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Abstract 

In spite ofits many qualities, Pro!og is notably weak al han­
dling state changes and at supporting modular program­
ming. We designed SOAP as a clean, practical and reason­
ably efficient object-oriented extension to Prolog. We hoped 
that the strengths of object-oriented programming would 
compensate for Prolog' s weaknesses. 

Wefirst discuss the issues involved in merging the logie and 
objeet-oriented paradigms, then we survey the different ob­
ject-oriented Prologs and finally we present the design and 
implementation of SOAP whieh is entirely written in 
Prolog. 
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Résumé 

Malgré toutes ses qualités, Prolog est reconnu comme étant 
faible dans la gestion des changements d'états et dans son 
support pour la programmation modulaire. Nous avons mis 
au point SOAP dans l'espoir qu'une extension objet à la fois 
propre, pratique et raisonnablement efficace comblera les 
manques de Prolog par les avantages de la programmation 
orientée-objet 

Nous abordons d'abord les principes gouvernant la fusion 
des paradigmes logique et orienté-objet, puis nous effec­
tuons un tour d' horizon des différents types de Prolog 
orientJs-objet pour finalement présenter le design et 
l'implantation de SOAP qui est entièrement écrit en Prolog. 
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1. The IORle; and oblec;t:Qrleated prolrammlnl garadl."" 

a. What is a programminl paradigm and why use It 

"A paradigm is a style of programming, supported by system facilities, 

that provides leverage in a range of programming tasks"[l]. The main 

purpose of a programming paradigm is to support a particular point of 

view taken by the programmer in his problem-solving activities. 

Many different programming paradigms have evolved since the introduc­

tion of prograrnming languages. 

Functional programming uses the concept of function as its central 

theme; a program is a composition of functions, either primitive or com­

posed, which takes in data and produces results after a series of transfor­

mations. 

Logic programming describes the world in tenns of clauses in first-order 

logic; a program is a set ofaxioms from which a theorem can he proved 

by deduction. Here the point of view is relational and theorem proving is 

the means of program execution. 

Object-oriented (0-0) programming sees everything as being an object: 

each object is a self-contained unit since it alone can alter its state (or re­

port on it). Objects get things done by sending each other messages. A 

message is a polite request to an object to report on its state or to alter it­

self . 
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Other programming paradigms exist (imperative, data-directed, con­

straint-based etc.), each one favoring a particular point of view and a par­

ticular structuring principle. 

Each common programming language can, in the Turing machine sense, 

express whatever another cano Nonetheless, a language is said to support 

a given paradigm if it directly provides the primitive concepts of this par­

adigm (for example objects, inheritance etc in 0-0 programming.) and 

provides the means to write efficient programs using those concepts.[l] 

Many factors will promote the choice of a paradigm for a given program­

ming task. First is the familiarity of the programmer with the concepts in­

volved and the cost of leaming the requisite problem-solving skills, if 

needed. Then is the ease with which the perceived structure of the prob­

lem can he recreated using the concepts supported by the paradigme For 

example, discrete simulation will benefit from a concurrent object-orient­

ed treatment. 

The cost of debugging and of maintenance is a factor of both the expres­

siveness of a language and of its ability to provide data abstraction. If a 

language is expressive and permits the writing of concise programs for a 

given problem, then a smaller amount of code has to he dealt with and its 

logic will he of a higher level; smaller, easier to understand programs are 

easier to maintain. Furthennore, if this language allows the repercussions 

of changes to he easily contained, then sucb modularity will greatly sim­

plify maintenance. 
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b. Complex problems and multi-paradigm languages 

The power of elision of a given paradigm (how much cao be said in as 

few words as possible), as supported by a programming language. is a 

function of how weU the concepts particular to this paradigm 'map' onto 

the problem at hand. 

Given a simple problem, it is likely that one can find a paradigm which 

wiU be entirely satisfactory for the whole of il. However for larger, 'real­

life' problems, the diversity of sub-problems makes it unlikely that a sin­

gle paradigm will al ways he optimal. For example, the code needed to 

fmd a critical path in a project planning program can he very efficiently 

coded in Prolog. However when one starts implementing the user inter­

face, one is forced to use very awkward idioms that stretch the capabili­

ties of the language. Il then hecomes desirable to bt.~ able to use more than 

one programming paradigm concurrently. 

The use of multiple paradigms presupposes that the programmer is capa­

ble of perfonning a 'paradigmatic decomposition' of his/her problem and 

that an appropriate multi-paradigm prograrnming tool is available (one 

that supports more than one paradigm). 

The programmer must also he aware of the particular set of concepts sup­

ported by a paradigm and should know in which situations they will he 

helpful and in which situations they will he either a hindrance or inade­

quate. 
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To he useful, a multi-paradigm language or environment must support 

powerful paradigms which strongly complement each other. By that we 

mean that each paradigm must he very expressive (the power of elision) 

and that each one' s strengths must compensate to a large extent for the 

weaknesses of the other. 

It is our purpose to demonstrate that logic programming and object-ori­

ented programming are powerful paradigms that can he synergetically 

combined, One way of achieving the symbiosis of these two paradigms is 

to implement an object-oriented Prolog. 
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c. Prolog: a practicallogic programming language 

(with some impracticalities) 

Prolog[2; 3; 4; 5; 6] is a programming hwguage founded on symbolic 

logic and developed[7] as a practical tool for logic programming[8]. 

Under the name Prolog, we group both standard Prolog as described in 

[2], its syntactic variants, and oilier Prologs sucb as Concurrent Prolog[6] 

which subsume standard Prolog. We hereafter assume that the reader is 

familiar with standard Prolog. 

Prolog's outstanding features 

Prolog's power lies in its use of unification and backtracking as its funda­

mental means to effect data manipulations and to control of execution. 

Unification subsumes assignment, equality checking, pattern matching, 

structure composition and structure decomposition. Unification directly 

supports pattern-directed invocation and other powerful techniques such 

as incomplete data structures. 

Prolog's use of backtracking in the execution of a pro of , more appropri­

ately depth-first search, makes it possible to better separate the logical as­

pects of a program from its control aspects[9]. As the behavior of a pro­

gram is mostly inherent to the inference engine, programs with a declara­

tive reading cao he written. This declarative semantics, inherited from 

logic, is in addition to the procedural semantics of Pro log and makes for 
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more readable and easier to maintain programs. 

Since clauses are both program and data, one can easily write interpreters 

in Prolog and in effect do meta-programming. When one uses the 

Definite Clause Grammar facility, Prolog hecomes a singularly good tool 

with which to prototype and implement translators and compilers[lO] 

making Prolog an excellent platform to implement new paradigms[1]. 

Logic variables are essentially assigned-once variables. They are declara­

tive in the sense they do not have a history of taking on differenl values. 

Furthennore, as they are local to a clause and are the only kind of vari­

ables allowed, there is no fear of undesirable side-effects.1 Prolog vari­

ables need not he instantiated to he operated on: two uninstantiated vari­

ables can he unified, meaning that they are constrained to eventually rep­

resent the same thing. In the course of executioD, such equality con­

straints can accumulate leading to a technique known as constraint propa­

gation. 

Variable arguments of a procedure cao assume a dual roIe; a variable ar­

gument will he used as 'input' if it is bound on invocation and used as 

'output' if it is bound during execution of the procedure. Procedures can 

thus he multi-purpose. For example, the same append/3 procedure cao he 

used either to concatenate two lists or to break a list in two parts. 

Because unification of procedure arguments is the means by which infor­

mation is shared and communicated, procedures can have multiple, inputs 

and outputs. Prolog terms are recursively defined and can thus he of arbi­

trary complexity. 

1. However. as will become apparent _. Prolog variables are not truly logical variables. 
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Through backtracking, a variable can take Many different values: this is a 

high level fonn of iteration.2 Such backtracking allows the writing of 

non-detenninistic programs: these programs are said to contain ambigu­

ities to be resolved later during execution. Such ambiguities are also 

called 'backtracking points' and support styles of programming dubbed 

'don't care' and 'don't know' coding[4]. 

"The procedural semantics of a syntactically correct program is totally 

defmed. It is impossible for an error condition to arise or for an undefined 

operation to he perfonned. This totally defined semantics ensutes that 

programming errors do not result in bizarre program hehavior or incom­

prehensible error messages"[s]. 

Prolog's weak points 

Prolog' s design was a series of compromises. Barly theorem provers, 

which aimed at completeness, were hopelessly inefficient[ll; 12]. By lim­

iting one self to Hom clauses (a clause with at most one unnegated liter­

al)[8] and by superimposing a procedural intetpretation to theorem prov­

ing using the linear input resolution strategy[ll], one could obtain a prac­

ticallogic programming language. The main sacrifice was lost of com­

pleteness. 

