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Abstract

The reduction of the kinematie error for precise tr..jectory tracking: of a robotic manip­

ulator's end eifector pose is best achieved by taskspace sensory feedback. To this end,

a new taskspace control scheme is introduced whieh has two main features: Firstly,

a hierarchical control structure which feeds back both, joint and taskspace variables

and thereby reduces uncertainty better thall other schemLS. Secondly, a nonlinear

decoupling scheme which best linearizes the taskspace loop.

The manipulator's end eifector pose is ."'leasured by a 3D ultrascund range finder,

for whiclf::a very detailed deterministic and stochastic model is obtained from exper­

imental data. Sorne of this information is then used in an extended Kalman fiiter to

compensate for the range finder's imperfections.

Finally, the 3D ultrasound range finder, the extended Kalman filter and the new

taskspace control scheme are simulated in concert in a realistie environment, to assess

the control system's ability to reduce the kinematic tracking error.
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Résumé

La réduction d'erreurs cinématiques pour l'observation précise de t.raject.oil'l·s du

poignet du manipulateur robotique est mieux réalisée par l'ut.i1isation d'nll(' rétroact.ion

à l'aide de capteurs dans l'espace Cartesien. Dans cette thèse, nons introduisons UII

nouveau système commande, qui comporte deux caractéristiques principales:

Premièrement, une structure hiérarchique de control rétroaet.ive sur I,'s art.ienla­

tions et les variables opérationelles réduisant mieux, de cc fait., les incert.it.ndes '1111'

d'autres systèmes. Dem:ièment, un syst.ème de découplage non-lint,aire qui Iillt'arise

mieux la boucle dans l'espace Cartesien.

La position du poignet du manipulateur est mesurée par UII télémèt.re il IIltm-sulI

tri-dimensionnel pour lequel un modèle déterministe et stochastique très d,;taillé est

obtenu à partir de données expérimentales. Certaines de ces dounées sout. ensuit.e

utilisées dans un filtre de Kalman afin de compenser les imperfections du tél,:m(·t.re.

Finalement, le télémètre à ultra-son tri-dimensionuel, le filt.re d,' Kalmau('\. ce 1I0U­

veau système commande dans l'espace Cartesien sont simulés dans un ellvirolluement

realiste afin d'estimer la capacité de réduction d'erreurs cinématiques d'ohservat.ioll

du système commande.

iii



(

(

(

Acknowledgements

1 would like to express my deepest gratitude and appreciation to my research adviser,

Prof. Pierre R. Bélanger. His excel1ent guidance, help and encouragement were

essential for the completion of my research.

1 would Iike to thank James Owen, Lin Lin and Le Yi Wang for their help and

suggestions regarding those parts of the thesis which deal with Hco theory and robust

control.

1 would like to thank Christian Consol for his assistance with the French trans­

lation of the abstract and 1 would like to thank Meyer Nahon and Greg Gordon for

proof-reading the manuscript.

iv



'.~

Claim of Originality

This research presents new results regarding robot manipulator taskspace trajeclory

control, and 3D ultrasound position measurement instrumentation. To the best of

my knowledge, the following are original contributions:

Il The resolved position loop is introduced al> a means to globally dccoupl<, and

linearize a taskspace loop.

• The double servo loop which feeds back both the joint angles and the taskspacc

position is recognized to be a superior structure for reducing model unccrtaillty.

• The combination of the resolved position linearization and the double servo

loop is shown to be robustly stable, and robustly performing in the presence of

modeling errors including neglecled flexible modes.

• A sequential control design procedure for the double loop is presented.

• An experimentally verified analysis of ail relevant environmental influences 011

indoor 3D ultrasound precision ranging for distances between 20 cm and 2 m is

given.

• An experimentally verified stochastic model describing the spatial and temporal

statistics of the 3D ultrasound measurement noise is given.

v



• An extended Kalman filter in combination with a reference Kalman filter is pro­

posed to partially compensate for the noisy ultrasound position measurements.

• A siml'lation backed analysis of the limit?'-::.:lS on kinc:matic error reduction

obtainable by a combination of the resolved position linearization, the double

servo feedback Joop, the 3D ultrasound range finder and the extended Kalman

filter is presented.
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Chapter 1

Introduction

1.1 Reducing the Kinematic Error

In the carly days of roboties, robotie manipulators were mainly used for repetitive

tasks in highly predictable and structured environments. Their movements were

taught by physieally moving the robot's end elfeetor along a desired trajeetory and

rceording the resulting joint angles. The error with whieh the robot ean repeat these

taught positions is often referred to as repeatability. Many commercial manipulators,

with reasonably large work spaees, have repeatability errors around D.Imm. This is

small enough for most tasks to be performed sueeessfully.

Now, however, many robots are used for more eomplex tasks in sensor monitored,

ehanging envlronmcnts. Often, an AI program [1] is used to eoordinate the move­

ments of the manipulator with a priori knowledge, multisensor data and the desired

pcrformanœ goals. The robot 's movements will therefore depend on the environment

and often ean not be taught in advanee. Therefore, the manipulator must be able to

follow numerically spceified trajeetories.

The dilfenmce between the numerieally eommanded end elfeetor position and the

position actually reaehed is ealled the kinematie error. Unfortunately, the kinematie

1
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error is much larger than the repeatability errol': It can bl' largl' as IOllIm [:!], i.t'.

hundred times larger tlli\ll the repeatability. The rl'ason for tlll' kint'mati<' "lTor i"

an ignorance of the robot'5 truc kinematic funct.ion; a fllnctioll whi<'h l't'lat,·" Utl'

joint variables to the Cartesian end effector position. U"ually, only knowl,',\g" of tlll'

nominal kinematic function is available. lt is derived l'rom the lIomiilal mallipula­

tOI' geomef,ry. The true manipulator geometry, however, is a l'l'suit of t.lll' t.OIl'l'illll·'·S

allowed in the manufactUl'ing of the robot component.s, and may <Iilrer l'Onsid"rably

from the nominal geometry. Other influences incluel,,: .Joint angle olrset, gCill' baek­

lash, geaI' transmission enors, joint drive compliance, base motion, shart wobblillg,

bending torsion of link structures and temperatlll'e depellliencies. The l'dative mag­

nitude of some of these error sources was investigated in [3].

Robots with small kinematic errors have numerolls advant.ages. Predominant.

among these is the abilit.y to precisely t.rack numerically generated t.raject.ories, thl'I't'by

helping t.he manipulator to perform complex tasks in changillg environll1l'llts. Othel'

advantages are mentioned in [2]: A small kinematic errol' cali eliminate 1I10st penelant

teaching efforts. IL also makes robot programs more readily t.ransport,able to other

machines, and it eases multirobot coordination. Thus the re<luction of the killemat.ïe

error is an important task.

The goal of this thesis is therefore to reduce the the kinematic el'1'or iL~ much

as possible. Ideally, the kinematic error is reduced to abOlit the same size iL~ thl'

repeatability error, i.e. O.Imm. In the remainder of the thesis, this precisioll will 1",

referred to as the accuracy of interest and errects which are smaller will be cOllsiriered

neglectable.

A popular approach to reduce the kinematic error is to calibrate the mallipnlatol'.

This is done by measuring several end effector positions and their correspollrling Sl'ts

of joint angles. The collected data arc then analyzed to ohtaill the kinematic fllnct.ioll

of the particular robot. This approach has had sorne suceess ill rcducing the killcmati<:
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error. For examplp., the static precision reported in [2] was better than O.Smm for a

l'lJMAi60.

The disadvantages of robot calibration include that the modeling of the nongeo­

metric errors is difficult and robot dcpendent. Even the usual temperature changes

betwecn night and day can yield kinematic errors of up to 0.3 mm [3]. Further,

structural compliancc effects due to unknown payloads cannot be compensated for.

On,en, the objective of manipulator control is to track a given trajectory. Evidently,

statie calibration cannot reduce the part of the tracking error which is due to possible

changes of the kinematic function when the robot is moving. Another disadvantage

is the computational complexity of calibration. The forward and inverse kinematic

functions which incorporate the calibration results are bound to be very complicated.

They oftcn require numerical solutions even if the nominal kinematic funetions have

relatively simple closed forms. Since these funetions may be used for real time control

purposcs, computational simplicity is very desirable.

A better way of reducing the kinematic error is taskspace position feedback: The

pose of the manipulator end effeetor is continuously measured in Cartesian coordinates

and this information is used by a suitable feedback scheme to reduce the kinematic

crror. Evidcntly, the question of how to achieve taskspace position feedback has

two components: How to measure the 3-D end effector pose, and how to use these

measurcments to reduce the kinematic error.

Therc arc many different technologies for measuring the end effeetor pose. Among

the methods proposed are automated theodolites [4] which are extremely precise

(±0.05mm) but also extremely slow. Another method attaches photo diodes to the

end effector and monitors their movement with the help of a laser scanner [5] which is

not very precise (±2mm). Yet another method attaches LEDs to the end effeetor and

uses cameras to track them [6]. There are also commercially available deviees which

are based on this idea and which achieve good results: On a two meter range, the older
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\Vatsmart system [61] achieves ca. 2 mm precision. and ils snn·l'ssor. tI", Optolrak

system [61] achieves ca. 0.3 mm. Bolh prodnds allol\' sampling rall's or sl'\'t'rill

hnndred Hz. Many of the cited methods r<'quire a subslaulial linilncial in\"l·slmt'nt..

One objective of this thesis is to explore the advanlages allli limils or :1- \) ('IU\

effector position measurements based on ultrasound. The idea is 10 aUilch 1I11rasollnd

senders to the end effector of the manipulalor and to lise a lixed microphonl' ,lITay 10

track their position. The advantages of such a scheme incinde:

• Low l'ost hU1·dwal'e: The prototype including the u\trasonnd lransdn("l'rs. t.1u,

computer interface and all required analog and digital circuitry l\'iLS buill for

under $200.

• IIigh speed: Pulse rates of more than hundred Hz l'an be achil'ved.

• Small complttationa/7'eq'llÏ1'ements: An off-the-shelf single bo.1l'd ("llmpnt..'r wit.h

numeric coprocessor should be sufficient.

• Good precision: Depending on the circumstanccs, good submillimcter precisions

l'an be achieved.

The potential uses for this type of measurement system include low-cost., high prl'ci­

sion tracking applications. Il may also be useful for sensor fnsion applicat.illns, wher..

the fast, low-cost ultrasound position measurements supplement sl",v('r and mllrl' l'X­

pensive apt,ical measurements. Another application is for environlllents which arc

antagonistic to optical methods, like dirty and dusty environments. Mllrl'(JVer, the

work presented in this thesis could possibly be extended to applications in nndl'rwater

robotics.

If used independent of the control system the 3D 1Iitrasonnd p"sitirm Sl'nsor ClIn

be used as a convenient and inexpensivc tool for the nsual p.munetric l'Obot calibra­

tion. Alternativc1y, it l'an be used fol' nonparametric calibration wh..re th.. kinelllatic
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crror history for a particuiar robot trajeelory is recordcd and later used for error

compensation along tilis trajectory.

The new l1L~kspaCl' position feedback scheme introduced in this thesis stands on

its own. The scheme is independent of the particular taskspace position measurement

devicc used and therefore is not restrieled to the 3D ultrllSound range finder used in

this theses. Its main features arc:

• il hient1'chic,,1 $C/'1I0 con/I'ollel' splits the overall loop uncertainty into a dy­

namic and a kinematic uncertainty. Hierarchicalloops reduce uncertainty more

c1feelivcly than single loops and are therefore superior to single loop schemes.

• Thc l'csoIvet! position nonlinear kinematic decoupling scheme is introduced. Il

decouples and linearizes the kinematics globally and is superior to other meth­

ods. It is a1so very satisfying from a. theoretical point of view.

Applications for the new tllSkspace controller include ail situations where high per­

formance sensory pose feedback is requircd.

1.2 Pose Measurement with Ultrasound

The key to kinematic error reduction, via feedback, are precise position measurements.

The purpose of the ultrllSolllld range finder is therefore to measure the position and

orientation of the manipulator's end-effeelor Ils accurately as possible. The pose is

represented with respeel to an arbitrary but fixed 3-D reference coordinate system.

ln the following, a right-handed Cartesian reference coordinate system is assumed.

Other choices arc possible and may, in certain CllSes, simplify the kinematic funelion.

The sender position is mellSured by attaching an ultrllSound transmitter to the

end elfector of a robot. The transmitter emits carefully timed bursts of sound which

arc reccived by distant microphones. Since sound propagates with a finite speed,
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Figure 1.1: Schematie diagram ofsender and microphone configuration

there will be a smail time delay between the sending and the recciving of the hurst.s.

When the speed of sound c is known, then the scalar dist.ance di bctwecn t.he scnd"r

and the i-th receiver and the measured time dclay tof; arc rclated iL'

cl
tofi = ....!.

c
( 1.1 )

-.,.

(During the remainder of this text, the measured t.ime delay tofi will ort,cn synony­

mously be denoted as "TOFn which is short for "time of lIight.".)

ln order to measure the sender posit.ion in :3-1) spacc using 'l'OF 1Il('iL'Ilrt'IIlI'Ut.s

an array of m microphones at weil known lixed and distinct posit.ious is n'·l'ded.

The position of the sender l'an then be calculated frolll the range lIl"lIsurI'U\l'nt.s I.y

triangulation. The Fig. 1.1 depicts the situation: Ali denotes the position o[ t.he i-t.h

microphone, S denotes the position of the sender, and Ci denot.es t.he unit direction

from the sender to the i-th receiver. If the l'vIi arc known a-priori and li,,· di arc

measured, then the sen,jer position Scan be found by solving a set of lIonliumr

equations. Since

one has to solve the following equations for ,,':
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clf - MiMI -2Mi, 1

(S~S )= (1.2)

Il T. _?/lf1' 1(m - 101,,,1\lm - m'

Evidently, for m = 4 micrr>phones (1.2) can be solved as four linear equations

with four unknowns. Thus providcd that the matrix on the r.h.s. has full rank, four

microphones do guarantec a unique solution for S. The full rank condition translates

iuta thc rcquircmcnt that Ilot all four microphoncs should lie on the same plane.

SOI11C geometrical insight reveals the other cases: For m = 3 linear independent

microphones, equation (1.2) yields a unique solution if Slies on the plane spanned by

the 3 microphones. It yields two solutions if S lies outside of it. Usually, however, one

has sol11e crude a priori knowledge of the sender position and can easily exclude one of

the two solutions. Thus, usually three microphones suffice for a unique determination

of S. For m = 2 distinct microphones the solutions for Sare constrained to lie on a

circle. Finally, if there is just one microphone the solutions are constrained to lie on

the surface of a sphere.

The orientation of the end effector can be calculated from position measurements

if at least Huee senders instead of just one are attached to the end effector. For

cxample, the end effector can be thought of as having a Cartesian, right-handed

coordinate system attached to it. The origin of this coordinate system would then

collotate with the position of the end effector and the coordinate system's orientation

would be identical to the orientation of the end effector. For instance, the position

of the origin Po of the end effeetor coordinate system could be chosen to lie at the

center of the triangle spanned by the 3 sender positions S), S2, Sa,

and the three unit vectors 0), 02 and oa of the end effector coordinate system could

he choscn to be:
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81- 52
°1 =

1181 - 8211
~' ( <;1" )

°2 =
Op 2 - '- 2 01 0t

1152 - (8!01 )UIII

°3 - 01 X 02

The above description is reduudant. 1t rl'quir<~s 12 nUlllbers t.o deslTibe posit.ion

and orient.ation. However, just 6 numbers surne<' if olher represent.ations of orit'llla·

tion are used like roll-pitch-yaw, Euler augles, or t.he equivalent. axis r"l>rt~st.'nt.alion.

However, these descriptions are not. unique and can be IlII111erically ill dcfined. A four

number orientation representat.ion like the quarternians could overcollle these prob­

lems. A detai1ed study on t.he representation of orientation for t.asksp<ll"e ft,t'dhack

can be found in [18].

1.3 Noisy Pose Measurements

Unfortunately, the range measurements are rather noisy. This is prinlllrily due t.o an

ignorance of the true sound-speed as a function of time and spaCt'. SUlilll variatiolls

of the sound-speed can blur the computation of positioll and orient.at.ion frolll 'l'OF

measurements, even if an average sound-speed is kllown. The Ullcert.aillt.y is in t.he

order of 0.1%of the range. Thus, on a 1 m range one can expect ail errOl" ill t.he orrler

of 1 mm.

The reason for the f1uctuating nonuniform sound-speed is its strong dCPCII<I"lIcy 011

temperature and wind, and 1.0 a much lesser degree, its weak dcpendellcy on pressure

and moisture. According 1.0 [28], the specd of sound in air can be approximated 'L~

~
{)Jl)c= -
lJP ndinhlltir:

( 1.:\)
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where the partial derivative is evaluated for equilibrium conditions of the air pressure

l'and the air density p.

The most prominent factor which influences the speed of sound is the air temper­

ature. According to [33]:

{) m
C =Co 1+ ?~3 C ~ CO +0.6 C {)

_1 0 sec O
(1.4)

(

where co=331.4 m/sec is the speed of sound at O·C and {) is the temperature of the

air in ·C. At 20·C room temperature, the speed of sound is c2o=341 lIl/:1ec. It is

evident from (1 A) that the sensitivity of c, with respect to the temperature, is about

0.18%/oC. Thus, on a two meter range, an unaccounted for temperature change

of just 0.03°C causes a measurement error of ca. 317nsec or equiva!ent!y ca. O.lmm

which is the same as the accuracy of interest. In particular, the small temperature

dilference between the ceiling and the f100r of a room must be taken into account.

The second major influence on the speed of sound is the presence of air movement.

The equation (1.4) can be modified 1.0 aCCOUllL for wind:

{) T
Ci =CO 1 + 273.C + ei W (1.5)

where Ci is the speed of sound in the direction eT, and w is the velocity vector of a

constant and uniform wind. In the worst case, the wind blows in the direction eT­
In this case, the sensitivity of Ci with respect to deviations of the wind speed from

zero is 0.29% /(m/sec). Hence, on a 2 m range, an unaccounted for 1.7 cm/sec wind

could cause a maximum error of the same magnitude as the accuracy of interest.

There are also severa! less important factors which influence the speed of sound.

According to [33], there is a noticeable dependency on the barometric pressure for

overpressures of more than 1Obar. For instance, for 25bar overpressure the speed of

sound increases by ca. 0.8%. Moreover, if the relative air humidity were to change

drastical1y from 20% to 100%, then the speed of sound wou!d change by 0.15%.
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According to [13] the pressure and humidity dependenees as weil a,; any <l''pend''II<'y

on the absorption coefficient or the frequeney of (,he sonnd ean he ncglecl.t·d fOI' nmmal

operation with 40Khz ultrasound (which was used in this stn<ly),

The air is a turbulent medium l'ven in a 'quiet' closed room , Convectioll CIII'\'I·IIt.S,

temperature drifts, drafts, heat conduction etc, arc just some of t.he IIwdlilnisms

which influence the tpTllpprature and wind distribution in it rOOln itnd (,\lt'rt'fore t.he

sound-speed. In this thesis, an attcmpt was ma<le to mo<l'" the clr"cI. of t.hese IInc­

tuations on the TOF measurements <tS il randol11 process. The model distillguishe"

between two parts, a 'deterministic' part, which modcIs t.he very slow and spadally

highly correlated influences. and a 'randtlm' part, which models faster aud spadally

11'55 correlated fluctuations. Since these fiuctuatiom' arc mainly caused by hea(. effecl.s,

the time constants involved are very large. In fact, the l'andom part lIuctuatiolls hiwe

a time constant in the order of half a minute. This makes it diflicult to reducc t.hem

by averaging them out.. ilence, the thesis makes an attempt to modcl the time-spitcc

statistics of the fluctuatiolls in an effort to use this informatioll for other meitns of

l'l'l'or reduction.

ln order to find a good position estimate, despite the measuremcnt noise, an

extended Kalman filter (EKF) is used to track the sender position given t.he avitilahlc

a priori information and the noisy measurements. ln addition, one or more fixed

reference senders are employed to exploit the spacial correlation of the turhu\enel's.

The closer the moving sender cornes to a reference sender the larger is the achiev,~ble

l'l'l'or reduction. The sender position estimates, obtained fron the EK!", arc then nsed

in the Cartesian feedback 1001' instead of the true sender positions. Given the nat.ure

of the problem, the low frequency positioning accuracy of the cOlltrol system is about

as good as the EKF position estimates. The latter depends on on the atmospheric

conditions of the room, the positions of the reference senders and th" tmjcctory of

the moving senders.



( Cl/APTEn I. INTIWDUCTlON

1.4 Literature Review

II

f

There is a multitude of one dimensj,JO111 ultrasound fanging methods. They can

roughly be divided into two methods: i"irstly, there are the cO'1tinuous wave (CW)

methods, They infer the range from sendi:, '( an uninterrupted ultrasound signal.

Secondly, th~i" MC gated wave (GW) methods which send out bursts of sound energy

and infer range information from the measured time-cf·flight ('l'OF) of the burst.

Th,: CW mcLhods inc1ude phase shift measurements [8], amplitude modulation [7]

and freqllency modulation [9J. Unfort.unately, CW·methods are extremely sensitive

to reflections and perform especially poorly in c10sed rooms.

Probably, the most prominent representative of the GW-methods is the range

Hnder developed by the Polaroid company [10]. This GW-method features threshold­

ing of the k.vpass filtered signal. Another similar scheme can be founJ in [11], There

Ill'" ,l1so GW·variations involving sophisticated pulse shape processing methods [12].

Neverthcless, the author of this thesis obtailJed the best experimental results for a

GW scheme, using a combination of thresholding and zero crossing detection. This

proved to be a simple but very effective method. This observation was shared by

Lamancusa and Figueroa [13] and also by Sasaki, Takano and Akeno [14]. The latter

c1aim an accuracy of 0.06% of the range, limited by air turbulences. This result is in

line with 0111' own observations.

Although there is a the wealth of literature on I-D ranging, the literature on

3-D ultrasound position ranging is scarce. Lamancusa and Figueroa [13] addressed

some of the problems connected with 3-D ultrasound ranging. In particular, they

measured the position measurement error due to the finite transducer size, for some

special situations. However, they did not address the space-time properties of the

measurement fluctuations caused by turbulent air. A few of these properties are, at

lea"t, mentioncd in [15]. Stone [63] used a commercial1y available 3D sonic digitizer
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[62] for robot calibration. In a. very controlled environment. aftl'r l"OllIpl'nsiiting fur

the sound speed drift and sound speed gradient he obtained an iI<'l'lII'iiey in th.. ord"r

of 0.1 mm on a 2 m range. This is an excellent l'l'suit.. The \\"ork pn·,,·nt..,\ in this

thesis differs in that it stresses a low cost solution for on-Iine feedhilck in not. so

weil controlled environments. Particularly, the dfects of atmospheric tlll'bnl..n"" \Ver..

taken into account.

The amount of literature on taskspace feedbaek is impressivl'. Early Sdll'lIleS lik,'

the resolved rate control [16] use the inverse .Jaeobian to mal' the tilsksllilœ l'rt'or

into the joint l'l'l'or, other schemes [17] use the transpose .Jacobian insteild. l1owever,

these schemes are not appropriate for fast tracking because they neglect t.he nonlinl'ar

dynamics of the maniplilator.

The standard solution to the taskspace control problem is to solve the 'inverse

problem': Firstly, one writes the dynamic equation of the robot in tenns of its

taskspace variables instead of its joint variables. Secondly, one Cûmpensil.tes for the

nonlinear dynamics by nonlinear feed fOl·ward. Thirdly, one designs a. servo eontroller

for the remaining linear decollpled system feeding back the taskspace variilhles. Many

variations [18]-[23] of this basic theme have been studied.

However, there is little recognition that in the servo part, fcedback of both the

taskspace variables and the joint variables, is inherently superior 1.0 fcedback of tbe

taskspace variables alonl' Conceptually, one can think of sllch a feedback sehcnw ,.,

a double 1001" For instance, a velocity feedback stabilized inner 1001' was Ilscd in [2~].

The taskspace control reslilts presented in this thesis were lirst reportcd ill [25]. III

l'articulaI', the resolved position 1001' was introduced as a kincmatic linearization and

decoupling scheme.

This thesis is organized in th rel' main parts: ln the lirst part the CartesiaJ. control

scheme is stlldied under the assumption that the elld elfector position can }", JJJeas\ll'ed

perfectly. The second part describes the hardware of the 3D ultrasonllcl J'ililge lilllier
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and charaeterizes its imperfections. In particular, it develops a stochastic model of

the measlIrernent noise associated with TOF measurements. Finally, the last part

sillllliates the Cartesian feedhack control loop when the EKF's end effector position

estimates are fed hack instead of the true end effeetor positions. The simulations

show whnt nccuracy can he achieved under what circumstances and therefore define

the limits 1.0 this approach 1.0 kinematic error reduction.
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The Taskspace Control System

14
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Chapter 2

The Open Loop System

2.1 The Plant

2.1.1 The Plant Components

The plant which the Cartesian loop is supposed to control can be modeled as the

nonlinear dynamic operator

(

p(.) = To LQ 0 (I +~m)(')

~m

+tt
ho ~L

Yc
l + Q T

qc

Figure 2.1: The plant

15

(2.1)
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were 'B 0 A' symbolizes that the operator Il is to be applied bdor.. th.. 01""';1\.01' /J.

As shown in Fig. 2.1, the plant has an input, 11 which is the dl'sin'd joint. position. and

two outputs: the true Cartesian position Ye and the true joint. posit.iou '1." Th.. plant.

p( .) consists of fouI' parts:

1. The nominallinear decoupled time invariant c10sed joint. 1001' dyualllics "0(')'

2. A nonlinear dynamic uucertainty LlImU ceut~'red at unit.y. It. n'pn'spnts tll<'

modeling error of the joint 1001',

3. A limiter LQ(') which l'l'presents the range limit,ations of the joints.

4. The nonlinear, memoryless, true forward kinematic fundion T which lIlaps joint

displacements into taskspace coordinates.

In the following, eacl~ of the plant components will be discussed.

2.1.2 The Joint Loop

The most fundamental part of any robot control system is the open 1001' rigid body

joint dynamics of a l'obot. It l'an be described as in [40]:

(2.2)

where T denotes the joint tor<,..e vedor, lU denotes the inertia matrix, N is anonlinpar

dynamic vedol' valued function which l'l'presents the centrifugai, Coriolis, gravity aJ1l1

fridion torques. Since the joint displacement vedor lie is available ;L~ out,put of the

optical shart encoders, the joint 1001' l'an be c10sed from lie back t.o T. A \V('11 known

control scheme is the so called computed torque mcthod [40J. This control law IIiL~

a nonlinear compensation part and a linear servo part: The first part cOlllpcnsates

for all nonlinearities such that the nominal manipulator dynamics milllic a unit lIlass.
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The second part is a PD servo controller which is supposed to cope with any remaining

uncertainties. The computed torque contr011aw is:

(2.3)

(

(:

where e = u - qe, ( U = qd is the commanded joint disp1acement), and Mand IV are

approximations of M and N, respective1y. The reasons for the use of approximations

are an ignorance of the true manipu1ator mass properties, the true actuator constants,

the correct friction model and the exact manipulator pay10ad.

The ignorance of the true manipulator dynamics grows with the operating fre­

quency. In particu1ar, the rigid body assumptions made in (2.2) break down at a

few Hz, and the robot starts to vibrate. According to Daneshmend [43], the first

vibrational modes of a PUMA600 were found experimental1y to lie around 20-30Hz.

The actuators, however, impose an even stronger restriction on tht: bandwidth of a

PUMA. Limits on the available power, joint torques and joint velocities, condemn the

PUMA to have a bandwidth even smaller than its structural stability would allow.

The gain of the joint loop must therefore roll off before flexible modes or power re­

strictions take effect. This puts a hard limit on the available bandwidth. A realistic

value for the closed loop bandwidth of a PUMA600 was experimentally observed by

Daneshmend [43J to be ca. 2Hz.

Nevertheless, a feedforward term like M(qe)ü is often added to the r.h.s of (2.3),

yielding a two degree of freedom controller with a unity nominal closed loop transfer

function. Of course, to enjoy the benefits of feedback requires the bandwidth of the

t.rajectory to be smaller than the closed loop bandwidth of the robot.

The one-degree of freedom 100p is sketched in Fig. 2.2, where 1/S2 symb01izes

that the nominal open loop dynamics after nonlinear compensation and decoupling

behaves like n parallel double integrators. Further, RI denotes a linear dynamic

regulator, and A:" is the nonlinear dynamic operator which represents the modeling
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r- I:>'m

+
u +-0-- RI

T
1/s2 r-+O

q
1

-

Figure 2.2: The joint loop

I:>m

+ qu
ho 1~

Figure 2.3: An input-output represcntation of the closed joint loop

18
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("

"rrors inclllding the flexible mode dynamics.

