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Abstract - Abrégé

The protein folding problem aims to predict the complete physical and dynamical pro-

cess that transforms an unfolded sequence into a functional 3D protein structure. This

problem consists of two (open) sub-problems: i) the protein structure prediction prob-

lem and ii) the protein pathway prediction problem. Computational techniques to face

these two sub-problems have been based on the theory of evolution and laws of physics.

To-date, classical approaches to obtaining detailed information about protein folding rely

on time-consuming methods that are primarily limited to relatively small proteins (i.e.,

≤ 50 amino acids). The overall objective of this thesis is to explore algorithms that

conciliate: i) the prediction of protein structures and pathways, ii) physical-based pre-

dictions (i.e., low free-energy models) & evolutionary based predictions (i.e., sequence

variation methods), and iii) computational costs and granularity level requirements of

protein folding simulations. We propose an algorithmic framework for predicting protein

folding that offers a better trade-off between resolution and efficiency. This framework

computes accurate coarse-grained representations of the conformational landscape for

large proteins through the combination of ensemble modeling techniques and evolution-

ary based sequence information. The resulting conformational energy landscape is then

used to predict dominant folding pathways. Given that the proposed framework in this

thesis makes use of sequence information, we also explore a crowdsourcing and multi-

objective evolutionary strategy to investigate the accuracy of evolutionary information

encoded by multiple sequence alignments. Finally, to present our results to the wider bi-

ology and computer science communities, we develop an easy-to-use interactive molecular

visualizer.



Abstract - Abrégé

Le problème du repliement des protéines a pour objectif de prédire le processus physique

et dynamique complet de conversion de la séquence d’une protéine non-repliée en une

structure 3D. Ce problème peut être décomposé en deux sous-problèmes (ouverts): i) le

problème de la prédiction de la structure des protéines et ii) le problème de la prédiction

de le processus de repliement des protéines. La théorie de l’évolution et les lois de la

physique sont les principes sur lesquels les techniques computationnelles se sont basées

afin de résoudre ces deux sous-problèmes. À ce jour, les approches classiques qui sont

utilisées afin d’obtenir des informations sur le repliement des protéines sont reliées à des

méthodes chronophages, en principe limitées à des protéines de petite taille. L’objectif

général de cette thèse est d’explorer des algorithmes qui concilient : i) la prédiction des

structures et celle du processus de repliement des protèines, ii) les prédictions basées

sur les lois physiques (i.e., des modèles à énergie libre minimale) et celles basées sur

la théorie de l’évolution (i.e., des méthodes basées sur les variations de séquences) et

iii) les coûts computationnels et les niveaux de granularité requis par les simulations.

Dans ce but, nous proposons une structure d’algorithme pour le repliement des protéines

qui offre un meilleur compromis entre la résolution et l’efficience. Cet algorithm calcule

des représentations précises à gros grain du paysage conformationnel des protéines de

grande taille, en combinant des techniques de modélisation d’ensemble avec l’informations

évolutive des séquences. Ce paysage énergétique conformationnel est ensuite utilisé afin

de prédire les voies de repliement les plus probables. Puisque la structure proposée dans

le cadre de cette thése utilise des informations de séquences, nous étudions aussi une

stratégie participative, et une autre, multi-objectif et évolutive pour examiner la précision

de l’information encodée par les alignements multiples de séquences. Finalement, de

manière à présenter nos résultats à la communauté de biologistes et de chercheurs en in-

formatique, nous avons développé un visualiseur moléculaire interactif facile d’utilisation.
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Chapter 1

Introduction

1.1 Protein Folding

Of all the molecules found in living organisms, proteins are probably the most studied

due to the variety of critical tasks that they perform for cellular metabolism. Specifically,

they participate in several vital functions such as: i) cellular growth and repair, ii)

the catalysis of cellular chemical reactions, iii) the transport of molecules, iv) signal

transduction, v) segregation of genetic material, vi) production and use of energy, and v)

producing biochemicals such as antibodies, enzymes and hormones. Furthermore, they

are important building blocks of bones, muscles, cartilage, skin and blood. Proteins are

so important that if their function is impaired, the consequences for the organism can

be devastating. Failure to maintain a functional protein may produce a wide range of

diseases with different pathological mechanisms and dramatic social impact, for which

there are no current treatment.

Proteins, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are the three differ-

ent types of molecules in which the biological information of the cell is stored [3]. The

instructions needed to construct proteins are encoded in DNA; however, DNA must first

be transcribed into RNA before then being translated into amino acids (AA). During

transcription, the genetic information encoded within DNA is transcribed into a mes-

senger RNA (mRNA). mRNA molecules are segmented into codons - three consecutive

1
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nucleotides that encode an AA - which are then translated into an AA sequence. How-

ever, this translation is based on the ability for codons to form 64 possible encodings (each

of the three nucleotides can be one of the four nucleotides adenine, cytosine, guanine or

uracil), only 20 standard AA1 which will be used by cells in protein biosynthesis are repre-

sented. An AA is a molecule that contains an amine (−NH2) and a carboxyl (−COOH)

functional groups, along with a side-chain (R group) specific to each AA. Each AA differs

in structure by their side-chain substituent and is classified as either hydrophobic (low

propensity to be in contact with water), hydrophilic (energetically favourable contact

with water) or amphipathic (have both hydrophobic and hydrophilic character) based on

their differences in structure, size, electric charge and solubility in water. The molecular

makeup allows individual AA to join together in long chains by forming bonds as they

fold into a three-dimensional (3D) structure, which then defines the protein function.

The biochemical function of a protein is determined by its 3D structure, and in many

cases, by assembling with other proteins into a functional complex (e.g., hemoglobin,

DNA polymerase, and ion channels). In addition, many proteins undergo further (post-

translation) modifications to improve their functionality. The major steps during the

folding process are assisted and facilitated by proteins called molecular chaperones. Chap-

erones do not convey additional information to determine the protein structure; but they

help to prevent incorrect folding or aggregation processes (e.g., loss-of-function and gain-

of-toxic-function misfolding diseases). The interior of a living cell is an extraordinary

complex environment with a complete set of machinery to assist in the folding process. H

owever, under certain circumstances a protein can fail in the adoption or maintaineance of

its native conformation (i.e., the most stable natural conformation). This malfunctioning

folding procedure may result in pathological conditions referred to as protein misfold-

ing diseases [4]. Misfolding leads to a wide range of diseases with different pathological

mechanisms and dramatic social impact, such as Alzheimer and Parkinson diseases, type

2 diabetes, cystic fibrosis, some forms of emphysema, and many others [5].

In order to better understand protein folding, it is important to consider the four possible

levels of folding a protein undergoes. Each successive level of protein folding ultimately

1There are twenty two AA that are naturally incorporated into polypeptides; however, of these, only
twenty are encoded by the universal genetic code.
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contributes to its 3D conformation and therefore its function. i) Primary structure con-

sists of the AA in sequenced order. ii) Secondary structure (SS) consists of regular

components of folding patterns that contribute to the stabilization of the protein folding

process, like α-helices and β-sheets. The α-helix is a right-handed, coiled strand that is

remarkably stable due to hydrogen bonds. In contrast, a β-sheet conformation consists

of hydrogen-bonding between pairs of strands lying side-by-side. The two strands of a

β-sheet may be either parallel or anti-parallel depending on whether the individual strand

directions are the same or opposite. iii) In tertiary structure, elements of the SS are folded

forming an almost solid compact structure (i.e., there are limited structural changes after

reaching the native state) that is stabilized by forces due to bonding interactions between

the side-chain groups of the AA. Tertiary structure refers to the overall folding of the

entire polypeptide chain into a specific 3D shape. It is important to stress that the func-

tional properties of the protein are completely dependent on the tertiary structure. iv)

In the quaternary structure, many proteins are made up of multiple polypeptide chains,

where these chains are represented by tertiary structures interacting with each other.

The result is that these tertiary structures arrange themselves to form a larger protein

complex.

The aforementioned levels of folding have been a convenient hierarchical description (in

which successive layers of the hierarchy describe increasingly more complex levels of or-

ganization) of protein structure to simplify the daunting task of deciphering underlying

patterns within the protein folding process. The final result of the folding process is the

full 3D structure of the protein (i.e., the process of going from the primary to the tertiary

[or quaternary] structural level); however, this process is currently not fully understood.

Based on several seminal laboratory experiments involving an active form of the Ribonu-

clease A enzyme2, the 1972 nobel prize winner Christian Anfinsen, demonstrated that

RNase could be fully denatured (i.e., a protein loses its tertiary structure and catalytic

activity) under extreme chemical conditions, and then renatured (i.e., a protein recov-

ers its tertiary structure with full catalytic activity) when the chemical environment is

returned to natural cellular conditions. This experiment demonstrates that the primary

2RNase A is one of the classic model systems in the study of proteins largely because it is extremely
stable and could be purified in large quantities.
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sequence in a protein contains all the necessary information to determine its 3D struc-

ture. Thus, the protein folding process may then be explained entirely by the physical

and chemical interactions among AAs [6]. This experiment also allowed Anfinsen to the-

orize that the native structure of a protein is unique, stable and thermodynamically the

most stable conformation [7] under environmental conditions at which folding may occur.

Thus, proteins must follow energetically favourable pathways to form the most stable

natural conformation (known as native state). In other words, proteins must form inter-

mediate structures in a time ordered sequence of structural changes during the folding

process (intermediates known as folding pathways). The existence of folding pathways

agrees with the hypothesis that finding the native folded state of a protein by a random

search among all possible configurations will never succeed [8]. Particularly, based on the

fact that many naturally-occurring proteins fold reliably and quickly to their native states

despite the astronomical-large number of possible configurations (estimated to grow as

10n for an n-residue protein [9]), the folding process can not occur by random diffusion

alone.

Since Anfinsen’s experiments, the protein folding process has been researched with two

mutually exclusive goals: i) achieving the most stable conformation (i.e., thermodynamics

control) and ii) doing so quickly (i.e., kinetic control) [10]. Based on a thermodynamic

control, the protein folding is independent of the pathway taken to achieve the global

minimum. While kinetic control is pathway dependent and the final structure is different

depending on the initial conditions of the system. Different folding models have been

proposed on the basis of model systems and general physicochemical reasoning to char-

acterize the thermodynamical and kinetic features occurring during protein folding [11].

Those models are qualitative and heuristic emphasizing essential features of the folding

process and disregarding its complexities. Even if those models can only make approx-

imate predictions of the folding pathway for a specific protein; they offer insights into

possible folding landscapes. It is not possible to determine the correctness of a model

for all proteins a priori because different studies have shown that some proteins combine

features from different models (i.e., the various competing pathways need not be mu-

tually exclusive). In the following paragraphs, we will explore the main characteristics
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and properties of the hydrophobic collapse, framework, nucleation and energy landscape

models.

The hydrophobic collapse model hypothesizes that the native protein conformation

is formed by a rearrangement of compact hydrophobic collapsed structures [12, 13].

This model is based on the observation that the protein’s native state often con-

tain a hydrophobic core. This model is generally used to describe the initial stage

of protein folding, where the hydrophobic collapse produces a molted globule with

a SS but no tertiary topology [14]. The model proceeds in the following folding

steps: i) Form initial SS, creating localized regions of predominantly hydropho-

bic residues, ii) nascent protein interacts with water, and iii) the thermodynamic

pressures on the SS make them collapse into a tertiary conformation with the hy-

drophobic core. This model is consistent with various simulations [15–17] that

predicts the hydrophobic collapse as a relatively early event in the folding pathway

(occurs before the formation of SS). However, there are some experiments [18] in

which some proteins do not appear to undergo an initial collapse reaction.

The framework model considers the protein folding process as a step-wise and hier-

archical process [19]. In this model, local interactions guide the formation of SS,

followed by the random diffusion collisions (i.e., the process of collision, combina-

tion and strengthen of conformational local elements) until a stable native tertiary

structure is formed. This model proposes the following folding steps: i) start with

an unfolded protein chain, ii) form the SS according to the primary structure, but

independent of the tertiary structure, iii) allow SS to fluctuate around their native

position(s), iv) SS elements interact with each other to form a native-like SS, and

finish by v) identifying the folding pattern to the 3D conformation. This model has

been shown to agree with experiments [20, 21] that indicate for some proteins the

folding of SS elements occur many times long before the main folding event. It is

important to note that the process of hierarchic condensation has not been verified

experimentally for large number of proteins.

The nucleation model is based on the assumption that the protein folding process is

similar to crystallization and that the limiting step is nuclear formation followed by
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a rapid propagation of structure folding. In this model, the secondary and tertiary

protein structures are formed simultaneously. This model features the following

four main steps [22]: i) initial formation of a folding nuclei composed of residues

close to each other not only in sequence, but also in structure with respect to

the native protein conformation, ii) stabilization of the nuclei by encompassing

contiguous residues, iii) two or more nuclei are then mutually stabilized by long-

range interactions. Finally iv) the rearrangement step, where structured sections of

the protein alter their conformation. The nucleation model is supported by studies

[23] that identify proteins who fold via a nucleation mechanism with a preference

for residues belonging to regular SS in the folding nuclei. However, there are other

proteins for which the structural consolidation in the major transition state appears

to have progressed beyond initial nucleation [24].

The energy landscape model states that the folding of a protein does not follow a

singular, specific pathway but occurs through multiple routes down a folding funnel

with a high level of irregularity [25]. This funnel represent an energy landscape

where the y-axis is the internal free energy of a given protein configuration, and the

lateral axes represent the conformational coordinates (and the degrees of freedom

available to a polypeptide chain). In this model, a conformation is represented by a

point on the energy landscape and as the conformation moves lower in the landscape,

it is close to the native state. This new view of protein folding suggests that a protein

(initially unfolded) folds through a heterogeneous population of intermediate folded

structures in a fluctuant equilibrium, instead of through predefined pathways with

compulsory intermediates. The downhill nature of the folding ensures that folding

proceeds at random one AA at a time and not in a set of folding steps as described

by the previous models. The landscape proposed by this model has been explored

by theoretical and experimental studies, which have endorsed a multi-pathway view

(i.e., proteins do not follow a singular pathway, but explore multiple routes down

the folding funnel). Therefore, this model compliments experiments [26–29] where

several proteins fold via parallel routes and those proteins switch their preferred

folding pathways depending on the environmental conditions.
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As one can see from the models described above, considerable research has been dedicated

to the goal of achieving a fundamental understanding of the true folding mechanisms for

proteins. In particular, the study of proteins has made significant progress by combining

computational techniques and proteomics technologies, where the prediction of protein

folding is still a major goal in the proteomics era and a great challenge in computational

biology. Folding scenarios have found strong supporting evidence for some small proteins

(in size and availability) through experimental and computational experiments; however,

the conditions under which folding occurs (in-vitro vs in-silico) are vastly different to the

conditions within a living cell (in-vivo). Specifically, i) the interior of a cell is a highly

crowded and dynamic environment when compared with the carefully chosen in in-vitro

(or in-silico) studies, ii) the time-scales of the folding processes observed by in-vitro and

in-silico experiments are protein dependent, and iii) most studies on in-vitro and in-silico

are usually done in the absence of other proteins in dilute conditions (avoiding aggregate

processes). Meanwhile in living cells, a large and diverse group of proteins (like molecular

chaperones) are available to assist in the formation of the native structure. Even if all

the information needed to achieve the native structure of a protein is hidden in its AA

sequence, the folding process in living cells depends on the presence of complex protein

machinery and it is assumed that only a small proportion of the proteins may assume

their native structure(s) on their own [30].

Improvements to in-vitro and in-silico techniques have revolutionized the scale at which

we are able to study protein folding mechanisms. The combined efforts from biochemical

and computational experiments have helped to confirm many predictions of analytical

theory regarding protein folding mechanisms (such as the folding models previously de-

scribed). Moreover, the combination of knowledge gained from theory, experimentation,

and simulations have allowed for the creation of an atomistic level description of folding

landscapes [31, 32]. Despite common goals, it has not always been easy aligning both

areas of study in a shared goal. In particular, in-silico methods have focused on the

simulation of small proteins molecules with no folding intermediates (at the microsecond

timescale) due to limited computational resources. On the other hand, such fast folding

proteins make the experimental detection of events during the folding process difficult,

which might make them unsuitable for in-vitro folding simulation studies.
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In the last 15 years, experimental methods have allowed for the resolution of fast folding

reactions and visualizing single molecules during folding. Folding experiments in vitro,

such as refolding studies and the determination of 3D structures by X-ray crystallography

and Nuclear Magnetic Resonance spectroscopy (NMR) experiments, have provided the

basis on which to study the folding process. In-vitro studies of protein dynamics and

folding mechanisms continue to be an active area of research but currently are unable

to provide a complete picture of the dynamic processes at a microscopic scale of size

and time. While promising experimental devices and procedures are constantly being

developed and enhanced, experimentalists are facing both technology limitations and

increased complexity (e.g., the need of increasing resolution of experimental data and the

demand to deal with larger molecular systems) that restrains their progress. Many have

turned to in silico methods to gain new insight in experimental problems. For example,

simulations are used to perform efficient explorations of potential protein folding solutions

and spaces, to unravel hypotheses that are hard to explore experimentally and to construct

more focused experimental designs that may suggest new interpretations of experiments

[33].

In-silico methods offer an alternative by treating the folding phenomena with varying

degrees of abstraction. As computational resources have begun to be more powerful,

more detailed simulations of larger systems at a higher time scale have been possible. In

silico simulations of protein folding have several advantages over its in-vitro counterpart

[9]. Particularly, i) the protein is pure by definition, which allows avoiding aggregate

processes, ii) the folding process can be modeled under unusual or unfeasible laboratory

conditions, iii) the contributions of various interactions can be determined explicitly; al-

lowing an unambiguously determination of the folding scenario, and iv) classical methods

for protein structure analysis are very time consuming, error prone, and expensive.

The protein folding (PF) problem aims to predict the complete physical and dynamical

process that transforms an unfolded protein sequence into a functional 3D structure. In

other words, PF has been the task of predicting how the information coded in an AA

sequence of proteins translates into the 3D structure of a biologically active protein. An-

finsen thermodynamic hypothesis has fuelled efforts to predict 3D structures and folding
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pathways from sequences through the development of well-guided approaches; however,

an enormous challenge for PF methods has been the ability to predict 3D native struc-

tures and folding pathways for the broad range of proteins currently known. This set of

proteins is composed of thousands of different folds, different structural families, and an

unknown number of unique folding mechanisms. In order to face this challenge, histori-

cally, the PF problem has been splitting in two related problems: i) the protein structure

prediction problem (PSP) and ii) the protein pathway prediction problem (PPP). Both

problems have been widely acknowledged as open problems; but due to its inherent com-

plexity, PSP has been used as a necessary preliminary step toward PPP. Furthermore,

the lack of computational biology tools to model the PPP results in information that is

embedded within folding pathways to remain largely unexploited. In the following sec-

tions, the main in-silico methods developed to determine and study the folding structures

and dynamics of proteins will be reviewed. The methods described in these sections are

not meant to provide an exhaustive overview of all methods in the field, but rather to

present the reader with a concrete set of solutions and methodologies that illustrate major

techniques related to the PF prediction problem.

1.2 Protein Structure Prediction Methods

Due to the importance of understanding protein structure and the consequences of struc-

ture on function, a tremendous amount of research has focused on understanding the

protein structure acquisition process. In contrast to genome-based methods, protein

analysis struggle to attain the same level of throughput. The major limitations in the

biochemical process are: i) proteins cannot be amplified in a manner similar to nucleic

acids, ii) since the appearance of the first atomic-resolution protein structures in 1958,

the complexity of examining protein structures has increased as new macromolecules are

discovered, and iii) the cost of methods to characterize proteins is prohibitive. Further-

more, post-translational modifications, regulatory mechanisms and environmental factors

can result in proteins with multiple forms and structures further complicating the analy-

sis. As a result, the number of available protein sequences increases exponentially based
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on the success of genome-scale sequencing projects. However, the number of experimen-

tally known protein 3D models is very small compared to the total number of sequenced

proteins [34]. To date, the last release3 of the UniProtKB/TrEMBL data base contains

80’204,459 protein sequence entries, meanwhile the RCSB protein data bank (PDB) stores

approximately 128,783 structures.

The theory of evolution and the laws of physics are the principles on which the techniques

of protein structure prediction have been based [35]. These methods rely on the idea that

functional proteins undergo a natural selection process preserving their function, and

by consequence, their structure. On the other hand, proper folding dynamic properties

enable proteins to fold quickly from a primary sequence state to a native 3D structure.

Thus, a functional protein can be characterized by natural selection (i.e., theory of evolu-

tion) and/or folding properties (i.e., laws of physics). Figure 1.1 represents the three main

methodologies involved in the PSP problem. Comparative models and fold recognition

methods are based on the theory of evolution and they rely on the folding similarity be-

tween a target protein and known protein structures. These approaches are able to prune

large search spaces of possible protein structures assuming that the protein whose struc-

ture is unknown (the target) adopts a structure that is close to experimentally determined

structures (the templates) [36]. By contrast, ab initio methods use the laws of physics

to predict a protein structure from its AA sequence without relying on similarity at the

fold level between a target structure and a set of templates [37]. A successful ab initio

modeling usually has the following methodology patterns: i) an accurate representation

of conformations that overcome the high complexity in sampling protein conformations,

ii) an accurate energy function with which the native structure of a protein corresponds

to the most thermodynamically stable state, iii) an efficient search method which can

quickly identify the lowest energy conformations in a vast conformational space, and iv)

a method for selection and evaluation of native-like models.

The most accurate protein structures prediction tools integrate ideas from all three cat-

egories (i.e., comparative, threading and ab initio) [38]. Generally, if a sequence identity

> 30% is attainable, then a relatively accurate folding prediction can be obtained from

3Release 2017-03 of 30-March-2017
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comparative methods; but if the target-template has little similarity but there are models

with similar structural motifs, then threading methods are the chosen option to perform

the prediction. If none of the conditions described above are assured, then ab initio

methods are the modeling choice.

1.2.1 Comparative Methods

Comparative approaches are based on the hypothesis that a small change in the protein

sequence usually results in a small change in its 3D structure and sequences that have

a common ancestor also have similar folds. Therefore, comparative methods rely on de-

tectable sequence similarity between the target sequence and at least one known structure

(i.e., the templates) [35].

The main steps in comparative model methods are as follows [35]. The first step consists

of searching for structures related to the target sequence. Comparative modeling usually

starts by searching for known protein structures in the PDB using the target sequence as a

query by comparing to either a single or multiple sequence(s). The second step consists of

selecting templates (i.e., known protein structures) from the chosen biological data base.

The quality of a template increases with its overall sequence similarity to the target and

decreases with the number and length of gaps in the alignment. The next step consists of

building the model. This step is usually accomplished using strategies such as assembly

of rigid bodies [36], coordinate reconstruction [57], or satisfaction of spatial restraints

[58]. The final step involves evaluating the model to verify that the final protein model is

correct and to check for possible errors [66]. An internal evaluation will check whether a

model satisfies the constraints used to calculate the model, while an external evaluation

will rely its conclusions on information (such as energetic and empirical methods) that

was not used during the calculation of the model.

The usefulness of comparative modeling has been improved due to the increasing number

of experimentally determined protein structures reported in specialized data bases such as

PDB. However, the accuracy of comparative model is still highly related to the percentage

of sequence similarity between the target and template sequences. Comparative models
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Figure 1.1: Mind-Map of the methods involved in the PF prediction problem

This taxonomy represents the splits made in the field to address two key scalability issues:
i) the inherent computational complexity of the problem and ii) the fast-paced growing
complexity of the simulation with respect to protein size and resolution. Each division
is attached with one bibliography citation, which is an example of this division. The
arrow in the centre of the map emphasizes the fact that the most accurate prediction
tools integrate ideas from all three categories.
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with a sequence identity > 50% to their templates can have a modeling accuracy of

1−2Å measured by the root mean square deviation (RMSD) error for the native structure,

which is comparable to the accuracy of a medium-resolution NMR structure or a low-

resolution X-ray structure. Comparative models with sequences identities ranging from

30% to 50% often have 85% of their core regions modeled with an RMSD of 2− 4Å from

the native structure, with errors mainly occurring in the loop regions. Loop regions

are hard to be modeled using comparative techniques because they often correspond to

unaligned regions in sequence alignments given their conformational flexibility and highly

variable sequence. Finally, in comparative models for which the sequence similarity drops

below 30%, the alignment errors rapidly increase the RMSD error and it is not advisable

to use these methods for PSP.

1.2.2 Threading Methods

Fold recognition methods are based on the hypothesis that proteins often adopt similar

folds despite no significant sequence similarity is found. This hypothesis assumes that

protein structure is more conserved than protein sequence [67] and nature is restricted to

a limited number of protein folds [68].

The general procedure of a fold recognition method consists of taking the AA sequence of

a protein and evaluates how well it fits one of the known 3D protein structures or struc-

tural elements that have been experimentally observed. Construction of this sequence-to-

structure alignment is not trivial, then, this process is usually complemented with scoring

functions that determine the fit of a sequence to a given fold. The sequence and struc-

tural information are combined into a single-body energy term, which can be used in a

dynamic programming algorithm (DP) for identifying the best alignment. The alignment

(fold) with the best score is assumed to be the one adopted by the sequence.

Threading methods share characteristics with comparative and ab initio methods. It is

similar to comparative modeling in the sense that both methods try to build a structural

model by using experimentally solved structures as templates. The main difference with

respect to the comparative modeling is that the prediction is determined by assembling
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small structural components, where assembly is guided by an energy function. Then,

threading methods (as ab initio methods) try to optimize a score function to measure the

fit of the sequence in a spatial configuration.

1.2.3 Ab initio Methods

Comparative and threading methods are becoming increasingly accurate in predicting

structures of proteins. Currently, the progress of those models is at a level of accuracy

where such models can be routinely used to generate detailed biological hypotheses and

are now capable of producing results directly comparable to experiments. These break-

throughs have been made possible due to knowledge based-methods that are able to

identify relevant parts of extremely distant homologs and assemble them successfully to

a protein target [69, 70].

Knowledge based methods are facing methodological limitations that are restraining their

progress. Particularly, knowledge-based methods for predicting protein structures have

been widely criticized because: i) they do not provide information about the mechanisms

and forces that direct the formation of protein structures and ii) they can not be used

when experimental resolved structures related with the target protein are not found, or

the target protein has unique or different structural features to those characteristics that

have been reported. Ab initio methods can be used on any AA sequence overcoming the

inherent problems of comparative methods. Particularly, ab initio methods tries to di-

rectly predict the 3D structure (based on the first principle laws of physics and chemistry)

without structural information of the target protein’s family. Ab initio approaches are

also able to discriminate between correct (native or native-like) from incorrect structures,

and provide a deeper understanding of folding mechanisms.

There are three main issues to face in ab initio methods: i) The codification of pro-

tein conformations to reduce the high complexity of the conformational search without

hampering the biological significance (represented in degrees of freedom) from the gen-

erated samples. ii) The formulation of an energy function (that works in the chosen

low-complexity space created by the codification of protein conformations) to efficiently
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model the different interactions contributing to protein folding and iii) The exploration

of the space of possible conformations, which as mentioned before, can not be explored

exhaustively. The following subsections deal with each of these tasks, and explain some

of the most important proposed schemes for each task.

1.2.3.1 Conformation Representations

To represent protein structure conformations and overcome the high complexity in sam-

pling, most methods need a significant reduction in complexity. Methods for reducing

protein structure to discrete low-complexity models can be divided into two major classes:

lattice and off-lattice models.

Spatial lattices or grids models can be used to represent the AA space and allow folding

to have discrete degrees of freedom. Simplification in lattice proteins is performed by

modeling each AA as a single ‘bead’ of a finite set of types and by restricting the loca-

tion of each ‘bead’ to vertices of a (usually cubic-shape) lattice. These simplifications

reduce the computational effort in the evaluation of energy functions and the sampling of

conformations; however, the protein folding problem is an NP-complete problem even in

this simplified scenarios [71, 72]. Lattice models are able to mimic the energy interaction

between AA in real proteins by specifying an interaction ‘energy’ between neighbouring

‘beads’ (usually those occupying adjacent lattice sites). Lattice models have had a fun-

damental theoretical relevance given that they have allowed the efficient exploration of

steric, hydrophobic and hydrogen bonding effects. For example, through lattice model

simulations, Wolynes and coworkers [25, 73] postulated their hypothesis about the ex-

istence of a funnel-like energy landscape which guides the proteins toward their native

structures (i.e., energy landscape model). However, lattice models can not be directly

applied to predict protein conformations of real proteins, when carefully parameterized,

they provide encouraging results [74].

Developing methods which are able to reliably predict native states has been a clearly

necessity in the computational study of protein folding processes. In PSP the most

used approaches have been based on off-lattice models. These models do not follow
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a given lattice topology, but they fix the degrees of freedom and bond lengths of the

polypeptide side chain. Although some algorithms use multiple representations, a few

are commonly used: all-atom 3D coordinates, all-heavy-atom coordinates, backbone atom

coordinates plus side-chain centroids, Cα coordinates, and backbone & side-chain torsion

angles. A growing tendency in the community has been the development of atomic-

level representations in attempts to improve the accuracy of the predictions. Direct

simulation of protein folding using an all-atom model has been called the ‘holy grail’ of

molecular biology because it tries to elucidate all the folding mechanism and the necessary

protein processes to reach their native state[75]. Given the inherent complexity of all-

atom simulations, there is still a need in the field to explore novel protein representations

that produce a better equilibrium between the accuracy of the representation and its

computational cost.

1.2.3.2 Scoring Functions

Once a protein representation model is chosen, a scoring energy or potential energy func-

tion that works in the chosen low-complexity space must be defined. The potential energy

functions or force fields allow the evaluation of multiple proteins by returning a value for

the energy based on the conformation of the protein. In other words, a potential function

is an equation that relates structure to energy. The energy function must adequately

represent the forces responsible for protein structure and should be efficiently calculated

because it needs to be intensively computed while exploring the conformational space.

To come up with some good functions it would be natural to use quantum mechanics,

but it is too computationally complex to be practical in modeling large systems, then

classical physics is a common approach to overcome the computational limitations. The

main physical forces that drive a protein to its 3D folded structure (hydrogen bonds, the

attraction of intermolecular forces between molecules known as van der Waals (vdW)

interactions, backbone angle preferences, electrostatic interactions, hydrophobic interac-

tion, AA’s chain entropy) are modeled and described by the cost functions.

Traditionally, all atom energy functions have the form shown in equation 1.1, where V

is the vector representing the conformation of the molecule (in Cartesian coordinates
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or in torsion angles) and [others] refer to specific terms such as hydrogen bonding in

biochemical systems.

E(R) =
∑
bonds

B(V ) +
∑
angles

A(V ) +
∑

torsions

T (V ) +
∑

non−bonded
N(V ) + [others] (1.1)

In general, equation 1.1 could be separated into two groups: i) the internal terms, in-

cluding the bond, angle, and dihedral contributions, and ii) the non-bonded or external

terms that include the electrostatic (or coulombic) and vdW terms.

The application of computer-based models using analytical potential energy functions

within the framework of classical mechanics has proven to be an increasingly powerful

tool for studying molecules of biochemical and organic chemical interest [76]. On the

other hand, uncomplicated scoring schemes have also been proved to be functional in the

prediction of protein structures [42], but they cannot be expected to consistently generate

predictions with resolutions of better than 3− 7Å [77]. Then, there is still a need in the

field to generate energy functions that can be applied in conjunction with novel search

conformational methods to narrow the possible conformations (from an exponentially

large number to a number small enough to create a tractably sized system).

1.2.3.3 Search Conformational Methods

The next task in determining a protein’s native state is the search for the lowest energy

conformation in a vast conformational space. Exhaustive exploration of conformation

space is computationally intractable. Therefore, several algorithms that are currently

used for PSP combine domain information with local search techniques to avoid the

complexity of high-dimensional conformation spaces.

Simulation methods such as Molecular Dynamics (MD) assess the interactions between

all atoms in a given system [78]. Specifically, MD methods generally simulate the mo-

tion of the atoms in the presence of thermal energy by numerically integrating Newton’s

equations of motion for the polypeptide chain. Evaluating the forces acting upon all
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molecules at every time step of a folding protein is biologically accurate, but computation-

ally expensive. Simulating the dynamics of a relatively small system for a nano-second

timeframe can be an extraordinarily vigorous task for a typical industry-grade server

machine. Thus, for complicated systems like proteins, canonical MD methods usually

require a large amount of computational resources and their applicability is limited to

small systems.

Given the impracticability and/or impossibility to generate all protein instances in the

huge conformational space, Monte Carlo methods (MCM) use randomness to generate

typical protein instances in an energy landscape. Unlike MD simulations, MCM are free

from the restriction of solving motion equations. This lack of constrains allows MCM

to generate different structural changes during the creation of new trial configurations.

Although these moves may be non trivial, they can lead to considerable speedups in the

sampling of equilibrium properties. Furthermore, MCM for protein folding are generally

easily parallelizable [79]. MCM performs a series of randomly generated trial steps in the

conformation space, each perturbing some degrees of freedom of the protein conformation.

The MCM will accept a specific step (i.e., the MCM will move to the new conformation)

based on a probability extracted from a desired distribution. In order to generate this

distribution, the transition probability from an ‘old’ conformation to a ‘new’ conformation

is controlled by the change in value of an energy function for these two conformations.

The determination of the probability density function of a protein system is a very dif-

ficult task with conventional methods (such as MCM). Statistical mechanical methods

were originally conceived for modeling the behaviour of gas, but they have also been

successful in studying protein folding and other problems in computational biology [80].

Statistical ensembles consist of states of a system with assigned probabilities, chosen to

best represent physical situations. Statistical mechanic methods deals with statistical en-

sembles corresponding to equilibrium conditions [81]. According to statistical mechanics

theory, one can characterize the composition of a system by taking advantage of the fact

that a molecular state is in constant flux when at equilibrium, but that the proportion of

molecules in each specific state remains constant. The main goal in a statistical mechan-

ical treatment of protein folding is to determine the density function (i.e., the number of
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protein conformations at a given energy level) of a specific protein system [82]. Particu-

larly, in statistical mechanics, the thermodynamical properties of a protein under given

environmental conditions are characterized by the computation of its canonical partition

function.

State of the art methods for searching protein conformations are currently unable to com-

pute, and even approximate, the complete 3D conformational landscape for all protein

targets. The unfeasibility of adequately sampling the complete conformational landscape

is accentuated by the lack of computational methods to accurately predict folding in-

termediates and pathways. Furthermore, the importance of pathway prediction to get

valuable insights into the folding process and to guide the search of the conformation

space have been neglected. We believe that the understanding of protein pathways will

increase the level of accuracy of PSP methods whereby models could be routinely used

to generate detailed biological hypotheses.

1.3 Protein Pathways Prediction Methods

PPP methods, motivated by Anfinsen and Levinthal’s work, aim the identification of

the native, transition, and denatured states, as well as intermediate states present in

the folding pathway of a protein. PPP methods try to understand how an unfolded

protein finds its native structure from the many possible conformations by characterizing

all states along the folding pathway. Given the complexity of performing a complete

characterization for all folding states, the problem of predicting folding pathways has

been historically perceived to be harder than the PSP problem since the identification

of folding pathways depends on first identifying the native state. Thus, the prediction

of protein structures has received more attention than the pathway counterpart. The

prediction of folding pathways greatly enhances structure prediction methods by providing

valuable insights into the folding process and guiding the search of the conformation

space. However, most PPP methods start from a known protein structure (i.e., the 3D

structure). Currently, the information embedded in folding pathways remains largely

underexploited by the PSP methods. The PPP problem is also interesting as protein
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misfolding and aggregation have been associated with several pathological conditions,

such as Alzheimer, Parkinson, diabetes, cystic fibrosis, and many others.

The search for folding mechanisms has driven major advances in experimental proteomics.

In particular, sensitivity improvements have been obtained in the identification and char-

acterization of intermediates states [83], mutational effects on folding rates [84], hetero-

geneity of folding and energy landscapes [85], fast temperature-jump methods [86], and

more. In addition, protein model systems are the systems of choice in a vast body of ex-

perimental, theoretical and computer-based studies. Although experimental techniques

have progressed over the years, our knowledge about protein pathways is still limited and

does not provide an overall view of the protein folding system. A lack of reliable data pre-

vents researchers from validating the protein folding prediction models. Corresponding

advances in the theory and computation of folding pathways is also insufficient. There

are few computational techniques for predicting protein folding pathways. Most of those

techniques are limited by time and computational resources, or restrictive assumptions

imposed during the modeling process. In the next section, we will review the current

state of computational techniques used in the PPP problem.

1.3.1 Computational Methods for pathway prediction

Molecular dynamics (MD) is an invaluable tool to study protein pathways (such as struc-

tures). MD techniques aim to solve Newton’s equation for obtaining coordinates and

momenta of particles along (un)folding trajectories. These techniques provide informa-

tion about the time dependence between inter-residue interactions underlying (un)folding

pathways [49]. Using MD simulations to investigate protein pathways faces three main

challenges. First, the timescale of protein folding and the computational expense required

for adequate sampling. While proteins fold on the microsecond to millisecond timescale,

most simulations are limited to nanoseconds. Even if folding events could be observed

using conventional MD methods, we would be limited to observing a single folding event.

Secondly, the accuracy of MD simulations depends on the underlying potential energy

functions. The current generation of potential energy functions provides a good compro-

mise between accuracy and computational efficiency. However, numerous approximations
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are placed on them (based on the infeasibility to treat the protein systems using quantum

mechanics) leading to certain limitations. For example, there are non-negligible interac-

tions in vdW and hydrogen bonding which are due to non-classical electron interactions.

