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Abstract

The reduction of the kinematic error for precise trajectory tracking of a robotic manip-
ulator’s end effector pose is best achieved by taskspace sensory feedback. To this end,
a new taskspace control scheme is introduced which has two main features: Firstly,
a hierarchical control structure which feeds back both, joint and taskspace variables
and thereby reduces uncertainty better than other schemcs. Secondly, a nonlinear
decoupling scheme which best linearizes the taskspace loop.

The manipulator’s end eflector pose is measured by a 3D ultrascund range finder,
for whicki,a very detailed deterministic and stochastic model is obtained from exper-
imental data. Some of this information is then used in an extended Kalman filter to
compensate for the range finder’s imperfections.

Finally, the 3D ultrasound range finder, the extended Kalman filter and the new
taskspace control scheme are simulated in concert in a realistic environment, to assess

the contro] system’s ability to reduce the kinematic tracking error,

ii



Résumé

La réduction d’erreurs cinématiques pour l'observation précise de trajectoires du
poignet du manipulateur robotique est mieux réalisée par Putilisation d’une rétroaction
& 1’aide de capteurs dans l'espace Cartesien. Dans cetie thése, nous introduisons un
nouveau systéme commande, qui comporte deux caractéristiques principales:

Premiérement, une structure hiérarchique de control rétroactive sur les articula-
tions et les variables opérationelles réduisant micux, de ce fait, les incertitudes que
d’autres systémes. Deuxiement, un systeme de découplage non-lincaire qui linéarise
mieux la boucle dans I’espace Cartesien.

La position du poignet du manipulateur est mesurée par un télémetre i ultra-son
tri-dimensionnel pour lequel un modele déterministc et stochastique tres détaille est
obtenu a partir de données expérimentales. Certaines de ces donncées sonl ensuite
utilisées dans un filtre de Kalman afin de compenser les imperfections du téiémetre,

Finalement, le télémeétre a ultra-son tri-dimensionnel, le filtre de Kalman et ce nou-
veau systeme commande dans I’espace Cartesien sont simulés dans un environnement
realiste afin d’estimer la capacité de réduction d’erreurs cinématiques d’observation

du systéme commande.

—
-
-
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Claim of Originality

This research presents new results regarding robot manipulator taskspace trajectory
control, and 3D ultrasound position measurement instrumentation. To the best of

my knowledge, the following are original contributions:

o The resolved position loop is introduced as a means to globally decouple and

linearize a taskspace loop.

e The double servo loop which feeds back both the joint angles and the taskspace

position is recognized to be a superior structure for reducing model uncertainty.

» The combination of the resolved position linearization and the double servo
loop is shown to be robustly stable, and robustly performing in the presence of

modeling errors including neglected flexible modes.
o A sequential control design procedure for the double loop is presented.

o An experimentally verified analysis of all relevant environmental influences on
indoor 3D ultrasound precision ranging for distances between 20 cm and 2 m is

given.

e An experimentally verified stochastic model describing the spatial and temporal

statistics of the 3D ultrasound measurement noise is given.



e

e An extended kalman filter in combination with a reference Kalman filter is pro-

posed to partially compensate for the noisy ultrasound position measurements.

e A simvlation backed analysis of the limita:i:.as on kinematic error reduction
obtainable by a combination of the resolved position linearization, the double
servo feedback loop, the 3D ultrascund range finder and the extended Kalman

filter is presented.
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Chapter 1

Introduction

1.1 Reducing the Kinematic Error

In the early days of robotics, robotic manipulators were mainly used for repetitive
tasks in highly predictable and structured environments. Their movements were
taught by physically moving the robot’s end effector along a desired trajectory and
recording the resulting joint angles. The error with which the robot can repeat these
taught positions is often referred to as repeatability. Many commercial manipulators,
with reasonably large work spaces, have repeatability errors around 0.1lmm. This is
small enough for most tasks to be performed successfully.

Now, however, many robots are used for more complex tasks in sensor monitored,
changing environments. Often, an Al program [1] is used to coordinate the move-
ments of the manipulator with a priori knowledge, multisensor data and the desired
performance goals. The robot's movements will therefore depend on the environment
and often can not be taught in advance. Therefore, the manipulator must be able to
follow numerically specified trajectories.

The difference between the numerically commanded end effector position and the

position actually reached is called the kinematic error. Unfortunately, the kinematic
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error is much larger than the repeatability error: It can be large as 10mm [2]. i.c.
hundred times larger than the repeatability. The reason for the kinematic error is
an ignorance of the robot's true kinematic lunction; a function which relates the
joint variables to the Cartesian end effector position. Usually, only knowledge of the
nominal kinematic function is available. It is derived from the nominal manipula-
tor geometry. The true manipulator geometry, however, is a result of the tolerances
allowed in the manufacturing of the robot components, and may differ considerably
from the nominal geometry. Other influences include: Joint angle offset, gear back-
lash, gear transmission errors, joint drive compliance, basc motion, shaft wobbling,
bending torsion of link structures and temperature dependencies. The relative mag-
nitude of some of these error sources was investigated in [3].

Robots with small kinematic errors have numerous advantages. Predominant
among these is the ability Lo precisely track numerically generated trajectories, Lhereby
helping the manipulator to perform complex tasks in changing environments. Other
advantages are mentioned in [2]: A small kinematic error can eliminate most pendant
teaching efforts. It also makes robot programs more readily transportable to other
machines, and it eases multirobot coordination. Thus the reduction of the kinemalic
error is an important task.

The goal of this thesis is therefore to reduce the the kinematic error as much
as possible. Ideally, the kinemalic error is reduced lo about the same size as the
repeatability error, i.e. 0.lmm. In the remainder of the thesis, this precision will be
referred to as the accuracy of interest and effects which are smaller will be considered
neglectable.

A popular approach to reduce the kinematic error is to calibrate the manipulator,
This is done by measuring several end effector positions and their corresponding sets
of joint angles. The collected data are then analyzed to obtain the kinematic function

of the particular robot. This approach has had some success in reducing the kinematic
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error. For example, the static precision reported in (2] was better than 0.8mm for a
PUMAT60.

The disadvantages of robot calibration include that the modeling of the nongeo-
metric errors is difficult and robot dependent. Even the usual temperature changes
between night and day can yield kinematic errors of up to 0.3 mm [3]. Further,
structural compliance effects due to unknown payloads cannot be compensated for.
Often, the objective of manipulator control is to track a given trajectory. Evidently,
static calibration cannot reduce the part of the tracking error which is due to possible
changes of the kinematic function when the robot is moving. Another disadvantage
is the computational complexity of calibration. The forward and inverse kinematic
functions which incorporate the calibration results are bound to be very complicated.
They often require numerical solutions even if the nominal kinematic functions have
relatively simple closed forms. Since these functions may be used for real time control
purposes, computational simplicity is very desirable.

A better way of reducing the kinematic error is taskspace position feedback: The
pose of the manipulator end effector is continuously measured in Cartesian coordinates
and this information is used by a suitable feedback scheme to reduce the kinematic
crror. Evidently, the question of how to achieve taskspace position feedback has
two components: How to measure the 3-D end effector pose, and how to use these
measurements to reduce the kinematic error.

There are many different technologies for measuring the end effector pose. Among
the methods proposed are automated theodolites [4] which are extremely precise
(£0.05mm) but also extremely slow. Another method attaches photo diodes to the
end eflector and monitors their movement with the help of a laser scanner [5] which is
not very precise (2mm). Yet another method attaches LEDs to the end effector and
uses cameras to track them [6]. There are also commercially available devices which

are based on this idea and which achieve good results: On a two meter range, the older
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Watsmart system [61] achieves ca. 2 mm precision. and its successor, the Optotrak
system [61] achieves ca. 0.3 mm. Both products allow sampling rates of several
hundred Hz. Many of the cited methods require a substantial financial investment,
One objective of this thesis is to explore the advantages and limits of 3-1) end
effector position measurements based on ultrasound. The idea is to attach ultrasound
senders to the end effector of the manipulator and to use a fixed microplione array to

track their position. The advaniages of such a scheme include:

o Low cost hardware: The prototype including the ultrasound transducers, the

computer interface and all required analog and digital circuitry was built for

under $200.
o High speed: Pulse rates of more than hundred Hz can be achieved,

e Small computalional requirements: An off-the-shelf single board computer with

numeric coprocessor should be sufficient.

e Good precision: Depending on the circumstances, good submillimeter precisions

can be achieved.

The potential uses for this type of measurement system include low-cost, high preci-
sion tracking applications. It may also be useful for sensor fusion applications, where
the fast, low-cost ultrasound position measurements supplement slower and more ex-
pensive optical measurements. Another application is for environments which are
antagonistic to optical methods, like dirty and dusty environments. Moreover, the
work presented in this thesis could possibly be extended Lo applications in underwater
robotics,

If used independent of the control system the 3D ultrasound position sensor can
be used as a convenient and inexpensive tool for the usual parametric robot calibra-

tion. Alternatively, it can be used for nonparametric calibration where the kinematic
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error history for a particular robotl trajectory is recorded and later used for error
compensation along this trajectory.

The new taskspace position feedback scheme introduced in this thesis stands on
its own. The scheme is independent of the particular taskspace position measurement
device used and therefore is not restricted to the 3D ultrasound range finder used in

this theses, Its main features are:

o A hicrarchical scrvo controller splits the overall loop uncertainty into a dy-
namic and a kinematic uncertainty. Hierarchical loops reduce uncertainty more

cifectively than single loops and are therefore superior to single loop schemes.

e The resolved position nonlinear kinematic decoupling scheme is introduced. It
decouples and linearizes the kinematics globally and is superior to other meth-

ods. 1t is also very satisfying from a theoretical point of view.

Applications for the new taskspace controller include all situations where high per-

formance sensory pose feedback is required.

1.2 Pose Measurement with Ultrasound

The key to kinematicerror reduction, via feedback, are precise position measurements.
The purpose of the ultrasound range finder is therefore to measure the position and
orientation of the manipulator’s end-effector as accurately as possible. The pose is
represcnted with respect to an arbitrary but fixed 3-D reference coordinate system.
In the following, a right-handed Cartesian reference coordinate system is assumed.
Other choices are possible and may, in certain cases, simplify the kinematic function.

The sender position is measured by attaching an ultrasound transmitter to the
end effector of a robot. The transmitter emits carefully timed bursts of sound which

are received by distant microphones. Since sound propagates with a finite speed,
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Figure 1.1: Schematic diagram of sender and microphone configuration

there will be a small time delay between the sending and the recciving of the bursts,
When the speed of sound c is known, then the scalar distance d; between the sender

and the i-th receiver and the measured time delay tof; are related as
]’.
tof; = = (1.1)
¢

(During the remainder of this text, the measured time delay tof; will often synony-
mously be denoted as “TOF” which is short for “time of flight".)

In order to measure the sender position in 3-D space using TOF measurements
an array of m microphones at well known fixed and distinct positions is needed.
The position of the sender can then be calculated from the range measurements hy
triangulation. The Fig. 1.1 depicts the situation: M; denotes the position of the i-th
microphone, S denotes the position of the sender, and ¢; denotes Lthe unit direction
from the sender to the i-th receiver. If the M; are known a-priori and the d; are
measured, then the sender position S can be found by solving a set of nonlinear
equations. Since

& = (M; - YT(M; = 8)

one has to solve the following equations for S:
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d? — MTM, —2MT | 1
: = : : 5 (1.2)
] . sTs
& — MIM, —aMT 1

Evidently, for m = 4 micrnophones (1.2) can be solved as four linear equations
with four unknowns. Thus provided that the matrix on the r.h.s. has full rank, four
microphones do guarantee a unique solution for S. The full rank condition translates
into the requirement that nol all four microphones should lie on the same plane.
Some geometrical insight reveals the other cases: For m = 3 linear independent
microphones, equation (1.2} yields a unique solution if S lies on the plane spanned by
the 3 microphones. It yields two solutions if S lies outside of it. Usually, however, cne
has some crude a priori knowledge of the sender position and can easily exclude one of
the two solutions. Thus, usually three microphones suffice for a unique determination
of S. For m = 2 distinct microphones the solutions for S are constrained to lie on a
circle. Finally, if there is just one microphone the solutions are constrained to lie on
the surface of a sphere.

The orientation of the end effector can be calculated from position measurements
if at least three senders instead of just one are attached to the end effector. For
example, the end effector can be thought of as having a Cartesian, right-handed
coordinate system attached to it. The origin of this coordinate system would then
collocate with the position of the end effector and the coordinate system’s orientation
would be identical to the orientation of the end effector. For instance, the position

of the origin F, of the end effector coordinate system could be chosen to lie at the

center of the triangle spanned by the 3 sender positions S, S;, Ss,
1
Pg = 5(51 + Sz + 33) 3

and the three unit vectors oy, 0; and o3 of the end effector coordinate system could

be chosen to be:
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The above description is redundant. It requires 12 numbers to deseribe position
and orientation. However, just 6 numbers sullice if other representations ol orienta-
tion are used like roll-pitch-yaw, Euler angles, or the equivalent axis representalion.
However, these descriptions are not unique and can be numerically ill defined. A four
number orientation representation like the quarternians could overcome these prob-
lems. A detailed study on the representation of orientation for taskspace feedback

can be found in [18].

1.3 Noisy Pose Measurements

Unfortunately, the range measurements are rather noisy. This is primarily due to an
ignorance of the true sound-speed as a function of time and space. Small variations
of the sound-speed can blur the computation of position and orientation from TOF
measurements, even if an average sound-speed is known. The uncertainty is in the
order of 0.1% of the range. Thus, on a 1 m range one can expect an error in the order
of I mm.

The reason for the fluctuating nonuniform sound-speed is its strong dependency on
temperature and wind, and to a much lesser degree, its weak dependency on pressure

and moisture. According to (28], the speed of sound in air can be approximated as

_ ({9 .
c= (-a—p) (1.3)

adinbatic
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where the partial derivative is evaluated for equilibrium conditions of the air pressure
» and the air density p.
The most prominent factor which influences the speed of sound is the air temper-

ature. According to [33]:

/ 9 m
cC=C l+m~(tﬂ+o.ﬁsecocﬂ (14)

where ¢;=331.4 m/scc is the speed of sound ai 0°C and 9 is the temperature of the

air in °C. At 20°C room temperature, the speed of sound is c2=341 in/sec. It is
evident f[rom (1.4) that the sensitivity of ¢, with respect to the temperature, is about
0.18%/°C. Thus, on a two meter range, an unaccounted for temperature change
of just 0.03°C causes a measurement error of ca. 317nsec or equivalently ca. 0.lmm
which is the same as the accuracy of interest. In particular, the small temperature
difference between the ceiling and the floor of a room must be taken into account.
The second major influence on the speed of sound is the presence of air movement.

The equation (1.4) can be modified to accouni for wind:

/ J
¢ =coyf1+ 5730 +elw (1.5)

where ¢; is the speed of sound in the direction e, and w is the velocity vector of a
T

" .

constant and uniform wind. In the worst case, the wind blows in the direction ¢
In this case, the sensitivity of ¢; with respect to deviations of the wind speed from
zero is 0.29% /(m/sec). Hence, on a 2 m range, an unaccounted for 1.7 cm/sec wind
could cause a maximum error of the same magnitude as the accuracy of interest.
There are also several less important factors which influence the speed of sound.
According to [33], there is a noticeable dependency on the barometric pressure for
overpressures of more than 10bar. For instance, for 25bar overpressure the speed of
sound increases by ca. 0.8%. Moreover, if the relative air humidity were to change

drastically from 20% to 100%, then the speed of sound would change by 0.15%.
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According to [13] the pressure and humidity dependences as well as any dependency
on the absorption coefficient or the frequency of the sound can be neglected for normal
operation with 40Khz ultrasound (which was used in this study).

The air is a turbulent medium even in a ‘quict’ closed room . Convection currents,
temperature drifts, dralts, heat conduction etc. are just some of the mechanising
which influence the temperature and wind distribution in a room and therefore the
sound-speed. In this thesis, an attempt was made to model the effect of these flue-
tuations on the TOIF measurements us @ random process. The model distinguishes
between two parts, a ‘deterministic’ part, which models the very slow and spacially
highly correlated influences. and a ‘random’ part, which models faster and spacially
less correlated fluctuations. Since these fluctuations are mainly caused by heat effects,
the time constants involved are very large. In fact, the random part fluctuations have
a time constant in the order of half a minute. This makes it difficult to reduce them
by averaging them oul. ilence, the thesis makes an atltempt to model the time-space
statistics of the fluctuations in an effort to use this information for other mmeans of
error reduction.

In order to find a good position estimate, despite the measurement noise, an
extended Kalman filter (EKF) is used to track the sender position given the available
a priori information and the noisy measurements. In addition, one or more fixed
reference senders are employed to exploit the spacial correlation of the turbulences.
The closer the moving sender comes to a reference sender the larger is the achicvable
error reduction. The sender position estimates, obtained frory the EKF, are then used
in the Cartesian feedback loop instead of the true sender positions. Given the nature
of the problem, the low frequency positioning accuracy of the control system is about
as good as the EKF position estimates. The latter depends on on the atmospheric
conditions of the room, the positions of the reference senders and the trajectory of

the moving senders.
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1.4 Literature Review

There is a multitude of one dimensional ultrasound ranging methods. They can
roughly be divided into two methods: Firstly, there are the continuous wave (CW)
methods. They infer the range from sendirt an uninterrupted ultrasound signal.
Secondly, thzic are gated wave (GW) methods which send out bursts of sound energy
and infer range information from the measured time-cf-fight (TOF) of the burst.
The CW methods include phase shift measurements [8}, amplitude modulation [7)
and frequency modulation [9]. Unfortunately, CW-methods are extremely sensitive
to reflections and perform especially poorly in closed rooms.

Probably, the most prominent representative of the GW-methods is the range
finder developed by the Polaroid company [10]. This GW-method features threshold-
ing of the le wpass filtered signal. Another similar scheme can be found in [11]. There
are also GW-variations involving sophisticated pulse shape processing methods [12].
Nevertheless, the author of this thesis obtained the best experimental results for a
GW scheme, using a combination of thresholding and zero crossing detection. This
proved Lo be a simple but very effective method. This observation was shared by
Lamancusa and Figueroa [13] and also by Sasaki, Takano and Akeno {14]. The latter
claim an accuracy of 0.06% of the range, limited by air turbulences. This result is in
line with our own observations.

Although there is a the wealth of literature on 1-D ranging, the literature on
3-D ultrasound position ranging is scarce. Lamancusa and Figueroa [13] addressed
some of the problems connected with 3-D ultrasound ranging. In particular, they
measured the position measurement error due to the finite transducer size, for some
special situations. However, they did not address the space-time properties of the
measurement fluctuations caused by turbulent air. A few of these properties are, at

least, mentioned in [15]. Stone [63] used a commercially available 3D sonic digitizer
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[62] for robot calibration. In a very controlled environment. after compensating for
the sound speed drift and sound speed gradient. he obtained an accuracy in the order
of 0.1 mm on a 2 m range. This is an excellent result. The work presented in this
thesis differs in that it stresses a low cost solution for on-line feedback in not so
well controlled environments. Particularly, the effects of atmosplieric turbulence were
taken into account.

The amount of literature on taskspace feedback is impressive. Farly schemes like
the resolved rate control [16] use the inverse Jacobian to map the taskspace error
into the joint error, olher schemes [17] use the transpose Jacobian instead. tHowever,
these schemes are not appropriate for fast tracking because they neglect the nonlinear
dynamics of the manipulator.

The standard solution to the taskspace control problem is to solve the ‘inverse
problem”. Firstly, one writes the dynamic equation of the robot in terms of its
taskspace variables instead of its joint variables. Secondly, one compensates for the
nonlinear dynamics by nonlinear feed forward. Thirdly, one designs a servo controller
for the remaining linear decoupled system feeding back the taskspace variables. Many
variations [18]-[23] of this basic theme have been siudicd.

However, there is little recognition that in the servo part, feedback of both the
taskspace variables and the joint variables, is inherently superior to feedback of the
taskspace variables alone Conceptually, one can think of such a feedback scheme as
a double loop. For instance, a velocity feedback stabilized inner loop was used in [24].
The taskspace control results presented in this thesis were first reported in [25]. In
particular, the resolved position loop was introduced as a kinematic lincarization and
decoupling scheme.

This thesis is organized in three main parts: In the first part the Cartesian control
scheme is studied under the assumption that the eud effector position can he measured

perfectly. The second part describes the hardware of the 3D ultrasonnd range finder
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and characterizes its imperfections, In particular, it develops a stochastic model of
the measurement noise associated with TOF measurements. Finally, the last part
simulates the Cartesian feedback control loop when the EKF’s end effector position
estimates are fed back instead of the true end effector positions. The simulations
show what accuracy can be achieved under what circumstances and therefore define

the limits to this approach to kinematic error reduction.
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The Taskspace Control System
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Chapter 2

The Open Loop System

2.1 The Plant

2.1.1 The Plant Components

The plant which the Cartesian loop is supposed to control can be modeled as the

nonlinear dynamic operator

p()=ToLgo(I+An)()

u

Am

+LL
+

ho

.

Ye

Figure 2.1: The plant
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(2.1)
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were ‘B o A’ symbolizes that the operator A is to be applied before the operator B,
As shown in Fig. 2.1, the plant has an input u which is the desired joint position, and
two outputs: the true Cartesian position y. and the true joint position ¢.. The plant

p(-) consists of four parts:
1. The nominal linear decoupled time invariant closced joint loop dynamies fig(+).

2. A nonlinear dynamic uncertainly A,,(-) centered at unity. I represents the

modeling error of the joint loop.
3. A limiter Lg{-) which represents the range limitations of the joints.

4. The nonlinear, memoryless, true forward kinematic function 7" which maps joint

displacements into taskspace coordinates.

In the following, each of the plant components will be discussed.

2.1.2 The Joint Loop

The most fundamental part of any robot control system is the open loop rigid body

joint dynamics of a robot. It can be described as in [40]:
T = M(g¢c)ge + N(4c. §ec) (2.2)

where 7 denotes the joint tor¢ue vector, M denotes the inertia matrix, N is a nonlincar
dynamic vector valued function which represents the centrifugal, Coriolis, gravity and
friction torques. Since the joint displacement vector ¢. is available as output of the
optical shaft encoders, the joint loop can be closed from ¢, back to 7. A well known
contro! scheme is the so called computed torque method [40]. This control law has
a nonlinear compensation part and a linear servo part: The first parl compensates

for all nonlinearities such that the nominal manipulator dynamics mimic a unit mass.
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The second part is a PD servo controller which is supposed to cope with any remaining

uncertainties. The computed torque control law is:
7 = N(gerde) + M(g.)[Koé + Kype] (2:3)

where e = u — ¢, ( 4 = qq is the commanded joint displacement), and M and N are
approximations of M and N, respectively. The reasons for the use of approximations
are an ignorance of the true manipulator mass properties, the true actuator constants,
the correct friction model and the exact manipulator payload.

The ignorance of the true manipulator dynamics grows with the operating fre-
quency. In particular, the rigid body assumptions made in (2.2} break down at a
few Hz, and the robot starts to vibrate, According to Daneshmend [43], the first
vibrational modes of a PUMAG600 were found experimentally to lie around 20-30Hz.
The actuators, however, impose an even stronger restriction on the bandwidth of a
PUMA. Limits on the available power, joint torques and joint velocities, condemn the
PUMA to have a bandwidth even smaller than its structural stability would allow.
The gain of the joint loop must therefore roll off before flexible modes or power re-
strictions take effect. This puts a hard limit on the available bandwidth. A realistic
value for the closed loop bandwidth of a PUMAG00 was experimentally observed by
Daneshmend [43] to be ca. 2Hz,

Nevertheless, a feedforward term like M({qg.)i is often added to the r.h.s of (2.3),
yielding a two degree of freedom controller with a unity nominal closed loop transfer
function. Of course, to enjoy the benefits of feedback requires the bandwidth of the
trajectory to be smaller than the closed loop bandwidth of the robot.

The one-degree of freedom loop is sketched in Fig. 2.2, where I/s* symbolizes
that the nominal open loop dynamics after nonlinear compensation and decoupling
behaves like n parallel double integrators. Further, R; denotes a linear dynamic

regulator, and A], is the nonlinear dynamic operator which represeats the modeling
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Figure 2.2: The joint loop

Figure 2.3: An input-output representation of the closed joint loop
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crrors including the flexible mode dynamics.

Another way to depict the joint loop of Fig. 2.2 is shown in Fig. 2.3, where ho(-),
which has the Laplace transform Hy(s) = I/s2Ry(s)(I + 1/s%Ri(s))~?, denotes the
decoupled nominal closed loop dynamics. The symbol A,, represents a nonlinear
dynamic uncertainty centered around unity. The difference between the uncertainties
A, and A!_ is that Ay, is reduced by the sensitivity of the loop.

For the sake of argument, consider the loop in Fig. 2.2 to be SISO, linear and time
invariant, and let S)(s) denote the Laplace transform of the true sensitivity function,
and Syn(s) the nominal sensitivity function of the loop. The Laplace transform of

A,, is Ap;. Now one can write the Laplace transform of ¢ as:

g(s) = [1—=Si(s)]u(s)
= [1 = Sin(8)][1 + S1(s)A ()} u(s)
= Ho(s) [l + Apr(s)] u(s)

Thus, onc obtains the input-output form shown in Fig. 2.3 or Fig. 2.1 with the
transformed uncertainty:
Ap(s) = Si(s)A(s) (2.4)
The sensitivity function S; is small at low frequencies, and approximately unity at
high frequencies. Therefore, the effect of the joint loop is to shrink the original
uncertainty A), in the low frequency range. However, at frequencies larger than the
closed loop bandwidth, the original uncertainty is left more or less unchanged.
In the following, it is useful to assume that the closed loop uncertainty A,, can
be represented as the sum of a doniinant linear time invariant dynamic uncertainty

Ay and a nonlinear dynamic uncertainty A, which is small compared to A
Am(-) = M) + Aul() (2.5)

The decomposition (2.5) will be used later to limit the closed loop bandwidth of the

Cartesian loop.
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The representation of the closed joint loop given in Fig. 2.3 or Fig. 2.1 is not re-
stricted to the computed torque method. In fact, any joint control method including
adaptive control has a closed loop representation like the one depicted in Fig. 2.3.
In many cases, adaptive controllers can shrink the uncertainty more eflectively than
non-adaptive controllers. If computational simplicity is desired, then the accelera-
tion feedback law [26] is an elegant alternative to the computed torque method. It
uses an additional € term in (2.3) and high gain feedback instead of the nonlinear
compensation terms. This reduces significantly the computational complexity of the
joint controller. However, as before, at low frequencies, the closed loop dynamics can
be considered to be approximately linear, time invariant, and decoupled. Moreover,
A, is small in this frequency range. At higher frequi'ncies, however, the acceleration
control law must roll off its gain before power restrictions and flexible modes become

a problem. Hence, as before, at high frequencies A, is large.

2.1.3 The Limiter

It is important for the design of the closed loop to be based on a clear understanding
of the domain and the range of the kinematic function. For this reason the open loop
plant is modeled to include a limiter function Lg which is followed by the forward
kinematic position function T. This is depicted in Fig. 2.1.

The limiter Lo restricts the possible joint displacements to a set Q and therefore
represents the physical limits of the joints: Prismatic joints have necessarily a finite
range; rotational joints, on the other hand, can be unrestricted but are usually con-
fined to ranges of less than 360°. Hence, let the range of the i-th joint be the sector
{ai, ;) C % and let there be n joints, then @ C R" is the n-cell

n
¢= H[a.‘, bi)

Occasionally, the set Q is referred to as the joint space. The limiter function can now
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be described as
q ifg.€Q
Lo(q) =4 arg min |lg—g.|| otherwise
9€Q
Strictly speaking, Lq is a part of the joint loop. However, here it is modeled as being

oulside to show the properties of the taskspace loop more clearly.

