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Abstract

This thesis presents an up-to-date survey of results concerning laws of large
numbers for sequences and arrays of random variables. We begin with Kol-
mogorov’s pioneering result, the strong law of large numbers, and preceed
through to Hu et al.’s, and Gut’s recent result for weakly dominated ran-
dom variables, for which we provide a simpler proof. We iunsist in particular
on the techniques of proof of Ftemadi and Jamison el al.. Furthermore,
analogues to the Marcinkiewicz-Zygmund theorem are given. This thesis
illustrates the trade-off between the existence of higher moments and non
i.i.d sequences and arrays of random variables to obtain the strong law of
large numbers.

Résumé

Ce mémoire présente une revue des récents résultats sur la loi des grands
nombres pour des suites et tableaux de variables aléatoires. Nous com-
moncons par les travaux précurseurs de kolmogorov sur la loi forte des grands
nombres pour ensuite aboutir aux récents résultats de Hu et al. et de Gut
sur les variables faiblement dominées, dont nous donnons une preuve plus
simple. Nous insistons en particulier sur les techniques de preuves utilisées
par Etemadi et Jamison et al.. Nous présentons aussi des résultats analogues
aux théorémes de Marcinkiewicz-Zygmund. Ce mémoire illustre en fait les
liens entre 'existence de moments d’ordre élévé et les suites et tableaux
de variables non necessairement i.i.d. pour obtenir la loi forte de grands
nombres.
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Chapter 1

Introduction

1.1 Outline of Thesis

In 1930, Kolmogorov proved what is now known as his classical strong law of
large numbers—that for a sequence {X,;n > 1} of independent, identically
distributed (i.i.d.) random variables with £|X;| finite, the average of the

sequence converges to the mean with probability one; in symbols,

n
n—00 n

= FX; a.s.

A great deal of work has been done since in transporting this important
result to more general settings, and in exploring variations on the theorem
in which weaker conditions on the sequence of random variables implies
weaker modes of convergence for the sequence of averages. This thesis gives
an overview of some of these generalizations and variations. We begin by
giving an outline of the thesis; for definitions please refer to the next section.

The second chapter of this thesis begins with one proof of the classical

law, with the X;’s pairwise independent and identically distributed, but
p
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not necessarily i.i.d. We then discuss the Marcinkiewicz-Zygmund strong
law, which examines the necessary and sufficient conditions for the strong

convergence of S, /n'/? where

Sn = i Xy
k=1
and {X;} is a sequence of i.i.d. random variables with EX; = 0 and 0 <
p<2.
In the third chapter, a more general problem is examined; namely the

almost surely and in probability convergence to a constant of the weighted

sums
n
To= ) ankXs
k=1

(the ani’s are the weights). The purpose of this chapter is to provide more
general results valid for a whole class of coefficient matrices A = (an). This
is in contrast to the previous chapter in which (anx) has a specific structure-
for example, any = n~! for k < n and an = 0 for £ > n. Although the case
where the X;’s are i.i.d. is studied primarily, we also examine the situation
when the X; are pairwise independent, dominated by a random variable, or
orthogonal, and the situation when no first moment exists.

The fourth chapter studies results concerning complete convergence of
arrays of random variables {X,t; 1 < £ < m; n > 1}. Necessary and

sufficient conditions, inspired by the Marcinkiewicz-Zygmund result, for the



complete convergence of

n
nl—l/p;Xnk for0 < p< 2

with {Xux} an i.i.d. array are presented. Next, we examine the case in where
no assumption of independence between the rows of the array is made; we
present a new proof, based on Rosenthal’s inequality, which eliminates some
of the tedious technicalities of the original proof and extends the theorem
to the case where 0 < p < 1.

Finally, we conclude by examining some of the results which have been

obtained in the previous chapters in a more general setting—that of random

variables which take values in Banach spaces.



1.2 Background Results

The basic setting throughout this thesis is a probability space (2,F,P)
where 2 is called the sample space, F is a family of subsets of @ a (o—
field) whose elements are called events, and P : F— [0,1] is a probability
measure. For A € F, P(A) is called the probability of the event A. The
purpose of this section is to give the necessary background definitions and
results which will be used in the remainder of the thesis. We begin with the

Borel-Cantelli lemma which will play a vital role.

Definition 1 If {A,,n > 1} is a sequence of elements of F then the ele-
menis w € Q which occur infinitely often (i.0.) in {A,} are those elements
which are in A, for infinitely many values of n. The set of elements of 2
which occur infinitely often in {A,} is thus given by
o0 [s0)
{4, io. } = ﬂ U A, =limsup A,.
k=1 n=k
A useful fact to know about such events is
0
P(limsup A,) = lim P(| ] An).
k—+co
n=k
Lemma 1 (Borel-Cantelli) If {A,,n > 1} is a sequence of events for

which

i P{A,} <

n=1



‘sz,-;;‘

then P{A, i.0. } = 0. If the A, are pairwise independent, then a partial

converse holds-namely, if

o<]
Z P{A,} =0
n=1

then P{A, i.0. } =1.

Proof: See [2].

Let {X,, n» > 1} and X be random variables.
Definition 2 The sequence {X,} is said to converge almost surely (a.s.)
to X Zf

Plw: Xp(w) = X(w) as n — o0} =1
or equivalently, if for all € > 0,
Plw: | Xp(w) - X(w)| > € 10 }=0.

This will be denoted by X, — X a.s as n — co. If X is degenerate (almost
surely a constant) then {X,} is said to converge almost surely to a constant

(a.s.c) X.

Definition 3 The sequence {X,} is said to converge in probability to X if
Jor every e > 0

Jim_ Plw: | Xp(w) - X(w)| > €} = 0.

In this case, we will also say that X, — X in probability as n — oo. If
X, — X in probability and X is degenerate, then {X,} is said to converge

in probability to a constant (i.p.c) X.

7



We note that the almost sure convergence of X, to X implies convergence

in probability (to X'), but the converse is not true in general.

Lemma 2 ([4] p.90) For any r > 0 and any random variable X,

o0 o]
> P{X|2nT} < EIXT < YT P{X| >0/}

n=1 n=0

Lemma 3 Let {X,} be a sequence of random variables. Suppose that

iP{Ian > €} < oo foralle>0. (1.1)

n=1

Then
X, —0 as, (1.2)
and the converse holds if the X, ’s are also pairwise independent.

Proof. If (1.1) holds, then for any € > 0, by the Borel-Cantelli lemma with

A, = {|Xn| > ¢} we have
P{|X,| > ¢ i.0.} =0.

This is equivalent to the statement X, — 0 a.s. Conversely, if the X, are
pairwise independent and (1.2) holds, that is, X, — 0 almost surely, then
for any € > 0

P{|Xn| > € i.0.} = 0.
By the partial converse of the Borel-Cantelli lemma,

o0
S P{|Xal > €} <

n=1

and so (1.1) holds. D



Chapter 2

Strong Laws of Large
Numbers

2.1 An Application

We begin with a simple and beautiful application of the strong law of large
numbers due to Borel (1909). Let Q = [0, 1]. Consider a decimal expansion
w = 0.z1%, ... for each w € Q. ( Some w’s have two decimal expansions,
however, since the Lebesgue measure of such w’s is zero, our discussion will
not bhe affected if we take the decimal expansion of w to be either of the
two possible). For £ = 0,1,2,...,9 let N,(lk)(w) denote the number of times &
appears among the first n z;’s of the decimal expansion of w. We say w € Q2

is normal to base 10 if
N (w)/n 0.1 asn— o0 fork=0,1,2,..,9.

In what follows we will prove that almost every w chosen randomly in [0, 1]

is normal. That is, we will prove that for almost all w, the frequency in the



limit with which & appears among the first n z;’s of the decimal expansion
of w is the same for every &, namely 1 out of 10 times.

Let F be the Borel subsets of = [0,1] and P the Lebesque measure.
Let X,(w) be the nth number in the decimal expansion of w for every w
chosen randomly in [0,1]. We can easily verify that the sequence of random
variables {X,; n > 1} is i.i.d. with P{X; = k} = 0.1. ( It is clear that
PX71(i)=01foralln >1, 0 <i<9. Tosee the independence, for

example, P(X7'(i)n X;1(j)) = P(w |w = 0.ij...) = 0.01. In general,
P(X7Y() 0 X51(7)) = 0.01 = (0.1)? = P(X7 (i) P(X51()) )

Define f(z) =1if z = k and f(z) = 0if 2 # k. Then {f(X;);i > 1} is a
sequence of i.i.d random variables and L f(X;) = 0.1. Now by the strong

law,

Zn:f(xi)/n — 0.1 as.
=1

Since Y iy f(Xi(w))/n = ,(f)(w)/n, we have that almost every number
with respect to the Lebesgue measure is base 10 normal. Of course the
same argument can be modified to obtain the normality of almost all real
numbers for any base.

There are other interesting and useful applications of the strong law in
areas such as statistics, classical real analysis and Monte Carlo simulation.

For examples see Stout [28] p.123-125.

10



2.2 The Strong Law for Pairwise Independent Ran-
dom Variables

We will now present Etemadi’s proof of the strong law of large numbers.
The proof is more direct than Kolmogorov’s because it uses neither Kol-
mogorov’s inequality nor results on convergence of series of random vari-
ables. Etemadi’s proof involves results on the subsequence of the random
variables and moreover, the sequence of random variables needs only to be
pairwise independent. Nevertheless, Kolmogorov’s proof is still important
since the ingredients used in the proof provide information on the rate at

which |S,/n| — 0

Theorem 1 ( Etemadi [7]) Let {X,,} be a sequence of pairwise independent,
identically distributed random variables. Let S, = 3, Xi. Then for some

finite constant ¢
. . . On
ElX1| < o if and only if —- ¢ s as n— o,
and if so, ¢ = FX;.

Proof. If Sp/n — ¢ then

{T_Z_ S, — ne (n—-l) Spn—1 — ncC
non n n—1

— 0 a.s. (2.1)

Hence, P{|Xn| > ni.0.} = 0 (taking € = 1), and by the partial converse of

the Borel-Cantelli lemma,

iP{lel >n}= Y P{|Xul>n}<oo.
n=0

n=0

11



Thus F|X4| < oo by lemma 2.

On the other hand, suppose F|X;| < co. Write X, = X;7 — X, where
X} =max(0,X,) and X, = max(0,-X,).

Clearly, {X;F} and {X} satisfy the assumption of the theorem, and there-
fore without loss of generality, we can assume that X, > 0. The basic idea
of the proof is as follows: First, we truncate X; at the level i, by putting
Y: = XiI{X; < i} where [ is the indicator function. Let S} = >, ¥; and
k(n) = |a™] where @ > 1. We will prove that for the sequence {k(n)},
i;‘(%) — EX a.s. as n — co. Once we prove that the sequence {Y,} and

{X,} are asymptotically equivalent, that is

i P{Xn #Y, i.0} < o0,

n=1

using the monotonicity of 5, we will conclude the proof.
Given any ¢ > 0, using Chebychev’s inequality, we obtain from the pair-

wise independence of {Y,},

o0 t.—ES! Var S} 1 & k(n)
k(n) k(n) . L(n) - =
;P{ _——k(n) >c} z ()2 2 g (n)2 ;T ar Y;.

