaders. In particular, stochasticity and

Allee effects are both well-known population level factors affecting invasion dynamics

(Clark et al., 2003; Drake and Lodge, 2006).

In this study, we address the following three questions: 1) Do the alternative

human vector modelling frameworks (gravity and random utility models) differ in

their ability to capture actual human behaviour, and therefore characterize dispersal

vectors of invasive species? 2) How do these alternative models interact with the
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population dynamics of invaders? 3) What are the implications of alternative dis-

persal model specifications on our predictions of invasion risk across space and time

(i.e. spread)?

We analysed the predictive ability of competing models of human-mediated dis-

persal by surveying recreational boaters and examining the ability of each model to

recapture the observed trip outcomes. We recognized that differences in model fit are

most important if the alternative model formulations lead to human-mediated dis-

persal networks which yield quantitative differences in our predictions of the spread

of invasive species. Given the potential for ecological and economic harm posed by

invasive species, predictions of spread across a landscape, as well as invasion risk at

specific sites are vital components of informed management policies (Landis, 2004).

Thus, we conducted a series of simulation experiments to examine the potential im-

plications of each human-mediated dispersal models for risk assessments, taking into

account their interaction with the population dynamics of invaders. We describe how

the entropy, or evenness of the predicted connectivity distribution of the dispersal

network can interact with population dynamics to hinder spread. Taken together,

this work provides new insights into how models of human behaviour affect the pre-

dicted structure of discrete dispersal networks, and how the structure of dispersal

networks interact with population level processes to influence the spatial spread of

invasive species.
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2.3 Materials & methods

2.3.1 Survey

We conducted a survey of recreational boaters in Ontario, Canada. We mailed

5,000 invitations to participate in the survey to individuals with registered recre-

ational licenses (boating/fishing) issued by the Ontario Ministry of Natural Re-

sources. Individual names were selected using a spatially stratified random sampling

scheme. Approximately 100 invitations were sent to randomly selected individuals

in each of 47 major geographic regions of Ontario as defined by the first two digits

of their postal code. We developed an online survey instrument using the design

approach of Dillman (2000). We employed an interactive map through which partic-

ipants could quickly and easily identify the lakes which they visited. The advantage

of this approach was that we were able to precisely identify lakes which may have

been ambiguous due to multiple naming conventions. In this way, we were able to

collect more in depth information in a visually intuitive manner. While our survey

instrument was only able to capture individuals with access to the internet, 81%

of households in Ontario had access to the internet as of 2010 (Statistics Canada,

(http://www40.statcan.gc.ca/l01/cst01/comm36g-eng.htm). We have no rea-

son to believe that those without internet access would behave differently vis a vis

boating behaviour than those with online access. We asked participants to catalogue

all of the boating trips which they took and to indicate the primary location where

they kept their boat during the 2010 boating season.

Our survey response rate was 11%, with 30% of respondents indicating that

they had visited multiple lakes during 2011. Given that we are interested in the
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behaviour of boaters who transport their boat from lake to lake during the boating

season, we retained only those trip outcomes made by multi-lake boaters. This left

us with relevant observed source/destination outcomes for 146 individual boaters

across Ontario making a total of 2354 boating trips (Fig. 2–1).

2.3.2 Gravity model specification

Gravity models employ an analogy to Newtonian gravity, where the ’pull’ of a

given site is proportional to some function of desirable lake characteristics (termed

’attractiveness’, e.g. size, (Bossenbroek et al., 2001; MacIsaac et al., 2004; Leung

and Delaney, 2006)) and inversely related to the distance between a source location

and the site. A boater chooses a site to visit according to the degree to which they

are ’pulled’ to that site, relative to the degree to which they are pulled by all other

possible sites. While there are many possible formulations of gravity models, recent

comparisons have found that the production-constrained gravity model provides the

best estimate of human-mediated dispersal of aquatic invasives (Muirhead, 2007;

Muirhead et al., 2011). In the production-constrained formulation, it is assumed

that a boater travels from their home location (primary location where they keep

their boat), to a destination lake, and then returns to their home location before

visiting another lake. Further, the production-constrained gravity model has modest

data requirements compared with its alternatives (Muirhead et al., 2011), making it

an accessible choice for resource managers. Because we wish to compare models in

terms of their ability to capture individual level behaviour, we present a disaggregated

formulation of the production-constrained gravity model, in which each individual

makes trip destination decisions according to a probability distribution described
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by the model. The site selection probability distribution, P (Tn•) for an individual

boater n is given as:

PGM(Tnj) = AnW
e
j D

−d
nj , n = 1, . . . , N, j = 1, . . . , J. (2.1)

Where Wj is the attractiveness of lake j, and Dnj is the distance between lake

j, and the home location (where they keep their boat) of individual n. Some authors

suggest the use of least cost road networks to calculate the effective distance between

source and destination (Drake and Mandrak, 2010), however for simplicity here we

use the euclidian distance between boater home location and lake centroid. The free

parameters d and e describe the shape of the relationship and are fitted to the data

(see section 2.3.4). An is the ’pull’ of all lakes, given by:

An = 1/
J∑

k=1

W e
kD

−d
nk . (2.2)

Such that the probability of a boater n visiting lake j is proportional to the

gravitational ’pull’ of that lake compared to that of all other lakes. As a simple

proxy for lake attractiveness, we used lake surface area in hectares. While other

lake characteristics may alter the attractiveness, lake area is most readily available

and has been shown to be predictive in previous studies (Leung et al., 2004, 2006;

Muirhead et al., 2011; Gertzen and Leung, 2011).

Furthermore, our survey tool provided us with additional boater level infor-

mation, which we were able to incorporate into the model. Respondents identified
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which type of boat they owned and we categorized them as large motor boat (> 14’),

small motor boat (< 14’), or other. We assumed that boater type would modulate

the relationship between lake size (W ) and probability of visitation. As such, we

incorporated this additional information using dummy variables (B1, and B2) in the

exponent of W :

PGM(Tnj) = AnW
e+β1B1n+β2B2n
j D−d

nj , n = 1, . . . , N, j = 1, . . . , J. (2.3)

An = 1/
J∑

k=1

W e+β1B1n+β2B2n
k D−d

nk . (2.4)

Where B1 and B2 equal 0 for large motor boat, B1 equals 0 and B2 equals 1

for small motor boat, and B1 equals 1 and B2 equals 0 for other. In this way, boat

type determines the rate at which each additional hectare of lake area increases the

attractiveness of a given lake.

2.3.3 Random utility model specification

The RUM is a discrete choice model used extensively in the econometrics liter-

ature to predict the behaviour of recreationalists (Champ et al., 2003). This formu-

lation has recently been applied to predicting the spread of invasive zebra mussels

in Wisconsin (Timar and Phaneuf, 2009), and in a simulation study of the spread,

and management of Eurasion watermilfoil (MacPherson et al., 2006). In this model,

boaters are assumed to behave as rational actors, maximizing their utility. For a

given trip, a boater chooses the site which maximizes their utility function U , which
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is only partially observable by the analyst. We can separate the utility function,

therefore, into two parts. The utility which boater n would derive from visiting lake

j can be then be written as the sum of the observable part Vnj, and an error term

ǫnj.

Unj = Vnj + ǫnj, n = 1, . . . , N, j = 1, . . . , J. (2.5)

Where Vnj is any linear function of the attributes of boater n and site j.

Vnj = βXnj (2.6)

We can then re-write the utility that would be derived by boater n by visiting

each site in terms of the probability that they will choose that site over all other

alternatives.

PRUM(Tnj) = Pr(Unj ≥ Unk∀k 6= j) (2.7)

= Pr(Vnj + ǫnj ≥ Vnk + ǫnk∀k 6= j) (2.8)

= Pr(ǫnk − ǫnj ≤ Vnj − Vnk∀k 6= j), n = 1, . . . , N, j = 1, . . . , J. (2.9)

If we model the error term ǫ using the type-I extreme value distribution as

is most commonly done, the model reduces to a simple logit, and the distribution

describing the probability that boater n will choose to visit lake j is given by:
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PRUM(Tnj) =
exp(Vnj)

∑L

k=1 exp(Vnk)
, n = 1, . . . , N, j = 1, . . . , J. (2.10)

For further details of this model, see (Champ et al., 2003). The parameters (β)

are easily fit given the observed trip outcomes using maximum likelihood (see section

2.3.4).

As with the gravity model, we incorporated the additional boater level predictor

of boat type into the utility function of the RUM. We did this by adding two dummy

variables to describe the three categories of boat type, with the same definitions as

in the gravity model. Our full (observable) utility function is therefore formulated

as:

Unj = β1Wj + β2Dnj + (β3B1n + β4B2n)Wj. (2.11)

Since boat type is a boater level variable, we do not include it into the main

effect part of the utility function, as it cancels out when summing across the entire

choice set of a given boater. Instead, we model the interaction between boat type

and lake size (W ).

In both the RUM and GM model formulations, we have made two key assump-

tions: 1) Boater behaviour is constant across time, and 2) boater trips are distributed

independently and identically according to each model.
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2.3.4 Fitting and model selection

The parameters (θ) of each model can be fit using maximum likelihood. Our

survey data provides us with observations of the number of trip outcomes Snj , for

each boater n, to a given lake j. From these observations, we can write the log-

likelihood for model M as:

LLM(θ |D) =
N∑

n=1

J∑

j=1

Snjlog[P
M(Tnj |θ)] (2.12)

We fit the parameters of each model, including reduced models using maximum

likelihood implemented in the R statistical programming environment (R Core Team,

2013). Reduced models were those in which we removed the boater level parameters

pertaining to boat type. Each model was then compared in terms of its relative

performance using two separate metrics. The first metric of model selection we used

is the Akaike Information Criterion (AIC) (Burnham and Anderson, 2002). The

second metric we used was the simple coefficient of determination (R2) between the

predicted and observed total number of trips taken to each lake in our study system.

From this metric we could compare the relative proportions of total variation in the

number of visits across all lakes explained by each model.

2.3.5 Spread simulations: Examining theoretic model behaviour and in-
teractions with population demographics

Ultimately, we are constructing our models of human movement patterns be-

tween discrete patches to use in making predictions about the spread of species
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which are being dispersed across this network of patches. While spread is a stochas-

tic process, where introductions lead to viable population establishments at a given

site in a non-deterministic manner, we can use repeated simulations to character-

ize the expected trajectory of a given invasion process (Peck, 2004). By simulating

the spread process under each of our competing models, we can compare the pre-

dicted trajectories to make inferences about the consequences of model specification

on spread prediction. Differences in predicted spread rates, as well as predicted in-

vasion risk at the individual site level may have an effect on management decisions

regarding mitigation and control (see Chapter 5).

To conduct these simulations, we followed the procedure outlined in (Leung and

Delaney, 2006). We model the stochastic spread process as

G(Qjt) = 1− e−(αQjt)
c

(2.13)

Where the probability of invasion is given as a function of the number of propag-

ules Q, arriving at time t to site j. The function is described by two shape param-

eters. The first, α, is a per propagule multiplier proportional to −ln(1 − p), where

p is the per propagule probability of establishment. The additional parameter c

allows us to describe an Allee effect, where the per propagule establishment prob-

ability is disproportionately lower at low propagule pressures (Dennis, 2002). The

strength of the Allee effect increases as c > 1. Non-negligible Allee effects have

been observed in some aquatic invasives. This parameter has been estimated as 1.86

(P < 0.0001;Ho : c = 1) for zebra mussels using an invasion time series (Leung et al.,
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2004). Wittmann et al. (2011) also detect an Allee effect using a stage-structured

model of the invasive zooplankton Bythotrephes.

To calculate the number of propagules Q arriving at site j, we sum across the

probability distribution of each boater having visited an invaded lake before arriving

at site j. To do this, we first calculate the proportion of boaters at each source

location which have visited an invaded lake as:

Xit = Oi

H∑

h=1

PM(Tih) (2.14)

Where Oi is the number of boaters at source location i, and PM(Tih) is the

probability of a boater at source location i visiting lake h as given by the model M

under which simulations are being carried out. Xit is the number of boaters in source

location i having visited an invaded lake in time step t. We derived Oi from data

obtained from the Ontario Ministry Natural Resources on the number of registered

boaters in Ontario in each of 526 postal regions identified by the first three postal

code digits. The next step is to calculate the propagule pressure Q arriving at lake

j in time t as:

Qjt =
K∑

i=1

PM(Tit)Xit (2.15)

Which is the total boater traffic from all invaded sources to lake j in time step

t. For more details, see (Gertzen and Leung, 2011). While each human vector model

predicts a unique trip distribution matrix, the total number of boater trips taken, or
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the overall magnitude of traffic flow in the system as a whole is constant across both

models. Any difference in the observed rates of spread in our simulations therefore

is a result of the dispersal network structure, and not the absolute magnitude of

between-lake movement.

While there are roughly 250,000 lakes and rivers in Ontario, in order to render

our simulations computationally feasible, we simulate spread across only those lakes

with a surface area larger than 10 hectares. Additionally, we removed lakes above 52◦

latitude, as these lakes are not accessible by any roadways connecting them to the

southern lakes. This left us with 781 lakes in our simulation set. Each independent

simulation began with a seed invasion in Lake Ontario, and was run forward 30 years.

By seeding the invasion in Lake Ontario, we recreate the most likely invasion scenario

for Ontario inland lakes. As of 2006, the great lakes are known to have been invaded

by at least 182 species (Ricciardi, 2006), making it the most likely source location of

a novel species spread to inland lakes.

In order to analyse potential interactions between population dynamics and the

human vector model, we examined the effect of population establishment parameters

and we ran repeated simulations across a range of parameter values of both α (7.5-

e05,1.0e-04,1.25e-04,1.5e-04) and c (1,1.5,2,2.5). For each simulation, we used either

the best fitting GM or RUM of boater behaviour. As our metrics of invasion progress,

for each run, we retained the cumulative number of lakes invaded. An example

realization of our simulated spread procedure can be seen in Fig. 2–2. Additionally,

we compared the relative invasion risk at each of three specific selected sites. Lakes

Simcoe, Nipissing, and Nipigon were selected due to their large size, making them
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more at risk to invasion, as well as due to their relative distances from the source

location of invasion. While these lakes by no means represent a random sample,

they provide a convenient gradient of baseline risk along which to observe the rate

at which deviations between models occur. For these lakes, we retained the time

to invasion across every simulation for every parameter combination. We calculated

the risk to a given lake as the proportion of simulation realizations in which the site

became invaded before the end of the 30 year time horizon.

2.4 Results

2.4.1 Model fitting and model selection

Formal model selection identified the GM as the most likely, given the data. The

GM provided superior fit to the RUM with a ∆AIC value of 3229 between the full

GM and the full RUM, for the observed pattern of boater trips. Table 2–1 provides

the ∆AIC for each model, sorted in increasing order (decreasing order of goodness

of fit). Maximum likelihood parameter estimates and their 95% confidence intervals

for each full model are given in Table 2–2. All fitted parameter values have direction

and magnitude which we would expect. In the gravity model 0 < e < 1, indicating

a diminishing marginal effect of each additional hectare of lake surface area. The

boater specific dummy variables (β1 > 0, β2 < 0) indicate that the marginal effect of

each additional hectare decreases fastest for small motor boats. That d > 0 indicates

that closer lakes are more attractive than more distant ones. Similarly, in the RUM

β1 > 0, and β2 < 0 indicate a positive relationship between lake area and utility,

and a negative relationship between distance and utility, respectively. As with the

gravity model β3 > 0, and β4 > 0 indicate that the marginal utility of an additional
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hectare diminishes fastest for mall motor boats. The full GM was able to account

for 58% of the variation in trip outcomes across all boaters, compared to only 42%

for the full RUM (Fig. 2–3). As a check for bias, we fit a linear regression to

the predicted-observed points. The equations of fit were y = 0.00018[±0.00016] +

0.86[±0.034]xGM and y = −0.00031[±0.00018] + 1.24[±0.058]xRUM . While neither

intercepts deviate significantly from zero, the slope of the GM is less than one,

indicating a tendency to overestimate the traffic to high frequency lakes, while the

RUM tends to underestimate traffic to high frequency lakes.

There are three main components of the differences between the dispersal net-

works predicted by each model. 1) Each model generally predicted higher traffic to

large lakes which are close to dense population sources, as expected. However, the

rank ordering of individual lakes can differ substantially within this broader pattern

(Fig. 2–4a). 2) The average predicted distance travelled by boaters was higher in

the GM (190 km) compared to the RUM (140 km). 3) How evenly, or unevenly the

predicted traffic was spread across different sites differed between models. In order

to quantitatively evaluate this characteristic, we calculated the Shannon entropy of

the traffic distributions predicted by the two models. Entropy can be thought of as

a measure of evenness (Hill, 1973). Probability distributions with higher entropy are

more evenly dispersed. As entropy decreases, the distribution becomes more uneven,

or more sharply peaked, such that more of the mass of the distribution is concen-

trated in fewer sites. We calculate the Shannon entropy of the predicted distributions

P for model M as:
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H(PM) = −
I∑

i=1

PM
i log(PM

i ) (2.16)

As H(PM) → 0, boater traffic is concentrated entirely in one lake. The max-

imum entropy distribution would be that which assigns Pi = 1/n to all lakes in

the system. Comparing the predictions of the two models, we find that the gravity

model (H(PGM) = 5.018) represents a more uneven predicted distribution than that

of the RUM (H(PRUM) = 5.36). The stronger concentration of traffic predicted by

the GM, compared with the RUM can be seen by comparison of the rank ordered

distributions in Fig. 2–4b. The consequences of these differences are analysed in the

following section.

2.4.2 Implications for spread and risk assessment

When the per-propagule probability of establishment is low (small α values), and

there is no Allee effect present, both dispersal models predict similar rates during

the early phases of invasion (Fig. 2–5). The deviations between early rates of spread

under the alternative dispersal models increases drastically, however, as the strength

of the Allee effect increases. At the extreme end of invasiveness and Allee effect

(α = 1.5e− 04 and c = 2.5), we observe an over ten-fold increase in the cumulative

total number of sites invaded by the end of the 30 year time horizon. The degree of

deviation induced by increased Allee strength is also modulated by the independent

population growth, or per-propagule invasiveness parameter α. This can be seen by

observing the magnitude of deviation at each row of Fig. 2–5, which increases as the

parameter α increases.
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In the absence of an Allee effect, the deviations in late-stage rates of spread

can be accounted for by the differences in predicted mean distance travelled under

each model. Spread in Southern Ontario occurs at similar rates under each model

due to high population density, where the distances between population sources

and lakes are short. However, as the invasion progresses northward into the more

sparsely populated regions, spread under the RUM is slowed substantially due to

the increased distances required to reach additional lakes. When an Allee effect is

present, the difference in spread rate is apparent throughout the entire time series.

The relative entropies of the dispersal distributions (i.e. the variance in total inbound

propagules arriving across all uninvaded sites) can account for this further deviation.

The expected rate at which the proportion of previously uninvaded sites become

invaded can be written as R = E[G(Q•t)], where G(Q•t) is a vector of invasion

probabilities for all uninvaded sites, and is given by Eqn. 2.15. When an Allee

effect is present, the function G(Q•t) is concave over part of its range. By Jensen’s

inequality we know that for a convex function E[G(Q•t)] ≥ G[E(Q•t)]. From this

we can see that as the variance of inbound propagules increases over the concave

range as a result of a more uneven dispersal distribution, the rate of new invasions

increases as well.

Spread at the landscape level may be of interest to regional managers; however,

the risk of invasion posed at specific sites will inform management decisions made

at the lake level. To see the differences in the site-level invasion risk predicted by

our alternative dispersal models, we also looked at three specific inland lakes (Lakes

Simcoe, Nipissing and Nipigon). These three lakes occur at increasing distances
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from our source location (Lake Ontario), respectively. By observing the differences

in invasion risk predicted at these sites, it is possible to see how uncertainty and

deviations between model predictions increase as we move further from the source of

invasion. Fig. 2–6 shows probability of invasion (risk) as a function of time at each

of the three sites across our range of population parameters. The risk of invasion

posed at each of these three sites is always higher under the GM, with the exception

lakes Nipissing and Nipigon under strong Allee effect where projected risk is very

near zero and indistinguishable between models.

2.5 Discussion

In this study, we have shown that a GM can better capture the behaviour

of individual boaters in Ontario than an RUM. Ultimately, these two alternative

models can be represented simply as different functional forms which we can use to

describe a boater’s trip-taking probability distribution. In the case of our sample

of Ontario boaters, the functional form of the GM provides a better representation

of the probabilistic process through which boaters select which lakes to visit from a

suite of alternatives.

Both of the behavioural models considered in this study were built using only

the distance between the boater source location, lake size (surface area in hectares)

and boat type as explanatory factors. We recognize that there may be a suite of

additional variables which may add further explanatory power. Previous work has

incorporated additional lake predictors, as well as additional interactions between

individual level and lake variables. These have included lake clarity (measured as

secci depth), cost of access and whether or not a given boater is an angler (Champ
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et al., 2003; Timar and Phaneuf, 2009). Here, we have used lake size, distance from

boater’s home location, and boat type as these are the most readily available data

with which to build a model of boater behaviour for the purposes of assessing invasion

risk. Both the gravity and RUMs can easily be extended to incorporate any number

of additional lake and boater specific variables. In the RUM, one would need simply

to include additional linear, or higher order, predictors (β) in Vnj (see eqn. 2.6).

Within a GM, lake level predictors could be modelled by expansion of Wj into:

W
e+β1X1j+...+βiXij

j (2.17)

With additional explanatory variables of lake attractiveness each requiring the

fitting of an additional free parameter (see section 2.4.1).