2.1.4 The Forward Kinematics

The true forward kinematic function I’ maps the joint space Q onto the Cartesian
workspace X C R", which is the set of all physically obtainable Cartesian positions

and orientations. In other words,
X =T(Q)

It is evident, however, that T, with domain @ and range X , is not a 1-1 mapping.
In general, there can be many joint positions which correspond to a given Cartesian
position. They correspond to different configurations of the robot. For example, many
positions of the PUMA 600 wrist can be obtained with four different configurations,
namely: 1) left arm - elbow up, 2) left arm - elbow down, 3) right arm - elbow up, 4)
right arm - elbow down. A picture of these four configurations can be found in [40).

The complete 6 joint PUMAG00 has eight configurations. In general, the exact
number of possible configurations depends on the robot architecture, and the degrees
of freedom of the robot. The nominal T can be systematically derived with the help of
the Denavit-Hartenberg parameters (D-H parameters [35]) as is shown, for instance,
in [39].

Besides T, there is also interest in its derivative J(g.), called the Jacobian matrix

of the manipulator, which maps joint rates into Cartesian velocities y. = J(g.)q.,
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(3]
[ 351

where:
oT
Jg) = Z0)
9 lg=qeeQ
There are special vectors g, € @ which are called the singularities of the manipulator.

They have the following well known properties:
o The Jacobian matrix J{g,) is singular.
e The manipulator looses a degree of freedom in the Cartesian space.

o Singular joint positions are those for which two joint axes align or two links

align.

¢ Singularities mark the boundary between two configurations. For example,
when the PUMAG00 arm is stretched out completely it is in a singular position
and can be considered to be both in the elbow up and in the elbow down

configurations.

Let the set of all singularities be denoted @, C Q.

Let Q; C Q denote the set of all joint position vectors g, which belong to the i-th
configuration and let the manipulator have n. configurations. Let the configuration
sets Q; include their singularities (i.e include their boundary and make them closed

sets). They have the following properties:
Xi=T(Q;) is1l-1 and onto.

where X; C A’ is the part of the Cartesian workspace which can be reached while
the robot is in the i-th configuration. Note that it is possible that certain Cartesian
positions in the workspace cannot be reached in all configurations because of the

restrictions on € . Furthermore:
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e = U (@Ne)
,7=1
i#J
In the previous text, the forward kinematic function T was presented as describing
a strictly geometric relation which maps vectors into vectors. It should be kept in
mind, however, that this is only a good approximation. The true T has also a weak

dynamic component which takes the flexibility of the manipulator into account.

2.2 Approximate Inverse Kinematics

2.2.1 Four Approximate Inverse Kinematics Functions

The forward kinematic position function T is highly nonlinear. In order to apply
linear control design methods to the Cartesian loop it is therefore necessary to com-
pensate for T with some kind of inverse kinematics function. Unfortunately, the true
T is not known exactly because the D-H parameters of the manipulator’s geometry
are not known exactly, and because there are kinematic effects like compliance due
to gravitational loading which require knowledge in addition to the D-H parameters.
Given this ignorance, the best one can do is to use an approximate inverse kinematics
function (AIKF). Since the inverse of T’ can be a very complex function, it often de-
sirable to trade accuracy for computation speed and use a deliberate simplification as
AIKF. The following three AIKF's will be discussed in more detail: The approximate
inverse kinematic position function (AIKPF), the approximate inverse kinematic ve-
locity function (AIKVF) and the approximate kinematic force function (AIKFF). In
connection with the use of a Kalman filter, there is also interest in generating a nom-

inal trajectory by computing the approximate forward kinematics position function
(AFKPF).
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The computational complexity of the AIKFs depends on the structure of the
manipulator. Most modern manipulators have structures that allow for a relatively
simple closed form solution of the nominal inverse kinematics problem. In partic-
ular, many robots have the nominal kinematic equivalent of a spherical wrist and
neighboring joint axis are nominally oriented at 0° or 90° relative to each other. For
these types of manipulators, there exist highly efficient nominal closed form inverse
kinematic solutions like the Featherstone method [36]. The Stanford manipulator,
and the PUMA are examples of this type of manipulator.

If the manipulator structure does not have a closed form inverse, then one must
compute the inverse numerically with convergence methods. There are efficient and
numerically reliable algorithms like the one proposed by Angeles in {37] which can
accomplish this task. However, numerical solutions are usually much more time
consuming than closed form algorithms.

An AIKF must find a balance between accuracy on one side and convenience and
computational complexity on the other. The most accurate AIKF would incorporate
all available information on the kinematic function of the manipulator. Such informa-
tion could be obtained through calibration measurements. The disadvantages of this
method, however, include the inconvenience and difficulty of precisely measuring a
large number of kinematic parameters. They also include that the AIKF would likely
not have a closed form even if the nominal manipulator does have an easy closed form
inverse kinematics solution. An alternative approach is to use the nominal kinematic
functions and let the sensitivity function of the kinematic feedback loop reduce any
exiziing errors.

Let 77! denote the true inverse kinematic function for the i-th configuration and

let the AIKPF T, denote an approximation of T, i.e.:

Q& = T;—IOT(Qi)
Ti_l 2 Tl-—l
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alm]f{
AIKPF 17 | 15 | 19
AIKVF 29 |48 [ 17
AFKPF 16 |21 [ 19
AIKVF+AFKPF {37 {55 | 20

Table 2.1: Computational complexities of the nominal kinematic functions of a PUMAG00, using
the Featherstone method.
The AIKPF 777 maps Cartesian positions into joint positions.

An alternative AIKF, the AIKVF, maps velocities instead of positions. This
approach can more easily handle arbitrary robot architectures. A prominent AIKVF

is J=1(g.), an approximation of the true inverse Jacobian matrix J~1(g.):
J7Hge) ~ I ge)

The true inverse Jacobian J~'(g.) does not exist for g. € {,. The approximate
Jacobian J ~1(q.), on the other hand, can be made to exist even at singularities. It
will, however, be an infinitely bad approximation at those points.

There are at least four established ways to compute
g = j-l(‘i’c)y.c

The first method is to compute J ~1{g.) and then multiply y.; the second method is
to solve J(¢.)d. = ¥, the third method is given in [44] and is an improved version
of the second method, and the fourth method is the Featherstone method which was
mentioned earlier. The latter method requires a special robot architecture.

The four methods are progressively more efficient with the fourth method leading
by a wide margin. A comparison between them, which was conducted by Hollerbach
in [38] for the Stanford manipulator, found the Featherstone method to be about

three times as efficient as the second best method.
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2.2.2 Computational Complexity

Since most modern manipulators allow the application of the Featherstone method.
and since it appears to be the most efficient method available, it will be used in
this thesis as a benchmark for computational complexity. Hence, the author of this
thesis investigated the complexity of the Featherstone method for a nominal 6 joint
PUMAG00. The results are displayed in Table 2.1, wherc ‘a’, ‘m’ and ‘{’ stand for
additions, multiplications and transcendental functions, respectively. A similar study
can be found in [41].

The closed loop will include an extended Kalman filter which requires a nominal
trajectory as one of its inputs. In this context, it is useful to investigate the complexity
of computing simultaneously the AIKVF and the AFKPF.

The complexity for the simultaneous computation is smaller than for the separate
computations because most transcendental functions and some intermediate results
can be utilized by both functions. These translate into substantial savings. The re-
quired complexity for the simultaneous computation is just 37a+55m+20f (as shown
in the last row of Table 2.1) whereas the separate computation of both functions
requires 45a+69m+-36f. The simultaneous computation of AIKPF and AFKPF, how-
ever, does not permit savings of this nature. The savings are even more pronounced,
if the computed torque methods are employed for ihe joint loop, because then the
intermediate results can also be shared by the dynamic feedforward equations. Some
aspects of this idea are discussed in [42].

A look at Table 2.1 suggests that the most time consuming factor is the computa-
tion of the occurring transcendental functions. Hence, in order to further reduce the
computational complexity, one could replace the occurring transcendental functions

by simpler functions, lookup tables, functions over a simpler number field, dedicated

VLSI circuits or a combination of these methods.
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Moreover, the AIKFs will be used in a real time closed loop environment. In par-
ticular, suppose the resolved rate Cartesian loop [16] is used, but the multiplication of
the error vector by the inverse Jacobian matrix is replaced by Featherstones’ method.
The transcendental functions of the AIKVFs are not functions of the Cartesian veloc-
ity or perturbation, but strictly functions of the current joint angles. This suggests
the possibility of reducing the computational load by computing the transcendental
functions at a lower sampling rate than the rest of the AIKVF.

If the manipulator does not have an efficient closed form inverse solution, one
could compute the vectors T,-"(y) off-line by numerical methods for some y € &',
and store them. One could then extrapolate between the stored values in real time
for any given Cartesian position in &';. An alternative is to use an AIKFF, the
approximate transpose Jacobian matrix J T(g.) as AIKF. It maps Cartesian forces into
joint torques. The complexity of this method depends only on the efficiency of the
computation of the Jacobian. Several methods are compared in [45]. Unfortunately,

AIKFPFs perform poorly in trajectory control loops.
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Chapter 3

The Closed Loop System

3.1 Nonlinear Taskspace Control Schemes

In the following, three nonlinear closed loop control schemes will be presented: The
resolved position loop, the rate linearized loop and the position linearized loop. These
schemes linearize and decouple the Cartesian feedback loop. When they are imple-
mented, the remaining control design problem reduces to a lincar decoupled servo
problem. All three methods have in common that they operate with an embedded
joint loop of the kind introduced in Sec. 2.1.2.

The methods differ in that the resolved position loop compensates for the kine-
matic function globally, while the other two schemes compensate only locally. Con-
sequently, there are trajectories and disturbances which cause the local schemes to
perform poorly or even to be unstable. The resolved position loop, on the other hand,

can maintain stability and performance for all trajectories and disturbances.

3.1.1 Norms, Gains and Definitions

Definitions: Let L}[0, co) be the usual vector valued continuous time function space
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with nerm
la(@ly = [ =(0)7=(t)dt < oo

For any fixed t, z(t) € R™. As in [46], let (-); denote the truncation operator,

(1), = { (1) ift<r

1.c.

0 otherwise
The extended space L3,[0, 00) is the space consisting of all those functions whose
truncations lie in L3[0,00). Furthermore, let B be the class of those operators
J{-) on L3, having the property that the zero element, denoted 0, lies in the
domain of f(-) and f(0) = 0.

Let the oporator gains for f(-) € B be:
I (@)ell

gf()) =  sup
Ve e L. ()]l Lz
T#0
WU = sup Il(fi(llr::;)(yﬁ)rnlll,g
Yo,y € Ly, "L
z—y#0
o = w WM
Vz e Ly, T Ly
z#0

The operator gains defined above have the following three properties:

Property 1: If &(:) € B is linear then § = §. If, in addition, it is also stable and has

a proper Laplace transfer function H(s), then

F) = sup F(H(jw))
Yw
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g(h()) = inf g(H(jw))
Yw

where (-) and g(-) denote respectively the maximum and minimum singular

value of a matrix.

Property 2: If (-) € B is memoryless, then the gains can be defined over the simpler
space R" rather than L3,. Hence, (-); can be ignored and any references to L}

or L7, can be replaced by R™ in the definitions of 7, g and §.

Property 3: Let h(-), f(-) € B and let I(-) € B be the identity operator, then

gU(-) + R())
g(I(:) + ()
g(f o k("))
9(f o h(-))

IA

g(/(-) +3(A())
1-3g(h(-))
g(/(-))g(h(-))
g(f(-))g(h(-))

IN IV

v

In the following it will be assumed that A,, € B. This can be justified from (2.4)
because the joint loop sensitivity is zero or at least very small at w = 0. However,

this assumption could be removed at the price of a more tedious discussion.

3.1.2 The Resolved Position Loop

The resolved position loop is shown in Fig. 3.1. The box R; refers to a linear time
invariant regulator which has the transfer function Rj(s). The other parts of the
loop have already been introduced in Sec. 2.1. The limiter Lg has been omitted from
Fig. 3.1 for the sake of simplicity.

The point of the resolved position loop is that it uses all available kinematic
information to linearize and decouple the nonlinear taskspace loop. It causes therefore

the smallest possible uncertainty anu can for this reason be considered superior to
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Figure 3.1: The resolved position loop

other schemes. The resolved position loop was first reported in [25]. In the following,

the stability and the performance of this control scheme will be investigated.

Preconditions for Stability

Before 2 more formal discussion can be undertaken, some preconditions must be
stated. If these are violated, the resolved position loop will be rendered unstable.
The first of these conditions is that it must be ensured that in Fig. 3.1 ¢. € @;,
because it is possible to choose trajectories yy for which q. € &;. Assume that g, is
very close to a boundary point of ;. This can lead to two types of instabilities:

Type I: 1{ the boundary point of @; is also a boundary point of & and a disturbance
tries to move g, beyond the confines of Q, then the limiter Lg confines g. to Q. If for
instance, the set point of the loop ¢y happens to lie outside @ and the loop contains
an integrator, then the limiter action will lead to integrator windup. This is because
the integrator would continue to integrate an error which the limiter would prevent
from being reduced.

Type 2: If the boundary point of Q; is not a boundary point of €, but a boundary

point of @;, which is a r.eighboring inverse kinematic solution set, then a disturbance
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+ o~ B!

T

Figure 3.2: The small gain standard form

can cause ¢, to cross through the singularity, i.e leave Q; and enter @;. This is equiva-
lent to the manipulator changing its configuration. Even for a perfect approximation,
i.e T-! = T, the operator T-!T'(-) in Fig. 3.1 would map elements of Q; into ele-
ments of Q; if g. € @;. This would certainly cause some joints to move in the wrong
direction. In other words, it would cause the loop’s nonlinecarity to be indefinite and
thereby provoke instability.

The easiest remedy, against both types of instabilities, is to choose only those

trajectories y4(t) which ensure that g. € Q; and s € Q.

Robust Stability

When the loop transformation theorem [46] is applied to the loop in Fig. 3.1, then
the standard form shown in Fig. 3.2 is obtained, where &’ € B denotes the nominal

closed loop dynamics with the associated transfer function matrix:
H'(s) = Ho(s)Ra(s)(1 + Ho(s)Ra(s))™" (3.1)

Furthermore, N in Fig. 3.2 denotes a nonlinear dynamic operator which represents

the multiplicative uncertainty of the loop:

N(e) =T oTo(l+An)e) — T 1 oT(0)~ e (3.2)
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Note that N(-) € B. The inputs z; and z, in Fig. 3.2 are:

2y = T yg) =T o T(0)

Ty =

For simplicity, it was assumed above that g. = 0 is in the domain of 7= ¢ T(-). This
assumption could be removed by choosing slightly different N, z, and z;. Moreover,
let

T =T 4+ AT

and let
No(-) = AT o T(-) = AT-1 0 T(0)

Note that Ny € B. Now one can write (3.2) as:
N(e) = (I+ No)o(I+An)(ex) — ez (3.3)
According to the small gain theorem [46], the loop depicted Fig. 3.2 is BIBO stable
if
1. h'is stable.
2. FFN) <1

If, in addition, the second condition holds when 7 is replaced by & ,then the loop is
input-output stable, which is BIBO stable and continuous.

The first condition is easily met because R; is chosen such that the nominal
Cartesian loop k' is stable. An easy check as to whether the second condition is
met, is obtained by roughly decomposing §(Ny) into its linear, dynamic part and its
nonlinear part. Now it is possible to check the second condition via property 1 and

property 2 of gains. From (3.3):

N() = Noold + An)(-) + Am(:) (3.4)
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taking gains on both sides of the equation above and using (2.5) yields

g(N)

IA

?(NO)(] +§(Am)) +?]-(Am)

Suppose the linear time invariant unstructured uncertainty 2; has a Laplace trans-

form Ay (s) and suppose one knows a scalar function [,,{w) such that for all w
F(AL{jw)) £ ln(w)

Under the assumptions madein {2.5) suppose that for all w it is true that §{A,,) € F(Ai(jw)).

Thus similar to [48], if for all w

i | .
HH ) < N T+ @) ¥ 7)) F Tnl@) ¥ 7050 (+5)

we can conclude that the system is BIBO stable. Morcover, if G(Ny) and G(A,)
are replaced by §(M) and §(A,) and the inequality still holds, then the sysiem is
input-output stable.

The inequality (3.3) constitutes a hard limit for the nominal closed loop band-
width. The limit is enforced by the loop uncertainties. At low [frequencices, L, (w) = 0,
and therefore, 1/g(No) restricts the magnitude of peaks of the nominal closed loop
frequency response. This is the MIMO equivalent to the avoidance of a critical disk
in the Nyquist plot [47]. At higher frequencies {,,(w) is large and therefore ' s
primarily restricted by (F(No)lm(w) + {n(w))™?, which fixes the bandwidth and the
required roll-off at high frequencies. This conciudes the discussion on robust stability

of the resolved position loop.

Robust Performance

Let Iy(-) be the nominal open loop transfer opcrator with Laplace transfer function

Lo(s) = Ho(s)Ra(s), and let S71(-) denote the inverse of the true sensitivity function
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of the outer loop:
S) = 10) + (I + NoY o (I + Bm) 0 lol-) (3.6)

This can be manipulated as follows

a(s7)

g(S oI+ 1) o (1 +1))
g (57 o (I +1k)™) g (U +h))
g((f

2
= g((J+ No)o (I +An))g((h))
2 [1=3(No)ll1 - F(Am)lg (o)

The approximation step in the derivation above is valid for g(lp) »> 1. This is only
feasible of course if we compute g(lp) via property 1 and restrict the w over which the
sup is taken to the lower frequency range. As in [48], we want the minimum gain of
the true sensitivity of the system to be smaller than a scalar performance function
1/ps{w). We can conclude that the system is robustly performing in the presence of

the uncertainties, if

ol Lol ps(w) z
2ALl) 2 § NG = ) 7080 1)

The above inequality is of course only valid in the Jow frequency range, when [, {w) < 1

and g(Lo(jw) > 1.

It shows what gain the nominal open loop must at least have in order to meet the
performance requirements ps(w) in the presence of uncertainties. The nominal open
loop gain must be chosen to be larger than would be necessary without uncertainties.
For a fixed gain-bandwidth product, this means a reduction of bandwidth. This

concludes the discussion on robust performance.

Error Equivalence

When we say that the loop is robustly performing, then we refer to the reduction of

the joint space error ||eg]] = ||§s — gcl|- The purpose of the Cartesian loop, however, is
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Figure 3.3: The rate lincarized loop

to reduce the error lfe, || = [lya— ycl|. Let T=' : A'; — Q; be a function that is 1-1 and
onto. It is evident from the definition of a function that {zy = x.) = (ff'“‘(uf.i) =
T=1(z.)), or |leyl = 0 = |le,]l = 0. Further, it is evident from the definition of

bijective mappings that (zq = 2.) &= (T~(zq) = T~ "(z.)), or
llesll = 0 <= lleg]l = 0,

The previous result is not satisfying. There is a need to establish that convergence
in the joint space implies convergence in the Cartesian space. lence, if in addition
to being 1-1 and onto, -1 is continuous and X, Q; are compact, then by definition
of continuity: (|leyll = €} = (|les]] = 0). The converse is established via Theorem
4.17 in [53], which states that under the above conditions the inverse of T=1 is also

continuoits. We can therefore conclude that:

(lleyll — 0) <= (lleqll — 0)

3.1.3 The Rate Linearized Loop

An alternative scheme to the resolved position loop is the rate lincarized loop. It is
shown in Fig. 3.3. The use of the approximate inverse Jacobian in a taskspace loop

was first proposed by Whitney in [16] and is referred to as the resolved rate loop. Tl
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loop in Fig. 3.3 differs from [16] in featuring an embedded closed joint locp which
improves the overall dynamic performance.

The approximate inverse Jacobian J~! can, of course, be replaced by any of the
AIKVFs discussed in Sec. 2.2. The vector yip = T{qqo) is constant and Ayy is a small
desired deviation from yq. The rate linearized loop can be analyzed with essentially
the same tools which were used for the resolved position loop. The nenlinearity of

the rate linearized loop can be written as:

N{qdo,q) = j"(Qdo)[T(Qdo) ~To(I+AR)q)

when the above equation is linearized around ¢ = g4 and the Laplace transform is

taken one obtains

N} (8)Er(s) = T (qa0) T (qao) (T + Ant(gao, 8)) Er(s) (3.8)

were Ey(s) is the Laplace transform of the perturbation vector ey(t) = g4 — ¢(t) and
Anr(quo, 8) is the Laplace transfer function matrix of the derivative of A, (+) at quo.

A good approximation is Aas(qqo, 3) & AL(s). Let

j"l = J—l-{-AJ-l
No(gao) = AJ" (40} {(qao)

then from (3.8) one obtains for the loop uncertainty with good approximation

N (8)=(I+ No)(7 + AL) — 1

qd0

this is similar to (3.4).
Consider the standard small gain form of Fig. 3.2 with H' and N exchanged. Now,

H'is as in (3.1) and N = N and

I = qdo

T = Qdo+j"(quro)Ayd
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Figure 3.4: The position linearized loop.

One would like to find a controller R; such that (3.5) and (3.7) are salisfied for all
setpoints ggo in the workspace (with the possible exception of small neighborhoods
around singular values). Therefore, when computing gains of Ny the sup and inf must
be taken over all desired set points quo.

If the equilibrium point g4 is not constant, but is changing more slowly than the
largest time constant of the closed loop, then the above stability analysis would still
remain valid. On the other hand, no guarantees can be given for faster trajeclories.
However, it can be argued that faster trajectories would not be very practical in the
first place because the use of feedback has no benclficial effects for frequency ranges
were the sensitivity is larger than 1.

The preceding analysis requires that ¢. be in the domain of T". This can most
easily be accomplished by choosing f?; to include an integrator with appropriate

mitial conditions.

3.1.4 The Position Linearized Loop

The position linearized loop is essentially the integral form of the rate linearized loop

and can be analyzed in an analogous manner. Alternatively, the analysis can be
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conducted in the Cartesian space. Consider the nonlinearity which is a part of the

closed Cartesian loop shown in Fig. 3.4:
ye=To(/+An)ohgo T“(ﬁu' + ug) (3.9)

where 1 is such thal yg = T o T (u}), where y4 is a constant vecto:. In practice,
if 2, contains an integrator, then u are its initial conditions.
If one linearizes the nonlinearity about ug, takes the Laplace transform and ap-

proximates Aay one obtains
6Y:(s) = J(qa)({ + Ar(s))Ho(s)J 1 (gh)8U"(s)

where ¢} = T (1)) and qo = T=1(u}) and 6U7(s) and 8Y,(s) are the Laplace trans-
forms of du’(t) and 6y (1) = yc(l) — yao. Letting Ho(s) = h{(s)], where hj(s) is a

scalar flunction, one obtains the loop uncertainty
N(s) = (J(g0)d " (q0) = 1) + J(g0)AL(s)J " (40)

The linearized loop can be manipulated into the form given in Fig. 3.2. As before, H’
is the nominal closed loop dynamics and the loop uncertainty is N. The comments
made in Sec. 3.1.3 on slowly changing y40, and on taking gains, are also valid for the

position linearized loop. Thus taking gains yields
FIN (W) < 5(J (wo)d = (o) = T) + (I (40))F(J ~ (tt0) m (w)

As before, the robust stability condition is:

F(H'(jw)) < (3.10)

1
§(N(w))

which fixes the bandwidth of the linearized loop.
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Comparison between the three loops

Precision: The resolved position loop achieves the best use of kinematic information,
i.e the true §(N) is smaller than for the two other methods. lence, it can achieve
better trajectory tracking.

Allowed Trajectories: Both the rate lincarized and the position linearized loop
method are local methods and require small loop errors to work properly. This
restricts the allowed input trajectories to those that do produce small errors. The
resolved position loop, on the other hand, h~s no such trajectory restriction. It
guarantees global stability.

Need for a Trajectory Generator: Because they ioauire a small loop error, the
rate linearized and the position linearized loop method need a trajectory generator
which specifies a point of the desired trajectory for each sampling instant. Often one
is only interested in the end position, but not in the exact intermediate path. Since
the resolved position loop can handle large loop errors, it allows one Lo simply specily
the end position. The resolved position loop will automatically generate a smooth
trajectory leading to any given end position.

Complexity: For a PUMA robot employing the Featherstone method and without
considering the Kalman filter, the position linearized loop is the least complex method,
requiring only 17a+15m+19f for the inverse kinematics, it is followed by the rate lin-
earized loop with 282+48m+17( and the resolved position loop with 2(1Ta415m+19f),
which is the most complex. If the trigonometric functions of the rale lincarized loop
are not computed at every sample instance, then the resolved rate loop is the least
complex of the three methods.

One can conclude that the resolved position loop has considerable advantages over
the other two methods. The price for these benefits is an increased complexity. The

rate linearized loop, on the other hand, can offer the smallest numerical complexity.
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Figure 3.5: The double loop taskspace control system

3.2 Linear Compensator Design

3.2.1 Hierarchical Control

The design philosophy used in this thesis can best be illustrated with the help of
Fig. 3.5, which represents a form of the resolved position loop Fig. 3.1 with Fig. 2.2
inserted. As can be seen, the overall system features a double loop: An inner or
joint loop and an outer or kinematic loop. The inner loop feeds back the joint angle
measurements ¢, of the optical shaft encoders and is identical to the joint loop shown
in IMig. 2.2. The outer loop feeds back the Cartesian position measurements y, as was
shown in Fig. 3.1. However, to formally obtain a unit feedback system, the outer loop
in Fig. 3.5 is shown to feed back g, = T=(y.).

Consequently, U; and U, are defined as:

Uy = (I4+4A,)()
U: = (I1+AT'T))

For convenience’s sake, U; and Uz will be referred to as uncertainties, keeping
in mind that only A! () and Af"‘T(-) truly deserve that name. As mentioned
before, inaccurately known maxipulator mass properties, actuator constants, friction
etc. do not allow a complete compensation of the nonlinear dynamics and give rise

to the dynamic uncertainty U/,. Similarly, the kinematic function is not completely
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known and cannot entirely be compensated for by a known inverse kinematic function.
Hence, the kinematic uncertainty is included in Fig. 3.5 as U;. The reasons for the
existence of U include inaccurately known robot geometry, gravitational loading,
gear train transmission errors etc. Furthermore, as before, R; and R; refer to linear
aynamic compensators and P, denotes a linear prefilter, vielding a 2-degree of frecdom
kinematic loop regulator.

The acoustic transmission delay was neglected in Fig. 3.5. However, it could be
taken into account by regarding it to be part of U;. Alternatively, it could be regarded
as a part of the plant which is not contained in the inner loop. A control design for
the outer loop would then have to account for the delay explicitly.

The main point of using feedback control as opposed to feedforward control is the
ability of feedback to reduce uncertainty. The success of a feedback controller can
therefore be measured by the amount to which the original uncertainty is reduced.
It is for this reason that hierarchically organized control structures are potentially
better than single loop designs. Hierarchical structures break the overall uncertainty
into many smaller parts, each of which is reduced by a local control loop. Supervisory
controllers then coordinate the interaction of these local loops. This idea can he made
precise in a H,, setting. In a very rudimentary way, the idea of hierarchical control
design can be applied to the double loop in Fig. 3.5.

When faced with the task of finding suitable controllers R, and R, for the double
loop of Fig. 3.5, one has three ways to go about it:

1. Single loop design: One cuts the feedback branch of the inner loop and sets

Ry = 1, i.e one uses no feedback of g. at all. Then one designs Ry for the

resulting big loop.

