
INFORMATION TO USERS

This manuscript bas been reproduced ftom the microfilm master. UMI

films the text directIy trom the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

ftom any type ofcomputer printer.

ne quality 01 this reproduction is dependeot upon the quality of the

copy submitted. Broken or indistinct peint, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment cao adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright rnaterial had ta be' removed, a Dote will indicate

the deletioD.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-band corner and

continuing ftom left to right in equal sections with smaU overJaps. Each

original is also photographed in one exposure and is included in reduced

form at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any pbotograpbs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

arder.

UMI
A Bell & Howell Information Company

300 North Zeeb Raad, ADn Arbor MI 48106·1346 USA
313n61-4700 8001521-0600

NOTE TC USERS

The original manuscript received by UMI contains pages with
indistinct and/or slanted print. Pages were microfilmed as

received.

This reproduction is the best copy available

UMI

(

Random dynamic fonts

B-e,rYlarct Desruisseau~

School of Computer Science
McGill University, Montreal

Detober 1996

A thesis submitted to the Faeulty of Graduate
Studies and Researeh in partial fulfilment of the
requirements of the degree of Master of Science

Copyright © 1996 by Bernard Desruisseau,x

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1A 0N4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A 0N4
canada

Your'" Vau."~

The author bas granted a noo­
exclusive licence aIlowing the
National Library ofCanada to
reproduce, loan, distribute or sell
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
penmSSlOD.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-29682-2

Canadl

(

Random dynam-ic -fonts

(

Àma mère,
qui aurait sûrement

trouvé cela amusant

Àmon père,
SUr qui je peux

toujours compter

.C

(

Contents

Absttact vi

Résumé vii

Acknowledgments viii

1 Introduction 1

2 Digital Fonts 5
2.1 Font Formats 5
2.2 Bézier Curves 6

3 Random Dynamic Fonts Il
3.1 Font Classes Il
3.2 Survey of the Field Il
3.3 PostScript and Random Dynamie Fonts 18

4 Method Proposed 21
4.1 Making Random Letterforms 21
4.2 Cubie Spline Curves 25
4.3 Font Prograrn Organization 29
4.4 Pararnetrization 34

5 Font 5amples 39
5.1 MetamorFont 39
5.2 Methodology 39
5.3 Charaeter Sets 40
5.4 Teehnieal SampIes 45

6 PostScript Fonts wilh TEX and ~TEX 48
6.1 TEX and ~TEX 48-
6.2 Font Metries 49
6.3 Font Eneodings 49
6.4 Virtual Fonts 50
6.5 Adobe File Metries to TEX File Metries 50
6.6 Deviee Independent Drivers 51
6.7 Interfacing PostScript Parametric Fonts 51

7 Conclusion 53

iv

(

(

Contents

A PostScript T}'pe 3 Font 55

B Adobe Font Memes 60

C Modifications to Parameters 61

D MetamorFont with l'TEX2E 62

E MetamorFont Gallery 64

Bibliography 72

v

.(

(

Abstract

This thesis presents a general method and smteture for storing, represent­

mg and reproducing random dynamic fonts, i.e., fonts whose each rendi­

tion of each letterform differs. Such fonts allow, e.g., to come doser to

simulating true handwriting, by rendering its freedom.. spontaneity, and

unpredietability.

This method allows the generation of random letterfonns with different

overall shapes, derived from single letterform descriptions, according to

specified parameters and constraints. Letterforms generated in this man­

ner remain dosely related-to a certain extent-to the originalletterforms,

and preserve the continuity and thickness of the strokes.

Several examples of a rypeface family designed with this method, im­

plemented as PostScript Type 3 font prograrDS, are presented. A survey of

the literature on random dynamic fonts is also proposed.

vi

(

Résumé

Ce mémoire présente une méthode et stnleture générales pour mémoriser,

représenter et reproduire des fontes dynamiques aléatoires, c'est-à-dire,

des fontes dont chaque rendu de chaque caractère ditfère. De telles fontes

permettent, par exemple, une meilleure simulation de l'écriture manuscrite

en traduisant sa liberté, sa spontanéité et son imprévisibilité.

Cene méthode permet la génération de caractères aléatoires de formes

générales différentes, dérivés d'une seule description de caractère, selon

des paramètres et contraintes spécifiés. Les caractères ainsi générés de­

meurent liés - dans une certaine mesure - aux caractères originaux et

préservent la continuité et l'épaisseur des traits.

Plusieurs exemples d'une famille de fonte conçue avec cette méthode et

implémentée sous forme de programmes de fontes PostScript Type 3 sont

présentés. Un tour d'horizon de la littérature sur les fontes dynamiques

aléatoires est aussi proposé.

vii

(

Acknowledgments

First, 1wholeheanedly thank my supervisor, Luc Devroye, for bis invaluable

comments, wisdom and enthusiasmfor the subjeet. 1banks for keeping me

on the right ttaclc, it bas heen a pleasure working With vou.

1wish to thank Jacques André, at INRIA Rennes, who provided construc­

tive critidsm on the design of MetamorFont.

1also wish to thanle the Fonds pour la formation de chercheurs et l'aide

à la recherche (FCAR) for their finandai support.

My deepest appredatîon goes to my father, Gilles Desruissea~ who

kindly reviewed drafts of this thesis. Your editoriai critidsm was always to

the point. Thank vou for helping me.

Above all, 1deeply thank my girlfriend, Sophie Gagné, for her love, un­

derstanding, and encouragement she has given me, espedally during the

writing of tbis thesis. Thanks for being who you are.

viii

(

(

1 Introduction

In the early days of movable type, letter shapes were designed to seem.

handwritten, as aIl published material was then produced by hand. Johann

Gutenberg (1398-1468), a pioneer· in movable type, worked 10 years to

create a produet that would reproduce nicely the Gothic handwriting of bis

day [43]. To reinforce the impression of original band lettering as well as

to blur the characteristics of the new technology, Gutenberg made severa!

slightly different versions of the same letter.

Scribes, nevertheless, were trained to reproduce letters with identical

shapes, so that the constant shapes of printed letters saon became ac­

cepted. The concept of charaeters as fixed geometrical objects was simply

strengthened by the spreading of the movable type technology. As tbis

concept is in accordance with most theories on legibility and readability,

it cornes as no surprise that typefaces, including script typefaces. are still
•

used with fixed letterfonns.

Nowadays type foundries offer extensive collections of script typefaces

that simulate handwriting. Unfortunately, most of these typefaces lack the

life and spirit of true handwriting. Letters with constant shape are sim­

ply inadequate to render the freedom. spontaneity, and unpredictability of

handwriting.

The advent of computer technology brought new avenues ta type de­

sign. The use of computers and digital devices led ta new methods and

• Bi Sheng, a Chinese engineer. should be credited as the inventor of movable type. in
preference to Gutenberg (15}.

1

1. Introduction 2

tools for the creation of typefaces. Generation of letterforms by mathe­

matical means has become easier as computers carry out all computations.

Donald E. Knuth's font-design system. METAFONT [30], defines letter­

forms with sets of mathematical formulas from which their exact shapes

are derived. Through the use of parameters, many shapes can be extraeted

from a single letterform description. If one of these parameters is a ran­

dom variable, a random font is produced, i.e., every time the font is defined

as a whole, a new set of letterform shapes is generated.

PostScript Type 3 font programs can define fonts in a parametric way

and generate random fonts, but they can also vary these parameters dy­

namically. Therefore, each instantiation of each character differs from the­

last. Such fonts are called dynamic or random dynamic.

In general, script typefaces are used to bring elegance and simplidty

ta texte They are mainly used to draw the reader's attention and to create

interesting contrast when used with conventional typefaces. Handwriting

types can bring life to a page by suggesting the movement of the human

hand. Random dynamic fonts reflect these movements more closely than

do the conventional static fonts.

Although the use of random dynamic fonts May seem limited, these

fonts are weil fitted to a hroad range of applications-announcements,

brochures, greeting cards, restaurant menus, invitations, handwriting on

posters, graffiti, comic- strips (particularly for those puhlished in many

languages)-and wherever a touch of humor and warmth is desired.

Other fields might also benefit from such fonts: computer graphies, test

samples for handwriting character recognition systems (46), and graphie

design. Indeed, through experimentation with random dynamic fonts, in­

teresting new letterforms May be discovered [25].

Random dynamic fonts could also he put to profit with the whole new

class of typefaces that render the irregularities of printing toois such as

1. Introduction 3

(

smudged typewriter machines, rubber stamps and hand-held label makers.

Other eJfeets, such as overprinting, inkspreading [6], and hand-sketched

pressure brushstrokes [41] can aIso be achieved.

FinaIly, the economic advantage of random dynamic fonts over the ser·

vices of lettering artists is obvious. The typeface bas to be paid for ooly

once, and it can be used as much and as long as the buyer wants, and at

any time of the day!

Random dynamic fonts have already been explored by other computer

scientists [11,9,18] and graphic designers [47, 48,25]. This thesis presents

another vision, while going much deeper at the programming and concep.

tuaI levels. The method presented here goes further than simply adding

random perturbations to character outlines or interpolating charaeter rep­

resentatives. It aIlows alterations to the overall lenerform shapes within

predetermined lïmits.

While the technical and conceptual aspects are the primary concem of

this research, the creation of beautiful, functional and inconspicuous ran·

dom dynamic fonts is nevertheless its main intent. Random dynamic fonts

should, however. be used sparingly as theyare less legible and readable

than conventionaI fonts. As Robin Williams [50. p. 89J puts it, "Scripts are

like cheesecake-they should be eaten sparingly. 1 mean, used sparingly."

The versatility of the method described allows the design of conven­

tionaI fonts as well as fonts that can be grouped in what has heen called

radical or gnmge typography (see [51)) or part of the Broken Art move·

ment. fonts mainly targeted at Generation X•.Dr so·called experimental. It

should he noted that the method is not limited to the creation of fonts but

could also be applied to omaments or any kind of drawing.

ln the next chapter. the different digital font formats are discussed, and

the mathematics of Bézier curves are introduced. Chapter 3 surveys several

random dynamic fonts methods, and explains how the PostScript language

1. 1ntroduetion 4

(

can be used to implement such fonts. The following chapter, the heart

of tbis thesis, covers the proposed method in detail. Chapter 5 presents

severa! technical examples of a typeface designed with the method. Finally,

the interaction between PostScript random dynamic fonts, TEX and ~TEX,

is considered. Complementary technical information can be found in the

appendices.

This thesis has been formatted \Vith k\TEX2E [351 using fonts from the Luctda fanùly (131·

(

(

2 Digital Fonts

This chapter gives a quick overview of the different representations of dig­

ital fonts, and introduces the mathematical foundations of Rétier curves,

commonly used in such fonts. The whole area of digital fonts is covered

at length in (26, 27, 43J, and a comprehensive introduction can be found

in [7J.

2.1 Font Formats

Di~tal fonts are complex data structures used to store, represent, and re·

produce sets of characters in a fonn suitable for digital output devices.

Several coding methods are applied to represent such fonts: bitmaps, run

lengths, vectors, cirdes, g-conics, splines and spirals (26). They differ

mostly in their storage usage, effidency, accuracy, and convenience to scale

up and down.

Bitmaps and run lengths simply specify which pieture elements or pixels

must he painted and therefore are tuned to a particular size and resolution.

Although practically no computation is involved, a sizable amount of stor­

age space is used. Other methods store the letterform shapes as outlines

and provide collections of points used to describe different graphical con­

structs mathematically. The latter are more prone to scaling and occupy

less storage space, but they require signiftcant computations to generate

the letterform shape at each size and resolution.

Nowadays, most digital fonts store the letterform shapes as outlines

5

2. Digital Fonts

(a) (b)

6

(c)

(

Figure 2.1. Various digital font formats: (Q) bitmap, (b) run lengths, and
(c) outline using cubic Bézier curves.

mathematically expressed by splines, and more predsely as collection of

smoothly joined Bézier curves. AlI the curves drawn by METAFONT [30] and

PostScript [3J are based on cubic Bézier curves, and those by TrueType [l2J

on quadratic Bézier curves.