This is not dramatic when one is mostly concemed with software engi­

neering. What matters most then is that a programmer he able to solve a 

large range of problems efficiently using logic programming. 

2. This can be shown ta be both a blessing and a curse. More on lhat 1aIer. 
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In order to write practical programs, it is often necessary for the program­

mer to better control the otherwise default depth-fmt search algorithm 

used by Prolog. Prolog bas thus introduced the eut, as a means to prune 

branches from the search tree, which bas been likened to the infamous 

goto[13]. The eut, as a necessary evil, weakens or even inhibits the de­

cIarative reading of programs. Efficiency is not the only reason why a 

Prolog programmer must completely understand and use the procedural 

aspects of Prolog: failing to do so May lead to infmite searches. 

At times, the programmer must explicitly use backtracking as a means of 

generating and recording altemate solutions or as a means of implement­

ing state changes. This is done by inserting side-effects (printing to the 

screen, asserting to the database) which 'capture' the different values 

taken by a variable as a satisfactory value is searched. This defeats the 

10gicaI nature of a Prolog variable which then behaves no more as an as­

signed -once variable. 

AlI those prognunming 'tricks' undermine the benefits of logical pro­

gramming. They are needed, nonetheless, because Prolog is singularly 

unsuitable at controlling computation and at supporting state changes. 

Prolog is also weak at creating new data types. One cao not create new 

data structures in Prolog other than those which cao he representer.: by 

tenns and/or Iists. 

Some signiticant constraints are imposed on Prolog data structures. 

Variables are constrained to he leaves in the tree described by a term; 

they cao not express equality constraints anywhere else within the 

tenn[l4]. Tenns as record data structures are rather weak in that adding 
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another field to a tenn means modifying any reference to that tenn every­

where in the program (this underlines the need for data abstraction). 

Furthennore, a field is defmed implicitly by its rank. One must always re­

member what the nth argument stands for. 

Standard Prolog does not support concepts such as modularity, infonna­

tion hiding and data abstraction. Essentially, a Prolog program is one 

large, flat database of clauses. When one needs to effect state changes, 

one must rely on asserting to and retracting from the database which then 

behaves as a single global data structure. The introduction of modules in 

certain Prolog implementations selVes only to fragment the database into 

smaller ones capable of infonnation hiding. 

Standard Prolog is essentially a sequentiallanguage which does not aHow 

the exploitation of multi-processor architectures. Variants of Pro log have 

been developed to tackle the paraUelism issue[6]. 

Finally, unification, being entirely symactic, is ultimately restrictive. 

One would like, for example, 7 to he able to unify to plus(3,4) [15J. 

AIso, AI programming is often interested in semantic unification (is an 

entity X a kind of Y?) While one can use the logical implication in 

Prolog to implement a fonn of inheritance to serve the purpose of sem an­

tic unification, it has the disadvantage of lengthening proofs[14]. 
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d. ObJect-oriented programming: strengths and 

weaknesses 

"Many of the ideas behind object-oriented programming have roots going 

back to SIMULA[16; 17]. The first substantial interactive, display-based 

implementation was the SMALLT ALK language[18]. The object-oriented 

style has often been advocated for simulation programs, systems pro­

gramming, graphics, and AI programming. The history of ideas has some 

additionai threads including work on message passing as in 

ACfORS[19], and multiple inheritance as in FLAVORS[20]. It is also re­

lated to a line of work in AI on the theory of frames[21] and their impIe­

mentation in knowledge representation languages such as KRL[22] , 

KEE[23], FRL[24] and UNITS[25]."[26] 

Fundamental concepts of object-oriented programming 

The object-oriented programming community is activelyexperimenting 

with new languages and new concepts. Many so-called object-oriented 

(0-0) languages have very little in common[26]. Efforts are currently un­

derway to clarifying the issues and the concepts of 0-0 programming[27]. 

The core concept of 0-0 programming is, of course, the objecte Objects 

are entities that combine both the properties of behavior and state since 

they contain both data (in the fonn of instance variables) and the opera­

tions (called methods) to manipulate that data. In other words, objects en­

capsulate the data structures they control[28]. 

10 
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"Objects may he contrasted with functions, which have no memory. 

Function values are completely detennined by their arguments, being 

precisely the same for each invocation. In contrast, the value retumed by 

an operation on an object may depend on its state as weil as its argu­

ments. An object may leam from experience, its reaction to an operation 

being detennined by its invocation history. "[27] 

An object-based language is one which supports objects. 

The common properties (instance variables and methods) of a set of ob­

jects can be collected in a class. A class can be seen as a template from 

which object can be created in response to 'new' or 'c~ate' operations. 

This object will know the methods and have the instance variables de­

fmed in its class. If the classes form a taxonomy, then the object also in­

herits from the superclasses of its class. If a class is allowed to have more 

than one direct superclass, then we have multiple inheritance. Otherwise, 

we have single inheritance. Inheritance is a fonn of resource sharing 

among classes[27]. 

Ambiguities occur when, for example, a method is defined both in a 

class and in its superclass. Such conflict is usually resolved by having the 

local method override the inherited one. In the case of multiple inherit­

ance, a method could be inherited by two disjoint superclasses. There are 

many possible strategies for conflict resolution in multiple inheritance 

systems[29; 30]. 

An object-oriented progranuning language is one which supports objects, 

classes and inheritance. 

11 
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An object activates another object by sending a message which carries in­

fonnation and the method to he invoked3• The receiver is solely responsi­

ble for deciding how to respond to a message. An object is assured of its 

integrity since only it can change its own state. 

When an object does not know how to respond to a message, it can either 

cause an error condition or delegate responsibility to another object. 

Inheritance can he viewed as a special case of delegation. 

The set of messages an object can respond to defines its protocol. This 

proto col descrihes the object's functional interface. 

Object-based concurrency is attained by having objects execute concur­

rently. 

The benefits of object-oriented programming 

Most of the henefits of 0-0 programming can he traced back to two basic 

concepts: elision and data abstraction. 

Class inheritancc supports the technique of prograrnming by specializa­

tion: this technique (also called differential programming[31]) reduces the 

amount of redundant infonnation present in the system. Class inheritance 

allows the description of generic behavior at the appropriate level in the 

taxonomy, with the assurance that it will he inherited by every object that 

helong to any of the subclasses. In a nutshell, infonnation can he added at 

the appropriate level of abstraction. 

3. An object can also send itself a message. 

12 
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Another form of elision is the ability to have objects of any type share the 

same protocol. For example, both points and numbers can he asked to 

double themselves etc. This means that a large system cao contain a rela­

tively small set of functional interfaces to its objects. This property is 

called polymorphisme 

The fact that objects can only he dealt with through their functional inter­

face is called data abstraction[28; 32]. It is a fonn of infonnation hiding. Its 

main purpose is to contain the effects of program modification. 

In the 0-0 context, if the implementation of an object' s behavior is 

changed without altering its functional interface then no other object 

needs to know about it. Even the way an object records its state can he al­

tered without side-effects, as long as the object still responds as expected 

to the same set of messages. 0-0 programs are extremely modular and 

can grow arbitrarily large without any increase in the cost of program­

ming. 

Object-based languages, sueh as ACf 1 or ACTORS[33], are very weil 

suited for describing parallel processing. Since each object encapsulates 

both state and hehavior and since objects communicate through messag­

es, 8uch languages are naturaI candidates for distributed, parallel imple-

mentations. 

13 



( ObJects of crltlclsm 

As a knowledge representation scheme, objects (and frames) are excel­

lent at structural description. However, they are remarkably weak at rep­

resenting incomplete knowledge. For ex ample, assertions such as 'at least 

one of the valves is open or broken' is difficult to express in an object­

oriented contexte 

Frame systems have unclear semantics. It is not clear whether a taxono­

my contains infonnation beyond structure defmition. For example, the 

fact that class ROCK has three subclasses (IGNEOUS_ROCK, 

SEDIMENTARY_ROCK and METAMORPHIC_ROCK) does not nec­

essarily mean that there are only three kinds of rocks. We might have 

LARGE_GRA y _IGNEOUS_ROCK as a combination of structural infor­

mation (through multiple inheritance, for example)[34]. 

While inheritance has its benefits, it aIso has its problems: in large sys­

tems the complete description of a class is distributed over the taxonomy 

among the classes from which it inherits. It cao he difficult to track and 

fully understand aIl the methods an object knows and their meanings, 

leading to a sort of 'spaghetti model' of inheritance[3S]. 