Another way 1.0 depiet the joint loop of Fig. 2.2 is shown in Fig. 2.3, where ha(·),

which has the Laplace transform Ha(s) = Ijs2R1(s)(1 + Ij s2R1(s))-I, denotes the

decollplcd nominal c10sed loop dynamics. The symbol ~m represents a nonlinear

dynamic unccrtainty centered around unity. The difference between the uncertainties

~'" and ~:n is that ~m is reduced by the sensitivity of the loop.

For the sake of argument, consider the loop in Fig. 2.2 1.0 be SIsa, linear and time

invariant, and let S'1(S) denote the Laplace transform of the true sensitivity function,

and Sln(S) the nominal sensitivity function of the loop. The Laplace transform of

~m is ~M' Now one can write the Laplace transform of q as:

q(S) = [1- SI(S)]U(s)

- [1 - Sln(S)][l+ SI(S)~~(s)]u(s)

- Ha(s) [1 + ~M(S)J n(s)

Thus, one obtains the input-output form shown in Fig. 2.3 or Fig. 2.1 with the

transformed uncertainty:

(2.4)

The sensitivity function SI is small al. low frequencies, and approximately unity al.

high frequencies. Therefore, the effect of the joint loop is 1.0 shrink the original

unccrtainty ~AI in ti.e low frequency range. However, al. frequencies larger than the

c10sed loop bandwidth, the originaluncertainty is left more or less unchanged.

In the following, il. is useful 1.0 assume that the c10sed loop uncertainty ~m can

be represented as the sum of a domb:.nt Iinear time invariant dynamic uncertainty

~l and a nonlinear dynamic uncertainty ~,,, which is small compared to ~l:

(2.5)

The decomposition (2.5) will be used later to Iimit the c10sed loop bandwidth of the

Cart.esian loop.
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.....
l

The representation of the closed joint loop given in Fig. 2.3 or Fig. 2.1 is not re­

strieted to the computed torque method. In faet, any joint control method including

adaptive control has a closed lo,~p representation like the one depieted in Fig. 2.3.

In many Ca3es, adaptive controllers can shrink the uncertainty more effectively than

non-adaptive controllers. If computational simplicity is desired, then the accelera·

tion feedback law [26] is an elegant alternative to the computed torque method. Il

uses an additional ë term in (2.3) and high gain feedback instead of the nonlinear

compensation terms. This reduces significantly the computational complexity of the

joint controller. However, as before, at low frequencies, the closed loop dynamics can

be considered to be approximately linear, time invariant, and decoupled. Moreover,

~m is small in this frequency range. At higher freqUo'ncies, however, the acce1eration

controllaw must roll off its gain before power restrictions and flexible modes become

a problem. Hence, as before, at high frequencies ~m is large.

2.1.3 The Limiter

It is important for the design of the closed loop to be based on a clear understanding

of the domain and the range of the kinematic function. For this reason the open loop

plant is modeled to include a limiter funetion LQ which is followed by the forward

kinematic position funetion T. This is depicted in Fig. 2.1.

The limiter LQ restricts the possible joint displacements to a set Q and therefore

represents the physical Iimits of the joints: Prismatic joints have necessarily a finite

range; rotational joints, on the other hand, can be unrestrieted but are usually con·

fined to ranges of less than 360°. Hence, let the range of the i·th joint be the sector

[ai, bi ] C 7<' and let there be n joints, then Q c nn is the n·cell

n

Q = mai,b;]
i=l

Occasionally, the set Q is referred to as the joint space. The limiter function can /I0W
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be described as
q if qc E Q

21

c

<:

LQ(q) = arg min IIq - qcll otherwise

qE Q

Strictly speaking, LQ is a part of the joint loop. However, here it is modeled as being

outside to show the properties of the taskspace loop more clearly.

2.1.4 The Forward Kinematics

The true forward kinematic function T maps the joint space Q onto the Cartesian

workspace X C nn, which is the set of all physically obtainable Cartesian positions

and orientations. In other words,

X = T(Q)

It is evident, however, that T, with domain Q and range X , is not a 1-1 mapping.

In general, there can be many joint positions which correspond to a given Cartesian

position. They correspond to different configurations of the robot. For example, many

positions of the PUMA 600 wrist can be obtained with four different configurations,

namely: 1) left arm - elbow up, 2) left arm· elbow down, 3) right arm - elbow up, 4)

right arm - elbow down. A picture of these four configurations can be found in [40].

The complete 6 joint PUMA600 has eight configurations. In general, the exact

number of possible configurations depends on the robot architecture, and the degrees

of freedom of the robot. The nominal T can be systematically derived \Vith the help of

the Denavit-Hartenberg parameters (D-H parameters [35]) as is shown, for instance,

in [39].

Besides T, there is also interest in its derivative J(qc), called the Jacobian matrix

of the manipulator, which maps joint rates into Cartesian velocities Yc = J(qc)qc,
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where:

22

J(qe) = a~(q)1
q q=q,EQ

There are special vectors q. E Q which are called the singularities of the manipull\tor.

They have the following weil known properties:

• The Jacobian matrix J(q.) is singular.

• The manipulator looses a degree of freedom in the Cartesian space.

• Singular joint positions are those for which two joint axes align or two links

align.

• Singularities mark the boundary between two configurations. For example,

when the PUMA600 arm is stretchE'd out completely it is in a singular position

and can be considered to be both in the elbow up and in the elbow down

configurations.

Let the set of ail singularities be denoted Q. c Q.

Let Qi C Q denote the set of ail joint position vectors qe which belong to the i-th

configuration and let the manipulator have ne configurations. Let the configuration

sets Qi include their singularities (i.e include their boundary and make them closed

sets). They have the following properties:

Xi = T(Qi) is 1-1 and onto.

where Xi C X is the part of the Cartesian workspace which can be reached while

the robot is in the i-th configuration. Note that it is possible that certain Cartesian

positions in the workspace cannot be reached in ail configurations because of the

restrictions on Q . Furthermore:
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Q. _. ù
i,j = 1

i=fij

(

In the previous text, the forward kinematic function T was presented as describing

a strictly geometric relation which maps vectors into vectors. It should be kept in

mind, however, that this is only a good approximation. The true T has also a weak

dynamic component which takes the flexibility of the manipulator into account.

2.2 Approximate Inverse Kinematics

2.2.1 Four Approximate Inverse Kinematics Functions

The forward kinematic position function T is highly nonlinear. In order to apply

linear control design methods to the Cartesian loop it is therefore necessary to com­

pensate for T with sorne kind of inverse kinematics function. Unfortunately, the true

T is not known exactly because the D-H parameters of the manipulator's geometry

are not known exactly, and because there are kinematic ef!'ects like compliance due

to gravitational loading which require knowledge in addition to the D-H parameters.

Given this ignorance, the best one can do is to use an approximate inverse kinematics

function (AIKF). Since the inverse of T can be a very complex function, it often de­

sirable to trade accuracy for computation speed and use a deliberate simplification as

AIKF. The fol1owing three AIKFs will be discussed in more detail: The approximate

inverse kinematic position function (AIKPF), the approximate inverse kinematic ve­

locity function (AIKVF) and the approximate kinematic force function (AII(FF). In

connection with the use of a Kalman filter, there is also interest in generating a nom­

inal trajectory by computing the approximate forward kinematics position function

(AFKPF).
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The computational complexity of the AlKFs depends on the structure of the

manipulator. Most modern manipulators Lave structures that a1low for a relativcly

simple closed form solution of the nominal inverse kinematics problem. ln partic·

ular, many robots have the nominal kinematic equivalent of a spherical wrist and

neighboring joint axis are nominally oriented at 0° or 90° relative to each other. For

these types of manipulators, there exist highly efficient nominal closed form inverse

kinematic solutions like the Featherstone method [36]. The Stanford manipnlator,

and the PUMA are examples of this t.ype of manipulator.

If the manipulator structure does not have a closed form inverse, then one must

compute the inverse numerically with convergence methods. There are efficient and

numerically reliable a1gorithms Iike the one proposed by Angeles in [37] which can

accomplish this task. However, numerical solutions are usually much more time

consuming than closed form algorithms.

An All<F must find a balance between accuracy on one side and convenience and

computational complexity on the other. The most accurate AlKF would incorporate

ail available information on the kinematic function of the manipulator. Such informa·

tion could be obtained through calibration measurements. The disadvantages of this

method, however, include the inconvenience and difficulty of precisely measuring a

large number of kinematic parameters. They also include that the AlKF would likely

not have a closed form even if the nominal manipulator does have an easy closed forlll

inverse kinematics solution. An alternative approach is to use the nominal kinematic

functions and let the sensitivity function of the kinematic feedback loop rednce any

. "
eXI~ ,mg errors.

Let Tj-
I denote the true inverse kinematic function for the i-th configuration and

let the AlKPF 1'j-1 denote an approximation of Tj-
I

, i.e.:

Qi = Tj-
I

0 T( Qi)

T'-I - T-1
i - i
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a m f
AIKPF 17 15 19
AIKVF 29 48 17
AFKPF 16 21 19
AIKVF+AFKPF 37 55 20

25
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Table 2.1: Computational eomplexities orthe nominal kinematie runetions ofa PUMA600, using
the Featherstone method.

The AIKPF Tt 1 maps Cartesian positions into joint positions.

An alternative AIKF, the AIKVF, maps velocities instead of positions. This

approach can more easily handle arbitrary robot architectures. A prominent AIKVF

is j-1(q.), an approximation of the true inverse Jacobian matrix J-l(q.):

The true inverse Jacobian J-l(q.) does not exist for q. E C•. The approximate

Jacobian j-l(q.), on the other hand, can be made to exist even at singularities. lt

will, however, be an infinitely bad approximation at those points.

There are at least four established ways to compute

. J·-l() .q. = q. Y.

The first method is to compute j-l(q.) and then multiply !i.i the second rnethod is

to solve j(q.)cj. = Y., the third method is given in [44] and is an improved version

of the second method, and the fourth method is the Featherstone method which was

mentioned earlier. The latter method requires a special robot architecture.

The four methods are progressively more efficient with the fourth method leading

by a wide margin. A comparison between them, which was conducted by Hollerbach

in [38] for the Stanford manipulator, found the Featherstone method to be about

three times as efficient as the second best method.
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2.2.2 Computational Complexity

26

.. ,

Since most modern manipulators allow the application of the Featherstone method.

and since it appears to be the most efficient method available, it will be used in

this thesis as a bencbmark for computationa! complexity. Hence, the author of this

thesis investigated the complexity of the Featherstone method for a nominal 6 joint

PUMA600. The results are displayed in Table 2.1, where 'a', 'm'and 'f' stand for

additions, multiplications and transcendental functions, respectively. A similar stndy

can be found in [41].

The c10sed loop will inc1ude an extended Kalman fil ter which requires a nominal

trajectory as one ofits inputs. In this context, it is useful to investigate the complexity

of computing simultaneously the AIKVF and the AFKPF.

The complexity for the simultaneous computation is smaller than for the separat.e

computations because most transcendental functions and sorne intermediate result.s

can be utilized by both functions. These translate into substantial savings. The re­

quired complexity for the simultaneous computation is just 37a+55m+20f (as shown

in the last ro\\' of Table 2.1) whereas the separate computation of both functions

requires 45a+69m+36f. The simultaneous computation of AIKPF and AFKPF, how­

ever, does not permit savings of this nature. The savings are even more prononnced,

if the computed torque methods are employed for the joint loop, because then the

intermediate results can also be shared by the dynamic feedforw<>rd equations. Sorne

aspects of this idea are discussed in [42].

A look at Table 2.1 suggests that the most time consuming factor is the computa­

tion of the occurring transcendental functions. Hence, in order to further reducc the

computational complexity, one could replace the occurring transcendental functions

by simpler functions, lookup tables, functions over a simpler number field, dedicatcd

VLSI circuits or a combination of these methods.
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CHAPTER 2. THE OPEN LOOP SYSTEM

Moreover, the AIKFs will be used in a real time closed loop environment. In par­

ticular, suppose the resolved rate Cartesian loop [16] is used, but the multiplication of

the error vector by the inverse Jacobian matrix is replaced by Featherstones' method.

The transcendental funetions of the AIKVFs are not funetions of the Cartesian veloc­

ity or perturbation, but strictly functions of the current joint angles. This suggests

the possibility of reducing the computational load by computing the transcendental

functions at a lower sampling rate than the rest of the AIKVF.

If the manipulator does not have an efficient closed form inverse solution, one

could compute the veetors Tj-
1(y) off-line by numerical methods for sorne y E Xi,

and store them. One could then extrapolate between the stored values in real time

for any given Cartesian position in Xi. An alternative is to use an AIKFF, the

approximate transpose Jacobian matrix jT(qe) as AIKF. It maps Cartesian forces into

joint torques. The complexity of this method depends only on the efficiency of the

computation of the Jacobian. Several methods are compared in [45]. Unfortunately,

AIKFFs perform poorly in trajectory control loops.
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Chapter 3

The Closed Loop System

3.1 Nonlinear Taskspace Control Schemes

In the following, three nonlinear closed loop control schemes will be presented: The

resolved position loop, the rate linearized loop and the position linearized loop. Thes(~

schemes linearize and decouple the Cartesian fcedback loop. Whcn they arc impie·

mented, the remaining control design problem l'cduccs to a linear deconpled servo

problem. Ail three methods have in common that they opemte with an embedded

joint loop of the kind introduccd in Sec. 2.1.2.

The methods differ in that the resolved position loop coml",nsates for t.he kille­

matie function globally, while the other two schemes compensat.c only locally. COII­

sequently, there are trajectories and dist.urbanccs which cause t.he local schcmcs t.o

perform poorly or even to be unstable. The resolved position loop, on the ot.her halld,

can maintain stability and performance for ail t.rajectories ami dist.lII'ballccs.

3.1.1 Norms, Gains and Definitions

Definitions: Let L2[0, 00) be the usual vector valued cont.inuous t.ime fUlldioll spal:"

28
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with norm

II x (t)1I1n = (OO x(t)Tx(t)dt < 00
2 Jo
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For Ilny fixed t, x( t) E 'Rn. As in [46], let (')T denote the truncation operator,

I.e.

(X(t))T = {X(t) if t < 7'

o otherwise

The extended space L~.[O, 00) is the space consisting of ail those functions whose

truncations lie in L~[O,oo). Furthel'more, let B be the c1ass of those operators

f(·) on L~. having the property that the zero element, denoted 0, lies in the

domain of fO and f(O) = o.

Let the op~rator gains for fO EBbe:

(~
g(l(.)) =- sup

"Ix E L~.

x#O

1I(1(x))TIIL~

lI(xlrllL~

9(1(-)) - sup

Vx,y E L~.

1I(f(x) - f(y))rIIL~

lI(x - y)rllL~

inf

"Ix E L~.

f!.(I(.)) -

x-y#O

1I(f(x))TIIL~

lI(x)TIIL~

x#O

(

The operator gains defined above have the following three pl'operties:

Property 1: If h(·) E B is !inear then 9=g. If, in addition, it is also stable and has

a proper Laplace transfel' function B(s), then

g(h(·)) = sup ü(B(jw))

Vw
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[L(h(·)) - inf !Z.(H(jw))
\fw
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where ër(.) and !Z.O denote respectively the maximum and minimum singular

value of a matrix.

Property 2: If h(·) E B is memoryless, then the gains can be defined over the simpler

space nn rather than L2•. Hence, (.). can be ignored and any refercnccs to L~

or L2• can be replaced by nn in the definitions of g, !l. and ?J.

Property 3: Let h(·), f(·) E B and let JO EBbe the identity operator, then

g(J(.) +h(.)) $ g(J(.)) +g(h(·))

!LU(') +h(·)) 2': l-g(h(·))

g(J 0 h(·)) $ g(J(·))g(h(·))
~~

[L(J 0 h(·)) 2': !L(JO l[L(h(·))

In the following it will be assumed that Am E B. This can be justified from (2.<1)

because the joint loop sensitivity is zero or at least very small at w = O. However,

this assumption could be removed at the priee of a more tedious discussion.

3.1.2 The Resolved Position Loop

The resolved position loop is shown in Fig. 3.1. The box R2 refers to a linear timc

invariant regulator which has the transfer function R2(s). The othcr parts of thc

loop have already been introdueed in Sec. 2.1. The limiter LQ has been omitted from

Fig. 3.1 fol' the sake of simplicity.

The point of the resolved position loop is that it uses ail available kincmatic

information to linearize and decouple the nonlinear taskspace loop. It causes thcrefore

the smallest possible uncertainty an": can for this reason be considcrcd supcrior to
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Yd .~ u q. Y.
T-1 + R2 1----- ho - I+am f..- T

- q.

1'-1

Figure 3.1: The resolved position loop
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other schemes. The resolved position loop was first reported in [25]. ln the fol\owing,

the stability and the performance of this control scheme will be investigated.

Preconditions for Stability

Bcfore a morc formaI discussion can be undertaken, sorne preconditions must be

stated. If these are violated, the resolved position loop will be rendered unstable.

The first of these conditions is that it must be ensured that in Fig. 3.1 q. E Qi,

because it is possible to choose trajectories Yd for which qc 1. Qi. Assume that qc is

very close to a boundary point of Qi. This can lead to two types of instabilities:

Type 1: If the boundary point of Qi is also a boundary point of Q and a disturbance

tries to move qc beyond the confines of Q, then the limiter LQ confines q. to Q. If for

instance, the set point of the loop qd happens to lie outside Q and the loop contains

an integrator, then the limiter action willlead to integrator windup. This is because

the integrator would continue to integrate an err'>r which the limiter would prevent

from beillg reduced.

Type 2: If the boundary point of Qi is not a boundary point of Q, but a boundary

point of Qj. which is a r.eighboring inverse kinematic solution set, then a disturbance
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h'

N +

Figure 3.2: The small gain standard form

can cause q, to cross through the singularity, i.e leave Qi and enter Qj. This is eqlliva­

lent to the manipulator changing its configuration. Even for a perfect approximation,

i.e 'Ï'-l = Ti-l, the operator 'Ï'-IT(-) in Fig. 3.1 would map elements of Qj into ele­

ments of Qi if q, E Qj. This would certainly cause sorne joints to move in the wrong

direction. In other words, it would cause the loop's nonlinearity to be indefinite ami

thereby provoke instability.

The easiest remedy, against both types of instabilities, is to choose only those

trajectories Yd(t) which ensure that q, E Qi and qd E Q.

Robust Stability

When the loop transformation theorem [46] is applied to the loop in Fig. 3.1, then

the standard form shown in Fig. 3.2 is obtained, where h' E B denotes the nominal

closed loop dynamics with the associated transfer function matrix:

(3.1 )

Furthermore, N in Fig. 3.2 denotes a noolinear dynamic operator which represents

the multiplicative uncertainty of the loop:

(3.2)
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Note that N(·) E B. The inputs XI and X2 in Fig. 3.2 are:

X2 - 0

33

For simplicity, it was assumed above that qe = 0 is in the domain of 'Î'-I 0T(·). This

assumption could be removed by choosing slightly different N, XI and X2' Moreover,

let

and let

No(') = !l'Î'-I 0 T(·) - !l'Î'-I 0 T(O)

Note that No E B. Now one cal' write (3.2) as:

( (3.3)

According to the small gain theorem [46J, the loop depicted Fig. 3.2 is BIBO stable

if

1. h' is stable.

2. g(h')g(N) < 1

If, in addition, the second condition holds when 9 is replaced by 9 ,then the loop is

input-output stable, which is BIBO stable and continuous.

The first condition is easily met because R2 is chosen such that the nominal

Cartesian loop h' is stable. An easy check as to whether the second condition is

met, is obtained by roughly decomposing g(No) into its linear, dynamic part and its

nonlinear part. Now it is possible to check the second condition via property 1 and

property 2 of gains. From (3.3):

<: N(·) =No 0 II + !lm)(') +!lm(') (3.4)
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taking gains on both sides of the equat.ion above and using (2.5) yi"'ds

g(N) :::; g(No)(l+g(~",))+g(~",)

< g(No)(l +g(~I) +g(~,,)) +g(~I) +ii(~,,)

:1·1

Suppose the linear time invariant. unstl'Uct.ured uncertaint.y ~I has a Laplace tmns­

form ~/.(S) and suppose one knO\vs a scalar funct.ion /",(w) such t.hat. for ail ".

Under the assumptions made in (2.5) suppose that. for ail w it. is t.rue t.hat y(~,,) « O'(~/(jW)).

Thus similar to [48], if for ail w

ëf(H'(jw)) < 1 (:1.5)
g(No)(l + /",(w) + g(~,,)) + /",(w) +g(~,,)

we can conclude that the system is BIBO stable. Morcover, if y(N,,) and !i(~,,)

are replaced by y(No) and y(~n) and the inequalit.y st.ill holds, t.hcn t.he syst.elll is

input-output stable.

The inequality (3.5) constitutes a hard limit for the nominal c10sed 1001' band­

widt.h. The limit is enforced by the loop uncert.ainties. At. low frequencies, /",(w) :::: 0,

and therefore, Ifg(No) restricts the magnitude of peaks of t.he nominal closed 1001'

frequency response. This is the MIMü equivalent. t.o t.he avoidance of a crit.ical disk

in the Nyquist plot [47]. At higher frequencies /",(w) is large and t.lwr"forc 1/' is

primarily restricted by (g(No)/",(w) + Im(w))-I, which fixes the handwidth and t.he

required roll-off at high frequencies. This condudes the discussion on robust. st.ahilit.y

of the resolved position loop.

Robust Performance

Let /0(') be the nominal open loop transfer opcrat.or wit.h Laplace t.ransfer fllnct.ioll

Lo(s) =Ho(s)R2(s), and let. 8-1(.) denot.e th" inverse of t.he true sensit.ivity flluet.ioll
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of the 011 ter loop:

8-1
(.) = 1(·) +(l +No) 0 (l +~m) 0 10 (-)

This can be manipulated as follows

fl (5- 1
) - fl (5-1

0 (l +10 )-1 0 (l +10 »)
~ fl (5-10 (l +/0)-1) fl «(1 +10))

~ fl «(1 +No) 0 (1 +~m)) fl ((/0))

~ [1 - g(No)][1 - g(~m)lfl (10)
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(3.6)

r,.

The approximation step in the derivation above is valid for fl(lo) ~ 1. This is only

feasib!e of course if wc compute !l.(lo) via property 1 and restrict the W over which the

sup is taken to the lower frequency range. As in [48], we want the minimum gain of

the true sensitivity of the system to he smaller than a scalar performance function

l/l's(w). Wc can conc1ude that the system is rohustly performing in the presence of

the uncertainties, if

. > ps(w)
Q:(Lo(Jw)) - [1 - g(No)][l -Im(w) - g(~n)] (3.7)

The "hove inequality is of course only valid in the low frequency range, when Im(w) < 1

and Q:(Lo(jw) ~ 1.

It shows what gain the nominal open loop must at least have in order to meet the

performance requirements ps(w) in the presence of uncertainties. The nominal open

loop gain must he chosen to he larger than would he necessary without uncertainties.

For a fixcd gain-handwidth product, this means a reduction of handwidth. This

conc1udcs the discussion on rohust performance.

Error Equivalence

When we say that the loop is rohustly performing, then we refer to the reduction of

the joint spacc error l1eqll = I1lÎd - 'Îcll. The purpose of the Cartesian loop, however, is
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YdO

++~j-I~f::.Yd R2
11 ho lJ i+À", tll" T !II'1-'-

.

Figure 3.3: Thc ratc Iincarizcd 1001'

:\{i

to reduce the error lIeuli = IIYd - Yell. Let 1'-1 : .1.'i -> Qi be a fnnct.ion t.hat. is 1·\ amI

onto. It is evident from the definition of a fnnction that (:rd = :I:e ) ==? ('j'-I(X,/) =

1'-I(Xe)), or Il eu Il = 0 ==? lIe.1I = O. Further, it is evident from the definition of

bijective mappings that (Xd = xc) Ç=} (1'-I(Xd) = 1'-I(Xe)), or

The previous result is not satisfying. There is a need to establish that convergenœ

in the joint space implies convergence in the Cartesian space. Hence, if in addit.ion

to being 1-1 and onto, 1'-1 is continuous and Xi, Qi arc compact, t.hen by definit.ion

of continuity: (Ileul! -> C) ==? (IIe.1I -> 0). The converse is established via TheOl'el1\

4.17 in [53], which states that under the above conditions the inverse of 'j'-I is also

continuons. We can therefore conclude that:

3.1.3 The Rate Linearized Loop

An alternative scheme to the resolved position loop is the rate lincarized 1001', It. is

shown in Fig. 3.3. The use of the approximate in':crsc .Jacobian in a t.askspacc 1001'

was first proposed by Whitney in [i6] and is referred to lL~ the resolved rate loop. The
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1001' in Fig. 3.3 clilfers from [16J in featuring an embeclclecl c10secl joint loop which

illlJlroves the overal1 dynamic performance.

The approximate inverse .Jacobian ';-1 can, of course, be replaced by any of the

AII{VFs discussed in Sec. 2.2. The vector Ydo =T(qdo) is constant and ilYd is a smal1

desirccl deviation from YdO. The rate linearized loop can be analyzed with essential1y

the saIne tools which were used for the resolved position loop. The nonlinearity of

thc rate lillearized loop cali be written as:

when the above equation is Iinearized around q = qdo and the Laplace transform is

takcn one obtains

(3.8)

wcre E1(s) is the Laplace transform of the perturbation vector el(t) = qdO - q(t) and

ilM(qdO,S) is the Laplace transfer function matrix of the derivative of ilm (·) at qdO.

A good approximation is ilM(qdo, s) R:: ilL{s). Let

j-I = rI +ilrl

NO(qdO) = ilrl(qdO)J(qdO)

t,hcn from (3.8) one obt:lins for the loop uncertainty with good approximation

this fs similar to (3.4).

Consider the standard smal1 gain form of Fig. 3.2 with H' and N exchanged. Now,

11' is Min (3.1) and N = N~'.", and

XI - qdO

X2 - qdO + j-l(qdO)ilYd
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YdO l"o

1'-1 IL
T

!I,'

~ "

Figure 3.4: The position linearized loop.

One would like to find a controller R2 such that (3.5) and (3.7) arc satisricd for all

setpoints qdO in the workspace (with the possible exception of small ncighborhoods

around singular values). Therefore, when computing gains of No thc snp and inf mnst

be taken over a11 desired set points qdO.

If the equilibrium point qdO is not constant, but is changing morc slowly t.han t.hc

largest time constant of the closed loop, then the above stability analysis wonld still

remain valid. On the other hand, no guarantees can be given for faster t.rajectorics.

However, it can be argued that faster trajectories would not be very practical in t.he

first place because the use of feedback has no benericial clfects for fre'lnency mnges

were the sensitivity is larger than J.

The preceding analysis requires that lJe he in the domain of 1'. This ':an 1I10st

easily he accomplished by choosing ~ to include an integrator with appropriate

initial conditions.

3.1.4 The Position Linearized Loop

The position linearized loop is essentially the integral forlll of the rate lincarized loop

and ean be analyzed in an analogous manner. Alternativc\y, thc analysis cali be
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couducled in the Cartesian space. Consider the nonlinearity which is a part of the

dos{~d Cartesian loop shown in Fig. 3.'1:

Ye = 1'0 (J +~m) 0 ho 0 1'-I (6u' +u~) (3.9)

f

where u~ is such that YJO = T 0 1'-1 (u~), where YdO is a constant veclo'... In praclice,

if /12 contains an integrator, then u~ are its initial conditions.

If one linearizes the nonlinearit.y about. u~, takes the Laplace t.ransform and ap­

proximates ~M one obtains

where qb = Ti-l(U~) and qo = 1'-I(ub) and 6U'(s) and 6Yc(s) are the Laplace trans­

forms of 6u'(t) and 6Ye(t) =Ye(t) - YdO' Letting Bo(s) = hb(s)I, where h~(s) IS a

scalar funclion, one obtains the loop uncertainty

The linearized 100p can be manipulated into the form given in Fig. 3.2. As before, H'

is the nominal c10sed loop dynamics and the loop uncertainty is N. The comments

made in Sec. 3.1.3 on slowly changing Ydo, and on taking gains, are also valid for the

position linearized 100p. Thus taking gains yields

As bcfore, the robust stability condition is:

ü(H'(jw)) < Y(N
1
(w))

which fixes the bandwidth of the linearized loop.

(3.10)
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Comparison between the three loops

·10

Precision: The l'esolved posit.ion 1001' achieves t.11l· b.,st. nse of kinemat.Ïl' information.

i.e the t.rne g(N) is smaller than fol' t.he t.wo ot.her nll't.hods. IIcn.·c, it. ,'an achi,'v"

better trajectory tl'acking.

A/lowed TmjeetDl'ics: Both the rate linearized and t.he posit.ion lineariz"" loop

method are local methods and l'equire small 1001' errors ta wOl'k pl'Operl)'. This

l'estricts the allowed input tl'ajectol'ies to those t.hat do pl'odnce small l'l'l'ors. The

resolved position 1001', on the otIler hallll, he.; no snch trajectol'Y rest.l'iction. Il,

gual'antees global stability.