We have also demonstrated that the choice of modelling framework used to

characterize the human-mediated vector can have important consequences for pre-

dicting the future spread of invasive species. The deviation between spread pre-

dictions under the two models analysed here interact with population level factors

of the invading species. In the presence of a strong Allee effect, boaters behaving

according to an RUM do not act in such a way as to generate propagule pressures

high enough to overcome the demographic barriers to establishment. The inability

to overcome these barriers is a consequence of the evenness of the predicted trip

distribution of boaters under the RUM, as measured using the Shannon entropy of

the predicted trip distribution. Without the centralized ”hub” lakes (those highly
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connected lakes with very high visitation frequency) predicted by the GM, a situa-

tion can arise where there is not a sufficiently concentrated flow of individuals from

invaded lakes to uninvaded lakes. The data suggests rather, that individuals do act

in such a way as to concentrate traffic to a small number of ”hub” lakes, as predicted

by a GM, and that this level of concentration is sufficient to overcome even very

strong demographic barriers. The existence of such hub lakes and their importance

to the spread of aquatic invasive species has been noted in the literature (MacIsaac

et al., 2004; Muirhead and Macisaac, 2005). A misspecified behavioural model of

human-mediated dispersal may underestimate the importance of these sites, leading

to potentially overoptimistic projections of lake to lake spread.

We also know, however, that just predicting the rate of spread may not be the

most relevant metric of interest to a resource manager who is making decisions at the

local level. A more relevant measure at the lake level is the risk of invasion posed at

particular sites. We analysed how our dispersal models affect site level predictions

of risk by pulling out three of the larger, more important sites in Ontario: Lakes

Simcoe, Nipissing, and Nipigon. For these specific lakes, the predicted probability

of establishment over time differed dramatically between the GMs and RUMs, even

in the absence of Allee effects. Indeed, these are three of the largest inland lakes

in Ontario, all of which are probably receiving sufficient propagule pressure rather

early on to overcome the demographic barrier of an Allee effect. From this result we

can see that the way in which the underlying behavioural model interacts with the

population dynamics of the invading species manifests differently at the site level,

than at the landscape level.
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When making policy decisions regarding invasive species, managers need in-

formed estimates of invasion risk across space and time (Epanchin-Niell and Hast-

ings, 2010). This study suggests that for boaters in Ontario, a GM of individual

behaviour most accurately characterizes this single most important vector of over-

land invasive spread, and that alternative formulations of human vector dispersal

models can interact with the population dynamics of the invading species to produce

large deviations in predicted spread. These deviations manifest differently at the sys-

tem level than at the level of individual lakes. While managers of inland freshwater

resources should be aware of how these interactions impact assessments of risk, our

results are general and hold for any species spreading across a network of discrete

patches.

Future work could look at the utility of implementing GMs in the context of

management interventions. Were managers to implement policies aimed at limiting

the spread of an aquatic invasive species by levying a launching fee, or requiring

hull sanitation procedures at either at-risk or currently infested lakes, boaters may

change their behaviour. Changes in boater behaviours resulting from management

interventions could potentially alter the structure of the human mediated disper-

sal network. This, as we have shown, will have consequences for our predictions of

spread. Previous work has employed RUMs to incorporate these behavioural feed-

backs (MacPherson et al., 2006; Timar and Phaneuf, 2009), however in light of our

current results, it may be appropriate to include these behaviours directly in a GM

formulation.
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While we have shown here that the interaction between intra-patch dispersal

connectivity and stochastic establishment dynamics within patches interact to de-

termine rates of species spread across a landscape, there will no doubt be effects of

other factors, such as spatial and temporal environmental heterogeneity (Melbourne

et al., 2007), biotic interactions (Hunt and Yamada, 2003), as well as temporal vari-

ation in the dispersal network structure itself which should be considered in future

studies.

2.6 Acknowledgments

The authors would like to thank all of our survey respondents, as well as Jason

Cologna at the Ontario Ministry of Natural Resources for help registered boater

mailing list data. Funding for this study was provided by the Canadian Aquatic

Invasive Species Network.

48



References

Aukema, J. E., B. Leung, K. Kovacs, C. Chivers, K. O. Britton, J. Englin, S. J.

Frankel, R. G. Haight, T. P. Holmes, A. M. Liebhold, D. G. McCullough, and

B. Von Holle, 2011. Economic Impacts of Non-Native Forest Insects in the Conti-

nental United States. PLoS ONE 6:e24587.

Bossenbroek, J. M., C. E. Kraft, and J. C. Nekola, 2001. Prediction of long-distance

dispersal using gravity models: zebra mussel invasion of inland lakes. Ecological

Applications 11:1778–1788.

Burnham, K. P. and D. R. Anderson, 2002. Model Selection and Multimodel Infer-

ence: A Practical Information-Theoretic Approach. Springer.

Champ, P. A., K. J. Boyle, and T. C. Brown, 2003. A Primer on Nonmarket Valua-

tion. The Economics of Non-Market Goods and Resources. Springer.

Clark, J., M. Lewis, J. McLachlan, and J. HilleRisLambers, 2003. Estimating popu-

lation spread: What can we forecast and how well? Ecology 84:1979–1988.

Dennis, B., 2002. Allee effects in stochastic populations. Oikos 96:389–401.

Dillman, D. A., 2000. Mail and Internet surveys: the tailored design method. Psy-

chology/Sociology/Marketing. J. Wiley, second edition.

Drake, D. A. R. and N. E. Mandrak, 2010. Least-cost transportation networks predict

spatial interaction of invasion vectors. Ecological Applications 20:2286–2299.

Drake, J. M. and D. M. Lodge, 2006. Allee Effects, Propagule Pressure and the

Probability of Establishment: Risk Analysis for Biological Invasions. Biological

Invasions 8:365–375.

49



Epanchin-Niell, R. S. and A. Hastings, 2010. Controlling established invaders: inte-

grating economics and spread dynamics to determine optimal management. Ecol-

ogy letters 13:528–41.

Gertzen, E. L. and B. Leung, 2011. Predicting the spread of invasive species in

an uncertain world: accommodating multiple vectors and gaps in temporal and

spatial data for Bythotrephes longimanus. Biological Invasions 13:2433–2444.

Hill, M., 1973. Diversity and evenness: a unifying notation and its consequences.

Ecology 54:427–432.

Hunt, C. and S. Yamada, 2003. Biotic resistance experienced by an invasive crus-

tacean in a temperate estuary. Biological Invasions 5:33–43.

Johnston, L. E., A. Ricciardi, and J. T. Carlton, 2001. Overland dispersal of aquatic

invasive species: a risk assessment of transient recreational boating. Ecological

Applications 11:1789–1799.

Kraft, C. E., P. J. Sullivan, A. Y. Karatayev, L. E. Burlakova, J. C. Nekola, L. E.

Johnson, and D. K. Padilla, 2002. Landscape patterns of an aquatic invader: as-

sessing dispersal extent from spatial distributions. Ecological Applications 12:749–

759.

Landis, W. G., 2004. Ecological risk assessment conceptual model formulation for

nonindigenous species. Risk analysis : an official publication of the Society for

Risk Analysis 24:847–58.

Leung, B., J. M. Bossenbroek, and D. M. Lodge, 2006. Boats, pathways, and aquatic

biological invasions: estimating dispersal potential with gravity models. Biological

Invasions 8:241–254.

50



Leung, B. and D. G. Delaney, 2006. Managing sparse data in biological invasions: a

simulation study. Ecological Modelling 198:229–239.

Leung, B., J. M. Drake, and D. M. Lodge, 2004. Predicting invasions: Propagule

presure and the gravity of allee effects. Ecology 85:1651–1660.

MacIsaac, H. J., J. V. M. Borbely, J. R. Muirhead, and P. a. Graniero, 2004. Back-

casting and Forecasting Biological Invasions of Inland Lakes. Ecological Applica-

tions 14:773–783.

MacPherson, A. J., R. Moore, and B. Provencher, 2006. A dynamic principal-agent

model of human-mediated aquatic species invasions. Agricultural and Resource

Economics Review 35:144–154.

Melbourne, B. a., H. V. Cornell, K. F. Davies, C. J. Dugaw, S. Elmendorf, A. L.

Freestone, R. J. Hall, S. Harrison, A. Hastings, M. Holland, M. Holyoak, J. Lam-

brinos, K. Moore, and H. Yokomizo, 2007. Invasion in a heterogeneous world:

resistance, coexistence or hostile takeover? Ecology letters 10:77–94.

Muirhead, J. R., 2007. Forecasting dispersal of nonindigenous species. Phd, Univer-

sity of Windsor.

Muirhead, J. R., M. A. Lewis, and H. J. MacIsaac, 2011. Prediction and error in

multi-stage models for spread of aquatic non-indigenous species. Diversity and

Distributions 17:323–337.

Muirhead, J. R. and H. J. Macisaac, 2005. Development of inland lakes as hubs in

an invasion network. Journal of Applied Ecology 42:80–90.

Parker, I., D. Simberloff, W. Lonsdale, K. Goodell, M. Wonham, P. M. Kareiva,

M. Williamson, B. Von Holle, P. Moyle, J. Byers, and L. Goldwasser, 1999. Impact:

51



toward a framework for understanding the ecological effects of invaders. Biological

Invasions 1:3–19.

Peck, S. L., 2004. Simulation as experiment: a philosophical reassessment for bio-

logical modeling. Trends in ecology & evolution 19:530–4.

Pejchar, L. and H. a. Mooney, 2009. Invasive species, ecosystem services and human

well-being. Trends in ecology & evolution 24:497–504.

Potapov, A., J. Muirhead, N. Yan, S. Lele, and M. Lewis, 2011. Models of lake

invasibility by Bythotrephes longimanus, a non-indigenous zooplankton. Biological

Invasions pages 2459–2476.

R Core Team, 2013. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Ricciardi, A., 2006. Patterns of invasion in the Laurentian Great Lakes in relation

to changes in vector activity. Diversity and Distributions 12:425–433.

Schneider, D. W., C. D. Ellis, and K. S. Cummings, 1998. A Transportation Model

Assessment of the Risk to Native Mussel Communities from Zebra Mussel Spread.

Conservation Biology 12:788–800.

Smirnov, O. a. and K. J. Egan, 2012. Spatial random utility model with an applica-

tion to recreation demand. Economic Modelling 29:72–78.

Smith, V. and Y. Kaoru, 1986. Modeling recreation demand within a random utility

framework. Economics Letters 22:395–399.

Timar, L. and D. J. Phaneuf, 2009. Modeling the human-induced spread of an aquatic

invasive: The case of the zebra mussel. Ecological Economics 68:3060–3071.

52



Wittmann, M. J., M. a. Lewis, J. D. Young, and N. D. Yan, 2011. Temperature-

dependent Allee effects in a stage-structured model for Bythotrephes establish-

ment. Biological Invasions 13:2477–2497.

53



Model ∆AIC

GM

PGM
nj = AnW

e+β1B1n+β2B2n
j D−1

nj * 0

PGM
nj = AnW

e
j D

−1
nj 62

RUM

Unj = β1Wj + β2Dnj + (β3B1n + β4B2n)Wj + ǫ § 3139

Unj = β1Wj + β2Dnj + ǫ 3187

NULL

Pj = 1/J 14732

Table 2–1: Model comparison by ∆AIC. *An follows the same form as the par-
enthetical part shown in the table. §Shown are only the utility (both the observable
and random) components of the random utility model. See equations 2.6-2.11 for
full specification.
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Figure 2–1: Trips reported by survey respondents. The location where boaters
stored their boat during the boating season is indicated with closed squares. The
thickness of the line home between location and the destination lake is proportional
to the number of trips taken. The inset panel shows a zoomed in section of Southern
Ontario for better visualization.
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Parameter MLE(θ̂) 95% CI

Gravity Model (GM)

e 0.51 [0.48, 0.52]

β1 0.14 [0.083, 0.202]

β2 -0.13 [-0.179, 0.0883]

d 1.86 [1.82, 1.89]

Random Utitlity Model (RUM)

β1 0.0011 [0.00106, 0.0012]

β2 -1.40 [-1.447, -1.344]

β3 0.00043 [0.000273, 0.000578]

β4 -0.00044 [-0.000614, -0.000276]

Table 2–2: Maximum likelihood parameter values and 95% confidence in-
tervals for each human vector model.
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Figure 2–2: Map of an example outcome of a spread simulation. Triangles
indicate lakes which have become invaded as of time t. Shown is a single realization
of the spread process under the gravity model with parameters α = 1.25e−04, c = 2.
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Figure 2–3: Predicted vs. observed relative lake visitation frequency (p) for
both models. Both axes have been square-root transformed to better visualize
low values. Coefficients of correlation (R2) are 0.58, and 0.42 for the gravity (GM)
and random utility (RUM) models respectively. The dotted line is the 1:1 line.
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Panel (a): Comparison of the ranking of predicted traffic to individual lakes for each
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circles) and random utility (grey triangles) models.
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Figure 2–5: Invasion trajectories. Proportion of total number of lakes invaded
predicted using the gravity model (black circles) and the random utility model (grey
triangles). Panels show factorial parameter combinations of α = 7.5 − e05, 1.0e −
04, 1.25e − 04, 1.5e − 04 for no Allee effect (c = 1), and increasing Allee effects of
c = 1.5, 2, 2.5. Each model and parameter set was run for 1000 replicates. Error bars
show the range encompassed by 95% of invasion simulations.
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Figure 2–6: Invasion risk to selected locations (Lakes Simcoe, Nipissing,
and Nipigon). Plots show the invasion risk (proportion of times invaded across
1000 spread simulations) across time with 95% confidence intervals. Panel columns
show Allee effect increasing to the right. Alternative human vector models are shown
in black circles (GM), and grey triangles (RUM).
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Connecting statement

In the previous chapter, I investigated the consequences of employing alterna-

tive models of human-mediated dispersal on predictions of invasion risk at both the

landscape and local level. I showed how the population dynamics, and particularly

density dependent effects of the invading species can interact with the structure of

the resulting dispersal network to significantly alter the projected risks. While the

implications for management were suggested in this chapter, I will return to this as-

pect, and in particular spread mitigation efforts, in Chapter 5. The general models

of human-mediated dispersal presented in the previous chapter provide a species-

independent framework for generating projections of invasion risk. In the next chap-

ter, I develop a novel method for evaluating predicted risks generated by such a model

and look at a specific case study of the spread of Bythotrephes longimanus in a wa-

tershed in Central Ontario. The case study highlights both the applicability of the

human-mediated spread risk projection framework and the validity of the underlying

model for accurately assessing these risks. The novel methodology for evaluating the

performance, and specifically the calibration, of risk projection models is developed

in detail and is compared against two currently available approaches.
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3.1 Abstract

1. Predictive models in ecology are important for guiding policy and manage-

ment. However, they are necessarily abstractions of natural systems, making

predictive validation imperative. Models which make predictions about bi-

nary outcomes (eg. Species distribution models, population viability analysis,

predictive disease/invasion models) are widespread in the ecological literature.

When supporting probability-based management decisions, these predictions

need to be assessed with respect to the degree to which predicted probabilities

agree with future outcomes. Many predictive models are not validated using

external data, and are often only assessed in terms of their ability to discrim-

inate between outcomes rather than the degree to which they predicted the

correct probabilities, and by extension the correct risk.

2. We develop a novel Validation Metric Applied to Probabilistic Predictions

(VMAPP) which provides a goodness-of-fit test for binary probabilistic predic-

tion models. We analyse the theoretic properties of this test, and compare its

performance against existing methods. We demonstrate the utility of VMAPP

by application to a published model in invasion biology which forecasts the es-

tablishment probability of the zooplanktivorous spiny water flea (Bythotrephes

longimanus). We selected 102 additional sites to sample four years after the

training data was collected and use this independently collected data to assess

predictive reliability using VMAPP.

3. Theoretic simulation analysis shows that VMAPP outperforms existing met-

rics (Cox’s regression technique and Hosmer & Lemeshow’s χ2 test) in terms
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of statistical power to identify model miscalibration. Further, we find that

under realistic conditions where model parameters are estimated (and have as-

sociated uncertainty) that VMAPP is more robust, retaining the appropriate

Type-I error rates (5%) where previous metrics fail (≤17%) . Application of

VMAPP to a published invasion model using empirical validation data show

that in addition to having high discriminative power, the model’s probabilistic

predictions agree with the observed outcomes as measured by VMAPP.

4. We argue that quantifying ecological predictions as probabilities with associ-

ated uncertainty provides the most useful information to support management

decisions. Ecological predictions, while uncertain, should still be rigorously

validated. Identifying the circumstances in which our predictions deviate from

observation can further inform the next generation of the model, bringing pre-

diction and reality ever closer.
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3.2 Introduction

From identifying the risk of species loss (Lee and Jetz, 2011), to predicting range

shifts under climate change (Chen et al., 2011), or forecasting the spread of invasive

species (Gertzen and Leung, 2011a), ecology has the potential to contribute greatly

as a predictive science. Using ecological models to make predictions about unknown

or future states of nature is an essential component of informing policy related to

global change (Clark et al., 2001; Burgman and Yemshanov, 2013). In order for the

predictions of ecological models to remain relevant to decision makers, however, we

need to rigorously assess the validity of the predictions generated from our models

(Schmolke et al., 2010). This is most readily apparent when ecological predictions

aim to inform risk management. Since risk can be defined as the probability of an

event times the severity of its impact (Suter, 2006), we need to know whether our

models are providing us not with some exact single prediction of a given outcome

(eg. definitive presence or absence, alive or dead, extant or extinct, etc.), but rather

with the correct probabilities associated with each. Thus, using a simple threshold

approach to separate predictions into binary classifications, one would rule all cases

with low predicted probability (e.g. p̂ = 0.1) as ”absent”, however if the model is

correct, we should observe 10% of these cases as actually being present.

Ideally, a procedure to assess predictive validity should have three key aspects.

First, the type of predictions on which a model is validated should be in line with

it’s stated purpose. If a model is built with the goal of being able to predict out-

comes beyond the spatial or temporal domain of the data on which it was built, then

validation should be carried out on outcomes similarly beyond these ranges (Guisan
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and Zimmermann, 2000). Secondly, the validation procedure should examine the

range of model predictions (from low to high predicted probabilities), and be able

to identify regions of significant departures of model predictions from observations

(Pearce and Ferrier, 2000; Phillips and Elith, 2010). Third, the validation metric

should provide an absolute measure of predictive performance, as opposed to the rel-

ative measures commonly used for model selection (Mason, 2008). Finally, it should

be powerful. Ecology, like all endeavours, is subject to the ubiquitous constraint

of limited resources. A validation procedure should therefore make efficient use of

the limited data available to most powerfully detect discrepancies between model

predictions and reality, when they exist.

In this paper, we focus on evaluating models that make predictions on binary

outcomes (i.e. the outcomes of processes which lead to one of two possible states).

Such models are widely used in the ecological literature, yet the evaluation of these

models has been limited with respect to the validation discussed above. Examples of

this class of ecological models include species distribution models (Elith et al., 2011;

Wenger et al., 2013; Broennimann et al., 2012), population viability analyses (Brook

et al., 2000; Staples et al., 2004; Heard et al., 2013), and establishment of invasive

species (Gertzen and Leung, 2011a; Seebens et al., 2013; Bradie et al., 2013). In many

cases, making reliable probabilistic predictions is essential from a decision making

perspective (but see Lawson et al. (2014) and Kuk et al. (2014) for discussion of

cases where correct ranking of probabilities is sufficient). Whether we are employing

expected value theory in a cost-benefit analysis or defining acceptable levels of risk,

we are often relying on the estimates of probability from our models to be accurate.
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Validation of probabilistic models involves assessing the quality, or goodnesss-

of-fit, of generated predicted probabilities in comparison with actual observations.

While there are nine attributes that define the quality of a probabilistic model (Mur-

phy, 1993), often we focus on examining discriminative ability, and/or calibrartion

(also termed reliability) (Lawson et al., 2014). The goal when building binary out-

come models is often viewed as being able to maximally discriminate between the two

possible states of nature across a variety of scenarios or conditions. When discrim-

ination is the primary goal, we say that the problem is one of binary classification

(Freeman and Moisen, 2008). In this view, the modeller’s objective is to place very

high scores on positive cases, and conversely, low scores negative cases. This objective

is conceptually similar to the concept of sharpness, in which the predicted proba-

bilities are concentrated around 0 and 1 (in the case of binary outcomes), however

differs in that while sharpness is a property solely of the prediction, discrimination is

a joint property of the prediction and the outcomes (Gneiting and Katzfuss, 2014).

Alternatively, the prediction problem can be viewed as an assessment of risk, with the

goal being to have predicted probabilities match the actual probabilities associated

with each case, given the available data. That is, we want the predicted probabil-

ities, based on the available predictor variables and a given model structure, to be

in agreement with the true probabilities (ie. a well calibrated model, also referred

to as a reliable model) (Phillips and Elith, 2010; Pearce and Ferrier, 2000). As the

simplest example, a well calibrated prediction on the outcome of a fair coin landing

heads-up would be 0.5, and we could statistically compare this prediction against

observed outcomes. While prediction calibration is clearly an important aspect of
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model validation, a recent review found that a majority of species distribution mod-

elling studies are only evaluated in terms of discrimination, in part because common

methods of modelling species distributions use presence-background data and do not

purport to make well calibrated predictions (Ward et al., 2009; Lawson et al., 2014).

In this paper, we examine two existing goodness-of-fit tests for predictive calibra-

tion used in Ecology and demonstrate that these approaches may be flawed under

realistic conditions. We provide a solution by developing a novel approach: the

Validation Metric Applied to Probabilistic Predictions (VMAPP), which compares

probabilistic model predictions to observed outcomes from an independent data set.

