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ABSTRACT

Cloud based deployments have been moving towards a positive trend over the past decade. A
variety of tooling has been introduced and the deployment procedure itself has been immensely
eased. Thus, many large scale businesses are considering a move towards a fully cloud based
solution. This enables them to take complete advantage of the data intensive computing facil-
ities of the cloud. Nevertheless, the decision to move towards a complete cloud-deployment
does pose some important concerns; the top priority concern being data security. The current
service-levels (in terms of data security) provided by the cloud providers are proven to be strong.
However, the threat model addressed by such SLAs are related to protection of the cloud Virtual
Machine(VM)s from external access and against cross-communication between adjacent VMs.
Yet, an orthogonal security concern is ensuring security over internal threats. This requires a
defense in depth mechanism enforced on the processes internal to the deployment. The threat
model for such internal-threats is derived from the bogus behavior of applications in the deploy-
ment. The study that follows produces a solution that is immune to such threats in scheduled
events with large volumes of sensitive tenant information in the cloud.

In this thesis we produce a proof-of-concept framework that provides dedicated and iso-
lated data processing pipelines for different tenant data in cloud deployments. The isolation is
achieved via containerizing each application in the processing pipeline. Communication be-
tween these containerized applications is enabled by stitching them together via a virtual switch
and dynamically publishing flow-control rules as per SDN specifications. The framework is
made generic such that the addition of a new work-flow is made straight-forward. We also de-
fine the container environment to be generic such that it enables monitoring of the work-flow
status. We evaluate the robustness of the framework with various workloads and produce com-
parative results between containerized & non-containerized pipelines. The results show that
these defense features can be implemented with a minimal runtime overhead of < 5%. We also
see from our results that the framework imposes an additional resource overhead of ≈ 7.5%
CPU and ≈ 8.25% memory.



ABRÉGÉ

Les déploiements basés sur l’infonuagique ont la cote ces dernières années, et de nombreux out-
ils ont été introduits pour faciliter ces procédures de déploiement. Ainsi, plusieurs entreprises
à grande échelle songent à changer pour des solutions complètement basées sur l’infonuagique.
Cela leur permet de tirer pleinement parti des capacités de calcul supérieures de l’infonuagique
quant au traitement de volumes élevés de données. Toutefois, la décision de faire la transition
complète vers le déploiement en infonuagique soulève nombre de questionnements importants,
le plus prioritaire étant celui de la sécurité des données. Les accords de service présentement
offerts sur le marché fournissent déjà des garanties de sécurité assez fortes. Néanmoins, le mod-
èle de menace actuel couvert par ces accords concerne les machines virtuelles du nuage et porte
seulement sur les accès externes et les communications croisées entre machines adjacentes.
Pourtant, un important problème de sécurité orthogonal pour les fournisseurs de service, quant il
s’agit d’infonuagique, est de garantir la sécurité des systèmes contre les menaces internes. Cela
requiert un mécanisme approfondi de défense appliqué au niveau du processus interne de dé-
ploiement. Le modèle de menace pour de tels risques internes est issu de comportements fictifs
d’applications lors de leur déploiement. L’étude qui suit propose une solution qui serait imper-
méable à de telles menaces et pratiques erronées associées lors de la planification d’événements
avec de grandes quantités de données client sensibles sur une plateforme infonuagique.

Dans cette étude, on fournit une validation de concept pour un cadre logiciel (framework)
qui fournit des pipelines dédiés et isolés afin de traiter des données pour différents clients sé-
parés lors de déploiements en infonuagique. L’isolement est obtenu grâce à la conteneurisation
de chaque programme s’exécutant dans le pipeline. La communication entre ces programmes
est permise par le rattachement entre eux via un commutateur virtuel et la publication dy-
namique de leurs règles de régulation selon les spécifications SDN. Le cadre logiciel est conçu
de façon générique afin que le rajout de nouvelles règles de régulation soit simple. On définit
aussi l’environnement du contenant de façon générique afin qu’il soit possible de surveiller le
déroulement des opérations. On mesure la résilience du cadre logiciel obtenu en le testant avec
différentes charges de travail afin de produire des résultats qu’on peut utiliser pour comparer les
pipelines conteneurisés et ceux qui ne le sont pas. Les résultats montrent que ces caractéris-
tiques défensives peuvent être implémentées avec une faible surcharge d’exécution de moins
de < 5%. On voit aussi, à travers nos résultats, que le cadre logiciel requiert une surcharge de
ressources de ≈ 7.5% sur le processeur et de ≈ 8.25% sur la mémoire.
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Chapter 1

Introduction

Cloud computing offers many benefits. It offers computing power as a utility for which cus-
tomers can pay according to their usage. It has transformed the IT industry giving rise to easily
deployable applications [9]. Developers need not worry about large capital investment to get
their innovative ideas up and running. They can minimize the risk of taking on ideas that do not
attract enough popularity. Moreover, companies can scale their computing needs as the tasks
scale depending on the volume of the business.

Even with such clear benefits, enterprises have major concerns when transitioning to a fully
cloud-based solution. This is mainly attributed to the fact that cloud computing brings many
new security threats into play while the enterprises rely on the cloud provider for security [50].
This is evident from the surveys conducted by leading business intelligence research organi-
zations like Gartner, IDC and Unisys. Those results show security problems are an important
factor when businesses select cloud-computing options [1][21][39][44].

Security concerns in cloud deployments emerge due to many factors. These factors are not
only technical concerns but also include non-technical factors, such as lack of coherent man-
agement policies and ignorant deployment practices [33]. Moreover, these security concerns
can be categorized into two different types of threat models: external and internal to the cloud
deployment. External threats are initiated from outside the deployment boundary itself while
internal threats emerge from within the system. Academic and industrial researches have fo-
cused on security concerns over the years. Nevertheless, there still seems to be an important
void in safeguards against threats emerging fromwithin the cloud-deployment. Also, it is inter-
esting to observe that security promises against threats that arise due to internal negligence have
been omitted in SLAs of leading cloud providers. Hence, an important orthogonal perspective
to security in the cloud is to ensure that the applications deployed are themselves benign and do
not act against the SaaS provider’s tenants.
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When considering the internal threats, one of the key concerns is that the myriad of in-house
applications have a tendency to reach production with minor bugs. Such threats are specific to
the SaaS deployment model. These threats are of utmost concern to tenants who entrust service-
providers with their data for analytical insight. Knowing that their data is being processed in a
common pool of resources amongst others’ data raises a red flag. Hence, it is essential for SaaS
providers to gain the trust and confidence of their tenants by showing provable security and
isolation mechanisms when hosting tenants. An easy way for SaaS providers to express such
assurance is by means of the SLAs of the cloud-infrastructure provider. However, such SLAs
do not strongly cover the internal threat model. Besides, tenants who trust SaaS providers,
expect an added layer of defense for their data on top of the infrastructure-provider’s SLAs.
They want to know what additional measures are taken to ensure that their data is not leaked
in any fashion during the computational process. Thus, arises the need for mechanisms that
provide defense-in-depth to multi-tenanted data processing pipelines. Defense-in-depth mea-
sures provide multiple layers of security by means of introducing redundancy [48]. Thus, SaaS
providers can present their deployment to be safe even when injected with spurious applications;
showing immunity against such misbehaving applications resulting from ignorant or malicious
programming practices. Such a defense in depth framework would provide the extra level of
trust expected by the tenants.

As a start we specifically focus on passive internal threats that arise from negligent practices
in the development and deployment of cloud applications. We mention “passive” because there
are also active threats that contribute to the above threat model. The components of a passive
threat vector are a result of negligent and unintentional practices whereas an active threat is a
result of internal activity with malicious intent. Thus, for the scope of this study we only address
remedial strategies for the passive internal threat model.

To of address this passive internal threat model within a SaaS deployment, we define a
defense-in-depth framework. We build our framework using isolation via containerization. The
container is the encapsulation unit for all cloud deployable applications. We use the container
boundary as the point of scrutiny for the applications’ activity. We control inter-application
communication using Open-Flow flow-controls published to a virtual switch which intercon-
nects all applications. The complete flow of the framework is controlled and managed via a
manager module. We test the framework using representative data processing pipeline exam-
ples. The framework is designed such that it allows the addition of newworkflows with minimal
overhead. The architecture also supports easy adaptation of more administrative features and
monitoring capabilities for future developments.
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The major contributions of this thesis can be summarized to:

• An in-depth enumeration and discussion of the threat vectors attributed to a passive in-
ternal threat model

• A proof of concept implementation of a framework to provide defense-in-depth mecha-
nisms to cloud deployments with passive internal threats

• The use of SDN controls as means for active monitoring and control over data processing
pipelines

• The conceptual basis for using containerization as means to relieve application developers
from handling security and moving such checks to a separate isolation boundary

The rest of this thesis is structured as follows: Chapter 2 provides a discussion of related
work. Chapter 3 details the design requirements of the framework as presented by actual indus-
try use-cases and requirements. Chapter 4 provides an analysis of the different threat vectors
related to the problem addressed and how the framework handles them. Chapter 5 is a detailed
explanation of the design and architecture of our proposed framework. Chapter 6 shows the
experimental results of the framework in terms of overhead incurred. Chapter 7 summarizes
the complete study and provides pointers for future work.



Chapter 2

Related Work

2.1 Overview
This chapter discusses prior work in a variety of topics that are related to the work presented in
this thesis. These topics can be broken down into generic cloud security, SDN & NFV based
security in cloud and security of containerized systems.

2.2 Cloud Security
Since the idea of cloud based deployment became ubiquitous, a lot of effort has been put towards
the security problems. Security for cloud-deployments is held at a higher level of importance
(compared to in-house infrastructure) given that the ownership of the hosting infrastructure
moves outside a company’s control. This view is shared among many from the academia [23],
industry [38] and governments [15, 31]. According to a report by Gartner, cloud computing has
unique attributes that require risk assessment in multiple areas such as: data integrity, recovery
and privacy [14]. Two important points raised by that report is the importance of customers
verifying with their vendors about: privileged user access and data segregation. In light of
the requirement for proper risk-assessment, Yang et al. [50] produced an assessment model for
risk in cloud computing taking into consideration the variability of the deployment setup. Their
model is based on an information entropy scheme.

Even-though there are many studies in academia related to cloud security, most of them are
continuations of traditional systems security research. These include studies on web-security
[12, 45], data outsourcing and assurance [13, 22] and security of virtual machines [37, 47]. Very
few could be narrowed down to have exclusive focus on cloud security [16]. This is expected
given that topics related to cloud security expand on systems security research. This research
can be related to specific components of the cloud computing model. For example, Mishra et al.
[32] describe how the concepts of virtualization lead to realizing a cloud-deployment model and
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explains how threats also originate at the virtualization layer. They establish that the hypervisor
and virtual-network-layer introduce an attack surface leading to major cloud vulnerabilities. In
[35], they use Amazon’s EC2 service as a case study to show that it is possible to deduce a map
of the internal cloud-infrastructure; instantiate VMs until they are co-resident with a target and
initiate cross-VM attacks across the virtualization layer to extract information. These studies
specifically target the cloud VM security.

A comprehensive summary of the differences between security threats exclusive to cloud
computing and not exclusive are enumerated by Chen et al [16]. According to them, the primary
new threat vector to cloud deployments is the introduction of shared resource environments. An-
other key issue discussed by them is reputation fate-sharing: while cloud users can benefit from
the concentration of security expertise of major cloud providers, a single subverter can disrupt
many users. Based on their findings they produce a comprehensive discussion on the unique
aspects of the cloud threat model. They establish, existence of competing businesses within the
same eco-system and a longer trust chain with different deployment architectures as important
aspects of this threat model. They also put forth that the security needs of businesses may vary
depending on the business use case. This sets up an important argument for our study where the
source of the problem is the business use case itself. We specifically study scenarios where the
threat surface itself is formulated by undesirable coding practices of in-house and third-party
developers.

The focus of our study is to develop efficient mechanisms to protect SaaS cloud-deployments
from misbehaving applications. Our framework considers a use case where a SaaS provider has
many tenants with large volumes of data for processing and analytics. Thus, the expectation for
security is not only from the SaaS provider but also from its tenants in order to have confidence
about how their data is handled. The threat surface in our study is internal to the SaaS provider
rather than external. Most literature in academia and the industry focus on either external attacks
or at-rest data protection.

2.3 SDN & NFV based Security in the Cloud

2.3.1 SDN & NFV Overview
Software Defined Networking (SDN) enables programmatic configuration of network topolo-
gies on top of underlying hardware infrastructure. It facilitates dynamic re-structuring and man-
agement of networks at the software plane. This is different from traditional networks where the
setup is static and decentralized [49]. With Network FunctionVirtualization (NFV), functionali-
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ties traditionally implemented on dedicated hardware are written in ”software” and are deployed
on standard hardware [34]. NFV by definition is the practice of virtualizing all the physical net-
work functions into virtual network functions (VNF) to form a service that is required to perform
a specific network operation [43, 42, 41]. Thus, NFV can be used to deploy network functions
on various types of network infrastructure using commercial off-the-shelf hardware (COTS).
Traditionally, network functions are fully coupled with vendor specific hardware. During the
time of scaling the network, adding new network functions and services becomes inconvenient
and expensive. Provisioning them is also cumbersome with a lot of dynamic network traffic
and changing requirements [29]. However, the NFV approach mitigates these problems making
network function deployment easy and fast [42, 41]. NFV brings the benefit of enabling SDN-
controller virtualization; thus allowing dynamic mobility of SDN-controllers. On the other
hand, SDN is advantageous to NFV in that, it enables dynamic network connectivity by pro-
gramming the network to be optimal depending on network traffic monitoring and analysis [42].

