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Abstract

We study obstructions to group actions on CAT(0) cube complexes. Firstly, we are inter-

ested in the obstruction to proper actions on CAT(0) cube complexes of a fixed dimension.

This leads to the notion of cubical dimension of a group G which is the infimum n such

that G acts properly on an n-dimensional CAT(0) cube complex. We obstruct the actions of

small cancellation groups in the following sense. For a fixed n, we construct a C ′(1/6) small

cancellation group with cubical dimension bounded below by n. Another instance of finding

a bound on the cubical dimension is an example of cubulated group G with virtual cubical

dimension bounded below by 1. In fact, we show that G does not virtually split. This con-

struction is based on our result on (cocompact) cubulation of a small cancellation quotient

of free product of (cocompactly) cubulated groups. The second direction we pursue is to ob-

struct proper and cocompact actions. We show that most 2-dimensional or three-generator

Artin groups do not act properly and cocompactly on CAT(0) cube complexes, even vir-

tually. We give a classification of cocompactly cubulated 2-dimensional or three-generator

groups in terms of their defining graphs.
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Abrégé

Nous étudions des obstructions d’actions de groupes sur les complexes cubiques CAT(0).

Nous nous intéressons d’abord aux obstructions d’actions propres sur les complexes cubiques

CAT(0) de dimension fixe. Cela nous amène à définir une notion de dimension cubique

d’un groupe G qui est l’infimum n tel que G agit proprement sur un complexe cubique

CAT(0) de dimension n. Nous obstruons les actions des groupes à petite simplification

comme suit: pour un n fixe, nous construisons un groupe à petite simplification C ′(1/6)

de dimension cubique minorée par n. Un autre cas où nous donnons une borne pour la

dimension cubique est un exemple de groupeG cubulé de dimension cubique virtuelle minorée

par 1. En fait, nous montrons que G ne se scinde pas virtuellement. Cette construction est

tirée de notre résultat sur la cubulation (cocompacte) de quotient à petite simplification

d’un produit libre de groupes cubulé (cocompactement). La deuxième direction que nous

poursuivons est d’obstruer les actions propres et cocompactes. Nous montrons que la plupart

des groupes d’Artin de dimension 2 ou engendré par trois éléments n’agissent pas proprement

et cocompactement sur les complexes cubiques CAT(0), même virtuellement. Nous donnons

une classification des groupes de dimension 2 ou engendré par trois éléments qui sont cubulé

cocompactement en fonction de leurs graphs définissants.
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Preface

The manuscript consists of the expository part and a collection of three papers with

original research contribution to the theory of group actions on CAT(0) cube complexes.

Here is an outline of this manuscript.

Chapter 1 contains definitions and basic properties, features and constructions of CAT(0)

cube complexes and group actions on such. Chapter 2 surveys families of groups that have

been shown to act nicely on CAT(0) cube complexes. In Chapter 3 we discuss a few instances

of families of groups known to not admit nice actions on CAT(0) cube complexes. All the

three first chapters are entirely expository and contain no original contribution.

Chapter 4 addresses the question of cubical dimension of small cancellation groups. All

C ′(1/6) groups are known to be cocompactly cubulated, so in particular they are known to

have finite cubical dimension. For each n ≥ 1 we construct examples of C ′(1/6) groups with

cubical dimension bounded below by n. The main result is Theorem 4.1.2. This chapter is

based on the preprint Lower bounds on cubical dimension of C ′(1/6) groups [Jan17b].

In Chapter 5 we provide a simple proof of cubulating small cancellation quotients of free

products of cubulated groups which was previously addressed by Martin-Steenbock [MS16].

The main result of Chapter 5 is Theorem 5.6.2. We use that result to construct a cocompactly

cubulated group G that does not virtually split, i.e. in the terms of cubical dimension, the

virtual cubical dimension of G is greater than 1. This chapter is based on the preprint

Cubulating small cancellation free products [JW17a] which is joint work with Daniel Wise.

Both authors contributed equally.

Chapter 6 concerns cocompact cubulations of Artin groups. The main new contributions

are Theorem 6.1.1 and Theorem 6.1.2 which give complete classifications of cocompactly

cubulated Artin groups of dimension 2 and on three generators respectively, in terms of the

defining graph. This chapter is based on joint work with Jingyin Huang and Piotr Przytycki

Cocompactly cubulated 2-dimensional Artin groups [HJP16] published in Comment. Math.

Helv., 91(3):519-542, 2016. The three authors contributed equally.
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CHAPTER 1

CAT(0) cube complexes

1.1. Cube complexes

A cube of dimension d is a copy of [0, 1]d. A face of a cube is the restriction of some of

the coordinates to 0 or 1. A cube complex is a cell complex obtained from a disjoint union

of cubes where the attaching maps restricted to single faces are isometries with respect to

the Euclidean metric. The dimension of a cube complex is the supremum of the dimensions

of its cubes. The n-skeleton of a cube complex X is denoted by Xn.

The link of a 0-cube v in a cube complex X is a complex link(v) defined as follows. The

vertices of link(v) correspond to oriented edges incident to v. There is an (n − 1)-simplex

spanned on a collection of vertices in link(v) if corresponding edges in X are contained in

an n-cube. It can be thought as an intersection of a small radius sphere around the vertex

v in X. See Figure 1. A flag complex is a simplicial complex, such that each set of pairwise

Figure 1. Vertex link.

adjacent vertices spans a simplex. A cube complex X is non-positively curved if all its vertex

links are flag. Intuitively, that means that if there is a corner of a cube in X the whole cube

is there. A CAT(0) cube complex is a simply connected, non-positively curved cube complex.

1.2. Metric

A map between metric spaces φ : (X, dX) → (Y, dY ) is an isometry if for all x, x′ ∈ X

we have dX(x, x′) = dY (φ(x), φ(x′)). A geodesic metric space is a metric space (X, d) such

that for every x, x′ there exists an isometry φ : [0, d(x, x′)] → (X, d) with φ(0) = x and

φ(d(x, x′)) = x′ where the interval [0, d(x, x′)] is equipped with the standard metric. The

7
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image of φ is denoted by [x, y]. A geodesic triangle ∆ on a triple of point x, y, z is the union

[x, y] ∪ [y, z] ∪ [z, x]. A comparison triangle ∆̄ is a triangle in the Euclidean space E2 with

vertices x̄, ȳ, z̄ such that dE2(x̄, ȳ) = d(x, y), dE2(ȳ, z̄) = d(y, z), and dE2(z̄, x̄) = d(z, x). For

any z ∈ [x, y] there exists a unique z̄ ∈ ∆̄ such that dE2(z̄, x̄) = d(z, x) and dE2(z̄, ȳ) = d(z, y).

Similarly, we define z̄ for z ∈ [y, z]∪[z, x]. We say that X is a CAT(0) space if for any geodesic

triangle ∆ and any z, z′ ∈ ∆ we have d(z, z′) ≤ dE2(z̄, z̄′).

There is a natural path metric d on a cube complex X that is induced from the Euclidean

metric where each cube is isometric to [0, 1]d. It is defined as inf{
∑

dE2(xi, xi+1) where the

infimum is taken over n and the choice on x0, . . . xn where x0 = x, xn = y, and each pair

xi, xi+1 is contained in a single cube. One can show that d is indeed a metric and (X, d) is

a complete, geodesic metric space [Bri91, Lea13, Mou88].

By the theorem of Gromov [Gro87] a finite dimensional cube complex X with the metric

d is locally a CAT(0) space in the sense above (i.e. each point has an open neighbourhood

that is a CAT(0) space) if and only if it is non-positively curved in the sense of the flag link

condition as in Section 6.3, and X is a CAT(0) space in the above sense if it is additionally

simply connected.

1.3. Hyperplanes

Let X be a cube complex. A midcube of a cube [0, 1]n is the (n−1)-dimensional cube that

is obtained by restricting one coordinate to 1
2
. A midcube of a 1-cube is a midpoint. Let H be

a cube complex whose cubes are all the midcubes of X and attaching maps are restrictions

of attaching maps in X to midcubes. A connected component h of H is a hyperplane. See

Figure 2. The set of all hyperplanes H(X) in X can be identified with the equivalence

classes of oriented 1-cubes where the equivalence relation is generated by parallelism, i.e.

two 1-cubes are equivalent of they are opposite 1-cubes of a 2-cube. We say that h is dual

to the 1-cubes contained in the equivalence class.

Figure 2. Hyperplane.
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By the theorem of Sageev [Sag95] if X is a CAT(0) cube complex, then every hyperplane

h is embedded, h separates X into two subspaces, called halfspaces and denoted by h−, h+,

h is itself a CAT(0) cube complex and every collection of pairwise intersecting hyperplanes

has a nonempty intersection. If x ∈ h+ and y ∈ h− then we say that h separates x and y.

The carrier N(h) of a hyperplane h in X is the union of all cubes in X that have non-

empty intersection with h. The carrier N(h) ' h × [0, 1] and is a convex subcomplex of X

[Wis12].

1.4. L1-metric

There is a natural L1-metric on X defined as

d1(x, y) = inf{
∑

d(E2,L1)(xi, xi+1)}

where the infimum is taken over n and the choice on x0, . . . xn where x0 = x, xn = y, and

each pair xi, xi+1 is contained in a cube. If x, y lie in the 0-skeleton X0 of a CAT(0) cube

complex X then

d1(x, y) = #{hyperplanes separating x from y}.

1.5. Classification of isometries with respect to a hyperplane

Let X be a CAT(0) cube complex and a and isometry of X. We say that a acts without

hyperplane inversions on X if ah+ 6= h− for all h ∈ H(X). Every isometry of X acts without

hyperplane inversions on the cubical subdivision of X. The isometry a is elliptic if a fixes

a point in X. If a acts without hyperplane inversions, then a fixes a 0-cube. The isometry

a is hyperbolic if a stabilizes a combinatorial geodesic (i.e. a geodesic in X1 with respect to

d1), that is called a combinatorial axis. We will refer to it as just axis. Every isometry of

X is either elliptic or hyperbolic [Hag07]. The combinatorial translation length δ(a) of an

isometry a is defined as infx∈X0 d1(x, ax). If a acts without hyperplane inversions then the

infimum is realized and δ(ak) = kδ(a) [Hag07] (see also [Woo16a]). In particular, any axis

of a is also an axis of ak.

Let a be a hyperbolic isometry of X and let h be a hyperplane. We recall the classification

of isometries of a CAT(0) cube complex [CS11].

• a skewers h if akh+ ( h+ for one of the halfspaces h+ of h and some k > 0.

Equivalently, if some (equivalently, any) axis of a intersects h exactly once.
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• a is parallel to h if some finite neighbourhood of h contains an axis of a.

• a is peripheral to h if a does not skewer h and is not parallel to h. Equivalently,

akh+ ( h− for some k > 0.

The type of behaviour of a with respect to h is commensurability invariant, i.e. ai has

the same type as a with respect to h. The set of all hyperplanes in X skewered by a is

denoted by sk(a).

1.6. Group actions on CAT(0) cube complexes

Let G act on a metric space X. We say that G acts

• freely, if for every x ∈ X and every g ∈ G we have gx 6= x.

• properly, if for every n we have |{g | gBn(x) ∩Bn(x) 6= ∅}| <∞.

• cocompactly, if there exists a compact set K ⊂ X such that GK = X.

• with a global fixed point, if there exists x ∈ X such that for all g ∈ G we have

gx = x.

We say that a group G is (cocompactly) cubulated if G acts isometrically properly (and

cocompactly) on a CAT(0) cube complex.

1.7. Sageev’s construction

There is a standard construction of a CAT(0) cube complex with an action on a group

G obtained from an action of G on a wallspace. The construction is due to Sageev and can

be found in [Sag95] where it was described in terms of codimension-1 subgroups, and a

formulation in terms of wallspaces can be found in [CN05, Nic04].

A wall in a set X is a partition of X into two subsets which we call halfspaces. A wall

separates x, y ∈ X if x, y lie in different halfspaces. A discrete wallspace is a set X together

with a collection W of walls such that for any two points x, y ∈ X there are only finitely

many elements of W that separate x from y.

An example of a discrete wallspace structure comes form hyperplanes in a CAT(0) cube

complex. For each hyperplane h choose one of the halfspaces h+. That determines a wall

partitioning X into the closed halfspace h+ and an open halfspace h−. Thus (X,H(X)) form

a discrete wallspace.
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. . . . . .

Figure 3. Choices of halfspaces for each hyperplane that do not define an orientation.

There is a natural pseudometric on the discrete wallspace (X,W) defined as

dW(x, y) = #{W ∈W | W separates x and y}.

An orientation on W is a choice o(W ) of a halfspace for each wall W with the following

properties:

• for W,W ′ ∈W, we have o(W ) ∩ o(W ′) 6= ∅,

• for every x ∈ X there are only finitely many W ∈W such that x /∈ o(W ).

See Figure 3.

The CAT(0) cube complex dual to a discrete wallspace (X,W) has orientations on W as

its 0-skeleton. Two 0-cubes o, o′ are joined by a 1-cube if and only if |{W ∈ W | o(W ) 6=

o′(W )}| = 1. Finally, higher dimensional cubes are added whenever the 1-skeleton of a cube

is there. For more details and to see that the resulting cube complex is CAT(0) see [Sag95]

or [Sag14].

We say that G acts on a wallspace (X,W) if gW ∈W for every g ∈ G and W ∈W. That

action of G an (X,W) induces an action of G on the dual CAT(0) cube complex.

1.8. Codimension-1 subgroups

Let X be a topological space such that X =
⋃∞
i=1 Ki where all Ki are compact subsets

and they form an ascending system

K1 ↪→ K2 ↪→ · · · ↪→ Ki ↪→ Ki+1 ↪→ . . .

There is an induced inverse system

π0(X −K1)← π0(X −K2)← · · · ← π0(X −Ki)← π0(X −Ki+1)← . . .

The set of ends Ends(X) of X is the inverse limit of this system. Equivalently, consider

proper rays in X, i.e. r : [0,∞] → X such that for every compact K ⊂ X the preimage

r−1(K) is compact. Two rays r1, r2 are equivalent if for every compact K ⊂ X there exists
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t > 0 such that the images r1([t,∞]) and r2([t,∞]) are contained in the same path component

of X −K. The set Ends(X) can be identified with the equivalence classes of rays in X.

The set of ends of a finitely generated group G is defined as the set of ends of the Cayley

graph of G with respect to some (any) finite generating set. It is a classical result, known

as Stallings theorem, that every group has either 0, 1, 2 or ∞ ends [Hop44]. Moreover, it

has 1 end if and only if G is finite, it has 2 ends if and only if G is virtually Z, and it has ∞

ends if and only if G splits as a free product with amalgamation or an HNN extension over

a finite group [Sta68, Sta71].

The relative set of ends of G relative to H Ends(G,H) where H < G is the set of ends

of the Schreier graph of G/H. A subgroup H in G is a codimension-1 subgroup if G has at

least two ends relative to H.

Alternatively, we can define a codimension-1 subgroup H of G if the r-neighbourhood

Nr(H) of H in the Cayley graph ΓG is separating in the following sense. A deep component

of ΓG − Nr(H) is a connected component that is not contained in Ns(H) for any s > 0.

The subgroup H is codimension-1 in G if ΓG − Nr(H) has more than one H-orbit of deep

components. Note that Ends(G,H) = 0 implies [G : H] < ∞. If G splits non-trivially over

a subgroup commensurable with H, then Ends(G,H) > 1.

Let W be a deep component of ΓG − Nr(H). Then W and its complement W c form a

wall in the Cayley graph ΓG. All the translates of {W,W c} by the elements of G form a

discrete wallspace (ΓG,W) that G acts on [HW14]. Moreover the action of G on the dual

cube complex is without a global fixed point [Sag95].

Conversely, if G acts on a finite dimensional CAT(0) cube complex without a global fixed

point then there exists a hyperplane h such that the stabilizer Stab(h) is a codimension-1

subgroup of G [Sag95]. In particular, the stabilizer of a hyperplane that corresponds to

g{W,W c} where W is a deep component of ΓG − Nr(H) as above is commensurable with

gHg−1.

1.9. Properties of the action on the dual cube complex

1.9.1. Cocompactness. Sageev proved that if G is hyperbolic and G has a quasiconvex

codimension-1 subgroup, then the resulting action of G on the dual cube complex is cocom-

pact [Sag97]. Hruska-Wise introduced the notion of relative cocompactness and generalized
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Sageev’s result [HW14]. Let G be a group and {P1, . . . , Pk} be a collection of subgroups

of G. Then G acts relatively cocompactly on a CAT(0) cube complex X, if there exists a

compact subcomplex K and Pi-invariant subcomplexes Xi such that

• X = GK ∪
⋃
iGXi, and

• gXi ∩ hXj ⊂ GK unless i = j and gXi = hXi.

Hruska-Wise gave a criterion for relative cocompact actions of relatively hyperbolic groups

[HW14].

1.9.2. Properness. Having a codimension-1 subgroup does not always lead to a proper

action on a CAT(0) cube complex. Indeed, the Baumslag-Solitar group BS(p, q) = 〈a, t |

t−1apt = aq〉 has a codimension-1 subgroup 〈a〉. If p 6= ±q then the subgroup 〈a〉 is distorted

in BS(p, q) and so BS(p, q) does not act properly on a CAT(0) cube complex [Hag07]. If G

acts properly (with respect to the pseudometric) on the discrete wallspace, then the induced

action of G on the dual CAT(0) cube complex is proper. The properness of the action on

the discrete wallspace can be interpreted in the following way: for any sequence gn ∈ G such

that |gn|S →∞ we have dW(gnx, x)→∞ for any x ∈ X.

Often, the properness of the action on the wallspace follows from the slightly stronger

property of the action that we describe now. Let (X,W) be a wallspace where X is also

equipped with a metric d. Then (X,W) has the linear separation property, if there exist

K > 0, C ≥ 0 such that

dW(x, y) ≥ Kd(x, y)− C.

If (X, d) is metrically proper, has linear separation, and the action of G on (X, d) is proper,

then G acts properly on the dual cube complex [HW14].

Bergeron-Wise gave the following boundary criterion for the properness and cocompact-

ness of the action on the dual cube complex [BW12]. Let G be a hyperbolic group. Suppose

that for every u, v ∈ ∂G there exists a quasiconvex codimension-1 subgroup H such that u, v

lie in the components of ∂G−∂H corresponding to distinct halfspaces of the wall defined by

H. Then there exists a finite collection of quasiconvex codimension-1 subgroups such that

the action of G on the dual CAT(0) cube complex is proper and cocompact.

1.9.3. Local finiteness. Hruska-Wise also gave a criterion for local finiteness of the

CAT(0) cube complex dual to a metric pace (X, d) with a discrete wallspace structure (X,W)
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[HW14]. If for every compact set K ⊂ X there exists a constant f(K) such that whenever

d(K,W ) ≥ f(K) then there exists a wall W ′ separating K and W , then the dual cube

complex is locally finite.

1.10. Special cube complexes

A map between cube complexes φ : X → Y is combinatorial if every n-cube is mapped

homeomorphically onto an n-cube. A combinatorial map φ : X → Y is a local isometry if for

each x ∈ X0 the induced map link(x) → link(φ(x)) is an embedding as a full subcomplex,

i.e. if vertices u, v ∈ link(φ(x)) are adjacent then u, v are adjacent in link(x).

A nonpositively curved cube complex X is special if it admits a local isometry to the

Salvetti complex SΓ of some right-angled Artin group AΓ (for the definition of a right-angled

Artin group and its Salvetti complex, see Section 2.1). Equivalently, specialness can be

defined in terms of well-behaved hyperplanes. We say that a hyperplane h is one-sided if h

is dual to one 1-cube with both orientations. The hyperplane h self-intersects if h is dual

to two distinct non-parallel 1-cubes contained in a common 2-cube. The hyperplane h self-

osculates if it is dual to two 1-cubes that intersect at either their initial or terminal vertices.

Two hyperplanes h, k inter-osculate if they cross and they also have dual 1-cubes that

intersect but do not lie in a common 2-cube. The alternative definition is the following: X is

special, if no hyperplane is one-sided, self-intersects or self-osculates and no two hyperplanes

inter-osculate. See Figure 4. Every CAT(0) cube complex is special . It is not hard to see

Figure 4. One-sided hyperplane. Self-intersecting hyperplane. Self-

osculating hyperplane. Two inter-osculating hyperplanes.

that the Salvetti complex of a right-angled Artin group has well-behaved hyperplanes in the

above sense. To prove the equivalence of the two definitions one defines a local isometry

from a special cube complex X to a Salvetti complex of a right-angled Artin group whose

generators are in 1-to-1 correspondence with H(X) and they commute if and only if the
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corresponding hyperplanes intersect in X. The properties of the hyperplanes of X ensure

that such a local isometry exists.

We say that a group G is (compact) special if G is the fundamental group of a (compact)

special cube complex. Since right-angled Artin groups are linear [DJ00, HW99], every

compact special group is also linear. If G is virtually compact special and hyperbolic, then

every quasiconvex subgroup of G is separable [HW08], in particular G is residually finite.

1.11. Nice properties of cubulated groups

1.11.1. CAT(0)-ness. A CAT(0) group is a a group that acts properly and cocom-

pactly by isometries on a CAT(0) space (defined in Section 1.2). The nice geometry of

CAT(0) spaces have strong algebraic consequences, e.g. central abelian subgroups of groups

acting properly on CAT(0) spaces are virtually direct factors [BH99]. Moreover, CAT(0)

groups are bicombable (see below). It is an important open problem whether all hyperbolic

groups are CAT(0).

1.11.2. Biautomaticity. Niblo-Reeves proved that cocompactly cubulated groups are

biautomatic [NR98]. See also [Ś06]. We recall the definition of biautomaticity below.