Our metric provides a goodness-of-fit test against four forms of model miscalibration

which is more powerful than previously available techniques. The goodness-of-fit

measures assess whether model predictions are biased overall, as well as whether the

magnitude and direction of bias changes across the prediction range. We demonstrate

that VMAPP is able to incorporate both stochastic and parametric uncertainties in-

herent to predictive models when assessing model fit and show that that previous

methods suffer from inflated type-I errors under these conditions. In addition to

the goodness-of-fit tests, VMAPP also provides an estimator of the magnitude and

direction of deviation between predicted and actual risks for use as a diagnostic tool

similar to a residual plot in classical statistical models. All of these outputs are

easily obtained using an R package (R Core Team, 2013) which we have developed

to accompany this paper.
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3.3 Materials & methods

We first outline the logic of our metric and describe a recipe for how it is com-

puted. We then assess the properties of VMAPP theoretically, testing its perfor-

mance in terms of statistical power to identify miscalibrated predictions, as well as

evaluating the accuracy of the estimator of model deviations from reality across the

range of model predictions. We then demonstrate the utility of VMAPP via appli-

cation to a published model in invasion ecology for which validation data has since

been collected (Gertzen and Leung, 2011b).

3.3.1 Validation metric

The different ways in which a model may perform well in terms of its ability

to discriminate between positive and negative events, yet place erroneous proba-

bilities on individual predicted outcomes can be categorized into a discrete set of

miscalibration pathologies as described in Pearce and Ferrier (2000) and revisited

in Phillips and Elith (2010). First, predicted probabilities may be biased overall

higher (or lower) than the observed rates of presence events. These cases are repre-

sented graphically using stylized examples in Fig. 3–1, panels D) and G). In these

situations, discrimination may indeed be quite high, yet the predicted rates are ev-

erywhere biased in the same direction. Second, the spread of the predictions may be

biased relative to the spread of the generating probabilities. The model may predict

overly low probabilities in the low range of predicted probabilities, and overly high

probabilities in the high range (Fig 3–1 M). This situation can occur, for instance,

in simple logistic regression when a covariate in the model is only loosely correlated

with the true predictor. Finally, model predictions may be higher than the true
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probabilities in the low range and lower than true probabilities in the high range

(Fig 3–1 E). In this situation, model discrimination may also be low, as the distribu-

tion of predicted probabilities is narrower than the true probabilities. While model

predictions may be miscalibrated in an infinite variety of ways (for instance linearity

error (Phillips and Elith, 2010)), we focus on this discrete set in order to build an

inferential mechanism for identifying these common pathologies.

To explain how VMAPP assesses these miscalibration pathologies, and estimates

the degree of model miscalibration at each point in the predictive range we first define

a few terms: For every outcome in a validation set consisting of n observations

(Ri ∈ {0, 1}, i = 1, . . . , n), the true (but unknown) probability is denoted by pi =

P (Ri = 1), and predicted probabilities given a model (or ensemble of models) M and

some data D by p̂i = P (Ri = 1 |M,D) for each i = 1, . . . , n. We begin with the case

where our model makes point estimates of each probability, but will generalize this to

consider uncertainty in each p̂i below. Of course, we do not observe the real-valued pi

directly, but rather observe binary outcomes (Ri ∈ {0, 1}) in our validation data. To

compare our predictions with these binary observations we can simulate an arbitrarily

large number (J) of predicted outcomes (Sij ∼ Bernoulli(p̂i), j = 1, . . . , J) using

probabilities from the model. The degree of miscalibration (or deviation) is the

difference between model and reality for each validation case and is defined as δi =

p̂i − pi.

In order to assess miscalibration pathologies, VMAPP compares each vector

Sj, j = 1 . . . , J of simulated outcomes from the predictive model to the vector of

real observations R in the validation data. Of course, because we are dealing with
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stochastic events, we do not necessarily expect the simulated and observed occur-

rences to always match even when the model is valid, and VMAPP focuses on these

discrepancies (Sij 6= Ri) when they occur. Under the null hypothesis that our model

perfectly characterizes the underlying probabilities (p̂i = pi, i = 1, . . . , n), we would

expect that when our simulated outcomes differ from the data, they will do so as

frequently in one direction as the other. In other words, Sij > Ri (Sij = 1, Ri = 0) is

as likely as Sij < Ri (Sij = 0, Ri = 1). In contrast, if model predictions overestimate

the probability (p̂i > pi), then we would expect Sij > Ri to occur more frequently

than Sij < Ri (and the reverse scenario for underestimation p̂i < pi) (Fig.3–1 F,I).

Next, if the direction of deviation changes in sign over the range of model pre-

dictions, δ will either be an increasing or decreasing function of p̂ (Fig. 3–1. J,M).

Specifically, if p̂i < pi for all i where p̂i is small, but switches to p̂i > pi for all i where

p̂i is large, then the proportion of Sij > Ri to Sij < Ri will likewise increase over the

range of p̂ (Fig. 3–1. L), and vice versa in the other direction (Fig. 3–1. O).

Using the above logic, we can assay for model miscalibration by testing two null

hypotheses. First, when p̂i = pi for all i = 1, . . . , n then P (Sij > Ri |Sij 6= Ri) = 1/2.

Thus, the expected proportion of positive discrepancies to negative ones is equal to

1/2 for every outcome in the validation set. By repeatedly simulating outcome

vectors Sj, j = 1, . . . , J from each element i = 1, . . . , n of the prediction vector p̂,

each time calculating this proportion, we can assess how often it is greater than, or

less than the null hypothesis of 1/2. If it is greater(less) than 1/2 most (ie 1 − α)

of the time, then the model predictions overall are significantly biased high(low).

Second, if there is no change in the direction of bias over the range of p̂, we would
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expect P (Sij > Ri |Sij 6= Ri) to be independent of p̂. The alternative hypothesis

being that P (Sij > Ri |Sij 6= Ri) is either an increasing, or decreasing function of

p̂. We accomplish this test by fitting a logistic function to each of the J vectors of

discrepancies between simulated and observed outcomes. If the slope is greater(less)

than zero more than 1 − α of the time, then we reject the null hypothesis that δ is

independent of p̂, and conclude that model predictions switch from being significantly

biased low(high) for small values of p̂, to being high(low) for larger values of p̂. An

algorithm for conducting these VMAPP goodness-of-fit tests is given in box 1.

Accounting for uncertainty

Up to this point, we have developed the logic behind VMAPP as a tool for

identifying whether model predictions are in concordance with the probabilities un-

derlying the system being modelled. In doing so, we have taken explicit account

of the stochastic uncertainty underlying the conversion of continuous probabilities

into the observed binary outcomes in our validation data. Missing however, is the

acknowledgement that even if we have constructed a valid model of our system, we

have typically estimated the parameters of that model using a sample data. The

resulting estimates, of course, have associated uncertainty as a result of sampling

variation. The consequence of which is that even when our model is valid, we do not

expect p̂i to exactly equal pi, i = 1, . . . , n. Since what we wish to know is whether

our model is valid, failure to account for this sampling uncertainty may result in the

erroneous rejection of a valid model due to errors in parameter values.

There are several techniques to account for parameter uncertainty due to sam-

pling variation in model predictions (Cressie et al., 2009; Meyer et al., 1986; Wenger
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et al., 2013), but the underlying concept is the same. Rather than predicting a

single probability for each new case, propagation of uncertainty due to sampling

variation entails predicting a distribution of probabilities. In this study, we use

the method of bootstrap re-sampling to build uncertainty distributions of predicted

probabilities for each case in the validation data. Now, instead of having a single

prediction vector p̂i, i = 1, . . . , n, we have a distribution of J prediction vectors

denoted p̂ij ∼ P (p̂i |M,D), i = 1, . . . , n j = 1, . . . , J .

Box 1. Algorithm steps for VMAPP miscalibration tests:

1. FOR j in j = 1, . . . , J , DO:

2. Simulate a predicted outcome for each point in the validation set (Sij ∼

Bernoulli(p̂ij), i = 1, . . . , n). If there is no parameter uncertainty accounted

for in the model, p̂i1 = p̂i2 = . . . = p̂iJ .

3. Compute the difference between the simulated and observed outcomes (Sj−R).

Map Sij > Ri → ∆ij = 1, and Sij < Ri → ∆ij = 0. Exclude any cases where

Sij = Ri (Fig. 3–1, row 3).

4. Calculate the mean discrepancy direction ∆̄j =
∑n

i=1 ∆ij/n.

5. Fit a logistic regression ln
P (∆ij)

1−P (∆ij)
= β0j + β1j p̂ij, and retain the fitted slope

value β1j.

6. END FOR LOOP.

7. Compare the distribution of ∆̄ to Ho : ∆̄ = 0.5. If ∆̄j greater(less) than 1/2

more than 1− α of the time (j = 1, . . . , J), model predictions are significantly

biased high(low) overall (See Fig. 1, columns 2 & 3).
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8. Compare the distribution of β1 to Ho : β1 = 0. If miscalibration changes

direction from under- to over-prediction across the range of prediction, HA :

β1 > 0 (Fig. 3–1, column 4). Similarly, a change from over to under is HA :

β1 < 0 (Fig. 3–1, column 5).

3.3.2 Theoretic analysis of VMAPP

Power and type-I error rates

We used simulation tests to evaluate the theoretic behaviour of VMAPP, and

compare its performance with both the the Hosmer-Lemeshow (HL) test (Hosmer

and Lemeshow, 2000) and Cox’s method (Pearce and Ferrier, 2000) (see appendix

B.1.2 for a description of these methods). First, we establish that the type-I error

rates for identifying model miscalibration pathologies match with the expected rates.

To do this, we first assumed a model which generates predictions perfectly concordant

with the probabilities underlying the validation data (ie. p̂i = pi, i = 1, . . . , n). This

represents the special case where the model is not only valid, but its parameters

are known with complete certainty. We simulated a validation procedure, drawing

100 points from the underlying probabilities and calculated each of the validation

metrics. We repeated this 1000 times and calculated the proportion of times each

metric resulted in the rejection of the null hypothesis of a valid model at the α = 0.05

level. To assess power to detect model miscalibration, we repeated the procedure

using systematically biased model predictions. We generated predictions following

each of the four miscalibration pathologies outlined in section 3.3.1 at medium and

high levels of absolute deviation (Fig. 3–3).
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To test the performance of each metric under the more realistic scenario of a

model parameterized using empirical observations, we repeated the simulation exper-

iment, this time introducing a model fitting step to sample data. We simulated 100

data points at a time from a simple logistic model with a single predictor variable.

Using this data, we fit the parameters of the correct model formulation using maxi-

mum likelihood and used the fitted model to make predictions on another set of 100

validation data points, also simulated from the true underlying model. Repeating

this 1000 times, We then assess the type-I error rates by calculating the proportion

of times that each metric detected miscalibration.

To incorporate uncertainty caused by sampling variation in the data, we also

considered a bootstrapping procedure to generate a distribution of parameter esti-

mates (Manly, 2001). In each replicate of ”reality”, the model was refit 1000 times,

each time using 100 samples (with replacement) from the 100 data points. The re-

sulting distribution of parameter values was then used to predict a distribution of

probabilities for each case in the validation set. We repeated this procedure 1000

times to test the type-I error rates of VMAPP and Cox’s method. The HL test,

however, has no obvious mechanism for testing predictions which include parameter

uncertainty and so was not included in this final comparison.

Estimation of δ

In addition to the goodness-of-fit tests, VMAPP also provides an estimation of

the magnitude and direction of deviations (δ) between model predictions and ob-

served frequencies in the validation data. This procedure is analogous to calibration

plots by Phillips and Elith (2010) for presence-only data, based on Cox’s method
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(Pearce and Ferrier, 2000), where the frequency of positive validation outcomes is

plotted against the predicted probability from a model. By estimating δ, predictive

calibration can be inspected over the range of predictions, potentially identifying

miscalibration behaviour not explicitly accounted for in the goodness-of-fit tests. To

accomplish this we need to estimate two functions using our Monte Carlo outcomes.

First, f1(p̂) estimates the probability of discrepancies irrespective of direction, or

P (S 6= R) (Fig. 3–1 2nd row). Next, f2(p̂) estimates P (S > R |S 6= R) as a

function of p̂ (Fig. 3–1 3rd row). We use parametric functional forms which cap-

ture the expected range of shapes of f1(p̂) and f2(p̂) (see Appendix B.1.1) and fit

using maximum likelihood to each set of discrepancies between the simulated and

observed outcomes. With these two function estimations in hand, we can calculate

the estimated deviation as a function of the model predictions:

δ̂(p̂) = 2(f2(p̂)− 1/2)f1(p̂). (3.1)

The proof of which is given and an algorithm for estimating f1 and f2 is given

in Appendix B.1.1. Code is provided as an R package (R Core Team, 2013) available

at https://github.com/cjbayesian/rvmapp.

To assess the ability of VMAPP to estimate the magnitude and direction of

deviation between model predictions and reality (which we simulated and therefore

knew), we simulated random scenarios representing arbitrary combinations of each of

the four miscalibration pathologies. For each simulation, we applied VMAPP to the

miscalibrated predictions on an independent validation dataset. Each time, VMAPP
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generates a distribution of the estimated deviation δ̂. Since the estimate is not a

single value, but rather a distribution representing uncertainty, we evaluate whether

this distribution is predictive of the true deviation using the approach outlined in

Leung and Steele (2013). This approach tests for bias in both location and dispersion

using a probability-probability (P − P ) plot (Leung and Steele, 2013). If δ̂ is an

unbiased estimator, we expect the true value δ to fall below 1% of the cumulative

distribution function (cdf) of δ̂ 1% of the time, below 10% of the cdf 10% of the

time, and so on. The expected result if no bias exists is a P-P plot following a

1:1 line between the expected percentile and the proportion times, under repeated

simulation, that the real values of δ fall into these percentiles.

3.3.3 Application: Spread of the invasive planktivore Bythotrephes longi-

manus

Watershed Description and background

Watershed 2EB comprises the District of Muskoka and parts of the counties of

Haliburton, Nipissing and Parry Sound in south-central Ontario, Canada (Fig. 3–4).

There are 1636 lakes that are > 1 ha in the watershed. The lakes in the watershed

have the longest history of secondary spread of Bythotrephes in North America (Yan

et al., 1992; MacIsaac et al., 2004).

Data collection

Prior to 2005, 23 lakes in the watershed were known to be invaded with Bythotrephes.

In 2005 and 2006, 311 spatially and size stratified lakes were sampled for the pres-

ence/absence of Bythotrephes (see appendix B.1.3). This sampling effort increased

the number of known invaded sites from 23 to 46. The predictive model outlined
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in the next section was built using the data collected during 2005/2006 as well as

the historical record of confirmed invasions dating back to 1989. For validation, an

additional 102 lakes were selected to be compared against the predictions from from

the model. The validation lakes were chosen to cover the full extent of the prediction

range (low, medium, and high predicted probabilities) and were sampled in 2010.

Predictive modelling framework

The modelling framework for forecasting the spatial spread of Bythotrephes is

described in detail in Gertzen and Leung (2011b). The methodology incorporates

several levels of real world uncertainty involved in predicting the trajectory of the

invasion process. First, while the data consists of presence/absence records, only a

small fraction of total possible sites have been sampled, with many unsampled sites

representing unknown potential sources or sinks of propagules to the system. Sec-

ond, the sites which have been sampled (one or more times) represent observations

at relatively few, non-evenly distributed time intervals. A site at which a species is

observed to be present when sampled at time t may have become colonized at any

time between when it was last observed to be free of invasion and t. Third, while

the probability of establishment will increase with the inbound propagule pressure

to a given site, the success or failure to establish a persistent population is subject

to demographic and environmental stochasticity. By using maximum likelihood esti-

mation in concert with stochastic simulation, this model was fit to the Bythotrephes

data collected up to 2006.
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3.4 Results

3.4.1 Theoretic properties of the validation metric

Type-I error rates and Power - For the null case where we have the true

model structure and know the true parameters (Fig. 3–3), our simulation results

show both VMAPP and Cox’s method to have the expected type-I error rate for

detecting model miscalibration (5% for α = 0.05). The rate of type-I errors for

the HL test was an inflated 11%. When model parameters were fit, but parameter

uncertainty (sampling variation) not accounted for, all tests resulted in inflated type-

I errors (HL: 27%, Cox: 23%, and VMAPP: 16%). When parametric uncertainty

was accounted for, VMAPP yielded the appropriate type-I errors yet Cox’s method

still had an inflated type-I rate of 17% (Table 3–1).

The power of each metric to detect miscalibration increased as the size of de-

viation increased for all four types of model miscalibration. VMAPP outperformed

both Cox and HL. VMAPP obtained a power of 94% in the high category of under-

estimation compared with 84% for Cox’s method and 72% for HL (Fig. 3–3 A & B).

Power comparisons were similar for cases where the direction of bias switched from

under to overestimation across the predictive range (at high deviation, the power of

the tests was 94%, 91%, and 90%, respectively) (Fig. 3–3 C). Both VMAPP and

Cox’s method outperformed HL by the widest margin when the direction of bias

switched from over to underestimation across the predictive range (94% and 40%,

respectively) (Fig. 3–3 D).
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Estimation of δ - P-P plots showed that the estimator is not biased in either

spread or location, with observed percentiles following closely with expected along

the 1:1 line (Fig. 3–2).

3.4.2 Empirical results

The model predicted probabilities of Bythotrephes establishment at the valida-

tion lakes were consistent with the observed establishments. Discrimination was also

high, with AUC values for the bootstrapped predictions of 0.82±0.3. Application of

VMAPP to the model predictions and validation data did not detect any significant

overall bias (p = 0.50) nor any changing bias across the predictive range (p = 0.37).

Fig. 3–4 shows the predicted probabilities from the model on the 102 validation

lakes. While the estimated deviation between model predictions and reality are small,

Fig. 3–4 B) demonstrates how this VMAPP product can be mapped and visually

inspected for spatial patterns in model deviation. For example, we can see that the

maximum expected deviation between our model predictions and actual risk (3.4%)

occurs at the lake which the model predicted most likely to be invaded. Inspecting

the 95% CIs, we see that the model could be underestimating the risk by as much

as 17% or overestimating by as much as 16%. Again, we see that the uncertainty in

this value is greatest at predicted risks near 50%.

3.5 Discussion

If ecology is to provide support for management and policy, the credibility of

ecological predictions is essential. This requires rigorous assessments of our predictive

models using independent validation data (Manel et al., 2002; Schmolke et al., 2010).

For some predictions, the goal is to accurately capture a ’snapshot’ in time, requiring
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validation data collected concurrently with the data on which the model was fit. In

cases where our models are being used to forecast systems which are in flux (non-

equilibrium - eg. invasions, climate change driven range shifts) into the future, it

is particularly important to have temporal separation between fitted and validation

data sets (Václav́ık and Meentemeyer, 2012; Márcia Barbosa et al., 2013). Further,

predictive models which generate probability estimates need to be evaluated in terms

of the degree to which the probabilities themselves are accurate, if they are going to

provide meaningful inputs into calculations involving risk.

There is a paucity of studies which have validated whether the quantitative

probabilities from models matches the empirical binary outcomes (Lawson et al.,

2014), and we advocate that this should become common practice. Our work in

this manuscript will aid such validation by developing a novel approach (VMAPP)

to evaluate any binary probabilistic model. We have demonstrated via theoretical

simulations that it is simultaneously more robust (appropriate type-I errors) and

more powerful than two existing approaches. We have also shown that our method

can be used to estimate the magnitude of deviation of probabilistic predictions from

reality using empirical observations, along with the associated uncertainty in these

estimates (Jolliffe, 2007). Moreover, we applied it to a real-world non-trivial eco-

logical model (Gertzen and Leung, 2011b), comparing a priori model predictions to

>100 independently sampled locations for validation. A complete validation of bi-

nary prediction models in ecology using data independent of that used to construct a

model is rarely carried out in practice (Guisan and Thuiller, 2005). Most studies, at

best, use a data partitioning scheme to conduct internal validation on a single data
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set. That is, validation is conducted by fitting a model to some subset of the data

and holding out the rest on which to assess model predictions (i.e., cross-validation).

While this is the best that can be achieved in many situations where only a single

dataset is available and VMAPP can be applied in this setting, the possibility of

bias resulting from building models to ”chase” internal validation performance is

problematic (Hirsch, 1991) and has been observed to lead to inflated performance

when compared against independently collected data (Randin et al., 2006; Araújo

et al., 2005). Here, we assessed a previously published model using independent data

collected four years after the data on which the model was built and demonstrated

that the model yielded probabilistic predictions which matched observed outcomes.

We thereby provided an account of model performance which is not subject to un-

intended biases which can occur when the analyst has access to all of the data at

once (ie. researcher degrees of freedom). Additionally, the team which carried out

the validation sampling was ’blind’, with guidance on which sites to sample but no

knowledge of model predictions (Cairns and Yan, 2011).

3.5.1 Comparison with other approaches to validation

Some previous validation studies have employed non-probabilistic measures of

agreement between model predictions and observations. These have included mea-

sures of spatial agreement between predictions and observations or summary statis-

tics such as the net rate of spread in the case of biological invasions (e.g., Higgins

et al. (2001)). Alternatively, depending on the objectives of a modelling exercise,

various other validation metrics may be appropriate (Guisan and Thuiller, 2005).

For instance, some management plans seek to simply rank sites by the likelihood
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of establishment in order to focus efforts and resources on the top n sites. In such

cases, commonly used metrics such as Area Under the receiver operating charactaris-

tic Curve (AUC), which indicates whether ranking of predictions fits with observed

outcomes, is most useful (Peterson et al., 2008). However, ranking alone may be

undesirable if the absolute magnitude of the difference in risks between sites is small.