2. Sequential loop design: One first designs R; for the inner loop ignoring the outer

loop. Then one designs R, for the outer loop with the inner loop replaced by
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the Fig. 2.3.
3. Stmullaneous loop design: Design R, and R, simultaneously.

The bulk of the literature uses the single loop design method. However, this is clearly
not the best method. The uncertainty for this case is Uy = U, o U, which is larger
than either U, or U; individually. Thus, a single loop control design has to reduce a
larger uncertainty than necr ssary for the other two methods and is inferior for this
reason.

On the other hand, in the sequential loop design method the outer loop has to cope
with a much smaller uncertainty than U,; because U; was reduced by the sensitivity

function of the inner loop as was shown in Fig. 2.3, yielding
Uy =Uso(I+ S530(Uy = 1))

The smaller uncertainty U,, makes the sequential design method potentially better
than the single loop method. If the design is formulated as a H,, probiem then
one can quantify the advantage which the second design has over the first design by
comparing the Hy norm of the optimal achievable sensitivity for both cases. In this
sense, the sequential H, design is guaranteed to be better than the single loop Hee
design.

Finally, the simultaneous loop design method is potentially the best of the three
options because it can take all cross coupling between the loops into account. Un-
fortunately, at present, there is no He, control design theory which would yield the
simultaneously optimal controllers R; and R,. It is for this reason that in the follow-
ing the next best method, the sequential loop design method, was used for the design

of the taskspace servo loop.
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3.2.2 Continuous Time Design
Taskspace and Joint Space Errors

The overall design goal of the double loop manipulator control system is to make it
track as closely as possible a desired taskspace trajectory. In other words, one wants

the taskspace error e, to be small, where

€y = Yd — Ye

The loop design for Fig. 3.5, however, will be carried out in the joint space. The

corresponding error in the joint space is
es =T (ya) - Gc
Hence, small taskspace and joint space errors are related by:
€5 = J ~le,

This equation can he used to map taskspace performance specifications into joint
space specifications. However, often one can formulate the performance requirements
as a desired percentage reduction of e,. In this case, the same requirements apply for
taskspace and joint space.

In staying corsistent with the sequential loop design philosophy, one can break

the overall design task down into three subtasks:
1. The design of the inner loop regulator R; to reduce U;.
2. The design of the outer loop regulator R, to reduce U,,.

3. The design of the prefilter P, to prescribe the tracking error hehavior of the

nominal Cartesian loop.

In the following, each of the above items will be addressed.
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1st Order Design

The reduction of the dynamic uncertainty U, is the prime objective of the joint loop.
The servo part R; of the computed torque method is designed to achieve this goal.

If the servo part is chosen to be a simple decoupled PD-controller
Ry(s) = (sK, + K,)I (3.11)

then the sensitivity of the nominal joint loop exhibits a type-2 uncertainty reduction
and the nominal closed joint loop transfer function matrix Hg is:

_ sK,+ K,
T 2+ sK,+ K,

The scalar parameters K, and K, are chosen to ensure stability of the system in

Ho(s) (3.12)

the presence of unstructured uncertainties, in particular flexible modes and neglected
time delays.

The second subtask is the reduction of the kinematic uncertainty U,; and is the
primary concern of this thesis. In principle, the design of the MIMO compensator
Ry(s) for the Cartesian loop can be done by reformulating the conditions (3.5) and
(3.7) as a H,, optimization problem {49], [50]. However, it is probably simpler to
reduce the design of the MIMO compensator Ra(s) to the design of a classical SISO
loop: If the regulator is chosen to have the form R:(s) = ra(s)i, wher;e ro(s) is a
scalar transfer function, then it is evident from the decoupled nature of Ho(s) and
from {3.1) that the nominal Cartesian closed loop transfer function H’(s) and the
nominal Cartesian open loop transfer function Lg(s) are decoupled, and have the
forms H'(s) = h'(s)] and Lo(s) = lp(s)] respectively, where h’(s) and lo(3) are scalar
transfer functions. Hence, neglecting A,,, the input-output stability and performance
conditions (3.5) and (3.7) simplify to:

High frequency conditions:

1
§(N0)(1 + lm(‘-’-’)) + lm(“")

' (jw)} < (3.13)
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Low frequency conditions:

. ps(w) _
Rl 2 T3 = T (3-14)

Therefore, the objective of the MIMO loop design simplifies to finding a scalar
transfer function ry(s) which satisfies the above conditious.

Thus, a simple type-1 controller can be synthesized as:

Ry(s) = -{gh;‘(s)l (3.15)

Since hg is second order, minimum phase and has just one pole excess, Rz(s) can be
easily realized. The sensitivity of the nominal Cartesian loop is therefore

S.K.'
s+ h;

So(s) = I (3.16)

The scalar K; is chosen such that the bandwidth of the Cartesian loop does not
exceed the bandwidth of the joint loop to avoid stability problems because of the

unstructured uncertainty of the inner loop. More precisely, the condition (3.13) must

be obeyed.

An additional design problem is to prescribe the desired tracking error behavior

of the nominal loop. The nominal tracking error e, can e defined as:

eyn(s) = [I — (1 — So(8))P(s)]yals)

If one chooses
s
Ps)y==—=T+1T
2(3) I\,’I +
then the nominal tracking error is zero. Naturally, in order to reap the benefits of
feedback, the bandwidth of y4(s) must be smaller than the bandwidth of the loop.

Further, it is of interest to examine the homogeneous solution of ey, The dynamics

of e;n can be written as:

éyn + ]\'leﬂn - 0
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Hence, any initial error will be damped out without overshoot. This is an important
consideration in robotics because it makes it easier to control the interaction of the

manipulator with its environment.

2nd Order Design

If the 20dB/dec error reduction of the type-1 system is not fast enough, and one
rather wants 40dB/dec, then one can design a type-2 controller analogously to the

type-1 controller:
K; _
Ra(s) = -s‘;(s + K )h3\(s)]
The sensitivity of the noininal Cartesian loop is therefore

g2

s + Kis+ IR, I

SQ(S) (3.17)

As before, the parameters A; and A, are chosen such that the bandwidth of the
Cartesian loop does not exceed the bandwidth of the joint loop. The nominal tracking

error can be made zero if one chooses the prefilter to be

$? 4+ Kis + KiK.
P(s) = et i (3.18)
The nominal tracking error dynamics are therefore:
€tn + Kiéyn + ;K. =0 (3.19)

Thus, to avoid overshoot but at the same time make the error response not too slow,

one should choose K; and K, to yield critically damped error dynamics.

A Design Example for the PUMA 600

The desired performance ps(w) of the Cartesian loop depends on the desired reduction
of the the Cartesian error. In {2] the approximate average size of the Cartesian error

was characterized to be 5-6 mm. To reduce this error to less than 0.1 mm, (the



TEWIITE T . Tafac v

CHAPTER 3. THE CLOSED LOOP SYSTEM 43

accuracy of interest), requires a loop gain of 30-40dB at low frequencies and likely
somewhat less at higher frequencies, in the case that the end effector is restricted to
a subregion of the workspace.

In addition to this performance requirement, the kinematic loop must be stable
and performing in the presence of uncertainty. It was found in simulations that
gd(Ng) < 0.06 is a reasonable guess for trajectories which avoid singularities by more
than the distance of the robot’s kinematic error. Other nominal trajectories are
not very useful anyways because there is not even a guarantee that thev iic in the
workspace of the robot. Hence, if we only consider the contribution of §(Ny) and
neglect A,,, then the system must be designed to be robust with respect to changes
of maximal 6% of the loopr gain or 0.5dB. This is so small that it does not have to be
considered explicitly in the design.

A realistic choice for the closed loop bandwidth of a PUMAG600 was suggested by
Daneshmend [43] to be about 2 Hz. Thus, if we fix the bandwidth for the type-1
kinematic loop at 2 Hz, then the kinematic eriur can be neglected for frequencics
below 0.2Hz-0.02Hz.

The overall trajectory error, however, may be larger than expected fruin the con-
silerations above. This is because the the joint loop contributes uncertainty.

A type-1 loop design requires the determination of the tree constanis K, i, and
K;. For a 2 Hz bandwidth, one can choose K, = 8x and K, = 16x? which places
both poles of the closed joint loop at 2 Hz. The Cartesian loop design constant A} is
simply chosen to be K; = 4x, placing the only pole at 2 Hz.

A type-2 loop design requires the determination of the four constants K, I\, It
and K.. For a ca. 2Hz bandwidth, one can choose I, and K as before, and simply
choose K; = K, and K, = K,/K;. Then, both the ianer and the outer loop have two

poles at 2Hz.
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3.2.3 Discrete Time Design

Robot control is often done by computers. This necessitates the design of a discrete
rather than a continuous time controller. Most of the continuous time design consid-
erations, which were mentioned in the previous section, remain valid and will not be
repeated here. However, there are some additional considerations. In particular, the
inner loop must include a sample and hold device and a computational delay. De-
pending on the sampling rate, these additions can lead to a substantially altered high
frequency behavior. For instance, there will be additional phase lag at the cross-over
frequency and a reduction of the high frequency roll-off. In general, this means a less
stable, less robust system.

The discrete time control problem is illustrated in Fig. 3.6, which essentially rep-
resents the discrete time equivalent of Fig. 3.5. The dashed box contains the discrete
regulator. Its linear part consists of three identical, decoupled sets of four SISO fil-
ters. Alternatively, it could be described Lo consist of three identical, decoupled linear
M150 systems, each having two inputs a~d one output. Since the controller is the
same for each of the three dimensions of space, only one of the three channels will be
discussed.

The noulinear part of the discrete regulator consists of two T~ transformations.
Further, it is assumed that there is a computational delay of one sampling period.
This is accounted for by the z7! block. The “plant” is shown outside of the dashed
box in Iig. 3.6. Notice the zero order hold circuit {ZOH) preceding the nominal plant
572, Morcover, the 277 block explicitly accounts for the acoustic delay.

Perhaps, the most common method of discrete loop design is to discretize the
regulator obtained by a previous continuous time design. The main disadvantage
of this method is that it requires high sampling rates. This is not desirable in this
case because ol the unnecessarily high computer load and the decreased receiver

performance due to high pulse rates {see Sec. 4.3.1).
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Figure 3.6: The double loop with a discrete time regulator

There are many alternative discrete regulator design methods. One way of ap-
proaching the problem is to design the controller explicitly as a discrete time con-
troller. For the joint loop, for instance, it was shown in [51] that this can lead to a
discrete time lag-lead design which shows good performance, stability and robustness.

Here, a standard transfer function synthesis method was used. The method is well
explained in [52].

Tirst, the z-transform of the computational delay in series with the ZOH and the

double integrator plant is obtained:

T!
H(z) = -5’-

=+l
2z —-1)2
where T, is the sampling period. Then a desired closed loop pulse transfer function

is specified. For instance:

U

F1+p +po)(z+1)
z(z2 4+ p1z + po)

Hn(z) =

where p; and p; are chosen s.t. the poles are critically damped for a natural frequency

of fn = 2Hz. It is good practise not to attempt to cancel unstable or lightly damped
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plant zeros with regulator poles. Hence, the marginally stable LHP plant zero at -1
is carried through from H(z) and becomes a zero of Hy(z), too.

The design method also requires the specification of a characteristic observer poly-
nominal A,(z). This allows one to influence the loop’s sensitivity function by speci-
fying some of its poles.

For a 50 Hz sampling rate, an observer polynominal which yields an acceptable

sensitivity function was found to be:
Ao(z) = z(z — e~%/*0);

The compensators R,y and R,; can now be found by solving a diophantine equation:

296.892% — 278.63z

2% — 0.4077z 4 0.0557
123.472% — 105.21z

22 —0.4077z + 0.0557

Rlb(Z)

Ryy(z) =

The design for the outer loop is analogous, provided that the delay z= and the
nonlinearity T"T(-) are neglected. The inner loop’s H,,(z) becomes both the outer
loop’s plant and the outer loop’s desired closed loop transfer function Hp,(z). To
ensure high gain at low frequencies and zero steady state error, the outer feedback
regulator must include at least one integrator. With this constraint on thé regulator,
the observer polynominal which yielded an acceptable outer loop sensitivity function

was found to be:

Ao(z) — 22(2 _ 8—20/50);
The resulting compensators Ray and Ry, are:

1000(0.8242z° — 1.28212% + 0.4986z)

123.4723 — 82.7632% — 20.352z — 20.352
123.47:% — 82.76322

123.4723 — §2.76322 — 20.352z — 20.352

Ry(z) =

Ray(=)
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It is evident from Fig. 3.5 that the nominal tracking error can be represented as:
e=yg—To0hy ol (yg)

where hn{-) represents the time domain dynamics of the linear filter H,,(s)1. Tt
is clear that there is nonlinear dynamic cross-coupling between the three Cartesian
space channels because &, is sandwiched between the two nonlinecarities. As a result,
the nominal tracking errors for the three direclions of space are not independent. It
would be better to have:
e = yd = hw(ya)

which has independent channels.

To achieve this form requires canceling all nominal inner dynamics and prefiltering

Ya- In other words, in Fig. 3.6, Ry is replaced by R, ;:

Ryp = RagHL'(2)

m
and gy is replaced by y):
y:i = Hp(2)ya

There is a potential problem of the system not being causal, particularly, il the
prefilter for y4 is omitted. However, even if the system is uncausal this usually
constitutes no serious problem because, in practice, yu will be known at least a few
sampling periods in advance; if not, the prefilter must ensurc causality.

A more serious problem is the fact that the H,,-zero at -1 cannot be canceled.
Instead, one can choose:

Ry = Rz EEL

which does not cancel the zero. The resulting inner dynamics arc ir-t—')—z- which resem-
ble unity quite closely, particularly at frequencies which are small compared to the
sampling rate.

The preceding design can be slightly modified to account for the aconstic delay.
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Chapter 4

The Hardware

4.1 Introduction to Part II

The second part of the thesis introduces the ultrasonic position measurement device
and analyzes its strong and weak points. In particular, a stochastic mode! is presented
which describes how the fluctuating medium corrupts the position measurements. The

factors which influence the TOF measurements include:
The electronic hardware of the ultrasound system:

o Non-ideal Transducers prevent the acoustical and the geometrical center of a
transducer from coinciding: When the sender and receiver transducers face cach
other at an angle, then the transdurers cannot longer be appropriately modeled

as mathematicai points.

e Electronic roise influences the measurement in the form of added signal process-

ing delays, and the no.se of the signal amplification and detection clect ronics.
The wave nature of sound:

e Reflections can lead to multipath arrival of the signal, making it difficult to

determine the exact time of flight.

54



CHAPTER 4. THE HARDWARE 95

e Reverberation is the multiple reflection of sound in a closed room. Thus, an

earlier sound burst can still corrupt the current TOF measurement.

s Ambient noise can corrupt the measurements when other ultrasound sources
besides the sender are present in the room and emit sound energy at frequencies

to which the receivers are sensitive.

o Refraction is caused by the presence of a temperature gradient in the room.
The ray path is bent and the measured TOF differs from the case without a

gradient.

e Doppler can corrupt the TOF measurements when the sender is moving or when

there is a strong wind.

o Diffraction and scattering have only negligible influence.

The fluctuating medium in which the sound propagates:

o Temperaiure drifts and temperature gradient drifts cause slow global changes in

the speed of sound and the speed gradient.

o Turbulences due to convection currents, wind gusts etc. lead to relatively fast

local changes of the sound-speed.

It was decided to model the TOF measurement fluctuations, irrespective of their
origin, as a stochastic process primarily because this form can readily be used by
a Kalman filter for estimating the sender position in the Cartesian feedback loop.
Hence, the measurement model is not intended to be a theory of sound propagation
in turbulent air, but is simply a means to improve the precision of the Cartesian
feedback loop. Given this intended use, the emphasis here is on a rough and simple

model which nevertheless captures the dominant statistical features.
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In the following, all stochastic processes are understood to be defined with respect
to an underlying well defined probability space (Q,F, P) {60], where, 2 denotes the
fundamental sample space, F is the underlying o-algebra and P is the probability
function.

It will be shown in Sec. 5.2.1 and Sec. 5.2.2 that the acoustic ray theory is valid

and that the sound ray path is well approximated by a straight line which connects
the sender with the receiver. Mathematically, the straight-line ray path connecting

the sender with a receiver can be parameterized as:
Li(t,a) = S(t)+&(t)a a € [0,di(t)] (4.1)

as before, d;(¢) is the distance and &1) is the unit direction from the sender at S(t)
to the receiver at M;. The time t in (4.1) denotes the instant when the sound departs
from the sender.

The properties of the medium along ihe ray path are often described by modeling
the refractive index of sound along the path as a random process. However, for our
purposes it is slightly more convenient to use the “inverse sound-speed” n instead of

the refractive index. It is defined as the inner product

n(@,1,Ti(t,a),&(1) = [ci, é;‘-]a TEQ (1.2)

where ¢;, ¢y, ¢. denote the speed of sound in x-, y- and z-diicction respectively. They

are random space-time functions themselves, Thus, the inverse sound-speed depends

on
1. @ because of the statistical nature of the inverse sound-speed.
2. 1 because the inverse sound-speed evolves with time.
3. Ti(t, a) because the inverse sound-speed is a function of space.

4, &(t) because of the effects of air movements and sound-speed gradients.
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Furthermore, it is convenient to distinguish between a “deterministic™ part “n

and a “random” part ®n of inverse sound-speed such that:
n(@,1,Ti(t, @), &) = Pn(t, Ti(t, a), &(2)) + Fn(@, ¢, Tit, @), &(1)) (4.3)

where Pn = E{n} is thought to represent the very slow, spacially highly correlated
fluctuations which can be regarded to be deterministic. The slowly changing average
room temperature and average room temperature gradient or a slowly changing av-
erage wind velocity are examples of mechanisms which give rise to Pn. On the other
hand, #n represents the faster and spacially less correlated zero-average fluctuations
i.e. E{®n} = 0; the fluctuations described by #n are produced by air turbulences,
convection etc..

Similar to inverse sound-speed, one can model the TOF measurements themselves

as a random process. For this purpose it is convenient to distinguish among four

parts of the TOF:
tof(@, 1) = MPtofi(t) + MPtofi(, t) + "Prof; () + "Rtofi(, t) (4.4)
where:

1. MD means ‘medium dependent deterministic’ and models the influénce of the
average inverse sound-speed, the average inverse sound-speed gradient and the

average wind velocity.

1o

MR means ‘medium dependent random’ and models the influence of atmospheric

turbulences.

3. 2 means ‘medium independent deterministic’ and models the influence of elec-
tronic delays, clock errors, effective transducer size and other medium indepen-

dent biases.
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4. 'R means ‘medium independent random’ and models the influence of the receiver

SNR etc.

The two random parts are defined to have zero mean. Each of the 4 parts above
will be discussed in detail. However, the by far most important of the 4 parts are
the two medium dependent parts M2 and M2, The dependence between the medium

dependent part of the TOF and the inverse sound-speed can be expressed as (in [37])

as a spacial random walk:

dy{t)
MRyof(@,t) = jo Ro(@, 1, Ti(t, @), &(t))da (4.5)

Mowont) = [ Pn(t, Tilt, ), E(0))da (4.6)

Note that the integrals above are taken over space only. This is a very good ap-
proximation since the largest possible TOF is much smaller than the smallest time
constant of the turbulences. The latter can, therefore, be considered ‘frozen’ during
sound emission.

In the following, the experimental results presented were conducted in two distinct
locations: A ‘small room’ and a ‘large room’. The small room had a floor size of
4mx4m and a height of 2.2m. It had a quiet and well controlled environment. The
floor size of the large room was ca. 11mx9m and its height was 3.5m. The large room
was a busy electronics and robotics lab, many people were moving about, there were

many fans and heat emitting equipment, the doors were being constantly opened and

closed.
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4.2 Range Finder Overview

4.2.1 A TOF Measurement Scheme
Background

The hardware has the task of generating a suitable ultrasound ranging signal and
then precisely measuring the time delay between the sending and the receiviag of
the signal. The main design problem is to accurately acknowledge the arrival of the
signal. The difficulties stem from the small bandwidth of the transducers used which
does not permit impulse-like signuls to be sent. Rather, only a relatively slow rise
of the signal magnitude can be achieved. The problem is further aggravated by the
large wavelength (A = 8.5mm) of the ultrasound used: The desired precision requires
a detection resolution of about a hundredth of a wavelength. Moreover, reflections
and reverberation may influence the signal phase and shape; one has to guard against
them.

Given these problems, the method nsed to determine the time of arrival become
crucial. In the following, the abbreviation TOA for ‘time of arrival’ is meant to
describe the time delay between the first reception of sound energy belonging to the
direct path signal and the time at which this signal is actually acknowledged by the
receiver electronics as having arrived. On the other hand, the abbreviation TOF for
‘time of flight’ is meant to refer to the time delay between the time when the first bit
of signal energy is sent and the time when the first bit of direct path signal energy is
received.

Many ultrasound rang'ng systems use a gated continuous wave (CW) signal and a
voltage trigger. When the amplitude of the received signal exceeds the trigger level,
then the signal is regarded as having arrived. The problem with this method is that

it is critically dependent on the magnitude of the signal. Thus, amplitude variations
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Figure 4.1: Hardware block diagram
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due to distance changes, transducer reorientation or due to turbulences in the air will
greatly influence the TOA. This may be perfectly acceptable for many applications,
but it appears to be not sufficient for high precision applications.

The other obvious method is to use a one tone continuous wave and measure the
marrival time” by measuring the phase shift between sent wave and received wave. The
resulting ambiguity in terms of multiples of the wavelength could be reduced by using
a two-tone scheme [7] where the beat frequency is used to help resolve the ambiguity.
CW methods have the potential of being extremely precise. Unfortunately, because
of unavoidable reflections, CW methods are useless in a real life environment. One
CW method was tried, using a frequency-shift keying modulated signal and a phase
locked loop receiver with voltage trigger at the loop output to determine the time of
arrival. However, experiments with this method showed that even this scheme is too
prone to reflections.

There are also more exotic methods, for example, spread spectrum. This scheme
is widely used for precise ranging. It has the potential to be insensitive to reflections,
reverberation and ambient noise. However, one disadvantage of this method is its
complexity and the associated costs. Another problem in our context is the small

available bandwidth of the chosen transducers.

The Prototype

The experimental ranging system that was used for this work is in some respect a
combination of a one tone CW method and a gated CW method. It has proved to
be superior to all other tested methods. A block diagram of the scheme is shown in
Fig. 4.1: A gated 40Khz CW signal is sent and simultaneously, a timer is started.
When the signal is picked up by a microphone it is first amplified. If the amplified
signal is smaller than a preset trigger level, then the signal is disregarded. On the

other hand, if it is larger than the trigger level, then the signal is regarded to have
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Figure 4.2: A typical received signal

“roughly” arrived and a strobe pulse triggers a monofiop which in turn enables a zero
crossing detector to send a stop pulse to the timer at precisely the time of the next
zero crossing of the signal. Thus, the first zero crossing after the trigger is regarded
as the exact instance of the arrival of the signal.

The Fig. 4.2 shows a pseudo oscilloscope view of the received signal. The wave
package ‘D’ represents the signal whose instance of arrival one desires to determine.
The label ‘b’ points to the true beginning of this wave package and the lakel ‘c’ points
to the first zero crossing after the trigger. This is the moment with respect to which
the time of arrival is measured. Hence, the delay between ‘b’ and ‘c’ is the TOA.
The wave package ‘E’ represents a reflected signal. The reflected package arrives
later than the main package ‘D’ because it has a longer path. Often, the refiecied
signal has a smaller amplitude than the main signal because its path is longer and
because not all of the signal energy is reflected. The directivity of the ultrasound
transducers, however, makes it possible that the amplitude of the r2flected signal can

vastly exceed the amplitude of the direct path signal. This can occur when sender
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and receiver face each other at a large angle and the reflected signal arrives at a
more favourable angle than the direct path signal. The wave package ‘A’ represents a
reflected signal associated with a previous main signal or, it represents the reflection
of a reflected signal whose main signal was received many sampling instances before.
These multi-reflection signals arise in closed rooms mainly due to the high reflectivity

of the walls.

The first task of the trigger is to distinguish between the desired wave package
‘D’ and the undesirable signals ‘A’ and ‘E’. In order to be able to do this, it is
necessary that those ‘A’ packages, which are received immediately before ‘D’, have a
substantially smaller amplitude than ‘D’ itself. ‘A’ packages which arrive much earlier
are of no concern in our case, because a priori knowledge of the time of arrival of the
signal can be used to define a reception window during hich the receiver is solely
sensitive: The trigger mechanism is enabled only shortly before the estimated arrival
of the signal and closed immediately after signal arrival was detected. As long as the
trigger level is larger than the largest amplitv {e of the ‘A’ package which appears in
the reception window, but smaller than the largest amplitude of the ‘D’ package, the
‘D' package will be successfully distinguished from the other signals. In particular,
the amplitude of the reflected wave is immaterial because once ‘D’ is detected, ‘E’ is

outside of the reception window.

4.2.2 Choosing a TOA

It is not shown in Fig. 4.2 that ‘D’, ‘E’ and ‘A’ can overlap. This reality introduces
undesired phase shifts and signal distortions into ‘D’, which in turn change the TOA.
Therefore, once the correct wave package is identified, the second task of the trigger is
to perform a tradeoff Letween the “SNR(TOA)” and the “reflection robustness” of the
receiver. The term “reflection robustness” refers to the smallest time delay between

a direct path and a (once) reflected path which has no influence on the TOA. The
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symbol “SNR{TOA)" stands for the ratio between the amplitude of the direct path
sighal and the amplitude of the multi-reflected signals as a function of the TOA.

The best possible reflection robustness is achieved when the time of arrival is
measured at ‘b’ instead of ‘c’. At ‘b7, no reflecticu path. however close to the direct
path can influence the measurement. Unfortunately, the point *b’ has the worst
SNR(TOA). Therefore, SNR(0)=0, since at ‘b’ the signal amplitude is zero. The
best SNR(TOA), on the other hand, occurs for a TOA where the amplitude of 1)’
has reached its maximum value. If, however, the trigger level is set so high that
the SNR(TOA) is maximized, then the reflection robustness is low. lor a typical
signal, the maximum amplitude is reached after ca. ten periods. Thus, any reflectior.
path which is less than 8.5cm longer than the direct path will probably render the
measurement useless. Another compelling reason for not clioosing a very high trigger
level is, of course, the danger that a small fluctuation of the signal amplitude may
cause the trigger to miss ‘D’ altogether. There are also other considerations for the
choice of trigger level and TOA. In particular, it is desirable that the pulse envelope
has reached a plateau when the zero crossing is measured. The reason for this is an
improved TOF bias reduction. This is discussed in Sec. 4.1.

In practice, some kind of compromise must be found. The sitnation can he im-
proved by increasing the available bandwidth of the transducers by electronic means.
This yields a faster rise time and the trigger can more casily detect the corrvect pe-
riod. Now one can delay the zero crossing detection until after the pulse reaches its
plateau. This yields maximum SNR{TOF) and hest T'OF bias reduction and at the

same time, because of the faster rise time, offers a reasonable reflection robustness.

Once one has decided on a nominal TOA, ene would like it to be maintained
independent of the signal amplitude. This is particularly important because the TOW
is computed by subtracting the TOA from the signal delay measurements. ‘Therefore,

when the signal amplitude changes due to locomotion or reorientation of ihe sender,



CHAPTER 4. THE HARDWARE 65

the amplifier gain must be adapted to leave the TOA invariant. Alternatively, the
trigger level could be changed. These types of adaptation can be achieved with
relative ease since position and orientation estimates are available from the Kalman
filter. This information could be used to send signals to simple D-A converters, which
in turn, would set the trigger level or the amplifier gain such that the desired TOA
is maintained. A simpler method is to estimate the correct trigger level from past
measurements of the signal strength at the receiver. This could be done locally in the
receiver with analog electronics.