Thirdly, the need for well-defined atomic coordinates of the denatured protein state to

start a simulation. The heterogeneous nature and conformational uncertainty of unfolded

proteins complicates the experimental derivation of structural coordinates for denatured

states.

A Monte Carlo Method (MCM) is a common methodology that implicitly computes

pathways and thermodynamic properties of proteins. It has been widely used to model

protein folding dynamics. MCM allows for long-time dynamics of proteins to be obtained

by properly designing local conformational transitions [48]. These simulations achieve

results consistent with MD simulations. However, the design of an efficient model of

MCM dynamics is not a trivial task. The main obstacle during the design of a MCM

dynamic approach consists in that the local conformational transitions usually introduce

very small changes in chain geometry and are commonly uncorrelated with the nature of

the energy landscape. Trajectories obtained by MCM simulations are numerical solutions

of a stochastic equation of motion, where a large extent of MCM dynamics are equivalent

to Brownian dynamics4 with a relatively long time step and large random force [40].

MCMs have been proposed for rendering simulations many orders of magnitude faster

than molecular dynamics simulations, but simulations are still expensive if a custom-

hardware supercomputer (i.e., a computer with a high level of computational capacity

compared to a general purpose computer) is not used [87].

Some drawbacks of PPP methods based on classical MD/MCM simulations include the

fact that they have no memory to recognize whether conformations have been visited in

the past or not, they typically compute only one trajectory and have difficulties to escape

local minima [88]. These deficiencies have led some researchers to look for methodological

alternatives in other fields. For example, inspired by advancements in robot modeling,

researchers began to adapt robot motion strategies to explore the conformational space of

4Brownian dynamics (BD) is a simulation technique used to describe the motion of molecules in
molecular systems. In this technique, trajectories and interactions between key molecules are calculated
directly, while other components of the system (e.g., solvent molecules) are replaced by a stochastic force
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proteins. Given a description of the environment and a robot, motion planning in robotics

consists of finding a feasible path that takes the robot from a given starting point to the

goal. This motion planning has been applied to the protein folding problem by replac-

ing the traditional collision-free constraint in robots to an energy minimization goal for

proteins [89]. Probabilistic roadmaps methods (PRM), an example of robotics motion

planning, in protein folding capture the connectivity of the high dimensional space via

random sampling through the use of a graph. The root of this graph (i.e., starting point)

is the unfolded structure of a protein. The goal configuration is the most energetically

favourable conformation (i.e., native state). PRM methods start by building an approx-

imate map of a protein’s potential energy landscape. This map contains thousands of

feasible folding pathways to the known native state that enable the algorithm to explore

the global landscape. To accomplish the traversal task, PRMs proceed as follows: first,

points are sampled in the protein’s conformation space. This sampling procedure is biased

to increase density near the known native state. Next, these points are connected to form

a graph (i.e., the roadmap). Weights are assigned to directed edges of the graph to reflect

the energetic feasibility of transition between the conformations corresponding to the two

end points. Finally, folding pathways and structures are extracted from the roadmap

using standard graph search techniques (e.g., Dijkstra’s shortest path algorithm). Prob-

abilistic and Stochastic Roadmaps are able to predict intermediate configurations on the

folding pathway using a reasonable amount of computer resources. The protein sampling

process is highly hampered in these approaches due to the need of a priori native con-

formation, algorithmic inefficiency due to the size of the configuration space, and a lack

of biological significance from the generated samples.

The folding pathway of a polypeptide has also been modeled through knowledge-based

models. These pathways are modeled by the hierarchical adhesion of structural fragments.

The adhesion of the fragments simulate the hierarchy of folding events happening in na-

ture. Each fragment represents a structural conformer for a segment of the AA sequence,

usually defined by sequence statistics or motif patterns. The adhesion of fragments can

be roughly described as a local to global hierarchy, where the formation of local structures

simulates the earliest steps in folding [90]. Knowledge-based models are able to predict
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conformationally stable and early-folding motifs with high-confidence. Mutations within

these regions have been shown to have dramatic effects on the folding process [91].

One alternate approach to enumerate folding pathways, due to the availability of known

experimental coordinates, is to start with a folded protein and unfold the protein in an

ordered sequence of steps to its unfolded state [92, 93]. Given that folding microscopic

reversibility hypothesis (i.e., an hypothesis that suggest that the unfolding process of a

protein is a true reversal of the protein folding pathway) has been confirmed for some

proteins under identical conditions [94], the reversal of an AA sequence may lead to a

plausible protein folding pathway. The structural features of the native state are gen-

erally coded in a pairwise distance matrix, structural graph, or contact map. The idea

of this methodology is to integrate the protein topology and structural information of

intermediates states during the prediction of the most likely unfolding events. Simplified

models for unfolding pathways assume that non-native contacts are off pathway and not

essential to the folding process, such that only native interactions are considered during

the simulation process.

Clear structural information on the intermediate states that bridge between the unfolded

and native states (i.e., folding pathways) is required to acquire a clear identification of

protein structure and function. Due to the inability of experimental techniques to eluci-

date this intermediate states in great structural detail, it has been fundamental to explore

computational techniques to model such transitions and extract information related to

folding pathways. Simulating protein folding pathways has been a very difficult task per-

formed on small structures through computationally expensive methods. Coarse grained

models have allowed the study of folding pathways on larger proteins, but these methods

usually introduce constrains that limit the biological significance of the simulations. The

balance between the information obtained and the resources conferred to obtain a global

albeit coarse view versus a local but detailed view of protein folding is still an open dis-

cussion. In the following section, we will face this discussion by studying the scalability

challenges of PF methods.
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1.4 Scalability challenges of protein folding predic-

tion

Anfinsen’s thermodynamic hypothesis describes the native conformation of a protein as

the most thermodynamically stable conformation within a particular environment. Based

on this hypothesis, the AA sequence is all that is needed to know the order in which a pro-

tein folds into its biologically active shape because the AA peptide chain determines the

pattern of folding [95, 96]. This hypothesis has fuelled efforts to computationally predict

protein 3D structures from sequences, but these computational methods are currently

unable to compute, or even approximate, complete 3D conformational landscapes. Then,

one might ask, ‘Why has no one been able to put his hypothesis into practice?’. Current

computational approaches are highly hampered by two scalability issues: i) the inherent

complexity of modeling the physical systems. The protein folding problem is an NP-

complete problem in simple lattice models [71, 72], where simulations are limited by the

required amount of time and computational resources. ii) The computational complexity

of the simulation, which grows much faster than the size and resolution of the simulation.

The energy functions devised to represent the protein energy landscape limit the size

and resolution of protein simulations due to the unfeasibility of an adequate sampling

to provide a complete conformational landscape. Also, proteins of interest fold on the

microsecond timescale, where free energy calculations typically sample the nanosecond

scale [97, 98].

There is an interplay between the scalability capacities of the predominant protein fold-

ing approaches described in previous sections. Detailed models (typically working on full

atomic detail) have the obvious benefit of potentially greater accuracy. However, the

computational demands and the increasing complexity of the simulations restrict their

applicability to most protein systems (figure 1.2 plots the scalability capacity of predom-

inant methods in the field given the size of a system in AA and the level of abstraction

utilized to solve the PF problem). Some techniques such as replica exchange molecular

dynamics [99, 100], tightly coupled molecular dynamics [101], sequential stabilization [87],

and template-based threading [102] have become powerful approaches to explore protein
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landscapes in a faster fashion compared with traditional MD and MCM. Additionally,

different approaches have been proposed to handle the computational demand by de-

ploying significant computational resources either to parallelize the simulations [79, 97]

and to run a large number of multiple independent trajectories [103]. Custom hardware

approaches with GPU simulations [104, 105] and special-purpose machines [106] have re-

sulted in tremendous acceleration of simulations. Coarse-grained models have also played

a fundamental role in protein folding research by allowing the simulation of biological sys-

tems relevant in size and timescale. These models typically make simplifying assumptions

about the folding process [107], the protein representation [74], or both, to potentially

yield insight into protein folding.

The complexity of today’s computational molecular systems is a consequence of growing

molecular system size, atomic granularity level requirements, longer simulation time-

frames, and surrounding environment (i.e., solution types). New technologies aimed to

study or work with molecular complexes need to take scalability facets into their system

design and offering. Relying on hardware innovation and improvements to accelerate cur-

rent algorithms is not a viable option to address problems in this field. Although faster

processors and devices with larger memory are always met with great enthusiasm, alone

they do not tackle the growing scalability issues in the field. Scaling molecular system

size, while keeping the same level of granularity and expecting longer time-frame simu-

lations, will have to come with new heuristic techniques, smarter algorithms, innovative

modeling methods, and load distribution over a network of servers. In the following sub-

sections, two of the most promising techniques to tackle the growing scalability issues are

described.

1.4.1 Residue Contact Information

The idea of predicting residue contacts by co-evolution-based strategies has received a

new twist due to new methodological advances and the increasing availability of protein

sequences. Breakthroughs in the handling of phylogenetic information and disentangling

indirect relationships have resulted in an improved capacity to correctly predict inter-

residue contacts [108, 109]. It is still unclear what accuracy, coverage, and distribution of
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Figure 1.2: Scalability capacity of predominant computational structural molecular
biology methods.

Overcoming scalability barriers involves the ability to deal with an increasing system
size (AA) and levels of abstraction (granularity). Methods confronting scalability issues
extend the limits in either direction, or both.

contacts along the sequence are needed to be useful in practice for such methods. How-

ever, predicted inter-residue contacts have already been used to increase the scalability

capacities in different PF approaches [110]. For example, homology and fold recognition

methods (see section 1.2.1 for more details of these methods) reduce the conformational

space by filtering the most likely structural models based on predicted residue contacts.

Regarding ab initio methods, residue couplings have been translated to a set of distance

constraints for effective use in geometry generation of 3D structures and their refinement
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by energy minimization and molecular dynamics methods [111, 112]. This new generation

of contact prediction tools is enticing, but it is currently limited by the amount of rich

evolutionary sequence data needed to obtain reliable models of structure. For accurate

predictions, these methods require large numbers of homologous sequences using accurate

alignments that are sufficiently diverse to reveal co-evolution patterns that cover most

structural elements of the protein [109]. Work in this fundamental area of research focuses

not only on predicting contacts with high accuracy to be used in structure modeling, but

on building a reliable structure from incomplete/inaccurate contact data [113].

1.4.2 Ensemble Modeling

Current protein structure databases have accumulated and organized data following a

singular one-to-one relationship between protein AA sequences and their 3D structures

(e.g., the PDB [114]). PF prediction methods are usually constrained by a single-

sequence/single-structure perspective during the modeling and validation phases of their

respective methods. However, proteins have the ability to adopt many different confor-

mational states in vivo, where multiple substrate minima could exist (each with different

functional properties) [115]. These ensembles can be obtained by MD or other local de-

formation methods. These time-consuming high-resolution prediction methods are con-

strained to relatively small molecules (e.g., proteins with less than 50 AA). Given that

these methods are only able to observe local variations, multiple simulations are required

to construct an accurate set of ensembles. Newer computational modeling approaches,

called ‘ensemble methods’, no longer search for an individual lowest energy structure,

but rather aim to predict an ensemble of protein conformations and pathways to describe

a more realistic landscape of conformational variants (without sacrificing efficiency or

accuracy).

Ensemble methods are conceptually orthogonal to the mentioned approaches (see Fig-

ure 1.1) because they make use of both thermodynamics and fold similarities to describe

the conformational landscape [116, 117]. Ensemble methods are able to address the

complexity barrierof PF simulations by computing coarse grained (i.e., simplified) repre-

sentations of complete energy landscapes at a large scale. These landscapes are then used
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to simulate the dynamics of protein pathways. Ensemble methods unify the prediction of

protein structures and pathways, instead of focusing solely on the native conformation.

Ensemble algorithms employ a coarse-grained structural model and dynamic program-

ming to enable efficient computation of the complete conformational landscape. These

algorithms allow for the application of statistical mechanics techniques to produce repre-

sentative sets of structures. Coarse grained representations of complete energy landscapes

at a large scale are used to simulate the dynamics and prediction of protein pathways.

Ensemble methods in proteins were inspired by structural ensemble prediction algorithms

that allowed for the accurate computation of RNA secondary structure energy landscapes

from sequence information alone [80, 118, 119]. These RNA approaches may not be di-

rectly mapped to proteins, but they have been shown to be an excellent starting point to

model complex scenarios more accurately. Ensemble methods have shown to be success-

ful when used in combination with ab initio models [116], comparative models [120], and

protein pathway prediction [121] of β− proteins. This approach to the PF problem is

able to describe a more realistic landscape of conformational variants allowing the study

of larger systems such us amyloid structures [122].

1.4.3 Growing complexity of protein aggregation models

Proteins do not always fold into the native state. Under many conditions, proteins have

been observed to mis-fold into abnormal structures that aggregate into large complexes,

which play a role in more than 20 diseases [123]. Computational cost has limited the

ability of PF algorithms to extend simulations beyond a singular, small protein. In order

to understand the folding behaviour of more complex systems, such as protein aggregates

that occur in living cells, the limits and scalability features of molecular computational

methods must be refined to go beyond single molecule predictions. Shifting from single

molecule experiments to modeling a system of biological events and molecular complexes

will dramatically increases the complexity of computational methods [124].

The field of protein aggregation is one of the contemporary fields of research that is

extending the limits of existing computational techniques by developing novel solutions
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to high complexity and computational resource limitations [125]. Mis-folded proteins,

known as amyloid proteins, appear to aggregate in many neurodegenerative diseases.

Their beta-sheet rich structure compositions are believed to aggravate medical conditions

and cellular toxicity [126]. Most computational studies of amyloids have been limited to

studying the nucleation phase due to scalability limitations in modeling and simulation

involving molecular complex size, atomic granularity, and experiment duration [127].

Recent computational studies have attempted to accurately model these large molecular

aggregate systems at atomic level detailed-precisions by introducing a novel classification

model that utilizes molecular symmetries to factorize and discretize the search space

involved in the process of amyloid aggregation [128]. This novel method coincidentally

introduces a few problems. Modeling some of the shortest amyloid aggregates for testing

usually exceeds the atom and molecule limit in many cases. The side effects of such

methods include a potential loss of support to most existing computational tools that

support PDB files. Also, studying the dynamics of growing systems requires a substantial

increase in computational power for even the smallest molecular systems. With large

amyloid aggregates, the dynamics has been easier to model due to the symmetry of the

aggregate filaments around their fibril axis. Determining how a few of the monomers

interact may be sufficient knowledge to construct the entire aggregate structure of these

types of proteins.

In addition to distributing computational tasks to improve running times, the advance-

ment of energy models and force fields is key to increasing the scalability for the growing

size of systems. It was not an uncommon practice in the field to run MD productions

in a vacuum solution environment to reduce simulation complexity and running times

[129]. With improvements in hardware and processing speeds, researchers have moved

from vacuum solutions to the currently widely accepted implicit solvation methods to

represent environment solutions [130]. Implicit models do not perfectly account for hy-

drophobic effects, viscosity, and solubility of ions, but they are considered acceptable

heuristic approximations that reduce the complexity of molecular systems and allow for

quicker simulations. However, even with the MD implicit models, calculating a term such

as the ‘solvation’ energy (i.e., the enthalpy released when a solute dissolves in solvent)

of an amyloid aggregate system is impractical [131]. Solvation energy of a molecule is
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calculated by computing the Poisson-Boltzmann (PB) second order, elliptic, nonlinear

partial differential equation. This method quickly increases in complexity as the number

of molecules increase in a system, making exact computation unattainable. One solution

to this problem was introduced by the solver for the dipolar Poisson-Boltzmann-Langevin

equation called AQUASOL [132]. The AQUASOL solution involves using a dipolar sol-

vent model and dissecting the problem into subproblems by using a lattice gas model to

calculate the partial differential equation. Subproblems are able to be isolated and solved

separately, allowing for parallelization and faster computations.

Computational methods have been critical in advancing protein (mis-)folding research. In

light of the ever-growing necessity to perform research on larger molecules and on systems,

it is necessary the development novel methods who re-evaluate the limitations, bottle-

necks, and scalability capacity of current methods. These new methods must explore

some of the major limitations in the protein folding field and outline current promising

strategies to overcome the scalability gridlock.

1.5 Thesis roadmap

1.5.1 General thesis contributions to the field

The PF problem is considered to be one of the most compelling scientific challenges

facing researchers today. Furthermore, the PF problem has been named the ‘holy grail’

of modern biological research and one of the 125 big questions that face scientific inquiry

over the first quarter-century of the 21st century [133]. For decades, scientists have studied

the complex processes that determine the folding of proteins. However, a solution is still

far from being achieved. This thesis contributes to the field by addressing the main

difficulties faced by PF methods.
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1.5.1.1 Contributions to the general view of the problem

The PSP and PPP problems have been widely acknowledged as open problems given

that our knowledge and methods are still inadequate to effectively have an overall view

of the protein system. The prediction of protein structures have received more attention

than their pathway counterpart because the latter requires a full understanding of the

folding process (a task perceived to be harder). It is clear that the ability to predict

folding pathways can greatly enhance structure prediction methods, but the importance

of pathway prediction to provide valuable insights into the folding process and guide the

search of the conformation space has been neglected. A successful algorithm for describ-

ing folding pathways should enable predicting both the protein pathway and structure

(two intertwined issues that generally have been treated separately), but many of the

state of the art PPP methods require a priori knowledge about the native structure of

the protein (i.e., the native 3D structure must be know before starting the PPP simu-

lation). Considerable work to understand folding intermediates via molecular dynamics

and experimental techniques has been completed, but there is an increasing need for novel

PPP computational techniques. Most PPP techniques are limited by the required amount

of time and computational resources, or the restrictive assumptions imposed during the

modeling process. Currently, one piece of the PF puzzle is missing (i.e., the PPP is ne-

glected in the PF problem), and that one piece is crucial to completing the true picture

of PF. We believe that understanding protein pathways better will increase the level of

accuracy of PF methods.

1.5.1.2 Methodological contributions

Functional proteins are known to undergo natural selection processes that preserve their

function and structure. The preservation of natural folding dynamic properties enables

proteins to fold quickly from an unfolded state to the native structure. These properties

describe an energy landscape that has been molded by evolution, such that the native

protein structure and set of folding pathways are conserved [134]. We believe that a de-

scription of the true underlying protein energy landscape may be attained by including:
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i) protein structure and pathway information and ii) statistical analysis of physical pre-

dictions (i.e., low free-energy models) and evolutionary based predictions (i.e., sequence

variation methods). A new set of tools for understanding the connection between protein

structure, folding, and function is required. We believe that combinatorial algorithms for

protein ensemble modeling and co-evolution-based strategies to predict residue contacts

provide a solid basis for this toolset.

Early theories of protein folding envisioned a singular mapping between a protein’s AA

sequence and its 3D structure/folding pathway. Modern databases have accumulated

and organized data that supports this perspective. As a result of this design, compu-

tational prediction tools for protein folding have been forced to adhered to a single-

sequence/single-structure model. A growing body of evidence indicates that proteins

exhibit a variety of folding pathways simultaneously [135, 136], where some paths are

expected to be more populated than others. It is important to recognize the statistical

implications of the protein folding process and consider that protein ensembles may mimic

the ability of other proteins to adopt different conformational states in vivo. Ensemble

algorithms, proposed in this thesis, address our hypothesis by predicting a statistical dis-

tribution of topologically allowed pathways through the use of the Boltzmann probability

function and simulation of population dynamics to statistically characterized the protein

ensembles. To the best of our knowledge, this is the first time in the literature that

residue contact information has been integrated into the Boltzmann sampling process of

ensemble methods for the purpose of predicting protein folding pathways.

1.5.1.3 Contributions to scalability issues

Current computational approaches are hampered by two scalability issues: i) the inher-

ent complexity of modeling the physical systems and ii) computational complexity of the

simulation, which grows much faster than the size and resolution of the simulation (PF is

a NP-complete problem in the simplest versions). Indeed, an approximate solution to the

PF is hard to find given the required amount of time and computer resources. Addition-

ally, the size and resolution of protein simulations are limited by the inaccuracy of the
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energy functions devised to represent the protein energy landscape, and the unfeasibility

of adequate sampling methods to complete the conformational landscape.

In this thesis, we aim to construct efficient and effective computational methods to predict

protein structures and pathways given an AA sequence. We introduce a general compu-

tational framework that enables efficient calculation of complete energy landscapes by

coarse grained models. These models predict protein structures and pathways using only

the primary sequence as input and, when available, evolutionary sequence information.

Evolutionary sequence information is integrated into a Boltzmann sampling process to

circumvent the limitations of potential energy scoring schemes and narrow the conforma-

tional search space (the two most important bottlenecks in protein folding prediction).

The ensemble framework presented in this thesis represent an improvement in perfor-

mance (i.e. speed and accuracy) with respect to state of the art methods. In principle,

the proposed approach predicts secondary structure energy landscapes from sequence in-

formation alone and it does not require any a priori knowledge of the native protein

structure (in the case of pathway predictions) and known secondary structures (in the

case of residue contact predictions). This characteristic is a differential feature of our

approach with respect to most of the state of the art predictors. The need of a priori

information by other PSP and PPP predictors impose restrictive assumptions and make

unclear how those predictors would perform in practice when that information is not

present.

The ability of the proposed framework to formulate quick, coarse-grained predictions

in a matter of minutes or hours, rather than days of atomistic-detail simulation, is an

attractive approach to predicting many folding routes and transition states for protein

sequences. Our approach can be used to support the initial stages of more complex

and detailed models such as folding diseases, drug affinities, membrane proteins and

disorder proteins. We believe that the proposed framework will allow for large scale

studies of folding dynamics and the annotations of proteomes. Our method represents

an alternative to high computational cost approaches because it includes the predicted

pathway during the integration process of sequence comparison and fold recognition. The
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proposed framework crosses traditional borders of structure prediction and we hope to

provide meaningful biological inferences.

1.5.1.4 Availability contributions

There are numerous internet services which are available to predict protein structures and

functions (i.e., PSP web-services), but there is a lack of online servers to predict protein

folding pathways (i.e., PPP web-services). Many pathway prediction algorithms, present

in the literature, are built on complex implementations that are generally available to

users via source code. Attempts by structural biologists or experimentalists to generate

pathways predictions, before embarking on time-consuming experiments and simulations,

are often hampered by the lack of a system to generate, manage, store and analyze

pathway predictions. Thus, potential researchers are faced with the daunting task of

generating, evaluating and validating the predicted pathways. The proposed algorithm

framework in this thesis contributes to the field by developing a web-service that can

present data to the user community in both a human and machine readable manner,

where the proposed suit of algorithms is able to support large-scale protein simulations

and single experimental designs.

Simulating protein folding through statistical ensemble methods is another way to gain

new insight into experimental problems (i.e., wet-lab experiments). These methods can

unravel and suggest hypotheses (about how proteins fold) that are hard to explore ex-

perimentally. Ensemble techniques construct better experimental designs and suggest

new interpretations of in-vitro experiments. Despite their relative immaturity, ensemble

methods have already begun to influence our view of protein folding. However, to make

ensemble-based approaches a reality, plausible protein folding pathway predictions and

an appealing information system to easily administer those predictions must be devel-

oped. In this thesis, we describe a computational pipeline that conveys the content of the

folding pathway through an interactive exploration of the network data. This tool aims

to provide the means to disseminate the protein pathways/structures and comprehend

their biological importance.



Chapter 1. Introduction 35

1.5.2 Thesis outline

A schematic pipeline of the proposed computational framework and thesis outline can be

seen in Figure 1.3. Chapter 2 analyzes the input of the proposed framework. Special em-

phasis is given to the analysis of evolutionary information encoded in Multiple Sequence

Alignments (MSA). Two novel approaches will be proposed and analyzed to improve the

quality of MSA by humans and algorithms. Chapter 3 provides an in-depth review of

the methodology used to model protein ensembles and sequence information. Chapter 4

analyzes the results obtained by the proposed algorithm framework. Chapter 5 reports

the proposed visualizer of protein folding pathways. Finally, Chapter 6 concludes this

thesis with an insightful discussion of the previous chapters.
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Figure 1.3: Framework to predict protein folding pathways using ensemble modeling
and evolutionary-based information.

a) Input consists of a single AA sequence, a set of parameters controlling the size and
complexity of the conformational landscape to be explored and an optional multiple
sequence alignment (MSA) of the input sequence with homologous proteins. b) The
ensemble technique to predict β-sheets structures consists of a forward and backward
traversal over the data structure that models the hierarchical folding mechanism and
stores all possible proteins states characterized by an energy objective-function. c) The
conformational landscape is represented as a graph, where nodes represent clusters of
energetically accessible conformation states and edges model the presence of structural
similarity between the states. d) The dynamics of the system are calculated by treating
the folding process as a continuous time discrete state Markov process. e) The transition
from a random coil to the native state is represented as a path in a graph (or flow network)
of varyingly folded protein conformation states. The predicted structural conformation
is coded as contact residues. f) The proposed proposed visualizer of protein folding
pathways
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Work on Multiple Sequence

Alignments

2.1 Multiple Sequence Alignments

The Multiple Sequence Alignment (MSA) problem refers to the computationally hard

problem of aligning two or more sequences and identifying the evolutionary and/or struc-

turally related positions. In general, a MSA arranges sequences into a rectangular array

such that residues in a given column are homologous (i.e., derived from a common an-

cestor, either through faithful inheritance or through substitutions), superimposable (i.e.,

they can be placed on top of a rigid local structure and they will occupy the same position)

or play a common functional role. Assembling a suitable MSA is a computationally in-

tense and biologically complex task because computing exact MSAs is a NP-hard problem

under most reasonable scoring schemes [137, 138]. In practice, approximate algorithms

(heuristics) are used to align sequences, by maximizing their similarity. The accuracy of

a MSA is of critical importance due to the fact that many bioinformatics techniques and

procedures are dependent upon MSA results, where inaccuracies in the alignments have

been shown to limit the accuracy of downstream analyses.

Despite massive research efforts aiming to solve the MSA problem and its variations,

this problem remains an active area of research with many studies focused on developing

37
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faster and more accurate algorithms [139]. Novel computational methods that improve

the accuracy of MSA tools have been applied to next generation sequencing [140], genome-

annotation [141], correction of protein multiple structural alignments [142], structural and

functional prediction [143], phylogenetic studies [144] and data base searching [53]. The

creation of a MSA is also an ubiquitous task in PF prediction, and has a wide variety

of applications including homology detection [35, 145], fold recognition [68], residue cou-

pling prediction [143], and SS prediction [146] to name a few. All of these applications

depend on the correct alignment of thousands of diverse sequences to predict protein

structural information. However, these applications do not account for alignment uncer-

tainty (treating the input MSA as free from errors and unbiased). Moreover, biological

alignments (such as the ones reported in Pfam) have not been widely assessed in MSA

benchmark studies leaving their validity to be questionable [147]. Given that the folding

pathway predictor proposed in this thesis might use a MSA as input, we investigate if

one should trust the accuracy of MSAs to improve the accuracy of pathway predictions.

We expect that future work will provide guidelines toward the best methods for adapting

MSAs for their intended use with PF prediction methods [145].

Progressive alignment [148] is the most popular heuristic used by MSAs. Progressive

alignment builds the final MSA by ‘progressively’ completing a series of pairwise align-

ments on successively less related sequences. The progressive heuristic is greedy in nature

(it only looks at the two most related sequences at a given time) and therefore cannot

guarantee an optimal solution (nor indicate how much the solution presented differs from

the optimum). Mistakes made during the initial stages of the alignment process propagate

to later stages and the effect of these mistakes is increased as the number of sequences

increase. Progressive alignment is the foundation of several popular algorithms such as

MUSCLE [54], T-Coffee [149], Clustal [150], ProbCons [151], PRANK [152], MAFFT

[153]. However, more phylogenetically-aware scoring schemas have also been proposed

[152, 154]. MSAs may also be constructed by incorporating structural information into

the alignment [155].

MSAs belong to the family of combinatorial optimization problems with exponential time

complexity. Given a set of sequences, most mathematical formulations of MSA aim to
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identifying a maximum-scoring alignment over the set of all possible MSAs. This score (or

cost) function indicates which alignment (over the set of all possible MSA combinations)

is the best by quantifying a distance between (set of) sequences. This scoring assumes

that the presented MSA with optimal cost is also the best explanation of biological

relationships between the sequences (ideally, the maximum of the optimization criterion

should coincide with the ‘true’ biological alignment). However, none of the existing MSA

methods have yet delivered MSAs that are perfectly supported by biology and there

is no consensus on a strategy that produces optimal results [156]. Each state of the art

algorithm has its own advantages and drawbacks when facing a particular set of sequences,

which can make it difficult to make a rational selection of an appropriate alignment tool.

Some methodologies have recently been designed to combine distinct MSA algorithms

to obtain improved consistency with a final alignment [157]. Some optimization and

computationally intelligent techniques have been applied to assemble sequences aligned

by state of the art algorithms predicting the expected accuracy of each alignment [158–

160].

The cost functions used by state of the art MSA algorithms make explicit assumptions

upon which the combinatorial optimization is based on [161]. These assumptions can be

formally studied to determine the biological and mathematical accuracy of the resulting

alignments. The main objective of these studies is to improve the accuracy of MSA

by providing insights that can not be entirely replicated by the cost functions used in

heuristics-based algorithms. In this chapter, we analyze MSAs that have been improved

by humans (see section 2.2) or state of the art algorithms (see section 2.3). We use

common MSA programs to generate an initial MSA and then improve the mathematical

and biological accuracy by one of the two proposed methodologies.
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2.2 Multiple Sequence Alignments improved by Hu-

mans

Crowdsourcing is the practice of getting contributions (usually online) to a task or project

by enlisting the services of a crowd of people. Thanks to our growing connectivity (i.e.,

new internet technologies and social media), it is now easier than ever for individuals to

collectively contribute to a common goal, project, or cause (whether it be with ideas, time,

computer resources, problem solving, expertise, or funds). Citizen science is a narrower

subset of crowdsourcing, in which the members of the crowd (best known as citizens)

actively participate and contribute (gathering, evaluating and/or computing various sci-

entific data) in a scientific research project [162]. Projects often take a variety of formats

and the task required of the citizen scientists may vary in its level of complexity. For ex-

ample, in distributed projects, the only activity required by the citizen is the installation

of software that will automatically analyze the ‘scientific’ team’s data. Other projects re-

quire a greater cognitive involvement and citizens may be required to annotate or classify

data. In other projects, users are motivated (usually through a performance ranking) to

play and compete in a multi-player computer game that involves a repackaged scientific

problem [163]. Bioinformatics is one scientific field that has widely benefited from citi-

zen science (and online citizen science games). Several studies have taken advantage of

emerging approaches for harnessing such distributed human intelligence encompassed by

citizen science to address molecular biology-level problems that may benefit from human

involvement. For example, tasks like genome annotation and alignment, image analysis,

knowledge-base construction and protein structure determination have benefited from

citizen science studies [164].

The MSA problem is one of the most fundamental question in computational biology and

it is involved in many downstream analyses performed in molecular biology. MSAs are

at the core of most comparative genomics and proteomic studies because they are able

to derive molecular function based on the evolutionary patterns of molecular sequences.

Bioinformaticians typically rely on algorithms (which are based only on statistics) to

align molecular sequences (i.e., the MSA problem) by finding molecular subsequence that
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match between samples. Computational solutions are not guaranteed to be optimal (see

section 2.1 for further details) and researchers sift through the data manually looking for

local inaccuracies to improve the predicted alignments. Researchers have been known to

use human pattern recognition skills to identify problematic areas in the MSA. Visual

pattern recognition skills are not a consequence of a researcher’s academic preparation,

but are an inherent skill of human vision. In principle, we can take advantage of human

visual intelligence to identify problematic areas of MSAs given by algorithms. We can

benefit from hundreds of thousands of players willing to play a crowdsourcing-science

online game to help researchers in the identification of these problematic MSA areas.

Phylo is a citizen science framework designed to solve MSA problems. Phylo uses human

pattern recognition skills and comparative genomics to address the MSA problem [165].

Phylo is a horizontal tetris-like game, where players attempt to match up four coloured

blocks in a column that represent the four nucleotides of the genetic code. A web-browser

displays the nucleotide blocks inside a matrix of up to 24 columns and 8 rows (a problem

size beyond the capacity of exact MSA algorithms) woth its associated phylogenetic tree.

Each row stores the genetic sequence of different species. By moving blocks horizontally,

players try to create columns with identical colors (maximizing conservation across rows)

while avoiding gaps when possible (see figure 2.2). Much of the science behind Phylo is

hidden from the player by turning the NP-hard MSA optimization problem into a casual

game (i.e., a simple game targeted at a mass audience of casual gamers). Phylo has a

broad spectrum of participants that have varying degrees of genetic knowledge. These

players make contributions regarding the determination of phylogenetic relationships,

the impact of mutations, and their potential role in disease without knowledge of the

underlying phylogeny.

Phylo aims to harness the intelligence and processing power generated by crowds of online

gamers to solve the MSA problem. However, the selection of the data to be analyzed

through Phylo is under the exclusive control of the game designers and so are the results

produced by gamers. Even if exact methods can not be applied on MSAs with sizes

similar to those used in Phylo [166], the question remains whether Phylo could increase

the size of the puzzles while maintaining the playability of the game. To address these
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concerns, a new model for human-computing platforms, one that is powered by the public

and is open for the public was developed. Open-Phylo is an open and freely accessible

web interface that enables scientists to enter their own sequences into our system and

manage the efforts of the crowd toward aligning them. In addition, we developed an

advanced version of the game1, where advanced players can align larger MSAs (up to

300 nucleotides long). This allows Open-Phylo to benefit from the skills of the most

experienced users more efficiently in solving the hardest MSAs.

Figure 2.1: A screenshot of Phylo’s GUI

2.2.1 An open crowd sourcing approach

2.2.1.1 Improvements of Open-Phylo with respect to Phylo

Open-Phylo is the first crowd-computing system that is open for the benefit of the whole

genomics community [1]. This version of Phylo enables any scientist in the world to ben-

efit from crowdsourcing and human-computing technologies to help solve MSA puzzles.

Open-Phylo is based on Phylo’s player interface (i.e., it keeps all the functionality and

1available at http://phylo.cs.mcgill.ca/expert/
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advantages of Phylo), but features several key innovations that significantly broaden its

player base (see figure 2.2 for further details).

Open-Phylo implements a crowd manager, which is a private interface that allows the

user to manage and monitor his/her data. This manager allows users to identify and

manage portions of the alignment on which the crowd-based improvements should be

focused. Additionally, the user can manage the work of the crowd by removing or adding

MSA puzzles from the pool that the user considers have (not) been played sufficiently

often. The crowd manager allows tracking in real time the number of times each puzzle

has been played and the magnitude of improvement to the alignment score achieved by

the crowd.

Open-Phylo features a new expert gaming interface, which allows the most experienced

users to play MSAs up to 300 nucleotides long. Open-Phylo can display sequences for up

to 12 species with up to 300 nucleotides (the original version could only display up to 8

species with 24 nucleotides). This increase in sequence/features enables us to motivate

the best players to use more efficient alignment skills that they have developed.

The Open-Phylo submission interface has several new key functions. First, users can

select the objective function for identifying the best alignment. Users can select the

function from a set of classical scoring functions (such as Ancestor, MUSCLE, T-Coffee)

or they can also directly select the highest scoring alignment in the game. Secondly, a

new graphical user interface (GUI) allows users to intuitively create casual puzzles by

selecting a desired area of the MSA. Thirdly, the user can promote his/her research,

initiate communications and knowledge transfer between the scientists and the player

community.

2.2.1.2 Scoring Scheme

To evaluate a given alignment, Open-Phylo infers ancestral nucleotides or gaps at each

ancestral node of the phylogenetic tree using a maximum parsimony approach called the

Fitch algorithm[167]2. The scores for induced pairwise alignments, each evaluated using

2The Fitch algorithm is run considering a gap as a fifth character, independently for each position.
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Figure 2.2: Open-Phylo crowd-computing system.

(1) Scientists upload their sequences to the database, validate the alignment puzzles
built by the system (see green box in the data administration interface), or select new

ones. (2) The same users monitor the progress of the crowd in improving their
alignments, close, open puzzles, and finally (3) download the best solutions. The

crowd-computing engine is powered by (A) many casual gamers playing classic puzzles
and (B) a smaller number of experienced players, who have access to larger and more

difficult puzzles. This figure and the caption have been extracted from [1]

an affine gap cost model3, are summed over all edges of its associated phylogenetic tree.

The original Fitch algorithm is not designated to accommodate an affine gap cost model

and may result in sub-optimal ancestral sequences, which would yield a less than optimal

alignment evaluation by Open-Phylo. To address this issue, Open-Phylo enables users

to modify the ancestral sequences reconstructed with our variant of the Fitch algorithm.

Therefore, players are able to identify and improve sub-optimal ancestors calculated by

the game, and observe good MSAs that would be missed by the classical scoring scheme.

3This models statistically considers that the occurrence of d consecutive deletions/insertions is more
likely than the occurrence of d isolated mutations. In other words, this model penalize the opening gap
more than consecutive insertion/deletion events
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The proposed scheme for scoring MSAs is evolutionarily realistic while being intuitive

and fast to compute (as it is recomputed in real time every time the player modifies the

alignment).

2.2.2 Results of a study case

To illustrate and evaluate the alignment capabilities of Open-Phylo, we used it to align

sets of orthologous promoter sequences (regions of 1,000 bp located upstream of the

transcription start site) of three key cancer genes from 12 different species of mammals.