A recent trend with cloud deployments is to use a combination of SDN and NFV techniques
to provide security to the infrastructure. Security functionality, traditionally implemented on
commodity hardware are separated out as VNFs and are deployed on the cloud. Thus, they
can now be deployed in any hardware (with proper virtualization managers) used in the infras-
tructure. Besides, they bring in the advantage of quick and easy scaling without any overhead
in terms of hardware requirements. In addition, SDN controllers can enable dynamic wiring
of VNFs (which is called Virtual Function Chaining (VFC)) to institute the necessary security
functions in the network. We draw a parallel between this strategy and our framework in terms
of the design and approach to instigate security. Some of the recent developments from the lit-
erature related to NFV addresses certain security concerns discussed in our threat-model. Thus,
in the sections that follow, we discuss such related work from this domain. We can categorize
the literature in the NFV-Infrastructure (NFVI) area into two separate groups based on its focus:

1. How secure is NFVI, what vulnerabilities does it pose and how to mitigate them

2. Using NFVI as means to provide dynamic security functionality to deployments at scale

We discuss the work done in each of these areas below.

2.3.2 NFV-Infrastructure Security
Lal et al. in [29] and Yang et. al in [51] discuss about the vulnerabilities posed by NFVI and
how to secure it. They mention that the threats related to VNF are a combination of threats on
physical networking and on virtualization technologies. They also list out the causes for such



2.3 SDN & NFV based Security in the Cloud 7

security threats in a NFV infrastructure which includes: improper isolation of the virtual func-
tions, mis-management in terms of setting up virtual network components, independent mobility
of the VNFs outside legal boundaries, forced-amplification of VNFs to exhaust resources and
malicious insiders. They also outline the best-practices in terms of securing any NFV infras-
tructure. According to them, keeping the hypervisor up-to date (with all security patches) and
enabling proper security for the SDN based virtual network is very important. They also sug-
gest other measures such as image signing, zoning of network traffic into isolated pools, using
default kernel support features (eg: SELinux) and encryption. While their work addresses se-
curity of virtualized network functions, we specifically focus on securing cloud applications.
Nevertheless, some of the suggestions proposed by them are applicable when considering how
our framework uses SDN to interconnect the containerized applications.

In [28], authors discuss the problem of communication between VNFs not being secured
other than by the common protocols like SSL/TLS used by applications. They argue that im-
portant network data exchanged between VNFs that are not protected by SSL/TLS are still vul-
nerable to eavesdropping and hence can disclose valuable information. Thus, they propose a
design where a VPN server is integrated into the NFVI layer of the host and managers encryp-
tion of the traffic between different VNFs. Their results shows that the encryption overhead is
significant ( ≈96%) and hence, not ready for use in an actual industry setup. Moreover, their
threat model is specific to malicious external adversary unlike ours which targets passive inter-
nal threats.

2.3.3 NFV as means for Cloud Security
There is considerable amount of work done using NFVI as the means to provide security func-
tionality to deployments. Jalalpour et al. have implemented a container based orchestration
mechanism [26] to dynamically deploy network security functions to edge points of content
delivery networks (CDN). They do this by binding the VNFs to an open-virtual-switch (OVS)
and routing requests to the CDN via the OVS. Their work specifically targets network security
functionality at edge-networks. Pavlidis et al. have produced a vantage-point network analyzer
by leveraging docker containers as the virtualization unit in their work [34]. They have followed
a similar technique to ours where docker-containers are used to encapsulate the analyzer func-
tions. However, their architecture is not for active monitoring of applications pipelines1; rather
it provides analytics of the network on request on set points of the infrastructure.

1We define the term pipeline in Chapter 3.
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Cziva et al. [17] propose the Glasgow Network Functions (GLANF) framework to manage
the life-cycle of container based VNFs. They use a similar approach to what we have done
in terms of having the VNFs connected over an OVS and controlling communication by pub-
lishing Open Flow (OF) rules. They go on to produce a concrete application of their GLANF
framework [18] by implementing it for network function chaining on edge devices. Marco et
al. [19] present a case for using containers as the virtualization unit for security function chain-
ing instead of other virtualization means such as VMs. Their work is a motivated by the lack
of proper specifications for container based deployments in the NFV domain. Their work pro-
poses a concrete structure for light-weight container based VNF infrastructures based on which
solutions (similar to the ones in [17, 26, 34]) to the orchestration problem can be implemented.

2.3.4 NFV based Security - A Comparative Summary
We compare the above studies in the NFV area to illustrate how our framework also uses con-
tainers as the encapsulation unit to provide security functions. Moreover, our framework also
takes advantage of the SDN stack to dynamically re-wire the container units as with VNF chain-
ing. However, these works specifically address the NFV arena and the encapsulation unit is not
the security surface but is the means to deploy varying network security functions. In our work,
the main motivation behind using containers is to provide a surface for security, outside the
application boundary. The proposed frameworks from the literature follows a model where the
applications handling security are containerized. Then, these containerized applications filter
the network traffic either at the edge (of the deployment itself) or in between end-points. In
contrast, we propose the container surface itself to be used as the point of security while plac-
ing the business applications to run inside them. Moreover, the work by Anderson et al. [5]
which evaluates the performance of container based VNFs also provides a case supporting our
design. Their research concludes that docker containers are an efficient technology to enhance
dynamic deploy-ability of network functions in NFV environments. Their results shows that
the overhead incurred in containerizing applications is acceptable against the benefits achieved.

2.4 Security Features in Container Orchestration Platforms
The framework we propose is based on containerization for isolation and it uses Linux container
concepts to introduce the defensive boundary around the threat surface (i.e. the applications).
Thus, in addition to the above approaches we also compare our design against existing indus-
try applications. Some of the most common container orchestration platforms in industry are:
Google’s Kubernetes engine, Docker’s Swarm mode, Amazon’s Elastic container service and
Microsoft’s Azure container instances. The primary purpose and motivation for such orchestra-
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tion systems is to make the container deployment and management process easy & fast. They
focus largely on optimizing the tasks of Dev-ops in cloud deployments.

Nevertheless, some of these systems have support for features2 that enable control over the
communication between containers. Kubernetes had introduced this feature just last year as
network policies for defense in depth [25]. This requires for Kubernetes to be configured with
one of the few Kubernetes network plugins that has support for this feature. They prevent inter-
container communication by manipulating container IP tables. Docker’s cluster management
system Docker Swarm [20] also supports a similar feature by means of virtual bridges that con-
nect multiple containers. Containers can be segregated into different networks by creating vari-
ous overlay networks. Each overlay network is managed by policies published to a virtual bridge
that is specific to that network. Thus, docker’s way for restricting communication is to introduce
a new overlay via a new bridge. Amazon’s Elastic container service (ECS) platform introduced
a feature called task networking to overcome some of the scalability issues with docker’s default
networking modes [40]. AWS has a logical networking component called the elastic network
interface (ENI) which is attached to each AWS instance. With task-networking they extend this
ENI into running containers within an AWS instance. An ECS agent invokes a chain of network
plugins to ensure that the ENI is configured appropriately in the container’s network namespace.

While, each of these container runtimes provide features to achieve restricted inter-container
communication their primary purpose is container-orchestration. Thus, their design decisions
are somewhat agnostic to the idea of pipelines of workflows that process data from different
tenants. This is the primary industry use case that we target in our solution. Besides none of the
above implementations follow a purely SDN based approach to control communication. SDN
allows dynamic changes to network policies at a single point of control (i.e. the virtual bridge)
and enables continuous auditing/analytics capabilities. In contrast, the approach taken by sys-
tems like Kubernetes is a static declaration of policies for communication. Moreover, SDN
based controls support multi-layer application-topology interleaving and pipeline handling. In
addition, the systems discussed earlier come as a full package for container orchestration with
third-party feature support. Thus, they are not the ideal choice for businesses seeking the min-
imal setup requirement to address the threat model we address in this study. The framework
we propose addresses such industry requirements and provides a solution for the threat model
discussed in chapter 4.

2Some introduced these features more recently while the others have had them for sometime.



Chapter 3

Design Requirements

In this chapter we present the design requirements for the framework we have developed. These
requirements emerged from a series of discussions with the industry partner (Ciena) who col-
laborated with us in this project. The initial phase included understanding existing systems
and their deployment setup. From this information we were able to classify data processing
pipelines into different categories. As a start, we built a deployment setup for a generic data
processing pipeline that handled the specific use case of data mis management. The knowledge
gained from building this prototype was used as the basis to construct the full prototype.

3.1 Terminology
The terminology used throughout this thesis is consistent with what is used in the cloud comput-
ing domain. However, we explain some terms that we believe need introduction in the context
of our industry use case.

3.1.1 Service (SaaS) Provider & Tenant
Throughout this thesis the owner of the software services or the data-processing pipelines is
called either the Service Provider or SaaS Provider. They are the industry collaborators we
directly engaged with. Our study identifies their requirements and provides a solution for it. It
is their objective to move to a cloud service model and to ensure their application pipelines are
threat free.

The data processed by the pipelines shown in Figure 3.1 is owned by a customer of the
service provider. This customer is called the Tenant. It is the tenant’s requirement to have
assurance from its service provider that their data is processed securely and in isolation in the
cloud.



3.2 Existing Deployment Model 11

3.1.2 Data-Processing Pipeline
The deployment we studied consists of multiple applications. These applications are connected
to each other as shown in Figure 3.1. These applications process incoming tenant data and pass
it forward to the next application. A chain of such applications form a pipeline for process-
ing tenant data. We call such a collection of applications as a data-processing pipeline. The
term pipeline is also used throughout this thesis to denote a chain of applications. A single
data-processing pipeline achieves a specific task in the deployment. There can be several such
pipelines in the whole deployment. Each of these different pipelines that is used to achieve a
specific task is called a workflow.

Fig. 3.1 A data processing pipeline

3.1.3 Ingress & Egress Applications
As described above each pipeline is associated with a specific workflow. A workflow is initiated
by a triggering event, internal or external to the system (We discuss different types of events
under Design and Architecture in chapter 5). Upon a workflow being triggered, data processing
starts at one of the applications in the pipeline and ends at another. The application at which
the workflow is triggered is called the Ingress Application while the application at which the
workflow ends is called the Egress Application. Figure 3.2 shows 3 different types of workflows
with their Ingress and Egress applications marked .

3.2 Existing Deployment Model
Our industry collaborator is a network equipment manufacturer. They have many Internet ser-
vice providers who buy and use their equipment in their deployment setups. These devices
generate operational statistics and other useful information over time. These devices also ex-
pose APIs that can be used to collect this information. Access to these APIs are allowed only
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Fig. 3.2 Examples of different workflows with Ingress and Egress applications

from within the client site. The collected information is useful for further analysis to understand
essential trends in the deployed networks and to improve operation. Such analysis is beneficial
to both, the manufacturer and the client. Thus, the manufacturer also provides software services
to analyze the collected information.

Currently, there are two approaches in which the information from these devices are gath-
ered: (1) manufacturer-side engineer goes on-site to client location and collects the data by
connecting to the device APIs; (2) client collects the device data themselves and uploads it
to a client specific jump-server on a daily basis. Upon receiving this data, it is processed by
manufacturer-side engineers to produce statistical information and useful metrics. The gener-
ated results are shared with the clients as routine reports. However, the manufacturer deems
this a tedious work flow and intends to host the services via a SaaS cloud model. In such a
deployment the clients (cloud tenants) can upload their data and receive reports, analytics and
other information in a timely fashion. As a SaaS provider the manufacturer should fully assure
the tenants that the data upload and all subsequent processing happens securely and in isolation
from other tenants’ data.

With this goal in mind the preliminary phase of this study was to develop a secure flow for
how the incoming data can be handled in a SaaS deployment. The focus of the recommenda-
tions drafted during this phase was towards application level data-security and not network-level
security. Thus, we studied one specific use case to develop an end-to-end secure flow from data
upload (into the cloud) until it reaches the data store. This deliverable addresses scenarios like
eavesdropping on the flowwhich could lead to data being compromised and erroneous scenarios
that could be caused due to administrator mistakes. In the process of studying and proposing
these suitable recommendations, specific research problems were identified in terms of handling
security in SaaS deployments with heterogeneous applications. It is one of these problems that
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developed into the idea of providing isolation via containerization for applications in data pro-
cessing pipelines.

The section that follows details some of the design choices and implementation specifics of
this first phase of our work and the identified voids that essentially became the design require-
ments for our framework.

3.3 Data Upload Validation
In the transition from the current deployment to a SaaS cloud model, one of the important
concerns that had to be addressed was the data upload task. That is, how the data arrives into the
cloud; more specifically how the arrived data could be validated for authenticity and integrity.
Several use cases (as listed below) had to be evaluated based on the discussions with industry
collaborators. The following use cases include concerns raised by both the SaaS provider as
well as their tenants.

• A SaaS provider side engineer uploads data to the system.

– Engineer who has permission to upload any tenant data.