The above introduced experimental ultrasound position measurement system is
completely controlled by a special interface card for an IBM-AT compatible computer.
The computer sets the card parameters once and then retrieves the data from the
card by means of a C interface program, which is listed in Appendix E. The board
is capable of handling four receivers and two senders. It features a single 10 Mhz
crystal clock that was used to derive the sampling period, the carrier period, the
signal lengths of the first and second sender, and the delay “etween the first and
second sender. It also acted as a clock for the TOF timer chips. The details can be

found in the Appendix D.

4.3 Range Finder Limits

4.3.1 Pulse Rate Limits

An important problem in designing digital control systems is the choice of the sam-
pling rate. The range finder imposes an upper limit on the sampling rate because its
maximum pulse rate is limited. A first limit is reached for a pulse rate of ca. 170 Hz.
This limit is imposed by the 5.8 msec flight time of the signal for the maximum range
(2 m). A higher pulse rate than 170 Hz causes the measured TOF to be ambiguous.

However, one has very good estimates (better than 1 cm) and can easily resolve many
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ambiguities. The theoretical limit for the pulse rate depends on the a priori knowl!-
edge one has of the range. If the range is known within an error of say +10 c¢m, then
even a pulse rate of 3.4 kHz would cause no ambiguities. However, such a high pulse
(sample) rate may not improve the performance of the feedback control system. The
5.8 msec delay imposed by the travel time of the sound for the maximum range eflec-
tively limits the bandwidth of the closed loop system to less than ca. 170 Hz. This
limit is inherent in the use of ultrasound for position feedback over 2-meter ranges.

There are other factors besides a priori knowledge which limit the pulse rate. One
factor is the bandwidth of the transducers which poses an upper limit on the pulse
rate because pulses must be well separated from each other to aveid signal corruption.
If the 5 kHz transducer bandwidth is not increased by electronic means, then the pulse
rate is effectively limited to less than, say, 500 Hz. However, the factor that most
restricts the pulse rate are reflections. For high pulse rates it becomes increasingly
difficult to separate the signal from the reflections in the room which have no time
to die down before the next pulse. Experiments seem to indicate that, say, a 300z
pulse rate is still bearable in a regular lab. Of course, the situation improves in larger
rooms and in rooms with more sound absorbing material.

When only position measurements are needed, then the maximum sampling rate
equals the maximum pulse rate. However, when both orientation and position mea-
surements are needed, then three senders instead of one are required. If the commu-
nication channel is time multiplexed, then the maximum sampling frequency is just
a third of the maximum pulse rate. The use of additional senders for the purpose of
continuous calibration does not reduce the maxirnum pose sampling rate in the same
linear manner because the calibration process requires only a sampling rate of about
4 Hz. Another solution is to use both time and frequency multiplexing. For instance,
there exist transducers produced by Muraia Inc., which have very similar dimensions

and radiation characteristics to the transducers used in this thesis, but they have two
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resonance frequencies instead of one. Hence, the maximum sampling frequency for

pose measurements would be about half the maximum pulse rate.

4.3.2 Electronic Nois~
Quantization Noise

Perhaps the most obvious electronic signal corruption is the quantization noise due
to the finite clock speed. A 25 um resolution at a 2 m range one would require ca.
13.5 MHz clock speed and a 17 bit counter. Our experimental ultrasound system used
just 10 Mhz 16 bit counter chips because of the lower prize and the ready availability
of these chips. Hence, the maximal resolution is 0.1 psec. If one subtracts half a
clock period from all TOF measurements, one obtains a symmetrical resolution of
+0.05 psec, which corresponds to ca. £+0.018 mm. If a higher resolution is desired,
this can be easily achieved by increasing the clock speed to 16 MHz or above and the

use the appropriate counters.

Receiver Background Noise

The sensor signal is quite weak (just a few mV). The receiver noise floor constitutes
a problem particularly when the distance betveen sender and receiver is large or the
sender and receiver axis are misaligned by a large angle. Thus, the amplifier stages of
the receiver must be well shielded and designed. Nevertheless, the influence of circuit
noise cannot be avoided completely. Fortunately, such disturbances can be modeled
as white noise and can be averaged out easily. It has also been observed, that the
microphone provides a small 40 kHz signal even if no sound source is present in the
room. Thus, the receiver background noise consists of the amplifier thermal noise and
the amplified microphone self-noise. Table 5.1 contains information on the relative

strength of the receiver background noise and on the TOF measurement errors it can
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cause. Table 5.1 is discussed in the section on reverberation noise.

4.3.3 Electronic Delays

The analog part of the sender, the ultrasound sender and microphone as well as the
receiver amplifier, all distort the received signal somewhat and add a small lags. 1n
particular, the zero crossing detector has a small hysteresis and its output pulse has
a finite rise time. Moreover, the first layer of logic gates of the digital parts of sender
and receivers add a small delay. Since all senders and receivers are nominally built the
same way and the receivers trigger at the same zero crossing thanks to an automatic
signal gain adjustment, it is reasonable to assume that the total eflect of theses delays
and lags is approximately the same for ail channels.

It is estimated that the total delay due to all sources is in the order of 0.1psec for
the quality of electronic components used in the prototype. The electronic delay may
change slightly over time with temperature, and with ageing of the parts, but given
the smallness of the delay and its conceivable changes, it probably can be considered
a constant for all practical purposes, especially when high quality electronic parts
are used. The electronic delay can be estimated at the time when the system is
calibrated. The estimated delay would then be added to the TOA and the sum
would be subtracted from the counter readings, yielding the TOF measurements. In
the following, the sum of the electronic delay and the TOA will be referred to as the
hardware delay (HD). In fact, at calibration one would rather estimate HD than its
two components because the two cannot easily be distinguished and have the same
effect on the measurements. Alternatively, HD could continuously be recalibrated by
a reference sender along with the speed of sound.

It has been observed, that the amplitude of the signal can fluctuate very violently
under the influence of wind gusts; so much, in fact, that sometimes the receiver

triggers at a later period of the signal than the one corresponding to the desired
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TOA. Even an automatic gain adjustment circuit is not always able to avoid this. In
these cases the “true” TOF can be approximately recovered from the counter readings
CR provided that one has an estimate TOF, of TOF which has an error better than
+T./2, where T. denotes the period of the 40 kHz carrier. A recovery is possible
because the TOA is known to be approximately an integer multiple of the carrier
period T.. Hence, given the nominal hardware delay HD, the estimate TOF, and the

counter reading CR one can compute the TOF as:

TOF = CR — HD — [(CR ~ TOF.) mod T.|T,

4.4 MNon-ideal Transducers

4.4.1 Theoretical Analysis

For the purpose of 3D ranging, an ideal ultrasound transducer would be a perfect point
source or point sink and have a perfectly spherical radiation characteristic. These
transducer properties are desirable because, in the first place, one wants to guarantee
that all the receivers receive the sender at all times, independent of the relative
orientation of sender and the receivers. Secondly, the triangulation formula assumes
the sender and the receivers to be mathematical points without spacial extensions.
In other words, the geometrical center and the acoustical center of the transducer are
assumed to coincide.

Another desired characteristic of an ideal transducer would be that it operates at
2 small wavelength because this would improve ranging accuracy. However, the heavy
damping of high frequency ultrasound transmission seriously limits the frequencies
one can use and still operate at the desired range of two meters. Moreover, to get near
spherical radiation characteristics, the transducer diameter must be in the order of

the wavelength. A small diameter, however, makes it difficult to transmit a sufficient
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Figure 4.3: Transducer misalignment

amount of power for reliable communication. Thus, 3D high frequency ultrasound
ranging is difficult to achieve.

Unfortunately, the ideal transducer does not exist. The acoustic center and the
geometrical center of real transducers does not always coincide. The best compromise
we were able to find was a 40 kHz ceramic ultrasound transducer with a wide opening
angle and sub-wavelength size. Even at 2 m distance and a more than 90° angle
between the sender and the receiver axis, the signal magnitude was sufficient for
reliable signal detection. At smaller distances up to 180° were achieved. The radiation
characteristics of the transducer which was used for this study is shown in Appendix C.
The device used approaches the ideal transducer in so far as its membrane is slightly
smaller than the wavelength. The wavelength is about 8.5 mm and the membranc
has a diameter of abcut 7 mm.

Suppose the transmitter transducer has the form of a disk with radius r. Assume

further that the transmitter membrane moves uniformly. One can .hen make a simple
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plausibility argument in order to understand the effects which a non-ideal sound
source has on the measured TOF: Consider only three pressure waves pg, p1 and p;
generated by the uniform movement of the three points sp, s; and sz, which are on
the membrane of the sender transducer. As shown in Fig. 4.3, s¢ is at the center of
the transducer and s; and s; are symmetrical with respect to the transducer axis and
lie on the very rim of the transducer. We are interested in the phase relationship at
a point P in the far field of the transducer between the p, wave and the composite
wave of pg, p; and pa.

Taking damping and geometrical dispersion into account the pressure at a distance
d from a point source can be described by:

p(d,t) = Aﬂ)(—djd—)f(t —d/¢)sin(w(t — d/c))

where A is a constant, v & 0.0219 neper/m is the damping constant for 40 kHz ul-
trasound in air and f(t) represents the (positive) envelope of the pulses sent. The
composite pressure p. at P caused by the movement of sg, s, and s, can be computed

by adding po, p1 and p2. For small r/d one can use A = rsin(y) to compute p,:

pc(da t 9’) = p(ds t) + p(d - Aat) + P(d + A, t)
= A:(t)sin{w(t — dfc+ B.(t)))

The time interval B.(t) is the bias which corrupts the TOF because the detuction
relevant zero crossing is shifted in time by — B, with respect to the nominal TOF d/c.

The bias B.(t) can be readiiy computed: After some algebraic manipulations and
simplifications using £ — 1 one obtains:

[f+e+ —foeo + S{fres + f-e-)] sin(k.3)
14 [fres + f-e_]cos(kA)

1
B.(t) = ;arctan (

where k = 2z /X is the wave number, e, = exo(yA), e = exp(—7A) and

P =f(t—d/c—A/c) f= f(t=dfc+ Afc)
¥ fit=dfe) T flt-dfo)
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The formula above indicates that B, increases with A. Therefore, for large ¢ the
TOF bias is large. Further, B, will decrease with increasing range d. Moreover, the
pulse shape and the TOA influence B.. If damping is ignored, and the zero crossing
detection occurs during the rising edge of the pulse, then the term (f, — f_) in the
formula above is a positive number contributing to the TOF bias. Thus, keeping the
influence of the pulse shape small requires a choice of TOA such that the derivative
of the pulse shape is small at the time the zero crossing is measured. Note that zero
crossing detection during the raising edge or the plateau of the pulse implies that B,
is non-negative and thus the measured TOF will always be smaller or equal to the
nominal TOF which is d/ec.

The preceding analysis of the bias B, does only consider the spacial extension
of the sender. The receiver, however, is not a math~matical point either but has
the same dimensions as the sender. To take this into account, suppose there are
3 points mp, m; and m; on the receiver membrane, positioned in the same manner
as sg, $; and sp. Further assume that mg and P in Fig. 4.3 coircide and that the
receiver transducer is oriented such that the transducer axis coincides with the vector
pointing from mg to sg. Furthc-more, assume that the receiver transducer acts as a
perfect spacial pressure integrator. Now, if the range d is very large compared Lo the
transducer radius r, then all three points on the receiver membrane will experience
approximately the same pressure and therefore B. will be the same as if Lthe receiver
was a mathematical point at P.

On the other hand, suppose the receiver axis is tilted by an angle ¢’ away from
the mg-sg-line, then one can use the reciprocity of this situation to the one previously
discussed for the send=r transducer. One can argue that the point sy ca the sender
membrane plays the role of P, the angle ¢’ that of ©» and mg, m, and m; play the role
of their sender counterparts. From this setup one can compute another TOF bias B].

Hence, the overall TOF delay could then approximately be compuied as the sum of
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Figure 4.4: Numerically determined S-R misalignment shift for 7 mm sender.

{~ B. and B;.

4.4.2 Numerical Analysis

The situation depicted in Fig. 4.3 can also be analyzed numerically. A quantitive
analysis of the TOF bias perceived at point P requires 2 computation of the value
of the pressure field at P by numerically integrating the contribution of every sender
surface point. The exact form of the double integral to be solved can be found in
most text book on acoustics, for instance [34, page 549]. The calcvlation made in
this thesis, however, also includes damping effects, which are neglected in [34]. For
steady state CW conditions Fig. 4.4 shows the misalignment shift G as a function of
the angle ¢, where
Pe(d,1,0) = Asin(w(t — dfc + G/¢))

and A is a constant.

Contrary to the approxima.ion discussed before, there is a negative bias (delay) for

{ ‘ @ = 0. When y increases, so does the bias. Finally, the misalignment shift becomes
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positive. As can be seen in Fig. 4.4, the misalignment shift G can be neglected. Even
when d is as small as 20 ¢cm the shift G varies ouiy by 0.03Tmm when v sweeps from
U° to 90°. As expected, iue shift is even smaller when d is larger. For comparison,
Fig. 4.4 shows also the case when d=2m. The results in Fig. 4 4 were obtained for
a 40Khz ultrasound transducer with Tmm diameter, the type used throughout this
thesis. The shift G is very sensitive to the transducer diameter. For a transducer
with 10 mm diameter and d=20cm, one obtains a change of 0.2 mm instead of just
0.037 mm when p sweeps from 0° to 90°. Thus, if 1 mm transducers were used, one
must compensate for the misalignment shift.

A complete quantitive analysis of the TOF bias requires a computation of the
pressure field at each point on the receiver surface by integrating the contributions of
every sender surface point. Next, one would have to integrate the pressure ficld over
the entire surface of the receiver. Unfortunately, integrals of this kind do not have
closed form solutions and are computationally very demanding. However, there can
be little doubt that the sender and receiver separation principle outlined in Sec. 4.4.1
in combination with Fig. 4.4 allows at least a rough estimate of the misalignment
shift. For real time misalignment shifi compensation some good approximate closed
form solution may certainly be found.

Even this approach has some problems. Firstly, the transducer meml;rallcs may
not move uniformly, or may not act as perfect spacial integrators. This is true in
particular for transducers with large diameters. The incorporation of these eflects
into the compensation formula is vcry tedious. Secondly, it is difficult to calibrate
the orientation of sender and receiver transducers. Nevertheless, there can be little
doubt that a comp.ted compensation will greatly reduce the bias.

A possible alternative method for the numerical compensation of the misalignment
bias could be to use acoustical lenses or waveguides [55], [56] to focus the sound and

thereby reduce the effective transducer size. Moreover, some additional measures can
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Figure 4.5: Center shift function for 10 mm transducer

be taken to reduce the bias. For instzrce, one could have many redundant receivers
and choose those for the measurements which have the best alignment angle at the
sampling instant. Also, when the transmitter is moving, especially when it involves a
reorientation of the transmitter, some of the bias can be averaged out. This effect is
enhanced if three or more senders are mounted on the manipulator hand with different
orientations.

Given the complexity of the problem, it is useful to employ experimental methods
to determine the misalignment shift. Experimental data about the misalignment shift
can be found in [13] for 40 kHz transducers with 10 mm diameter and a 24 inc (61 c¢m)
distance between the center points of the sender and the receiver transducer. The
rcsults were obtained by measuring the phase shift under steady state CW conditions.
The receiver was oriented such that its axis formed an angle ¢ with the sender’s axis.
Now, the two axis do not align anymore, the sender staying put. The results are
reproduced in Fig. 4.5 which shows the experimentally obtained misalignment shift

(error) as a function of the relaiive angle » between sender and receiver. According
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to the authors of [13], the data in Fig. 4.5 have a maximal measurement error of
0.097 mm, which may explain the large data variance in Fig. 4.5. Nevertheless,
the misalignment shift in Fig. 4.5 is very much larger than the earlier mentioned
numerically obtained result of 0.2 mm. Even at ¢ = 50° and 24inc distance the shift
reported in Fig. 4.5 is ca. 0.5 mm. The authors of {13] claim that this result is in
accordance with the theory. The theory they refer to, however, is never explicitly
stated in [13]. To resolve this dispute would likely require some further experimental

verification, which, however, was not done at the present time.



Chapter 5

Deterministic Measurement

Corruption

In this chapter, the the medium dependent deterministic disturbances mentioned
in Sec. 4.1 are analyzed. Thus, atmuspheric conditions like itemperature drifts and
temperature gradients, and wave-medium interactions like diffraction, refraction, re-

flection and doppler are discussed.

5.1 Atmospheric Biases and Drifts

5.1.1 Room Temperature Drift

Even a small change of the room temperature can seriously <egrade the measurement
precision: An unaccounted tiny change of just 0.2 C° could cause an error in the
order of 1mm on a 2 m measurement distance. This is unacceptable and therefore
temperature drifts must be compensated for.

The graph ‘A’ in Fig. 5.1 shows typical TOF changes for a fixed sender-receiver

distance in the small room. The range was 1.4 m and the sampling frequency was

-1
-3
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Figure 5.1: TOF fluctuations for 1.4m range while heating the small room.

4 Hz. The graph ‘B’ in Fig. 5.1 was ob:ained by fillering the measurements with
a zero-lag non-causal 2 min moving average filler. Clearly, it is useful to separate
the effects of the slow average temperature drift fromn the effects of the much faster
turbulences. Thus, both will be modeled separately as outlined in Sec. 4.1: Once as
‘deterministic’ and the other as ‘random’.

Without turbulent air movement, the change of room temperature would be very
slow. Suppose L=5m is the characteristic length of the room and y=0.2cm?/sec is
the thermal diffusivity of the room. If only molecular diffusion is considered, then,
according to [29], the scale of the characteristic heating time is L?/4=100h. This is
very slow, indeed. If, however, there are convection currents and the largest eddy
has an average velocity of say u=5cm/sec and a characteristic size equal to the room
(L=>5m), then, according to [29], the scale of the heating time constant is L/u=100sec.
This is indeed closer to the order of magnitude that was experimentally observed for
heating and cooling of a room.

It follows from this that the magnitude and time constant of the room temperature
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changes are closely correlated to the magnitude and time constants of the convection
currents. Indeed, in the small roum it was observed that a steep change of the
room temperature was always accompanied by turbulences with large magnitude.
Conversely, it is possible to speed up heating by increasing the turbulences in the
room. For example, operating a heater with a strong fan can warm a room very
rapidly (and very turbulently). Large rooms, on the other hand, generally exhibit
larger heating time constants than small rooms. They are much less subject to fast
changes in temperature. For example, in the large room, no appreciable average
temperature drift was detected over any 500 sec interval. This should be compared
with Fig. 5.1 for the small room. In general, the measurement system should be

located as far away from heat sources or heat sinks as possible.

5.1.2 Temperature Gradients
Overview

Unfortunately, the temperature is not evenly distributed throughout the entire room.
There is a slowly changing or, virtually constaut temperature gradient. It is mainly
caused by the natural convection of the air in the room. Usually, the air near the
ceiling tends to be warmer than the air near the floor. Even though these temperature
differences are quite small, usually less then 1°C, they do seriously affect the TOF
measurements: If one does not compensate for the gradient, then in the worst case a
constant gradient of say 0.5°C/m over a measurement distance of 2 m would cause an
error of about 2 mm. This is about an order of magnitude larger than the precision
of interest.

Hence, one has to compensate for the temperature gradient. Unfortunately, there
is no easy way short of simulation to predict the exact temperature and velocity

distribution for a completely general architectural enclosure. Most rooms, however,
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Figure 5.2: Boundary conditions for model 1.

have a rectangular shape, mostly shallow, and possess walls that may have different
temperatures or may allow different heat flux. For these idealized situations there
exist some simple solutions for the core region of such rooms. The solutions for regions

close to the walls are generally more complicated, and are of no central interest to

the purpose of this study.

First Convection Model

The first convection model assumes that two opposite vertical walls of a shallow
room are kept uniformly at different constant temperatures T.a and Tyarm, Where
AT = Tyarm — Teota > 0. Further, it is assumed that the remaining walls do not zilow
any heat flux or material diffusion through their surfaces. The situation is dep:-te< ir.
Fig. 5.2. Following reference [30], which should be consulted for details, one can define
the following dimensionless quantities: T¢c = (T — Teotd)/AT, 2. = z/L, y. = y/H
and u, and v, are the properly normalized horizontal and vertical air velocities. In
terms of these quantities, the core solution for the temperature is given as a fifth

order polynomninal in y. and is linear in z. and the horizontal velocity is given as a
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where the Rayleigh number is
Ray = g, AT H?

and the k;, k2 and ¢; are known constants.

The vertical distribution of the temperature and the velocity as described in the
above formulas are reproduced from [30] in Fig. 5.3 and the horizontal temj:c:ature
distribution is reproduced in Fig. 5.4. As can be seen, the temperature distribution
is symmetrical with respect to the point (z,y) = (L/2, H/2) and the velocity distri-
bution is a counter flow and symmetricall with respect to a plane through y = H/2

which is parallel to the floor. It is clear from Fig. 5.4, that for very shallow rooms the
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Figure 3.4: Horizontal temperature for model 1.

gradient will be small in the vertical direction and large in the horizontal direction.
As the factor (H/L)?Ray increases and the room becomes less shallow, the vertical

temperature gradient becomes predominant.

Second Convection Model

The second model does not assume that the vertical walls at z = Cand 2 = L
are isotherms; rather, it is assumed that the heat flux through the vertical walls is
uniform. The temperature distribution of the wall will then be a result of a heat flux
from the outside, rather than be a given and the wall temperature will increases with
altitude. This assumption is believed to model the actual situation in many buildings
more closely than the first model does. The problem is illustrated in Fig. 5.5, which
is reproduced from [30]. In this problem the vertical temperature gradient in the core

region is a constant and the horizontal gradient is zero; the herizontal and the vertical
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- velocity re also zero:

where the Rayleigh number is

Ra.y = _(,7c;_,,¢;:H4
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and q is the heat flux and ¢; and ¢;3 are known constants. The Fig. 5.5 dehicts the

numerically simulated iscterm contours for the above model.

There are, of course, many other theoretical models dealing with different room

shapes and different thermal boundary conditions. Most of these results, however, are

ounly in the form of numerical simulations. In particular, much work has been done

for the case in which the floor is warm and the ceiling is cold instead of the vertical

walls, =-e for example [31]. This situation may arise when a room is uniformly heated
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through the floor. In this case, oiher than for rooms that ire heated from the side,
there has to be a minimal AT before convection starts and then it evolves in the form

of Bérnzrd cells. For large AT very complicated stable patterns can arise.

Experimental Temperature Profile

In order to test the two convection models, and to get a practical picture of typical
temperature distributions in a real room, it was decided to make som.e measurements
which are hoped to be in some way representative.

To do this, it was necessary to meésure temperature differences with a resolution
better than a tenth of a degree Celsius. Since such a thermometer was not readily
available, it was decided to use the TOF measurement of the ultrasound system itself
as a temperature measurement device. This has the additional advantage that one
measures directly the variable which is relevant for the position estimation and treats
temperature as a quantity which is derived from the TOF measurements via the
equations (1.1) and (1.4).

The measurements were done with two sender-receiver (S-R) pairs. As precisely
as possible with a ruler, each receiver was placed 30 ¢cm away from its sender. The
two S-R pairs were placed at the same height, parallel to and flush with each other at
a sender-sender distance of ca. 10 cm, which for mechanical reasons was the smallest
possible. Then the TOF, for each pair, was measured with a sampling rate of 4 Hz,
and the difference was averaged over 4 minutes. Then the approximate 30 cm distance
of one of the two S5-R pairs was adjusted until the absolute value of the averaged TOF
difference was reduced to a very small value ¢, which then was subtracted from all
future TOF difference measurements. The two S-R pairs were fixed onto two boards.
If one pair is now moved away from the other, then any change in the averaged TOF
difference must be caused by spacial sound speed differences.

The two S-R pair method has the advantage to make the measurements robust
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Figure 5.6: Experimental vertical temperature profile of small room.

with respect to temperature drifts during the long measurement process. For example,
when the average room temperature increases slightly between measurements, say by
1°C, then the averaged TOF difference decreases only by ca. ¢/290. Without the
reference pair, it would be difficult to distinguish between a temperature drifl and a
temperature gradient.

The Fig. 5.6 shows the vertical temperature profile in the middle of the sinall room
as measured with the method explained above. The maximum vertical temperature
difference was 1.1°C, which is large enough to cause position measurement errors in
the millimeter range if not compensated for. The temperature gradient is essentially
a constant 1°C'/m in the midsection of the room height, but sharply changes its value
and even its sign in the regions close to the ceiling and close to the floor. Such a
behavior can be reconciled with the theoretical convection models: The assumpiion
made in the theoretical models, that the ceiling and the floor do not permit heat
transfer, appears not to be a very good approximation of the situation in this par-

ticular room; rather, the room seem to loose some heat through the ceiling and gain
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Figure 5.7: Dynamical behavior of temperature gradient.

some heat through the floor. This could account for the sharp gradient change in the
end regions.

Measurements were also done in order to determine possible gradients in the two
horizontal directions. However, in the core region of the room, no conclusive results
were obtained: All “gradients” were in the order of the measurement error. The
absence of a significant horizontal gradient leads one to the conclusion that the second
convection model is indeed a better description for regular rooms. Of course, this does

not mean that the horizontal gradients can be neglected in all rooms.

Experimental Temperature Gradient Drift

The Fig. 5.7 shows the dynamic behaviour of the temperature gradient. The graphs
were obtained by filtering the TOF differences with a 100 sec moving average filter.
The dotted graph depicts the time behavior of the averaged TOF differences when the
two pairs are at the same height. As expected, there are t‘é.nly very small deviations

from the zero line.
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The dashed graph in Fig.. 5.7 shows the time behavior of the averaged TOF dif-
ferences when one of the pairs was moved to a position that was 45cm higher than
the position of the reference pair, which was located 65cm above the floor. It can be
seen that the averaged TOF differences do not change much with time. The avcrage
TOF difference stays at about 1.4usec for this height difference. The corresponding
temperature difference is ca. 0.8°C.

On the otflér hand, one would expect the TOF difference 1o increase when ei-
ther ihe temperature difference AT or the heat flux ¢ increases, depending on what
theoretical model one chooses. This can indeed be observed. The solid graph in
Fig. 5.7 shows the time behavior of the averaged TOF differences for the same setup
as before, but now the window of the room is slightly open, thereby increasing both,
the heat flux ¢ and AT. The open window decreases the average temperature, but
increased the temperature gradient. As can be seen, the TOF difference increases
steeply, and then levels off at a value of ca. 2.5usec, corresponding to a 80% increase
of the gradient.

It should be remarked, that in practice, a change of the temperature gradient
would hardly be achieved without a change in temperature. Considering the theo-
retical models, one would reasonably expect that the time constants for temperature
changes are similar to the time constants for temperature gradient, changes.

The above experiments were not repeated for the large room. It can be expected,
however, that the temperature gradient will be less pronounced in the large room. If
the second theoretical model holds, then one would expect the vertical gradient to be
inversely proportional to the room height. Thus, a reasonable estimate of the vertical

gradient for the large room would be about 0.5°C /m.
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5.1.3 Wind Biases

Air movement is a serious problem for the ultrasound system. In the worst case, when
wind direction and measurement direction are aligned, an uncompensated 20 cm/sec
wind would cause an error in the order of about 1 mm for a 2 m measurement distance.
Moreover, wind was observed to be always accompanied by a high level of spacially
weakly correlated turbulences. As will be shown later, even if the average wind is
compensated for, a high level of spacially weakly correlated turbulences may severely
limit the precision of the 3D ultrasound range finder. In other words, an environment
were one must compensate for an average wind is not a good place for the operation
of a high precision ultrasound range finder.