Each set of orthologous promoter sequences was initially aligned using one of four state

of the art algorithms: Multiz [154], MUSCLE [54], PRANK [152] or T-Coffee [149]. The

resulting MSAs ranged in size from 1,222 to 3,346 columns. For each initial MSA, we

used Open-Phylo’s crowd-computing management system to direct the crowd efforts to

a set of 79 (overlapping) expert-level puzzles of 300 alignment columns each. From the

MSAs calculated by each of the four alignment programs, 1,014 casual-level puzzles (20

nucleotides long) were extracted and these were used as initial configurations for the

levels of the casual game (also referred to as the classic game). Whereas solutions to

expert-level puzzles can be directly evaluated using a given objective function, solutions

to casual-level puzzles need to be reinserted into the larger alignment context before they

can be scored.

Between 3 December 2012 and 3 April 2013, 12,961 unique visitors proposed solutions for

1,352 puzzles, including 338 expert-level and 1,014 casual-level puzzles. We assessed the

extent to which the quality of an MSA could be improved through Open-Phylo. There is

no single well-accepted scoring scheme for MSAs and each of the four aligners considered

uses a different objective function. We thus evaluated each of the MSAs obtained using

each of the following four scoring functions: Ancestor (a likelihood score reflecting both

substitutions and indels on a given tree, which is approximated by the scoring function

that Open-Phylo players try to optimize) [168], MUSCLE, GUIDANCE (a program that

calculates the confidence score used by PRANK) [169] and T-Coffee. We evaluated the

percentage of the 338 alignment blocks whose score was improved through Open-Phylo
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(either in casual or expert mode), starting from the alignments produced by Multiz,

MUSCLE, PRANK or T-Coffee, and using each of the four scoring functions (See figure

2.3). More precisely, we evaluated all solutions submitted by casual gamers and advanced

players and kept only the best for each objective function. Our experiments revealed that,

depending on the objective function used, Open-Phylo improved 32% to 97% of Multiz

alignments, 16% to 93% of MUSCLE alignments, 24% to 90% of PRANK alignments and

43% to 99% of T-Coffee alignments. In practice, our data suggest that the top 40% of

casual solutions, ranked using the game scoring function, are sufficient to reproduce our

results (see subsection 2.2.2.2).

Open-Phylo appears to have the potential to improve a significant fraction of alignments

calculated by any method for any scoring function. We obtained the largest improvements

with the Ancestor and GUIDANCE scoring functions. Interestingly, these functions are

precisely those that use the same user-defined phylogenic tree to score an alignment as

the game. In both cases, and also for the MUSCLE objective function, we observed that

for up to 62% of the cases, the solutions calculated from casual puzzles outperform those

submitted by experts. This suggests that the work of many casual gamers can in some

cases compensate for the lack of experts. Casual gamers are an important processing

resource, who should not be neglected. However, this might not be the case for align-

ments calculated with T-Coffee, as the 44% improvement (using the T-Coffee objective

function) was obtained almost exclusively from expert submissions. This discrepancy

could be explained by the differences between the scoring scheme used in T-Coffee and

the one used by our game. Nonetheless, since the latter achieved satisfactory performance

with all other programs as well as with the T-Coffee objective function using the expert

submission, we consider that the scoring scheme used in the game provides reasonable

performance.

Overall, the magnitude of the improvement of the score is modest. For the classic ver-

sion, the score improved by +1.9% (using the ANCESTOR objective function on MSAs

calculated with Multiz), +28.4% (GUIDANCE/PRANK), +1.7% (MUSCLE) and 1.5%

(T-Coffee). The expert version produced slightly larger improvements: +3.3% (ANCES-

TOR/Multiz), +10.9% (GUIDANCE/PRANK), +3.7% (MUSCLE) and 1.9% (T-Coffee).
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Figure 2.3: Performance of Open-Phylo using the casual or expert version of the
Phylo video game.

The ratio of optimal solutions obtained with the casual version is shown in the area
surrounded by a blue line, and the ratio obtained with the expert version in red. Each
radar chart corresponds to one of the objective functions: Ancestor (top left), MUSCLE
(top right), GUIDANCE (bottom right) and T-Coffee (bottom left). The alignment

program used to calculate the initial MSAs is indicated on the axis of the radar charts:
Multiz (north), MUSCLE (west), PRANK (south) and T-Coffee (east). This figure and

the caption have been extracted from [1]
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These values may appear low but are significant if we consider that the alignments calcu-

lated by the computers are already very well optimized. It also suggests that the players’

solution remains in the vicinity of the initial MSA. Nonetheless, even if the magnitude of

the improvement is not very large, some alignments may present significant qualitative

improvements. An illustration of such a case is shown in figure 2.4. Here, an alignment of

a portion of the promoter of the P53 gene originally produced by MUSCLE was improved

by an expert player, resulting in an increase in the alignment score from 3,533 to 3,906,

and clearly improving the conservation of several alignment columns.

a. Initial alignment

b. Phylo expert alignment
Figure 2.4: A multiple sequence alignment improved by Open-Phylo

(a) A section of the input alignment of the P53 gene calculated with MUSCLE. (b) The
improved alignment obtained with the expert version of Phylo. Three nucleotides from

the elephant sequence (loxAfr3) have been moved to increase the conservation of
alignment columns 6, 32 and 33. The player also improved the alignment of columns 48
and 49 and revealed similarities not found in the original alignment. Image produced

with Jalview [170]. This figure and the caption have been extracted from [1]
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2.2.2.1 Comparison of classic vs expert games

To better understand the relative performances of the classic and expert versions, we

compared the results of the casual (classic) game to the results from the advanced player

(expert) version. In particular, we investigated whether the classic or the expert version

of the game provided the best improvement. We show these data in figure 2.5. For each

objective function (Ancestor [18], MUSCLE [15], GUIDANCE [20] and T-Coffee [17])

and each data set (initial MSAs computed with Multiz [14], MUSCLE [15], PRANK [16]

or T-Coffee [17]), we determined which method (that is classic or expert) provided the

highest improvement. The areas plotted in the radar charts correspond to the percentage

of alignments improved by either the classic or expert version of Open-Phylo, which are

also plotted in green in figure 2.3. When we normalized the data, we observed that 34%

to 62% of the best solutions were produced by the classic version using GUIDANCE as

a scoring function. At the other end of this spectrum, 76% to 96% of the best solutions

were generated by the expert version with T-Coffee. Ancestor and MUSCLE provided

intermediate results with, respectively, 26% to 40% and 20% to 43% of optimal solutions

calculated with the classic version of the game. These data suggest that i) casual gamers

might provide a processing power that should not be neglected and ii) the performance

of the classic version depends on the objective function used by the Open-Phylo MSA

submitter.

2.2.2.2 Improvement of MSA with casual levels

All solutions generated by gamers for casual puzzles with a score (using the scoring scheme

of the game) higher than or equal to the score of the initial level are stored in our system.

We have to find those that provide the best improvement (if any) from the initial levels.

Since the scoring function used in the game is not identical to the objective function we

wish to use to select the best alignment (for example, Ancestor, MUSCLE, GUIDANCE

or T-Coffee), we inserted all of the proposed solutions into their original location in the

full MSA and evaluated the global improvement using the desired objective function.
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Figure 2.5: Comparison of the improvements provided by the casual and expert
versions.

The ratio of optimal solutions obtained with the casual version is shown in the area
surrounded by a blue line, and the ratio obtained with the expert version in red. Each
radar chart corresponds to one of the objective functions: Ancestor (top left), MUSCLE
(top right), GUIDANCE (bottom right) and T-Coffee (bottom left). The alignment

program used to calculate the initial MSAs is indicated on the axis of the radar charts:
Multiz (north), MUSCLE (west), PRANK (south) and T-Coffee (east). This figure and

the caption have been extracted from [1]
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The performance of the human-computing system was thus determined by the agreement

between the scoring scheme used in the game and the values returned by the objective

function used to identify the best alignments. To evaluate this correlation, we plotted

(see figure 2.6) the distributions of the rank (based on the scoring scheme of the game)

of the inserted solutions (for the submissions providing the best improvement). Our data

reveal that 98% of the best alignments belong to the top 20 best ranked solutions (using

the game scoring scheme). On average, we collected approximately 40 to 50 solutions for

each casual puzzle. This suggests that instead of trying to insert all submissions, we need

only consider the top 40% of solutions for improving the initial MSAs, while keeping the

same performance and saving time and processing power.

2.2.3 Conclusions and Discussion

Our results suggest that humans can provide insights that cannot be entirely replicated

by heuristics-based algorithms. This performance is most likely due to the capacity of

humans to use their (visual) intuition to explore promising but abstruse configurations

neglected by the heuristics implemented in alignment software.

Interestingly, we also observed that the scores of the best solutions from the four different

initial alignments rarely converged to the same (or even similar) scoring alignments,

suggesting that the players’ solution remained in the vicinity of the initial MSA. Indeed,

even if two different scoring functions agree on the global features of the ‘best’ MSAs, it

is very unlikely that they will have the same global optima for all MSAs. Therefore, the

performance of the system seems to be significantly influenced by the choice of the initial

configuration, thus by the alignment program chosen by the submitter. Nonetheless, our

results also suggest that Open-Phylo is able to improve alignments for the most popular

objective functions.

Open-Phylo is the first open-science platform that enables any scientist in the world to

benefit from crowdsourcing and human-computing technologies to help in solving one

of the most fundamental and widely used problems in bioinformatics. We believe that
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Figure 2.6: Performance of the game scoring function in identifying the best align-
ments.

The graphs show the distributions of the rank (calculated using the scoring function
used in the game) of the best solutions found in the casual or classic game (that is

where casual submissions were inserted into the initial MSA and found to have the best
score). Each histogram corresponds to a different objective function: Ancestor (top
left), GUIDANCE (top right), MUSCLE (bottom left) and T-Coffee (bottom right).

This figure and the caption have been extracted from [1]
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Open-Phylo is a pioneer for the next generation of crowdsourcing frameworks in biology:

human-computing tools will be run by the people for the people.

2.3 Multiple Sequence Alignments improved by Al-

gorithms

Despite the relatively long history and number of recent improvements, there is still a

need for novel methodologies involving MSAs. Specifically, there is an increasing need for

faster MSA tools to deal with big data and overcome the limited performance on remote

homologs and low similarity sequences. MSA algorithms are bottlenecked by their depen-

dence on particular sequence features. Multi-objective optimization (MOOP) approaches

offer several characteristics that are desirable for MSA optimization. MOOPs operate

on a set of MSA candidate solutions to provide approximate solutions for optimization

problems, which may involve multiple conflicting objectives.

We propose a fast, scalable, and effective algorithm to optimize previously aligned se-

quences through a multi-objective approach. This algorithm is validated using a database

of refined MSAs (BAliBase) and four standard metrics to evaluate the quality of predicted

alignments.

2.3.1 Materials

The proposed experimental framework involves six state of the art algorithms to provide

seed alignments for optimization, namely: Clustal W [150], Clustal Omega [171], Muscle

[54], MAFFT [153], ProbCons [151] and TCoffee [172]. It is important to stress that

the proposed algorithm can be scaled with the insertion or deletion of any other MSA

approach.

BAliBase [173] is a database of refined MSAs commonly used to compare the performance

of MSA programs. BAliBase performs validations on a wide spectrum of test cases in

order to prevent the over-training of methods on a specific dataset. Each test case belongs
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to one of five possible reference sets [173]. (RV11 and RV12) is a set of equidistant

PDB sequences in which any two sequences share < 20% identity. (RV20) are orphan

sequences4 that all share > 40% identity. (RV30) are subfamilies where the sequences

within a given subfamily share < 40% identity, but also where any two sequences from

different subfamilies share > 20% identity. (RV40 and RV50) are sequences that share

> 20% identity with at least one other sequence, but that include sequences containing

large N/C-terminal extensions or internal insertions, respectively. BAliBase maintains a

high quality of alignments through the use of 3D structural superpositions combined with

a manual validation and refinement step. The BAliBase benchmark is composed by 6255

sequences and 218 alignments.

2.3.2 A Multi-Objective Evolutionary Approach (MOEA)

MOEAs belong to a class of stochastic optimization algorithms that mimic natural evo-

lution to solve a MOOP. A MOOP problem can be defined as the problem of finding a

vector x = [x1, x2, . . . , xn]
T such that x:

i) satisfies the r equality constraints hi(x) = 0, 1 ≤ i ≤ r,

ii) is subject to the s inequality constraints gi(x) ≥ 0, 1 ≤ i ≤ s

iii) optimizes the vector function f(x) = [f1(x), . . . , fm(x)]
T .

The vector x is an n-dimensional decision vector and X is the decision space (i.e., the set

of all expressible solutions). The objective vector f(x) maps X into �m, where m ≥ 2

is the number of objectives. The image of X in the objective space, is the set of all

attainable points.

The concept of optimality is introduced through the notion of Pareto optimality. A vector

x ∈ S is said to be Pareto optimal if all other vectors x∗ ∈ S have a higher value for at

least one of the objective functions of f(x). A Pareto front is the image of all solutions.

The points that form the shape of the Pareto front are called non-dominated points. The

4sequences that are highly dissimilar to existing sequences with known structures
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solutions in the final set are expected to be close to optimal and non-dominated with

respect to one another.

MOEAs are algorithms that simulate natural evolution by an iterative computation pro-

cess in which a set of candidate solutions are subsequently modified and improved through

selection and variation procedures until some level of acceptable quality is met. The al-

gorithm takes a given MSA (i.e., original population) and returns an improved alignment

after performing a series of mutation and crossover operations. In other words, the proce-

dure ‘evolves’ the original MSAs to produce a better one. Typically, a MOEA schema can

be divided into the following phases: generation, evaluation, and selection of individual

(see figure 2.7).

In a MOEA, individuals contain the information of solutions (i.e., alignments). Align-

ments are represented as a n × m multi-array of integers, where n is the number of

sequences and m is the length of the alignment. If a cell in the multi-array corresponds

to a ‘match’, then it contains the position of the AA in the protein sequence. On the

other hand, if a cell corresponds to a ‘gap’, then it contains the position in the protein

sequence of the previous ‘match’ (See the multi-array depicted in the boxes Crossover

or Mutation in figure 2.7). This representation was chosen given its suitability in the

implementation of genetic operators [158].

The proposed MOEA algorithm constructs an initial population (i.e., the set of individ-

uals) using alignments produced by state of the art MSA algorithms. This population

is composed of alignments returned by each algorithm, plus some genetically modified

versions (i.e., versions that genetic operators have been applied to) of those alignments.

Subsequent populations are then improved using a genetic algorithm. Genetic operators

(crossover and mutation) then produce new generations through the selection of individ-

uals based on a fitness function. Finally, a stopping criterion is achieved when for a fixed

number of iterations no significant improvements have been made.

The mutation and crossover operators represent mechanisms that perform exploration

(increasing the diversity of a population) and exploitation (increasing the depth of the

search) procedures within the search space. An implemented mutation starts by randomly
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selecting the position(s) of one gap (if available) and one amino-acid in an individual. It

then introduces the gap after the amino-acid position and performs a shift of one position

for all the positions between the selected amino-acid and the end of the sequence or the

position of the selected gap, whichever occurs first (see figure 2.7). A two-point crossover,

where each point represents a column in the alignment, is then implemented. Once two

points have been randomly selected in one individual (parent one), the positions between

the two points, which correspond to the same string of position indexes, are then sought

in another random individual (parent two). Finally, the strings of positions are exchanged

between the two parents (see figure 2.7).

Figure 2.7: The proposed MOEA algorithm for improving MSAs
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2.3.2.1 Evaluating Individuals

The proposed MOEA evaluates individuals through a fitness function that considers two

objective functions: i) entropy and ii)the metric MetAl [174]. Entropy measures the

variability of an MSA by defining the frequencies of occurrence for each letter in a given

column. Entropy is minimal when only one symbol is present in a given column and

maximal when all symbols are present with the same frequency. The total entropy for a

MSA is the sum of entropies for each column (see equation 2.1), where Pi is the fraction

of residual AA type i, M is the number of AA types plus the gap character, and N is the

number of columns in the MSA. For the purposes of this algorithm, good alignments are

considered to be those that minimize the total entropy.

H =
N∑
j=1

−
M∑
i=1

Pi log2 Pi (2.1)

Frequency-based approaches, as a measure of entropy, do not consider the sequential and

evolutionary characteristics of a residue presented in a MSA. The approach proposed here

uses a combination of four metrics that incorporate position and evolutionary information,

which are processed by MetAl software to compute a single score between a target (the

offspring) and a set of sequences (the parents). This score is based on four factors: i) a

simple correction to the Sum of Pairs (SP) score; ii) raw gap information; iii) positions

of gaps occurring within a sequence; and iv) positions of indel events occurring within a

sequence and phylogenetic tree. This single score is then used as a second objective and

minimized.

2.3.2.2 Selecting Individuals

The selection process drives the algorithm to search regions containing the best individuals

relative to the Pareto front. In order to generate the Pareto front for each generation, each

population is sorted according to a non-dominated approach. A population is sorted into

different non-domination levels, and the Pareto front is filled with individuals belonging to

the best ranked levels until the desired number of individuals for a population is reached.
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Since MOEAs require a high-level information phase to report one solution from the

Pareto front, an algorithm based on the identification of knees (i.e. the regions in the

Pareto front where small displacements produce a big detriment to at least one of the

objectives) was used [175].

2.3.2.3 Validating Individuals

We validate our predictions using the Sum of Pairs (SP), Total Column (TC), MetAl and

hypervolumen metrics based on the BAliBase benchmark.

The SP and TC metrics (equations 2.2 and 2.3 ) were computed by the BaliScore script,

where Mr is the number of columns in the reference alignment, Sri is the score for the

i-th column in the reference alignment and pi,j,k is equal to 1 if the pair of residues Ai,j

and Ai,k are aligned with each other in the reference alignment, otherwise 0. Ci will be

equal to 1 if all the residues in the i-th column are aligned in the reference alignment.

The possible values for SP and TC range from [0,1], and a score equal to one represents

an exact agreement between the alignments.

SP =

∑M
i=1 Si∑Mr

i=1 Sri

, where Si =
N∑
j=1

N∑
k=1,k �=j

pi,j,k (2.2)

TC =
M∑
i=1

Ci

M
(2.3)

SP and TC are standard scores for comparing the performance of MSAs. However, many

concerns have been raised about their use. The MetAl score [174] can be used as a metric

to fix inaccuracies and to incorporate additional information in the evaluation process.

The MetAl metric incorporates a correction to the SP score as well as gap and indel

information when computing the score between a target and a set of sequences. The

range for the MetAl score is [0,1], where a perfect match is found when the score is equal

to 0 (plotted as 1 −MetAl in figure 2.8). It is important to note that the MetAl score

uses the BAliBase reference alignments as its target in the validation process, in contrast
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to the evaluation process, where the parents are used as targets. Therefore, the BAliBase

alignments are strictly used only during the validation process to guarantee a blind and

fair comparison between the MSA tools.

The hypervolume is a metric used by researchers to measure the quality of a Pareto front.

Hypervolume measures the volume of the dominated portion of the objective space. This

indicator represents the spread of solutions along the Pareto front, as well as the distance

for a given set of solutions from the Pareto-optimal front. The hypervolume has two

highly desirable features: it is sensitive to any improvements, and guarantees that any

approximation set that achieves the maximally possible quality value for a particular

problem contains all Pareto-optimal objective vectors [176]. The hypervolume indicator,

IH , for a solution set A ⊂ �d can be defined on the basis of a reference set R ⊂ �2, as

shown in Equation 2.4. In that equation, λ stands for the Lebesgue measure and the set

H(A,R) denotes a set of objective vectors that are enclosed by the front F (A) given by

A and the reference point R.

IH(A) := λ(H(A,R)) (2.4)

2.3.3 Results

The MOEA algorithm was executed based on the following parameters: seven indepen-

dent runs on 218 alignments, with a fixed population size of 56 individuals. The crossover

and mutation probabilities were set to 0.3 and 0.1, respectively. A stopping criterion was

considered to be achieved when five consecutive generations showed no improvements in

hypervolume.

The input of our algorithm is a set of pre-aligned sequences and the output is the pre-

diction of a single alignment belonging to the non-dominated set. The MOEA’s output

is compared with the alignments predicted by six state of the art algorithms, having the

BAliBase benchmark as target and four validation scores.
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Figure 2.8 shows the proportion of alignments with the best scores reported for each MSA

tool. The proposed algorithm demonstrates excellent performance for all six groups.

It performed outstandingly for groups RV11 and RV12, where the proposed algorithm

outperformes other MSA tools for all four validation scores. The excellent performance

of the proposed algorithm is more easily observed in the MetAl and TC scores than the SP

score. For example, 60% and 48% of the best MeTAl and TC scores are found in the RV12

and RV11 sets, respectively. The proposed approach ranked second best (or better) for

all groups based on the MeTAl and TC scores. For the TC score, our approach achieved

optimum results in 5 out of 6 groups, and second best in the remaining group (RV50).

For the MeTAl score, the MOEA achieved optimum results in 3 out of 6 groups (RV11,

RV12, RV30), and second best in the three remaining groups (RV20, RV40, RV50). With

respect to the SP score, the proposed approach is in the top 2 for 4 out of 6 groups. The

proposed approach predicted the best alignments for two groups (RV11, RV12), second

best in two groups (RV30, RV50), and third best in the remaining groups (RV20, RV40).

Figure 2.9 reports the average error obtained by each MSA tool. This error is defined by

equation 2.5, where S ∈ {MetAl, SP, TC}. The functions score(i) and best(i) return the

score and the best score of alignment i generated by metric S on all the MSA tools. From

figure 2.9, we can observe that the proposed approach works very consistently with all

groups for each of the three score schemas. Its degree of error is especially low in RV11

and RV12, where the MOEA obtained for each of the three score schemes the best error

compared to the other MSA tools. These results concur with an analysis of the same sets

in figure 2.8. The ClustalOW algorithm behaved similarly for groups RV30 and RV40.

However, ClustalOW had a higher number of errors for RV11 and RV12 sets.

errorS =
M∑
i=1

|bestS(i)− score(i)| (2.5)

Figure 2.10 reports the quartiles of the gained hypervolume through the computed gen-

erations of the MOEA. The gain of a specific alignment is computed as the difference

between the hypervolume of the last and first Pareto fronts. In figure 2.10, it is clear that

the volume of dominated objective space increased through the generations (i.e, values
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Figure 2.8: Proportion of alignments with the best scores reported for each MSA
tool.

The results are clustered in 6 different hierarchical groups as defined by BAliBase; each
vertex in the polygon represents an MSA tool. An area is plotted with regards to the

proportion of best alignments reported by the SP, TC and (1-MetAl) scores.

greater than zero). The proposed algorithm was able to then push a set of already aligned

sequences (the initial population) towards the Pareto optimal solutions (increasing the

hypervolume in 204 (94%) alignments). The worst performance is found in the RV11set,

where seven alignments did not improve their hypervolumes. On the other hand, the

RV50 set improved the hypervolume of all its alignments.

2.3.4 Conclusions and Discussion

This work contributes to the MSA problem by proposing a novel algorithm to optimize

previously aligned sequences. The proposed model is based on a MOEA, which, as this

work demonstrated, provides an adequate exploration of the search space. The proposed
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Figure 2.9: Average error obtained for each MSA tool.

The results are clustered in 6 different hierarchical groups as defined by BAliBase. Each
vertex in the polygon represents a MSA tool and an area is plotted with regards to the

average error (see equation 2.5) obtained by MSA tools.

strategy improves the accuracy of the MSAs used as inputs for the model. Be aware the

proposed algorithm is not the holy grail of MSA tools, and is not considered to outperform

all the other MSA tools on any possible sequence. However, it is a method that, with a

very reasonable cost in CPU time, produces more accurate alignments from seed MSAs.

The proposed algorithm proved to be less dependent on specific features of sequences and

very robust when used on diverse biologically targeted sequences.

The proposed approach is more than just a static algorithm. It is also a pipeline that

allows for the optimization of different MSA tools. In this work, six different MSA tools

were chosen to develop a study case, however, these can be replaced with any other. This

feature is important because it allows our algorithm to be tested on a diverse range of

representative situations and will accommodate new MSA tools as they become available.
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Figure 2.10: Hypervolume boxplots

gained on progression of the MOEA algorithm.



Chapter 3

Modeling Protein Folding Pathways

and Structure

3.1 Abstract

The PF problem aims to predict the complete physical and dynamical process that trans-

forms an unfolded protein sequence into a functional 3D structure. To date, classical

approaches to obtain this information rely on time-consuming high-resolution molecular

dynamics (MD) simulations or fragment assembly methods that are primarily limited

to relatively small molecules (≤ 50 AA). In this chapter, an alternate, yet comple-

mentary, strategy that offers a better trade-off between resolution (i.e., modeling sec-

ondary structures) and efficiency (i.e., speed and scalability) is defined through the use

of efold. efold is a novel divide-and-conquer algorithmic framework that combines en-

semble modeling techniques with evolutionary-based sequence information to compute

accurate coarse-grained representations of the conformational landscape for large pro-

teins. This landscape is then used to predict folding dynamics and dominant folding

pathways.

64
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3.2 Sequence Information

Recent advances in estimating the 3D structure of topologically complex proteins have

been achieved by the combination of residue level tools with high-resolution computational

methods. This hybrid methodology has allowed for the generation of models with great

accuracy at high-resolution on larger proteins structures that was not previously reachable

[113, 177, 178]. The general idea behind this approach is to increase the scalability capac-

ity of methods by using protein sequence information as constraints to massively reduce

the search space of possible protein conformations sampled by high-resolution methods.

Experimental and bioinformatics methods for residue contact and secondary structure

determination have been shown instrumental as an intermediate step toward accurately

predicting of the 3D structure [179]. For the first time, efold allows for the integration of

protein sequence information into the Boltzmann sampling process that is performed by

ensemble methods to predict protein pathways. When possible, efold takes advantage

of protein sequence information to use evolutionary information during the modeling of

folding pathways. Secondary structure and co-evolutionary predictions are incorporated

into a statistical residue contact potential function to improve the representation of key

interactions in the protein folding prediction. efold is able to handle a variety of diverse

sources that contain evolutionary information. In the proposed experimental framework

(see Chapter 4), the predictions of efold were computed using secondary structure as-

signments (derived by the DSSP software), secondary structure predictions (derived by the

PSIPRED software), residue contacts (derived by the EVfold software) and β − β residue

contacts (derived by the bbcontacts software). efold was shown to be able to extend

those prediction sources to more diverse alternatives.

3.2.1 Secondary Structure Information

Given the difficulty of PSP and PPP, many algorithms have been developed for an easier

task: predicting secondary structure (SS). The SS of a protein can be described as the

local conformation of the polypeptide backbone. This local conformation plays a crucial

role in the formation of a protein’s native structure and provides invaluable information
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about a protein. The prediction of a protein’s SS is a core step in most state of the art

PSP methods, where a reliable SS prediction is commonly used as an intermediate for

attempting the far more difficult task of predicting its complete 3D conformation.

There are two main backbone configurations to a SS, either α-helix or β-sheet. An α-helix

is when hydrogen bonds form between residues that are close to each other in the protein’s

sequence. In contrast, β-sheets are formed by hydrogen bonds between two parts of the

polypeptide chain that have close proximity in 3D space, but may be sequentially far

away from each other. Predicting a protein’s SS usually involves classifying its AA as

either helices(H), sheets (E1), or coils (C).

Since the 1970’s, four main generations/stages in SS prediction methods have been devel-

oped. It is important to stress that each successive generation/stage includes the features

of a previous generation/stage. SS methods that belong to the first generation compute

the propensities of finding a specific AA in each backbone configuration (i.e., α helix or β-

sheet). These propensities are computed using proteins reported in structural data bases.

Second generation methods are based on the propensity for segments (typically 11-21

adjacent residues), as opposed to isolated AAs in the first generation. In third generation

methods, information from homologous sequences and machine learning approaches were

used. The assumption behind a SS prediction by homology is that if a sequence of un-

known SS has a homologue of a known structure, we can perform an accurate prediction

if we ‘copy’ the known secondary structure over to the unknown sequence. In the fourth

generation, a combination of secondary and tertiary protein structure is used. Informa-

tion about the 3D protein conformation is added to SS predictive methods. In spite of

the progress achieved by SS prediction approaches, they have plateaued with an average

prediction accuracy around 80% per residue in unknown protein sequences using fourth

generation approaches. Some authors believe [180, 181] that substantial improvement on

the accuracy of SS prediction methods can only be possible if better representations of

SS features are known.

1The character ‘E’ is used by the Dictionary of Protein Secondary Structure (DSSP) to describe
extended strand in parallel and/or anti-parallel β-sheet conformations
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Regarding SS information, two different state of the art algorithms (i.e., DSSP and PSIPRED)

were included in the algorithm suite to provide sequence information to efold. DSSP

standardizes the secondary structure assignment of a protein given its atomic-resolution

coordinates [182]. The DSSP algorithm calculates the most likely SS assignment given

the 3D structure of a protein. This algorithm reads the position of atoms in a protein

(i.e., ‘ATOM’ records in a PDB file) to calculate the potential H-bond energy between all

atoms. Next, the two best H-bonds for each atom are then used to determine the most

likely class of SS for each residue in the protein. In comparison, PSIPRED is an accurate SS

prediction algorithm that incorporates two feed-forward artificial neural networks (ANN)

to perform the SS prediction based on output obtained from PSI-BLAST (i.e., Position

Specific Iterated - BLAST) [146]. PSIBLAST retrieves sequences related to the target

protein (i.e., the protein whose SS is unknown) to build a position-specific scoring matrix.

This matrix is then processed by a learned ANN to predict the SS of the input sequence.

It is important to note that PSIPRED predicts SS, meanwhile DSSP assigns SS based on

known 3D structures.

3.2.2 Residue-contact Information

Predicting residue contacts by co-evolution-based strategies received a new twist thanks

to new methodological advances and increasing availability of protein sequences. Break-

throughs in handling phylogenetic information and disentangling indirect relationships

of AAs have resulted in an improved capacity to correctly predict inter-residue contacts

[108, 109]. It is still unclear what accuracy, coverage, and distribution of contacts along

the sequence are needed to be useful in practice for PF methods. However, predicted

inter-residue contacts have already been used to increase the scalability capacities in dif-

ferent PF approaches [110]. For example, homology and fold recognition methods (see

section 1.2.1) reduce the conformational space by filtering out the least likely structural

models based on predicted residue contacts. Regarding ab initio methods, residue cou-

plings have been translated to a set of distance constrains for effective use in distance

geometry generation of 3D structures and their refinement by energy minimization and

molecular dynamics methods [111, 112]. This new generation of contact prediction tools
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is enticing, but it is currently limited by the amount of rich evolutionary sequence data

required to obtain reliable structural models. For accurate predictions, these methods

require large numbers of homologous sequences using accurate alignments that are suffi-

ciently diverse to reveal co-evolution patterns that cover most structural elements of the

protein [109]. This fundamental area of research focuses not only on predicting contacts

with high accuracy to be used in structure modeling, but on building a reliable structure

from incomplete/inaccurate contact data [113].

EVfold and bbcontacts were included in the algorithm suite to provide contact residue

information as input to efold. EVfold uses evolutionary variation (coded in MSAs) to

calculate a set of co-evolved residue pairs in a protein family using information theory

algorithms (e.g., maximum entropy method and direct coupling analysis) [109]. efold

uses the ranked set of evolutionary inferred contacts (EICs) predicted by EVfold to

represent a network of interactions across the protein and reflect the co-evolution of pairs

during the evolutionary trajectory of the protein. It is important to stress that the

predictions of EVfold were constrained to not include SS predictions. bbcontacts uses

matrices of predicted co-evolved residues to estimate interactions between SS elements

[183]. This algorithm predicts β−β contacts by detecting structural regularities of paired

β−strands in the 2D maps of coupling scores using two Hidden Markov Models (HMMs),

one for parallel and another for antiparallel contacts.

3.3 Ensemble Modeling

Classical approaches for PSP typically search for a singular, lowest energy structure.

However, there is compelling evidence that indicates proteins have the ability to adopt

different conformational states in vivo, where multiple substrate minima could exist with

different functional properties [115]. The folded state can then be understood as a small

ensemble of conformational structures compared to the conformational entropy present

in the unfolded ensemble. Additionally, Anfinsen’s hypothesis implies that, because the

native state of a protein is an ensemble of many similar conformations, the goal of PSP

methods should be to predict this ensemble rather than just a single conformation. PSP
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prediction methods often assume that the ensemble of conformations is very narrowly

distributed around the mean and then the representative conformation (i.e., the predicted

native state) would approximate the mean of the ensemble. However, theoretical analyses

of the folding landscape suggest that there are a large multiplicity of low-energy, partially-

folded conformations near the native state [184]. Therefore, it is more appropriate to

represent a protein structure as an ensemble of alternative conformations [185].

Regarding the PPP problem, a large collection of folding routes traversing a multidimen-

sional energy landscape within a folding funnel model has replaced the idea of a single

folding pathway. Intermediate conformations are not considered as discrete states, but

as ensembles of structures, where the transition between consecutive ensembles on the

folding pathway occur in parallel routes [186]. There is strong experimental evidence sup-

porting the heterogeneity of folding pathways [187]. For example, it has been shown that

with structurally homologous kunitz-type protease inhibitors, there is a heterogeneity

of folding intermediates and folding kinetics [134]. Multiple pathways and ensembles of

structures can be obtained by molecular dynamics or other local deformations methods,

but these time-consuming, high-resolution methods are primarily limited to relatively

small molecules. Given that these methods can only look at local variations, multiple

simulations would have to be performed to construct an accurate set of ensembles.

Free energy minimization is the most popular method for determining the lowest energy

structure from a single protein sequence. Although energy models have undergone re-

finements resulting in more accurate characterization of folding thermodynamics, there

is still uncertainty in the experimental estimates of these parameters. The energy value

computed for a structure is an approximation as well, as the absence of quantum me-

chanics computations in the determination of the energy equation do not allow for an

adequate representation of the forces responsible for protein folding. As a result, finding

an intermediate state with lower energy than the minimum free energy state is not an

uncommon problem in free energy minimization based methods.

Newer computational modeling approaches, called ensemble methods, are no longer per-

forming a search for an individual lowest energy structure, but rather aim to predict an

ensemble of protein conformations and pathways to describe a more realistic landscape
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of conformational variants without sacrificing efficiency or accuracy. Furthermore, these

methods bring a conceptual breakthrough when compared to previous PF methods be-

cause they are able to address the complexity barrier of simulations by computing coarse

grained representations of complete energy landscapes at a large scale. Based on ensem-

ble methods, the protein energy landscape is characterized using a statistical mechanics

perspective. According to statistical mechanics theory, molecular state is in constant

flux when at equilibrium, but the proportion of molecules in each specific state remains

constant, allowing one to quantify the architecture of a system. The reader can refer to

section 1.4.2 to review current state of the art of ensemble methods. In the remaining sec-

tions of this chapter, we will cover the methodological protocol followed by the proposed

protein folding predictor.

3.4 Algorithm Design

In the following sections we will present efold, a novel divide-and-conquer algorithmic

framework that combines ensemble modeling techniques with evolutionary based sequence

information to compute accurate coarse-grained representations of the conformational

landscape for large proteins. efold enables efficient simultaneous prediction of a protein’s

folding mechanism(s) and structure using only the primary sequence as input and, when

available, evolutionary sequence information. efold addresses the following two main

tasks (see figure 3.1 for a schematic pipeline of efold’s methodology):

1. Modeling ensembles: The main goal of this task is to compute a set of protein

states with the highest likelihood. Our approach is two-step:

(a) The forward step of the algorithm computes the equilibrium partition func-

tion of all possible β SS using a divide-and-conquer approach and memoization

techniques. We compute the Boltzmann partition function over the set of all

possible protein states, where the protein states have been modeled through a

coarse-grained representation based on SS. Each protein is assumed to fold into

a complete set of unique structural states with a single energetic value assigned
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(Boltzmann distribution) and evolutionary contact prediction scores if avail-

able. Clusters of low-energy states with similar conformations are produced

based on a structural similarity metric.

(b) The backward step computes the set of statistically representative samples.

2. Modeling Folding Pathways: The main goal of this task is to derive the likeli-

hood of dynamic state-to-state transitions and assemble a set of complete folding

paths. The transition from a random coil to the native state is modeled as a path

in a graph of varyingly folded protein conformation states. The system dynamics

are calculated by treating the folding process as a continuous time discrete state

Markov process. Finally, the folding pathways are predicted by combining the pre-

dicted dynamics with the predicted conformational landscape.

With efold, it is conventional to consider that each protein sequence folds into a com-

plete set of structural states. The first step in developing an ensemble approach is the

choice of an appropriate model for representing the protein (section 3.5.1). The second

step is to calculate the complete set of all possible structural states (section 3.5.2). This

state set represents a description of a more realistic landscape of all conformational vari-

ants. For each conformational state, efold performs a third step that computes a single

energetic value according to the entire conformation space (see section 3.5.3). Next, the

Boltzmann partition function (BPF) is computed from the set of all possible protein

structures to estimate the significance of all conformations and their likelihood of oc-

currence (see section 3.5.4). The partition function is a thermodynamic normalization

constant that encodes the statistical variation of a system in equilibrium, and can be

used to identify significant structures within an ensemble. We assume that the minimum

ensemble in the energy landscape contains the native state and must have a partition

function that is larger than any other ensemble of structurally similar conformations.

The complete enumeration and examination of suboptimal folding is an arduous task.