Using Fubini’s theorem to interchange the order of summation we have

k(n)

S R L Ve = P Ve S k)

n=1 nik(n)>i

Since k(n) = |a™] and |a™]| 2 a™/2, (because a > 1) for n > 1,

S a4 D am<4(1- a2)7li?

n:k(n) >4 nk{n}>i

12



( The last inequality holds since if n; were to denote the smallest integer n

such that &k(n) > 4, then from summing a geometric series

Z a2 = g~ — 27 I)_

n:k(n)>i

It is precisely for this convergence reason that we had defined &(n) = |a”|

where a > 1. Now, noting that ¥; > 0,

© Stim — £S5, - 2
ZP{ k(n) k(n) >E} S4(1_ 1_22 Y)

n=1 k( n) i=1

Letting ¢ = 4 (1 — a~2) '¢~2 and F(z) = P{X; <z},

oo .S',. . E;S'I. ,2 o0 1 i
ZP{M >c} < CZE} sz_z'/ 22dF(x)
= ? =1 0

n=1 /C(n') i=1

i=l kg
CZ~_2 Z/ 22dF(z) | .
i=1 ¥ \k=o7¥

Using Fubini’s theorem to interchange the order of summation in the above

Il

equation, and noting that 3.2, ,,772 < 1/(k+ 1), we obtain

S5 [Metare < 3 [Tt
= 2°dlF(z) < / )
prllitPer k+1 + 1
< Z/ rdF(2)
k=0 k
= FEX;<oc.
Hence by lemma 3,
oy — ES)
_——_k(n)k(n) Mn) 0 as (n — 00). (2.2)
We also have
EX; = lim / " 2dF(z) = lim EY, = lim Ein (2.3)
n—0oo 0 n—oo nN=—=00 Iu('n)

13



The justification for the last equality is provided by the following argument:

Let 4 = EX; and y; = FY;. Then

ES, k(n) ke
(n) 2iz1 M

—n) x| =& < —— 2 i — pl -

’ k(n) E 1 k(n) /l'l = k(n) e I;-" iu‘l

Since |p; — u| — 0, so does its arithematic mean by Cesaro’s summation

theorem. Now, using results (2.2) and (2.3), it follows
]

S
im =) = £X;  as. (2.4)

w5 ()

Using Fubini’s theorem, we have

S P{Ya#£ X} = 3 P{Xn>n}= Z/ edF(z) = ZZ[ odF(z)
n=1 n=1 n=1"" n=1i=n"?
oo i1 00 pitl
= Z i/ zdF(z) < Z/ zdF(x)
n=1 ¢ n=1*%
< EX;< .

By lemma 3 X, — Y, — 0 a.s. Hence,

1 k(n)
W) ;(Xi -Y)—=0 as (n—= )

by Cesaro’s summation theorem. (We note that Cesaro’s summation theo-
rem also holds in the case of almost sure convergence, but not necessarily
for the case of convergence in probability).

By equation (2.4), it follows that

. Skm)
nh_’rrolo k—(n—)- = EX1 a.s. (25)

14



Noting that ¥; > 0, we now observe that if &(n) < m < k(n + 1) then

Skin) < Sm Skin+1)

En+1) = m = k(n) ~ (2:6)
We shall now note the following two points.
(a) From the above equation it is clear that
S 4
liminf ——2) < liminf Sm (2.7)

j—o0 k(n)2j k(n + 1) j—com>j m

(b) Recalling that &(n) = |a"], k(n) < k(n+1) implies that —%% —(— <

En) and therefore,

ZOK
lim k(n) =1
n—oo "
and similarly,
k n
lim sup Lil+—}”) < limsup L a=a. (2.8)
jmoo k(m)2i (1) 7 oo k(n)2j (1)

We also have that
1 Skn) < Skin)
a a® = k(n+1)

This implies that

Sk(n) ; k(n ) inf Sk(n)
Cl'l.(n))] k(n) kn)>i o™ ~ k(n)zi k(n+ 1)

Upon taking the limits as j — oo on both sides of the above equation and

taking point (a), (2.5) and (2.6) into account,

Sy
—EXl < liminf —*0L_ < liminf Sm . (2.9)
j—oo k(n)>j k(n 4+ 1) ~ jmcom>j m

15



On the other hand, by (2.5)

Skin s
limsup — <  limsup [ Ant1) k(n+1)]
jmoo m>j MM joo k(n)>j LE(n+ 1) k(n)
S
< a limsup kntl) _ aFX;.

jvoo k(n)2j F(n+1) —

This, together with (2.9) implies that

1 .S . S ,
—EX; <liminf == < limsup == < aFX; a.s.
a n—co m n—co M

Since the above result is true for all @ > 1, the proof is complete. |:|

2.3 Marcinkiewicz-Zygmund’s Strong Law of Large
Numbers

Kolmogorov’s strong law of large numbers states that for a sequence of
independent and identically distributed random variables the first moment
exists if and only if .S, is of order smaller than n, that is S, = o(n) a.s. In
general, for p > 0, what can we say about the asymptotic fluctuations of
{S.} when E|X|? exists? The answer is provided by the following 1938 result
of Marcinkiewicz and Zygmund which essentially says that S, = o(n'/?) a.s

for0<p<2

Theorem 2 If X,, is a sequence of i.i.d random variables where

Sn=> X;

16



then,

i) For0< p< 1, E|Xi|f < oo if and only if

S
nl/P — 0 a.s.
i) For1<p<?2
Sn—ne
W—r 0 as

if and only if E{X,|P < oo, and if so, c = EX;.

Proof. For a complete proofl of this theorem, refer to Chow and Teicher [4]
p.125 or to Zygmund and Marcinkiewicz [18] where this theorem was first
proved. We will only present here an outline of the proof as in [4].

We need to employ a result from the Khintchine-Kolmogorov Conver-
gence Theorem (see [4] p.113) which states:

Let {Xn; n > 1} be a sequence of independent random variables with
finite variances and EX, = 0, n > 1. If %2, EX? < oo, then 352, X;
converges to some random variable almost surely.

As usual, we begin by truncating the random variable X,. Let

_ Xofpxagnitn)

)ﬂ nI/P
Then, for 0 < p < @ we find that
ad a
Y E|Y,|* € ——E| X4 < . (2.10)
n=1 a-=p
17



Thus taking a = 2in (2.10), >332 ,(Ya— EY,) converges almost surely by the

Khintchine-Kolmogorov Convergence Theorem applied to ¥, — EY;,. Also,

SO P{Xu/n? £ Y.} = 30 P{IX:| > 07} < E|XP < o0

n=1 n=1

so by the Borel-Cantelli lemma P{X,/n'/? £V, 1.0} = 0. Therefore
P{Z(Xn/nl/” — EY,) converges } = 1
n:l

if and only if

oo
P{Z Y, — EY,, converges } = 1.
n=1

This implies that %%, ((X,/n'/?) — EY,) < oo almost surely.
For case (i) where 0 < p < 1, taking a = 1 in equation (2.10), we have
that

O
Y |EY;| < co.

n=1

For case (ii) where 1 < p < 2, assuming without loss of generality that
FX, =0, we find that the above equation also holds. Hence, the following

series converge almost surely:

[=¢] o0
X, - FX, ) Xn
nz_:l———;l—a/p— for1 < p< 2, and ,;m for0 < p<1.

Applying to the series Kronecker’s lemma which states:

If {en} and {b,} are sequence of real numbers with 0 < by, | oo, Z;'-‘;l(aj/bj)

converging, then

1 n
b0
=1

n

we conclude the proof of the theorem. [I

18



2.3.1 More on the Marcinkiewicz-Zygmund Theorem

Let {Xn;n > 1} be a sequence of independent and identically distributed
random variables and let 5, = Y 'r; X;. Marcinkiewicz-Zygmund’s theorem
states that for 1/2 < a < o0, S, is of order smaller than n® if and only if the
1/c th moment exists. It is natural then that we ask whether an analogous
result holds if we assume that 0 < a < 1/2. The answer is no, as shown in

the following theorem.

Theorem 3 Suppose X; is non-degenerate and p > 2. Then
limsup |Sp = by|/n/? = © a.s
for every choice of sequence of real constanis {b,; n > 1}.

In order to prove this result, the central limit theorem is crucial. The central

limit theorem states:
Theorem 4 If X is nondegenerate with var X, < oo, then
S, —nEX,y } 1 /1 9
Pio—m— <2 = —F xp (—y°/2) dy
{(n var X1)1/2 = T (2m)17% J_ exp (-y°/2) dy
as n — oo for each real z.

Proof. (Many introductory probability text books have the proof. See for
example Chow &Teicher [4] p.299).

To prove theorem (3}, the following definition and lemma are most useful.

19



Definition 4 If {Y;, i > 1} is ¢ sequence of random variables and {Y/, i >
1} is a sequence of random variables independent of {Y;, i > 1} with

{Y!, i > 1} having same distributions as {Y;, i > 1}, then

1

(ve,i>1) = {v;i-Y/,i>1}

t
is called the symmetrized version of {Y;, ¢ > 1}.

We note by Kolmogorov’s extension theorem, the existence of the sym-
metrized version {Y;°, z > 1} is guaranteed.
Proof of theorem (3) (Stout [28] p.135). Suppose X is nondegenerate. As-
sume that there exists a K < oo such that P{limsup |S, — b,|/n!/? <
K } > 0. We will show that this assumption produces a contradiction.
Since the set {limsup |S, — by|/nl/P < oo} is a tail event, by Kol-
mogorov’s 0-1 law, P{limsup |S, — bs|/n'/? < K } = 1. Letting 52 be the
symmetrized version of Sy, |Sp—bn|/nt/? > |53]/n1/P = |S! —by]/nl/?, and
it follows that

P{limsup( |S2|/n'/? <2K)} =1.

Noting that S5 = > 7=, X7 we have
n
P{ lim sup( IZXisl/nl/” <2K)} =1 (2.11)
i=1
Since

[nMP > 2K } > P{n2, U, | S X7|/nlP > 2K },

=1

P{ limsup |>_ X}

i—oon2i ;4
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using (2.11)

0 = lim P{ Uil ST X1/t > 2k )

i=1

v

J
lim P{|>_X7|/57 > 2K }. (2.12)
J—00

i=1

From the equation

Xy _Tha Xy T XP (=Dl
nl/p nl/r (n— 1)1/P nl/p ’

it follows by (2.11) that

| -
/7 <4K } =1.

P{limsup

Therefore, P{ |X#| > (4K)i'/? .0 } = 0 and applying to this the Borel-
Cantelli lemma for independent events, we have that .72, P{ |X}]” >
(4K)i } < co. Now by lemma 2 we obtain E|X7{|? < oo, and since p > 2,
it follows that £|X$|?> < oco. Since the nondegeneracy of X; implies the
nondegeneracy of X7, it follows by the central limit theorem that

(2K) /o
e ¥ 2y > 0;

: - Y (p1/2 S 9y =1 —
}ll_%P{ ;.X, /nE> 2K} =1 /_N
but this contradicts (2.12), thus establishing the theorem. [I

We will now explore some variations of this theorem. For {X;} asequence
of pairwise independent and identically distributed random variables, the
Marcinkiewicz-Zygmund strong law of large numbers holds for 0 < p <

1. For 1 < p < 2 however, thus far it’s been shown that the condition
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E|X|P(log* | X|)? < oo where log* 2 = log(2V z) is sufficient for the relation
(Sp — ESp)/n'/? — 0 a.s to hold (see Li [16]). Marfikaine [19] has slightly
improved the sufficiency condition. Namely, we only need that for v >
0 and v > dp—6, E|X;|P(log* |X1|)” < 0 in order that (S, — ES,)/n/? —

0 a.s.