2.2 8ézier Curves

Bézier curves were independently developed by two French automobile en­

gineers, Paul de Casteljau of Citroën, in 1959, and Pierre Bézier of Re­

nault, around 1962. Although de Casteljau preceded Bézier in his discov­

ery, these curves have been named after Bézier, whose work was published

first. Bézier curves are now widely used in computer-aided design (CAO)

systems. A comprehensive treatment of the basic methods in curve design

can be found in [19, 16, 37].

The de Casteljau Aigorithm

Paul de Casteljau developed an algorithm to construct curves of arbitrary

degree n from a sequence of points bo, ... ,bn , the control points, that form

a polygon, called the characteristic polygon. The algorithm can be formu-

2. Digital Fonts

lated recursively as follow:

in which t varies from 0 to 1 and bf(t) = bi.

{

r = l, , n

i = 0, , n - r

7

(a)

bo
bl

0

b l b 2
0

bl b3
1 0

b2 b 2
1

bl
2

b3

(b)

(

Figure 2.2. The de Casteljau algorithm: (a) cubic Bézier curv~ with t = 0.5,
(b) scheme for cubic Bézier curve.

De Casteljau aIso discovered an interesting and simple way, somewhat

related to his aIgorithm, to construct Bézier curves. By geometric subdivi­

sion of the control polygon of a curve, two new control polygons, as weIl as

a new point on the curve, are obtained. The remaining points of the curve _

are found recursively with the same process being repeated ad infinitum

on each new control polygons. In practice, this process converges quickly

and is simply carried out until the curve is actually drawn, sorne execution

efficiency being gained at the expense of accuracy.

(
2. Digital Fonts

Bézier Form

8

Pierre Bézier suggested that curves be defined as a linear combination of a

certain dass of funetions ft, referred to as blending or basis functions. A

curve 'Il of arbitrary degree n could be described by a paramettic funetion

of the fonn:

n
~(t) = 2: btfi(t),

1=0

Ostsl.

As blending funetions, Bézier chose the density funetions of the binomial

distribution. It was later discovered, by A. R. Forrest, that Bézier curves

could be written in terms of Bernshtefn polynomials:

Os i s n.

o l

(

Figure 2.3. Bézier cubic blending functions: third degree Bernshtein poly­
nomials.

2. Digital Fonts

Cubic Bézier Curves

9

Cubic Bézier curves are so widely used that they deserve expanded atten­

tion. Mathematically, a cubic Bézier curve is derived from a pair of para­

metric cubic equations:

X(t) = Q1Ct3 +b1Ct2 + cJ(t + Xo

y(t) = Q y t3 +b y r2 + cyr + Yo

where t ranges from 0 to 1, and the curve end points (Ka. Yo), (X3. Y3) and

intermediate control points (Xl, YI), (X2, Y2) are defined as:

Xl = xo+c](/3 YI = Yo +cy/3

Y2 = YI +(Cy +by)/3

Y3 = Yo +cy +by +ay

which can be converted into the equivalent Bernshteïn polynomial format:

x(t) xo(l - t}3 + 3XI tU - t)2 + 3X2t20 - t) + X3t3

y(t) Yon - t)3 + 3YltO - t)2 + 3Y2t2(l - t) + Y3t3.

Cubic Bézier curves provide the necessary flexibility to obtain satisfac­

tory approximations to a large number 9f curves. The figure beIow illus­

trates the various shapes cubic Bézier curves can take.

r\H x
(a) (b) (c) (d)

(

Figure 2.4. Various shapes of Bézier cubic curves: (a) convex, (h) with an
inflection point, (c) with a loop, and (d) with a cusp.

2. Digital Fonts

Properties

10

Any Bézier curve share the following important geometricaI properties:

• It begins at (Xo, Yo), heading in the direction from (xo, Yo) to (Xl, YI);

• It ends at (X3, YJ), heading in the direction from (X2, Yl) ta (X3, Y3);

• It lies entirely within the convex huIl (see, e.g., [40» defined by the

charaeteristic polygon;

• It is invariant under affine maps, i.e., affine maps applied ta the con­

trol points of the curve or to the computed points of the curve yield

the same result;

• It is variation-diminishing, i.e., it never oscillates wildly away from its

control points.

3 -
Random Dynamic Fonts

This chapter presents the two classes of digital fonts, and surveys ditYerent

approaches ta random dynamic fonts. Then, the PostScript language and

its düferent font types are introduced, and the use of the PostScript lan­

guage for the implementation of random dynamic fonts is explained and

justified.

(

3.1 Font Classes

Digital fonts can be divided in (wo classes, statie fonts and dynamie fonts

[9]. Letterforms from statie fonts ean be viewed as fixed geemetrieal ob­

jects. First, they are designed by an artist, then digitized in some way, and

finally used in a printing process. This results in letterforms of constant

shape. Almost ail fonts belong to this class.

Dynamic fonts are fonts whose letterform shape is defined every time

the corresponding letterform is printed rather than when the font is de­

fined as a whole.

3.2 Survey of the Field

Many font parameters can be controlled, randomized, and rendered dy­

namically. The main approaches worked out by others are presented ac­

cording to an informaI classification.

11

3. Random Dynamic Fonts

Random Perturbation of Control Points

12

The first steps towards random fonts involved random pertUrbations of

the charaeter"shape descriptors. In The METRFONTbooIc [30. chap. 211. Don·

ald E. Knuth explains how to use METAFONT to produce random fonts by

carefully adding noise to the charaeters' control points. Knuth basically

used tbis approach to implement bis Punk typeface [321. illustrated below.

AAA
(a)

JJJ
(b)

AAA
(c)

Figure 3.1. The Punk familv: (Q) roman, (b) slanted, and (e) bold.

Dynamic Fonts and PostScript

Bemg a batch font design system, METAFONT does not allow the creation

of dynamic fonts. On the other hand, the PostScript font machinery allows

on-line changes through the use of its Type 3 font programs (see. e.g.,

André and Borghï [9] or Sherman [44. p. 164]). André and Ostromoukhov

[lI] converted the Punk typeface to a PostScript Type 3 font program to

make it dynamic. Packard [38) applied this technique to ransom fonts.

The use of the PostScript Type 3 font format does not imply the use

of any specific method. On the contrary, it provides a -general mechanism

for the creation of random dynamic fonts. Furthermore, it i8 the format

used in_most cases for the implementation of the foUowing methods. More

details on the PostScript language [3] and its font machinery are given in

section 3.3.

(
3. Random Dynamic Fonts

Outline Texture

13

Texture is an aspect of fonts that can he experimented with. Nowadays,

most software applications can use fonts to define clipping paths (see

McGilton and Campione [36]) that can be filled with special pattèm defining

textures, thus leaving texture handling separated from font design. How­

ever, the texture of the outlines used to deJine these clipping paths should

be part of the font design.

Graphie designers Erik van Blokland and Just van Ros~ developed

severa! methods to produce rough and lively outlines [48]. Their Orst

method is similar to the one used by Knuth for the Punk typeface, but

the random perturbations are applied directIy at the control points of the

character outlines and in a carefree way.

Interrobang
Figure 3.2. Random perturbation of the control points in LucidaBright [13,

52].

The result of this Merbod is closely related to the number of control

points in the outline, in other words, to the length of each graphicaI compo­

nent. Small perturbations can sometimes cause large differences in weight

and yield uneven strokes. Thus, a second method was developed to acbieve

smoother roughness in the outlines. Basically, the original outlines are sim­

ply converted into a sequence of short straight lines prior to the random

perturbations. Their Beowolf family [47J was implemented as PostScript

Type 3 font programs using this method.

More complex algorithms can also he used to produce texture effect.

Erik van Blokland and Just van Rossum present samples of simulated un-

, 3. Random Dynamic Fonts

Interrobang
14

(

Figure 3.3. Random perturbation of the control points-after conversion
into sequence of short straight lines-in LucidaBright [13. 52].

der- and over-exposure of type in [48]. and Jacques André developed a

method for inkspreading simulation [6].

Multiple Caching

In order to speed up the rendition process. Erik van Blokland and Just van

Rossum [48] proposed a method that trades memory for speed. The solu­

tion is to maintain multiple caches of randomized outlines. each cache con­

taining a clifferent instance of each character. and to randomly select one

cache whenever a character is requested. Although limited. this method

may he adequate under certain circumstances.

Geometrical Transformations

The appearance of characters can be controlled. as well as their position

and orientation on ~ page. Raadom geometrical transformations can be ap­

plied to the whole characters to achieve interesting effects. Vertical trans­

lations produce a variable baseline [48]. as observed in some handwriting.

Rotation can be used, as shown by André in bis Scrabble font [5], to move

each tile by a randomly defined angle. Lastly, variations in the character

size can also be achieved with scaling, provided a uniform character thick­

ness is ensured.

(
3. Random Dynamic Fonts

Simulation of Handwriting

15

Luc Devroye and Michael McDougall presented three methods for the sim­

ulation of handwriting using random dynamic fonts [l8]. The first one

used the random interpolation and extrapolation of multiple representa­

tive charaeters. Easy to implement and robust, this method is also fast

since little computation Is required.

The drawback of this method is ~at ail the representative charaeters

must be designed a priori. Funhermore, every representative must have

the same number of control points, and each of them should play the same

role in the letterform shape than its counterparts in the other representa­

tives. A simple solution used by Margo Johnson [25], and Luc Devroye

(in unpublished work), is to generate the representative charaeters from a

single master character using spedal transformations.

A A

(

Figure 3.4. Random interpolation of multiple representative charaeters.
(This figure is taken from [18], and is provided by Luc Devroye,
McGiII University.)

The second method, random selection of points from the minimal span­

ning tree, guarantees the production of points that are always uniformly

3. Random Dynamic Fonts 16

(

disttibuted insic;le the convex hull of the data points. This condition is not

met in the mst method when the number of representatives exceeds the

dimension of the space by more than one. In a nutshell, once the mjnjma!

spanning tree of the data points has been d~termined (see, e.g., Cormen

et al. [17, chap. 24]), an·edge of the tree should be picked at random, a

point should be generated UDiformlyat random on the edge, and then the

interpolation should be performed to render the charaeter.

KKKKKKKKKKKKKKK

. Figure 3.S. Random selection of points From the minimal spanning tree.
(This figure is taken from [18], and is provided by Luc Devroye,
McGiII University.)

The last method presented, the kemel method, is the controlled random

perturbation of Bézier control points in order to preserve Cl continuity

(see, e.g., Su and Uu [16] or Farin [19]) given a smoothing factor. The goal

of tbis method is to generate new points with the same distribution as the

original data points, as opposed to previous methods which exclusively use

uniform distributions.

Contextual Fonts

Characters can also vary dynamically according to their context, e.g., the

preceding and succeeding letters, beginning or end of words. Contextual

3. Random Dynamic Fonts 17

(

fonts, as they are called, are simple dynamic fonts where the context is

used as a parameter. Randomness is not always involved in such fonts.

Kokula developed a method to smoothly link script font charaeters on­

th~fly [34]. Great attention bas been paid to the natural appearance of the

curves joining characters. Details are given on how the proposed algorithm

can be integrated into PostScript Type 3 font programs.

Signature Software [45] sells personalized contextual (cursive) band­

writing fonts based upon samples !rom a person's own band. Although

their produets are mainly targeted toward the TrueType technology, con­

textual PostScript Type 3 font programs are aIso made available. Theil

solution is somewhat similar to the multiple caching method, aIthough the

selection process is deterministic and depends only on the context. Un­

like Kokula, the eontext handIing is not integrated into the font program,

but PostScript primitives sucb as show are redefined, which May lead to

unexpëcted results.

rovr" u \'~ Whi~~~ AIAJU~ l?l",~ {lAi f~· Ca)

Por+e-z te "LeU ~M&~ au jAae b/olfd. ~"i. -flbt1.e. (b)

~ ~~~ aMrr~~·;t--«. (c)

<jJ~ Li viI.uIX~~ Fr frImu1 1"'~. Cd)

(j?~c3 ~ 'hJ.w.f ~i4Pt QlA~ bt.~ 'Dl ~~. (e)

Figure 3.6. Signature Software SUPERscripts: (a) 5igjocelyn, (b) SigLisa, (c)
SigTsui, (d) SigVietoria, and (e) SigWilson.