– Engineer with limited permissions to upload only specific tenant data.

• Tenant side engineer uploads data (eg: An engineer from Tenant-X).

• Uploader indicates the data to be from an incorrect tenant.

– Tenant-X data attempted to be uploaded as belonging to Tenant-Y.

• A SaaS provider side engineer attempts to upload data for a tenant he/she doesn’t have
permission for

Figure 3.3 depicts the overall picture of the steps involved in the recommended upload phase.
The upload itself is accepted via a webapp (Uploader Webapp). User login and authentication
is handled using an OAuth enabled server (WSO2 APIM in our demo setup). Finally, a mi-
croservice (Uploader Microservice) is used to accept uploads and to store them. We explain
each of these components next.

3.3.1 Components of the Upload Validation Phase
Uploader Webapp: This is a java servlets based webapp running inside a tomcat server. It
has basic (username - password) login enabled. During a login attempt this webapp communi-
cates the username-password pair to theOAuth server to generate a token against it. TheOAuth

https://en.wikipedia.org/wiki/OAuth
http://wso2.com/api-management/


3.3 Data Upload Validation 14

Fig. 3.3 Data upload phase

server validates the provided credentials against its user-store and replies back to the webapp
with an OAuth Token & its related scopes1. The webapp stores the token & its scopes against
the current session.

Whenever, an upload is triggered the webapp first validates the selected customer (during
the upload phase as shown in Figure 3.6) against the scopes (explained below) attached to that
session. If the current session (logged in user) has a valid scope for the selected customer, then
the uploaded file is forwarded to the Uploader Microservice along with the session’s OAuth
token. The token is sent as a HTTP header parameter set as Authorization: Bearer <TOKEN>.

OAuth Engine: This is the authentication server used to validate users and associate au-
thorization roles to them. User authentication is handled in our setup using OAuth. The main
reason behind this is that an authenticated user could be identified using a single token amongst
multiple inter-communicating processes. For the purpose of building the demo flow we have
used the WSO2 APIM which has an inbuilt OAuth engine. In addition it also has an embedded
user-store to create and manage users. It can also be connected to an external user-store such as
Active Directory via LDAP.

For every login attempt, the Uploader Webapp communicates to the OAuth engine to gen-
erate a token. The OAuth server validates the login credentials against its user-store, fetches
the OAuth scopes attached to the requested user and generates an OAuth token for the current
login. The generated token along with its scopes is returned to the webapp. The OAuth engine

1Scopes are OAuth specific way of handling roles. Scopes are assigned to users and API resources enabling
management of resources based on the user-resource scope matching.

http://docs.apigee.com/api-services/content/working-scopes
https://en.wikipedia.org/wiki/OAuth
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is also contacted by the Uploader Miroservice (when it receives an upload from the webapp) to
ensure that only valid uploads are being routed to it.

• OAuth Scopes: We have also leveraged the scope based authorization mechanism intro-
duced in OAuth 2.0. For the demo setup we have created scopes based on imaginary ten-
ants (bell_upload, fido_upload etc.) and attached them to sample users (samadh, shabir,
bell_engineer, fido_engineer and etc). Thus, if a logged in user attempts to make an up-
load for a tenant without having the tenant scope associated with him/her, then the upload
is denied.

An example user-scope mapping setup could be as follows:

– samadh : bell_upload, fido_upload, comcast_upload, senior_engineer

– samsun : junior_engineer, velco_upload

– bell_engineer : bell_upload

– fido_engineer : fido_upload

Uploader Microservice (UMs): A successfully validated upload (against the user-scope) is
forwarded to this backend microservice along with the OAuth token. This microservice first
validates the token it receives by communicating to the OAuth Engine. Then, it carries out the
validation process (explained below) to ensure that the uploaded data corresponds to the tenant
against whom the upload was made. If this validation passes then the data is allowed to follow
through to the next phases of the pipeline. The sequence diagrams in Figure 3.4 and Figure 3.5
depict the login and upload flows that were described in this section.

Fig. 3.4 Sequence Diagram of the Login flow
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Fig. 3.5 Sequence Diagram of the Upload flow

3.3.2 Handling Incorrectly Tagged Uploads
One of the key use cases addressed in this phase is the ability to handle an uploadwith incorrectly
tagged data. That is, with a cloud based upload scenario (unlike something like the existing
jump-server method), an upload can happen in two ways: (1) Tenant side engineer uploads
data or (2) SaaS provider side engineer uploads tenant data. The second use case here has an
overhead of the SaaS provider side engineer having to tag the data with the correct tenant. Thus,
a situation in which this engineer (or the uploader) selects an incorrect tenant for whom he/she
is making the upload for. This will lead to the uploaded data being stored in the datastore under
a wrong keyspace/table. An example of this situation is shown in Figure 3.6. Here, the data to
be uploaded (FIDO_test.zip) belongs to tenant FIDO; however, the uploader has selected the
tenant as BELL.

Fig. 3.6 Sample Upload scenario

Solution

The solution to the above problem would be to be able to validate every upload that has been
made against the tenant for whom it was made. To be able to do that the data will have to carry
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some meta information that verifies its source (i.e tenant). In addition, this meta information
also should be such that it cannot be changed by anyone in the event of a malicious attempt to
do so. Thus, we propose a method based on encryption keys to sign the data before it leaves
the tenant premises’. Then, we would be able to validate this signature on every upload against
the tenant to whom it was attributed to, by the uploader.

Encryption Scheme for data signing

This proposed scheme is based on the combination of RSA2 Private-Public key and AES3 sym-
metric crypto systems. A Public-Private key pair would be generated per tenant during the
on-boarding process. The Private keys will be held securely by each tenant. The Public keys of
all tenants will be held inside the keystore specific to the Uploader Microservice.

Any data collected from the tenant devices (via the service provider’s device APIs) will be
encrypted with the Public Key of that specific tenant. Hence, data is uploaded to the system
or is given to a service provider side engineer (for upload) only in an encrypted form. Thus,
whenever an upload happens (against a specific tenant), theUploaderMicroservice first attempts
to decrypt the data using the Private Key that corresponds to the tenant selected during upload.
If the decryption attempt succeeds, then we can be assured that the uploaded data corresponds
to the selected tenant. However, a failed decryption would denote a mismatch between the
ownership of the data and the tenant who was selected during upload. Such, a scenario is treated
by discarding the upload completely and alerting the engineer about the incident.

Data Encryption Agent

A data encryption agent was developed to evaluate the process of encrypting/decrypting tenant
data. The tenant data is not encrypted/decrypted by the RSA cryptosystem based key pair men-
tioned in the above passage per-say; alternatively a randomly generated key is used to encrypt
the data using the AES encryption scheme.

Issues in using RSA crypto system to encrypt/decrypt large files [36]:

• RSA is slow/compute intensive compared to symmetric (AES) encryption, especially for
decryption. It is almost 4 decimal orders of magnitude or more compared to symmetric

2RSA is one of the first practical public-key cryptosystems and is widely used for secure data transmission. In
such a cryptosystem, the encryption key is public and differs from the decryption key which is kept secret.

3The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the
encryption of electronic data.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Keystore
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encryption. RSA’s execution time grows much faster than linearly with the modulus size
used in the RSA algorithm (even much faster than quadratically, for decryption).

• Safe RSA-based encryption schemes expand the size of the ciphertext. For example RSA-
OAEP with SHA-256, when using 2048-bit RSA, uses 2048-bit ciphertext blocks (256
bytes) which convey at most 2048 − 2 ∗ 256 − 16 = 1520 bits (190 bytes), loosing over
25% of the bandwidth. This can only be improved to some degree (for 𝑛-bit security,
there must be at least 𝑛 bits lost per block).

• RSA with long-term keys does not offer forward secrecy4.

To tackle the above issues and still be able to use the key-pair based scheme explained earlier
we use the Hybrid-Encryption5 technique.

Hybrid-Encryption scheme [Encryption]:

1. Generate a random AES-key.

2. Encrypt the tenant data (which sometimes approximates to over 5𝐺𝑏) via the AES encryp-
tion scheme using the generated random AES-key.

3. Calculate the MD5 message digest of the encrypted data.

4. Concatenate the (message digest + the encrypted data) and then base64 encode them
together.

5. Encrypt the generated AES-key using the tenant specific public-key.

6. Create the final upload file by zipping together the encoded file and the encrypted AES-
key used for data encryption.

Hybrid-Encryption scheme [Decryption]:

1. Decode the encoded unit and retrieve (message digest + the encrypted data).

2. Calculate the message digest of the encrypted data portion above.

3. Compare the message digest from step-2 against the one obtained from step-1

• If they don’t match, then alert user and disallow upload
4In cryptography, forward secrecy (FS), also known as perfect forward secrecy (PFS), is a property of secure

communication protocols in which compromise of long-term keys does not compromise past session keys.
5In cryptography, a hybrid cryptosystem is one which combines the convenience of a public-key cryptosystem

with the efficiency of a symmetric key cryptosystem.

https://en.wikipedia.org/wiki/Forward_secrecy
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• If the message digests are the same then go to step-4

4. Retrieve the AES-key by decrypting the key-file using the tenant specific private-key.

5. Retrieve the actual data by decrypting the encrypted data using theAES-key obtained from
the above step.

• If decryption fails then alert user and disallow upload

File size Encryption time Decryption time Main memory Disk memory

465 Mb 2.5 sec ( 40 sec) 2 sec ( 12 sec) 32 bytes 2 * File size (900Mb)

920 Mb 5 sec ( 1.5 min) 3 sec ( 23 min) 32 bytes 2 * File size (1.8Gb)

1.4 Gb 6 sec ( 2 min) 4.5 sec ( 35 min) 32 bytes 2 * File size (2.8Gb)

Table 3.1 Encryption-Decryption Process

Table-3.1 is an analysis of the time taken for the encryption & decryption process. Three dif-
ferent file sizes have been studied to understand the time taken and memory consumption for
this. The file sizes were chosen based on a range of daily average upload sizes as indicated by
our industry partner. It is noteworthy that the whole encryption process includes two rounds of
encryption (the data & the symmetric-key), message digest calculation, encoding the encrypted
data and finally zipping the contents (encrypted data & symmetric-key) together. Thus, the
times shown in Table-3.1 denote the time taken for the encryption/decryption alone; while the
times inside the braces denote the time taken for the entire process. The main memory footprint
here is the portion of the file read into the encryption buffer at a single time. It was observed
that the time taken by the AES encryption algorithm was too high when large portions of the
file were read at once. Thus, an iterative algorithm was implemented to read the file chunk by
chunk and flush to disk immediately upon encryption. The reverse of the same flow was fol-
lowed for decryption. This implementation of the data encryption agent is currently running
in the production environment of one of the collaborators of this project.

Moving forward from the data-upload validation phase we studied the complete pipeline for
how the data is processed until it reaches the datastore. The findings from these studies helped
define the scope and vision for the framework that is delivered.



3.4 Design Requirements Emerging From the Initial Study 20

3.4 Design Requirements Emerging From the Initial Study
Once the data-upload step has been validated for authenticity and integrity, it must be ensured
that the data reaches the datastore via a secure channel. It was observed that the pipeline that
carries the uploaded data from the beginning until the end (datastore)may consists of amyriad of
different software tools and technology stacks. Based on the variety of software and technology
stacks used, a combination of multiple security protocols could be enabled to ensure that the
flow is isolated and is secure from external tampering. This is the same for all types of data
processing pipelines made up of heterogeneous applications. An example of another type of an
observed pipeline was when a user triggers for analytics from the stored data. In this use case
the data is already found in a datastore. So the pipeline begins from the store and ends at the
user-facing application (the opposite of the upload scenario).

However, one of the common traits of all such pipelines is the heterogeneity of the many
applications that make up the pipeline. In such cases each of these different applications expose
their own ways to instigate security on and around them. This necessitates that the application
developers will have to be aware of the different security protocols that each of these applications
operate on. They also have to pay attention to the dependencies between different versions of
such protocols to ensure lucid integration. This prevents quick and easy addition/removal of
new applications to/from a data-processing pipeline.

In addition, a more significant issue is that the above characteristics are a hurdle to the
main goal of this discussion which is to protect data-processing pipelines from passive internal
threats. As discussed in the previous chapters, our primary objective is to protect the data and
the pipeline from threats that occur due to (passive) developer errors. If the application security
checks are also done by the application developer then they too are prone to errors. Thus, a key
design requirement emerging from this prototyping phase was to provide a defensive boundary
around the applications. In addition, it was required that the developers only focused on the
core logic of the application while tenant specific parameters are externally made available to
the application environment. To achieve this, it was required to define a surface outside the
applications itself to instigate security checks. This surface at which the security checks would
happen must be independent of the applications itself but yet close enough to encapsulate them
(the applications) as independent logical units. Hence, we build this surface by containerizing
the applications of the pipeline; then we define the container boundary as the interface for setting
up the necessary security checks. This unique boundary allows us to setup defense-in-depth
controls on the applications. In addition to the applications themselves being isolated, the data-
processing pipelines (for different tenants) also must have isolation. That is, different tenant
data should be processed in dedicated pipelines as a defense-in-depth measure. We enable this
in our framework by not reusing container instances of one tenant to process data from another
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tenant. We also ensure that there is no crosstalk between different tenant specific containers
using SDN controls as discussed next.