2.4 Orthogonal Random Variables

We now state some results for the strong law of large numbers for the situa-
tion in which the sequence of random variables { X} are no longer pairwise
independent and identically distributed, but rather orthogonal. Doob’s ver-
sion of the strong law of large numbers states:

If{Xr: k=1,2,..} is a sequence of random variables with

E(X) =0 and E(X}))=or’ <0 (k=1,2,...), (2.13)
(o]
Z kL log k)% < o0, (2.14)
E(XpX))=0 (k£ £ 1=1,2,..), (2.15)
then
1 . .
;(Xl +...+X,)—=0 as (n— o0) (2.16)

Moéricz [20] has shown that (2.16) remains valid when (2.15) is weakened

as follows:
E(X X)=0 (2”'1 <k<lI<2%pk,l=12..).
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We are however limited by how far we can weaken (2.15). Le Gac [13] has
recently proved a conjecture of Moricz which states:
For every a > 1, there ezists a sequence of random variables { X} such

that (2.13) and (2.14) hold, and
E(XpX))=0 (p*<k<i<(p+1)pk,1=1,2,..)
are salisfied, but

1
lim sup 7—z|.-\"1 +...+ Xy, =00 as. (n— o0).
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Chapter 3

(zeneralizations

3.1 Weighted Sums of Random Variables

Let {Xn, n > 1} be a sequence of i.i.d random variables and let S, be the
nth partial sum of the sequence. Let x4 denote the mean of X; and assume
the first moment of X, exists. Then, Kolmogorov’s strong law tells us that
(Sn — EX1)/n converges almost surely to . In this chapter we study the
convergence properties of

3
T, = Z ank X,
k=1

where {ant; n > 1, 1 < k < n} denotes a triangular array of real numbers.
Our purpose is to find sufficient and/ or necessary conditions on {ank; n >
1, 1 £ k < n}and {Xg; k& > 1} such that we obtain convergence almost
surely and in probability to a constant for the sequence {T,}. Following
Stout’s definition [28], we will say that T, is stable if T,, — ¢ almost surely
for some constant ¢, In this chapter, the results of sections 3.2 and 3.2.2 are

from Jamison ef al. [12], section 3.2.1is from Wright et al. [30] and section
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3.3 is from Pruitt [23].

3.2 Stability of Weighted Sums of Random Vari-
ables

Let {X; & > 1} be a sequence of i.i.d. random variables and {wy; £ > 1}
be a sequence of positive real numbers. Let X be a random variable with the
same distribution as the Xj’s. Define T, = > oy wi X and Wy = 35 wi
(so in the notation introduced above, Tpn = Tn/Wy ang = —l"x’,ﬁ; for all £ < n).
In studying the a.s.c convergence properties of T,,/W,,, we need to omit the
following two trivial cases: when X is degenerate (almost surely a constant)

and when Y52, wi < o0.

1. Suppose X is degenerate, say X = m (a.s) for some constant m. Then,
To /W, = 5 k=1 weXe/Wn = m (a.s) and consequently, T,/W,, — m

(a.s) as n — oc.

2. Suppose Y joqwr = ¢ < oo. Then, W, — ¢ for some constant c.
Therefore, the convergence of T,, /W,, and the convergence of Y jz; wi X«
are equivalent and so, by Kolmogorov’s 0 — 1 law, either Ty, /W, fails
to converge in probability or else it converges almost surely to a non-

degenerate limit. Hence, T,,/W, can not even converge in probability.

Therefore, it is throughout assumed that X is non-degenerate and ) wi =

oo. Such a sequence of weights will be called a divergent sequence of weights.
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We will in addition assume that w,/W, — 0 as n — oo. As proved in the
proposition below, without this assumption, T,,/W,, need not be stable. We

will also note (and it is not difficult to show) that
[o.9]
Zwk =00 and w,/W, —0
k=1

if and only if

{ W — — .
I?@n{wk/ﬂ w} — 0asn— oo

The condition max;<r<n{wr/Wy,} — 0 simply says that as n gets large, the
contribution of X, to T, is significantly reduced.

Remark: The Marcinkiewicz-Zygmund theorem is not generalized in this
chapter for under the assumption that W, = Y }_; wk, we cannot find an
array {ang; n > 1, 1 < k < n} such that app = 277, (£ =1,2,..,n), 0<
p < 2, p# 1. However, by letting wx = 1 for & < n, the results of this
chapter extend that of Kolmogorov’s strong law.

In order for T, /W, to be stable, the growth rate of W, relative to w, is

crucial.

Proposition 1 7),/W,, is stable implies w, /Wy, — 0 as n — oo.

(In fact, it is necessary that wy, /W, — 0 as n — o0, in order for convergence

i.p.c to hold for {T,,/Wy,}).

Proof. Consider the identity

Tn Tn—l _ Wy ( - Tn—l) (71 > 2)

w, W,., W, T Wos
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This identity malkes it evident that even the weak law for T, /W, fails unless
wn /W, — 0. If we suppose that 75, /W,, — ¢ in probability for some number
¢, and that there exists a constant M such that |W, /wy,| < M for all n, then

using the above identity, for any € > 0

Wn Th—1
X, -
I’Vn ( Wn—l)

-9,

0= lim P(
n—oo

This implies that

. Tn—l
Therefore, X,, — g,’;—‘_'l — 0 in probability, and since T,—; /W,y — ¢ in

probability, it follows that X, — c¢ in probability. Since convergence in
probability implies convergence in distribution, the fact that the X,’s are
identically distributed implies that the distribution of X is almost surely
equal to e. This contradicts the assumption that X is a non-degenerate

random variable. D

Definition 5 For a > 0, let N(z) be the number of subscripts n such that

W, [wn < 2.

The following corollary establishes the connection between the function ¥ (2)

and the stability of T,,/W,,.

Corollary 1 If N(z) = oo for some x > 0, then the stability of T, /W,

Jails.
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Proof. If T, /W, is stable, then by proposition 1, for z > 0 there exists a
natural number N, such that |w,/W,| < 1/z for all n > N.. Therefore,
N(z) < Nz < o0. D

The following strong law theorem gives a sufficient condition involving

the function N(x) so that T,/W, is stable.
Theorem 5 If E|X| < o0, EN(|X|) < o0 and

N(y)
.1:2/ ——>dydF(z) < oo, 3.1
2], Sare) (3.)

then T, /W, — EX almost surely as n — oo.

( The condition EN(|X]|) < oo is stated only as a convenience. It can be

omitted since it is a consequence of equation (3.1): note that

2 N o aF(a 2 R - .
f-’” /yzm 7 dydf(m)?/-% N(le)fyaz' y3dyd1“(.z)_ 1/2 EN(]X])).

The proof of this theorem uses the following two lemmas. In each of
these lemmas we will assume that the conditions of theorem (5) hold.

For given positive weights and for each @ > 0, define

L1 i Wijwe <
Ni(2) = { 0 otherwise

Clearly, N(z) = >_72; Ni(z). Also, define a sequence of random variables

{Yy; k£ > 1} such that

Y, = Xe i | Xk] < Wifwy,
=10 otherwise
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and let Z,, = Y 7 wi Y.

Using the usual truncation technique, instead of ‘working’ with the ran-
dom variables X ’s, we will use the bounded random variable Y;.’s. We will
show that Z, /W, is stable, and that its stability in turn implies the stability

of T,/ W,.
Lemma 4 1n — 22 — 0 almost surely as n — 0o,
W, — W,

Proof.

2 P(Xp £ Y3) = Z/ dF(z) = i]Nk(|m|)(lF(w)
= k=1

[>Wy fwi

o
= / S Ni(lze)dF(z) = /N(|x|)dF(nc) = EN(|X]) < .
k=1
Hence, by the Borel-Cantelli lemma, P ({ Xy # Y} i.0) = 0, that is to say if

we let B = {X\ # Yi}, then P (M= Uiz Ex) = 0. Now,

(B Byolctn) U B

m=1k=m

To see this , suppose ¢ € {oo=; Utem Lk} Then, there exists a number A
such that Yk > A, Xr(¢) = Yi(t). This implies that -2 4 wi (Xk(2) - Yi) =
0. Therefore, for any positive integer n,

Zwl,(z\;, (1) - Yi(t)) < Zwk (Xe(t) = V(1)) < C < 0.

k=

Now, since W,, — o0 as n — o0, it follows that

n

77 2 (D) = 4l s = 0as n - .
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Therefore, P (& — &= # 0) < P(NZey URm Ei) = 0. Hence,

T. Zn

_——— a.s

W, W,

Lemma 5 %};- - I (%};—) — 0 almost surely.

Proof. Loéve [17] p.238 has shown that

If {X,}2%,, are independent and Yy 52, Var (%n) <00, bp | o0 and
Sn = D11 Xi, then —f—: - gbii — 0 almost surely.
In light of the above result, we will prove the lemma by showing that

oo Var(wg¥y)
k=1 "z <%

= ‘/(LT‘(WL)’];) _ s w% % - _ had wz 2 2
k};l R ‘; v er(vi) = ; 7 /(5,, — (EYi)?)dP
= = b=1
/de i -——Z-f 2rdF(z) =/.1:2 Z ﬁ%— dF(2).
VV'Z o Wi lal< 5k W2

w
{k: ;f>|1‘|}

In order to estimate the latter equation, using integration by parts observe

that
e IN(y)
’ W - X 1 < 2
(ks o< B < ) blevss ¥
= N(;)-N(lfl)u ———N(;J)cly (3.2)
z @ le)l<y<z Y

Using integration by parts again we have that

[ M@ NG, [ M,
<y<a Y a z 2<y<a y3
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and [, o, B > L ([, 0, dN(y)) = Z(N(a) = N(z)). This implies

N(z) N(z) N(y)
f:(ySa ¥ dy.

[\l

<
22 a2 ~

Letting a — oo, we obtain that
N(z) * N(y)
2 < 2/: ” dy < o© (3.3)
where the integral converges as a result of (3.1). Now, using (3.1), (3.2) and
(3.3) we obtain

/.1:2 > ?dl“( )<2/ (/ N(g’) J+/|x' N(y)ch) dF(2)

W),
{k: ;ﬁ">|ﬂ7|}

= 2/ /Er— (‘/ ——dy dF(z) < oo.

<y ¥°

Hence, ¥ 7%, V—“—T‘(,'—‘j';‘ﬂl < oo and Wy | oo thus completing the proof of the
k

lemma. D

Proof of theorem 5. Let pj = EY) and ¢ = EX. Then, letting I to be the

indicator function,

JUE -/Ix]<W: ’LdF('L)—/ 2l v;v:dF(z)

Since the random variable X7 converges to X (recall that X is a

, Wy,
{|~\|<'J,f}

random variable that has the same distribution as the Xj’s) and E|X| < oo,

by the dominated convergence theorem

k=/ rdF(a) — p as k — .
Iz 1< (@)= p
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Since W, — o0 and wi/W, — 0 as n — oo (k fixed), using Toeplitz’s

Zn
|E (m) TH=

Equivalently, E (‘—Zd-,':) — ft as n — o0o. Therefore by lemma (4) and lemma

lemma,

W kzlwk(uk —#)| =0 (n— o)

(5), Tn/Wy, — u thus proving theorem (5). |:|

Our objective now is to find a class of weights {wy} such that T,,/W,, is
stable with | X | having a finite moment. The result which we’re seeking will
not directly involve the function N(x) for computing this function could be
difficult. In order to achieve our goal however we need to study further the

role which the function N(-) plays in the stability of T, /W,.

Lemma 6 T, /W, is stable implies w, Xy /W,, — 0 almost surely, and the

latter condilion is equivalent to EN( ¢|X|) < oo for every ¢ > 0.

Proof. Recalling the identity in proposition (1), we see that if 7,,/W, is
stable then w, X,,/W, — 0 (a.s). Now, by lemma 3 ( and its converse as
{X.} is an independent sequence of r.v’s),

wn JYn
W,

wn “YTL
W,

— 0 (a.s) if and only if Z P( > €) < 0
n=1

for any ¢ > 0. Since

/N(l |) dF = Z/u»ﬂu dF = ZP(

n=1

wnXn

2¢),

it follows that EN( ¢|X|) < oo for every ¢ > 0 if and only if wp, X, /W, — 0

almost surely. D
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Proposition 2 For a given sequence of weights {w}, Tn/W, — EX al-

most surely with E|X| < oo, if and only if limsup N(z)/z < 00 as & — oo.