Let G be a group with a finite generating set S. In this section d denotes the distance in

the Cayley graph Γ(G,S). There is a natural monoid homomorphism µ : (S ∪ S−1)∗ → G

where (S ∪ S−1)∗ is the free monoid on (S ∪ S−1). Any element w of S∗ can be viewed

as a path [0,∞] → Γ(G,S) such that w(0) = e and w(t) = µ(w) for t ≥ |w|. A section

σ : G → (S ∪ S−1)∗ of µ is a combing of G if there exists a constant K > 0 such that for

every g ∈ G and s ∈ S the paths σ(g) and σ(gs) K-fellow travel on Γ(G,S), i.e.

d(σ(g)(t), σ(gs)(t)) ≤ K

for all t ≥ 0. A combing is a bicombing if additionally

d(s(σ(g)(t)), σ(sg)(t)) ≤ K

The group G is (bi-)combable if G has a (bi-)combing. The group G is (bi-)automatic if

it has a (bi-)combing σ : G → (S ∪ S−1)∗ such that σ(G) is a regular language. For

more details, see [ECH+92]. All these properties are independent of the finite generating

set [Sho90]. Combable groups are finitely presented and have solvable word problem, and
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bicombable groups have solvable conjugacy problem [Sho90]. There are examples of groups

that are combable but not bicombable or automatic, as well as examples of groups that are

bicombable but not automatic [Bri03]. All CAT(0) groups are bicombable [AB95] but it

is an open problem whether there are examples of CAT(0) groups that are not automatic or

biautomatic. There are examples of groups that are automatic but not CAT(0), e.g. mapping

class groups [Mos95, Bri10]. Also the fundamental group of a unit tangent bundle on a

hyperbolic surface is bicombable but not CAT(0) [AB95].

1.11.3. The Haagerup Property. A locally compact topological group G has the

Haagerup Property (or is a-T-menable), if G admits a proper, continuous, isometric ac-

tion on a real Hilbert space. Niblo-Reeves implicitly showed that groups that act properly

on CAT(0) cube complexes have Haagerup Property [NR03] (see also [CCJ+01]). The

Haagerup Property has important consequences in representation theory and operator K-

theory: groups with Haagerup Property are uniformly embeddable into Hilbert spaces and

satisfy the Baum-Connes conjecture and the Novikov conjecture. We do not discuss these

problems here as they require too many definitions. The Haagerup property is a strong

negation of Kazhdan’s Property (T) that we briefly discuss in Section 3.1.

1.11.4. The Tits alternative. The theorem of Tits [Tit72] states that if G is a finitely

generated linear group over a field then one of the following holds:

• either G is virtually solvable,

• or G contains F2.

We say that a group G satisfies the Tits alternative if for every finitely generated subgroup

H < G either H is virtually solvable, or H contains a copy of F2. Among groups satisfying

the Tits alternative there are hyperbolic groups [Gro87, GdlH90], mapping class groups

[Iva84, McC85] and Out(Fn) [BFH00]. Sageev-Wise proved that a group G that acts

properly on a finite dimensional CAT(0) cube complex and that has an upper bound on the

size of torsion subgroup satisfies the Tits alternative, in the following stronger form [SW05]:

either G is virtually abelian, or it contains a copy of F2. In particular, any torsion-free group

that acts properly on a finite dimensional CAT(0) cube complex satisfies the above version of

the Tits alternative. Note that the Tits alternative is not known for general CAT(0) groups.
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1.12. Cubical dimension

The (virtual) cubical dimension of a group G is the infimum n such that (a finite in-

dex subgroup of) G acts properly on an n-dimensional CAT(0) cube complex. See Defini-

tion 4.1.1.

The fundamental theorem of Bass-Serre theory states that a finitely generated group G

splits if and only if G acts on a tree without a global fixed point [Ser77, Ser80]. Thus the

cubical dimension of G equal 1 in particular implies that G splits.

Wright showed that the asymptotic dimension of G is bounded above by the cubical

dimension of G [Wri12]. We recall the definition of the asymptotic dimension. Let X be a

metric space and n be an integer. The asymptotic dimension asdimX ≤ n if for every r ≥ 1

there exists a cover U of X such that

• supU∈U diamU <∞, and

• every ball of radius r in X intersects at most n+ 1 subsets from U.

Since the definition of the cubical dimension is in terms of proper and not necessarily

cocompact action there is no immediate connection between the cubical dimension and the

geometric or cohomological dimension of G.

Often a naturally occuring discrete wallspaces structure for G leads to an action of G

on a CAT(0) cube complex whose dimension is not optimal. For example, the presentation

complex of the fundamental group π1Σg of a closed orientable surface of genus g ≥ 2 has

a discrete wallspace structure where the walls are the equivalence classes of edges where

the equivalence relation is generated by being opposite in a 2-cell. The dimension of the

cube complex X dual to this wallspaces has dimension 2g. Indeed each 2-cell has 4g edges

that belong to 2g distinct walls so dimX ≥ 2g. By the convexity of walls dimX = 2g.

On the other hand, π1Σg acts by deck transformation on H2 tessellated by 4g-gons with

4g of them meeting at each vertex. By subdividing each 4g-gon into 4g triangles with a

common vertex, and then pairing two triangles that meet along an edge an 4g-gon we get

a tessellation of H2 by squares, with 4g squares meeting at each vertex. The group π1Σg

preserves this tessellation, and so π1Σg acts properly and cocompactly on a CAT(0) cube

complex of dimension 2. Since π1Σg does not split over a finite group, we conclude that the

cubical dimension of π1Σg is exactly 2.
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In Section 4 for each n ≥ 1 we construct examples of C ′(1/6) groups (see Section 4.3)

with cubical dimension bounded below by n. This is based on preprint [Jan17b].

In Section 5 we construct cocompactly cubulated groups with virtual cubical dimension

greater than 1. This is joint work with Daniel Wise [JW17a].



CHAPTER 2

Survey on groups acting on CAT(0) cube complexes

2.1. Right-angled Artin groups

Let Γ be a simplicial graph with the vertex set V and the edge set E. The right-angled

Artin group associated to Γ is given by the presentation

AΓ = 〈v ∈ V | vw = wv for (v, w) ∈ E〉.

There is a cube complex SΓ, called the Salvetti complex, associated to a right-angled

Artin group which is defined as follows. The complex SΓ has a unique 0-cube x and it

has |V | 1-cubes labelled by sv for v ∈ V with both endpoints attached to x. For each

(v, w) ∈ E there is a 2-torus obtained from a 2-cube attached to the 1-skeleton of SΓ along

the path svsws
−1
v s−1

w . We continue by attaching an n-torus for every n-clique in Γ to the

n1-dimensional faces. Since the 2-skeleton of SΓ is the presentation complex for the standard

presentation of AΓ it is clear that π1(SΓ) = AΓ. This complex was studied by Charney-Davis

in [CD95a] where they proved that the universal cover S̃Γ of SΓ is a CAT(0) cube complex,

and in particular SΓ is a K(π, 1)-space for AΓ. Indeed, by construction, the link at x is the

flag complex on Γ.

2.2. Coxeter groups

A Coxeter group is given by the presentation

W = 〈s1, . . . , sn | (sisj)mij = 1〉

where mij = mji ∈ {2, 3, . . . } ∪ {∞} and mii = 2 for all i. The relation (sisj)
∞ denotes

no relation. A right-angled Coxeter groups is a Coxeter group where all mij ∈ {2,∞}. All

the data of a right angled Coxeter group can be encoded in a graph Γ, i.e. a right angled

Coxeter group WΓ can be defined as the quotient of the right-angled Artin group AΓ where

each generator has order 2, i.e. WΓ has the following presentation

WΓ = 〈v ∈ V | v2 = 1 for all v ∈ V, and vw = wv for (v, w) ∈ E〉.
19
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In the case of the right angled Coxeter groups the Davis complex has a structure of a

cube complex that is CAT(0) [Gro87, Dav08] and so the right-angled Coxeter group are

cocompactly cubulated. For other Coxeter groups the Davis complex is always a CAT(0)

space (in general not a cube complex) with a proper and cocompact action of a Coxeter

group, so Coxeter groups are CAT(0) groups [Mou88, Dav08].

Niblo-Reeves proved that every Coxeter groups W acts properly on a finite dimensional

CAT(0) cube complex [NR03]. Moreover, they showed that if W is either hyperbolic or

right-angled, then the action is cocompact. The construction of the wallspace for W is

the following. Consider the Cayley complex for the above presentation of W and collapse

each bigonal cell corresponding to the relator s2
i to a single undirected edge labelled by si,

and then collapse 2mij copies of 2mij-gons corresponding to the relator (sisj)
mij to a single

2mij-gon. See Figure 1. In the resulting complex the walls are defined as graphs joining the

Figure 1. Collapsing bigonal cells to single edges.

opposite edges in each polygon.

Caprace-Mühlherr later showed that the action constructed by Niblo-Reeves is cocompact

unless W contains a Euclidean triangle group, i.e. there exist si, sj, sk among the generators

in the standard presentation of W such that (mij,mjk,mki) = (2, 3, 6), (2, 4, 4), or (3, 3, 3)

[CM05]. Finally, Haglund-Wise showed that the Niblo-Reeves cubulation is virtually special,

i.e. W has a finite index subgroup F such that XW/F is special where XW is the CAT(0)

cube complex constructed by Niblo-Reeves [HW10].

2.3. Small cancellation groups

We recall the basic notions of small cancellation theory following [LS77]. Let G = 〈S | R〉

be a group presentation where S is a finite generating set and R is a set of cyclically reduced

relators. Let Rcyc be the set of all cyclic permutation of the words in R. A word w is piece

in r ∈ R if there exists r′ 6= r ∈ Rcyc such that

r = w · u, r′ = w · u′



2.3. SMALL CANCELLATION GROUPS 21

are reduced spellings. Let p ≥ 1. The presentation G = 〈S | R〉 satisfies

• the C ′(1/p) small cancellation condition, if |w| < 1
p
|r|,

• the C(p) small cancellation condition, if r cannot be expressed as a concatenation

of less than p pieces.

We say thatG is a C ′(1/p) (resp. C(p)) small cancellation group, if there exists a presentation

G = 〈S | R〉 that satisfies the C ′(1/p) (resp. C(p)) small cancellation condition.

The motivating examples are the fundamental groups of closed orientable surfaces of

genus g ≥ 2. The standard presentation is the following

π1(Σg) = 〈x1, y1, . . . , xg, yg | [x1, y1] · · · [xg, yg]〉.

Pieces are words of length ≤ 1. Thus π1(Σg) is C ′(1/(4g − 1)), in particular C ′(1/6).

The word problem is the following decision problem. For a given group with a generating

set (G,S) does there exist an algorithm that takes as an input a word w in S and as an

output gives yes if and only if w is an identity element in G.

The surface groups were shown to have solvable word problem by Dehn via what is now

known as Dehn’s algorithm. Greendlinger defined a class of groups that satisfy the C ′(1/6)

small cancellation condition as groups where the Dehn’s algorithm provides a solution to the

word problem [Gre60]. Gromov defined hyperbolic groups as a common generalization of

C ′(1/6) small cancellation groups and the fundamental groups of negatively curved manifolds

[Gro87]. In the same paper, Gromov proved that in fact every hyperbolic group has a Dehn

presentation, i.e. a presentation where the Dehn’s algorithm solve the word problem.

An important feature of C ′(1/6) small cancellation groups is Greendlinger’s Lemma which

is as follows. Suppose G = 〈S | R〉 is a C ′(1/6) presentation and let w be a cyclically reduced

word w in S that defines the identity in G. Then there exists a subword p of some cyclic

permutation of w that is also a subword of a cyclic permutation of some r ∈ R such that

|w| > 1
2
|r|.

Wise showed that C ′(1/6) groups are cocompactly cubulated [Wis04]. The walls he

constructed are obtained by joining the opposite edges (by possibly subdividing each edge)

in the presentation complex and applying Sageev’s construction.

The cube complex dual to the discrete wallspace as above construction does not nec-

essarily give a CAT(0) cube complex of minimal dimension. For example for the usual
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presentation of π1(Σg) we get a cube complex of dimension 2g, while there also exists a

2-dimensional CAT(0) cube complex that π1(Σg) acts on freely and cocompactly (see Sec-

tion 1.12). In Chapter 4 for each n ≥ 1 we construct example of C ′(1/6) groups with cubical

dimension bounded below by n. Note that Wise’s construction gives an upper bound on

cubical dimension which is the maximum of the length of relators.

2.4. Random groups

The notion of random group in a density model was introduced and studied by Gromov

[Gro93] and followed by Ollivier [Oll04][Oll05]. Fix an integer m ≥ 2 and a real number

0 ≤ d ≤ 1. A random group at density d with relators of length ` is given by the presentation

〈a1, . . . , am | r1, . . . , rq(`)〉

where q(`) = b(2m− 1)d`c and ri is chosen randomly independently and uniformly from the

set of freely reduced words of length ` in the letters a±1
1 , . . . , a±1

m . We say that a random

group at density d has a property P with overwhelming probability if

lim
`→∞

P
(
〈a1, . . . , am | r1, . . . , rq(`)〉 has property P

)
= 1.

Gromov and Ollivier proved that

• if d > 1
2
, then the random group at density d is a subgroup of Z/2Z with over-

whelming probability,

• if d < 1
2
, then the random group at density d is non-elementary hyperbolic, torsion-

free and has cohomological dimension 2 with overwhelming probability.

Żuk proved that the random group at density d > 1
3

has Property (T) with overwhelming

probability [Żuk03] (completed by Kotowski-Kotowski [KK13]). In [OW11] Ollivier-Wise

proved that a random group at density d < 1
6

acts freely and cocompactly on a CAT(0)

cube complex with overwhelming probability, and at density d < 1
5

it acts without a global

fixed point with overwhelming probability. The range where a random group is known to

act non-trivially have been extended to d < 5
24

by Mackay-Przytycki [MP15].
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2.5. Groups with quasi-convex hierarchy

Let C be a family of groups. A group G has a quasiconvex hierarchy terminating in C if G

either belongs to C, or splits as an HNN-extension A∗D or a free product with amalgamation

A ∗D B where

• A and B have a quasiconvex hierarchy terminating in C,

• D is finitely generated and quasi-isometrically embedded in A∗D or A ∗D B.

Note that it is not enough to assume that D is quasi-isometrically embedded in each A and B.

For example, the Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉 is an HNN-extension

A∗D where A = 〈a〉 ' Z and D is a copy of Z in A embedded as a subgroup of index 1 or

2, and in both cases it is quasi-isometrically embedded in A. The theorem of Wise states

that if G is hyperbolic and has quasiconvex hierarchy terminating in trivial groups, then G

is virtually special [Wis11]. We discuss more examples in Section 2.6 and Section 2.7.

2.6. One relator groups with torsion

A one-relator group is a group given by a presentation

G = 〈x1, . . . , xk | wn〉

where w ∈ F (x1, . . . , xk). We assume that w is not a proper power. A one-relator group G

has torsion if and only if n > 1 , in which case every torsion element in G is a conjugate

of some power of w [FKS72]. Lauer-Wise showed that if n ≥ 4, then G acts properly

and cocompactly on a CAT(0) cube complex [LW13] by constructing walls in the Cayley

complex of G which are quasiconvex and satisfy the linear separation condition. Later Wise

proved that any one-relator group with torsion has a finite index subgroup that admits a

quasiconvex hierarchy terminating in trivial groups and consequently, any such group is the

fundamental group of a compact special cube complex [Wis11]. The Magnus-Moldavanskii

hierarchy is a quasiconvex hierarchy of G terminating in finite groups [LS77, Wis11]. We

describe it now. First, the complexity of a one-relator group is
∑

i(#xi − 1) where #xi is

the number of appearances of x±i in w. A Magnus subgroup of G is a subgroup generated by

a subset of x1, . . . , xk that omits at least one xi for which #xi > 0. A Magnus subgroup is

a free group [LS77].



2.7. HYPERBOLIC 3-MANIFOLD GROUPS 24

If #xi = 0 for some i, then G splits as 〈x1, . . . , x̂i, . . . xk | wn〉 ∗ Z. If #xi = 1 for some

i, then w is a primitive element in Fk and so G = 〈x1, . . . , x̂i, . . . xk, w | wn〉 = Fk−1 ∗ Zn.

If #xi > 1 for all i, then G′ = G ∗ Z splits over its Magnus subgroup as an HNN-extension

of a one-relator group of lower complexity. We choose new generators yi = xit
pi where pi

are integers which are chosen so that the total exponent of w written in y1, . . . , yk, t is 0.

Finally, we add new relators of the form yi,j = t−jyit
j for all the necessary j’s so that w can

be now written as a word in the generators yi,j exclusively. We also add relators of the form

yi,j = t−jyit
j. Let K be a one relator group generated by yi,j’s. We get a presentation of G′

as an HNN-extension of K with the stable letter t conjugating one Magnus subgroup of K to

another. The details of this construction can be found in [LS77] or [Wis11]. Wise showed

that the induced hierarchy of a finite index torsion-free subgroup of G is a quasiconvex

hierarchy terminating in trivial groups [Wis11].

2.7. Hyperbolic 3-manifold groups

A subgroup H of G is separable if H is the intersection of the finite index subgroups of

G containing H. The group G is subgroup separable if every finitely generated subgroup is

separable in G. If Σ is an immersed surface in a 3-manifold M , then the immersion Σ#M

induces the embedding π1Σ ↪→ π1M . If π1Σ is separable in π1M then by a theorem of Scott

Σ lifts to an embedding in a finite cover of M [Sco78].

Every hyperbolic 3-manifold can be realized as a quotient of the hyperbolic 3-space H3 by

a Kleinian group, i.e. a discrete subgroup of the group Isom+ H3 ' PSL(2,C) of orientation

preserving isometries of H3. The limit set Λ(Γ) of Γ is the set of accumulation points of

the action of Γ y H3 on the boundary ∂H3 ' S2. The group Γ is quasi-fuchsian if Λ(Γ)

is a quasi-circle. Quasi-fuchsian groups are conjugate to fuchsian groups by quasiconformal

transformations.

A number of long standing conjecture about 3-manifolds have been resolved in the last

10 years. The surface subgroup conjecture of Waldhausen states that the fundamental group

of every closed, irreducible 3-manifold is either finite, or contains a surface subgroup. The

Waldhausen’s virtual Haken conjecture states that every compact, orientable, irreducible

3-manifold with infinite fundamental group has a finite index cover which is Haken, i.e.

contains a properly embedded two-sided incompressible surface. The Thurston’s virtual
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fibered conjecture states that every closed, irreducible, atoroidal 3-manifold with infinite

fundamental group has a finite cover which is a surface bundle over the circle, i.e. a finite

cover of M is diffeomorphic to a mapping torus Mφ := Σ× [0, 1]/(x, 0) ∼ (φ(x), 1) for some

diffeomorphism φ : Σ→ Σ. See Figure 2.

φ

Figure 2. Surface bundle over a circle.

The proof of the geometrization conjecture by Perelman reduced all the above conjectures

to the case of closed hyperbolic 3-manifolds. Cubulating hyperbolic 3-manifold groups played

a crucial role in establishing the virtual Haken conjecture and the virtual fibered conjecture.

The surface subgroup conjecture was resolved in 2009 by Kahn-Markovic [KM12] in

the following stronger form: for any great circle C in ∂H3 ' S2 there exists a sequence

of immersed quasi-fuchsian surfaces Σi ↪→ M such that ∂Σi pointwise converges to C. In

particular, any two points p, q ∈ ∂H3 are separated by some ∂Σi. The result of Kahn-

Markovic reduced the virtual Haken conjecture to the question of separability of the quasi-

fuchsian surface subgroups of π1M .

Bergeron-Wise used the Kahn-Markovic surfaces as walls in H3 and obtained a wallspace

with an action of π1M and proved that the resulting action on the dual cube complex is proper

and cocompact [KM12]. Wise proved that if M contains a incompressible geometrically

finite surface, then π1M is virtually special [Wis11]. Using the criterion of Agol which

states that if π1M is virtually special, then M virtually fibers [Ago08], that also reduced

the virtual fibered conjecture to the conjecture on separability of the quasi-fuchsian surface

subgroups.
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Finally, Agol proved that every hyperbolic cocompactly cubulated group is virtually

special [Ago13]. That established the separability of quasiconvex subgroups, in particular

the quasi-fuchsian surface subgroups and therefore completed the proof of the virtual Haken

conjecture and virtual fibered conjecture for all closed hyperbolic 3-manifolds. Moreover, the

result of Agol also gives the subgroup separability of π1M . Indeed, the tameness theorem

[Ago04, CG06] states that every complete hyperbolic 3-manifold with finitely generated

fundamental group is topologically tame, i.e. it is homeomorphic to the interior of a compact

3-manifold. Thus every finitely generated subgroup of π1M is either geometrically finite and

then quasiconvex, or is virtually the fundamental group of a fiber of a fibration over the

circle, in which case it is virtually a normal subgroup with quotient Z and therefore it is also

separable.

For more discussion on cubulated 3-manifold groups, see Section 3.2.2.

2.8. Hyperbolic free-by-cyclic groups

A free-by-cyclic group G is a group extension of a free group Fk by Z where k ≥ 2, i.e.

there is a short exact sequence

1→ Fk → G→ Z→ 1.

Every such short exact sequence splits, so G is a semidirect product Fk oφ Z for some

φ ∈ AutFk. Since composing φ on the right with some inner automorphism of Fk does

not change the semidirect product we often write φ ∈ Out(Fn) to determine Fk oφ Z where

Out(Fk) := Aut(Fk)/ Inn(Fk). This group has the following presentation

Fk oφ Z = 〈x1, . . . , xk, t | t−1xit = φ(xi)〉

The group G is hyperbolic if and only if φ is atoroidal, i.e. no power of φ stabilizes a non-

trivial conjugacy class in Fk [BH92].

There are many connections between free-by-cyclic groups and the fundamental group

of 3-manifolds that fiber over S1. The latter can be expressed as the fundamental groups of

mapping tori

Mf = Σ× [0, 1]/(x, 0) ∼ (f(x), 1)
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where f : Σ→ Σ is a homeomorphism. The mapping torus structure induces the short exact

sequence of groups

1→ π1(Σ)→ π1(Mf )→ Z→ 1

which again splits, so π1(Mf ) = π1(Σ) oφ Z where φ = [f∗] is the outer automorphism

of π1(Σ) induced by f . Similarly, G can be represented as the fundamental group of the

mapping torus of f : V → V where V is a finite graph with the fundamental group Fk.