The proposed ensemble model generates a statistically representative sample from the

computed landscape to perform a statistical characterization of the Boltzmann ensemble

(see section 3.5.5). Since thousands of states are sampled at any given time, a tractably

sized system is desired. The proposed method partitions the state space into macro states
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by clustering (see section 4.2.4.4). The clustering procedure allows for the largest set of

structurally related low-energy conformation to be searched, instead of focusing only on

the lowest energy conformation. Next, efold represents clusters as nodes in a graph of

varyingly folded protein conformation states. Coarse folding transitions are performed

by modeling the transition between two clusters, which is represented as an edge in that

graph (see section 3.5.7). The main goal of this task is to derive the likelihood of dynamic

state-to-state transitions. The dynamics of the system are calculated by treating the fold-

ing process as a continuous time discrete state Markov process (see section 3.6). Finally,

efold predicts folding pathways by combining information from the folding dynamics of

the predicted conformational landscape (see section 3.6.2). The main goal of this step is

to generate and assemble the complete set of folding pathways.

3.5 Modeling Protein Ensembles

3.5.1 Model representation of a protein

efold is an algorithm designed to make simultaneous coarse-grained predictions of i)

the complete conformational energy landscapes, ii) folding pathways and iii) residues

contacts of a protein sequence. Conceptually, each protein structure is described by a

coarse-grained residue-level representation. This representation models residue contacts

between SS elements. A protein structure is defined by the set of residue-residue con-

tacts that form hydrogen bonds between β-strand backbones. efold focuses on β-strand

backbones because they are present in the majority of reported folds (60%). Addition-

ally, information about α-helices could be accurately inferred from evolutionary sequence

information (decreasing the complexity of the algorithm). The protein representation

by efold includes side-chain orientation and long-range contacts. The proposed level of

abstraction by efold enables efficient design of a combinatorial scheme for exploring the

complete conformational landscape while retaining enough information to allow further

3D structure reconstruction. Furthermore, representing proteins in this manner allows
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Figure 3.1: Schematic representation of efold, the proposed algorithm for predicting
protein folding pathways using ensemble modeling and evolutionary-based information.

a) Input consists of a single AA sequence, a set of parameters controlling the size and
complexity of the conformational landscape to be explored, and an optional MSA of

homologous proteins. b) The ensemble technique to predict β-sheets structures consists
of a forward and backward traversal over the data structure (i.e., tree) that models the
hierarchical folding mechanism(s) and stores all possible proteins states characterized by
an energy objective-function. c) efold partitions the state space into macro states to
work with a tractably sized system. d) The conformational landscape is represented as
a graph, where nodes represent clusters of energetically accessible conformation states

and edges model the presence of structural similarity between the states. e) The
dynamics of the system are calculated by treating the folding process as a continuous
time discrete state Markov process. f) The transition from a random coil to the native
state is represented as a path in a graph (or flow network) of varyingly folded protein

conformation states. This graph is built using information extracted from the
conformational landscape and the folding dynamics (items d and e, respectively).
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for a reduction in the complexity of the conformational search space. The number of pro-

tein conformations are still greatly flexible (e.g., permutation of strands, strands’ sizes,

orientation of side chains, secondary structure motifs, etc.), and structures may take on

various conformations that are vastly different between neighbors and the native form.

3.5.2 Calculating the complete set of all possible structural states

The conformational landscape is computed through the enumeration of all coarse-grained

protein states that a protein may attain. The SS topologies are encoded using a stepwise

permutation algorithm through the labeled set of β-strands {1. . . n}. For each permuta-

tion, the set of all β-strand/β-strand pairings were computed such that each interaction

in the β-topology is assigned to be parallel (P), anti-parallel (A), or none (N) (see figure

3.2 for an example of the computed topologies and strand pairings of size three). We

store this set of topologies in a balanced tree, where each level m of the tree contains

the topologies with m β-strands (see figure 3.3 for an example of the computed tree).

It is important to stress that each possible topology (see figure 3.2 a)) will have a tree

as the one depicted by figure 3.3. In these trees, each node (except the root) has one

parent node, m− 1 sibling nodes, and m children nodes. All parent nodes share a com-

mon structure with their children, where two topologies share their structures if they are

identical to each other, modulo the addition or removal of a single β-strand pairing. The

added (or removed) β-strand pairing has to be located at the right (see figure 3.3 a))

or left (see figure 3.3 b)) of the topology represented by its parent (or child). This last

feature is very important because it defines a Dynamic Programming (DP) approach. A

DP problem should have optimal sub-structures,where the solution for the sub-problem

is part of the solution of the original problem. In the next section, the implementation of

a DP algorithm to efficiently compute the energy value of the SS stored in the tree will

be described.
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Figure 3.2: Secondary structure topologies and β-strand/β-strand pairings for up to
three strands

a) The SS topologies computed using a stepwise permutation algorithm through the
labeled set of 3 strands. Two strands (arrows in the figure) pointing to the

same(different) direction represent a parallel(anti-pararell) interaction. b) The set of all
β-strand/β-strand pairings computed by efold. Each topology represented in a) has an

associated hash table indexing all possible pairings computed for each topology.

3.5.3 Computation of a single energetic value

An energy function is an equation that relates, mainly, structure to energy. It is de-

sired that this function adequately represent the forces responsible for protein folding.

Quantum mechanics computations must be considered in an energy function in order to

have an accurate representation of molecular interactions. However, the computational

complexity of this approach makes its implementation impractical. Classical physics is a

common approach to overcome with modern computational limitations. The protein en-

ergy calculations become much more tractable when turning to empirical potential energy

functions. However, the process is still computationally demanding when routinely used

in a simulation. The parameters of each component’s contribution in an energy function

have been optimized to effectively represent real protein systems. Typically, a potential
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a) b)

Figure 3.3: Tree data structure that stores all the set of secondary structure topolo-
gies.

The proposed data structure to store all the set of protein topologies is a balanced tree,
where each level m of the tree contains the topologies with m β-strands. In this tree,
each node (except the root) has one parent node, m− 1 sibling nodes, and m children
nodes. This data structure can be filled by adding new strands (i.e., green strands in

the figure) to any of the extremes of previous topologies. A reader should note that if a
green strand is deleted, the previous topology (i.e., the parent node) will be obtained.

Figures a) and b) show the tree when new strands are added to the right and left of the
base topology, respectively.
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energy function models contributions from the hydrophobic effect, the electrostatic force

between AA, the Lennard-Jones potential, and vdW force etc. With the need to inten-

sively compute the potential energy function while exploring the search folding space and

lacking an appropriate energy function to minimize, an efficient approximation is to only

consider pairwise force contributions.

The use of the Boltzmann distribution to define energy functions with terms involving

AA pairwise forces has been widely explored in the field [188, 189]. The main idea is that

we can compute the AA potentials from data stored in representative protein databases,

where the average distance between a given pair of AA corresponds to the average energy

contribution of this pair. The assumption is that AA residues in close proximity within

a folded 3D protein structure exhibit marked statistical preferences. We compute a fre-

quency for distances between AA pairs and use the Boltzmann distribution to compute

the energy term (i.e., E(w)) that corresponds to AA pair potentials. Recalling the defi-

nition of the Boltzmann distribution (see equation 3.1), we compute the probability p(v)

of state v from a protein database as a frequency for distances between each pair of AA.

p(v) =
exp[−E(w)/RT ]∑

w∈V exp[−E(w)/RT ]
(3.1)

efold uses the Boltzmann-distributed pseudo energy function described in [190, 191].

The pairwise frequencies used to compute the energy potential were determined from the

specific residues involved in the SS topologies found in a large set of globular proteins

whose tertiary structure is known. The proteins were extracted from the PDB-select 25%

data base list of June 2000. In order to work with a non redundant version of the PDB,

this set guarantees that no two proteins have sequence similarity greater than 25%. These

pairwise probabilities are computed according to their environment (i.e., it distinguishes

contacts occurring in a hydrophilic environment from those occurring in a hydrophobic

environment), but independent of the context in which they are used. Finally, these

probabilities are transformed into an energy potential by taking the negative logarithm

of the frequencies (see equation 3.2). An energy Ei,j is assigned to each residue/residue

pair following equation 3.2, where Zc is a statistical re-centering constant and p(i, j) is
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the pairwise probabilities of two residues appearing in a β-sheet environment as observed

across all nonsequence-homologous solved structures in the PDB.

Ei,j = −RT [log(p(i, j))− Zc] (3.2)

efold uses a statistical-mechanical framework to characterize the energetic landscape

of a protein through the modeling of all coarse-grained possible conformations that this

peptide can attain. The potential energy of a protein conformation is related to the sum of

potentials for all residue/residue interactions (equation 3.3), where i and j represent the

positions of two AA being computed that belong to the set of all the possible residue pairs,

λ. We then assign separate likelihoods based on the hydrophobicity of the environment

on either face of a β-sheet (i.e., an AA buried in the core of the protein or exposed at the

surface).

E(Sn) =
∑
i,j∈λ

Ei,j (3.3)

For a structure with n strands, the computation of the energy by summing the energetic

contribution of each strand interaction is a prohibitive approach. It has previously been

shown that a much more efficient method exists using DP. efold uses a DP algorithm

to exploit the shared structure between protein topologies by performing the recursion

shown in equation 3.4. In equation 3.4, E(Sn−1) is the interaction energy between the first

n−1 strands and Pair(sn−1, sn) is the energy of the pairing of strand n−1 with strand n

(see figure 3.4a for further details). Each recursive call determines the energy of a specific

protein conformation and stores this value in a hash table. Subsequent recursive calls,

which involve the same conformation, perform a table lookup to prevent re-computation

of the energy function. Conformations are partitioned by the location of four indices

i1, i2, i3 and i4, which denote the boundaries of region(s) occupied by the n strands (see

figure 3.4).

E(Sn) = E(Sn−1) + Pair(sn−1, sn) (3.4)
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3.5.4 Computation of the Boltzmann partition function

Boltzmann reasoned that in an ideal gaseus environment having N molecules, the number

of Ni molecules having energy Ei must satisfy equation 3.5, where k is the Botlzmann

constant, and Z is the partition function that satisfies equation 3.6 (n is the number of

possible energy states).

Ni = N
exp[−E(i)/kT ]

Z
(3.5)

Z =
n∑

i=1

exp[−E(Si)/RT ] (3.6)

For applications in computer science, the Boltzmann constant k is often dropped, and

the Boltzmann distribution (a.k.a. Gibbs distribution) is defined by equation 3.7. At

high temperature T , the Boltzmann distribution is close to a uniform distribution and at

positive temperature close to 0, the distribution is concentrated near the global energy

minimum. The latter fact has been exploited to devise algorithms to solve complex

combinatorial problems.

PT =
exp[−E(i)/T ]

Z
(3.7)

efold computes a BPF over all n structural states to characterize the energetic landscape

of a protein as stated by equation 3.6. In this equation, E(Si) is the free energy of the

structure for the input sequence as computed by equation 3.3. With the partition function

Z available, the Boltzmann probability for all structures may then be computed (equa-

tion 3.8). Therefore, the Boltzmann probability statistically characterizes the protein

ensemble.

P (Si) =
exp[−E(Si)/RT ]

Z
(3.8)

efold needs to coherently incorporate the evolutionary sequence information into its

statistical residue contact potentials. Protein conformations evaluated by our mechanical
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E(Sn) = E(Sn-1)+Pair(Sn-1+Sn) 
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Figure 3.4: Dynamic programming strategy encoded by efold.

An illustration of how efold encodes a permutable β-template representing the Protein
G (i.e., β3Aβ4Pβ1Aβ2). efold recursively computes the Boltzmann partition function
through an energy function composed by the sum of the contributions of the last two
strands and the remaining structure (left column). A sampling procedure is performed

through the traceback of intermediate structures (right column).

statistical approach (P (Si)) are penalized or rewarded depending on the agreement of

the residue-residue interactions predicted by the evolutionary-derived residue information

through the function Pevol(Si). The level of the contribution for this information contained

by each approach (i.e., mechanical statistical and evolutionary) is the total score of the

objective function adjusted using parameter γ. A value of one for this parameter puts

all weights on statistical contact potentials, while a value of zero has weights relying on

evolutionary inferred contacts (see equation 3.9).

ObjectiveFunctioni =
(
γ × Pevol(Si)

)
+
(
(1− γ)× P (Si)

)
(3.9)

efold is required to calculate the proposed objective function for all attainable protein

topologies. efold’s time complexity depends on the computation of the BPF for each
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topology. Figure 3.5 depicts the dependency of efold’s complexity on the two primary

factors influencing this calculation (the length of sequence and the number of strands in

the topology [i.e., the depth of the recursion]).
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Figure 3.5: Runtime complexity curve for the computation of the partition function
by efold.

The time was computed by averaging over five independent runs, for sequences ranging
from 40 to 140 residues in length, with 4, 5 or 6 strands. The experiment environment is
a 2.8 GHz Intel Core i7 system, with 4GB of RAM, under the Mac OS X operating

system.

3.5.5 Generation of a statistically representative sample

Once efold has characterized the energetic landscape through the computation of the

objective function for every possible SS, it extracts a statistically representative sample

of SS from the computed landscape. efold uses a recursive statistical algorithm inspired

by [80] to sample protein conformations according to their values as reported by the

objective function (see equation 3.9). Since we do not know the native structure, we have

to sample configurations from all possible permutations of the β-sheet topology. The

algorithm works as follows: i) For each topology, we use a fitness proportionate selection

algorithm (also known as roulette wheel selection) to select the potentially useful solutions
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from all the conformational states computed for this β-sheet topology (see section 3.5.4).

In this approach the candidates solutions with a higher fitness will be more likely to be

selected by a random selection procedure. This algorithm simulates the behaviour of a

roulette wheel in a casino, where an equal proportion of the wheel is assigned to each of the

possible selections based on a fitness value. The fitness value for each β-sheet topology is

obtained from the computation of equation 3.9. A random selection process is performed

mirroring the process of how the ball (in a casino) falls in one of the wheel’s compartments

after the roulette wheel is rotated. ii) Once a candidate solution is selected (i.e., a β-

sheet conformational state), we extract from it the location of a single strand. This single

strand corresponds to the last strand added during the computation of the DP algorithm

(see section 3.5.3). The location of a single strand is sampled from the region indicated by

indices i2, i3 in Figure 3.4. The extraction of this single strand creates a different β-sheet

topology (i.e., one β-sheet with exactly one less strand). Then, efold comes back to step

i) to perform the statistical sampling on the new β-sheet topology. It is important to

mention that the new fitness selection will be performed on structural conformations that

do not conflict with the strands that have been already extracted by previous recursions

of the same call of the sampling algorithm. iii) Finally, the algorithm terminates when

the size of the sampled β-sheet topology is equal to one. The aforementioned process is

repeated many times to generate the population of protein conformations.

3.5.6 Clustering protein conformations

Since thousands of states are sampled from each strand topology and a tractably sized

system is desired, efold partitions the state space into macro states using clustering.

The clusters are built based on the structural similarities of samples, where similarity

is measured using a conformational metric. Given a sequence of AAs, an ensemble may

contain thousands (or even millions) of distinct structures. In a clustering approach,

we need to be able to efficiently quantify how similar these different structures are in

order to group by similarity. In the literature, a range of metrics for comparing folded

structures are already available based on contact, segment overlap and mountain values

as similarity measures of SS[192, 193]. efold implements a version of each metric, but
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a contact based metric was selected as the default option given that it performed best

empirically for computing the conformational similarity of protein SS. The contact based

distance between two SS is the total number of AAs apart that the contacts occurring in

one structure are located with respect to the other structure. Once a distance is defined

between pairs of structures, it is straightforward to compute an array of distances between

all pairs of structures in a sample. A standard hierarchical clustering algorithm is then

used to partition the foldings into clusters based on the array of distances. Finally, the

clusters with highest energy values are chosen to represent energetically accessible and

favourable conformation states (i.e., intermediate folding states).

3.5.7 Modeling folding transitions

Next, efold associates each cluster with an intermediate folding state. These clusters

represent energetically accessible and favourable conformation states that can be repre-

sented as nodes in a graph of varyingly folded protein conformation states. efold predicts

coarse folding transitions by modeling the transition between intermediate folding states

as edges in the graph. For every pair of vertices in this graph, a transition edge is added

if both states have compatible topologies and structural similarity. Two topologies are

compatible if they differ only by the addition or the removal of a single strand pairing.

In the case of efold, the mechanism of protein conformational change (i.e., addition of

single strands) implies that any state linked in the trees shown in figure 3.3 would be

topologically compatible. The similarity between two clusters (each represented by a

node in the graph) is estimated using the structural metric used to cluster the samples

(see section 4.2.4.4).

3.6 Folding Dynamics

Novel computational paradigms are required to model and understand the conforma-

tional dynamics of proteins using an ensemble view of protein structure. In principle,

MD simulations provide the time evolution of proteins, but the computational cost and
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long time scales associated with this technique make it difficult to compute an ensemble

of trajectories. It has already been shown that a discrete model of RNA SS folding is

capable of describing the folding dynamics at macroscopic timescales beyond the reach

of methods that operate at an atomic resolution (i.e., MD) [194], but the simulation of

protein dynamics have been shown to be harder. Simplifications regarding the spectrum

of time scales and number of sampled conformations are needed to reduce the complexity

of the protein folding dynamics into manageable models. This reduction provides signifi-

cant advantages in terms of effectively focusing on the thermodynamically and kinetically

relevant motions by eliminating the information from irrelevant protein motions. Given

the appropriate degrees of freedom that describe rate-limiting protein motions, an en-

ergy landscape has been shown as a suitable protein dynamic model. Furthermore, some

statistical frameworks (such as the Markov model that will be described in this section)

have already been developed to describe the conformational dynamics of proteins in terms

of conversions between the conformational states. Similar conformations are categorized

into states based on structural metrics (such as the metrics described in section 4.2.4.4).

The rate of interconversion between states are estimated from simulated trajectories or

energy estimations (such as the energy function described in section 3.5.3). A methodol-

ogy that provides a statistical framework for a human-readable view of folding dynamics

is presented in this subsection.

Protein ensembles (see section 3.3) provide key features to model protein dynamics. This

approach provides a structural definition of key conformational states for a protein (i.e.,

nodes in a graph of varyingly folded protein conformation states), the mechanism of pro-

tein conformational change (i.e., addition of single strands), and the height of barriers

connecting these key conformations (i.e., the difference between the free energies of the

states). A protein energy landscape can be constructed by connecting the conformational

states together and estimating the transition rates between pairs of interconverting struc-

tures. This results in an ordinary differential equation (ODE) system (also known as

a master equation) that can be solved to predict and characterize protein dynamics. In

other words, the folding dynamics of a protein is described as motion on its conformational

energy surface.
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Master equations are a set of ODEs used to describe the time-evolution of a biological

system that can be modeled as being in exactly one of many countable states at any given

time, where switching between states is treated probabilistically. These ODEs model the

variation over time as probabilities that the system occupies for each of the different

states. Starting at some initial time t0 (i.e., when the protein is exactly in the unfolded

state), we compute the probabilities PA(t) and PB(t) that one given protein system is

in state A or B, at time t. We derive a differential equation for PA(t) by relating the

probabilities at the two closest times, t and t + dt. The previous formulation implicitly

uses the Markov assumption as the transition rate from one state to the other during the

time interval (t+dt) does not depend on the previous states [(t−k×dt) where k > 0] but

only on the state at time t. The master equation describes the evolution of probabilities

for Markov processes of the system.

Modeling conformational changes by solving the master equation (i.e., by modeling the

problem as a continuous time, discrete state Markov model) is a good approximation to

overcome the lack of quantitative and qualitative data of folding kinetics for proteins. The

folding process of RNAs has been already modeled as a time-series of RNA SS such that

the elementary transitions are the opening or closing of a single base pair nucleotide(s)

[195]. The formation and deletion of helices as the move set were also proposed by other

methods for simulating RNA folding dynamics [196]. The master equation formalism

has been also developed for protein folding kinetics, where the folding of simple lattice

chains allows transitions between states at only local conformational changes [197]. The

folding mechanism of SS formation and the enumeration of all the conformations of a

simple lattice model [198] have been proposed to explore possible kinetic and folding

pathways. Previous research developed in our research laboratory has already allowed

the computation and visualization of the dynamics of the folding process occurring in

β−sheet proteins [121].

3.6.1 Continuous time discrete state Markov model

Following conventional stochastic kinetics theory [199], the probability distribution P

of protein SS as a function of time (i.e., the kinetics of the molecule in terms of its
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macrostates) is given by the master equation shown in 3.10. Within this stochastic

formulation, kij is the probability that a transition from a distinct state i to another

distinct state j occurs within the infinitesimal time interval dt.

dPt(i)

dt
=

[∑
j �=i

Pt(j)kji − Pt(i)kij

]
(3.10)

The formulation of a square transition matrix R = (rij), which contains the transition

rates between different states of the system, is needed to find a solution of the equation

3.10.

rij =

⎧⎪⎨
⎪⎩
kji, if i �= j

-
∑

l �=i kli, if i = j

(3.11)

Equation 3.11 can be rewritten in matrical form as follows:

d

dt
Pt = RPt (3.12)

We are interested in calculating the temporal distribution vector Pt (i.e., the distribution

over states of the system at time t), which can be calculated from the explicit solution

of equation 3.13, where P0 is the initial distribution vector. The probabilistic behavior

of a discrete state continuous time Markov model is completely described by the initial

state (or distribution) and the transition rates between distinct states. efold computes

a distribution vector Pt for 241 different time-steps as default (from time −6 to +6 with

steps of 0.05).

Pt = exp(Rt)P0 (3.13)

What still needs to be established is a rule for the rate-constant kij between two SS i

and j of the conformation space. All elements of the transition matrix R that do not

correspond to single moves (i.e., transition between nodes that are not connected by an
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edge in the graph of folding transitions [see section 3.5.7]) are assumed to be zero. The

rate between two non-zero transition elements is computed using the symmetric Kawasaki

rule [200]. This rule was chosen given that it takes uphill and downhill steps into account,

which avoids an intrinsic diffusion limit (i.e., forming a favorable contact does not increase

with the contact’s favorability) [201]. Let Gi be the free energy of the SS i from which

an allowed move to structure j with the free energy Gj is made. Then, the transition

probability kij is given by the Kawasaki rule as:

kij = exp(−ΔGij/2RT ) (3.14)

where ΔGij = Gj − Gi. This gradient ΔG is an important determinant of the speed

at which the system moves uphill or downhill. By using the Boltzmann coefficient, the

uphill/downhill steps become more rare as ΔG increases. The Kawasaki dynamics ap-

proaches the Boltzmann distribution at equilibrium because it satisfies microscopic re-

versibility [202]. efold calculates the ensemble free energy difference ΔGij between two

macro states i and j by summing over all the states from which both states are composed

(equation 3.15). The non-zero transition elements are considered to be consistent with

the free energy difference of the two conformations involved. Given that two states are

connected in the graph, the rate at which they interconvert is proportional to the differ-

ence between the free energies of the states (ΔG). Note that under this approach, energy

barriers are not explicitly incorporated into the model, since entire SS (i.e., β−strands)

are either added or removed between states without partially-formed intermediates.

ΔGij = E(χi)− E(χj) =
∑
x∈χi

E(x)−
∑
x∈χj

E(x) (3.15)

3.6.2 Folding Pathways

A structured folding pathway is defined as a time ordered sequence of folding events in

which the unfolded protein is able to assume its native state. The folding pathways are

fully described by the complete conformational energy landscape, where proteins fold
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through distinct intermediate conformations via multiple routes. Similar to other mod-

els that represent a protein at the level of SS elements [92, 203, 204], efold represents

intermediate conformations as ensembles of fully folded structures containing a set of

interacting SS (see section 3.5.7). efold predicts coarse folding pathways by finding a

collection of intermediate transitions that connect the unfolded and native protein states.

In other words, efold represent folding trajectories (from a random coil to the native

state) as paths in a graph (that represent an energy landscape) of varyingly folded protein

conformation states. The intermediate conformations are modeled by efold as obliga-

tory sequential states in the overall folding process. Unfolding transitions (represented

by cycles and backward transitions in the graph) are not considered during the com-

putation of folding pathways. The sequentiality of folding events (assumed by efold)

implies that certain transitions occur before others. efold extracts the order of folding

events from the folding dynamic simulation previously performed (see section 3.6). efold

combines folding dynamics and conformational energy landscape information to model

folding pathways as weighted paths that connect the unfolded, intermediate, and native

protein states.

The fact that efold does not require a priori information about the native structure of

the protein is a differential feature with respect to state of the art PPP predictors. Unlike

most of the PPP predictors, efold is able to extract the (predicted) native topology out

of all sets of possible protein topologies. If efold has access to sequence information (see

section 3.2), the HMM reported in [183] is used to derive a predicted native topology.

This HMM detects patterns in matrices (formed from sequence information) correspond-

ing to predicted interactions between SS elements. These interactions are defined on the

basis of regular patterns of hydrogen bonds, which connect residues in different β-strands

in either a(n) parallel or antiparallel fashion. The output of the HMM is a sequence of

interactions between two β-residues, a direction for the interaction (parallel or antiparal-

lel), and a measure of confidence (Viterbi score) of the corresponding prediction. From

this information, efold retains the set of the best consecutive β-residues that form k

topologies, where k is the number of strands provided by the user as input. It is impor-

tant to stress that k selected topologies must satisfy the topological constraints associated

with β-strand pairing (i.e., each β-residue can have a maximum of two β-partners and
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there must be a minimum sequence separation between β-strands). Based on this list

of well-ranked β-residues, efold infers the topology of the native protein by rearranging

and labelling the β-strands. If efold is constrained and does not have access to sequence

information (i.e., the user explicitly wants to generate a prediction based solely on en-

semble modeling), efold will predict the native topology as the topology of size k with

the best probability as computed by equation 3.8.

Once a native topology has been predicted, efold selects a subgraph (out of the complete

conformational energy landscape graph) that contains all transition states involved in

trajectories connecting the unfolded state with the predicted native topology. efold

assigns a weight for each transition (i.e., edge in the subgraph) based on the folding

dynamic predictions previously computed (see section 3.6). The weight of a connection

between two conformational states i and j (i.e., an edge in the subgraph) is computed

by equation 3.16. In this equation P i
t�

corresponds to the occurrence likelihood of the

conformational state i at time � as computed by equation 3.13. � is the simulation time

for which efold computed the maximum likelihood for state j. Qi,j is the set of states

that share an incident edge with j. Equation 3.16 can be understood as the transition

probability of going from state i to state j in time �.

weighti,j =
P i
t�∑

s∈Qi,j
P s
t�

(3.16)

The size of the computed subgraph is many orders of magnitude smaller than the original

graph and its tractably size allows for a complete exploration of protein pathways. efold

performs a DFS traversal in this subgraph to extract the set of trajectories that connect

the unfolded, intermediate and native states. The weight of each path recovered from the

DFS traversal is estimated as the minimum of edge weights between two nodes comprising

the folding trajectory. This weight represents the probability that this specific trajectory

arises from the network of folding pathways.

The analogy of considering protein folding as a flow arising in a network of (un)folding

pathways at a coarse grained free energy landscape has been already adopted by previous

studies [205–207]. Following this analogy, each edge’s weight (a.k.a. capacity) represents
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the maximum amount of flow that can pass through this specific edge. The weight of each

reported pathway (a.k.a flow) represents the probability that this specific trajectory arises

from the network of folding pathways. The unfolded (which will be called the source)

and native (which will be called the sink) nodes are distinguished from this network. In

this modeling, the flow satisfies the restriction that the amount of flow into a node equals

the amount of flow out of it (except for the source and sink, which have only outgoing

and incoming flow, respectively).



Chapter 4

Experimental Framework and

Results

4.1 Experimental Framework

efoldmodels secondary structure elements through a coarse-grained representation. This

representation enables an efficient design of the combinatorial scheme for exploring the

complete conformational landscape, while retaining enough information to allow further

3D structure reconstruction [208]. efold allows for the complete enumeration of all

admissible β-sheet topologies and computation of the Boltzmann partition function over

all attainable protein topologies. These topologies are then scored (or penalized) based

on their agreement with evolutionary inferred contacts. Finally, efold enumerates and

ranks all β-sheet topologies to build a coarse-grained energy landscape that is then used

to calculate the folding dynamics (see section 3.3 to review all the methodological details).

efold predicts folding transitions from a random coil to the native state as a path

through varyingly folded protein conformation states. This transition through confor-

mation states is represented as a graph, where vertices are the most energetically ac-

cessible and favourable conformation states for a given topology (previously generated

by the Boltzmann ensemble sampling method). Graph edges represent the transition

91
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between two conformation states, where conformations connected by an edge are com-

patible topologies with similar structure. Finally, the graph is modeled as a flow network

to represent folding trajectories as paths in the graph (see section 3.6.2 for a review of

efold methodological details).

Given the stochastic nature of efold, we run one hundred independent runs of the algo-

rithm for each prediction during the proposed experimental framework. efold’s predic-

tions are then computed as the average across the 100 runs. The main goals of performing

multiple runs are the obtention of an accurate representation of what efold really pre-

dicts and the obtention of trajectories with small folding flux (which could not appear

if the number of simulations is small). The prediction of trajectories which are less

populated is important given that those trajectories could represent new insights about

alternative folding routes in proteins. The number of runs (i.e., 100) was selected because

it represents a fair balance between the required computational resources and the goals

aforementioned.

Due to the limited experimental folding dynamics data available, a complete validation of

the protein folding predictions is difficult. Nonetheless, the versatility and speed of efold

allows for a broad range of experiments that aim to validate directly (when possible) and

indirectly the performance of our method. Figure 4.1 depicts the proposed experimental

framework to validate the predictions of efold. Four main experiments were performed

to estimate the precision of efold’s pathway and structure predictions.

In Experiment 1, the precision of efold to predict coarse-grained folding pathways

(i.e., sequences of representative intermediate states modeled as β-residue contacts) is

computed. This computation is performed by simulating the folding landscape of proteins

for which pathways have been elucidated through previous experimental studies and MD

simulations. To be more specific, the folding landscape of two gold standard proteins

(Protein G and Ubiquitin) are explored (See section 4.1.2 for more details). These proteins

were chosen because they have played a central role in protein folding studies by being

the system of choice in a vast body of experimental and theoretical studies. The results

of this experiment can be seen in section 4.2.1.
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Given the diversity of protein structures (i.e., the native and denatured states), and

differences in sequence AA compositions, extracting the general rules of protein folding

is difficult when only studying the folding of individual proteins. Two different strategies

have been shown suitable in biophysical studies to extract general rules from the protein

folding process. The first approach works by comparing the mechanisms of proteins

with a high degree of sequence identity, but different 3D structures (or pathways). The

second strategy studies proteins sharing the same overall fold, but different sequence (i.e.,

members of the same protein family).

Experiment 2 follows the first strategy and investigates the folding properties of engi-

neered proteins with a high degree of sequence identity, but with different 3D structures

and/or different folding pathways [209–213] (see section 4.1.3 for more details). This

set of proteins represents a great opportunity to elucidate relationships and dependency

between efold, sequence information, protein structure and folding mechanisms.

Experiment 3 adopts an opposite point of view and analyzes the rules that govern

the folding of several proteins families (Pfam) [214] by comparing proteins that differ

in sequence but share the same overall fold. Sixteen proteins belonging to four Pfam

families (PF00018, PF00014, PF00240, and PF01423), with available folding pathway

data, were selected to investigate the existence of common folding intermediates between

the members of the same protein family (see section 4.1.4 for more details of the data

benchmark). The results of Experiments 2 and 3 will be explored in sections 4.2.3

and 4.2.2, respectively.

The prediction of residue-residue contacts has already been proved useful in reconstructing

protein backbones by providing information to determine accurate 3D protein structures

[179]. Accurate prediction of SS and residue contacts is a major step to correctly pre-

dicting folding pathways. In general, the predictors of residue-residue proximity in folded

structures are based on the existence of interdependent changes in groups of variable AA

belonging to a protein family of homologues. Even though efold is not an algorithm

developed to predict residue-residue contacts, we evaluated the prediction capabilities

of efold to recognize contacts involved in SS. Therefore, Experiment 4 evaluates the

precision and sensitivity of efold for predicting residue-residue contacts and SS on a
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data set of 125 proteins (see sections 4.1.7 and 4.1.5 to review the validation metrics and

protein benchmark, respectively). Experiment 4 also studies the performance of efold

when compared to the state of the art algorithms. The results of this experiment are

described in the section 4.2.4.

The complete set of proteins used during the experimental framework are listed in Ap-

pendix A.
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Figure 4.1: Experimental Framework to validate efold

The experimental framework is composed of four main experiments (represented by
rows in the matrix). Each experiment focuses on one research goal hypothesis

(represented by the first and second column in the matrix) through the analysis of
efold’s simulations on a specific protein data benchmark (represented by the third
column in the matrix). The predicted data is compared agains protein test data

(represented by the fourth column in the matrix) using different validation protocols
and metrics (represented by the fifth column in the matrix).
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4.1.1 Input and Parameters

efold inputs consist of i) a single AA sequence, ii) a set of parameters controlling the size

and complexity of the conformational landscape to be explored, and iii) an optional string

(of same length than the AA sequence) representing evolutionary sequence information.

For the proposed experimental framework, the AA sequences of proteins are extracted

directly from a FASTA file1 stored in the PDB archive. The set of parameters that

control for the size of the conformational landscape includes the number and lengths of β-

strands, and the minimum inter-strand loop size. These parameters control the size of the

landscape by imposing steric and biologically derived constraints that valid foldings must

satisfy. The values of these three parameters are directly extracted from the corresponding

pdb file2. The number and (maximum and minimum) length of β−strands are extracted

from the pdb section called ‘secondary structure assignment’, and the minimum inter-

strand loop size is defined as the minimum difference of AA positions between any two

β−strands. The last input (a string representing evolutionary sequence information)

allows for the identification of residue contacts from evolutionary information and/or

predicted secondary structures. The contribution of the evolutionary information to the

score computed by the ensemble-modelling is adjusted using parameter γ. The value

for γ is determined by the number of homologous proteins in the MSA associated with

the tested protein (i.e., the amount of information available in the MSA). Particularly,

this value is obtained from a sigmoidal function that has as range [0, 4 × L], where L

is the length of the sequence. A value of one for this parameter puts all weights on

statistical contact potentials (i.e., ensemble-modeling), while a value of zero has weights

rely completely on evolutionary inferred contacts (see equation 3.9 in Chapter 3 for further

details). The sequence information used in the following experiments were obtained from

β − β residue contact predictions computed by bbcontacts (see section 3.2.2).

1A FASTA format is a text-based format for representing protein sequences, in which AA are repre-
sented using single-letter codes

2A pdb format is a text-based format for representing protein molecules. The file provides a descrip-
tion and annotation of protein structures including atomic coordinates, observed sidechain rotamers,
secondary structure assignments, as well as atomic connectivity
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4.1.2 Protein Benchmark to validate Experiment 1

The precision of efold to predict coarse-grained folding pathways (i.e., sequences of rep-

resentative intermediate states modelled as β-residue contacts) is computed by simulating

the folding landscape of proteins for which pathways have been elucidated through previ-

ous experimental studies and MD simulation. More precisely, the folding landscape of the

Protein G and Ubiquitin is explored. Due to their small protein domains, these proteins

have represented ideal candidates for the elucidation of their folding pathways [215, 216].

The B1 domain of protein G, generally called GB1 or Protein G, has represented an ideal

candidate for a vast number of different studies because of its small size and simple highly

symmetrical topology. Protein G is 56 AA in length (regular α/β structure). Protein G

fold consists of 4-stranded β-sheet and an α-helix tightly packed [217]. Protein G folds

through three intermediate states. These states feature a near-native helix along with

hairpin 1 (I1 intermediate), hairpin 2 (I2), or the β1 − β4 sheet (I3). Previous work

[218, 219] reported an early formation of the second hairpin (β3 − turn − β4) and its

fundamental role in the folding process. Additionally, this second hairpin centers around

known nucleation points W43, Y50, F54 that are strongly stabilized by three hydrophobic

residues W43, Y45 , F52 [216]. Different folding pathways are observed, each involving

the formation of its own assembly: helix-second hairpin, helix-first hairpin, and β1− β4

sheet. All pathways appear to converge in the same folding nucleus.

Ubiquitin is a small protein (76 residues in length) that has a highly structured native

state which is very stable. Its high stability may be linked with the function of ubiquitin.

Ubiquitin covalently attaches to lysine side chains in proteins and marks them for degra-

dation by a proteasome. The folding of ubiquitin is two-state under most conditions.

However, an intermediate can be stabilized and become populated during folding using a

number of methods ( e.g., the use of a stabilizing salt such as sodium sulfate [220]).
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4.1.3 Protein Benchmark to validate Experiment 2

A novel engineering approach has allowed for a set of proteins to be obtained with high

sequence identity but different structure and function [209–211]. Two different wild-type

protein domains from streptococcal protein G, called GA and GB, show an increasing

degree of sequence identity (starting from 1% to 95%). GA displays a three-helix bundle

fold, and GB is a α + β Protein G fold. Table 4.1 shows the percentage identity be-

tween different variants of the wild-type protein. This set of proteins represents a great

opportunity to elucidate the relationships and dependency between efold, sequence in-

formation, and folding mechanisms. This comparison of sequence versus structure is also

useful when analyzing the sensitivity of efold to changes in the AA sequence.

Two mutants of protein G (called NuG1 and NuG2) were created to alter the proteins

folding behavior, while maintaining the same secondary and tertiary structure [212, 213].

A reversed folding pathway (when compared to the wild type) was obtained by increas-

ing the intrinsic stability of the first hairpin and decreasing that of the second hairpin.