More generally, if one wished to determine whether an acceptable environmental risk

threshold were exceeded, weigh costs versus benefits of management, or any other

analyses of expected utility, it would be critical that the predicted probabilities from

models are quantitatively correct. The validation of probabilistic predictions pro-

vided by VMAPP will be most applicable in these cases, and it is therefore comple-

mentary to measures such as AUC. Thus, for instance, in our real-world application

to Bythotrephes spread in Ontario (Gertzen and Leung, 2011b), management options

involving costly interventions could be evaluated using cost-benefit analysis, where

the risk posed by Bythotrephes invasions requires estimates of the probability of their

establishment over time.

VMAPP improves upon the few existing inferential methods to evaluate prob-

abilistic predictions, namely the Hosmer-Lemeshow (HL) (Hosmer and Lemeshow,

2000) test and Cox’s method (Miller et al., 1991; Pearce and Ferrier, 2000). The HL

test is simple in its conception and implementation, however it suffers from several

drawbacks. First, the process of binning data represents a loss of information about

the differences between cases contained in each bin. Second, the choice of bin sizes

introduces an arbitrary decision imposed on the analyst. Third, the HL test has

inflated type-I errors, and will falsely indicate model miscalibration more often than
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theoretically expected. Despite this, the HL test is underpowered to detect mis-

calibrated probabilistic models compared to other approaches, including VMAPP.

Finally, HL provides a single measure of calibration without any reference to how a

model may be miscalibrated, and does not identify where a model is failing and in

what direction.

In contrast, both VMAPP and Cox’s method do not require the analyst to im-

pose any arbitrarily chosen binning scheme on the validation data, and are able to

directly identify different miscalibration pathologies. However, VMAPP improves

upon Cox’s method in several ways. Although both Cox’s method and VMAPP are

valid when the true model parameters are used, the underlying parameters are typi-

cally unknown and need to be fit from empirical data. In these cases, Cox’s method

has inflated Type-I error rates, whereas VMAPP does not. Second, VMAPP has

demonstrably more power to detect the miscalibrated predictions of invalid models

than Cox. Finally, VMAPP provides techniques which go beyond previous met-

rics by providing an estimate of the deviation between model predicted and actual

probabilities across the range of predictions.

3.5.2 VMAPP extensions

Currently, VMAPP provides a method for estimating deviation between pre-

dicted and actual probabilities as a function of the predicted probabilities themselves.

From this, one can easily produce calibration plots similar to those in Phillips and

Elith (2010) by plotting predicted probability against probability estimates given

the validation data (p̂ vs p̂− δ̂). Our method, however, is more general and can be

extended to allow for the estimation of δ as a function of any covariate of interest
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(included in the model or not). In this way, VMAPP could be used to suggest struc-

tural areas in which a model may be improved (Bolker, 2008). For example, VMAPP

could be extended to assess the effects of spatial autocorrelation on model predictions

by identifying systematic deviations (biases) as a function of space. Alternatively,

by estimating δ as a function of one or more covariates used in the model’s develop-

ment, the structural contribution of those covariates could be assessed. For instance,

if a covariate entered the model as a linear term, yet was actually exerting a non-

linear effect, the δ estimation would provide insights into this model error. Deriving

the appropriate functional forms of f1 and f2 in these contexts would require fur-

ther research, but should otherwise be possible with the technology described in this

paper.

3.5.3 Concluding remarks

A complete assessment of any probabilistic ecological model requires a rigorous,

quantitative means of comparing independently observed outcomes to model predic-

tions. The method we have described here provides not only a powerful inferential

technique for diagnosing miscalibrated predictions, but also a measure of the degree

to which predicted probabilities deviate from the probabilities underlying the system

in question. By quantifying where, and to what degree, our predictions deviate from

reality, we produce clues which can help to improve our models, thereby narrowing

the gap between prediction and reality.
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Table 3–1: Type-I error rates of each test under three conditions.

Type-I error rate
Test No Uncertainty Unaccounted Uncertainty Accounted Uncertainty
Hosmer-Lemeshow 0.11 0.27 N/A
Cox’s Method 0.05 0.23 0.17
VMAPP 0.05 0.16 0.05
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Figure 3–1: Conceptual outline of VMAPP. Each column shows a possible mis-
calibration scenario. The first row shows the underlying true probabilities p gen-
erating success/failures (blue dashed lines) and the predicted probabilities p̂ from a
hypothetical model (solid black lines). The difference between p and p̂ across the pre-
dicted range is indicated by δ. The second row shows discrepancies between a single
set of simulated outcomes from the prediction model (S) and empirical observations
(R). Successes (1s) in this row represent discrepancies that have occurred (S 6= R),
failures (0s) represent no discrepancy (S = R). The third row shows the direction of
discrepancy (S > R |S 6= R → 1, S < R |S 6= R → 0). The red lines are stylized fit-
ted curves. By combining these curves over repeated simulations, VMAPP estimates
δ and provides an inferential mechanism for identifying model miscalibration.

95



−2 −1 0 1 2

NULL

x

P
ro

b
a

b
ili

ty
0

1

Predicted (p)
True (p)

A)

δ = 0

0.0 0.2 0.4 0.6 0.8 1.0
p

P
(S

≠
R

)
0

1

B)

0.0 0.2 0.4 0.6 0.8 1.0
p

P
(S

 >
 R

 |
 S

≠
R

)

0
1

C)

−2 −1 0 1 2

Over−estimation

x

P
ro

b
a

b
ili

ty
0

1

Predicted (p)
True (p)

D)

δ

0.2 0.4 0.6 0.8 1.0
p

P
(S

≠
R

)
0

1

E)

0.2 0.4 0.6 0.8 1.0
p

P
(S

 >
 R

 |
 S

≠
R

)

0
1

F)

−2 −1 0 1 2

Under−estimation

x

P
ro

b
a

b
ili

ty
0

1

Predicted (p)
True (p)

G)

δ

0.0 0.2 0.4 0.6 0.8
p

P
(S

≠
R

)
0

1

H)

0.0 0.2 0.4 0.6 0.8
p

P
(S

 >
 R

 |
 S

≠
R

)

0
1

I)

−2 −1 0 1 2

Over/Under Switch

x

P
ro

b
a

b
ili

ty
0

1

Predicted (p)
True (p)

J)

δ

0.0 0.2 0.4 0.6 0.8 1.0
p

P
(S

≠
R

)
0

1

K)

0.0 0.2 0.4 0.6 0.8 1.0
p

P
(S

 >
 R

 |
 S

≠
R

)

0
1

L)

−2 −1 0 1 2

Under/Over Switch

x

P
ro

b
a

b
ili

ty
0

1

Predicted (p)
True (p)

M)

δ

0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

P
(S

≠
R

)
0

1

N)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

P
(S

 >
 R

 |
 S

≠
R

)

0
1

O)

F
igu

re
3–1

96



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted Percentile [0,1](x)

P
ro

p
o
rt

io
n
 "

tr
u
e
" 

va
lu

e
 (

th
e
ta

) 
(t

h
e
ta

<
x
)

Figure 3–2: VMAPP theoretical performance. VMAPP performance in identi-
fying deviations between model predicted probabilities and actual probabilities (δ̂)
for 1000 simulated model-validation set pairs (n = 100 for each validation set). Under
perfect predictions of deviation, the expectation is a 1:1 line.
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Figure 3–3: Power (1 − β) comparisons between Hosmer-Lemeshow, Cox’s
method, and VMAPP. Panels A-D correspond in order with the four miscali-
bration pathologies in Figure 3–1. Results are based on 1000 simulated validation
procedures at two levels of deviation between model and reality. The sub-panels in
each show the shape of the model predictions and underlying generating probabilities
for each case. n = 100 for each validation set. Note that the power of all tests goes
to 100% as n → ∞.
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Figure 3–4: Predictions of Bythoterphes occurances in 2010. Panel A
shows mean predicted probabilities of occurrence of Bythoterphes at each of the
102 validation lakes (shown as size of circles) and the variance in the predicted
probabilities (in heat colours). Panel B shows the estimated deviation between model
predictions and actual probability (δ̂) at each of the validation lakes using VMAPP.
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Bythotrephes validation data.
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Connecting statement

In the previous chapter, I developed a novel methodology for validating projected

risk models and showed it’s utility in a case study of Bythotrephes longimanus spread

in a watershed in Central Ontario. The case study was an evaluation of a published

risk model which incorporates various aspects of uncertainty including stochasticity

and sparse data. While the data which went into both the building and validation

of this model were sparse, they were the result of a very large and resource-intensive

sampling effort to identify the presence and absence of Bythotrephes at many lo-

cations in the watershed. More common, however, is that we only have records of

presences, and these records exist only for a limited subset of locations. Rather than

being the result of systematic sampling, these presence records often exist as a result

of either opportunistic sampling or as reported sightings from citizen scientists. This

form of data, while ubiquitous, presents a particular challenge to modelling efforts

aiming to assess the risks posed to sites across space and time. Specifically, with-

out data on species absences, currently available techniques are not able to estimate

species prevalence or site-specific probabilities of presence, and are therefore only

able to estimate relative, as opposed to absolute risks. In the next chapter, I present

a novel modelling framework for solving this problem in the context of spreading in-

vasive species by modelling the spatio-temporal pattern of establishments as hidden

states and the detection of presences as a stochastic observation process. I apply
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the framework to 10 aquatic invasive species in Ontario for which presence-only data

were available. By providing a solution to the presence-only problem, this framework

represents a major contribution to both the invasive species literature as well as the

field of Biogeography more generally.
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4.1 Abstract

Estimating the current and future spatial extent of invasive species is of paramount

importance to both scientific understanding and management decisions. Given their

ubiquity, presence-only data have become increasingly employed for these purposes.

However, absence of species may occur either because they are truly absent, or have

not yet been detected; for presences, only date of discovery is known rather than

true time of establishment. In this study, we model establishments as hidden states

and detection as a stochastic observation process to solve the problems inherent to

presence-only data. We show theoretically that we can estimate probability of detec-

tion, which sites are likely invaded but not yet detected, as well as the past, current,

and future extent of invasions. We apply the model to 10 aquatic invasive species

in Ontario. We estimate that for zebra and quagga mussels, the majority of invaded

sites have already been detected (76% and 95%, respectively), but in contrast, for

two species of mysterysnail and the Eurasian water-milfoil the extent of invasion is

likely 10 times greater than currently detected.
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4.2 Introduction

Estimating the current and potential future extent of a species’ geographic range

is of obvious value for both scientific understanding and management of biodiver-

sity. There is a large and growing literature on techniques and methodologies for

estimating a species’ geographic range (Elith and Leathwick, 2009). Most of the

common approaches, however, tend to assume that the species of interest is at equi-

librium with the environment, and do not take into account dispersal limitation and

other spatio-temporal processes. Modified applications of these modelling frame-

works to invasive species (termed invasive Species Distribution Models, iSDMs) on

the other hand, consider cases which violate the assumptions underlying most SDM

methodologies (Václav́ık and Meentemeyer, 2009). A minority of studies explicitly

incorporate dynamic spatio-temporal processes by joining dispersal and physiological

habitat suitability (Leung and Mandrak, 2007; Catterall et al., 2012; Ibáñez et al.,

2014). However, current joint models are limited because they assume spatially

and temporally explicit presence and absence data, which are unavailable for most

species. Instead, data typically consist of the locations of species presences, while the

vast majority of locations have unknown status. As such, many SDM approaches

rely on randomly selected background sites as stand-ins for absences, or so called

pseudo-absences (Elith et al., 2006). The use of pseudo-absences in conjunction with

correlative statistical modelling approaches are becoming increasingly prevalent in

the literature, and are often used to produce predictive maps of species distributions

(Guisan and Thuiller, 2005; Hijmans, 2012).
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These correlative statistical approaches model the joint probability distribution

of environmental covariates and species occurrences, yet do not directly predict the

probability of a species occurring at a given site (Elith et al., 2011). While suitability

indices or a ranking of the invasion risk across sites can act as a management aid,

non-temporally explicit, non-probabilistic suitability maps can only provide limited

decision support. Particularly in the case of invasive species, static suitability maps

do not directly assess the risks posed at different sites across the landscape over a

given time horizon. Further, knowledge of where species are likely to be present,

and yet have gone undetected can guide resources toward more efficient search and

monitoring strategies. To be maximally useful, a decision support tool would provide

quantities relevant to decision theoretical frameworks such as utility maximization or

cost-benefit analysis (Polasky et al., 2011). While some recent papers have attempted

to provide solutions to determining probabilities using presence-only data, they do

so in the context of species which are at equilibrium (not spreading) with their

environment (Li et al. 2011; Royle et al. 2012, but see critique from Hastie and Fithian

2013). When projecting the spatial extent of a species which is not at equilibrium

with the environment over time, we need to assess the probability, at each point in

time, that a species is, or will be, present at a given location. Beyond being useful

at the local scale, such predictions are particularly important for range expanding

species, where colonized locations become focal points, providing new propagules on

which continuing spread will depend (Muirhead and Macisaac, 2005).

Methods to combine presence-only and presence/absence data to forecast inva-

sive species have been developed recently. In one approach, the problem was broken
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into a two step procedure, first building a Maxent model then directing field sampling

for presence/absence data collection based on the suitability maps (Gormley et al.,

2011). Some have suggested that when modelling an invasive species, presence data

from the native range should be used under the assumption that the species had

sufficient time to reach a kind of equilibrium, not limited by dispersal over the range

of environmental conditions present (Guisan and Thuiller, 2005). Other efforts go

beyond static assumptions and explicitly model species spread via time-dependent

dispersal and colonization processes. Leung and Mandrak (2007) develop and apply

a method for joining dispersal and habitat suitability to the spread of zebra mussels

using temporal presence/absence data. Accounting for uncertainty in colonization

time by using a methodology for incorporating sparse sampling records and explicitly

modelling the dynamics at unsampled locations was further developed by Gertzen

and Leung (2011). Several recent studies of plant invasions have described general

Bayesian approaches which can also simultaneously estimate dispersal and habitat

suitability (Catterall et al., 2012; Ibáñez et al., 2014). These approaches require

species distribution (presence/absence) data at multiple points in time (snapshots)

and can account for various uncertainties including the unknown, but bounded col-

onization times. In each of these studies, explicit knowledge of at least a subset of

sites representing true absences is required.

In this study, we tackle two of the main challenges facing efforts to model current

and future ranges of invasive species, specifically dispersal limitation and presence-

only data. We describe the rational behind a novel approach which uses a probability

of detection (observation) model and presence-only data to predict the current and
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future range of invasive species. Our approach demonstrates how these two problems

can, in fact, help to solve each other. By modelling spatio-temporal establishment as

a hidden process combined with an observation process, we simultaneously estimate

population dynamical parameters (rates of spread), current extent of invasion, en-

vironmental tolerances (habitat suitability), and probabilities of establishment and

detection.

We begin by outlining the generalized form and rational of our modelling frame-

work. We highlight the modular nature of this approach, indicating where alternative

sub-models may be employed. We then theoretically examine our approach using

simulated invasions, validating the ability of the model to recapture the underlying

parameters of each sub-model, as well as the unknown colonization timings repre-

sented as hidden states in the model. We then apply our approach to presence-only

data reported for 10 aquatic invasive species (4 plants, 6 invertebrates) in Ontario.

Finally we discuss the benefits of using this approach to modelling the spread of

invasive species from both a management and scientific perspective.

4.3 Materials & methods

The modelling framework consists of the joining together of three subcomponent

models: 1) Dispersal, 2) Establishment (colonization), and 3) Detection (observa-

tion). Since our approach is applicable at various spatial scales, dispersal vectors,

and for many types of species undergoing range expansion, we first outline the model

in its generalized formulation. The specific modelling choices and functional forms

pertaining to each of the three submodels are left to the case-study application of

our framework to 10 aquatic invasives in Ontario.
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4.3.1 The generic model formulation

Consider a heterogeneous network of habitat patches (referred to here as sites)

connected by potential dispersal corridors over which propagules may travel. At some

starting time t = 0, only a small subset of the sites contain established populations

of a species of interest. Sites are heterogeneous in environmental characteristics, and

hence in their suitability for the target species. The environmental characteristics are

therefore predictors of the relationship between the number of inbound propagules

and the probability that the species will establish a population at (invade/colonize)

a given previously uninvaded site. We can write this probability for a given time-step

t as:

ρEi
(t) = P (Si = t |θE, ζi, Qi,t) (4.1)

Where Si defines the time-step in which the target species establishes a repro-

ducing population at site i. This probability is conditional on the parameters θE

describing how environmental characteristics of the site (ζi) affect the probability

of establishment as a function of the inbound propagule pressure Qi,t. We assume

this to be some increasing function of propagule pressure, such that the probabil-

ity of establishment is positively related to the number of inbound propagules, but

the strength and shape of that relationship is determined by the environmental con-

ditions at a given location. The propagule pressure itself depends on the invasion

status of all other sites which are potential sources of inbound propagules as well

as the strength of the dispersal corridor between them. That is, every site j where
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Sj < t contributes propagules dependent upon synonymously the connection, corri-

dor, or dispersal potential (distance/quality/strength/connectivity) between sites i

and j. The connections themselves are determined by an underlying model of po-

tential dispersal with parameters θλ. For invasive species, we assume the dispersal

model to be a network based model of human-mediated dispersal between discrete

habitat patches, but even simpler distance-based kernels are also possible. Thus, in

general form, the propagule pressure to site i is a function of both the invasion status

of all other sites and the dispersal potential connecting them to site i:

Qi,t = f(θλ, Sj∀j 6= i). (4.2)

Once a site becomes invaded, we assume there is some probability ρDi
that the

species will be detected at that location during each subsequent time step t ≥ Si.

This probability may itself be a function of some site specific characteristics ηi with

parameters θD. The probability of a site being detected at time t = Di can then be

modelled as the joint probability of that site remaining uninvaded up to time Si− 1,

becoming invaded in time Si, subsequently remaining undetected from time Si to

time Di − 1, then finally being detected at time Di. We can write this probability

using a joint survival equation:
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g(Si, Di,θE,θD,θλ, ζi,ηi) =
[
Si−1∏

t=1

(1− ρEi
(t))

]

ρEi
(Si)

︸ ︷︷ ︸

Hidden state space

[
Di−1∏

t=Si

(1− ρDi
)

]

ρDi

︸ ︷︷ ︸

Detection Process

(4.3)

Since our only data for a given site is the time of detection, we do not observe Si

directly but rather know only that it occurred at or prior to Di. Therefore, in order

to calculate the overall likelihood of observing a detection at time Di, we consider the

likelihoods over all possible hidden states Si ≤ Di. The possible hidden states (time

of invasion) which may have resulted in a detection at t = Di are: invasion in the

same year as the detection (Si = Di), or invasion in the previous year (Si = Di− 1),

or invasion in the year before that (Si = Di − 2), or the year before that, and so

on. For example, for a site detected at the third time-step, it may have become

established in the first time-step or the second or the third time-step. We therefore

maginalize over the collection of possible hidden state space to obtain:

h(Di,θE,θD,θλ, ζi,ηi) =

Di∑

s=1

g(Si = s,Di,θE,θD,θλ, ζi,ηi). (4.4)

Which is the likelihood of first detecting the species to be present at t = Di,

given the model and parameters. The overall likelihood for the N sites which have

been detected as of the current time Tnow is therefore the product of their individual

likelihoods,
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L1(θE,θD,θλ |D, ζ,η) =
N∏

i=1

h(Di,θE,θD,θλ, ζi,ηi). (4.5)

However, eqn 4.5 only describes the likelihood for those sites which were detected

to be invaded as of the current time Tnow. To incorporate those sites at which we

have not detected our target species either because the site is not invaded or because

it is invaded and has yet to be detected, we need to modify eqn 4.3, removing the ρDi

term and allowing for the state where the site has not yet been invaded (ie Si > Tnow).

m(Si,θE,θD,θλ, ζi,ηi) =







[
∏Tnow

t=1 (1− ρEi
(t))

]

if Si > Tnow,

[
∏Si−1

t=1 (1− ρEi
(t))

]

ρEi
(Si)

[
∏Tnow

t=Si
(1− ρDi

)
]

if Si ≤ Tnow.

(4.6)

The likelihood across each of the K lakes in which the target species has not

been detected to date is now given (similarly to eqn 4.5) as:

L2(θE,θD,θλ | ζ,η) =
K∏

k=1

[
Tnow+1∑

s=1

m(Si = s,θE,θD,θλ, ζk,ηk)

]

(4.7)

And the complete likelihood is now the product of eqns 4.5 and 4.7:

L(θE,θD,θλ |D, ζ,η) = L1L2 (4.8)

With this likelihood function in place, all model parameters associated with

the invasion and the detection processes along with their associated uncertainty can
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then be estimated using a Bayesian approach. We employ MCMC using an adap-

tive Metropolis-Hastings algorithm to obtain samples from the posterior predictive

distributions of the model parameters via the familiar Bayesian inversion:

P (θE,θD,θλ |D, ζ,η) ∝ P (D, ζ,η |θE,θD,θλ)P (θE)P (θD)P (θλ). (4.9)

In addition to providing uncertainty estimations for each of the model parame-

ters, the use of MCMC provides us with a mechanism for probabilistically calculating

eqn 4.1 for every site at each time-step t ≤ Di for the detected sites, and t ≤ Tnow

for those sites at which the target species has not yet been detected. This is particu-

larly useful since that in order to calculate the propagule pressure to each site (Qi,t),

the invasion state of all sites j 6= i is required since those sites which have become

invaded prior to t are those which will be providing propagules, as determined via

the dispersal model (Eqn. 4.2). We obtain these hidden states by stochastically

simulating spread from t = 0 to t = Tnow at every step of the MCMC chain. For

reference, the parameters of the model are described in Table 4–1.