Hagen-Wise constructed quasiconvex walls in the mapping torus and using Bergeron-Wise

criterion proved that the resulting action on a CAT(0) cube complexes is free and cocompact

[HW13][HW15]. The proof is hard and technical so we do not discuss it here.



CHAPTER 3

Obstructions to group actions on CAT(0) cube complexes

3.1. Kazhdan’s Property (T)

Let G be a locally compact topological group. There are many equivalent definitions

of Property (T) (also known as Property (FH)) and we are going to use the one that has

the closest relation to our interest. For other equivalent definitions, see [BdlHV08]. We

say that G has Kazhdan’s Property (T) if every continuous isometric action of G on a real

Hilbert space has a fixed point. Niblo-Reeves [NR97] proved that if G has Property (T)

and G acts isometrically on a finite dimensional CAT(0) then the action has a global fixed

point. In particular, G has no codimension-1 subgroups. Property (T) is a strong negation

of the Haagerup Property discussed in Section 1.11.3. Indeed, the only groups that have

both Property (T) and the Haagerup Property are compact. Here are some other examples

of groups with Property (T):

(1) Simple real Lie groups of rank at least 2 e.g.

• special linear groups SL(n,R) = {M ∈Mn(R) | detM = 1} for n ≥ 3,

• indefinite special orthogonal groups SO(p, q) = {M ∈ Mp+q(R) | MT Ip,qM =

Ip,q} for p > q ≥ 2 or p = q ≥ 3 where Ip,q = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

).

(2) Indefinite spin groups Sp(n, 1) = {M ∈ Mn+1(H) | M∗In,1M} for n ≥ 2 where H

denotes the quaternions and M∗ is the quaternion conjugate transpose.

(3) A rich family of examples of discrete groups with Property (T) is a consequence of

Kazhdan’s Theorem: A lattice Γ in a locally compact group G has Property (T) if

and only if G has Property (T).

3.2. Obstructions to cocompact actions

3.2.1. Artin groups. An Artin group A is given by presentation

〈a1, . . . , an | aiajai . . .︸ ︷︷ ︸
mij

= ajaiaj . . .︸ ︷︷ ︸
mij

〉

28
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a = b = c =

Figure 1. Generators of the braid group B4.

· =

Figure 2. Group operation in the braid group B4.

where mij = mji ∈ {2, 3, . . . ,∞} where mij =∞ means no relation. The defining graph ΓA

has the vertices corresponding to the generators of A, and vertices ai, aj are joined by an

edge labelled by mij if and only if mij <∞.

An Artin group A is 2-dimensional if for every full subgraph Γ ⊂ ΓA on three ver-

tices the corresponding Coxeter group is finite, i.e. if for any generators ai, aj, ak the triple

(mij,mjk,mki) is not one of the following: (2, 3, 5), (2, 3, 4), (2, 3, 3), or (2, 2, n) for some

n > 1.

Together with Jingyin Huang and Piotr Przytycki [HJP16] we examine proper and

cocompact actions of Artin groups and prove that many Artin groups fail to be cocompactly

cubulated. The article is included in Section 6. We give a complete characterization of

2-dimensional or three generator Artin groups that are cocompactly cubulated, in terms of

the defining graph. See Theorem 6.1.1 and Theorem 6.1.2.

The braid group on four strands B4 is the Artin group with the following presentation

B4 = 〈a, b, c | aba = bab, bcb = cbc, ac = ca〉.

The elements of B4 can be intuitively represented by equivalence classes of four intertwined

strands where the group operation is the concatenation of strands. See Figure 1 and Figure 2.

Note that our result in particular implies that the braid group B4 on 4 strands is not

virtually cocompactly cubulated. The group B4 is known to be a CAT(0) group [BM10].

More recently, Haettel obtained the full classification of (virtually) cocompactly cubu-

lated Artin groups [Hae17]. Haettel proves that A is virtually cocompactly cubulated if and

only if the following conditions hold:
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• for each i, j, k such that mij is odd, either mjk = mki =∞, or mjk = mki = 2, and

• there exist an orientation of edges of Γ such that for each i, j, k such that mij is

even and 6= 2, and (i, j) has positive orientation, we have one of the following:

– mki = mjk = 2,

– mki = mjk =∞,

– mki = 2 and mjk =∞, or

– mki is even and 6= 2, (i, k) has positive orientation and mjk =∞.

In particular, it follows from result of Haettel that no braid group on at least 4 strands

is cocompactly cubulated. The assumption on the cocompactness of the action is essential

in both approaches [HJP16] and [Hae17].

3.2.2. Graph manifold groups. Let M be a compact oriented 3-manifold. We say

that M is irreducible, if any embedded S2 in M bounds an embedded ball B3 in M . Let

Σ ⊂ M be a compact surface such that Σ 6= S2, P 2. The surface Σ is compressible if there

exists a disc D embedded in M such that D ∩ Σ = ∂D and the curve ∂D does not bound

a disc in Σ. Otherwise, Σ is incompressible if there does not exists a disc D embedded in

M that is essential in Σ such that D ∩ Σ = ∂D. An irreducible manifold M is atoroidal if

for every incompressible torus T ⊂M there exists a connected component of M − T that is

homeomorphic to T × I.

A model Seifert fibering of S1×D2 is the decomposition of S1×D2 into fibers S1 obtained

from decomposing [0, 1]×D2 into intervals [0, 1]× {x} and then identifying {0} ×D2 with

{1}×D2 via the rotation by p
q
2π where p, q are relatively prime. A Seifert fibered manifold is

a manifold with (possibly empty) boundary, together with a decomposition into S1 such that

each fiber has a neighbourhood that is fiber-preserving diffeomorphic to a neighbourhood of

a fiber in a model Seifer fibering of S1 ×D2.

Suppose M is irreducible. Then there exists an upper bound on the size of the maximal

collection {Ti}i of disjoint incompressible tori in M such that no connected component of

M −
⋃
i Ti is homeomorphic to T × I. Every connected component of M −

⋃
i Ti, called a

block, is either atoroidal or Seifert fibered. Such a decomposition obtained by cutting along

{Ti}i is called a JSJ decomposition of M .

A graph manifold M is a compact oriented aspherical 3-manifold that has only Seifert

fibered blocks in its JSJ decomposition. Liu showed that π1M is virtually cubulated if and
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only if π1M is virtually special if and only if M admits a nonpositively curved Riemannian

metric [Liu13]. Hagen-Przytycki proved that π1M is virtually cocompactly cubulated if and

only if π1M is virtually compact special if and only if M is chargeless, i.e. in each block there

is a horizontal surface whose boundary circles are vertical in adjacent blocks. [HP15].

To summarize let us give a complete classification of closed irreducible 3-manifold groups

that are virtually (cocompact) special. For the simplicity we assume that M is orientable

(as we can always take an orientable double cover of M). Let us first look at geometric

manifolds. It is easy to see that for M with one of the geometries: S3,R3,H2 × R, S2 × R,

π1M is virtually compact special. The fundamental groups of M with one of geometries

Nil, Sol or P̃SL2R is not virtually cubulated. For the first two geometries π1M contains

distorted abelian subgroups so it is not a CAT(0) group by algebraic flat torus theorem

[BH99] and it cannot act properly on CAT(0) cube complexes [Woo17]. If M has P̃SL2R

geometry, then it contains a central subgroup isomorphic to Z that is not virtually a direct

factor. If M is a hyperbolic 3-manifolds with boundary then π1M is virtually compact special

by [Wis11]. If M is a closed hyperbolic 3-manifolds then π1M is virtually compact special

by [Ago13] (see Section 2.7). It is known that Seifert fibered 3-manifolds are geometric (with

one of the geometries S3,E3,H2×R, S2×R, Nil, P̃SL2R). If M is not hyperbolic or Seifert

fibered then M admits a nontrivial JSJ decomposition. The classification of graph manifolds

have been discussed. If not all the blocks in JSJ decomposition are Seifert fibered, then π1M

is a mixed manifold and is virtually special by [PW17]. Moreover, π1M is virtually compact

special if and only if π1M is virtually cocompactly cubulated if and only if M is chargeless

[Tid17].

3.3. Tubular groups

A tubular group G is a group that splits as a graph of groups Γ with Gv ' Z2 for all

v ∈ V (Γ) and Ge ' Z for all e ∈ E(Γ). The group G is the fundamental group of a graph of

spaces X, called tubular space whose vertex spaces are tori and edges spaces are cylinders.

The intersection number #[c, s] where c, s ∈ Z2 is defined as 0 if 〈c, s〉 ' Z and as [Z2 : 〈c, s〉]

otherwise. The intersection number is the same as the minimal number of intersection of

loops representing c, s as elements of π1T
2. For a finite set S ⊂ Z2 #[c, S] is defined as∑

s∈S #[c, s]. An equitable set for G is a collection of finite subsets {Sv ⊂ Gv | v ∈ V (Γ)}
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such that [Gv : 〈Sv〉] <∞, and #[c←−e , S←−e ] = #[c−→e , S−→e ] where←−e ,−→e are the images of a fixed

generator c of Ge in the vertex groups G←−e and G−→e respectively. Wise gave a characterization

of tubular groups that act freely on CAT(0) cube complexes as precisely those that admit

equitable sets [Wis14]. Woodhouse determined which tubular groups act freely on finite

dimensional CAT(0) cube complexes [Woo16b] and characterized virtually special tubular

groups as those that act freely on locally finite CAT(0) cube complexes [Woo16c].



CHAPTER 4

Lower bounds on cubical dimension of C ′(1/6) group

For each n we construct examples of finitely presented C ′(1/6) small cancellation groups

that do not act properly on any n-dimensional CAT(0) cube complex. This section is based

on [Jan17b].

4.1. Introduction

Groups that satisfy the C ′(1/6) small cancellation condition were shown to act properly

and cocompactly on CAT(0) cube complexes by Wise in [Wis04]. In this chapter we are

interested in the minimal dimension of a CAT(0) cube complex that such groups act properly

on.

Definition 4.1.1. The cubical dimension of G is the infimum of the values n such that

G acts properly on an n-dimensional CAT(0) cube complex.

Wise’s complex is obtained from Sageev’s construction [Sag95] with walls joining the

opposite sides in each relator (after subdividing each edge into two if necessary). However,

its dimension is not in general optimal. For example, the dimension of the CAT(0) cube

complex associated to the usual presentation for the fundamental group of the surface of

genus g ≥ 2 is g, while its cubical dimension equals 2 as it acts on the hyperbolic plane with

a CAT(0) square complex structure.

We prove the following:

Theorem 4.1.2. For each n ≥ 1 and each p ≥ 6 there exists a finitely presented C ′(1/p)

small cancellation group G such that the cubical dimension of G is greater than n.

For n = 1, the stronger form of Theorem 6.1.1 was proved by Pride in [Pri83]. He gives

an explicit example of an infinite C ′(1/6) group with property FA. Pride’s construction has

been revisited in [JW17b]. We observe that the case n = 2 can be deduced from the work

of Kar and Sageev who study uniform exponential growth of groups acting freely on CAT(0)

33
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square complexes [KS16]. See Remark 4.4.1. As a consequence, the Kar–Sageev examples

have finite cubical dimension that is strictly larger than the geometric dimension.

This chapter is organized as follows. In Section 4.2 we recall the classification of isome-

tries of a CAT(0) cube complex with respect to hyperplanes. We refer to [LS77] for the

background on small cancellation theory. In Section 3 we describe how to build a C ′(1/p)

presentations where relators are positive products of given words. This technical result is

applied in Section 4, which is the heart of the paper and contains the proof of Theorem 6.1.1.

The argument heavily utilizes hyperplanes to create a dichotomy between free subsemigroups

and subgroups having polynomial growth. The main ingredient of the proof of Theorem 6.1.1

is Lemma 4.4.2 which states that for any two hyperbolic isometries a, b of an n-dimensional

CAT(0) cube complex one of the following holds: 〈a, b〉 is virtually abelian, or there is a

hyperplane stabilized by certain conjugates of some powers of a or b, or there is a pair of

words in a, b of uniformly bounded length that generates a free semigroup.

4.2. Isometries and hyperplanes in CAT(0) cube complexes

In this section we recall relevant facts about isometries of CAT(0) cube complexes and

collect some lemmas that will be used in the proof of Theorem 6.1.1. For general background

on CAT(0) cube complexes and groups acting on them we refer the reader to [Sag14].

Throughout the paper X will be a finite dimensional CAT(0) cube complex. The set

of all hyperplanes of X is denoted by H(X) and a cube complex dual to a collection H

of hyperplanes is denoted by X(H). We use letters h+, h− to denote the halfspaces of a

hyperplane h, and N(h) to denote the closed carrier of h, i.e. the convex subcomplex of

X that is the union of all the cubes intersecting h. We say that a hyperplane h separates

subsets A,B ⊂ X, if A ⊂ h+ and B ⊂ h−. The metric d is the `1-metric on X. All

the paths we consider are combinatorial (i.e. concatenations of edges), all the geodesics

are with respect to d, and all axes of hyperbolic isometries are combinatorial axes. The

combinatorial translation length δ(a) of an isometry a is defined as infx∈X0 d(x, ax). If a acts

without hyperplane inversions then the infimum is realized and δ(ak) = kδ(a) [Hag07] (see

also [Woo16a]). In particular, a has a combinatorial axis and any axis of a is also an axis

of ak. The combinatorial minset of x is

Min0(x) = {p ∈ X0 : d(p, xp) = δ(x)}
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where X0 is the 0-skeleton of X. Every 0-cube p of Min0(x) lies on an axis of x (any geodesic

joining {xip}i).

Let n = dimX. Let a be a hyperbolic isometry of X and let h be a hyperplane. We

recall the classification of isometries of a CAT(0) cube complex. More details can be found

in [CS11, Sec 2.4 and 4.2].

• a skewers h if akh+ ( h+ for one of the halfspaces h+ of h and some k > 0.

Equivalently, if some (equivalently, any) axis of a intersects h exactly once.

• a is parallel to h if some (equivalently, any) axis of a is in a finite neighbourhood of

h.

• a is peripheral to h if a does not skewer h and is not parallel to h. Equivalently,

akh+ ( h− for some k > 0.

Note that the type of behaviour of a with respect to h is commensurability invariant,

i.e. ai has the same type as a with respect to h. The set of all hyperplanes in X skewered

by a is denoted by sk(a). The constant k in the above definitions can be chosen to be lat

most n. Indeed, {h, ah, . . . , anh} cannot all intersect in X with dimX = n. In particular,

if h ∈ sk(a) then an!h+ ⊂ a(n!
k
−1)kh+ ⊂ . . . akh+ ⊂ h+ for one of the halfspaces h+ ∈ h and

for an appropriate k < n. Similarly, we have the following:

Lemma 4.2.1. There exists a constant K3 = K3(n) such that for each hyperplane h in X

and an isometry a there exist k < k′ ≤ K3 such that the hyperplanes {h, akh, ak′h} pairwise

are disjoint or equal.

Proof. Consider the graph Γ whose vertices correspond to integers, and two integers

r, q are joined by an edge if and only if arh and aqh are distinct and intersect. Cliques

in Γ correspond to collections of distinct pairwise intersecting hyperplanes. Let K3 be the

Ramsey constant for numbers (n+ 1) and 3. Since X is n-dimensional, there are no (n+ 1)-

cliques in Γ. The induced subgraph of Γ on vertices [0, K3 − 1] must contain a 3-anticlique.

This corresponds to a triple of hyperplanes {aph, aqh, arh} that pairwise are disjoint or equal

where p < q < r. Hence the hyperplanes {h, aq−ph, ar−ph} are pairwise disjoint or equal. �

In the above Lemma the hyperplanes h, akh, ak
′
h are pairwise disjoint, or aK3! stabilizes

h (and the two cases are not mutually exclusive).
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h+

ah+ bh+

Figure 1. A ping-pong triple.

Lemma 4.2.2. [KS16, Lem 12] Suppose a and b are hyperbolic isometries of X and there

exists a hyperplane h = (h+, h−) such that ah+ ⊂ h+, bh+ ⊂ h+ and ah+ ⊂ bh−. Then a, b

freely generate a free semigroup. See Figure 1.

The triple {h+, ah+, bh+} as in Lemma 4.2.2 is called a ping pong triple. The following

Lemma is a higher dimensional version of the All-Or-Nothing Lemma [KS16, Lem 13]. Our

proof is based on the proof of Kar–Sageev but it differs slightly.

Lemma 4.2.3. Let a and b be hyperbolic isometries and let h ∈ sk(a). Then one of the

following holds

• b skewers all ain!h for i ∈ Z, or

• b skewers none of ain!h for i ∈ Z, or

• one of the following pairs of words freely generate a free semigroup for some 1 ≤

k ≤ n:

(an!, bkn!an!),

(an!, b−kn!an!),

(a−n!, bkn!a−n!),

(a−n!, b−kn!a−n!).

(?)

Proof. Let h+ be the halfspace of h such that an!h+ ( h+. Suppose that b skewers

some hyperplane in P but not all of them. Without loss of generality we can assume that b

skewers exactly one of h, an!h. First suppose b skewers h but not an!h i.e. the axis γb ⊂ an!h−.

Since γb goes arbitrarily deep in h− we have that b is peripheral to an!h. We either have

bn!h+ ⊂ h+ or b−n!h+ ⊂ h+. Let k be such that bkn!an!h and an!h are disjoint. Either

bkn!an!h+ ⊂ bkn!h+ ⊂ h+ or b−kn!an!h+ ⊂ b−kn!h+ ⊂ h+ and thus {h+, an!h+, bkn!an!h+} or

{h+, an!h+, b−kn!an!h+} is a ping-pong triple. Similarly, if b skewers an!h but not h, then one

of {an!h−, h−, bkn!h−} or {an!h−, h−, b−kn!h−} is a ping-pong triple. �
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The combinatorial convex hull of a subset A ⊂ X is the smallest convex cube complex

containing A.

Lemma 4.2.4.

(1) The combinatorial convex hull Hull(γx) of an axis γx of x isometrically embeds in

Ek for some k ≥ 1.

(2) The 0-skeleton of Hull(Min0(x)) is contained in Min0(xn!).

Proof. Let p be some 0-cube of γx. Let h1, . . . ,hk denote all the hyperplanes sepa-

rating p and xn!p (in particular, k = n!δ(x)). Since xn!h+
i ⊂ h+

i for all i and appropriate

choice of halfspace h+
i of hi, the partition of the set of all hyperplanes skewered by x into

{xin!h1}i∈Z, . . . , {xin!hk}i∈Z gives an isometric embedding of Hull(γx) into a product of k

trees by [CH13]. Since all the hyperplanes are intersected by a single bi-infinite geodesic

(an axis of x), all the trees are in fact lines, i.e. Hull(γx) isometrically embeds in Ek with

the standard cubical structure. The action of xn! extends to the action to Ek as a transla-

tion by the vector [1, . . . , 1]. Thus every 0-cube of the combinatorial convex hull Hull(γx) is

translated by k = n!δ(x) = δ(xn!) and therefore the 0-skeleton of Hull(γx) is contained in

Min0(xn!).

The subcomplex Hull(Min0(x)) is the maximal subcomplex of the
⋂
{h+ : Min0(x) ⊂ h+},

i.e. Hull(Min0(x)) is dual to Hx = {h : Min0(x) ∩ h+ 6= ∅ and Min0(x) ∩ h− 6= ∅}. If

p, p′ ∈ Min0(x), p ∈ h+ and p′ ∈ h−, then x is parallel to h. Indeed, xip ∈ h+ and xip′ ∈ h−

for all i and since d(xip, xip′) = d(p, p′) the axis γx through p is contained in Nd(h) where

d ≤ d(p, p′). Thus the set Hx consists of hyperplanes skewered by x or parallel to x. It follows

that Hull(Min0(x)) decomposes as a product Y ×Y ⊥ where Y is dual to sk(x) and Y ⊥ is dual

to the set of all the hyperplanes of Hx that are parallel to x. For each p ∈ Y ⊥ the complex

Y × {p} is the combinatorial convex hull of an axis of x. It follows that Hull(Min0(x)) is

the union of the complexes of the form Hull(γx) and so the 0-skeleton of Hull(Min0(x)) is

contained in Min0(xn!).

�

Lemma 4.2.5. Let X be a CAT(0) cube complex that is a subcomplex of a CAT(0) cube

complex that is quasi-isometric to Ed. Then any group G acting properly on X does not

contain a copy of F2. Moreover, if G is torsion-free, then G is virtually abelian.
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Proof. The growth of X0 is a polynomial of degree at most d and so is the growth of

G. Hence G cannot contain a copy of F2. The second part follows from the Tits alternative

for groups acting properly on CAT(0) cube complexes [SW05] which states that any such

group with a bound on the size of finite subgroups either contains a copy of F2, or is virtually

abelian. �

4.3. Constructing small cancellation presentations

The main goal of this section is the following.

Proposition 4.3.1. Let U = {(ui, vi)}mi=1 be a finite collection of pairs where for each

i the elements ui, vi ∈ F (a, b) are not powers of the same element. There exists a C ′(1/6)

small cancellation presentation

〈a, b | r1, . . . , rm〉

where ri is a positive word in ui, vi that is not a proper power for i = 1, . . . ,m.

By F (a, b) in the above Lemma and throughout the section we denote the free group

on generators a and b. The length of a word u with respect to a, b is denoted by |u|. A

spelling of a nontrivial element u ∈ F (a, b) is a concatenation u1 · · ·um = u where each

syllable ui is a nontrivial element of F (a, b). The cancellation in the spelling uv is the value

canc(u, v) = 1
2
(|u| + |v| − |uv|), i.e. the length of the common prefix of the reduced words

representing u−1 and v. A spelling is reduced if canc(ui, ui+1) = 0 for i = 1, . . . ,m − 1; in

other words |u| =
∑

i |ui|. For u, v ∈ F (a, b) we say u, v are virtually conjugate and write

u ∼ v if some powers of u and v are conjugate. We denote a free semigroup on u, v by

{u, v}+. Let u∗ denote an element uk for some k ≥ 0.