Remark: limsup N(z)/x < 00 as ¢ — o0, is equivalent to the existence

of a constant i’ < oo such that
N@n)/n< K (3.4)

for all n > 1.

Example 1 (Stout[28] p.220) This example helps in interpreting equa-
tion (3.4). Clearly, if w, = 1 for all & > 1, equation (3.4) holds and so
Kolmogorov’s strong law is included in the statement of the proposition.
However, if we let wy = wy = 1 and wy = Wiy /(-1 + logk) for k > 3,
(hence Wy /wy = logk), then equation (3.4) fails. To see this, note from the

definition of N(n)

N(n) = |{k: Wifwr <n}|=|{k: logk < n}|

= | {k:logk<n}|=|{k: k <exp(n)}|

| {k: k <exp(n)}]| = lexp(n)] .

Hence, N(n)/n > (exp(n)— 1)/n — x as » — 0. Roughly, equation (3.4)
implies there cannot be too many wy’s whose magnitude relative to Wy, is
too large. In the example above, the ‘largeness’ of the wy’s allowed N(-) to
be an exponential function.

Proof of proposition 2. Suppose limsup N(z)/2 < 0o as & — oco. Then, for
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some M < oo, N(2) < Mz for all 2 > 0. Hence, E|X| < co implies

. —_— 4 . . — 1 —_— ] R
/.'7’ '/'J>| | 73 dy dF(2) < /'l. T IdF(X )= ME|X]| < o0

By theorem 5, 7, /W, — EX a.s as n — o0.

On the other hand, if limsup N(z)/x = oo, then there exists a sequence
{x}} such that N(zx)/zy > k, k > 1. By choosing fi = 1/(ck?n;) where
e = Y>1(1/K*xk), we have that

Z fr=1 and frzg = zr/(ckxy) = 1/ck?

k>1
and so Zkzl Jrzr < oo. Since [iN(2) > kfrar = 1/ck, it follows that
L1 fuN(2k) = co. The sequence {fi} defines a distribution such that
E|X| < o0, but EN(|X|) = co. Hence, T,,/W, is not stable by lemma 6. D

Let us return to our main objective, that is, finding a class of weights
{wr} such that T, /W, is stable and X has a finite expectation. Irom
proposition 1 we know that if 7,/W, is stable, then w,/W, — 0. The
converse of proposition 1 in general is not true. We can see this from example
1 where w, /W, = 1/logn — 0 as n — oo but, N(2) grew arbitrarily large
and in light of proposition 2, T,,/W,, failed to be stable.

The constraints on the weights {wy} Jamison et al. consider in [12] in
order for the converse of proposition 1 to hold involve the uniform hounding
of the wy’s. Without loss of generality, we can assume this uniform bound

of the wy’s to be one so that 0 < w; €1 and W,, — oo.



Lemma 7 For a divergent sequence of positive weights bounded by one ,
limsup N(z)/zlogz €2 as =z — oo.

Proof. Fix > 0. Let B, = {k: n < Wy < n+ 1} and V,, be the number

of k’s in B,, such that 2 > %"L Let

. Wi .
B,={k:n<W,<n+1, and — < 2}.
Wi

Since W}, diverges, there can only be finite number of £’s in B,, and conse-

quently, Bj, also contains a finite number of &’s.

Let kq,...,k, be all the k’s in Br,,. Then, | {k1,...,k} | = V, and

W e+ W
k;+m+‘ &rs Zwkﬁ Zwk-

k€Brm +€Bn
Now,
Wi, + o4 Wy, > ¥y as each Wy, > n.
z T
Therefore,

nV,

—_—< Wi

<) @
k€Bn

Now let k,.,, ...k, in an increasing order, be the elements of By,. Then, the
fact that n < Wkr,-x + wy,, = Wkrl < n + 1 implies that n — 1 < Wy

r=1°

Since Wi, _, + e, wi <n+ 1, it follows that

Zwig(vz+1)—(n—1)=2.

1€Bn
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We now have that %/ﬂ- < Ykep, Wk < 2andso, V, < ";—’ Recalling the

definition of the function N(z), it follows that

L=] =]
N(z)= ZVn < +‘23:Z% < Vo+2zloga .
n=0 n=1

Since Vg is a finite number, limsup,__, N(z)/zlogz < 2. D

It is interesting to note that Jamison et al. [12](p.43, ex.1) have con-
structed a sequence of weights {wr & > 1} such that jwi| < oo for all £ > 1
and yet limsup,_ ., N(z)/t = oo. This suggest that additional conditions,
perhaps on the random variables {Xg; &£ > 1}, are needed if T}/, is to
be stable. The next theorem tells us what happens when we consider a

condition slightly stronger than the existence of F|X]|.

Theorem 6 : Let {wy; k > 1} be any bounded sequence of weights. If

E|X|logt | X| < o0, then Ty /W, — EX a.s as n — 0.

Proof. Without loss of generality, assume the weights are bounded by one.
In this proof, we will use the results of lemma 7 and theorem 5. By lemma
7, there exists a a number R < oo such that N(y) < Rylogy forall y > 0.
Since N(y) = 0 for y < 1, ( because W, /wy, = [(w1 + «ooc + wn—1)/wn] + 1),

we have that

7 o | (.
/ N (:;y)dy = / ——-—N(,;/)(ly <R 28 \Y) z(y)(ly
y>lz| Y vlz21 Y Ed] y

o+
=R (M.{. _}_> .
el Tal
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=

Therefore,

, N o i < log*la) 1Y .
/3,2 /y>|x| —-y3—dy dF(z) < (2+ R)j:r:2 (_f;l_ + Tz_l) dF(z)

= & [(le|1og" [o] + |2] ) dF(2)

_R U |2 log* |2 dF(:c)+/|:L'| dF(:u)]

Since E|X|log* | X| < co implies E|X| < oo it follows that

/n:zf N—(:f/—zdy dF(2) < oo.
vz Y

By theorem 5, T, /W, — EX as n — oc.

Remark: Etemadi [8] has shown that theorem 5 remains true even when
the sequence of the random variables {X,} are pairwise independent. The
prool involves the usage of the subsequence technique similar to the one
employed in the proof of Etemadi’s version of the strong law (see chapter
1).

Remark: It is interesting to compare the classical Kolmogorov’s strong

law of large number with theorem 6. In the first instance,

n
ZXk/n —c as
k=1
for a constant ¢ if and only if F|X| < oo, while in the second instance,

T _ Thk=1WhXk
W, W,

- C a.s

for a constant ¢ if E|X|logt |X| < oo. This latter condition is not necessary
and in fact, the next section illustrates the stability of T,,/W, for some

admissible sequence {w;} even when E[X| = co.
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3.2.1 Arbitrarily Heavy Tails and the Strong Law

Without any moment assumption, in proposition 1 we saw that in order for

convergence i.p.c for the sequence {T5,/W,} it is necessary that
W, —o00 and w,/W,—0 as n— oco. (3.5)

However, restricting our attention to those X’s for which E|X| < oo, we
were able to construct positive weights {wi} which satisfied (3.5) although
Tn/W, failed to be stable (see example 1). Eventhough for w; = 1 the
stability of T3, /W, is a moment result (this is Kolmogorov’s strong law
of large numbers), with example 1 in mind Wright et al., [30], pose the
following question: does a sequence of positive weights {wy} and a sequence
of random variables { X} } exist such that (3.5) hold and T, /W, is stable, but
E)X| = co? The answer to this question is provided by letting g(z) = |z] in

the next proposition.

Proposition 3 Lei g be a nonnegative function defined for nonnegative
real numbers with g(z) — oo as ¥ — oo. Then there exist a sequence
of i.i.d random varibales {X}}, ¢ sequence of positive weights {wi} sat-
isfying (3.5) and a constant ¢ for which Tn/W, — ¢ almost surely and

Eg(X*) = Eg(X™) = oo,

In addition, Wright et al. extend theorem (5) of Jamison et al.. In this
new result, theorem (5) of Jamison et al. has been slightly modified in order

to include random variables which do not have a first moment.

38



‘Theorem 7 Suppose {wy} is a sequence of weights satisfying (3.5). Let p

be a constant number. If
/ zdF(z) —p as T — oo (3.6)
lzl<T
and if
/.7.-2/ W) 4y dF(z) < oo, (3.7)
vl Y

then T, /W, — pu almost surely.

Truncating X at a number T and using the dominated convergence the-
orem, if £|X| < oo then flxl<T zdf(z) = = EX as T — co. On the other
hand, if F|X|= cc then the mean does not exist.

Proof of theorem 7. The proof is exactly the same as the proof of theorem
5 of section 3.2 except in showing that E(Z,)/W, — p. In this case, we are

wy @ dF(z) — p. Using (3.5) and (3.6), it follows

w;

given that EFY; = flw[<
that B(Zn)/Wn — p. []
Wright et al. also points out a result of Chow & Teicher [3] in which

they show that for any random variable X for which
lim inf zP{|X]|> 2} >0, (3.8)

the stability of T, /W, fails for any choice of of positive weights {wy} satis-

fying (3.5). For a proper interpretation of (3.8) note that
lim inf tP{X]|>z}>0= E|X|=c0. (3.9)
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The reason for this implication is as follows. If E|X| < oo then | X| < o0 a.s.
Hence, given an z > 0, |X|/|x|5, — 0 and as 2 — oco. By the dominated

convergence theorem

0 = lim | X|dP > lim zP(|X]| > z).
=00

200 J|X >
Therefore the class of i.i.d random variables considered in theorem 7 are
those with

liznllo.'gf eP{{X|>z2}=0.

For examples which (3.8) is satisfied, consider the St.Petersburg paradox
(P{X = 2¥} = 27% for £ > 1) and the Cauchy distribution. For further
detail see Durrett [3] (p.32 example 5.6.)

Wright et al. also extends theorem 2 of Jamison et al.. They show that
theorem 2 is a special case when r = 1 of the following corollary of theorem

7.

Corollary 2 Let 1 < 7 < 2 and let {wi} be a sequence of weights which
satisfy equation (3.5). The stability of T/W,, holds for all X with E|X|" <

oo if and only if limsup,_,, N(2)/2" < 0.

Wright et al. also makes an interesting point: if 0 < » < 1, then there
can not exist weights which satisfy limsup, .. N(z)/2" < oo due to the
following result which Wright et al. prove as proposition 1.

Let {wr} be a sequence of positive numbers satisfying w, /W, — 0. Then

S rwr = 0o if and only if I=[{° N(x)a~2dx is infinite.
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If such a sequence {w;} were to exist then for all £ > 1, there exists a

numbre k such that

N(z) k
22 S p2-r '

Thus the correspodning integral I is finite contradicting the proposition.
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3.2.2 Arbitrarily Heavy Tails and the Weak Law

In this section, we will examine the necessary and sufficient conditions for
convergence i.p.c to hold for the sequence {T,,/W,} when EF|X| does not
necessarily exist. Let us for a moment return to Chow & Teicher’s result

which says that condition
lim inf P{{X|>z}=0

is necessary for a.s.c convergence of {T,,/W,} to hold. By adding an addi-

tional condition, namely

lim zdF(z) < oo,

€= Jir|<e
we obtain the following theorem. (As in the previous sections, let {w,} be

a sequence of non-negative real numbers, and put W,, = Y7, wk).