4.3.2 Prediction and inference

Once model parameters have been estimated, there are several quantities which

can be estimated using this formulation. First, our parameter estimates from the

habitat suitability sub-model allow us to make inferences about species’ tolerance re-

lationships with the environment. Similarly inference about the strength of dispersal

corridors is possible using parameter estimates from the dispersal model. Perhaps

of most immediate use to managers, a predictive distribution of the state vector S
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can easily be generated via stochastic simulation from the joint posterior predictive

distribution of parameters. This allows us to quantify both site-specific and system-

level risk of invasion over time. These can be generated both looking backwards,

predicting which sites are likely already to be invaded, as well as projecting for-

ward, making forecasts about a species’ future spatial distributions (MacIsaac et al.,

2004). Since the forecasts are probabilistic, they provide natural inputs to both risk

assessments and decision-theoretic management plans (eg. maximum expected util-

ity calculations (Polasky et al., 2011)). Similarly, traditional potential distribution

maps can be generated, indicating locations for long-term monitoring as well as for

comparative studies between the projected invaded and native ranges (Beaumont

et al., 2009). Additionally, since we explicitly model the observation process, we can

make predictions and ask questions about differences in detectability and reporting

between species. By comparing the predicted current extent of a given species with

the date of first detection a every location, our framework can provide guidance on

which species are likely going unreported as well as where to focus future monitoring

efforts (Hui et al., 2011).

4.3.3 Theoretical analysis

The theoretical ability of the general approach which we have outlined above to

recapture underlying processes and parameters was tested using simulated data for

which the true parameters were known. To make the simulated scenarios as realistic

as possible, we used the system of Ontario Lakes and the same environmental vari-

ables which we use in our real-world application (section 4.3.4). Further, we employ

the same general sub-model structures for the dispersal, suitability, and detection
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components but simplify by only considering a single environmental predictor (we

use 5 in the application). We simulated 1000 in silico invasion scenarios using ran-

domly selected model parameters. For each simulated invasion, we collected virtual

detection data on which to fit the model (see example simulation in Fig. 4–1). Us-

ing this procedure, we were able to determine whether our statistical formulation

was able to correctly characterise the generating parameters for all three sub-models

using only information about where and when species were detected. Following Le-

ung and Steele (2013), we evaluated the resulting posterior predictive distributions

by producing P-P plots which compare the frequency with which each generating

parameter falls into different quantiles of the posterior. P-P plots with a 1:1 rela-

tionship indicate that the posterior distributions are unbiased estimators of the true

parameter values.

4.3.4 Application

We demonstrated the utility and versatility of our approach by applying our

model to presence-only records of 4 invasive aquatic plants and 6 invasive aquatic

invertebrates from the Early Detection & Distribution Mapping System for Ontario

(EDDMapS, 2013). The data consist of time-stamped, geo-referenced observations

of each species from a variety of sources including monitoring programs as well as

citizen submitted sightings. All reported presences have been verified by the Ontario

Federation of Anglers and Hunters. The spatial distributions of the detections data

are shown in Fig. 4–2.
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4.3.5 Ontario dispersal model

Aquatic invasive species have been found to be primarily dispersed via human-

mediated vectors (Johnston et al., 2001; Timar and Phaneuf, 2009; Gertzen and

Leung, 2011). In order to characterise the potential dispersal corridors between in-

land lakes, therefore, we need to characterise the behaviour of the human actors

(recreational boaters). Past studies have found so-called Gravity Models to be pre-

dictive of human behaviour (Chivers and Leung, 2012) as well as predictive of the

spread of invasives mediated by their behaviour (Leung et al., 2004, 2006; Muirhead

and MacIsaac, 2011). The dispersal model which we applied to the 10 Ontario species

is a production-constrained gravity model. This formulation is not data intensive,

requiring at a minimum the home locations of boaters in the system to be fit (Muir-

head and MacIsaac, 2011). This data was obtained from the Ontario Ministry of

Natural Resources as the number of registered boaters in each of 526 postal regions

as identified by the first three digits. For details of the dispersal model formulation

see Chivers and Leung (2012).

4.3.6 Establishment & suitability model

Our establishment and suitability model links the number of propagules arriv-

ing at a given site at each time step with the probability that the site will become

invaded. Following the formulation described by Bradie et al. (2013), we modelled

the establishment process as a survival function, where the probability of establish-

ment is the complement of the cumulative probability of each propagule failing to

result in establishment. In order to incorporate environmental heterogeneity between

sites, we extended this formulation to include environmental predictors of habitat
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suitability such that the suitability of a site changes the shape of the propagule

pressure-establishment probability curve. Specifically,

ρE(t) = 1− q(zEi)
Qc

i,t (4.10)

where Qi,t is the number of propagules arriving at site i during time step t as

determined by the colonization state S of all other sites and the strength of the

dispersal corridor between the currently established sites and site i. The value of

q(zEi) is unique to each site and determines the ease with which a site may become

invaded by changing the strength of the relationship between propagule pressure

and probability of establishment. As q(zEi) defines the probability of a propagule

not resulting in an establishment, sites with lower q(zEi) values are more susceptible

to invasion. In order to make the interpretation of the model coefficients intuitive,

we estimate instead the complement of q(zEi), and we do so using a simple logistic

function with linear terms for the environmental characteristics of a given site i:

q(zEi) = 1− 1

1 + exp(−zEi)
, (4.11)

zEi = βE0 + βE1ζi1 + . . .+ βEJζiJ (4.12)

Where βE is a vector of J + 1 parameters to be fit and ζi is a vector of J

environmental characteristics at site i. The establishment model is a discrete-time

stochastic process. Sites with smaller values of q(zEi) are more easily colonized,

requiring fewer propagules on average to become invaded, while sites with large
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values of q(zEi) will remain uncolonised (probabilistically) even when receiving a

large number of inbound propagules. The parameter c allows for the possibility

of density-dependent Allee effects, which have interactive effects with the network

structures (Chivers and Leung, 2012).

4.3.7 Environmental variables

For the habitat suitability component of our model, we obtained environmen-

tal predictors from the BIOCLIM database (Hijmans et al., 2005). Environmental

attributes of each lake with a surface area > 10 hectares (n = 781) were obtained

by computing the average value of each BIOCLIM variable over lakes’ the surface

area. As many of the variables were highly correlated, we performed dimensional-

ity reduction using PCA (Jackson, 2005), retaining the first 5 principal components

which together contained 95% of the variance within the study area. Some previous

studies have dealt with the multi-colinearity of environmental predictors by choosing

only a subset of relatively uncorrelated variables which are thought a priori to be

relevant to species tolerances (Ibáñez et al., 2009; Kulhanek et al., 2011). Such an

approach has the advantage that it can, in some cases, yield biologically interpretable

fitted parameters. In our case, however, we chose to use the dimensionally reduced

representation of the entire set of predictors with the aim of accounting for most of

the variance in environmental conditions while being general enough to be applicable

across our variety of plants and invertebrates.

4.3.8 Detection model

We assume that in each time step, if a site is currently invaded, a detection

can either occur or not, and that this is a probabilistic process. The probability of
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detection may be a function of any number of site characteristics ηi. We modelled

this relationship again using a simple logistic form:

ρDi =
1

1 + exp(−zDi)
, (4.13)

zDi = βD0 + βD1ηi1 + . . .+ βDJηiJ (4.14)

The underlying observation process may be heterogeneous across time as well

as space. For instance, as public awareness of a given species changes over time, so

too would we expect the probability of invaded sites being detected. For simplicity

and generality, however, here we assume that each time step is independent with

equal probability of detection. This assumption could easily be relaxed, adding an

additional time-dependent predictor of probability of detection and incorporating

additional information about public awareness and other factors affecting search

effort over time. Additionally, while we present here the general form of the detection

model, we did not have any a priori site-specific predictors of search effort.

4.3.9 Prediction, forecasting, and validation

In order to forecast the future distributions of each species, we ran repeated

stochastic realisations of spread out 10 years past the last detection data points

(2013-2023). While the distribution of spread trajectories resulting from these re-

peated simulations incorporates the stochastic uncertainty inherent in the dynamics

of future spread, we also integrate parameter uncertainty by drawing parameter

values randomly from the posterior distribution of the underlying dispersal and suit-

ability models for each realisation. Using this approach, we are able to estimate
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the past, current, and future distributions of each species. First, by counting the

fraction of R = 10, 000 simulated realisations in which each site becomes invaded by

time t, we can estimate the probability of presence at every site in space and time

as P (Si ≤ t) = 1
R

∑R

r=1(Si ≤ t); i = 1, . . . , i = n; t = Tfirstdetection, . . . , t = 2023.

Second, we can separate out the predicted current versus potential distribution of

each species (Václav́ık and Meentemeyer, 2009). The cumulative future risk of in-

vasion posed at each site can be assessed by computing the difference between the

probability of presence by 2023 and the probability of presence as of 2013. Maps of

such cumulative future risk can then be produced to identify sites which may benefit

most from localized increases in early detection efforts (Vander Zanden et al., 2010)

and preventative management actions (Leung et al., 2002). Third, the distribution

of the number, or proportion, of sites invaded in any given year is easily obtained by

keeping track of this count for each realisation. And finally, the predicted number

and location of detections can be obtained by additionally simulating the detection

process itself, also by drawing parameters from the posterior distribution.

When presence/absence data are available, the outcome of interest on which to

perform predictive validation is whether or not the species is present at the validation

sites (Hijmans, 2012). Model predictions are then typically compared against these

observations and some measure of predictive accuracy is computed (eg AUC). Since

we do not have presence/absence data, rather detections and non-detections, we as-

sess model performance based on these same outcomes. To assess model performance

for each species, we fit our model using only those detections dated prior to 2006.

We then project the spread of each species up to 2013. From this, we calculated the
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probability of making a new detection at each site during this period, which we then

compared against actual outcomes of detection or no detection at each site reported

between 2006-2013.

4.4 Results

4.4.1 Theoretical simulations

The dispersal and detection model parameters were predicted without any de-

tectable theoretical bias as illustrated using P-P plots comparing expected and ob-

served quantiles of the true parameters within the posterior distributions (Fig. 4–3).

The only slight deviation occurred in the estimates of the environmental suitability

parameter βE1. The model showed a very slight tendency to underestimate this co-

efficient as indicated by the P-P plot curving slightly below the 1:1 line. This effect

is likely caused by the spatial structure of the environment and in particular spatial

autocorrelation of the predictor which is known to introduce systematic biases in

models of metapopulation dynamics (González-Meǵıas et al., 2005). The resulting

predictions of the hidden state variables (colonization timing) followed a 1:1 pre-

dicted/observed pattern (R2 = 0.96) and were not detectably affected by the slight

βE1 bias.

4.4.2 Ontario aquatic invasives

The probability of species presences are mapped and overlaid with the location

of all detections as of 2013 (Fig. 4–4). The Spiny waterflea is predicted to be the most

wide-spread species with 25% ([19-31%] 95%BCI) of sites predicted to be invaded

as of 2013, followed by Purple loosestrife (20% [15-25%]) and Rusty crayfish (16%

[10-20%]) (Fig. 4–5). The predicted extent of the Flowering rush in 2013 is fairly low
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at 8% of sites, however, it is also characterised by the highest level of uncertainty in

terms of colonization over time, with a lower credible interval suggesting it could be

as low as 3.0% and as high as 14%. The Zebra mussel and Banded mystery snail, on

the other hand, were both predicted with less uncertainty having credible intervals

spanning the relatively small ranges of 3% and 0.8%, respectively (Fig. 4–5). One

trivial possibility is that the number of sites currently invaded is simply a function of

the number of presences detected. The predicted number of sites currently invaded,

however, was not correlated with the number of detections (r = 0.22, p = 0.55),

indicating that there is a large amount of variance in detectability between species.

The ratio of the number of predicted invaded sites to the number of detections as

of 2013 is highest for the two snail species in our dataset. The Chinese mystery

snail has not yet been detected at 92% of the sites for which it is predicted to be

invaded (6 detected out of 68.6 predicted invaded), and 87% of invaded sites similarly

remain undetected of Banded mysterysnail (10 out of 68.5). By comparison, the

zebra mussel is predicted to be present but undetected at only 24% of the sites in

its current range, while the quagga mussel appears to have been detected in all but

1% of the sites where it is currently established (Fig. 4–6). The complete spatio-

temporal record of detections shown with the predicted probabilities of presence are

available as an online supplement (https://cjbayesian.github.io/detection_

model_spread_animations).

Three of the 10 species had mean AUC values greater than 0.9, indicating a

very high degree of predictive discrimination between the sites which were detected

in the 2006-2013 period and those that were not (Table 4–2). Only the Banded
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Mystery snail had a mean AUC < 0.7, with an AUC ranging from 0.43 (worse than

random) to 0.66. Some of this poor performance may be attributable to low number

of detections (4) recorded prior to 2006 on which the model was fit. However, there

were only 2 detections recorded prior to 2006 for the Chinese Mysterysnail, for which

the validation AUC was 0.76 [0.5,0.89].

4.5 Discussion

Recently, there has been an increasing number of papers attempting to pre-

dict the spatial distribution of invasive species in their introduced ranges (Kulhanek

et al., 2011; Gallien et al., 2012; Hallstan et al., 2013). While these studies use pres-

ence/absence data to estimate current and future distributions, in only a minority

of instances are data on both presences and absences actually available. The far

more common situation is that we have information on where a species has been

detected (eg. presences) but lack any information about which locations are now,

or were known at one point in time to have been free of a given species (Ward

et al., 2009). The fundamental asymmetry between the knowledge of, and cer-

tainty about, presences vs absences makes gathering information about the latter

particularly problematic (Lobo et al., 2010). Further, invasive species pose a spe-

cial challenge to attempts at characterizing their current and potential distributions

(Václav́ık and Meentemeyer, 2009). Specifically, invasive species may not have had

sufficient time to have reached every site in the introduced range in which they

may thrive once reached, and yet many of the standard methodologies for modelling

species geographic distributions are grounded in the assumption that species are in

spatial equilibrium with their environment (Václav́ık and Meentemeyer, 2012). In
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this paper we have presented an approach to modelling the past, current, and future

distributions of invasive species using presence-only data which solves these two main

problems with current approaches. We have shown here that by joining models of the

spatio-temporal patterns of the dispersal and establishment of invasive species with

the observation process by which they are detected, we can simultaneously solve the

problem of non-equilibrium spatial distributions while accounting for the uncertainty

posed by presence-only data.

Our predictions revealed patterns which would not be readily discernible us-

ing current presence-only methods. First, the proportion of sites invaded and their

spatial configuration does not follow exactly the pattern of detections. Instead, the

unique spatio-temporal distribution of detections inform the model not only about

species-specific environmental tolerances, but also about which trajectories of inva-

sions were more likely to lead to the observed detections. For instance, when the

time between detections is several years apart, and the locations of those detections

are not close together in space, the model ’fills in the gaps’ with likely scenarios,

identifying the location and timing of stepping stone invasions that were most likely

to have occurred in between. Second, we found that the number of detections were

not on their own predictive of the number of sites invaded. As of 2013, the con-

spicuous and publicly well known zebra mussel had been detected at 85 sites and is

predicted to be currently established in 113 locations, while the Chinese and banded

mysterysnails are predicted to be invaded at 75 and 79 sites, while only having been

detected at 6 and 10 sites, respectively (Fig. 4–6). A similar fraction of sites pre-

dicted to be invaded have been detected with Eurasian water-milfoil (17 detected out
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of 111 invaded). While the mysterysnails and water-milfoil may go unidentified and

otherwise under-reported at many locations, the quagga mussel, thought to have a

fairly restricted range seems to have been detected at nearly all of the sites at which

it is currently expected to be established. Failure to account for these differences in

detection rates between species, therefore, could lead in some cases to greatly under-

estimated predictions of both the current extent and future risk of invasion across

sites.

In addition to being predicted to be the most currently widespread species in

our set, Spiny waterflea and Purple loosestrife also present the highest cumulative

future risk of invasion to additional sites over the next ten years (Fig. 4–7). While

partly a consequence of the force of invasion (more currently invaded sites represent

a larger total flow of propagules to uninvaded sites), this is only one of the driving

factors of future invasion risk. Since our model estimates environmental tolerances,

we also observe species for which the majority of suitable sites have already been

invaded, effectively saturating available habitat and limiting the rate of future spread.

For instance, our model predicts Eurasian water-milfoil to have quickly established

populations at as many as 20% of sites in Ontario within the first 3 years following

its initial discovery in Lake Erie in 1992. Since then, however, additional spread

has been limited to a rate of a little more than one new invasion per year (Fig.

4–5). Both of the snail species in our set show similar profiles of quickly saturating

suitable locations, suggesting that most of the currently uninvaded locations are

likely to remain uninvaded over the next 10 years (Fig. 4–5 and 4–7). The spatial

distribution of future risks is also informative, as it tells us which species present risks
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over a broad spatial range and which are confined to a specific region. This is once

again different from purely correlative suitability models as we are assessing future

probabilities of establishment resulting from ongoing dispersal, as opposed to changes

in the environment. For instance, the projected future risk of Zebra mussel invasion

is confined to central Ontario, while Rusty crayfish, Flowering rush, and European

common-reed present risks in both south-eastern and north-western Ontario.

The general approach developed here is widely applicable to any species under-

going range expansion for which temporally explicit presence-only data exist. We

built the specific model components for the application with the goal of simplicity

in mind. However, the specific forms of the dispersal, establishment, and detection

sub-components of the model can readily be swapped out for alternative formula-

tions. While we demonstrated the utility of the approach using a gravity model

of human-mediated dispersal, there is nothing stopping any other form of dispersal

model (eg coupled map lattice, cellular automata, dispersal kernels - fat tailed, or

otherwise, etc) from being employed instead. Similarly, we assumed a simple suit-

ability and establishment model using a first order logistic relationship and where

within-site establishment was represented as a dichotomous variable, ignoring local

scale population proliferation (Ibáñez et al., 2014). It should be possible, however, to

include more complex intra-patch population dynamics with only minor adjustments

to the general approach outlined in this paper. Finally, our observation model was

the simplest possible, assuming constant probability of detection across both space

and time. We have validated the theoretical behaviour of the model when incorpo-

rating site-level predictors of detection probability, but future work could extend this
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approach to allow probability of detection to vary over time as well. The advantage

of such a general, modular system is that it can be readily extended and applied to

additional species as a part of integrated risk assessments (Ibáñez et al., 2014) and

management decision making, increasing its attractiveness for policy applications

(Leung et al., 2012).

4.5.1 Concluding remarks

In summary, the framework we have presented here solves two pressing chal-

lenges facing the modelling of invasive species distributions using presence-only data.

First, our framework explicitly incorporates the spatio-temporal dispersal and estab-

lishment processes, going beyond the assumption of species-environment equilibrium

made by most presence-only methods. Second, by modelling the data generating

process as the joint outcome of hidden dispersal and establishment events, as well as

a stochastic observation process leading to the detected presences, we provide a so-

lution to the problem of presence-only data in non-equilibrium situations. Together,

this framework provides both a powerful tool for informing management decisions, as

well as for facilitating scientific inquiry into how the native ranges of invasive species

compare with those in the introduced environment.
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Václav́ık, T. and R. K. Meentemeyer, 2009. Invasive species distribution model-

ing (iSDM): Are absence data and dispersal constraints needed to predict actual

131



distributions? Ecological Modelling 220:3248–3258.
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Symbol Description

L Likelihood of the model parameters given the observed detections.
Si Year of establishment of the ith site (unknown state).
Di Year of first detection at the ith site.
ζi Vector of J environmental characteristics of the ith site
ηi Vector of characteristics of the ith site which may predict ρD
θλ Parameters of the dispersal model (d, e in the case of our gravity model).
θE Parameters of habitat suitability model (c, βE0, . . . , βEJ). These define

the relationship between propagule pressure and probability of establish-
ment.

θD Parameters of probability of detection model (βD0, . . . , βDJ).
ρEi

(t) Probability of establishment at the ith site at time t. This is a function
of propagule pressure, population dynamical parameters, and habitat
suitability (environment).

ρDi
Probability of detection at the ith site. This is the probability, given that
the species is present, that it will be detected in a given unit time. Can
be a function of site characteristics.

Table 4–1: Definitions of symbols
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Species Year
first de-
tected

No. Detec-
tions prior
to 2006

No. Detec-
tions 2006-
2013

AUC
[95%]

Banded Mysterysnail
Viviparus georgianus

1998 4 6 0.56
[0.43-0.66]

Chinese Mysterysnail
Cipangopaludina chinensis

1996 2 4 0.76
[0.50-0.89]

Eurasian Water-milfoil
Myriophyllum spicatum L.

1992 7 10 0.70
[0.61-0.83]

European Common Reed
Phragmites australis

1948 31 7 0.92
[0.63-0.98]

Flowering Rush
Butomus umbellatus L.

1949 8 9 0.82
[0.57-0.94]

Purple Loosestrife
Lythrum salicaria L.