Lemma 4.3.2. Let H be a finitely generated subgroup of Fk. There exists a constant

C = C(H < Fk) such that the map between the conjugacy classes of maximal Z-subgroups

induced by the the inclusion H ↪→ Fk is at most C-to-1.

Proof. Let A # B be an immersion of graphs where B is a wedge of k circles, whose

induced map on the fundamental groups is the inclusion H ↪→ Fk.

For any graph Γ = A,B, the conjugacy class of a Z-subgroup in G can be represented

by an immersion L # Γ of a line that factors as L # S # Γ where S is a circle, taken
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modulo the orientation. Thus different conjugacy classes of Z-subgroups in H that map into

the same conjugacy class in Fk are some different lifts

A

L B

The number of such lifts is bounded by the number of vertices in A. �

Lemma 4.3.3. Let u, v ∈ F (a, b) be such that u and v are not powers of the same element.

There are infinitely many pairwise non virtually conjugate elements of the form ukvk.

Proof. Two elements of F (x, y) are virtually conjugate if and only if they have the

following reduced spellings

gwig−1

hw̄jh−1

where g, h, w are reduced words in x, y and w̄ is a cyclic permutation of w. In particular

the elements of the set {xkyk : n ∈ Z} are not virtually conjugate, i.e. they are contained

in distinct conjugacy classes of maximal Z-subgroups. Since u, v are not powers of the same

element, the group 〈u, v〉 is a rank 2 free group. By Lemma 4.3.2 there exists a constant C

such that the map between the conjugacy classes of maximal Z-subgroups induced by the

inclusion 〈u, v〉 ↪→ F (a, b) is at most C-to-1. The lemma follows. �

We say that elements s, t ∈ F (a, b) are non-cancellable, if for any w1, w2 ∈ {s, t}+

canc(w1, w2) <
1

2
min{|s|, |t|}.

In particular, we have |w1w2| ≥ max{|w1|, |w2|}. Equivalently, it suffices that canc(s, t) <

1
2

min{|s|, |t|} and canc(t, s) < 1
2

min{|s|, |t|} for s, t to be non-cancellable. If s, t are non-

cancellable then so are any two elements in {s, t}+.

Lemma 4.3.4. Let u, v ∈ F (a, b) not be powers of the same element. Then there exists

elements s, t ∈ {u, v}+ that are non-cancellable and are not powers of the same element.

Proof. If canc(u, v) > 1
2

min{|u|, |v|} replace the pair (u, v) with (u, uv) if |u| ≤ |v|,

and with (v, uv) otherwise. If canc(v, u) > 1
2

min{|u|, |v|} replace the pair (u, v) with (u, vu)

if |u| ≤ |v|, and with (v, vu) otherwise. Repeat these steps until canc(u, v), canc(v, u) ≤
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x x

y y

Figure 2. Long overlap between x∗ and y∗. The red path is w.

1
2

min{|u|, |v|}. Since at each step the value |u| + |v| strictly decreases, the procedure ter-

minates in finitely many steps. Note that for any nontrivial element x ∈ F (a, b) we have

canc(x, x) < 1
2
|x|, i.e. |x2| > |x|. Let s = u2 and t = v2. We have canc(s, t) = canc(u, v) ≤

1
2

min{|u|, |v|}) < 1
2

min{|s|, |t|} as wanted. Similarly, canc(t, s) < 1
2

min{|s|, |t|}. It follows

that canc(w1, w2) < 1
2

min{|s|, |t|} for every w1, w2 ∈ {s, t}+. �

Lemma 4.3.5. Let x, y be two cyclically reduced elements in F (a, b) such that |x| ≥ |y| >

0 such that x2 is a prefix of y∗. Then x, y are powers of the same element.

Proof. Suppose that x and y are not powers of the same element. In particular, x is

not a power of y, so there exists a nonempty prefix w of x that is both some prefix of y and

some suffix of y. See Figure 2. If |w| ≤ 1
2
|y|, then y is of the form wuw for some u, and

x = (wuw)kwu for some k ≥ 1. Then x2 has a prefix (wuw)kwu · wuww = (wuw)k+1uww

which thus must coincide with yk+1 = (wuw)k+2. In particular, uw = wu, which means that

w, u are powers of the same element. That is a contradiction.

If |w| > 1
2
|y|, then y = uw = wu′ for some u, u′ such that |u| = |u′| < |w|, and x = (uw)ku

for some k ≥ 1. The prefix (uw)kuuw of x2 must coincide with the prefix (uw)k+1u of yk+2.

In particular uw = wu, which again is a contradiction. �

Lemma 4.3.6. Let ui, vi ∈ F (a, b) for i = 1, 2 where for each i = 1, 2 the elements ui, vi

are non-cancellable and are not powers of the same element. Then for each i = 1, 2 there

exist si, ti ∈ {ui, vi}+ such that

• si, ti are non-cancellable and are not virtually conjuagate,

• canc(si, ti) = canc(ti, si) = canc(si, si) = canc(ti, ti), i.e. there exists g such that

si = gs̄ig
−1 and ti = gt̄ig

−1 are reduced spellings where s̄i, t̄i are cyclically reduced

and have no cancellation,

• every piece r between a word in {s1, t1}+ and a word in {s2, t2}+ we have |r| <

min{|si|, |ti|} for i = 1, 2.
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x x x y y y

x x xyyy

Figure 3. The red line is a maximal piece in r.

Proof. Since ui, vi are non-cancellable, the consecutive cancellations between syllables

in any word w ∈ {ui, vi} are separated from each other. For i = 1, 2 set xi = u
ni
1
i v

ni
1

i

and yi = u
ni
2
i v

ni
2

i where n1
1, n

2
1, n

1
2, n

2
2 are chosen so that x1, y1, x2, y2 are pairwise non vir-

tually conjugate. This can be done by Lemma 4.3.3. Note that for i = 1, 2 we have

canc(xi, yi) = canc(xi, xi) = canc(yi, yi) = canc(vi, ui). Let x̄i denote the cyclically re-

duced word representing an element conjugate to xi such that the spelling xi = gx̄ig
−1 is

reduced where |g| = canc(vi, ui) <
1
2

min{|ui|, |vi|}. We have yi = gȳig
−1 where ȳi is cyclically

reduced, and thus any positive word w(xi, yi) in xi, yi has the reduced spelling gw(x̄i, ȳi)g
−1.

Let N = 8 max{|x̄1|, |ȳ1|, |x̄2|, |ȳ2|} and set si = xNi and ti = yNi . Let r be a piece between

a word in {s1, t1}+ and a word in {s2, t2}+ and suppose that |r| ≥ N . There exists a subword

r′ of r of length ≥ 1
2
N that is a subword of x̄∗1 or of ȳ∗1. There exists an even shorter subword

r′′ of r′ of length ≥ 1
4
N that is also a subword of either x̄∗2 or of ȳ∗2. Thus one of x̄∗1, ȳ

∗
1 and one

of x̄∗2, ȳ
∗
2 have a common subword of length ≥ 2 max{|x̄1|, |ȳ1|, |x̄2|, |ȳ2|} and by Lemma 4.3.5

they are virtually conjugate. This is a contradiction. Thus |r| < N . We clearly also have

|xNi |, |yNi | ≥ N for i = 1, 2, and thus we get |r| < min{|si|, |ti|}. �

Lemma 4.3.7. Let x, y be cyclically reduced elements that are not proper powers in

F (a, b) such that x, y are not virtually conjugate. Let r = xα1yβ1 · · ·xα2pyβ2p for some p and

w be a piece in r. If αj, βj are all different and greater than 2 max{|x|, |y|} + 1, then for

every piece w in r we have |w| ≤ (max{αj}+ 2) |x|+ (max{βj}+ 2) |y|.

Proof. Let w be a piece in r and consider two subwords of r: η0η1 · · · ηkηk+1 and

µ0µ1 · · ·µ`µ`+1 where ηi, µj ∈ {x, y} such that η1 · · · ηk and µ1 · · ·µ` are maximal words in

syllables x, y entirely contained in w. We say that two syllables ηi and µj are aligned if

ηi = µj and they entirely overlap in w.

Suppose two syllables ηi, µj overlap in w and ηi = µj = x. If they are not aligned, say

a proper suffix of ηi equals a proper prefix of µj then ηi+1 = y and µj−1 = y (since x is not

equal to any of its conjugates by Lemma 4.3.5). See Figure 3. Since x, y are not conjugate
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by Lemma 4.3.5 we get that j ≥ `− 1 and i ≤ 2. Thus |w| < 6 max{|x|, |y|} < 6(|x| + |y|).

From now on, assume that any two copies of x or y that overlap are aligned.

Suppose ηi = x and µj = x are aligned where 1 ≤ i ≤ k and 1 ≤ j ≤ `. If ηi+1 =

x, µj+1 = y, then i+ 2 ≥ k + 1. Indeed, consider three cases:

• |x| = |y|: Then necessarily i = k and j = `.

• |x| < |y|: If ηi+2 = x, then i + 2 ≥ k + 1 because otherwise ηi+1ηi+2 = x2 was a

subword of y∗ (more specifically a subword of µj+1µj+2 = y2). If ηi+2 = y then ηi+2

and µj+1 are two overlapping not aligned copies of y so i+ 2 ≥ k + 1.

• |x| > |y|: If ηi+2 = x, then i + 2 ≥ k + 1 because otherwise µj+1µj+2 = y2 was

a subword of x∗. If ηi+2 = y, then ηi+2 and µj+2 are two overlapping not aligned

copies of y so i+2 ≥ k+1 (µj+2 overlaps with ηi+2 because otherwise µj+1µj+2 = y2

was a subword of x∗).

Similarly, if instead ηi−1 = x, µj−1 = y, then i− 2 ≤ 0. Similarly we can switch x and y.

We are looking for an upper bound of |w|. If w contains a whole syllable xαn as a subword

for some n and ηi+1 = · · · = ηi+αn = x for 0 ≤ i ≤ k − αn. In particular ηi = y and

ηi+αn+1 = y. Since αn ≥ 2|y| + 1 there must be a syllable µj contained in the subword

spelled by ηi+1 · · · ηi+αn because otherwise y and x were virtually conjugate. By the previous

consideration µj and ηi′ are aligned for some i + 1 ≤ i′ ≤ i + αn. Since α1, β1, . . . , α2p, β2p

are all different, we can find i, j such that ηi = x and µj are aligned and either ηi+1, µj+1 or

ηi−1, µj−1 are different syllables (i.e. one of them is x and the other is y). By the consideration

above, the subword xαn is contained less than two syllables from to the beginning of w or

from the end of w. The same happens with a syllable yβn contained in w. We conclude that

|w| ≤ (max{αi}+ 2) |x|+ (max{βi}+ 2) |y|. �

Proof of Proposition 4.3.1. First by Lemma 4.3.4 we can assume that for i =

1, . . . ,m the elements ui, vi are non-cancellable. Replace the pair (u1, v1) and (u2, v2) by

(s1, t1) and (s2, t2) respectively as in Lemma 4.3.6, and continue replacing for each pair

of indices i < j ≤ m. After
(
m
2

)
steps we have a collection {(si, ti)}mi=1 where for ev-

ery piece r between a word in (si, ti) and a word in (sj, tj) where i 6= j we have |r| <

max{|si|, |ti|} and where for any i the elements si and ti are not virtually conjugate. Let

ri(si, ti) = s
αi
1
i t

βi
1
i · · · s

αi
2p

i t
βi
2p

i where αi1, β
i
1, . . . , α

i
2p, β

i
2p are all distinct. Then for each piece
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w between ri and rj where i 6= j we clearly have |w| < max{|si|, |ti|} < 1
p
|ri|. Moreover,

if min{αi1, βi1, . . . , αi2p, βi2p} > 1
2

max{αi1, βi1, . . . , αi2p, βi2p} + 1 then also for any piece w that

lies in ri in two different ways we also have |w| < 1
p
|ri|. Indeed, by Lemma 4.3.6 ri has

the reduced form gri(s̄i, t̄i)g
−1 where gs̄ig

−1, gt̄ig
−1 are reduced spellings of si, ti respectively

with s̄i, t̄i cyclically reduced. Let x̄i, ȳi be the words that are not proper powers such that

s̄i = x̄nx
i and t̄i = ȳ

ny

i , i.e. neither x̄i or ȳi is equal to any of its nontrivial cyclic permutations.

Also, by Lemma 4.3.6 x̄±i , ȳ
±
i are not conjugate. Suppose r is disjoint from g, g−1.

Then r is a word in x̄i, ȳi and by Lemma 4.3.7 |w| ≤
(
maxj{nxαij}+ 2

)
|x̄i|+

(
maxj{nyβij}+ 2

)
|ȳi|

and so

|w| ≤ (max
j
{αij, βij}+ 2)(|s̄i|+ |t̄i|) < 2 min

j
{αij, βij}(|s̄i|+ |t̄i|) =

=
1

p

(
2pmin

j
{αij, βij}(|s̄i|+ |t̄i|)

)
<

1

p
|Ri|.

Finally if r overlaps with the prefix g or suffix g−1 then r is a subword of gs̄
αi
1
i t̄

βi
1
i or s̄

αi
2p

i t̄
βi
2p

i g−1.

If we choose αi1, β
i
1, . . . , α

i
2p, β

i
2p sufficiently large so minj{αij, βij} > 1

2

(
maxj{αij, βij}+ |g|+ 2

)
then we have

|r| ≤ |g|+ max
j
{αij, βij}(|s̄i|+ |t̄i|) < 2 min

j
{αij, βij}(|s̄i|+ |t̄i|) <

1

p
|Ri|.

�

4.4. Proof of the main theorem

Remark 4.4.1. The case n = 2 of Theorem 4.1.2 can be deduced from the work of Kar

and Sageev who study uniform exponential growth of groups acting freely on CAT(0) square

complexes [KS16]. They prove that for any two elements a, b there exists a pair of words

of length at most 10 in a, b that freely generates a free semigroup, unless 〈a, b〉 is virtually

abelian. One can construct a small cancellation presentation by applying Proposition 4.3.1

to U = {(u, v) | |u|, |v| ≤ 10 and u, v are not powers of the same element}. The resulting

group cannot act properly on a CAT(0) square complex, since for each pair u, v there is a

relator which is a positive word in u, v.
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Let Rn(x, y) be the union of the following pairs for all k < n and ` < `′ ≤ K3

(xn!, ykn!xn!),

(xn!, y−kn!xn!),

(x−n!, ykn!x−n!),

(x−n!, y−kn!x−n!),

(x−n!y−kxn!yk`, x−n!y−kxn!yk`
′
),

(y−kx−n!yk`xn!, y−kx−n!yk`
′
xn!),

(x−n!, yk`x−n!),

(xn!, yk`xn!).

Let R1(x, y) = R1(x, y) ∪R1(y, x). Let

Rn(x, y) = Rn(x, y) ∪Rn(y, x) ∪Rn−1(yN , x−n!yNxn!) ∪Rn−1(xN , y−n!xNyn!)

where N = n!K3!.

Lemma 4.4.2 (The Main Lemma). Suppose x and y are hyperbolic isometries of an

n-dimensional CAT(0) cube complex. Then one of the following holds:

• one of the pairs in Rn(x, y) freely generates a free semigroup, or

• either yN and x−n!yNxn!, or xN and y−n!xNyn! stabilize a hyperplane, or

• the group 〈xN , yN〉 is virtually abelian.

Proof. Without loss of generality we may assume that the action of 〈x, y〉 is without

hyperplane inversions, as we can always subdivide X to have this property of the action.

Let γx, γy be axes of x, y respectively such that d(γx, γy) is minimal.

Suppose there exists a hyperplane h ∈ sk(x)− sk(y). By Lemma 4.2.3, y does not skewer

xin!h for any i ∈ Z unless one of the pairs in Rn(x, y) freely generates a free semigroup.

Without loss of generality (by possibly renaming some xin!h as h) we can assume that

γy ⊂ h+ ∩ xn!h−.

If yNh = h and yNxn!h = xn!h then the subgroup 〈yN , x−n!yNxn!〉 preserves h. We are

now assuming that this is not the case, i.e. at least one of h and xn!h is not preserved by yN .

Suppose that yN does not stabilize h. Let k ≤ n be minimal such that ykxn!h and xn!h are

disjoint or equal and let ` < `′ ≤ K3 such that {h, yk`h, yk`′h} are pairwise disjoint (no two

can be equal since yN does not stabilize h). If ykxn!h 6= xn!h, then we have ykxn!h+ ⊂ xn!h−,

and thus also xn!ykxn!h+ ⊂ h−. Since yk`h− ⊂ h+ and yk`
′
h− ⊂ h+ there is a ping-pong

triple {x−n!ykxn!h−, yk`h−, yk`
′
h−}. See Figure 4. Now suppose ykxn!h = xn!h. We have

yk`h− ⊂ xn!h− because h− ⊂ xn!h−, and thus {xn!h−, h−, yk`h−} is a ping-pong triple.
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h+

γy

x−n!ykxn!h+

yk`h+

yk`
′
h+

Figure 4. The case where yNh 6= h and ykxn!h 6= xn!h.

Analogously, if yN does not stabilize xn!h then one of {xn!ykh+, yk`xn!h+, yk`
′
xn!h+} and

{h+, xn!h+, yk`xn!h+} is a ping-pong triple for some k ≤ n and ` < `′ ≤ K3.

Similarly, if there exists a hyperplane h ∈ sk(y)− sk(x), then one of the pairs in Rn(x, y)

freely generates a free semigroup or 〈xN , y−n!xNyn!〉 stabilizes a hyperplane. Otherwise

sk(x) = sk(y), which we now assume is the case.

Suppose there exists a hyperplane h separating γx, γy that is not stabilized by either xK3!

or yK3!. Let k ≤ n be minimal such that xkh ⊂ h∗ for appropriate choice of halfspace h of h.

Let `, `′ ≤ K3 such that {h, yk`h, yk`′h} are pairwise disjoint. The triple {xkh, yk`h, yk`′h} is

a ping-pong triple.

We can now assume that every hyperplane separating any two axes of x and y is stabi-

lized by xK3! or yK3!. If a hyperplane h is stabilized by xK3! then there are axes of xK3! in

both halfspaces h, h∗. In particular, no hyperplane separates Min0(xK3!) and Min0(yK3!),

hence Hull(Min0(xK3!)) ∩ Hull(Min0(yK3!)) 6= ∅. Let p be a 0-cube in the intersection

Hull(Min0(xK3!))∩Hull(Min0(yK3!)). By Lemma 4.2.4, p lies on axes of both xN and yN . The

complex Hull(γ) where γ is an axis of xN through p is a minimal convex subcomplex con-

taining the 〈xN , yN〉-orbit of p, Hull(γ) is dual to sk(x) = sk(y), and 〈xN , yN〉 acts properly

on Hull(γ). By Lemma 4.2.4 Hull(γ) embeds in Ek and by Lemma 4.2.5 the group 〈xN , yN〉

is virtually abelian. �

In the following proof |w|∗ denotes the minimal number of syllables of the form a±∗, b±∗

in a spelling of w.

Proof of Theorem 6.1.1. Let G be a group given by the C ′(1/p′) presentation from

Proposition 4.3.1 with U = Rn(a, b) where p′ = max{p, 8 ·3n}. In particular, G is an infinite,
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torsion-free, non-elementary hyperbolic group. Since p′ ≥ p the group G is C ′(1/p). Suppose

that G acts properly on an n-dimensional CAT(0) cube complex.

By definition of G none of the pairs in Rn(a, b) can freely generate a free semigroup since

there is a relator in the presentation of G associated to each pair. Also the subgroup 〈aN , bN〉

is not virtually abelian since the presentation of G is C ′(1/6), so by Lemma 4.4.2 one of the

pairs bN , a−n!bNan! or aN , b−n!aNbn! stabilizes a hyperplane and thus these two elements act

on an (n − 1)-dimensional CAT(0) cube complex. Since Rn−1(bN , a−n!bNan!) ⊂ Rn(a, b)

and Rn−1(aN , b−n!aNbn!) ⊂ Rn(a, b) we can apply Lemma 4.4.2 again and we conclude that

either one of 〈bN , a−n!bNan!〉 and 〈aN , b−n!aNbn!〉 is virtually abelian, or an appropriate pair of

elements stabilizes a hyperplane. We can keep applying Lemma 4.4.2. As long as the pair of

elements x, y stabilizes a hyperplanes, then by Lemma 4.4.2 one of the pairs yN
2
, x−n!yN

2
xn!

or xN
2
, y−n!xN

2
yn! generates a virtually abelian subgroup or stabilizes a hyperplane. By

construction, x and y at each step are some conjugates of one of the the original generators

a and b, so |xk|∗ = |x|∗ and |yk|∗ = |y∗| for any k > 0. Also,

|y−n!xN
2

yn!|∗ ≤ |y−n!|∗ + |xN2 |∗ + |yn!|∗ =

= |y|∗ + |x|∗ + |y|∗ ≤ 3 max{|x|∗, |y|∗},

and similarly |x−n!yN
2
xn!|∗ ≤ 3 max{|x|∗, |y|∗}. By repeating the argument up to n times,

we eventually get a pair of elements x0, y0 that generates a virtually abelian subgroup and

we have |x0|∗, |y0|∗ ≤ 3n. Since all elements of G have infinite order and G contains no

abelian groups of rank 2, we conclude that 〈x0, y0〉 is (virtually) Z. In particular, xk0 = yk
′

0

for some k, k′ 6= 0 and we have |xk0y−k
′

0 |∗ ≤ 2 · 3n. By Greendlinger’s Lemma [LS77] some

subword w of xk0y
−k′
0 must be also a subword of some relator r with |w| ≥ 1

2
|r|. On one hand

|w|∗ ≤ 2 · 3n. On the other hand, the length of each syllable of the form a±∗ or b±∗ in r is at

most 1 + 1
p′
|r| < 2

p′
|r| because if ak is a subword of r then ak−1 is a piece in r and the same

for b. Thus for any subword w′ of r of length at most |r|
2

we have |w′|∗ > p′

4
. Since p′

4
≥ 2 · 3n

we get a contradiction. �



CHAPTER 5

Cubulating small cancellation free products

We give a simplified approach to the (cocompact) cubulation of small-cancellation quo-

tients of free products of (cocompactly) cubulated groups. We construct fundamental groups

of compact nonpositively curved cube complexes that do not virtually split. This section is

based on joint work with Daniel Wise [JW17a]. The authors contributed equally.