14 
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2. Addlog obiect-oriented prnrammlol AVablll'. tg PmI.; Igues 

While one motivation behind adding 0-0 programming capabilities to 

Prolog is to compensate for as Many of its weaknesses as possible, the 

ultimate goal remains to produce a whole greater than the sum of its 

parts. 

This synergy effect can not happen if concepts from both paradigms are 

simply added together in a disjoint, complementary fashion. We want 

those concepts to inter-penetrate each other at a deep level, each one re­

defming or amplifying the other. Non-detenninism, for example, should 

help redefme the concept of inheritance; unification should augment the 

communication functionality of message passing etc. For such concepts 

to merge, they must he orthogonal to each other. Furthennore, the result­

ing collection of language features must he consistent, that is, these fea­

tures must he able to co-exist. 

Attempts at designing 0-0 Prologs differ both in their starting points 

(standard Prolog, Concurrent Prolog, Smalltalk, frame-based systems ... ) 

and in the depth to which the logic and 0-0 paradigms are integrated. 

15 
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a. General principles governing the merging of 
programming paradigms 

Merging language features require that they he orthogonal to each other. 

"A collection of language features is orthogonal if no feature is a conse­

quence of any of the other language features. "[27] 

Proof of orthogonality for language features could (and probably should) 

he dealt with at a theoretical level, however an empirical approach can 

serve our purpose: 

"A collection of features is orthogonal (independent) if, for every subset, 

there is a language that possesses that subset of features and no features 

in the complementary subset."[27] 

Since the set of 0-0 oriented concepts of abject, class, inheritance and 

message exists in languages independently of the set of logic program­

ming concepts (predicate, axiom, proof, logic variable, unification and 

non-d~tenninism) and since they have been successfully combined in 0-0 

Prologs, then both sets can be shown to be orthogonal.4 

Integration of two paradigms is usually done by emhedding a new para­

digm into an environment which provides the other. One must then con­

sider how much support is provided by an environment to facilitate such 

an integration.[1] 

4. We are aware thal this is demonsttating feasibility after the facL 
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There must be appropriate facilities for building the primitives of the em­

bedded paradigm (cao unification be straightforwardlyand efficiendy im­

plemented in an 0-0 environment?, can objects be easily implemented in 

Prolog? etc.). It must be possible to create new syntactic fonns using ex­

isting structures in order to accommodate the representation of the added 

language features (for example, Prolog allows a certain freedom in creat­

ing infix, prefix and postfix operators which can then he combined with 

arbitrary complexity). 

The embedding environment must be capable of providing the user with 

the ability to stay within the mindset of the paradigm he/she is using; for 

example, a user examining the execution of a program written in the em­

bedded paradigm must not be presented with evidences of the underlying 

implementation. 

Pinally, the embedding environment must allow for an efficient imple­

mentation of the new language features. S 

s. We will see lbat neither standard Prolog nor current 0-0 languages Cu Dy satisCy this requirement 
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b. Prolog + objects: canceling out weaknesses, amplifying 

strengths 

Canceling out weaknesses 

ProJog's most glaring weakness, from a softwal<: engineering point of 

view, is its lack of modularity. Adding objects provides a fine-grained 

modularity to Prolog, finer than could he achieved through the use of 

modules. 

An object provides the encapsulation of state infonnation. Used within 

the context of Prolog, objects replace the flat database as the medium for 

recording state changes. State changes, which are side-effects within 

Prolog, can then he more easily handled with objects as it is effected 

more declaratively through their fonctional interfaces. 

Objects are competent, self-referential data structures. Classes are user­

defined types. Added to Prolog they provide greater flexibility in creating 

new data types and provide record-type structures with much greater 

flexibility than those implemented with Prolog ternis (fields are now 

named and position independent, and one can add new fields to a struc­

ture without having to rewrite code using this structure). 

Prolog' s syntactic unification is augmented by inheritance which sup­

ports a form of semantic unification (any X is also a Y if X is a subclass 

of Y). 

18 
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Objects are excellent at describing structural infonnation, however, they 

are weak at representing incomplete infonnation; any attempt to do so, 

beyond default values, is marred in unclear semantics.[34] Logic allows 

the representation of incomplete information in a straightforward manner 

and bas clear semantics. Objects using logic to descrihe their respective 

states gain in their expressive capabilities. 

Using logic to code an object's methods brings about the advantages of 

declarative programming. Furthennore, an object can easily he endowed 

with reasoning capabilities on top of its reactive capabiJities.[36] 

Amplifying respective strengths 

Both logic and 0-0 paradigms have exceptional powers of elision. 

In Prolog, unification can economically express aIl sorts of data manipu­

lations and let variable arguments assume a dual role, and thus let proce­

dures, assume multiple roles. Non-determinism supports the implicit ex­

pression of alternatives. 

The class inheritance mechanism in 0-0 languages reduces the need for 

redundant information, and polymorphism reduces the amount of infor­

mation the programmer must keep in mind as he/she interacts with ob­

jects. 

Combining the powers of elision of both paradigms can yield a new, 

highly expressive language. This will become obvious as we survey dif­

ferent 0-0 Prologs. 
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3. A suryey or Oblect:Qriented Prolog' 

We have identified five major trends in the design and implementation of 

0-0 Prologs: 

1- Adding objects or frames as an add-on to standard Prolog 

2- Implementing Prolog as a class in an 0-0 environment 

3- Creating an 0-0 language on top of Prolog 

4- Providing support for 0-0 programming clichés in a concur­

rent Prolog 

5- Extending Prolog's unification mechanism to implement 0-0 

concepts 

8. 0-0 concepts as additions to standard Prolog 

Standard Prolog is used as the implementation language onto which 0-0 

concepts are added. Objects (or even frarnes) are meant to be no more 

than an extra data type (albeit a special one) available ta the progra'lUller. 

Such extensions are motivated by practical considerations: they are to 

compensate for sorne of Prolog's weaknesses (mostly lack of modularity 

and unsuitability at describing state changes). The intention here is not to 

rethink Prolog. 

Such implementations are usually relatively simple, sometimes using unit 

clauses ta store object descriptions. Often no distinction is made between 

instance variables and methods in how they are accessed and stored[37]. 

There is heavy reliance on the non-Iogical assert and retract which must 

20 



û 

" . 

be used to change instance variable values or to record new instances and 

classes. In the worst cases, there is no provision for sorne sort of protec­

tiori of an object's integrity; the Prolog database is wide open to any 

abuse. This lack of encapsulation tends to nullify the benefits of data ab­

straction which one associates with 0-0 programming. 

There are three main solutions to the loss of data abstraction: the tirst one 

is to use the Prolog database in a way which prevents accidentaI misuse 

of objects, for example using only one procedure known (or unknown) to 

the user to describe all objects.6 The user could also be given special lan­

guage constructs which he/she would be encouraged to use·at aU .times 

when dealing with objects. Such constructs would support many of the 

expected clichés of 0-0 programming.[38] 

The second solution is to create a new language on top of Prolog in 

which the user is forced to stay and which prevents any semantical mis­

behavior on hislher part. The third solution is not to use standard p,rolog 

at all as the base language, but to use a Prolog in which representing an 

object state and state changes can he effected without side-effects to the 

database. Although this appears to he a contradiction, it is easily achieved 

in a concurrent Prolog[39]. As an alternative to the concurrency solution, 

a commercial Prolog (XILOG, Bull) supports property Jists which can be 

used to store object descriptions[40]. Both of these options will he exam­

ined later on. 

Implementations will differ, among other things, on which 0-0 program­

ming concepts are implemented. While apparently aU such 0-0 extended 

Prologs implement classes, not all of them implement metaclasses. Only 

6. As wc did with SOAP. 
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sorne will implement more 'exotic' concepts such as delegation and mul­

tiple inheritance. 

Sorne experiments[41; 42; 43] have dealt with the addition to Prolog of 

frames, which are special kinds of objects. The concepts are essentially 

the same except for the vocabulary used (attached procedures for meth­

ods, slots for instance variables etc.) and the more complex behavior 

which each object (frame) initially possesses (if-added, if-needed etc. 

slots, default values, annotations etc.). 

In order to get a more in-depth appreciation of this class of 0-0 Prologs, 

we now examine one of its representatives: ProTalk[38]'. We do not at­

tempt to give a complete summary of this implementation. Instead we 

concentrate on its unusual features and those which, we believe, exempli­

fy the problems generally associated with this brand of 0-0 Prologs. 