Need fOI' a Tmjeetory GeneratDl: Because they "":nil'e a small 1001' ('\'1'01', the

rate linearized and the position linearized 1001' method need a trajeet.ory generator

which specifiee a point of the desired trajectory for each sarnpling inst.ant. Ort.en one

is only interested in the end position, bul, not in 1Ill' exact. intel'mediate path. Since

the resolved position 1001' can handle large 1001' eITOI'S, it. allows one t.o simply spccify

the end position. The resolved position 1001' will aut.oma.tically genel'at.e a smoot.h

trajectory leading to any given end position.

Compiexity: For a PUMA robot employing the Featherstone rncthod and wil.hont

considcring the Kalman filter, the position linearizcd 1001' is the least complex mct.hoc\,

requiring only 17a+15m+19f fol' the inverse kinematics, il. is followed by the rat.e Iin­

earized 1001' with 29a+48m+17f and the resolved position 1001' wit.h 2( 17a+ 15m+ 1!Jf),

which is the most complex. If the trigonometl'ic functions of the rat.e linearized 1001'

are not computed al. l'very sample instance, then the resolved rat.e 1001' is the least

complex of the three methods.

One can conclude that the resolved position 1001' has considerable advantages over

the othel' two methods. The priee for these benclits is an incl'eascd cornplcxit.y. The

rate linearized 1001', on the othel' hand, can olfer the smallest nnmerical colllplexit.y.
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Figure 3.5: The ùouble 1001' taskspace control system

3.2 Linear Compensator Design

3.2.1 Hierarchical Control
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The design philosophy used in this thesis can best be illustrated with the help of

Fig. 3.5, which represents a form of the resolved position Joop Fig. 3.1 with Fig. 2.2

inserted. As can be seen, the overall system features a double Joop: An inner or

joint loop and an outer or kinematic loop. The inner loop feeds bac.k the joint angle

measurements qc of the optical shaft encoders and is identical to the joint 100p shown

in Fig. 2.2. The outer loop feeds back the Cartesian position measurements Yc as was

sb.)wn in Fig. 3.1. However, to formally obtain a unit feedhack system, the outer loop

in Fig. 3.5 is shown to feed hack qr. = 1'-I(yc).

Consequently, U1 and U2 are defined as:

U1 - (J +6.:,.)(.)

U2 - (J +6.1'- IT)(·)

For convenience's sake, U1 and U2 will be referred to as uncertainties, keeping

ln mind that only 6.:.(.) and 6.i-1T(.) truly deserve that name. As mentioned

berore, inaccurate1y known ma"ipu1ator mass properties, aetuator constants, friction

etc. do not allow a complete compensation of the nonlinear dynamics and give rise

1.0 the dynamic lIncertainty U1 • Similarly, the kinematic funetion is not completely
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known and cannot entirely he compensated for hy a known inverse kinematic function.

Hence, the kinematic uncertainty is inc1uded in Fig. 3.5 as U2• The reasons for the

existence of U2 inc1ude inaccurately known rohot geometry, gravitational loading,

geaI' train transmission errors etc. Furthermore, as hefore, RI and R2 l'efer to Iinear

àynamic compensators and P2 denotes a linear prefilter, yielding a 2-degree of freedom

kinematic loop regulator.

The acoustic transmission delay was neglected in Fig. 3.5. However, it could be

taken into account hy regarding it to he part of U2• Alternatively, it could he regarded

as a part of the plant which is not contained in the inner loop. A control design for

the outer loop would then have to account for the delay explicitly.

The main point of using feedhack control as opposed to feedforward control is the

ability of feedhack to reduce uncertainty. The success of a feedhack controller can

therefore be measured by the amount to which the original uncertainty is reduced.

It is for this reason that hierarchically organized control structures are potentially

better than single loop designs. Hierarchical structures hreak the overalluncertainty

into many smaller parts, each of which is reduced by a local controlloop. Supervisory

controllers then coordinate the interaction of these localloops. This idea can he made

precise in a Hoo setting. In a very rudimentary way, the idea of hierarchical control

design can be applied to the double loop in Fig. 3.5.

When facecl with the task of finding suitahle controllers RI and R2 , fo.. the double

loop of Fig. 3.5, one has three ways to go about it:

1. Single loop design: One cuts the feedhack hranch of the inner loop and sets

RI = l, i.e one uses no feedhack of qc at ail. Then one designs R2 for the

resulting big loop.

2. Sequeniialloop design: One first designs RI for the inner loop ignoring the outer

loop. Then one designs R2 for the outer loop with the inner loop replaced hy
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the Fig. 2.3.

3. Simultaneous loop design: Design RI and R2 simultaneously.
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The bulk of the literature uses the single loop design method. However, this is clearly

not the best method. The uncertainty for this case is U,I = U2 0 Ull which is larger

than cither UI or U2 individually. Thus, a single loop control design has to reduce a

larger uncertainty than nerJsary for the other two methods and is inferior for this

reason.

On the other hand, in the sequential loop design method the outer loop has to cope

with a much smaller uncertainty than U" because UI was reduced by the sensitivity

funclion of the inner loop as was shown in Fig. 2.3, yielding

The smaller uncertainty U,q makes the sequential design method potentially better

than the single loop method. If the design is formulated as a Hoo probiem then

one can quantify the advantage which the second design has over the first design by

comparing the Hoo norm of the optimal achievable sensitivity for both cases. In this

sense, the sequential Hoo design is guaranteed to be better than the single loop Hoo

design.

Final!y, the simultaneous loop design method is potentially the best of the three

options because it can take ail cross coupling between the loops into account. Un­

fortunately, at present, there is no Hoo control design theory which would yield the

simultaneously optimal controllers RI and R 2• It is for this reason that in the follow­

ing the next best method, the sequential loop design method, was used for the design

of the taskspace servo loop.
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3.2.2 Continuous Time Design

Taskspace and Joint Space Errors

4·1
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The overall design goal of the double loop manipulator control system is to makl' it

track as closely as possible a desired taskspace trajectory. In other worels, on<' wants

the taskspace error ey to be small, where

e y = Yd - Yc

The loop design for Fig. 3.5, however, will be carried out in the joint space. The

corresponding error in the joint space is

Hence, small taskspace and joint space errors are related by:

"-1eq = J ey

This equation c<ln h~ üsd to map taskspace performance specifications into joint

space specifications. However, often one can formulate the performance requirements

as a desired percentage reduction of ey• In this case, the same requirements apply for

taskspace and joint space.

In staying co,,<istent with the sequential loop design philosophy, one can break

the overall design task down into three subtasks:

1. The design of the inner loop rcgulator RI to reducc UI .

2. The design of the outer loop regulator R2 to reduce U,q.

3. The design of the prefilter P2 to prescribe the tracking error behavior of the

nominal Cartesian loop.

ln the following, each of the above items will be addres,~d.
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The reduction of the dynamic uncertainty U] is the prime objective of the joint loop.

The servo part R] of the computed torque method is designed to achieve this goal.

If the servo part is chosen to be a simple decoupled PD-controller

(3.11)

r
" .

then the sensitivity of the nominal joint loop exhibits a type-2 uncertainty reduction

and the nominal c10sed joint loop transfer function matrix Ho is:

Ho(s) = sK. + Kp l (3.12)
S2 + sK. + Kp

The scalar parameters K. and ](p are chosen to ensure stability of the system in

the presence of unstructured uncertainties, in particular flexible modes and neglected

time delays.

The second subtask is the reduction of the kinematic uncertainty U.q and is the

primary concern of this thesis. In principle, the design of the MIMO compensator

R2(s) for the Cartesian loop can be done by reformulating the conditions (3.5) and

(3.7) as a Hoc> optimization problem [49], [50]. However, it is probably simpler to

reduce the design of the MIMO compensator R2(s) to the design of a c1assical SISO

loop: If the regulator is chosen to have the form R2(s) = r2(s)1, where r2(s) is a

scalar transfer function, then it is evident from the decoupled nature of Ho(s) and

from (3.1) that the nominal Cartesian c10sed loop transfer function H'(s) and the

nominal Cartesian open loop transfer function Lo(s) are decollpled, and have the

forms H'(s) = h'(s)1 and Lo(s) = 10(s)1 respectively, where h'(s) and lo(s) are scalar

transfer functions. Hence, neglecting ~n' the input-output stability and performance

conditions (3.5) and (3.7) simplify to:

High frequency conditions:

(3.13)
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Low frequency conditions:

. ps(w)
11o(Jw)1 ~ [1 - g(No)][l -lm(w)]
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(3.14)

Therefore, the objective of the M1MO loop design simplifies to finding a scalar

transfer function Tl(S) which satisfies the above conditions.

Thus, a simple type-1 controller can be synthesized as:

(3.15)

Since ho is second order, minimum phase and has just one pole excess, R2(s) can he

easily realized. The sensitivity of the nominal Cartesian loop is therefore

So(s) = SKi, 1
s+ Ai

(3.16)

The scalar Ki is chosen such that the bandwidth of the Cartesian loop does not.

exceed the bandwidth of the joint loop 1.0 avoid stability problems because of t.he

unstructured uncertainty of the inner loop. More precisely, the condition (:1.13) IIlUSt.

be obeyed.

An additional design problem is to prescribe the desired tracking error behavior

of the nominal loop. The nominal tracking error evn can ÏJe defined as:

If one chooses
S

P2(S) = -J'1 +1
\i

then the nominal trackhig error is zero. Naturally, in order to reap the benefit.s of

feedback, the bandwidth of Yd(ll) must be smaller than the bandwidth of the loop.

Further, it is of interest 1.0 examine the homogeneou~ solution of ev. The dynamics

of evn can be written as:
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Hence, any initial error will be damped out without overshoot. This is an important

consideration in roboties because it makes it easier to control the interaction of the

manipulalor with its environment.

2nd Order Design

If the 20dB/dec error reduction of the type-l system is not fast enough, and one

rather wanls 40dB/dec, then one can design a type-2 controller analogously to the

type-I conlroller:
J(-

R2(s) = -f(s +1(c)hë1(s)1
s

The sensitivily of the nominal Cartesian loop is therefore

S2

Sols) = 2 r Fr 1s + \iS + \j \c
(3.17)

(3.18)

( As before, the parameters Ki and Kc are chosen such that the bandwidth of the

Cartesian loop does not exceed the bandwidth of the joint loop. The nominal tracking

error can be made zero if one chooses the prefilter to be

Pts) = S2 + ~{iS + ~{;l{c 1
1\iS +Ac

The nomin.,l tracking error dynamics are therefore:

(3.19)

(

Thus, to avoid overshoot but at the same time make the error response not too slow,

one should choose Ki and K c to yield critically damped error dynamics.

A Design Example for the PUMA 600

The desired p~rformance ps(w) of the Cartesian loop depends on the desired reduction

of the the Carlesian error. ln [2] the approximate average size of the Cartesian error

was cilaracterized to be 5-6 mm. To reduce this error to less than 0.1 mm, (the
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accuracy of interest), requires a loop gain of 30-40dB at low frequencies and likt'ly

somewhat less at higher frequencies, in the case that the end effector is restricted to

a subregim. of the workspace.

In addition to this performance requirement, the kinematic loop must be stabl<'

and performing in the prer,ence of uncertainty. It was found in simulations that

g(No) < 0.06 is a reasonable guess for trajectories which avoid singularities by more

than the distance of the robot's kinematic error. Other nominal traject.ories are

not very useful anyways because there is not even a guarantce that they iie in tht·

workspace of the robot. Hence, if we only consider the contribution of g( No) and

neglect L!.;", then the system must be designed to be robust with respect to changes

of maximal 6% of the loor' gain or 0.5dB. This is so small that it does not have 1.0 he

considered explicitly in the design.

A realistic choice for the closed loop bandwidth of a PUMA600 was suggested hy

Daneshmend [43J to be about 2 Hz. Thus,.if we fix the bandwidth for the type-I

kinematic loop at 2 Hz, then the kinematic ertur can be neglected for frequencies

below 0.2Hz-0.02Hz.

The overall trajectory error, however, may be larger than expected frv.n the ron·

si ierations above. This is because the the joint loop contributes uncertainty.

A type-lloop design requires the determination of the tree constants Ku. /\p and

Hi. For a 2 Hz bandwidth, one can choose Hu = 81f and Kp = 161f2 which places

both poles of the closed joint loop at 2 Hz. The Cartesian loop design constant /\i is

simply chosen to be ftj =41f, placing the only pole at 2 Hz.

A type·2 loop design requires the determination of the four constants Ku, Kp• /\;

and I<c. For a ca. 2Hz bandwidth, one can choose /\u and /\p as before, and simply

choose H; = H. and I<c = I<pj ]{j. Then, both the i.lller and the outer loop have two

poles at 2Hz.
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Hobot control is often donc by computers. This neccssitates the design of a discrete

rather than a continuous time controller. Most of the continuous time design consid­

erations, which were mentioned in the previous section, remain va\id and will not be

repeated here. However, there are sorne additional considerations. In particular, the

inner loop must include a sampie and hold device and a computational delay. De­

pending on the sampling rate, these additions can lead to a substantially altered high

frequency behavior. For instance, there will be additional phase lag at the cross-over

frequency and a reduction of the high frequency roll-off. In general, this means a less

stable, less robust system.

The discret.e time control problem is illustrated in Fig. 3.6, which essentially rep­

resents the discrcte time equivalent of Fig. 3.5. The dashed box contains the discrete

regulator. Its linear part consists of three identical, decoupled sets of four SISO fil­

tcrs. Alternatively, it could be described to consist of three identical, decoupled linear

MISa system~, each having two inputs .,,,d one output. Since the controller is the

sarne for each of the tlll'ee dimensions of space, only one of the three channels will be

discussed.

The nonlinear part of the discrete regulator consists of two 1'-1 transformations.

Further, it is assumed that there is a computational delay of one sampling period.

This is accounted for by the =-1 block. The "plant" is shown outside of the dashed

box in Fig. 3.6. Notice the zero order hold circuit (ZOH) preceding the nominal p'ant

s-2. Morcover, the =-~ block explicitly accounts for the acoustic delay.

Perhaps, the most common method of discrete loop design is to discretize the

regulator obtained by a previous continuous time design. The main disadvantage

of t.his mcthod is that it requires high sampling rates. This is not desirable in this

ca.'c because ol the unneccssarily high computer load and the decreased receiver

performance duc to high pulse rates (see Sec. 4.3.1).
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Figure 3.6: The double loop with a discretc time regulator

There are many alternative discrete regulator design methods. One way of ap­

proaching the problem is to design the controller explicitly as a discrete time con­

tro11er. For the joint loop, for instance, it was shown in [51]that this can lead to a

discrete time lag-Iead design which shows good performance, stability and robustness.

Here, a standard transfer funetion synthesis method was used. The method is we11

explained in [52].

First, the z-transform of the computational delay in series with the ZOB and the

double integrator plant is obtained:

H(z) = T.2 .:; +1
2 z(.:: - 1)2

where T. is the sampling period. Then a desired closed loop pulse transfer funetion

is specified. For instance:

H
m

(.::) = W+Pl +PO)(z +1)
z(.::2 +PIZ +PO)

where PI and P2 are chosen s. t. the poles are critica11y damped for a natural frequency

of in = 2Hz. It is good practise not to atlempt to cancel unstable or lightly damped
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plant zeros with regulator poles. Hence, the marginally stable LHP plant zero at ·1

is carried through from H(z) and becomes a zero of Hm(z), too.

The design method also requires the specification of a characteristic observer poly­

nominal A.(z). This allows one to influence the loop's sensitivity function by speci­

fying sorne of its poles.

For a 50 Hz sampling rate, an observer polynominal which yields an acceptable

sensitivity function was found to be:

The compensators RI! anc! Rib can now be found by solving a diophantine equation:

296.89z2 - 278.63z
Z2 - 0.4077z +0.0557

123.47z2 - 105.21z
Z2 - 0.4077z + 0.0557

The design for the outer loop is analogous, provided that the delay z-~ and the

nonlinearity t-IT(-) are negleeted. The inner loop's Hm(z) becomes both the outer

loop's plant and the outer loop's desired c10sed loop transfer function Hm(z). To

ensure high gain at low frequencies and zero steady state error, the outer feedback

regulator must inc1ude at least one integrator. With this constraint on thë regulator,

the observer polynominal which yielded an acceptable outer loop sensitivity function

was found to be:

The resulting compensators R2! and R2b are:

<.

1000(0.8242z3 - 1.2821z2 + 0.4986z)
123.47z3 - 82.763z2 - 20.352z - 20.352

123.47z3 - 82.763z2

123.47z3 - 82.763z2 - 20.352z - 20.352
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It is evident from Fig. 3.5 that the nominal tracking crror l'an hl' n·pn·H,·nl,·" aH:

where hm (·) represents the time domain dynamics or the lincar filter Il,,,(~)J. Il

is c1ear that there is nonlinear dynamic cross-coupling hctwecn Ihe Ihr"" Carlt'Hian

space channels because hm is sandwiched between the t.wo nonlincarit.ieH. AH il n'Hnll,

the nominal tracking en'ors for the thrce directions or spacc arc not intiepen,1ent.. 1t.

would be better to have:

e = Yd - h"'(Yd)

which has independent channels.

To achieve this form requires canceling ail nominal inner dynamics and pre!ilt"'ring

Yd. In other words, in Fig. 3.6, R2J is replaced by ~{

and Yd is replaced by Yd:

There is a potential problem of the system not being causal, particnlar1y, ir t.he

prefilter for Yd is omitted. However, l'ven if the system is uncausal this usnally

constitutes no serious problem because, in practicc, Yd will he known at least a few

sampling periods in advance; if not, the prefilter must ensure causality.

A more serious l'roblem is the faet that the Ji", -zero at -1 cannot he cilnccleti.

Instead, one can choose:

R' - R H-1( )(z + 1)2
2J - 2J m Z Z

2

which does not cancel the zero. The resulting inner dynamics arc (=~I) which l'eserll-

ble unity quite c1osely, particularly at frequencies which arc small <:ompared 1.0 I.he

sampling rate.

The preceding design can be slightly modified 1.0 account for the i1<:onsti<: ".,Il'Y.



(

<-

Part II

The 3D Ultrasound Position

Sensor

53



--

Chapter 4

The Hardw~re

4.1 Introduction to Pcrt II

The second part of thc thesis in1.roduces the nl1.rasonic position 1II(',L'III'(,1I1t'lI\' d""Ï<'t'

and analyzes its strong and weak points. In particular, a stoch'L't.ic 1II0de! is pn'sc'IIt.('d

which describcs how the fluct.uating medinm corrupts the posit.ioll lIIe'L'\Ifelllellt.s. 'l'II<'

factors which influcncc thc TOF mcasurcments inc!ud,,:

The eiectronic hardware of t.hc ultrasouEd system:

• Non-idelll T1'Il1lsducers prevcnt thc acoustical and the geollletricai ('('111.('1' of a

transducer from coinciding: When thc send-.:r and recciver transdnccrs face "ad,

other at an angle, then the transdu~ers callno1. IOllger he appropriat.dy 1110.1"1<'.1

as mathematicai point.s.

• Eleell'ol/ie "oise influences t.he measurcl11cnt. in t.he forlll of ac1ded siglHd pron'ss­

;/lg delays, and the no.se of the sign,ll amplification and c1et.ectioll d",,' ronies,

The \'l'ave nature of sound:

• Rej/ec;/ions can lead to multipath arrivai of the signal, lIlakillg il c1illienlt. \'0

determine the exact, tim(, cf fiight.
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• Reverberation is the multiple reflection of sound in a closed room. Thus, an

earlier sound burst can still corrupt the current TOF measurement.

• Ambient noise can corrupt the measurements when other ultrasound sources

besides the sender are present in the room and emit sound energy at frequencies

to which the receivers are sensitive.

• Refmction is caused by the presence of a temperature gradient in the room.

The ray path is bent and the measured TOF differs from the case without a

gradient.

• Doppler can corrupt the TOF measurements when the sender is moving or when

there is a strong wind.

• Diffraction and scattering have only negligible influence.

The f1uctuating medium in which the sound propagates:

• Temperature drifts and temperature gradient drifts cause slow global changes in

the speed of sound and the speed gradient.

• Turbulences due to convection currents, wind gusts etc. lead to relatively fast

local changes of the sound-speed.

It was decided to model the TOF measur"ment fluctuations, irrespective of their

origin, as a stochastic process primarily because this form can readily be used by

a Kalman lUter for estimating the sender position in the Cartesian feedback loop.

Hence, the measurement model is not intended to be a theory of sound propagation

in turbulent air, but is simply a means to improve the precision of the Cartesian

feedbacJ; loop. Given this intended use, the emphasis here is on a rough and simple

model which nevertheless captures the dominant statistical features.



CHAPTER 4. THE HARDWARE 56

ln the following, ail stochastic processes are understood to be defined with respect

to an underlying weil defined probability space (n,.r,P) [60J, where, n denotes the

fundamental sample space, .r is the underlying (7-algebra and P is the prohability

function.

lt will be shown in Sec. 5.2.1 and Sec. 5.2.2 that the acoustic ray theory is valid

and that the sound ray path is weil approximated by a straight line which connects

the sender with the receiver. Mathematically, the straight-line ray path cOlll1ecting

the seoder with a receiver can be parameterized as:

fi(t,a) = S(t) +ëi(t)o 0 E [O,d;(t)] (4.1 )

as before, di(t) is the distance and ëi(t) is the unit direction from the sender at S(t)

to the receiver at Mi. The time tin (4.1) dellotes the instant when the sound departs

from the sender.

The properties of the medium along i.he ray path are often described by modclillg

the refractive index of sound along the path as a raildom process. However, for 0111'

purposes it is slightly more convenient to use the "inverse soulld-speed~ 71 inste,)d of

the refraetive index. lt is defined as the inner product

n(w,t,fi(t,a),ëi(t») = [.!.,.!.,.!.]ëi
Cr e" c.

wEn (4.2)

.....

where Cr, CY' c. denote the speed of sound in x-, y- and z-dilcetion respeclive1y. They

are random space-time functions themselves. Thus, lhe inverse sound-speed depends

on

1. w because of the statistical nature of the inverse sOllnd-speed.

2. t because the inverse sound-speed l'volves with time.

3. fi(t,o) because the inverse sound-speed is a funclioll of space.

4. ëi( t) because of the efi'eets of air movements and sound-spced gradients.
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Furthermore, it is convenient to distinguish between a "deterministicn part Dn

and a "randomn part Rn of inverse sound-speed such that:

n(w, t, fi(t,a), ëj(t)) = Dn(t, fi(t, a), ëi(t» +Rn(w, t, fi(t,a), ëi(t)) (4.3)

whcre Dn = E{n} is thought to represent the very slow, spacially highly correlated

fluctuations which can be regarded to be deterministic. The slowly changing average

room temperature and average room temperature gJ:l.iient or a slowly changing av­

erage wind velocity are examples of mechanisms which give rise to D n. On the other

hand, Rn represents the faster and spacial1y less correlatd zero-average fluctuations

i.e. E{Rn} = 0; the fluctuations described by Rn are produced by air turbulences,

convection etc..

Similar to inverse sound-speed, one can model the TOF measurements themselve:;

as a random process. For this purpose it is convenient to distinguish among four

parts of the TOF:

tofi(W, t) =MDtofi(t) +MRtofi(W, t) + IDtofi(t) + IRtofi(W, t) (4.4)

where:

1. MD means 'medium dependent deterministic' and models the influënce of the

average inverse sound-speed, the average inverse sound-speed gradient and the

average wind velocity.

2. M R means 'medium dependent random' and models the influence of atmospheric

turbulences.

3. ID means 'medium independent dpterministie' and models the influence of e1ec­

tronie delays, dock errors, effective transducer size and other medium indepen­

dent biases.
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4. IR means 'medium independent random' and models the influence of the receiw'r

SNR etc.

The two random parts are defined to have zero mean. Each of the <1 parts abo\'e

will be discussed in detail. However, the by far most important of the <1 parts arc

the two medium dependent parts MD and MR. The dependence between the medium

dependent part of the TOF and the inverse sound-speed can be expressed a.< (in [5i])

as a spacial random walk:

MR rd,(l) R _ _
tofi(W, t) - Jo n(w, t, fi(t, a), ei(t))do

MD rdi(l) D _
tofi(t) = Jo n(t, fi(t,a), ei(t))da

(,1.5 )

(4.6)

Note that the integrals above are taken over space only. This is a very good al"

proximation since the largest possible TOF is much smaller than th.. smallest time

constant of the turbulences. The latter can, therefore, be consider..d 'frozc!!' during

sound emission.

In the following, the experimental results presented were cOllducted in two distinct

locations: A 'small room' and a 'large room'. The small room had a floor sizl' of

4mx4m and a height of 2.2m. It had a quiet and weil controlled environment. The

floor size of the large room was ca. llmx9m and its height was 3.5m. The large room

was a busy electronics and robotics lab, many people were moving about, there were

many fans and heat emitting equipment, the doors were being constantly opened and

c1osed.
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4.2 Range Finder Overview

4.2.1 A TOF Measurement Scheme

Background
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The hardware has the task of generating a suitable ultrasound ranging signal and

then precisely measuring the time delay between the sending and the receividg of

the signal. The main design problem is 1.0 accurately acknowledge the arrivaI of the

signal. The difficulties stem from the small bandwidth of the transducers used which

does not permit impulse-like sign"l~ 1.0 be sent. Rather, only a relatively slow rise

of the signal magnitude can be achieved. The problem is further ag.gravated by the

large wavelength (>. = 8.5mm) of the ultrasound used: The desired precision requires

a detection resolution of about a hundredth of a wavelength. Moreover, reflections

and reverberation may influence the signal phase and shape; one has 1.0 guard against

them.

Given these problems, the method lIsed 1.0 determine the time of arrivaI become

crucial. In the following, the abbreviation TOA for 'time of arrivaI' is meant 1.0

describe the time delay between the first reception of sound energy belonging 1.0 the

direct path signal and the time al. which this signal is actually acknowledged by the

receiver electronics as having arrived. On the other hand, the abbreviation TOF for

'time of f1ight' is meant 1.0 refer 1.0 the time delay between the time when the first bit

of signal energy is sent and the time when the first bit of direct path signal energy is

received.

Many ultrasound rang:...g systems use a gated continuous wave (CW) signal and a

voltage trigger. When the amplitude of the received signal exceeds the trigger level,

then the signal is regarded as having arrived. The problem with this method is that

il. is critically dependent on the magnitude of the signal. Thus, amplitude variation-
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Figure 4.1: Hardware black diagram
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due to distance changes, transducer reorientation or due to turbulences in the air will

greatly influence the TOA. This may be perfectly acceptable for many applicatio~s,

but it appears to be not sufficient for high precision applications.

The other obvious method is to use a one tone continuous wave and measure the

ftarrival timeft by measuring the phase shift between sent wave and received wave. The

rcsulting ambiguity in terms of multiples of the wavelength could be reduced by using

a two-tone scheme [7J where the beat frequency is used to help resolve the ambiguity.

CW methods have the potential of being extremely precise. Unfortunately, because

of unavoidahle reflections, CW methods are useless in a real life environment. One

CW method was tried, using a frequency-shift keying modulated signal and a phase

locked loop receiver with voltage trigger at the loop output to determine the time of

arrivaI. However, experiments with this method showed that even this scheme is too

prone to reflections.

There are also more exotic methods, for exa.mp\p., spread spectrum. This scheme

is widely used for precise ranging. It has th~ potential to he insensitive to reflections,

reverheration and amhient noise. However, one disadvantage of this method is its

complexity and the associat.ed costs. Another problem in our context is the small

availahle handwidth of the chosen transducers.

The Prototype

The experimental ranging system that was used for this work is in sorne respect a

comhination of a one tone CW method and a gated CW method. It has proved to

be superior to ail other tested methods. A block diagram of the scheme is shown in

Fig. 4.1: A gated 40Khz C\V signal is sent and simultaneously, a timer is started.

When the signal is picked up by a microphone it is first amplified. If the amplified

signal is smaller than a preset trigger level, then the signal is disregarded. On the

other hand, if it is larger than the trigger level, then the signal is regarded to have
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Figure 4.2: A typieal reeeived lignaI

"roughly" arrived and a strobe pulse triggers a monofiop which in turn enables a zero

crossing detector to send a stop pulse to the timer at precisely the time of the next

zero crossing of the signal. Thus, the first zero crossing after the trigger is regarded

as the exact instance of the arrivai of the signal.

The Fig. 4.2 shows a pseudo oscilloscope view of the received signal. The wave

package 'D' represents the signal whose instance of arrivai one desires to determine.

The label'b' points to the true beginning of this wave package and the laliel'c' points

to the first zero crossing arter the trigger. This is the moment with respect to which

the time of arrivai is measured. Hence, the delay between 'b' and 'c' is the TOA.