5.1. Introduction

Martin and Steenbock recently showed that a small-cancellation quotient of a free prod-

uct of cubulated groups is cubulated [MS16]. In this paper we revisit their theorem in a

slightly weaker form, and reprove it in a manner that capitalizes on the available technol-

ogy. Combined with an idea of Pride’s about small-cancellation groups that do not split, we

answer a question posed to us by Indira Chatterji by constructing an example of a compact

nonpositively curved cube complex X such that π1X is nontrivial but does not virtually

split.

Section 5.2 recalls the definitions and theorems that we will use from cubical small-

cancellation theory. Section 5.3 recalls properties of the dual cube complex in the relatively

hyperbolic setting. Section 5.4 recalls the definition of small-cancellation over free prod-

ucts, and describe associated cubical presentations. Section 5.5 reproves Pride’s result about

small-cancellation groups that do not split. Section 5.6, relates small-cancellation over free

products to cubical small-cancellation theory, and proves our main result which is Theo-

rem 5.6.2. Finally, Section 5.7 combines Pride’s method with Theorem 5.6.2 to provide

cubulated groups that do not virtually split in Example 5.7.1.

5.2. Background on Cubical Small Cancellation

5.2.1. Nonpositively curved cube complexes. We shall assume that the reader is

familiar with CAT(0) cube complexes which are CAT(0) spaces having cell structures, where

each cell is isometric to a cube. We refer the reader to [BH99, Sag95, Lea, Wis11]. A

47
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nonpositively curved cube complex is a cell-complex X whose universal cover X̃ is a CAT(0)

cube complex. A hyperplane Ũ in X̃ is a subspace whose intersection with each n-cube

[0, 1]n is either empty or consists of the subspace where exactly one coordinate is restricted

to 1
2
. For a hyperplane Ũ of X̃, we let N(Ũ) denote its carrier, which is the union of all

closed cubes intersecting Ũ . The hyperplanes Ũ and Ṽ osculate if N(Ũ) ∩ N(Ṽ ) 6= ∅ but

Ũ ∩ Ṽ = ∅. We will use the combinatorial metric on a nonpositively curved cube complex X,

so the distance between two points is the length of the shortest combinatorial path connecting

them. The systole ‖X‖ is the infimal length of an essential combinatorial closed path in X.

A map φ : Y → X between nonpositively curved cube complexes is a local isometry if φ is

locally injective, φ maps open cubes homeomorphically to open cubes, and whenever a, b are

concatenatable edges of Y , if φ(a)φ(b) is a subpath of the attaching map of a 2-cube of X,

then ab is a subpath of a 2-cube in Y .

5.2.2. Cubical presentations and Pieces.

Definition 5.2.1. A cubical presentation 〈X | Y1, . . . , Ym〉 consists of a nonpositively

curved cube complex X, and a set of local isometries Yi # X of nonpositively curved cube

complexes. We use the notation X∗ for the cubical presentation above. As a topological

space, X∗ consists of X with a cone on Yi attached to X for each i.

Definition 5.2.2. A cone-piece of X∗ in Yi is a component of Ỹi∩gỸj, where Ỹi is a lift of

Yi to the universal cover X̃∗ and g ∈ π1X, excluding the case where i = j and g ∈ Stab(Ỹi).

A wall-piece of X∗ in Yi is a component of Ỹi∩N(Ũ), where Ũ is a hyperplane that is disjoint

from Ỹi. For a constant α > 0, we say X∗ satisfies the C ′(α) small-cancellation condition if

diam(P ) < α‖Yi‖ for every cone-piece or wall-piece involving Yi.

When α is small, the quotient π1X
∗ has good behaviour. For instance, when X∗ is C ′( 1

12
)

then each immersion Yi # X lifts to an embedding Ỹi ↪→ X̃∗. This is proven in [Wis11,

Thm 4.1], and we also refer to [Jan17a] for analogous results at α = 1
9
.

5.2.3. The B(8) condition. We now describe a special case of the B(8) condition

within the context of C ′(α) metric small-cancellation. A piece-path in Y is a path in a piece

of Y .

Definition 5.2.3. The B(8) condition assigns a wallspace structure to each Yi as follows:
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(1) The collection of hyperplanes of each Yi are partitioned into classes such that no

two hyperplanes in the same class cross or osculate, and the union U = ∪Ui of the

hyperplanes in a class forms a wall in the sense that Yi − U is the disjoint union of

a left and right halfspace.

(2) If P is a path that is the concatenation of at most 8 piece-paths and P starts and

ends on the carrier N(U) of a wall then P is path-homotopic into N(U).

(3) The wallspace structure is preserved by the group Aut(Yi → X) which consists of

automorphisms φ : Yi → Yi such that

Yi −→ Yi

↘ ↙

X

commutes.

5.2.4. Properness Criterion. A closed geodesic w → Y in a nonpositively curved

cube complex, is a combinatorial immersion of a circle whose universal cover w̃ lifts to a

combinatorial geodesic w̃ → Ỹ in the universal cover of Y .

A hyperplane U in Y is piecefully convex if the following holds: for any path ξρ → Y

with endpoints on N(U), if ξ is a geodesic and ρ is trivial or lies in a piece of Y containing

an edge dual to U , then ξρ is path-homotopic in Y to a path µ → N(U). If U is piecefully

convex then N(U)→ Y is convex.

We quote the following criterion from [FW16]. Each Yi deformation retracts to a closed

combinatorial geodesic wi. The wallspace that is assigned to each Yi has a wall for hyper-

planes dual to pairs of antipodal edges in wi. (The complex X is subdivided to ensure that

each |wi| is even.)

Theorem 5.2.4. Let X∗ = 〈X | Y1, . . . , Yk〉 be a cubical presentation. Suppose each Yi

deformation retracts to a closed combinatorial geodesic wi, and each hyperplane U of Yi is

piecefully convex, U intersects wi and U has an embedded carrier with diamN(U) < 1
20
‖Yi‖.

If X∗ is C ′( 1
20

) then X∗ is B(8) and π1X
∗ acts properly and cocompactly on the CAT(0)

cube complex dual to the wallspace on X̃∗.

Moreover, if each 〈wi〉 ⊂ π1X is a maximal cyclic subgroup, then π1X
∗ acts freely and

cocompactly on the associated dual CAT(0) cube complex.

5.2.5. The wallspace structure.



5.3. RELATIVE COCOMPACTNESS 50

Definition 5.2.5 (The walls). When X∗ satisfies the B(8) condition, X̃∗ has a wallspace

structure which we now briefly describe: Two hyperplanes H1, H2 of X̃∗ are cone-equivalent

if H1 ∩ Yi and H2 ∩ Yi lie in the same wall of Yi for some lift Yi ↪→ X̃∗. Cone-equivalence

generates an equivalence relation on the collection of hyperplanes of X̃∗. A wall of X̃∗ is the

union of all hyperplanes in an equivalence class. When X∗ is B(8), the hyperplanes in an

equivalence class are disjoint, and a wall w can be regarded as a wall in the sense that X̃∗ is

the union of two halfspaces meeting along w.

Lemma 5.2.6. Let W be a wall of X̃∗. let Y ⊂ X̃∗ be a lift of some cone Yi of X∗. Then

either W ∩ Y = ∅ or W ∩ Y consists of a single wall of Y .

The carrier N(W ) of a wall W of X̃∗ consists of the union of all carriers of hyperplanes

of W together with all cones intersected by hyperplanes of W . The following appears as

[Wis11, Cor 5.27]:

Lemma 5.2.7 (Walls quasi-isometrically embed). Let X∗ be B(8). Suppose that pieces

in cones have uniformly bounded diameter. Then for each wall W , the map N(W )→ X̃∗ is

a quasi-isometric embedding.

We will need the following result of Hruska which is proven in [Hru10, Thm 1.5]:

Theorem 5.2.8. Let G be a f.g. group that is hyperbolic relative to {Gi}. Let H ⊂ G be

a f.g. subgroup that is quasi-isometrically embedded. Then H ⊂ G is relatively quasiconvex.

5.3. Relative Cocompactness

The following is a simplified restatement of [HW14, Thm 7.12] in the case ♥ = ?:

We use the notation Nd(S) for the closed d-neighbourhood of S.

Theorem 5.3.1. Consider the wallspace (X̃∗,W). Suppose G acts properly and cocom-

pactly on X preserving both its metric and wallspace structures, and the action on W has

only finitely many G–orbits of walls. Suppose Stab(W ) is relatively quasiconvex and acts

cocompactly on W for each wall W ∈W. Suppose G is hyperbolic relative to {G1, . . . , Gr}.

For each Gi let X̃i ⊂ X̃∗ be a nonempty Gi–invariant Gi–cocompact subspace. Let C(X)

be the cube complex dual to (X̃∗,W) and for each i let C?(X̃i) be the cube complex dual to
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(X̃∗,Wi) where Wi consists of all walls W with the property that diam
(
W ∩ Nd(X̃i)

)
= ∞

for some d = d(W ).

Then there exists a compact subcomplex K such that C(X) = GK ∪
⋃
iGC?(X̃i). Hence

G acts cocompactly on C(X) provided that each C?(X̃i) is Gi-compact.

In our application of Theorem 5.3.1, X is a long wedge of cube complexes X1, . . . , Xr

(see Construction 5.4.3) and X̃i is a lift of the universal cover of Xi to X̃∗. The wallspace

structure of X∗ is described in Section 5.2.5 (see also Lemma 5.4.4). We will be able to apply

Theorem 5.3.1 because the cube complex C?(X̃i) will be Gi-cocompact for the following

reason:

Lemma 5.3.2. Let W be a wall of X̃∗. Suppose diam(W ∩ Nd(X̃i)) = ∞ for some i.

Then W contains a hyperplane of X̃i. Hence C?(X̃i) = X̃i for each i.

Proof. Each X̃i has the property for each d ≥ 0, λ ≥ 1, ε ≥ 0 there exists d′ such that

if α is a (λ, ε)-quasigeodesic that starts and ends at points in Nd(X̃i) then α ⊂ Nd′(X̃i).

This follows from the analogous statement for parabolic subgroups of a relatively hyperbolic

group which can be deduced from [DS05, Thm 1.12.(1)]. The quasigeodesics we consider

are contained in N(W ) which is quasi-isometrically embedded by Lemma 5.2.7, so there is

a uniform value of d′ for all such quasigeodesics.

By the fellow-travelling property above, we see that if diam(N(W ) ∩ Nd(X̃i)) =∞ then

by cocompactness, there exists an infinite order element g stabilizing both W and X̃i. Each

X̃i ⊂ X̃∗ is convex by [Wis11, Lem 3.70], and we may therefore choose a geodesic γ̃ be in

X̃i that is stabilized by g, and let λ̃ be a path in N(W ) that is stabilized by g. We thus

obtain an annular diagram A between closed paths γ and λ which are the quotients of γ̃

and λ̃ by 〈g〉. Suppose moreover that A has minimal complexity among all such choices

(A, γ, λ) where γ → Xi has the property that γ̃ is a geodesic, and λ → N(W ) is a closed

path. By [Wis11, Thm 5.53], A is a square annular diagram, and we may assume it is has

no spur. (The hypothesis of Thm 5.53 requires “tight innerpaths” which holds at C ′( 1
16

) by

Lem 3.65.)

Observe that if s is a square with an edge in X̃i, then s ⊂ X̃i. Consequently, the

minimality of A ensures that A has no square, and so γ = A = λ.
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Figure 1. The walls associated to a 13-cube in the cubulation of a flat.

There are now two cases to consider: Either λ̃ ⊂ N(U) for some hyperplane U of W , or λ̃

has a subpath u1yju2 traveling along N(U1), Yj, N(U2), where U1, U2 are distinct hyperplanes

of W , and U1, U2 intersect the cone Yj in antipodal hyperplanes.

In the latter possibility contradicts the B(8) condition for Yj, since X̃i ∩ Yj contains the

single piece-path yj which starts and ends on carriers of distinct hyperplanes of the same

wall of Yj.

In the former possibility, N(U) ⊂ X̃i, and so the above square observation ensures that

N(U) ⊂ X̃i. Hence W cuts X̃i as claimed. �

Example 5.3.3. Consider the quotient: G = Z2 ∗ Z2/〈〈w1, w2〉〉, with the following pre-

sentation for some number m > 0:〈
〈a, b | aba−1b−1〉 ∗ 〈c, d | cdc−1d−1〉

∣∣∣ a1c1a2c2 · · · amcm, b1d1b2d2 · · · bmdm
〉

Note that each piece consists of at most 2 syllables, whereas the syllabic length of each

relator is 2m. Hence the C ′∗(
1

m−1
) small-cancellation condition over free products is satisfied.

See Definition 5.4.1.

So X is the long wedge of two tori X1, X2 corresponding to 〈a, b〉 and 〈c, d〉. And Y1 is a

bunch of rectangles glued together along arcs.

The cube complex dual to X̃∗ has m(m+1)
4

-dimensional cubes arising from the cone-cells

Y1 and Y2. More interestingly, the cube complex dual to (X̃∗,W1) where W1 consists of the

walls intersecting a copy of X̃1, has dimension 2m. This is because all hyperplanes dual to

the path am cross each other because of Y1 and likewise all hyperplanes dual to the path

bm cross each other because of Y2, and every hyperplane dual to the path am crosses every

hyperplane dual to the path bm because X̃1 is a 2-flat.
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5.4. Small cancellation over free products

Definition 5.4.1. [Small cancellation over a free product] Every element R in the free

product G1 ∗ · · · ∗Gr has a unique normal form which is a word h1 · · ·hn where each hi lies

in a factor of the free product and hi and hi+1 lie in different factors for i = 1, . . . , n − 1.

The number n, which we denote by |R|∗, is the syllable length of R. We say R is cyclically

reduced if h1 and hn also lie in different factors. We say that R is weakly cyclically reduced

if h−1
n 6= h1 or if |R|∗ ≤ 1. We refer to each hi as a syllable. There is a cancellation in the

concatenation P · U of two normal forms if the last syllable of P is the inverse of the first

syllable of U .

Consider a presentation over a free product 〈G1 ∗ · · · ∗Gr | R1, . . . , Rs〉 where each Ri is a

cyclically reduced word in the free product. A word P is a piece of Ri, Rj if they have weakly

cyclically reduced conjugates R′i, R
′
j that can be written as concatenations P · Ui and P · Uj

respectively with no cancellations. The presentation is C ′∗(
1
n
) if |P |∗ < 1

n
|R′i|∗ whenever P is

a piece.

Each factor Gi embeds in a C ′∗(
1
6
) small-cancellation presentation G over a free product

G1 ∗ · · · ∗ Gr [LS77, Cor. 9.4], and thus G is nontrivial if some Gi is nontrivial. We quote

the following result from [Osi06]:

Lemma 5.4.2. Let G be a quotient of G1 ∗ · · · ∗Gr arising as a C ′∗(
1
6
) small-cancellation

presentation over a free product. Then G is hyperbolic relative to {G1, . . . , Gr}.

5.4.1. Cubical presentation associated to a presentation over a free product.

Construction 5.4.3. Let Tr be the union of directed edges e1, . . . , er identified at their

initial vertices. The long wedge of a collection of spaces X1, . . . , Xr is obtained from Tr by

gluing the basepoint of each Xj to the terminal vertex of ej . We will later subdivide the

edges of Tr. Given groups G1, . . . Gr such that for each 1 ≤ j ≤ r, let Gj = π1Xj where

Xj is a nonpositively curved cube complex, the long wedge X of the various Xj is a cube

complex with π1X = G1 ∗ · · · ∗Gr.

Given an element R ∈ G1 ∗ · · · ∗Gr with |R|∗ > 1, there exists a local isometry Y → X

where Y is a compact nonpositively curved cube complex with π1Y = 〈R〉. Indeed, let
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Figure 2. Y is depicted on the left and X on the right.

R = h1h2 · · ·ht where each hk is an element of some Gm(k). For each k let Vk be the compact

cube complex that is the combinatorial convex hull of the basepoint p and its translate hkp

in the universal cover X̃m(k). We call p the initial vertex of Vk and hkp the terminal vertex

of Vk. For each 1 ≤ k ≤ t let σk be a copy of e−1
m(k)em(k+1) where m(t+ 1) = m(1). Finally we

form Y from
⊔t
k=1 Vk and

⊔t
k=1 σk by gluing the terminal vertex of Vk to the initial vertex of

σk and the terminal vertex of σk to the initial vertex of Vk+1. Note that there is an induced

map Y → X which is a local isometry.

Given a presentation 〈G1, . . . , Gr | R1, . . . , Rs〉 over a free product there is an associated

cubical presentation X∗ = 〈X | Y1, . . . , Ys〉 where each Yi → X is a local isometry associated

to Ri as above. Finally, any subdivision of the edges e1, . . . , er induces a subdivision of X,

and accordingly a subdivision of each Yi. We thus obtain a new cubical presentation that

we continue to denote by X∗.

Lemma 5.4.4. Suppose 〈X | Y1, . . . , Ys〉 is B(8) (after subdividing). And let X̃k be the

universal cover of Xk with the wallspace structure such that each hyperplane is a wall. Then

〈X | Y1, . . . , Ys, X̃1, . . . , X̃r〉 is B(8). Moreover, the walls of X̃∗ with respect to the two

structures are identical.

Proof. The pieces between X̃i and Yj are copies of the Vk associated to Xi that appear in

Yj, and hence the B(8) properties hold for each Yj as before. For each X̃i, Conditions 5.2.3.(1)

and 5.2.3.(3) hold automatically by our choice of wallspace structure, and Condition 5.2.3.(2)

holds since X̃i is contractible. �
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Proof. This follows by combining Lemma 5.4.4 and Lemma 5.2.6. �

5.5. Construction of Pride

The following result was proven by Pride in [Pri83]. We give a slightly more geometric

version of his proof, which was originally stated for a C(n) presentation instead of a classical

C ′( 1
n
) presentation [LS77].

Lemma 5.5.1. Let G = 〈x, y | R1, R2, R3, R4, R5, R6〉 where the relators Ri are specified

below for associated positive integers αi, βi, γi, δi, ρi, σi, τi, θi for each 1 ≤ i ≤ k, and k ≥ 1.

Then G does not split as an amalgamated product or HNN extension.

R1(x, y) = xyα1xyα2 · · ·xyαk

R2(x, y) = yxβ1yxβ2 · · · yxβk

R3(x, y) = xγ1y−δ1xγ2y−δ2 · · ·xγky−δk

R4(x, y) = xyρ1xy−ρ1xyρ2xy−ρ2 · · ·xyρkxy−ρk

R5(x, y) = yxσ1yx−σ1yxσ2yx−σ2 · · · yxσkyx−σk

R6(x, y) = (xy)τ1(x−1y−1)θ1(xy)τ2(x−1y−1)θ2 · · · (xy)τk(x−1y−1)θk

Proof. Suppose G = A ∗C B or G = A∗C and let T be the associated Bass-Serre tree.

Without loss of generality, assume that the translation length of y is at least as large as the

translation length of x. Choose a vertex v ∈ Min(x) for which dT (y·v, v) is minimal.

For use in the argument below, given a decomposition of w ∈ G as a product w =

w1w2 · · ·w`, the path [v, w1·v][w1·v, w1w2·v] · · · [w1w2 · · ·w`−1·v, w·v] is said to read w.

We now show that v ∈ Min(y). First suppose that x, and hence y, is a hyperbolic

isometry. If v /∈ Min(y), then by the choice of v we have [v, y·v] ∩ Min(x) = {v}, hence

the concatenation of two nontrivial geodesics [x−1·v, v][v, y·v] would be a geodesic. See

Figure 3. Similarly [x·v, v][v, y·v], [x−1·v, v][v, y−1·v] and [x·v, v][v, y−1·v] would be geodesics.

Consequently, regarding R6 as a product of elements {x±1, y±1}, the path reading R6 would

be a geodesic, which contradicts that R6 =G 1. Now, suppose that x is elliptic and so

x·v = v. Let e denote the initial edge of [v, y·v] and note that e is also the initial edge of

[v, y−1·v] since v /∈ Min(y). The choice of v implies x·e 6= e, and so the concatenation of the

nontrivial geodesics [y−1·v, v][v, xy·v] is a geodesic, and similarly for [y−1·v, v][v, x−1y−1v],
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v x·v

y·v y−1·v

y

x

Figure 3. The case where Min(x) ∩Min(y) = ∅.

[y·v, v][v, xy·v] and [y·v, v][v, x−1y−1v]. It follows that regarding R6 as a product of elements

{xy, x−1y−1}, the path reading R6 is a geodesic, which contradicts that R6 =G 1.

Since v ∈ Min(x)∩Min(y), the element y is a hyperbolic isometry, because otherwise x, y

are elliptic and so v is be a global fixed point. Suppose x is also a hyperbolic isometry. At

least one of [y−1·v, v][v, x·v] or [x−1·v, v][v, y·v] is not a geodesic, because otherwise the path

reading R1 regarded as a product of {x±1, y±1} would be a geodesic. Consequently, both

[x·v, v][v, y·v] and [x−1·v, v][v, y−1·v] are geodesics, and hence regarding R3 as a product of

elements {x±1, y±1}, the path reading R3 must be a geodesic, which is a contradiction. Thus,

x is an elliptic isometry.

Let e+ and e− denote the initial edges of [v, y·v] and [v, y−1·v] respectively. See Fig-

ure 4. We must have x·e+ = e− because otherwise [y−1·v, v][v, xy·v] would be a geodesic

since the last edge of [y−1·v, v] is e− and the first edge of [v, xy·v] is e+. Likewise, for

n,m > 0 the path [y−n·v, v][v, xym·v] would be a geodesic, and so too would be its translate

[v, xyn·v][xyn·v, xynxym·v]. Finally, regarding R1 as a product (xyα1)(xyα2) · · · (xyαk), the

path reading R1 would be a geodesic, contradicting R1 =G 1.