Results show that the first β-hairpin is now formed first in mutants, and the second hair-

pin is disrupted by the rate limiting step. Mutants fold 100-fold faster, are more stable,

and have a reversed-folding pathway when compared with the wild type, but all of them

still maintain a high sequence and structure similarity. Table 4.1 and figure 4.2 show

the percentage identity and point mutations between Protein G and different variants of

the wild-type protein. These mutants represent an opportunity to study folding path-

ways within efold in cases where several different routes to the native state are equally

consistent with the native state topology.
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Figure 4.2: Folding variants of Protein G

Point mutations of the tested variants of Protein G
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Protein WT GB95 GA95 GB88 GA88 GB77 GA77 GB30 GA30 GB1 GA1 NUG1 NUG2

WT 100 63 58 65 54 72 50 83 17 88 13 68 68
GB95 100 95 93 92 90 88 74 54 67 45 54 55
GA95 100 92 97 84 93 68 59 61 50 48 50
GB88 100 88 93 84 77 50 70 42 55 59
GA88 100 81 97 65 63 58 54 45 47
GB77 100 77 84 43 77 34 59 61
GA77 100 61 67 54 58 43 45
GB30 100 31 93 24 68 68
GA30 100 24 92 18 20
GB1 100 17 75 75
GA1 100 13 14
NUG1 100 80
NUG2 100

Table 4.1: Sequence identity between different variants of the wild-type Protein G.

The variants identified as GA1, GA30, GA77, GA88, and GA95 correspond to the GA fold,
and GB1, GB30, GB77, GB88, and GB95 correspond to the GB fold.

4.1.4 Protein Benchmark to validate Experiment 3

PF0018 - SH3 Domain:

Due to its small size and multiple homologues, SH3 domain has been widely studied to

address various important aspects of protein folding, such as the synergistic relationship

between experiments and simulations, the nature of protein folding transition state en-

semble (TSE), the relationship between protein topology and the folding pathway [221].

SH3 is composed of two orthogonally packed β-sheets that form a single hydrophobic core

[222]. The first sheet consists of three central strands of the protein (β2− β3− β4). The

second sheet contains two terminal strands (β1−β5) and a portion of the RT loop. There

is also a small 310 helix between β4 and β5 [223]. It has been shown that the structure

within the transition state ensemble is highly polarized with a hydrogen bonding network

associated between two β-turns. The denaturation of the N and C termini, turns and

loops, and a small amount of SS located in the central β2−β3−β4 are general features of

the SH3 TSE [222] . The distal β-hairpin and diverging turn are formed in the transition

state and all conformations in the TSE have the β2−β3−β4 formed [224]. Experimental

results have also shown that β2, β3, and, to a lesser extent, β4 strands are the most

ordered regions of the TSE.

Protein engineering studies suggest that the folding pathways of SH3 domain may be
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evolutionarily conserved and that its topology may play an important role in determining

the folding pathway of this structure. Furthermore, L24 has been shown experimentally

to be involved in the TSE and a highly conserved position in the SH3 fold family [222, 225].

Kunitz Domain:

Kunitz domains are relatively small with a length of about 50 to 60 amino acids. Exam-

ples of Kunitz-type protease inhibitors are aprotinin (bovine pancreatic trypsin inhibitor,

BPTI), Alzheimer’s amyloid precursor protein (APP), and tissue factor pathway inhibitor

(TFPI). From them, BPTI is one of the most extensively studied globular proteins and

was the first well-documented case of the disulfide folding pathway. BPTI is a Kunitz-

type protease inhibitor which comprises 58 amino acids and three disulfides-bonds in its

native form. Its structure is a disulfide rich α + β fold. Disulfide-bonds occur between

cysteine residues 5-55, 30-51 and 14-38.

The BPTI folding pathway is primarily a five-state system that includes the unfolded and

native forms. In the second state, the formation of the native disulfide 30-51 predomi-

nates. In the third state, non-native disulfides 5-14 and 5-38 rapidly interconvert between

each other and the native 14-38, with 30-51, remaining stable. In the fourth state, BPTI

must pass through the intermediate, which contains the native disulfides 30-51 and 5-55

[226]. NMR exchange data indicates the formation of a fully folded sheet with subsequent

helix formation during the folding process. The pathways involve the full association of

the 3-stranded sheet (β1, β2 and β3), followed by the C and N terminal helices α2 and

α1, respectively. The initial formation of the 30-51 disulfide is in agreement with the

early formation of the β1β2β3 sheet and its association with α2. By incorporating α1

in the complex, the disulphide bonds 5− 55 can be formed. Finally, disulphides 14− 38

are formed when the loops form [226]. SS form early during the folding, which is then

followed by docking and packing of preformed SS units to form the native tertiary struc-

ture [134].

LSm PF01423:

Two sequence motifs (named Sm1 and Sm2) have been identified through the comparison
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of various LSm homologs. The size of the Sm1 and Sm2 motifs are 32 and 14 AA long,

respectively. The Sm1 sequence motif corresponds to the β1, β2, β3 strands, while

Sm2’s motif corresponds to β4 and β5 strands. These sequence motifs are conserved and

separated by a non-conserved region of variable length. This fact suggest that all LSm

protein genes evolved from a single ancestral gene [227].

4.1.5 Protein Benchmark to validate Experiment 4

BetaSheet916 benchmarking dataset was created from entries in the Protein Data Bank of

May 2004 by Cheng [228]. This benchmark contains 916 chains (corresponding to 187,516

residues) determined by X-ray diffraction with a resolution of 2.5Å or better. All protein

chains contain standard AA with a length greater than 50. The sequence identity in the

dataset is guaranteed to be 15− 20%. 48,996 of the residues are β-residues participating

in 31,638 interstrand residue pairs. The dataset has 10,745 β-strands with an average

length of 4.6 residues and 8,172 β-strand pairs, including 4,519 antiparallel, 2,214 parallel

and 1,439 pairs involved in isolated β-bridges. These strand pairs together form 2,533

β-sheets. The average sequence separation between residue pairs and strand pairs is 43

and 40 AA, respectively.

BetaSheet916 set is routinely adopted as a benchmark set for β-sheet prediction meth-

ods. efold is not a method designed for SS predictions alone. However, BetaSheet916

represents a considerable corpus of proteins with low identity to validate the accuracy of

efold through a large folding space. The current version of efold can predict the fold-

ing pathways of proteins with up to 200 AA in length, and explore β-sheet architectures

composed of up to 6 different β-sheet strands. A total of 125 proteins were selected out

of the 916 data set to be modeled by efold.

The full protein benchmark can be found in Appendix A.3.
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4.1.6 Metrics to validate Experiments 1, 2 and 3 (folding path-

ways predictions)

Clear structural information on the intermediate states that bridge between the unfolded

and native states is required to acquire a clear identification of protein pathways. Ex-

perimentally determining these intermediate structures in real proteins has proven to be

exceptionally difficult. Traditional methods, such as crystallography and NMR, are not

able to define partial structures that form and/or decay in short time rates (i.e., less than

one second). Modern methods use kinetic measurements to quantify the folding process

providing time-scale based views of the folding process. Hydrogen exchange methods

study folding intermediates as significantly populated forms during kinetic folding, con-

formationally excited forms present at equilibrium under native conditions, or equilibrium

molten globule forms [229]. Experimental methods based on spectroscopic (such as fluo-

rescence, circular dichroism [CD] and infrared [IR]) follow kinetic folding in real time but

are blind to the specifics of structure. The protein folding process can be monitored in

CD spectroscopy through the average formation of SS of the protein.

Given the level of pathway information that can be extracted from efold, we validate

the prediction of folding pathways (in Experiment 1,2 and 3) by comparing the order

of SS formation with known experimental results and MD simulations. Given that efold

stochastically extracts the predicted pathways through a Boltzmann sampling technique

(see section 3.5.5), we average the pathways of one hundred independent runs to be

used as our prediction (examples of results for single runs can be found in Appendix

C). Figure 4.3 shows a comparison of SS formation orders for proteins G, NUG1, NUG2,

Ubiquitin, SH3 and LSm predicted by efold with known experimental results. Figure 4.3

only reports the most populated (and probable) pathway predicted by efold. However,

subsequent sections will also analyze less populated pathways predicted by efold.
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Figure 4.3: Comparison of SS formation orders predicted by efold with known ex-
perimental results.

SS formation orders for proteins a) Protein G, b) NUG1, c) NUG2, d) Ubiquitin, e) SH3
and f) LSm Proteins. Grey squares (and brackets) indicate no clear order. Only the
most populated trajectories predicted by efold are shown. Each internal node in the
tree represent a new pair of β interactions and nodes that are higher in the three

indicate earlier interactions. The length (and angles) of branches do not have a specific
meaning
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4.1.7 Metrics to validate Experiment 4 (residue contact predic-

tions)

Experiment 4 quantifies and evaluates the ability and capability of efold to predict

protein topologies through the prediction of residue-residue contacts in the protein bench-

mark dataset of 125 proteins. The performance of efold is measured in terms of preci-

sion (i.e., no. of correctly predicted contacts
no. of predicted contacts

), sensitivity (i.e., no. of correctly predicted contacts
no. of observed contacts

) and

the weight average of the precision and recall (called F-measure, i.e., 2×precision×sensitivity
precision+sensitivity

).

The number of predicted contacts is extracted from the stochastic contact map (that

represents the probability of observing a given contact) predicted by efold. The number

of observed contacts is extracted from the pdb file at three different levels: contact,

strand and β/β-contacts. Residue contacts are defined as all pairs of AA that contains

Cα atoms less than 8Å apart in the pdb file. Strand contacts are residue contacts that

are involved in SS. Finally, β/β-contacts are pairs of residue contacts that share an intra-

backbone hydrogen bond as defined by the software DSSP. We classify the residue contacts

(i, j) with their sequence separation x = |i − j|. Quality metrics are also estimated for

short range (x < 12 i.e., less than 12 residues apart), medium range (12 ≤ x < 24,

between 12 and 23 residues apart), and long range contacts predictions (x ≥ 24). Given

that efold predicts distributions of structures rather than single structures, the evalua-

tion is performed on exact and approximate contacts (i.e., a prediction ±2 position apart

of an observed contact) to take into account the neighbours of the true contact. In order

to illustrate the quality of β-residue contact predictions achieved by efold, we compare

its predictions with the ones obtained by state of the art methods.

In order to explore the impact of different sources of evolutionary sequence informa-

tion, the proposed experimental framework was tested using as input the predictions

computed by four different algorithms. efold was tested on secondary structure assign-

ments (derived by the DSSP software), secondary structure predictions (derived by the

PSIPRED software), residue contacts (derived by the EVfold software), and β − β residue

contacts (derived by the bbcontacts software) as sources of sequence information. In

other words, the framework proposed in figure 4.1 (for experiment 4) was run for each
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available evolutionary sequence information methodology (see section 3.2 for more de-

tails). It is important to stress that this analysis is performed to benchmark efold under

different influences of evolutionary sequence information and is not meant to provide a

performance-based ranking between the four algorithms. For simplicity, all results de-

scribed in this chapter are shown for simulations that used bbcontacts software as input.

However, the trends described also hold true for simulations using the other software. A

complete set of results may be found in Appendix B.

4.2 Results

4.2.1 The predicted folding landscapes agree with pathways elu-

cidated by experimental studies and / or MD simulations

4.2.1.1 Protein G

Figure 4.4a depicts the predicted folding transitions of Protein G. This figure reveals that

the folding intermediates are consistent with previous literature reports [218, 219]. These

results suggest an early formation of the second hairpin (β3− turn− β4) and emphasize

its fundamental role in the folding process. The second hairpin is known to be centered

around nucleation points W43, Y50, and F54, where it is strongly stabilized by three

hydrophobic residues W43, Y45, F52 [216]. Our results show a later formation of the

first hairpin (β1− turn− β2) in addition to the second hairpin. Overall, our simulations

identified two folding pathways (blue and yellow pathways in figure 4.4a). These pathways

passed through a helix− hairpin2 complex, a helix− hairpin1 complex and a β1− β4

sheet complex. These two complexes are in agreement with previous studies suggesting

that Protein G folds using three intermediates [216, 230].

The most probable pathway predicted by efold (see blue pathway in figure 4.4a) describes

the folding process as the sequential assembly of elements from the super secondary

structure. The first folding event is the formation of the (β3− turn− β4) hairpin. The

second event is the formation of the (β1− turn− β2) hairpin, and, finally the nucleation
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of the β-sheet residues between β1 − β4 completes the formation of the central part of

the β-sheet completing the correct topology (See figures 4.3 and 4.4).

Figure 4.4b allows for a detailed understanding of the simulated folding dynamics of

Protein G. It demonstrates how the probability of observing any of the reachable confor-

mations changes over time. At the end of the folding process, the correct conformation

topology β3Aβ4Pβ1Aβ2 (see section 3.5.2 for a description of the used notation) emerges

as the dominant topology in our simulations. The topology with the second best prob-

ability corresponds to β3Aβ4Nβ1Aβ2, which is the topology obtained after creation of

the first and second β-hairpins and just before the nucleation process to form the β1−β4

assembly. The topology β3Aβ4 presents the highest peak (around Log(Time) -1.5). This

topology corresponds to the second hairpin, and has been reported to play a fundamen-

tal role during the folding [216]. The picture emerging from the dynamic simulations is

in agreement with previous dynamics experiments and simulations of Protein G folding

[215]. The most probable first folding event is the formation of the second β-hairpins,

followed by β3Aβ4 β1Aβ2 (Log(Time) −0.5), and finally the nucleation of the β-sheets

residues between β1 and β4 (Log(Time) 0), which results in the formation of the correct

fold topology (i.e., β3Aβ4Pβ1Aβ2).

4.2.1.2 Ubiquitin

Figure 4.5a shows the flow network prediction for the Ubiquitin protein resulting from

efold. Our simulations are again in agreement with previous experimental results and in-

silico simulations. In our simulations, the topology (β2Aβ1Pβ5Aβ3) represents a funda-

mental transition state in folding trajectories because it is the state with the largest incom-

ing and outgoing flows with direction to the native topology (i.e., β4Aβ3Aβ5Pβ1Aβ2).

The β2Aβ1Pβ5Aβ3 sheet has been reported as a strongly organized transition state en-

semble (TSE) on which Ubiquitin folds through [231]. The large incoming flow predicted

by our simulations also agrees with the heterogeneity attributed for this transition state.

It has been reported that this TSE may contain subpopulations with additional struc-

ture formation, where its structure can be spread in different directions (adding more
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Figure 4.4: Predicted transition from a random coil to the native state of Protein G.

a) Folding trajectories are represented as paths in a flow network of varyingly folded
protein conformation states. Nodes represent energetically accessible conformation

states. Edges represent the transition between two conformation states. Conformations
connected by an edge are compatible topologies with structure similarity. Each node

has its capacity and flow values labeled. The wide of the line represents how populated
is a specific trajectory b) The predicted folding dynamics of Protein G, which shows
how the probability of observing any of the reachable topologies changes over time the

protein folds.
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β1−β2 or β3−β5 structures). During the folding of Ubiquitin, the topology β1Aβ2 ac-

quires native-like conformations and is stabilized by tertiary interactions with the α-helix

[232–234] (See figure 4.3). Next, strand β5 and β3 are joined to form the core structure

[231, 235].

The dynamics of folding intermediates of Ubiquitin is shown in Figure 4.5b. Our simu-

lations predict the correct fold topology with the highest probability at the end of the

simulation. The precision of this topology for approximate contacts (i.e. ±2 positions)

averages around 58.81% and 69.53% for contact and inter-strand predictions, respectively.

These results show that the predicted topology is an ensemble of conformations contain-

ing contact residues around the native conformation. The topology (β2Aβ1Nβ5Aβ3)

and (β2Aβ1Pβ5Aβ3) have the second and third highest probabilities and they empha-

size the importance of the four-stranded sheet complex during the folding process. The

transition paths of Ubiquitin are also consistent with experimental and in-silico results

[231, 235]. Our coarse grained simulations suggest the formation of β1Aβ2 and β1Pβ5

sheets during the first folding steps. Next, the topologies β2Aβ1Pβ5, β3Aβ5Pβ1 and

β2Aβ1Nβ5Aβ3 are formed. It is important to stress that all of these topologies have the

central strand β5 in common, which emphasizes the ability of the algorithm to identify

the critical structural component through modelling non-local contacts. Once all elements

are folded, the four-stranded sheet network (β2Aβ1Pβ5Aβ3) starts to form around the

Log(Time) −1. At Log(Time) 0, the native topology (β4Aβ3Aβ5Pβ1Aβ2) emerges as

the dominant conformation at the end of the folding process.

4.2.2 efold is able to predict the heterogeneity of folding path-

ways for proteins with high sequence identity.

4.2.2.1 Proteins GB, NUG1 and NUG2

The predicted folding transitions for the GB folds is shown in figure 4.6a. Focus is given

to the GB folds given that efold is an algorithm for modeling the folding process of large

β-sheet proteins, such as the α + β fold reported by the GB folds. The most populated
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Figure 4.5: Predicted transition from a random coil to the native state of Ubiquitin.

a) Folding trajectories are represented as paths in a flow network of varyingly folded
protein conformation states. Nodes represent energetically accessible conformation

states. Vertices represent the transition between two conformation states.
Conformations connected by an edge are compatible topologies with structure

similarity. Each node has its capacity and flow values labeled. b) The predicted folding
dynamics of Ubiquitin, which shows how the probability of observing any of the

reachable topologies changes over time the protein folds.
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pathway predicted by our simulations is shown in figure 4.6. This path implies a first

folding event corresponding to the creation of the β1−β4 sheet followed by the formation

of the second and first hairpin. This path is completely different to the paths predicted

for the wild type of Protein G (See section 4.2.1). Then, our results proposes a different

pathway route of the Protein G variants and our results agree with the evidence that

Protein G variants exhibit distinct folding routes, where the main difference between

them is the order of formation for the β-strands [236]. Analyzing the point mutations

between the Protein G variants and the wildtype forms (see figure 4.2), it can be stated

that the selection of the folding pathway is highly influenced by the mutations located

between the start (E24) and end (K36) of the α−helix. These mutations affect the folding

of the helix and its early interaction with the second hairpin (β3 − turn − β4). In our

simulations, the formation of the first hairpin (β1− turn− β2) is delayed and it is only

present at the end of the simulation. This results is in agreement with previous studies

that establish that the second β-hairpin is stable in isolation and it can stabilize itself

to some extent independently of the rest of the protein, whereas the first hairpin cannot

[237].

Figure 4.6b shows the predicted folding transitions for the NUG1 variant. Compared with

the trajectories predicted for the wild type version of Protein G, it is important to notice

that the hairpin β1 − β2 plays an important folding role in NUG1. Furthermore, based

on our simulations, the topology β1− β2 is the topology with the maximum flow and it

represents an early event during the folding process. This result is consistent with the

experimental results in [213] and the predictions in [238, 239] (see figure 4.3). In our

predictions, the hairpin β1−β2 presents a parallel interaction with the strand β4. Based

on our predictions, this is the most populated route and it agrees with experimental

results that suggest that in the folding process, the second hairpin (i.e., β3−β4) disrupts

at the rate limiting step in folding. Finally, there are other two less populated pathways

(i.e., yellow and red pathways in figure 4.6b) in our predictions. These two pathways

have not been previously found by experimental results, but they could be present given

that the redesigned first hairpin of NUG1 is less rigid than the wild type and NUG2,

counterpart [212].
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Figure 4.6c shows the predicted folding transitions for the NUG2 variant. Similar to the

NUG1 simulations, the hairpin β1−β2 is present as an important and early folding event.

In our simulations, the hairpin β1 − β2 is formed in the transition state of the folding

pathway and serves as the starting point on which the rest of the protein can fold (see

figure 4.3). This results agrees with experimental and in-silico results [213, 238, 239].

After the creation of the first hairpin, β1− β2 interacts with either β1− β4 or β3− β4.

In the former’s case, the hairpin β1−β2 is formed along the entire transition path, and is

soon associated with β4, while β3 remains unfolded. In the latter’s case, both hairpins are

formed near the middle of the transition paths, but the level of hairpin-hairpin contact

is lower (as shown by topology β3Aβ4Nβ1Aβ2). This order of structure formation has

been observer previously by all-atom MD simulations in a triple mutant of NUG2 [240].

4.2.3 efold reveals the conservation of folding intermediates in

evolutionary related proteins

4.2.3.1 PF00014 family

Figure 4.7a reports the predicted folding transitions for proteins belonging to Pfam

PF00014. Proteins 1D0D, 1BUN, 1BIK and 5PTI were used in our simulations. This

figure demonstrates that there are two pathways that are recurrent in all our simulations.

From them, the pathway that conducts to the topology β2Aβ1Aβ3 is the most represen-

tative and it was found in 92% of our simulations. The topology β1Aβ2 was traversed

for all our simulations.

The folding pathways of disulphide proteins are known to vary substantially [187]. It

has been shown that two of the structurally homologous kunitz-type protease inhibitors,

bovine pancreatic trypsin inhibitor and tick anticoagulant peptide, are heterogeneitic in

their folding intermediates and kinetics [134]. The simulated proteins in our benchmark

represent three different kunitz-type protease inhibitors. Proteins 1D0D and 5PTI are

bovine pancreatic trypsin inhibitors (BPTI), 1BUN is a serine protease inhibitor homolog
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Figure 4.6: Predicted folding transition of the variants of protein G.

a) Predicted folding trajectories for the GB folds. b) Predicted folding trajectories for
the NUG1 fold, and c) Predicted folding trajectories for the NUG2 fold.
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beta-bungarotoxin B2 chain, and 1BIK is a Alpha-1-Microglobulin/Bikunin Precursor

(AMBP) protein.

The BPTI simulated proteins traverse its folding pathway through the β2Aβ1Aβ3 in

82% of our simulations. On the other hand, the topology β1Aβ3Aβ2 was traversed

in only 30%. Then, the BPTI simulated proteins show a dominant folding pathway

with an early formation of their secondary structures. These results are consistent with

experiment results that suggest BPTI as the stable subdomain structure dictating the

formation of native-like intermediates and limiting the heterogeneity of folding interme-

diates [226]. The pathway traversing the topology β2Aβ1Aβ3 is also the most probable

for the AMBP protein (100%). However, topology β1Aβ3Aβ2 is found in a majority of

the simulations (90%) as well. The latter’s pathway provides an interesting suggestion

for an alternate folding route of disulphide proteins and could represent heterogeneitic

folding intermediates for the PF00014 family.

4.2.3.2 SH3 - Domain

The predicted flow network for proteins with the SH3 domain are shown in figure 4.7b.

Proteins 1OOT, 1I0C, 1NEG and 2HDA are used to simulate the transitions from a

random coil to the native state. The four stranded β1Pβ2Pβ3Pβ4 conformation (yellow

path in figure 4.7b) is present in 81% of the simulations. SH3 domains were shown to

agree with the formation of the β1Pβ2, β2Pβ3, and β3Pβ4 motifs. Previous findings

[241] suggested this topology as a metastable folding intermediate. The intermediate

conformation has been shown to be highly aggregation prone, as it exposes strand β1

[242]. Thus, the formation of the native strand β5 (i.e., the last folding step in the path)

is critical in preventing aggregates during folding.

The two predicted pathways by efold cross through the β2Pβ3Pβ4 topology. This

structure is common to all the domains simulated and represents a central (hydrophobic)

sheet. Experimental results suggest that the second, third, and fourth β-strands are the

most ordered regions of the TSE [222] (see figures 4.3 and 4.7). Transitioning from the

β2Pβ3Pβ4 topology, the folding trajectories branch into two distinct pathways (i.e., red
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and yellow paths in figure 4.7b). The reported pathways complete their folding process

with the formation of the second sheet (a less structured topology [223]) by the addition

of two terminal strands β1 and β5. It is important to stress that this protein does not

contain α-helix motifs, showing that efold is able to correctly model β-strands motifs in

the absence of other secondary structures.

4.2.3.3 Ubiquitin-like - Domain

Figure 4.7c portrays the predicted folding transitions for proteins belonging to the Pfam

family with index PF00240. Proteins 1CMX, 1EUV and 1UBQ were used in the sim-

ulations. The topology β2Aβ1Pβ4Aβ3 was shown to be the most conserved topology

for this family. This topology corresponds to the organized TSE that consist of a four-

stranded sheet network (i.e,. β2Aβ1Pβ5Aβ3) in the folding pathway of the Ubiquitin

protein (see section 4.2.1.2). Contrary to the simulations targeting the ubiquitin protein,

simulations for the PF00240 do not show β3Pβ1Pβ2 as a populated topology. The two

most populated paths (blue and yellow in figure 4.7c) cross through topologies β3Aβ4,

showing concordance with the Ubiquitin folding suggested from previous experiments (see

section 4.2.1.2). The strand β4 is present in all paths that transition to the final topology.

β4 is the central strand and a critical structural component in the Ubiquitin topology

[232].

The β2Aβ1Pβ4Aβ3 topology is topographically related to Protein G because the order,

positions, and stretches of their secondary structures are identical. This similarity has

been shown to be present in the Ubiquitin family and in other proteins with biologically

distinct functions, such as the (Ig)-binding protein G [243, 244]. This common fold is

termed the β-grasp and has been suggested to be a multi-functional scaffold in diverse

biological contexts [245]. Studies have proposed that these proteins belong to the same

superfamily (i.e., identical folding, but highly diverged sequences) and retain the identity

of sequence positions that participate in the folding nucleus [246]. Monte Carlo simu-

lations have previously identified nucleus positions that are conserved among structures

with homologous folds for Protein G and Ubiquitin [230]. Shimada et.al.(2002) identified

nucleus residues in hairpin 1 (Y3 and L5), the helix (F30), and the hairpin 2 (W43, Y45,
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and F52). All of these residues show a low sequence entropy over aligned sequences in

the Ubiquitin superfamily [246]. With respect to our simulations, these residues were re-

ported to participate in most of the predicted pathways, which highlights the importance

that efold confers to these residues. The aligned sequences in the Ubiquitin superfam-

ily (with respect to the protein G) report that residues L5:K6, F30:V26, W43:L43, and

Y45:F45 have a presence of 99.52%, 82.54%, 85.37% and 42.45% in the reported pathways,

respectively.

4.2.3.4 PF01423 family

The predicted folding transitions for proteins belonging to the Pfam PF01423 are shown

in figure 4.7d. Proteins 1KQ1, 1HK9 and 1H64 were used in the simulations. From this

figure, it is clear that efold predicts only one populated path that corresponds to the

early formation of β1, β2 and β3 strands, followed by the formation of the β4 and β5

strands. These two sets of strands correspond with two sequence motifs (32 and 14 AA

long, respectively) that have been identified between various LSm homologs [227] (See

figure 4.3).

4.2.4 efold on average has greater precision than state of the art

contact residue algorithms for proteins without homology-

based templates.

4.2.4.1 Contact prediction

Figure 4.8 (column ‘Contact Prediction’) reports the results obtained by efold on 125

proteins extracted from the BetaSheet916 benchmark data set (see section 4.1.5 for further

details regarding the benchmark). The proposed method predicts residue contacts with a

high precision for ±2 for all contact separations in the complete benchmark (the precision

value averages around 85%). The precision of exact prediction (i.e., columns ±0) is also

high and it averages around 46% for the short and medium contacts and around 33% for
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Figure 4.7: Predicted transition from a random coil to the native state of the Pfam
families: a) PF00014, b) PF00018, c)PF00240, d)PF01423.

Folding trajectories are represented as paths in a flow network of varyingly folded
protein conformation states. Nodes represent energetically accessible conformation

states. Vertices represent the transition between two conformation states.
Conformations connected by an edge are compatible topologies with structure

similarity. Each node has its capacity and flow values labeled.
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long-range contacts. This result is significant because the precision achieved by state-of-

the-art residue contact prediction algorithms without homology-based templates averages

around 20% [113]. The difference of performance between the experiments for exact

and approximated predicted contacts can be understood by the fact that efold predicts

distributions of structures rather than single structures as measured by the precision

metrics. The sensitivity obtained by efold averages around 15% and 35% for exact

contacts and approximate contacts within ±2 positions, respectively. The performance

measured by the precision versus the sensitivity metrics can be understood by the fact

that efold aims to predict a subset of contacts between residues within SS, while the

benchmark includes all possible types of contacts. The number of false negative values

produced by efold is high compared with the number of false positives.

±0 ±2 ±0 ±2 ±0 ±2±0 ±2 ±0 ±2 ±0 ±2

Strand PredictionContact Prediction

BBContacts

x<12 12≤x<24 x≥24 x<12 12≤x<24 x≥24
±0 ±2 ±0 ±2 ±0 ±2

B-B Prediction
x<12 12≤x<24 x≥24

0

1

0,5
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1

0,5

0
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Figure 4.8: Contact, Strand and β/β predictions performed by efold for the complete
protein benchmark.

Performance is evaluated on precision (green), sensitivity (blue) and F-measure (red) of
experimentally observed contacts. These metrics are reported for contacts which are 0,
12 and 24 residues apart, and when predicted contacts are within ±2 residues of an

observed contact.

4.2.4.2 Strand prediction

Given that efold is focused on the prediction of residue contacts involved in β−strands,

we also calculate the power of efold at predicting inter-strand and β/β residue con-

tacts. The second column in figure 4.8 reports the results of each experiment for contact

prediction of residue-residue contacts involved in β-sheet structures. efold achieves an

excellent F-measure above 70% for ±2 of all contact separations in the complete bench-

mark. Typically, the F-measure for experiment performed using SS averages around 90%.

The average of efold performance metrics are similar to the ones obtained for any type

of short, medium, or long-range contacts in this experiment. As expected, the perfor-

mance metrics reported for efold are more homogeneous than those obtained in the
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unrestrained contact prediction case. The results reported by figure 4.8 confirm the good

performance of efold at predicting residue-residue contacts and incidentally β-sheets. In

average, efold performs better in predicting inter-strand residues than contact residues.

4.2.4.3 β − β Contact residues

In order to obtain a solid basis for comparison and to be able to compare efold results

with other general contact predictors, a residue level comparison was performed. The

third column in figure 4.8 reports the results of our experiments regarding pairs of residues

involved in β/β contacts. efold achieves F-measures above 63% for ±2. The results

for long-range contacts are more spread out (i.e., a bigger 25 − 75 interquartile range)

than short and medium-range contacts. Figure 4.9 reports a comparison of residue-level

performance on the BetaSheet916 benchmark dataset of previous contact and β/β contact

prediction methods, respectively. Analyzing these figures, it can be noted that efold

exhibits better results than those obtained by contact prediction methods. However,

efold is outperformed by β/β contact prediction methods. These results are explained for

the following three reasons: i) efold predicts distributions of structures rather than single

structures as measured by the compared metrics. efold performance is highly penalized

by the increase of a false positive prediction that corresponds to the neighbourhood of

the true residue contact. When analyzing an ensemble of predictions rather than a single

prediction, it is observed that efold outperforms β/β contact prediction methods (see

column ±2 in figure 4.8 and the label ‘efold (±2)’ in figure 4.9). ii) efold was not

built to detect β-bridges, these structures represent 17% of the β−strand pairs in the

BetaSheet916 data set. Most of the state of the art methods (e.g., CMM[247], PhyCMAP

[248], MLN and MLN-2S [249], BetaPro [228], BCov [250]) code information about β-

bridges during the prediction. iii) The state of the art methods use DSSP assignments for

evaluation (with the exception of bbcontacts). DSSP assignments use known secondary

structures, which increase prediction power. When DSSP assignments are compared for

all the methods (see label ‘efold (DSSP)’ in figure 4.9), we observe that efold compares

favourably for precision/recall (i.e., in the same range averaging around 40%) compared to
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β/β contact prediction methods (with the exception of bbcontacts, which outperforms

all other tested methods).
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Figure 4.9: Performance of efold compared to state of the art software

Performance of efold compared to previous β/β (CMM[247], MLN and MLN-2S [249],
BetaPro [228], BCov [250], bbcontacts [183]) and residue contact prediction

(PhyCMAP [248], CCMpred [251] and PconsC2 [252] ) methods on the BetaSheet916
dataset. This figure is based on data reported in [183].

4.2.4.4 Further analysis of efold

From the previous analysis, it is clear that efold is able to compute excellent predictions

in terms of protein residue contacts. Moreover, efold is able to improve its performance

up to an additional 22% if the right prediction decisions regarding the contributions of

its different parameters are made. Figure 4.9 shows, that based on perfect decisions,

efold clearly outperforms the results obtained by contact prediction methods and shows

improved prediction over β/β contact prediction methods. Hyperparameter optimization

was not performed because efold is not a contact residue predictor, instead efold is a

protein folding pathways predictor. Our main interest is not increasing the quantity of

correctly predicted residues, but increasing the quality of predictions. We performed a

large-scale validation of efold structure prediction capacities as a milestone to predicting

folding pathways.
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Given that EVfold and bbcontacts perform predictions of residue contacts, we can ex-

tend the analysis of the efold’s results to understanding the varying performance between

methods. Figure 4.10 answers the following questions: i) What percentage of true efold

predictions were not correctly predicted by bbcontacts/EVfold? ii) What percentage of

true bbcontacts/EVfold predictions were not correctly predicted by efold? iii) What

percentage of wrong bbcontacts/EVfold predictions were correctly discarded by efold?.

From figure 4.10, it can be understood that the number of efold predictions that were

not discovered by the other two methods is very high when the contact and strand level

metrics are used. With respect to β − β predictions, efold outperforms the other two

methods in proteins with low number of detected homologous sequences. Regarding ques-

tion ii), as expected, the number of true contact predictions that were not predicted by

efold is high when compared with the predictions of EVfold. This difference is due

to the fact that efold aims to predict β/β pairs and ignores most residue contacts not

involved in SS. This conclusion can be verified when the strand and residue levels are

analyzed. In those levels, the average of missed residue contacts notably decreased. Fi-

nally, it is important to note that efold was able to discard most erroneous predictions

that entered ensemble modeling as inputs. This result is shared by all the performance

measure metrics (i.e., contact, strand and residue level) for both programs (i.e., EVfold

and bbcontacts).

The schema followed by efold during the modeling of ensembles focuses on β-strands

folds (see section 3.5). However, efold is able to include α-helices in the modeling

thorough the incorporation of evolutionary sequence information. An α-helix prediction

can be achieved from direct SS or 2D contact map predictions. These predictions are

generally very accurate (and dramatically more successful than β-sheet predictions [253])

given that they are comprised by local patterns that can be quite readily detected. The

current accuracy of state of the art methods to predict helices averages around 86%

[254]. Studies regarding the misclassification rates between different SS types establish

that protein SS predictions are more probable to wobble between β−strands - coil and

α-helix - coil [255, 256]. In other words, one can expect that the misclassification of

helical as sheet (or viceversa) residues is lower than the misclassification involving coils

[257]. These expectations are also shared by the benchmark used by efold, where the
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accuracies for α-helix prediction of PSIPRED and bbcontacts are 73.23% and 82.84%,

respectively. The misclassifications of true α-helices as β-strands correspond to 1.56% and

3.82% for the PSIPRED and bbcontacts methods, respectively. The inverse analysis (i.e.,

misclassification of true β-strands as α-helices) shows also very low values where PSIPRED

and bbcontacts mistakenly classified only 1.12% and 0.54% of the true β-strand residues,

respectively. On the other hand, the misclassification of true α-helices as coils is higher

and it corresponds to 13.55% and 13.33% for the PSIPRED and bbcontacts methods,

respectively. Figure 4.10 shows that efold was able to discard most erroneous predictions

that entered ensemble modeling as inputs. Then, the previous results support the idea

that efold can assume helix predictions as accurate (for its purposes). Furthermore,

efoldmanaged (and corrected) the misclassification errors during the ensemble modeling.

Particularly, the noise added to our energy function (i.e., misclassification between α-

helices and β-strands) is very low, and the missing information (i.e., misclassification

between α-helices [or β-strands] and coils) is complemented by efold during the ensemble

modeling process.
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Figure 4.10: Performance of efold compared with the input predictions

Q1 = Percentage of true efold predictions that are not correctly predicted by
bbcontacts/EVfold Q2 = Percentage of true bbcontacts/EVfold predictions that are
not correctly predicted by efold and Q3 = Percentage of wrong bbcontacts/EVfold

predictions correctly discarded by efold.

To validate the energy consistency within the clusters of protein conformations created

by efold, the silhouette metric was computed. Particularly, a silhouette analysis is used

to study the energy separation distance between clusters of protein conformations with

compatible topologies and structural similarity (i.e., nodes connected by an edge in the
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graph that represents varyingly folded protein conformation states). In our study, the

silhouette analysis relates dissimilarities of energies of conformations of different clusters

to dissimilarities of energies of the same cluster (see equation 4.1). The silhouette metric

ranges from -1 to 1, where a value close to one indicates an excellent match between the

conformations that belong to the same cluster and a very poorly match with respect to

conformations belonging to neighbouring clusters. In other words, a high value indicates

that the clustering configuration protocol is appropriate. Negative values in the silhouette

metric indicates that the conformations have been assigned to the wrong clusters because

the intra-clustering similarity is in average lower than the inter-clustering differences.

Finally, a silhouette value near zero means that in average the conformations are on the

border of two or more natural clusters indicating the presence of overlapping clusters.

It is important to stress that the clustering procedure performed by efold is based on

structural similarities of samples (see section for further information). However, the

silhouette analysis is performed taking the energetic values of the protein conformations

as reference. We are interested in studying the consistency of the clusters based on their

energy because the rates of interconversion between proteins states during the folding

dynamics simulations are estimated from the gradient ΔGi,j of energy differences between

two macro states (see equations 3.14 and 3.15). Having consistent energy clusters of

structural similar protein conformations is important to guarantee a logic study of protein

folding dynamics via the master equation method used by efold. The following results

are computed using the full set of proteins tested in this thesis (i.e.,125 proteins).