The wave package 'E' represents a rellected signal. The rellected package arrives

later than the main package 'D' because it has a longer path. Onen, the refiecled

signal has a smal1er amplitude than the main signal because its path is longer and

because not ail of the signal energy is refiected. The directivity of the ultrasound

transducers, however, makes it possible that the amplitude of the rlfiected signal can

vastly exceed the amplitude of the direct path signal. This can occur when sender
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and receiver face each other at a large angle and Ille reflected si~nal arrives at a

more favourable angle than the direct path signal. The wave package'A' represents a

reflected signal associated wit,h a previous main signal or, it represents the reflection

of a reflected signal whose main signal was received many sampling instances before.

These multi-reflection signaIs arise in c10sed rooms mainly due to the high reflectivity

of the walls.

The first task of the trigger is to distinguish between the desired wave package

'D'and the undesirable signais 'A' and 'E'. In order to be able to do this, il. :s

necessary that those 'A' packages, which are received immediately before 'D', have a

substantially smaller amplitude than 'D' itself. 'A' packages which arrive much earlier

are of no concern in our case, because a priori knowledge of the time of arrivaI of the

signal can be used to define a reception window during ~"hich the receiver is soiely

sensitive: The trigger mechanism is enabled only shortly before the estimated arrivaI

of the signal and c10sed immediately after signal arrivaI was detected. As long as the

trigger level is larger than the largest amplitl' ie of the 'A' package which appears in

the reception window, but smaUer than the largest amplitude of the 'D' package, the

'D' package will be successfully distinguished from the other signais. In particular,

the amplitude. of the reflected wave is immaterial because once 'D' is detected, 'E' is

outside of the reception window.

4.2.2 Choosing a TOA

Il is not sholVn in Fig. 4.2 that 'D', 'E' and 'A' can overlap. This reality introduces

undesired phase shifts and signal distortions into 'D', which in tnrn change the TOA.

Therefore, once the correct wave package is identified, the second task of the trigger is

to perform a tradeoff 1.>etween the "SNR(TOAt and the "reflection robustness" of the

receiver. The term "reflection I->bustness" refers to the smallest time delay between

a direct path and a (once) reilected path which has no influence on the TOA. The
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symbol "SNH(TOAr stands for the ratio Ill't.\v<'"n t Ill' amplit.ull<· of t.11l' t1in·ct. l'ath

si!;..al and the amplit.ltdc of the mult.i-rcflccled "ignal" as a fuudion of the '1'0:\.

The best possible rcfleclion robust.ncss is achie\"('d wheu t.11l' tiull' of al'ri\'al 1"

measured al. "b' instead of 'l". At 'b', no rcfleclien pat.h. how"\'er cio"" t.o tlll' din·('\.

path l'an influence the measuremenL Uufortunat.c1y, th,· poiut, 'b' ha" t.11l' \\'Ol'"t.

SNR(TOA). Therefore, SNH(O)=O, since al. 'b' t.he sigual amplitl\lle i" ~"I'O. 'l'Ill'

best SNR(TOA), on the other hand, occurs for a TOA wher<' t.lll' ;Implitudl' of '\l'

has reached its maximum value. If, however, t.he t rigger leve\ i" S(·t. sa high t.llilt

the SNR(TOA) is maximized, then the reflection rohust.ness is low. For ôl tnical

signal, the maximum amplitude is reached after ca. teu periods. Thus, auy relll·(·tio!.

path which is less than 8.5cm longer than the direct. palll will prohably ren,k·1' t.he

measurement useless. Anot.her compelling reason for not. choosiug a very high trigg"r

levc1 is, of course, the danger that a small fluctuation of the "ignal amplit.ude may

cause the trigger ta miss 'D' altogether. There arc also otller cousiderat.ions for t.11l'

chaice of trigger Icvc1 and TOA. lu particular, it is dcsirable t.hat. the pnlse "uvdope

has reached a plateau when the zero crossing is mcasured. The reason for this is an

improved 'l'OF bias reductir,n. This is discnssed in Sec. 4.·1.

In pfactice, some kind of compromise must be fonnd. The sitnation cau \)(' illl­

proved by increasing the available bandwidth of the tmnsduccrs by c1edl'onic mcans.

This yields a faster rise time and the trigger l'an more easily det.ect the correct pc­

riod. Now one l'an delay the zero crossing detection until after t.he pulse reôlclll's it.s

plateau. This yil'Ids maximum SNR(TOF) and best 'l'OF hias rednction alld at the

same time, because of the faster rise time, offers a reMonahlc rcllection robustncss.

Once one has decided on a nominal TOA, onc won Id li!:e it to he llIaintained

independent of the signal amplitude. This is particu larly important I",cause the 'l'OF

is computed by subtracting the TOA from the signal dclay me'L"Irl~mcnts. Tlll'refore,

when the signal amplitude changes due ta locomotion or reorientation of .he sender,
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the amplifier gain must be adapted to leave the TOA invariant. Alternative!y, the

trigger leve! could be changed. These types of adaptation can be achieved with

relative ease since position and orientation estimates are available from the Kalman

filter. This information could be used to send signais to simple D-A converters, which

in turn, would set the trigger level or the amplifier gain such that the desired TOA

is maintained. A simp!er method is to estimate the correct trigger level from past

measurements of the signal strength at the receiver. This could be done local!y in the

receiver with analog electronics.

The above introduced experimental ultrasound position measurement system is

complete!y control1ed by a special interface card for an IBM-AT compatible computer.

The computer sets the card parameters once and then retrieves the data. from the

card by means of a C interface program, which is listed in Appendix E. Tite board

is capable of handling four receivers and two senders. It features a single 10 Mhz

crystal dock that was used to derive the sampling period, the carrier period, the

signal !engths of the first and second sender, and the delay '~etween the first and

second sender. It also acted as a dock for the TOF timer chips. The details can be

found in the Appendix D.

4.3 Range Finder Limits

4.3.1 Pulse Rate Limits

An important problem in designing digital control systems is the choice of the sam­

pling rate. The range finder imposes an upper Iimit on the sampling rate because its

maximum pulse rate is Iimited. A first Iimit is reached for a pulse rate of ca. HO Hz.

This Iimit is imposed by the 5.8 msec f1ight time of the signa! for the maximum range

(2 ml. A higher pulse rate than 170 Hz causes the measured TOF to be ambiguous.

However, one has very good estimates (better than 1 cm) and can easily resolve many
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ambiguities. The theoretical limit for the pulse rate depends on the a priori knowl­

edge one has of the range. If the range is known within an error of say ±10 cm, then

even a pulse rate of 3.4 kHz would cause no ambiguities. However, such a high pulse

(sample) rate may not improve the performance of the feedback control system. The

5.8 msec delay imposed by the travel time of the sound for the maximum range effec­

tively limits the bandwidth of the closed loop system to less thau ca. liO Hz. This

limit is inherent in the use of ultrasound for position feedback over 2-meter ranges.

There are other factors besides a priori knowledge which limit the pulse rate. One

factor is the bandwidth of the transducers which poses an upper limit on the pulse

rate because pulses must be well separated from each other to avoid signal corruption.

If the 5 kHz transducer bandwidth is not increased by electronic means, then the plIIse

rate is effectively limited to less than, say, 500 Hz. However, the factor that most

restricts the pulse rate are refiections. For high pulse rates it become~ increasingly

difficult to separate the signal from the refiections in the room which have no timc

to die down before the next pulse. Experiments seem to indicate that, say, a 300Hz

pulse rate is still bearable in a regular labo Of course, the situation improvcs in larger

rooms and in rooms with more sound absorbing materia1.

When only position measurements are needed, then the maximum sampling rate

equals the maximum pulse rate. However, when both orientation and position me,,­

surements are needed, tben three senders instead of one are required. If the commu­

nication channel is time multiplexed, then the maximum sampling frequency is just

a third of the maximum pulse rate. The use of addi tional senders for the purpose of

continuous calibration does not reduce the maxiJnum pose sampling rate in the same

linear manner because the calibration process requires only a sampling rate of ahout

4 Hz. Another solution is to use both time and frequency multiplexing. For instance,

there exist transducers produced by Murata Inc., which have very similar dimensions

and radiation characteristics to the transducers used in this thesis, but they havc two
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resonance frequencies instead of one. Hence, the maximum sampling frequency for

pose measurements would be ahout half the maximum pulse rate.

4.3.2 Eleetronic Nois~

Quantization Noise

Perhaps the most obvious electronic signal corruption is the quantization noise due

to the fini te dock speed. A 25 {lm resolution at a 2 m range one would require ca.

13.5 MHz dock speed and a :L 7 bit counter. Our experimental ultrasound system used

just 10 Mhz 16 bit counter chips because of the lower prize and the ready availability

of these chips. Hence, the maximal resolution is 0.1 {lsec. If one subtraets half a

dock period from all TOF measurements, one obtains a symmetrical resolution of

±0.05 {lsec, which corresponds to ca. ±0.018 mm. If a higher resolution is desired,

this can be easily achieved by increasing the dock speed to 16 MHz or above and the

use the appropriate counters.

Receiver Background Noise

The sensor signal is quite weak (just a few mV). The receiver noise f100r constitutes

a problem particularly when the distance betl"eell sender and receiver is large or the

sender and receiver Itxis are misaligned by a large angle. Thus, the amplifier stages of

the receiver must be well shielded and designed. Nevertheless, the influence of circuit

noise cannot be avoided completely. Fortunately, such disturbances can be modeled

as white noise and can be averaged out easily. It has also been observeà, that the

microphone provides a small 40 kHz signal even if no sound source is present in the

room. Thus, the receiver background noise cousists of the amplifier thermal noise and

the amplified microphone self-noise. Table 5.1 contains information on the relative

strength of the receiver background noise and on the TOF measurement errors it can
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cause. Table 5.1 is discussed in the section on reverbcration noise.

4.3.3 Electronic Delays

68

The analog part of the sender, the ultrasound sender and microphonc as wt'1! as tl11'

receiver amplifier, ail distort the received signal somewhat and add a small lags. lu

particular, the zero crossing detector has a small hysteresis and it,s output pulsc has

a finite rise time. Moreover, the first layer of logic gates of the digital parts of seud"r

and receivp.rs add a small delay. Since allsenders and receivers arc nominally builtthe

same way and the receivers trigger at the same zero crossing thanks to an automatic

signal gain adjustment, it is reasonable to assume that the total effect of thescs ddays

and lags is approximately the same for ail channels.

It is estimated that the total delay due to ail sources is in the order of O.lIISCC for

the quality of electronic components used in the prototype. The electronic dday lIlay

change slightly over time with temperature, and \Vith ageing of the parts, but givcn

the smallness of the delay and its conceivable changes, it probably can be considercd

a constant for ail praetical purposes, especial1y when high quality electronic parts

are used. The eleetronic delay can be estimated at the time when the system is

calibrated. The estimated delay would then be added to the TOA and the SUIll

would be subtracted from the counter readings, yielding the TOF measuremcnts. In

the following, the sum of the electronic delay and the TOA will be referred to as the

harJ ....are delay (BD). In fact, at calibration one would rather estimate BD th'lfI its

two comp"nents because the two cannot easily be distinguished and have the same

effect on the measurements. Alternatively, HD could continuously be recalihrated hy

a referenc:" sender along with the speed of sound.

It has been ohserved, that the amplitude of the signal can f1uctuate very violently

under the influence of wind gusts; so much, in faet, that sometimes the receiver

triggers at a later pe:'iod of the signal than the one corresponding to the desired
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TOA. Even an automatic gain adjustment circuit is not always able to avoid this. In

these cases the "true" TOF cao be approximately recovered from the counter readings

CR provided that one has an estimate TOF. of TOF which has an error better than

±T./2, where T. denotes the period of the 40 kHz carrier. A recovery is possible

because the TOA is known to be approximately an integer multiple of the carrier

period T•. Hence, given the nominal hardware delay HD, the estimate TOF. and the

counter reading CR one can compute the TOF as:

TOF = CR - HD - [(CR - TOF.) mod T.1T.

4.4 Non-ideal Transducers

4.4.1 Theoretical Analysis

For the purpose of 3D ranging, an ideal ultrasound transducer would be a perfect point

source or point sink and have a perfectly spherical radiation characteristic. These

transducer properties are desirable because, in the first place, one wants to guarantee

that all the receivers receive the sender at all times, independent of the relative

orientation of sender and the receivers. Secondly, the triangulation formula assumes

the sender and the receivers to be mathematical points wil hout spacial extensions.

ln other words, the geometrical center and the acoustical center of the transducer are

assumed to I;oincide.

Another desired characteristic of an ideal transducer would be that it operates at

a small wavelength because this would improve ranging accuracy. However, the heavy

damping of high frequency ultrasound transmission seriously limits the frequencies

one can use and stiJl operate at the desired range of two metero. Moreover, to get near

spherical radiation characteristics, the transducer diameter must be in the order of

the wavelength. A small diameter, however, makes it difficult to transmit a sufficient
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Figure 4.3: Transducer misalignment

amount of power for reliable communication. Thus, 3D high frequency ultrasolllld

ranging is difficult to achieve.

Unfortunately, the ideal transducer does not exist. The acoustic center and thl'

geometrical center of real transducers does not always coincide. The best compromise

we were able to find was a 40 kHz ceramic ultrasound trans<!ucer with a widc opcning

angle and sub-wavelength size. Even at 2 m distance and a more than 90" angle

between the sender and the receiver axis, the signal magnitude was sufficient for

reHable signal detection. At smaller distances up to 180· were achieved. The radiation

characteristics of the transducer which was used for this study is shown in Appendix C.

The device used approaches the ideal transducer in so far as its membrane is slightly

smaller than the wavelength. The wavelength is about 8.5 mm and the membrane

has a diameter 01 aba'lt • mm.

Suppose the transmitter transducer has the form of a disk with radius r. Assume

further that the translI'itter membrane moves uniformly. One can ~hen make a simple
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plausibility argument in order to understand the effects which a non-ideal sound

source has on the measured TOF: Consider only three pressure waves Po, PI and P2

generated by the uniform movement of the three points sa' SI and S2, which are on

the membrane of the sender transducer. As shown in Fig. 4.3, sa is at the center of

the transducer and SI and S2 are symmetrical with respect to the transducer axis and

lie on the very rim of the transducer. We are interested in the phase relationship at

a point P in the far field of the transducer between the Po wave and the composite

wave of Po, PI and P2.

Taking damping and geometrical dispersion into account the prt>ssure at a distance

d from a point source can be described by:

exp(-,dl .
p(d,t) = A d f(t - d/c)sm(w(t - d/e))

where A is a constant, , ~ 0.0219 neper/m is the damping constant for 40 kHz ul­

trasound in air and f(t) represents the (positive) envelope of the pulses sent. The

composite pressure Pe at P caused by the movement of sa, SI and S2 can be computed

by adding Po, PI and P2· For small r/d one CP:! use 6. =rsin(<p) to compute Pe:

Pe(d, t, <p) = p(d, t) +p(d - 6., t) +p(d +6., t)

- Ae(t) sin(w(t - d/e +Be(t)))

The time interva1 Be(t) is the bias which corrupts the TOF because the dek:tion

relevant zero erossing is shifted in time by - Be with respect to the nominal TOF d/ c.

The bias Be(t) ean be readii; computed: After sorne algebraie manipulations aud

simplifications using ~ -+ 1 one obtains:

1 ([J+e+ - f-e- + ~(!+e+ + f-e-)] Sin(k_~))
Be(t) ~ -aretan -

w 1 + [f+e+ + f-e-J eos(k6.)

where k =211f.\ is t"e wave number, e+ =exo(;~), e_ =exp(-,6.) and

f
- f(t - d/e - 6./e)

+ - f(t - d/e) ,
f- = f(t - d/e +Mc)

f(t - d/e)
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The formula above indicates that Be increases with~. Therefore, for large." t hl'

TOF bias is large. Further, Be will decrease with increasing range d. Moreover, th"

pulse shape and the TOA influence Be. If damping is ignored, and the zero crossing

detection occurs during the rising edge of the pulse, then the term U+ - f-) in the

formula above is a positive number contributing to the TOF bias. Thus, keeping th('

influence of the pulse shape small requires a choice of TOA such that th(' derivatin'

of the pulse shape is small at the time the zero crossing is measured. Note that zero

crossing detection during the raising edge or the plateau of the pulse implics thal B,

is non-negative and thus the measured TOF will always be smaller or eqnal to the

nominal TOF which is dlc.

The preceding analysis of the bias Be does only consider the spacial extension

of the sender. The receiver, however, is not a math'matical point either but has

the same dimensions as the sender. 1'0 take this into aœount, suppose there are

3 points ma, ml and m2 on the receiver membrane, positioned in the sanll' manner

as sa, SI and S2' Further assume that ma and P in Fig. 4.3 coir.cide and that tll<'

receiver transducer is oriented such that the transducer axis coincides with the v('ctor

pointing from ma to sa. Furthe, -more, assume that the receiver transducer acls as a

perfect spacial pressure integrator. Now, if the range d is very large compared to the

transducer radius r, then ail three points on the receiver membrane will experience

approximately the same pre~sure and therefore Be will he the same as if the receiver

was a mathematical point at P.

On the other hand, suppose the receiver axis is tilted by an angle <.p' away from

the mo·so-line, then one can use the reciprocity of this situation to the one previonsly

discussed for the se;,,1~'r transducer. One can argue that the point So CIl the send('r

membrane plays the role of P, the angle <.p' that of <.p and mo, ml and m2 play the role

of their sender couoterparts. From this setup one can compute another TOF bias 13;.
Heoce, the overall TOF delay could theo approximately be compuied as the sum of
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4.4.2 Numerical Analysis

The situation depicled in Fig. 4.3 can also be analyzed numerical1y. A quantitive

analysis of the TOF bias perceived at point P requires a computation of the value

of the pressure field at P by numerical1y integrating the contribution of every sender

surface point. The exact form of the doublg integral to be solved can be found in

most text book on acoustics, for instance [34, page 549]. The ca1cu\ation made in

this thesis, however, also inc1udes damping effects, which are neglected in [34]. For

steady state CW conditions Fig. 4.4 shows the misalignmcnt shift G as a function of

the angle cp, where

Pe(d, t,cp) =Asin(w(t - die +Glc))

and A is a constant.

Contrary to the approxima.ion discussed before, there is a negative bias (delay) for

cp =O. When 'fi increases, 50 does the bias. Final1y, the misalignment shift becomes



CHAPTER.. THE HARDWARE ;·1

positive. As can be seen in Fig. 4.4, the misalignment shift G can be negk-cted. Evcn

when dis as small as 20 cm the shift G varies olli)' by 0.03;mm when 'P sweeps from

û· to 90·. As expeded, il.:c' shift is even smaller when d is larger. For C'Jmparison,

Fig. 4.4 shows also the case when d=2m. The results in Fig. 4.4 were obtaincd for

a 40Khz ultrasound transducer with Îmm diameter, the type used throughout this

thesis. The shift G is very sensitive to the transducer diameter. For a transdul'er

with 10 mm diameter and d=20cm, one obtains a change of 0.2 mm instead of just

0.03Î mm when 'P sweeps from O· to 90·. Thus, if Hi mm transduccrs were used, onc

must compensate for the misalignment shift.

A complete quantitive analysis of the TOF bias requires a computation of the

pressure field at each point on the receiver surface by integrating the contributions of

every sender surface point. Next, one would have to integrate the pressure field O\'cr

the entire surface of the receiver. Unfortunately, integrals of this kind do not have

closed form solutions and are computationally very demanding. However, there can

be little doubt that the sender and receiver separation principle outlincd in Sec. 4.'1.1

in combination with Fig. 4.4 allows at least a rough estimate of the misalignment

shift. For real time misalignment shif~ compensation sorne good approximate c10sed

form solution may certainly be found.

Even this approach has sorne problems. Firstly, the transducer membranes may

not move uniformly, or may not act as perfect spacial integrators. This is truc in

particular for transducers with large diameters. The incorporation of these eifects

into the compensation formula is v~l'y tedious. Secondly, it is difficult to calibrate

the orientation of sender and receiver transducers. Nevertheless, ther.. can be little

doubt that a comp~ ted compensation will greatly reducc the bias.

A possible alternative method for the numerical compensation of the misalignment

bias could be to use acoustical lenses or waveguides [55], [.56] to focus the sound and

thereby reduce the effective transducer size. Moreover, sorne additional measures can
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Figure 4.5: Center shift function for 10 mm transducer

(
be taken to reduce the bias. For inst. !:ce, one could have man)' redundant receivers

and choose those for the measurements which have the best alignment angle at the

sampling instant. AIso, when the transmitter is moving, especially when it involves a

reorientation of the transmitter, sorne of the bias can be averaged out. This effect is

enhanced if three or more senders are mounted on the manipulator hand with different

orientations.

("

Given the complexity of the problem, it is useful to employ experimental mcthods

to determine the misalignmenl shift. Experimental data about the misalignment shift

can be found in [13) for 40 kHz transducers with 10 mm diameter and a 24 inc (61 cm)

distance between the center points of the sender and the receiver transducer. The

rcsults were "bLained by measuring the phase shift under steady state CW conditions.

The receiver was oriented such that its axis formed an angle cp with the sender's axis.

Now, the two axis do not align anymore, the sender staying put. The results are

reproduced in Fig. 4.5 which shows the experimentally obtained misalignment shift

(error) as a function of the relat.ive angle cp between sender and receiver. According
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to the authors of [13], the data in Fig. 4.5 have a maximal measurement error of

0.097 mm, which may explain the large data variance in Fig. 4.5. Neverthcl.-,;s.

the misalignment shift in Fig. 4.5 is very much larger than the earlier mentioned

numerical1y obtained result of 0.2 mm. Even at cp = 50· and 24inc distance the shift

reported in Fig. 4.5 is ca. 0.5 mm. The authors of [13] claim that this result is in

accordance with the theory. The theory they refer to, however, is never explicitly

stated in [13]. To resolve this dispute would likely require sorne further experimental

verification, which, however, was not done at the present time.
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Chapter 5

Deterministic Measurement

Corruption

In this chapter, the the medium dependent deterministic disturbances mentioned

in Sec. 4.1 are analyzed. Thus, atmuôpheric conditions like temperature drifts and

temperature gradients, and wave-medium interactions like diffraction, refraction, re­

fiection and doppler are discussed.

5.1 Atmospheric Biases and Drifts

5.1.1 Room Temperature Drift

Even a small change of the room temperature can seriously èegrade the measurement

precision: An unaccounted tiny change of just 0.2 C· could caus!:. an error in the

order of 1mm on a 2 m measurement distance. This is unacceptable and therefore

temperature drifts must be compensated for.

The graph lA' in Fig. 5.1 shows typical TOF changes for a fixed sender-receiver

distance in the small room. The range was 1.4 m and the sampling frequency was

77
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Figure 5.1: TOF fluctuations for l.4m range while heatillg the small rooOl.
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4 Hz. The graph 'B' in Fig. 5.1 was ob~ained by fillf'ring the meilSurements with

a zero-lag non-causal 2 min moving average filter. Clearly, it is useful to scparate

the e!fects of the slow average temperature drift from the effects of the much faster

turbulences. Thus, both will be modeled separately as outlined in Sec. 4.1: One as

'deterministic' and the other as 'random'.

Without turbulent air movement, the change of room temperature would be very

slow. Suppose L=5m is the characteristic length of the room and 1'=0.2cm2/sec is

the thermal di!fusivity of the room. If only molecular diffusion is considered, then,

according to [29], the scale of the characteristic heating time is L2h=100h. This is

very slow, indeed. If, however, there are convection currents and the iargest eddy

has an average velocity of say u=5cm/sec and a characteristic size equal to the room

(L=5m), then, according to [29], the scale oi the heating time constant is L/u=100scc.

This is indeed doser te the order of magnitude that was experimental1y observed for

heating and cooling of a room.

lt fol1ows from this that the magnitude and time constant of the room tempcrature
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changes are closely correlated to the magnitude and time constants of the convection

currents. Indeed, in the small rOUffi it was observed that a steep change of the

room temperature was always accompanied by turbulences with large magnitude.

Converse1y, it is possible to speed up heating by increasing the turbulences in the

room. For example, operating a heater with a strong fan can warm a room very

rapidly (and very turbulently). Large rooms, on the other hand, generally exhibit

larger heating time constants than smail rooms. They are much less subject to fast

changes in temperature. For example, in the large room, no appreciable average

temperature drift was detected over any SOO sec interva1. This should be compared

with Fig. S.l for the small room. In general, the measurement system should be

located as far away from heat sources or heat sinks as possible.

5.1.2 Temperature Gradients

Overview

Unfortunately, the temperature is not evenly distributed throughout the entire roOITl.

'fhere is a slowl)' changing or, virtual1y constant temperature gradient. It is mainly

caused by the natural convection of the air in the room. Usually, the air near the

ceiling tends to be warmer than the air near the floor. Even though these temperature

differences are quite smal1, usual1y less then laC, they do seriously affect the TOF

measurements: If one does not compensate for the gradient, then in the worst case a

constant gradient of say O.SoClm over a measurement distance of 2 m would cause an

error of about 2 mm. This is about an order of magnitude larger than the precision

of interest.

Hence, one has to compensate for the temperature gradient. Unfortunately, there

is no eas~' way short of simulation to predict the exact temperature and velocity

distribution for a completely general architectural enclosure. Most rooms, however,
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have a rectangular shape, mostly shallow, and possess walls that may have different

temperatures or may allow different heat flux. For these idealized situations there

exist sorne simple solutions for the core region of such rooms. The solutions for regions

close to the walls are generally more complicated, and are of no central interest to

the purpose of this study.

First Convection Model

The first convection model assumes that two opposite vertical walls of a shallow

room are kept uniformly at different constant temperatures Tcold and T';o,m, wherc

t::.T =T...,m - Tcold > O. Further, it is assumed that the remaining walls do no' :.lhw

any heat flux or material diffusion through their surfaces. The situation is dep;,-led ".

Fig. 5.2. Following reference [30], which should be consulted for details, one can definc

the following dimensionless quantities: Tc = (T - Tcold)It::.T, Xc = xl L, Yc = yl}f
and U c and Vc are the properly normalized horizontal and vertical air velocitje~. ln

terms of these quantities, the core solution for the temperature is given as a fifth

order polynominal in Yc and is linear in Xc and the horizontal velocity is given as a
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Figure 5.3: Vertical tcmperature for mode! 1.

third order polynominal in Yc:

(5.1 )

uc(Yc) = kl (Yl- ~ + ~;) ,

where the Rayleigh number is

Vc = 0 (5.2)

.'-

and the kl , k2 and Cl are known constants.

The vertical distribution of the temperature and the velocity as described in the

above formulas are reproduced from [30] in Fig. 5.3 and the horizontal temyc':ature

distribution is reproduced in Fig. 5.4. As can be seen, the temperature distribution

is symmetrical with respect to the point (x, y) = (L/2, H/2) and the velocity distri·

bution is a counter flow and symmetrical with respect to a plane through y = H/2

which is parallel to the f1oor. It is clear from Fig. 5,1, that for very shallow rooms the
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Figure 5.4: Horizontal temperature for model 1.

gradient will be small in the vertical direction and large in the horizontal direction.

As the factor {H/L)2RaH increases and the room becomes less shallow, the vertical

temperature gradient becomes predominant.

Second Convection Model

The second model does not assume that the vertical walls at x = G and x = L

are isotherms; rather, it is assumed that the heat flux through the vertical walls is

uniform. The temperature distribution of the wall will then be a result of a heat flux

from the outside, rather than be a given and the wall temperature will increases with

altitude. This assumption is believed to model the actual situation in many buildings

more closely than the first model does. The problem is illustrated in Fig. 5.5, which

is reproduced from [30]. In this problem the vertical temperature gradient in the core

region is a constant and the horizontal gradient is zero; the horizontal and the vertical

if, .
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Figure 5.5: Boundary conditions, isotherms and streamlines for Model 2.

velocity are also zero:

........
8T _ ~ (H)4 /9R 8/9
8y - H4 L a.H'

8T =0
8x

(5.3)

where the Rayleigh number is

u= 0, v=o (5.4)

,,.-;-..

and q is the heat flux and C2 and C3 are known constants. The Fig. 5.5 depicts the

numerically simulated isoterm contours for the above mode!.

There are, of cou,se, many other theoretical models dealing with differenl room

shapes and different thermal boundary conditions. Most of these results, hoiever, arc

only in the form of numerical simulations. In particular, much work has been donc

for the case in which the floor is warm and the ceiling is cold instead of the vertical

walls, ~'e for example [31]. This situation may arise wh~n a room is uniformly heated
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through the floar. In this case, otller than for rooms that .lIe heated from the sicle,

there has to be a minimal f1T before convection starts and then it evolves in the form

of Bérnud ceUs. For large f1T very complicated stable patterns can arise.

Experimental Temperature Profile

In order to test the two convection modeIs, and to get a practical picture of typical

temperature distributions in a real room, it was decided to make some measurements

which are hoped to be in sorne way representative.