Neither e− nor e+ is fixed by x. For any n,m > 0 the last edge of [yn·v, v] is e+ and the

first edge of [v, xym·v] is x·e+ = e− 6= e+, and so the path [yn·v, v][v, xym·v] is a geodesic,

and so is [v, y−n·v][y−n·v, y−nxym·v] . Similarly, the last edge of [y−n·v, v] is e− and the

first edge of [v, xy−m·v] is x·e− 6= e−, and so the path [y−n·v, v][v, xy−m·v] is a geodesic as

is [v, xyn·v][xyn·v, xyn·xy−m·v]. Regarding R4 as a product (xyρ1)(xy−ρ1) · · · (xyρk)(xy−ρk),

the path reading R4 is a geodesic, contradicting R4 =G 1. �

Remark 5.5.2. In the context of Lemma 5.5.1, for each n there are choices of k and

{αi, βi, γi, δi, ρi, σi, τi, θi : 1 ≤ i ≤ k}, such that the presentation is C ′( 1
n
).

Given n > 1, let k = 3n and choose 8k numbers αi, βi, γi, δi, ρi, σi, τi, θi that are all

different and lie between 50n and 75n. Then any piece P in Ri where i 6= 6 is of the form
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v

y−1·v y·v

xy·v

x·e+

e− e+

Figure 4. If x·e+ 6= e− then [y−1·v, v][v, xy·v] is a geodesic.

xlyxm or ylxym for some l,m (possibly 0). Thus |P | ≤ l + m + 1 ≤ 150n + 1. We also

have |Ri| ≥ (k + 1)50n = (3n + 1)50n and so |P | ≤ 1
n
(150n + 1)n ≤ 1

n
|Ri|. If P is a piece

in R6, then P is of the from (xy)l(x−1y−1)m and so |P | ≤ 2(l + m) ≤ 300n. We also have

|R6| = 2(τ1 + θ1 + τ2 + · · ·+ θk) ≥ 2(2k)50n = 600n2. Hence |P | ≤ 1
n
|R6|.

Corollary 5.5.3. Let G1, . . . , Gr be nontrivial groups generated by finite sets of infinite

order elements, and suppose r > 1. For each n > 0 there is a finitely related C ′∗(
1
n
) quotient

G of G1 ∗ · · · ∗Gr that does not split.

Proof. Let Sp be the given generating set of Gp for each p, and assume no proper subset

of Sp generates Gp. The desired quotient G arises from a presentation 〈G1 ∗ · · · ∗ Gr | R〉,

where following Lemma 5.5.1, the set of relators is:

R = { R`(x, y) : 1 ≤ ` ≤ 6, (x, y) ∈ Sp × Sq, where 1 ≤ p < q ≤ r}

where k(x, y) = 3n for each (x, y) and where the constants αi(x, y), βi(x, y), γi(x, y),

δi(x, y), ρi(x, y), σi(x, y), τi(x, y), θi(x, y) will be described below. For each (x, y) let

αi(x, y), δi(x, y) and ρi(x, y) be distinct integers > 1 and such that ym /∈ 〈z〉 for m ∈

{αi(x, y), δi(x, y), ρi(x, y)} and z ∈ Sq − {y}. This is possible because y has infinite order

and y /∈ 〈z〉. Similarly, let βi(x, y), γi(x, y) and σi(x, y) be distinct integers > 1 such that

xm /∈ 〈z〉 for m ∈ {βi(x, y), γi(x, y), σi(x, y)} and z ∈ Sp − {x}. Finally, let τi(x, y) and

θi(x, y) be distinct integers between 10n and 20n.

Having chosen the above constants for each (x, y) we now show that the presentation

for G is C ′∗(
1
n
). We begin by observing that each |R`(x, y)|∗ ≥ 6n. Let P be a piece in

R1 = R`1(x1, y1) and R2 = R`2(x2, y2) where x1 ∈ Sp1 , y1 ∈ Sq1 , x2 ∈ Sp2 , and y2 ∈ Sq2 .

If {p1, q1} 6= {p2, q2} then |P |∗ ≤ 1. Assume that {p1, q1} = {p2, q2}. First suppose that

`1 6= 6, then |P |∗ ≤ 3. Indeed, if |P |∗ ≥ 4 then two consecutive syllables would appear in



5.6. MAIN THEOREM 58

distinct cyclically reduced forms of relators, which contradicts our choice of the constants.

If `1 = 6, then |P |∗ ≤ max{τi(x, y)} + max{θi(x, y)} ≤ 80n. We also have |R6(x, y)|∗ =

2 (τ1(x, y) + θ1(x, y) + · · ·+ τk(x, y) + θk(x, y)) ≥ 2(2k)10n = 120n2, so |P |∗ ≤ 1
n
|R6(x, y)|∗.

We now show that G does not split as an amalgamated product. For each x ∈ Sp, y ∈ Sq
with p ≤ q we let H(x, y) = 〈x, y | R`(x, y) : 1 ≤ ` ≤ 6〉. By Lemma 5.5.1, we see that

H(x, y) does not split. As there is a homomorphism H(x, y) → G, we deduce that for any

splitting of G as an amalgamated free product G = A ∗C B, the elements x, y are either

both in A or both in B. Considering all such pairs (x, y), we find that the generators of G

are either all in A or all in B. Moreover G cannot split as an HNN extension, since the the

relators R4(x, y) and R5(x, y) show that all generators have finite order in the abelianization

of G. �

5.6. Main theorem

Lemma 5.6.1. If 〈G1, . . . , Gr | R1, . . . , Rs〉 is C ′∗(
1
n
) then for a sufficient subdivision of

e1, . . . , er the cubical presentation X∗ is C ′( 1
n
).

Proof. Let X ′ be a subdivision of X induced by a q-fold subdivision of each ej. We ac-

cordingly let Y ′i be the induced subdivision of Yi, so Y ′i =
⊔
Vk∪

⊔
σk as in Construction 5.4.3

and with each σ-edge subdivided q times. We thus obtain a new cubical presentation

〈X ′ | Y ′1 , . . . , Y ′s 〉. We have ‖Y ′i ‖ = ‖Yi‖+2|Ri|∗(q−1). Note that ‖Y ′i ‖ >
∑|Ri|∗

i=1 |σi| = 2q|Ri|∗
and so ‖Y ′i ‖ > 2(1 + ε)q|Ri|∗ for sufficiently small ε > 0. Let Mi = maxk {diam(Vk)}. For a

wall-piece P we have diam(P ) < Mi. Consider a maximal cone-piece P in Y ′i , and suppose

it intersects ` different Vk’s and contains `′ different ek edges. Note that 2` ≥ `′ since if P

starts or ends with an entire σk arc, then it intersects an additional Vk (possibly trivially).

We have diam(P ) ≤ `Mi + q`′. When `′ > 0, for any ε > 0 we can choose q � 0 so that

diam(P ) < (1 + ε)q`′. Since P corresponds to a length ` syllable piece, the C ′∗(
1
n
) hypothesis

implies that ` < 1
n
|Ri|∗, and so diam(P ) < (1 + ε)q`′ < 2(1 + ε)q( 1

n
|Ri|∗) < 1

n
‖Y ′i ‖. When

`′ = 0, then assuming q > nMi we have diam(P ) ≤Mi < 2 q
n
|Ri|∗ < 1

n
‖Y ′i ‖. �

Theorem 5.6.2. Suppose G = 〈G1, . . . , Gr | R1, . . . , Rs〉 satisfies C ′( 1
20

). If each Gi is the

fundamental group of a [compact] nonpositively curved cube complex, then G acts properly

[and cocompactly] on a CAT(0) cube complex. Moreover, if no Ri is a proper power, then

G is the fundamental group of a [compact] nonpositively curved cube complex.
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Proof. Let X∗ be the associated cubical presentation. Lemma 5.6.1 asserts that X∗

is C ′( 1
20

) after a sufficient subdivision. For each hyperplane U in Yi we have diamN(U) <

1
20
‖Yi‖ if the subdivision is sufficient. Since a 1-piece neighborhood of N(U) has diameter

much smaller than 1
2
‖Yi‖, every path contained in such neighborhood with the endpoints

in N(U) is homotopic to a path in N(U). Therefore every hyperplane U is Yi is piecefully

convex. Theorem 5.2.4 asserts that π1X
∗ acts freely (or with finite stabilizers if relators are

proper powers) on a CAT(0) cube complex C dual to X̃∗

Let X ′∗ be the cubical presentation 〈X | {Yi}, {X̃j}〉. By Lemma 5.4.4, X ′∗ satisfies

B(8) with our previously chosen wallspace structure on each Yi and the hyperplane wallspace

structure on each X̃j. Thus by Lemma 5.2.6 each X̃j in X̃∗ = X̃ ′∗ intersects the walls of X̃∗

in hyperplanes of X̃j.

Lemma 5.4.2 asserts that π1X
∗ is hyperbolic relative to {G1, . . . , Gr}.

The pieces in X∗ = 〈X | {Yi}〉 are uniformly bounded since diam(Yi) is uniformly

bounded. Thus N(W ) → X̃∗ is quasi-isometrically embedded by Lemma 5.2.7. Hence

Stab(N(W )) is relatively quasiconvex with respect to {π1Xj} by Theorem 5.2.8.

Theorem 5.3.1 asserts that π1X
∗ acts relatively cocompactly on C. Lemma 5.3.2 asserts

that each C?(X̃i) = X̃i. Hence if each Xi is compact, we see that C is compact. �

5.7. A cubulated group that does not virtually split

Examples were given in [Wis11] of a compact nonpositively curved cube complex X

such that X has no finite cover with an embedded hyperplane. It is conceivable that those

groups have no (virtual) splitting, but this was not confirmed there.

Example 5.7.1. There exists a nontrivial group G with the following two properties:

(1) G = π1X where X is a compact nonpositively curved cube complex.

(2) G does not have a finite index subgroup that splits as an amalgamated product or

HNN extension.

Let G1 be the fundamental group of X1 which is a compact nonpositively curved cube

complex with a nontrivial fundamental group but no nontrivial finite cover. For instance,

such complexes were constructed in [Wis96] or [BM97].
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By Corollary 5.5.3 there exists a C ′∗(
1
20

) quotient G of the free product G1 ∗ · · · ∗G1 of r

copies of G1, such that G does not split. The group G has no finite index subgroups since

G1 ∗ · · · ∗G1 has none.

Since G1 = π1X1, by Theorem 6.1.1, G is the fundamental group of a compact nonposi-

tively curved cube complex.



CHAPTER 6

Cocompactly cubulated 2-dimensional Artin groups

We give a necessary and sufficient condition for a 2-dimensional or a three-generator

Artin group A to be (virtually) cocompactly cubulated, in terms of the defining graph of A.

This section is based on joint work with Jingyin Huang and Piotr Przytycki [HJP16]. The

authors contributed equally.

6.1. Introduction

We say that a group is (cocompactly) cubulated if it acts properly (and compactly) by

combinatorial automorphisms on a CAT(0) cube complex. We say that a group is virtually

cocompactly cubulated, if it has a finite index subgroup that is cocompactly cubulated. Such

groups either fail to have Kazhdan’s property (T) or are finite [NR97], are bi-automatic

[Ś06], satisfy the Tits Alternative [SW05] and, if cocompactly cubulated, they satisfy rank-

rigidity [CS11]. For more background on CAT(0) cube complexes, see the survey article of

Sageev [Sag14].

The Artin group with generators si and exponents mij = mji ≥ 2, where i 6= j, is

presented by relations sisjsi · · ·︸ ︷︷ ︸
mij

= sjsisj · · ·︸ ︷︷ ︸
mij

. Here sisjsi · · ·︸ ︷︷ ︸
mij

denotes the first half of the word

(sisj)
mij . The defining graph of an Artin group has vertices corresponding to si and edges

labeled mij between si and sj whenever mij <∞.

Artin groups that are right-angled (i.e. the ones with mij ∈ {2,∞}) are cocompactly

cubulated, and they play a prominent role in theory of special cube complexes of Haglund

and Wise [HW08]. However, much less is known about other Artin groups, in particular

about braid groups. In [Wis11] Wise suggested an approach to cubulating Artin groups

using cubical small cancellation. However, we failed to execute this approach: we were not

able to establish the B(6) condition.

In this chapter we consider Artin groups that have three generators, or are 2-dimensional,

that is, their corresponding Coxeter groups have finite special subgroups of maximal rank

61
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2 (or, equivalently, 2-dimensional Davis complex). We characterize when such a group is

virtually cocompactly cubulated. This happens only for very rare defining graphs. An

interior edge of a graph is an edge that is not a leaf.

Theorem 6.1.1. Let A be a 2-dimensional Artin group. Then the following are equiva-

lent.

(i) A is cocompactly cubulated,

(ii) A is virtually cocompactly cubulated,

(iii) each connected component of the defining graph of A is either

• a vertex, or an edge, or else

• all its interior edges are labeled by 2 and all its leaves are labelled by even numbers.

Moreover, if A is an arbitrary Artin group, then (iii) implies (i).

Theorem 6.1.2. Let A be a three-generator Artin group. Then the following are equiv-

alent.

(i) A is cocompactly cubulated,

(ii) A is virtually cocompactly cubulated,

(iii) the defining graph of A is as in Theorem 6.1.1(iii) or has two edges labelled by 2.

6.1.1. Remarks. From Theorem 6.1.2 it follows that the 4-strand braid group is not

virtually cocompactly cubulated.

Note that, independently, Thomas Haettel [Hae17] has obtained a full classification of

cocompactly cubulated Artin groups.

The equivalence of (i) and (ii) has no counterpart for Coxeter groups, where the group Ã2

generated by reflections in the sides of an equilateral triangle in R2 is virtually cocompactly

cubulated, but not cocompactly cubulated.

There are Artin groups that do not satisfy the equivalent conditions from Theorem 6.1.1,

but are cubulated. Namely, it follows from [Bru92, HM99] that if the defining graph of A

is a tree, then A is the fundamental group of a link complement that is a graph manifold

with boundary. Hence by the work of Liu [Liu13] or Przytycki and Wise [PW14] the Artin

group A is cubulated.
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Artin groups of large type, that is, with all mij ≥ 3 are 2-dimensional. For many of

them Brady and McCammond constructed 2-dimensional CAT(0) complexes with proper

and cocompact action [BM00]. However, these complexes are built of triangles, not squares.

6.1.2. Some historical background. Sageev invented a way of cubulating groups (i.e.

showing that they are cubulated) using codimension 1-subgroups [Sag95], which was later

also explained in the language of walls in the Cayley complex of the group [CN05, Nic04].

Here we give a brief account on some cubulation results, for a more complete one see [HW14].

Using the technology of walls, Niblo and Reeves cubulated Coxeter groups [NR03], then

Williams [Wil99] and Caprace and Mühlherr [CM05] analyzed when this cubulation is co-

compact. It is not known if all Coxeter groups are virtually cocompactly cubulated. Wise

cocompactly cubulated small cancellation groups [Wis04], and Ollivier and Wise cocom-

pactly cubulated random groups at density < 1
6

[OW11].

Furthermore, using the surfaces of Kahn and Markovic, Bergeron and Wise cocompactly

cubulated the fundamental groups of closed hyperbolic 3-manifolds [KM12, BW12], and

later Wise cocompactly cubulated the fundamental groups of compact hyperbolic 3-manifolds

with boundary [Wis11]. Hagen and Wise cocompactly cubulated hyperbolic free-by-cyclic

groups [HW15].

Groups that are not (relatively) hyperbolic are harder to cubulate cocompactly. Przytycki

and Wise cubulated the fundamental groups of all compact 3-dimensional manifolds that

are not graph manifolds, as well as graph manifolds with boundary [PW14, PW17]. In

[Liu13] Liu gave a criterion for a graph manifold fundamental group to be virtually cubulated

specially (meaning that the quotient of the action admits a local isometry into the Salvetti

complex of a right-angled Artin group), but we do not know if this is equivalent to just being

cubulated. Hagen and Przytycki gave a criterion for a graph manifold fundamental group to

be cocompactly cubulated [HP15]. In general, it is difficult to find obstructions for groups

to be cubulated. Another result of this type is Wise’s characterization of tubular groups

that are cocompactly cubulated [Wis14].
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6.1.3. Proof outline for (i)⇒(iii) in Theorem 6.1.1. Given a 2-dimensional Artin

group acting properly and cocompactly on a CAT(0) cube complex, we show that its two-

generator special subgroups are convex cocompact. More precisely, each of them acts co-

compactly on a convex subcomplex which naturally decomposes as a product of a vertical

factor and a horizontal factor. Geometrically, the intersection of two such subgroups is either

vertical or horizontal. However, if Theorem 6.1.1(iii) is not satisfied, then this intersection

is neither vertical nor horizontal by algebraic considerations.

One of the ingredients of the proof is Theorem 6.3.8, which asserts that a top rank

product of hyperbolic groups acting on a CAT(0) cube complex is always convex cocompact.

6.1.4. Organization. In Section 6.2 we give some background on CAT(0) spaces and

CAT(0) cube complexes. Section 6.3 is devoted to the proof of Theorem 6.3.8. In Section 6.4

we give some background on Artin groups and discuss some algebraic properties of two-

generator Artin groups. Finally, in Section 6.5 we prove Theorem 6.1.1 and in Section 6.6

we prove Theorem 6.1.2.

6.2. Preliminaries

A group is a CAT(0) group if it acts properly and cocompactly on a CAT(0) space. We

assume the reader is familiar with the basics of CAT(0) spaces and groups. For background,

see [BH99]. In this section we collect some less classical results.

6.2.1. Asymptotic rank. The following definition was introduced in [Kle99].

Definition 6.2.1. Let X be a CAT(κ) space. For x ∈ X we denote by ΣxX the CAT(1)

space that is the completion of the space of directions at x [BH99, Definition II.3.18]. The

geometric dimension of X, denoted GeomDim(X) is defined inductively as follows.

• GeomDim(X) = 0 if X is discrete,

• GeomDim(X) ≤ n if GeomDim(ΣxX) ≤ n− 1 for any x ∈ X.

Definition 6.2.2. Let X be a CAT(0) space. Then its asymptotic rank, denoted by

asrk(X), is the supremum of the geometric dimension of the asymptotic cones of X.

Theorem 6.2.3. Let X and Y be CAT(0) spaces. Then

(1) asrk(X × Y ) ≥ asrk(X) + asrk(Y ),
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(2) if asrk(X) ≤ 1, then X is hyperbolic.

The first assertion follows from Theorem A of [Kle99] and the second assertion follows

from Corollary 1.3 of [Wen11].

Definition 6.2.4. If G is a CAT(0) group acting properly and cocompactly on a CAT(0)

space X, then the asymptotic rank of G is the asymptotic rank of X. By [Kle99, Theorem C]

this is the maximal n for which there is a quasi-isometric embedding Rn → X. Hence it

does not depend on the choice of the CAT(0) space X.

Lemma 6.2.5. Suppose that G is a CAT(0) group, and that G acts properly and cocom-

pactly on a contractible n-dimensional cell complex X (not necessarily CAT(0)). Then the

asymptotic rank of G is ≤ n.

Proof. Choose any G-equivariant length metric on X. We will prove that there does not

exist a quasi-isometric embedding f : Rk → X for k > n. Otherwise, since X is contractible

and admits a cocompact action of G, we can assume that f is a continuous quasi-isometry:

such f can be defined by induction on consecutive skeleta of the standard cubical subdivision

of Rk.

Let Y ⊆ X be the smallest subcomplex containing f(Rk). Then f : Rk → Y is a

quasi-isometry. Let g : Y → Rk be a quasi-isometry inverse to f , we can again assume

that g is continuous. For any x ∈ Rk the distance d(g ◦ f(x), x) is uniformly bounded and

consequently there is a proper geodesic homotopy between g ◦ f and the identity map.

Recall that for a topological space X we can consider locally finite chains in X, which

are formal sums Σλ∈Λaλσλ where aλ are integers, σλ are singular simplices, and any compact

set in X intersects the images of only finitely many σλ with aλ 6= 0. This gives rise to locally

finite homology of X, denoted by H lf
∗ (X). Moreover, proper maps induce homomorphisms

on locally finite homology. See [BKS16, Section 2.2] for more discussion.

Since there is a proper geodesic homotopy between g◦f and the identity map, g◦f induces

the identity on H lf
∗ (Rk), and consequently f∗ : H

lf
k (Rk) → H lf

k (Y ) is injective. This leads to

a contradiction, since H lf
k (Rk) contains the fundamental class [Rk] which is a nontrivial

element, while H lf
k (Y ) = 0 since dim(Y ) < k. �
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6.2.2. Gate and parallel set. All CAT(0) cube complexes in this chapter are finite-

dimensional. Throughout this paper the only metric that we consider on a CAT(0) cube

complex X is the CAT(0) metric d. The convex hull of a subspace Y ⊆ X is the smallest

convex subspace containing Y , and is not necessarily a subcomplex, while the combinatorial

convex hull of Y is the smallest convex subcomplex of X containing Y . For a complete

convex subspace Y ⊆ X we denote by πY : X → Y the closest point projection onto Y .

The following lemma was proved in slightly different contexts by various authors [BHS17,

Hua17b, BKS08, AB08]:

Lemma 6.2.6. [Hua17b, Lemma 2.10] Let X be a CAT(0) cube complex of dimension n,

and let Y1, Y2 be convex subcomplexes. Let ∆ = d(Y1, Y2), V1 = {y ∈ Y1 | d(y, Y2) = ∆} and

V2 = {y ∈ Y2 | d(y, Y1) = ∆}. Then:

(1) V1 and V2 are nonempty convex subcomplexes.

(2) πY1 maps V2 isometrically onto V1 and πY2 maps V1 isometrically onto V2. Moreover,

the convex hull of V1 ∪ V2 is isometric to V1 × [0,∆].