S =
1

n

∑
i

si =
1

n
× b(i)− a(i)

max[a(i), b(i)]

a(i) =
1

|ci|
∑
j∈ci

d(i, j)

b(i) =
1

n− |ci|
∑

j∈C ci

d(i, j)

(4.1)

The (average) silhouette value measured based on the potential energy of its protein con-

formations (see equation 3.3) is 0.7835. The standard deviation of this measure is equal to
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0.083. On the other hand, the (average) silhouette value using efold’s objective function

(see equation 3.9) as distance is 0.8513. The standard deviation for this value is equal

to 0.127. These values show that the compositions of the clusters computed by efold

are consistent and they are suitable to model the folding dynamics of the system. The

good consistency of efold’s clusters is supported by the mechanism used to construct

the clusters. Particularly, clusters joined by an edge in the graph are identical to each

other, modulo the addition or removal of a single β-strand pairing. Figure 4.11 shows

the histogram of the inter- and intra- ΔG energy distributions from the centroids of the

clusters. This plot shows a clear separation between the intra and inter histograms with

a small overlap area. Then, it is possible to state that the conceptual framework used by

efold for analyzing the dynamics of folding process is convenient because the modelled

transitions allowed secondary structural changes (addition or deletion of a β-strand) fa-

voring the formation of stabilizing interactions i.e., hydrogen bonds of SS. efold is able

to accurately guide the folding process by correctly coupling the formation of SS during

folding. In other words, the consistency of efold’s clusters allows for the characterization

of low energy pathways that have been determined by the stepwise addition of SS.



Chapter 4. Experimental Framework 123

Figure 4.11: Intra and Inter ΔG distributions

The histogram of the Intra and Inter ΔG distributions calculated from the centroids of
the clusters



Chapter 5

Visualizer of Protein Folding

Pathways

5.1 Introduction

Statistical ensemble methods replace the idea of a single folding pathway by considering

a multitude of folding routes that traverse a multidimensional energy landscape of a

folding funnel model [258]. The intermediate conformations are therefore not considered

discrete states, but an ensemble of structures, where the transition between consecutive

ensembles on the folding pathway happens by parallel routes [186]. Simulating protein

folding through statistical ensemble methods is also a means to gain new insight into

experimental problems compared with classic methods. Ideally, these simulations shed

new insight into how proteins fold, unravel and suggest hypotheses that are hard to

explore experimentally, construct more focused experimental designs, and suggest new

interpretation of experiments.

Despite its relative young age, ensemble statistical mechanic methods have already begun

to influence our view of protein folding. Applying ensemble-based approaches to folding

prediction requires a visually appealing information system that allows users to easily in-

teract with predictions. Gaining the wealth of information contained in folding pathways

will also advance our understanding of protein folding mechanisms and its implication in

124
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human health and disease. However, this advance would never be realized without the

appropriate visualization techniques to interact with protein pathways. efold represents

an alternative to PF high computational cost approaches and allows for the inclusion of

pathway prediction during the study of the folding process. These features of efold may

cross traditional borders of structure prediction software, but we still require a visual tool

that allows for the easy integration of structure and pathways information in order to

obtain meaningful biological inferences. In particular, we believe that efold will allow

for large scale studies of folding dynamics annotations in proteomes.

Protein structures and pathways derived from large-scale protein predictions significantly

increase the annotation coverage of proteomes. The most critical limitation of structure

prediction pipelines is the computational and time costs associated with the prediction,

storage, analysis, data curation, interaction and visualization of predictions; which makes

full proteome analysis impossible [259]. This computational cost is related not only to the

‘high-performance’ computing infrastructure (i.e., hardware in supercomputers, grids, or

dedicated machines) needed to calculate the predictions, but also with the ‘average user’

hardware (i.e., available network bandwidth and the memory of commercial computers,

tablets or mobiles) and the time of manual curation and analysis (i.e., by humans) that

are essential for the interactive visualization of large and complex predictions.

There are several internet services that are available to predict and visualize protein struc-

tures and functions (see [260] for an up-to-date list of PSP methods, see [261–267] for

examples of presentation and manipulation of protein structure data, and see [268, 269]

for examples of approaches to predict protein function from structure). Recently, novel

graphical interfaces that present functionalities to interact with multiple protein structure

predictions have been developed (see [270, 271], [272] and [273] for interactive platforms

for PSP, co-evolution analysis and protein assembly, respectively). A few graphical in-

terfaces and servers have also been created to perform web-based analyses of protein

folding dynamics [274]. For example, servers to calculate the folding nucleus for proteins

[275], folding rates [276], discrete molecular dynamics [277], analysis of specific pathways

[278, 279] and unfolding pathways [93] have been reported in the literature. However,
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options to access, visualize, and interact with outputs (representing networks of fold-

ing/unfolding pathways) remain very limited. We believe there is a lack of online servers

that allow for the prediction and interaction of protein pathways. This lack of appropri-

ate tools, poor data accessibility, and insufficient benchmark data are major impediments

for the PPP in PF. Structure visualization of macromolecules techniques may be a good

starting point to develop novel protein pathway visualizers. These techniques have been

fundamental for the study of 3D protein structures and understanding of biological pro-

cesses [280]. However, we need complementary visualizing tools in the field because the

number, size, and complexity of macromolecular structures are increasing dramatically

and large-scale structural analyses have become a Big Data challenge1. The ability to

efficiently analyze, store and interact with the growing flood of protein structure data is

fundamental to allow new insights in protein folding mechanisms [281].

The few pathway prediction algorithms present in the literature [93, 278, 279], are built

on complex implementations that do not allow for the creation of easy-to-use interac-

tive networks of folding pathways. Attempts by structural biologists or experimentalists

to generate and analyze pathways predictions, before beginning time-consuming experi-

ments and simulations, are often hampered by the lack of a system to generate, manage,

store, and study predictions. The potential users are faced with the daunting task of

generating, evaluating, and validating predicted pathways. Currently, there is a tangible

need in structural biology research to develop a pipeline that can present data to the user

community in both a human (to support single experimental designs such as those in

early stages of protein engineering and drug discovery processes [282]) and machine (to

support large-scale protein simulations such as the study of kinetic stability of proteomes

[283]) readable manner.

efold predicts folding energy landscapes in the form of graphs. These graphs contain

thousands of topologies (vertices in a graph) with many relations between them (edges

in a graph). We believe the raw data will be useless if protein topologies cannot be prop-

erly analyzed, annotated, stored, and displayed. Therefore we have created a landscape

visualizer to present data to the wider biology and computer science communities. We

1The term Big Data challenge makes reference to the increasing amount of complex biological data
produced thanks to improvements in biomedical tools and technologies
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developed a tool to convey the content of the landscape graph through an interactive

exploration of networked data. This tool aims to provide the means to disseminate data

created by efold and comprehend their biological importance. This tool is available at

http://cs.mcgill.ca/∼dbecer/efold/.

Our system uses graph theory (e.g., graph traversal, shortest path and flow networks

algorithms) in order to search for properties, inspecting nodes and edges, and exploring

their relationships within a web browser. We decided to display predicted pathways on

the web because they will be more accessible to scientists and non-experts without the

need of dedicated hardware or software. Additionally, a web-based solution avoids the

need for custom software installation, which could represent a non-trivial barrier to the

adoption of software applications [280]. The proposed system uses JavaScript as the main

programming language for pathway visualization and analysis. We expect this pathway

visualizer will enable users to analyze large and different protein pathways, carry out large-

scale simulations, and visualize the results in an intuitive manner. The next sections will

briefly describe the main features of the proposed visualizer in analyzing protein structure

(see section 5.1.1), dynamics (see section 5.1.2) and pathway (see section 5.1.2.1) ensemble

landscapes.

5.1.1 A visualizer of conformational landscapes

efold predicts folding transitions from a random coil to the native state as a path

through varyingly folded protein conformation states. This transition through confor-

mation states is represented as a graph, where vertices are the most energetically ac-

cessible and favourable conformation states for a given topology (previously generated

by the Boltzmann ensemble sampling method). Each vertex represents an ensemble of

similar conformations states that have been grouped together using a hierarchical clus-

tering algorithm (see section 4.2.4.4). Each conformation state represents protein SS

elements through a coarse-grained representation. Graph edges represent the transition

between two conformation states, where conformations connected by an edge are compat-

ible topologies with similar structure. efold enumerates and ranks all β-sheet topologies
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to build a coarse-grained energy landscape (see section 3.5 for a complete description of

the methodology).

Figure 5.1 shows an example of the conformational energy landscape predicted by efold.

The visualizer displays a graph (network) of transition conformational states. Each state

is represented by a circle of variant size and color. The size of each node represents its

associated occurrence likelihood, where a bigger circle (higher likelihood) indicates a more

energetically accessible set (ensemble) of structurally related low-energy conformations.

The color of each node shows the number of β-strands in the conformational ensemble.

There are two display modes in the visualizer to show the conformational landscape,

where the user selects a ‘network’ or ‘ring’ view of the landscape. The ‘network’ mode

represent the standard interaction network visualization in which entities are displayed

as round nodes and edges represent the relationships between them. In the ‘ring’ mode,

the localization of the nodes is not arbitrary and nodes are localized in the perimeter of

a circle (i.e., ring) in which the radius depends on the number of β-strands. In the ‘ring’

mode, there are as many rings as number of β−strands and each node will be located in

the perimeter of the circle that match the number of β-strands of the topology represented

by the node. These two displays of network nodes can highlight non-trivial data relations

that may otherwise be overlooked.

In figure 5.1, each node in the graph represents an ensemble of protein SS conforma-

tions. If the user selects one circle, all the information regarding the current ensemble

is displayed. This metadata is essential to the user for understanding the relationships

between protein conformations and the network structure. The metadata is showed aside

the network to preserve the visual simplicity of the graph. This simplicity is important

because it allows users to visually correlate entire populations of topologies based on how

they relate to one another. A box containing information about topological labeling (see

section 3.5.2 for details of the labeling) of the ensemble is depicted just beside the clicked

node. Labeling is accompanied by a graphical representation of the SS conformation,

where an array of directional arrows (each arrow representing a β-strand) is used to indi-

cate the topology of the protein ensemble. The arrows are colored using a ‘blue to purple’

color scale that represents the position of each β-strand with respect to the AA sequence.
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In the top-left part of the visualizer, a box showing additional protein information is

also depicted. Particularly, this box shows information about the shape (i.e., topological

labeling), ID (unique identifier of the node), probability (i.e., occurrence likelihood) and

residues (extracted from one example of the ensemble) involved in β-strands. Finally, a

pathway connecting the unfolded state, intermediate states and the selected state (i.e.,

the node clicked by the user) is depicted. The visualizer will list all paths that connect

the unfolded state with the selected node sorted by the sum of the current likelihoods of

nodes that make up the path.

5.1.2 A visualizer of protein dynamics

efold predicts the folding dynamic of a protein system as motions on the coarse-grained

conformational energy landscape (i.e., the coarse-grained energy landscape already mod-

eled in section 5.1.1). This landscape is suitable to model protein dynamics because

it provides a structural definition of key conformational states of a protein (i.e., nodes

in a graph of varyingly folded protein conformation states), the mechanism of protein

conformational change (i.e., addition of single strands), and the height of barriers con-

necting these key conformations (i.e., the difference between the free energies of the

states) [121, 195–198]. efold defines the time-evolution of the protein folding process

by considering the protein system as being in exactly one of many countable number of

states at any given time, and where switching between states is treated probabilistically.

efold models the time-evolution by a transition matrix using the symmetric Kawasaki

rule (see section 3.6 for more details). The time units used by efold are not related to

real time. Ideally, model time should be proportional to physical time, but this is unlikely

for models following the master equation formalism (such as efold) [284].

In our visualizer, the user may access the folding dynamic results by clicking ‘Display

Pathway’ (see figure 5.1). The user will find a subgraph of the complete graph (i.e., the

conformational landscape graph) composed by all the conformational states for which a

folding trajectory (i.e., a path connecting the unfolded and the ‘user selected’ conforma-

tion) intersects. Given that the size (i.e., number of nodes and edges) of a subgraph is less
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Figure 5.1: A visualizer to model protein structures

A screenshot of the visualizer to model the structure landscape predicted by efold
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than the one of the original graph, nodes are represented by a graphical representation

of the topology of the protein ensemble (see figure 5.2). The user may see the predicted

folding dynamics as a movie of the folding time evolution for the selected protein by

selecting ‘Dynamics Movie’.

Figure 5.2 shows an example of how the probability of observing any of the reachable

topologies in a protein changes over time that a protein folds. The time has been dis-

cretized by default in 241 different time-steps2 (from time −6 to +6 with step variations

of 0.05), and the occurrence likelihood has been computed for each conformational state.

The weight of a connection between two conformational states i and j (i.e., an edge in the

graph) represents the amount of flow that pass through this specific edge. The weights

for each time step � are computed by equation 5.1. In this equation P j
t�
is the occurrence

likelihood of the conformational state j in time � as computed by equation 3.13. Q is

the finite set of possible energy states and Qi,j is the subset of nodes that have an inci-

dent edge with j. Equation 5.1 can be understood as the normalization of the transition

probabilities (represented by equation 3.16) with respect to the occurrence likelihood of

all states j in the set Q.

weighti,jt� =
P j
t�∑

s∈Q P s
t�

× P i
t�∑

s∈Qi,j
P s
t�

(5.1)

Finally, the proposed visualizer displays a movie by flashing each of the 241 time frames on

the screen for a short time and then immediately replaces it by the next one. This movie

gives the user an idea of how the folding flow changes on time based on the occurrence

likelihood for each conformational state.

5.1.2.1 Visualizing folding pathways in a flow network

efold defines a folding pathway as a time ordered sequence of folding events in which the

unfolded protein is able to assume its native state. efold codes these folding events as

the ensemble of fully folded structures containing a set of interacting SS. The transition

2this is a parameter that may be customized
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Folding Dynamics

Figure 5.2: A visualizer to model protein dynamics

between these events is modeled as a path in a graph (that represent an energy landscape)

of different intermediate structures. The order of visiting these transition states is assem-

bled through the use of dynamic folding information (which is also modeled by efold).

efold combines folding dynamics and conformational energy landscape information to

model folding pathways as weighted paths that connect the unfolded, intermediate, and

native protein states. efold uses the analogy of considering protein folding as a flow

arising in a network of (un)folding pathways at a coarse grained free energy landscape

(see section 3.6.2 for details).

efold performs a DFS traversal of the subgraph (which contains all the transition states

involved in trajectories connecting the unfolded state with the current state selected by

the user) to extract the predicted pathways. Each predicted pathway is associated with
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a flow value computed as the minimum edge’s weight present in the trajectory between

the unfolded and native states (where the weight of the edges is computed by equation

3.16). Following the analogy of PF as a flux in a flow network, the weight of each reported

pathway represents the probability that this specific trajectory arises from the network of

folding pathways [205–207]. The visualizer uses the width of a line to model the weight

(a.k.a flow) of each path. If two or more paths share an edge, the visualizer will plot

each path on top of the other to avoid the overlapping of lines. The user can obtain the

predicted paths by clicking ‘Pathways’. Figure 5.3 shows an example of four pathways

found by efold (each plotted using a different color).

Folding Pathways

Figure 5.3: A visualizer to model protein pathways

A screenshot of the visualizer to model the pathway landscape predicted by efold
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Conclusions

6.1 Contributions

An enormous challenge for PF prediction methods has been to predict 3D native struc-

tures and folding pathways for the broad range of proteins that are currently known.

This set of proteins contains thousands of different folds, different structural families,

and unique folding mechanisms. Additionally, the PF problem is an NP-complete prob-

lem in lattice models [71, 72] that require significant running time. Reliable predictions

for critical features (such as intermediate states, folding rates and folding pathways) of

protein foldings have been produced through custom-designed hardware. However, these

state of the art methods are currently unable to compute, or even approximate, the com-

plete 3D conformational landscape of all protein targets. Therefore, there is a tangible

need to develop efficient and effective protein folding methods in structural biology.

In this thesis, we propose a new and effective coarse grained methodology for the PPP

that requires minimal computational resources when compared with classical approaches.

This new methodology combines ensemble modeling and evolutionary based sequence

information to provide accurate folding pathway predictions. Residue contact informa-

tion is integrated into a Boltzmann sampling process to circumvent the limitations of

potential energy scoring schemes and to narrow the conformational search space (the two

most important bottlenecks in PF prediction). The proposed method expands the scope

134
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of previous ensembles prediction techniques and differs from state of the art works on

the following features: i) improvement in speed, accuracy and flexibility (input requires

protein sequence alone and does not require any a priori knowledge of the native protein

structure. Additionally, efold has the ability to model β, α/β and α+β interactions);

ii) implementation of novel approaches to model the folding process (implementation of

new energy model mimicking a framework-based folding process and the ability of pro-

teins to adopt different conformational states); iii) exploits evolutionary data of proteins

adding information about evolutionary constrained interactions into the protein folding

prediction; and iv) a PPP visualizer that allows for anyone to observe the analysis and

interaction between pathway predictions.

6.1.1 Improvement in performance (speed, accuracy and flexi-

bility)

Simulating protein folding has been a very difficult task performed on small structures

(≤ 50 AA) through computationally expensive methods. To-date, the classical computa-

tional approaches to obtain pathway information rely on time-consuming high-resolution

MD, MCM, or fragment assembly methods that are primarily limited to relatively small

molecules [32, 48, 49, 101, 285]. These detailed models (typically working on full atomic

detail) have the obvious benefit of potentially greater accuracy. However, the computa-

tional demands and the increasing complexity of simulations restrict their applicability

to most protein systems. Coarse grained models offer an alternative approach that has

allowed for the study of folding pathways on larger proteins, but these methods usually

introduce constrains that limit the biological significance of simulations [74, 87, 107, 286,

287]. The right balance between the level of detail of a simulation versus the resources

conferred to obtain this detail (i.e., an inexpensive and global coarse view versus a de-

tailed and expensive view) is still an open discussion. This thesis contributes to this

discussion by embracing an alternate, yet complementary strategy (efold), which offers

a better trade-off between resolution (i.e., modeling secondary structures and residue

contacts) and efficiency. efold complements existing PF techniques by addressing the
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simulation complexity barrier by computing coarse grained representations of complete

energy landscapes at a large scale.

efold is methodologically different to previous PPP algorithms and contributes to the

field by improving upon the main drawbacks found in state of the art methods. Compared

to state of the art PPP methods, efold offers a different trade-off between representation

detail and computation tractability. efold’s prediction of structures from AA sequence

alone allows for application to a large corpus of data. Based on our experiments, we

believe efold is a reliable protein structure and pathway predictor. The ability of efold

to formulate quick, coarse-grained predictions in a matter of minutes or hours, rather

than weeks of atomistic-detail simulation, is invaluable when used to support the initial

stages of more complex and detailed models.

Unlike MD/MC simulations, efold does not need custom-hardware supercomputer to

calculate simulations and is able to recognize the optimal (and overlapping) substructures

during runtime. In other words, efold has ‘memory’ and it is able to determine whether

protein conformations have already been visited. This attribute allows efold to embrace

a divide and conquer approach, which assures a much faster running time than MD/MC

techniques. efold is able to predict more than one trajectory in each run of the algorithm

and given that efold computes the complete energy landscape, it has less difficulties

escaping local minima.

Unlike PRM methods, efold does not assume a priori knowledge with respect to the

protein’s native conformation. efold has, in general, a better algorithmic efficiency when

the configuration space is large. efold statistically samples the conformation space while

considering biological significance (conformation with SS structure).

Unlike fragment assembly methods, efold does not need a priori information of structural

elements. efold can be run on any AA sequence, while generating new insights about the

folding process. efold statistically characterizes the complete conformational landscape.

If an optimization algorithm is used during the assembly simulation, efold may have a

better algorithmic efficiency.
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Unlike unfolding strategies, efold does not assume a priori knowledge with respect to the

protein native conformation. efold is not based on the folding microscopic reversibility

hypothesis to guarantee biologically significant results.

6.1.2 Novel views to model the folding process

The PF problem is considered among the most compelling scientific challenges facing re-

searchers today. The PF problem could be understood as the conjunction of two related

subproblems: i) the problem of predicting the 3D structure for biologically active pro-

teins (PSP) and ii) the problem of predicting the time ordered folding steps that allow an

unfolded protein conformation to be transformed into a functional 3D structure (PPP).

Both subproblems have been widely acknowledged as open problems; but due to its in-

herent complexity, the PPP has received less attention than the PSP. As a consequence,

the information that is embedded within folding pathways have remained largely unex-

ploited and there is a need to develop novel computational biology tools and benchmarks

to model and validate protein pathways. The work described in this thesis addresses

this problem by proposing an algorithm that accurately describes folding pathways by

predicting both the protein pathway and structure. In particular, this thesis contributes

to closing the gap between PSP and PPP methods.

One central question in the modeling of the protein folding process is whether a native

conformation (or ensemble of conformations) corresponds to the most stable (thermo-

dynamic control) or kinetically most accessible (kinetic control) conformation [288–290].

The kinetics and thermodynamics perspective of protein folding is conceptually synthe-

sized through the computation of an energy landscape model. This model shows the

evolution of the folding process as a function of folding energy and represents different

thermodynamic and kinetic variations in the landscape. efold addresses the disjunction

between thermodynamics and kinetics by modeling the stability of native states (by sta-

tistically characterizing the native conformation) and ensuring accessibility (by modeling

the folding dynamics). This algorithm combines folding dynamics and conformational en-

ergy landscape information to model folding pathways as weighted paths that connect the
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unfolded, intermediate and native protein states. This novel approach to model pathways

represents a structured and more inclusive way to model pathways.

There is compelling evidence that suggests that proteins have the ability to adopt different

conformational states in vivo, where multiple optimal structures could exist with different

functional properties. The folded state can then be understood as a small ensemble of

conformational structures (that also have the potential to misfold), instead of a unique

conformation. Furthermore, the intermediate conformations are not considered discrete

states, but an ensemble of structures where the transition between consecutive ensembles

on the folding pathway happens on parallel routes (some routes are expected to be more

populated than others). It is important to recognize the statistical implications of the

protein folding process and to consider that protein ensembles may mimic the ability of

proteins to adopt different conformational states in vivo. efold is an ensemble algorithm

that follows this research line by predicting a statistical distribution of topologically al-

lowed pathways. efold describes a realistic energy landscape of conformational variants

by predicting an ensemble of protein conformations and pathways (instead of an individ-

ual lowest energy structure obtained by a single pathway). Folding pathways are fully

described by the complete conformational energy landscape, where proteins fold through

distinct intermediate ensemble conformations using multiple routes. The algorithms used

by efold have been inspired by ensemble prediction algorithms that allow for the accu-

rate computation of RNA secondary structure energy landscapes [80, 118, 119]. Those

RNA-based algorithms have been successfully mapped by efold to the different domain

of predicting protein structure, dynamics, and pathways.

efold represents intermediate conformations as ensembles of fully folded structures con-

taining a set of interacting SS, where the intermediate conformations are modeled as

obligatory sequential states of the overall folding process. The sequentiality of folding

events (assumed by efold) implies that certain transitions occur before others. efold

builds the conformational landscape through the enumeration of all SS (in terms of β-

strands) a protein can attain. This enumeration is computed using a stepwise permutation

algorithm that adds a single β-strand pairing at a time. Contrary to previous approaches

[121], the addition of a new β-strand could be perform at any of the extremes (i.e., left
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or right) of a permutation. This new approach is very important because it allows efold

the flexibility to adopt a more general approach to compute energy values for the SS.

6.1.3 Exploits evolutionary records

In this thesis we propose a novel algorithm that integrates protein sequence information

into a Boltzmann sampling process performed by ensemble methods to predict protein

pathways. This method takes advantage of available protein sequence information to

incorporate evolutionary information (in the form of SS or co-evolutionary residue con-

tacts) into a statistical energy function to improve efold’s capabilities to represent key

AA interactions.

There is no clear consensus about what the required accuracy, coverage, and distribution

of evolutionary information along an AA sequence are needed to improve the prediction of

protein structures and / or pathways. Furthermore, there is no consensus about exactly

what information in a protein sequence is sufficient and necessary for folding. Our results

support the hypothesis that, in general, the incorporation of sequence information into

protein folding programs leads to an improvement in the prediction accuracy of protein

structures/pathways [108–110, 113, 177–179]. Our results show an increase in accuracy

of pathway predictions (by increasing the signal of more populated trajectories) and

a decrease in the running time of the algorithm (by constraining the search space of

conformations). To the best of our knowledge, this is the first time that evolutionary

information is enclosed in an ensemble method to model folding pathways.

One of the main limitations when determining the amount of sequence information needed

to define the fold is the vast number of potential cooperative interactions between AAs

(i.e., the free energy contribution of one AA depends on those of other AAs) [291]. Pro-

teins are able to create complex networks of AA interactions that require a great number

of mutual constraints between AA positions to define the fold [292]. The interaction

between AAs are generally modeled by statistical potential energy functions, which com-

pute the interactions responsible for protein structure. These functions generally limit

the size and resolution of protein simulations due to the unfeasibility of an adequate and
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accurate conformational sampling to provide a complete landscape. There is no consen-

sus in the field about the suitability of using accurate (and computationally complex)

functions that make impractical the modeling of large systems versus the practicability

of using imprecise (and uncomplicated) scoring schemes that make tractable the mod-

eling of complete landscapes. Our results show that efold is able to correctly balance

between the amount of needed sequence information and the complexity of scoring func-

tions. efold improves the accuracy of its potential energy function by discarding false

and unfundamental co-evolved AA interactions. Therefore, efold demonstrates that the

synergy between statistical analysis of physical predictions (i.e., low free-energy models)

and evolutionary based predictions (i.e., sequence variation methods) is useful and prac-

tical in the definition of true folding landscapes. efold compares favourably to previous

studies [293] and shows that an uncomplicated statistical energy function captures the

coevolution between AAs that is necessary to correctly model the folding process. The

results of efold also suggest that folding pathways of proteins might acquire a certain

degree of conservation during evolution [294–300].

Long-range interactions play a fundamental role in the stability of proteins [301]. How-

ever, they are considered one of the main bottlenecks for protein folding predictions given

the difficulty of being accurately predicted. Regarding β-strands, it has been shown that

the prediction accuracy has a negative correlation with respect to the separation in se-

quence of contacting residues (i.e., prediction accuracy drops as AA have contacts with

more sequentially distant AA) [302]. efold asseses a higher precision in predicting long-

range contacts than state of the art template-free algorithms by including evolutionary

information in a free-energy model. The correct prediction of long-range contacts allows

efold to reconstruct folding pathways more accuratelly and to narrow the search space

of possible conformations by imposing strong constraints on the 3D structure.

6.1.3.1 Improvements in the MSA problem

MSAs encodes evolutionary and structural relationships in the forms of protein sequence

information. Several protein structure prediction techniques and procedures (including
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efold) are dependent on MSAs to extract sequence, structural and/or functional re-

lationships. The quality of information extracted from MSAs highly depends on the

accuracy of MSA and sequencing results, where errors in the alignments could limit the

accuracy of downstream analysis. In order to analyze MSA’s uncertainty (i.e., number

of errors, bias, and range of improvement) we examined the capacity of humans and

algorithms to provide insights that can not be entirely replicated by the cost functions

used in heuristics-based algorithms. As a result, we discovered that crowdsourcing (for

humans) and MOOP (for algorithms) are suitable methodologies to improve the accu-

racy of pre-computed MSAs. In the case of crowdsourcing, the harnessing of intelligence

and processing power generated by crowds of online gamers allow for the use of human’s

visual pattern recognition skills to improve local inaccuracies that are neglected by the

heuristics implemented in alignment software. On the other hand, the proposed MOEA

algorithm proved to be less dependent on specific features of sequences, while remaining

very stable and robust when used on diverse biological sequences.

6.1.4 Interaction with pathway predictions

Despite many in-silico and in-vitro experiments that have tried to deduce principles for

PF. Currently, there is no general consensus on the folding routes or transition states

for arbitrary protein sequences [303]. Substantial improvements have been developed for

protein structure methods that have led to accurately predict structures [70]. For exam-

ple, the best predictions in critical assessments of PSP methods (CASP) have been shown

on average to be accurate enough to interpret biological mechanisms, guide biochemical

studies, and initiate drug discovery programs. In spite of these improvements, there are

still many difficult challenges to achieve in terms of determining folding mechanisms;

making ab initio predictions consistent enough to decrease the current dependency on

knowledge of existing structure; and studying folding diseases, drug affinities, membrane

proteins, and disorder proteins; to name a few.

Visualization techniques are needed for the study of protein pathways to increase our

understanding of biological processes that have been neglected by PPP (when compared
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to PSP). As the number, size, and complexity of macromolecular structures increases,

the need for new and novel visualizers grows. In this work, we developed a visualizer

to interact with pathway predictions performed by efold. This visualizer is essential

to guarantee the impact and dissemination of efold to the wider biology and computer

science communities. By developing a PPP prediction pipeline that can present data to

the user community in both a human and machine readable manner, we aim to support

large-scale protein simulations as well as single experimental designs.

6.2 Perspectives on future work

6.2.1 Generation of 3D models

The β-contact interactions predicted by efold can be used to reconstruct protein 3D

structures. The probabilistic contact map reported by efold can be used as a starting

point for 3D structure reconstruction. Current reconstruction algorithms infer structures

with a proportion (around 25%) of the real contacts, but these methods have difficulty

reconstructing the 3D structures predicted from contact maps that contain false contacts

(a small percentage of false contacts are sufficient enough to hamper 3D reconstruction).

The generation of the 3D reconstruction (based on efold predictions) is a non trivial

task that will face the following challenges: i) Currently, there are only a few distinct

and successful approaches to the reconstruction of a protein’s 3D structure from a map of

AA contacts [304–309]. There are even fewer methods able to perform the reconstruction

based only on β-residues [310]. ii) The overall contact prediction quality achieved by

state of the art contact residue methods is still lower than the required levels of accuracy

to satisfy 3D structure retrieval protocols. iii) Information about AA chirality is lost

in a 2D contact map representation and 3D reconstruction protocols applying external

forces can introduce chirality errors into the reconstructed structure. iv) The general

problem of recovering a set of 3D coordinates consistent with some given contact map

has been proven to be NP-hard1 [308, 311]. The 3D structure reconstruction protocols

1using a reduction of the unit-disk-graph realization problem
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often involves heuristics extracted from ‘the novo’ prediction that can be time consuming.

Thus, an efficient and fast procedure must be found to not hamper the speed benefits of

efold.

6.2.2 Determinants of protein folding

Anfinsen’s experiments suggested that the primary AA sequence of proteins defines their

structure and the rate at which a structure is formed. AA sequence is the main deter-

minant of folding mechanisms because it defines the size, stability, structure, and folding

kinetics. Several sequence-folding relationship studies have shown that different sequences

can adopt similar structures, but each one encodes for a unique free energy surface that

may lead to distinct folding behaviors [240]. The question about whether a protein se-

quence directly defines the distinct folding behaviors (such as different folding pathways)

or if it establishes these distinct behaviors by defining other properties of a protein (such

as global equilibrium properties, topology) is still an open question. The rational redesign

of protein folding pathways (by mutating AA sequences) has been a fundamental tool to

improve our understanding of distinct folding behaviors. This protein redesign is based

on performing AA mutations that slightly shift the folding barriers of proteins to provide

indirect access to transition states by changing the topology, stability and / or folding

rates of the protein. Given that efold is able to compute complete energy landscapes

that contain folding pathways to the known native state, our method enables the study

and analysis of landscape behavior properties. efold may also be used to determine how

sensitive the folding kinetics of proteins are to fine sequence details (modeled for AA

mutations).

The development of quantitative theoretical models for the protein folding process is still

a necessity in the protein folding field. It is important to be able to determine simple

stability, length, folding rates, or topology-based rules for the prediction of protein folding.

This type of work will provide insights into the existence of common folding mechanism(s)

that underly the diverse kinetic properties of proteins, or if it is the contrary and folding

kinetics are sequence-dependant. We have already developed a quantitative theoretical
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model for the prediction of folding dynamics driven by local topological features in an

iterative manner2 [312]. This work will allow for the study of energy independent models,

but a thorough investigation has yet to be done to clearly establish the determinants of

protein folding.

6.2.3 Ability to model all fold classes

The classification of a protein in a specific ‘folding class’ is based on the arrangement of

its SS elements in space. These classes of group structures have similar SS composition,

but different overall tertiary structures and evolutionary origins. ‘β’ (domains consisting

of β-sheets), ‘α/β’ (β−α−β units) and ‘α+β’ (segregated α and β regions) are three of

the main classes defined by the Structural Classification Of Proteins database (SCOP).

These classes represent 59% of the total number of reported folds. efold addresses

modeling techniques for these three families. efold focuses on β-sheet proteins because

they represent the vast majority of folds (more than half of the reported folds [and

proteins] belong to any of these three classes), they have a high influence in amyloid

fibrils and they are difficult to characterize by experimental methods. However, efold

is able to include α-helices in the modeling thorough the incorporation of evolutionary

sequence information. The inclusion of the remaining folding classes (all α proteins, multi-

domain proteins, membrane and cell surface proteins, and small proteins) will increase

the coverage, and, possibly, the accuracy of efold. The inclusion of new interactions

(needed to model all the folding classes) is not a straightforward task and will require the

redefinition of the DP algorithm as well as the construction of a more inclusive, complex

interaction energetic model.

6.2.4 Co-evolving methods

MSAs are in the core of most successful methods for recognizing evolutionary related

protein sequences and/or residues. As shown in this chapter, MSAs can be improved by

using crowdsourcing and/or multi-objective methods. However, how these improvements

2This work is in peer-review phase of a publication process
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can increase the power of homology-based methods to recognize remote homologs and

model dependencies between AA (that are close in space but far apart in sequence) has

to be further studied. Future versions of efold could use improvements in MSA and

homology detection methods for β-proteins (such as the model proposed in [145]) to

study the impact of these improvements in the prediction accuracy of protein pathways.

Computational co-evolution methods are a promising complementary technique to extract

and exploit structure and function information from rapidly growing sequence databases.

Particularly, efold uses co-evolution methods to identify conservation patterns, which

are evidence of structural and functional constraints exerted on proteins. Co-evolution

algorithms are currently limited by the amount of evolutionary sequence data needed to

obtain reliable models. State of the art methods require large numbers of homologous

sequences using accurate MSA sufficiently diverse to reveal accurate co-evolution patterns.

To circumvent this challenge, new and novel methods to building reliable models from

incomplete/inaccurate evolutionary data are needed. This set of new algorithms will help

efold to increase its spectrum of applicability and versatility for PPP.

Functional proteins are known to undergo natural selection processes preserving their

function and hence their structure. The protein energy landscape for a protein sequence

is molded by evolution such that its native protein structure is conserved. However, point

mutations can reshape the energy landscape of a protein populating certain (un)folding

pathways. Evolutionary information, encapsulate within multiple sequence alignments

(MSAs), can be used to identify conservation and mutation patterns, which are evidence

of structural constraints plus mutational drift. The main hypothesis is that residues in

physical contact coevolve (i.e. they show correlated mutational behavior) and that some

of them may be both structurally or functionally important positions within protein folds

and consequently could be targets for disease-associated point mutations. In conjuction

with efold, we plan to develop a co-evolutionary algorithm to characterize co-evolving

residues leading to disease when disrupted by a point mutation. This novel algorithm will

aim the identification of co-variate residues e interactions that significantly (de)stabilize

the folding pathways (as predicted by efold) of these proteins.