ProTalk 

In ProTalk[38], the database is used to store methods, instance variables 

and their values. No mystery is made on how methods are represented 

and invoked. Given the following message sent to an object: 

send( +Object, +Selector, ?Message)8 

the single method name used for the object is fetched (as any instance 

variable's value wou Id he) using: 

7. Since SOAP also belongs ta Ibis group, il is wonhwhile to look al ProT ALI{ in soml.l details. 
8. Prefixing a variable with + is a meta-notation which documenrs thal it must be insfantiated before 

invocation, - thal is must be uoinstantiated and? thal il cao be either way. 
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fetch(method, +Object, -Method) 

and then the call is made: 

method( +Selector, +Object, ?Message). 

sendl2 allows messages to he sent with no infonnation other than the se­

lector. 

As with nonnal Prolog procedures, backtracking will occur until a suc­

cessful method is found. send/2 and send!3 are also backtrackable. An in­

stance variable can have multiple values over which fetch/3 will back­

track. 

store!3 is fetch/3's counterpart. It removes any previous associations 

which match the attribute's name and then uoiquely associates a value 

with it: 

store(? Attribute, +Object, + Value). 

Attribute-value associations can be added with: 

associate(+Attribute, +Object, +Value). 

and retracted using 

disassociate(? Attribute, +Object, ?Value). 
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This will retract all association which unify with Attribute and whose 

value is Value. 

disassociate/3 can have undesirable effects since it can he used to retract 

implicit attributes such as those giving the class of an object or its associ­

ated method name (these and other implicit attributes are implemented 

the same way explicit attributes are and are thus susceptible to abuse). 

A ProTalk user can bypass the use of send/2 or send/3 in order to acti­

vate a method. However h~/c;he is not told how instance variable-value 

pairs are implemented; a model is given 

instance_name(lnstance_ variable, Value) 

but the user is told not to rely on this model. Thus ProTalk attains a cer­

tain level of encapsulation through user ignorance. 

Setting up a taxonomy in ProT ALK is supported by the new _class/2 and 

new _subclass/3 procedures. 

Adding a class as a subclass cao be achieved by doing: 

new _subclass( + Template, +Parent_s, + Method). 

H Parencs is a list then the new class will inherit all of the methods of 

every class in the liste ProTalk does not mention any strategy for conflict 

resolution. 
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It is possible, using the new _class/2 predicate to create a new class with 

no ancestor. While this is not an error, it allows the creation of a set of 

classes which are not organized in a taxonomy. Thus in opposition to sys­

tems such as SmaIltalk or SOAP where everything is ultimately an ob­

ject, a ProT ALK set of classes and objects can be totally unrelated. This, 

in our view, takes away the assurance of a conceptually cohesive object­

oriented program and only retains the immediate practicality of defining 

classes as templates. 

ProTalk provides services such as validity checking at instance creation 

time. Only one class is pre-defined in ProTalk to implement such system­

wide generic behavior. There is no sense of a base system of classes and 

objects from which to borrow and to which to add in writing a program. 

Since 0-0 programming lends itself extremely weil to the creation of 

large integrated libraries, the use of which greatly accelerates program­

ming, it is surprising to fmd an 0-0 extension which would provide so lit­

tle pre-defmed functionality. 

ProTalk supports a simple form of delegation as part of the generic he­

havior of an object. When a message is received and is not understood, a 

value for the delegate attribute of the receiver is sought and the message 

is then redirected to the object named by this value. 

ProTalk is a somewhat minimal but useful 0-0 extension to Prolog. It is 

designed to combine with Quintus' ProWINDOWS9 object-oriented win­

dowing package. ProTALK's greatest weakness is its lack of support for 

true data abstr:tction. 
9. TNProWINDOWS is a trademark of Quintus Computer Systems, Ine. 
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( b. Addlng a Pro log class to an 0-0 language 

Another way to implement an 0-0 Prolog is to start with an 0-0 language 

and then add a Prolog to the environment in the shape of a class . 

Prolog/V[44] and an unnamed prototype Prolog from Carleton 

University[4S] have both been implemented on top of Smalltalk (respec­

tively SmaUtalkN10 and Apple Smalltalk 11). 

Prolog/V 

Prolog/V is a structure copying implementation of a Prolog interpreter[46] 

written in SmalltalkN. It implements most of the core of standard 

Prolog. It leaves out side-effect producing predicates (1/0) since such 

side-effects can be accomplished through caUs to Smalltalk objects. 

Arithmetic functions are also left out for the same reasons. There are 

some minor lexical differences with standard Prolog such as a Prolog 

variable being a Smalltalk atome 

Prolog/V basicaIly consists of a Prolog to SmalltaIkN compiler and of 

two classes which implement the functionality of Prolog: the Prolog and 

Logic classes. The Logic class implements the basic functionality of stan­

dard Prolog (unification, proof mechanism etc.). The Prolog class, a sub­

class of Logic, adds aIl of the built-in predicates. 

Prolog clauses are defmed in a class which must be a direct or indirect 

subclass of Prolog. Clauses with the same name are grouped together and 
10. ™ SmaUtalk/V is a trademark of Digilalk IDe. 
11. TM Apple Smalltallc is a ttademark of Apple Computer Ine. 
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compiled as a single SmalltalklV method. A class inherits aIl of the meth­

ods of its superclass, except when overridden, in the usual Smalltalk 

fasmon. This means that a Prolog program can be decomposed into a tax­

onomy of classes. This features provides the necessary support for modu­

lar programming wbicb standard Prolog lacks. 

Queries are messages sent to instances of Prolog subclasses. The answer 

to a query is an may of all possible instantiations of the free variables in 

the query. Prolog instances can thus communicate between each other. 

Since different classes can implement Prolog methods with the same 

names, Prolog/V' can take advantage of the polymorphism feature of 

Smalltalk. 

The interface between Prolog and Smalltalk is straightforward. Let's as­

sume that the user bas defined a Prolog subclass called Doctor which has 

sorne medical expertise. An instance of Doctor is generated from 

Smalltalk as follows: 

aDoctor := Doctor new. 

"We assume that aDoctor was declared as global" 

We can now query the doctor from Smalltalk: 

aDoctor:1 cureFor(#baldness,aCure)12 

Note that the :1 is followed by a Prolog query. 

12. I#baldness is a constant and aeure is a Prolog variable. 
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Prolog might answer with: 

«#aspirin #J'est #caUMeInTheMoming» 

as aU the possible values for the variable aCure. 

Prolog clauses can access SmaUtalk through the isfl predicate. The tirst 

argument is a Prolog tenn (variable or constant) and the second is a 

Smalltalk expression. On invocation, the Smalltalk expression is execut­

ed and its result is tentatively unified with the flfSt argument. For exam­

pIe: 

is(y, 2 Ife 6) 

is(_, File pathName: ''data.dat' close) 

Prolog/V is complemented with a LogicBrowser which aUows the editing 

and viewing of Prolog programs in the style of the Smalltalk browser. 

Debuggifl~ Prolog/V programs is problematic: there is no Prolog debug­

ger. An error condition in Prolog/V invariably opens the Smalltalk de­

bugger. One is then presented with the underlying Smalltalk implementa­

tion of Prolog/V; the illusion of working in the logic programming para­

digm is not preserved at aU times. It is also impossible to write efficient 

pure Prolog programs in Prolog/V13. Thus, Prolog/V cao not be said to 

fully support the logic programming paradigme 

13. 47 LIPS (Logical Inferences per Second) in SmalltallclV on an 8 MHz PC-AT 
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A SmaUtalk·based ProlOI with constraints 

In [45] we are presented with a Smalltalk (structure sharinS[47]) imple­

mentation which adds sorne extra features to those found in Prolog/V. 

The first additional feature is the ability to a give an object its own local 

facts and rules in addition to the ones it gets from belonsins to a class. 

These local clauses are added by sending messages to an object whereas 

global clauses are defmed using a browser. These local methods can only 

he invoked inside Prolog methods and are not directly accessible through 

a query sent to a Prolog object. 

One difficulty we mentioned about standard Prolog was its inability to set 

up constraints other than equality on uninstantiated variables. One can 

not express that X;s or will have to be smaller than Y, for example. 

Standard Prolog can only verify that constraints currently hold between 

ground tenns but can not postpone and accumulate these constraints.14 

This Prolog implementation of constraints took advantage of the 0-0 

properties of Smalltalk. When a logical variable is constrained, a new 

kind of logic variable called a constrained logic variable is created which 

encodes the constraint. 