With the above requirement, we now have to define the means for communication between
the pipeline applications. It is important to be able to dynamically control the communication
topology while actively monitoring the channel. Dynamic topology control allows re-routing
data-flows via different application instances for added security. Activemonitoring enables real-
time capturing & alerting of bogus activity of a specific application. Thus, defining a proper
communication mechanism is a crucial requirement to the design. We achieve this using the
control-plane & data-plane separation enabled by software defined networking (SDN).

With proper mechanisms for application isolation (to provide defense-in-depth) and com-
munication channels (to enable dynamic reconfiguration and monitoring), the next requirement
would be to ensure that the design is modular. A modular component based framework is im-
portant so that new feature inclusion and framework updates are made easy. This also makes
troubleshooting easy and the framework more scalable. Another important design requirement
that was identified is that the framework should support easy integration of different types of
workflows. The data processing pipelines may change over time. New tools may replace older
ones. Intermediary applications may be injected to an already existing flow. Thus, the frame-
work should make the on-boarding process (for a new pipeline) straightforward. We achieve
this by separating the implementation details of each pipeline into a generic interface which can
be re-used for new pipelines. Thus, a new pipeline can be added to the framework within hours
by providing the right interface implementation and including its definition in the configuration.

Fig. 3.7 Expected system model from identified requirements

Figure 3.7 is a high-level depiction of the systemmodel emerging from the identified require-
ments. We describe the implementation and functionality of each component of this model in
Chapter 5. To summarize, the goal of the system is to protect tenant data from passive-internal
threats - threats arising from unintentional developer mis-practices when building applications.
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Accordingly, the system requirements established from the evaluated industry use cases are as
follows.

• The framework shall provide a strict isolation boundary for applications to instigate de-
fense measures.

• The framework shall make available tenant specific configurations/information to the ap-
plication developer from an external isolation boundary.

• The framework shall enable the application developer to write business logic using tenant
specific information made available at the isolation boundary.

• The framework shall ensure different tenant data are processed by different isolated pipelines.

• The framework shall provide communication means between the application isolation
units.

• The framework shall enable network level monitoring of the application communication.

• The framework shall ensure real-time evasion of unintended crosstalk between pipeline
applications.

• The framework shall allow dynamic wiring of applications to enable communication be-
tween them.

• The framework shall allow new workflows to be added with less effort than deploying
them without the framework.

• The framework shall allow existing pipelines to be extended by introducing new applica-
tions to it.

The threat model addressed by these requirements is discussed in Chapter 4 and the implemen-
tation specifics of these requirements are explained in Chapter 5.



Chapter 4

Threat Model

In this chapter we discuss the threat model addressed by the proposed framework. As discussed
in the previous chapters our focus is to handle passive-internal threats in SaaS based cloud
deployments. We enumerate the different threat vectors that are of concern for such SaaS de-
ployments. We then explain how our framework is able to avoid these threat scenarios and how
it enables easy integration of additional security measures.

4.1 Threat Vectors
The threat vectors of the passive-internal model are related to how the data is handled in SaaS
clouds. The cloud-infrastructure providers by default have their own service level agreements
with regards to protecting the cloud VMs. However, SaaS providers who have their software
services deployed in the cloud need assurance against threats that are different from the ones
addressed by the cloud-infrastructure providers’ SLAs. The threat model here is focused towards
the behavior of the deployed applications and how data is processed by them. We target SaaS
deployments where a set of applications create a data-processing pipeline. Such pipelines have
an ingress and egress application. The data enters the pipeline through the ingress application
and reaches its resting point via the egress. The applications in the pipeline transfer data in a
specific order such that it is processed accordingly.

An important aspect of such scenarios is that the application development and deployment
are two different processes. Thus, in most companies they are handled by different teams. The
cloud administrative team is mostly unaware of the internals of the applications. They just
provide the system logistics to enable these applications to interact as requested. However, an
important point-of-vulnerability are the applications themselves. The primary source of threat
in this model are improperly/maliciously behaving applications. The reason for such unintended
behavior could be anything from ignorant programming errors tomaliciously written programs.
Thus, the end-goal of the framework is to ensure protection of data against the effects of such
bad practices and unintended errors.
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4.1.1 Application Crosstalk
This type of threat arises when a certain application of the pipeline attempts to communicate /
connect-to applications that are not one of its immediate pipeline-neighbors1. Such an applica-
tion might alter the processing order of the data or may threaten the stability of the system. This
in return will lead to the data losing its integrity. The effects of this threat could create a chain
of problems to the system since it is carried with the data. It could lead to incorrect/misleading
information being written to the final datastore.

4.1.2 Data Leak
Data leak related threats arise when an applicationwrites any processed data (to some location)
while the expected behavior is only to process the data and transfer it to the next application in
the pipeline. Such behavior could be attributed to partially reviewed code before deployment
and alsomaliciously written programswith the intention of gaining access to the data. Leakages
due to ignorant coding/deployment practices makes the data easily accessible in the event of the
cloud-VM being compromised. On the other hand, intentionally leaked data could effect the
system immediately and be used for other malicious activity. In addition to unintended writes,
data leaks could also happen via in-memory data hijacking attack.

4.1.3 Data Mixing
One of the key requirements of cloud deployments is to promise secure processing and trans-
mission of data that are owned by different tenants2. The SaaS provider should be able to pro-
vide this promise to its tenants whose data, the SaaS applications will process in the cloud. A
pipeline of applications that process data owned bymultiple tenants poses the important concern
of data-mixing. These pipeline-applications must use appropriate processing-parameters and
process-logic depending on the tenant whose data is being processed. Any errors (intentional
or ignorant) could lead to data from different tenants being mixed and incorrectly tagged. Even
worse the incorrectly tagged data could end up in the wrong datastore, leading to erroneous
results. Thus, there should be proper isolation mechanisms to ensure different tenant data are
handled by different channels. In addition, the defense mechanism should be able to capture
any such erroneous behavior and stop bogus applications from altering the integrity of the data
by mixing it with others.

1Pipeline-neighbors means applications that are logically next to each other when processing the data.
2Tenants here are customers of the SaaS provider.
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4.1.4 External Access
Any application internal to the pipeline could attempt to communicate outside the deployment
boundary itself. This would not only load the network activity of the deployment server butmore
importantly allow data to be leaked elsewhere. Thus, applications should be prevented from
trying to access anything outside the pipeline’s network boundary. All pipeline-applications
have the single task of processing the data and transferring it to the neighboring applications.
The only exception would be the ingress or egress applications that could be user-facing to
receive event triggers and to provide results. Hence, all other applications’ network activity
should be restricted to a strict boundary.

4.1.5 Unconstrained Resource Utilization
Applications could hold server resources for a period more than what is required. In addition
they could be performing computation that is not part of the pipeline-processing. This would
lead to un-accounted utilization of the resources for tasks that is not of benefit for the SaaS
provider. Bogus applications, could keep hold of server resources for irrelevant/malicious com-
putation. Huge losses could have been incurred by the time this is realized and the deployment
is cleaned. Thus, measures should be taken in order to restrict the resource utilization of the
applications. In addition, it must also be possible to audit the resource utilization of specific
applications over a period of time.

4.2 Defense Measures
As discussed at the beginning of this chapter the common characteristic of the threat vectors
listed above is that the point-of-vulnerability is the applications that are deployed. Hence, the
focus of the framework is to capture bogus behavior of these applications and prevent them from
causing any harm to the system and the data. The primary challenge in achieving this is on how
to define a rigid defensive boundary for the applications. Such a boundary must be independent
of the implementation of the applications. It must be decoupled and farther away from the
application such that it does not impose additional rules for the application programmer; acting
as a transparent shield. In addition, the boundary must also be close enough to the application
so it creates a suitable and accountable encapsulation unit; one which is well separable from
other applications.

We define this defensive boundary by containerizing (as explained in the previous chapter)
each application that is part of a data-processing pipeline. The container boundary is a stable
encapsulation unit that provides the environment for the application to run independently but
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also defines a barrier before it could reach outside. By default Linux containers provide fea-
tures such as isolation from host processes and fine-tuned resource allocation. Our framework
makes use of these features and builds into these containers the defensive measures necessary to
protect the application & data from each of the threat vectors discussed earlier. In addition, the
architecture is made modular such that it allows for future improvements in terms of security
measures. Communication between these containerized units is enabled via connecting them
to an Open-Flow enabled virtual switch. The controller module connected to this switch pro-
vides the defense mechanisms required in terms of external-reachability and communication of
the applications. A manager module takes responsibility of monitoring on-going events and
the activity of the applications in different pipelines. Themanager3 is made capable to trigger
alerts when anomalous behavior is detected.

Application Crosstalk: Upon, receiving a new event-trigger it is the responsibility of the
manager to inform the controller about the type of event that was triggered. In addition it also
notifies the logical organization of the applications in the event pipeline. As per this information
the controller will publish flow-control rules to the switch, telling it what are all the allowed
flows (communication) per application in the pipeline. Any, unauthorized crosstalk between
the applications will be captured and disallowed. Moreover, this information is logged enabling
future audit of the behavior of each application. Thus, the controller acts as the strict enforcer
of communication rules between the applications and provides defense against any bogus ap-
plication crosstalk.

Data Leak: The container boundary is the surface with which each application is allowed to
interact with. Applications, when encapsulated within a container will not be able to see any of
the host processes nor will they have access to the host file-system. Their runtime environment
is restricted to what is provided by the container. Hence, whatever local writes they do are only
visible within the container and is only available for the lifetime of the container. The framework
brings down all the containers contributing to a specific event upon successful termination of
that event. Hence, any local writes during a single event will be automatically cleaned upon
completion of that event. As a result data-leaks (intentional or accidental) will not have an
effect in the long run. All disk writes are cleared during the event termination phase and the
system returns to a fresh state. The memory surface of each container is also completely isolated
from each other and will only be valid as long as the container is running.

Data Mixing: As indicated in the previous passage, every new event that is triggered has its
own set of fresh containers that form the data-processing pipeline. Thus, no instance of any

3The operations of the manager and the controller are explained in detail in Chapter 5
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application in a pipeline, processes data from two different events. Every batch of incoming
data are provided with a dedicated pipeline of applications from ingress to egress. Whilst con-
tainerization provides isolation of the applications, isolation amongst different pipelines must
be achieved at network level. Our framework achieves this via separately published flow-rules
per pipeline to the virtual switch. These rules ensure that no mixing of data is allowed between
any two different pipelines. This creates a separation between different tenant data and serves
as the mechanism to evade data-mixing.

External Access: In the same way that the virtual-switch protects data from leaking between
pipelines, it also ensures that data is not leaked outside the deployment environment. In addition,
the virtual-switch is setup fully internal to the host and is cut off from any external connectivity.
It sits inside the deployment host as the conductor for enabling connectivity between the con-
tainers while preventing all external access. The switch is controlled via the controllermodule
as explained earlier. In addition, the framework controls hostname resolution to enable appli-
cations to reach out to neighboring applications. Thus, applications must stick to application
specific hostnames in trying to communicate to neighbors. The manager-module ensures that
proper hostname resolution per container is configured depending on the application it hosts.
Thus, connectivity outside the container is allowed only as required by the pipeline.

Unconstrained Resource Utilization: The Linux-kernel by default provides hooks to control
the amount of system resources allocated per container. This sets a limit on howmuch resources
a containerized application can use for its computation. We make use of this functionality to
build into the framework the capacity to control resource allocation per container (application).
The manager-module provides hooks to define container specific resources. In addition the
controller-module supports gathering of network activity of different applications. Together the
framework can support fine-tuned resource allocation per isolation unit (container-level and
pipeline-level) while providing alerting and monitoring services regarding how the resources
are occupied/utilized. The potential to integrate this feature into the framework ensures that
applications are prevented from unconstrained resource utilization.
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4.3 Counter Measures
Application crosstalk is blocked at IP level. Each application is encapsulated in a container
and is assigned a dynamic IP address. Given the containerized isolation, applications can reach
each other only via network communication. Thus, the defense has to be introduced at the IP
level. During the setup phase, flow rules are published as explained in Chapter 5. A rule table
per application (in the pipeline) is created in the virtual switch. The rule table contains one rule
per neighboring application and a general drop rule for all other applications in the pipeline.
Each rule is matched against the IP address, the OVS-Port and in some cases the MAC-address
of the incoming packets. This can be further extended to create alerts on every drop incident.
Moreover, the developers are expected to use predefined URLs (instead of IP addresses) to reach
neighboring applications. During the setup phase the correct IP address to URL mapping is au-
tomatically configured into each container by altering the hosts file. Thus, the correct IP address
is resolved for the right URLs used in application configurations. The flow rules published to
the virtual-switch can be varied depending on the application type and the protocols that must
be monitored and allowed. This is a major advantage of using SDN based network management
where the control plane can be dynamically configured.