Fortunately, the effects of constant winds on the measurements is usually not of as
much concern as is temperature. One reason is that, other than temperature biases,
wind can often be avoided by moving or shielding the measurement system from the
wind source, or by removing the wind source itself. Moreover, furniture and other

obstacles in the room may act as natural wind barriers.

5.2 Wave-Medium Interaction

5.2.1 Diffraction

The equations which describe the propagation of sound [28] can be considerably
simplified if they can be replaced by ray theory. It is well known [58], that this
approximiation is valid if the size of the first Fresnel zone VAL < a, where A=8.5mm is
the wavelength, L=2m is the maximal range of interest and a is the spacial correlation
distance, which is shown in Sec. 6 to be in the order of 25-90cm. Thus, ray theory is a
valid approximation for this case and diffraction can usually be neglected. A special

case may arise when small objects are blocking the line of sight between sender and
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receiver and the sound signal diffracts around them.

5.2.2 Refraction

It is well known that a sound-speed gradient will cause the sound rays to follow a
curved path in space instead of a straight line. This is referred to as refraction. In
the following, it will be shown that refraction can be neglected for the type of sound
gradients encountered in normal rooms. In this context, two explicit forms of {1.6)

are presented: The velocity form and the inverse velocity form.

The Velocity Form

Given the equations (1.1) and (1.4) and in the results of Sec. 5.1.2 one can well

approximate the speed of sound at a point ¢ as:

() =cr +evl((~S):

where ¢, is the speed of sound at a reference position S,, and ¢y is the scalar vertical
velocity gradient. Further, it was found in Sec. 5.1.2 that often the temperature
gradient ¥y < 1°C/m, which corresponds to cy < 0.6sec™’.

Hence, the ray path will be curved because of the non-vanishing sound-speed
gradient. For ranging purposes one is not so much interested in the shape of the
ray path, but rather one wants to know the time the sound needs to travel from the
sender at S to the receiver at M;. In the absence of any other factors, the travel time

can be computed from (4.6) as:

' d; ds .
tof! = /0 paprear L A (5.5)

where d! denotes the length of the parameterized curved ray path I'/{s). If one

made the approximation I} = TI';, where I'; is a straight line as defined as in (4.1),
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then one obtained:

d; ds
tof; = —_— .
of -/o ¢ + ev(&):s (56)

where ¢, = ¢; + ¢v(S — 5;). denotes the speed of sound at the sender S. For ¢y # 0

the above integral has the solution:

In(|1 + £2().di
_ In(|1 + S (&).d:) )
Y

1t is evident from ray theory that if VI'(0) is vertical i.e. has tl« same direction

tOf"

as the sound-speed gradient, then (5.7) is exact and the ray path T! = I'(7) is a
straight line of length d} = d; connecting S and M;. The more VI'(0);(0) differs from
a vertical, the more the ray path differs from a straight line and the less valid is the
straight line approximation (5.7). Therefore, if (5.7) is a good approximation even for
nearly horizontal cases, then it must a good approximation for other angles as well.
(If cw{€;): = 0, then (5.7) must be replaced by tof; = d;/c, ).

It is well known [28], that {or a constant vertical velocity gradient and a horizontal
initial angle the ray path is a circle segment with radius B = e¢sfcy. Since ti.e
circle segment connects S and M; which are d; apart, the angle which spans the
circle segment is ¢; = 2a.rcsin(5‘%). Moreover, Vcle; = —R(1 — cos(¢;))/d;. Now, for

cv # 0 we obtain from (5.5):

ol = L [ e _ Inlltan(a/4 + 6/2))
cv Jo  cos(p) P

In order to compare (5.7) and (5.8) the following worst case scenario was as-

(5.8)

sumed: c¢ = lsec™

, ¢s = 331.6m/sec and d; = 2m. Under these conditions,
di—d; = 0.0G':J mm and the approximation error is tof; — tof;=9.1e-9 sec. Clearly,
the approximation error can be neglected because it is by about a factor 30 smaller
then the desired precision. Thus, the bending of the rays due to refraction can be

neglected and (5.5) can always be replaced by (5.7).



CHAPTER 5. DETERMINISTIC MEASUREMENT CORRUPTION 91

T ﬂ’fg

$ M,
S

dl
45,

Figure 5.8: Bad case scenario for approximation.

The Inverse Velocity Form

Unfortunately, (5.7) is quite complex and may not be ideal for real time applications.
Moreover there is a problem with a potential division by zero. Thus, the inverse-speed

or index of refraction form of (4.6) appears to be more advantageous:
tof; = n,ds + nv(§ — .)ad; + Sno(&).d! (5.9)

where n, and ny are chosen such that (5.9) is exact for two vertically distinct sender
or microphcne positions. An advantage of (5.9) over (5.7) is that the former is linear
with respect to the parameters n, and nv while the latter is non-linear with respect
to ¢, and cy. Linearity is important because these quantities must be estimated
by a Kalman filter. The linear measurement equation makes it possible to use a
computationally advantageous constant gain filter.,

Clearly, (5.9) is easier to compute in real time than (5.7), it does not have the
problem of a potential division by zero like (5.7) and it permits the atmospheric
variables ng and ny to be estimated by a constant gain linear filter. Given the
desirability of (5.9) the question arises as 1o how good an approximation it is for

(5.7), which now is considered to describe the underlying physical reality correctly.
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Clearly, the size of the factor ng(S — S,). in (5.9) is a measure for the approx-

imation error. Therefore, one would expect the error to be large for large ny and

‘large vertical distances between the sender position S and the reference position 5.

To get an idea of the size of this error a ‘bad case’ situation was considered as shown
in Fig. 5.8. The microphone M, is positioned 3.5 m, M, is 3.2 m and the reference
sender S, is positioted 2 m above the inain sender S. The following is assumed: A
vertical velocity gradient of 1sec™ and a speed of sound of 343m/sec at S,.

For this scenario, the norm of the error ||¢|| between the ‘true’ TOFs computed
with (5.7) and the approximated TOFs computed with (5.9) was determined. The
parameter n, and ny in (5.9) were calculated from tof; and tof; for § = S,. The
approximation error for S as in Fig. 5.8. was then found to be ||e||=4.1¢-8 sec which
corresponds to ca. 0.014mm. Even for this extreme case the approximation error
remains well below the precision of interest. Hence, in any normal situation it is
possible to use (5.9) instead of (5.5) or (5.7). The three formulations are equivalent

within the specified precision.

5.2.3 Ambient Noise

The ceramic ultrasound transducers which were used in the experimental system
behave like a bandpass filter with center frequency at 40 kHz and a bandwidth of
ca. 5 kHz. The receiver amplifier has a similar frequency characteristics. Thus, only
sound with a frequency which lies in a narrow band around the carrier frequency
tas an appreciable influence on the measured TOF. Even if the ultrasound sender
is switched off, there will probably he some residual 40 kHz sound in the air. This
disturbance may come from many possible sound sources. See [27] for a study of the
spectral composition and strength of typical industrial ultrasound emitting processes.

The study found that beyond 100 kHz the noise is negligible for ranging with two

exceptions: Aerodynamic noise and laser etching. The situation is worse for 40 kHz.
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It appears that most industrial processes have some kind of 40 kHz component. Much
of this type of noise is impossible to quantify a priori and therefore must be measured
in each individual case. Since it cannot be removed from the signal, the foreign carrier
sources must be silenced or be removed from the room if the SNR(TOA) becomes
too large.

If the sender is moving, which can be expected when it is attached to a manip-
ulator, or if the foreign carrier source has a phase and amplitude which change fast
compared to the sampling frequency, then of course the ambient noise would not cause
a measurement bias, because it can be approximately averaged out. If, on the other
hand, the sender does not move, and the ambient noise has a steady state harmonic
component at 40khz, then a fixed bias of the measured TOF may result.

If the just described scenario ever contributed a significant bias to the overall
measurement error, then it would be easy to prevent it. One could change very
slightly the pulse period each time a signal is sent. If this is done in a pseudo randomn
mauner, with the mean at the nominal pulse period and the standard deviation of,
say, a sixth of a carrier period, then a steady state foreign carrier would behave as if

it were white noise with respect to the ‘random’ phase of the signal carrier.

5.2.4 Reflection and Reverberation

The worst effect which reflections can have, occurs when the reflected signal has the
same or even a Jarger magnitude than the direct path signal and the TOA is so large
that the reflection has a full impact on the TOF. In practice this may occur for once
reflected signals, whose path is not much longer than the direct path. Therefore, TOF
measurements corrupted by short path reflections are useless. As mentioned earlier,
the TOA must be chosen small enough to provide reflection robustness.

Once sent, the carrier can remain present in the room for a long time. The sound

partially reflects from walls, furniture, people etc., until all its energy is converted into
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heat. The sound can reflect many times and finally the room 1s filled with a diffuse
background sound level. This is usually called reverberation noise. The reverberation
constant is a measure for the time necessary to reduce the noise level of a room by
60 dB after the sound source is switched off. The reverberation constant can be
computed as a function of the room dimensions and the reflection coefficients of the
reflecting surfaces [28)].

In our case, it appears that only the first couple of reflections from the walls have
an appreciable effect on the measurements. In fact, in this report the expressions
‘reverberation’, ‘multi-reflections’ or ‘long path reflections’ are used synonymously
and do describe all at least once reflected signals whose path is so long, that they
arrive at the receiver after, together with, or immediately before the next direct path
signal.

Provided that that there is no movement in the room, these multi-reflection signals
from the regularly pulsing sender appear on the oscilloscope as regular patterns with
little or no apparent phase or amplitude changes. However, the patterns seem to
be highly susceptible to small changes in the room. Even a slight repositioning of a
person’s head was observed to change the patterns. Thus, in a normal environment,
where persons and objects are moving, and in particular in a robotics context, where
the ultrasound sender is moving most of the time, the reverberation noise can almost
certainly be approximately averaged out and will not cause biases.

Nevertheless, a regularly pulsing static sound source like the transmitter, when
used in a static room, could conceivably produce measurement biases due to the
standing wave patters of the multi-reflection signals. A remedy against this possibility
would be the same as in the case of ambient noise. The sampling period could be
changed pseudo randomly after each sampling instance. This way, a standing pattern

could be avoided.
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pulse |j 0° alignm. 90° alignm.

rate 5th | __8ith ord l__gh
[~ 5Hz [ 56dB [ 61dB || 42dB | 47dB
20H: || 56dB | 61dB || 42dB | 47dB
40Hz | 36dB | 41dB || 22dB | 27dB
120Hz || 31dB [ 36dB [ 17dB | 224B

Table 5.1: The effect of reverberation on the SNR for 30cm S-R distance in a small room.

Reverberation

Let us assume that SNR 2 1, otherwise the measurement is pretty useless anyways
and should be discarded. Under this assumption the worst case occurs when SNR =1
and the reverberation noise is 90° out of phase with the signal at the time where the

zero crossing is measured. The maximal induced TOF error At, can be computed as

a function of the SNR:

A
At (SNR) = %O:arcta.n (

-

51\113) (5.10)

where X is the wave length of the ultrasound. Thus, in the worst case At, corresponds
to a position error of ca. 1 mm.

The SNR depends on the pulse rate, the reverberation constant, the signal magni-
tude at the receiver and the signal length. When the sampling frequency is increased,
then the reflected signals which arrive at the receiver together with the next direct
path signal have larger magnitude because their path is shorter than before. When
the signal length is increased, the energy available for reflections is increased. Sim-
ilarly, when the reverberation time constant of the room increases, then the noise
amplitude increases as well. Since the signal magnitude remains constant in all those
cases, the SNR decreases. On the other hand, when the distance or the misalignment
angle is increased, then the signal magnitude decreases but the noise magnitude stays
constant. Thus, again, the SNR decreases.

In order to gain some idea of the order of magnitude of the reverberation error
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for different operating conditions, tue SNR was estimated from oscilloscope readings
for different sampling frequencies and misalignment angles. The noise level was read
immediately before the arrival of the ranging signal. The experiments were conducted
for the small room and for the large room. Table 5.1 shows the estimated SNR in
dB for the signal amplitudes measured at the 5th and at the 8th crest of the received
wave package, and for the misalignment angles of 0 degree and 90 degree. The values
in Table 5.1 were obtained in the small room, a sender-receiver distance of 30 cm,
and a transmitter input signal length of 6 carrier periods. The results for the large
room are about same except that for pulse rates higher than 20 Hz there appears to
be a 6 dB improvement over Table 5.1.

As can be seen from Table 5.1, the SNR is approximately the same for 5 Hz and
for 20 Hz and even for smaller sampling frequencies, which are not shown in Table 5.1.
This suggests, that this disturbance is due to the receiver background noise, i.e. the
transducer self-noise and the amplifier noise floor, rather than to reverberation. This
explanation was supported by the persistence of this noise level even after acoustic
insulation of the microphone. A future receiver may be able to reduce the background
noise further.

Fortunately, other than in the case of reverberation noise, the receiver background
noise was observed on the oscilloscope to undergo fast random phase shifts. This
implies that it can be averaged out even if the sender and its environment were static.’
Moreover, the effect of the background noise on the measurement error is rather small.
It could only become a noticeable factor when the received signal is extremely weak.
For instance, the maximal measurement error caused by the receiver noise floor for a
2 m sender-receiver distance, a sender-receiver misalignment angle of 90° and a TOA
at the 8th period is about 67 um. (This corresponds to 26 dB SNR.)

For both rooms, the reverberation dominated the receiver background noise when

the pulse frequency was increased beyond ca. 25 Hz. As shown in Table 5.1, for
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40 Hz, the noise level is increased by about 20 dB and even more for 100 Hz. Thus,
at 40 Hz the maximal measurement error for the above extreme case problem would
be a remarkable 0.62 mm (corresponding to 6 dB SNR) instead of just 67 um for
20 Hz.

Extrapolations like the one above can be obtained from Table 5.1 by recalling
that the noise level does not change when the distance or the misalignment angle
are changed. These changes affect only the signal level. The signal level, however, is
inversely proportional to the distance and its dependence on the alignment angle can
be obtained from the radiation characteristic chart of the ultrasound transducer which
is reproduced in Appendix C. For instance, a 90° misalignment error will cause a ca.
14 dB damping of the signal. Indeed, this is the observed factor in Table 5.1 between
the SNRs of the 0° misalignment column and the 90° column. Thus, Table 5.1 enables

one to predict the noise strength.

5.2.5 The Doppler Effect

It is well known that the Doppler effect changes the perceived frequency of a icne
when the sound source or the air moves with respect to the receiver. This eflect does
not influence the measured TOF directly, but only indirectly by changing the TOA.
Hence, if there is no compensation for the Doppler effect, then the computed TOF

for the i-th microphone will have a Doppler induced error:

k vle;
Atof; = — (E) (—c+ wTe,-)

where fo=40 kHz, k is an integer such that the TOA is measured at the zero crossing
after the k-th period, v denotes the velocity of the sender and w is the velocity of the
wind.

Suppose that the TOA is measured after the 5th period, i.e k=8, the sender

moves with a speed of 0.34 m/sec in the direction of the i-th microphone, there is
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no wind and the speed of sound is 340 m/sec. In this case, the error will be 5/1000-
th of a period, corresponding to 0.043 mm. This is a small and possibly negligible
error. Theoretically, one could compensate for the Doppler effect, since one does
have estimates of v, €;, & and possibly even w. On the other hand, the dynamic
control error for fast maneuvers will be much larger than the Doppler error. Only for
slow movements will the controller need high precision measurements, but then the
Doppler effect is negligible. |

Alternatively, instead of trying to compenéate for the Doppler effect, it could be
used for measuring the velocity of the sender and thereby improving the tracking
precision of the control system. However, this would require the ability to measure
the received carrier period of the ultrasound signal precisely. At the preseni time,

this was not attempted.
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Chapter 6

Turbulences

6.1 The Stochastic Turbulence Model

In (4.4) the TOF measurements were divided into four components. This chapter con-
cerns itself with the medium dependent random component MRtof;(, 1) of the TOF.
For notational convenience, however, the prescript M® will be dropped throughout
this chapter. Thus, tof;(=,t) denotes the scalar random process which models the
random fluctuations of the i-th. channel. These fluctuations are caused by small and
short lived regions of space which contain air with slightly different temperature or
wind velocity than their surroundings. These regions move in space and also change
their form and content over time. This changes the distribution of the refractive index
in the VOI. In a room, space-time fluctuations of the refractive index are generated
by heat convection and conduction, turbulences, drafts, moving people etc.. It is
evident that sound traveling through this fluctuating medium will experience slightly
different traveling times depending on the time of departure and the regions of space
which were crossed.

One can readily extent the scalar random process tof;(D, t) to a random vector

99
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Figure 6.1: Distribution function of TOF fluctuations.

process tof(@, 1):
tof(T, ) = [tofy(T, ), tofa(T, 1), . . . , tof (T, 1))T (6.1)

which models all m measurement channels. In the following, the G-argument will
sometimes be omitted when referring to stochastic processes.

The objective of the modeling effort is to characterize the random vector pro-
cess tof(i7, t), i.e one Qvants to know the joint probability distribution function F of
tof(@, 1):

F=F tof(t,).tof(zg),tof(ts)....(a’E;’E:’" .-
Note that F is implicitly a function of the microphone positions and the sender
trajectory S(t).

In the following we assume that F is jointly gaussian. Besides the central limit
theorem, there is an other argument to support this assumption: A typical scalar
distribution density function for one fixed sender and one microphone is given in [13]

and is reproduced in Fig. 6.1. It approximates the shape of a gaussian distribution
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density function. The result was experimentally oblained from the time series of TQVF
measurements. Hence, under the assumption of strict stationarity and ergodicity
Fig. 6.1 supports the claim of a gaussian distribution function. Moreover, considering
the underlying physical reality, it appears reasonable to assume that the whole random
process tof is jointly gaussian for any combination of sender and receivers.

If the TOF is modeled as a gaussian random vector process, then I is completely
characterized by its first and second moment. Since the low frequency biases are
already subtracted, the first moment is the zero vector at all times. The sccond

moment is determined by
Po(ty,12) = E{tof(1,)tof” (15)} (6.2)

where ¢, and t; are arbitrary points in time. The covariance kernel Fy; is an implicit
function of the geometry of the ultrasound system. In the folloawing, the nature of
this relation will be analyzed.

The dependency of the TOF on the ultrasound system’s geomelry can be made
explicit by modeling the fluctuating underlying inverse sound-speed itself as a random
space-time process Bn as was shown in (4.2). Then the TOF can be linked to n and
the ultrasound system’s geometry via equation (4.5). Since ®n and the TOF are
by definition zero average processes, the TOF is completely defined by its sccond

moment:
di(ll)R _ .
(Pu(t1,t2));; = E /0 n(@, 11, [i(t1, 1), €i(11) )den-
d;(t2)
]OJ RnT(w,tg,I‘J-(tg,ag),é‘j(tg))dag}

di{t1) rds(t2) - -
=/0 jo Pan(t1, 2, Ti(ta, 1), T (L, ), @(41), E5(Ly) )dlorader,

(6.3)

where (Py(t1,8));; denotes the (i,7)-th element of the covariance kernel /4, which
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represents the covariance function between the i-th and the j-th communication chan-
nel. The scalar function P,, is the covariance kernel of the inverse sound-speed. Thus,
from (6.3) we can conclude that knowledge of P, and of all the ray paths I are equiv-
alent to having knowledge of P

The key question is therefore the shape of P,,. Unfortunately, there appears to
be no literature that addresses itself directly to the problem of modeling turbulent
sound propagation in a subregion of a closed room. On the other hand, there is a
wealth of literature on sound propagation in a random ocean and on general random
communication channels. Thus, the strategy used in this thesis is to apply the general
{heoretical methods to the problem and then determine the missing parameter values

experimentally.

Rp is stationary and

In order to simplify P,, it was assumed that the process
homogeneous, i.e. its statistics do not depend on absolute time and absolute position.
This appears to be not too unreasonable an assumption since the process statistics are
likely to change only vefy slowly and there is no pressing reason to assume that there
are positions within the relatively small VOI (diameter 2 m) which have significantly
different statistics from their neighbors. Furthermore, if one wants to have any hope
of obtaining results of manageable complexity, one has to assume that in addition
to being stationary and homogeneous, the statistics of #n are also isotropic, i.e.
independent of direction. The problem with this assumption is that it seems to imply
a poor model for the effects of air movement. However, the main applications of the
stochastic model is for cases where two ranges whose correlation one wants to find have
similar directions. Moreover, experimental evidence suggests that the assumption is
adequate for the coarse statistical model of tof that one can best hope to obtain.

With the assumptions made above, the covariance kernel P, is only a function

of time delay and spatial shift and simplifies to:

P, = rm(Ta(:) (64)
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where 7 = [{; — t2] and ( = ||py — p2f| and &4, L2, py and py are arbitrary points i
time and space, respectively.

Unfortunately, even the true shape of the strongly simplified covariance kernel
Pon(1,¢) is unknown in the literature. Looking at the basic Physics of air turbulences
in a room, one can, however, make the following qualitative remarks on the likely
shape of Pn,: P, is bound to be small for large distances ||p; — paf| and delays
|t1 — t2]. Moreover, the turbulences which extend over a large region of space are the
ones which are likely to have the longest life time.

In the absence of theoretical results, one can only follow the advice given in [57]
and guess a general paramctric form for P,, and then choose the paramcters to best
fit the experimental data. First, Py, is further simplificd by assuming thal one can

split it into a time component and a space component:

Prn(7,¢) = Pun(0, () Pun(T,0) (6.5)

The decomposition above has the drawback of not modeling the empirical observation
that low-frequency turbulences are higher correlated than high-frequency turbulences.
Given the decomposition (6.5), there are two popular guesses for ils space com-

ponent:

Pun(0,¢) = erexp(=[¢1/Dy) (6.6)
Pan(0,0) = crexp(=(ICl/ Da)?) (6.7)

The parameters ¢;, D or ¢z, D are unknown and must be determined experimentally.

To characterize the time component P,,(7,0) it is convenient to switch to a dis-
crete time description, where the sample instances {; = kT occur al integer multiples
of the sampling period T,. Suppose that the discrete time hehavior of /i is well mod-
eled as the output of a discrete time-invariant linear filter (A, 3,C) with state p of
dimension r, whose input is white Gaussian noise with covariance Q. in other words,

Ry is a r-th order Gauss-Markov process.
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Thus, one can find the state covariance kernel P,, = E{pp’} as the solution of the

algebraic Lyapunov equation:

P,, = AP, AT + BQBT

With P,,, one can characterize the discrete time behavior of P, as:
Pnn(tk — tl, 0) = CAlk“l]Ppch (6_8)

The parameter matrices A, C and BQ BT must be determined experimentally.
Under the assumptions made about the process, substituting (6.5) and (6.8) into

(6.3) yields the Jesired covariance kernel Py,

(bt = CAECT fn i) jo Y b0, [Ts(te, ) — T (b, @2)])derade
(6.9)
where the integrand of the double integral is given either by (6.6) or by (6.7). In the
following it is often convenient to drop the time dependency of the double integral.
On can then simply think of it as representing the covariance between two arbitrary

static ranges:

Pi(T1,T2) = fo i /0 “ Pon(0, ITs(@1) ~ Ta(c)||) dasda (6.10)

Except for special cases, {6.10) has no closed form solution when P.,(0,¢) is
defined by either (6.7) or {6.6). However, an approximate solution if P,,(0,() is
defined by (6.6) can be found in Appendix A.

In the following, the missing parameters in (6.9), are experimentally determined

and the formula (6.9) is experimentally validated.
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6.2 Experimental Evidence

6.2.1 Time Correlation

The Fig. 6.2 shows an example of a typical time series of TOF fluctuations for the
small room for a lm range. Similarly, the Fig. 6.3 shows typical TOF fluctuations
for the large room for a 70 cm range. The sampling rate was 4 Hz. As can be seen,
both time series are quite similar. Both are dominated by low frequency noise, which
is probably due to the room’s convection currents.

The power spectrum normalized by its largest value is shown in Fig. 6.4 for both
time series. The Fig. 6.4 was obtained by smoothing the autocorrelation function of
the time series with a Hamming window. It can be seen that both spectra have a very
similar low-pass characteristic. The large room exhibits a slightly larger bandwidth
and a somewhat less steep roll-off which is not surprising given the more turbulent
environment of the large room. The bandwidth of the noise in Fig. 6.4 is ca 0.03-
0.05 Hz.

It is shown in Fig. 6.5 that a 3rd order linear system with poles at -0.032:30.031 Hz
and -0.73 Hz and zeros at -0.081 Hz and -1.5 Hz, produces a very good fit to the
estimated spectrum of the large room. The estimated power spectrum is the same as
in Fig. 6.4, however, it is less smoothed. The best second order approximation is also
shown. It is not as good as the 3rd order fit. A best first order system approximations
was not shown in Fig. 6.5 because its spectral fit was unacceptable. The identification

results in Fig. 6.5 can be used to obtain the (A,B,C) state space parameterization

used in (6.9).
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Figure 6.2: Time series of TOF fluctuations in small room.
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Figure 6.3: Time series of TOF fluctuations in large room.
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Figure 6.6: Longitudinal Correlation Expeiiment

6.2.2 Space Correlation
Noise Strength

P, is a complex non-stationary matrix valued function. In order to make the task of
characterizing P, easier, consider first the most simple case, where one has only one
fixed sender and one fixed microphone facing each other at a distance d; € [20,200] cm.

For our purposes, the most important statistical quantity is the standard deviation
(STD) of tof;. A wide range of STDs was observed for the TOF fluctuations in the
small voom: Very quiet air with very little convection or wind was observed to cause
STDs as small as 0.06 gsec or 0.02 mm for 1 m ranges. Such low values were achieved
by closing door and windows and disenabling heaters and fans. On the other hand,
very turbulent air, such as it is produced by opening door and window of the small
room, on a cold and windy day, was observed to cause STDs even in excess of 2 usec
(or 0.68 mm) for 1m ranges. The usual STD values for the normally heated small
room were around 0.1 mm on 1m ranges. The STDs in the large room were more
stable: Despite of many operating fans, moving people etc., the STDs for 1m ranges
were about 0.5 usec (or 0.17 mm) when the air conditioning system was off and about
0.9 gsec (or 0.3 mm) when it was operating. Theses values were quite stable in the
large room despite moving people and computer fans. Thus, under reasonably calm
atmospheric room conditions, on can expect the STDs of the corresponding distance
measurement error for a 1 m range to fall somewhere between 0.02 mm and 0.7 mm

with typical values around 0.1-0.2 mm.
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Figure 6.7: Noise standard deviation versus distance for large room.

Since the ultrasound system has to accommodate different ranges, one is interested
to know o(d;), which denotes the STD of tof; as a function of the distance d; between
sender and microphone. Clearly, there are two limiting cases: If fn is completely

correlated in space, then from (6.10) and (6.6) one obtains P,,(0,{) = ¢; and:
el(d) = d° (6.11)

On the other hand, if #n is completely uncorrelated, then P.,(0,¢) = ¢{8(¢), where

8(¢) is a dirac function. Hence, from (6.3) one obtains:
0‘2((1’,’) = C; d,‘ (6.12)

The true o(d;) lies somnewhere between these two extremes: Using {6.6) in (6.10), one

obtains the form:
Gz(d;) = chDf(d;/Dl + exp(—d.-/D;) - 1) (6.13)

There is no closed form if (6.7) is used instead of (6.6).
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Figure 6.8: Noise standard deviation versus distance for small room.

An attempt was made to verify experimentally the validity of (6.10) for changing
sender-receiver distances. For this purpose an experiment was set up as shown in
Fig. 6.6: 4 microphones and 2 senders were placed in a row so that any two adjacent
microphones were 40 cm apart and the distance between S1 and M1 was 30 ¢cm and
between 52 and M1 it was 65 cm. Great care was taken to epsure that distances
between receivers and senders were as specified above. However, the measurement
error may be as large as =1 cm. All statistical results were based on sample sizes of
2000 time samples for each of the 8 ranges and the data were obtained with a 2 Hz
sampling rate.