Theorem 8 {T,,/W,} converges i.p.c for all divergent sequences {wy} such

that wi /W, — 0 (or equivalently max cr<n wr/Wa — 0 ) if and only if

lim ¢cP(|X|>¢)=0 and lim / xdF(x) exists. (3.10)
6= lel<c

c—co
Remark: Although condition (3.10)is weaker than £|X| < oo, it ‘almost’
says that ] X| < oo. This is due to the following result of Rohatgi [25] which
states:
Let X be a random variable with a distribution satisfying n® P{|X| >

n} — 0 as n — oo for some a > 0. Then E|X|# < oo for0< f < a.
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Proof of theorem 8. Suppose (3.10) is true. Let X, be X truncated at

W, Jwyi as follows:

X., = X, if |Xk| < W’u/wk
k=Y 0 otherwise .

Define S5 = Y j—; wk Xk and Spn = Y ko wkXnk. The proof involves the
evaluation of the probability limit S,,,/W,,, and then showing that this prob-
ability limit equals the probability limit of S,,/¥W,,. We have that

P{Sun # 52} = PLYS 0n(Xu = Xa) # 0} = P{L (K= X ) £0) )
k=1

k=1

<Y P{(Xp—Xu)#0}= i P{Xi # Xnk} = i P{|Xk| > W [wi}
k=1 k=1 k=1

Since max;<k<n W/ Wa — 0, we have thatforall k < n, Wy /wp — co as n —
0. Therefore, from hypothesis (3.10), given ¢ > 0, there exists a natural
number N such that for all n > N, P{|Xi| > Wp/wi} < € (wg/Wy). This
implies

Z P{|Xk| > Wy/wi} <€ Zwk/T’Vn = €.
k=1 k=1

Hence,
P{Spn # Sn} — 0 as n — oo. (3.11)

Using integration by parts we have,

1

1
T Jiz|<T

T
2

~TP{|X|>T +—/ e P{lz| > 2}dz. (3.12

1X1> T4 5 [ «Pllel > e}de. (312)

I

w24 F () <-T2P{|X| >Th+2 [ aP{lel > a:}d:v)
0<2<T
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By the first condition of (3.10), for any ¢ > 0 there exists an N such that
for all x > N xP{|X| > z} < e. Assuming, without loss of generality, that

T > N, for the second part of equation (3.12) we have that

2 2 N T
—_ zP{|X] > dz —_ / aP XI>a2lda / « P X S 2 I
T OstTT {IX}> 2} d= T[o zP{|X| >z} dz+ Na, {1X| 1}(1.]

Il

2 ¢ ., 2N?
< [~ +e(T-N)| < ~te
Therefore
N2
= a d[’(z)< TP{|.\[>T}+—+6—C as T — o0. (3.13)
T Jiei<T T
Since ¢ is arbitrary,
1 2?2 dF(z) — 0 as T — co. (3.14)
T Jje|<T

Employing (3.14) it now follows that for a sufficiently large n,

S 1 & 1 &
Var (ﬂ) = wip Var (Xnk wz./ 22dF(x )
W, IrVT% ‘; k ( )< 1% 1.Z=:1 ( k [z} < Wa fwi ()
1 b 2 PV‘II. Wi 2 l L 2 I/Vn
= — LA 2°dl(z < = Wi —— €= ¢
I 7%AZ=:1 (wk Wi Wa Jiz|<Wa fuy (2) | < "VE /; k k

which is equivalent to saying that

. S’nn . .
Var (W,:) -0 as n — o0.

Using Chebyshev’s inequality, we will proceed to show that for any ¢ > 0
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We first note that

1 & 1 &
E(Spn/Wy) = — E(Xu) = — / rdF(z) — u (3.15

as n — oo. Letting pn, = E(Sy,/W,), by Chebyshev’s inequality

P ( Var (%},"})

> < —2 — (.
> a) < Py 0
Since pn, — p, by (3.15) and the fact that %};l — Uy — 0 in probability, it

San _
],"/n pTL

follows that %‘}:’- — p in probability . Combining this with (3.11) we obtain

S
— - Ul 2
w4 2o}

2 (L} + P {Sun # Sn} — 0.

Hence S,/W, — p in probability. This ends the sufficiency part of the
proof.

For necessity, suppose T, /W, converges i.p.c. Then applying the clas-
sical degenerate convergence criterion, (see Loéve [17] p.278), with wy = 1,

(3.10) is obtained. []



3.3 Arrays of Weights

As before, let {Xi} be a sequence of independent, identically distributed
random variables with E|X;| < co and £X; = p. Let X be a random
variable with the same distribution as the X}’s. Proposition 1 in section 3.2
says that the a.s.c convergence of {7,/W,} implies w,/W,, — 0 as n — o0
where )} Tw, = W, and W, — oo as n — co. However, the converse of the

implication does not hold in general, as was shown by example 1. In this

section, we will prove that when E|X| < oo the convergence of {T;,/W,}
i.p.c holds if and only if w,/W,, — 0 and W, — oco. More generally, we
will prove the analogous result for arrays of weights A = (a,x) where A is a
Toeplitz matrix. Furthermore, a moment condition on the random variable
X will be established in order for Y;, = 372, ¢nk X — p almost surely as

n — o0.

We say A = (ay) is a Toeplitz matrix if:

nh_l}rgo anr = 0 for every k, (3.16)
[>=]
nh__ngo Zank =1, and (3.17)
k=1
Z |anit < M for all n. (3.18)
k=1

We should note that the structure of the matrix A defined by a sequence of
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positive numbers {w;} such that

o = { wp /Wy 1<k <,
0 fk>n
where W, = 3" ¥_; wi is a special case of the Toeplitz matrix- it is for this
type of Toeplitz matrix on which the results in the previous sections are
hased.

Since for each n 2 1 EY 52 e Xi| = E|X| 2552 lenk] £ ME|X| < 00,
the random sum Y fey |ant Xz| converges absloutely with probability one,
and so, the sequence of random variables {Y,; n > 1} is well defined (since
E|Y,| < 00, ¥y, < o0 a.s.).

In the first part of this section, we will provide a necessary and sufficient

condition for the convergence of Y, i.p.c to hold. (The trivial case when X

is almost surely equal to p will be omitted).

Theorem 9 A necessary and sufficient condition for Y, — p = EX; in
7

probability is that max;<i<n |@nk| — 0 as n — co.

Proof. Suppose maxXi<i<n |@nk| — 0 as n — oo. Let

X. . = ane Xy if |ankl‘{k| <1
A ) otherwise

and let Z, = Y 72y Xnt. We will first prove that Z, —Y,, — 0 in proba-
bility. Then, it will suffice to show that Z, — p in probability in order to
complete the sufficiency part of the proof. In order to show this however,

we will beforehand need to prove that Var(Z,) — 0 as n — oo; for then,
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an application of the Chebyshev’s inequality will enable us to conclude that
Zyn — p in probability.

First recall that (by 3.9) E|X| < oo implies
lim TP{|X|>T]} =0. (3.19)
T—c0

We will now show that Z, — Y, — 0 in probability. To begin with, we have

P{Z, #Y,} P {ank # f:anka} = P {UiZ, {Xir — Xnt # 0}}
k=1 k=1

IA

o0 [> ]
> P{XK > lank| ™'} = D0 P{X|> lank| ). (3.20)
k=1

k=1
Since |ank|™! = 00 as n — o0 (1 < k < n), for a given € > 0 by (3.19) there

exists a natural number N such that for all n > N,
lank| T P{IX| 2> Jank|™} < €/M.
Since 3724 |¢nk| £ M for all n,

oo oo
ST P{IX] 2 lankl™'} < D lankle/M < €.
k=1 k=1

Hence, returning to (3.20),
P{Z, #Y,} =0 as n — oco.

that is, Z, — ¥, — 0 in probability. To prove Var(Z,) — 0, by using
integration by parts we have the following equality:

1

2
k= 22 dF(z) = —TP{|X| > T —/ P{X|> 2} dz. (3.21
2 g 4@ = TPUXI 2 TY 4 7 [ oPAX]> 2} de. 32)
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By (3.19), given any € > 0 there exists a natural number N such that for all
z > N, zP[|X| > z] < ¢. Assuming without loss of generality that ' > N,

for the second part of the sum in equation (3.21) we have that

; ; N T
i/ cP[X|>2]de = = / +P[|X| > 2] dz +f +P[IX| > 2] do
T Jo<z< T |Jo N

2 2
< ;F—[N +e(T - N)|
52
< —Zj;,] + €
Therefore,
1

2N?2
- z2 (lF(.’L‘)S—TP{l.X|ZT}+,—'+€—:€ as 1" — oo.
T JiwigT T

Since € is arbitrary,

1

— 22 dF(z) =0 as T — oc. 3.22
o O (3:22)

Now, since > %2, |Xnk] < Y52, |@nkXk|, the random sum Y 72, | Xni| is

finite almost surely. Using the monotone convergence theorem,

m m
E(20%) = [ Jm (31Xl dP = Jim_ [ (3 1Xl)? aP
k=1 k=1

m
= A, (Z [XulfdP+2 57 IXniHanl) ap
k=1

1<i<j<m

aZ, XE dP +2 lim (E|X|) anillan;] [3.23
Z-/[unkxklsl nk <tk m—»oo( 1X1) Z lanil|an;] )

= lim [
m—0G
k=1 1<i<j<m
Using (3.22) and assumption (3.18) for the first sum of the latter equation,

given ¢ > 0 there exists an N, such that for all n > Ny

m m
lim / 2, X2 dP im 5 [ene]|an / o dF(z)
k=1 IIIS|anF;|-l

m—co = lank Xk|<1 m—00 \—
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m

< Jim, 3 el (¢/200)
q=1

< €/2.

For the second sum of equation (3.23), since lim, . ¢,; = 0 for a every j,

there exists an N5 such that for all § < m and for all n > N,
lan;| < € /[4(E|X|)?M].
Therefore,

”}i_r_no:, 2( ElX| )2 z Ianil|("nj|

1<i<j<m

IA

i 2(EIX1)? ¢ /A(EIXDPM)S and
i=1

2( E|X|)? ¢/[4(EIX|)2MIM = ¢/2

Letting N = max{N;, N;}, we now have that for all n > N

m

lim /I ooy CuXB AP 2 lim (B

X2 D0 lenillas]

m—oo —~
1<ig<j<m

k=1
<e/2+¢/2=c¢
and therefore, by equation (3.23), it follows that E£|Z,]*> — 0 as n — oo.
We now need one last result to conclude the proof for sufficiency. Letting

pwn = E(Z,), we have

(=] oo
fog — pt = Z Cnk [f zdF — /.L:| + ;L[Z tpp — 1] — 0
=1 |2 < lenk|=? k=1
as n — oc. Using Chebyshev’s inequality, for any ¢ > 0

1 1
P{Ze =l 2 €} < o5 B((Zn = 1 ) = 7 [B(Z2%) = pn + 7] = 0
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as n — oco. Hence, Z, — p in probability.
For the necessity, suppose Y¥;, — g in probability. Let

m @
Ul = Z ank (X — p) and UM = Z Ak ( Xk — ).
k=1 k=1

Also let
o(n) = B( X))

be the characteristic function of Xy — . By the continuity of the exponential

eiul(™ | < 1, by the dominated

. . [En) ; .
function, lim—. e*Um = ¢ wU™ Since E
convergence theorem and the fact that {X;} is a sequence of i.i.d random

variables, we have

oo
H g(uank) = E( emU(n) )
k=1

Since U, — 0 in probability (and hence in distribution),

(>}

. -1 e i)y
7}21&0 }:_[l_q(uank) = nlerolo E(e )=1.
But,
(>
| TT 9(ans)| < |g(uanm)| < 1 for any m. (3.24)

k=1

Therefore, for any sequence k&,
lg(uank, )] — 1 (3.25)

We now use corollary 2 of Chow &Teicher [4]p.280 which states
A characteristic function g(u) satisfies either (i) |g(u)| < 1 for all u # 0,

(ii) |g(uw)| = 1, or (iii) |g(u)| = 1 for countably many isolated values of u.
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Case (ii) can be eliminated since X is non-degenerate. Therefore there
exists ug such that |g(u)| < 1 for 0 < |u| < up. Letting u = ug/2M, it
follows that
|@nk, ] = |ank,l|2] < Mu| < u_—zo— < ug.