1991 71 13 0.81
[0.76-0.85]

Quagga Mussel *
Dreissena bugensis

1992 6 1* 0.94
[0.72-0.99]

Rusty Crayfish
Orconectes rusticus

1964 51 9 0.83
[0.78-0.87]

Spiny Waterflea
Bythotrephes longimanus

1982 58 27 0.76
[0.71-0.81]

Zebra Mussel
Dreissena polymorpha

1988 70 15 0.96
[0.94-0.97]

Table 4–2: Results of validation of detection predictions. The number of
detections used for fitting (prior to 2006) and validation (2006-2013) are given for
comparison. *Note that while Quagga Mussel seems to perform well in terms of
AUC, care should be taken in interpreting this result as there is only one detection
in the validation period.
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Figure 4–1: An example simulated spread and detection outcome. (a) Black
crosses indicate the year of invasion for each of the 781 sites. Crosses at 2024 indicate
sites which did not become invaded as of 2023. Red arrows indicate sites which had
detections. The base of the arrow is at the year of invasion and the tip indicates the
year of detection. (b) The proportion of sites invaded over time, including projections
10 years into the future. (c) Generating (true) values of the model parameters in
blue with the posterior predictive distribution shown with open black circles (95%
CI error bars).
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Figure 4–3: P-P plots of posterior predictive distributions in model fits on
simulated data. A 1:1 relationship indicates that the true (generating) parameter
falls in every quantile of the predictive distribution with the expected frequency
meaning that the posterior distribution is an unbiased estimator of the underlying
model parameter. 137
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Figure 4–6: Number of sites predicted to be invaded compared with the
number of sites at which each species have been detected. Total number of
invasions stacked by those which have been detected and those which are predicted
to have been invaded by 2013 and yet remain undetected.
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Connecting statement

In the previous chapter, I developed a novel approach to predicting the spread

of invasive species when presence-only data is available. This methodology works by

modelling establishments as hidden states and detections as a stochastic observation

process. The application to 10 aquatic invasive species revealed that while for some

species, the detected sites represent a large proportion of the current extent of the

invasion, others are predicted to be currently established at as many as 10 times

more sites those at which they have been detected. Further, while some species have

already colonized the majority of sites for which they are environmentally suited,

others (Spiny waterflea and Purple loosestrife) are predicted to continue to spread

and become established at many more sites over the next decade. Management efforts

to reduce spread would be best targeted at species who are still in the early stages

of invasion with many suitable sites into which to expand where such efforts would

be most beneficial. In the next chapter, I present a framework for modelling the

efficacy of management interventions aimed at spread-reduction. The interventions

consist of hull-washing stations at boat launches which I incorporate into a gravity

modelling framework. By focusing on the economic behaviours of the human vectors

of aquatic invasive species, I analyse the projected effects of place-based interventions

and suggest that their regional efficacy can be offset by behavioural feedbacks.

142



CHAPTER 5
Modelling responses to management intervention for controlling the
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5.1 Abstract

Human-mediated dispersal is the main mechanism of spread of non-indigenous

species. As such, numerous models have been developed to describe movement of

human vectors and predict the future spread of invaders. To be maximally useful

for guiding management, such predictions need to be integrated with management

models of how different policies change human behaviour, how behaviours interact

with and may vary across the spatial landscape, and how these interactions moderate

the invasion progress. We use the dispersal of fresh water organisms by recreational

boaters as our study system and mandatory location-specific boat cleaning as our

management strategy. The cost of such strategies at specific boat launches imposes

an additional factor which may influence a boaters’ decision to use a given lake.

We conducted a survey of recreational boaters (n=580 respondents, t=2354 boating

trips) in Ontario, Canada in order to assess how boater behaviour might change un-

der location-specific management strategies. By building on the concept of gravity

models, we demonstrate how to integrate boaters’ behavioural feedbacks to manage-

ment actions and analyse the projected efficacy of various scenarios at both the local

and landscape levels. In our analysis of 10 aquatic invasive species in Ontario, we

found that the addition of as few as 16 mandatory cleaning stations could protect

nearly 86% of currently uninvaded lake area over a ten year time horizon.
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5.2 Introduction

Preventing the introduction and establishment of exotic and potentially inva-

sive species into novel ecosystems is a central challenge for resource managers (Leung

et al., 2012). Once a species has been detected in a new area, efforts often switch

toward controlling secondary spread (Vander Zanden and Olden, 2008; Epanchin-

Niell and Hastings, 2010; Parry et al., 2013). This is done to limit the new range in

order to minimize the impacts exerted on the surrounding recipient ecosystems, or if

detected early to contain the spatial extent while an eradication effort is attempted

(Edwards and Leung, 2009). For freshwater invasive species, secondary spread oc-

curs across a landscape of discrete patches (lakes), connected by vectors of overland

dispersal. In the North American glacial lakes regions, this overland dispersal has

been found to be primarily mediated by human vectors - mostly trailered boats on

which species ’hitchhike’ from one body of water to another (Johnson and Carlton,

1996; Johnston et al., 2001). By quantifying the movement patterns of recreational

boaters, previous studies have used gravity models to successfully predict spatial

trajectories of the spread of aquatic invasives (Bossenbroek et al., 2001; Leung et al.,

2004, 2006; Gertzen, 2010).

While the utility of Gravity Models (GMs) for the prediction of spread of in-

vasive species has been well demonstrated, their use as a decision support tool for

managing secondary spread has not heretofore been investigated. Previous work has

suggested that Random Utility Models (RUMs), an alternative approach to modelling

boater behaviour, are required in order to predict the consequences of management

(MacPherson et al., 2006; Timar and Phaneuf, 2009). These models impute the price
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of visiting a site as the travel cost needed to gain access, and the utility derived from

visitation as some function of characteristics of the site (eg. water quality, lake area,

sport fish presences, etc.) (Timar and Phaneuf, 2009). Predictions from this ap-

proach suggest that the imposition of any additional cost at a given site will reduce

demand, and hence reduce the number of trips taken. The endogenous treatment

of the behaviour of individual boaters in RUMs allows for counterfactual analysis

of the effectiveness of management actions. However, Chivers and Leung (2012)

demonstrated that RUMs and GMs can be reduced to alternative functional forms

of boaters’ trip-taking distributions, and that in a study of recreational boaters in

Ontario, a GM provided a better fit to observed trip-taking behaviour. Given the

explanatory power of the GM for predicting the spread of aquatic invasive species,

it is a natural starting position for exploring how boaters’ behaviours change in re-

sponse to management and how these changes are likely to affect the spread of the

myriad species which they may be inadvertently transporting.

We conducted a survey of recreational boaters, and used it to assess how trip

decisions may be influenced by local, as well as landscape level management strate-

gies which employ location-specific mandatory boat hull cleaning. We formalize the

behavioural responses within a gravity model of boater movement and assess the im-

pact of these responses on the efficacy of such policies to limit the spread of aquatic

invasive species to inland lakes. Our approach provides a generalizable decision sup-

port tool for managers of lake resources who are aiming to mitigate the spread of

invasive species. The decision support tool developed here has several desirable fea-

tures: 1) It captures both the reduction in overall trip-taking, as well as redistributive
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trip-taking behaviours due to management. By separating the response to manage-

ment into these two components, we are able to account for avoidance behaviours

which, while protective for a particular target lake, may lead to an increased risk

of invasion to nearby or similar lakes. 2) It is not data intensive. We show that

the behavioural responses to management can be estimated using a simple survey

design employing randomized counterfactual scenarios and stated preferences tech-

niques (Heckman and Vytlacil, 2007; Dillman, 2000), and could be updated with

observational data post policy implementation (Adamowicz et al., 1994). 3) It can

be used to evaluate the cost effectiveness of any number of policy scenarios, allowing

the resource manager to select a management strategy which meets their objectives.

4) It can be extended for application beyond the realm of freshwater invasives to

any species with a primarily human-mediated vector of dispersal across a landscape

of discrete patches (for example; boring forest pests spreading across a landscape of

forest patches via the movement of infested firewood (Prasad et al., 2010).)

In this study, we first outline how behavioural responses to management can

be incorporated into a gravity model formulation of human-mediated dispersal. We

describe a Bayesian approach requiring information about trip taking behaviour un-

der status quo and management conditions at only two lakes for any given survey

respondent. We estimate model parameters using data gathered from a survey of

recreational boaters in Ontario in 2011. We then apply the management model to in-

vestigate the projected efficacy of various intervention scenarios on the future spread

of 10 aquatic invasive species in Ontario.
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5.3 Methods

5.3.1 Boater survey

During January and February of 2011, survey invitations were sent out by mail

to 5000 Ontario Outdoor Cards holders (recreational licenses) to complete an online

survey of their boating behaviours during the 2010 boating season. The participants

were selected using a stratified random sampling scheme where approximately 100

invitations to participate were mailed to each of 47 geographic regions, as defined by

the first two letters of their postal code.

We developed an online survey tool which allows for the rapid collection of

spatial information from respondents. Using an interactive map interface, respon-

dents were asked to identify which lakes they visited as well as how many times

they launched their boat into each lake during the 2010 boating season (see Figure

5–1). By collecting these responses using an interactive map, we were able to avoid

the tedious and error-prone disambiguation process of reported lakes based on lake

names and nearest towns alone. Of the 405,997 water bodies in Ontario, only 14,767

(3.6%) have officially recognized names, and 62, 59, and 44 of those are named Long

Lake, Mud Lake, and Otter Lake, respectively. Additionally, several lakes are known

to local residents by various conflicting names which do not have any 1:1 match in

the Ontario GIS database.

Once boaters identified all lakes which they had visited during 2010 and had

answered a few additional questions about their boating behaviours they were pre-

sented with a counterfactual management scenario. Counterfactual analysis is used

to compare what actually happened with what would have happened in the presence
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(or absence) of intervention (Phaneuf, 2013). In a hypothetical scenario, a manda-

tory boat cleaning station is implemented at the launch site of one of the respondent’s

two most frequently visited lakes. The scenario included a description of the process

involved including an estimated time to complete the cleaning process of 15 minutes.

In addition to the general policy information which was the same for each respon-

dent except for the location of implementation, a randomized estimate of the cost

(0-16$) that would be incurred out of pocket at this wash station was also presented

to the respondent (see Appendix C.1.1 for the complete text of the cleaning policy

description). After reading this description, the respondent was reminded how many

times they reported launching their boat at the policy lake and was then asked how

many times they would have launched, were the scenario described to have been im-

plemented at that location. Next, they were asked how many times they would have

visited the non-policy lake under the policy scenario. This process of eliciting stated

preferences for modelling the choice behaviour of individuals has been employed in

the econometrics literature (Haider, 2002). The responses to these questions were

then used to fit the management modified gravity model (see section 5.3.2). Addi-

tionally, we asked several other questions pertaining to boating behaviour as well

as questions about whether they currently engage in various preventative measures

relating to the transport of aquatic invasive species.

Using the survey design method of Dillman (2000) we field tested our survey

tool using a pilot run on location at several boat launch locations in the District Mu-

nicipality of Muskoka in central Ontario. By directly observing respondents interact

with the questionnaire and identifying common problems and any misinterpretations
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of the instructions, we were able to streamline the user experience and clarify the

written guide before sending out invitations to our main sample.

5.3.2 Gravity model

To estimate boater traffic among Ontario lakes, a production-constrained grav-

ity model was used (Gertzen and Leung, 2011; Chivers and Leung, 2012). In this

formulation, boaters are assumed to travel from their home location to a lake, and

return to their home location before making another trip. While there may be in-

stances where boaters travel directly from one lake to another (competitive anglers,

for instance), the production-constrained formulation has been found to be the most

predictive and least data-intensive version of the model for explaining the human-

mediated spread of aquatic invasives (Muirhead and MacIsaac, 2011). Following the

disaggregated notation of Chivers and Leung (2012), the site selection probability

distribution for an individual boater n can be written as:

P (Tnj) = AnW
e
j D

−d
nj , n = 1, . . . , N, j = 1, . . . , J. (5.1)

Where Wj is the attractiveness of lake j (expressed as lake surface area in

hectares), and Dnj is the distance between lake j and the home location of individual

boater n (where they keep their boat when not in use). The parameters e and d

describe the shape of the relationship between the ’pull’ of lake i with lake size and

distance from source j. An is the total ’pull’ of all lakes:
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An = 1/
J∑

k=1

W e
kD

−d
nk . (5.2)

This term imposes the constraint that
∑J

j=1 Tnj = 1, making equation 5.1 a

proper probability distribution representing the probability that boater n will choose

lake j on a given outing. The formulation given by equations 5.1 and 5.2 is similar

to the formulation used by Leung et al. (2004), with the addition of a non-linearity

on the Wj term. Further details of the base gravity model can be found in Chivers

and Leung (2012).

5.3.3 Boater response to management

In order to limit the risk of introductions by trailered boats, some jurisdictions

have begun to trial mandatory cleaning stations located at selectively chosen boat

launches (Rothlisberger et al., 2010). The cleaning stations aim to reduce the to-

tal propagule pressure of non-indigenous species entering and leaving the selected

lake(s). As with any policy intervention, however, there are costs involved. Whether

or not the operational costs are borne directly by the users in the form of a per-use

fee, there is a time cost involved in carrying out the cleaning which may affect the

behaviour of individual boaters. We consider the two most likely a priori aspects

of this behavioural change. First, faced with the cost of compliance, boaters may

choose to reduce the number of times they visit the policy lake, substituting some

other non-boating activity instead. In this case, the policy has successfully limited

the propagules entering and leaving the lake, although this also has the negative

effect of discouraging recreational boating overall. Secondly, boaters may choose to
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visit the policy lake less often but instead visit alternative, otherwise similar, lakes.

In this situation, propagule pressure will be reduced at the policy lake, but the redis-

tribution of boater traffic has the effect of increasing the flow of propagules between

similar lakes in the vicinity. Both of these behavioural responses are consistent with

that which would be predicted using traditional utility-based econometric models of

recreational demand (Timar and Phaneuf, 2009; Fenichel et al., 2012).

To demonstrate how we estimate the strength of these behavioural responses to

a management action, let us first define the two quantities of interest. First we wish

to quantify the proportional reduction in attractiveness θm that occurs as a result

of the implementation of a management intervention at lake m. The effect of this

quantity will be to make the policy lake appear smaller or to have less ’pull’ relative

to the alternative lakes, to use the gravity analogy. Secondly, we wish to quantify

the proportional reduction to the overall number of trips taken φm by individual

boaters as a result of a management intervention at lake m. These two quantities

enter into our original gravity equations as modifiers on the relative attractiveness

of the policy lake m and non-redistributed reduction of the trip-taking probability

to lake m, respectively.

P ∗(Tnj) = AnθjW
e
j D

−d
nj φj, n = 1, . . . , N, j = 1, . . . , J. (5.3)

An = 1/
J∑

k=1

θkW
e
kD

−d
nk . (5.4)
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At all non-policy lakes w = w1, . . . , wW the vectors θw and φw are equal to 1.

At all policy lakes m = m1, . . . ,mM where the management intervention has been

implemented, θm and φm are ∈ [0, 1]. Notice that θ appears in both the numerator

and the denominator, while φ only appears in the numerator. We can see from this

that
∑J

j=1 P
∗(Tnj) = 1 in the strictly redistributive case where θm ≤ 1, φm = 1. We

term this effect ’redistribution’ because the net result is that there are no fewer trips

taken by boaters under management than under the status quo condition, rather

only that the trips have been (at least partially) redistributed from policy lakes

to non-policy lakes. However, in the case of some reduction in overall trip-taking

where φm ≤ 1, then
∑J

j=1 P
∗(Tnj) ≤ 1. In this case there is some probability

1 − ∑J

j=1 P
∗(Tnj) that an individual boater will choose to abstain from taking a

boating trip entirely. We call this reduction effect ’loss’ as it represents a net loss of

boating activity resulting from management intervention. A conceptual diagram of

how each θm and φm impact trip taking distributions to result in various combinations

of loss and redistribution is given in Figure 5–2.

In order to estimate θm and φm from our survey data, we reformulate the trip

outcomes under each the control (reported actual trips taken) and the counterfactual

policy condition (trips that would have been taken given the hypothetical scenario)

as random samples from binomial distributions. Within each, the binomial success

probability parameter is described by the probabilities given by equations 5.1 and

5.3. We can then construct the likelihood function by substituting the number of

trips taken to each the policy and non-policy lakes before and after implementation.
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L(θm, φm |D) =
N∏

n=1

(
Sna

S ′

na

)

δS
′

na
na (1− δna)

Sna−S′

na

︸ ︷︷ ︸

Policy lake

(
S ′

nb

Snb

)

δSnb

nb (1− δnb)
S′

nb
−Snb

︸ ︷︷ ︸

Non-policy lake

(5.5)

Where δna = P ∗(Tna)
P (Tna)

and δnb = P (Tnb)
P ∗(Tnb)

, which are the proportional changes in

the probability of visiting each lake under status quo (equation 5.1) management

(equation 5.3). Sna and S ′

na are the number of trips taken by boater n to the policy

lake under status quo and management, respectively. Snb and S ′

nb are the number of

trips taken by boater b to the non-policy under the same two conditions.

To understand what is going on here, imagine that a boater made 10 trips

to lake a in 2010, and 5 trips to lake b. After considering a mandatory cleaning

policy implemented at lake a, the boater decides that they would have visited only

6 times, and redistributed the remaining 9 trips to lake b. The likelihood function

can be broken down into two binomial likelihoods. The first half of equation 5.5

is the likelihood of having observed 6 (S ′

na) out of 10 (Sna) trips at the policy lake

if the probability has been modified by the fraction δna. The second half can be

thought of as an inverse process at the non-policy lake, where we calculate the

likelihood of observing 5 (Snb) out of 9 (S ′

nb) trips taken between the status quo

and policy conditions, under the modification in probability predicted by the gravity

model (δnb). We validated the theoretical ability to recapture θm and φm with this

formulation using simulated survey response data (see Appendix C.1.2).
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Incorporating cost to boaters

In addition to the general behavioural effect, and in keeping with the predictions

of econometric models of recreational demand, we expect the behavioural responses

to be a function of the direct cost to the boater imposed by the policy. Recall that

each respondent was presented with a randomized cost estimate between 0-16$. To

factor this in, we model θm and φm in equations 5.3 and 5.4 as a function of the cost:

θm = f(cost)

= exp(−αθ(cost+ γθ)) (5.6)

φm = g(cost)

= exp(−αφ(cost+ γφ)) (5.7)

Where αθ, γθ, αφ, and γφ are shape parameters estimated using MCMC by sub-

stituting equations 5.6 and 5.7 into equation 5.5 (Calder et al., 2003). The functional

forms for f(cost) and g(cost) were chosen as they capture several properties that we

would logically expect. First, they range between 0 and 1, matching our definitions

of φm and θm. Second, they are flexible enough to capture an intercept greater than

zero (non-zero θm, φm via translation through γ), as there may be a behavioural

response even when the monetary cost to the boater is zero, since there is an un-

avoidable time cost involved. Finally, they are able to capture how the strength of the

response changes (accelerating or decelerating) as monetary costs increase through
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the α parameters. In addition to these functional forms, we also fit a linear model

to each, as well as a null model in which θm and φm are both independent of cost

and performed model selection using Bayesian Information Criterion (Burnham and

Anderson, 2002).

5.3.4 Application to 10 invasives

To assess both the local and landscape-level efficacy of boat washing stations, we

apply the model to mitigating the future spread 4 plant and 6 invertebrate aquatic

invasive species (Table 5–1). Data on the time and location of confirmed presences

of each species was collected from the Early Detection & Distribution Mapping Sys-

tem (EDDMapS, 2013). The current spatial extent, environmental tolerences, and

spread dynamics were estimated for each species using the presence-only modelling

approach described in Chapter 4. From this model, we project the future spread

using stochastic simulations, resulting in estimated probabilities of invasion across

space and time.

The modified gravity model defines the new network of dispersal corridors which

emerges when cleaning stations are implemented at various lakes (termed ’policy lo-

cations’). The modified dispersal networks have two main properties distinguishing

them from the dispersal network under status quo conditions. First, absent any be-

havioural response resulting from additional costs borne to boaters, the net propagule

outflow from a policy location will of course be reduced as a direct consequence of the

cleaning itself. The use of high-pressure sprayers for cleaning has been estimated to

effectively remove around 90% of small bodied organisms and other macrophytes from

boat hulls and trailers (Rothlisberger et al., 2010). Completely emptying any bilge
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water and bait buckets, and inspecting angling equipment for gear fouling species

like waterfleas can be expected to further reduce the diversity and abundance of out-

bound propagules. We capture this direct effect of cleaning stations by reducing the

net predicted propagule outflow from policy locations by 90%, beginning during the

first year that the policy is implemented. Second, the redistributed and lost trips are

incorporated into the predicted dispersal network by modifying the gravity equations

as described in section 5.3.3. These changes also take effect during the first year that

the policy is implemented.

5.3.5 Scenario analysis

To investigate the effects of management strategies which would employ the use

of mandatory boat wash stations at selected lakes, we analysed 17 different policy

scenarios. The baseline scenario represents the projected spread of all 10 species

under status quo conditions and is equivalent to that predicted in Chapter 4. For

our active policy scenarios, we simulate offensive strategies, where we focus efforts

on those sites which are already most likely to be invaded. This is in contrast to a

defensive strategy, which prioritizes uninvaded sites aiming to sanitize boats on their

way into pristine, uninvaded locations. An offensive strategy is conceptually similar

to a quarantine effort, however it differs in that we acknowledge that given limited

resources, there will be some uncontained locations which are invaded and therefore

potentially emanating propagules to uninvaded sites. Even in this situation, however,

provided that fewer than half of the locations are invaded, offensive strategies have

been shown to be most effective at reducing overall rates of spread (Drury and

Rothlisberger, 2008).
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Locations at which to implement the policy were selected by ordering locations

based on the total amount of outbound propagule pressure under the status quo

condition. That is, for each location, we took the total potential outbound propagule

pressure (outbound traffic) and multiplied by the probability that the site is currently

invaded. We then summed this quantity across each of the 10 species and selected

the top M locations at which to implement the cleaning policy. We investigated

the consequences of implementing the policy at the top 1,2,4,8,16,32,64, and 128

locations. For each number of policy locations, we ran two scenarios: one in which

no cost is incurred directly by boaters and one at the full 16$ per-use fee.