For the large room Fig. 6.7 shows the STD of the 8 ranges as a function of the
range. The STD of the 4 ranges associated with S, are marked by an ’o’ and the
4 ranges associated with S; are marked by an ‘x’. All STDs were normalized by the
STD value of the S;-M; range. This was done to be able to compare (6.11), (6.12)
and (6.10) with the experimental data. Each of theses curves was normalized by its

STD value for a 30 cm Sy-M, range to eliminate the influence of the constants ¢; and
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c;. In effect, Fig. 6.7 shows a comparison of the range dependency of the STD for
totally correlated noise, totally uncorrelated noise, the actual experimental data and
exponentially correlated noise which fits the data. To compare them one forces all to
have the same STD for a 30cm range.

As expected, the experimental data are neither completely correlated nor com-
pletely uncorrelated but are sandwiched between the two limiting functions. The
curve defined by (6.10) and (6.7) fits best to the data when Dy=38cm. This is shown
in Fig. 6.7. As can be seen, the curve fits quite nicely. When (6.7) is replaced by
(6.6) in (6.10) the best fit is obtained for D;=24cm. The obtained graph fits equally
well for this case, however, it is not shown in Fig. 6.7 to avoid confusion.

A similarly good fit was obtained when the experiment was repeated in the small
room. The equivalent of Fig. 6.7 for the small room is Fig. 6.8. Clearly, the noise is
much more spatially correlated in the smaller room. There, the correlation distances
for the best fit to the experimental data were D;=90cm and D,=90cm, more than

double the correlation distances for the large room.

Longitudinal Correlation

In order to further verify the accuracy of the model (6.10), exactly the same ranging
data were used as before. This time, however, instead of computing the STD versus
distance, one computes the correlation coefficient between two ranges, as a function
of the distance ratio ¥ > 1 between the two ranges. The results are shown in Fig. 6.9.
The marker 'x’ represents correlation coefficients which were obtained by correlating
the TOF measurements for the 1st microphone and the 65 cm distant sender with the
measurements obtained for the same sender and the 2nd, 3rd and 4th microphone.
Similarly, the symbol o’ represents correlation coefficients which were obtained by
correlating the TOF measurements for the 1st microphone and the 30 ¢m distant

sender with the measurements obtained for the same sender and the 2nd, 3rd and



{ CHAPTER 6. TURBULENCES 112

Longitudinal Correlation
o = 30cm sender data J
x = 65cm sender data
2 o7 e
S " .
=z o,
051 T - -‘
osr uncorrelated T
0.4 . . . , . . . )
N 1 1.5 2 25 3 3.5 4 4.5 5 5.5 6
‘ Distance Ratio
(* Figure 6.9: Correlation versus distance ratio for large room.
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Figure 6.10: Correlation versus distance ratio for small room.
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4th microphone.

As before, there are theoretical limits for completely correlated and completely

uncorrelated #n. The completely correlated case is obviously independent of :
C=1

where C denotes the correlation. Of course, from (6.10) one can readily caiculate the

correlation between any two ranges I'; and T'; as:

_ _Py(T, T;)
PU(F{-,. Pi)PII(rj, Pj)

The completely uncorrelated case yields:
C=,/-
¥

For exponentially correlated noise one obtains from (6.6} and (6.10) the equation:

¢ < [2di/Da +exp(=di/ Dy) + exp(—di/ D1) + exp(—(7 ~ 1)di/Dy) — 1] (6.14)
2\/1d:/ D1 + exp(—d;/ D1) — 1] [vdi/ Dy + exp(—7di/ Dy) = 1] '

As can be seen from Fig. 6.9, the function (6.10) with (6.7) and D,=38cm daes
fit the data sufficiently well to prove that (6.10) is consistent for computations of the
STD and the longitudinal correlation hotween ranges: The parameter value D;=38cm
is valid for both computations. The reason for having two graphs to fit to the data

and not just one like ' = 6.7 is that the d is different for the two senders. Again,

if (6.6) is used instead of (6.7) in (6.10) a similarly good fit is obtained for Dy=24cm.
As before, this graph is not shown. Notice from the solid graph in Fig. 6.9, that even
if Bn is 'completely uncorrelated, the longitudinal tof correlation between two ranges
does not vanish.

The small room equivalent of Fig. 6.9 is Fig. 6.10. Clearly, the ranges are more
space correlated. As before, the graphs show good fit for D;=90cm or D;=90cm,

respectively, proving the consistency of (6.10).
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Figure 6.11: Transversal Correlation Experiment
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Transversal Correlation
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Figure 6.13: Correlation versus range angle in small room.
Transversal Correlation

Another pair of experiments was designed to verify (6.10) as a function of the range
angle for 4 = 1. As shown in Fig. 6.11 the microphones were placed on the circumfer-
ence of a circle with the sender in the center. Each pair of neighboring microphones
had the same fixed distance. The experimental results for the large room are shown
in Fig. 6.12. The sample size and the sampling frequency are as for the previous
experiments. All 6 cross-correlations were computed from the raw TOF data and av-
erages were computed for cross-correlations corresponding to the same angle, yielding
3 cross-correlations. The Fig. 6.12 shows the results of two consééutive experiments
conducted in the large room. For the first experiment, the distance between neigh-
boring receivers was 30 ¢cm and the distance to the sender was 1 m. The results of
this experiment are marked with a ‘o’ in Fig. 6.12. The second experiment had the
same receiver distance, but the distance to the sender was 1.40 m. Its results are
marked by ‘x’. Moreover, the theoretical curve obtained from the equation pair (6.7)

and (6.10) for D;=38 cm is also shown in Fig. 6.12. It can be seen, the curve does



CHAPTER 6. TURBULENCES 116

not fit that well to the data obtained. The same ill fit occurs when (6.7) is replaced
by (6.6) with D;=24 cm (not shown). Similar problems occur for the small room
equivalent of Fig. 6.12 which is Fig. 6.13. '

The reason for the problem cculd be that the atmospheric conditions changed
between the longitudinal experiments and the transversal experiments. The setup
and the conduction of the experiments takes a considerable amount of time. An
other explanation could be that the neglected effects of air movements decorrelate
the noise faster than otherwise expected. In other words, this may be the price one
has to pay for the isotropy assumption made in (6.9).

A further look at the spatial correlation of the TOF reveals that the longitudinal
correlation is higher than the transversal correlation and that smaller ranges lead to
higher correlations. Moreover, it should be said that it is intuitively clear that high
frequency fluctuations are spatially less correlated than slower fluctuations. This

is particularly important for the compensation of the low frequency noise with a

reference filter. This aspect is not modeled in (6.7), rather, all frequencies have the

same spatial correlation. The main reason for not modeling this aspect is the desire
for simplicity.

It can be concluded that the experimental results confirm that (6.9) is seli-
consistent and provides an adequate although not perfect mode} of the spatial corre-

lation of the measurement noise.
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Chapter 7

Noise Compensation Methods

7.1 Optimal Microphone-Sender Configurations

The relative position of the microphones and senders play an important role in the
measurement noise reduction and the numerical conditioning of the system. For a
small perturbation 65 from a nominal sender position S,, the measurement equation

(1.1) can be written as:

1(S, — M)T

1
tof; — =|ISn = Mi|| = ~vo——57
of c“ M ” ¢ "Sn - -M‘t“

§S4+m i=1,2..,m (7.1)

Where tof;, ¢, and M; are defined as before and #; represents the measurement noise

for the i-th receiver. The above equation can be written in vector form:
1
otof = EH 85 +7 (7.2)

where étof 1s the measurement perturbation vector, H is a matrix whose rows are
the unit directions from S, to the microphones, and 7 is the vector of the gaussian
measurement noise where E{n} = (0,0,0)7 and E{gy7} = Q..

The linear minimum-variance unbiased estimate 65 of 65 is well known [59]:
85 = (HTQ;'H) ™ HTQ; cbtof (7.3)

118
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and the corresponding error covariance is:
-1
P, = (HTQ;'H) (7.4)

Clearly, one is interested in reducing the covariance of the estimation error. Thus,
it seems reasonable to define the "optimal” microphone positions H,p; to be those
which minimize a norm on P,,. Unfortunately, any such optimization of microphone
positions is valid for one nominal sender position S, only. Any movement of the
sender away from S, will result in a suboptimal configuration.

For simplicity, it is first assumed that all microphones are at an equal distance to
S, and that the measurement noise is uncorrelated, i.e. @, = ¢2J, where o2 is the
variance of the measurement noise for a single channel and I is the identity matrix.
Without loss of generality we may set S, = (0,0,0)7 and choose the first microphone
to lie in the direction of the z-axis of a right-handed Cartesian coordinate system
with origin at S,. Further, w.l.g., the second microphone can be restricted to lic
on the x-z-plane. Moreover, using spherical coordinates to describe the microphone
positions, one can explicitly fix the radius component of each channel to be unity.

With these assumptions, the problem becomes one of finding the vectors ¢ and
which minimize the trace of Pss(ip,?), where ¢» and ¥ denote vectors of the angles of
the microphone directions expressed in spherical coordinates. This is done in such a
way, that the i-th row (¢;,9;) of the spherical angle vector pair denotes the x-axis if
its value is (0°,0°), the z-axis if it is (0°,90°) and the y-axis if it is (90°,0°). Now, one

seeks to find ¢ and ¥ such that the cost J is minimized:
Jopt = min ||Pos(@, 9|5 = min trace(Ps,). (7.5)
ey v

The Matlab Nelder-Mead algorithm was used to find the optimal (g,¥) for 3, 4
and 5 microphones respectively. The optimal configurations are given in Table 7.1.

A sketch of the optimal configurations for 3 and 4 microphones is given in Fig. 7.1.
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M3
90°
S
90°
M2

M1

Figure 7.1: The optimal S-R configurations for 3 and 4 microphones.

3 microphones || 4 microphones | 5 microphones | 6 microphones
7=3.00 T=235 J=183 || J=1.50

¢ | ¥ @ v @ v © d
M1}yl O° 90° 0° 90° Qe 90° 0° 90°
M2 |} O° 0° Qe —19.6° 0° —19.6° 0° 0°
M3 || 90° 0° 120° | —19.6° || 120° | —19.6° | 90 0°
M4 - - —120° | —19.6° || —120° | —19.6° [} —90° 0°
MsS || — - - - —120° | -19.6° 0° —90°
M6 — - — - — - 180° 0°

Table 7.1: Optimal microphone positions
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Besides being optimal in the previously defined sense, the configurations in Ta-
ble 7.1 with more than 3 microphones have the additional property that any additive
disturbance which is common to all channels has no influence on the sender position
estimation error. This is important since one would like 65 to be insensitive to global
changes of the speed of sound and to additive delays caused by the electronics and
a nonzero TOA. Both goals can be readily satisfied if all microphones have the same
distance to the sender and if one chooses H,, such that the vector (1,1,...,1)7 is
an element of the nullspace of HE,;,Q; 1, The configurations in Table 7.1 have this
property and are therefore completely insensitive to common mode noise. The only
exception is the 3 microphone case where the nullspace of HZ, Q7! is trivial. If the mi-
crophones are not equidistant to the sender, then additive delays and global changes
of the speed of sound cannot be compensated for simultaneously.

The optimal configurations in Table 7.1 were obtained for spatially uncorrelated

noise and in the absence of sound-speed gradients. If both theses factors are consid-

ered, then the optimal configurations differ slightly from the results given in Table 7.1.

7.2 The Kalman Filter

7.2.1 Overview

The purpose of the Kalman filter is to estimate the wrist position y. given the noisy
range measurements. The size of the estimation error depends to a large degree on its
internal model. The question as to what constitutes a good model is best answered

by looking at the variables which influence the TOF. Thus, using (5.9) one can write:

1
tof; = “M: - yc]l [nr + E(M: + Y — 25,);1’10'] + 7+ w; (7.6)
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where 7; is the time correlated noise caused by air turbulences as discussed in Sec. 6
and w; is a small white noise caused by the receiver noise floor and the room rever-
beration as discuised in Sec. 5.2.4. Thus, from (7.6) one can see that the states of a

TOF measurement model fall into three categories:
1. The main states which model the wrist position y..
2. The parameter states n, and ny which were defined in Sec. 5.2.2.
3. The noise states 7; and w; which model the measurement noise.

The second category of states are by definition spatially highly correlated. This
suggests that one could decompose the overall state into two smaller ones by adding
a fixed reference sender. This solution is preferable because it increases the estimation
precision and reduces the overall system complexity. Moreover, if the parameter states
were actually estimated by the main filter, then full observability would require that
the main sender is received by 5 microphones at all times, which may be difficult to
achieve. The other solution requires only 3 microphones for the main sender. The
third group of states, the noise states, are not as highly spatially correlated as the

parameter states and can therefore only partially be transferred to the reference filter.

7.2.2 The Reference Filter

The main purpose of the reference Kalman filter is to estimate the parameters n, and
nw. Another purpose is to estimate 7j,; which is the noise in the i-th measurement
channel of the reference system. The estimate is later used to reduce 7;. To accomplish
these objectives, a reference sender is installed at a known fixed position y, in the
workspace of the robot. Since y, and M; are constants, the measurement equation of

the reference Kalman filter is linear with respect to its states 4,;, ##, and Av. From
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(7.6) one obtains for 5, = y, = y.:

.1 v -
tofri = |Mi = 3ol [Rr + S (M = yr)oiw] + i + wr; (7.7)

were the index 'ri’ refers to the i-th communication channel of the reference system.

Given the analysis in Sec. 5.2.2, it is clear that #, and iy are nearly constant
in a controlled environment. Thus, they can be modeled as random walks with very
small pseudo noise. Similarly, the dynamics of #,; can be modeled by a linear, time
invariant filter (A,B,C). This was discussed in Sec. 6.2.1. Therefore, the reference
Kalman filter is time invariant. It can be implemented as a fixed gain filter, which is
computationally advantageous.

Since the fastest time constant the reference system is concerned with is about
30 sec, one can reduce the sampling rate for the reference Kalman filter. A 2 Hz
reference filter sampling rate, for instance, would be enough. This makes the reference
filter computationally very inexpensive. Hence, one can easily install more than one
reference system to cover different regions of the workspace. This is particularly
important because in general one can not guarantee that all receivers are reached by
a single reference sender.

An additional task of the reference system could be to provide the statistics of
the atmosphere. In particular, the spatial correlation distance, the noise strength at
1 m distance, and the correlation time. Theses three numbers suffice to characterize
the noise. This could be the task of some ideniification scheme which would run in

parallel with the reference system.

7.2.3 The Main Filter
The Measurement Equation

The purpcese of the main Kalman filter is to estimate the Cartesian position y,. of the

wrist given noisy TOF measurements and nominal wrist position y,. In other words,
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Figure 7.2: The Kalman filter and the ultrasound system.

the true forward kinematic function T which maps the true joint positions ¢. into y.
is replaced by an arrangement shown in Fig. 7.2. There, ¢, is mapped into §., where
i 1s an estimate of .. The estimates 7. will be used in lieu of the true positions y. in
the kinematic feedback loop. Hence, the size of the overall Cartesian tracking error
depends critically on the on the size of the estimation error e;, which is defined as
e; = §. — ¥.. The accuracy of the position estimation scheme is therefore measured
in terms of es. Since one knows a nominal position y,, it is advantageous to estimate
the kinematic error e, = y. — y,, instead of y..

The diagram shown in Fig. 7.2 depicts how the robot, the ultrasound system (in-
dicated by the dashed box) and the Kalman filter are connected. The robot’s wrist
position y, can be considered to be an input of the ultrasound system. Conceptually,
the wrist position is then mapped by a nonlinear, memoryless vector valued function

V,(+) into the uncorrupted TOF delays tof. The function V,(-) depends on the slowly
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)
(4]

time varying parameters p(t). They are: The average inverse sound-speed n, mea-
sured at the reference point y,, the average vertical inverse sound-speed gradient ny
( and possibly the average wind velocity W). In the following, however, W will not
be modeled. The mapping V, was discussed in detail in Sec. 5.2.2. Explicitly, the i-th
component of V,(y.) is the deterministic part of (7.6).

The signal is also delayed. The time delay Tp is quite small, namely ca. 5.8 msec,
and represents the time the sound needs to travel the longest allowed range (2m).
The processing of the data begins only after this time. For small pulse rates, T can
be neglected with respect to the pulse period. A much more serious corruption is the
measurement noise 7. This was discussed in detail in the second part of this thesis.
The so corrupted signal, denoted tof in Fig. 7.2, can be measured and serves as an
input to the extented Kalman filter EKF.

In order to improve the estimation precision of the EKF a reference Kalman filter
KF of was used in parallel with the EKF. This is reflected in Fig. 7.2 by the parallel
signal paths for the main and the reference filter. The notable difference between
the two is that the reference sender position y, remains fixed for all times while the
main sender position y. moves with the manipulator. The fixed sender position allows
KF_.f to estimate the parameter states and the noise states more easily than the main
filter. It then passes its estimates #,, figy and #, on to the EKF.

Another important system component which improves the estimation accuracy of
the EKF is the approximate forward kinematics function 7' which maps ¢. into the
nominal wrist position y,. This was discussed in Sect. 2.1.4. The nominal trajectory
allows the EKF to track only the kinematic error and not the whole trajectory. It is
necessary to delay y, by the acoustic transmission delay Tp before feeding it into the
EKF. When this is not done an unnecessary error due to the delay is introduced.

The measurement equation for the main filter can be derived from (7.6):

R 1 . N n -
tof; = ”Mz - yc“ [nr + E(Ma + Y. — 2yr)z'n'V] + 7wy (‘S)
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The parameter estimates 7, and iy are obtained from the reference Kalman filter.
The estimates jj, and #; belong of the main filter. However, instead of using . as a

state, it 1s advantageous to use the kinematic error é. = . — ¥n-

The State Propagation Model

It is difficult to characterize the kinematic error e, spectrally. In fact, without ad-
ditional a priori knowledge of the error parameters and the trajectory there is no
information to model e. at all.

One attempt to deal with this problem is to simply use a double integrator as
model for the spectrum of the kinematic error. Thus, the filter state is [é., &) and

the time propagation of the state is:

€1 1 T,I e (1
1 ( L+1) _ f ( k) (7.9)
ec(tk-{»l) 0 I éc(tk)
where T, is the sampling period, and the associated covariance matrix is:
IT3/3 IT?/2 _
Q= / o (7.10)

IT22 IT,
where g, is a factor that can be associated with the variance of the kinematic error
acceleration é.

Polynominal filtering, similar to the double integrator model proposed above was
successfully used in other applications: For instance, there are many parallels between
the ultrasound ranging problem and the NAVSTAR/GPS satellite navigation problem
described in [54]. There, the range and position information of four satellites was used
to determine the position of an .airplane. The main states were position, velocity and
acceleration of the airplane. The ultrasound ranging problem is quite similar at
the first look. However, there is one important difference: The noise that corrupts
the measurements is of very low frequency and often coincides spectrally with the

kinematic error.
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Thus, even if the true kinematic error model was known and both the measurement
noise states and the kinematic error states were included in the internal process model
of the EKF, the estimation error could still be quite large. The reason is that if e, has
about the same bandwidth as 7, then the states are poorly observable and the EKF’s
performance is quite Jow. A covariance analysis was conducted which supports this
observation.

Usually, however, the spectral behavior of e; is not known. If the double inte-
grator model is used instead then it is not necessarily advantageous to include the
measurement noise states into the internal process model of the EKF. In fact, for
some circular test trajectories (narrow band kinematic errors) the performance with
the noise states included was worse than without them.

An additional problem with the use of the noise states is that their dynamic
behavior depends on the entire trajectory of the sender. In a sense, they fail to have
a finite dimensional state space representation. This becomes a serious problem for
fast trajectories which cross large regions of the workspace. It is further discussed in
the next chapter.

Therefore, a better solution is not to use any noise states at all. Essentially, this
means that the high frequency part of the measurement noise is averaged out, but the
powerful 30 sec noise cannot be reduced much unless an extremely slow trajeclory is
used, or the robot stands still for several minutes. This form of measurement noise
reduction can be advantageously used for calibration purposes, but is inadequate for
trajectory tracking.

Hence, without noise states one would expect the estimation error to he about as
good as the noise itself. In the large room (without the air conditioning running),
the std of the noise at 1 m sender-receiver distance was about 0.15 mm. Taking the
3 std value, one can expect a maximum estimation error of ca. £0.5 mm. This is still

better than the £0.8 mm reported in [2] for the static accuracy of a PUMAT50 after
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calibration. Moreover, the estimation error is the same for fast and slow trajectories
because the averaging of the high frequency noise does not result in a significant error
reduction.

When the double integrator model is used then the only thing one must know
about the kinematic error e, is some bound on its current acceleration in order to
choose a good value for the state noise strength g,. Such a bound can be obtained

by writing €, as:
d(AJJ™Y)
dt

where AJ = J — J. Since y4 = y. one can replace y, by vs in the above equation.

€= AJJ7Mo + Ye

Thus a bound on &, is:

- 1y |- d(AJTY), .
< 18007 g+ 1 2B

IA

as|Fa| + a1]94l

< aslfal + aolgal®

The problem of finding a bound is now reduced to finding those positive factors a;
and ag (or a; and a;) which are not too conservative. Clearly, near a singularity J=!
can become arbitrarily large and thereby cause a; and ag to be very large. However,
for the trajectories and kinematic errors simulated in this thesis it turned out that
the choice a;=0.005 and ap=0.005 yields good results when g, = |&.]%.

Concluding, it can be remarked that the double integrator model is a very simple
and computationally inexpensive model, and it requires very little information about
the kinematic error. The advantage of having an extented Kalman filter, as opposed
to simply solving sets of nonlinear equations, is that it smoothes the kinematic error
estimate, uses times of stand-still or slow-down to reduce the noise, provides a con-
venient framework for sensor fusion, and ensures operation even during short periods

of partial unobservability like blockage of a microphone or even a sensor failure.
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7.2.4 Exploiting Spatial Correlation

In order to improve the estimation accuracy one can use the reference filter to reduce
the time correlated measurement noise of the main filter. It is evident from (7.7) that
the reference filter produces estimates 7,; of its time correlated measurement noise
7ri- Similarly, it is clear from (7.6) that the main filter has the time correlated mea-
surement noise 7;. The two scalar random processes 7,; and #; are highly correlated
when the moving sender and the reference sender are close to each other. This fact
can be exploited to reduce the variance of the noise entering the main Kalman filter.

In general, suppose there are N, reference senders and associated reference Kalman
filters and the j-th filter produces an estimate fj,;; of its measurement noise for the

i-th receiver. A vector v; of all N, estimates can now be formed:

v = (ﬁri,l: veay ﬁri.Nr )T

Now one can subtract a linear combination of the elements of v; from the measured

tof; in (7.6). In effect, one replaces the old 7; by a new scalar random process (;:
G =m — Ko

where K is a row vector of length Nr. The vector K should be chosen s.t. E{¢:(7}

is minimized. The optimal estimator K is well known to be:
K = E{nv] }E{vw{ } ™!
The minimum achievable variance for {; is:
E{G¢T} = E{nn]} — E{no]YE{v]} " E{niv]}

= E{nn7 (1 - E{nn] } ' E{nv] }E{v ]} 'E{niv]})
= E{na{ {1 - C})

For N, =1 (the scalar case) C, is the correlation factor between #; and ;.
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The expected values in the formulas above can be computed from the formula
given in Appendix A for 4, = 5,. This is a complicated formula which may not
be well suited for real time applications. Thus, it may be recommendable to use a
simplification instead.

Suppose that y. and y. have the same distance to a microphone. Their noise
variances are therefore also the same. Under these conditions one would require a
correlation of C, = 0.9 to reduce the maximal estimation error by 56%. Incidentally,
this is about the same correlation that the measurement noise was found to have if ¥,
and y. are separated by the spatial correlation distance b. Recall that b was observed
to be ca. 24 cm in the large room and 52-91 cm in the small room. Thus, the main
sender traveling in the large room on a path which has always a distance of 20 cm
to the reference sender would reduce the £0.5 mm maximal estimation error to ca.
40.2 mm. An even higher reduction {(up to 100% ) can of course be achieved if the
sender comes even closer to the reference sender.

Thus, the region around a reference sender can be viewed to be a “high precision
region”. So, the reference sender could be placed in regions where high accuracy is
needed. It is even imaginable to have more than one reference sender. This raises
the question as to the ability of the system to “hold” the high accuracy obtained in
a region of high precision while the robot ventures outside of that region. This has

to be answered by simulations.

7.3 Calibration

An important aspect of noise reduction is robot and microphone calibration. Before
the 3D ultrasound position sender can be used it is essential to know the precise
position of the microphones. The best way to obtain this knowledge is to move the

sender to several well known positions in the convex hull spanned by the microphones.
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This can be done automatically with the use of a programmable positioning table.
At any given location the measured TOF for each microphone is averaged over 2-
3 minutes and then recorded. Preferably, the room is atmospherically well controlled
during the calibration. Finally, the averaged TOF values are used to solve a linear set
of equations similar to {1.2) but with S and M changing roles. The minimum number
of sender positions required for a linear solution is four. However, it is preferable to
use more sender positions in order to reduce the microphone calibration error even
further.

One problem with the method above is that it neglects electronic delays. However,
it is easy to take delays into account and add more sender calibration positions.
Another problem is that the method requires that there are no drifts of the speed
of sound or the sound speed gradient. This is difficult to achieve even for a well
controlled room.

Another application of the 3D ultrasound position sensor is as a convenient Lool
for automatic parametric calibration of the robot. The robot is commanded to move
to a specified number of Cartesian positions. For each commanded position the true
position and the joint displacements are recorded. To increase the precision with
which the true position can be measured, one must stand still for 2 while to allow the
EKF to average out the measurement noise. Finally, the true Davenit-Hartenberg
parameters can be computed from the obtained data set.

One disadvantage of this method is that the inverse kinematic function can be
very complex and even fail to have a closed form. A remedy for this problem is
to use nonparametric calibration instead. The idea is to command the robot to
execute a given trajectory. However, the speed with which the trajectory is executed
is drastically redrucecl, allowing the EKF to average out the measurement noise and
determine the kinematic error along the trajectory. Now, whenever this trajectory is

executed at its regular speed, the kinematic error can be compensated. This can work
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well for a highly structured environment, were the same task must be performed over
and over again. It is also applicable to robots in environments, where the trajectory
can change slightly from run to run, or when there is a set of trajectories to choose

from.
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Chapter 8

Simulations

8.1 Simulation Parameters

This chapter reports on several simulation experiments that were conducted to demon-
strate the properties of the Cartesian feedback loop and the Kalman filter. The sim-
ulations are meant to be tools to gain new insight into the system’s behavior and
to illustrate and support claims about the system’s performance which were derived
theoretically. They are not meant to be proofs in any strict sense. Therelore, only
those simulation results are presenizd which achieve the stated objective.

To this end it is important to use a good truth model which resembles as closely
as possible the real life environmental factors which influence the results. On the
other hand, the computational requirements for the simulations should stay within
reasonable limits. This may lead to a less complex model which neglects minor effects.
The decision as to which effects are minor and which are not was based on the analysis
presented in chapters 4-6.