Other interesting contextual fonts have aIso been developed. André

and Borghi [9, Fig. 7J present a simple contextual font that adapts itself

to its graphieal environment. André and Delorme [10) and [7, pp. 87-95]

developed the Delorme typefaee, which offers interesting features for logo

design.

3. Random Dynamic Fonts

3.3 PostScript and Random Dynamic Fonts

18

(

PostScript is a powerful graphicaI page description language, introduced

by Adobe Systems in 1985. Although PostScript's primary application is to

describe the appearance of text, graphies, and images on a printed page or

display, it is, nevertbeless. a full-featured, interpreted, programming lan­

guage. Ulce Most high-Ievel programming languages, PostScript provides

a conventional set of data types, control primitives, and general-purpose

operators. However, PostScript differs from Most languages by incorporat­

ing a postfix notation, in which operators are preceded by their operands,

and by the extensive use of stacks and dietionaries, which form the hem

of PostScript. The complete specification of the PostSCript language ap­

pears in the PostScript Language Reference Manual [3], and comprehensive

introductions can be found in [1,36].

Font Dietionaries

PostScript unifies text and graphies by treating lener shapes as general

graphie shapes tbat may be manipwated by any of the language's graph­

ies operator. However, sinee letters are used so frequently, the PostScript

language provides higher-Ievel facilities to describe, select and render char­

aeters eonveniently and effidently.

[n the PostScript language. sets of characters are organized into fonts,

which in tum are nothing but PostScript dietionaries that conform to spe­

cifie conventions and are registered with the font machinery. PostScript

currently bas three font types, each with its own conventions for organiz­

ing and representing font information.

• Type 0, known as composite fonts, are combinations of other fonts,

base fonts or descendant fonts, that in turn may be any kind of font­

Type l, Type 3, or even another Type o. This font type was created

(
3. Random Dynamic Fonts 19

(

to meet the needs of Asian languages that use large charaeter sets­

muchlarger than the 256 charaeters limit of the other font types. This

format is described in [3].

• Type -l, sometimes referred to as standard fonts, define charaeter

shapes in a compact way using a subset and an extension of the Post­

Script language, following a much sttieter syntax, and a rigorously

defined structure. Type 1 font programs can indude spedal informa­

tion. called hints, to improve the appearance of charaeters rendered

at small sizes and low resolutions. The omdal specification for this

format appears iD Adobe Type 1 Font Format (2).

• Type 3, or user-de/ined fonts, define charaeter shapes as ordinary

PostScript language procedures. Unlike Type 1 fonts, Type 3 fonts

do not provide a hinting mechanism, although one could be imple­

mented. There are very few restrictions on tbis format, as the font

developer is free to use whatever method and structure to supply

the charaeter descriptions. Not as effident and convenient as Type 1,

Type 3 fonts come in handy whenever complex graphic constructions,

color setting operators, image operators, or font cache control opera­

tors are involved. This format is described in [3].

Font Cache

Since letters are used repeatedly, the PostScript interpreter's font machin­

ery incJ.udes a font cache to optimize the character rendering process. The

font cache stores the results of a character scan conversions (see, e.g., [22])

in an internal data structure. Thus, when a character is requested again

the font cache provides the character bitmap without any computation.

The font cache does not retain color information and disallows the ex­

ecution of the image operator. PostScript provides two operators to con-

(
3. Random Dynamic Fonts 20

(

0'01 the behavior of the fo~t cache mecbanism within Type 3 fonts. The

setcachedev;ce operator is used to declare the charaeter metrics and

requests the font machinery to store the computed bitmap into the font

cache, and setchanridth is simply used to dedare the charaeter met- _

ries, bypassïng the font cache mechanism. The use of, setcharwidth is

mandatory when dynamic fonts are called for, otherwise the font cache

mechanism would prevent the düferentiation of charaeters.

A Sensible Choice

As a device- and reso)ution-independent page description language, Post­

Script provides a common software interface to deal with the general dass

of raster output devices. Since its introduction, many PostScript inter­

preters have been developed to control a wide variety of output devices.

Through the years, the PostScript language has become the industry stan­

dard for imaging high-quality graphies and text.

Sïnce the PostScript language is currently supported by many software

applications and hardware platforms, and as it provides a flexible devel­

opment environment as a full-featured programming language. it seems a

sensible ehoice for the imp)ementation of random dynamie fonts, which is

the tapie of the following chapter.

(

(

4 Method Proposed

This chapter presents a general method and structure for storing, repre­

senting and reproducing random dynamic fonts. The first section is a gen­

eral desaiption of the method-the lenerform description and the ran­

domization process. Subsequent sections cliscuss the implementation of

the method using the PostScript Type 3 font format, the organization of

font dictionaries, and the parametrization of fonts.

4.1 Making Random Letterforms

The method developed here allows the generation of random lenerforms

with different overall shapes, derived from single lenerform. descriptions,

according to specified parameters and constraints. Letterforms generated

in this manner remain dosely related-to a certain extent-to the original

letterforms, and preserve the continuity and thickness of the strokes.

Letterform Description

Letterform description is the heart of any font program. Letterforms de­

scribed directIy as collections of connected and unconnected Bézier curves

are inadequate, as many letterform shapes are to be derived from single

descriptions. Preserving the continuity of smoothly connected curves im­

poses constraints too severe to yjeld any interesting results. Indeed. a

greater abstraction is required in the letterform description if pleasing let­

terforms are called for.

21

Figure 4.1. Simple continuity-preserving transformations: tension varia­
tions on control points, in the spirit of the tens;on parameter
in METAFONT [30, pp. 15-16] (increasing (rom top ro. bottom);
and rotations of control points around junttion points (angles
varying counrerclockwise. (rom left ro righr). Original letter­
forms, shown in bord. are from the Birke typeface designed by
lue Devroye, McGiII University.

Complete lenerforms can be described at a higher level with spline

curves, i.e., continuous curves composed of severa! polynomial segments.

Splines provide more flexibility and can easily yield continuous curves of

complex shapes. Spline curves are descrïbed by polygons, referred to as

spline characteristic polygons.

(

Figure 4.2. letterforms described by spline characteristic polygons.

METAFONT provides an algorithm, due to Hobby [23J. for smooth inter­

polating splines, i.e., splines that smoothly pass through the data points.

.On the other band, PostScript does Dot support splines directly, thus, a

spline interpolation or approximation algorithm has to be implemented.

(.
4. Method Proposed 23

The algorithm seleeted to convert spline charaeteristic polygons into se­

quences of continuous cubic Bézier curves is descrïbed in section 4.2.

To ensure a uniform thickness of the strokes, letterforms are defined

inline, Le., they are created by inking along a path, instead of filIing outlines

(see Fig. 2.1c). The method provides a calligraphie pen eJfeet, controlled by

severa! parameters, to create more interesting shapes. Otherwise, ail let·

terforms would look as if they were drawn by a felt-tip pen With a perfeetly

round nib.

(

Figure 4.3. Calligraphie pen (on the right) creates more interesting shapes.

Randomization Process

Working with spline characteristic polygons greatly simplifies the random­

ization process. Indeed, random lenerforms can he obtained by simply

applying perturbations to each vertex of the polygons in a carefree way.

Unfo~ately, only small perturbations yield interesting letterforms, as

large perturbations simply destroy the nature of the original letterforms t

even though continuity is preserved.

In order to preserve the shapes of certain parts of the letterforms, for

the sake of dedpherability, polygons cao be divided into sections at design

time. Sections are lists of consecutive vertices that shall preserve their

relative position among themselves through the randomization process,

and thus preserving the shape they describe in an affine manner.

For better control Qver the randomization process, constraints, such as

4. Method Proposed 24

Figure 4.4. Large perturbations simply destroy the nature of the original
letterforms.

(

Figure 4.5. Seaions, shown deltrnited by black squares, preserve the
shape they describe.

the maximum perturbations a1lowed, ean added to each vertex of the spline

charaeteristie polygon.

After the randomization proeess it is possible to restore the ariginal

height or width or both of the spline characteristie polygon, by applying

simple sealing and translation operations to the polygon. This allows to

preserve a uniform letterform height, as well as the original letterform

width. Preserving the letterform width is particularly important when type­

setting text with systems, such as TEX, that re1y on statie metric informa­

tion.

Lastly, small random vertical translations can be applied ta the whole

spline characteristie polygon ta break the monotonous baseline that would

be praduced otherwise.

4. Method Proposed 25.

(

Figure 4.6. Distortion of a single section: ail vertices are transformed in
an affine manner.

·4.2 Cubic Spline Curves

Cubic Bézier curves cannot model every possible curve. Curves with com­

plex shapes could be best approximated by Bézier curves of higher de­

gree but with significant computational complexity increase. Such complex

curves can, however, be modeled using composite Bézier curves, also known

as piecewise polynomial curves, or simply called spline curves. Spline curves

can he represented in terms of B-spline functions, in which case they are

called B-spline curves. Bézier curves of degree n are special cases of B­

spline curves of degree n. This section focuses on cubic spline curves.

Continuity of Connected Curves

Connected curve segments are characterized by their order of differentia­

bility, or say continuity. A spline curve is a continuous map of a collection

of intervals ua < ... < Ut, where each interval ru;, u;+d is mapped onto a

polynomial curve segment. In the following, the length of an interval shall

be noted as ~t = U;+l - Ut.

Two Bézier curve segments with polygons bo, ... , bn and bn , ... , b2n, i.e.,

sharing a common end point, are said to have at least CO continuity. Fur­

thermore, if the curve segmeIits also share a common tangent Hne at their

4. Method Proposed 26

-rn-rn-rn

Figure 4.7. Randomization process: original lenerform, randomization
of letterform, restoration of height and width, generation of
Bézier control points, stroke with calligraphie pen.

jonction point, i.e., bn-lt bn,bn+l are collinear, and moreover are in the ratio

(Ul - uo) : (U2 - Ul) =~o : ~l, that is

then Cl continuity is obtained. Lastly, if the two curves possess equal

curvature at their joint, or on the geometrical view, an auxiliary point d
-

exists sucb tbat the points bn-2,bn- 1,d and d,bn+ l ,bn+2 are in the same

ratio, tbat is

bn- l

(

then C2 continuity is obtained.

4. M~thod Proposed

d

Figure 4.8. Geometrie conditions required for C2 continuity.

Bohm Construction Aigorithm

27

(

Wolfgang Bobm [14] derived a simple algorithm, based on the continuity

conditions stated above, to determine the location of the Bézier control

points of a spline curve such that the C2 constraints are satisfied. Thus,

the well known representation of curves in Bézier form is carried over to

splines.

Given a spline characteristic polygon with vertices dJ; 0 ::5 j ::5 L, the

Bézier control points for a C2 continuous spline are calculated as follows:

Divide dJ-;, dJ by b3J-2, b3j-l in the ratio 6j-l: 6J : 6j+l.

divide b31-1, b3f+l by b3f in the ratio 61: 6'+1.

If the points dj describe a closed polygon, these operations simply need to

be performed in modulo L. On the other band. if the points dj describe

an open polygon, the process gets a little more complicated near the ends.

The spline polygon is defined to have vertices d-1 , do•...• dl, dl+ l and then

the extreme Bézier control points are sets as follows:

4. Method Proposed 28

Figure 4.9. Special case of equidistant partition, as used in the implemen­
tation.

(a) (b)

(

Figure 4.10. Bôhm construction: (a) open-end polygon, (b) closed poly­
gon.

4. Method Proposed

Properties

29

Spline curves share most properties of Bézier curves (see Sect. 2.2). Spline

curves provide a better local control than Bézier curves. Perturbing a single

vertex of the characteristic polygon produces only a local perturbation of

the curve in the vidnity of that vertex.