To do this, it was necessary to measure temperature differences with a resolution

better than a tenth of a degree Celsius. Since such a thermometer was not readily

available, it was decided to use the TOF measurement of the ultrasound system itself

as a temperature measurement device. This has the additional Ildvantage that one

measures directly the variable which is relevant for the position estimation and treats

temperature as a quantity which is derived from the TOF measurements via the

equations (1.1) and (1.4).

The measurements were done with two sender-receiver (S-R) pairs. As precisely

as possible with a ruler, each receiver was placed 30 cm away from its sender. The

two SoR pairs -.vere placed at the same height, paraUel to and flush with each other at

a sender-sender distance of ca. 10 cm, which for mechanical reasons was the smallest

possible. Then the TOF, for each p,âr, was me,asured with a sampling rate of 4 Hz,

and the difference was averaged over 4 minutes. Then the approximate 30 cm distance

of one of the two SoR pairs was adjusted until the absolute value of the averaged TOF

difference was reduced to a very smaU value fO, which then was subtracted from aU

future TOF difference measurements. The two SoR pairs were fixed onto two boards.

If one pair is now moved away from the other, then any change in the averaged TOF

difference must be caused by spacial sound speed differences.

The two SoR pair method has the advantage to make the measurements robust
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with respect to temperature drifts during the long measurement process. For examplc,

when the average room temperature increases slightly between measuremcnts, say by

IOC, then the averaged 'l'OF difference decreases only by ca. (0/290. Without. t.hc

reference pair, it would be difIicult to dist.inguish between a t.emperature drift. and a

temperature gradient.

The Fig. 5.6 shows the vertical tempemture profile in t.he middle of t.he small 1'00111

as measured with the method explained above. The maximum vcrt.ical t.crnpcrat.lIrc

difference was 1.1oC, which is large enough ta cause position measurerncnt. errors in

the millimeter range if not compensated for. The temperature gradient. is essent.ially

a constant l oClm in the midsection of the room height, but sharply changes its valuc

and even its sign in the regions close to the ceiling and close to t.he floor. Such a

behavior can be reconciled with the theoretical convedion models: The assumption

made in the theoretical models, thai the ceiling and the floor do not permit. hcat

transfer, appears not to be a very good approximation of the situat.ion in t.his par­

ticular room; rather, the room seem to loose sorne heat through the ceiling and gain
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Figure 5.7: Dynamical behavior oftemperature gradient.

sorne heat through the floor. This could account for the sharp gradient change in the

end regions.

Measurements were also done in order to determine possible gradients in the two

horizontal directions. However, in the core region of the room, no conclusive results

were obtained: Ali "gradients" were in the order of the measurement error. The

absence of a significant horizontal gradient leads one to the conclusion that the second

convection model is indeed a better description for regular rooms. Of course, this does

not mean that the horizontal gradients can be neglected in ail rooms.

Experimental Temperature Gndient Drift

The Fig. 5.7 shows the dynamic behaviour of the temperature gradient. The graphs

were obtained by filtering the TOF differences with a 100 sec rnoving average filter.

The dotted graph depicts the tirne behavior of the averaged TOF differences when the

two pairs are at the sarne height. As expected, there are only very srnall deviations

from the zero line.
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The dashed graph in Fig. 5.7 shows the time behavior of the averaged TOF dif­

ferences when one of the pairs was moved to a position that was 45cm higher than

the position of the reference pair, which was located 65cm above the floor. Il can be

seen that the avcraged TOF differences do not change much with time. The average

TOF difference st ays at about 1.4Jlsec for this height difference. The corresponding

temperature difference is ca. O.soC.

On the other hand, one would expect the TOF difference to increMe when ci­

ther the temperature difference f1T or the heat flux q increascs, depending on what

theoretical model one chooses. This can indeed be observed. The solid graph in

Fig. 5.7 shows the time behavior of the averaged TOF differences for the same setup

as before, but now the window of the room is slightly open, thereby increasing both,

the heat flux q and f1T. The open window decreases the average temperature, but

increased the temperature gradient. As can be seen, the TOF difference increases

steepIy, and then leveis off at a value of ca. 2.5Jlsec, corresponding to a SO% increase

of the gradient.

It should be remarked, that in practice, a change of the temperature gradient

would hardIy be achieved without a change in temperature. Considering the theo­

reticai models, one would reasonably expect that the time constants for temperature

changes are similar to the time constants for temperat.ure gradient changes.

The above experiments were not repeated for the large room. 1t can be expected,

however, that the temperature gradient will be less pronounced in the large room. If

the second theoreticaI model hoIds, then one would expect the vertical gradient to be

inversely proportionai to the room height. Thus, a reasonable estimate of the vertical

gradient for the large room would be about O.5°Clm.
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5.1.3 Wind Biases
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Air movement is a serious problem for the ultrasound system. In the worst case, when

wind direction and measurement direction are aligned, an uncompensated 20 cm/sec

wind would cause an error in the order of about 1 mm for a 2 m measurement distance.

Moreover, wind was observed to be always accompanied by a high level of spacially

weakly correlated turbulences. As will be shown later, even if the average wind is

compensated for, a high level of spacially weakly correlated turbulences may severely

limit the precision of the 3D ultrasound range finder. In other words, an environment

were one must compensate for an average wind is not a gooC: place for the operation

of a high precision ultrasound range finder.

Fortunately, the effects of constant winds on the measurements is usually not of as

much concern as is temperature. One reason is that, other than temperature biases,

wind can often be avoided by moving or shielding the meusurement system from the

wind source, or by removing the wind source itself. Moreover, furniture and other

obstacles in the room may act as natural wind barriers.

5.2 Wave-Medium Interaction

5.2.1 Diffraction

The equations which describe the propagation of sound [28] can be considerably

simplified if they can be replaced by ray theory. It is well known [58], that this

approximation is valid if the size of the first Fresnel zone VIT « a, where À=8.5mm is

the wavelength, L=2m is the maximal range of interest and a is the spacial correlation

distance, which is shown in Sec. 6 to be in the order of 25-90cm. Thus, ray theory is a

valid approximation for this case and diffraction can usually be neglected. A special

case may arise when sma1l objects are blocking the line of sight between sender and



CHAPTER 5. DETERMINISTIC MEASUREMENT CORRUPTION

receiver and the sound signal diffracts around them.

5.2.2 Refraction
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(5..5)
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It is weil known that a sound-speed gradient will cause the sound rays to follow a

curved path in space instead of a straight line. This is referred to as refraction. In

the following, it will be shown that refraction can be neglected for the type of sound

gradients encountered in normal rooms. In this context, two explicit forms of (.1.6)

are presented: The velocity form and the inverse velocity form.

The Velocity Form

Given the equations (1.1) and (1.4) and in the results of Sec. 5.1.2 one can weIl

approximate the speed of sound at a point ( as:

c(() = Cr + cv(( - Sr):

where Cr is the speed of sound at a reference position Sr> and Cv is the scalar vertical

velocity gradient. Further, it was found in Sec. 5.1.2 that often the temperature

gradient {)v < 1°Clm, which corresponds to Cv < 0.6 sec- l .

Hence, the ray path will be curved because of the non-vanishing sound-speed

gradient. For ranging purposes one is not so much interested in the shape of the

ray path, but rather one wants to know the time the sound needs to travel from the

sender at S to the receiver at }vIi. In the absence of any other factors, the trave! time

can be computed from (4.6) as:

d' d
tof!={' s

• Jo CO +cv(f;(s) - Sr):

where d; denotes the length of the parameterized curved ray path n(..). If one

made the approximation f; = fi, where fi is a straight line as defined as in (4.1),
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thcn one obtained:
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(5.6)l
d; ds

tof; = _
o c. +ev(e;).s

where c. = Cr + cv(S - Sr). denotes the speed of sound at thesender S. For Cv =1 0

the above Integral has the solution:

In(ll + .œ(ë;).d;j)
tof; = c.

ev
(5.7)

<:

!t is evident from ray theory that if vTi(O) is vertical i.e. has tVé same direction

as the sound-speed gradient, then (5.7) is exact and the ray path f; = f(i) is a

straight line of length d: = di connecting 5 and M;. The more '\7f(O);(O) differs from

a vertical, the mnre the ray path differs from a straight line and the less valid is the

slraight line approximation (5.7). Therefore, if (5.7) is a good approximation even for

nearly horizontal cases, then il. must a good approximation for other angles as weli.

(If cv(ëi ). = 0, then (5.7) must be replaced by tof; = d;/c. ).

Il is well known [28J, that for a constant vertical velocity gradient and a horizontal

initial angle the ray path is a circle segment with radius R = cs/cv. Since ti.~

circle segment connects 5 and Mi which are d; apart, the angle which spans the

circle segment is <Pi = 2arcsin(~). Moreover, '\7cTe; = -R(l- cos(<p;))/d;. Now, for

Cv =1 0 \Ve obtain from (5.5):

tof! =..!.. [<i>; dcp _ In(\tan(1f/4 + <p;/2)\) (5.8)
1 ev Jo cos(cp) Cv

In order 1.0 compare (5.7) and (5.8) the foliowing \Vorst case scenario \Vas as­

sumed: Cv = lsec-t, Cs = 331.6 rn/sec and d; = 2 m. Under these conditions,

d: - d; = O.OG:} mm and the approximation error is tor; - t.of;=9.le-9 sec. Clearly,

the approximation error can be neglected because il. is by about a factor 30 smaller

then the desired precision. Thus, the bending of the rays due 1.0 refraction can be

neglected and (5.5) can al\Vays be replaced by (5.7).
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The Inverse Veloeity Form

Unfortunately, (5.i) is quite complex and may not be ideal for real time applications.

Moreover there is a problem with a potential division by zero. Thus, the inverse-speed

or index of refraction form of (4.6) appears to be more advantageous:

(5.9)

where nr and nV" are chosen such that (5.9) is exact for two vertically distinct sender

or microphone positions. An advantage of (.5.9) over (5.7) is that the former is linear

with respect to the parameters nr and nV" while the latter is non-linear with respect

to Cr and cV". Linearity is important because these quantities must be estimated

by a Kalman filter. The linear measurement equation makes it possible ta lise a

computationally advantageous constant gain fil ter.

Clearly, (5.9) is easier ta compute in real time than (5.i), it does not have the

problem of a potentia! <!ivision by zero like (5.7) and it permits the atmospheric

variables no and nV" to be estimated by a constant gain Hnear filter. Given the

desirability of (5.9) the question arises as to how good an approximation it is for

(5.7), which now is considered to describe the underlying physical reality correctly.
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Clearly, the size of the factor nv(S - Sr): in (5.9) is a measure for the approx­

imation error. Therefore, one would expect the error to he large for large nv and

iarge vertical distances between the sender position S and the reference position Sr.

To get an idea of the size of this error a 'bad case' situation was considered as shown

in Fig. 5.8. The microphone MI is positioned 3.5 m, M 2 is 3.2 m a'ld the reference

sender ST is positio'ued 2 m above the main sender S. The fol1owing is assumed: A

vertical velocity gradient of 1sec-I and a speed of sound of 343mjsec at Sr.

For this scenario, the norm of the error lIeli between the 'true' TOFs computed

with (5.7) and the approximated TOFs computed with (5.9) was determined. The

parameter nr and nv in (5.9) were ca1culated from tof} and tof2 for S = Sr' The

approximation error for S as in Fig. 5.8. was then found to be lIell=4.1eô-8 sec which

corresponds to ca. 0.014rnm. Even for this extreme case the approximation error

remains weil below the precision of interest. Hence, in any normal situation it is

possible to use (5.9) instead of (5.5) or (5.7). The three formulations are equivalent

wi thin the specified precision.

5.2.3 Ambient Noise

The ceramic ultrasound transducers which were used in the experimental system

behave like a bandpass filter with center frequency at 40 kHz and a bandwidth of

ca. 5 kHz. The receiver amplifier has a similar frequency characteristics. Thus, only

sound with a frequency which lies in a narrow band around the carrier frequency

has an appreciable influence on the measured TOF. Even if the ultrasound sender

is switched off, there will probably he sorne residual 40 kHz sound in the air. This

disturbance may come from many possible sound sources. See [27] for a study of the

spectral composition and strength of typical industrial ultrasound emitting processes.

The study found that beyond 100 kHz the noise is negligible for ranging with two

exceptions: Aerodynamic noise and laser etching. The situation is worse for 40 kHz.
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It appears that most industrial processes have sorne kind of 40 kHz component. Much

of this type of noise is impossible to quantify a priori and therefore must be measured

in each individual case. Since it cannot be removed from the signal, the foreign carrier

sources must be silenced or be removed from the room if the SNR(TOA) becomes

too large.

If the sender is moving, which can be expected when it is attached to a manip­

ulator, or if the foreign carrier source has a phase and amplitude which change fast

compared to the sampling frequency, then of course the ambient noise would not cause

a measurement bias, because it can be approximately averaged out. If, on the other

hand, the sender does not move, and the ambient noise has a steady state harmonic

component at 40khz, then a fixed bias of the measured TOF may result.

If the just described scenario ever contributed a significant bias to the overall

measurement error, then it would be easy to prevent it. One could change very

slightly the pulse period each time a signal is sent. If this is done in a pseudo random

mahner, with the mean at the nominal pulse period and the standard deviatioll of,

say, a sixth of a carrier period, then a steady state foreign carrier would behave as if

it were white noise with respect to the 'random' phase of the signal carrier.

5.2.4 Reflection and Reverberation

The worst effect which refiections can have, occurs when the refiected signal has tlte

same or even a larger magnitude than the direct path signal and the TOA is so large

that the refiection has a full impact on the TOF. In praetice this may occur for oncl"

refiected signais, whose path is not much longer than the direct path. Therefore, TOI-'

measurements corrupted by short path refiections are useless. As mentioned earlier,

the TOA must be chosen small enough to provide refiection robustness.

Once sent, the carrier can remain present in the room for a long time. The sound

partially refiects from walls, furniture, people etc., until ail its energy is converted into
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heat. The sound can refiect many times and finaUy the room is filled with a diffuse

background sound level. This is usually called reverberation noise. The reverberation

constant is a measure for the time necessary to reduce the noise level of a room by

60 dB after the sound source is switched off. The reverberation constant can be

computed as a function of the room dimensions and the refiection coefficients of the

refiecting surfaces [28].

In our case, it appears that only the first couple of refiections from the walls have

an appreciable effect on the measurements. In fact, in this report the expressions

'reverberation', 'multi-reflections' or 'long path refiections' are used synonymously

and do describe all at least once reflected signaIs whose path is so long, that they

arrive at the receiver after, together with, or immediately before the next direct path

signal.

Provided that that there is no movement in the room, these multi-refieetion signaIs

from the regularly puIsing sender appear on the oscilloscope as regular patterns with

little or no apparent phase or amplitude changes. However, the patterns seem to

be highly susceptible to small changes in the room. Even a slight repositioning of a

person's head was observed to change the patterns. Thus, in a normal environment,

where persons and objects are moving, and in particular in a robotics context, where

the ultrasound sender is moving most of the time, the reverberation noise can almost

certain!y be approximately averaged out and will not cause biases.

Nevertheless, a regularly pulsing static sound source like the transmitter, when

used in a static room, could conceivably produce measurement biases due to the

standing wave patters of the multi-refiection signaIs. A remedy against this possibility

would be the same as in the case of ambient noise. The sampling period could be

changed pseudo randomly after each sampling instance. This way, a standing pattern

could be avoided.
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pulse 0° alignm. 90" alignm.
rate 5th 8th 5rd 8th

5Hz 56dB 61dB 42dB 47dB
20Hz 56dB 61dB 42dB 47dB
40Hz 36dB 41dB 22dB 27dB

120Hz 31dB 36dB 17dB 22dB

Table 5.1: The effect of reverberation on the SNR for 30cm SoR distance in a small ,oom.

Reverberation
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Let us assume that SNR ;::: 1, otherwise the measurement is pretty useless anyways

and should be discarcied. Under this assumption the worst case occurs when SNR == 1

and the reverberation noise is 90° out of phase with the signal at the time where the

zero crossing is œeasured. The maximal induced TOF error f:>t. can he computed aS

a function of the SNR:

Co>' ( 1 )f:>t.(SNR) == 2. arctan SNR (5.10)

where >. is the wave length of the ultrasound. Thus, in the worst case f:>t. corresponds

to a position error of ca. 1 mm.

The SNR depends on the pulse rate, the reverberation constant, the signal magni·

tude at the receiver and the signallength. When the sampling frequency is increased,

then the refiected signais which arrive at the receiver together with the next direct

path signal have larger magnitude because their path is shorter than before. Whcn

the signal length is increased, the energy available for refiections is increased. Sim·

ilarly, when the reverberation time constant of the room increases, then the noise

amplitude increases as weil. Since the signal magnitude remains constant in ail those

cases, the SNR decreases. On the other hand, when the distance or the misalignmenl

angle is increased, then the signal magnitude decreases but the noise magnitude stll.)'s

constant. Thus, again, the SNR decreases.

In order to gain sorne idea of the order of magnitude of the reverberation error
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for different operating conditions, tite SNR was estimated from oscilloscope readings

for different sampling frequencies and misalignment angles. The noise level was read

immediately before the arrivaI of the ranging signal. The experiments were conducted

for the small room and for the large room. Table 5.1 shows the estimated SNR in

dB for the signal amplitudes measured at the 5th and at the 8th crest of the received

wave package, and for the misalignment angles of 0 degree and 90 degree. The values

in Table 5.1 were obtained in the small room, a sender-receiver distance of 30 cm,

and a transmitter input signal length of 6 carrier periods. The results for the large

room are about same except that for pulse rates higher than 20 Hz there appears to

be a 6 dB improvement over Table 5.1.

As can be seen from Table 5.1, the SNR is approximate!y the same for 5 Hz and

for 20 Hz and even for smaller sampling frequencies, which are not shown in Table 5.1.

This suggests, that this disturbance is due to the receiver background noise, i.e. the

transducer self-noise and the amplifier noise floor, rather than to reverberation. This

explanation was supported by th~ persistence of this noise level even after acoustic

insulation ofthe microphone. A future receiver may be able to reduce the background

noise further.

Fortunately, other than in the case of reverberation noise, the receiver background

noise was observed on the oscilloscope to undergo fast random phase shifts. This

implies that it can be averaged out even if the sender and its environment were static,

Moreover, the effect of the background noise on the measurement error is rather small.

It could only become a noticeable factor when the received signal is extremely weak.

For instance, the maximal measurement error caused by the receiver noise floor for a

2 m sender-receiver distance, a sender-receiver misalignment angle of 90° and a TüA

at the 8th period is about 6ï p.m. (This corresponds to 26 dB SNR.)

For both rooms, the reverberation dominated the receiver background noise when

the pulse frequency was increased beyond ca. 25 Hz. As shown in Table 5.1, for
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40 Hz, the noise level is increased by about 20 dB and even more for 100 Hz. Thlls,

at 40 Hz the maximal measurement error for the above extreme case problem would

be a remarkable 0.62 mm (corresponding to 6 dB SNR) instead of just 6; l'm for

20 Hz.

Extrapolations like the one above can be obtained from Table 5.1 by recalling

that the noise level does not change when the distance or the misalignment angle

are changed. These changes affect only the signallevel. The signal level, howevel', is

inversely proportional to the distance and its dependence on the alignment angle can

be obtained from the radiation characteristic chart of the ultrasound transducer which

is reproduced in Appendix C. For instance, a 90° misalignment error will cause a ca.

14 dB damping of the signal. Indeed, this is the observed factor in Table 5.1 between

the SNRs of the 0° misalignment column and the 900 column. Thus, Table 5.1 enablcs

one to predict the noise strength.

5.2.5 The Doppler Effect

It is weil known that the Doppler effect changes the perceived frequency of a LGn~

when the sound source or the air moves with respect to the receiver. This effect docs

not influence the measured TOF directly, but only indirectly by changing thc TOA.

Hence, if there is no compensation for the Doppler effect, then the computed TOF

for the i-th microphone will have a Doppler induced error:

(k) ( 1)Tc' )t.tof; = - - '
fo c+ wTc;

where fo=40 kHz, k is an integer such that the TOA is measured at the zero crossing

after the k-th period, v denotes the velocity of the sender and w is the velocity of the

wind.

Suppose that the TOA is measured after the 5th period, i.e k=8, the sender

moves with a speed of 0.34 rn/sec in the direction of the i-th microphonc, there is
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no wind and the speed of sound is 340 rn/sec. In this case, the error will be .5/1000­

th of a period, corresponding to 0.043 mm. This is il small and possibly negligible

errOr. Theoretically, one could compensate for the Doppler effect, since one does

have estimates of v, ej, k and possibly even w. On the other hand, the dynamic

control error for fast maneuvers will be much larger than the Doppler error. Gnly for

slow movements will the controller need high precision measurements, but then the

Doppler effect is negligible.

Alternatively, instead of trying to compensate for the Doppler effect, it could be

used for measuring the velocity of the sender and thereby improving the tracking

precision of the control system. However, this wo~ld require the ability to measure

the received carrier period of the ultrasound signal precisely. At the present time,

this was not attempted.
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Chapter 6

Turbulences

6.1 The Stochastic Turbulence Model

In (4.4) the TOF measurements were divided into four components. This chapter COIl­

cerns itself with the medium dependent l'andom component MRtof;(w, t) of the TOI".

For notational convenience, however, the prescript M R will be dropped throughout

this chapter. Thus, tof;(w, t) denotes the scalar random process which models the

random fluctuations of the i-th. channel. These fluctuations are caused by smail and

short lived regions of space which contain air with slightly different temperature or

wind velocity than their surroundings. These regions move in space and also change

their form and content over time. This changes the distribution of the refractive index

in the VOL In a room, space-time fluctuations of the refractive index are generated

by heat convection and conduction, turbulences, drafts, moving people etc.. lt is

evident that sound traveling through this fluctuating medium will experience slightly

different traveling times depending on the time of departure and the regions of space

which were crossed.

One can readily extent the scalar l'andom process tofi(w, t) to a l'andom vector

99
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Figure 6.1: Distribution function of TOF fluctuation•.

process tof(w, t):

(6.1)

which models a1l m measurement channels. ln the fo1lowing, the w-argument will

sometimes be omitted when referring to stochastic processes.

The objective of the modeling effort is to characterize the random vector pro­

cess tof(w, t), i.e one wants to know the joint probability distribution function F of

tof(w, t):

Note that F is implicitly a function of the microphone positions and the sencler

trdjectory S(t).

In the fo1lowing we assume that F is jointly gaussian. Besides the central limit

theorem, there is an other argument to support this assumption: A typical scalar

distribution density function for one fixed sender and one microphone is given in [15]

and is reproduced in Fig. 6.1. It approximates the shape of a gaussian distribution
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density function. The result \Vas experimentally obtaincd from thc timf' "l'rie" of 'l'OF

measurements. Hence, under the assumption of strict stationarity and crgodicity

Fig. 6.1 supports the daim of a gaussiall distribution function. 1\lorcO\'cl", consi,lel"ing

the underlying physical reality, il. appears reasonable 1.0 assume that the whote ralldoll\

process tof is jointly gaussian for any combination of sender and rcceivcrs.

If the TOF is modeled as a gaussian random vector process, thcn F is cOlI\pldely

characterized by its first and second moment. Since the low frequency hi,",es al"e

already subtracted, the first moment is the zero vector al. all times. The second

moment is determined by

(6.2)

where t] and t2 are arbitrary points in time. The covariance kernel Ptt is an il1lplicit

function of the geometry of the ultrasound system. In the fo!!owing, the nature of

this relation will be analyzed.

The dependency of the TOF on the ultrasound system's geollletry l'an be made

explicit by modeling the fluetuating underlying inverse sound-speed itself as a randol1l

space-time process Rn as was shown in (4.2). Then the TOF l'an be linked 1.0 Rn and

the ultrasound system's geometry via equation (4.5). Since Rn and the TOI" arc

by definition zero average processes, the TOF is completely defined by its second

moment:

(6.:1 )

where (Ptt(t], t2 ))i,j denotes the (i,j)-th clement of the covariance kerncl Ptt, which
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c

rcprcscnts thc covariance function betwccn the i-th and the j-th communication chan­

ncl. The scalar funetion Pnn is the covariance kernel of the inverse sound-speed. Thus,

from (6.3) we can conclude that knowledge of Pnn and of ail the ray paths rare equiv­

aient to having knowledge of Pu.

The key question is therefore the shape of Pnn • Unfortunately, there appears to

be no literature that addresses itself directly to the problem of modeling turbulent

sound propagation in a subregion of a closed room. On the other hand, there is a

wealth of literature on sound propagation in a random ocean and on general random

communication channels. Thus, the strategy used in this thesis is to apply the general

theoretical methods ta the problem and then determine the missing parameter values

experimentally.

ln order to simplify Pnn it was assumed that the process Rn is stationary and

homogeneous, i.e. its statistics do not depend on absolute time and absolute position.

This appears to be not too unreasonable an assumption since the process statistics are

likely to change only very slowly and there is no pressing reason to assume that there

are positions within the relatively small VOl (diameter 2 m) which have significantly

different statistics from their neighbors. Furthermore, if one wants to have any hope

of obtaining results of manageable complexity, one has to assume that in addition

to being stationary and homogeneous, the statistics of Rn are also isotropie, i.e.

independent of direction. The problem with this assumption is that it seems ta imply

a poor model for the effects of air movement. However, the main applications of the

stochastic model is for cases where two ranges whose correlation one wants to find have

similar directions. Moreover, experimental evidence suggests that the assumption is

adequate for the coarse statistical model of tof that one can best hope to obtain.

With the assumptions made above, the covariance kernel Pnn is only a function

of time delay and spatial shift and simplifies to:

(6.4)
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where T = \/1 - /21 and ( = 111'1 - 1'211 and th t2 , ]JI and ]J2 are arbitrary l'oints in

time and space, respectively.

Unfortunately, even the true shape of the strongly silllplified ('oval'ian,",- k,-mel

Pnn (T,Ois unknown in the literature. Looking al. the basic Physics of air turbulences

in a room, one l'an, however, make the following qualitative relllarks on the likely

shape of Pnn : Pnn is bound 1.0 be small for large distances 111'1 '- ]J211 and delays

1/1 - t 2 1· Moreover, the turbulences which extend over a large region of space are tbe

ones which are likely 1.0 have the longest life time.

In the absence of theoretical results, one can only follow tbe advicc given in [57]

and guess a general paramctric form for P,m and then choose the pamllleters 1.0 best

fit the experimental data. First, Pnn is further simplified by assHllling thaL one can

split il. into a time component and a space component:

(G.5)

The decomposition "bove has the drawback of not modeling the elllpiricai observation

that low-frequency turbulences are higher correlated than high-frequency turbulences.

Given the decomposition (6.5), there are 1.11'0 popular guesses for iLs spacc (01':­

ponent:

Pnn(O,O = Cl exp( -1(1/Dd

Pnn(O,O = C2 exp(-(IWD2?)
(G.G)

(G.T)

The parameters Ch DIor c2, D2 are unknown and must be determincd experilnentally.

To characterize the time component P",,(T,O) il. is convenient 1.0 switcb Ln a dis­

crete time description, where the saml'le instances tk = k'J~ occur aL integer llIultiples

of the sampling period T•. Suppose that the discrete time bebavior of /ln is weil mod­

eled as the output of a discrete time-invariant linear filter (A, 13,e) with state f' of

dimension r, whose input is white Gaussian noise with covariance Q. ln other words,

Rn is ar-th order Gauss-Markov process.
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Thus, one can find the state covariance kernel Ppp = E{ppT} as the solution of the

algcbraic Lyapunov equation:

With Ppp, one can characterize the discrete time behavior of Pnn as:

(6.8)

(

The parameter matrices A, C and BQBT must be determined experimentally.

Under the assumptions made about the process, substituting (6.5) and (6.8) into

(6.3) yields the Jesired covariance kernel Ptt,

where the illtegrand of the double integral is given either by (6.6) or by (6.7). In the

fol\owing it is orten convenient to drop the time dependency of the double integral.

On can then simply think of it as representing the covariance between two arbitrary

static ranges:

(6.10)

(

Except for special cases, (6.10) has no closed form solution when Pnn(O, () IS

defilled by either (6.7) or (6.6). However, an approximate solution if Pnn(O, () IS

defillcd by (6.6) can be found in Appendix A.

In the following, the missing parameters in (6.9), are experimentally determined

and the formula (6.9) is experimentally validated.
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6.2 Experimental Evidence

6.2.1 Time Correlation

105

The Fig. 6.2 shows an example of a typical time series of TOF fluctuations for the

small room for a lm range. Similarly, the Fig. 6.3 shows typical TOF fluctuations

for the large room for a 70 cm range. The sampling rate was 4 Hz. As can be seen,

both time series are quite similar. Both are dominated by low frequency noise, which

is probably due to the room's convection currents.