The following environmental truth mode! was used for the simulations: The re-
fraction and diffraction of sound were neglected, so was any ambient noise. As well,

strong reflections of sound were also not modeled because they would render the

133
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measurements useless. On the other hand, sound reverberation was modeled as white
noise with a small STD (standard deviation) which is proportional to the S-R dis-
tance. Its dependency on the alignment angle between sender.and receiver was not
modeled. The electronic noise was modeled as white noise with a small STD. The
turbulent noise was modeled as a time- and space-correlated random vector process.
Atmospheric and electronic biases were neglected, thereby assuming that the sys-
tem is well calibrated. The potential biases due to the finite size of the ultrasound
transducers were also neglected. The Doppler effect was not modeled because it can
be easily compensated. The inverse sound speed was set to n,=(1/342) sec/m. The
inverse sound speed gradient was set to ny=4.4e-6 sec/m?®. No drift of n, or ny was

modeled.

8.1.1 Test Trajectories

In an effort to evaluate the performance of the control system, several test trajectories
were used.
The closed loop i /o behavior of the system was tested with a 20 cm step function

in the z-direction:

(400,149,007  if ¢t < 0.4sec
(400,149,200)T if ¢t > 0.4sec

This trajectory will be referred to as TSI1.

"The ability of the loop to reduce the kinematic error is tested by several circular
trajectories, all of which lie entirely in the x-y plane. The center of the circle is at ¢
and its radius is 7. The trajectory accelerates from zero velocity at an initial angle ¢

with a constant circular acceleration o until it reaches the angular velocity wy. Then
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c r Jo I. | o
[mm)] [mm] { [Hz] | [sec] | [deg]
TC1 | (500,149,0)4 | 200 0.02 1 0
TC2 | (500,149,0)F { 200 | C.004 1 0
TC3 [ (319,149,007 | 500 | 002 | 1 | 0
TC4 | (500,140,0)T [ 200 | 01 | 1 | 0

Table 8.1: Circular test trajectory parameters.
it continues with a constant wy. Thus, the test trajectory prototype is:

(0 c + r(cos(at? + wp),sin(at? + o), 00T f0<t< T,
Yall) =
¢+ r{cos(wot + ), sin{wot -+ o), 0)T it > T,

where o = wo/T,, and wo = 27 fy. The trajectory parameters ¢, », fo, T, and g
which were used in the simulations are shown in Table 8.1. The trajectory TCl is so
slow that the dynamic error is small compared with the kinematic error. Therefore,
TC1 demonstrates the ability of the system to reduce a typical kinematic error. The
trajectory TC2 is very slow and tests the low frequency performance of the EKF. On
the other hand, the trajectory TC3 passes a nominally singular point at ca. 3 mm
distance. Thus it tests the system’s ability to operate in ill-conditioned regions of the
workspace. Finally, TC4 is very fast and is used to show the interaction between the
control system and the EKF.

The simulations used 3 microphones placed at optimum locations: 1 m away from

the trajectory center in the x,y,and z directions, respectively.

8.1.2 Model Uncertainties

The loop uncertainties U/) and U from Fig. 3.5 must be included in the simulation.

The multiplicative inner loop uncertainty Ul was chosed to be linear, having the
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Laplace transform:

f g9
ag
Uls)=| g f ¢ P rR——
g 9 f

where ag and @, were chosen such that the second order system has a resonance peak
of 10dB at 20 Hz, in order to account for the first flexible mode of the robot. The
matrix in the equation above accounts for an imperfectly known iner‘ia matrix. It
was assumed that the diagonal elements are known with a 20% error i.e. f=1.2. Any
residual dynamic cross coupling is represented by g. For circular test trajectories,
10% cross coupling was assumed i.e. g=0.1. Certain system properties are easier to
demonstrate if there is only kinematic cross coupling. It was therefore assumed that
g = 0 for simulations with the TS1 trajectory.

The outer loop uncertainty U, was defined previously as:
Uy =17 o T()
This uncertainty causes the kinematic error
€kin = T(Qc) - T(q.)

Suppose T represents the nominal forward kinematic function. This yields results in
the smallest kinematic error. For this choice of 7", Chen [2] calculated the kinematic
error of a PUMAT7S0 by using Cartesian position data obtained from measurements
with three theodolites. The mean kinematic error over 80 positions was reported to
be 5.9 mm and the maximum error was 10mm. For simulations, a realistic T should
therefore be chosen such that the asscciated kinematic error has a similar size than
the one reported in [2].

Table 8.2 shows two sets of values, KP1 and KP2, each representing differences

between the nominal and the true kinematic parameters. In particular, p, denotes
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h P2 Pa P4 Ps Pe
KP1]20mm {20mm [ 2.0 mm | 0.3° | 0.2° | 0.1°

KP2|[-25mm |20mm {25 mm | 0.2°|-0.4° | -0.2°

Table 8.2: Kinematic error parameters.

the distance which was added to the PUMAG00’s nominal shoulder length, and p;
and ps denote the distances added to the nominal lengths of the upper and lower arm.
Furthermore, p4, ps and pg denote offset angles added to the angles which nominally
are measured by the shaft encoders. Both KP1 and KP2 have the property that the
resulting “true” forward kinematic functions have associated kinematic errors which

are similar in size to the ones described in Clien {2]. Otherwise they are arbitrary.

8.1.3 Measurement Noise

When the sender is static, then the simulation of the measurement noise is straight-
forward: It can be realized by applying a sequence of independent white noise vectors
to the input of a linear time-invariant MIMO filter.

However, when the sender is moving, then the properties of the TOF fluctu-
ations as perceived by the microphones change in accordance wiih the trajectory
of the sender. A moving sender produces TOF fluctuations which are more time-
decorrelated than those of a static sender would be because the space-decorrelation
due to a locomotion of the sender is perceived by the rece! «rs as a time-decorrelation.
For instance, a sender traveling slowly along a small circle produces TOF fluctuations
which are more time-correlated than those associated with a sender which travels
quickly along a large circle.

In order to reproduce this observation with a computer simulation while keeping
the computational requirements within reasonable limits, the following steps were

taken:

1) The measurement noise was computed for the desired trajectory instead of the
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true trajectory. It was felt that very little, if any accuracy is lost since for closed loop
control, the difference between the two trajectories can be expected to be smaller
than the precision of the stochastic model used. _

2) The desired sender path was sampled yielding a set S. = {S1,...,5n,} of N:
path points. It is then imagined that a virtual, fixed sender is located at each of
the N, path points. There are also N, fixed reference senders and N,, microphones.
Now, similar to (6.1), a long vector v(&,t) can be formed, representing the TOF
fluctuations of all N, = (N, + N,)N,, imagined measurement channels. Each virtual
channel produces its own noise, which is the same as that which would be obtained
by a static sender at that location. The effect of a moving sender on the measurement
noise can now be realized by switching between the N, virtual static senders while
moving along the trajectory. This reduces the original dynamic noise realization task
to a static problem.

3) From (6.5), for static channels, the space correlation and the time correlation
are independent. Furthermore, from (6.8), there are Markov processes (A,B,C,D)
which describe the TOF fluctuations’ time correlation for a single static channel.
Thus, to realize the time correlation of v, it is sufficient to simulate N, decoupled
SISO Markov processes (A,B,C,D), one process for each element of v. The i-th process

is given as

ek +1) = Azi(k)+ Buy(k)
(k) = Cak)+ Dus(k)

where the input u; to the i-th filter is independent white gaussian noise with unit
variance. The outputs of the N, processes form a vector' v =[y1,-.- ,chh]T.

4) The spatial correlation between channels of v can be realized by first computing
the spatial covariance matrix P,, = E{v»T}. This can be accomplished by solving

(6.10) for each element of P,,. Further, using a Cholesky decomposition, a positive
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definite matrix X, can be found such that P,, = . ’co,.‘;'érar. Finally, the time and

space correlated process v(k) is realized as:

”(k) = Xcary(k)

Now, as desired, the covariance kernel of » is:
E{v(k)v(5)"} = P.,C exp(Alk — j|) P.:CT

where P, is the solution of the Lyapunov equation for any of the N,y identical Markov
processes.

5) Faced with computational limitations, it was decided to first realize the mea-
surement noise on a coarse space-time grid and then linearly interpolate between the
coarse grid points to obtain a realization on a finer space-time grid. First, the sender
path was parameterized. Here, the parameter was chosen to be the distance d trav-
eled by the movable sender from the beginning of the path. Therefore, the location
of a path sample 5; € S. can also be characterized by its associated distance d;.

Suppose the movable sender has traveled a distance d along its path at time kT,
where d; < d < di41, and T, is the rough sampling period. Let v;(£k} and vj;, (%) be
the rezlizations at time kT, of those two communication channels which are associ-
ated with S; and Sy and the microphone M,. The coarsely sampled measurement
noise realization at time kT, for receiver I, denoted m(k), is now obtained as a linear
interpolation between v;(k) and vjq(k):

m(R) = 5K) + (pa(h) = 15(8) 7
i1~ G

The final noise realization is found by resampling #; at a higher sampling rate. The

new sample points were generated with a lowpass interpolation, using the MATLAB

function ‘interpol’.

6) All simulations for circular test trajectories featured N,=12 equally spaced

virtual senders on the circle, and the coarse sampling rate was T,.=5Hz.
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T (%] T3 Tty s
NC1| 0 |0.02 usec | 0.02 psec | 0.29 psec | 600 mm
NC2 | 2e9 | 0.02 usec | 0.02 psec | 0.29 usec | 600, mm

Table 8.3: Parameter sets for noise realizations.

Aside from the noise caused by turbujence in the air, there are also two less impor-
tant noise sources which were realized. The reverberation noise is independent white
noise whose standard deviation increases linearly with the sender-receiver distance.
The receiver background noise is also independent white noise, however, its variance
is not a function of the sender-receiver distance.

The noise parameters used in the simulations are listed in Table 8.3, where n; is
the seed for the MATLAB random number generator, n, is the STD of the receiver
background noise, nj is the STD of the reverberation noise for 1 m S-R distance, nq is
the STD of the turbulence noise at 1 m S-R distance, and ns is the spatial correlation
constant. Thus, NC1 and I >2 represent different realizations of the same random

process.

8.2 Noise Free Simulations

8.2.1 Step Response

In order to demonstrate certain features of the control loop, the measurement noise
was neglected. Consider the loop shown in Fig. 3.6. First, it was subjected to a
20 cm input step in z-direction (test trajectory TS1). The step response of the sys-
tem is shown in the upper left hand plot in Fig. 8.1. The curve labeled ‘B’ shows the
z-component of y. for the nominal system. As expected, it displays a no-overshoot
critically damped behavior with a one sample delay. The curve denoted by ‘C’ shows
the z-component of y. when both the dynamic and kinematic uncertainties are in-

cluded. There is a slight distortion of the nominal step response, in particular, there
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is a very small overshoot. These distortions are mainly due to the neglected acoustic
transmission delay and the other dynamic uncertainties. The inclusion or omission
of the kinematic uncertainties has no visible effect on the step response.

The x-component of y. for the same experiment is shown in the upper right hand
plot of Fig. 8.1. Again, there is a slight distortion between the nominal response, ‘A’,
and the response with the uncertainties included, ‘B’. Again, the inclusion or omission
of the kinematic uncertainties has no visible effect on ‘B’. Notice that the nominal
x-component of y. is not a constant 400 mm as commanded by y4. Rather, it deviates
from this value by a maximum of about 12 cm. Consequently, the nominal response
trajectory of the robot to a step is not a straight line, but rather an arc. The reason
for this behavior is dynamic nonlinear cross coupling. This is evident from Fig. 3.5

by writing the nominal tracking error as :
e=ya—T0hmoT (ya)

where h,, represents the nominal closed loop dynamics expressed in joint coordinates.
Clearly, if £, is different from identity, then the nonlinear dynamic cross coupling
will increase the control error. The effect is particularly strong when the bandwidth
of y4 exceeds the bandwidth of h,,. One can avoid this form of cross coupling by
making A, as close to identity as possible.

The y-component of y. is shown in the lower right hand plot of Fig. 8.1. Here, curve
‘A’ represents. the step response for both the nominal system and the system with
added dynamic uncertainties. The curve ‘B’ on the other hand, show-'—s the response
when kinematic uncertainty is also added. Here, there is no nonlinear cross coupling
except for the kinematic uncertainty. The reason for this lies in the special geometry
of the PUMAG00 and the particular test trajectory chosen. For TSI, the first joint
is the only one that can change the end-effector’s y-coordinate, thereby decoupling

it from the other-two joints. The cross coupling is therefore caused by the kinematic
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Figure 8.1: Step responses for system with uncompensated inner dynamics.
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uncertainty, only.

Finally, it may be of interest to view .the shape of the control signal u. The
z-component of u is shown in the lower left plot of Fig. 8.1 for the case where all
uncertainties are included.

To improve the performance, the nominal closed loop dynamics from ¢4 to g, were
approximately canceled and yq was prefiltered. This method to reduce the nonlinear
dynamic cross coupling was described in detail in Sec. 3.2.3. The performance of the
improved system is shown in Fig. 8.2 which should be compared to the results shown
in Fig. 8.1: There is little change in the z-component of the step response. The x-
component, however, shows a large reduction of its nominal error due to the reduced
nonlinear dynamic cross coupling. The response with added system uncertainties is
also significantly reduced compared to Fig. 8.1. A further reduction could be achieved
if the acoustic transmission delay was accounted for in the regulator design. The
size of the y-component remains approximately unchanged because it is not subject
to nonlinear dynamic cross coupling. Note that the control signal does not show
excessive oscillatory behavior as would have been expected, had the nominal closed

loop dynamics been canceled completcly.

8.2.2 - Circle Response

In order to test the system’s tracking ability, it was commanded to follow circular
test trajectories. One problem of circle tracking is lag, particularly if a no-overshoot
requirement is imposed. The lag has the effect that only extremely slow trajectories
can be tracked with submillimeter error.

To partially overcome this restriction, the closed loop dynamics were compensated
as discussed in Sec. 3.2.3. However, other than the case discussed in Sec. 3.2.3, no pre-
filter for y4 was used, and conseguently, the system’s nominal transfer characteristic

from yg to y, was approximately unity. (The acoustic delay was not simulated.) Care
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Figure 8.3: Contro! performance for TC1-KP1.

must be taken 1o ensure that the commanded trajectory has no high frequency spec-
tral components which may excite flexible modes or cause the actuators to operate
outside of t;heir‘ linear range.

The system’s response to the test trajectory TC1 (0.02Hz) is showi: in Fig. 8.3.
The y-component of the control error e = yy — ¥, is depicted on the left. Curve
‘A’ represents the nominal system response. It can be seen that the dynamic com-
pensation works well because ‘A’ exhibits only a very small tracking error during
the angular acceleration phase of TCl. The system’s response when the kinematic
uncertainty KP1 is added is depicted by the curve 'B’. The maximum tracking error
is approximately 0.02 mm. This is about what one would expect: The kinematic
error for TC1-KP1 is shown in Fig. 8.7. It has sinusoidal shape with an amplitude of
1.5 mm and a frequency of 0.02 Hz. The crossover frequency of the type-1 outer loop
control system is about 2 Hz. Hence, one would expect ca. 40 dB error reduction at
0.02 Hz. Thus, the error would be expected to be about 0.015 mm.

Curve 'C’ represents the system’s response to TC1-KP1 when the EKF and the

'
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Figure 8.4: Control performance for TC3-KP2.

dynamic uncertainties are added to the loop. The control error for the system with
EKF but without added dynamic uncertainties is almost identical to 'C’ and is there-
fore not shown in Fig. 8.3. The EKF parameters were chosen in the same manner as
if there was NC1 measurement noise. The computation of the EKF parameters from
knowledge of TC1, KP1 and NCI is explained in more detail later. The EKF-induced
error is not significantly larger than the error due to pure kinematic uncertainty. The
exception is the acceleration phase of TC1, where the EKF has a more pronounced
impact on the control error.

A further aspect of the EKF is best illustrated with the right hand plot in Fig. 8.3.
The curve A’ represents both the z-component of the nominal control error and the
contro! error when the kinematic uncertainties KP1 are added. Both curves are
indistinguisi:able for the scaling given. The reason for this similarity is that the z-
component of che open loop kinematic error for TC1-KP1 is very small. Thus, it is
surprising to find that the z-component of the control error is much larger when the

EKF is added. This is shown by curve 'C’. The reason for this, of course, is that the
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Figure 8.5: Control performance for TC4-KP2.

EKF dynamics introduce nonlinear dynamic cross coupling similar to that discussed

previously. This can be seen by writing the “estimation™ error in the joint space:
e=g.— T oh;oT(q)

where h; denotes the EKF dynamics. Clearly, the estimation error e will exhibit
significant nonlinear dynamic cross coupling if the bandwidth of k; is smaller than
the bandwidth of g.. The estimation error e, in turn, will affect the control error in
the manner illustrated by curve ’C’.

The x-component of the control error was not shown in Fig. 8.3 because no new
insight about the control system can be gained from it. The same argument applies
to the x-components of the control error for Fig. 8.4 and Fig. 8.5.

Next, the control system was subjected to the trajectory TC3 and the kinematic
uncertainty KP2 to demonstrate the control system’s ability to operate well even
in the vicinity of singularities. The results of the simulation are shown in Fig. 8.4

where they are presented in the same manner as in Fig. 8.3. The singularity is passed
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by the sender after traveling for 30 sec. It can be seen in Fig. 8.4 that passing
by the singularity introduces peaks and near-discontinuities into the error response.
The maximum error is also increased. In this example it is about 0.07 mm for the
y-component of the error. Curve ’C’ in the left hand plot of Fig. 8.4 shows the y-
component of the error when the EKF is added to the system. In this particular case,
this error is smaller than the error without EKF. However, the z-component of the
control error for the system with EKF is much larger than for the system without
EKF, particularly near the singularity, as shown in the right hand picture of Fig. 8.4.
?\gain, the peak is largely due to nonlinear dynamic cross coupling.

Finally, the sy.stem was subjected to the test trajectory TC4 (0.1 Hz). The fre-
quency of this trajectory is closer to the crossover frequency (2 Hz) of the outer loop
than any other test trajectory. Since the loop sensitivity is larger in the vicinity of
the crossover frequency than at lower frequencies, one would expect the control error
to increase. This is indeed the case 4as can be seen in Fig. 8.5. Note that even the
nominal error response shown in the left hand plot of Fig. 8.5 shows a small deviation
from zero. The control error for the system with EKF included shows a particularly
large error (-0.17 mm) during the initial acceleration phase.

The trajectory TC2 was not used to test the noise-free system performa.n_ce because
it is just a five times slower version of TCl. The only insight which can be gained
from it is that the control error for TC2 is even smaller than for TC1. However, TC2

will be used in the next section.

8.3 The EKF Performance

The EKF is the key element of the loop because its ability to reduce the measurement
noise almost entirely determines the achievable tracking precision. To establish its

performance, two methods were used: Nonlinear simulations and covariance analysis
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of a linearized system. The two analyses support each other.

8.3.1 Nonlinear EK¥ Simulation

It is desirable to test the performance of the EKF independently of the control loop
in which it usually operates. To this end, the EKF was tested outside the loop as
shown in Fig. 7.2, where g¢. = T (yq) is determined by the desired trajectory rather
than the true trajectory y.. Moreover, a reference sender was placed in the center of

the circular test trajectories.

The main parameters of the EKF are the measurement noise strength and the
state noise strength.

1) The measurement noise strength for a S-R distance of 1 m was set 1o the values
associated with the test noise NC1 or NC2, respectively. No corrections were made
for the fact that the measurement noise is not white. While the sender progressed
along the trajectory, the noise strength values were continuously adapted to refiect
the changing strength in each measurement channel. When the reference sender was
used, the noise strength values were appropriately reduced.

2) The state noise strength was set to the RMS value of the acceleration of the
kinematic error. This value was chosen because it is easy to compute and appears
to be an almost optimal choice for the type of trajectories considered. Only minor
performance improvements can be achieved by choosing other (larger) values.

The measurement noise seen by the first receiver for the test trajectory TCI
and the noise realization NC1 is shown in Fig. 8.6. In accordance with NCI1, the
nominal measurement noise STD in mm for a static sender receiver pair with 1 m
distance is 0.1 mm. The uncompensated noise for the moving sender displayed in
the left hand plot of Fig. 8.6 has a STD of about 0.1 mm, too. If the reference
sender’s optimal estimate of this noise is used for compensation, then the situation is

improved. The right hand plot of Fig. 8.6 displays the first receiver’s measurement
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Figure 8.6: Compensated and uncompensated measurement noise for receiver # 1

noise after compensation. Clearly, the compensated noise has a STD that is smaller
by a factor 2-3 than the uncompensated noise. Moreover, it resembles white noise
more closely than the uncompensated noise does, thereby improving the validity of
the assumnption that all inputs to the Kalman filter are white noise.

The left hand plot of Fig. 8.7 shows both the y-component of the KP1 kinematic
error and the y-component of the EKF’s estimate of the kinematic error using the TC1
(0.02Hz) test trajectory, KP1 kinematic uncertainty, and the NC1 noise parameters.
It can be seen that the kinematic error for this case closely resembles a sinusoidal
signal. Its frequency is the same as the frequency of the test signal and its amplitude
is ca. 1.5 mm, varying between 3 mm and 6 mm. The EKF tracks this signal in
the presence of uncompensated measurement noise with minor errors. The curve ‘B’
shows the EKF estimates, while curve ‘A’ shows the kinematic error.

‘The y-component of the estimation error can be seen more clearly as the curve
A’ in the right-hand plot of Fig. 8.7. The error is as large as 0.3 mm and there

is not much reduction over and above the size of the measurement noise. On the
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other hand, when the reference sender is employed to reduce the measurement error,
the estimation error is about 2-3 times smaller and does not exceed 0.1 mm. The
y-component of this error is depicted by curve 'B’. The standard deviations and
the maximum absolute values of the estimation errors for all three dimensions of
space are displayed in Table 8.4 for both the compensated and the uncompensated
cases. Moreover, Table 8.4 displays the respective values for another measurement
realization (NC2). The two noise realizations show about the same result.

In order to see how the estimation error improves when the trajectory is even
slower than TC1, the above simulation was repeated for the test trajectory TC2
which is five times slower |9.004Hz). The kinematic error parameters and the mea-
surement noise parameters remained unchanged (KP1-NC1). The results are dis-
played in Fig. 8.8 which is presented in an analogous manner to Fig. 8.7. As before,
the maximum values and the standard deviations for all directions of space as well as
for the NC2 noise realization can be found in Table t:ol. From this evidence it is clear
that only a very modest improvement, if any, was achieved by using a trajectory which
was five times slower. However, the estimation error displayed in the right-hand plot
of Fig. 8.8 is much smoother than the error depicted in Fig. 8.7. This was expected
because the Kalman filter has a reduced bandwidth for the slower trajectory.

A more demanding kinematic error than TC2-KP1 is TC3-KP2. It is shown in
the left-hand plot of Fig. 5.9. The spikes and near-discontinuities exhibited by the
kin 'matic error are consequences of the closeness of the trajectory TC3 to a singular
point. Moreover, a different kinemaiic parameter set (KP2) was used than that in
the last two simulations. The main difference with respect to the estimation error
achjeved is »n increase of the maximum error, at least for NC1. This is shown iu
the right-hand plot of !"ig. 8.9, where large errors coincide with the spikes in the
kinematic error. However, the result could almost certainly be improved by opening

the Kalman filter wider. The simulation results fec M C2 and the other dimensions of
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TCI1-KP1 NC1 NC2

max | reg | 0.31 | 0.30 | 0.38 || 0.31 | 0.26 | 0.31
cmp | 0.10 § 0.11 | 0.13 0.11 | 0.12 | 0.14
STD | reg | 0.10 | 0.12 | 0.13 || 0.11 [0.091 [ 0.13
cmp | 0.034 | 0.038 | 0.052 || 0.038 | 0.043 | 0.052

TC2-KP1 NC1 NC2

max | reg | 0.24 | 0.31 | 0.2¢ | 0.24 | 0.16 | 0.24
cmp | 0.14 [0.088 | 0.11 § 0.14 | 0.10 | 0.14
STD | reg | 0.11 | 0.11 | 0.10 { 0.090 | 0.078 | 0.092

cmp | 0.047 | 0.033 | 0.044 || 0.045 | 0.039 | 0.050
TC3-KP2 NC1 NC2

max | reg | 0.40 | 0.38 | 0.36 || 0.23 [ 0.29 | 0.31
cmp | 0.12 | 0.15 | 0.13 || 0.11 | 0.13 | 0.11
STD | reg | 0.10 ) 0.13 | 0.13 ]| 0.089 }; 0.094 | 0.12

cmp | 0.036 | 0.040 | 0.046 j} 0.032 | 0.040 | 0.042

TC4-KP2 NC1 NC2
X y Z X v 2z
max | reg | 0.30 } 0.33 | 0.34 - - -
cmp | 0.19 | 0.12 | 0.14 - - -
STD { reg | 0.10 | 0.12 | 0.12 - - -
cmp | 0.04 {0.031 | 0.048 - - -

Table 8.4: Results of the nonlinear EKF simulation.

space can be found in Table 8.4.

Finally, a very fast kinemasic error TC4-KP2 (0.1 Hz) was tested. The simulation
results can be found in Fig. 8.10 and Table t:ol. li is clear from this evidence, that
even for a trajectory 25 faster trajectory than TC2, there is no serious deterioration

of the estiznation error.
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8.3.2 Covariance Analysis

The EKF simulation results can be supplemented by an approximate covariance anal-
ysis which provides additional insight into the EKF’s performance and can support
the validity of the previously obtained resalts. A covariance analysis becomes possi-
ble when the system’s nonlinearities are ignored. Usually, the Kalman filter’s internal
model is a replica of the entire stochastic process. In this case a covariance analysis
requires the solution of a Riccati equation. Here, however, the Kalman filter’s internal
model consists of just three decoupled double integrators. A covariance analysis for
this system comprises three steps:

1) Choose the EKF gain K as previously, except that now the sender is static.

2) Augment all process dynamics to the closed loop Kalman filter dynamics. |

3) Solve the Lyapunov equation corresponding to the augmented process.

The augmented dynamics consisted of the dynamics of the measurement noise and
the dynamics of the kinematic error acceleration.

1) The dynamics of the measurement noise were the previously mentioned, exper-
imentally obtained 3rd order noise dynamics for a static sender. In other words, the
influences on the noise which stem from the movement of the sender were ignored.
Further, it was assumed that the sender is located at the center of the circular test
trajectories, This ensures the measurement noise to be of some average strength over
the circular path.

2) The dynamics of the kinematic error acceleration are modeled as a white noise
driven 2nd order system with a 30dB resonance peak at f,, where f, is the frequency
of the trajectory. The output standard deviation of the 2nd order systemn was chosen
to be the RMS value for the acceleration of a sinusoidal signal with frequency f,
and amplitude 2 mm. This type of kinematic error model works well for the circular
trajectories and the kinematic error parameters chosen. This is confirmed by the

previous nonlinear EKF simulations. For instance, the kinematic error in Fig. 8.7 is
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Figure 8.11: A Bode sketch of the noise, the kinematic error and the Kalman filter. (Not to scale.)

approximately sinusoidal with frequency f, and has an amplitude of ca. 1.5 mm.

The frequency domain relationship between the measurement noise, the kinematic
error and the closed loop Kalman filter is sketched in Fig. 8.11. The task of the
Kalman filter is to let the kinematic error pass but reject the measurement noise. To
do this requires that the cui-off frequency f; of the closed loop Kalman filter be larger
than the center frequency f, of the kinematic error. On the other hand, if there is
any noise reduction to be achieved then f; must be smaller than the cut-off frequency
fr of the measurement noise.