Yet another useful property in the design of letterforms is the multi­

plidty of vertices of spline charaeteristic polygons. It is possible to refine

the shape of a curve by repeating a vertex once of more limes in the se­

quence of vertices of a characteristic polygon. Repeating a vertex inaease

its multiplicity by one.

(a) (b)

,

J

(c)

(

Figure 4.11. Polygons with ail vertices having multiplicity: {a} 1, (h) 2, and
(c) 3.

4.3 Font Program Organizatio_n

The method has been implemented into PostScript Type 3 font programs.

A PostScript Type 3 font program is a collection of procedures describing

letterform shapes, organized ioto a PostScript dictionary. Unlike Type l

font programs, there is no such thing as a IItypical Type 3 font program"

as very few restrictions are put on their structure and format. This section

describes the organization of the font programs used to implement the

method. Ta facilitate support with most software applications, and under-

, 4. Method PropOsed 30

(

standing by Type 1 font designers/programmers, conventions penaining

to Type 1 font programs have been followed whenever possible.

Font Dietionnaries

The following table desaibes the entries of a font dictionary impleme­

mented With the method.

Key Type Semantics

FontType integer Indicates where the information for the cbaraeter

descriptions is ta be found and how it is

represented.

FontMa'trix array Transforms the character coordinate system into

the user coordinate system.

FontNarne string The name of the font.

FontInfo dictionary Provides information about the font, for the

henefit of programs using the font. Entries are

described in a separate table.

languagelevel integer Minimum language level required for correct

behavior of the- font.

Encoding array Array of names that maps character codes to

character names.

FontBBox array Array of four numbers in the character coordinate

system giving the overall font bounding box.

UniqueID integer Integer in the range 0 to 224 - 1 that uniquely-
identifies the font.

(FID) fontIn Font identifier generated by the defi nefont

operatnr for internal purposes in the font

machinery.

4. Method Proposed 31

{
Key Type Semantics

CharProcs dictionary Provides a procedure for each letterform defined

in the font. Letterform. procedure can also cali

subroutines.

FontMetrics dictionary Contains the computed left sidebearing and

width of each letterfonn.

BBox dietionary Contains the computed bounding box of each

character in the font, taking into account the

spedfied left sidebearings.

RealBBox dictionary Contains the bounding box of each charaeter in

the font.

FontParalDs dictionary Contains global font parameters. Entries are

described in the following section.

CharParams dictionary Contains individual characters parameters.

Entries are described in the following section.

SideBearings dictionary Contains the left and right sidebearings of each

lètterform.

KerningPairs dictionary Contains aIl kerning pairs value. See Fig. 4.15 for

example of kerning.

Ligatures dictionary Contains aIl ligatures. See Fig. 4.16 for example of

ligatures.

The CharProcs dictionary provides the description of each letterform.

(

4. Method Proposed

le {
[

]
} def

[
(

[42 313 « 25 50 25 2S box »]
(63 250]
[188 229]r 333 292]
[396 417 « 25 7S 50 25 box »]

] [
[331 500]
[167 479]
[63 354]
[63 146 « 50 75 25 75 box »]

] [
[146 -17]
[354 -17]
[417 146 « 50 100 50 50 box »]

]

32

(

Figure 4.12. Example of a typical letterforrn description. The « and »
operators are the PostScript level 2 short·cut diaionary con­
structors. box is a short·hand operator to define the four
parameters -dx, -dy, +dx and +dy according to its four
operands.

+dy

i
-dx .- • ~ +dx

!
-dy

Figure 4.13. Perturbation of the vertices of spline characteristic polygons
are done according ta the four parameters -dx, -dy. +dx and
+dy.

, 4. Method Proposed 33

next
character
origin

II'
--....,...~:;;:::I--~.--;--....-- baseline

charaeter
origin

'-

~ 1"- 1eft side bearing

+- character width~

Figure 4.14. Charaeter metrics.

AVATAR AVATAR
(a) (b)

Figure 4.15. Comparaison between {Q} kerned text and (h) unkerned text,
using the Computer Modern Roman typeface designed by
Donald E. Knuth [31 l.

ff fi - fi ffi fR ff fi fi ffi fil
(a) (b)

Figure 4.16. Comparaison between (a) the ligatures and (h) simple char­
acters in the Computer Modern Roman typeface designed by
Donald E. Knuth [31 J.

(

4. Method Proposed 34

The Fontlnfo dictionary provides font information to programs. The

format documented in the PostScript Language Reference Manual [3] bas

been preserved and is described here for the sake of completeness.

Key Type Semantics

Fui1yNue string Spedfies the font family to which the font

belongs.

FullNante string Unique name for an individual font.

Notice string Trademark or copyright notice.

Weight string Name for the weight, or boldness, attribute of the

font.

version string Version number of the font program.

ItalicAngle number Angle in degrees counterdockwise from the

vertical of the dominant vertical strokes of the

font.

isFixedPitch boolean Indicates ü the font is a fixed-pitch (monospaced)

font.

UnderlinePosition number Recommended distance from the baseline for

positioning underlining stroke.

UnderlineThickness number Recommended stroke width for underlining.

4.4 Parametrization

It is ooly through parametrization that one really get sorne control over

random dynamic fonts. Some parameters influence every characters of

a font, while sorne are specified for each characters. Furthermore, sorne

parameters can greatly influence the metric of characters, in which case

the UseMetrics parameters should be set to false.

4. Method Proposed

Font Parameters

35

Font parameters are specified in two dietionaries: FontPara.s for global

parameters, and CharParalfts for individual charaeter parameters. The fol­

lowing table summarize the font and character parameters currently sup­

ported by the method.

, 4. Method Proposed 36

Key Type Semantics

MiterLi.it: number Miter length limite

UsePen boolean Indicates if the calligraphie pen should be used.

ThickThinRatio number Thick. thin ratio for the calligraphie pen.

StressAngle number Stress angle for the ealligraphic pen.

-dx number Degree of horizontal haphazard variation

(downward).

+dx number Degree of horizontal haphazard variation

(upward).

-dy number Degree of vertical haphazard variation (towards

the lelt).

+dy number Degree of vertieal haphazard variation (towards

the right).

Craziness number Degree of haphazard variation in aIl directions.

RestoreWidth boolean Indicates if the width of the originalletterform

should be restored.

RestoreHeight boolean Indicates if the height of the originalletterform

should be restored.

UsePTM boolean Indicates if the PTM transformation matrix should

be applied to the polygone

PTM array Transformation ma!rlX for the spline

characteristic polygone Usuallya procedure that

retwns an array defined in terms of the five

following parameters.

XScale number Horizontal scaling factor in the PTM.

YScale number Vertical scaling factor in the PTM.

XSquashAngle nurnber Horizontal squash angle factor in the PYM.

XShearAngle number Horizontal shear angle factor in the PTM.

(

(

Modifications to Font Parameters

Although the PostScript font machinery has no intented mechanism to

modify or pass parameters to existing fonts, i.e., fonts registered in the

font machinery, it is nevertheless possible ta do so. The most common

modification to existing fonts is installing a diJferent encoding veetor. As

font dictionaries are made read-only once registered ta the font machinery,

it is not possible to modify this value directIy. The usual way is to make

a copy of the font dictionary, install the new encoding vector, and register

the modified font under another name.

Although registered font dictionaries are made read-only, their sub­

dictionaries are nota Thus, entries in sub-dictionanes, such as FontParams

and CharParalls, can be modified directIy. To simplify the process of mod­

ifying these dictionaries two procedures are provided: SetFontParams,

merges the entries of a dictionary supplied as op~andwith the ones in the

FontParams dictionary of current font; and SetCharParallls which merges

the entries of a dictionary supplied as operand with the ones of a speci­

fied character in the CharParams dictionary of current font. Changes to

the FontParams and CharParams dictionaries are cumulative, i.e., the pro­

cedures Se'tCharParalis and CharParalis simply add new entries to the

(
4. Method Proposed 38

(

ones already presëJJ.t. or override their previous value. Source code- for

these new procedures is given in Appendix C.

(

5 Font Samples

Typeface design is an art. As the American type designer Frederic Goudy

[21, p. 155) warned, ULetters should be designed byan artist and not by an

engineer." This chapter presents, nevertheless, a typeface designed exclu­

sively by a computer sdentist, with the sole purpose of better illustrating

the applicability of the method presented in Chapter 4. This presentation

is limited to technical examples to show the capabilities of the method

through parameters variations. Readers are referred to Appendix E for

sample usage of MetamorFont.

5.1 MetamorFont

MetamorFont is a random dynamic font family implemented using the

method presented in Chapter 4. Its name comes from the fusion of the

word metamorphose, which means to change into a different form, and of

the word font, for obvious reasons. It is aIso a wink at Donald E. Knuth

font-design system METAFONT, as sorne metaness is also involved in the

fonts.

5.2 Methodology

This typeface design was developed directIy on-screen, painstakingly trans­

lated into digital form manually from hand drawn sketches. Despite its

hand-drawn appearance, MeramorFont bas been carefully worked ro en·

39

5. Font Samples 40

(

sure easy reading and yet an informai appearance. Furthermore, sorne

attention was paid to letterspacing as weil as to kem.ing.

5.3 Character Sets

MetamorFont is avallable under two variations, Regular and BoldExtended,

which contain aIl the necessary glyphs to fully support the following en­

codings: CorkEncoding, TEX Text encoding, TEXBaselEncoding, Standard­

Encodïng. ISOLatinlEncoding, ISOLatin2Encoding, and WinLatinlEncoding.

s. Font samples 41

(

Ox lx 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx ex Dx Ex Fx
.... • 0 p ,

A
.... .., à0 '-' @ P R a r A D a

, If

! Q
, , ,

N
,

1 1 A a q 1\ s Ç1 s A a fi
A • :J B R b

,
S , A

A
2 If r C c S A 0 a 0

- 3 S
v

A
, ,

3 «: /1 C C S C S c ~ 0 ci 0

- $ 4 D T cl D t d (Fi
....

4 » t 0 ci ô

· % 5 E U E T
..,

t A ë d 65 - e u e
· b F f E

. .
ft <56 - & Y v U e u œ Ô

.... ,
7 G W

.
Ü ç CE7 9 w G U 9 ç œ

[.9
...

È
..,

(g H X h l 9 0 ...
(/)8 0 X e

) Cl L t r É
....

9 - L l ~ l Y Z U é u
· J · J Z J z l Z t Z Ê U ê uA *" ·

B if + · K [R { N Z fi Z Ë Û ë Û· ,

fi l N
....

Üc , , < L \ 1 TI Yi li l 1 Ü

0 fi - = H] m } D i rJ i f 9 r 9,

fR N 6 d .
Î l PE <: > n - 0 l p.

F > fR / ? 0 0 - R § r 1. Ï § 1 ts-

Table 5.1. MetamorFont-Regular following the Cork encoding veetor.

(
5. Font Samples 42

(

ox lx 2x 3x 4x Sx 6x 7x 8x 9x Ax Bx ex Dx Ex Fx
y

0 p • 0
....

f) d0 @ P A a
. 1 1 A Q

,
N ,

1 l a q i ± A a fi

fi • J B R b :1
... ...

A
2 J r , fi, A 0 a 0

fi ff #1 3 C S f • 1. 3 A 6 d
,

3 C S 0

/ fR $ 4 D T cl t
If '. ft Ô d

...
4 If

0: 0

• fR 5 E U }f
.

65 % e u - • }J A d 6

6 l Be b F V f v t - 1 'f lE 6 œ ô1

t
,

7 G ri * § ç-7 9 W - . x ç .-

h A - -
0

8 .. (g H X x . E e 0
.) 9 l ~ TH É

...
9 i Y %0 © 1 U é Ù

A * · J Z j z S s g Q Ê U ê li·
.....

+ · K [k { Ë Û ë Û8 < > «: », -

l
....

Üc - < L \ 1 CE œ, ~ l l Ü,

] } f "
D

- H m ~ ~ [9- = -

Z ...
> N -. (!)

~ Î î PE . n - p

z ,
/ ? 0 9 - Ï ~ T 9F 0 i-

Table 5.2. MetamorFont-Regular following the TEXBase1 encoding veetor.