With network isolationData Leaks andDataMixing is only possible when the persistence-disk
is shared between applications and pipelines. As discussed earlier, containerization completely
isolates the writes of each application from those of others applications. The only shared persis-
tencemedium are shared-volumes used with file based applications (eg: logstash). Data-mixing
(betweenmultiple flows of a single tenant and flows of different tenants) in such scenarios is com-
pletely evaded by having dedicated shared-volumes for each pipeline. No two flows share the
same volumes for data transfer between applications. This is configured into the container in-
stance during the setup phase of a new pipeline. In addition, the shared-volumes are configured
as a temporary data transfer mechanism (only when needed like with logstash) between appli-
cations. Thus, upon termination of a pipeline these volumes are complete removed and cleared.
The only data at rest will be at the datastore (eg: Cassandra) which will be encrypted. Any
data maliciously leaked will be completely lost upon termination of the pipeline. Besides, the
malicious actor will need root access to the system to take advantage of any leaked data even if
it is persisted. Thus, with only minimal setup requirements, our containerization approach en-
sures no data leakages are allowed. Our design also easily encapsulates all internal writes from
mixing with others. Besides, there is no additional overhead in cleaning up since the container
ecosystem automatically takes care of it once a container is stopped and removed.
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The default Ethernet interface of the host-machine is removed from the virtual-switch cutting
off any External Access. The application-containers are initially spawned with no network in-
terfaces assigned to them. Then they are attached to the OVS using a veth (Virtual Ethernet)
pair. The OVS-port to container mapping is maintained in a separate structure along with the
IP address assigned to the application. Hostname resolution is done as explained above. Thus,
none of the applications can reach outside of the system. The ingress application-container,
alone is assigned an additional network interface. Along with the veth pair connecting it to the
OVS, this container is also attached to the docker-host bridge. This is to allow for the tenants
to be able to spawn jobs in the system to process their data. However, the ingress and egress
applications are written and managed by a high level authority in the company. Thus they are
not considered amongst those applications which are deemed harmful. Moreover, communica-
tion channels from the border-containers are also controlled by flow-rules in the OVS. Thus, by
having the OVS completely isolated from external connectivity and ensuring that the contain-
ers have restricted network mediums the framework maintains stability. No knowledge of the
host machine can allow amalicious actor to reach the framework and tamper a flow from outside.

Finally, the framework is implemented with extensibility in mind. This is one primary advan-
tage catered by having the framework modular and using SDN based controls. New flows can be
easily integrated into the framework, by setting up the appropriate container-images and includ-
ing the required configurations in the main configs file. This makes way for setting fine-tuned
control over how much resources are allowed per container-image and what percentage of sys-
tem resources can be utilized. The controller has full capability to restrict resource utilization.
In addition, the flow controller can integrate newer modules to support additional alerting and
monitoring features to the framework. Overall the framework provides robust defensive mea-
sures against the threat model discussed above while providing the necessary extensibility to
support emerging threats and business requirements.

http://man7.org/linux/man-pages/man4/veth.4.html


Chapter 5

Design and Architecture

In this chapter we first define the design choices for the framework. We then provide a detailed
description of the architecture and how each component is connected to each other. While most
design choice tools are a result of being freely and easily available, any similar technology
can be used as a replacement for an implementation of the framework. A key characteristic of
the design was to utilize existing tools and systems infrastructure to quickly and easily achieve
defense-in-depth for enterprise cloud deployments with scheduled workflows.

5.1 Overview
The design of the proposed framework is based on systems with workflows of multiple applica-
tions that handle large volumes of tenant data. Figure 5.1 is a depiction of such workflows. As
can be seen in the figure such a workflow contains an event inlet (called the Ingress Applica-
tion) and an event outlet (called theEgress Application). In between the Ingress and the Egress
there may be any number of intermediary applications that process the tenant data. However,
it is noteworthy that the flow of the data need not necessarily be linear as shown in Figure 5.1.
Certain applications in the workflow may communicate with more than one application; thus
denoting that they have multiple neighbors. This study only considers workflows where such
applications (ones with multiple neighbors) talk to only one neighbor at any moment. That is,
no concurrent communication happens amongst multiple neighbors. Figure 5.2 is an example
of one such workflow. In addition, the design specifically takes into consideration two different
types of workflow scenarios:

• [1] Off-line batch processing workflow.

• [2] On-line user-engagement based workflow.

To understand the differences between these two types, we define what the triggering event
is. The “event” can be a simple user-trigger to perform a specific task that expects a feedback
(eg: fetch me statistics of sales for last month) or it could also be a one-way trigger. A one-way
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Fig. 5.1 A layout of a sample application workflow

Fig. 5.2 A workflow example with non-linear cross communication

trigger is an event that requests for the execution of a specific workflow but does not expect
an immediate response. A typical example of this is one where tenant data is uploaded to the
system to be processed and stored. To further define the scope of a workflow we also note that
the egress application is either a datastore or a user facing app such as a web UI.

5.1.1 Off-line Batch Processing Workflow
Off-line batch processing workflows are one-way triggered pipelines as explained above. The
user triggers a specific workflow expecting a task to be performed internal to the system without
expecting any response. Thus, the framework sets up the applications of the workflow, processes
the tenant data, puts it into an egress application (i.e. datastore). Depending on the workflow
an egress can be an intermediary application of the flow while also being at the tail end. We
explain this by the example of a flowwhere an event triggers some tenant data to be fetched from
a datastore (egress), processed via a pipeline of applications and written back to the datastore
(once again the egress).

5.1.2 On-line User-engagement Based Workflow
In contrast to the above, an on-line user-engagement based workflow is one where an event is
triggered and a response is expected. In such scenarios the ingress and egress, are both the same
application that enables event triggering.

We focus the development of the framework to off-line batch processing workflows. Thus, it
is based on the example of a specific workflow which receives an upload event, processes the
uploaded data through a pipeline of applications and deposits the end-results to a datastore.
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We then show that the implementation is extensible to different types of workflows with proper
handles for flow-termination.

5.2 Design Process
The key target of the framework is to provide Defense In Depth functionality to workflows that
process different tenant data in cloud environments. As discussed in the introduction to this
study, defense in depth promises security controls at different layers of the data and application
life cycle. Our framework specifically targets the problem of applications with unintended be-
havior. Such behavior could occur as a result of multiple reasons. The threat model for such
unintended behavior stems from the basis of improper programming practices by application
developers. This could be a malicious act or a mistake out of ignorance.

Thus, the primary goal of the framework is defining an isolation boundary for the applica-
tions to enforce security controls. Upon, introducing this boundary we note that the primary
act of threat is unintended network traffic to and from these applications. Hence, next we de-
fine the inter-application communication mechanism and how such cross-communication is
controlled. A sub-problem of the design of communication is hostname resolution. Then, to
provide completely isolated data processing pipelines for different tenants we introduce isolated
pipeline allocation for each tenant in the framework. That is, data specific to two different ten-
ants are not processed via the same pipeline of applications. Each one gets its own channel
from ingress to egress. Having dedicated and active pipelines for different tenants enforces,
resource sharing within the system even when some pipelines are idle. Thus, our framework
sets up processing pipelines on demand for new tenant events and strips them down upon com-
pletion. The focus of the development of this framework was based on a requirement that has
scheduled and infrequent events. In addition, the template use cases used for the development
of this framework consist of self contained applications that can be dynamically spawned and
terminated. Thus, it is acceptable that the framework adapts a design choice to not persist ac-
tive pipelines beyond their active requirement. It is also noteworthy that only the intermediary
applications of the pipeline follow this non-persistent design of the framework. The ingress and
the egress applications are kept running throughput the lifetime of the system. This is because
these are the boundary points where the event initiation and termination are captured.

The choice to setup applications on demand (i.e. when a new event occurs) poses an important
problem. That is, how can the framework correctly decide that the applications of the pipeline
are ready for action. To elaborate more, let us take the example of a data-upload workflow
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where the uploaded data is processed via multiple applications and is deposited to a datastore.
With our on demand pipeline model, when an event is triggered an initial delay is observed for
the flow to be setup. This steps involves spawning the applications that are part of the pipeline
that handles the event in question. Since, these applications are spawned independently, we
need a mechanism to deterministically conclude that all of them have duly started and are ready
to accept the event flow. We cannot assume that the applications will be up and running in time
when the data arrives. We handle this problem using a notificationmechanism that informs the
framework that a particular application is up and running. The final piece of the design process
is proper termination of the pipeline. This includes terminating all intermediary applications
and cleaning up of all resources incurred during setup. In the following sections we discuss how
each part of design process (discussed above) is delivered in the framework.

5.2.1 Application Isolation
A key aspect of the framework is defining an isolation boundary for applications such that secu-
rity controls could be enforced. The framework achieves this by containerizing all the applica-
tions that are part of a workflow. A container [46] is a lightweight virtual execution environment
that includes everything needed to run a specific piece of software. Containers completely iso-
late applications from its surrounding and enables applications to be run in a platform agnostic
manner.

Fig. 5.3 A Container hosting an application with the required tools

Figure 5.3 depicts how a containerized application would be. For the purposes of our frame-
work containerizing applications provides us a nice boundary to introduce security controls to
the application behavior. This boundary is close enough (to the application) such that it does not
overlap with other applications’ execution environment and is far enough (to the application)
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such that different controls could be enforced. Thus, the framework enforces applications to
be containerized first to ensure application level isolation. The isolated environment emulates
a lightweight linux machine that makes use of the underlying host-kernel. Thus, all isolation
units share the same host-kernel but within their own execution boundary. The isolation itself (at
the host kernel level) is achieved via linux namespaces and cgroups that enables partitioning
of kernel resources . In our implementation of the framework we use Docker container plat-
form to containerize the workflow applications. Containerization is a one-time process where
the container configurations (application source, libraries, other tools and execution command
etc.) are provided as a config file and a corresponding container-image is built. Then, this image
can be used to spawn as many containers as required. This image is the source code equivalent
of a running process (in this case a container instance). This image defines the necessary se-
curity controls and required scripts to manage it, in addition to the application related binaries
and libraries.

5.2.2 Inter-Application Communication Mechanism
With application isolation in place, the framework needs to define a mechanism for communi-
cation between the applications. Since application isolation has been achieved via container-
ization, our unit of control is now the container within which the application resides. Thus, the
discussion of enabling communication between applications necessarily means how to enable
networking between the containers.

The docker [8] container platform by default supports multiple networking modes to allow
inter-container communication. The simplest mode is one where all containers share the host
networking stack as shown in Figure 5.4. In this mode all containers (even though isolated)
share the host TCP port range. This means these containers will act as processes on the same
host with inter-process-communication (IPC) enabled via socket communication. In addition,
if the host can reach the Internet, so can the containers as well. This is not what was intended in
terms of providing “defense in depth” via application isolation. Moreover, this also eliminates
the possibility of segregating pipelines of different tenants.

Another docker networking approach is where custom virtual bridges can be formed per
tenant pipeline as shown in Figure 5.5. With this approach a dedicated virtual network bridge
can be created per tenant and each container in the pipeline is attached to this dedicated bridge.
It is also noteworthy that in this mode the containers are fully isolated from the host networking
stack. Thus, with this setup we gain true isolation of pipelines for different tenants. However,
we still do not have control over restricting communication between containers (applications)
that fall within the same pipeline (connected via a single bridge). This will require re-writing of
a new docker networking plugin to support dynamic controls on the bridge. In addition, scaling
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Fig. 5.4 Docker Networking: Host mode

and updates to the plugin is restricted by the level of control enabled by docker on its networking
stack.

Fig. 5.5 Docker Networking: Custom bridge mode

Given, the drawbacks of the two default networking options of docker we devise a differ-
ent solution to enable inter-application communication in our framework. We look towards
a fully software based networking option to have finer control over communication between
same-pipeline applications. Our design is based on pure software defined networking (SDN)
principals.

Software Defined Networking (SDN)

SDN technology is an approach to facilitate dynamic network restructuring and management
programmatically. This is unlike the traditional networking setup which is static and decen-
tralized. An SDN based networking architecture enables dynamic re-wiring of the networking
nodes and also enables enforcing fine tuned controls over the communication channel. Using
an SDN based networking model gives us the freedom to (programmatically) manage the com-
munication between the nodes and also supports for monitoring and analysis. Figure 5.6 is a
depiction of a traditional SDN setup. All the communicating nodes are connected to a switch.
An SDN switch is just like any traditional switch with additional support for the OpenFlow
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protocol. A controller program listens on a specific port (default:6653) for control messages
from the switch. These control messages are sent via the OF protocols. The controller can
monitor the activity on the switch and also can publish control rules to the switch which will be
enforced for any traffic flowing through the switch. Whenever, the switch encounters a packet
from a previously unseen host, it forwards it to the controller, which then decided what to do
with it.

Fig. 5.6 An example of a traditional SDN setup

SDN based Inter-Container Communication

Our framework proposes a design where all containers are initially started completely isolated
from the network stack. At this point no container (i.e. application) can reach any adjacent ap-
plication. We then connect all these containers to a virtual switch [7], setup in the cloud host.
Figure 5.7 is depiction of how this is achieved. The virtual switch could be any implementa-
tion that supports the open-flow protocol, making it compatible for SDN. This virtual switch
is isolated from the host network and is not allowed external/Internet connectivity. The idea is
to provide the minimal channels for inter-application communication shielding the applications
from any unintended cross-communication. We then control communication between these
containers by dynamically publishing control rules to the switch via the flow-controller module
(which we discuss later in this chapter). This mechanism enables control over communication
between the applications with as little overhead as setting up a single virtual switch as the bridge
between them.
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Fig. 5.7 Inter-container communication via OF enabled virtual switch

Hostname resolution

Upon achieving application-isolation and inter application communication, we still have to
figure out a way for hostname resolution. That is, we cannot allow application developers to
freely use any IP address (in their code) to reach other applications. This will be a mechanism
for security breach and will restrict us in how dynamic our framework can be. In order to en-
able application development in a fully framework agnostic manner, we must decouple how
applications use IP-addresses from its code base. We achieve this by enforcing the applica-
tion developers to use pre-defined hostname strings in their final revision of the code. Proper
hostname string usage must be verified via thorough code reviews before going into produc-
tion. The framework, takes care of dynamically mapping these application-hostnames to correct
IP-addresses at the isolation boundary (i.e. the container boundary). Similar applications of
different pipelines may share the same hostname, but the framework dynamically binds them
to different IP-addresses and ensures there is no conflict. If an incorrect hostname string is
used then the framework would disallow the workflow to continue.