(3) for every ε > 0 there exists δ = δ(∆, n, ε) > 0 such that if y1 ∈ Y1, y2 ∈ Y2 and

d(y1, V1) ≥ ε, d(y2, V2) ≥ ε, then

d(y1, Y2) ≥ ∆ + δd(y1, V1) , d(y2, Y1) ≥ ∆ + δd(y2, V2) .

We call V1 ⊆ Y1 the gate with respect to Y2, and V2 ⊆ Y2 the gate with respect to Y1. We

write G(Y1, Y2) = (V1, V2). We say that Y1, Y2 are parallel if G(Y1, Y2) = (Y1, Y2).

Lemma 6.2.7 ([Hua17a, Lemma 2.9]). Let X be a CAT(0) cube complex, and let

(V1, V2) = G(Y1, Y2) for some convex subcomplexes Y1, Y2 ⊆ X. Let e be an edge in V1

and let h be the hyperplane dual to e. Then h ∩ V2 6= ∅.

Lemma 6.2.8 ([CS11, Lemma 2.5]). A decomposition of a CAT(0) cube complex as a

product of CAT(0) cube complexes corresponds to a partition H1 tH2 of the collection of

hyperplanes of X such that every hyperplane in H1 intersects every hyperplane in H2.

The following lemma was also proved in [BHS17, Lemma 2.4].

Lemma 6.2.9. Let X be a CAT(0) cube complex and let Y ⊆ X be a convex subcomplex.

Let {Yλ}λ∈Λ be the collection of all convex subcomplexes that are parallel to Y . Then the
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combinatorial convex hull PY of
⋃
λ∈Λ Yλ admits a natural product decomposition PY =

Y × Y ⊥.

PY is called the combinatorial parallel set of Y .

Proof. Let H be the collection of hyperplanes inX that separate some points in
⋃
λ∈Λ Yλ

and let h ∈ H. We claim that either h intersects all Yλ or it is disjoint from all Yλ. Indeed,

we have G(Y, Yλ) = (Y, Yλ) for all λ ∈ Λ. It follows from Lemma 6.2.7 that if h intersects

some Yλ, then it intersects Y , and hence it intersects all Yλ.

Let H1 and H2 be the collections of hyperplanes satisfying the first assertion and the

second assertion in the claim, respectively. For any h ∈ H2, there exist λ, λ′ ∈ Λ such

that h separates Yλ from Yλ′ . Thus h intersects every hyperplane in H1. Note that H is

the collection of hyperplanes that intersect PY and H1 is the collection of hyperplanes that

intersect Y . Thus by Lemma 6.2.8, PY admits a product decomposition PY = Y × Y ⊥. �

6.3. Cocompact cores

The main goal of this section is to prove Theorem 6.3.8 on existence of cocompact cores

for top rank products of hyperbolic groups. The first step towards it is to study flats in a

CAT(0) cube complex, which we do in Section 6.3.1. A hurried reader can proceed directly

to Section 6.3.2 and use [WW17, Theorem 2.6] instead. However, our Theorem 6.3.4 is of

independent interest.

6.3.1. Combinatorial convex hull of a flat. Throughout this paper a flat is a CAT(0)

flat, i.e. an isometrically embedded copy of Rn, not necessarily combinatorial. A half-flat is

an isometrically embedded copy of Rn−1 × [0,∞).

Lemma 6.3.1. Let X be a CAT(0) cube complex and let F ⊆ X be a flat. Let h be

a hyperplane in X intersecting F , and let h+ and h− be the halfspaces of h. Then either

F ⊆ h, or h ∩ F is a codimension-1 flat in F . In the latter case, both h+ ∩ F and h− ∩ F

are half-flats.

Proof. The carrier N(h) of h, which is its neighbourhood, has the form N(h) = h ×

[0, 1]. Thus if F * h, then h ∩ F is a codimension-1 submanifold of F . Moreover, the

intersections h ∩ F , h+ ∩ F , and h− ∩ F are convex, thus the lemma follows. �
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Lemma 6.3.2. Let h be a hyperplane in a CAT(0) cube complex X. Suppose that l is

a geodesic ray in X starting in h. If l * h, then there exists another hyperplane h′ in X

intersecting l and disjoint from h.

Proof. Let N(h) be the carrier of h. Let B be the first cube outside N(h) whose interior

is intersected by l. We claim that there is a hyperplane h′ intersecting B and disjoint from

h. Indeed, pick a vertex v ∈ N(h) ∩ B and let e be an edge of B containing v. If the

hyperplane dual to e intersects h, then e ⊂ N(h). If this holds for any e, then B ⊂ N(h)

by the convexity of N(h), which yields a contradiction. This justifies the claim.

By the claim, there a hyperplane h′ intersecting B and disjoint from h. It remains to

prove that l intersects h′. Otherwise, since l intersects the interior of the carrier N(h′), we

have that l is contained in N(h′). Since l starts at h, we have that h intersects N(h′) and

hence it also intersects h′, which is a contradiction. �

We will also use a consequence of a result of Haglund [Hag08, Theorem 2.28].

Theorem 6.3.3. LetX be a hyperbolic CAT(0) cube complex. Then any quasi-isometrically

embedded subspace of X is at finite Hausdorff distance from its combinatorial convex hull.

In the following theorem we generalise our results from [HP15, Section 3]. Here dHaus

denotes the Hausdorff distance.

Theorem 6.3.4. Let X be a CAT(0) cube complex of asymptotic rank n and let F ⊆ X

be an n-flat. Let Y be the combinatorial convex hull of F . Then dHaus(F, Y ) < ∞.

Proof. If F is contained in the carrier N(h) = h× [0, 1] of a hyperplane h, then we can

replace X by h and F by its projection to h. The combinatorial convex hull Y of F equals

Y ′× [0, 1], Y ′×{0}, or Y ′×{1}, where Y ′ is the combinatorial convex hull of the projection

of F to h. Henceforth we can and will assume that F is not contained in the carrier of any

hyperplane.

Let H be the collection of hyperplanes intersecting F . We define a pencil of hyperplanes

to be an infinite collection of mutually disjoint hyperplanes {hi}∞i=−∞ such that for each i,

{hj}i−1
j=−∞ and {hj}∞j=i+1 are in different halfspaces of hi. It follows from Lemma 6.3.1 that
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every pencil of hyperplanes in H intersects F in a collection of parallel family of codimension-

1 flats. A collection of pencils of hyperplanes in H is independent if their corresponding

normal vectors are linearly independent in F = Rn.

Let {Pi}mi=1 be a maximal collection of pairwise independent pencils in H. We claim

that m = n and that {Pi} is independent. Suppose first m > n. Note that if two pencils

P, P ′ ⊆ h are independent, then every hyperplane in P intersects every hyperplane in P ′.

This gives rise to a quasi-isometric embedding of Rm into X, contradicting the bound on the

asymptotic rank of X. If m < n or if m = n but {Pi} is dependent, then there is a geodesic

line l in F parallel to h ∩F for all hyperplanes h in all Pi. Using Lemma 6.3.2, we can then

produce a new pencil P formed of some hyperplanes intersecting l. Since P is independent

from each Pi, this contradicts the maximality of m. This justifies the claim that m = n and

{Pi} is independent.

For 1 ≤ i ≤ n, choose hi ∈ Pi and let Fi = hi∩F . We will prove that for any hyperplane

h ∈ H, there exists Fi such that h ∩ F is parallel (possibly equal) to Fi. Otherwise, choose

a geodesic line l in F transverse to h ∩ F . By Lemma 6.3.2, h is contained in a pencil Ph

of hyperplanes intersecting l. Note that Ph is independent from each Pi, contradicting the

maximality of m.

Let Hi ⊆ H be the collection of hyperplanes whose intersection with F is parallel to Fi.

The above discussion implies H =
⊔n
i=1 Hi. Moreover, for i 6= j, every hyperplane in Hi

intersects every hyperplane in Hj. Let Y be the combinatorial convex hull of F . Since we

assumed that F is not contained in the carrier of any hyperplane, the hyperplanes in Y are

exactly the intersections with Y of the hyperplanes in H. Two hyperplanes of Y intersect if

and only if the corresponding hyperplanes in H intersect. Hence by Lemma 6.2.8, we have

a product decomposition Y = Y1 × · · · × Yn.

Let πi : Y → Yi be the coordinate projections. Let li =
⋂
j 6=i Fj, which is a geodesic

line in F . Note that for j 6= i we have li ⊆ Fj ⊆ hj and hence the projection πj(li) is

a single point. Thus the restriction of πi to li is an isometric embedding. It follows that

F = π1(l1)×· · ·×π1(ln). Moreover, since πi(li) = πi(F ), each Yi is the combinatorial convex

hull of πi(li), since otherwise we could pass to a smaller convex subcomplex containing F .
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Since each of Yi contains a line and their product has asymptotic rank ≤ n, by Theo-

rem 6.2.3(1) each Yi has asymptotic rank 1. By Theorem 6.2.3(2) each Yi is hyperbolic. Thus

by Theorem 6.3.3, we have dHaus(πi(li), Yi) <∞, and consequently dHaus(F, Y ) <∞. �

While we will not need it in the remaining part of the paper, from the proof above we

can deduce the following interesting result which concerns flats that are not necessarily of

top rank.

Corollary 6.3.5. Let X be a CAT(0) cube complex and let F ⊆ X be a flat. Let

Y ⊆ X be the combinatorial convex hull of F . Then Y has a natural decomposition Y =

Y1 × · · · × Yn ×K such that:

(1) n ≥ dim(F ) and K is a cube.

(2) each Yi contains an isometrically embedded copy of R that is the projection of a

geodesic line in F .

(3) no Yi contains a facing triple of hyperplanes, that is, a collection of three disjoint

hyperplanes such that none of them separates the other two.

Roughly speaking, (3) means that Yi do not “branch”.

6.3.2. Product of hyperbolic groups.

Definition 6.3.6. Let X be a CAT(0) cube complex. A group H ≤ Aut(X) is convex

cocompact if there is a convex subcomplex Y ⊆ X that is H-cocompact, meaning that H

preserves Y and acts on it cocompactly.

Lemma 6.3.7. Let X be a CAT(0) cube complex and let H ≤ Aut(X) be convex cocom-

pact. Then there exists a minimal H-invariant convex subcomplex. Moreover, any minimal

H-invariant convex subcomplex is H-cocompact and any two minimal H-invariant convex

subcomplexes are parallel.

Proof. Let Y ⊆ X be an H-cocompact convex subcomplex. Let P be the poset of

H-invariant convex subcomplexes in Y . For the first assertion, by the Kuratowski–Zorn

Lemma, it suffices to show that every descending chain of elements {Yλ}λ ⊆ P has a lower

bound, or equivalently that their intersection is nonempty. Let K ⊆ Y be compact such that

HK = Y . Then each K ∩ Yλ is nonempty, and by compactness of K so is their intersection.
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For the second and third assertion, let Ymin ⊆ Y be a minimal element of P and let Y ′ be

any other minimal H-invariant convex subcomplex. Let (V, V ′) = G(Ymin, Y
′). Then both V

and V ′ are H-invariant. By Lemma 6.2.6(1) both V and V ′ are convex subcomplexes, hence

from minimality of Ymin and Y ′ we have V = Ymin and V ′ = Y ′. Moreover, by Lemma 6.2.6(2)

we have that Y ′ is H-equivariantly isometric to Ymin and thus it is H-cocompact. �

Theorem 6.3.8. Let X be a locally finite CAT(0) cube complex of asymptotic rank n.

Let H ≤ Aut(X) be a subgroup satisfying

(1) H = H1 × · · · ×Hn, where each Hi is an infinite hyperbolic group, and

(2) for some (hence any) point x ∈ X the orbit map h → h · x from H to X is a

quasi-isometric embedding.

Then H is convex cocompact. More precisely, if among Hi exactly {Hi}mi=1 are not virtually

Z, then there is a convex subcomplex Y ⊆ X with a cubical product decomposition Y =

Y0 ×
∏m

i=1 Yi such that

(i) Y is H-cocompact, and the action H y Y respects the product decomposition, and

(ii) the induced action of
∏n

i=m+1 Hi on Y0 is proper and cocompact, in particular Y0 is

quasi-isometric to Rn−m, and

(iii) for any pair i 6= j with 1 ≤ j ≤ m and 1 ≤ i ≤ n, the induced action Hi y Yj is almost

trivial, i.e. by isometries at uniformly bounded distance from the identity.

In the proof we need the notion of coarse intersection. Let X be a metric space and let

NR(Y ) be the R-neighbourhood of a subspace Y ⊆ X. A subspace V ⊆ X is the coarse

intersection of Y1 and Y2 if V is at finite Hausdorff distance from NR(Y1) ∩ NR(Y2) for all

sufficiently large R. For example, in Lemma 6.2.6, in view of its part (3), the gates V1, V2

are the coarse intersections of Y1 and Y2. However, in general the coarse intersection of two

subsets might not exist.

Lemma 6.3.9 ([MSW11, Lemma 2.2]). Let X be a finitely generated group with word

metric. Then the intersection of a pair of subgroups is their coarse intersection.

See [MSW11, Chapter 2] for more discussion on coarse intersection.

Proof of Theorem 6.3.8. We first prove that H is convex cocompact, which we do

by induction on m. Consider first the case m = 0. Recall that all CAT(0) cube complexes in
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the chapter were assumed to be finite-dimensional. Thus by [Bri99], H acts on X be semi-

simple isometries. By the Flat Torus Theorem [BH99, Chapter II.7], H acts cocompactly

on an n-flat F ⊆ X. By Theorem 6.3.4, the combinatorial convex hull Y of F is at finite

Hausdorff distance from F . Since X is locally finite, Y is H-cocompact, as desired.

Suppose now that m ≥ 1. Let H ′ =
∏

i 6=mHi. We first prove that the group H ′ is

convex cocompact. Choose a subgroup Z ≤ Hm isomorphic to Z and choose h ∈ Hm such

that the coarse intersection of hZ and Z is bounded. Let G = H ′ × Z ⊂ H. By induction

assumption, there exists a G-cocompact convex subcomplex U ⊂ X. Let V ⊂ U be the gate

with respect to h ·U . Note that both U and h ·U are H ′-invariant, so V is H ′-invariant. By

Lemma 6.2.6(3), V is the coarse intersection of U and h ·U . Hence, by Lemma 6.3.9 applied

to G and hGh−1, the action H ′ y V is cocompact.

By Lemma 6.3.7, there exists a minimal H ′-cocompact convex subcomplex, for which we

keep the notation V . Then for any h ∈ Hm, the translate h · V is minimal H ′-invariant,

hence parallel to V by Lemma 6.3.7. Let PV = V × V ⊥ be the combinatorial parallel set of

V (see Lemma 6.2.9). We have that PV is H-invariant. Moreover, since V is H ′-invariant,

there are induced actions H y V ⊥ and Hm y V ⊥.

Choose a point v ∈ V . Let ψ : Hm → V ⊥ be the composition of the orbit map h→ h · v

with the coordinate projection. We claim that ψ is a quasi-isometric embedding. This

follows from assumption (2) and the estimates below, where ∼ means equality up to a

uniform multiplicative and additive constant. Namely, for any h1, h2 ∈ Hm we have:

dHm(h1, h2) ∼ dH(h1H
′, h2H

′) ∼ dX(h1 · V, h2 · V ) = dV ⊥(ψ(h1), ψ(h2))

By Theorem 6.2.3, since V contains an isometrically embedded copy of Rn−1, the asymp-

totic rank of V ⊥ is ≤ 1, and hence V ⊥ is hyperbolic. Let Vm ⊆ V ⊥ be the combinatorial

convex hull of ψ(Hm). Then dHaus(Vm, ψ(Hm)) < ∞ by Theorem 6.3.3. Moreover, Vm is

H-invariant under the action H y V ⊥ since ψ(Hm) is invariant under H. Thus H acts

cocompactly on the convex subcomplex V × Vm ⊆ PV . Notice that since H ′ y ψ(Hm) is

trivial, the action H ′ y Vm is almost trivial.

By now we already know that H is convex cocompact. As for properties (i)—(iii), if

m = 1, then it suffices to take Y0 = V and Y1 = V1. If m ≥ 2, to obtain the required

decomposition, we consider X ′ = V × Vm, H ′′ =
∏

i 6=(m−1)Hi and we repeat the previous
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argument. This gives rise to an H-cocompact convex subcomplex V ′ × Vm−1 ⊆ V × Vm,

where V ′ is a minimal H ′′-cocompact convex subcomplex. Since Vm is contained in some

R-neighbourhood of a V ′, the intersection Vm−1 ∩ Vm is compact. Moreover, V ′ and Vm−1

admit cubical product decompositions V ′ = (V ′ ∩ V )× (V ′ ∩ Vm) and Vm−1 = (Vm−1 ∩ V )×

(Vm−1 ∩ Vm), thus V ′ × Vm−1 = (V ′ ∩ V ) × (V ′ ∩ Vm) × (Vm−1 ∩ V ) × (Vm−1 ∩ Vm). The

H-action respects the above decomposition. Moreover, the induced action H ′ y (V ′ ∩ Vm)

is almost trivial and the induced action H ′′ y (Vm−1 ∩ V ) is almost trivial. If m = 2, then

we take Y1 = V1 ∩ V, Y2 = V ′ ∩ V2, and Y0 = (V ∩ V ′) ∪ (V1 ∩ V2). If m ≥ 3, then we let

X ′′ = V ′ × Vm−1, H
′′′ =

∏
i 6=(m−2)Hi and we repeat the previous process to obtain further

product decomposition. We run this process m times, obtaining the required decomposition

as the result of the last step. In each step, we possibly get nontrivial compact factors similar

to Vm−1 ∩ Vm. We absorb all these compact factors into the factor Y0 (we can also discard

them). �

6.4. Artin groups

6.4.1. Background on Artin groups. Let A be an Artin group with defining graph Γ,

and generators S. Let W be the Coxeter group defined by Γ. For any T ⊆ S let WT

(respectively AT ) be the special subgroup of W (respectively A) generated by T . The special

subgroup WT is naturally isomorphic to the Coxeter group defined by the subgraph ΓT

induced on T [Bou68]. Similarly, by [H.83] the special subgroup AT of A is naturally

isomorphic to the Artin group defined by ΓT .

Lemma 6.4.1 ([CP14, Theorem 1.1]). Special subgroups of Artin groups are convex with

respect to the word metric defined by standard generators.

A subset T ⊆ S is spherical if the special subgroup WT is finite. The dimension of the

Artin group A is the maximal cardinality of a spherical subset of S.

The following is a consequence of [CD95b] and [CD95a, Corollary 1.4.2].

Theorem 6.4.2. Let A be an Artin group of dimension n. Suppose that

(A) n ≤ 2, or

(B) every clique T in Γ is spherical.

Then there is a finite n-dimensional cell complex that is a K(A, 1).
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6.4.2. Two-generator Artin groups. We start with the description of most two-

generator Artin groups as virtually Fk × Z, where Fk is the free group with k generators.

Lemma 6.4.3. Let A be an Artin group with defining graph Γ a single edge labelled by

n > 2. Then

(1) A has a finite index subgroup of form Fk × Z with k ≥ 2, and

(2) no power of one of the two standard generators lies in the Z factor.

Proof. By [BM00] (or by our proof of Theorem 6.5.1) A acts freely and cocompactly

on a product of a tree and a line, where a central element acts as a translation in the line

factor. By [BH99, Theorem II.6.12] A virtually decomposes as A′ × Z. The induced action

of A′ on the tree factor has finite vertex stabilizers so by Bass–Serre theory A′ is a graph of

finite groups, in particular A′ is virtually free, justifying (1). Part (2) follows from the fact

that standard generators act hyperbolically on the tree factor. �

Throughout this section by x̄ we denote the inverse of x. By xz we denote the conjugate

z̄xz.

Let An = 〈a, b | aba . . .︸ ︷︷ ︸
n

= bab . . .︸ ︷︷ ︸
n

〉. Denote ∆ = aba . . .︸ ︷︷ ︸
n

= bab . . .︸ ︷︷ ︸
n

. Let A′n be the kernel

of the homomorphism sending each generator to the generator of Z/2 i.e. the subgroup

consisting of all words of even length. The group A′n is generated by the elements: r =

ab, s = ab̄, t = āb. If φ is a word in an alphabet Λ, and x ∈ Λ, then we denote by Expx(φ)

the sum of all the exponents at x in φ.

By direct computation we immediately establish the following:

Lemma 6.4.4. If n is odd, then the conjugation by ∆ is an order two automorphism

sending s 7→ s̄, t 7→ t̄, r 7→ q, where q = ba = s̄rt̄. In particular, ∆2 is a central element.

If n is even, then ∆ is a central element.

Let z be the element ∆2 for n odd and the element ∆ for n even.

Lemma 6.4.5. If n is odd, then we have

bn = φ(s, t, r)∆,

where Expr(φ) = 0.
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Proof. Consider the following word φ expressed as a product of terms indexed by de-

creasing i:

φ(s, t, r) = s̄

0∏
i=n−3

2

t̄r
i

Since ri appear in the expression defining φ only as elements that we conjugate by, we have

Expr(φ) = 0.

To verify that bn = φ∆, note that

φ = s̄
0∏

i=n−3
2

r̄it̄ri = s̄(r̄
n−3
2 t̄r

n−3
2 )(r̄

n−3
2
−1t̄r

n−3
2
−1) . . . (r̄t̄r)t̄ = s̄r̄

n−1
2 (rt̄)

n−1
2 .

Since s̄r̄
n−1
2 = bā(b̄ā)

n−1
2 = b∆̄ and rt̄∆ = ∆qt = ∆b2, we have

φ(s, t, r)∆ = s̄r̄
n−1
2 ∆bn−1 = b∆̄∆bn−1 = bn.

�

Corollary 6.4.6. If n is odd, we have

b2nz̄ ∈ [A′n, A
′
n].

Proof. We have

b2n = φ(s, t, r)∆φ(s, t, r)∆ = φ(s, t, r)φ(s̄, t̄, q)z.