"Since the implementation language is object-oriented, we bave a differ­

ent unifier for each significantly different c1ass of objects (actually, only 

a handful). Each unifier (e.g. consider the unifier for Object) uses a three 

level priority scheme (constrained logic variable> logic variable> non­

variable) to ensure that the receiver bas the highest priority. 

14. This feature is implemented as part of Colmerauer's PrologII. 
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Consequently, only the unifier for constrained logic variables needs to 

handle the complications of constraints [ ... ] The priority scheme ensures 

that logie variables can be bound to constrained logic variables but never 

the other way around. Denee normal variables need never know about 

constrained logic variables."[4S] 

As with PrologN, this augmented Prolog is written entirely in Smalltalk 

without kemel support. It is eonsequently unacceptably slow. 
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c. Prolog-based object-oriented languages 

The types of 0-0 Prologs we have described so far have not brought the 

0-0 concepts very deep into Prolog: such concepts have either been used 

to augment Prolog or they have been acquired because of the 0-0 nature 

of the implementation language. 

More radical approaches are possible. One can rethink the fundamental 

concepts of 0-0 programming in relational tenns. One can also decide to 

bring into standard Prolog a totally new dimension, such as concurrency, 

and do so from an 0-0 perspective. Whichever approach is taken, the end 

product is a language defmition in its own right, rather than a mere exten­

sion of standard Prolog. This new language wil1 usually subsume stan­

dard Prolog. 

Redetining 0-0 concepts using relational semantics 

"The question addressed here is whether the notions of inheritance and of 

procedural semantics attached to the object-oriented programming sys~ 

tems can be kept, or whether they have to be revisited in the light of a re­

lational rather than functional paradigm. ( ... ) This requires to adopt a suc­

cess/failure semantics of backtrackable method caUs, instead of the 

calVretum classic mechanism. It also requires to allow for variable objec\ 

calls and to introduce new types of methods dealing with non-monotonic­

ity and detenninism."[48] 
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Gallaire's system POL distinguishes itself in its intention to fully merge 

the 0-0 concepts into the logical paradigme Five requirements are listed 

which satisfaction would achieve this goal: 

1- POL is to he a superset of Prolog 

2- POL would support the usual 0-0 programming clichés: ob­

jects, classes, message passing, (multiple) inheritance. 

3- Use of the relational framework to refine concepts such as 

inheritance and method evaluation: an analogy is here made 

between Prolog's se arch tree and the inheritance lattice as the 

meanings of a method can he distributed and searched bottom­

up over the inheritance lattice. 

4- Logic variables (and unification), non-detenninism (and 

backtracking), the main features of logic programming, are to 

be applied consistently and without restriction to the 0-0 con­

cepts; method calls are to he fully backtrackable (even over the 

inheritance lattice), one cao send possibly uninstantiated mes­

sages to possibly uninstantiated objects. (Such completeness of 

evaluation not only requires careful implementation, but also 

careful control since it can lead to very expensive searches.) 

5- Dynamic creation and destruction of objects. 

Many 0-0 Prologs partially fulfùl these requirements; ProTalk and 

SOAP, for example, will allow backtracking over a method calI in a suc­

cess/failure fashion instead of the caWretum (commitrnent to fust an-
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o swer) approach. However ProTALK and others do not complete the inte­

gration of logic and 0-0 concepts; uninstantiated objects will not be al­

lowed to receive messages, local methods will override inherited meth­

ods, effectively preventing backtracking over the inheritance lattice. 

The thoroughness with whh:h requirements 3 and 4 are achieved is what 

sets apart this class of 0-0 Prologs from the others. 

PROBE[40) follows the guidelines established in POL in attempting a 

maximally coherent and complete integration of the logic and 0-0 con­

cepts. The coherence is achieved both in the 0-0 world (everything, in­

cluding classes and metaclasses, is an object) and in the integration of 

both paradigms: multi-valued instance variables and multiply defined 

methods, value retrieval and method invocation through unification both 

backtrackable over the inheritance lattice (local clauses do not override 

inherited ones). 

Controlling search over the inheritance lattice is imperative if efficient 

programs are to he written. In effect one needs a mechanism similar to 

the 'cut'. Whereas the cut prunes away branches from the Prolog search 

tree, this mechanism must disable search over certain arcs of the inherit­

ance lattice. PROBE's 'cutjnheritance' primitive achieves this goal by 

cutting the choices on the last predirate making use of the inheritance lat­

tice but does not affect the backtracking points of any other predicates. 

Using this mechanism, PROBE implements deterministic and default 

methods which respectively, commit after first success and are invoked 

ooly if no other method was found after looking throu~~ the whole lat­

tice. The other method type is non-deterministic. The type of a method is 
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given when it is defmed. 

As proposed in POL, the receiver of al message can be a free variable. 

This variable would then, through backtracking, assume the values of all 

the known objects. If the message is itself a free variable, it will also as­

sume ail method invocations understandable to the receiver. This goes 

weil beyond the capabilities of most 0-0 Prologs which at most allow 

message arguments to he free variables. 

SPOOL[36],like POL and PROBE, attempts an in-depth integration of 

logic and 0-0 concepts: it allows message receivers and method invoca­

tion to he free variables. Another dimension of integration it explicitly 

tackles is the closed-world assumption[49] under which Prolog programs 

are executed. 

AU 0-0 Prologs we surveyed exhibited some kind behavior based on this 

assumption. Completely integrating the closed-world assumption into the 

0-0 context means that sending a message to an unknown object must 

fail but must not raise an error condition. The same can he said of an ob­

ject receiving a message it does not understand. While SPOOL will, by 

default, raise an error condition in any of these events, it does provide 

constructs which allow the programmer to work consistendy under the 

closed-world assumption: the programmer can use a message passing op­

erator which relaxes the 'must-be-known' constraint on the receiver, the 

method invocator or on both. 
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Implementlnl concurrent 0-0 lanlll8les on top of standard Prol .. 

0-0 programming offers excellent conceptual support for the expression 

of (distributed) parallel computations[SO]. It provides a rnacro-Ievel im­

plementation model of concurrency (multiple, sequential Prolog process­

es executing in parallel) which does not get into the implementation diffi­

culties of the micro-Ievel approach (at the individual tenn level) of 

Parlog[Sl], Concurrent Prolog[6] or KLl[S2] which are designed for exe­

cution on massively-parallel architectures. 

In both SCOOP[53] and the CPU[S4] (Communicating Prolog Units) 

model, objects have access to their own private Prolog databases. In both 

cases, an object is activated by sending it a message in effect asking it to 

launch a proof. Intennission[55], an actor-based language written on top 

of Prolog, also provides concurrency but in so doing, departs strongly 

from the Prolog language (very awkward syntax, very lirnited use of pat­

tern matching, problems with backtracking etc.) and can not he said to he 

an 0-0 Prolog in a significant way. 

A SCOOP program is a set of classes defined in an inheritance lattice 

(using a block structured syntax on top of the standard Prolog syntax) 

where each class describes a private database which each of its instances 

will, at first, possesse This database is split in two sections, static clauses 

and dynamic clauses. The dynamic clauses are restricted to facts and cor­

respond to state description. The static clauses, which can be either facts 

or rules, correspond to methods. Conceptually, at object creation time, 

this private dptabase is copied into the instance's initiaUy empty data­

base (only the dynamic clauses are actuaUy copied). As their names 

imply, dynamic clauses can he asserted, retracted and replaced (retract 
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then assert) whereas stadc clauses can not15• 

Program execution is a series of process activations which start with acti­

vation of a main process dermed in a 'main class'. A process generates 

new processes through local and remote calls. A local call by an object 

accesses its own predicates; asserts and retracts of dynamic clauses are 

allowed. Another object's predicate is accessed through a remote calI; re­

mote asserts and retracts are disallowed since they would nullify the ben­

efits of data abstraction. 

A called predicate is first searched in the local database of an object, then 

in that of its class and then up the inheritance lattice until it is found. 

Consequently, locally defming a predicate overrides any inherited mean­

ings it might have had. 

Thus like Most 0-0 Prologs and unlike POL or PROBE, SCOOP adheres 

to the view of inheritance as a defaulting mechanism. In order to have ac­

cess to an inherited but overridden predicate, a 'super' special receiver 

construct must he supplied (and it is) which allows the invocation of a 

method in the context of the sender object but interpreted one class high­

er that its own. 

SCOOP provides support for explicit process creation, interprocess com­

munication and synchronization. These constructs and others implement­

ing simulated lime complete the set of necessary tools to do discrete­

event simulation. 