5.2.3 Isolated Pipeline Allocation
In the preceding sections we described how the framework achieves application isolation and
inter application communication across the isolation boundary. Now we describe how the
framework supports isolation of pipelines for different tenants. As described earlier the isolated
containers are all stitched together via the OF enabled virtual switch. At this point by default all
communication is allowed. However, we define pipeline isolation by restricting applications of a
specific tenant to a communication pool. Per-tenant (per pipeline) control rules are maintained
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in the switch separately. Each pool enforces rules specific to the applications of the pipeline
it corresponds to. When an application attempts to communicate to another application, the
switch first delivers the message to the pool it corresponds to. Then, control checks in that pool
are executed to see if the flow is allowed within that specific pipeline. Thus, on a single virtual
switch, we manage multiple isolated pipelines via separate control pools.

5.2.4 Ready State Notification Mechanism
The next important aspect of the framework is managing how application status is monitored to
schedule data flow without intermediary stoppages. A problem observed in the build up to the
framework was that with dynamically spawned application instances it is difficult to tell when
exactly an application is completely up & running and is ready to receive data. The framework
needs to know if all the applications in the pipeline have reached a ready-state before it can
initiate the data processing. We handle this by implementing a notification mechanism by ob-
serving application logs. The application developer is expected to provide the final start-up
log as part of the documentation of the source. The framework then uses this as the monitor-
ing point to confirm that the application is ready. We can also enforce a specific startup log
template as a coding practice to all developers, enabling a unified ready-state log pattern for all
applications handled by the framework. The framework maintains a state-queue per pipeline
and waits until all applications in the queue have reached the ready-state. Once, that is achieved
the data processing is started.

5.2.5 Termination of the Pipeline
The final building block of the framework is a proper mechanism to deduce when to terminate
the pipeline and clean resources. For applications that process data as a batch and transfer them
to the application next in line, we can use a log based notification mechanism as described
above. However, most scenarios within the use case boundary of this study have been appli-
cations that stream-in and stream-out data. For such streaming scenarios, an end-of-stream
(EOS) notification needs to sent. The identification of the end-of-stream is very difficult unless
an EOS message is piggybacked at the end of the flow. Even, then it gets more complicated in
that, each application needs to know how to handle this message and it must be expected of the
developer to program this. Moreover, this only works for linear streams. In case of a parallel
stream, it is difficult to tell when all of them have ended. Thus, the termination mechanism is
left to be handled independently as best suited for the workflow in question. Since, we had fo-
cused our implementation on an actual data-upload and data-processing pipeline (with a few set
applications), we introduce a termination mechanism that suits this flow. We also generify this
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approach to be suitable for any file based streaming flows. In our approach we force input a ter-
mination file to the flowwhich can be understood by the pipeline applications. The penultimate
application that writes data to the egress datastore checks the streamed data for a termination
string. If such is found then a termination event is triggered. We explain the specifics of how
this is handled in the sections that follow.

5.3 Architecture and Implementation
In the previous section we described the design considerations for the framework and how we
address each one of them. In this section we produce the entire architecture of the framework
as a whole, by putting together each of the sections discussed earlier. We also provide imple-
mentation details as to how we handle each scenario. We build our framework based on an
actual data-processing pipeline as shown in Figure 5.8. We then run multiple tests on this flow
to evaluate the overhead incurred in using our proposed framework. As shown in Figure 5.8,

Fig. 5.8 A workflow example for data upload and processing pipeline

the flow starts by data-upload, then the data is processed through various applications of the
pipeline and finally is written to a Cassandra datastore. We build the framework to align with
this specific flow and enable hooks to extend it to any similar flows. First, we describe the archi-
tecture as a flow of events for a generic data-processing pipeline and then extend the discussion
to the specific flow shown in Figure 5.8, with implementation specifics.

Figure 5.9 is the complete view of the framework architecture. We start by establishing that
the processes running as normal processes (denoted as bare-processes) in the cloud host are
the: Container Manager (CM), Flow Controller (FC), Docker and MQTT broker. Note
that none of the applications of the actual pipeline are running as bare-processes. We also note
that all communication between the two framework modules (flows 4, 5, 7 and 15) and between
the CM and Ingress (flows 2 and 7) are done using the MQTT protocol. This was a choice
keeping in mind the ease-of-scalability of the framework to integrate newer modules. MQTT
is also lightweight in the event of distributing the framework across multiple nodes as a future
improvement. Finally, we setup a virtual-switch (VS) in the system to manage and control the
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Fig. 5.9 The architecture and flow diagram of the framework

communication channels. The flow-controller module listens on the virtual-switch for open-
flowmessages indicating traffic that flows through (flows 11 and 14). The virtual-switch is fully
isolated from external/Internet connectivity.

We start by isolating the two border containers - ingress and egress - via containerization.
These border containers are set to keep running throughout the lifetime of the system. I.e. they
are not spawned and terminated for every incoming event. This also means that all flows initi-
ating from here are separated into different pipelines for different tenants. This design choice is
required since the border containers are either the user-facing applications or the ones that inter-
act with a datastore. Thus, they need to be active at all times and are useful isolation boundaries
at which important security checks can be implemented. Since the ingress container shares the
lifetime of the system, we assume that the application run within the ingress is developed and
reviewed with higher priority than the normal pipeline applications. We also, have the ingress
and egress containers attached to the virtual-switch with static IP addresses assigned.

5.3.1 Flows 1 to 6
As an event is triggered (flow 1) in one of the ingress applications (ex: data-upload), an event
handler is created with a unique EVENT_ID. Then this event is notified to the container-manager
via a simpleMQTTmessage (flow 2). The container-manager then loads a pre-defined configu-
ration file (like the example shown in Appendix:A.1). This holds, all the necessary information
about all the different workflows supported by the framework. Based on this configuration the
container-manager spawns the required application containers (for this specific workflow) by
contacting the docker daemon (flow 3). These containers are spawned in network=none mode
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making them completely isolated. At this point the spawned containers are also attached to
the virtual-switch. However, no traffic is generated since the pipeline-applications within the
containers are yet to be executed. Upon, successfully spawning the containers, the container-
manager forwards the necessary information to the flow-controller (flow 4). A sample of the in-
formation forwarded to the flow-controller is shown in Appendix:A.3. The flow-controller then
builds the necessary data-structures to handle this specific event/pipeline and responds OK to the
container-manager (flow 5). Now, the container manager executes the pipeline-applications
within their specific containers by contacting the docker daemon (flow 6).

5.3.2 In between Flows 6 and 7
While most applications have a purely stand-alone startup, some applications are dependent on
another application running. The framework handles this by explicitly requiring the execution-
order of the pipeline-applications to be included in the configuration. Upon execution, the
framework redirects all the logs produced by the pipeline-applications to a pre-defined location
within the container boundary. The log output of these applications are monitored for a pat-
tern matching the “start-up log” parameter of the configuration (as explained in the design
section above). Upon a match being found the container sends a UDP packet to the virtual-
switch indicating the ready-state of that specific container-application. Since, this UDP packet
will be one of the first of its kind seen by the virtual switch, it will be forwarded to the flow-
controller. The flow-controller recognizes this as a ready-state packet and sets the state of
this specific application in an internal queue to “READY”. The ready-state packets contain the
following information: ||<EVENT_ID>:<CUSTOMER>:<HOSTNAME>:READY||. In addition, the
flow-controller also publishes a control rule to the switch, forcing all future UDP packets to be
forwarded to the controller.

5.3.3 Flows 7 to 11
Once all the applications in the pipeline have reached the “READY” state, the flow-controller
informs the container-manager that the pipeline for this specific event is ready to process in-
coming data (flow 7). The container-manager in return sends a “READY” message (MQTT) to
the ingress application specific to this event (flow 8)1. This “READY” message contains the En-
tryIP indicating the next point of entry for the data from the ingress. Different tenant events will
have different isolated pipelines created. They will all take separate and unique routes at this
point where each of their EntryIPs will point to different isolated containers. This is denoted

1Note that all the events between flows 6 and 7 are explained as a single unit without having each internal flow
broken down into smaller sub-flows.
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by flow 9 in the architecture diagram above and is also shown in Figure 5.10 below. Once the

Fig. 5.10 An example of flow separation at ingress for two different tenant events

ingress has the EntryIP and starts forwarding the incoming request (data) to the first applica-
tion in the pipeline, traffic is generated between all the application-containers in the pipeline.
All such traffic must pass through the virtual-switch since the container interfaces are attached
to the switch and are isolated from external communication (flow 10). As packets start flowing
through, the virtual switch (VS) checks if it has any control-rules setup for that specific packet.
Since, it is the first (non-UDP) packet of its kind, the VS forwards them to the flow-controller
(FC) (flow 11). The flow controller analyses the packet and sets up appropriate control-rules for
flows from that specific host (i.e: application-container). The process of how the FC analyses
an open-flow message and sets up control rules is explained later under Algorithm-1.

5.3.4 Flows 12 to 15
Now, applications are allowed to communicate to each other (in achieving the data processing
task) according to the control-rules established by the FC. Any malicious or restricted crosstalk
will be disallowed at the switch. Thus, the applications will be only allowed to send and receive
data from its white-listed neighbors. Once the processed data has passed through the entire
pipeline and reached the egress container, it will write the data to the datastore (flow 12). Im-
mediately after flushing all the data to the datastore, it will trigger a “termination event2” by
sending a notification as a UDP message to the switch (flow 13). As per the established control
rules (for UDP packets) the switch will forward the notification packet to the FC (flow 14). The
FC analyses this packet, cleans up all internal flow-structures for this event and informs the
container-manager about the termination-notification (flow 15).

2The termination event is workflow specific as explained in the design section of this chapter. We explore a
specific termination mechanism we employ in our experiments in Chapter 6.
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5.3.5 Flows 16, 17 and Termination
Upon receiving the notification for termination for a specific event, the container-manager im-
mediately stops (and removes) all the application-containers specific to that EVENT_ID (flow
16). It then, triggers a flow-deletion message (encapsulated as a UDP packet) to be sent to the
switch from within the event specific ingress-container. This message is denoted by flow 17.
The switch upon receiving this UDP message immediately forwards it to the FC. The FC finds
the flow-deletion message and publishes flow-deletion-rules to the switch. At this point all the
data structures specific to this event are cleared at the container-manager and the FC. In addi-
tion the pipeline-containers setup for the workflow are also completely removed. The flow-rules
specific to any of these containers are also deleted from the virtual-switch.

In the next section we explain the functionality of the Container-Manager (CM) and the Flow-
Controller (FC). We also describe how the flow controller analyses OF messages and controls
flow-rules in the switch.

5.3.6 Container Manager (CM)
The CM acts as the conductor for the whole framework. It communicates with the FC to setup
proper flow-control rules (on the virtual-switch) to isolate pipelines and applications. It also
communicates with the Docker daemon to spawn, stop and remove containers and also to trig-
ger events from within the containers. In addition, it communicates with the ingress containers
to get-notified when a new event arrives and to inform them of the entry-points of different
pipelines. All communication to and from the CM is carried out via the MQTT protocol. This
is primarily because the protocol is lightweight and enables scalability of the framework with
ease when adding newer modules. It also enables event and message separation simply by using
different topics.

TheCM operates using a configuration filewhich carries all the information pertaining to every
workflow supported by the system. A sample of this file is shown in Appendix:A.1. Each work-
flow is given a unique name in the configuration which will be used throughout the system.
In addition, the CM expects a “handler-class” for each workflow. It is this class that will be
used to handle events of that specific workflow. The class is expected to be a sub-class (extends
class) of the abstract class AbstractEventHandler. The AbstractEventHandler class
is an implementation of the interface EventHandler (shown in Appendix:A.2). This interface
provides a skeleton for a workflow developer to understand the tasks required to integrate a new
workflow into the system. However, not all of them need to be implemented, since most of them
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have been already defined in the AbstractEventHandler. This design choice is made in order
to have leeway for newer workflows to be integrated with ease.

5.3.7 Flow Controller (FC)
The flow-controller is the connection point to the virtual switch (VS). It waits for new-event-
notifications from the CM and sets up the required flow-rules on the VS. When a new packet ar-
rives at theVS, it is forwarded to theFC encapsulated as an open-flow (OF)message. Algorithm-
1 describes how the FC processes an incoming OF message. As shown in Algorithm-1, the
flow-controller (FC) sets up all the event specific data-structures first. The FC does this when
it receives an event-notification from the CM (denoted by flow 4 in the architecture diagram).
Now, when the FC receives an OF message from the VS it checks the originating port3. It then
stores a mapping between the vs-port and the container IP.