To account for stochastic uncertainty associated with future spread, for each

scenario we simulated 5000 stochastic realizations of spread over the ten year time

horizon. Uncertainty in the parameters of both the underlying spread and establish-

ment models for each species as well as the parameters of the behavioural model were

incorporated by conducting the repeated forward simulations each time using random

draws from the posterior predictive distributions of each (Calder et al., 2003). For

each ensemble of simulations, the mean number of lakes invaded, total area invaded,

as well as the risk of invasion at each location at every time step was recorded. All

of our policy scenarios begin implementation in 2013 and are projected forward 10

years to 2023.

5.4 Results

5.4.1 Survey results

Of the 580 respondents (11.6% response rate), 146 reported visiting multiple

lakes. The number of unique lakes visited by individual respondents was 3.78 ± 1.2
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(mean ± SD), with a maximum number of unique lakes reported visited by a single

respondent of 7. As our model treats the behavioural responses to management as

homogeneous, population-level effect, we tested for correlations between respondents’

behavioural changes under the management condition and several boater specific

and spatial factors. No significant relationships (Pearson’s r, p > 0.05) were found

that would indicate that any of boater location, lake location, log(lake surface area),

distance to lake, or type of boat outing (angling, water skiing/wake boarding/tubing,

sight seeing) were correlated to the number of trips diverted (both redistribution and

loss). While we expect heterogeneity to be non-zero, we did not find evidence of any

significant boater specific or spatially driven differences between individuals in terms

of their responce to management.

5.4.2 Behavioural response to management

The estimated proportion both of trips which boaters would redistribute to other

lakes, as well as trips that would be entirely foregone under management intervention

both increased with the magnitude of cost incurred by the boater. Of the three

models tested, our full model (equations 5.6 and 5.7) was strongly selected, with

BIC improvement of 39.1 over the linear model and 411.3 over the null model (Table

5–2). Even at no direct monetary cost, 2.8% [1.2-4.9%] (posterior mean [95% BCI]) of

trips to policy lakes would be lost and 5.5% [2.0-6.6%] of remaining trips replaced by

trips to alternative locations. Both curves show an accelerating relationship between

proportion of trips redistributed/lost and cost. At the maximum cost of 16$, 64% [56-

73%] of the trips were lost and of the remaining trips 62% [53-70%] were redistributed

(Figure 5–3). Overall, the behavioural model captured 87% of the variance in the
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total change between the number of trips taken under status quo and the reported

number of trips that would be taken under the counterfactual management scenarios

(Figure 5–4).

5.4.3 Scenario analysis

The expected number of mitigated invasions over the ten year time horizon in-

creased with the number of policy locations as expected. In all cases, when cleaning

stations were provided at no cost to boaters the result was more mitigated invasions

compared to requiring boater payments (Figure 5–5). However, as the number of

policy lakes increased to the maximum of 128 locations, the additional benefit from

providing the cleaning stations at no cost was diminished, and in some cases elimi-

nated. This occurred as the level of mitigation reached effective quarantine (ie. zero

new invasions), and hence there was no additional benefit to be gained by waiving

the fee to minimize traffic redistribution. Over the time horizon that we analysed

(2013-2023), the largest numbers of expected mitigated invasions were 23 for Spiny

waterflea (2.9% of sites), and 21 (2.7% of sites) for Purple loosestrife, which resulted

when the policy was implemented at the maximum number (128) of locations. For

most species, at least 8 policy locations were required in order to mitigate an ap-

preciable number of new invasions, especially for the boater pays scenarios (Figure

5–5).

The expected total surface area of the lakes at which invasions were mitigated

reveals a different picture than when just considering the number of mitigated inva-

sions. The expected benefits when looked at this way are now largest for Quagga

mussel and Flowering rush with expected mitigations of 11, 700 and 5, 000km2 of
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lake area which would have become invaded under the status quo condition, respec-

tively (Figure 5–6). The difference between the boater pays and no fee conditions is

also much less pronounced in terms of mitigated area and shows little to no effect

at all for several species. Further, the expected mitigation reaches very nearly full

quarantine level for all species using as few as 16 policy locations.

5.5 Discussion

Predicting how control measures will impact the future spread of invasive species

is an important component of the management decision making process (Simberloff

et al., 2005; Stohlgren and Schnase, 2006; Epanchin-Niell and Hastings, 2010). Here

we have built upon the concept of gravity models (Bossenbroek et al., 2001; MacIsaac

et al., 2004; Leung et al., 2006), and extended the formulation to incorporate boaters’

behavioural responses in order to model how location-based policies may change the

configuration of human-mediated dispersal networks, and how those changes may

affect the efficacy of such measures for controlling spread. We have demonstrated

how the main behavioural responses can be captured in two simple coefficients in the

gravity model and we have derived an observation model for estimating them using

a survey of recreational boaters. Our results suggest that behavioural responses

which redistribute boating trips from a costly policy site to alternative locations

can reduce the efficacy of an intervention when measured in terms of the number of

mitigated invasions. These effects however are most prominent when the intervention

is implemented at only a few locations, and have a much smaller impact on the overall

mitigated area of invasion than on the number of mitigations.
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The notion of boaters ’redistributing’ or reducing their trips in the face of costly

policies as described in this paper is similar to the behavioural response that would

be predicted by a Random Utility Model of recreational demand, as the additional

costs involved make boaters more likely to choose alternative destinations where

they would derive the same, or more, net utility (MacPherson et al., 2006; Timar

and Phaneuf, 2009). Indeed, that boaters would change their behaviour in the face of

additional costs is not surprising, however the perceived benefits of compliance may

dampen the extent of these behavioural changes. For instance, boaters who derive

and appreciate the benefits of infestation-free waters may be willing accept additional

costs in order to contribute to the control of invasive species. Our findings indicate

that while some boaters are willing to pay up to a 16$ launch fee (those respondents

who did not reduce or redistribute any trips in the face of a full cost cleaning policy),

others will adapt their behaviour to avoid incurring even the minimum of 15 minutes

of additional time cost. It is the combination of all of these different behaviours that

will determine the reduction in propagule pressure. In a study of boaters in five US

states, individual boaters were willing to pay an average of $1.90 in additional fees

for boater registrations to fund AIS prevention efforts (Jensen, 2010), suggesting that

there are non-zero perceived benefits associated with invasion mitigation policies.

While we are proximally interested in the effect that management intervention

will have on propagule pressure, we are ultimately interested in how this change will

modify the risk of establishment (Wonham et al., 2013). This study provides new

tools for addressing two of the three components of optimally controlling established

invasive species which were identified in a review by Epanchin-Niell and Hastings
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(2010). Specifically, we capture the invasion dynamics, as well as the projected dy-

namics under various control efforts and their relative costs. In order to determine

the best course of action, however, the third component – a monetary measure of in-

vasion damages – is needed for each of the species analysed here. This study therefore

represents a part of a more integrated assessment to fully inform policy decisions (Le-

ung et al., 2012; Ibáñez et al., 2014). Without an accounting of the relative potential

impacts, both ecological and economic, of the 10 species in our study, we designed

our policy scenarios to preferentially target locations at which the greatest overall re-

duction in outbound propagule pressure was equally weighted across all species could

be acheived. This strategy, however, could be refined to one in which the selection

of which sites to target is done by weighting the species-specific outflows at each

site by the estimated impact of each invader, multiplied by the expected number of

lakes facing future invasion risk. This way, an intervention strategy would get the

most benefit by preferentially reducing the spread of the most potentially impactful

species. Importantly, a complete evaluation of any particular management plan will

require that costs be measured in the same currency as damages, and hence bene-

fits of mitigation, such that a cost-benefit ratio can be determined (Epanchin-Niell

and Hastings, 2010). Here we have assumed that the fixed costs of implementing a

cleaning policy at each additional site is both quantifiable and constant. In reality,

however, some locations will require more resources than others as the number of

access points is variable between sites and therefore the number of cleaning stations

required in order to achieve the desired effect is also likely to differ.
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We also assume that the cleaning policies are in place and running over the

entire ten year time horizon which we considered. For cleaning stations requiring

ongoing operational costs, a dynamic bioeconomic model may provide deeper insights

into where and for how long cleaning stations ought to be operational to achieve the

optimal results (Leung et al., 2002). The spatial-dynamic aspect spreading invasions,

however, may require simplifying assumptions in order to achieve analytical (non-

simulation based) representations amenable to solving the optimal control problem

and is the subject of ongoing research (Epanchin-Niell and Wilen, 2012). Another

aspect of such an analysis could include the future benefits which would accrue as

a result of mitigating the spread of currently unidentified invaders. Obviously, the

expected benefits in terms of mitigated local invasions derived in this paper account

only for those ten species which we analysed. Methods for estimating the rate at

which novel, high-impact species will be introduced to a given region exist (Aukema

et al., 2011) and could be used to estimate additional future benefits of a given

control policy.

Interventions like those which we have analysed here take a landscape level view

of the management of aquatic invasive species, and target specifically the inter-patch

dispersal and colonization phases of secondary spread. If management jurisdictions

are fragmented into multiple independent zones, individual managers may be less

likely to implement these forms of control, as the likelihood of invasion from un-

controlled neighbouring jurisdictions may be high and may instead choose to focus
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resources on strategies aiming to control the proliferation of locally established pop-

ulations (Shea et al., 2010; Epanchin-Niell et al., 2010; Ibáñez et al., 2014). Suc-

cessful landscape-level efforts may require coordination among several agencies and

jurisdictions, which is not always easy and for which there is no explicit legislative

frameworks to facilitate this in the Ontario context (Smith et al., 2013). Addition-

ally, while we have presented here a model for incorporating behavioural responses to

management aimed at controlling the spread of aquatic invasive species, such man-

agement actions may represent just one aspect of a broader, multi-pronged, strategy

for controlling secondary spread. When policies are implemented in concert with,

for instance educational campaigns (Padilla and Williams, 2004) or auditing of fish

stocking procedures to identify and remove non-target species (Davies et al., 2013),

resulting interactions may need to be accounted for when assessing expected benefits.

For example, consistent with a previous study of boater attitudes and behaviours re-

garding aquatic invasive species (Rothlisberger et al., 2010), a large majority of our

survey respondents reported that they did not always take steps to clean their boats

or check for fouling plants and animals between launches (86% ± 1% (mean ± SE)).

Education campaigns aiming to improve these figures may have overall consequences

which could lower the marginal benefits of location-specific policies.

In conclusion, we have developed here an extension of the widely used gravity

modelling framework to incorporate behavioural responses to management interven-

tions and have demonstrated the utility of this approach for estimating the efficacy of

location-based control efforts. This work provides managers with a decision support
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tool which can be integrated into cost-benefit analyses and help to inform policy

planning for the control of invasive species.
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Ibáñez, I., J. Diez, L. L. P. Miller, J. D. Olden, C. J. B. Sorte, D. M. Blumenthal,

B. A. Bradley, C. D’Antonio, J. S. Dukes, R. Early, E. D. Grosholz, and J. J.

Lawler, 2014. Integrated Assessment of Biological Invasions. Ecological Applica-

tions 24:25–37.

Jensen, D. A., 2010. Assessing the effectiveness of aquatic invasive species outreach

influencing boater behaviour in five states. Masters, University of Minnesota Du-

luth.

Johnson, L. E. and J. T. Carlton, 1996. Post-establishment spread in large-scale in-

vasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology

pages 1686–1690.

Johnston, L. E., A. Ricciardi, and J. T. Carlton, 2001. Overland dispersal of aquatic

invasive species: a risk assessment of transient recreational boating. Ecological

169



Applications 11:1789–1799.

Leung, B., J. M. Bossenbroek, and D. M. Lodge, 2006. Boats, pathways, and aquatic

biological invasions: estimating dispersal potential with gravity models. Biological

Invasions 8:241–254.

Leung, B., J. M. Drake, and D. M. Lodge, 2004. Predicting invasions: Propagule

presure and the gravity of allee effects. Ecology 85:1651–1660.

Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A. Lewis, and G. Lamberti,

2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of

invasive species. Proceedings. Biological sciences / The Royal Society 269:2407–13.

Leung, B., N. Roura-Pascual, S. Bacher, J. Heikkilä, L. Brotons, M. a. Burgman,
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Common Name Scientific Name Year first detected

Banded Mysterysnail Viviparus georgianus 1998
Chinese Mysterysnail Cipangopaludina chinensis 1996
Eurasian Water-milfoil Myriophyllum spicatum L. 1992
European Common Reed Phragmites australis 1948
Flowering Rush Butomus umbellatus L. 1949
Purple Loosestrife Lythrum salicaria L. 1991
Quagga Mussel Dreissena bugensis 1992
Rusty Crayfish Orconectes rusticus 1964
Spiny Waterflea Bythotrephes longimanus 1982
Zebra Mussel Dreissena polymorpha 1988

Table 5–1: 10 Aquatic invasive species in Ontario. Data from (EDDMapS,
2013).
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Model k ∆BIC

θm = exp(−αθ(cost+ γθ)) 4 0
φm = exp(−αφ(cost+ γφ))
θm = mθ(cost) + bθ 4 39.1
φm = mφ(cost) + bφ
θm = cθ 2 411.3
φm = cφ

Table 5–2: Model comparison of relationship between cost and θm and φm.
Three alternatives models of the relationship between the direct cost of a cleaning
policy at lake m and the proportion of lost (φm), and redistributed (θm) trips to a
lake m with a cleaning policy. k is the number of estimated parameters for each
model.
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a) θθ = 1, φφ = 1 b) θθ = 0.1, φφ = 1

c) θθ = 1, φφ = 0.1 d) θθ = 0.1, φφ = 0.1

Figure 5–2: Conceptual figure demonstrating the two aspects of behavioural
responses to management. Circles indicate lakes. The policy lake is shown in
red. Squares are the home location of a hypothetical boater and the width of the line
segments is proportional to the number of trips taken to each lake. (a) shows the null
case where there is no effect of management on boaters’ trip-taking distribution θm
and φm are both equal to 1. (b) an entirely redistributive response where the boater
takes the same number of trips that they otherwise would have, but distributes them
to the non-policy lakes (θm < 1). (c) shows an entirely reductive (loss) response
where the trips not taken to the policy lake are not redistributed (φm < 1). Finally
(c) shows a combination of reduced and redistributive trip taking (θm < 1, φm < 1).
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Figure 5–3: Proportion of boater trips diverted as a function of the cost
incurred by boaters. (a) The proportion of the trips that would have been taken
to a policy lake under the status quo which were diverted to alternative lakes (1−θm).
(b) The proportion of trips that would have been taken to a policy lake under the
status quo which were were forgone due to the policy (1 − φm). Solid lines are
posterior mean relationships and dashed lines are 95% credible intervals.
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Figure 5–4: Comparison of model predictions vs. observed number of trips
taken under policy scenarios. The number of trips that a boater reported they
would take to both a lake with a mandatory cleaning and inspection station (open
circles) and without (open triangles) under the counterfactual management scenario.
The model predictions capture 87% of the variance in the reported behaviours. The
dashed line represents the 1:1 equivalence line.
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Figure 5–5: Expected number of mitigated invasions over a 10 year time
horizon (2013-2023). Projected effect of implementing mandatory boat cleaning
stations at from 1 to 128 locations. When the policy imposes a direct monetary cost
to boaters (dashed lines) fewer invasions are mitigated due behavioural feedbacks.
The blue dotted lines indicate the maximum expected number of invasions over the
time horizon given the status quo condition. This indicates full quarantine, as this
is the level at which no more invasions could have been mitigated.
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Figure 5–6: Expected total lake surface area kept clear of invasion by each
species over a 10 year time horizon (2013-2023). Projected effect of imple-
menting mandatory boat cleaning stations at from 1 to 128 locations. Redistributive
effects of monetary cost to boaters (dashed lines) are much less pronounced in terms
of area. The blue dotted lines indicate the expected maximum lake surface area
projected to become invaded over the time horizon given the status quo condition.
This indicates full quarantine, as this is the level at which no more invasions could
have been mitigated.
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CHAPTER 6
General Conclusion
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6.1 Conclusion

The relatively recent emergence of invasive species as a major driver of global

change (Ricciardi, 2007) has meant that anticipating where, when, and how species

will spread in the future has become an emerging imperative for ecologists and policy-

makers alike (Clark et al., 2001). With their potentially large economic (Pimentel

et al., 2005) and ecological impacts (Dextrase & Mandrak, 2006), the ability to

forecast and subsequently control invasive species could yield enormous benefits.

A common theme in this dissertation has been that the explicit acknowledge-

ment and accounting of prediction uncertainty is vital to how we understand, predict,

and manage invasive species. While it is never possible to account for every aspect of

uncertainty pertaining to our models and predictions of ecological systems (or indeed

any system), I have made attempts here to address those which are most likely to

have an impact on the decisions that would be guided by them. There will always

be trade-offs involved when attempting to quantify uncertainty in any prediction

endeavour, and the secondary spread of invasive species is no different. For instance,

addressing model uncertainty by comparing alternative model structures and their

consequences for prediction as I did in Chapter 2 can become increasingly difficult

as the computational complexity of the model increases. As models are necessarily

abstractions of the real world, we can never expect to have the ’correct’ model of a

complex ecological system (Runge & Johnson, 2002). Even still, when alternative

functional forms have drastic consequences for forecasting and managing populations,

a ’better’ model can go a long way toward improving predictions (Chivers & Leung,

2012). Similarly, the Bayesian models in chapters 4 and 5 incorporate and propagate
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parameter and state uncertainty by repeatedly simulating the underlying dynam-

ics and by employing computationally costly Markov Chain Monte Carlo methods.

These approaches are becoming more and more feasible as the cost of computational

power falls, but there are still limits on the size and complexity of the models which

are possible.

With any model (or ensemble of models), in order to provide credible decision

support, their predictions need to be evaluated with their associated uncertainties

accounted for. To that end, the new approach developed in Chapter 3 provides the

inferential mechanisms for determining the degree to which predicted probabilities

match up with actual outcomes, while incorporating both stochastic and epistemic

prediction uncertainties. The application of this approach to a published model

of the invasive zooplankton Bythoterphes longimanus in Ontario demonstrated how

probabilistic species spread forecasts can be assessed as new data are collected.

Possibly the largest factor contributing to uncertainty is the limited data avail-

able with which to build forecasting models. While many current models of spread

require data describing both where species are present and where they are absent

(Ibáñez et al., 2009; Gertzen & Leung, 2011; Catterall et al., 2012), the much more

common situation is that we only have records of species presences, and these records

exist only for a limited subset of locations. Rarely the result of systematic sampling,

presence-only records are often the result of either opportunistic sampling or citizen-

reported sightings. This form of data, while ubiquitous, make efforts aiming to assess

the risks posed to sites across space and time difficult. Without data on species ab-

sences, currently available techniques do not purport to estimate species prevalence
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or site-specific probabilities of presence. By viewing the data generating process

as a combination of dispersal, establishment, and detection, the model developed

in Chapter 4 provides a framework for projecting spread while incorporating the

uncertainties inherent to presence-only data.

Despite uncertainties, decisions need to be made pertaining to what (if any)

actions are to be taken to mitigate the impacts of invasions. Building off of the

gravity model evaluated in Chapter 2 and the presence-only prediction framework

developed in Chapter 4, in Chapter 5 I put these components together to evaluate

the efficacy of place-based policies to slow the spread of currently established aquatic

invasives. By focusing on the economic behaviours of the human vectors of aquatic

invasive species, this model suggested that behavioural feedbacks can diminish the

overall benefits of policy measures, but that it is dependent on how the impact of

new invasions are measured.

Together, this thesis has developed and tested new techniques and modelling

approaches for incorporating and quantifying uncertainty when predicting and man-

aging the spread of invasive species.
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A.1 Supplemental Material Chapter 2

A.1.1 Theoretical validation of model selection procedure

To assess the ability of our procedure to discern between the two human be-

havioural models, we simulated trip outcome data of the same form as that which

we collected using our survey. That is, we created a simulated environment, in which

individual boaters behave according to one or the other behavioural model. We then

fit each model and conducted model selection using the approach outlined in the

main paper.

To ensure that our simulations are applicable to the collected data set, we used

the same number of boaters, making trip outcomes in a comparable choice space

(n = 145 boaters choosing among 781 lakes). Each boater was simulated to take j

trips according to:

j ∼ Poission(λ) (A.1)

Where the rate parameter is fitted from the data (λ = 16). Further, we in-

corporated spatial auto-correlation into the environment by modelling the lake size

distribution as a function of its spatial location. Specifically, lake size was distributed

as:

Sl ∼ N(µ = latllonl, σ
2 = latllonl) (A.2)
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The general effect of which is to cluster larger lakes together toward one corner

of the simulated environment, and smaller lakes together toward the other (see Fig.

A–1).

We then simulated trips taken by each boater according to either the gravity

model, or the random utility model. We used uniformly distributed random pa-

rameters in the same range as our fitted parameters to the data, and retained the

trip outcomes to use for model fitting and selection. We repeated this procedure,

re-simulating using different parameter values 500 times for each generating model.

For all simulations, our model selection procedure was able to correctly identify the

generating model. We calculated the ∆AIC (AIC of non-generating model minus

the AIC of generating model) for each instance of our simulation. Negative values

would indicate the erroneous selection of non-generating model. For both generat-

ing models, this value was always positive, with minimums of 100.95 and 201.80 for

the cases of a generating gravity model and generating random utility model respec-

tively. These results suggest ample model discriminatory power within a spatially

structured environment given our sample size.