Appendix A

Materials

A.1 MSA: Open-Phylo Approach
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Table A.1: Data Set MULTIZ

AncOr = Ancestor Original; AncCl = Ancestor Classic; AncEx = Ancestor Expert; GuiOr = Guidance Original; GuiCl = Guidance
Classic; GuiEx = Guidance Expert; MusOr = Muscle Original; MusCl = Muscle Classic; MusEx = Muscle Expert; TcoOr = T-Coffee

Original; TcoCl = T-Coffee Classic; TcoEx = T-Coffee Expert

BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
BRCA1.01 1314.1 1330.4 1349.9 0.5371 0.7136 0.5758 2952 3101 3264 49 51 52
BRCA1.11 1447.3 1475 1455.3 0.1352 0.6458 0.6425 2509 2694 2509 48 48 48
BRCA1.21 2859.9 2918 2903.8 0.3192 0.3816 0.3733 7896 7956 8041 73 73 73
BRCA1.31 3175.4 3190 3178 0.4053 0.4457 0.4374 9183 9205 9186 65 65 65
BRCA1.41 2911.3 2933 2933 0.5188 0.6363 0.5559 8303 8384 8412 82 82 82
BRCA1.51 3304.3 3337.3 3310.3 0.6590 0.6774 0.6714 9569 9651 9592 76 76 77
BRCA1.61 3821.5 3821.5 3821.5 0.7555 0.7555 0.7555 13040 13040 13040 88 88 88
BRCA1.71 1307.8 1307.8 1311.8 0.5065 0.5065 0.6111 3472 3472 3502 74 74 76
BRCA1.s.01 1805 1833.8 1826.9 0.2066 0.3252 0.3099 5037 5168 5121 53 53 54
BRCA1.s.11 2162.7 2195.6 2199.3 0.1445 0.2563 0.1778 4544 4719 4566 56 57 57
BRCA1.s.21 2853.1 2915.3 2885.1 0.3766 0.3983 0.3952 8311 8318 8381 70 70 71
BRCA1.s.31 2917.8 2942.8 2949.5 0.4890 0.5481 0.5383 8524 8612 8702 72 72 72
BRCA1.s.41 3352.1 3373.5 3368.4 0.6353 0.6588 0.6067 9368 9439 9439 80 80 80
BRCA1.s.51 3569.9 3590 3586.5 0.6875 0.6875 0.7117 11690 11710 11800 83 83 84
BRCA1.s.61 3274.3 3274.3 3287.9 0.5012 0.5012 0.5944 10190 10190 10310 82 82 83
P531.01 2401.1 2401.1 2415.2 0.3036 0.3062 0.3368 4679 4813 4851 62 62 62
P531.11 2224.6 2224.6 2225.5 0.5718 0.5718 0.5976 3631 3631 3631 75 75 75
P531.21 2054.3 2058.6 2059 0.5512 0.5602 0.5864 4097 4142 4481 63 63 63
P531.31 3544.9 3544.9 3549.9 0.4624 0.4624 0.5056 7031 7031 7180 63 63 64
P531.41 3188.2 3222.7 3191.7 0.5063 0.6342 0.5808 8528 8632 8582 80 80 80
P531.51 2880.4 2886.4 2891.6 0.4414 0.4618 0.4500 6071 6091 6276 68 68 68
P531.61 2669.4 2728.6 2712 0.3889 0.4386 0.4453 7383 7531 7645 71 71 71
P531.71 3302.5 3302.5 3305.1 0.7736 0.7736 0.7660 9326 9326 9337 84 84 84
P531.81 2391.6 2424.1 2413.9 0.4552 0.6757 0.6021 6612 6717 6869 76 76 76
P531.91 2771 2774.1 2779.3 0.6119 0.6767 0.6518 8513 8535 8561 82 82 83

Continued. . .
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P531.101 1167.3 1187.3 1176.3 0.5531 0.6602 0.5475 3189 3241 3240 59 59 60
P531.111 491 491 491 0.4932 0.4932 0.5024 1483 1483 1483 65 65 65
P531.s.01 2849.8 2849.8 2864.5 0.5488 0.5516 0.5520 7096 7197 7432 76 76 76
P531.s.11 2313.6 2317.9 2318.6 0.5029 0.5062 0.6113 4174 4199 4384 69 69 69
P531.s.21 2070.8 2070.8 2087.2 0.3417 0.3417 0.3162 3604 3604 3855 54 54 54
P531.s.31 3634.5 3634.5 3647.7 0.4323 0.4323 0.4639 7498 7498 7516 82 82 82
P531.s.41 2802.9 2820.7 2811.4 0.4085 0.6570 -1.0000 6790 6907 6839 73 73 73
P531.s.51 2448.2 2495.8 2486.4 0.2853 0.3185 0.3000 5913 6093 6130 62 62 63
P531.s.61 3324.6 3324.6 3327.8 0.6624 0.6624 0.6680 7981 7981 8010 84 84 85
P531.s.71 3068.2 3068.2 3091 0.6577 0.6577 0.7108 8333 8333 8729 83 83 84
P531.s.81 2168.3 2172.3 2173.6 0.5721 0.6327 0.5989 6500 6534 6550 78 78 78
P531.s.91 1943.4 1949.2 1954.1 0.5320 0.5366 0.5438 5236 5270 5418 73 73 73
P531.s.101 1274.6 1294 1282.4 0.4353 0.4951 0.4355 3736 3773 3746 65 65 65
P532.01 3228 3231.6 3249.8 0.5080 0.5315 0.5202 8357 8385 8495 82 82 83
P532.11 2780.5 2815.7 2792.6 0.7477 0.7529 0.7748 8836 8865 8875 90 90 90
P532.21 2752.7 2786.5 2789.1 0.6802 0.7844 0.7470 8261 8301 8643 88 88 88
P532.31 824.3 825.3 824.3 0.6371 0.6400 0.6422 641.9 765.3 641.9 26 26 26
P532.41 1782.4 1786.1 1798.7 0.6159 0.6387 0.6497 3358 3469 3532 55 55 55
P532.51 1688.8 1710.6 1717.1 0.1065 0.1400 0.1198 3276 3367 3499 51 51 51
P532.61 2699.8 2726.1 2705.5 0.7794 0.8772 0.8503 9489 9513 9534 90 90 90
P532.s.01 3115.9 3129.5 3126.5 0.7698 0.8223 0.8012 9908 9937 9968 91 91 91
P532.s.11 3452.1 3455.8 3463.4 0.8879 0.9145 0.9157 11830 11840 11940 97 97 97
P532.s.21 1495.5 1537.5 1500.1 0.2305 0.2812 0.2665 1594 1625 1665 36 36 36
P532.s.31 9.99999 14.2 23.5 -1.0000 -1.0000 -1.0000 399.3 399.3 501.8 36 36 42
P532.s.41 2259.5 2282.6 2277.5 0.4809 0.5895 0.5138 5303 5360 5576 63 63 63
P532.s.51 2644.2 2669.6 2661.4 0.4428 0.4581 0.4595 6084 6205 6333 77 77 77
P532.s.61 967.3 978.9 967.3 0.6781 0.7531 0.7759 3449 3449 3488 91 91 91
P533.01 1346.6 1356.1 1421.3 0.1888 0.2618 0.3618 3307 3309 3356 68 68 68
P533.11 2754.1 2754.1 2762.9 0.6592 0.6761 0.6157 6549 6602 6601 80 80 80

Continued. . .
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P533.21 1497.9 1512.7 1514.3 0.3176 0.3778 0.3814 2830 2856 3043 52 52 54
P533.31 1376.6 1376.6 1376.6 0.4979 0.6126 0.5872 1899 1954 1995 51 51 51
P533.41 1337.8 1379.5 1339.8 0.2645 0.2685 0.2645 2638 2676 2638 28 28 28
P533.51 942.8 948 1005.1 0.1204 0.1517 0.1178 1495 1495 1732 33 33 33
P533.61 420.1 435.1 442.5 0.0642 0.1051 0.1087 968.6 968.6 1130 33 33 33
P533.71 1448 1473.6 1452.3 0.2730 0.3388 0.2466 5102 5109 5102 49 49 49
P533.81 146.8 165.7 173 0.6972 0.7659 0.7189 617.4 642.5 661.6 69 69 69
P533.s.01 2038.5 2046 2061.4 0.3737 0.3924 0.5534 5663 5663 5704 78 78 78
P533.s.11 1307.1 1311.4 1398.2 0.2694 0.2705 0.2801 2348 2348 3200 46 46 46
P533.s.21 2099.7 2118.5 2099.7 0.3926 0.4401 0.4529 4082 4085 4196 42 42 43
P533.s.31 986.6 986.6 986.6 0.4665 0.4665 0.6104 721.1 721.1 747.2 35 35 35
P533.s.41 1466.7 1466.7 1483.6 0.1609 0.2633 0.1676 2252 2313 2362 38 38 38
P533.s.51 413.2 414.3 434.7 0.1192 0.1583 0.1127 603.5 681.9 785.6 32 32 32
P533.s.61 1041.8 1043.8 1045.8 0.2460 0.2559 0.2715 3242 3242 3251 64 64 64
P533.s.71 830.4 865.9 880.8 0.5003 0.6125 0.5159 3297 3356 3398 43 43 44
RB1.01 811.9 830.6 879.6 0.3569 0.3664 0.4208 2261 2290 2496 56 56 57
RB1.11 757.3 761.6 791.9 0.0560 0.1351 0.1101 1931 2043 2021 32 32 33
RB1.21 1037.9 1038.2 1052.5 0.3462 0.3827 0.3961 4060 4201 4363 69 69 69
RB1.s.31 1171.1 1174 1186.5 0.5716 0.6091 0.6781 4685 4785 4944 74 74 74
RB1.31 989.5 1006.7 1007.6 0.6818 0.7644 0.7172 5759 5953 6116 84 84 85
RB1.41 1551.9 1558.1 1578.2 0.1275 0.6327 0.6425 7399 7443 7425 76 76 76
RB1.51 1709.4 1712.1 1713.7 0.4980 0.4980 0.5340 5831 5831 5864 70 70 70
RB1.61 1429.1 1476.7 1443.4 0.5233 0.6899 0.5517 6016 6268 6276 66 66 67
RB1.71 1611.1 1611.1 1627 0.6954 0.7487 0.7445 7279 7300 7582 82 82 83
RB1.81 487.2 493.8 495.8 0.7128 0.9726 0.8419 2412 2462 2495 92 92 93
RB1.s.01 874.5 898 933.1 0.1196 0.2560 0.1850 3162 3429 3386 45 45 45
RB1.s.11 735.8 752.6 746.1 0.3004 0.5047 0.3932 3439 3570 3591 64 64 64
RB1.s.41 1451.1 1458.6 1480.8 0.3982 0.6514 0.3727 6168 6239 6428 69 69 69
RB1.s.51 2008.9 2016 2041.8 0.5359 0.6280 0.6448 6807 6841 7032 68 68 68

Continued. . .
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
RB1.s.21 1294.1 1301.3 1307.1 0.2318 0.7381 0.6314 7367 7509 7569 84 84 85
RB1.s.61 1299.5 1319.8 1315.5 0.6662 0.6688 0.7403 6158 6160 6264 82 82 83
RB1.s.71 1368.8 1375.4 1382.6 0.6197 0.6376 0.6349 6058 6119 6291 81 81 82
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Table A.2: Data Set PRANK

AncOr = Ancestor Original; AncCl = Ancestor Classic; AncEx = Ancestor Expert; GuiOr = Guidance Original; GuiCl = Guidance
Classic; GuiEx = Guidance Expert; MusOr = Muscle Original; MusCl = Muscle Classic; MusEx = Muscle Expert; TcoOr = T-Coffee

Original; TcoCl = T-Coffee Classic; TcoEx = T-Coffee Expert

BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
BRCA1.01 1528.4 1534.5 1532 0.5693 0.6293 0.6055 2983 2983 3029 45 45 45
BRCA1.11 1780.3 1780.3 1782.3 0.2714 0.2955 0.2480 3036 3301 3036 46 46 47
BRCA1.21 3364.2 3386.1 3365.2 0.4756 0.4807 0.4601 8126 8154 8214 73 73 74
BRCA1.31 3683.2 3685.2 3683.2 0.7300 0.7893 0.6937 9508 9540 9588 65 65 65
BRCA1.41 3322.5 3339.1 3325.4 0.7814 0.8377 0.7814 8838 8929 8848 82 82 82
BRCA1.51 3828.2 3828.2 3831.5 0.6263 0.6753 0.6282 9656 9656 9731 75 75 75
BRCA1.61 4335.7 4335.7 4344.7 0.8197 0.8197 0.8191 13070 13070 13230 88 88 88
BRCA1.71 1505.7 1505.7 1506 0.2320 0.2587 0.2320 3753 3753 3788 71 71 71
BRCA1.s.01 2144.2 2156 2148.5 0.4460 0.5600 0.5158 5258 5311 5307 48 48 49
BRCA1.s.11 2511.6 2512.9 2537.1 0.2943 0.2943 0.2725 4633 4667 4896 53 53 55
BRCA1.s.21 3392 3392 3402.9 0.5672 0.6189 0.5762 8532 8572 8607 74 74 74
BRCA1.s.31 3354.8 3355.4 3354.8 0.6363 0.6887 0.6418 8595 8630 8724 72 72 73
BRCA1.s.41 3859.8 3872.9 3859.8 0.6664 0.6782 0.6694 9568 9612 9577 80 80 80
BRCA1.s.51 4110.6 4110.6 4122.2 0.8185 0.8185 0.7912 11910 11910 12050 85 85 85
BRCA1.s.61 3710.3 3710.3 3719.2 0.8181 0.8181 0.8578 10420 10420 10470 82 82 82
P531.01 2698.9 2702.3 2713.3 0.5012 0.5123 0.4880 4900 5003 4948 62 62 62
P531.11 2511.6 2511.6 2527.2 0.4990 0.4990 0.5030 4752 4752 4774 74 74 74
P531.21 2343.8 2352.5 2343.8 0.6959 0.6972 0.7094 4574 4579 4722 63 63 63
P531.31 3868.3 3868.3 3877.9 0.3695 0.3695 0.4041 7068 7068 7102 64 64 65
P531.41 3547.1 3547.1 3547.1 0.5589 0.5589 0.5772 8515 8515 8665 79 79 79
P531.51 3221.7 3227.2 3227.7 0.5243 0.6180 0.6011 6199 6259 6436 68 68 69
P531.61 3076.4 3076.4 3076.4 0.5792 0.6145 0.5626 7870 7894 7919 72 72 72
P531.81 2765.5 2767.5 2767.5 0.5663 0.5937 0.5930 6595 6649 6748 71 71 71
P531.71 3698.9 3698.9 3698.9 0.7042 0.7042 0.7340 9504 9504 9574 84 84 84
P531.91 3047.1 3050.5 3049.1 -1.0000 0.5367 0.6853 7842 7869 7857 80 80 80
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A
p
p
en
d
ix

A
.
M
aterials

152
BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P531.101 1291.6 1291.6 1339.7 0.6597 0.6814 0.6494 2603 2611 2680 48 48 48
P531.111 556 556 556 0.6902 0.6902 0.6902 1498 1498 1500 70 70 70
P531.s.01 3217.9 3219.7 3223.9 0.6914 0.7035 0.7116 7388 7446 7418 76 76 76
P531.s.11 2589.3 2599.1 2596.2 0.5823 0.5823 0.6757 4487 4487 4559 68 68 68
P531.s.21 2670.5 2670.5 2683.4 0.2386 0.2386 0.2178 4158 4158 4223 53 53 53
P531.s.31 3979 3979 3982.3 0.5293 0.5293 0.5120 7297 7297 7357 83 83 83
P531.s.41 3143.2 3143.2 3143.2 0.5537 0.6267 0.5944 6854 6859 6907 71 71 71
P531.s.51 2803.7 2816.1 2821.1 0.4205 0.4869 0.5550 6389 6476 6416 64 64 64
P531.s.61 3720.9 3720.9 3726.8 0.7140 0.7140 0.6798 8101 8101 8145 84 84 85
P531.s.71 3456.2 3456.2 3457.8 0.7258 0.7258 0.8049 8694 8694 8787 83 83 83
P531.s.81 2513.8 2522.6 2513.8 0.5917 0.5917 0.4386 6368 6391 6368 74 74 75
P531.s.91 1892.7 1892.7 2038.7 0.2582 0.5241 0.1531 4087 4191 4087 68 68 68
P531.s.101 1435.9 1435.9 1438.7 0.6018 0.6226 0.6018 3438 3528 3494 63 63 63
P532.01 3664.7 3691.7 3669 0.4968 0.5253 0.5367 8958 8978 8958 81 81 82
P532.11 3115.4 3115.4 3129.1 0.7649 0.7649 0.8179 8902 8902 8994 89 89 90
P532.21 2948.5 2948.5 3002.3 0.7969 0.7969 0.6892 8541 8541 8638 89 89 89
P532.31 833.8 833.8 833.8 0.4200 0.4200 0.4155 545.5 545.5 609.6 18 18 18
P532.41 1955.1 1955.1 1955.1 0.6307 0.6307 0.6464 3404 3404 3408 53 53 53
P532.51 1947.8 1947.8 1950.6 0.3700 0.4319 0.4489 3744 3746 3891 52 52 53
P532.61 3035.4 3035.4 3035.4 0.8288 0.8288 0.8288 9711 9711 9711 90 90 90
P532.s.01 3478.8 3478.8 3485.4 0.7736 0.7736 0.8518 10080 10080 10190 90 90 91
P532.s.11 3868.6 3868.6 3868.6 0.9047 0.9047 0.9109 11930 11930 12020 96 96 96
P532.s.21 1525.9 1525.9 1572.5 0.3738 0.3738 0.3116 1778 1778 1854 28 28 28
P532.s.31 502.3 517.1 539.4 0.4678 0.8771 0.8521 1694 2126 2793 66 66 66
P532.s.41 2504 2504 2506.7 0.3797 0.4319 0.3914 4902 4902 4950 59 59 59
P532.s.51 2983.1 2990.2 2993.9 0.5381 0.5485 0.3526 6570 6601 6644 78 78 78
P532.s.61 1087.3 1087.3 1087.3 0.7443 0.7443 0.7443 3509 3509 3543 91 91 92
P533.01 1583.8 1583.8 1632.9 0.3074 0.3074 0.3213 2450 2450 3072 68 68 68
P533.11 3161.1 3162.6 3161.8 0.2609 0.5840 0.5595 7047 7113 7119 79 79 79
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P533.21 1807.8 1810.5 1808.6 0.4479 0.5077 0.3670 2855 2855 2855 49 49 49
P533.41 1313 1329.1 1350.8 0.5487 0.6569 0.4179 2605 2679 2754 26 26 26
P533.51 1138.2 1138.2 1138.2 0.2397 0.3981 0.2662 1556 2037 1556 30 30 30
P533.61 709.4 710.1 709.4 0.5158 0.8294 0.5898 1845 1908 1845 39 39 42
P533.71 1916.6 1916.6 1921 0.3939 0.5074 0.5474 5177 5177 5177 56 56 56
P533.81 298.9 298.9 310.1 0.4378 0.4378 0.5321 729.2 729.2 729.2 66 66 66
P533.s.01 2244.7 2254.2 2351.8 0.3828 0.4675 0.4773 4994 5054 5609 77 78 77
P533.s.11 1687.9 1689.9 1693.1 0.3257 0.4869 0.4152 2747 2884 2747 51 51 51
P533.s.21 2276.7 2278.7 2455.3 0.5101 0.5662 0.5342 3814 3820 3913 41 41 41
P533.s.41 1805.5 1805.5 1805.5 0.2235 0.3412 0.2486 2751 2786 2751 37 37 37
P533.s.51 681.8 681.8 685.8 0.3553 0.3569 0.4300 1189 1189 1235 28 28 28
P533.s.61 1441 1443.8 1461.2 0.5648 0.7443 0.4950 3628 3628 3631 67 67 67
P533.s.71 1216 1235 1236 0.6643 0.6643 0.6134 3462 3511 3482 47 47 47
RB1.01 1235.4 1258.4 1239.7 0.5150 0.8462 0.7641 3050 3991 3050 61 61 62
RB1.11 1161.1 1161.1 1161.1 0.1832 0.8584 0.8116 2497 2564 2497 38 38 38
RB1.21 1477.8 1477.8 1477.8 0.5708 0.6240 0.5233 5630 5630 5630 70 70 70
RB1.31 1324 1324 1328.9 0.7113 0.7113 0.7389 6506 6506 6579 85 85 86
RB1.41 1947.5 1953.7 1974.9 0.6262 0.6471 0.7143 7996 8017 7996 80 80 80
RB1.51 2064.9 2070.3 2073.6 0.5823 0.6470 0.5940 6251 6276 6372 69 69 69
RB1.61 1833.9 1833.9 1833.9 0.6243 0.6523 0.6621 6558 6561 6558 68 68 68
RB1.71 2012 2016 2019.7 0.8345 0.8345 0.4190 8032 8032 8032 83 83 83
RB1.81 610.8 610.8 611.1 0.9095 0.9095 0.9079 2574 2574 2604 93 93 94
RB1.s.01 1311.8 1312.1 1311.8 0.3455 0.4718 0.3253 4172 4172 4172 53 53 53
RB1.s.11 920.9 944.6 935.9 0.2839 0.6226 0.2804 3111 3182 3111 45 45 45
RB1.s.21 1691.9 1691.9 1691.9 0.8093 0.8093 0.8093 8414 8414 8440 86 86 86
RB1.s.31 1485.8 1490 1499.2 0.5071 0.8049 0.5917 5391 5439 5577 72 72 74
RB1.s.41 1822.8 1857.9 1838.1 0.4077 0.5124 0.4546 6634 6659 6634 71 71 71
RB1.s.51 2467.3 2472.5 2470.2 0.6882 0.8239 0.6905 7473 7473 7473 70 70 70
RB1.s.61 1619.7 1625 1627.4 0.7823 0.7982 0.7857 6515 6523 6515 82 82 82

Continued. . .
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
RB1.s.71 1730.6 1732.6 1730.9 0.8117 0.8117 0.8215 6665 6665 6674 84 84 84
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Table A.3: Data Set MUSCLE

AncOr = Ancestor Original; AncCl = Ancestor Classic; AncEx = Ancestor Expert; GuiOr = Guidance Original; GuiCl = Guidance
Classic; GuiEx = Guidance Expert; MusOr = Muscle Original; MusCl = Muscle Classic; MusEx = Muscle Expert; TcoOr = T-Coffee

Original; TcoCl = T-Coffee Classic; TcoEx = T-Coffee Expert

BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
BRCA1.01 1512.1 1541.6 1518.1 0.6757 0.6859 0.6754 -1 -1 3520 48 48 48
BRCA1.11 1790.4 1818.3 1804 0.2513 0.2725 0.2277 3594 3608 3594 50 50 50
BRCA1.21 3328.3 3329.4 3373.2 0.5602 0.5685 0.3980 8568 8568 8568 74 74 74
BRCA1.31 3697.9 3709.6 3700.2 0.5325 0.5529 0.5692 9827 9830 9831 65 65 65
BRCA1.41 3279.5 3281.8 3289.1 0.7434 0.7660 0.7736 8778 8778 8778 82 83 82
BRCA1.51 3826.3 3843.3 3837 0.6862 0.7157 0.7130 9985 9985 9985 78 78 78
BRCA1.61 4346.7 4346.7 4354.7 0.7599 0.7599 0.6896 13180 13180 13180 89 89 89
BRCA1.71 1510.5 1510.5 1512.5 0.4995 0.4995 0.5842 3671 3671 3689 77 77 77
BRCA1.s.01 2136.8 2160.2 2139.1 0.5408 0.5835 0.5506 5868 5868 5868 50 50 50
BRCA1.s.11 2519.2 2526.7 2519.7 0.2190 0.2238 0.2203 5519 5519 5519 56 56 56
BRCA1.s.21 3359.4 3370.9 3361.4 0.4599 0.4715 0.4674 8840 8883 8857 72 72 72
BRCA1.s.31 3321.6 3335.6 3321.6 0.4701 0.5923 0.5252 9193 9230 9193 70 71 70
BRCA1.s.41 3863.2 3880.2 3895.1 0.6537 0.6779 0.6888 9758 9758 9758 81 81 81
BRCA1.s.51 4109.2 4109.2 4132.8 0.8019 0.8019 0.8003 12060 12060 12110 85 85 85
BRCA1.s.61 3737.6 3737.6 3739.6 0.5053 0.5053 0.5337 10520 10520 10520 83 83 83
P531.01 2737.2 2737.2 2760.9 0.3394 0.3431 0.3582 5357 5357 5388 62 62 62
P531.11 2495.4 2495.4 2519.3 0.5533 0.5533 0.5496 4879 4879 4949 76 76 76
P531.21 2338.5 2338.5 2339.9 0.6459 0.6544 0.6685 4809 4809 4809 61 61 61
P531.31 3895.6 3895.6 3895.6 0.4922 0.4922 0.4783 7124 7124 7124 66 66 66
P531.41 3546.1 3564 3546.7 0.6324 0.6473 0.6296 8796 8849 8805 81 81 81
P531.51 3244.5 3244.5 3264.7 0.5641 0.5641 0.5739 6647 6647 6647 69 69 69
P531.61 3086.9 3086.9 3087.1 0.5896 0.5896 0.6234 8118 8118 8118 75 75 75
P531.71 3679.7 3679.7 3692 0.7488 0.7488 0.7628 9703 9703 9703 84 84 85
P531.81 2715.9 2715.9 2750.2 0.5397 0.5616 0.5806 7070 7070 7070 72 72 72
P531.91 3042.7 3043.1 3047 0.6945 0.7009 0.7187 8040 8040 8044 81 81 81
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P531.101 1294.1 1324.3 1309.7 0.5300 0.5373 0.5037 2798 2804 2802 49 49 49
P531.111 547.7 547.7 561 0.3717 0.3717 0.6200 1484 1484 1523 70 70 70
P531.s.01 3208.3 3210.3 3228 0.5378 0.5378 0.5722 7660 7660 7660 76 76 76
P531.s.11 2584.1 2584.1 2591.6 0.5950 0.6052 0.6109 4687 4687 4722 68 68 68
P531.s.21 2338.4 2338.4 2349.8 0.3779 0.3779 0.3850 4385 4385 4385 55 55 55
P531.s.31 3895.6 3895.6 3895.6 0.4731 0.4731 0.4930 7124 7124 7124 66 66 66
P531.s.41 3151.6 3151.6 3155.6 0.5130 0.5391 0.5293 7119 7119 7123 72 72 72
P531.s.51 2832.6 2837.1 2832.6 0.5791 0.5791 0.5832 6766 6766 6766 66 66 66
P531.s.61 3739 3739 3740.3 0.6899 0.6899 0.7184 8278 8278 8369 86 86 87
P531.s.71 3453.1 3453.1 3457.4 0.6652 0.6652 0.6602 8994 8994 8994 83 83 83
P531.s.81 2477.6 2481.3 2499.8 0.5290 0.5323 0.5358 6594 6653 6594 75 75 75
P531.s.91 2053.7 2057 2053.7 0.4359 0.4778 0.4680 3533 3550 3906 72 72 72
P531.s.101 1451.1 1458.6 1453.1 0.3987 0.5565 0.4293 3733 3733 3747 69 69 69
P532.01 3688.1 3690.6 3698.9 0.6289 0.6307 0.6105 9308 9308 9308 81 81 82
P532.11 3130 3130 3132 0.8908 0.8908 0.8945 9149 9149 9149 90 90 90
P532.21 3042.3 3043.1 3046.3 0.7050 0.7070 0.7263 8764 8766 8764 89 89 89
P532.31 878.6 878.6 878.6 0.5457 0.5955 0.5916 873.5 873.5 906.9 22 22 22
P532.41 1891.7 1891.7 1898.7 0.6739 0.6739 0.6545 3569 3569 3569 55 55 55
P532.51 1972 1972 1977.8 0.2919 0.2919 0.3096 4256 4256 4256 54 54 54
P532.61 3028.6 3028.6 3036.4 0.6738 0.7221 0.6939 9839 9839 9839 90 90 90
P532.s.01 3482.8 3482.8 3489.1 0.8057 0.8057 0.8146 10200 10200 10200 91 91 91
P532.s.11 3869.8 3869.8 3871.1 0.9108 0.9108 0.9150 12120 12120 12120 97 97 97
P532.s.21 1594.4 1594.4 1622.5 0.1962 0.2236 0.2144 2124 2124 2124 37 37 37
P532.s.31 518.4 544.4 589.6 0.8085 0.9227 0.7958 1979 1979 3152 65 65 65
P532.s.41 2551.9 2551.9 2560.2 0.4540 0.4564 0.4555 5716 5716 5716 63 63 63
P532.s.51 3006.9 3006.9 3025.2 0.4669 0.4945 0.4713 7127 7127 7127 79 79 79
P532.s.61 1081.3 1081.3 1092.5 0.8254 0.8254 0.7738 3560 3560 3560 91 91 92
P533.01 1584.4 1595.4 1652.5 0.2254 0.2361 0.3643 3548 3548 3548 69 69 69
P533.11 3176.4 3178.4 3176.4 0.6354 0.6354 0.6635 7262 7262 7262 80 80 80
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P533.21 1854.5 1861.8 1854.8 0.2117 0.2252 0.2356 3379 3379 3389 49 49 49
P533.31 1343.2 1343.2 1343.2 0.5744 0.6641 0.6041 1900 1961 1900 49 49 49
P533.41 1427.9 1440.4 1438.8 0.5152 0.5299 0.5244 3338 3338 3338 23 23 24
P533.51 1044.2 1045.5 1060.6 0.1997 0.1997 0.1699 1979 1979 1979 37 37 37
P533.61 652.7 654.4 652.7 0.2763 0.3476 0.3532 2067 2067 2067 42 42 42
P533.71 1901.2 1943.9 1926.7 0.4598 0.4667 0.4539 5578 5578 5588 57 57 57
P533.81 310.5 310.8 310.5 0.3500 0.6305 0.4464 882.3 895.4 882.3 66 66 67
P533.s.01 2355.5 2355.5 2368.1 0.3881 0.3881 0.5742 6066 6066 6066 77 77 77
P533.s.11 1786.9 1786.9 1787.6 0.2261 0.2261 0.2337 3183 3701 3183 52 52 52
P533.s.21 2348.3 2361.5 2348.3 0.4215 0.4565 0.4435 4476 4476 4493 42 42 42
P533.s.31 820.4 825.5 820.4 0.6491 0.7052 0.6827 883.3 927.3 883.3 31 31 31
P533.s.41 1814.5 1843 1814.5 0.1777 0.1777 0.1583 3129 3129 3129 36 36 36
P533.s.51 648.7 673.1 648.7 0.1692 0.2431 0.2168 1545 1545 1545 32 32 32
P533.s.61 1443.6 1447.7 1445.6 0.4854 0.5002 0.4997 3683 3683 3701 69 69 69
P533.s.71 1192.3 1234.9 1238.4 0.3232 0.4488 0.3290 3784 3784 3784 48 48 48
RB1.01 1284.8 1297.2 1284.8 0.4559 0.4760 0.4419 3456 3456 3456 61 61 62
RB1.11 1115.6 1120.9 1115.6 0.2250 0.3647 0.2388 2797 2797 2797 34 35 34
RB1.21 1457 1457 1459 0.3833 0.4132 0.4297 5722 5722 5722 70 70 70
RB1.31 1320.6 1320.6 1320.6 0.6899 0.6899 0.7024 6719 6719 6719 86 86 86
RB1.41 1979.4 1981.4 1985.7 0.8375 0.8375 0.8226 8169 8169 8169 80 80 80
RB1.51 2065.4 2065.4 2069.4 0.4258 0.4341 0.4215 6469 6469 6469 71 71 71
RB1.61 1810.5 1810.5 1813.4 0.5092 0.5548 0.5489 6758 6758 6758 69 69 69
RB1.71 2002.6 2008.3 2012.7 0.7473 0.7640 0.7847 8001 8018 8001 83 83 83
RB1.81 610.8 610.8 611.1 0.8778 0.8778 0.8730 2612 2612 2612 93 93 94
RB1.s.01 1286.9 1290 1290.2 0.3590 0.4212 0.3441 4358 4365 4358 52 52 53
RB1.s.11 936.3 952.8 942.8 0.3757 0.4480 0.4181 3487 3503 3487 46 46 46
RB1.s.21 1689.6 1702.8 1696.7 0.7214 0.7499 0.7968 8421 8421 8421 86 86 87
RB1.s.31 1492.8 1492.8 1492.8 0.4620 0.4819 0.5842 5603 5603 5603 70 70 75
RB1.s.41 1845 1858 1847.7 0.5314 0.5314 0.4555 7147 7157 7147 74 74 74
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
RB1.s.51 2456.8 2468.6 2460 0.6084 0.6431 0.6174 7369 7369 7369 69 69 69
RB1.s.61 1600.7 1609.3 1602.7 0.7546 0.8087 0.7874 6577 6585 6610 82 82 82
RB1.s.71 1718.5 1723.5 1718.8 0.7715 0.8068 0.7585 6611 6611 6618 83 83 83
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Table A.4: Data Set T-Coffee

AncOr = Ancestor Original; AncCl = Ancestor Classic; AncEx = Ancestor Expert; GuiOr = Guidance Original; GuiCl = Guidance
Classic; GuiEx = Guidance Expert; MusOr = Muscle Original; MusCl = Muscle Classic; MusEx = Muscle Expert; TcoOr = T-Coffee

Original; TcoCl = T-Coffee Classic; TcoEx = T-Coffee Expert

BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
BRCA1.01 1485.1 1487.6 1528.7 0.5198 0.5402 0.5747 3106 3135 3294 45 45 46
BRCA1.11 1692.9 1698 1702.3 0.1418 0.1506 0.1718 2462 2661 2595 45 45 45
BRCA1.21 3297 3307.4 3347.8 0.3339 0.3942 0.4271 8000 8044 8346 72 72 74
BRCA1.31 3660.8 3671.4 3700 0.4181 0.4370 0.5458 9363 9403 9593 65 65 66
BRCA1.41 3319.9 3350.9 3354.8 0.5456 0.5456 0.5456 8538 8670 8538 82 83 83
BRCA1.51 3853.5 3854.8 3855.8 0.6438 0.6595 0.6801 9697 9840 9727 77 77 77
BRCA1.61 4342.9 4342.9 4355.5 0.7668 0.7668 0.7836 13110 13110 13200 88 88 88
BRCA1.71 1501.8 1501.8 1513.4 0.4697 0.4697 0.6291 3500 3500 3663 74 74 77
BRCA1.s.01 2089.3 2110.3 2111.2 0.2629 0.2629 0.2709 5066 5167 5232 48 48 49
BRCA1.s.11 2485.5 2495.1 2490.8 0.1466 0.1509 0.1580 4686 4769 4686 54 55 55
BRCA1.s.21 3317.1 3337.5 3357.9 0.3756 0.4066 0.4493 8496 8525 8620 71 71 72
BRCA1.s.31 3327.4 3353.6 3338.4 0.5107 0.5239 0.5301 8700 8756 8795 72 72 72
BRCA1.s.41 3884.7 3898.3 3889 0.6492 0.6912 0.6556 9644 9721 9688 80 80 80
BRCA1.s.51 4121.5 4121.5 4121.5 0.6803 0.6803 0.7010 11820 11880 12010 84 84 84
BRCA1.s.61 3729.6 3729.6 3740.2 0.4892 0.4892 0.5774 10220 10220 10390 82 82 83
P531.01 2736.5 2736.5 2745.4 0.3124 0.3132 0.3285 4871 4871 4954 62 62 62
P531.11 2504.4 2504.4 2516.9 0.5487 0.5487 0.6038 3830 3830 4943 76 76 76
P531.21 2278.4 2301.7 2318.9 0.5300 0.5420 0.5995 4133 4150 4226 61 61 62
P531.31 3849.8 3849.8 3867 0.4213 0.4213 0.4373 7070 7070 7121 65 65 65
P531.41 3512.8 3526.7 3556.2 0.5114 0.5164 0.5578 8399 8419 8744 80 80 80
P531.51 3232.6 3233.6 3240.9 0.4450 0.4450 0.4922 6371 6371 6473 68 68 68
P531.61 3006.2 3054.1 3055.9 0.7628 0.4254 0.4923 7375 7545 7772 71 71 73
P531.71 3684.7 3684.7 3692.3 0.3345 0.3345 0.7913 9578 9578 9694 85 85 85
P531.81 2714.7 2714.7 2767.3 0.5357 0.5357 0.5357 6502 6502 6644 72 72 72
P531.91 3013.4 3030.2 3017.7 0.3921 0.5026 0.3921 7383 7433 7524 80 80 80
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P531.101 1289.5 1321.3 1295.7 0.4537 0.4708 0.4702 2510 2539 2609 49 49 49
P531.111 561 561 561 0.5332 0.5332 0.5332 1526 1526 1526 67 67 67
P531.s.01 3213.8 3216.1 3225.3 0.5625 0.5823 0.5604 7278 7281 7395 76 76 76
P531.s.11 2584.3 2595.4 2593.8 0.4684 0.4758 0.5567 4444 4460 4458 69 69 69
P531.s.21 2266.3 2266.3 2293.7 0.2913 0.2913 0.3480 3800 3800 3920 54 54 54
P531.s.31 3956.1 3956.1 3983.6 0.4475 0.4475 0.5181 7338 7338 7422 83 83 83
P531.s.41 3133 3133 3141.6 0.4482 0.5253 0.4925 6958 6975 7018 72 72 72
P531.s.51 2762.9 2804.6 2807.6 0.2813 0.3272 0.4371 5957 6171 6457 63 63 65
P531.s.61 3729.5 3729.5 3738.1 0.6861 0.6861 0.6896 8187 8187 8238 85 85 86
P531.s.71 3439.5 3439.5 3461.4 0.6423 0.6423 0.6746 8463 8463 8758 83 83 84
P531.s.81 2491.7 2507.3 2508.4 0.4456 0.5445 0.4739 6459 6534 6590 76 76 76
P531.s.91 2079.1 2105.4 2083.8 0.4497 0.4775 0.4394 3398 4267 3765 72 72 72
P531.s.101 1437.5 1450.4 1445.2 0.3683 0.3683 0.3759 3562 3588 3570 65 65 65
P532.01 3654.1 3655.8 3669.8 0.5220 0.5365 0.5458 8799 8810 8914 81 81 82
P532.31 866.1 885 890.7 0.6091 0.6165 0.6143 735.7 774.1 749.6 27 27 27
P532.21 3049.4 3049.4 3054.8 0.6734 0.6734 0.7150 8410 8410 8776 89 89 89
P532.41 1896.2 1896.2 1908.4 0.5766 0.5766 0.6326 3204 3204 3419 53 53 54
P532.51 1925.4 1925.4 1955.6 0.1242 0.1242 0.1838 3622 3622 3976 53 53 55
P532.61 3039.8 3046.4 3045.3 0.7847 0.8345 0.7911 9746 9767 9761 90 90 91
P532.s.01 3476.9 3476.9 3490.5 0.7648 0.7648 0.8530 10080 10080 10190 90 90 91
P532.s.11 3864.1 3864.1 3872.4 0.8972 0.8972 0.9171 12030 12030 12070 97 97 97
P532.s.31 537.8 541 547.1 0.7649 0.8198 0.7722 1601 2403 1735 63 63 63
P532.s.41 2524.2 2524.2 2552.8 0.4511 0.4511 0.5162 5261 5261 5601 62 62 63
P532.s.51 2979.1 2979.1 3011.3 0.4331 0.4367 0.4841 6519 6519 6998 78 78 79
P532.s.61 1087.3 1087.3 1092.5 0.7100 0.7100 0.7889 3514 3514 3557 91 91 92
P533.01 1550.6 1550.6 1602 0.2263 0.2263 0.3592 3433 3433 3457 68 68 68
P533.11 3125.8 3135.8 3151.3 0.4670 0.6074 0.4757 6797 6850 7014 80 80 80
P533.31 1412.7 1412.7 1412.7 0.5193 0.5857 0.5942 2079 2132 2201 52 52 52
P533.21 1775 1790.5 1814.7 0.2277 0.2925 0.3042 2975 2981 3046 49 49 49
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BlockName AncOr AncCl AncEx GuiOr GuiCl GuiEx MusOr MusCl MusEx TcoOr TcoCl TcoEx
P533.41 1568.4 1593.7 1583.2 0.2996 0.3365 0.2807 2940 3115 3023 25 25 25
P533.51 1018.7 1018.7 1018.7 0.1528 0.1773 0.1528 1563 1563 1566 34 34 35
P533.61 624.7 641.2 632.4 0.0666 0.1003 0.0803 1259 1259 1419 42 42 42
P533.71 1924 1932.3 1934.6 0.3190 0.3542 0.3543 5436 5471 5537 57 57 58
P533.81 308.5 312.3 310.5 0.4693 0.5160 0.5460 757.5 835.3 771.3 67 67 67
P533.s.11 1641.5 1647.8 1664.5 0.2165 0.2165 0.2129 2937 3501 2985 49 49 50
P533.s.21 2411.6 2412.1 2411.6 0.3139 0.3674 0.4248 4176 4188 4274 42 42 42
P533.s.31 954.4 954.4 954.4 0.4729 0.4729 0.5683 594.3 594.3 650.1 31 31 31
P533.s.41 1759.2 1780 1804 0.0487 0.1156 0.0974 2362 2448 2441 35 35 35
P533.s.51 598.9 658.5 652.2 0.0889 0.2608 0.1346 890.9 1012 1105 35 35 36
P533.s.61 1407.8 1408.1 1409.8 0.2332 0.2530 0.2697 3549 3574 3549 68 68 68
P533.s.71 1202.1 1208.9 1219.3 0.5014 0.5622 0.5477 3622 3671 3653 48 48 48
RB1.01 1185.6 1185.9 1228.9 0.3764 0.4074 0.4011 2711 2887 3176 60 60 62
RB1.11 1130.4 1149 1146 0.0705 0.1186 0.0854 2453 2480 2462 40 40 40
RB1.21 1443.8 1446.1 1443.8 0.3767 0.4386 0.4147 4771 4816 5097 70 70 70
RB1.31 1305.5 1322.4 1321.7 0.6672 0.8046 0.6954 6261 6459 6569 84 84 85
RB1.41 1945.9 1964.8 1979.6 0.6360 0.8268 0.7070 7804 7909 8056 79 79 80
RB1.51 2061.4 2067.6 2079.7 0.4307 0.4562 0.4751 6215 6215 6328 70 70 70
RB1.61 1785.5 1811.5 1814.2 0.4897 0.5655 0.5329 6312 6505 6683 67 67 68
RB1.71 1992.3 2001.5 2014 0.6902 0.7229 0.7725 7640 7700 8027 81 81 82
RB1.81 603.8 603.8 611.8 0.7263 0.7263 0.8381 2562 2562 2607 93 93 94
RB1.s.01 1245 1271.1 1287 0.2502 0.3102 0.2737 3590 3640 3932 52 52 53
RB1.s.11 898.4 930.3 902.8 0.1435 0.1639 0.1859 2474 2665 2594 46 46 47
RB1.s.21 1696.8 1699.1 1701.1 0.5827 0.7155 0.6047 7777 7866 8089 86 86 86
RB1.s.31 1491.1 1491.1 1507.7 0.5528 0.6231 0.6787 5102 5102 5581 77 77 77
RB1.s.41 1819.1 1862.6 1846.5 0.3554 0.6005 0.3737 6469 6677 6623 70 70 70
RB1.s.51 2416.1 2426.8 2457.2 0.5520 0.6211 0.6260 7143 7212 7349 69 69 70
RB1.s.61 1594.6 1630.5 1608 0.6723 0.6800 0.7115 6345 6422 6572 81 81 82
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A.2 MSA: MOEA Approach