Unfortunately, the bandwidth of measurement noise is very small (f, = 0.03 Hz).
Hence for a test trajectory like TC1 (0.02 Hz), there is very little that the KF can do
to separate the kinematic error from the measurement noise. The covariance analysis
yields a standard deviation of 0.11 mm in any direction of space. This is well in
line with the simulation result shown in Table 8§.4. Suppose the KF is told that the
kinematic error acceleration is just a tenth of the true acceleration for TC1. In other
words f; is artificially forced to be smaller than f,. The resulting STD in any direction
of space is 0.29 mm, which is substantially larger than before. On the other hand, if
the filter is opened wider by telling the KF that the kinematic error acceleration is

ten times larger than the true value, then the result even improves slightly: The STD
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is 0.10 mm, which is the same as the STD of the measurement noise and the best one
can do for the given KF structure. Thus, in general, one can recommend that it is
better to overestimate fy than to underestimate it.

For trajectories for which f, > f,, the filter is so wide open that it lets all measure-
ment noise pass. The test trajectory TC4 (0.1 Hz) is such a case. The corresponding
covariance analysis STD is 0.11 mm. Only if the trajectory is substantially slower
than f, can the Kalman filter reduce the noise. However, even for the much slower
trajectory TC2 (0.004 Hz), there was not much reduction. The STD was 0.095 mm.
The result could possibly be improved by using a steeper roll-off for the Kalman filter,
i.e triple integrators instead of double integrators.

A further question which can be approximately answered by a covariance analysis
is the influence of the measurement noise strength on the estimation error. Given the
previous analysis it not surprising to find that the estimation error is approximately
proportional to the measurement error. For instance, if the measurement noise is
increased from 0.1 mm to 0.2 mm, then the STD for TCI1 increases from 0.11 mm Lo
0.23 mm.

Finally, it is of interest to know how much could be gained if one used a full state
optimum Kalman filter instead of just a double integrator. In theory this question
could satisfactorily be answered by solving a Riccati equation for a system model
which is composed of the meessurement noise dynamics and the dynamic model of
the kinematic error. The problem is that the minimum estimation error covariance
obtained by such an analysis is highly sensitive to the error model used. In particular,
the size of the resonance peak of the kinematic error model greatly influences the

result. The previous analysis for the suboptimum KF, however, was not sensitive to

" the exact shape of the dynamic error model. This is a further argument for the use

of a suboptimum estimator because, in reality, the exact kinematic error model is

unknown.
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Nevertheless, if the peak of the 2nd order kinematic error model is fixed at 30 dB,
then for TC1 (0.02 Hz), an estimation error STD of 0.067 mm is obtained as compared
10 0.11 mm for the suboptimum estimator. This is an improvement of about 40% .
If the resonance peak is increased the improvement diminishes. A more substantial
saving was achieved for the slower trajectory TC2 (0.004 Hz): The optimum STD
was 0.022 mm compared to 0.095 mm for the suboptimum.

Concluding, it can be remarked that the covariance analysis confirmed the results
of the nonlinear simulation. The main result of both types of analyses was that the
estimation error is about the same size as the measurement noise. A reduction beyond
that requires either very slow trajectories or the compensation of the measurement
noise with data obtained by reference senders. A third method is the use of sensor

fusion as explained in the next section.

8.3.3 Sensor Fusion

An important aspect of robot sensor tcchnology is sensor fusion. In the context of the
3D ultrasound position sensor it is of particular interest to study how the position
information obtained by an optical system can be fused with.the data obtained by the
ultrasound sensor. Often, vision data are processed slowly and are computationally
expensive. However, optical methods have the potential of being quite precise. Ul-
trasound data, on the other hand, can be processed quickly and are computationally
inexpensive. However, they tend to be quite noisy. It is therefore useful to investigate
how the two sensor technologies can be merged to obtain position data which are fast,
computationally inexpensive, and precise,

The obvious answer is to supply the zero-variance position measurements of the
vision system at a low rate and use the ultrasound measurements in the intervening
time. When a new vision position measurement becomes available then the EKF

state is set to the new value and the corresponding elements of the EKF covariance
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Figure 8.12: Covariance analysis of any one component of the estimation error for the trajectaries
TC1 and TC2. 1t was assumed that perfect measurements are available at the time t=0.

matrix are set to zero. For a while the EKF will then run with a reduced estimation
error until the error again reaches its normai level.

In practice, there is the additional difficulty that, being slow, the vision position
measurements may be delayed by several sampling periods. Thus, to optimally incor-
porate this information into the EKF algorithm requires a modification which allows
for data smoothing to occur. The EKF performance would, of course, be diminished
compared to the undelayed case.

Assuming the undelayed case, a covariance analysis was conducted for this prob-
lem. The results for the test trajectories TC1 and TC2 are shown in Fig. 8.12. The
figure was computed by first computing the steady-state values for both the KF co-
variance matrix and the covariance matrix of the whole process given the steady state
KF gain. Those elements of the two covariance matrices which involve position states
were then set to zero. These new covariance matrices were then used as initial covari-

ance matrices in the covariance analysis. At each time step the KF gain was updated,
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changing the system matrix of the stochastic process. The two curves labeled ‘B’ show
the resulting time histories of the standard deviations of the estimation errors for any
of the three directions of space for TC1 and TC2, respectively. The corresponding
‘A’ curves were obtained analogously to the previous case, but it was assumed that
not only the position but also the velocity of the kinematic error are kuown perfectly.

As expected, it can be seen from Fig. 8.12 thai for a given trajectory both the
‘A’ and the ‘B’ curve converge to the steady state value for the test trajectory. The
‘A" curves, however, remain at smaller STDs for a longer time than the ‘B’ curves.
This is not surprising since the processes generating the ‘A’ curves were given more
information.

If one was to demand that the estimation error for any one dimension of space
be less than 0.1 mm with a 99.7% probability, then one would like the STD of the
estimation error to be less than 0.033 mm.' ':pr TC2, the time required to first exceed
this margin after perfect measurement of position and velocity is about 10 sec. If
only the position is known perfectly then the time required is about 2.5 sec. On
the other hand, for TC1, which is five times faster than TC2, the times are 2 sec
and 0.5 sec, respectively. Thus, the time to reach the margin is approximately in-
versely propoftional to the angular velocity of the trajectory (or proportional to the
root of the acceleration of the kinematic error). The margin time does x;ot depend
strongly on the STD of the measurement noise. However, as mentioned previously,
the steady-state value of the estimation error’s STD is approximately proportional to

the measurement noise.

8.4 Closed Loop with Noise

Finally, the closed taskspace loop was simulateC with the measurement noise. The

results for the TC1 test trajectory, the KP1 kinematic error parameters and the NC1
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noise realization are shown in Fig. 8.13. The left-hand plot in Fig. 8.13 shows the
y-component of the tracking error when the measurement noise is not compensated
by the reference sender. The right-hand plot of Fig. 8.13 shows the compensated case.

It is not surprising that ihe tracking error displayed in Fig. 8.13 is practically
identical to the EKF estimation error shown in Fig. 8.7. The loop gain fs large at
the frequency of the kinematic error TC1-KP1. Thus, the tracking error without
measurement noise is very small as was shown in Fig. 8.3. Consequently, the control
error is identical to measurement noise. For slower trajectories like TC2, this is even
truer. Thus, the preceding analysis of the the EKF estimation error applies to tjﬁe 7
tracking error as well.

On the other hand, one would expect different results for kinematic errors whose
spectra are close to the crossover frequency of the outer loop. To some extent, this
is the case for the kinematic error TC4-KP2. The simulation results for this case
are shown in Fig. 8.14 in an analogous manner to Fig. 8.13. The results are still
very similar to the EXF estimation error which is displayed in Fig. 8.10. However,
during the initial acceleration phase of TC4, the control error is quite large. This was
documented in Fig. 8.5. This little peak can also be seen in the right-hand plot of
Fig. 8.14. Moreover, the tracking error for the system with compensated noise exhibits
a 0.1 Hz component, which is the frequency of the noise-free control error shown in
Fig. 8.14 for TC4-KP2. It can be expected that eventually, for faster trajectories, the

(noise-free) control error will come to dominate over the measurement noise.
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Chapter 9

Conclusions

9.1 Thesis Summary

The precise end effector tracking of taskspace trajectories is an important problem in
the control of manipulators. However, ignorance of the true kinematic and dynamic
properties of the robot often precludes high-precision tracking. This thesis proposes
a solution to overcome this restriction by measuring the end-effector pose in both the
joint space and the task space, and using the tvwe measurements in a feedback scheine
to reduce the tracking error. It was shown that this double loop design is superior to
a single loop design because it can reduce the uncertainties more eflectively,
Another important feature of the control system is a new nonlinear kinematic
decoupling scheine. it is superior to the traditional Jacobian-based methods because it
does not involve a lncal linearization of the robot kinematics. Rather, it compensates
for the nonlinearities globally. This has several advantages which include a reduced
loop uncertainty and the ability to handle large disturbances or step trajectories. It
also offers a clean proof of robust global stability and robust global performance.
The second issue studied in this thesis was the problem of actually measuring the

end-effector position in taskspace coordinates. Many methods have been proposed by
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other researchers. This study explored the properties of using ultrasound for 3D end
effector position measurements.

One aspect of this task was the design of the ultrasound sender-receiver circuitry.
The key problem was to determine the exact time-of-flight of the ultrasound signal
in the presence of background noise and reflected signals. The problem was solved
by a combination of thresholding and zero crossing detection. Using this method, an
inexpensive prototype was built and used as a ' ata acquisition tool. The prototype
consisted of four analog receivers, two senders and a counter/signal generator card
that plugs into any IBM-AT. The time-of-flight data acquired by the prototype were
used to verify the proposed measurement noise model experimentally.

Another key hardware problem was the choice of the ultrasound transducers.
Those transducers which are large compared to the wave length cause a mismatch
between the acoustical center and the geometrical center. Depending on the effective
transducer size, it may or may not be necessary to compensate for this mismatch.

To compensate for biases and drifts a deterministic error model was developed.
Many aspects of sound transmission in air were studied. However, tl:e main factors
are the room temperature, the roo.a temperature gradient and drafts. The former two
can relatively easily be compensated for by a reference sender. Strong air movements,
on the other hand, should be avoided. Another important factor of sound transmission
is reverberation whose main effect is to limit the achievable pulse rate.

To compensate for time-of-flight fluctuations, a stochastic error model] was devel-
oped. The measurement fluctuations were shown to be correlated in time and space.
The correlation time constant is about 20-30 sec and the correlation distance constant
is about 30-90 cm, depending on the atmospheric conditions in the room. The model
is capable of describing the joi.'nt space-time statistics of the time-of-flight fluctuations
of an arbitrary number of sender-receiver pairs. The stochastic mode! was verified

with experimentally obtained data.
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An extended Kalman filter was then used to best estimate the kinematie error
given the knowledge of the previously mentioned environmental error models. ‘The key
problem of this method was the difficuity of characterizing the {unknown) kinematic
error spectrally. The problem was solved by modeling the dynamic behavior of the
kirematic error as a double integrator. The noise states were not included in the
EKF model.

To further reduce the estimation error, a measurcment noise compensation schense
was introduced. Tius idea exploits the known spacial correlation propertics of the
noise: One or more reference senders, which are placed al strategic points, are used
to optimally compensate for the measurement noise of the main sender,

The system behavior was simulated to understand how certain lactors contribute
to the overall system tracking error. Iirst the system was simulated without mea-
surement noise. It was shown that the main influence of the extended Kalman filter
dynamics on the system behavior was through nonlinear dynamic cross coupling and
sensitivity to acceleration.

Next, the performance of the EKF was tested outside the loop. It turned out that
the EKF estimation error is about the same size as the measurement noise. To immprove
that requires any of the following: Better knowledge of the spectral properties of the
kinematic error, very slow trajectories, the use of the above mentioned measurement
noise compensation method, or sensor fusion with a vision system.

Finally, the entire system including the measurement poise was simulated. It
turned out that the overall tracking error is identical to the estimation error, except for
very fast trajectories where the dynamic control error also contributes Lo the tracking
error. For atmospherically calm, small to medium sized rooms the maximum tracking
error can be expected to be about 0.4 mm in each direction of space. When reference
seiciers are used to compensate for the noise, one can expect this value to be reduced

to about 0.15 mm in the vicinity of a reference sender. With some notable exceptions,
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the speed of the trajectory plays only a minor role in the precision achievable.

9.2 Suggestions for Further Research

Any fulure continuation of the work presented in this thesis should include an ex-
perimental setup to test the overall performance of the system in a real robot envi-
ronment. Associated with an experimental setup should be an investigation into the
adaptive identification of environmental factors such as the correlation time constant,
the correlation distance constant, the inverse sound speed and the inverse sound speed
gradient.

Further, it would be important to investigate which practical tasks and configu-
rations preclude complete observability. Are there microphone-sender configurations
which ensure observability for all common tasks? In connection with this questic-, it
would be interesting to study the best strategy to pursue when partial unobservability
does occur.

Another aspect requiring investigation i= the reduction of the numerical complexity
of the control algorithm. In particular, it would be desirable to find computationally
inexpensive approximations for the spatial covariance kernel and the inverse kinematic

function.
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Appendix A

Covariance Approximation

It is desirable to find an approximaie closed form solution for the spatial covariance
equation (6.10) because the numerical evaluation of the double integral is computa-
ionally expensive. This is particularly important for the case where the two mea-
surement channels share the same sender and/or the same receiver. The reason is
that the evaluation must be done in real time if a reference sender is to be used for
cptimal noise reduction.

For this case, assume that the two ray-paths I'; and T'; share a sender or a receiver,
and let the angle between the two paths be denoted by . Fufi.her, without loss of
generality, let ¥ > 1 be such that d; = vd;. Furthermore, let a =1/D;.

Unfortunately, if [I‘Ji Il =1 - |l2 in (6.10) is taken to denote the 2-norm, then (6.10)
does not have a closed form solution. On the other hand, if the 2-norm is approxi-
mated by the average of the 1-norm and the co-norm, i.e. || - ll2 & (|| - 1 + I - lloo)/2s

then (6.10) with (6.6) does have a closed form solution:
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APPENDIX A. COVARIANCE APPROXIMATION

17
If || # arctan(2) :
Fo(v) if @ =0°
2F(3s]) = 4F(|s]) + F(bp1) + F(bmi)exp(—ard;) if 0° < Jpo| < 45°
Prp=1q F(3ls]) ~ 4F(|s]) + 2F(bp2) + F(bmi) exp(—aydi) if 45° < || £ 907
F(3|s|) — 2F(bp2) + F(bp ) exp(—avd;) if 90° < || € 135°
| F(bp1){exp(—aydi) - 1) if 135° < || < 180°

if || = arctan(2) :

P = F(%[sl) — 4F(|s]) + 2F (by2) ~ ad; exp(—ad;)e, D?

where

Fo(v) = e1D}(2d;/ Dy + exp(—d;/Dy) + exp(—vdi/ D1} + exp(—(y — 1)di/ D1) — 1)

P() = 07 OB =)
|s| = |sin(v)], lc| =|cos(s)]

by = [s|/2+lel, b =ls|+el/2,  bmi = 1sl/2~ ]

cn
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Appendix B

The PUMA 600 Manipulator

The kinematic structure of the PUMAG600 is shown in Fig. B.1. The following nom-
inal values were used for the relevant kinematic parametres: & =0mm, b,=149mm,
a3;=432mm, a,=20mm, b;=432mm. The moving sender was located at the origin of

the 4th frame.
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APPENDIX B. THE PUMA 600 MANIPULATOR
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Figure B.1: The PUMAG00 robot manipulator
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Appendix C

The Ultrasound Transducer

Figure C.1: The ultrasound Lraqsducer muRata MA40S2R
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Figure C.3: Ultrasound transducer radiation characteristic.
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Appendix D
Circuit Diagrams

For the two senders, the gated CW signals were generated by 5/3 Intel 8254-2 16 bit
counter-timer chips and fed directly to drivers for the two ultrasonic sender transduc-
ers. The sender transducer and the drivers were connected by shielded cables. The
parameters for the gated CW signal like burst length, sampling period and delay be-
tween the first and the second sender burst are defined by the controlling C-program,
which in turn does the setup for the Intel 8254-2. An additional 4/3 Intel 8254-2 chips
were used to count the (TOF+TOA) for the four receiver channels with 10 Mhz clock
speed. This brings the total number to nine 16 bit counter-timers on three chips.
Counting is enabled when a ranging signal is sent and is disabled when the analog
part of the channel’s receiver had dete;:ted a zerocrossing of the signal after a preced-
ing trigger. The analog receiver was located as closely to the transducer as possible in
order to improve the noise problems with the very weak transducer signal. The whole
receiver electronic for one transducer fitted comfortably on a small copperplated bord
of dimensions 2.5cm x 6.5cm. Shielded cables connected the computer with the four
analog receivers. The cables carried the count disable TTL output signal from the
analog bord and the carefully filtered powerbus from the computer. Circuit-, and

block-diagrams of the receiver and interface card can be found below.
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APPENDIX D. CIRCUIT DIAGRAMS 151
adresses
._7£___ cs SND1
Sepder
Address 20, Al DL
Decoder cs 1
8
o £ / Timer SND2
7 7 Sender
data SND2
[_10 Hhz P
CLR
Clock
PRE1
R .
CNTE1 | Lateh 1 cHl eceivex
1
PRE2
/ CH? Receiver
4 NTE2 Latzh 2
2
Counter
PRE3
J— Latch 3 CH3 Recelver
3
PRE4
Receiver
CNTE4 Latch 4 CH4
4

Figure D.1: Block diagramm of the whole ultrasound ranging system.
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10 Mhz Vcco
5/3 intel 8254
CLK
Cs carrier GATE
mode: 3
A0, A ouT
W/R
data sampling e
mode: 2
ouT
burstl GATE SND1
mode: 1 L——v
ouT R | snp1
delay GATE
mode: 5
ouT AND | 1R
CLK
burst2 GATE. SND2
mode: 1 —
OUT. OR | snD2
——

Figure D.2: Diagram of the TIMER circuit.
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10 Mhz
4/3 intel 8254 i
CLK
counting | GATE CNTEL
mode :

e: 2 ouT PREL
mode: 2 oUT PRE2
CLK
counting | GATE CNTE3
mode: 2 PRE3 -
X
counting | GATE CNTE4
mode: 2 oUT PRE4

—

Figure D.3: Diagram of the COUNTER circuit.
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Signal
|

Time L Zero
anplifier Trigger. Crossing ——o0
Trigger| “INdoW | strobe Detector] H

Microphone

Figure D.4: Block diagram of the RECEIVER circuit.

Figure D.5: Diagram of the AMPLIFIER circuit.
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Figure D.6: Diagram of the TRIGGER ecircuit.
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Figure D.7: Diagram of the TIME WINDOW circuit.



APPENDIX D. CIRCUIT DIAGRAMS 136

signal

strobe ]K
oA

Figure D.8: Diagram of the ZERO CROSSING DETECTOR circuit.
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CIRCUIT DIAGRAMS

+12v

430
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430 % transducer
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e \f\/\f—l
10%
+12V

Figure D.9: Diagram of the SENDER circuit.
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CIRCUIT DIAGRAMS

V.
1/2 7T4LS109
PRE
o S
_ CNTE
*— J Q
CH
O > CLKk
.
CLR h
o R

Figure D.10: Latch circuit

PRE | CLR | CH || CNTE
H L X H
H H T L
L H X L

Table D.1: Truth table of latch circuit
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Appendix E

C-Program

/e ultsound.h
/e
This program contains the address and command
definitions for the Intel B8254-2 counter chips.
./

/+ Macros for converting bytes into short integers and vice versa o/

#define MAKE_SHORT (msb,1sb) msb*0x0100+1sb
#define WSB{x) _rotr(x0xFF00,8)
$define LSB(x) xkOxOOFT

/% Adress definitions for the 8254-2 chips on the ultrasound card «/

#define CHIP1_.CO 768
$define CHIP1 C1 769
“define CHIP1.C2 770
$define CHIPI.CR 771

$dafine CHIP2.CO 772
$dafine CHIP2.C1 773
$define CHIP2.C2 774
$define CHIP2 CR 775

8define CHIP3.CO 776
$define CHIP3.C1 777
sdefine CHIP3_C2 778
$define CHIP3.CR 779
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/* Programming commands for the 8254-2 chips i

/+ {first LSB then MSB for read/write; binary 16bit counters) s/

#define CO_MODEC 0x0030
#define TO_MDDE1 0x0032
sdefine CO_MODE2 0x0034
#define CO_MODDE3 0Ox0036
#define CO_MODE4 Ox0038
#define CO_MODES 0x003A

#define C1_MODEQ 0x0070
#define C1_MWODE1X 0x0072
#dafine C1_MODE2 0x0074
#define C1_MODE3 0x0076
#define C1_MODE4 Ox0078
#define C1_MODES Ox007A

#define C2_MODEOQ 0x0CBO
#define C2_MODE! Ox00B2
#define C2_MODE2 Ox00B4
$dofine C2_MODE3 Ox00B6
#define C2_MODE4 0x00BSB
#define C2_MODES 0xOOBA

/* Latch commands for reading values from the 8254-2 chips #/

#define LATCH.CO 0x0000
#define LATCH_C1 Ox0040
#define LATCH_C2 0x0080/

/e exp.read.c

This progiam reads the counter values of the receiver channels
for che ultrasound card and urites the cbtained values into a
data file for further processing. It also sets up the signal
generators for the tvo ultrasound sender which are supported

by the card. The davice uses intel 8454-2 chips for both counting
and signal generztion.

»/
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APPENDIX E. C-PROGRAM

#include <stdio.h>

#include <stdlib.h>

#include <conio.hd>

#includa "“ultsound . h"

#define CARRIER_PERIOD 250

main()

{

unsigned int input(), clean(), x, count, end.count;
unsigned int readl_time, read2_time; ’
unsigned int ini_1, in1_.2, in1 3, ini_4;

unsigned int in2.1, in2_.2, in2_3, in2_4;

unsigned int oldl.1=0, old1_2=0, 0ld1_3=0, old1l_4=0;
unsigned int 0ld2_1=0, ©1d2.2=0, 01d2.3=0, 0ld2.4=0;

unsigned int burst_length, sampling_period, delay_sender;

char filename_s[41], filename bl41];
FILE »fptr_a, efptr.b;
/+ parameter input e/

printf{"Number of samples to be taken 7 ");
scanf{"%u" ,kend_count);

printf(“Burst length 7 ");

scanf {"%u" ,tburst_length):

printf("Delay of sender #2 or switch %2 off 7 ")
scanf ("%u" ,kdelay.sender);
printf(“Sampling peried 7 ");

scant ("¥u" &sampling_period):

printf{"Data filename for sender %1 7 ");
scanf{"%s" ,filename_a);

if (delay.sender'!=0)

{ printf("Data filename for sender #2 ? ");

scanf("%s" ,filename_b);}

/* set carrier period -/

outp(CHIPi.CR, CO_KODE3);
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outp(CHIP1_CO, LSB( CARRIER_PERIDD ));
outp(CHIP1.CO, MSB{ CARRIER_PERIOD )});

/% sat the sampling periocd =/
outp(CHIPL_CR, C1.MODE2);
outp{(CHIP1_Ci, L5B( sampling.period ));
outp(CHIP1_C1, M5B( sampling period }};
/# set the burat length for sendersl s/
outp{CHIP1_CR, C2_MDDE1);

outp(CHIP1_C2, LSB( burst_length ));
outp(CHIP1_C2, MSB( burst_length ));

/% set the delay between sander #1 burst and saender $2 burst #/
outp(CHIP2_CR, Ci_MODES);

outp(CHIP2.Ct, LSB( delay.sender });
outp(CHIP2_C1, W5B( delay_sender ));

/= set the burst length for sender $2 »/
outp(CHIP2_CR, C2_.MODE1);

outp(CHIP2.C2, LSB( burst.length }};
outp{CHIP2.C2, NSB( burst_length ));

/% setup receiver $1 »/

outp(CHIP3_CR, CO_MODE2);

outp(CHIP3_CO, OxFFFF);

ontp{(CHIP3.CO, OxFFFF);

/» Betup receiver #2 e/

outp(CHIP3_CR, C1_MODE2};

outp(CHIP3_C1, OxFFFF);

outp(CHIP3_C1, OxFFFF);

/e setup receiver $3 =/
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outp{CHIP3_CR, C2_WDDE2);
outp(CHIP3.C2, OxFFFF);
outp{CHIF3_.C2 OxFFFF);

/% setup receiver #4 »/

outp(CHIP2_CR, CO_MODE2)};
outp(CHIP2_CO, OxFFFF);
outp{(CHIP2_CO, OxFFFF);

/+ start read of receivers =/

fptr.a=fcpen(filenama.a,"s"};
fptr_b=fopen(filename.b,"v");
readi_time = sampling_period = 300;

read2_time = gampling_period - delay_sender - 300;

for (count=1i; count<=e¢nd_count+2; count++)

{

/* input for sender ¥1 emission */

vhile ( input{ CHIP1_CR, CHIP1_.C1, LATCH. 1) >= readl.time )

G}

ini_1 = clean{OxFFFF~input(CHIP3_CR,CHIP3_C0,LATCH_CG}, &old1.1, count);
in1_2 = clean{OxFFFF-input(CHIP3_CR,CHIP3_C1,LATCH_C1), %ocldi_2, count);
in1.3 = clean(OxFFFF-input{CHIP3_.CR,CHIP3_C2,LATCH.C2), &kold1.3, count);
inl_4 = clean(OxFFFF-input(CHIP2_CR,CHIP2_CO,LATCH_CO), Roldl_4, count);

/+ input for sender ¥2 emission =/

while ( input{ CHIP1.CR, CHIP1.Ci, LATCH_C1) >= read2.time )

{}

in2.1 = clean{OxFFFF-input(CHIP3_CR,CHIP3_CO,LATCH_CO), %01d2.1, count};
in2_2 = clean(OxFFFF-input (CHIP3_CR,CHIP3_C1,LATCH_C1), %old2_2, count);
in2.3 = clean(OxFFFF-input{CHIP3_CR,CHIP3_C2,LATCH.C2), &old2_3, count};
in2.4 = clean(OxFFFF-input (CHIP2_CR,CHIF2_CO,LATCH_CO), %o0ld2_4, count);

/+ write input to file */
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if (count>2 &t delay_sender!=0)
{ fprintf(fptr_a,"LTus?uk7ulTu\n", inl_ 1, in1.2, ini 3, inl_4);
fprintf{fptr_b,"L7u¥7ul7u%Tul\n", in2_1, in2.2, in2_3, in2_4);}

- if (count>2 &k delay_sender==0)
tprinty(fptr.a, " LTul7ud7ul7u\n", ini_1, in1.2, in1_3, inl_4);

/* wait until the end of the sampling paried =/

while ( input{ CHIP1_CR, CHIP1_C1, LATCH.C1) < read2_time )

{i}
}
close(fptr_a);
close(fptr.b);
}
. unsigned int input( chip_commana. chip_counter, latch_counter )

unsigned int chip_command, chip.counter, latch_counter;

I
the function "input" returns the integer count of the selected
countser at the latch instance.

./

{

, unsigned int lx, mx;
outp{ chip_command, latch_counter };
1x=inp{ chip_counter };
mx=inp( chip.counter };

return{ MAKE_SHORT( mx, 1x ));

unsigned int clean( in, old, count )

unsigned int in, sold, count;

FE]
the function “clean™ has the purpese to correct errors that
are caused when the burst arrival trigger misses a period
because of amplitude fluctuation. These errors are multiples
of the carrier period and can therefore be corrected.

*/

-
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int x;
div_t mod;

x = (w»0ld) - in;

- it ( count ¢ 3 )
{ (vold} = in; }

else if ( x > 200 )
{
mod = div( x ~ 200, CARRIER_PERIOD );
(#01d) = in + (mod.quot + 1)}eCARRIER_PERIOD;
}

else if ( x < =200 )
{
mod = div( x + 200, CARRIER_PERIDD );
(#01d) = in + (mod.quot = 1)}«CARRIER_PERIDD;

else

{ (s01d) = in: }

i

return({eold));

£ ‘5‘""!‘
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