We also wished to validate the theoretic properties of our model fitting procedure

to estimate model parameters. For this we simply plot the fitted parameter values

against the true parameter values. From this, we can visually inspect for any bias

in the predictor. If there is no bias, the predicted/observed point cloud should fall

symmetrically around the 1:1 line. Fig. A–2 and A–3 shows the performance of the

parameter estimators for the gravity and random utility models, respectively. Our

results show no signs of bias across each parameter or each model.
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In this validation section, we have shown via simulation that given one of either

the random utility, or gravity as the generating model of human behaviour, both

our model fitting (parameter estimation) and model selection procedures work as

expected. We have shown this to be the case even when spatial auto-correlation is

present in the system.
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Figure A–2: Parameter estimation performance for RUM and GM. Gen-
erating vs maximum likelihood estimates for the four parameters (panels) of the
gravity model. The 1:1 line is also plotted for comparison.
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Figure A–3: Parameter estimation performance for Random Utility
Model. Generating vs maximum likelihood estimates for the four parameters
(panels) of the Random Utility Model. The 1:1 line is also plotted for comparison.
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B.1 Supplementary Material for Chapter 3

B.1.1 VMAPP Methods

Derivation of the δ estimator

For the binary variables S and R, let P (S = 1) = p̂ and P (R = 1) = p, and

by extension P (S = 0) = 1 − p̂ and P (R = 0) = 1 − p. S and R are the simulated

outcomes from model predictions and the real outcomes from a validation data set,

respectively. From this, the probability that S 6= R can be written as

P (S 6= R) = p(1− p̂) + p̂(1− p) (B.1)

and the probability that S > R given that S 6= R can be written as

P (S > R |S 6= R) =
p̂(1− p)

p(1− p̂) + p̂(1− p)
. (B.2)

Which is the fraction of discrepancies (S 6= R) in which S = 1, R = 0. Let us

call P (S > R |S 6= R) = A and P (S 6= R) = B, and show that

δ = p̂− p = 2(A− 1/2)B. (B.3)

By substituting (B.1) and (B.2) into (B.3):

p̂− p = 2

(
p̂(1− p)

p(1− p̂) + p̂(1− p)
− 1/2

)

(p(1− p̂) + p̂(1− p)) . (B.4)
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Which can be solved to either the identity p̂ = p̂,

p̂ = 2

(
p̂(1− p)

p(1− p̂) + p̂(1− p)
− 1/2

)

(p(1− p̂) + p̂(1− p)) + p

= 2p̂− 2pp̂− p+ pp̂− p̂+ pp̂+ p

= p̂,

or p = p,

p = −2

(
p̂(1− p)

p(1− p̂) + p̂(1− p)
− 1/2

)

(p(1− p̂) + p̂(1− p)) + p̂

= −2p̂+ 2pp̂+ p− pp̂+ p̂− pp̂+ p

= p.

Hence if we can estimate the quantities (B.1) and (B.2), we can estimate δ using

(B.3). Further, we can estimate (B.1) and (B.2) each as a function of some aspect

of the predictive model itself.

Functional forms of f1 and f2

The exact functional forms of both P (S 6= R), estimated by f1, and P (S >

R |S 6= R), estimated by f2 will not typically be known in advance for a given

model. However, we can define these functions such that they capture the essential

features that are likely to be encountered. The forms used and their rational are

outlined in turn here.
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The f1 functional form

This function estimates the relationship between p̂ and P (R 6= S). In our

analysis, we estimate δ as a function of p̂. We therefore further require the function

f1(p̂) to exist over the domain ∈ [0, 1] (or at least ∈ [p̂min, p̂max]), and since it is a

probability, to have range ∈ [0, 1]. Under the null (where p̂ = p), we can see that

P (R 6= S) = 2p̂(1− p̂). With the additional observation that P (R 6= S) must tend

toward zero as p̂ → 0 or p̂ → 1, we seek a hump-shaped function over the 0-1 range.

f1(p̂) = (1− e−a1p̂
b1 )(1− e−a2(1−p̂)b2 )− γ (B.5)

This formulation (B.5) meets our criteria and is flexible enough to capture var-

ious deviations from the null case as illustrated in Fig. SB–1.

The f2 functional form

This function estimates the relationship between p̂ and P (S > R |R 6= S).

Since like f1, f2 is estimating a probability, we wish to construct a function capable

of expressing the range ∈ [0, 1]. Also like f1(p̂), the range and domain of f2(p̂) must

be ∈ [0, 1]. We aim to capture the misspecification pathologies described in the main

text (specifically general over or under bias, directional changes in bias across the

range of p̂, as well as the null case where P (S > R |S 6= R) = 0.5, which occurs

when p = p̂). We propose:

f2(p̂) = (e−a1p̂
b1 − c1)(e

−a2(1−p̂)b2 − c2) (B.6)
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With free parameters θf2 = {a1, a2, b1, b2, c1, c2}, which is flexible enough to meet

the above mentioned criteria. For instance, the parametrization a1 = 0, a2 = 0, b1 =

0, b2 = 0, c1 = 1 −
√
0.5, c2 = 1 −

√
0.5 captures the null expectation of f2(p̂) = 0.5

for all p̂ = p. Examples of alternative parametrizations capturing the desired cases

are shown in Fig. B–2.

While the functional forms of f1(p̂) and f2(p̂) described here are flexible enough

to capture the expected behaviours of the true functions for the model miscalibration

pathologies we have described, it is possible that other functional forms will be more

appropriate in other situations. For this reason, we have designed the rVMAPP R

package to allow user specified functional forms (details in the package documentation

online at https://github.com/cjbayesian/rvmapp).

Algorithm for estimating f1, f2, and δ

1. For j in j = 1, . . . , J , DO:

2. Simulate a predicted outcome for each point in the validation set (Sij ∼

Bernoulli(p̂i), i = 1, . . . , n). If the model includes parameter uncertainty

(bootstrapped, or Bayesian posteriors of p̂), simulate outcomes from the jth

series of predictions (randomly selected) in p̂ij.

3. Compute the difference between the simulated and observed outcomes (Sij −

Ri).

4. Map Sij 6= Ri → Γij = 1, and Sij = Ri → Γij = 0. (Fig. 1, row 2).

5. Fit f1j(p̂) using MLE. L(θf1 |Γ1j, . . . ,Γnj, p̂1j, . . . , p̂nj) =
∏n

i=1







f1(p̂ij), if Γij = 1

1− f1(p̂ij), if Γij = 0
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Figure B–1: Example parametrizations of f1(p̂) capturing each of the mis-
calibration pathologies.
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Figure B–2: Example parametrizations of f2(p̂) capturing each of the mis-
calibration pathologies.
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6. Map Sij > Ri → ∆ij = 1, and Sij < Ri → ∆ij = 0. Exclude any cases where

Sij = Ri (Fig. 1, row 3).

7. Fit f2j(p̂) using MLE. L(θf2 |∆1j, . . . ,∆nj, p̂1j, . . . , p̂nj) =
∏n

i=1







f2(p̂ij), if ∆ij = 1

1− f2(p̂ij), if ∆ij = 0

8. Compute δ̂j(p̂) as 2(f2j(p̂j)− 0.5)f1j(p̂j)

9. END FOR LOOP.

While here we estimate f1, f2 as functions of p̂, it is possible to generalize this

algorithm to estimate f1, f2, δ as functions of any quantity of interest (eg. model

covariates, space, or some additional variable which was not originally included in

the predictive model).

An example using the R package rvmapp

The R package for computing both the miscalibration goodness-of-fit statistics

as well as estimating δ is available at https://github.com/cjbayesian/rvmapp.

Installation instructions are provided in the README.md file.

To run a validation analyses using ‘rvmapp‘, two data objects are required. First,

a vector containing the observed outcomes in the validation data. This can be either

numeric, containing 1’s and 0’s or a logical vector. Second, either a vector of predicted

probabilities generated by a model, or a matrix or data frame of probabilities. In the

latter case, where uncertainty in the predictions is included, each row of the matrix

represents a random draw from the predictive distribution.

The following example will walk through a simple simulated example to demon-

strate how to use rvmapp and interpret the output. We’ll start by using a model
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which generates a single prediction vector, then show how to incorporate prediction

uncertainty into the validation procedure using VMAPP.

Start by simulating some example data. Here we’ll simulate data from a standard

logistic model.

library(rvmapp)

set.seed(123)

## Simulate data on which to build a model ##

x <- runif(100,-2,2) ## independent vars

p <- 1/(1+exp(-x)) ## simple logistic probabilities

outcomes<-bs(p) ## Binary outcomes

Next, we’ll fit a logistic regression (note that we have the ’correct’ model).

model.fit <- glm(outcomes ~ x, family=binomial(logit))

Then we’ll simulate an independent set of validation data from the same process

which generated the original data.

## Simulate some validation data

x_val <- runif(100,-2,2) ## New independent vars

p_val <- 1/(1+exp(-x_val)) ## Probabilities from the same model as before

outcomes_val <- bs(p_val) ## Binary outcomes (validation data)

## Predict the probabilities associated with our validation data

p_hat <- predict(model.fit, newdata = data.frame(x=x_val),type="response")
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Now that we have predictions from a fitted model and a set of validation data,

we can pass these values to VMAPP.

## Run VMAPP ##

VMAPP <- vmapp(d=outcomes_val, pred=p_hat)

Resulting in an object VMAPP of class vmapp which has default print and plot

methods:

> VMAPP

###########################################################

Validation Metric Applied to Probabilistic Predictions

100 validation data points used.

Test for overall bias:

Two-tailed test P-value: 0.738

Test for direction change in bias:

Two-tailed test P-value: 0.004 **

** Direction of deviation: Slope of bias greater than 0.

###########################################################

plot(VMAPP)

From which we can see that we have found that our predictions are significantly

miscalibrated. Specifically, there is a significant changing bias over the range of p̂

from under to over-prediction. This is an example of a type-I error (since we know

that our model is correct), which we have shown in the main paper will occur more
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often than theoretically expected if the parametric uncertainty of our predictions is

not accounted for. Next we will use bootstrapping to account for this uncertainty

and re-run the VMAPP analysis.

n_boot <- 1000 ## Number of bootstraps

p_hat_boot <- array(dim=c(n_boot,100)) ## An array to store predictions

for(i in 1:n_boot)

{

## Sample original data with replacement

boot_index <- sample(1:100,replace=TRUE)

x_boot <- x[boot_index]

model.fit <- glm(outcomes[boot_index] ~ x_boot,

family=binomial(logit))

p_hat_boot[i,] <- predict(model.fit,

newdata = data.frame(x_boot=x_val),

type="response")

}

## Run VMAPP again, this time with parameter uncertainty included

VMAPP2 <- vmapp(d=outcomes_val, pred=p_hat_boot)

VMAPP2

plot(VMAPP2)
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Note that the confidence intervals of δ̂ need not exclude zero anywhere in the

range of p̂ in order to find significant departure from the null goodness-of-fit hy-

pothesis. This is because the inferential mechanism of VMAPP uses strictly the dis-

crepancies P (S > R |S 6= R) between simulated predicted outcomes and observed

outcomes, whereas a quantitative estimate of δ requires inclusion of the probability

of those discrepancies P (S 6= R).

Now that we have conducted the VMAPP goodness-of-fit test and plotted the δ

estimations, we can also use the predict method to calculate the estimated δ distri-

bution for any given point in our validation set. Simply pass the VMAPP2 object to

the predict function along with the index of the validation data point of interest.

> predict(VMAPP2,1)

Using a 0.95 % CI

mean lowerCI upperCI

1 -0.1191105 -0.2648331 0.05347423

Which gives the estimated deviation (δ̂) and confidence intervals for the model

predictions of the first data point in the validation set. In this case, the expected

difference between prediction and actual risk is -12% meaning that the predicted

risk is expected to be is 12% lower than the true value (with a confidence range

+17%/-15%). For more help with this, and other functions provided in the rvmapp

package, use ?predict.vmapp, ?plot.vmapp etc.

B.1.2 Description of HL and Cox’s method

While many model validation studies in the ecological literature do not directly

assess the calibration problem, there are two existing methods for doing so which
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Figure B–3: Running VMAPP with and without accounting for parametric
uncertainty. Panel A): Actual (black) and predicted (red) probabilities from a fitted
logistic regression model. Panel B): δ estimation via VMAPP on 100 validation
points from drawn from the actual probabilities. VMAPP detects significant non-
zero δ, negative (indicating underestimation) for low predicted values and positive
(overestimation) for higher predicted values. Panels C) and D) repeat the procedure
with an accounting for parameter uncertainty using bootstrapping. VMAPP does
not detect significant deviation from the null hypothesis of p = p̂.
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we will compare with VMAPP. Hosmer and Lemeshow (2000) describe a test which

employs a strategy of binning validation observations and comparing observed and

expected rates in each bin using a χ2 goodness-of-fit test. The formulation is:

H =
n∑

g=1

(Og − Eg)
2

Ngp̂g(1− p̂g)
(B.7)

With Og, Eg, Ng, are number of observed positive, expected positive, and total

number of outcomes in each group g, respectively. The expected positive outcomes

are calculated by summing the predicted probabilities p̂g within each of n groups.

The resulting statistic is then compared against a χ2 distribution with n− 2 degrees

of freedom.

A second approach to assessing predictive calibration was originally described

by Cox (1958), and later its use was described in the context of species distribution

modelling by Pearce and Ferrier (2000). In this approach, logistic regression is applied

to the validation data as a function of the logit-transformed (logit(x) = ln
[

x
(1−x)

]

)

predicted probabilities.

ln

[
P (y = 1 | x)
P (y = 0 | x)

]

= β0 + β1ln

[
p̂

1− p̂

]

(B.8)

Cox (1958) shows that if p = p̂ = P (y = 1 | x), then the expected value of the

parameters β0 and β1 are 0 and 1, respectively. Pearce and Ferrier (2000) use likeli-

hood ratios to test for significant departures from these expected values. Significant

departures from these values represent miscalibration pathologies which match those
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which we have described in the main paper. Specifically, β0 6= 0 indicates general

over, or under estimation, and β1 6= 1 indicates a change in the bias over the range

of p̂.

B.1.3 Bythotrephes Sampling Methods

Design of 311 lake survey in 2005/6

The overall purpose of the 2005/6 survey was to produce a large data set of

presence/absence observations of Bythotrephes that could be used to model the risk

of its spread and establishment. In 2005 and 2006 311 lakes or 19% of the lakes

in the watershed were sampled. 92 of the 311 lakes were sampled in 2005, and the

remainder in 2006. In 2005, survey lakes were selected from a watershed database

compiled from Landsat (TM) images (Hélie et al., 1993). Lake locations and size were

used as strata in an equally stratified, random sampling design (Hirzel and Guisan,

2002). Specifically, a 12-cell polygonal grid was mapped onto the watershed, with

polygons approximating quaternary watershed boundaries. Within each cell, lakes

were grouped into three size categories (1-10, 10.1-100 and >100 ha) and an equal

number of lakes from each size category was randomly chosen for sampling, providing

lakes with preset locations and a variation in size, and with a potentially wide but

uncontrolled variation in chemistry (Neary, 1990), recreational development, and

access to human traffic.

In 2006, 274 lakes (45 lakes were sampled in both 2005 and 2006) were selected,

without replacement, using three criteria. The criteria were lake area, distance by

connected water bodies from known-invaded lakes, and apparent propagule pressure

- PP (Cairns et al., 2006). 101 lakes were selected for the hydrologic connectivity
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criterion. They were selected by hand, along chains of lakes both downstream and

upstream of 16 lakes known to be invaded in 2005. 89 of the lakes were upstream of

known invasions. Those lakes selected to reflect ranges in PP and area were randomly

selected. To select lakes along the PP gradient we first dichotomously assigned all the

lakes in the watershed into lakes accessible by road, i.e. within 100 m of an all season

road, vs. those not accessible by road. 408 of the lakes were deemed accessible, and

the remainder were not. An index of propagule pressure (Ipp) was calculated as the

distance from the lake to the nearest known invaded lake plus the distance by road

from the lake to the nearest town. Ipp was then split into 8 equal bins, and randomly

chose 10 lakes from each bin giving us the first 80 lakes to be sampled in the PP

category. 20 additional lakes were then selected from the inaccessible list and split

into those that were within 500 m vs. further than 500m from an all season road.

Finally, lakes were selected by size. There were 1083 lakes of 1-10 ha in size, 499

lakes with areas of 10.1 to 100 ha and 83 lakes larger than 100 had. 37 lakes were

randomly selected from the two smaller size categories, an over-selection of 5 lakes

per size category, to allow for sampling contingencies. The largest size category had

only 30 lakes, as the remaining 53 had already been excluded as they were either

known to be invaded as of 2005, or had been previously selected for sampling by

the PP or hydrologic connectivity selection process. A full description of the lake

selection process employing GIS layers is provided by Cairns et al. (2007).

Sampling Details

All lakes were sampled between mid-June and the end of August, when Bythotrephes

is commonly abundant. Usually from a canoe, zooplankton samples were collected
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in each lake using a 63 um mesh conical tow net with a side length of 1.4 m, and

mouth and cod end diameters of 30 cm and 5 cm, respectively. Such nets can detect

the vast majority of small Bythotrephes populations on the Shield if the sampling

protocol includes duplicate hauls at 3 offshore stations (Boudreau and Yan, 2004).

To further increase detection probability, duplicate hauls were collected at 5 sites

roughly equally distributed along a fetch of each lake, with the contents of the two

hauls at each station being combined. In case persistent recent winds had removed

Bythotrephes from offshore areas, a 6th horizontal haul was collected from a down-

wind location in each lake. All samples were condensed in the field and preserved

with 5.5% buffered sugar-formalin.

The 2005/2006 311 lake survey doubled the number of known invasions in the

watershed from 23 in 2004 to 46 in 2006. The largest parks in the watershed remained

uninvaded in 2006. The invaded lakes were all accessible to the public and within

100m of an all-season road. They ranged in size from 23 to 12,000 ha. 40% of the

lakes >100 ha in the watershed supported Bythotrephes populations by 2006. All

the Bythoterphes data were recorded in an Access DB which was subsequently used

by various CAISN investigators to model the risk of spread and establishment of the

invader (Potapov et al., 2011; Gertzen and Leung, 2011; Wang and Jackson, 2011;

Weyhenmeyer et al., 2010).

Quality of the presence/absence data from the 311 lake survey

A Taylor’s Power Law plot of log variance vs. log abundance of Bythotrephes

from the 5 vertical haul stations in the 23 invaded lakes was significant with a slope

of 2.7 indicating that Bythotrephes spatial distribution was aggregated in the lakes.
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Still Bythotrephes populations were generally large enough to be captured at multiple

stations. On average, Bythotrephes were recovered at 2.8 of the 5 vertical hauls

stations, and in only 3 cases was it detected at only one vertical haul station. The 6th,

horizontal haul station was a worthwhile addition as this station produced 2 of the

invasion records (Cairns et al., 2007). There was no relationship between sampling

date and the number of stations at which Bythotrephes was detected, suggesting no

seasonal detection bias.

Sampling in 2010

Cairns and Yan (2011) conducted an additional large survey of 135 lakes for

Bythotrephes both in watershed 2EB and in a few neighboring tertiary watersheds

in 2010 for two reasons. First, Gertzen and Leung (2011) concluded that the short

term spread of Bythotrephes in the watershed was not yet over, and this prediction

warranted testing. Secondly, the initial 300 lake survey had led to the production

of 3 quite different approaches to modelling the invader’s spread, i.e. models built

on hydrological + human assisted propagule pressure (Gertzen and Leung, 2011),

human propagule pressure + water quality (Potapov et al., 2011), and water quality,

lake location and predation pressure (Wang and Jackson, 2011). The collaborators

were keen to test the predictive abilities of these different models as the invader

continued to spread in the watershed. Hence, in 2010, each modelling group was

asked to provide Cairns and Yan with a list of 30-50 lakes within or neighbouring

watershed 2EB, and 135 of these lakes were sampled in 2010. 25 of the sampled

lakes were beyond the boundaries of watershed 2EB but still within the immediate

area, i.e. 7 were in watersheds 2EA, 11 in 2EC, and 7 in 2HF (see (Cairns and Yan,
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2011) for maps). Of the lakes sampled, 57 were selected by Lewis, 61 by Leung and

29 by Jackson. All field and lab methods for processing haul samples were identical

to those of Cairns et al. (2007), with the additional collection of anions in the water

quality samples, and phytoplankton samples.

The 2010, 135 lake survey documented 17 new invasions bringing the total num-

ber of invaded lakes in the region from 53 to 70, and bringing the number of known

invaded lakes in watershed 2EB from 45 to 55. Of the 135 lakes, 67 were sampled in

previous years, 3 in 2005 and 2010, 44 in 2006 and 2010 and 20 in all 3 years.
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C.1 Supplemental Material for Chapter 5

C.1.1 Survey management scenario text

Upon removing your boat from the lake, you would be required to pass your

boat and trailer through a hull, trailer and gear cleaning station.

At this station, you would be required to:

– Empty all bilges and live wells

– Ensure that all ropes, fishing lines, propellers, and trailer parts are clear of any

plants or animals

Time required to complete the cleaning process will vary depending on the size of

your vessel, but it is estimated to take approximately 15 minutes.

The cost of this mandatory procedure is XX $ .

C.1.2 Theoretical validation of management GM

To ensure that we were able to recapture unbiased estimates of the behavioural

response parameters θm and φm, we simulated boater trip taking behaviour under

both status quo and management conditions. Retaining only that information which

we get from our survey and using the same sample size and GM parameter values,

we fit the behaviour model across a range of true generating values of θm and φm.

Predicted-actual plots indicate close agreement between actual and predicted values

(Figure C–1).

216



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

θθ

θθ^

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

φφ

φφ̂

Figure C–1: Predicted-Actual plots validating the management model. A
1:1 relationship indicates perfect parameter estimation.
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