The power spectrum normalized by its largest value is shown in Fig. 6.4 for both

time series. The Fig. 6.4 was obtained by smoothing the autocorrelation function of

the time series with a Hamming window. It can be seen that both spectra have a very

similar low-pass characteristic. The large room exhibits a slightly larger bandwidth

and a somewhat less steep roll-off which is not surprising given the more turbulent

environment of the large room. The bandwidth of the noise in Fig. 6.4 is ca 0.03­

0.05 Hz.

It is shown in Fig. 6.5 that a 3rd order linear system with poles at -0.03:LjO.031 Hz

and -0.73 Hz and zeros at -0.081 Hz and -1..S Hz, produces a very good fit to the

estimated spectrum of the large room. The estimated power spectrum is the same as

in Fig. 6.4, however, it is less smoothed. The best second order approximation is also

shown. It is not as good as the 3rd order fit. A best first order system approximations

was not shown in Fig. 6.5 because its spectral fit was unacceptable. The identification

results in Fig. 6.5 can be used to obtain the (A,B,C) state space parameterization

used in (6.9).
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Figure 6.6: Longitudinal Correlation Expe;'iment

6.2.2 Space Correlation

Noise Strùngth

108

Pt< is a complex non-stationary matrix valued function. In order to make the task of

characterizing Ptt easier, consider first the most simple case, where one has only one

fixed sender and one fixed microphone facing each other at a distance di E [20,200] cm.

For our purposes, the most important statistical quantity is the standard deviation

(STD) of tofi . A wide range of STDs was observed for the TOF fluctuations in the

small -,'oom: Very quiet air with very little convection orwind was observed to cause

STDs as small as 0.06 Jlsec or 0.02 mm for 1 m ranges. Such low values were achieved

by closing door and windows and disenabling heaters and fans. On the other hand,

very turbulent air, such as it is produced by opening door and window of the small

room, on a cold and windy day, was observed to cause STDs even in excess of 2 Jlsec

(or 0.68 mm) for lm ranges. The usual STD values for the normally heated small

room were around 0.1 mm on lm ranges. The STDs in the large room were more

stable: Despite of many operating fans, moving people etc., the STDs for lm ranges

were about 0.5 Jlsec (or 0.17 mm) when the air conditioning system was off and about

0.9 Itsec (or 0.3 mm) when it was operating. Theses values were quite stable in tIV"

large room despite moving people and computer fans. Thus, under reasonably calm

atmospheric room conditions, on can expect the STDs of the corresponding distance

measurement error for a 1 m range to fall somewhere between 0.02 mm and 0.7 mm

with typical values around 0.1-0.2 mm.
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Figure 6.7: Noise standard deviation versus distance for large room.

Since the ultrasound system has to accommodate different ranges, one is intercst.ed

to know ",(di), which denotes the STn of tofi as a function of the distance di between

sender and microphone. Clearly, there are two limiting cases: If Rn is completely

correlated in space, then from (6.10) and (6.6) one obtains Pnn(O, Ç) = CI and:

(6.11 )

On the other hand, if Rn is completely uncorrelated, then Pnn(O,Ç) = c;6((), where

6() is a dirac function. Hence, from (6.3) one obtains:

(6.12)

The true ",(di) lies somewhere between these two extremes: Using (6.6) in (6.10), one

obtains the form:

(6.13)

There is no c10sed form if (6.7) is used insteaJ of (6.6).
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Figure 6.8: Noise standard deviation versus distance for small room.

An attempt was made to verify experimentally the validity of (6.10) for changing

sender-receiver distances. For this purpose an experiment was set up as shown in

Fig. 6.6: 4 microphones and 2 senders were placed in a row so that any two adjacent

microphones were 40 cm apart and the distance between SI and Ml was 30 cm and

between S2 and Ml it was 65 cm. Great care was taken to ensure that distances

J'......

between receivers and senders were as specified above. However, the mE:asurement

error may be as large as ±1 cm. Ali statistical results were based on sample sizes of

2000 time samples for each of the 8 ranges and the data were obtained with a 2 Hz

sampling rate.

For the large room Fig. 6.7 shows the STD of the 8 ranges as a function of the

range. The STD of the 4 ranges associated with S, are marked by an '0' and the

4 ranges associated with S2 are marked by an 'x'. Ali STDs were normalized by the

STD value of the SI-1I11 range. This was done to be able to compare (6.11), (6.12)

and (6.10) with the experimental data. Each of theses curves was normalized by its

STD value for a 30 cm SI-Ml range to eliminate the influence of the constants Cl and
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~. In effect, Fig. 6.ï shows a comparison of the range dependency of the STD fol'

totally correlated noise, totally uncorrelated noise, the actual experiment.al data and

exponentially correlated noise which fits the data. To compare them one forces al! to

have the same STD for a 30cm range.

As expected, the experimental data are neither completely correlated nor com­

pletely uncorrelated but are sandwiched between the two limiting functions. The

curve defined by (6.10) and (6.ï) fits best to the data when D2=38cm. This is shown

in Fig. 6.ï. As can be seen, the curve fits quite nicely. When (6.ï) is replaced by

(6.6) in (6.10) the best fit is obtained for DI =24cm. The obtained graph fits equal!y

weil for this case, however, il. is not shown in Fig. 6.7 1.0 avoid confusion.

A similarly good fit was obtained when the experiment was repeated in the smal!

room. The equivalent of Fig. 6.ï for the small room is Fig. 6.8. Clearly, the noise is

much more spatially correlated in the smaller room. There, the cOl'l'elation distanccs

for the best fit 1.0 the experimental data were D2=90cm and DI =90cm, more than

double the correlation distances for the large room.

Longitudinal Correlation

In order 1.0 further verify the accuracy of the model (6.10), exactly the saIlle rangi ng

data were used as before. This time, however, instead of computing the STD versus

distance, one computes the correlation coefficient between two ranges, as a function

of the distance ratio 'Y 2': 1 between the two ranges. The results are shown in Fig. 6.9.

The marker 'x' represents correlation coefficients which were obtained by correlating

the TOF measurements for the lst microphone and the 65 cm distant sender with the

measurements obtained for the same sender and the 2nd, 3rd and 4th microphone.

Similarly, the symbol '0' represents correlation coefficients which were obtained by

correlating the TOF measurements for the lst microphone and the 30 cm distant

sender with the measurements obtained for the same sender and the 2nd, 3rd and
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4th microphone.

As before, there are theoretical limits for completely correlated and completely

uncorrelated Rn. The completely correlated case is obviously independent of "l':

C=1

where C denotes the correlation. Of course, from (6.10) one can readily calculate the

correlation between any two ranges fi and fi as:

C = PlI (fi, fi)

JPlI (fi, fi)PlI(fj, fi)

The completely uncorrelated case yields:

For exponentially correlated noise one obtains from (6.6) and (6.10) the equatioll:

C _ [2d;/Dl +exp( -d;/Dtl + exp( -"l'd;/Dl) +exp( -(-y - 1)d;/DJl- 1] (6.14)

- 2#1Dl +exp(-d;/Dl) - 1] bd;/Dl +exp(-,d;/Dl) - 1]

As can be seen from Fig. 6.9, the function (6.10) with (6.7) and D2=38cm does

fit the data sufficiently weil to prove that (6.10) is consistent for computations of the

STD and the longitudinal correlation hdween ranges: The parameter value D2=38cm

is valid for both computations. The reason for having two graphs to fit to the data

and not just one like; .",: T. 6.7 is that the d is different for the two senders. Again,

if (6.6) is used instead of (6.7) in (6.10) a similarly good fit is obtained for DI =24cm.

As before, this graph is not shown. Notice from the solid graph in Fig. 6.9, that evell

if Rn is completely uncorrelated, the longitudinal tof correlation between two ranges

does not vanish.

The small room equivalent of Fig. 6.9 is Fig. 6.10. Clearly, the ranges are more

space correlated. As before, the graphs show good fit for D2=90cm or Dl =90cm,

respectively, proving the consistency of (6.10).
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Figure 6.11: Transversal Correlation Experiment
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.'~
Transversal Correlation

Another pair of experiments was designed to verify (6.10) as a function of the range

angle for Î = 1. As shown in Fig. 6.11 the microphones were placed on the circumfer­

ence of a drcle with the sender in the center. Each pair of neighboring microphones

had the same fixed distance. The experimenta! results for the large room are shown

in Fig. 6.12. The sample size and the sampling frequency are as for the previous

experiments. Ali 6 cross-correlations were computed from the raw TOF data and av­

erages were computed for cross-correlations corresponding to the same angle, yielding

3 cross-correlations. The Fig. 6.12 shows the results of two consecutive experiments

conducted in the large room. For the first experiment, the distance between neigh­

boring receivers was 30 cm and the distance to the sender was 1 m. The results of

this experiment are marked with a '0' in Fig. 6.12. The second experiment had the

same receiver distance, but the distance to the sender was 1.40 m. !ts results are

marked by 'x'. Moreover, the theoretical curve obtained from the equation pair (6.7)

and (6.10) for D2=38 cm is also shown in Fig. 6.12. It can be seen, the curve does
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not fit that weil to the data obtained. The same ill fit occurs when (6.7) is replaced

by (6.6) with D1=24 cm (not shown). Similar problems occur for the small room

equivalent of Fig. 6.12 whieh is Fig. 6.13.

The reason for the problem cliuld be that the atmospheric conditions changed

between the longitudinal experiments and the transversal experiments. The setup

and the conduction of the experiments takes a considerable amount of time. An

other explanation could be that the neglected effects of air movements decorrelate

the noise faster than otherwise expected. In other words, this may be the priee one

has to pay for the isotropy assumption made in (6.9).

A further look at the spatial correlation of the TOF reveals that the longitudinal

correlation is higher than the transversal correlation and that smaller ranges lead to

higher correlations. Moreover, it should be said that it is intuitively clear that high

frequency fluctuations are spatially less correlated than slower fluctuations. This

is particularly important for the compensation of the low frequency noise with a

reference filter. This aspect is not modeled in (6.7), rather, all frequencies have the

same spatial correlation. The main reason for not modeling this aspect is the desire

for simplicity.

It can be concluded that the experimental results confirm that (6,9) is self­

consistent and provides an adequate although not perfect model of the spatial corre­

lation of the measurement noise.
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Chapter 7

Noise Compensation Methods

7.1 Optimal Microphone-Sender Configurations

The relative position of the microphones and senders play an important role in the

measurement noise reduction and the numerical conditioning of the system. For a

small perturbation 6S from a nominal sender position Sn, the measurement equation

(1.1) can be written as:

1 1 (Sn - Mi?
tofi - ;:;IISn - Mdl = c IlS" _ Mdl 6S + Tfi i = 1,2, ..0' m (701)

Where tofi, c , and Mi are defined as before and Tfi represents the measurement noise

for the i-th receivero The above equation can be written in vector form:

1
6tof = -H 65+ Tf

c
(7.2)

where 6tof is the measurement perturbation vector, H is a matrix whose rows are

the unit directions from Sn to the microphones, and Tf is the vector of the gaussian

measurement noise where E{Tf} = (O,O,O? and EhTfT } = Qno

The linear minimum-variance unbiased estimate ts of 6S is weil known [59]:

{
·~l
'-.

(703)

Ils
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and the corresponding error covariance is:

119

(7.4)

-' ....

Clearly, one is interested in reducing the covariance of the estimation error. Thus,

it seems reasonahle to define the "optimal" microphone positions Hop, to he those

which minimize a norm on p... Unfortunately, any such optimization of microphone

positions is valid for one nominal sender position Sn only. Any movement of the

sender away from Sn will result in a suhoptimal configuration.

For simplicity, it is first assumed that ail microphones are at an equal distance to

Sn and that the measurement noise is uncorrelated, i.e. Qn = CT~I, where CT~ is the

variance of the measurement noise for a single channel and 1 is the identity matr:x.

Without loss of generality we may set Sn = (0,0, Of and choose the first microphone

to lie in the direction of the z-axis of a right-handed Cartesian coordinate system

with origin at Sn' Further, w.l.g., the second microphone can he restricted to lie

on the x-z-plane. Moreover, using spherical coordinates to descrihe the microphone

positions, one can explicitly fix the radius component of each channel to he unity.

With these assumptions, the prohlem hecomes one of finding the vectors cp and {)

which minimize the trace of Pss(cp, {)), where cp and {) denote vectors of the angles of

the microphone directions expressed in spherical coordinates. This is done in such a

way, that the i-th row (CPi,{)i) of the spherical angle vector pair denotes the x-axis if

its value is (0°,0°), the z-axis if it is (0°,90°) and the y-axis if it is (90°,0°). Now, one

seeks to find cp and iJ such that the cost J is minimized:

Jop, = min !I p.. (cp, iJ)!I} = min trace(P.. ).
lI',iJ l{J,{)

(7..5)

~.

The Matlah Nelder-Mead algorithm was used to find the optimal ('P, iJ) for 3, 4

and 5 microphones respectively. The optimal configurations are given in Table 7.1.

A sketch of the optimal configurations for 3 and 4 microphones is given in Fig. 7.1.
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M4

Ml

Figure 7.1: The optimal S-R configurations for 3 and 4 microphones.

3 microphones 4 microphones 5 microphones 6 microphones
J-3.00 J-2.25 J-l.S3 J-1.50

'fi {) 'fi {) cp {) 'fi {)

Ml 0° 90° 0° 90° 0° 90° 0° 90°
M2 0° 0° 0° -19.6° 0° -19.6° 0° 0°
M3 90° 0° 120° -19.6° 120° -19.6° 90" 0°
M4 - - -120° -19.6° -120° -19.6° -90° 0°
M5 - - - - -120° -19.6° 0° -90°
M6 - - - - - - lS0° 0°

Table 7.1: Optimal microphone positions
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Besides being optimal in the previously defined sense, the configurations in Ta­

ble 7.1 with more than 3 microphones have the additional property that any addit.ive

disturbance which is common to ail channels has no influence on the sender position

estimation error. This is important since one would like 6S to be insensitive to global

changes of the speed of sound and to additive delays caused by the electronics and

a nonzero TOA. Both goals can be readily satisfied if all microphones have the same

distance to the sender and if one chooses Hop, such that the vector (1,1, ... ,If is

an element of the nullspace of H?;"Q;;l. The configurations in Table 7.1 have this

property and are therefore completely insensitive to common mode noise. The only

exception is the 3 microphone case where the nullspace of H?;"Q;;l is trivial. If the mi­

crophones are !,ot equidistant to the sender, then additive delays and global changes

of the speed of sound cannot be compensated for simultaneously.

The optimal configurations in Table 7.1 were obt.~.ined for spatial1y uncorrelated

noise and in the absence of sound·speed gradients. If both theses factors are consid­

ered, then the optimal configurations differ slightly from the results given in Table 7.1.

7.2 The Kalman Filter

7.2.1 Overview

The purpose of the Kalman filter is to estimate the wrist position Ye given the noisy

range measurements. The size of the estimation error depends to a large degree on its

internai model. The question as to what constitutes a good model is best answered

by looking at the variables which influence the TOF. Thus, using (5.9) one can write:

1
tofi = IIMi - Yell [nr + 2"(Mi +Ye - 2Sr),nv] +Tii +Wi (7.6)
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where TI. is the time correlated noise caüsed by air turbulences as discussed in Sec. 6

and w; is a small white noise caused by the receiver noise floor and the room rever­

beration as discU'Jsed in Sec. 5.2.4. Thus, from (7.6) one can see that the states of a

TOF measurement model fall into three categories:

1. The main states which model the wrist position YC.

2. The parameter states n r and nv which were defined in Sec. 5.2.2.

3. The noise states TI. and w. which model the measurement noise.

The sE~ond category of states are by definition spatially highly correlated. This

suggests that one could decompose the overall state into two smaller ones by adding

a fixed reference sender. This solution is preferable because it increases the estimation

precision and reduces the overall system complexity. Moreover, if the pararr.eter states

were actually estimated by the main filter, then full observability would require that

the main sender is received by 5 microphones at ail times, which may be difficult to

achieve. The other solution requires only 3 microphones for the main sender. The

third group of states, the noise states, are not as highly spatially correlated as the

parameter states and can therefore only partially be transferred to the reference filter.

7.2.2 The Reference Filter

The main purpose of the reference Kalman filter is to estimate the parameters n r and

DV. Another purpose is to estimate ~r' which is the noise in the i-th measurement

channel of the reference system. The estimate is later used to reduce ~•. To accomplish

these objectives, a reference sender is installed at a known fixed position Yr in the

workspace of the robot. Since Yr and M. are constants, the measurement equation of

the reference Kalman fil ter is linear with respect to its states ~r" nr and nv. From
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(7.6) one obtains for Sr = Yr = Yc:

tofri = IIMi - Yrll [n r + ~(Mi - Yr).liv ] + ~r; +Wri

123

(7.7)

were the index 'ri' refers to the i-th communication channel of the reference system.

Given the analysis in Sec. 5.2.2, it is clear that nr and nv are nearly constant

in a controlled environment. Thus, they can be modeled as random walks with very

small pseudo noise. Similarly, the dynamics of ~ri can be modeled by a linear, time

invariant filter (A,B,C). This was discussed in Sec. 6.2.1. Therefore, the reference

Kalman filter is time invariant. It can be implemented as a fixed gain filter, which is

computationally advantageous.

Since the fastest time constant the reference system is concerned with is about

30 sec, one can reduce the sampling rate for the reference Kalman filter. A 2 Hz

reference ii.lter sampling rate, for instance, would be enough. This makes the reference

filter computationally very inexpensive. Hence, one can easily install more than one

reference system to cover different regions of the workspace. This is particularly

important because in general one can not guarantee that ail receivers are reached by

a single reference sender.

An additional task of the reference system could be to provide the statistics of

the atmosphere. In particular, the spatial correlation distance, the noise strength at

1 m distance, and the correlation time. Theses three numbers suffice to characterize

the noise. This could be the task of sorne identification scheme which would l'un in

parallel with the reference system.

7.2.3 The Main Filter

The Measurement Equation

The purpC'se of the main Kalman filter is to estimate the Cartesian position 11< of the

wrist given noisy TOF measurements and nominal wrist position Yn' In other words,
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Figure 7.2: The Kalman fiH.er and the ultrasound system,
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~'o the true forward kinematic function T which maps the true joint positions qc into Yc

is replaced by an arrangement shown in Fig. 7.2. There, qc is mapped into Yc, where

Yc is an estimate of Yc' The estimates Yc will be used in lieu of the true positions Yc in

the kinematic feedback loop. Hence, the size of the overall Cartesian tracking error

depends critically on the on the size of the estimation error eh which is defined as

eJ = Yc - Yc' The accuracy of the position estimation scheme is thereforé measured

in terms of eJ. Since one knows a nominal position Yn, il. is advantageous to estimate

the killematic error ec = Yc - Yn instead of Yc.

The diagram shown in Fig. 7.2 depicts how the robot, the ultrasound system (in­

dicated by the dashed box) and the Kalman filter are connected. The robot's wrist

position Yc can be considered to be an input of the ultrasound system. Conceptually,

the wrist position is then mapped by a nonlinear, memoryless vector valued function

11,,(.) into the uncorrupted TOF delays tor. The function 11,,(.) depends on the slowly
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time varying parameters ptt). They are: The average inverse sound-speed n, mea­

sured at the reference point y" the average vertical inverse sound-speed gradient n,

( and possibly the average wind velocity Hf). In the following, however, W will not

be modeled. The ma;>ping Vp was discussed in detail in Sec. 5.2.2. Explicitly, the i-th

component of Vp(Ye) is the deterministic part of (7.6).

The signal is also delayed. The time delay TD is quite small, namely ca. 5.S msec,

and represents the time the sound needs to travel the longest allowed range (2m).

The processing of the data begins only after this time. For small pulse rates, Tv can

be neglected with respect to the pulse period. A much more serious corruption is the

measurement noise 1/. This was discussed in detail in the second part of this thesis.

The so corrupted signal, denoted tof in Fig. 7.2, can be measured and serves as an

input to the extented Kalman filter EKF.

In order to improve the estimation precision of the EKF a reference Kalman filter

KFref was used in parallel with the EKF. This is ref1ected in Fig. 7.2 by the parallel

signal paths for the main and the reference filter. The notable difference between

the two is that the reference sender position y, remains fixed for ail times while the

main sender position Ye moves with the manipulator. The fixed sender position allows

KFref to estimate the parameter states and the noise states more easily than the main

filter. It then passes its estimates n" n" and Tf, on to the EKF.

Another important system component which improves the estimation accuracy of

the EKF is the approximate forward kinematics function l' which maps qe into the

nominal wrist position Yn' This was discussed in Sect. 2.1.4. The nominal trajectory

allows the EKF to track only the kinematic error and not the whole trajectory. Il is

necessary to delay Yn by the acoustic transmission delay TD before feeding it into the

EKF. When this is not done an unnecessary error due to the delay is introduced.

The measurement equation for the main filter can be derived from (7.6):

tof; = ilM; -Yeil [n, + ~(Mi + Ye - 2Y,)zn.,,] + Tfi + W; (7.S)
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The parameter estimates nr and nv are obtained from the reference Kalman filter.

The estimates Yc and iU belong of the main filter. However, instead of using Yc as a

state, it is advantageous to use the kinematic error êc = Yc - Yn'

The State Propagation Model

It is difficult to characterize the kinematic error ec spectrally. In fact, without ad­

ditional a priori knowledge of the error parameters and the trajectory there is no

information to model ec at ail.

One attempt to deal with this problem is to simply use a double integrator as

model for the spectrum of the kinematic error. Thus, the filter state is [êc , êcl and

the time propagation of the state is:

where T. is the sampling period, and the associated covariance matrix is:

[
IT;/3 IT;/2]Q= q.
IT.2/2 IT.

(7.9)

(7.10)

(

where q. is a factor that can be associated with the variance of the kinematic error

acceleration êc•

Polynominal filtering, similar to the double integrator model proposed above was

successfully used in other applications: For instance, there are many parallels between

the ultrasound ranging problem and the NAVSTAR/GPS satellite navigation problem

described in [54]. There, the range and position information of four satellites was used

to determjne the position of an airplane. The main states were position, velocity and

acceleration of the airplane. The ultrasound ranging problem is quite similar at

the first look. However, there is one important difference: The noise that corrupts

the measurements is of very low frequency and often coincides spectrally with the

kinematic error.
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Thus, even if the true kinematic error model was known and both the measuremenl

noise states and the kinematic error states were included in the internai process model

of the EKF, the estimation error could still be quite large. The reason is that if Cc has

about the same bandwidth as 71, then the states are poorly observable and the EKF's

performance is quite low. A covariance analysis was conducted which supports this

observation.

Usually, however, the spectral behavior of Cc is not known. If the double intc­

grator model is used instead then it is not necessarily advantageous to include the

measurement noise states into the internai process model of the EKF. In fact, for

sorne circulaI' test trajectories (narrow band kinematic errors) the performance with

the noise states included was worse than without them.

An additional problem with the use of the noise states is that their dynamic

behavior depends on the entire trajectory of the sender. In a sense, they fail to have

a finite dimensional state space representation. This becomes a serious problem for

fast trajectories which cross la~ge regions of the workspace. Il is further discussed in

the next chapter.

Therefore, a better solution is not to use any noise states at ail. Essentially, this

means that the high frequency part of the measurement noise is averaged out, but the

powerful 30 sec noise cannot be reduced much unless an extremely slow trajectory is

used, or the robot stands still for several minutes. This form of measurement noise

reduction can be advantageously used for calibration purposes, but is inadequate for

trajectory tracking.

Hence, without noise states one wO'.lld expect the estimation error to be about as

good as the noise itself. In the large room (without the air conditioning running),

the std of the noise at 1 m sender·receiver distance was about 0.15 mm. Taking the

3 std value, one can expect a maximum estimation error of ca. ±0.5 mm. This is still

better than the ±O.S mm reported in [2J for the static accuracy of a PUMA750 after
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calibration. Moreover, the estimation error is the same for fast and slow trajectories

because the averaging of the high frequency noise does not result in a significant error

reduction.

When the double integrator model is used then the only thing one must know

about the kinematic error ec is sorne bound on its current acceleration in order to

choose a good value for the state noise strength q.. Such a bound can be obtained

by writing ëc as:
- _ b.JJ-1- + d(b.JJ-l) .
ec - Yc dt Yc

where b.J = J - j. Since Yd Rj Yc one can replace Yc by Yd in the above equation.

Thus a bound on ëc is:

lëcl ::; Ib.Jr11liidl + Id(b.~tl) Il1idl

::; a21iidl +allYd\

~ a2liid\ + aolYdl2

The problem of finding a bound is now reduced to finding those positive factors a2

and ao (or a2 and al) which are not too conservative. Clearly, near a singularity J-l

can become arbitrarily large and thereby cause a2 and ao to be very large. However,

for the trajectories and kinematic errors simulated in this thesis it turned out that

the choice a2=O.005 and ao=O.005 yields good results when q. = lëcl2 •

Concluding, it can be remarked that the double integrator model is a very simple

and computationally inexpensive model, and it requires very little information about

the kinematic error. The advantage of having an extented Kalman filter, as opposed

to simply solving sets of nonlinear equations, is that it smoothes the kinematic error

estimate, uges times of stand-still or slow-down to reduce the noise, provides a con­

venient framework for sensor fusion, and ensures operation even during short periods

of partial unobservability like blockage of a microphone or even a sensor failure.
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7.2.4 Exploiting Spatial Correlation
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In order to improve the estimation accuracy one can use the reference filter to recluce

the time correlatecl measurement noise of the main fil ter . It is evident from (7.7) that

the reference filter produces estimates ~ri of its time correlated measurement noise

TJd. Similarly, it is clear from (7.6) that the main filter has the time correlated mea­

surement noise TJi. The two scalar random processes TJd and II; are highly correlated

when the moving sender and the reference sender are close to each other. This fact

can be exploited to reduce the variance of the noise entering the main Kalman filte!".

In general, suppose there are Nr reference senders and associated reference Kalman

filters and the j-th filter produces an estimate ~ri,j of its measurement noise for the

i-th receiver. A vector Vi of ail Nr estimates can now be formed:

(" .)T
Vi = 71ri,}, ... , T/ri,Nr

Now one can subtract a linear combination of the elements of Vi from the measured

tofi in (7.6). In effect, one replaces the old TJi by a new scalar l'andom process (i:

(i = TJi - l\Vi

where l\ is a row vector of length Nr. The vector l\ should be chosen s.t. E{ (i(l'}

is minimized. The optimal estimator J( is weil known to be:

The minimum achievable variance for (i is:

E{(i(!) = E{TJiTJT} - E{TJivT} E{VivT} -1 E{ TJivT}

= E{TJiTJT}(l - E{TJiTJT} -1 E{ TJivT} E{ vivT} -1 E{TJivT})

= E{TJiTJT}(1 - C;)

For Nr = 1 (the scalar case) Cr is the correlation factor between TJi and TJri.
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The expected values in the formulas above can be computed from the formula

given in Appendix A for 7Îr = Tir. This is a complicated formula which may not

be weIl suited for real time applications. Thus, it may be recommendable to use a

simplification instead.

Suppose that Yr and Yc have the same distance to a microphone. Their noise

variances are therefore also the same. Under these conditions one would require a

correlation of Cr = 0.9 to reduce the maximal estimation error by 56%. IncidentaIly,

this is about the same correlation that the measurement noise was found to have if Yr

and Yc are separated by the spatial correlation distance b. Recall that b was observed

to be ca. 24 cm in the large room and 52-91 cm in the small room. Thus, the main

sender traveling in the large room on a path which has always a distance of 20 cm

to the reference sender would reduce the ±0.5 mm maximal estimation error to ca.

±0.2 mm. An even higher reduction (up to 100% ) can of course be achieved if the

sender cornes even closer to the reference sender.

Thus, the region around a reference sender can be viewed to be a "high precision

region". So, the reference sender could be placed in regions where high accuracy is

needed. It is even imaginable to have more than one reference sender. This raises

the question as to the ability of the system to "hold" the high accuracy obtained in

a region of high precision while the robot ventures outside of that region. This has

to be answered by simulations.

7.3 Calibration

An important aspect of noise reduction is robot and microphone calibration. Before

the 3D ultrasound position sender can be used it is essential to know the precise

position of the microphones. The best way to obtain this knowledge is to move the

sender to several weIl known positions in the convex hull spanned by the microphones.
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This can be done automatically with the use of a programmable positioning table.

At any given location the measured TOF for each microphone is averaged over 2­

3 minutes and then recorded. Preferably, the room is atmospherically weil controlled

during the calibration. Finally, the averaged TOF values are used to solve a linear set

of equations similar to (1.2) but with Sand M changing roles. The minimum number

of sender positions required for a linear solution is four. However, it is preferable to

use more sender positions in order to reduce the microphone calibration error even

further.

One problem with the method above is that it neglects electronic delays. However,

it is easy to take delays into account and add more sender calibration positions.

Another problem is that the method requires that there are no drifts of the speed

of sound or the sound speed gradient. This is difficult to achieve even for a weil

controlled room.