Denote the word φ(s, t, r)φ(s̄, t̄, q) by ψ(s, t, r, q). By Lemma 6.4.5, we have Expr(ψ) =

Expq(ψ) = 0. We also have Exps(ψ) = Expt(ψ) = 0 since the total exponents of s and

t in φ(s, t, r) are equal to the total exponents of s̄ and t̄ in φ(s̄, t̄, q), respectively. Thus

ψ ∈ [A′n, A
′
n]. �

6.4.3. Surface lemma. The following lemma will allow us to utilize the preceding result

when discussing finite index subgroups of An.

Lemma 6.4.7. Let G be a finitely generated group and let z ∈ G be central. Let H be

a finite index normal subgroup of G, and let h ∈ H ∩ z[G,G]. Then for any homomorphism

ρ : H → Z such that ρ(〈z〉 ∩ H) 6= {0}, there exist a positive integer m and g ∈ G with

ρ((hm)g) 6= 0.
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Proof. Let X be a presentation complex for G. Let S be an oriented surface with

connected ∂S and basepoint s ∈ ∂S, mapping to X, such that on the level of fundamental

groups ∂S 7→ hz̄. Let X̂ be the finite cover of X corresponding to H and let Ŝ be a finite

cover of S such that Ŝ → S → X lifts to Ŝ → X̂. Choose a system Σ of nonintersecting

arcs that join the basepoint of Ŝ to the other preimages of s, one for each of the boundary

components of Ŝ. Consider the surface S ′ obtained from Ŝ by cutting along the arcs of Σ,

and the mapping S ′ → X̂ that factors through Ŝ. Then, as the boundary of a surface,

∂S ′ is mapped to an element f ∈ H = π1(X̂) contained in [H,H]. The arcs of Σ map to

paths in X̂ that project to closed paths in X corresponding to some gi ∈ G. Thus we have

f =
∏q

i=1(hmi)gi z̄M , where mi ≥ 1 with M =
∑
mi.

Since H is normal, each (hmi)gi lies in H. We have ρ(
∏q

i=1(hmi)gi) = ρ(zM) 6= 0. That

means that there is at least one element (hmi)gi such that ρ((hmi)gi) 6= 0. �

Corollary 6.4.8. Let n be odd and let H be a finite index normal subgroup of A′n.

Then for any homomorphism ρ : H → Z such that ρ(〈z〉 ∩H) 6= {0}, there exist a positive

integer m and g ∈ A′n such that bm ∈ H and ρ((bm)g) 6= 0.

Proof. Let k be large enough so that b2nk ∈ H. By Corollary 6.4.6, we can apply

Lemma 6.4.7 with G = A′n, h = b2nk, and zk in the role of z. �

Corollary 6.4.9. Let n be even and let H be a finite index normal subgroup of An.

Then for any homomorphism ρ : H → Z such that ρ(〈z〉 ∩H) 6= {0}, there exist a positive

integer m and g ∈ An such that at least one of (am)g and (bm)g lies in H and is not mapped

to 0 under ρ.

Proof. Let k = n
2
k′ be a nonzero integer such that ak, bk ∈ H. Since zk

′
= (ab)k, we

have

akbk ∈ zk′ [An, An].

By Lemma 6.4.7, we have m > 0 and g ∈ An such that ρ
(
(akbk)m)g

)
6= 0. Let f = (ak)g

and h = (bk)g. We have (fh)m ∈ fmhm[H,H]. Thus ρ(fmhm) 6= 0 and so at least one of

fm = (akm)g and hm = (bkm)g is not mapped to 0 under ρ. �

6.5. The main theorem

In this section we prove Theorem 6.1.1. The implication (i)⇒(ii) is obvious.
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Figure 1. The complex Kn.

6.5.1. Implication (iii)⇒(i).

Theorem 6.5.1. Let A be an Artin group with each connected component of the defining

graph:

• a vertex, or an edge, or else

• all interior edges labeled by 2 and all leaves labelled by even numbers.

Then A is the fundamental group of a nonpositively curved cube complex.

Proof. We assume without loss of generality that Γ is connected, since if Γ has more

connected components, then A is the fundamental group of the wedge of the complexes

obtained for its connected components.

If Γ is a single vertex, then A is the fundamental group of a circle.

If Γ is a single edge labelled by an odd n, then let Kn be the cube complex described

in Figure 1. On the left side we see part of the 1-skeleton of Kn consisting of three edges

labelled by a, b, t, and the right side indicates how to attach a rectangle (subdivided into n

squares) along its boundary path ab . . . a︸ ︷︷ ︸
n

t̄ b̄ā . . . b̄︸ ︷︷ ︸
n

t̄. It is easy to check that the link of each of

the two vertices in Kn is isomorphic to the spherical join of two points with n points, hence

Kn is nonpositively curved. By collapsing the t-edge we obtain the presentation complex for

the standard presentation of A, so π1(Kn) = A. We learned this construction from Daniel

Wise.

If Γ is a single edge labelled by an even n, let x = ab. The group A is then presented as

〈a, x | axn/2 = xn/2a〉. Let Kn,a be the cube complex described in Figure 2. One can check

that the link of the unique vertex in Kn,a is isomorphic to the spherical join of two points

with n points, hence Kn,a is nonpositively curved. It is clear that π1(Kn,a) = A.
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Figure 2. The complex Kn,a.

Similarly if we let y = ba, then A can be presented as 〈b, y | byn/2 = yn/2b〉. We define

Kn,b in a similar way. Note that the a-circle in Kn,a is a locally convex subcomplex, so is the

b-circle in Kn,b.

If Γ contains more than one edge, then let Γ′ ⊆ Γ be the nonempty subgraph induced

on all the vertices that have at least two neighbours. Thus the edges of Γ′ are precisely

the interior edges and by the hypothesis they are labelled by 2. Hence AΓ′ is a right-angled

Artin group. The Salvetti complex S(Γ′) is the nonpositively curved cube complex obtained

from the presentation complex of AΓ′ by adding the missing cubes of higher dimension (see

[Cha07]). Let {(si, ti)}ki=1 be the collection of leaves of Γ with si ∈ Γ′. Let ni be the label

of the edge (si, ti), which is even. Let K be the amalgamation of {Kni,si}ki=1 and S(Γ′) along

the si-circles. Then π1(K) = A and it follows from [BH99, Proposition II.11.6] that K is

nonpositively curved. �

6.5.2. Implication (ii)⇒(iii).

Theorem 6.5.2. Let A be a 2-dimensional Artin group. If A is virtually cocompactly

cubulated, then each connected component of the defining graph of A is either

• a vertex, or an edge, or else

• all its interior edges are labeled by 2 and all its leaves are labelled by even numbers.

Proof. Suppose that there exists a finite index subgroup Â ≤ A that acts properly and

cocompactly by combinatorial automorphisms on a CAT(0) cube complex X. Without loss

of generality, we assume that Â is normal in A. It suffices to prove:

(1) no edge of Γ has an odd label, unless it is an entire connected component, and

(2) no interior edge of Γ has an even label ≥ 4.

Let us first prove (1). Suppose to the contrary that Γ has an edge (a, b) with odd label

and another edge (b, c). Let Aab be the special subgroup generated by a and b. By A′ab
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we denote its index-two subgroup that is the kernel of the homomorphism to Z/2 sending

both a and b to 1. Let Âab = Fk × Z be a finite index subgroup of A′ab ∩ Â guaranteed by

Lemma 6.4.3(1). We can also assume that Âab is normal in A′ab. Similarly, let Abc be the

special subgroup generated by b and c, and let Âbc = Fl × Z be a finite index subgroup of

Abc ∩ Â. Note that the edge (b, c) might be labelled by 2 and then l = 1.

Since Â is a CAT(0) group, we can speak of its asymptotic rank. By Theorem 6.4.2(A),

there exists a finite 2-dimensional cell complex that is a K(A, 1). Thus by Lemma 6.2.5, the

asymptotic rank of Â is ≤ 2 and so is the asymptotic rank of X. The subgroup Aab is convex

with respect to the standard generators of A by Lemma 6.4.1 and so Âab is quasi-isometrically

embedded in Â. We can thus apply Theorem 6.3.8 to find a convex subcomplex Yab that is

Âab-cocompact. Moreover, there is a cubical product decomposition Yab = Vab × Hab such

that the action of Âab respects this decomposition, the vertical factor Vab is quasi-isometric

to R, and the Z factor Z of Âab acts almost trivially on Hab.

Consider Min(Z) = R × V0 ⊆ Vab for the induced action of Z, where R is an axis of Z.

Since Z is contained in the centre of Âab, we have an induced action of Âab on R × V0

respecting this decomposition. The factor V0 is bounded, so V0 contains a fixed-point of

the action of Âab. Thus R × V0 contains an Âab–invariant line l. Let ρ : Âab → Isom(l)

be the induced map. Note that ρ(Âab) does not flip the ends of l. Moreover, since Vab is a

cube complex, the translation lengths on l are discrete. This gives rise to a homomorphism

ρ : Âab → Z assigning to each element of Âab its translation length on l. Note that ρ(Z) 6= 0.

By Corollary 6.4.8 applied to H = Âab, there exists a nonzero integer m and g ∈ A′ab such

that ρ((bm)g) 6= 0.

By normality of Â, we have (Âbc)
g ≤ Â. Let Ybc be a convex (Âbc)

g-cocompact subcomplex

guaranteed again by Theorem 6.3.8. By [H.83] we have Aab∩Abc = 〈b〉, and hence the groups

〈bm〉g and Âab ∩ (Âbc)
g have a common finite index subgroup B. Let Y ⊂ Yab be the gate

with respect to Ybc. Then Y is the coarse intersection of Yab and Ybc by Lemma 6.2.6(3). By

Lemma 6.3.9, Y is B-cocompact.

Since Y is a convex subcomplex, it has a product structure Y = YV ×YH where YV ⊆ Vab

and YH ⊆ Hab. We have ρ(B) 6= 0, so YV is unbounded. Since Y is quasi-isometric to R, the

factor YH is bounded. Since Z acts almost trivially on Hab, any of its orbits in Yab is at a



6.6. 3-GENERATOR ARTIN GROUPS 80

finite Hausdorff distance from Y . Hence Z is commensurable with B. Thus there exists an

integer j 6= 0 such that (bg)j ∈ Z, and hence bj ∈ Z, contradicting Lemma 6.4.3(2).

Let us now prove (2). Suppose that Γ has edges (a, b), (b, c), and (c′, a) (here c and c′

are possibly the same), where (a, b) has an even label ≥ 4. Let Âab, Âbc, Âc′a be finite index

subgroups of Aab∩Â, Abc∩Â, Ac′a∩Â, respectively, that are isomorphic to a product of a free

group and Z. Assume moreover that Âab is normal in Aab. Let Yab = Vab ×Hab be a convex

Âab-cocompact subcomplex, and let ρ : Âab → Z be defined as before. By Corollary 6.4.9,

there exist a nonzero integer m and g ∈ Aab such that at least one of (am)g and (bm)g lies in

Âab and is not mapped to 0 under ρ. Without loss of generality we can assume ρ((bm)g) 6= 0.

The rest of the argument is identical as in the proof of (1). �

6.6. 3-generator Artin groups

This section is devoted to the proof of Theorem 6.1.2. Let A be the three-generator

Artin group with mab = 3,mbc = 2, and mac = 3, 4, or 5, and let W be the Coxeter group

with the same defining graph. Consider a longest word in a, b, c which is a minimal length

representative of the element it represents in W . This word represents also an element of A,

which we call ∆.

Lemma 6.6.1. (i) The centre Z of A is generated by ∆2 for mac = 3 and by ∆ for

mac = 4 or 5.

(ii) The intersections of Aab and Abc with Z are trivial.

(iii) In A we have Aab × Z ∩ Abc × Z = Ab × Z.

Proof. Assertion (i) follows from [Del72, Theorem 4.21].

For (ii), let ∆ab = aba. By [Del72, Proposition 4.17], each element of Aab is represented

by ∆−kab φ(a, b), where φ is a positive word in a, b, and k ≥ 0. If we had φ(a, b) = ∆k
ab∆

l for

some l > 0, k ≥ 0, then by [Del72, Theorem 4.14] this equality would also hold in the Artin

semigroup, contradicting the fact that ∆ is expressed as a positive word involving all a, b, c.

The same argument works for Abc.

For (iii) we need to show Aab×Z ∩Abc×Z ⊆ Ab×Z. Since b and c commute, it suffices

to show that for each m 6= 0 we have cm /∈ Aab × Z. If mac = 3, then this follows from a

well known fact that A/Z is the mapping class group of the four punctured disc, where Aab
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fixes a curve around the first three punctures and c is a half-Dehn twist in a curve around

the third and the fourth.

If mac = 4 or 5, assume for contradiction that cm = gz, for some z ∈ Z and g ∈ Aab.

Thus gcm = g2z = gzg = cmg. Let g = ∆−kab φ(a, b), where φ is a positive word in a, b, and

k ≥ 0 is even. Thus φ(a, b)cm∆k
ab = ∆k

abc
mφ(a, b).

By [Del72, Theorem 4.14] this equality also holds in the Artin semigroup. The relation

acac = caca or acaca = cacac involves on each side 2 occurrences of c separated by an

occurrence of a. The word φ(a, b)cm∆k
ab does not contain such a subword, and this property

is invariant under the replacements bc = cb, aba = bab. Thus to pass from φ(a, b)cm∆k
ab to

∆k
abc

mφ(a, b) one can only use bc = cb, and aba = bab, which is the relation defining Aab.

Thus there is l such that in Aab we have φ(a, b)bl = ∆k
ab. Hence g = b−l. Thus cm = b−lz,

contradicting assertion (ii). �

We also need the following consequence of rank-rigidity [CS11].

Lemma 6.6.2. Let G be a cocompactly cubulated group with centre containing Z ∼= Z.

Then G has a finite index subgroup G0 × Z with G0 cocompactly cubulated.

Proof. Suppose that G acts properly and cocompactly by cubical automorphisms on a

CAT(0) cube complex X. By [CS11, Corollary 6.4(iii)], if we replace X with its essential

core, and G with a finite-index subgroup, we obtain a cubical product decomposition of X

respected by G, such that for each factor there is an element g ∈ G acting on it as a rank

one isometry. Let XV be a factor on which Z acts freely, and combine all other factors into

XH , so that X = XH ×XV . Let g ∈ G act on XV as a rank one isometry.

Note that the generator z of Z acts on XV as a rank one isometry. Otherwise an axis of

g would not be parallel to an axis of z. Hence g and z would generate Z2 acting properly on

XV , contradicting the fact that g has rank one. Consider Min(Z) = R× Y ⊆ XV , where R

is an axis of Z. Since Z is contained in the centre of G, we have an induced action of G on

R×Y respecting this decomposition. Since z has rank one, we have that Y does not contain

a geodesic ray, and hence is bounded. Consequently, Y contains a fixed-point of the action

of G. Thus XV contains a G–invariant line l.

Let ρ : G → Isom(l) be the induced map. Note that ρ(G) does not flip the ends of l.

Moreover, since XV is a cube complex, the translation lengths on l are discrete. Thus the
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image of ρ can be identified with Z, which contains ρ(Z) as a finite index subgroup. Let

G0 = ker(ρ). Thus Z × G0 is a finite index subgroup of G. Moreover, G0 acts properly by

cubical automorphisms on XH ⊂ X. Since the action of Z on XV is proper, the action of

G0 on XH is cocompact. �

We complement Lemma 6.6.2 with the following:

Lemma 6.6.3. Let G = G0×Z be finitely generated, with Z ∼= Z. Let H < G be a finite

product of finitely generated free groups of rank ≥ 2 that is quasi-isometrically embedded.

(i) The map H → G/Z is a quasi-isometric embedding.

(ii) Let G be cocompactly cubulated. If we require that H ∩Z is trivial, then assertion (i)

holds also if in the product we allow free groups of rank 1.

Proof. If H is a free group of rank ≥ 2, then we choose in H a free generating set S±.

In Z we consider the generating set {±1} and in G0 any symmetric generating set. Let

| · |H , | · |Z , | · |G0 denote the corresponding word-lengths. Let πG0 , πZ be the coordinate

projections from G to G0, Z, respectively. By assumption, there exists a constant c such

that for any h ∈ H, we have |h|H ≤ c
(
|πG0(h)|G0 + |πZ(h)|Z

)
. Viewing h as a reduced word

over S±, choose s ∈ S± such that the word w = hsh−1s−1 is reduced. Then |πZ(w)|Z = 0,

and applying the above inequality with w in place of h we obtain 2|h|H + 2 ≤ c|πG0(w)|G0 ≤

2c
(
|πG0(h)|G0 + |πG0(s)|G0

)
. Consequently |h|H ≤ c|πG0(h)|G0 + a for some uniform constant

a, and thus the restriction of πG0 to H is a quasi-isometric embedding, as desired.

Similarly, if H is a product of free groups Hi of rank ≥ 2, then we choose generating

sets S±i in Hi. Let h =
∏
hi with hi ∈ Hi. To get an estimate on |h|H , it suffices to use a

product of reduced words w =
∏
hisih

−1
i s−1

i , with si ∈ S±i . This proves assertion (i).

If G is cocompactly cubulated, then by Lemma 6.6.2, after passing to a finite index

subgroup, the quotient G/Z acts properly and cocompactly on a CAT(0) cube complex X.

Let H = Zn×H0 ≤ G, where H0 is a finite product of finitely generated free groups of rank

≥ 2. We keep the notation H for the isomorphic image of H in G/Z. Then H preserves

Min(Zn) = Rn × Y ⊆ X and respects its product structure. We fix v ∈ Rn and y ∈ Y .

From assertion (i), the orbit map h0 → (h0 · v, h0 · y) from H0 to Rn× Y is a quasi-isometric

embedding. Since the commutator of H0 acts trivially on the Rn factor, using the same

argument as for assertion (i), we obtain c satisfying |h0|H0 ≤ cdY (y, h0 · y). On the other
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hand, there is c′ such that for f ∈ Zn we have |f |Zn ≤ c′dRn(v, f · v). Let d be the maximum

of the displacements dRn(v, s · v) over the generators s of H0. For fh0 ∈ H consider the

maximum norm ‖fh0‖ = max{|f |Zn , 2c′d|h0|H0}. If |f |Zn ≥ 2c′d|h0|H0 , then

c′dRn(v, fh0 · v) ≥ |f |Zn − c′d|h0|H0 ≥
1

2
|f |Zn ≥ 1

2
‖fh0‖.

Otherwise, if |f |Zn < 2c′d|h0|H0 , then

cdY (y, fh0 · y) = cdY (y, h0 · y) ≥ |h0|H0 >
1

2c′d
‖fh0‖.

This proves assertion (ii). �

Proof of Theorem 6.1.2. The implication (i)⇒(ii) is obvious. The implication (iii)⇒(i)

follows from Theorem 6.5.1 unless the defining graph Γ of A has two edges (a, c), (b, c) with

label 2. By Theorem 6.5.1, Aab is the fundamental group of a nonpositively curved cube

complex K. Then K × S1 is a nonpositively curved cube complex with fundamental group

A.

The implication (ii)⇒(iii) follows from Theorem 6.5.2 if A is 2-dimensional. Suppose

now that A is not 2-dimensional. Then, by the classification of finite Coxeter groups, the

labels of Γ are mab = 3,mbc = 2, and mac = 3, 4, or 5. Let Z be the centre of A described in

Lemma 6.6.1(i).

Suppose that there exists a normal finite index subgroup Â ≤ A that is cocompactly

cubulated. Let Ẑ = Â ∩ Z. By Lemma 6.6.2, up to replacing Â with a further finite index

subgroup, we have Â = Â0 × Ẑ, where Â0 is cocompactly cubulated. We keep the notation

Â0 for its isomorphic image in the quotient A/Z. Note that Â0 ≤ A/Z is a normal finite

index subgroup.

By Theorem 6.4.2(B), the Artin group A is the fundamental group of a 3-dimensional

cell complex which is a K(A, 1). Thus, by Lemma 6.2.5, the asymptotic rank of Â is ≤ 3.

Hence the asymptotic rank of Â0 is ≤ 2.

By Lemma 6.6.1(ii), the intersections of Aab and Abc with Z are trivial. Thus Aab and

Abc embed into A/Z under the quotient map, and we keep the notation Aab and Abc for their

images in A/Z. By Lemma 6.6.1(iii) in A/Z we have Aab ∩ Abc = Ab.
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Let Âab = Fk ×Z be a finite index subgroup of A′ab ∩ Â0 guaranteed by Lemma 6.4.3(1).

We can assume that Âab is normal in A′ab. Let Âbc = Abc ∩ Â0 = Z2. By Lemmas 6.4.1

and 6.6.3(ii), Âab, Âbc < A/Z are quasi-isometric embeddings.

From this point we argue to reach a contradiction exactly as in part (1) of the proof of

Theorem 6.5.2. �



Summary

We have examined certain obstruction to group actions on CAT(0) cube complexes, either

proper actions on a complex of a fixed dimension in the context of small cancellation groups,

or proper and cocompact actions of Artin groups. Here are a few further questions we hope

to address in the future.

Question 6.6.4. Are all C(6) groups (cocompactly) cubulated?

Question 6.6.5. Is there a uniform bound on the virtual cubical dimension of C ′(1/6)?

Question 6.6.6. Which Artin groups act properly on CAT(0) cube complexes? In

particular, are braid groups cubulated?

85
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[Ś06] Jacek Światkowski. Regular path systems and (bi)automatic groups. Geom. Dedicata, 118:23–48,

2006.

[Sag95] Michah Sageev. Ends of group pairs and non-positively curved cube complexes. Proc. London

Math. Soc. (3), 71(3):585–617, 1995.

[Sag97] Michah Sageev. Codimension-1 subgroups and splittings of groups. J. Algebra, 189(2):377–389,

1997.

[Sag14] Michah Sageev. CAT(0) cube complexes and groups. In Geometric group theory, volume 21 of

IAS/Park City Math. Ser., pages 7–54. Amer. Math. Soc., Providence, RI, 2014.

[Sco78] Peter Scott. Subgroups of surface groups are almost geometric. J. London Math. Soc. (2),

17(3):555–565, 1978.

[Ser77] J.-P. Serre. Arbres, amalgames, SL2, volume 46 of Astérisque. Société Mathématique de France,
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