Hence, |g(@nk,w)] < 1. This implies that anr, — 0 for otherwise, by the
continuity of g(u), g(anr,u) /4 ¢(0) =1 and this contradicts (3.25).
Now choosing ky to satisfy (an,| = maxi<i<a |ank, | the proof is complete.
U

In light of theorem 9, the condition max;<k<n |@nk] — Oasn — o0
is not sufficient to guarantee the a.s.c convergence of {¥,} although it is
necessary. However, by strengthening the growth rate of max;<i<n @nr and
by considering a moment condition on the random variable X, Pruitt was

able to show that {¥,} converges a.s.c.
Theorem 10 . If max, ¢y, [ank| = O(n77), 7> 0, then EIXi"H 7 <
implies that Y, — p almost surely.

In light of this theorem, if the matrix A = (anx) has a specific structure

satisfying the condition

) ow/Wy i1 < kL,
Uk =19 ¢ ifk>mn

where {wr} a sequence of positive numbers and W, = 3j_, wi, then the

result of theorem 6 is sharper; in theorem 6 we only need that

max an; — 0as n — oo and E|X|logt |X|< o0
1<k<n
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in order that ¥;, — p almost surely.

Pruitt also shows that theorem 10 is sharp in the sense that for every
v > 0, one can construct a Toeplitz matrix A = (ans) with maX,ci<n |ank| =
O(n~7) such that if ¥, — p a.s, then E|X['t1/7 < 0.

We will now present an outline for the proof of theorem 10, deriving it

from the following three lemmas which we will not prove.

Lemma 8 If E|X|'*/7 < « and maxi<i<n |@nk| < Bn~7Y, then for every

€>0, Y20, PllanXi| > € for some k] < .

Lemma 9 [f E|X["*1/7 < 00 and maxici<n |ank] < Bn™7, fora < v/2(v+

1), 22, PllanXi| = n™ for at least two values of k] < oo.

Lemma 10 If FX = 0, E|X|1+1/"' < 00, and maxi<r<n |ank| < Bn77,

then for every € > 0, Y22, P[|3 ) ant Xi] > €] < oo, where

!
> kX = > e Xk,
k {k: lape Xg|<n—a}

and 0 < a < 7.

Proof of theorem 10. TFirst observe that

Y, = Z nt Xp = Zank(‘}{k - ,[L) + "LZ Gnk
k k k

and that the last term converges to p since 3, @pp — 1 as n — oo. There-

fore, to prove the theorem, we will need to show

Z tni(Xp —p) — 0 as n — oo.
k
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Without loss of generality, assume g = 0. By the Borel-Cantelli Lemma, it

will suffice to show that for every ¢ > 0,

[oe] o0
Z P{ Zanka > e} < 00. (3.26)
n=1 k=1

First we will show that

!
{ ganka > e} C { ZA: Ak X > % } U { |@neXi| > % for some k }

U { |awxXk| > n~ for at least two values of k }. (3.27)

Suppose w € { |4 ant Xkl < § 3} N {|enrXk| < § for all &}

N { |antXk| > n~* for at most one value of £}. If in the case that for all
kwe {JenrXk] < n7%}, thenw € { | X entXik| < € }. Otherwise, since
there can be at most one value of k, say &', such that |a,p»Xp(w)| > n™2,

and since |an Xp(w)| < § for all &,

| m

. ! €
|Zank-’\k(‘*’) I = IZ U,nk.Xk(WJ l + Iank’-}{k’(w)l < 5 +-=¢
k k

W]

Therefore, w € { |1 Xk | < €} thereby showing (3.27). Now,if 0 < a <
/2 then « < . As a consequence of the three lemmas and (3.27), (3.26)
holds. This completes the proof. D

Remark: Suppose {X, : n > 1} is a sequence of independent but not
necessarily identically distributed random variables. If the random variables

{X.} are uniformly dominated by a random variable X in the sense that
P{| X > ¢} < P{IX| 2 2} forall >0,
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and A = (aqt) is a Toeplitz matrix, then Pruitt’s results, theorems 9 and
10, hold. This was proved by Rohatgi [26]. Note that if {X,} is identically
distributed, then the random variables {X,} are uniformly dominated by

X1, so Rohatgi’s result contains Pruitt’s theorems 9 and 10.
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Chapter 4

Arrays of Random Variables

4.1 Arrays of i.i.d. Random Variables

According to the Marcinkiewicz-Zygmund 1937 result, if {X,;n > 1} is a
sequence of i.i.d random variables and S, = Y p_; X; with £X; = 0, then

for any p, 0 < p < 2,
— =0 as. (n— ) (4.1)

if and only if

EIJY]IP < o0.

(Note, the case when p=1 was already proved by Kolmogorov).

We will now explore the possibility of extending the Marcinkiewicz-
Zygmund result to arrays of random variables. If {X,; 1 < k< n,n > 1}
is an array of i.i.d random variables, does a moment condition on X7 exist
which is necessary and sufficient for the a.s.c convergence of S,,/n!/? where

EXy=0and 0 < p <27 It is interesting to note that Zaman and Zaman
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[31] provide an example where {Xnx; 1 < k < n,n > 1} is an array of i.i.d
random variables with £X;; = 0 and E|Xy|?P < oo for 1 € p < 2, but for
which

1 n

ni/e Z Xnt # 0 almost surely.
k=1

This suggests that a stricter moment condition on Xy, is needed. In order to
tackle this problem, we will need the following definition of Hsu and Robbins

[10).

Definition 6 (Hsu and Robbins) A sequence of random variables { X, : n =

1,2,---} is said to converge to 0 completely if for every € > 0,

P{|Xa| > €} < o0.
1

n=

Applying the Borel-Cantelli lemma, complete convergence implies almost
sure convergence, and the converse is not necessarily true unless the sequence
of random variables {X,} are independent. In 1949, Erdés [6] showed that
complete convergence of S, /n!/? holds in (4.1) for a sequence of i.i.d. ran-
dom variables {Xx;k > 1} if and only if E| X3 < 00 (1 <p < 2). Based

on this result, we obtain a simple proof for the following result.

Proposition 4 (Erdds). Let {Xuk; 1 < k < n,n > 1} be an array of i.i.d
random variables such that EX17 =0 and 1 < p < 2. Then

Lll/p Z Xne — 0 completely (n— o00)
! k=1

if and only if E|X11|% < 0.
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Proof. (Hu et al.,[11]) By considering the rows for a fixed column of the

array {Xnx}, {Xn1} is a sequence of i.i.d random variables. For each n > 1

r{ >ef = r{ >

Hence, by Erd6s’ result we have

fjp{#lijfxnk[ > e}} - fjp{# S (Xl > e}} <
b=1 n=1 k=1

n=1

and € > 0,

1 n

- i
_ Xk
nl/p k=1

k=1

if and only if £|X14]? < co. I:l

Qi [24] has recently extended the above proposition for the case 0 < p <

Theorem 11 (Qi) Let {X,1;1 <k < n,n=1,2,...} be an array of i.i.d
random variables with 0 < p < 2 and let Sy, = 3 7=y Xnk. Then

Sp — nu
%— — 0 completely (n — o) (4.2)
if and only if E|X11|?” < 0o where p = EX1; when 1 <p <2, andp=0

when 0 < p < 1.

To prove the theorem, we will need to use the following two results of Baum
and Katz [1]. In these results, the sequence of random variables {Xz; & > 1}
are i.i.d and T5, = > oy X&.

(i) Lett >0, 7 > 1, v/t > 1. Then

E| X' < oo if and only if Z n""2P{|T,| > n"/te} < co.

n=1
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(i) Let t >0, 7> 1, and 1/2 < v/t < 1. Also let EX} = p. Then,

(2}
E|Xi* < 0o if and only if Y n"2P{|T, — nu| > n"'te} < oo.

n=1

Proof of theorem 11. By (4.2), for any ¢ > 0

0

> P{|Sn — nul| > en'/P} < o0. (4.3)

n=1
Substituting » = 2 and ¢ = 2p in the above theorems, for p < 1 case (i)
applies and for 1 < p < 2 case (ii) applies. Hence for 0 < p < 1, (4.3)
is equivalent to £]|X11|?? < oo with g = 0, and for 1 < p < 2 (4.3) is
equivalent to E|X11|? < oo with u = EXy;. D

Remark: By the Borel-Cantelli lemma, if a sequence of random variables

converge completely then it will also converge almost surely. The converse
does not hold in general. For example, letting {Xy; £ > 1} to be a sequence
of i.i.d random variables and S, = >";_; Xi, n > 1, by Erdds’ theorem
the complete convergence of {5,/n, n > 1} holds if and only if VarXj is
finite, whereas by the strong law of large numbers, the a.s.c convergence of
{Sn/n, n > 1} holds if and only if the mean is finite. For the case of i.i.d
arrays, the almost sure convergence and the complete convergence of (4.2)
are equivalent. The reason for this is as follows. Let {Xp;1 <k <n,n> 1}

be an array of i.i.d random variables and let

T, = Z Xk

k=1

Since the sequence {Xp;1 < k£ £ n,n > 1} is rowwise independent,
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{T,/n'/?} is an i.i.d. sequence. In this case, lemma 3 states that

i P{ITn/nl/”[ > e} < oo

n=1

for any ¢ > 0 if and only if
To/n'? — 0 as..

4.2 Rowwise Independent Random Variables

Let {Xnk; 1 <k < myn > 1} be an array of rowwise independent random
variables, that is, no assumptions of independence between the rows are
assumed. Also assume (without loss of generality) that EX,r =0 for {1 <
k < n,n > 1}. In this section we will examine the sufficient conditions that
are needed in order for

1

py Z Xnt — 0 completely (n — o0) (4.4)
k=1

to hold. Hu et al., {11} 1989 have obtained the following as a main result.
Theorem 12 Let {Xpt : 1 < k € n,n > 1} be an array of rowwise in-
dependent r.v’s such that EXy =0 forall {1 <k < n,n > 1}. Also,

assume that there exists a random variable X such that for all t > 0 and all

n,k>1,
P{|Xnk| > 1} < P{|X] >t} (4.5)
and
E|X|*? < o0
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where 1 < p < 2. Then (4.4) holds.

Motivated by Hu et al’s result, Gut [9] has extended theorem 12 to
include the case 0 < p < 1. In addition, he has weakened assumption (4.5).
We will prove Gut’s version of theorem 12, however, the proof we provide is
different from that of Gut. The new proof, based on Rosenthal’s inequality
[27], uses some of the lemmas and techniques of Hu et al.. At the same time,
for the case 1 < p < 2, the new proof is much shorter than that of Hu et al.
since Rosenthal’s inequality allows us to it avoids some of their fairly long

and technical details of the proof.

Theorem 13 Lel { X531 < k < m,n > 1} be an array of rowwise indepen-
dent r.v’s such that EX,; = 0 for a¢ll n, bk =1,2,... Also, assume that there
exists a random variable X and o > 0 such that for allt >0 and n > 1,

1 n i - ’ ‘ )
5,{2 P{Xu|>1} <aP{|X|>t} (4.6)

and

EIX[*? < > (4.7)
where 0 < p < 2. Then (4.4) holds.
Before we prove theorem 13, let us first examine equation (4.6).