1 S. Il is possible 10 parametrise objects al creation time by inserting dynamic clauses in their private 
databases. 
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While SCOOP directly supports the main 0-0 progranuning concepts, the 

CPU model offers a more fundamental set of capabilities on top of which 

such concepts can be implemented. In a sense, the CPU model is a pre­

object-oriented language. 

Unlike SCOOP where the concept of an instance is closer to the standard 

0-0 clichés (an instance is created through a 'new' message sent to a 

class), a CPU's instance is said to be the local state of a demonstration 

activity (the state of the Prolog search tree) performed by a P-unit which 

is a separate Prolog prograrn. A P-unit is assimilable to a class. 

Demonstrations can and do occur (conceptually) in paraUel. 

Communication policies are explicitly defined in terms of meta-P-units 

associated (through a 'connect' request) to the ordinary P-units; when a 

goal is to he demonstrated by an instance, this instance first performs a 

default communication with its connected meta-P-unit. This default com­

munication is in fact a standard goal, todemo(Sender,Receiver,Current­

Unit,Goal,Result), to be demonstrated by the meta-P-unit. A meta-P-unit 

is itself a P-unit with possibly its own meta-P-unit etc. 

The meta-P-unit's clauses are in fact meta-roles since they control how 

every messages are to be interpreted. Inheritance, delegation, filtering of 

messages etc. must be explicitly implemented in the form of meta-roles. 

With the CPU model one can experiment with different schemes of inter­

object communication, and in effect implement different 0-0 languages. 

However, as it is, the CPU model is not an object-oriented Pro log but an 

object-based Prolog. 
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A general problem with Prolog-based 0-0 languages is their poor perfor­

mance. As these 0-0 languages try, among other things, to offer better 

control over computation through 0-0 programming, they do suffer from 

Prolog's own weakness in this area. In other words, a language imple­

mented on top of Prolog and offering a different model of computation is 

very unlikely to be efficient. These languages should he viewed more as 

experiments in 0-0 language design (this is certainly true of the CPU 

model) than as practical programming tools. 
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d. Objeets as perpetuaI processes in concurrent ProlOI 

Concurrent Prolog in a Dutshell 

Concurrent PrologS[6; SI] are attempts at realizing the potential for paral­

lelism which exists in logic programs. Standard Prolog successfully car­

ried logic ioto logic programming by using a new kind of reading of 

dermite clauses (a procedural or problem reduction reading[s]). 

Concurrent Prologs carry logic programming into the paraHel framework 

by employing yet another reading of dermite clauses: the behavioral read­

ing. 

"In the behavioral reading, a unit goal is analogous to a process, a COD­

junctive goal is analogous to a system of processes, and variables shared 

between goals function similarly to communication channels. A definite 

clause is read behaviorally: a process A can replace itself by the system 

of processes that contain BI and B2 and ... and Bn. A process tenninates 

by replacing itself with the empty system. "[39] 

In Concurrent Prolog[6] 16, unification goes beyond the assignment, 

equality checking, equality constraining, parameter passing, pattern 

matching etc. roles it assumes under the procedural reading. It now adds 

inter-process communication to its roles, since processes can share vari­

ables through unification. 

Read-only variables (variables annotated by a suffix question mark) have 

been added to support process synchronization: a process will suspend if 

16. From now on our discussion of concurrent Prologs will focus on Concurrent Prolog. 
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all of its reductions require the instantiation of a read-only variable. 

Ouarded clauses have also been added in arder ta control process activa­

tion. 

A Concurrent Prolog program is a finite set of guarded clauses which are 

universally quantified logical axioms. 

A :- 01, 02, ... , Om 1 BI, B2, ... , Bn. where m,n ~ 0 

"To reduce a process A using a clause Al :- G 1 B, unify A with Al, and, 

if successful, recursively reduce G to the empty system, and, if success­

fuI, commit to that clause, and, if successful, reduce A to B. The reduc­

tion of a process rnay suspend or fail during any of these steps... The 

computation of the guard system G suspends if any of the processes in it 

suspends, and fails if any of them fails. "[39] 

Objects as perpetuai pro cesses 

Concurrent Prolog supports the expression of objects based on Hewitt's 

Actor model[56]. An object is an active, perpetuaP7 process to which 

messages are sent (this is the only mode of interaction allowed) . Such a 

process responds by perfonning actions on its internaI state and sending 

messages to other objects. ".be state of the object-process is the current 

values of its unshared arguments. The object changes state by reducing it­

self to itself with new values for its unshared arguments. The class defi­

nition is the actual defmition of a process (in contrast to the activation 

state of one of its instances created through a goal dernonstration re­

quest). 
17. A process which catis itself recursively. 
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The shared arguments play the role of communication channels and are 

carried over on self-reduction. If a communication channel is unified to 

an incomplete data structure, for example an incomplete list like 

[Message?IOther_messages_to_come], a message stream is established; 

when Message? (a read-only variable) is instantiated , the process is 

waken up, responds to the message then caUs itself with Other_messag­

es_to_come? as the perpetuated communication channel. 

An exarnple program taken from [6J should clarify the issues: 

/* [clear 1 S] will unify with a message stream headed by the 

message 'clear'. * / 
counter([clear 1 S] , State) :-

counter(S?, 0). /* The process recreates itself with 

state 0 and waits for the remaining 

message stream to be instantiated. 

*/ 

counter([up 1 S1, State) :­

plus(State, 1, NewState), 

counter(S?, NewState). 

counter([down 1 S], State) :­

plus(NewState, 1, State), 

counter(S?, NewState). 

/* Retrieves the current state without changing it */ 
counter([show(State) 1 S1, State) :-
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counter(S?, State). 

/* The process tenninates when the message stream is empty */ 
counter([ ], State). 

Countcrs could be used in the following way: 

? - tenninal(TenninaIStream), /* Message stream from 

the tenninal *1 
use_counter(TenninalStream?, CounterlStream), 

counter(CounterlStream?, 0)./* a counter with initial 

state 0 */ 

/* On goal unification, unifies the counter's message stream 

head to show(Val), waits for more messages as it writes the 

value (once obtained) on the screen. */ 
use_counter( [show(Val)llnput], 

[show(Val)ICommand]) :­

use_counter(lnput?, Command), 

waic write(Val). 

1* Simply passes any other message to the counter. */ 
use_counter([X 1 Input], [X 1 Command]) :-

dif(X, show(Y» 1 use_counter(Input?, Command). 

/* Writes X to the screen as soon as it is instantiated. */ 
wait_write(X) :0 

wait(X) 1 write(X). 
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Concurrent Prolog objects have no name. In order to keep track of exist­

ing objects, one must keep in a data structure the communication chan­

nels used to access them. Communication channels implemented by 

logic variables support many communication techniques. Since these 

communication channels can he unified, instantiating a set of unified 

channels allows the broadcasting of a message to a set of objects. 

We have also seen how message streams can be implemented using in­

complete data structures as communication channels. Since these streams 

are Usts, it is possible for an object to peek ahead of the next message for 

possibly a further one and decide to react accordingly ( for example, if a 

message is followed by one which undoes ail of the effects of the first, 

both could be ignored). More general fonns of message filtering can be 

achieved. 

Using the properties of communication challnels, one can implement dif­

ferent foons of default programming (for example inheritance or delega­

tion). 

The following code[57] sets up a class 'rectangular_area' of which 

'frame' will be a subclass: 

/* Clearing the ~rea described by the parameters. */ 

rectangular_area([clear 1 M], Parameters) :­

clear_primitive(Parameters) 1 

rectangular_area(M?, Parameters). 

/* Answering the current values of the parameters. */ 
rectangular_area([ask(Parameters) 1 M], Parameters) :-
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rectangular_area(M?, Parameters). 

'* A rectangular_area is created with the same parameters as a 

frame (it would have been possible ta add new state infonna­

tian) and with a channel Ml which the frame will use ta com­

municate with its superclass (ta achieve inheritance). *' 
create_frame(M, Parameters) :-

'* The superclass process waits on Ml *' 
rectangular_area(MI?, Parameters),18 

frame(M?, Ml). 

'* On receiving the draw message, the message 

ask(Parameters) is sent to the superclass (by unifying its com­

munication channel). Then the contour is drawn (when 

Parameters gets instantiated by the superclass). *' 
frame([draw 1 M], [ask(Parameters) 1 MI]):-

1* Executes and succeeds ooly when Parameters is 

instantiated *1 
draw_Iines(Parameters) 1 

frame(M?, Ml). 