(
5. Font sampies 43

(

OK lx 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx ex Dx Ex Fx
, • 0 p ,

R - ,
d0 ..., @ P A a r A D a

, If

! 1 A Q
, , ,

N ,
1 a q fl S (l s A a fi

.... • J B R b
,

S , A. , ...
2 If r C c s A 0 d 0

- 3 C S
.... Â

, ,
3 oC # C S C S c $ 0 éi 0

- $ 4 T ·li
....

f d (A
....

4 D t D 0 d -::0 0

• 5 E
....

T
6 .

5 - % U e u E e t A a 0

· F V f E
. . lE Ô6 - & b v U e u œ Ô

- • 7 G
. . CE7 G 'ri 9 w u 9 u C- C œ

h
,

9 - ,
8

.. (g H X x L l 9 E 0 " f/J0 e

l l
,

r , , , ,
"9 - L) q y i Y Z z E U e u

Z Z t Ê
, ,

A - J * - J j z l Z U ê u-
B ff + - K [R { N Z fi Z Ë Û ë Û· ,

fi l N
,

Ü
,

c
~ • < L \ 1]J ri Y l l Ü

il] } i
, , ... ,

D - = M m 0 r.J i- l Y l !:J,

ffi.
.

d . Î pE > N .- n 0 1< · .- 0 i J>

fil 0
,

§
,

Ï ~ f3.F > -1 ? 0 - R r ;l T-
Table 5.3. MetamorFont-BoldExtended following the Cork encoding vec­

tore

(
5. Font Samples 44

(

-

OK lx 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx ex Dx Ex Fx

v 0 p • • ...
D d0 @ P A a

· !
,

N ,
1 l 1 A Q a q i ± A a ft

ft • J B b
....

2 J R r fi, J A 0 a 0•

ft if 3 S f • L J il
, ,

3 #' C C S 0 d 0

/ fR. $ 4 D T d t • , A Ô d ô4 • Xl

• fR 5 E U ~
.

6 .
5 % e u - • Il A a Ô

6 l et b F V f " t - 1 Cf le 6 œ 01

t f

7 G W * § ç7 9 \11 - · x ç of-

(h - -
0

8 · 8 H X x · E e (/J

· lM
,

Ù ...
9) q l Y l ~ %0 @ 1 E é u

S g li! Ê
, ,

A * · J Z j z S U ê u·
B - + · K [k { Ë Û ë Û< > ca: ::Il>

•

L
....

Üc - < L \ 1 Œ œ -. ~ l l Ü•

] }
... , , ,

D - = H m - ~ l Y l ~

E Z
> N .- n œ Jtf Î l P~ - "z ,

1 ? 0 9 - Ï ~ 1 fjF 0 i-
Table 5.4. MetamorFont-BoldExtended following the TEXBasel encoding

vector.

1"
~

5. Font SampIes

5.4 Technical Samplës

45

(

The goal of this section is to show concretely the impact of parameters on

the typeface appearance.

Rn \LIas stifRy snifflng the ftowery fragrance of her -fine coifee.
FiH ",as stURy sniiflny the ftaueyY fragrance 6f her flne coifee.
Rit was stifRy snifflng the tlowery fragrance of 11er fine cofee.
Fiit was stiflty snifllng the flowery fragrance of her Rne cotfee.

Figure 5.1. Variation on the Craz;ness parameter with UseCons'traints
sets to true.

f1ll JI(J8 .s'ilty f:rj~1\9 (ha fto~or\J h~rQbCe cl \1er ,{(" oc/fee.
H~ /Id' i'lirlt'j btl~"'g the t\o)'-U'tj Fmgrô'(}{ of bep .,~~ ce;{T-ee.
fift ~as ~\ifly stt{t\ng the ftO\Jety fra9'rarzce oF her fut€ co\TQ~.

Fif\ 'Nas stiffly sniffing the R6\c1et-y fragrance of her fine coffee.

Figure 5.2. Variation on the Craziness parameter with UseConstrain'ts
sets to fa1se.

Fin was stéfR~ sntiRng the fto\4Jer~ fragrance Gf her -fine coifee.
Fln 'Mas stiffi.y snifflng the flowery frograrce of œr nne coifee.
Fln 'Pas stHR~ snHRrg the Rowery fragrance of her fîne cofFee.
Fin \Vas stifR~ snifflng the flowery fragrQnce 6f her- Ane coffee.

Figure 5.3. Variation on the Craziness parameter with RestoreHeight
and RestoreWidth set to fa1se.

(
5. Font Samples 46

(

fi~ dte;,! ~1\~!l ~~i'-:)')~ i\'te 1I!''C'0r~ çB..jtanCt! ~(her "lllt!. c2tfo..t.

p;l-'flQ$ sU1Jlj Jl~(fflt19 tt\~ ({O\rl"~ ft'<I~ral\~e. o~ ~or t,,~ ~f&~.

fin. '4I(l' ~tilJl\l sliftn~ t\le ftO'fery fr~9rllJlCe oF "Br 6)fe, cofef..

fU\, \VC1S stiffly snUnng the flowery fragrance of ner Rna cotee.

Figure 5.4. Variation on the Craz;ness parameter with UseSections and
Useconstraints set to fal se.

Afl was stitRy snifllng the flCMery fragrance of her ftne cotfee.
Fitl was stiiR~ snlfRng the flowery fragrance of her ftne coifee.
Rn WaS stiflly Snifflng the flower'y fragrance of her fine coffee.
FUI "aS stiffly snifRn9 the Rewery fragrance of her fine coifee·

Figure 5.5. Variation on the Ju.pyFactor parameterwith JUllpsRela1:;ve
sets to true.

Fifl ",as stifRy sniiRng the fto\l1ery fragrance of her flne œlfee.
FUt \l'as stiffly snifRng the flowery fragrance of her fine coifee.
fin ""as stifR~ snifRng the flo\4)er~ fragrance of her fine coffee.
Flft wQs stitll~ snifRn9 the Rowery fyflgrance of her fine coffee.

Figure 5.6. Variation on the JumpyFactor parameterwith JUDlpsRelative
sets to fal se.

se se se se se se se
Figure 5.7. Variation on the XShearAngle parameter within the PYM.

se se se se se se se
Figure 5.8. Variation on the YShearAngle parameter within the PYM.

se se se se se se se
Figure 5.9. Variation on the ThickThinRatio parameter..

5. Font Samples 47

(

Figure S.l O. Variation on the calligraphie pen stress angle.

(

6 PostScript Fonts with TEX and ~TEX

This chapter provides an introduction to the origin and use of the lEX and

t\TEX typesetting systems. The following sections deal with the set up and

use of PostScript parametric fonts, as well as the interfacing with tbese

systems. More details on the interaction between PostScript fonts, TEX and

0TEX can be found in [49, 20).

TEX is a powerful text-processing system. for creating professional qual­

ity typeset text-and especially text containing mathematics. Developed

in the late 1970s and early 1980s by Donald E. Knuth, TEX still ranks

among the best typesetting systems, notably for its careful ~e and page

breaking, skilfulness for setting mathematics, high-quality hyphenation,

and multilingual capabilities-not to mention its portability across a wide

range of computer platforms. The definitive guide to the use of TEX is The­

TEXbook [29].

~TEX is document preparation system [35] developed by Leslie Lamport.

Rouglùy speaking, ~TEX is a collection of TEX commands designed to sim­

plify the typesetting of a document by allowing the user to concentrate on

the content and structure of the document rather than on the exact appear­

ance of the finished product. ~TEX2E is the newly revised ~TEX standard,

and is described in [20].

48

(.
6. PostScript Fonts with TEX and ~TEX

6.2 Font Metrics

.49

(

As a typesetting system, TEX exhibits a primitive knowledge of fonts. TEX

regards fonts as ordered sets of reetangular boxes; it does not consider

the aetual shapes of the charaeters. In arder to set the charaeters mto

their proper positio~TEX only requires the font memes information-the

widths, heights, and depths of charaeters-as weil as extra information

such as ligatures, kerning pairs. and italic correction. This information

must be stored in external files ealled TEX font metric (•tfm) files.

Adobe Systems adopted a similar solution to specify the font metries

information of their PostScript font pro~. Ta each PostScript font

corresponds an Adobe Font Metric (. atm) file (4] that describes both global

metries for the font and the metries for each charaeter. The •afin files are

practieaIly equivalent to TEX'S . tfm.

To use PostScript fonts with TEX. . tfm files containing the same infor­

mation as the . afm must be provided. Fortunately, many programs can

convert . afm into . tfm files. More details on such programs are given in

section 6.5.

6.3 Font Encodings

The encoding vector describes the order and position of characters within

a font. It can be viewed as a one-dimensionaI array indexed by character

code, usuallyan integer in the range 0 to 255. to which corresponds a

character glyphe

Operating systems and software applications make use of several differ­

ent encoding veetors. TEX Text. Cork, and Adobe Standard are all examples

of eneoding vectors. In practice. the encocling vector is usually chosen

according to the hardware or software used.

6. PostScript Fonts with TEX and ~TEX 50

(

Unless specified, '!EX assumes that fonts use the lEX Text (OTI) encod~

mg, a primitive 7-bit encoding, thus with space for only 128 charaeters.

ln 1990, the TEX User's Group adopted a new encoding scheme, the Cork

Encoding (Tl), that contains all the charaeters required by more than 20

. languages using the Latin alphabet. Among other things, this new encod­

ing enables the use of nue accented characters instead of relying on lEX's

accenting mechanism. Font encodings are discussed at length in [8]

6.4 Vinuai Fonts

The virtual font mechanism provides a general interface to change the en­

coding veetor of a font. Virtual fonts are defined in terms of charaeters

from one or more fonts. and possibly from other virtual fonts. including

themselves. They can map a character to another character in a different

font (composite font). a different character in the same font, a character to

multiple characters (composite character), or even an arbitrary sequence

of DVI commands.

Although virtual fonts can serve many purposes. they are commonly

used to interface PostScript fonts to TEX. They can change the encoding

vector, gather glyphs missing in the base font from so-called expert sets,

as weil as construct composite characters. A discussion on the virtual font

mechanism can be found in [33].

6.5 Adobe File M~tric5 to TEX File Metrics

While sorne . afm to . tfm conversion programs only perform a crude trans­

lation of the original. afm file, others can specify different encodings. or

carry out special manipulations. The afm2tfm program, distributed with

the dvi ps driver, provides re-encoding facilities as weIl as special effects

6. PostScript Fonts with TEX and ~TEX 51

(

to construet synthetic fonts-faked small caps, obliqued, expanded, and

condensed variants-through the use of virtual fonts.

Alan Jeffreys fonti "st package [24]-a font installation software for

TEX-provides a better support for ~TEX2E users. WhiIe providing ail the

facilities supported by afm2tfm, it also allbws the generation of the files

required by the New Font Selection Scheme (NFSS), extension of 01EX2E.

sucb as the font definitions (. fd) mes.

6.6 Deviee Independent Drivers

As output, TEX produces a DeViee Independent (. dvi) file that is not di·

rectly printable. The •dvî file describes the typeset document in a simple

stack language that can be rendered on any device. The task of translating

the •dvî file into printable or viewable form is left to a DVI driver. A DVI

driver is a special program that translates the DVI commands into a form

suitable for a particular device, and it also provides ail the required fonts.

Thus, TEX can be used for almost any kind of output device, if an ap·

propriate DVI driver is available. Moreover, DVI drivers free TEX of any de·

pendency on printing technologies. Qnly DVl·drivers will require updates

as the technology evolves.

6.7 Interfacing PostScript Parametric Fonts

Tomas Rokicki's DVI driver for PostScript, dvi ps (42), allows for the in­

clusion of native PostScript code within a TEX document via the \speci al

primitive. TEX'S \speci al command is provided to transmit special in­

structions directly to the DVI driver, usually to take advantage of special

features offered by a particular output device.