Definition 7 We say that the array {Xnr; 1 < k < n,n > 1} is uniformly
dominated by the random variable X if (4.5) is satisfied and the array is

weakly dominated by « random varicble X if (4.6) is satisfied.

61



‘v 11.',53 .

The definitions of uniform domination and weak domination were intro-
duced in order to overcome the lack of identical distribution between the
rows of the arrays of random variables. Uniform domination clearly implies
weak domination (take a = 1), but the reverse is not true in general as
shown in the following example.

Example 2 (Gut) Suppose P{Xnr = 1} = P{Xnt = -1} = 1/2for k =
1,2,...,n— 1 and that P{Xp, = nl/"} = P{Xpn = -0} = 1/2,n > 1.
Then there clearly is no uniformly dominating random variable X, however

since

et 0 fort>/n,

1 & ) 1 . .
“ZP{[*Xnkl>i}={n f011<t_\/ﬁ

for the random variable X such that P{|X| > vk} = 2/k for k > 2, the
condition of weak domination is satisfied.
In order to prove theorem 13, we will need to employ the following lem-

mas.

Lemma 11 For anyr > 1, E|X|" < oo if and only if

o
Z 1P {|X|> n} < oo.

n=1

In fact,
oo [}
127" 3 T P{|X| > u} S EIXT < 14727 Y P{IX|> n}.
n=1 n=1

Lemma 12 Ifr > 1 and p > 0, then
ni/p
E(IXI Lxigum) S7 [ 7 PIXI > Dt
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and

s (1X1 — al/ ‘I'> alf = Py \
E(|X| I[Iz\,|>n,,,,]) =17 P {|X| > n/7} +/an P{|X|> t}di.
For the proofs of these lemmas refer to [11].

Lemma 13 Suppose {£,} and {n.} are sequences of random variables such
that |€n, ~ n| — 0 completely as n — oco. If also 1, — 0 completely, then

&, — 0 completely as n — .

Proof of lemma 13: For € > 0 we have that
P{lenl >} < P{|én—nal+ Il > €}

< P({ l6n = mal > €/2} U {lmm| > €/2 }).

Since {&, — 1} and {7, } converge to 0 completely,

S PGl > <3 Pl >¢/2) + 3 P{lml > ¢/2} < . []

n=I n=1 n=1

We will now present the basic outline for the proof of theorem 13 before
we embark onto the formal proof. For the case 1 < p < 2, we proceed by
first truncating X, at nl/? and then letting Y& be the truncated part of

Xnk- Using the moment condition on X, we will show that
1 n
ey > (Xnk=Yax) = 0 completely (n — o).
k=1

To complete the proofl of the theorem, by lemma 13 it will suffice to prove
that
1 n

Y Z Yo — 0 completely (n — o0). (4.8)
k=1
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In order to accomplish this, we first center the mean of Yy at 0 by letting
Znk =Yor — EYy (B=1,2,...,n: n=1,2,...).

We then use Rosenthal’s inequality (i) which states
Suppose X1,..., X, are independent random variables and EX}, = 0 for

k=1,...,n. Furthermore, suppose !l > 2 and let S, = Y 3=y Xi. Then

n

n 12
E|Sq]' < e(l) [Z E| Xy + (Z EX,?) J
k=1

k=1
where ¢(l) is a positive constant depending on | only.
We then show that
l n

~17p Z Znk — 0 completely (n — o),
n k=1

and that this implies (4.8).

For the case 0 < p < 1/2 and 1/2 < p < 1, we will use Rosenthal’s
inequality (ii). It states,

Suppose X1,...,X, are independent random variables and | > 1. Let

Sn =3 k=1 Xk. Then,

n n l
E|Su|' < e(l) [E EIX + (Z E|Xk|) ]
k=1

k=1

where ¢(l) is a positive constant depending on | only.
(Notice the absence of the condition EXj = 0 in Rosenthal’s inequality (ii).
Also, see [14] for a Banach version of of Rosenthal’s inequalities.)

Proof of theorem 13. Define
),nk = ‘X—nkI['-'\’nle"”P] (k = 1,2, ey = 1,2,. . .).
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Applying Lemma 11 with r = 2, we have that

i Zn:P{Xnk #Yu} = i iP{l-Xnkl > nl/”}

n=1k=1 n=1 k=1
(o)
< ZnaP{|X| > nl/P} < «ZQ,ELX-I?]) < oo.
n=1

Next, note that for any ¢ > 0 and n > 1,

1 n ) _]_ n , n _ ,
{wl mk;—'\nk(w) - mélnk(w) > f} c LL=J1 {wlXnk(w) # Yar(w)} .
Hence,
=7 2 Xnk — 7> k| > €
n=1 n]/P k=1 nl/P k=1

< ip LnJ (Xnk#Ynk)} < iiP{Xnk # Yo} < o0,

n=1 k=1
(gr Therefore,

1 < 1 &
w75 2 ok = T 2 Yok
=1

— 0 completely (n — =0).

By lemma 13, it now suffices to prove that

1 & A .
7 Z Yot — 0 completely (n — oo0). (4.9)
k=1

For the case 1 < p < 2.

Let
Zok =Y —EYy (K=1,2,...,n).
Then for 1 < ¢ < 2p, using Holder’s and Lyaponov’s inequality, and the
moment condition on X, it follows that

)1/(2p)

(B1Zatl) < 2(E [Yadl)V* < 2 (B[Yarl? < 2(E|X[P)M0P.
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Since E|X|?? < oo by (4.7)
E|Zpk]? < o0. (4.10)
We now let r denote the least integer such that
2v (2
4 (17 - 1) (4.11)

and we note that 2v > 2. Applying Rosenthal’s inequality (ii) to the random

variables Z,.r; k= 1,...,n, we have that
1 n 2v n 1
; 2 2
E nl/pgznk SC(:/) [nglZﬂkl v 2u/p (ZE'ZMJ ) }

where c(v) is a constant depending on ~ only. Since E|Z,|?> < oo by (4.10),

for some number 7, E|Z,;|? < r. Hence

o< 2v (o] v

Y n
Z E n]/p Z Znk < C(U (Z Z 2u/pE lan‘lz ) + C(U) Z n2v/p’
n=1 n=1k=1 n=1

We will now show the finiteness of the sum for the right hand side in the

above equation. By the definition of v, we have that -277” -v> % > 1. Hence

. n”
W
c(v) E 1 ~5uTp < 00. (4.12)
e

Now, using the second result of lemma 12 and the assumption that the
array of random variable {Xp;} are weakly uniformly bounded by a random

variable X, we obtain

n2u/p Z EZZZ Z n2u/p Z E

k=1 n=1

NE

1]
IN

n
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i 1 n nl/P

< Y s Sw [T B TIP Xl > 1}t
n=1 n k=1 0

92w S ni/e 2v—1 -

< ? Z 112"/P2U_/0 ¢ Zp{lxnkl > t}dt
n=1 k=1

< 2%q i : 2un /n‘/" 1P {|X]| >t} dt

= = n2u/p 0 ) at.

Letting ¢ = n1/?s'/2¥ and applying lemma 11 and the moment condition on

the random variable X, (4.7), we have that
[os) 1 n o 1
E n2v/p ZE?IZ < a 21 71/0 P {l\l > nl/psl/zl'}ds
n=

n=1 k=1
= 2%q ‘L] g nP{ls'l/z"le > n} ds

1
< 22""'101/ s~PIVE|X|?Pds
0

@ = oY BIX|? < . (4.13)
v—p

This result along with (4.12) shows that

| & 2w
E m,; Znk| < o0.
By Chebychev inequality, for ¢ > 0,
°° 1 & 1 & 1 &
n;p{ i 2 2o >e} TSN IRE
and so,
n_ll/_r-; é Za; — 0 completely (n — oo). (4.14)

We now refer to a simple fact, namely, if {n,} is a sequence of random

variables and @, a numerical sequence such that 7, — 0 completely and
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an — 0 then 7, + a, — 0 completely. Hence, to prove (4.9) we need to only

show that
1 n
—75 2 EYak = 0 (n = o0).
k=1

To accomplish our goal, we will prove that

n=1

o] 1 n
Yo=Y —7 D |EYu < oo. (4.15)
’ k=1
By the definition of Y,
Yok = Xnkf[|.\'nk|5nllﬂ] = Xnk — 'X—nkj[l-\'nkbnl/”]'

Since £FX,,; =0,

IEYnki < E(lj{nkijﬂ_xnkbnl/p] )

Epa

Thus, by the second part of lemma 12

>

IN

® q n
1; ;Z_ll_pg Foi (I_’Ynklf[|xnkl>nl'lp]) =

[o,) 1 n oo
Py [nl/”P{|Xnk| > n'/7) 4 / C P{IXul > t}dt] _
n/P

n=1 nl/p k=1
(o) (o]
' P{X]|> n/? L/ PX>tlt].
a:L:; [n {IX] > n'/?} + 75 ) e {IX| > t}e

Letting t = nl/Ps and applying lemma 11, we conclude that

© oo
> n/ P{|X| > n'Ps}ds
1

n=1

(o)
Z <ad nP{X[P>n}+a
n=1

0o © o0
< 2aE|.-‘{|27’+a/ d o nP{|sT'X[P > n}ds < 2a'E]X|2”+2a/ sTPEX|?Pds
1 1

n=l
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4p

L E|X|”
2p | X|%? < oo.

This proves (4.9), thereby concluding the proof of theorem 13 for the case
I<p<2

For the case 0 < p < 1/2.

By Rosenthal’s inequality (ii) we have that

5 pluis | < S | Emat s (3 )|
h=1 k=1

n=1 n=1
where ¢(2) is a positive constant depending on the number 2 only. The finit-

ness of 3-°2 m Y h=1 £|Yni|? can be obtained by imitating the derivation

of equation (4.13) where, in place of » we have the number 1. Thus,

200 1 n
? L

We will now show the finitness of

2
[s.) 1 n
n= v=1

Applying lemma 12 we have

oG

2
1 (& o
Z m (E El)nkl)

n=l1

IN

i L/ (Z/ Pl| Xkl > t](lt)

n=1

00 2
Z (nl,p P[|X| > t]dt) (4.16)

IN

Letting ¢ = n!/?s and applying lemma 11,

oo n nlip 2 o n /P 9
ngl (_nnpfo PlIX| > t]dt) < (nZ::l n_lﬁ/o PlX| > t]dt)
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< (; - / P[IX] > n'/7s] 1/1’(13)2
< ( /P[IYS“I”M] )2

= (/ ZlnP[le |7’>n]tls)

S -

2 1
22(/ EX‘””ds) =22 (E|IX|?) ——— < .
A [Xs™ ( | |) (1—27))2 oo

Therefore, by Chebychev’s inequality, for € > 0

if’{‘n%ilnk }_ 2213 WZZM

n=1 k=1
This proves equation (4.9) thereby concluding the proof of theorem 13 for

< 00.

the case 0 < p< 1/2.

For the case 1/2<p< 1.

Let 7 denote the greatest least integer such that

217(1—1>>1.
p

By Rosenthal’s inequality (ii) we have
o 1 n oo 1 T n 20
AN s ~ niys |20 %
;E —7 kz_jl Yor < C(V)nz-:] 5577 kz_lmnk] + (g E|3nk1> ] .