1* When asked to refresh, a frame asks its superclass to clear its 

area. *' 
frame([reÎresh 1 Ml, [clear 1 Ml]) :-

frame([draw 1 Ml, Ml). 

1* If a message X is none that a frame understands, it is simply 

passed as is ta its superclass. *1 
frame([X 1 M], [X 1 Ml] ) :-

18. A similar listing found in (39J contains a bug since M? is used instead of Ml? 
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-- dif(X, draw), 

dif(X, refresh) 1 

frame(M?, Ml). 

This scheme is very general and allows fonns of delegaûon other than the 

special case of inheritance. 

Concurrent Prolog supports programming techniques which subsume 

specialized constructs found in 0-0 languages and this is taken to be a 

sign of expressive power. Furthennore, objects and their state changes 

are achieved without the use of side-effects. Concurrent Prolog programs 

simulating side-effects are therefore more amenable to verification tech­

niques than programs written in non-declarative languages. This opens 

new possibilities in the domain of program verification and generation in 

general and in the 0-0 conte,,-t in particular. 

Defming classes and inheritance in Concurrent Prolog is very error-prone 

([39] contains a bug in one of its example programs) and the pro gram­

ming style is verbose and not at aU obvious. This problem can he taken 

care of by writing a preprocessor which will provide a syntax directly 

supporting the usual 0-0 clichés. VULCAN[S8] is a higher-Ievel 0-0 lan­

guage implemented in Concurrent Pro log which serves this purpose. 

Mandala[52], written on top of KLI (another concurrent Prolog similar to 

Concurrent Prolog), provides the same kind of support for 0-0 program­

ming. 

Such 0-0 languages will have to wait for an efficient implementation of a 

concurrent Prolog on a massively parallel architecture to truly become 

useful. When efforts such as [59] are completely successful, the 0-0 lan-
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guages implemented on top of concurrent Prologs will not only be very 

elegant and expressive merges of the two paradigms, but they will be ex­

tremely useful as well for both systems[60; 61] and applications program­

rning. 
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e. Extending Prolog's uniBcation to implement 
0-0 programming concepts 

Whether they were implemented on top of standard or concurrent Prolog, 

or on top of an 0-0 language, the 0-0 Prologs we have examined so far 

were achieved by either extending the base language with programming 

idioms, constructs or new data types, or by creating a self-contained lan­

guage in its own right. 

We now examine a different approach, one in which standard Prolog it­

self is altered in a fundamental way in order to achieve sorne of the bene­

fits of 0-0 programming, and, as a consequence, becomes a better starting 

point to develop an 0-0 Prolog. 

The focal point of this approach is the realization that unification only of­

fers a weak and sylltactic fonn of inheritance. A pattern can he seen as a 

generic representation of a class of grounded tenns. 

speciaClist([X, [XL] 1 _ D. 

descrihes alllists with at least two elements where the second one is a list 

which head is identical to that of the overalllist. 

A grounded tenn would he an instance of the class of terms represented 

by the above pattern if it unifies with it. speciaClist([l, [1,2],3]) would he 

such an instance and special_list([[a],[[a]]]) would as welle spe­

ciaClist([[X,Y),[[X,Y],Z)D would he regarded as describing a sub-set (or 

subclass) of the set of tenns described by the above pattern. Subclassing 
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can only he achieved this way syntactically. 

If one wants to use standard Prolog to represent IS-A (inheritance) rela­

tionships between types of individual (a whale is a mammal), one can not 

use unification in a straightforward manner. 

mammal(X) :- whaIe(x). 

whale(X) :- spenn_ whale(X). 

ln fact one has to rely on a syllogistic fonnulation which, while semanti­

cally correct, imposes an extra and costly resolution step involving astate 

transition with context saving and variable binding. 

What we are trying to simulate with such syllogisms is actually a fonn of 

semantic unification. One way to achieve this, without an extra inference 

step, is to augment the unification mechanism such that it will look for a 

user-defined equality assertion if syntactic unification fails. This ap­

proach is taken by ProIog-with-Equality[62], LOGIN[14] and 

UNIFORM[15]. 

Prolog-with-Equality, an extended Lisp-based Prolog, allows the cre­

ation of a type hierarchy or, if one prefers t a class hierarchy with the in­

heritance mechanism implemented using equality assertions19• 

"The role of objects [is] played by tenns; the role of messages by rela­

tions. The concept of 'class' bas no fonnal analog in Prolog-with­

Equality. The effect of class structuring is accomplisbed by the use of 

19. Unifonn lakes essentially the same approach al augmenting unification, except that il does il in a 
way such that backlracking is no longer nceded. 
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'equals' assertions. A subclass relationship is indicated by a single 

'equals' assertion containing tenns for the sub- and super-class. The pat­

terns of variables between the two tenns and the body of the assertion ex­

press the relationship between the two classes."[62] 

For example, the following program shows how a method (perimeterf2) 

can he inherited by equilateraCtriangle/3 from regular-polygon/4.2o 

equals( equilateral_triangle(X, Y ,Length), 

regular_polygon(X,Y,3,Length) ). 

perimeter(regular_polygon(X, Y ,Nsides,Length), 

Perimeter) :-

Perimeter is Nsides * Length. 

If one now asks the following: 

? - perimeter(equilateral_triangle(10,20,300), Perimeter). 

the query will succeed with Perimeter hound to 900. 

Prolog-with-Equality imposes restrictions on equality assertions needed 

to prevent circularity and thus infinite computations at unification. 

Another restriction is the fact that unification in Prolog-with-Equality is 

detenninistic (as in standard Prolog, only one most general unifier is pro­

duced). This restriction prevents the implementation of multiple inherit­

ance within unification. This would have beeen achieved, if aUowed, by 

having multiple equality assertions where a given tenn appears as first ar-

20. We have used a standard Prolog syntax instead of Prolog-with-Equalily's Lisp-like synlaX. 
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Prolog-with-Equality is a better starting point to implement an 0-0 Prolog 

than standard Prolog, since it already possesses an efficient inheritance 

mechanism. Another 'elaboration' of Prolog called LOGIN[l4] extends 

unification with user-detined equality assertions (called signatures). It 

goes further in providing an 0-0 flavor by replacing tirst-order tenns by a 

more general fonn resembling record structures with tagged fields (some­

what like frames). 

p -terms subsume standard Prolog tenns and consist of: 

1- A root symbol, the type constructor denoting a class of ob­

jects (its Prolog equivalent is the functor). 

2- Attribute labels, which are record field tags associated with 

sub-!' - terms. 

3- There can he coreference among sub-tenns. 

Here is an example of a p -term with co-references: 

person(id => name( first => string; 

last => X : string); 

father => person(id => name(last => X : string») 

This tenn describes any person to have 1- an id which is a name with a 

first part heing a string and a last part heing X, also a string, 2- a father 

which is a person which last part of the name is identical to that of the 

person. (A person's father must have the same last name as the person). 
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----------- ------------------

In standard Prolog, the arguments of a term are labeled by their respec­

tive positions. A standard Prolog tenn must always be written with all of 

its arguments in the correct order. 

LOGIN labels the arguments of a tenn: they can appear in any order and 

sorne may even be left out if they are irrelevant in a given contexte 

Adding a field to a LOGIN type does not force every reference to that 

type in a program to be altered, as is the case in standard Prolog when 

one alters the arity of a procedure. In LOGIN, the role of an argument is 

defmed by its label, not its position in the predicate as in standard Prolog. 

ConsC(.uently, LOGIN offers more facilities for data abstraction than 

standard Prolog, and it does so in a manner reminiscent of standard 0-0 

languages. 

Unification between two p -tenns is achieved by calculating their great­

est lower bound, that is, their most general common sub-type. 

tl is a sub-type of t2 if: 

1- the foot symbol of tl is a sub-type of that of t2 (this is de­

fined by the user as t1 < t2 in what is called a signature). 

2- all attribute labels of t2 are also attribute labels of tl, and the 

associated p -tenns in tl are sub-types of their corresponding p 
-tenns in t2. 

3- aIl coreference constraints are satisfied 
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It can be shown that LOOIN subsumes standard Prolog by showing that 

Prolog terms are special cases of p -tenns and that LOGIN' s unification 

mechanism encompasses that of standard Prolog. 

LOGIN facilitates the defmition of complex objects in a hierarchy and 

provides an efficiently implemented inheritance model. There is no dis­

tinction between classes and objects beyond the fact that generic terms 

can be assimilated to classes and grounded tenns to instances. As with 

Prolog-with-Equality, messages would he relations <JI -tenns intended at 

describing relationships between individuals, themselves represented as p 
-tenns). 