Another application of the 3D ultrasound position sensor is as a convenient tool

for automatic parametric calibration of the robot. The robot is commanded to move

to a specified number of Cartesian positions. For each commanded position the true

position and the joint displacements are recorded. To increase the precision with

which the true position can be measured, one must stand still for a while to allow the

EKF to average out the measurement noise. Finally, the true Davenit-Hartenberg

parameters can be computed from the obtained data set.

One disadvantage of this method is that the inverse kinematic function can be

very complex and even fail to have a closed form. A remedy for this problem is

to use nonparametric calibration instead. The idea is to command the robot to

execute a given trajectory. However, the speed with which the trajectory is executed

is drastically reduced, allowing the EKF to average out the measurement noise and

determine the kinematic error along the trajectory. Now, whenever this trajectory is

executed at its regular speed, the kinematic error can be compensated. This can work
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weil for a highly structured environment, were the same task must be performed over

and over again. It is also applicable to robots in environments, where the trajectory

can change slightly from run to run, or when there is a set of trajectories to choose

from.



Chapter 8

Simulations

8.1 Simulation Parameters

This chapter reports on ~everal simulation experiments that were conducted to demon­

strate the properties of the Cartesian feedback loop and the Kalman fil ter. The sim­

ulations are meant to be tools to gain new insight into the system's behavior and

to iIlustrate and support daims about the system's performance which were derived

theoretically. They are not meant to be proofs in any strict sense. Therefore, only

those simulation results are presen~~d which achieve the stated objective.

To this end it is important to use a good truth model which resembles as dosely

as possible the real life environmental factors which influence the results. On the

other hand, the computational requirements for the simulations should stay within

reasonable Iimits. This may lead to a less complex model which neglects minor effects.

The decision as to which effects are minor and which are not was based on the analysis

presented in chapters 4-6.

The following environmental truth mode! Wa>; used for the simulations: The "c­
fraction and diffraction of sound were neglected, so was any ambient noise. As weil,

strong refleetions of sound were also not modeled because tlJey would render the

133
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measurements useless. On the other hand, sound reverberation was modeled as white

noise with a small STD (standard deviation) which is proportional to the S·R dis·

tance. Its dependency on the alignment angle between sender. and receiver was Dot

modeled. The eieetronic noise was modeled as white noise with a small STD. The

turbulent noise -.vas modeled as a time- and space-correlated random vector process.

Atmospheric and electronic biases were neglected, thereby assuming that the sys·

tem is weil calibrated. The potential biases due to the finite size of the ultrasound

transducers were also neglected. The Doppler effect was not modeled because it can

be easi!y compensated. The inverse sound speed was set to nr={1/342) sec/m. The

inverse sound speed gradient was set to nv=4Ae-6 sec/m2 • No drift of n r or nv was

modeled.

8.1.1 Test Trajectories

In an effort to evaluate the performance of the control system, several test trajectories

were used.

The c10sed loop i/o behavior of the system was tested with a 20 cm step function

in the z·direction:

()
{

(400,149, OlT
Yd t =

(400, 149,200)T

if t < OAsec

if t ~ OAsec

(

This trajectory will be referred to as TSI.

The ability of the loop to reduce the kinematic error is tested by several circular

trajectories, an of which lie entirely in the x-y plane. The center of the circ1e is at c

and its radius is r. The trajectory accelerates from zero velocity at an initial angle 'Po

with a constant circular acceleration Cl' unti! it reaches the angular velocity "-'o. Then
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c r fo Ta 'Po
[mm] [mm] [Hz] [sec] [deg]

TCl (500,149,0)" 200 0.02 1 0
TC2 (500,149,0)" 200 0.004 1 0
TC3 (319,149,0)" 200 0.02 1 0
TC4 (500,149,0)" 200 0.1 1 0

Table 8.1: Circular test trajectory paramelers.

it continues with a constant wo. Thus, the test trajectory prototype is:

()
{

c+r(cos(at2+'Po),sin(at2+'Po),0)T ifO~t<Ta
Yd t =

c + r(cos(wot + 'P), sin(wot + 'Po), of if t ~ Ta
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where a = wo/Ta , and wo = 27l" fo. The trajectory parameters c, r, fo, Ta and 'Po

which were used in the simulations are shown in Table 8.1. The trajectory TCI is so

slow that the dynamic error is small compared with the kinematic error. Therefore,

TCl demonstrates the ability of the system to reduce a typical kinematic error. The

trajectory TC2 is very slow and tests the low frequency performance of the EKF. On

the other hand, the trajectory TC3 passes a nominally singular point at ca. 3 mm

distance. Thus it tests the system's ability ta operate in ill-conditioned regions of the

workspace. Finally, TC4 is very fast and is used to show the interaction between the

control system and the EKF.

The simulations used 3 microphones placed at optimum locations: 1 m away from

the trajectory center in the x,y,and z directions, respectively.

8.1.2 Model Uncertainties

The loop uncertainties Ut and U2 from Fig. 3.5 must be included in the simulation.

The multiplicative inner loop uncertainty Ul was chosed to be linear, having the
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Laplace transform:

f 9 9

U1(s) = f
ao

9 9
S2 +ais + ao

9 9 f
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where ao and al were chosen such that the second order system has a resonance peak

of 10dB at 20 Hz, in order to account for the first flexible mode of the robot. The

matrix in the equation above accounts for an imperfectly known iner',ia matrix. It

was assumed that the diagonal elements are known with a 20% error Le. f =1.2. Any

residual dynamic cross coupling is represented by g. For circular test trajectories,

10% cross coupling was assumed i.e. 9=0.1. Certain system properties are easier to

demonstrate if there is only kinematic cross coupling. It was therefore assumed that

9 = 0 for simulations with the TS1 trajectory.

The outer loop uncertainty U2 was defined previously as:

U2 = 1'.-1 0 T(·)

This uncertainty causes the kinematic error

ek'n = 1'(qc) - T(qc)

Suppose l' represents the nominal forward kinematic function. This yields results in

the smal1est kinematic error. For this choice of T, Chen [2] calculated the kinematic

error of a PUMA780 by using Cartesian position data obtained from measurements

with three theodolites. The mean kinematic error over 80 positions was reported to

be 5.9 mm and the maximum error was 10mm. For simulations, a realistic T should

therefore be chosen such that the asscciated kinematic error has a similar size than

the one reported in [2].

Table 8.2 shows two sets of values, KP1 and KP2, each representing differences

between the nominal and the true kinematic parameters. In partic!llar, PI denotes
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Pl P2 P3 P4 Ps Ps
I<Pl 2.0 mm 2.0 mm 2.0 mm 0.30 0.20 0.1 0

I<P2 -2.5 mm 2.00101 2.5 mm 0.20 _0.4 0 _0.20

Table 8.2: Kinematic error parameters.

l3ï

the distance which was added 1.0 the PUMA600's nominal shoulder length, and P2

and P3 denote the distances added 1.0 the nominallengths of the upper and lower arm.

Furthermore, P4, Ps and Ps denote offset angles added 1.0 the angles which nominally

are measured by the shaft encoders. Both l'Pl and KP2 have the property that the

resulting "true" forward kinematic functions have associated kinematic errors which

are similar in size 1.0 the ones described in Chen [2]. Otherwise they are arbitrary.

8.1.3 Measurement Noise

When the sender is static, then the simulation of the measuremcnt noise is straight­

forward: It can be realized by applying a sequence of independent white noise vcctors

1.0 the input of a linear time-invariant MIM 0 filler.

However, when the sender is moving, then the properties of the TOF fluctu­

ations as perceived by the microphones change iu accordance wi,h the traject.ory

of the sender. A moving sender produces TOF fluctuations which are more time­

decorrelated than those of a static sender would be because the space-decorrelation

due 1.0 a locomotion of the sender is perceived by the rece; ~rs as a time-decorrelation.

For instance, a sender traveling slowly along a small circle produces TOF fluctuations

which are more time-correlated than those associated with a sender which travels

quickly along a large circle.

In order 1.0 reproduce this observation with a computer simulation while keeping

the computational requirements within reasonable limits, the following steps were

taken:

1) The measurement noise was computed for the desired trajectory instead of the
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true trajectory. It was felt that very little, if any accuracy is lost since for closed loop

control, the diiference between the two trajectories can be expected to be smaller

than the precision of the stochastic model used.

2) The desired sender path was sampled yielding a set S= = {Sil"" SN,} of N=

path points. It is then imagined that a virtual, fixed sender is located at each of

the N= path points. There are also Nr fixed reference senders and Nm microphones.

Now, similar to (6.1), a long vector v(w, t) can be formed, representing the TOF

fluctuations of ail Nch = (N= +Nr)Nm imagined measurement channels. Each virtual

channel produces its own noise, which is the same as that which would be obtained

by a static sender at that location. The eifect of a moving sender on the measurement

noise can now be realized by switching between the N= virtual static senders while

moving along the trajectûry. This reduces the original dynamic noise realization task

to a static problem.

3) From (6.5), for static channels, the space correlation and the time correlation

are independent. Furthermore, from (6.8), there are Markov processes (A,B,C,D)

which describe the TOF fluctuations' time correlation for a single static channel.

Thus, to realize the time correlation of v, it is sufficient to simulate Nch decoupled

8180 Markov processes (A,B,C,D), one process for each element of v. The i-th process

is given as

xi(k +1) = Ax;(k) +BUj(k)

Yi(k) = CXi(k) + DUj(k)

where the input Ui to the i-th filter is independent white gaussian noise with unit

variance. The outputs of the Nch processes form a vedor y = [YIl"" YN,hY'

4) The spatial correlation between channels of v can be realized by first computing

the spatial covariance matrix Pvv = E{vvT }. This can be accomplished by solving

(6.10) for each element of Pvv • Further, using a Cholesky decomposition, a positive
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definite matrix Xw can be found such that Pvv = Xc.,X'!.,. FinaIly, the timc and

space correlated process lI(k) is realized as:

lI(k) = Xc.,y(k)

Now, as desired, the covariance kernel of Il is:

where Pxr is the solution of the Lyapunov equation for any of the Nch identical Markov

processes.

5) Faced with computationallimitations, it was decided to first realize the mea­

surement noise on a coarse space-time grid and then linearly interpolate between the

coarse grid points to obtain a realization on a finer space-time grid. FIrSt, the sender

path was parameterized. Here, the parameter was chosen to be the distance d trav­

eled by the movable sender from the beginning of the path. Therefore, the location

of a path sample Si E Sc can also be characterized by its associated distance di.

Suppose the movable sender has traveled a distance d along its path at time kT",

where di < d < di+!, and T" is the rough sampling period. Let Ilj(k) and 1Ij+I(k) he

the reL!izations at time kT" of those two communication channels which are associ-

ated with Si and Si+! and the microphone Jl,J,. The coarsely sampIed measurcment

noise realization at time kT" for receiver 1, denoted 1)1(k), is now obtained as a linear

interpolation between vj(k) and vj+!(k):

The final noise realization is found by resampling 1)1 at a higher sampli ng rate. The

new sample points were generated with a lowpass interpolation, using the MATLAI3

function 'interpol'.

6) AIl simulations for circular test trajectories fealured Nc=12 equally spaced

virtual senders on the circle, and the coarse sampling rate was T..=5Hz.
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ni n2 n3 n. ns
NCI 0 0.02 p.sec 0.02 p.sec 0.29 p.sec 600 mm
NC2 2e9 0.02 p.sec 0.02 p.sec 0.29 p.sec 600 mm

Table 8.3: Parameter sets for noise realizations.
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Aside from the noise caused by turbulence in the air, there are also two less impor­

tant noise sources which were realized. The reverberation noise is independent white

noise whose standard deviation increases Iinearly with the sender-receiver distance.

The receiver background noise is also independent white noise, however, its variailce

is not a function of the sender-receiver distance.

The noise parameters used in the simulations are listed in Table 8.3, where ni is

the seed for the MATLAB random number generator, n2 is the STn of the receiver

background noise, n3 is the STn of the reverberation noise for 1 m S-R distance, n. is

the STn of the turbulence noise at 1 m SoR distance, and ns is the spatial correlation

constant. Thus, NCI and l" '::2 represent different realizatiof's of the same random

process.

8.2 Noise Free Simulations

8.2.1 Step Response

ln order to demonstrate certain features ('f the control loop, the measurement noise

was neglected. Consider the loop shown in Fig. 3.6. First, it was subjected to a

20 cm input step in z-direction (test trajectory TS1). The step response of the sys­

tem is shown in the upper left hand plot in Fig. 8.1. The curve labeled 'B' shows the

z-component of Yc for the nominal system. As expected, it displays a no-overshoot

critically damped behavior with a one sample delay. The curve denote':1 by 'C' shows

the z-component of Yc when both the dynamic and kinematic uncertainties are in­

c1uded. There is a slight distortion of the nominal step response, in particular, there
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is a very small overshoot. These distortions are mainly due to the neglected acollstic

transmission delay and the other dynamic uncertainties. The inclusion or omission

of the kinematic uncertainties has no visible effect on the step response.

The x-component of Yc for the same experiment is shown in the upper right hand

plot of Fig. 8.1. Again, there is a slight distortion between the nominal response, 'A',

and the response with the uncertainties included, 'B'. Again, the inclusion or omission

of the kinematic uncertainties has no visible effect on 'B'. Notice that the nominal

x-component of Yc is not a constant 400 mm as commanded by Yd. Rather, it deviates

from this value by a maximum of about 12 cm. Consequently, the nominal response

trajectory of the robot to a step is not a straight line, but rather an arc. The reason

for this behavior is dynamic nonlinear cross coupling. This is evident from Fig. 3.5

by writing the nominal tracking error as :

where hm represents the nominal closed loop dynamics expressed in joint coordinates.

Clearly, if h," is diff~rent from identity, then the nonlinear dynamic cross coupling

will increase the control error. The effect is particularly strong when the bandwidth

of Yd exceeds the bandwidth of hm. One can avoid thiB form of cross coupling by

making hm as close to identity as possible.

The y-component of Yc is shown in the lower right hand plot of Fig. 8.1. Here, curve

'A' represents the step response for both the nominal system and the system with

added dynamic uncertainties. The curve 'B' on the other hand, shows the response

when kinematic uncertainty is also added. Here, there is no nonlinear cross cOllpling

except for the kinematic uncertainty. The reason for this lies in the special geometry

of the PUMA600 and the particular test trajectory chosen. For TSI, the lirst joint

is the only one that can change the end-effector's y-coordinate, thereby decoupling

it from the other· two joints. The cross coupling is therefore caused by the kinematic
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uncertainty, only.

Finally, it may be of interest to view the shape of the control signal u. The

z-component of u is shown in the lower left plot of Fig. 8.1 for the case where ail

uncertainties are inc!uded.

To improve the performance, the nominal c!osed loop dynamics from gd to gc were

approximately canceled and Yd was prefiltered. This method to reduce the nonlinear

dynamic cross coupling was described in detail in Sec. 3.2.3. The performance of the

improved system is shown in Fig. S.2 which should be compared to the results shown

in Fig. S.l: There is little change in the z-component of the step response. The x­

component, however, shows a large reduction of its nominal error due to the reduced

nonlinear dynamic cross coupling. The response with added system uncertainties is

"Iso significantly reduced compared to Fig. 8.1. A further reduction could be achieved

if the acoustic transmission delay was accounted for in the regulator design. The

size of the y-component remains approximately unchanged because it is not subject

to nonlinear dynamic cross coupling. Note that the control signal does not show

excessive oscillatory behavior as would have been expected, had the nominal c!osed

loop dynamics been canceled compk'.dy.

8.2.2 . Circle Response

In order to test the system's tracking ability, it was commanded to follow circular

test trajectories. One problem of circle tracking is lag, particularly if a no-overshoot

requirement is imposed. The lag has the effect that only extremely slow trajectories

can be tracked with submillimeter error.

To partially overcome this restriction, the c!osed loop dynamics were compensated

as discussed in Sec. 3.2.3. However, other than the case discussed in Sec. 3.2.3, no pre­

filter for Yd was used, and conseq~ently, the system's nominal transfer characteristic

from Yd to Yc was approximately unity. (The acoustic delay was not simulated.) Care
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must be taken to ensure that the commanded trajectory has no high frequency spec­

tral componpnts which may excite flexible modes or cause the actuators to operale

outsidEl of their· Hnear range.

Tbe system's response to the test trajectory TC! (0.02Hz) is showl; in Fig. 8.3.

The y-component of the control error e = Yd - Yc is depicted on the left. Curve

'A' represents the nominal system response. It can be seen th",t the dynamic com­

pensation works weil because 'A' exhibits only a very small tracking error dul'ing

the angular acceleration phase of TCL The system's response when the killemalic

uncertainty KP! is added is depicted by the curve 'B'. The maximum tracking erl'Or

is approximately 0.02 mm. This is about what one would expect: The kinematic

error for TCI-KP! is shown in Fig. 8.7. It has sinusoidal shape with an amplitude of

1.5 mm and a frequency of 0.02 Hz. The crossover frequency of the type·! outer loop

control system is about 2 Hz. Hence, one would expect ca. 40 dB error reductioll al

0.02 Hz. Thus, the error would be expected t.o be about 0.015 mm.

Curve 'c' represents the system's response to TCI-KP! when the EKF and the
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Figure S.4: Control performance for TC3-KP2.

dynamic uncertainties are added to the loop. The control error for the system with

EKF but without added dynamic uncert.-.;nties is almost identical to 'C' and is there­

fore not shown in Fig. S.3. The EKF parameters were chosen in the same manner as

if there was NCI measurement noise. The computation of the EKF parameters from

knowledge of 'l'Cl, KPI and NCI is explained in more detaillater. The EKF-induced

error is not significantly larger than the error due to pure kinematic uncertainty. The

exception is the acceleration phase of TCl, where the EKF has a more pronounced

impact on the control error.

A further aspect of the EKF is best illustrated with the right hand plot in Fig. S.3.

The curve 'A' represents both the z-component of the nominal control error and the

control error when the kinematic uncertainties KPI are added. Both curves are

indistinguisiJable for the scaling given. The reason for this similarity is that the z­

component of .he open loop kinematic error for TCl-KPl is very small. Thus, it is

surprising to find that the z-component of the control error is much larger when the

EKF is added. This is shown by curve 'C'. The reason for this, of course, is that the
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EKF dynamics introduce nonlinear dynamic cross coupling similar to that discussed

previously. This can be seen by writing the "estimation" error in the joint space:

where hJ denotes the EKF dynarnics. Clearly, the estimation error e will exhibit

significant nonlinear dynamic cross coupling if the bandwidth of hJ is smaller than

the bandwidth of q,. The estimation error e, in tmn, will affect the control error in

the manner i1lustrated by curve 'C'.

The x-component of the control error was not shown in Fig. 8.3 because no new

insight about the control system can be gained from it. The same argument applies

to the x-components of the control error for Fig. 8.4 and Fig. 8.5.

Next, the control system was subjected to the trajectory TC3 and the kinematic

uncertainty KP2 to demonstrate the control system's ability to operate weil even

in the vicinity of singularities. The results of the simulation are shown in Fig. 8.4

where they are presented in the same manner as in Fig. 8.3. The singularity is passed
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by the sender after traveling for 30 sec. It can be seen in Fig. 8.4 that passing

by the singularity introduces peaks and near-discontinuities into the error response.

The maximum error is also increased. In this example it is about 0.07 mm for the

y-component of the error. Curve 'c' in the left hand plot of Fig. 8.4 shows the y­

component of the error when the EKF is added to the system. In this particular case,

this error is smaller than the error without EKF. However, the z-component of the

control error for the system with EKF is much larger than for the system without

EKF, particular1y near the singularity, as shown in the right hand picture of Fig. 8.4.

-f\gain, the peak is largely due to nonlinear dynamic cross coupling.

Finally, the system was subjected to the test trajectory TC4 (0.1 Hz). The fre­

quency of this trajectory is doser to the crossover frequency (2 Hz) of the outer loop

than any other test trajectory. Since the loop sensitivity is larger in the vicinity of

the crossover frequency than at lower frequencies, one would expect the control error

to increase. This is indeed the case às can be seen in Fig. 8.5. Note that even the

nominal error response shown in the left hand plot of Fig. 8.5 shows a sma)) deviation

from zero. The control error for the system with EKF induded shows a particular1y

large error (-0.17 mm) during the initial acceleration phase.

The trajectory TC2 was not used to test the noise-free system performance because

it is just a live times slower version of TCl. The only insight which can be gained

from it is that the control error for TC2 is even smaller than for TCl. However, TC2

will be used in the next section.

8.3 The EKF Performance

The EKF is the key element of the loop because its ability to reduce the measurement

noise almost entirely determines the achievable tracking precision. To establish its

performance, two methods were used: Nonlinear simulations and covariance analysis
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of a linearized system. The two analyses support each other.

8.3.1 Nonlinear EKF Simulation
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It is desirable to test the performance of the EKF independently of the control loop

in which it usually operates. To this end, the EKF was tested outside the loop as

shown in Fig. 7.2, where qc = Ti-
1 (Yd) is determined by the desired trajectory rather

than the true trajectory YC' Moreover, a reference sender was placed in the center of

the circulaI' test trajectories.

The main parameters of the EKF are the measurement noise strength and the

state noise strength.

1) The measurement noise strength for a SoR distance of 1 m was set to the values

associated with the test noise NCI or NC2, respectively. No corrections were made

for the fact that the measurement noise is not white. While the sender progressed

along the trajectory, the noise strength values were continuously adapted to refiect

the changing strength in each measurement channel. When the reference sender was

used, the noise strength values were appropriately reduced.

2) The state noise strength was set to the RMS value of the acceleration of the

kinematic error. This value was chosen because it is easy to compute and appears

to be an almost optimal choice for the type of trajectories considered. Only minor

performance improvements can be achieved by choosing other (larger) values.

The measurement noise seen by the first receiver for the test trajectory TCI

and the noise realization NCI is shown in Fig. 8.6. In accordance with NCI, the

nominal measurement noise STD in mm for a static sender receiver pair with 1 rn

distance is 0.1 mm. The uncompensated noise for the moving sender displayed in

the left hand plot of Fig. 8.6 has a STD of about 0.1 mm, too. If the reference

sender's optimal estimate of this noise is used for compensation, then the sit'latioll is

improved. The right hand plot of Fig. 8.6 displays the first receiver's measurement
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Figure 8.6: Compensated and uncompensated measurement noise for receiver # 1

noise after compensation. Clearly, the compensated noise has a STD that is smaller

by a factor 2-3 than the uncompensated noise. Moreover, it resembles white noise

more closely than the uncompensated noise does, thereby improving the validity of

the assumption that ail inputs to the Kalman filter are white noise.

The left hand plot of Fig. 8.7 shows both the y-component of the KPI kinematic

error and the y-component of the EKF's estimate of the kinematic error using the TCl

(0.02Hz) test trajectory, KPI kinematic uncertainty, and the NCI noise parameters.

It can be seen that the kinematic error for this case closely resembles a sinusoidal

signal. Its frequency is the same as the frequency of the test signal and its amplitude

is ca. 1.5 mm, varying between 3 mm and 6 mm. The EKF tracks this signal in

the presence of uncompensated measurement noise with minor errors. The curve 'B'

shows the EKF estimates, while curve 'A' shows the kinematic error.

The y-component of the estimation error can be seen more clearly as the curve

'A' in the right-hand plot of Fig. 8.7. The error is as large as 0.3 mm and there

is not much reduction over and above the size of the measurement noise. On the
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other hand, when the reference sender is employed to reduce the measurement error,

the estimation error is about 2-3 times smaller and does not exceed 0.1 mm. The

y-component of this error is depicted by curve 'B'. The standard deviations and

the maximum absolute values of the estimation errors for al! three dimensions of

space are displayed in Table 8.4 for both the compensated and the uncompensatcd

cases. Moreover, Table 8.4 displays the respective values fol' another measuremcnt

rea:;zation (NC2). The two noise realizations show about the Same resnlt.

In order to see how the estimation error improves when the trajectory is evcn

slower than TCI, the above simulation was repeated for the test trajectory TC2

which is five times slower l~L004Hz). The kinematic error parameters and the mea­

surement noise parameters remained unchanged (KPI-NC1). The results are dis·

played in Fig. 8.8 which is presented in an analogous manner to Fig. 8.7. As beforc,

the maximum values and the standard deviations for al! di rections of space as weil as

for the NC2 noise realization can be found in Table t:ol. From this evidence it is clear

that only a very modest improvement, if any, was achieved by using a trajectory which

was five times slower. However, the estimation error displayed in the right-hand plot

of Fig. 8.8 is much smoother than the error depicted in Fig. 8.Î. This \Vas expected

becaüse the Kalman fil ter has a reduced bandwidth for the slower trajectory.

A more demanding kinematic error than TC2-KPl is TC3-KP2. It is shown in

the Ieft-hand plot of Fig. G.9. The spikes and near-discontinnities exhibited by the

kin 'matie error are consequences of the closeness of the trajectory TC3 to a singular

point. Moreover, a different kinemadc parameter set (KP2) \Vas used than that in

the last two siJ:twlations. The main difference with respect to the estimation error

achieved is ~n increase of the maximum error, at least for Nel. This is shown in

the right-hand plot of Fig. 8.9, where large errors coincide with the spikcs in the

kinematic error. However, the l'esnIt could almost certainly be improved by opening

the Kalman fil ter wider. 'Yne simulation results f<:·r!':C:! and the other dimensions of
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TC1-KP1 NC1 NC2
x y z x y z

max reg 0.31 0.30 0.38 0.31 0.26 0.31
cmp 0.10 0.11 0.13 0.11 0.12. 0.14

STn reg 0.10 0.12 0.13 0.11 0.091 0.13
cmp 0.034 0.038 0.052 0.038 0.043 0.052

TC2-KP1 NC1 NC2
x y z x y z

max reg 0.24 0.31 0.24 0.24 0.16 0.24
cmp 0.14 0.088 0.11 0.14 0.10 0.14

STn reg 0.11 0.11 0.10 0.090 0.Q78 0.092
cmp 0.047 0.033 0.044 0.045 0.039 0.050

TC3-KP2 NCI NC2
x y z x y z

max reg 0.40 0.38 0.36 0.23 0.29 0.31
cmp 0.12 0.15 0.13 0.11 0.13 0.11

STn reg 0.10 0.13 0.13 0.089 0.094 0.12
cmp 0.036 0.040 0.046 0.032 0.040 0.042

TC4-KP2 NC1 NC2
x y z x y z

max reg 0.30 0.33 0.34 - - -
cmp 0.19 0.12 0.14 - - -

STn reg 0.10 0.12 0.12 - - -
cmp 0.04 0.031 0.048 - - -

Table 8.4: Result. of the nonlinear EKF simulation.
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space can be found in Table 8.4.

Finally, a very fast kinemat:c error TC4-KP2 (0.1 Hz) was tested. The simulation

results can be found in Fig. 8.10 and Table t:ol. lt is clear from this evidence, that

even for a trajectory 25 faster trajectory than TC2, there is no serious deterioration

of the estimation error.
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8.3.2 Covariance Analysis
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The EKF simulation results can be supplemented byan approximate covariance anal­

ysis which provides additional insight into the EKF's performance and can support

the validity of the previously obtained resalts. A covariance analysis becomes possi­

ble when the system's nonlinearities are ignored. Usually, the Kalman filter's internai

model is a replica of the entire stochastic process. In this case a covariance analysis

requires the solution of a Riccati equation. Here, however, tlJe Kalman filter's internai

model consists of just three decoupled double integrators. A covariance analysis fOI"

this system comprises three steps:

1) Choose the EKF gain J(J as previously, except that now the sender is static.

2) Augment ail process dynamics to the closed loop Kalman filter dynamics.

3) Solve the Lyapunov equation corresponding to the augmented process.

The augmented dynamics consisted of the dynamics of the measurement noise and

the dynamics of the kinematic error acce\eration.

1) The dynarnics of the measurement noise were the previously ment.ioned, exper­

imentally obtained 3rd order noise dynamics for a static sender. In other words, the

influences on the noise which stem from the movement of the sender were ignored.

Further, it was assumed that the sender is located at the center of the circulaI' test.

trajectories. This ensures the measurement noise to he of sorne average strength over

the circulaI' path.

2) The dynamics of the kinematic error acceleration are modeled as a white noise

driven 2nd order system with a 30dB resonance peak at J" where J, is the frequency

of the trajectory. The output standard deviation of the 2nd order system was choscn

to be the RMS value for the acceleration of a sinusoidal signal with frequcncy J,
and amplitude 2 mm. This type of kinematic error model works well for the circnlal"

trajectories and the kinematic error parameters chosen. This is confirmed by thc

previous nonlinear EKF simulations. For instance; the kinematic error in Fig. S.ï is
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Figure 8.11: A Bode sketch of the noise, the kinematic error and the Kalman filter. (Not ta scale.)

approximately sinusoidal with frequ~ncy J. and has an amplitude of ca. 1.5 mm.