In the context of parametric fonts, tbis feature can be put to profit as

6. PostScript Fonts with TEX and ~TEX 52

(

'-

theus~can select fonts.and alSp- set parameters of seleeted fonts. As there

are currently no standards for parametric fonts, each parametric font must

provide an interface to set the parameters. An interface wrînen for the

MetamorFont family is provided in the package metamorfont. sty, shawn

in Appendix D.

(

7 Conclusion

This thesis presents a general method and structure for storing. repre­

senting and reproducing random dynamic fonts. The generated letterform.

shapes are guaranteed to be C2 contlnuous and ta preserve a unifonn

thickness.

The mtent of this thesis is to create beautiful, functional and incon­

spicuous random dynamic fonts. In order to illustrate the versatility of

the method proposed, a new typeface. MetamorFont, is designed and im­

plemented. The result, more than a simple typeface. is nothing less than

a software workbench dedicated to the development of random dynamic

font programs.

Indeed, new random dynamic fonts couId easily be designed with the

tools developed for the creation of MetamorFont. Although, on the praeti­

cal side, a graphicaI user interface wouId be more than welcome to auto­

mate the input process.

The current implementation offers many parameters to achieve a wide

range of special effects. Furthermore, the structure proposed is developed

in an extensible way so that new parameters and random transformations

may easily be added in the future.

There is still room for improvements. As an alternative to outlines, a

calligraphie pen effect is proposed. Currently, the implementation only

supports constants stroke width, stress angle and thick-thin ratio within

each glyph. Variation of these parameters within a glyph, as can be done

in METAFONT. would certainly allow the generation of more interesting

S3

c ."

(-

7. Conclusion 54

shapes. The use of variable width splines [28] might also be considered.

Conneeted random dynamic fonts, Le., fonts in which all charaeters are

smoothly linked might he a good direction to pursue researcIL Although

context bandling could be done within fonts, it is dear that this is more

the responsibility of the typesetting system.

Random dynamic fonts derived from true bandwritten charaeters pose

a serious challenge. A careful attempt in this direction is given in Devroye

and McDougall [18]. It would be interesting to look at the mathematical

models of human handwriting used in the field of optical charaeter recog­

nition [46, 39J.

Wbile random dynamic fonts allow to come cIoser to simulating true

handwriting, it is clear that the fonts alone aren't sufficient to simulate

true handwriting, randomness sbould also be involved in the typesetting

process as the position of the charaeters on the page also play an important

role in the final result.

From the·creatïve·point of view, random dynamic fonts present a new

challenge to artists and typographers. Indeed, the design of random dy­

namic fonts is much more difficult than that of statie fonts. One Dot only

bas to think in terms of letterfornÏ. shapes but rather in terms of sets of

letterform shapes that depend on random parameters.

(

A -. PostScript Type 3 Font

1bis appendix exhibits the structure of a PostSCript Type 3 font prograID,

MetamorFont, designed with the method proposed. Many dietionaries and

procedures have been left out to save space.

X!PS-Adobe-3.0 Resource-Fon~

~itle: CS RCSfile: MetamorFon~-Regular.ps.vS)
~reator: (S Author: bernard S)
~reationDa~e: (S Da~e: 1996/10/22 15:02:40 S)
~ersion: (S Revision: 1.1 S)
~opyrigh~: Cc) 1995. 1996 by Bernard Desnuisseaux. All righ~s reserved.
XlFor: Bernard Desruisseaux Cbernard@cs.mcgill.ca)
XlEndCommen~s

=SeginProlog
~eg;nResource: font MetamorFont-Regular

% Type 3 Font Me~amorFont-Regular

%---
% Description MetamorFont is a random dynam;c font.
%---
% Copyright (c) 1995, 1996 by Bernard Desruisseaux.
% Al1 rights reserved.

100 dict beg;n

/FontName /MetamorFont-Regular def
IFontType 3 def
/FontMatr;x [0.001 0 0 0.001 0 0] readonly def
/FontBBox [0 0 0 0] readonly def % (atend)
/Encoding StandardEncoding def
/Un;queID 1314159 def
/XUID [1000000 1314159] readonly def
/LanguageLevel 2 def

% Dictionary Fontlnfo
%---
% Description Font Information conforming to Type 1 format.

/FontInfo 9 dict dup begin
/version (001.000) readonly def
/Notice (Copyright (c) 1995, 1996 by Bernard Desruisseaux) readonly def
IFamilyName (MetamorFont) readonly def
/Ful1Name (MetamorFont Regular) readonly def

55

(.
A. PostScript Type 3 Font 56

/Weigh~ (Regular) readonly def
/ItalicAngle 0.0 def
/isFixedPi~ch false def
/UnderlinePosi~ion -150 def
/UnderlineThickness 50 def X [Bold: 80]

end readonly def

X Oietionary FontParams
~--X Description Global font parueters.

/FontParams 100 diet dup begin
~-[Cenerals]---
/DynMicFont true def " setcharwi dth or setcachedevice
/Ran~Font true def X Use Oisto~harPo1ygon?

/UseCOnstraints true def " Use constraints dietionary?
/UseSeetions true def X Use sections?
/UseMetrics dup where " Use FontMetrics dietionary?

{ pop UseMetn cs } "
{ true } ifelse def "

/NullClyph false def " Most glyphs are non-nu11

,,--[Ju.pyFont]--
/JumpyFont false def " Characters go up and down
/lumpyFaetor 50 def " by +- JumpyFaetor
/lumpsRelative true def " Relative jumps?
/Lastlump 0 def " Last jump value

%--[Painting Parame~ers

/Pain~Type 1 def
/StrokeWidth 50 def
/Lineloin 1 def
/Linecap 1 def
/Mi~erLimit 2.S def

]--
" 0:fill.l:stroke.2:stroke.3:null
" Stroke width [Bold: 80]
" Line join
% Line cap
" Miter limit

%--[Pen Parameters]---
/UsePen true def % Use calligraphie pen effeet?
/ThiekThinRatio 5 def " Pen Ratio of thick to thin
/StressAngle 120 def " Pen Stress Angle

%--[Randomization Parameters]-------------------------------------
/Craziness 0 def % Haphazard variation
{ /-dx /-dy /+dx /+dy } " Independant haphazard var.

{ Crâziness def } forall %
/RestoreWidth true def " Restore Width after transe
/RestoreHeight true def " Restore Height after transe

]---------------------------------------
" Use the PTM ? [Bold: true]
% X Shear (xtilt) the polygon
% y Shear (ytilt) the polygon
% Squash the p~lygon

% [Bold: 1.05]
" [Bold: 0.95]
% Polygon Transformation Matrix

%--[Polygon Transformation
/UsePTM false def
IXShearAngle 0 def
/YShearAngle 0 def
/XSquashAngle 0 def
/XSeale 1 def
/YSeale 1 def
/PTM { [

XSquashAngle eos XSeale mul
YShearAngle sin
XShearAngle sin YSeale mul
YScale 0 0

.(
A. PostScript Type 3 Font

] } def

57

X--[Debugging Parameters
15howBBox false def
15howBounds false def
15howSeetions false def
IShowPolygon false def
15howBezie~ false def

end def

]---X Show Character Boundin9 Box?
X Show Coordinate Bounds?
X Show Sections?
X Show Character Polygon?
% Show Bezier Polygons?

(

x Dictionary CharParams
X---
" Descnption : Charaeter parueters •....
IChar~lraMS 400 diC't dup begin

I.notdef « INullClyph true » def
lacute « IStressAngle 60 IRestoreWidth false » def
lasei i ci rcu. « IStressAng1e 90 fRestoreWidth fa1se » def
lat « IStressAngle 90 » def
Ibackslash « IStressAngle 90 » def
Ibar « IStressAngle 60 IRes'torewidth false » def
Ibreve « IStressAngle 90 » def
/brokenbar « IStressAngle 60 /RestoreWidth false » def
Ibul1et « /StressAngle 90 IStrokeWidth 150

/ThickThinRatio 1 » def
Icaron « /StressAngle 90 » def
/cedil1a « IStressAngle 110 » def
Icircumflex « IStressAngle 90 IRestoreWidth false » def
/currency « IStressAngle 90 » def
/cwm « /NullGlyph true » def
/compwordmark cwm def
/compworkmark cwm def
/divide « /StressAngle 60 » def
/emdash « IStressAngle 0 /RestoreHeight false » def
/endash « /StressAngle 0 /RestoreHeight false » def
/equal « /StressAngle 60 » def
/exclam « /RestoreWidth false » def
/exclamdown « /RestoreWidth false » def
/grave « /RestoreWidth false » def
/greater « /StressAngle 90 /RestoreWidth false » def
/guillemotleft «/StressAngle 90 » def
/guillemotright « /StressAngle 90 » def
/guilsingl1eft «/StressAngle 90 » def
/guilsinglright « /StressAngle 90 » def
/hyphen « /StressAngle 60 /RestoreHeight false » def
/hungarumlaut «/StressAngle 80 » def
/less « /StressAngle 90 /RestoreWidth false » def
/logicalnot « /StressAngle 135 » def
/macron « /StressAngle 60 /RestoreWidth false » def
/minus « /StressAngle 60 /RestoreHeight false »def
/multiply « /StressAngle 90 » def
/numbersign « /StressAngle 135 » def
/ogonek « /RestoreWidth false /RestoreHe;ght false » def
/parenleft « /StressAngle 90 » def
/parenright « /StressAngle 90 » def
/percent « /StressAngle 90 » def
/perthousand « /StressAngle 90 » def
/plus « /StressAngle 60 » def
/plusminus « /StressAngle 60 » def

(
A. PostScript Type 3 Font 58

/quotedbl
/quo'tesingle
/ring
/slash
/space
/three
/tilde
/underscore
/yen
/z
/l

end def

« /StressAngle no » def
« /StressAngle 110 » def
« /RestoreW1dth false /RestoreHeight false » def
« /StressAngle 90 /RestoreWîd'th false » def
« /NullC1yph true » def
« /StressÂngle 140 » def
« /RestoreWidth false » def
« /StressAngle 60 /RestoreHeight false » def
« /StressAngle 90 » def
« /StressAngle 110 » def
« /StressAngle 110 » def

~ Fon'tMetr;cs diC't -- Horizontal Left Sidebearing and Wîd'th [LSBx Wx]

/Fon'tMetr;cs 400 diC't def

~ BBox diet -- Bounding boxes [11x lly une ury]

/BBox 400 diet def

" RealBBox diC't -- Defined for computation if we don·t UseMetrics.

FontParams /UseMetrics get not { /RealBBox 400 dict def } if

% Procedure BuildGlyph
%---
" Description Interfaces the font machinery ta the font's
" PostScript procedures for drawing the shapes.
% Called by the PostScript interpreter.
,,---
" Caveats This procedure is enclosed be~een a save/restore
% pair since memory ;s allocated during the
% construction of glyphs.
%---
% Operand Stack: font name => _

o
ifelse

% name LSBx

" font name
" nâme font
% name

not{ pop I.notdef } if " name
% name LSBx Wx

3 index GetBBox setcachedevice }

/BuildGlyph {
save 3 1 roll exch
beg;n FontParams begin
dup CharProcs exch known
dup GetMetrics 0
DynamicFont { setcha~idth }{
ShowBBox {

1 index % name LSBx name
OynamicFont { currentgray 0 setgray exch } if
GetBBox DrawBBox
Oynam;cFont { setgray } if

} if
JumpyFont {

JumpyFactor dup neg exch Uni
JumpsRelat;ve { LastJump add dup ILastJump exch def } if

} { 0 } ifelse translate % name
mark exch dup CharProcs begin load exec end % mark name [...]
{

counttomark 0 eq { exit} if

(

(
A. PostScript TVpe 3 Font 59

(

exch CharParams exch 2 copy known
dup 5 1 roll { get begin } { pop pop } ifelse
dup xcheck { CharProcs begin exec end } if
ShowBounds { dup { DrawSounds } false MarkCharPolygonSection } if
RandomFont {

RestoreWidth RestoreHeight or
{ dup CetCharPolygonBBox 5 -1 roll } if

UseSections { DistortCharPolygon }
{ CharPolygon2Polygon DistortPolygon } ifelse

RestoreWidth RestoreHeight or {
dup CetPolygonBBox 5 -1 roll 9 1 roll
Restor~dth RestoreHeight CetRestoreMatrix
TransfonaPolygon

} if
} { CharPolygon2Polygon } ifelse
UsePTM { PTM TransfoniPolygon } if
ShowPolygon { dup } if
PaintType 3 ne ShowBezier or {

BuildBohmConstruetion DrawBohMConstruction
ShowBezier { gsave } if
//PaintProcs PaintType get exec
ShowBezier { grestore false labelPath } if

} { pop } ifelse
ShowPolygon {

DynamicFont { 1 setgray } if
{ DrawSquare } true MarkPolygon

} if
{ end } if

} loop pop
end end
restore

} bind def

% Procedure BuildChar
%---
% Description BuildGlyph ancestor. Required for PS Level I.
% Called by the PostScript interpreter.
%---
% Operand Stack: -dict code -> _

IBuildChar {
1 index IEncoding get exch get
1 index IBuildGlyph get exec

} bind def

currentdict
end
dup /FontName get exch definefont pop
%%EndResource
%%EndProlog

(

(

B Adobe Font Metrics

This is a generalized example for a typical Adobe Font Metries (AFM) file. It

is derived from the MM me generated for MetamorFont-Regular. Because

many parts ofan MM are repetitive, much of the repetition in the following

example has been omitted. The omitted portions are documented with

comments. The technical specification of the AFM format is covered in [4].