The finitness of Y°72; W Sr_ ElYor|? ” can be obtained by imitating the

20

derivation of equation (4.13) where instead of » we we have #. Now, since
E|X|*? < oo for1/2< p < 1, by (4.7), E|X| < co. Hence, by lemma 12 and

the definition of 77 it follows that

> <]

L (o) <

nl/e 20
(Z/ P{|Xnt] > I}di)
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00 20 ni/p 0 28
sagmfo P{[X]>t}dt5E]X|§1W<oo.
By Chebychev’s inequality,
°° 1 1 & |1 &, P
E]P{ W?;;Y"" > e} < Ez—gz_{E mkzzjlynk < o0

This proves equation (4.9) thereby concluding the proof of theorem 13 for
the case 1/2 < p< 1. D

Remark: Hu et al., [11] point out that the assumption p < 2 is essential
in theorem 11 and theorem 13. Relation (4.4) cannot hold for p = 2 even in
the case of weakly bounded r.v’s. Using the law of iterated logarithm, the

Rademacher functions serve as a counter example.



Chapter 5

Random Elements

5.1 Banach Space Valued Random Elements

Let (,F,P) be a probability space. In this section we will briefly discuss
some of results of the previous chapters that can be generalized when a
function takes value in a general topological space, in particular when the
topological space is Banach. A Banach space is defined to be a complete
normed linear space where the real-valued function || - || denotes the norm
on the space.

Let (Q,F,P) be a probability space. Let A" denote a topological space
(for our purposes, this space is Banach) and let B(A’) denote the Borel

subsets of X', that is the smallest o-algebra containing all the open subsets

of X.

Definition 8 A function V: Q — A’ is said to be a random element in X

if {w € Q:V(w) € B} € F for each B € B(X).
As we can see from this definition, a random element is a generalization of
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random variables since the o-algebra generated by all the intervals of the
form [b, 00] is the class of Borel subsets of the real numbers R. However, it
is not possible to extend all the properties of random variables to random
elements. For example, sums of two random variables is a random variable,
but sums of two random elements may not be defined. This poses a problem
for our purpose since we are interested in examining the results of the previ-
ous chapters where instead of random variables, we have random elements.
One way to overcome this obstacle is to assume that the topological space
X is also separable, for then, a function V' : € — X' is a random element
if and only if f(V') is a random variable for each f € A where A" denotes
the dual space of A,

Analogous to the case of random variables, independence and distri-
bution for Banach-valued random elements are defined in the usual way
(simply replace absolute values with || - ||). Moreover, probability modes of

convergence are defined as {ollow.

Definition 9 A sequence of Banach-valued random elements {V,} converges

to V in prebabilily if for any e > 0,
Jim P{Va=V{||>¢€e}=0
and {V,} converges to V almost surely if

P{lim V, = V=1



We define the expected value of a random element via the Pettis integral

as follow:

Definition 10 A random element V in a linear topological space X is said
to have ezpecled value EV if there exists an eclement EV € X such that

E(f(V)) = f(EV) for each f € X (the dual of X ).

(For general discussions regarding the properties of the expected value of a
random element, see [29] (p. 38-43) and [22].)

We will now state some useful results concerning random elements.

Proposition 5 Let X' be a seperable Banach space. The random elements V'
and G are identically distributed (independent) if and only if f(V') and f(G)

are identically distributed (independent) random variables for each f € X~

Proposition 6 Let &’ be a separable Banach space and V a random ele-

ment. If E||V| < co then E(V) exists.

The Marcinkiewicz-Zygmund’s strong law of large numbers can be gen-
eralized to the case where {X;;7 > 1} is a sequence of i.i.d random elements
with values in a separable Banach space. Let S, = Y 1=, Xi. For0< p <1

we have the result that

Sn

7 = 0 almost surely if and only if E||.X1||” < oo
n

(and EX; =0 for p =1). For the case 1 < p < 2 however, we would require



an equality such as

BV < ¢ Y EIvIP (5.1)

i=1 i=1

for every finite sequence {Y¥;;¢ > 1} of independent centered random ele-
ments where C depends on p only. Such an inequality does not hold in a
general separable Banach space and those with (5.1) as an additional prop-
erty are said to be of type p. Clearly, every separable Banach space is of type
1 and every separable Hilbert space is of type 2. Actually, separable Hilbert
spaces are the ‘best’ possible type 2 spaces for if {¥Y,}»>1 is an orthogonal
set, then equality holds in (5.1) with C = 1. If 1 < p < 2 where {X;;i > 1}
is a sequence of random elements with values in a separable type p Banach

space, then

._'SL — 0 if and only if £
nl/r

|X|P < 0 and EX = 0. (5.2)

In fact (5.2) hold if and only if the separable Banach space is of type p (see
[15] p.259).

We can also extend the results of Pruitt, theorem 9 and theorem 10 of
chapter 4, for i.i.d random elements with values in a separable Banach space.

Let A = (eny) be a Toeplitz matrix.

Theorem 14 (Taylor [29] p.110) Let {V,;n > 1} be a sequence of iden-
tically distributed random elements in a separable Banach space X and let

V be a random element with the same distribution as the V,,’s. Suppose

75



=)

E|V|| < oo. Then, for each f € X"

> ank [(Vi — EV1) =0 (5.3)
k=1

in probability if end only if

1Y ank (Vi = EV)]| =0 (5.4)
k=1

in probability.

If in addition the random elements {V,,} are independent, then
max |enk| — 0as n — oo
1<k<n

yields the convergence in (5.4) by Pruitt’s result (theorem 9 in chapter 4)
and theorem 14. Regarding Pruitt’s second result (theorem 10 in chapter

4), we have the following extension.

Theorem 15 Let {V,} be a sequence of independent and identically dis-
tributed random elements in a seperable Banach space X' with EVy; = 0, and
let A = (an) be a Toeplitz matriz. Assume thal maxi<r<n |ank] = O(n™7)

for some v > 0. If EJV3|[*TY" < o0, then
n
E ni Ve — 0
k=1
almost surely.

For theorem 5 and theorem 6 of chapter 3, there so far is no extension

when {X;;i > 1} is an i.i.d sequence of random elements with values in a
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separable Banach space. Since the real valued function N(-) (see definition
5) plays a vital role in the proofs of the theorems, it would seem an analogous
function that plays the role of V() is required if the space we’re dealing with
is no longer the special case R but a general separable Banach space.

On the other hand, it seems that it is possible to extend the results of
chapter 4 for the case {X,1:1 <k <m;n=1,2,...} is an array of random

elements with values in a seperable Banach space.

Definition 11 A sequence of Banach-valued random elements {X,;n =
1,2,...} is said to converge to 0 completely (X, — 0 completely) if for
every € > 0,

(o]

P{||Xall > €} < oo.
1

n=

If the array of the random elements {X,;n =1,2,...} is also weakly domi-
nated, that is, there exists a random element X with values in a separable
Banach space such that forall t > 0 and a > 0

1 n

— Z P{| Xl >t} L aP{||X|| >t} foralln > 1,

n k=1
then for0 < p< 2

n

—11/7, Z Xk — 0 completely (n — o).
n A=1

The proof would follow the same steps as in the proof of theorem 13 where

the absolute values are replaced with || || in the lemmas and the Rosenthal’s

inequalities are replaced by Ledoux’s Banach space versions as in [14].
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5.2 Hilbert Space Valued Arrays of Random Ele-
ments

Let ‘H be a separable Hilbert space with inner product denoted by (-, ). We
say {Xnr : 1 <k < nyn = 1,2,...} is a sequence of rowwise orthogonal

array of random elements with values in H if
2. -2
onk’ = E|| Xnk|l° < o0 (5.5)
and
E(Xaks Xnj) =0 (k# Gk j=12,..) (5.6)

(The norm in (5.5) is induced by the inner product (-,-})).
In this section we provide a simple sufficient conditions to ensure the

complete convergence of

£ 1= La X (n=1,2,..)
n k=1

Theorem 16 (Moricz and Taylor [21]) Let Xni be a rowwise orthogonal

array in a separable Hilbert space H. If

[e.e] 1 n
Z —a Z Onk? < 00 (5.7)

n=1 n k=1

Jor some a > 0, then

€n — 0 completely (n — o).
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Proof. By (5.5), (5.6) and the properties of the inner product,

E|&.2|| = ;;—QE [(Z* nk,Zan)] == ZZE(- ks Xnj)

k=1 1=1 =1 j=1

1 n
2
= e Za"k *
=

By Chebyshev’s inequality and (5.7), it follows that

Z P{llénll > €} < 5 E Elj&l)

n=1

1 o0 n
=z Z Z ani” < 00.
Moéricz and Taylor furthermore construct an example to show that the-

orem 5.7 is the best possible even
1. for real valued (H = R) random variables; and
2. if orthogonality is required not only within each row , but between any
two rows in the array {X,.}.
In short, we have the following theorem.
Theorem 17 Let {on} be an array of nonnegative numbers such that
oo 1 n
9
Z 20 Z Tk =
a=1" k=1
for some o > 0. Then there exists an array {Xn1} of random variables such

that forn# m or k # j;k=1,2,...,n55=1,2,...,myn,m=1,2,...

EXnre = 0,
EXu? = ou,
EXniXmj = 0 (5.8)
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and

lim sup |&,| = 0.
n—
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Chapter 6

Conclusion

In this thesis we have surveyed results which link moment conditions of
sequences of random variables to the almost sure and probability conver-
gence of the average of the sequence. We have outlined this connection
for sequences of random variables that are i.i.d., pairwise independent and
identically distributed and weighted with weights that satisfy the Toeplitz
matrix. We have also stated some of the results which can be preserved
when the random variables are Banach valued.

We now conclude by summarizing the results in this thesis. Let {Xx; k& >
1} be a sequence of i.i.d. random variables. Let {wi;k > 1} be a sequence
of positive weights as in chapter 3 and W, = > Twi. Let A = (ant) be a
Toeplitz matrix and let ¢ be a constant. Also let

. n
S = ———ZI}:?: JX"', 52) = —_——21’::‘}1/:%){"' and S = ; Unk Xk

Conditions involving the existence of a moment
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i) Kolmogorov’s strong law of large numbers says
5 — ¢ (a.s) < E|X1] < oo in which case ¢ = EX].

(Etemadi has generalized this result to {X;} pairwise independent and iden-
tically distributed).
ii)Marcinkiewicz and Zygmund have generalized Kolmogorov’s result when

p = 1. Assuming, without loss of generality, £ X; = 0 then

Lk=1 X&

—_— | X P y p
Y -0 (a.s) <= E|XjP< o0 for0<p<2.

iii) Hu et al. and Qi have proved an analogue to Marcinkiewicz’s and Zyg-
mund’s result for {Xx;1 <k <n,n =1,2,...} an array of i.i.d. sequence
of random variables. Again, assuming without loss of generality FXy1 = 0,

then
r=1 Xnk .
S = Z‘%?_‘llw;n—l" — 0 (as) & EjX11|? <00 for0 < p< 2.

Furthermore, if {X,t} are rowwise independent and weakly dominated by

a random variable X and £X,; = 0 for all » and %, then
E|X|?P < 0o = S — 0 (completely) = S{V — 0 (a.s).

iv) For weighted sequences of i.i.d. random variables, Jamison ef al. have

shown that

N (2
53— EX, (as) <= Niz) <00 as ¥ — 00.
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Also for a bounded sequence of weights {wy},
E|X|logt |X]| < 00 = S — EX,.
v) Pruitt has shown that
$3) . EX, (in probability) < max |ankl — 0as n — oo
1<k<n
and
58 — EX; (as) <= max |aw| = O(n~7) and E|X1|7 < 0
1<k<n

for v > 0.

When the first moment does not exist

& vi) When F

X| is not necessarily finite Jamison et al. have shown
583 — ¢ (in probability) <=

Jim cP{|X1| >c}=0and lim xdF(z) exists.

=00 Jlz|<c
vii) Wright et al. have shown that if lim.—o, ¢P{]X1| > ¢} = 0 holds and a
certain integral involving N(-) is finite, then S — ¢ (a.s).
The most general result is that of Gut theorem 13 and I was happy to

have provided a different proof.
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