Table A.5: Data Set BAliBase RV11
SP = Sum of Pairs; TC = Total Column

GROUP Metal SP TC
BB11001 0.0647343 0.974 0.94
BB11002 0.630466472 0.523 0
BB11003 0.420567376 0.665 0.48
BB11004 0.473871734 0.605 0.43
BB11005 0.604277485 0.476 0.11
BB11006 0.665912739 0.448 0.25
BB11007 0.377058433 0.688 0.4
BB11008 0.393442623 0.507 0.44
BB11009 0.545524691 0.671 0.6
BB11010 0.713801289 0.348 0.17
BB11011 0.765422886 0.298 0.09
BB11012 0.164835165 0.918 0.86
BB11013 0.88547486 0.161 0
BB11014 0.27265987 0.799 0.65
BB11015 0.24743382 0.792 0.67
BB11016 0.712388037 0.31 0
BB11017 0.336630399 0.749 0.65
BB11018 0.581952007 0.628 0.32
BB11019 0.395745631 0.673 0.21
BB11020 0.400215408 0.672 0.35
BB11021 0.343994314 0.74 0.58
BB11022 0.740112994 0.152 0
BB11023 0.548793607 0.53 0.23
BB11024 0.761670762 0.28 0
BB11025 0.929506546 0.105 0
BB11026 0.845039683 0.122 0
BB11027 0.710380835 0.29 0
BB11028 0.556884971 0.615 0
BB11029 0.517156863 0.545 0.48
BB11030 0.599717541 0.251 0
BB11031 0.620681324 0.572 0.18
BB11032 0.395189628 0.657 0.33
BB11033 0.687259615 0.361 0
BB11034 0.631143075 0.511 0.11
BB11035 0.525667351 0.503 0.3
BB11036 0.557480695 0.559 0.24
BB11037 0.419277799 0.48 0.27
BB11038 0.311403079 0.775 0.62
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Table A.6: Data Set BAliBase RV12
SP = Sum of Pairs; TC = Total Column

GROUP Metal SP TC
BB12001 0.248978377 0.836 0.63
BB12002 0.073557692 0.925 0.79
BB12003 0.107518797 0.951 0.88
BB12004 0.093418381 0.932 0.74
BB12005 0.109449761 0.914 0.73
BB12006 0.091594828 0.94 0.91
BB12007 0.199289564 0.874 0.74
BB12008 0.11007397 0.92 0.72
BB12009 0.075044405 0.915 0.78
BB12010 0.166051408 0.899 0.75
BB12011 0.256740383 0.735 0.43
BB12012 0.402721999 0.579 0.43
BB12013 0.098156114 0.942 0.86
BB12014 0.077857143 0.995 0.97
BB12015 0.180122264 0.915 0.82
BB12016 0.070922703 0.811 0.61
BB12017 0.156193353 0.926 0.82
BB12018 0.150624688 0.919 0.88
BB12019 0.320613311 0.868 0.76
BB12020 0.171314741 0.861 0.76
BB12021 0.133480176 0.902 0.84
BB12022 0.147763578 0.938 0.88
BB12023 0.192629935 0.873 0.78
BB12024 0.102774923 0.937 0.88
BB12025 0.336221122 0.793 0.67
BB12026 0.140294057 0.882 0.63
BB12027 0.123828593 0.915 0.73
BB12028 0.255699733 0.85 0.74
BB12029 0.211871477 0.862 0.92
BB12030 0.26651202 0.911 0.81
BB12031 0.24989121 0.83 0.68
BB12032 0.137815126 0.922 0.77
BB12033 0.391297518 0.678 0.45
BB12034 0.158974359 0.889 0.8
BB12035 0.141859421 0.925 0.63
BB12036 0.089525108 0.952 0.91
BB12037 0.170810217 0.852 0.64
BB12038 0.12738063 0.862 0.61
BB12039 0.156277436 0.879 0.7
BB12040 0.099848714 0.961 0.94
BB12041 0.38490566 0.678 0.45
BB12042 0.350215161 0.726 0.57
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GROUP Metal SP TC
BB12043 0.186645932 0.908 0.52
BB12044 0.190547185 0.878 0.71

Table A.7: Data Set BAliBase RV20
SP = Sum of Pairs; TC = Total Column

GROUP Metal SP TC
BB20001 0.428599647 0.444 0
BB20002 0.645660683 0.082 0
BB20003 0.05836958 0.953 0.28
BB20004 0.13537186 0.894 0.6
BB20005 0.271342145 0.777 0.07
BB20006 0.076326023 0.959 0.54
BB20007 0.274010069 0.789 0.34
BB20008 0.491632111 0.702 0
BB20009 0.115206725 0.918 0.65
BB20010 0.195015399 0.794 0.28
BB20011 0.370794078 0.719 0.02
BB20012 0.368658935 0.693 0.19
BB20013 0.402535677 0.651 0.22
BB20014 0.247722349 0.805 0.13
BB20015 0.502617112 0.628 0
BB20016 0.298916121 0.659 0
BB20017 0.079124207 0.943 0.55
BB20018 0.05012664 0.963 0.68
BB20019 0.241520581 0.778 0.03
BB20020 0.168531367 0.871 0.62
BB20021 0.123597025 0.856 0.02
BB20022 0.14835866 0.887 0.36
BB20023 0.190046434 0.871 0.3
BB20024 0.527361319 0.526 0.38
BB20025 0.092377077 0.933 0.41
BB20026 0.215528719 0.837 0.34
BB20027 0.439853698 0.833 0.47
BB20028 0.068791561 0.976 0.69
BB20029 0.368444998 0.739 0
BB20030 0.114507481 0.914 0.24
BB20031 0.235581181 0.366 0
BB20032 0.108904865 0.922 0.1
BB20033 0.080496321 0.938 0.33
BB20034 0.175656202 0.144 0
BB20035 0.167942967 0.023 0
BB20036 0.261217328 0.749 0
BB20037 0.189485843 0.85 0.16
BB20038 0.102563331 0.932 0.4
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GROUP Metal SP TC
BB20039 0.101113204 0.923 0.15
BB20040 0.136318165 0.896 0.57
BB20041 0.364598672 0.725 0.39

Table A.8: Data Set BAliBase RV30
SP = Sum of Pairs; TC = Total Column

GROUP Metal SP TC
BB30001 0.178569604 0.854 0.38
BB30002 0.313825746 0.803 0.37
BB30003 0.480782507 0.564 0.09
BB30004 0.184260359 0.864 0.6
BB30005 0.215663825 0.842 0.4
BB30006 0.199403255 0.667 0.39
BB30007 0.209010731 0.787 0.5
BB30008 0.346587323 0.708 0.25
BB30009 0.65232001 0.465 0
BB30010 0.110047302 0.919 0.55
BB30011 0.067976495 0.946 0.73
BB30012 0.270637534 0.71 0.36
BB30013 0.342556642 0.687 0.32
BB30014 0.144206963 0.888 0.54
BB30015 0.161179577 0.801 0.57
BB30016 0.478647347 0.519 0
BB30017 0.384086414 0.709 0.38
BB30018 0.106232703 0.915 0.48
BB30019 0.344607601 0.674 0.33
BB30020 0.362516492 0.535 0
BB30021 0.406128115 0.626 0.14
BB30022 0.199267399 0.824 0.27
BB30023 0.231673087 0.798 0.31
BB30024 0.232150302 0.753 0.27
BB30025 0.529501016 0.702 0
BB30026 0.339260526 0.75 0.35
BB30027 0.444649539 0.637 0.15
BB30028 0.163341102 0.872 0.23
BB30029 0.214852679 0.832 0.51
BB30030 0.44828616 0.573 0

Table A.9: Data Set BAliBase RV40
SP = Sum of Pairs; TC = Total Column

GROUP Metal SP TC
BB40001 0.560969874 0.765 0
BB40002 0.67351214 0.585 0
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GROUP Metal SP TC
BB40003 0.175839023 0.901 0.76
BB40004 0.109060805 0.912 0.4
BB40005 0.195813076 0.899 0.78
BB40006 0.326310632 0.733 0.34
BB40007 0.456078083 0.716 0.33
BB40008 0.182988083 0.868 0.66
BB40009 0.270969965 0.746 0.43
BB40010 0.152522936 0.82 0.53
BB40011 0.374066574 0.686 0
BB40012 0.177789872 0.85 0.58
BB40013 0.20557954 0.754 0.38
BB40014 0.337378338 0.741 0.46
BB40015 0.552407789 0.445 0
BB40016 0.265996704 0.866 0
BB40017 0.266204016 0.866 0
BB40018 0.099724116 0.867 0.7
BB40019 0.140580317 0.903 0.75
BB40020 0.207057146 0.88 0.69
BB40021 0.239595948 0.857 0.48
BB40022 0.445564267 0.605 0
BB40023 0.266791951 0.718 0
BB40024 0.406017974 0.589 0
BB40025 0.163606729 0.879 0.72
BB40026 0.491159437 0.532 0
BB40027 0.652249867 0.431 0
BB40028 0.107695634 0.909 0.61
BB40029 0.152439294 0.891 0.59
BB40030 0.265340685 0.804 0.58
BB40031 0.464574158 0.637 0.99
BB40032 0.347360126 0.91 0.84
BB40033 0.277196444 0.79 0.53
BB40034 0.338133021 0.693 0.31
BB40035 0.695920698 0.582 0
BB40036 0.106513418 0.933 0.63
BB40037 0.550783513 0.248 0
BB40038 0.628854139 0.59 0
BB40039 0.179451343 0.866 0.52
BB40040 0.222960599 0.782 0.45
BB40041 0.33623975 0.682 0
BB40042 0.253969413 0.78 0
BB40043 0.277216539 0.696 0.34
BB40044 0.462905069 0.678 0
BB40045 0.265130985 0.605 0.25
BB40046 0.439239494 0.609 0.17
BB40047 0.322234001 0.886 0.49
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GROUP Metal SP TC
BB40048 0.127824519 0.907 0.7
BB40049 0.46502176 0.77 0.25

Table A.10: Data Set BAliBase RV50
SP = Sum of Pairs; TC = Total Column

GROUP Metal SP TC
BB50001 0.375019245 0.794 0.39
BB50002 0.641637438 0.441 0.02
BB50003 0.4995148 0.601 0.29
BB50004 0.116108381 0.961 0.88
BB50005 0.11994335 0.942 0.77
BB50006 0.47332213 0.597 0
BB50007 0.414677887 0.616 0.02
BB50008 0.247516511 0.876 0.63
BB50009 0.397203112 0.697 0
BB50010 0.434067832 0.794 0.36
BB50011 0.527964222 0.593 0
BB50012 0.470385789 0.616 0
BB50013 0.148084146 0.928 0.71
BB50014 0.24181047 0.821 0.52
BB50015 0.599248225 0.451 0
BB50016 0.536709542 0.735 0.33

A.3 PPP: efold Approach

Table A.11: Benchmark of Standard Proteins

Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2

1EM7 A 56 4 7 5 4 2A1P4A3 PF01378 50 17
1UBQ A 76 5 9 3 2 2A1P5A3A4 PF00240 11560 5266

Table A.12: Benchmark of Heteromorphic Proteins

Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2

1EM7 A 56 4 7 5 4 2A1P4A3 PF01378 50 17
GA1 A 56 4 7 5 4 N/A N/A N/A 33
GB1 A 56 4 7 5 4 2A1P4A3 N/A N/A 16
GA30 A 56 4 7 5 4 N/A N/A N/A 32
GB30 A 56 4 7 5 4 2A1P4A3 N/A N/A 16
GA77 A 56 4 7 5 4 N/A N/A N/A 33
GB77 A 56 4 7 5 4 2A1P4A3 N/A N/A 11
GA88 A 56 4 7 5 4 N/A N/A N/A 24
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Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2
GB88 A 56 4 7 5 4 2A1P4A3 N/A N/A 11
GA95 A 56 4 7 5 4 N/A N/A N/A 16
GB95 A 56 4 7 5 4 2A1P4A3 N/A N/A 14
1MHX A 57 4 9 5 2 2A1P4A3 PF01378 50 16
1MI0 A 57 4 8 4 4 2A1P4A3 PF01378 50 16

Table A.13: Benchmark of Pfam proteins extracted from BetaSheet916 data set

Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2

1D0D A 60 2 6 6 5 1A2 PF00014 4915 2
1BUN B 61 2 7 7 4 1A2 PF00014 4915 2262
5PTI A 58 3 7 1 4 2A1A3 PF00014 4915 2274
1BIK A 110 4 7 7 4 1A2N3A4 PF00014 4915 2227
1OOT A 58 5 6 3 2 4A3A2A1A5 PF00018 10749 7299
1I0C A 59 5 6 4 3 4A3A2A1A5 PF00018 10749 7392
2HDA A 64 5 6 3 3 4A3A2A1A5 PF00018 10749 7506
1NEG A 65 5 6 3 2 4A3A2A1A5 PF00018 10749 7363
1CMX B 76 4 6 4 5 2A1P4A3 PF00240 11560 5273
1UBQ A 76 5 9 3 2 2A1P5A3A4 PF00240 11560 5266
1EUV B 79 5 7 2 2 2A1P5A3A4 PF00240 11560 704
1KQ1 H 66 5 9 6 2 5A1A2A3A4 PF01423 8102 442
1HK9 E 68 5 9 5 3 5A1A2A3A4 PF01423 8102 476
1H64 K 71 5 11 4 2 5A1A2A3A4 PF01423 8102 2445

Table A.14: Benchmark of proteins extracted from BetaSheet916 data set

Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2

1PTQ A 50 2 4 4 21 1A2 PF00130 6123 1409
1BX7 A 51 2 4 4 2 1A2 PF02822 460 11
1JJ2 T 53 2 4 4 5 1A2 PF01246 1060 354
1D0D A 60 2 6 6 5 1A2 PF00014 4915 2
1BUN B 61 2 7 7 4 1A2 PF00014 4915 2262
1BJP A 62 2 7 7 30 1P2 PF01361 2760 2149
1ICF I 65 2 4 4 4 1A2 PF00086 2274 710
1GYJ A 76 2 6 6 32 2P1 PF01361 2760 1752
1QGW A 76 2 9 9 22 1A2 PF02972 25 26
1YCQ A 88 2 3 3 13 1A2 PF02201 1464 53
1T3U B 93 2 7 7 2 1A2 PF05164 2881 1026
1A5K A 100 2 8 8 2 1A2 PF00547 1774 576
1KRL A 44 3 12 7 2 3A2A1 PF09200 2 1
1H59 B 45 3 4 2 11 1A3A2 PF00219 1051 134
1B13 A 54 3 3 2 5 2A1A3 PF00301 2943 1775
5PTI A 58 3 7 1 4 2A1A3 PF00014 4915 2274
1BXY A 60 3 6 5 15 2A1A3 PF00327 5033 1342
1O7Z A 61 3 7 4 5 3A2A1 PF00048 2117 890
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Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2
1M8A A 61 3 7 4 4 3A2A1 PF00048 2117 1011
1NR2 A 62 3 6 4 4 1A2A3 PF00048 2117 998
1JZA A 66 3 4 2 4 1A3A2 PF00537 487 267
1A15 A 67 3 9 4 3 3A2A1 PF00048 2117 1017
1MOG A 67 3 12 10 7 1A3A2 PF07311 611 399
1B33 N 67 3 7 7 16 2A1A3 PF01383 448 277
1DI2 A 69 3 8 7 2 1A2A3 PF00035 8915 3159
1EAY D 69 3 5 5 21 2A1A3 PF09078 622 536
1WVN A 74 3 8 4 8 1A3A2 PF00013 19558 3278
1UCR B 75 3 6 2 2 1A3A2 PF08679 56 48
1ESR A 76 3 6 4 4 1A2A3 PF00048 2117 1020
1F9P A 81 3 7 4 4 1A2A3 PF00048 2117 993
1EC6 A 87 3 7 4 11 1A3A2 PF00013 19558 3319
1R8H A 86 3 9 6 20 2A1A3 PF00511 565 266
1JS2 A 89 3 4 2 7 1A2A3 PF01355 231 155
1LZW A 91 3 8 5 23 2A1A3 PF02617 2895 974
1PUG A 94 3 6 6 4 1A2A3 PF02575 4505 1567
1G2R A 94 3 6 4 5 2A1A3 PF04296 2403 988
1PYT A 92 3 6 6 17 2A1A3 PF02244 1016 988
1MK0 A 97 3 8 6 5 2A1A3 PF01541 9798 554
1DCO A 99 3 6 4 3 1A3A2 PF01329 2229 1342
1JOS A 100 3 8 6 5 1A2P3 PF02033 4543 1627
1NN7 A 105 3 5 3 2 2A1P3 PF02214 3855 1447
1I4J B 110 3 10 8 22 1A3A2 PF00237 6446 1447
1OCU A 134 3 11 7 8 1A2A3 PF00787 7076 2478
1H6H A 143 3 12 7 4 1A2A3 PF00787 7076 2133
1MGT A 169 3 10 8 1 1A2A3 PF01035 7975 2133
1FD4 A 41 4 5 2 5 1P3A4A2 PF00711 464 191
1DUR A 55 4 3 2 5 1A4N2A3 PF00037 8206 16202
1MHN A 59 4 10 5 4 1A2A3A4 PF06003 460 920
1MI0 A 61 4 8 5 4 2A1P4A3 PF01378 50 17
1S0Y A 62 4 7 2 2 1P2N4A3 PF01361 2760 2127
1D1M B 65 4 7 4 2 1A2A3A4 PF09048 146 2237
1J2L A 68 4 3 2 2 1A2N3A4 PF00200 2414 1030
1CC7 A 72 4 7 6 4 4A1A3A2 PF00403 19664 8841
1HZ5 A 72 4 8 6 4 2A1P4A3 PF02246 19 5
1XXA C 73 4 6 5 3 1A2A4A3 PF02863 4296 855
1UB4 C 75 4 4 2 2 1A2N3A4 PF04014 4979 1719
1CMX B 76 4 6 4 5 2A1P4A3 PF00240 11560 5273
1H75 A 76 4 5 4 2 2P1A3A4 PF00462 11246 14902
1JB0 C 80 4 5 4 7 4A1N2A3 PF12838 18155 15923
1IQZ A 81 4 4 3 5 1A4N2A3 PF13370 1093 10671
1Q5Y A 84 4 11 8 4 4A1A3A2 PF08753 1066 515
1E44 A 84 4 9 3 5 3A4A1A2 PF03513 22 32
1NFJ A 87 4 11 4 9 1P2A4A3 PF01918 745 285
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Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2
1PCH A 88 4 7 4 2 1A4A2A3 PF00381 8181 2262
1TIG A 88 4 8 5 7 1P2A4A3 PF00707 4680 1292
1UDV A 88 4 11 3 6 1P2A4A3 PF01918 745 199
1FBQ B 90 4 5 2 6 1A2A4A3 PF00447 1989 1102
1G7C B 90 4 12 9 2 4A1A3A2 PF00736 874 413
1BC7 C 93 4 4 3 5 1N2N4N3 PF00178 2375 330
1URN A 96 4 6 4 9 4A1A3A2 PF00076 50512 21110
1LN4 A 98 4 6 3 2 1P2A4A3 PF01985 3330 862
1J27 A 98 4 13 6 6 2A3A1A4 PF04456 654 357
1NO5 B 102 4 6 4 13 3P2A1A4 PF01909 8895 3591
1IIB A 103 4 7 4 12 2P1P3P4 PF02302 18949 1485
1Q4R A 103 4 9 6 12 2A3A1A4 PF07876 1481 1100
1KTE A 105 4 5 4 2 2P1A3A4 PF00462 11246 9885
1RQM A 105 4 7 6 2 2P1A3A4 PF00085 24231 23677
1MFW A 106 4 7 4 8 2A1P4A3 PF03607 1063 303
1OAP A 108 4 5 3 20 1A4A2P3 PF00691 17270 8639
1BIK A 110 4 7 7 4 1A2N3A4 PF00014 4915 2227
1EM8 B 110 4 5 4 11 2P1P3P4 PF03603 745 156
1NZ0 D 111 4 7 4 3 1A2A4P3 PF00825 4169 1744
1GNK B 112 4 10 7 20 4A1A3A2 PF00543 4823 2440
1RMD A 116 4 3 3 5 1A2N3A4 PF00097 9094 10670
1RLK A 116 4 10 5 11 2P1A4A3 PF01981 1006 684
1P9Y A 117 4 8 6 4 1A2A4A3 PF05697 4472 1639
1GNU A 117 4 8 3 12 2A1P4A3 PF02991 1011 436
1DPT A 117 4 8 5 14 2P1A3P4 PF01187 669 943
1PXW B 120 4 6 4 15 1A4A2P3 PF01248 5260 1958
1HUF A 123 4 7 3 2 1A2N3A4 PF09013 68 6
1GPQ B 128 4 9 6 4 4A3A2A1 PF08816 506 90
1JL3 A 137 4 7 4 16 2P1P3P4 PF01451 7884 4201
1B66 A 138 4 14 5 2 1A2A3A4 PF01242 3812 1766
1IR2 I 140 4 9 2 4 2A1A3A4 PF00101 1831 592
1FX3 B 149 4 16 14 2 1A4A3A2 PF02556 1987 561
1BE4 A 151 4 9 3 22 4A1A3A2 PF00334 5820 2277
1QTN A 152 4 9 7 22 2P1P3P4 PF00656 4033 1038
1J98 A 154 4 10 8 3 1A2A4A3 PF02664 2731 477
1IHK A 157 4 4 4 5 1A2N3A4 PF00167 1638 627
1KLO A 162 4 4 3 4 1A2N3A4 PF00053 16492 3796
1K8K F 167 4 7 4 3 1A2A3A4 PF05856 366 111
1EJB B 168 4 9 5 26 2P1P3P4 PF00885 4443 1709
1OOT A 58 5 6 3 2 4A3A2A1A5 PF00018 10749 7299
1I0C A 59 5 6 4 3 4A3A2A1A5 PF00018 10749 7392
1IGU B 60 5 7 5 2 4A3A2A1A5 PF06613 67 29
1VIE A 60 5 8 3 3 5A1A2A3A4 PF06442 33 4
1KU6 B 61 5 6 4 5 1A2N4A3A5 PF00087 594 287
1ONJ A 61 5 8 3 2 1A2N4A3A5 PF00087 594 319
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Pdb Ch Len Str MS mS Gap Topology Pfam Msa1 Msa2
2HDA A 64 5 6 3 3 4A3A2A1A5 PF00018 10749 7506
1NEG A 65 5 6 3 2 4A3A2A1A5 PF00018 10749 7363
1KQ1 H 66 5 9 6 2 5A1A2A3A4 PF01423 8102 442
1AZP A 66 5 8 4 2 1A2N3A4A5 PF02294 33 4
1HZA A 67 5 9 4 2 3A2A1A4A5 PF00313 14886 4062
1HK9 E 68 5 9 5 3 5A1A2A3A4 PF01423 8102 476
1GCQ C 69 5 6 3 3 4A3A2A1A5 PF07653 4617 5122
1H64 K 71 5 11 4 2 5P1P2P3P4 PF01423 8102 2445
1LR7 A 73 5 5 2 4 1A2N4A3A5 PF09289 363 1629
1C1Y B 77 5 7 5 3 2A1P5A3A4 PF02196 710 64
1EUV B 79 5 7 2 2 2A1P5A3A4 PF00240 11560 704
1FM0 D 81 5 5 2 2 2A1P5A3A4 PF02597 6781 3066
1BB9 A 83 5 6 4 3 5A1A2A3A4 PF14604 9839 6652
1PHT A 83 5 8 5 3 2A1A5N3A4 PF07653 4617 6364
1KWA A 88 5 8 4 7 1A5A4N2A3 PF00595 26099 6219
1COZ B 126 5 7 5 14 5P4P1P2P3 PF01467 14169 8554
1E6K A 130 5 7 4 16 2P1P3P4P5 PF00072 151337 19609

Table A.15: Topologies predicted using a HMM

Pdb Topology Pdb Topology Pdb Topology

1A5K 1A2 1GYJ 1P2 1MK0 2A1A3
1AZP 1A2 1H59 1A2A3 1MOG 1A3A2
1B13 3A1A2 1H64 4P3P2P1P5 1NEG 5A1A2A3A4
1B33 1P3A2 1H6H 1A2A3 1NFJ 1P2A4A3
1B66 1A2A3A4 1H75 4A3A1A2 1NN7 2A1P3
1BB9 5A1A2A3A4 1HK9 5A1A2A3A4 1NO5 3P2A1A4
1BE4 2A3A1A4 1HUF 1A2A3A4 1NR2 1A2A3
1BIK 1A2N3A4 1HZ5 2A1A4A3 1NZ0 3P4A2A1
1BJP 1P2 1HZA 1A5A6N2A3A4 1O7Z 1A2A3
1BUN 1A2 1I0C 4A3A2A1A5 1OAP 1A4A2P3
1BX7 1A2 1ICF 1A2 1OCU 1A2A3
1BXY 2A1A3 1IGU 1A2P4A3P5 1ONJ 4A3A2A1A5
1C1Y 2A1A3A4A5 1IHK 1A2A4A3 1OOT 4A3A2A1A5
1CC7 2A3A1A4 1IIB 1P2A3P4 1P9Y 3A4A2A1
1CMX 2A1P4A3 1IQZ 4A1A3A2 1PCH 3A2A4A1
1COZ 5P4P1P2A3 1IR2 1P2A4A3 1PHT 4A3A2A1A5
1D0D 1A2 1J27 2A3A1A4 1PTQ 1A2
1D1M 4A5A1N2A3 1J2L 1A2A3A4 1PUG 1A2A3
1DCO 2A3A1 1J98 1A2A4A3 1PXW 1A4A2P3
1DPT 2P1A3P4 1JB0 1A3N2A4 1Q4R 2A3A1A4
1DUR 2A3A4A1 1JJ2 1A2 1Q5Y 1A2A3A4
1.00E+44 3P2A1A4 1JL3 2P1P3P4 1QGW 1A2
1EAY 2A3A1 1JOS 1A2P3 1QTN 2A3P5N1A3
1EC6 2A3A1 1JS2 2A1A3 1R8H 3A1A2
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Pdb Topology Pdb Topology Pdb Topology
1EJB 2P1P3P4 1JZA 1A3A2 1RLK 2P1P4A3
1EM7 3A4P1A2 1K8K 1A2A3P4 1RMD 2A1A3A4
1EM8 4P3P1P2 1KLO 2A1A3A4 1S0Y 1P2A3A4
1ESR 1A2A3 1KQ1 5A1A2A3A4 1T3U 1A2
1EUV 2A1P5A3A4 1KRL 1A2A3 1TIG 1P2A4A3
1F9P 1A2A3 1KTE 2P1A3A4 1UB4 1A2A3A4
1FBQ 1A2N4A3 1KU6 1A2A3A4A5 1UBQ 2A1P5A3A4
1FD4 1A2A3A4 1KWA 1A5A4P3A2 1UCR 1A2A3
1FM0 2A1P5A3A4 1LN4 1P2P4A3 1UDV 2P1A4A3
1FX3 1A4A3A2 1LR7 2A1A4A3P5 1URN 4A1A3A2
1G2R 2A1A3 1LZW 2P1P3 1VIE 1A2A3A4A5
1G7C 2A3A1A4 1M8A 1A2A3 1XXA 1A2A3A4
1GCQ 1A2A3A4A5 1MFW 2A1P3P4 1YCQ 1A2
1GNK 2A3A1A4 1MHN 1A2A3A4 2HDA 4A3A2A1A5
1GNU 1A2P3P4 1MHX 3A4P1A2 5PTI 2A1A3
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Figure B.1: Contact, Strand and β/β predictions performed by efold for the complete protein benchmark using different sequence
information.

Performance is evaluated on precision (green), sensitivity (blue) and F-measure (red) of experimentally observed contacts. These
metrics are reported for contacts which are 0, 12 and 24 residues apart, and when predicted contacts are within ±2 residues of an

observed contact. Four different (i.e., bbcontacts, PSIPRED, EVfold and DSSP) algorithms were used to create the sequence
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Figure C.1: An example of a pathway predicted by efold for the Protein G

The figure shows the flow network (with multiple sinks) of one individual run (out of
one hundred runs) predicted by efold for the Protein G. Following the analogy of PF

as a flux in a flow network, the weight of each reported pathway represents the
probability that this specific trajectory arises from the network of folding pathways The
predicted pathways are plotted using different colors and the width of a line represents
the weight (a.k.a flow) of each path. If two or more paths share an edge, the visualizer

will plot each path on top of the other to avoid the overlapping of lines.



Appendix C. Supplementary Material 177

Figure C.2: An example of a pathway predicted by efold for the NUG1 mutant

The figure shows the flow network (with multiple sinks) of one individual run (out of
one hundred runs) predicted by efold for the NUG1 mutant. Following the analogy of
PF as a flux in a flow network, the weight of each reported pathway represents the

probability that this specific trajectory arises from the network of folding pathways The
predicted pathways are plotted using different colors and the width of a line represents
the weight (a.k.a flow) of each path. If two or more paths share an edge, the visualizer

will plot each path on top of the other to avoid the overlapping of lines.
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Figure C.3: An example of a pathway predicted by efold for the NUG2 mutant

The figure shows the flow network (with multiple sinks) of one individual run (out of
one hundred runs) predicted by efold for the NUG2 mutant. Following the analogy of
PF as a flux in a flow network, the weight of each reported pathway represents the

probability that this specific trajectory arises from the network of folding pathways The
predicted pathways are plotted using different colors and the width of a line represents
the weight (a.k.a flow) of each path. If two or more paths share an edge, the visualizer

will plot each path on top of the other to avoid the overlapping of lines.
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Figure C.4: An example of a pathway predicted by efold for the Ubiquitin protein

The figure shows the flow network (with multiple sinks) of one individual run (out of
one hundred runs) predicted by efold for the Ubiquitin protein. Following the analogy
of PF as a flux in a flow network, the weight of each reported pathway represents the

probability that this specific trajectory arises from the network of folding pathways The
predicted pathways are plotted using different colors and the width of a line represents
the weight (a.k.a flow) of each path. If two or more paths share an edge, the visualizer

will plot each path on top of the other to avoid the overlapping of lines.



Bibliography

[1] Daniel Kwak, Alfred Kam, David Becerra, Qikuan Zhou, Adam Hops, Eleyine

Zarour, Arthur Kam, Luis Sarmenta, Mathieu Blanchette, and Jérôme Waldispühl.
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[235] Péter Várnai, Christopher M Dobson, and Michele Vendruscolo. Determination of

the transition state ensemble for the folding of ubiquitin from a combination of ϕ

and ψ analyses. Journal of molecular biology, 377(2):575–588, 2008.

[236] Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How

fast-folding proteins fold. Science, 334(6055):517–520, 2011.

[237] Philippe Derreumaux. Role of supersecondary structural elements in protein g

folding. The Journal of chemical physics, 119(9):4940–4944, 2003.

[238] Lydia Tapia, Xinyu Tang, Shawna Thomas, and Nancy M Amato. Kinetics analy-

sis methods for approximate folding landscapes. Bioinformatics, 23(13):i539–i548,

2007.

[239] Qingwu Yang and Sing-Hoi Sze. Predicting protein folding pathways at the meso-

scopic level based on native interactions between secondary structure elements.

BMC bioinformatics, 9(1):320, 2008.

[240] Michael C Baxa, Wookyung Yu, Aashish N Adhikari, Liang Ge, Zhen Xia, Ruhong

Zhou, Karl F Freed, and Tobin R Sosnick. Even with nonnative interactions, the



Bibliography 205

updated folding transition states of the homologs proteins g & l are extensive and

similar. Proceedings of the National Academy of Sciences, 112(27):8302–8307, 2015.

[241] Philipp Neudecker, Paul Robustelli, Andrea Cavalli, Patrick Walsh, Patrik Lund-

ström, Arash Zarrine-Afsar, Simon Sharpe, Michele Vendruscolo, and Lewis E Kay.

Structure of an intermediate state in protein folding and aggregation. Science, 336

(6079):362–366, 2012.
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Cámara-Artigas. Crystallographic structure of the sh3 domain of the human c-yes

tyrosine kinase: loop flexibility and amyloid aggregation. FEBS letters, 581(9):

1701–1706, 2007.

[243] Per J Kraulis. Similarity of protein g and ubiquitin. Science, 254(5031):581–582,

1991.

[244] John P Overington. Comparison of three-dimensional structures of homologous

proteins. Current Opinion in Structural Biology, 2(3):394–401, 1992.

[245] A Maxwell Burroughs, S Balaji, Lakshminarayan M Iyer, and L Aravind. Small

but versatile: the extraordinary functional and structural diversity of the beta-grasp

fold. Biol Direct, 2(3):18, 2007.

[246] Stephen W Michnick and Eugene Shakhnovich. A strategy for detecting the con-

servation of folding-nucleus residues in protein superfamilies. Folding and Design,

3(4):239–251, 1998.

[247] Nikolas S Burkoff, Csilla Várnai, and David L Wild. Predicting protein β-sheet

contacts using a maximum entropy based correlated mutation measure. Bioinfor-

matics, page btt005, 2013.

[248] Zhiyong Wang and Jinbo Xu. Predicting protein contact map using evolutionary

and physical constraints by integer programming. Bioinformatics, 29(13):i266–i273,

2013.



Bibliography 206

[249] Marco Lippi and Paolo Frasconi. Prediction of protein β-residue contacts by markov

logic networks with grounding-specific weights. Bioinformatics, 25(18):2326–2333,

2009.

[250] Castrense Savojardo, Piero Fariselli, Pier Luigi Martelli, and Rita Casadio. Bcov: a

method for predicting β-sheet topology using sparse inverse covariance estimation

and integer programming. Bioinformatics, page btt555, 2013.

[251] Stefan Seemayer, Markus Gruber, and Johannes Söding. Ccmpred?fast and precise
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