StartFontMetrics 4.1
Comment This file was automatically generated by:
Commen~ S Id: t3gen.ps.v 1.4 1996/10/16 11:27:38 bernard Exp S
Comment Bernard Desruisseaux (bernard@cs.mcgill.ca)
FontName MetamorFont-Regular
Weight Regular
Notice Copyright Cc) 1995, 1996 by Bernard Desru;sseaux
UnderlinePosition -150
Version 001.000
FamilyName MetamorFont
ItalicAngle 0.0
UnderlineThickness 50
IsFixedPitch false
FullName MetamorFont Regular
FontBBox -167 -298 970 1138
Encoding5cheme AdobeStandardEncoding
CapHeight 739
XHeight 514
Ascender 840
Descender -261
StartCharMetr;cs 314
C 97 ; WX 548 ; Na: B 40 -14 528 508 ;
C 102 : WX 331 ; Nf; B 30 -14 341 846 : l l fl ; L i fi : l f ff
Comment *** many character metrics omitted ***
C -1 : WX 535 ; N ft : B 30 -14 545 846 ; L 1 ffl ; l i ff;
C 171 ; WX 423 : N guillemotleft ; B 20 203 393 463
EndCharMetrics
StartKernData
StartKernPairs 72
KPX T 0 -150
Comment *** many kerning pairs omitted ***
KPX r a -60
EndKernPairs
EndKernData
EndFontMetrics

60

C Modifications to Parameters

PostScript source code ta two procedures used ta mocIifY the FontParus

and CharPara.s dictionaries of random dynamic fontS designed With the

proposed method.

X Procedure SetFontParams
X---X Description· Merge the entries of the operand dictionary in the
X FontParams dietionary of the curren~ fon~.

~--
X Examp1e « /Craz; ness 100 » SetFontParams
%---X Operand Stack: paramsdict a> _

/SetFontParams {
currentfont begin FontParams begin

{
1 index /Craziness eq {

def { /-dx /-dy /+dx /+dy } { Craziness def } forall
} { def } ifelse

} forall
end end

} bind def

X Procedure SetCharParams
%---------------~---------------------------------------~---------------
% Description Merge the entr;es of the operand dic~;onary in the
% 'name t dictionary in the CharParams dict;onary of
% the current font.% J---------------
% Example /guillemotright « /StressAngle 90 » SetCharParams
%---
% Operand Stack: name paramsdi ct => _ -

/SetCharParams {
currentfont begin CharParams dup begin

2 index known {
exch load begin

{ def } forall
end

} { def } ifelse
end end

} bind def

61

(

D MetamOrFont with IetTEX 2E

The 0TEX2E MetamorFont package, metamorfont.sty. provides a simple

front-end to the SetFontParillls operator listed in Appendix C.

x S Id: .e~amorfont.sty.v1.1 1996/10/22 15:02:48 bernard Exp S
X---------~---X Descrip~ion Package to use the new family MetamorFont.
X Op~ion 'nmdefaul~' se~s Me~amorFon~ as the
X default roman family.
X---
% Note This package make use of the driver definition files
% par~ of the S~andard LaTex 'Graphies Bundle.'
%---
% Caveat Parameter changes are only valid for the current
% page, as pages are embedded in a save/res~ore pair.
%--~----
% Author Bernard Desruisseaux (bernard@cs.mcgill.ca)
%---
% Copyright Cc) 1996 by Bernard Oesruisseaux.
% All rights reserved.

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{me~amorfont}[1996/10/01 vl.O LaTeX2e MetamorFont package]
\prov;decommand\Gin@driver{}
\Declareopt;on{nmdefault}{\renewcommand{\nmdefault} {fmf}}
\DeclareOption{dv;ps}{\def\Gin@driver{dv;ps.def}}
\DeclareOp~ion{xdvi}{\ExecuteOptions{dvips}}

\DeclareOption{dvipsone}{\def\Gin@driver{dv;psone.def}}
\DeclareOption{dv;w;ndo}{\ExecuteOptions{dv;psone}}
\DeclareOpt;on{emtex}{\def\Gin@driver{emtex.def}}
\DeclareOption{dv;w;n}{\def\Gin@driver{dviwin.def}}
\DeclareOption{oztex}{\def\Cin@driver{oztex.def}}
\DeclareOption{textures}{\def\Gin@dr;ver{textures.def}}
\OeclareOption{pc~exps}{\def\Gin@driver{petexps.def}}

\DeclareOPtion{pctexwnn}{\def\Ginldriver{pcte~n.def}}

\DeclareOption{pctexhp}{\def\Gin@driver{pctexhp.def}}
\DeclareOption{dvi2ps}{\def\Gin@driver{dvi2ps.def}}
\DeclareOption{dvialw}{\def\Gin@driver{dvialw.def}}
\DeclareOption{dvilaser}{\def\Gin@dr;ver{dv;laser.def}}
\DeclareOption{dv;tops}{\def\Gin@driver{dv;tops.def}}
\DeclareOpt;on{psprint}{\def\C;n@driver{psprint.def}}
\DeclareOpt;on{pubps}{\def\Cin@driver{pubps.def}}
\DeclareOption{ln}{\def\Gin@driver{ln.def}}
\InputIfFileExists{metamorfont.cfg}{}{}
\ProcessOpt;ons

62

(
o. MetamorFont with ~TEX2E

\if!\Ginœdriver!
\PackageError{metamorfont}
{No driver specified}
{You should make a default driver option in a file \MessageBreak
metamorfont.cfg\MessageBreak
eg: \proteet\Executeoptions{dvips}X

}
\else

\PackageInfo{_etamorfont}{Driver file: \Ginldriver}
\'ifundefined{ve~\Cinldriver}{\input{\Ginidriver}}{}

\fi
\DeclareRobustCa.mand{\~ffamily}{\fontta.;ly{~\seleetfont}

\DeclareTextFontCommand{\textfmf}{\~;ly}

\newc~d*{\~r}{\usefont{\encod;ngdefault}{~{.}{n}}

\newca.-and*{\fmfX}{\usefOnt{\encodingdefaul t}{fMf}{bx}{n}}
\newca..and·{\fafrp}{\usefOnt{U}{~{.}{n}}

\newcomaand*{\fmfrpara.s} [1]{\CinlPSlraw{/Meta.orFont-Regular
findfont setfont <<11» SetFontPara.s}}

\newcommand*{\fmfxparams} [1] {\CinlPSlraw{/MetamorFont-BoldExtended
findfont setfont <<11» SetFontParams}}

\newcommand*{\fmfrpparams} [1]{\CinlPSlraw{!MetamorFont-Orna.ents
fi ndfont setfont <<11» -SetFontParaJlts}}

\endinput
~

~ End of file 'metamorfont.sty'.

63

(

The MetamorFont ~TEX2E font definition . fd file, Tlfmf . fd, for the

Cork cr1) encoding. More information on font definition . fd file can be

found in [49, 20].

% SId: back.tex,v 1.15 1996/10/24 12:25:52 bernard Exp S
%---
% Description : MetamorFont font definitions for Cork (Tl) encoding.

\ProvidesFile{Tlnnf.fd}[1996/10/15 MetamorFont font definitions.]
\OeclareFontFamily{Tl}{fmf}{}
\DeclareFontShape{Tl}{fmf}{m}{n}{<-> fmfr8t}{}
\OeclareFontShape{Tl}{fmf}{bx}{n}{<-> fmfx8t}{}
\DeclareFontShape{Tl}{fmf}{l}{n}{<->ssub * fimf/m/n}{}
\OeclareFontShapefTl}{fmf}{db}{n}{<->ssub * fmf/bx/n}{}
\DeclareFontShape{Tl}{fmf}{b}{n}{<->ssub * fmf/db/n}{}
\endinput
%%
%% End of file tT1fmf.fd'.

E MetamorFont Gallery

The following pages present texts and arrangements specially selected to

show off the MetamorFont family.

Un petlt mot de Bretogne :

blhln.

Abientôt \
Bernard 'XXX

Affranchir

suffisamment

~

;
.!!!
2

~ Sophie" Gag--,-ne_'__
~ -

~

t 30QS, av. Linton, aQP.l)
QI

~

1 Montréal (Québec)
(,,)

(

Le Gwen ha du a éré créé en 1923 par l'architectE'
Morvan Marchal, Il a flotté pour la première fois
fi l'exposition des arts déCoratifs de Parts en 1925.

Figure E.l. MetamorFont on a personal postcard.

64

E. MetamorFont Gallery 65

(

etamor ont
Inspiring Typeface

Personal LOGR
Dynamic -Feel
E~e Gpening
Be~<?nd Cool
Simpl~ Lo\}el~

aA bB cC GD eE fF gG hH il jJ kK lL mM
nN 00 pP qQ rR sS tT uU vV wW xX ~ zZ

Figure E.2. MetamorFont specimen page.

,

(

E. MetamorFont Gallery 66

etamorFont
b~ Bernard Desruisseaux

ABCDEFGHIJ
KLHNOPQ
RSTUYWX~JZ

AfEŒÇ0tJ&§9f
abcdefghijRlmn
opqrstuvwx:~Z

" A. , 'v .. 0 '-'aaaClaaaÇlCBœ
fi fftl ffi fR p~ ~i f ~ $
cçd'tooctJfiY]z
(('?) "(:::'\• • ~ @ -\- » t.s-.~) «. , ., ., "

Figure E.3. MetamorFont specimen page.

E. MetamorFont Gallery 67

Amnistie internationale qu aJR"JJ\K4t~.

c terrorisme », a été condamnée.

Monsieur le

ra
vez Vargas,
de rédusi

~
Sê[on Amnistie internoJlonale, les charges pesQn~cont .

diant· de trente ans. mère de deux: enfants, reposent sur cfJes
peu -fla ."es.faltes par la police, selon laquelle Myriam GuAdd
V'lrgas atI[~ entretenud~~ le Sentier lurrû.neux/ ;;",

Puç.une preu~dè eu~lé n'C1!Jant pu être étqPlie con .Jdame
GaLvez Vcirga~,J..ç!éfénue 9'~llement à la prison ~111&« ~é de
ChoriLlos~Wm~j~ v~prie d'intervenir rapidemeri~en sa faveur et 'a~ l~

faire..,.y'bérer im~1~.teml!.tlt.e.fo"ditionnYéif[è-~. ~"
:; Persuad~g vou~saurez enJjnffe mon a~lfJe vous prte de Crolr8",

Mon~ieur le Présiàënr;.,à rekptê~~iGri:.@ ma haute ,considération. <'
.'>, 1)& ~ "O. ,'.l:..,.."'.iJ.il. ,~~ :'", ''''. . "tJ,'""l -;:r

~. ~:.' ,~:.~ .--:-:~::~.