The frequency domain relationship between the measurement noise, the kinematic

errer and the c10sed loop Kalman filter is sketched in Fig. 8.11. The task of the

Kalman filter is to let the kinematic error pass but rejeet the measurement noise. To

do this requires that the eut-off frequency fI of the c10sed loop Kalman filter be larger

than the center frequency J. of the kinematic error. On the other hand, if there is

any noise reduction to be achieved then fi must be smaller than the eut-off frequency

Jn of the measurement noise.

Unfortunately, the bandwidth of measurement noise is very small (ln "" 0.03 Hz).

Hence for a test trajectory Iike TCl (0.02 Hz), there is very Iittle that the KF can do

to separate the kinematic error from the measurement noise. The covariance analysis

yields a standard deviation of 0.11 mm in any direction of space. This is weil in

line with the simulation result shown in Table 8.4. Suppose the KF is told that the

kinematic error acce1eration is just a tenth of the true acceleration for TCl. In other

words fI is artificially forcp,:! to be smaller than J•. The resulting STD in any direction

of space is 0.29 mm, which is substantially larger than before. On the other hand, if

the filter is opened \Vider by telling the KF that the kinematic error acceleration is

ten times larger than the true value, then the result even improves slightly: The STD
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is 0.10 mm, which is the same as the STD of the measurement noise and the best one

can do for the given KF structure. Thus, in general, one can recommend that it is

better to overestimate ff than to unèerestimate it.

For trajectories for which f. > fn, the filter is so wide open that it lets ail measure­

ment noise pass. The test trajectory TC4 (0.1 Hz) is such a case. The corresponding

covariance analysis STD is 0.11 mm. Only if the trajectory is substantially slower

than fn can the Kalman filter reduce the noise. However, even for the much slower

trajectory TC2 (0.004 Hz), there was not much reduction. The STD was 0.095 mm.

The result could possibly be improved by using a steeper roll-off for the Kalman filter,

i.e triple integrators instead of double integr:ltors.

A further question which can be approximately answered by a covariance analysis

is the influence of the measurement noise strength on the estimation error. Given the

previous analysis it not surprising to find that the estimation error is approximately

proportional to the measurement error. For instance, if the measurement noise is

increased from 0.1 mm to 0.2 mm, then the STD for TCl increases from 0.11 mm to

0.23 mm.

Finally, it is of interest to know how much cOùld be gained if one used a full state

optimum Kalman filter instead of just a double integrator. In theory this question

could satisfactorily be answered by solving a Riccati equation for a system model

which is composed of the me?surement noise dynamics and the dynamic mode! of

the kinematic error. The problem is that the minimum estimation error covariance

obtained by such an analysis is highly sensitive to the error mode! used. In particular,

the size of the resonance peak of the kinematic error model greatly influences the

result. The previous analysis for the suboptimum KF, however, \Vas not sensitive to

the exact shape of the dynamic error mode!. This is a further argument for the use

01' a suboptimum estimator because, in reality, the exact kinematic error model is

unknown.
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Nevcrtheless, if the peak of the 2nd order kinematic error model is fixed at 30 dB,

t.hen for TCI (0.02 Hz), an est.imation error STD of 0.06i mm i~ obtained as comp••red

t.o 0.11 mm for the suboptimum estimator. This is an improvement of about 40% .

If the resonance peak is increased the improvement diminishes. A more substantial

saving was achieved for the slower trajectory TC2 (0.004 Hz): The optimum STD

was 0.022 mm compared to 0.095 mm for the suboptimum.

Concluding, it can be remarked that the covariance analysis confirmed the results

of the nonlinear simulation. The main result of both types of analyses was that the

estimation error is about the same size as the measurement noise. A reduction beyond

t.hat requires either very slow trajectories or the compensation of the measurement

noise with data obtained by reference senders. A third method is the use of sensor

fusion as explained in the next section.

8.3.3 Sensor Fusion

An important aspect of robot sensor tcchnology is sensor fusion. In the context of the

3D ultrasound position sensor it is of particular interest to study how the position

information obtained by an optical system can be fused with.the data obtained by the

nltrasound sensor. Often, vision data are processed slowly and are computationally

expensive. However, optical methods have the potential of being 'luite precise. Ul­

trasound data, on the other hand, can be processed quickly and are computationally

inexpensive. However, they tend to be 'luite noisy. It is therefore useful to investigate

how the two sensor technologies can be merged to obtain position data which are fast,

compntat ionally inexpensive, and precise.

The obvious answer is to supply the zero-variance position measurements of the

vision system at a low rate and use the ultrasound measurements in the intervening

time. When a new vision position measurement becomes available then the EKF

st.at.e is set to the new vaine and the corresponding elements of the EKF covariance
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Figure 8.12: Covariance analysis of any one component of the estimation error for the trajectories
TCI and TC2. It was assumed that perfect measurements are available at the time t=O.

-.~ matrix 'trc set to zero. For a while the EKF will then run with a reduced estimation

error until the error again reaches its normal leve!.

111 practice, there is the additional difficulty that, being slow, the vision position

measurements may be delayed by several sampling periods. Thus, to optimally incor­

porate this information into the EKF algorithm requires a modification which allows

for data smoothing to occur. The EKF performance would, of course, be diminished

compared to the undelayed case.

Asstlming the undelayed case, a covariance analysis was conducted for this prob·

lem. The results for the test trajectories TCI and TC2 are shown in Fig. 8.12. The

figure was computed by first computing the steady-state values for both the KF co·

variance matrix and the covariance matrix of the whole process given the steady state

KF gain. Those elements of the two covariance matrices which invol ve position states

were then set to zero. These new covariance matrices \Vere then used as initial covari­

ance matrices in the covariance arnlysis. At each time step the KF gain was updated,
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changing the system matrix of the stochastic process. The two curves labeled 'B' show

the resulting time histories of the standard deviations of the estimation errors for any

of the three directions of space for TCl and TC2, respectively. The corresponding

,A' curves were obtained analogously to the previous case, but it was assumed that

not only the position but also the velocity of the kinematic error are kl10wn perfectly.

As expected, it can be seen from Fig. 8.12 that for a given trajectory both the

'A' and the 'B' curve converge to the steady state value for the test trajectory. The

'A', curves, however, remain at smaller STDs for a longer time than the 'B' curves.

This is not surprising since the processes generating the'A' curves were given more

information.

If one was to demand that the estimation error for any one dimension of space

be less than 0.1 mm with a 99.7% probability, then one would like the STD of the

estimation error to be less than 0.033 mm.:~')r TC2, the time required to first exceed

this margin after perfect measurement of position and velocity is about 10 sec. If

only the position is known perfectly then the time required is about 2.5 sec. On

the other hand, for TCl, which is five times faster than TC2, the times are 2 sec

and 0.5 sec, respectively. Thus, the time to reach the margin is approximately in­

versely proportional to the angular veloci ty of the trajectory (or proportional to the

root of the acceleration of the kinematic error). The margin time does not depend

strongly on the STD of the measurement noise. However, as mentioned previously,

the steady-state value of the estimation error's STD is approximately proportional to

the measurement noise.

8.4 Closed Loop with Noise

Finally, the closed taskspace loop was simulate<: with the'l1easurement noise. The

results for the TCl test trajectory, the KPI kinematic error parameters and the NCI
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noise rea!ization are shown in Fig. 8.13. The left-hand plot in Fig. 8.13 shows the

y-component of the tracking error when the measurement noise is not compensated

by the reference sender. The right-hand plot of Fig. 8.13 shows the compensated case.

It is not surprising thil~~he tnàing error displayed in Fig. 8.13 is practically

identical to the EKF estim"tion error shown in Fig. 8.7. The loop gain is large at

the frequency of the kinemô-tic error TCI-KPI. Thus, the tracking error without

measurement noise is very small as was shown in Fig. 8.3. COilsequently, the control

error is identical to measurement noise. For slower trajectories like TC2, this iS<:"en•
truer. Thus, the preceding analysis of the the EKF estimation errar applies to tne

tracking error as weil.

On the other hand, one would expect different results for kinematic errors whose

spectra are close to the crossover frequency of the outer loop. To sorne extent, this

is the case for the kinematic error TC4-KP2. The simulation results for this case

are shown in Fig. 8.14 in an analogous manner to Fig. 8.13. The results are still

very similar to the EKF estimation errar which is displayed in Fig. 8.10. However,

during the initiai acceleration phase of TC4, the control error is quite large. This was

documented in Fig. 8.5. This !iUle peak can also be seen in the right-hand plot of

Fig. 8.14. Moreover, the tracking error for the system with compensated noise exhibits

a 0.1 Hz component, which is the frequency of the noise-free control errar shown in

Fig. 8.14 for TC4-KP2. It can be expected that eventually, for faster trajectories, the

(noise-free) control error will come to dominate over the measurement noise.
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Chapter 9

Conclusions

9.1 Thesis Summary

The precise end effector tracking of taskspace trajectories is an important problem in

the control of manipulators. However, ignorance of the true kinematic and dynamic

properties of the robot often precludes high-precision tracking. This thesis proposes

a solution to overcome this restriction by measuring the end-effector pose in both the

joint space and the task space, and using the two measurements in a feedback schcme

to reduce the tracking error. It was shown that this double loop design is superior to

a single loop design because it can reduce the uncertainties more effectively.

Another important feature of the control system is a new nonlinear kinematic

decoupling scheme. lt is superior to the traditional Jacobian-based methods because it

does not involve a I....callinearization of the robot kinematics. Rather, it compensates

for the nonlinearities globally. This has several advantages which include a reduccd

loop uncertainty and the ability to handle large disturbances or step trajectories. It

also offers a clean proof of robust global stability and robust global performance.

The second issue studied in this thesis was the problem of actually measuring the

end-effector position in taskspace coordinates. Many methods have been proposed by

163
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other researchers. This study explored the properties of using ultrasound for 3D end

effector position measurements.

One aspect of this task was the design of the ultrasound sender-receiver circuitry.

The key problem was to determine the exact time-of-flight of the ultrasound signal

in the presence of background noise and reflected signaIs. The problem was solved

by a combination of thresholding and zero crossing detection. Using this method, an

inexpensive prototype was built and used as a :.J.ta acquisition too!. The prototype

consisted of four analog receivers, two senders and a counter/signal generator card

that plugs into any IBM-AT. The time-of-f1ight data acquired by the prototype were

used to verify the proposed measurement noise mode! experimentally.

Another key hardware problem was the choice of the ultrasound transducers.

Those transducers which are large compared to the wave length cause a mismatch

between the acoustical center and the geometrical center. Depending on the effective

transducer size, it may or may not be necessary to compensate for this mismatch.

To compensate for biases and drifts a deterministic error model was developed.

Many aspects of sound transmission in air were studied. However, the main factors

are the room temperature, the 1'00..1 temperature gradient and drafts. The former two

can relatively easily be compensated for by a reference sender. Strong air movements,

on the other hand, should be avoided. Another important factor of sound transmission

is reverberation whose main effect is to limit the achievable pulse rate.

To compensate for time-of-f1ight fluctuations, a stochastic error model was devel­

oped. The measureme'J.t fluctuations were shown to be correlated in time and space.

The correlation time constant is about 20-30 sec and the correlation distance constant

is about 30-90 cm, depending on the atmospheric conditions in th~ room. The model

is capable of describing the joï'nt space-time statistics of the time-of-f1ight fluctuations

of an arbitrary number of sender-receiver pairs. The stochastic mode1 ..aS verified

with experimental1y obtained data.
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An extended Kalman filter was then used 1.0 b·:st ('stimat.e the kin,'matÏ<" "ITor

given the knowledge of the previously mentioned envirann1<'nt.al error Inodels. Th.. kev

problem of this method was the difficnlty of characterizing the (unknown) kin"lnatic

error speetrally. The problem was solved by modeling the dynalllie I)('ha\"ior of 1.11<'

killematic error as a double integrator. The noise states wel'l' not indud"d in the

EKF mode!.

To further reduee the estimation error, a measurement noise conlpl'nsal,ion sch,'ule

was introduced. Th,s idea exploits the known spaeial correlation prop"lties of \.II<'

noise: One or more reference ",:,nders, whieh are placed al. strategie poillts, are us,,,1

ta optimally compensate for the measurement noise of the main sendel·.

The system i:.ehavior was simulated ta understand how certain factors cont.ribllte

ta the overall system tracking error. First. the system was simulaü'd wit.hollt mea­

surement noise. lt was shown t.hat the main influence of the extended Kalman filt.er

dynamics on the system behavior was through nonlinear dynalllic cross cOllpling ami

sensitivity ta aeceleration.

Next, the performance of the EKF was tested outside t.he 1001', II. tUl'lled out t.hat.

the EKF estimation error is about the same size as the meaSlll'emellt noise. '1'0 improve

that require3 any of the following: Better knowledge of the spectral properties of the

kinematic error, very slow trajectories, the use of the above mentioned IneaSllrelnent.

noise compensation method, or sensor fusion wit.h a vision syst.em.

Finaily, the entire system including the measurement noise was sinllliated. II.

turned out that the overall tracking error is identical t.o t.he estimat.ion erraI', except. for

very fast trajectories where the dynamic control erraI' also cont.ribllt.es t.o the t.raekiug

error. For atmospherically calm, small ta medium sized raoms the maximum t.rackiug

t'rror can be expected ta be about DA mm in eaeh direction of space. When reference

seBders are used ta compensate for the noise, one can expect. this value ta be reduced

1.0 about 0.15 mm in the vicinity of a reference sender. With some notable except.ions,
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the speed of the trajectory plays only a minor role in the precision achievable.

9.2 Suggestions for Further Research

166
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Any future continuation of the work presented in this thesis should include an ex­

perimental setup to test the overaU performance of the system in a real robot envi­

ronment. Associated with an experimental setup should be an investigation into the

adaptive identification of environmenta! factors such as the correlation time constant,

the correlation distance constant, the inverse sound speed and the inverse sound speed

gradient.

Further, it would be important to investigate which practical tasks and configu­

rations preclude complete observability. Are there microphone-sender configurations

which ensure observability for aU common tasks? In connection with this questic-, it

would be interesting to study the best strategy to pursue when partial unobservability

does occur.

Another aspect requiring investigation j, the reduction of the numerical complexity

of the control algorithm. In particular, it would be desirable to find computationally

inexpensive approximations for the spatial covariance kernel and the inverse kinematic

function.
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Appendix A

Covariance Approximation

lt is desirable to find an approximate c10sed form solution for the spatial covariance

equation (6.10) because the numerical evaluation of the double integral is computa­

tionally expensive. This is particularly important for the case where the two mea­

surement channels share the same sender and/or the same receiver. The reason is

that the evaluation must be done in real time if a reference sender is to be used for

optimal noise reduction.

For this case, assume that the two ray-paths rI and r2share a sender or a receiver,

and let the angle between the two paths be denoted by <p. Furiher, without loss of

generality, let, > 1 l.>ô such that dj = ,di. Furthermore, let Cl' = 1/Dl',
Unfortunately, if 1\. 1\ = 1\ . lb in (6.10) is taken to denote the 2-norm, then (6.10)

does not have a c10sed form solution. On the other hand, if the 2-norm is approxi­

mated by the average of the 1-norm and the oo-norm, i.e. II· 1\2:::: (II· lit +11·1100)/2,

then (6.10) with (6.6) does have a c10sed form solution:
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APPENDIX A. COVARIANCE APPROXIMATION

If lepl f. arctan(2) :

li5

PlI =

Fkt)

2F(~lsl) - 4F(lsl) + F(bpl ) + F(bmtl exp( -C'"Id;)

F(~lsl) - 4F(lsl) + 2F(bp2 )+ F(bml ) exp(-œyd;)

F(~lsl) - 2F(bp2 ) + F(bptl exp( -(:>;,yd;)

F(bp1)(exp(-œydi) -1)

if ep = 0°

if 0° < lepl ::; 45°

if 45° < lepl ::; 90"

if 90" < lepl ::; 135°

if 135" < lepl :::; ISO"

if lepl = arctan(2) :

Pu = F(~lsl) - 4F(Jsl) + 2F(bp2 ) - ad; exp( -œyd;)cIDi

where

Fnb) = CIDi(2d;/ DI +exp( -d;/Dtl +exp( -id;/Dtl +exp( -(-y - I)d;jDtl- 1)

F()
_ D2(exp(-adi(·)) -1)

• - CI 1 (.)

Isi = 15in(",)I, ici = 1C05(ep)1

bpI = Isl/2 +ici, bp2 = Isl + Icl/2, bml = !sl/2.,-~ ici



Appendix B

The PUMA 600 Manipulator

The kinematic structure of the PUMA600 is shown in Fig. B.l. The following nom­

inal values were used for the relevant kinematic parametres: ~=Omm, bz=149mm,

a3=432mm, a4=20mm, b4=432mm. The moving sender was located at the origin of

the 4th frame.

"
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...... ,

'----- .J
Figure B.l: The PUMA600 robot manipulator



Appendix C

The Ultrasound Transducer

Figure C.I: The ultrasound lransducer muRata MA40S2R

liS
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Appendix D

Circuit Diagrams

For the two senders, the gated CW signaIs were generated by 5/3 Intel 8254-2 16 bit

counter-timer chips and fed directly to drivers for the two ultrasonic sender transduc­

ers. The sender transducer and the drivers were connected by shieldd cables. The

parameters for the gated CW signal like burst length, sampling period and delay be­

tween the first and the second sender burst are defined by the controlling C-program,

which in turn does the setup for the Intel 8254-2. An additional 4/3 Intel 8254-2 chips

were used ta count the (TOF+TOA) for the four receiver channels with 10 Mhz clock

speed. This brings the total number to nine 16 bit counter-timers on three chips.

Counting is enabled when a ranging signal is sent and is disabled when the analog

part of the channe!'s receiver had detected a zerocrossing of the signal after a preced­

ing trigger. The analog receiver was located as closely ta the transducer as possible in

order to improve the noise problems with the very weak transducer signal. The whole

receiver electronic for one tra.'lSducer fitted comfortably on a small copperplated bord

of dimensions 2.5cm x 6.5cm. Shielded cables connected the computer with the four

analog receivers. The cables carried the count disable TTL output signal from the

analog bord and the carefully filtered powerbus from the computer. Circuit-, and

block-diagrams of the receiver and interface card can be found below.
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/
CS 5NDl

/ Address AD,
Sender

Al SNDl

Decoder
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CS
e ---, 1 Titrer SND2
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data - SND2
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-L l

FRE2
, 1--- Receiver

/ OlTE2 Lat,:h 2 012
2

Counter
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Latch 3 - 013
Receiver

CN'rE3
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0lTE4 Latch 4 014
4
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Figure D.l: Block diagramm of the whole ultrasound ranging system.
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5/3 intel 6254

CLK

CS carrier GATE <
lOOde: 3

AO,Al 0lJr--W/R
CLK

data
sarrpling GATE
lOOde: 2

0lJr
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burstl GATE
-SNLJl

lOOde: l
OR0\11'. SNDI

CLK

delay GATE
lOOde: 5

0lJr
AND CLR

•
CU<

burst2 GATE SNi52
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Figure D.2: Diagram of the TIMER circuit.
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10 Mhz

4/3 intel 8254 y

a.K

CS countill9 GATE CNTEi

AD, Al !rOde: 2
our PREi

W/R
a.K

data
counting GATE CNTE2
!rOde: 2 PRE2our

a.K

counting GATE CNTE3
!rOde: 2 our PRE3

CU<

counting GATE CNTE4
!rOde: 2 PRE4our

Figure D.3: Diagram of the COUJ~TERcircuit.
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Figure D.4: Block diagram of the RECEIVER circuit.
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Figure D.6: Diagram oî the TRIGGER circuit.
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Figure D.;: Diagram of the TIME WINDOW circuit.
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Figure D.S: Diagram of the ZERO CROSSING DETECTOR circuit.
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Figure D.9: Diagram of the SEr\DER circuit.
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v<c
1/2 74LS109

PRE
S

CNTE
J Q ~

~CH
)CLK

K
~CLR

R

Figure 0.10: Latch circuit

PRE CLR CH CNTE
H L X H
H H T L
L H X L

Table 0.1: Truth table of latch circuit

188



Appendix E

C-Program

/.

/.

./

ultsound.h

This progra. contains the addres. and co..and

d.1initions for the Intel 8254-2 connter chipa .

1- "acros for converting bytes into short integers and vice versa -/

Id_11ft. ftAIE_SHORT(mab.lsb) ~sb.OxOl00+1sb

Id.fine "58(x) _rotr(xlOxFFOO.8)

Idotine LSB(x) xlOxOOfr

1- Adr••~ definitions ~or the 8254-2 chips on the ultrasound card el

Idefine CRIPt_CO 768

Id.tin. CRIP1_Cl 769

~;d.fin. CHIP1_C2 770

'dofine CRIP1_CR 771

'd.fine CRIP2_CO 772

'd.fine CHIP2_Cl 773

'defin. CJlIP2_C2 774

Id.fine CHIP2_Ca 775

'd.fine CHIP3_CQ 776

'd.fine CHIP3_Cl 777

Idotine CHIP3_C2 778

.,- Id.fine CHIP3_CR 779
!...
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,- Progr..ing colll!lands for the 8254-2 chips ./

,. (first LSB thon "SB for read/vrite; binary 16bit counterll) ./

Id.fine CO_RODEO Ox0030

Idefine CO_RODEl Ox0032

Idefine CO_"ODE2 Ox0034

Idefine CO_"ODE3 Ox0036

Idefine CO_"OD~4 Ox0036

Idefine CO_RODES Ox0031

Idefine Cl_RODEO Ox0070

Idefine Cl_"ODEl Ox0072

Id.fine Cl_RODEZ Ox0074

Idefine Cl_"ODE3 Ox0076

Idefine Cl_"ODE4 Ox0078

'define Cl_RODES Ox007A

Idefine C2_RODEO oxooao

Idefine CZ_RODEt Ox0082

'define C2_"ODE2 Ox0084

Idefine C2_RODE3 Ox0086

Idefine C2_"ODE4 Ox0088

Idefine CZ_RODES Ox008A

/_ Latch commands for reading values from the 8254-2 chips _/

Idefine LATeH_CO OxOOOO

'define LATeH_CI Ox0040

Idefine LATeH_C2 oxooaol

190

/. exp_read.c

This prog:am reads the counter values of the receiver channels

for che ultra sound card and uri tes the obtained values into a

data. file for furthf:r processing. It a.1so sets up the signal

generators for the tuo ultrasound se"der uhich are supported

br the cardo The d~vice uses intel 8454-2 chips for both counting

and signal generetion ../
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'include <atdio.h>

'include <atdlib.h>

'include <conio.h>

'includ.., "ultl!lonnd. h"

'define CARRIEB_PERIOD 250

{

unaignod int input(), cleanO. x. count, end_count;

unlligned int readl_tiae. rell.d2_tim8;

unsigned int lnl_1, 101_2, in1_3. 1nL4:

unsigned int ln2_1, ib2_2. 1n2_3. 1n2_4;

unsigned int oldl_11OO. oldl_2"O. oldl_3=O. oldl_4=O;

unsigned int old2_1=O, old2_2=O. old2_3=O, old2_4=Oi

uRsigned int burat_length. samp1ins_period. delay_sender;

char filen~e_a[41J. ~ilenaae_b(41];

,. parameter input .;

printf(".W1lber of samples to be taken ? Il);

sCll.nf("'tu",&end_count);

printf("Burst length ? Il);

acanf("'Iu" ,tburst_Iength);

printfC"Delay of sander'2 or 8V~tch #2 off? li);

seanf ("'Lu" ,l:de1ay_sender) ;

printf("SlI.mpHng period ? ") i

scanf(0I 'tl1" ,lsampling..period);

printf(uData filename for sender Il ? ,,) j

acanf("'ts" ,filenamo_a):

if (delay_sonder!-O)

{ printf("Datll filename for sender 12 7 01):

scanf(OIXsOl, filenlUle_b) ;}

/_ set carrier period -/
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outp(CHIPl_CO, LSB( CARRIER_PERlOn »;
outp(CHIPl_CO. "saC C1RRIER_PERIDD »;

,. Bet the sampling P6riod _,

outp(CHIPl_CR, Cl_RDDE2);

outp(CHIPl_Cl. LSB( samplinS-period »i
outp(CHIPl_Cl, "SB( sampling_period »;

,. set the burst length for sender'! .,

outp(CHIPl_CR. C2_ftDDEl);

outp(CHIPl_Ç2, LSB( burst_length »;
outp(CHIPl_C2. "SB( burst_length »;

1- set the dolay betveen sender .1 burst and sender .2 burst .,

outp(CHIP2_CR. Cl_RODE5>:

outp(CHIP2_Cl. LSB( delay_sender »;
outp(CHIP2_Cl, "SB( delay_sender »;

1- set the hurst length for sender 12 ./

outp(CHIP2_CR. C2_ftDDEl)j

outp(CHIP2_C2, LSS( burst_length »;
outp(CHIP2_C2, "5B{ burst_length »j

1- setup receiver Il _,

outp(CHIP3_CR. CO_MDDE2);

outp(CHIP3_CO, OxFFFF);

outp(CHIP3_CO.OxFFFF);

,- eetup receiver 12 _/

outp(CHIPJ_CR. Cl_MDDE2);

outp(CHIP3_Cl,OxFFFF):

outp(CHIP3_Cl.OxFFFF);

/- setup receiver'3 _/

Hl2
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outp(CHIP3_CR, C2_"DDE2);

outp(CHIP3_C2.0xFFFF);

outp(CHIF3_C2.0xFFFF);

,_ sotup receiver 14 -,

outp(CHIP2.CR, CO."ODE2);

outp(CHIP2.CO, OxFFFF);

outp(CHIP2.CO, OxFFFF)j

,. atart read of roc.ivora .,

fptr.aafc.pen(tilenUl8.&, "v") j

fptr.b-1'open(tilename.b. "vu);

readl.ti.e • saap1ins.period - 300:

read2.ti••• saapling.period - delay.sender - 300;

for (count=!; count<-end.count+2; COURt++)

{

,_ input for sender Il omission .,

1Ihi1. ( input( CRIPl.CR. CRIPt.CI, LATCH.Ol) )= readl.time )

{;}

in1.1 • clean(OxFFFF-input(CHIP3.CR,CHIP3.CO,LATCH.CO). laId1.!, count);

1n1.2 • clean(OxFFFF-input(CHIP3.CR,CHIP3.Cl,LATCH.Cl), toldl.2. count):

1n1.3. clean(OxFFFF-input(CHIP3.CR,CHIP3.C2,LATCH.C2), toldi_3, count);

inl_4 • clean{OxFFFF-input{CHIP2_CR,CHIP2_CO,LATCH_CO), toldl_4, count):

{- input for aender .2 emission _/

vhile ( input{ CHIPl_CR, CHIPl_Cl, LATCH_Cl) >= read2_time )

{;}

in2_l • clean{OxFFFF-input(CHIP3_CR,CHIP3_CO,LATCH_CO), told2_1, count);

in2_2. clean(OxFFFF-input{CHIP3_CR,CHIP3_Cl,LATCH_Cl), told2_2, count):

in2_3 =clean{OxFFFF-input{CHIP3_CR,CHIP3_C2,LATCH_C2), told2_3, count);

in2_4 • clean{OxFFFF-input(CHIP2_CR,CHIP2_CO,LATCH_CO), told2_4, count):.

{_ vrite input to file -{
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if (count>2 II delaJ_sender!~)

{ fprintf(fptr_Il. "'L7u~7u'L7u1.7u \n" • in1_1. in1_2. int_3. in1-4) ;

fprintf(fptr_b,"%7u'X.7uZ7u'L7u\n". in2_1, in2_2. in2_3, in2_4);}

if (count>2 II delay_sender==O)

'fprinti(f'ptr~a. "17uY.7u'L7u'1.7u\n". in1-1. in1_2. in1-3. in1_4):

,_ vait until the end of the sampling period _,

while ( input( CRIPt_CR, CRIPt_Ct. LATeR_CI) < read2_time )

{;}

}

close(fptr_a);

close(fptr_b);

}

unsigned int input( chip_command, chip_counter, latch_counter

unsigned int chip_command, chip_counter. latch_counter;

,-
the 'function "input" returns the integer count of the selected

eounter at the latch instance.

-,
{

unsigned int lx. mx;

outp( chip_command, latch_counter );

lx-inp( chip_counter );

.x=inp( chip_counter );

return( "AlE_SHORT( mx. lx »;
}

unsigned int clean( in. old, count

unsigned int in, .old. count;

,-
the fun ct ion "clean" has the purpose to correct errors that

are caused vhen the burst arriva! trigger misses a period

because of amplitude fluctuation. These errors are .ultiples

of the carrier period and can therefore be corrected.

-/

{
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int x;

div_t .od;

x • (-oId) - in;

if ( count < 3 )

{ (.old) • ini }

elae if ( x > 200 )

{

.od =dive x - 200, CARRIER_PERIOD );

(.oId) • in + <mod.quot + l).CARlIER_PERIOD;

}

else if ( x < -200 )

{

.ad = dive x + 200, CARRIER-PERIDD );

(.old) • in + (mod.quot - l)-CARRIER_PERIODj

}

da.

{ (.oId) = in; }

}
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