Next, the transport packet of the OF message is evaluated. If the transport protocol is UDP
and the packet did not originate from the switch itself, we know that it must have arrived either
from one of the application-containers in the pipeline or a border-container. If it originated at
a border-container then it is understood that the packet carries one of the two pipeline-event-
notifications: Event Termination or Delete Flow-Controls. The type of the notification is
deduced by looking at the contents of the packet-payload (shown below).

• Event Termination: ||<EVENT_ID>:<CUSTOMER>:<ERROR>:<TERMINATION_MSG>||

• Cleaning Flow-Controls: ||<EVENT_ID>:DELETE_FLOWS||

If the UDP packet had originated from one of the application-containers, then it carries an
application-ready-state-notification. The contents of a ready-state payload looks as follows:
||<EVENT_ID>:<CUSTOMER>:<HOSTNAME>:READY||.

Event Termination and Cleaning Flow-Controls

From the two pipeline-event-notification messages the first one to arrive would be the event-
termination message. This is sent by the egress container once a termination condition is met
(e.g.: a Cassandra trigger executed upon finishing all writes). Upon receiving this message,
the flow controller cleans all internal data-structures pertaining to the terminating event and
immediately informs the container-manager. The CM stops all application-containers of the
specific event (as described earlier) and triggers the “clean-flow-controls” UDP packet to be

3Note that this port is not the usual TCP port, but the switch port to which the host (in our case the container)
is attached to. This will be used later to clear all control-rules when an event has terminated.
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sent from within the event-specific ingress container. When the FC receives this message, it
sends control-messages to the virtual-switch to clear all flow-rules set-up for the specific event.
Algorithm 1: Handling Open Flow(OF) messages from the Open Virtual Switch(OVS)
1 Function set_up_event_specific_structures();
2 Function receive_OF (𝑜𝑣𝑠_𝑠𝑤𝑖𝑡𝑐ℎ,𝑂𝐹_𝑚𝑒𝑠𝑠𝑎𝑔𝑒,𝑐𝑡𝑥);

Input : Switch information, OF message and the message context
Output: Flow controls published to the OVS

Or container state published to container-manager

3 if (NetworkProtocol == IPv4) then
4 addSwitchPortToSrcIPMapping(srcIP, inPort);

5 if (TransportProtocol==UDP && srcMac!=OVS_Mac) then

6 if ( isBorderContainer(srcIP)a ) then
7 processEVENTStatusUDP(UDPPacket);
8 else
9 allReady ← processREADYStatusUDP(UDPPacket);
10 if (allReady) then
11 setupContainerSpecificFlowEntries();
12 end
13 end
14 else
15 if ( ( isBorderContainer(srcIP) && isNeighbourOfBorderC(dstIP) )
16 OR ( isBorderContainer(dstIP) && isNeighbourOfBorderC(srcIP) ) )

then
17 addAllowIngressToNeighbourFlow();

18 else if ( isOVSSwitchMAC(srcMac) OR isOVSSwitchMAC(dstMac) ) then
19 addAllowFlowsToAndFromOVS();
20 else
21 setupContainerSpecificFlowEntries();
22 end
23 end
24 end

aNote that for the purposes of describing this pseudo-code the ingress and egress containers are called the
border containers and their neighbors (i.e. entry-container and the penultimate container in the pipeline) are
called the neighbors of the border containers.
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Ready-State Notification

If the incoming UDP packet is a ready-state notification, the flow-controller first looks up the
specific event. Then it switches the “state” of this event-specific host (the container which
sent the notification) to be “READY”. In the meantime, it also checks if all other containers of
this event have reached their “READY” state. If yes, then flow entries specific to this container
are setup. How the flow-entries are setup is explained below in this chapter under the section
Publishing Flow Entries.

Non-UDP Traffic

If the incomingOF message contains a non-UDP packet, then the FC does the following checks:

1. If the communication is at the edge of a pipeline (i.e. to or from an ingress or egress)

2. If the source or the destination of the message is the virtual-switch itself

3. Any other flow

[CASE 1]
If the packet is from a border-container, then the FC immediately checks if the destinationIP
is of a container that is a neighbor to the border-container. If yes, then control-rules are pub-
lished to allow communication from that border-container to this destinationIP. The vice-
versa of the above applies to (sourceIP) packets that are destined to border-containers but
originate from elsewhere. These border-container specific flow-entries are published to the de-
fault ZERO flow-table of the virtual-switch.

[CASE 2]
If the packet is from the switch or is destined to the switch then those flows are also allowed.
Thus, the FC publishes a control-rule to allow such communications. Flow entries specific to
flows related to the switch are also published to the default ZERO flow-table.

[CASE 3]
For packets that do not match the previous cases, flow-control rules are published according to
their neighbors in the workflow. This information is found in the configuration-file provided
to the container-manager that explains all the flows in the framework. When a new event is
triggered this neighbor information is also sent to the FC by the container-manager in its initial
message (flow 4). The FC uses this information to publish flow-control rules for the IP from
where the current packet originated.
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Publishing Flow Entries

From the above descriptionwe saw that if all the containers of an event have reached the “READY”
state or if non-of the first 2 cases of non-UDP traffic matches the incoming packet, then flow-
entries are created for that IP. Flow-entries specific to an application-container are published
to a unique-flow-table dedicated to that container. The FC maintains an internal map of flow-
tables and corresponding application containers. Per IP Address the FC publishes 4 different
flow-entries:

• [GOTO Flow Table] This rule is published in the default table-ZERO to redirect rule
checking to continue in the container specific flow-table

• [Allow traffic to neighbors] A rule is published per neighbor of this container
(as received from the CM) to allow traffic to and from them. Published in the container
specific flow-table

• [Allow UDP traffic to OVS] Rule allowing all UDP traffic to the switch from the
container, This is to support notifications from the container

• [Drop all other traffic] Rule to drop any other unintended traffic

That concludes, the discussion about the complete architecture of the proposed framework.
In the experimentation and evaluation sections of the study we elaborate on how an actual ap-
plication pipeline was tested using this framework.



Chapter 6

Experimental Results and Discussion

In this section we describe the framework setup and its experimental results for an actual indus-
try use case. The mechanisms used in the framework to achieve defense-in-depth are explained
in the previous chapters. In this chapter we discuss the overhead incurred (in the system) by
adopting this framework and its defense mechanisms. We first define the industry use case
based on which the experiments were conducted. Then we explain the server configurations
and environment of the cloud host. Finally we discuss different performance metrics in terms
of overhead incurred when comparing non-framework and with-framework setups.

6.1 Experimental Use Case
We focus our framework’s adaptation for a specific industry scenario that intakes different tenant
data, processes it through a series of applications and finally produces some results. There are
three different kinds of workflows associated with the above use case.

1. A user triggers an event with some data; the data gets processed via a set of applications
and is written to a datastore

2. A user triggers an event for some data; data is fetched from the datastore and gets pro-
cessed via some applications and is produced as results to the user

3. An event is triggered as a routine job (internally); data is fetched from the datastore and
is processed via some applications and is re-written to the datastore

Figure 6.1 is a depiction of the three workflows listed above. We denote a single instance1

of one of the above workflows as “a pipeline”. As explained in Chapter 5, the applications at the
edges of such a pipeline are called ingress & egress. An ingress application is user facing and
is the point of trigger for any new event. The data is transferred from application to application

1We say “single instance” because as explained in Chapter 5 and Chapter 4, different events are processed by
a dedicated set of similar applications.
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through the pipeline until it reaches some egress point. Usually, the egress is an application at
the end of a pipeline that writes the processed data into a datastore. However, for workflows 2
and 3, the ingress and the egress will be the same applications. This is because the application
at which events initiate is also the application where the events will terminate. From the three
listed workflows above, we run our tests against the first workflow where some data comes
into the system, is processed and is written to a datastore. Whilst, the framework allows for
easy adaptation of new workflows, the results of one of them should validate the performance
overhead for all since they have similar pipeline structure: An event trigger, One IO bound
application and multiple intermediary applications.

Fig. 6.1 Three different types of workflows specific to the experimentation use case

Figure 6.2, shows the actual applications involved in the sample pipeline we have used in
our experimentation. We start our experimentation with the same setup as shown in the figure.
Then, we extend this setup by increasing the number of intermediary applications in the pipeline
to further test the framework.
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Fig. 6.2 The “Data upload” workflow

Data Upload Flow: The flow starts with a user (tenant) uploading their data to the ingress
application. The ingress in our setup is aweb applicationwhich receives the upload and forwards
it to a microservice. This microservice validates the incoming upload against the correct tenant.
Upon validation, it stores the uploaded data into a specific directory on which Logstash [10] is
listening for changes. In addition the microservice also spawns a Spark [52] job. Logstash,
upon observing new uploads in the said directory, reads this data, processes it and publishes the
results to Kafka [6]. In the meantime, the spawned Spark job retrieves the data from Kafka and
writes it to Cassandra [27]. Figure 6.2 shows the order in which the data flows from application
to application. However, in our containerized setup the Spark process runs in the same container
as the Upload validation microservice. This is because it is the microservice that spawns the
spark job. Hence, when these applications are containerized theymake a logical flow connection
as shown in Figure 6.3.

6.2 Host Server Configurations
The setup and experiments were conducted in one of Systems Group’s2 compute clusters. The
server runs on Ubuntu 16.04 and has 32 CPUs of Intel Xeon 2.40GHz. It also has a 20Mb L3
cache and amain memory capacity of 125Gbwith an additional swap space of 15Gb. The server
is shared between multiple students of the systems group. Hence some of the experiments had
to be done while the server was being used for computations of other students. However, almost
all test cases were run with a maximum effort on ensuring that the load average of the server
from other computations was ≈ 6.25%. That is ≈ 2 CPUs on average were always occupied by
other processes in the system. Version 17.05 of theDocker containerization tool was used along
with Open vSwitch 𝑣2.7.0. The Mosquitto broker 𝑣3.1 [30] was used as the MQTT broker for
communication between the framework modules.

2bmj-cluster owned by the Systems Group of McGill University - School of Computer Science.
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Fig. 6.3 Containerized application setup for the “Data upload” flow

6.3 Results & Discussion
All tests were executed on two different setups. One, with a deployment based on our framework
and the other without it. We denote the usual deployment (without our framework) as “’bare-
metal” setup while the one adopting our framework is called the “framework” setup. Figure 6.2
portrays the bare-metal setup where all applications run as normal processes on the host, while
Figure 6.3 shows the containerized application arrangement in our framework. We gathered
the results for both setups and compared the performance overhead incurred in adopting our
framework against the bare-metal one3. Multiple batches of different workloads were tested in
both cases.

6.3.1 Runtime Analysis
We perform runtime analysis by first measuring the time taken for complete flows - from Ingress
to Egress - in both setups. For the setup based on our framework, we separately identify the time
taken for different steps of the pipeline. This is because, with our framework there is an initial
and terminal delay.

• Initial delay: This includes the time taken to spawn containers and to publish flow con-
trols to the switch before the actual data processing starts.

• Terminal delay: This is time taken to terminate all containers and to clean all flow con-
trols from the switch upon completion of the flow.

The actual data flow and processing happens in between these two delays. We denote this portion
of the framework-flow as the “Actual flow”. To calculate flow overhead we compare the actual

3The term both-setups always denotes the framework and bare-metal based deployments.
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flow time against the bare-metal flow time. An example of these two time measurements (for a
specific load) is shown in Figure 6.4. We then denote the difference between the averages of
those times (for a specific load) as “Runtime difference”. Such runtime differences (in seconds
and percentages of the total time - RDF and RDF%) are shown in Table 6.1.
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Fig. 6.4 An example of runtime measurements for a specific load

Load 10K 25K 50K 75K 100K 200K 500K 750K

Runtime difference (RDF) 0.52 1.22 2.44 5.94 9.04 33.20 90.07 125.19

Overhead (RDF%) 0.92% 1.10% 1.24% 2.09% 2.45% 4.56% 5.09% 4.67%

Container spawning (CP) 4.46 4.52 4.38 4.26 4.46 4.80 5.00 4.53

Publish flow-controls (PFC) 11.84 11.97 11.79 11.73 11.60 13.57 12.98 11.68

IO = CP + PFC 16.24 16.50 16.18 16.00 16.07 18.38 17.99 16.21

Termination overhead (TO) 1.71 1.70 1.67 1.66 1.62 1.64 1.85 1.75

TSO = IO + TO 17.96 18.20 17.86 17.66 17.69 20.02 19.84 17.97

Table 6.1 Runtime overhead incurred for the proposed framework (in seconds)

TSO: Total setup overhead
IO: Initialization overhead
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In addition to the actual flow, Table 6.1 also provides the time overhead in terms of the initial
and terminal delays. Rows in yellow (CP, PFC, IO) denote the overhead incurred during the
initialization phase while the penultimate row (TO) shows the overhead at the end of a flow.
We can see from the results that the time taken for container spawning (CP) and to setup flow-
controls (PFC) for any load is ≈ 5s and ≈ 12s respectively. In addition, the time overhead at the
end of a flow is also always ≈ 2s. Thus, it is evident that the framework setup specific overhead
(at the beginning and at the end of the flow) is constant around ≈ 19s. This does not grow with
the load with which the framework is stressed. This is as expected since, the steps involved in
setting up the framework is not dependent on the load. Similarly, we observe that the overhead
in terms of the actual flow (RDF) is also between 0 − 5% for varying loads.