:", '. :~;.'.'.'~ .;'." ',,:Jil Be.mQrd.~..D..'.~J.~ê.s.·.m.tlSSeQU)(
~ ~l~~~~)~~~1 .l ~~~ \.

c.c. Son E)(cellencejHernan CootUiflét::tj1riategui, amb~Ssade§~~~
.~ .~. : c ~d~ ./ ;l~~~~~=~:-~~

Figure E.4. MetamorFont for personal letter.

(

E. MetamorFont Gallery 68

(

lCEJ] Bâtons de Il ~~e JI
Graines de

cannelle moutarde

1

FeuiUes de

1 Il 1111 11
11 Illaurier Cerfeuil Muscade Safran

moulue

Il Estragon Il Il Ciboulette
1111 11

11
Sauge IlMarjolaine

Il ::: Il
Clous de

Il Il 1
~Igirotte Romarin moulue

Figure E.S. MetamorFont for spice and herb bottle labels.

Coffee makes Cl bad man cheerfu~ G\ lan9uoorous man, actiVe;
Cl cold man Warn1; a warm man, glowin9: a debilitated man,
strong. It intoxicates, without inviting the police; if ex.cites a Row
of spirit, and ClwaRens mental pGwers th6Ught to be
dead ... Whsn côffee is bad, it is the wickedest thing in town;
when good, the most g~oriôus. When it has lost its aromatic
Ravôr and appeals no more the eye, smelt or taste, il ls nerie;
but)Vhen left in a sick room, with the lid Gif, it nUs the room with
a fra9rance onl~ jacqueminots can rival. The very smell of
c6ifee in a SiCR room terrorizes deatn.

-John Ernest HcCann, in OtJer the Black Coff'ee (1qO;;))

Figure E.6. MetamorFont used to typeset a quote..

E. Metamorfont Callery

Gâteau du diable
Préparation : 3D minutes
Cuisson: J5 minlltes

69

SOmL
lSOmL

l
3()() ml

5mL
75 mL

lJSmL
100 mL

5mL
SmL

Beurre
Sucre
Œufs battus
furtne tout usa~
Poudre à pate
Lait caill~
Café nOir bouillant
chocolat mi--sucr~ fondu
Bicarbonate de soude
Essence de vanille

(

1- Battre le beurre en crème avec le sucre.
2- Ajouter un d un les œufs sans cesser de battre

le mélange.
3- Tamiser la farine et la poudre à pâte. IncGrporer

au mélange en alternant avec le (ait caillé.
Terminer aveC la farine.

4- Verser le café bouillant sur le chocolat fondu. et y
ajouter le bicarbonate de soude. Laisser refroidir
quelque p~ puis ajouter au premier mélange.

5- parfumer avec l'essence de vanille.
b- Verser dans un moule de 25 x 15 x 5 cm.
7- Faire cutre au four à 1QO°C, durant 15 minutes.

Figure E. 7. Recipe taken From Cuisine du Québec. Institut de tourisme et
d'hôtellerie du Québec. Les Éditions TransMo, 1985. p. 54.

(
E. MetamorFont Callery 70

(

Figure E.8. Overprint effect used with MetamorFont. A general guiding
prineiple of Design (and of life) From graphie designer Robin
Williams.

E. MetamorFont Gallery

What otd ~C5U brlYl9
tho.t book thCÀt ~ou
know 1 don't llke to

be read to out of up
for?

71

(

Figure E.9. Sentence allegedly produced by a young chile!, •.. probably af­
ter too much PostScript programming! The chïld's father had
brought a book upstairs, to read the child a bedtime story.
However, it was a book the child did not like.

(

Bibliography

[1] Adobe System Incorporated. PostScript Language Tutorial and Cook~

book. Addison:"Wesley, Reading, Mass., 1985.

[2J Adobe System Incorporated. Adobe Type l Font Format, version 1.1.
Addison-Wesley, Reading, Mass., 1990.

[3] Adobe System Incorporated. PostScript Language Reference Manua[.
Addison-Wesley, Reading, Mass., second eclition, 1990.

(4) Adobe System Incorporated, Mountain View, Calif. Adobe Font Met~
ries File Format Spedficaôon, Oetober 1995. Version 4.1, Technical
Specification 5004.

[5] Jacques André. The Scrabble font. The PostScript Journal, 3(1):53-55,
1990.

[6] Jacques André. Random fonts and inkspreading simulation. Research
note, INRIA, projet Opéra, Rennes, November 1992.

[7] Jacques André. Création de fontes en typographie numérique. Docu­
ments d'habilitation, IRISA + IfSIC, Campus de Beaulieu, Rennes, Sep­
tember 1993.

[8] Jacques André. Cahiers GUTenberg, Codage des caractères d'ASCn à
UNICODE, 1995.

[9] Jacques André and Bruno Borghi. Dynamic fonts. In Jacques André
and Roger Hersch, editors, Raster Imaging and Digital Typography,
pages 198-204, Cambridge, England, October 1989. Cambridge Uni­
versity Press.

[10) Jacques André and Christian Delorme. Le Delorme: un caractère
modulaire et dépendant du contexte. Communication et langage,
86:65-76, 1990.

[11) Jacques André and Victor Ostromoukhov. Punk: de METAFDNT à
PostScript. Cahier GUTenberg, 4:23:.28, 1989.

f

[12] Apple Computer. The TrueType Font Format Sped(ication, JuIy 1990.

[13) Charles Bigelow and Kris Holmes. The design of Ludda4ll : an integra­
ted family of types for electronic literacy. In J. C. van Vliet, editor,

72

(

Bibliography 73

Text Processing and·Documentation Manipulation: Proceeding of the
International Conference, University ofNottingham, pages 3-17, New
York, Aprïl1986. Cambridge University Press.

[14] Wolfgang Bôhm. Cubic B-Spl.ine Curves and Surfaces in Computer Ai­
ded Geometrie Design. Computing, 19:29-34, 1977.

[15] Robert Bringhurst. The Elements of Typographie Style. Hartley &
Marks, Vancouver, 1992.

[16] Su Bu-qing and üu Ding-yuan. Computational Geometry-Curve and
Surface Modeling. Academie Press, San Diego, Calif., 1989.

[17] Thomas H. Cormen, Charles E. Leiserson. and Ronald L Rivest. Intro­
duction to Aigorithms. McGraw-Hill, Cambridge, Mass., 1989.

[18] Luc Devroye and Michael McDougall. Random fonts for the simulation
of handwriting. Eleetronic Publishing, 1996. To appear.

[19] Gerald E. Farin. Curves and Surfaces for Computer Aided Geometrie
Design: A Practical Guide. Academie Press, Boston, third edition, 1993.

[20] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The ~TEX

Companion. Addison-Wesley, Reading, Mass., 1994.

[21] Frederic W. Goudy. Typologia: Studies in Type Design & Type Making.
University of California, Berkeley, Calü., 1940.

[22] Roger D. Hersch, editor. Visual and Technical Aspects of Types. Cam­
bridge University Press, Cambridge, England, 1993.

[23] John D. Hobby. Smooth, easy to compute interpolating splines.
Discrete and Computational Geometry, 1:123-140, 1986.

[24] Alan Jeffrey. fontinst: Font installation software for TE~ September
1995. Version 1.500.

[25] Margo Johnson. Hybrid Digital Typefaees. Emigre, 38:47-58, 1996.

[26) Peter Karow. Digital Typefaces: Description and Formats. Springer­
Verlag, Berlin, 1993.

[27] Peter Karow. Font Technology: Methods and Tools. Springer-Verlag.
Berlin, 1994.

[28] R. Victor Klassen. Variable width splines: a possible font representa­
tion? Electronic Publishing, 6(3):183-194, 1993.

(29) Donald E. Knuth. The TEXbook, volume A of Computers and Typeset­
ting. Addison-Wesley. Reading, Mass., 1984.

[30] Donald E. Knuth. The METAFDNTbook, volume C of Computers and
Typesetting. Addison-Wesley, Reading, Mass., 1986.

..
[31] Donald E. Knuth. ComputerModern Typefaces, volume E of Computers

and Typesetting. Addison-Wesley, Reading, Mass., 1986.

[32J Donald E. Knuth. A Punk meta-font. TUGboat, 9(2):152-168, August
1988.

(33] ponald E. Knuth. Virtual fonts: More fun for Grand Wizards. wc;.
boat, 11(1):13-23, Aprïl1990.

[34] Michael Kokula. Automatic generation of script font ligatures based
on curve smoothness optimization. Eleetronic Publishing, 1994. To
appear.

[35] Leslie Lamport. BTEX: A Document Preparation System-Users Guide
and Reference Manual. Addison-Wesley, Reading, Mass., 1986.

(36) Henry McGilton and Mary Campione. PostScript by Example. Addison­
Wesley, Reading, Mass., 1992.

[37] Michael E. Mortenson. Geometrie modeIing. Wiley & Sons, New York,
1985.

[38] T. Packard. Ransom fonts. The PostScript Journal, 2:44-45, 1989.

(39] Réjean Plamondon, Ching Y. Suen, and Marvin L Simner, editors. Com­
puterRecognition andHuman Production ofHandwriting. World Sden-
tüic,Sbngapore,1989. -

[40] Franco P. Preparata and Michael lan Shamos. Computational Geo­
metry: An Introduction. Springer-Verlag, New York, 1985.

[411 Thierry Pudet. Realtime fitting of pressure brushstrokes. Research
Report 29, Digital, Paris Research Laboratory, March 1993.

[421 Tomas Rokicki. Dvips: A DVI-to-PostScript Translator, January 1995.
Version S.S8f, Edited for Dvipsk by Karl Berry.

[43] Richard Rubinstein. Digital Typography: An Introduction to Type and
Composition for Computer System Design. Addison-Wesley, Reading,
Mass., 1988.

[44} John F. Sherman. Taking Advantage of PostScript. Wm. C. Brown Pu­
blishers, Dubuque, Iowa, 1992.

_ [45] Signature Software Incorporated. SUPERscripts: Cursive Handwriting
fonts. Windows Version 2. 1994. 489 North 8th Street, Suite 201,
Hood River, Oregon 9703l.

{46] Ching Y. Suent Marc Berthod, and Shunki Mori. Automatic recognition
of handprinted characters: the state of the art. Proceedings ofthe IEEE,
68(4):469-487, April 1980.

147] Erik van BlokIand and Just van Rossum. Random code-the Beowolf
random font. The PostScript Journal, 3(1):8-11, 1990.

(

Bibliography 74

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

. 1

1

1

1

1

1

1

1

1

1

1

1

1

1

(
Bibliography 75

[48] Erik van Blokland and Just van Rossum. Different approaches to li­
vely outIines. In Robert ft.- Morris and Jacques André, editors, Raster
Imaging and Digital Typography~ pages 28-33, Cambridge. England,
Oetober 1991. Cambridge University Press.

[49] Norman Walsh. Making TEX Work. O'Reilly & Associates, Sebastopol,
Calif., 1994.

[50] Robin Wi)liams. The Non-Designers Design Book. Peachpit Press, Ber­
keley, Calif., 1994.

[51] Robin Williams..4 Blip in the Continuum. Peachpit Press, Berkeley,
Calif-=, 1995.

[52] Y&Y. LuddaBright + LuddaNewMath, 1992. 106 Indian Hill Carlisle,
Mass.01741.

IMAGE EVALUATION
TEST TARGET (QA-3)

11111
1.0 ::: ~~ 12.2

a.:.~

11111.1 L~ ~
11~11.8

II~I~ 1~111.4 ~I! 1.6

1
'"--...

-

lS0mm ~--I.....

- 6" -----~~...,
1

APPLIED .=! IIVIAGE 1_ .ne-== 1653 East Main Street
~.: Rochester.NY 14609 USA

-=-~ Phone: 7161482-0300_ -= Fax: 7161288-5989

C1993 &..--• .-.--. Image. Inc.. AI Righ!s ReseNed