6.3.2 Resource Utilization
For studying the resource utilization we measure CPU and Memory usages of both setups. We
use a combination of multiple tools to measure these resources. For both setups we measure
the above resources using the System Activity Monitor (sar) [24] tool. In addition, for processes
that run on the host (without containerization) we also use the CPU% and MEM% outputs of
the top utility. For applications running on docker (in a containerized environment) the docker
stats utility is used. These additional measurements are used since the output of sar is the total
resource utilization of the system. However, as mentioned earlier the server is shared amongst
many students of the systems group. Thus, we use these additional tools to deduce the correct
measurements for the processes of our setup. We achieve this via conducting our measurements
per process and per system user.

Our measurements are carried out at every 3 second interval over the duration of a pipeline.
The interval is set to 3, since the smallest load takes on average 30 − 35s to complete; thus to
ensure at least 10 readings on the smallest experiment we set it to 3. This experiment is carried
out approximately for 100 iterations per system load and the average over these measurements
is reported. It is also noteworthy that the outputs of the above tools are only an approxima-
tion of the instantaneous CPU usage over a most recent past. We also carry out our experiments
throughout the day one after the other. Hence, some of the results indicate some skewness when
colliding with scheduled sys admin activity or some docker based computations of another user.
Figures 6.5 & 6.64 show comparisons of CPU and memory utilization between the two setups.
The annotations on top of each test case report the resource overhead in our framework when
compared against the bare-metal setup. We observe that the CPU utilization overhead (Fig-
ure 6.5) fluctuates between 5−8% while for a single test case it reaches above 10%. We believe
this to be a case of our experiments conflicting with some other running docker containers.

4The numbers that were used to draw these charts are provided in Appendix-A.1 & A.2.
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The main point of strain in our framework is the docker eco-system and the management of
containers. The host-processes5 add minimal CPU overhead (Appendix-A.1). From the overall,
CPU utilization in our framework only 4% of it was due to the host-processes and the rest was
from docker.
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5The controlling modules - container-manager and flow-controller - are the ones denoted by the term “host-
processes” since they are the only un-containerized applications during a flow using our framework.
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From Figure 6.6 we can see that the overall memory footprint overhead is within 7 − 9%.
The main memory utility for different workloads are almost the same for both setups. This
is because, the nature of all the applications is that the uploaded data is streamed (from file)
one after the other in a sequential form. Thus, the contributors to memory overhead are the
host-processes and docker itself.
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Fig. 6.7 An example of CPU utilization measurements for a specific load
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Fig. 6.8 An example of Memory utilization measurements for a specific load

Figures 6.7 and 6.8 are examples of a single experiment for both resources discussed. The
evident spike in Figure 6.7 (≈ 23sec) is the time around which the uploaded data is transferred
to the first application from the ingress. This is roughly the point during which the data enters
the container eco-system. This can be cross referenced with Table 6.1 where the average ini-
tialization delay for loads of 200𝐾 is ≈ 18.4s.
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We can see from the above results that the resource utilization (CPU andmemory) are within
a strict range of 5 − 10%. The average overhead across all different experiments is 7.49% for
CPU and 8.25% for memory. It is noteworthy that the above resource utilization measures are
only present during the time of an ongoing event. With our framework, when there are no
active events in the system, none of the applications will be active (because of the on-demand
container provisioning). The only long running processes are the host-processes and the docker
daemon. Thus, the above overhead measures would not be a constant strain on a typical cloud
deployment. On the other hand, with a bare metal setup, all applications would be continuously
running at all times. Even though, they might not be doing any computation they would take
up considerable amount of memory and CPU while in an active state. It addition, we recall the
possibility of them behaving maliciously during idle time.

6.3.3 Pipeline Extension Based Performance Analysis
In addition to the above analysis we also conduct further experiments by extending the number
of applications in the pipeline. We do this by replicating the number of Logstash instances in
the original pipeline shown in Figure 6.3. We define, “extension count” as the no of logstash
instances for each experiment. We test, pipelines of different extension counts using a single
constant load (of 100K) to see how it performs. Table 6.2 shows the results for runtime analysis
of five different extension counts.

Extension Count 1 2 3 4 5

Runtime difference (RDF) 9.03 39.40 40.43 31.56 44.76

Overhead (RDF%) 2.45% 10.30% 10.22% 7.82% 10.57%

Container spawning (CP) 4.46 5.96 6.61 8.38 9.94

Publish flow-controls (PFC) 11.60 13.13 13.91 16.31 18.05

IO = CP + PFC 16.07 19.09 20.53 24.69 27.99

Termination overhead (TO) 1.62 2.19 2.54 3.30 3.70

TSO = IO + TO 17.69 21.28 23.08 28.00 31.70

Table 6.2 Runtime overhead incurred with varying extension count (in seconds)

TSO: Total setup overhead, IO: Initialization overhead
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Extension count 1 in Table 6.2 denotes the original pipeline and reports the same results of
load 100𝐾 from Table 6.1. We can infer from it that the average of all overhead percentages
(RDF%) for all the extension counts other than the original (i.e.1) has increased to ≈ 9.73%
[average(10.30%, 10.22%, 7.82%, 10.57%)]. This is a significant rise when compared to the
overhead range of 0 − 5% for varying loads on the original pipeline (Table 6.1). In the origi-
nal pipeline, logstash processes the uploaded data and directly publishes it to Kafka. However,
when the pipeline in extended with a new logstash instance, a new shared volume is mounted
between the old and new logstash containers. It is by writing to and reading from this shared
volume that these instances channel the data forward. Thus, we attribute this sudden increase in
runtime overhead to the effects of homogeneous applications with shared volumes as explained
by Bhimani et al. in [11]. It is also evident from our results that this sudden rise is only for the
first additional logstash instance. As we increase the extension count, the RDF% is steady at
≈ 9%.

When we compare the initialization (IO) and termination (TO) delays, we see an average
increase of ≈ 3𝑠 and ≈ 0.5𝑠 respectively. This is as expected, since with increasing number of
applications in the pipeline, the time taken to setup the flow-containers (spawning containers
and starting the processes) and to clean the setup upon completion also increases. Thus, we
observe an average framework setup time (TSO) increase of ≈ 3.5𝑠 as the extension count in-
creases. Thus, from the comparative analysis of varying loads (Table 6.1) and varying pipeline
length (Table 6.2), we can conclude that the framework setup overhead is constant for a fixed
pipeline while it increase by ≈ 3.5𝑠 with every new application added to the pipeline. More-
over, we see that the RDF%(s) for a specific type of pipeline setting (e.g.: with/without shared
volumes) only changes by 0 − 3 for both varying loads and varying extension counts.

Figures 6.9 and 6.10 show the overhead incurred in terms of CPU and memory utilization
when the pipeline was extended while keeping a constant load. The average CPU utilization
overhead over all different extension counts is ≈ 11.36%. This again is high when compared
against a fixed-pipeline-varying-load overhead of ≈ 7.49% (Figure 6.5). We also see a steady
trend of increasing CPU overhead as the number of logstash instances increases. Consider again
the impact of the number of shared volume based applications (as explained Bhimani et al. [11]),
on the framework. Shared volume based IO has certain performance implications with docker
[11]; while the IO wait time is also reported as CPU time utilized by our measurement tools.
Thus, as the extension count increases (with more shared volume based operations) we see an
increasing trend in CPU utilization. Amaral et al. [2] discuss such effects and Bhimani et al.
[11] provide containerization strategies ideal for such scenarios.

In terms of memory overhead (Figure 6.10) we see an average of ≈ 5.05% across all ex-
tension counts. It is well within the ranges reported by our experiments with varying loads
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(Figure 6.6). Thus, the number of applications in the pipeline effects only the CPU overhead.
This also happens only when it involves many shared volumes between the applications, which
is very rare. Almost all applications transfer data and communicate via sockets since they are
designed with support for deployment in distributed environments. whilst enabling access over
the network.
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Chapter 7

Conclusion and Future Work

7.1 Contributions and Conclusion
Service providers who adapt an SaaS cloud model require mechanisms to provide defense-in-
depth to the data of their tenants and the applications that process this data. Traditional cloud
security mechanisms focus on the defense of the cloud VM and data at rest. However, an ad-
ditional requirement for SaaS providers is being able to capture and evade the threats posed by
mis behaving applications internal to the SaaS setup. Such threats can be classified as passive
internal threats. We provide a proof-of-concept implementation of a framework that provides
security against the passice internal threat model in SaaS cloud deployments. Our framework
tackles the problem of defining a boundary for applications where security checks can be made
and defensive mechanisms be implemented. We build this boundary using the support for con-
tainers in the Linux kernel. We use concepts from the software defined networking (SDN)
technology to enable connectivity between the isolated environments.

Our framework makes design choices based on the requirements of an industry collaborated
pilot project. As part of this pilot study, we produce an authentication mechanism to validate
incoming data using a hybrid encryption scheme as explained in Chapter 3. In addition, our
framework provides an easy interface to add new flows to the framework by means of a cen-
trally managed configuration. Finally, we evaluate the framework with actual workflows based
on industry use cases. We then provide comparative results against a traditional deployment
setup.

The results show that the said defense features can be implemented with a minimal runtime
overhead of < 5% in addition to a constant setup overhead of ≈ 19𝑠 (for a given data processing
pipeline). We see from our results that the framework imposes an additional resource overhead
of ≈ 7.5% CPU and ≈ 8.25% memory. This overhead is only effective during active events and
at all other times the framework has < 1% resource utilization. This (as explained in Chapter 6)
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is because container instances specific to an event are spawned on demand and at other times
the system stays idle. In contrast, in a traditional deployment all applications pertaining to all
workflows are kept alive throughout even though there are no active events. In addition, we
also evaluate our framework against pipelines with varying number of applications. We notice
that the framework setup overhead increases by ≈ 3.5𝑠 as the pipeline extends. The memory
and CPU utilization overheads are within the same ranges reported with varying load based
experiments (except for when the pipeline involves shared volume based processing). Finally,
from our work we derive the more broader research question of whether developers can be
completely relieved from having to handle application level security. That is, can an external
eco-system provide the framework for supporting various security protocols with the application
left only to be implemented to do the business logic.

7.2 Limitations and Future Work
The framework has the following limitations and thus room for improvement as future work:

• Event termination detection: In the current implementation, the event termination track-
ing mechanism is workflow dependent. Thus, for every workflow added a specific de-
tection mechanism needs to be integrated. However, a more abstract mechanism could
enable easy integration of various types of workflows. Moreover, a robust mechanism is
required to support non sequential streaming applications, since tracking termination in
such scenarios will be difficult.

• Support for applications dependent on in-memory data: The discussed work is based on a
set of applications that do not share information between different events. This is because
it was designed based on actual industry use cases (as explained in Chapter 6) that carry
out completely independent tasks. However, to support workflows with applications rely-
ing on information from previous events we need a common memory persistent structure.
This is a problem that needs to be addressed on its own to be integrated into the proposed
framework.

In addition to the above limitations the framework design opens up avenues for various other
improvements. It could be extended with a complete administrative tool with proper UI inter-
faces to interact with the container-manager and floodlight-controller. Interactive analysis and
reporting of application behavior could be built into it. In addition, the OVS based networking
supports scaling across pipelines. Thus, it could be used for nested topologies in future use
cases of pipelines with overlapping applications. The use of SDN controls allows for dynamic
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and easy manipulation of reachability between applications. Furthermore, an interesting devel-
opment would be to deduce an optimal way to encapsulate more than one application into a
single container based on the logical neighbor graph of applications for a given workflow. Even
though, the goal of the framework is not to be another container orchestration platform, the
model could be developed into one with inherent defense-in-depth mechanisms. Nevertheless,
the most significant improvement would be (as explained at the end of the previous section) to
define a container boundary that can fully take control of various application security protocols.
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Appendix A

Load Docker (%) Host (%) Framework (%) Bare-metal (%) Overhead(%)

10K 10.97 0.64 11.61 10.73 7.58

25K 12.01 0.59 12.60 11.72 6.98

50K 12.73 0.81 13.54 12.78 5.61

75K 14.41 0.63 15.04 13.33 11.37

100K 13.38 0.60 13.98 12.86 8.01

200K 13.61 0.60 14.21 13.4 5.70

500K 13.81 0.64 14.44 13.4 7.20

Table A.1 CPU Utilization for both setups
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Fig. A.1 A sample contianer-manager configuration file for data-upload flow
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Fig. A.2 The EventHandler interface based on which the work-flow handlers are written
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Load Docker (%) Host (%) Framework (%) Bare-metal (%) Overhead(%)

10K 9.05 2.29 11.33 10.45 7.77

25K 9.25 2.31 11.55 10.55 8.66

50K 9.36 2.33 11.69 10.67 8.73

75K 9.24 2.27 11.51 10.7 7.04

100K 9.28 2.27 11.55 10.63 7.97

200K 9.39 2.32 11.71 10.71 8.54

500K 9.43 2.40 11.83 10.76 x9.04

Table A.2 Memory Utilization for both setups

Fig. A.3 A sample of the message sent to the flow controller from the container manager
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