Both LOGIN and Prolog-with-Equality should be viewed as pre-object­

oriented Prologs, with LOGIN somewhat closer to the 0-0 paradigme 
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- - -4. SOAPi a gractlçaJ obiect-oriented extepslop to ProlAI 

a. The need for cleaner Prolog programs 

SOAP (a Simple Object-oriented Addition to Prolog) was designed and 

implemented as a matter of practical necessity. We were involved in the 

implementation of a large system (a knowledge-engineering environ­

ment) using SD-Prolog21 , an IBM PC22 Prolog, and we had run into sorne 

difficulties. 

The software being developed required a sophisticated user-interface. 

The support and utilities provided by the development language, while 

quite good, were insufficient for our purposes. As we developed the pro­

gram, we realized that some rather problematic trends were emerging: 

1- Most of the coding effort went ioto the user-interface and 

much of it seemed repetitive as the control structures for the in­

terface elements shared a similar fonn. 

2- It became difficult to manage and handle the state infonna­

tion associated with each user-interface object. The large 

amount of such infonnation and the need to frequently modify 

it led to a very non-declarative style of programming. This was 

felt as highly undesirable. 

21. TNSD-Prolog is a trademark of Systems Designers pic and is markelCd under licence from 
Quintec Systems Lld. 

22. TNIBM PC is a b'ademarlt of IBM Corp. 
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3- Controlling the interactions with the user meant using a very 

procedural fonn ofprogramming. We had to resort to program­

ming idioms which defeat the benefits of logic programming 

(repeat-failloops etc ... ) and a lot of infonnation had 10 he car­

ried as arguments in procedures which aItered the state of the 

user interface. This meant a very heavy and unwieldy style of 

prograrnming. 

4- Lack of memory became a problem as the user-interface 

code became larger and larger. One could see that a different, 

more economical approach had to he taken. 

5- The software needed to manipulate complex record-type 

data structures: creating, destroying and modifying them. 

Prolog was felt to be rather weak at representing complex 

structured data and at handling them in a naturaI way. 

It hecame clear that the user-interface had to he designed and implement­

ed using a radically different approach. Our experience with Smalltalk 

and SunView23, an object-oriented user-interface sub-system, had shown 

us the benefits of separating the generic functionality of a user-interface 

from the scenario of interactions. This could he done by representing us­

er-interface elements as objects which are responsible for recording their 

states and for reacting to requests from the application program. L,ese 

objects also know which application procedures to trigger when infonned 

that certain events occurred. 

23. TMSunView is a trademark of Sun Mierosystems. Ine. 
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We thus decided to take the object-oriented route and develop an object­

oriented user-interface sub-system since this would provide a clear 

model for the realization of state changes and the control of interactions 

(through message passing). Furthermore, we felt that inheritance and the 

fact that objects would encapsulate state infonnation would both signifi­

cantly reduce the size of the code needed to implement the user-interface 

support. We also hoped that we would see the same productivity gains 

we had experienced from the use of 'differential programmiug' white 

working in Smalltalk. 

As a further motivation, object-oriented programming was felt to be the 

proper way to implement and manipulate large, complex data structures 

we needed for our knowledge representation scheme. 

The first step was the design and implementation of an efficient 0-0 ex­

tension to Prolog: SOAP. 
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b. Requlrements lor a practlcal 0-0 extension 

SOAP was designed and implemented using the following guidelines: 

1- Efficiency: useful programs can be written. 

2- Expressivity: a significant merge of both logic and 0-0 para­

digms. 

3- Coherency: a self-contained and self-describing system (as 

much as possible). 

4- Flexibility: the user chooses the optimal mix of SOAP and 

Prolog, and can side-step SOAP's default checking mecha­

nisms and thus exchange validity checking for better 

perfonnance. 

5- Portability: for obvious reasons. 

6- Usability: flexible programming and debugging tools. 

7 - Large capacity: large programs possible through virtual 

memory. 

SOAP is not an experiment in 0-0 language design. It is a practical tool 

designed to add U4e benefits of 0-0 programming to Prolog without an ex­

cessive penalty in run-time efficiency. This does not mean that the 0-0 

layer was added in an ad hoc manner; we aimed at merging both para­

digms in the Most powerful, elegant and coherent way we could without 

unduly compromising efficiency. 

Our experience with Smalltalk had taught us the benefits of a coherent 

and organized set of preexisting classes. Therefore, most of SOAP was 

defined in SOAP, with a small kemel written in Prolog. An effort was 
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made at a conceptually cohesive set of basic classes with everything 

being ultimately an objecte 

SOAP is written entirely in Prolog and in SOAP: it is easier that way and 

it makes SOAP more portable. Whatever part of SOAP is written in 

Prolog has been carefully tuned to minimize backtracking and coslly 

structure manipulations. 

Since Prolog code is faster than SOAP code, both SOAP and Prolog code 

can be freely intennixed for optimal results. Whenever safe constructs 

(which do some fonn of cheeking) are felt to impose too much of a bur­

den, unsafe but faster eonstruets can be used instead. 

The temptation to do 'gold-plating' was stoically resisted: no feature was 

added if its co st in program efficieney was not fully offset by its general 

usefulness. 

Multiple inheritanee was experimented with but was not needed enough 

to justify the added eost to message passing (because of the extra baek­

tracking points). Coneurreney was not even eonsidered sinee it would 

have meant implementing a different model of exeeution on top of 

Prolog: an interesting but very costly proposition. 

The seope of inheritance was defmed in the standard 0-0 manner: local 

:nethods and instance variable values override inherited ones. The cost of 

managing uninhibited inheritance over the network would not he offset 

by the benefit of coneeptuai cIarity. Anyway, a 'super' construet, provid­

ing the 'manuaI' override of method shadowing, was felt to be an accept­

able, if less elegant, alternative. 

57 



l 

( .. 

The main 0-0 clichés (message passing, messages to self and super, cas­

cading messages, instance creation, instance variable manipulation, de­

pendents and broadcasting etc.) are expressed in SOAP either as special 

Prolog operators or as SOAP-defined capabilities. SOAP bas a friendly 

surface syntax and an efficient base syntax (for fast method invocation). 

A preprocessor translates the fust into the other. 

A minimal programming environment is needed. Most of it is provided 

by SD-Prolog's incremental compiler accessible from within the text edi­

tor: SOAP's preprocessor can thus be used within the text editor. To this 

we have added a message recorrler (to optionally keep a trace of all mes­

sages sent). Finally the user can save a SOAP image: 

This command simply files the listing of ail object descriptions in memo­

ry and compiles it ioto a fonnat which can be later loaded in memory 

very rapidly. 

Since SOAP uses the Prolog database to store object descriptions, we had 

to make sure that non-intentional corruption of the SOAP image could be 

prevented. This is achieved by using a single predicate (ivar/3) to encode 

every object description; it is assumed that the user knows about this. An 

added benefit of this approach is SD-Prolog's support for virtual memory 

on a predicate basis. Declaring ivar/3 as a virtual predicate essentially al­

lows arbitrarily large SOAP images. 
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c. An overview 01 SOAP 

SOAP's cosmology 

There are two types of objects in SOAP: classes and instances. A class 

defmes the set messages any of its instances can respond to (and bow), 

and the instance variables (with value definition) used to describe its in­

stances. 

Eacb instance bas a single class. Each class is an instance of a metaclass 

and bas a single superclass (single inheritance model), except OBfficrS 

whicb bas none. 

The fundamental classes are OBJECTS and CLASSES (classes should 

but need not bave plural names, except for metaclasses since they bave 

only one instance ). 

CLASSES is a (direct) subclass of OBJECTS. Ali classes are direct or 

indirect subclasses of OBJECTS. 

Every class X bas its corresponding metaclass class_X of wbich it is the 

only instance. 

Every metaclass is a direct instance of METACLASSES (even 

CLASS_METACLASS, giving us a case of circularity). 

METACLASSES is a subclass of CLASSES. 
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CLASSES is the direct superclass of CLASS_OBJECI'S. If X is the 

superclass of Y then metaclass CLASS_X is superclass of metaclass 

CLASS_Y. 

(Thin lines show instance-of relationship while fat lines show subclass-of 

relationships.) 

This organization corresponds very closely to that found in Smalltalk-

8024• 

24. In Smalltalk-80, a class Behavior is used as an abstract superclass of boIh Class and Metaclass. 
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Instance variables 

Every single piece of infonnation about SOAP objects is recorded as in­

stance variable values (taxonomie information, method definitions, in­

stance variables domain dermitions etc.) After aIl, in SOAP, everything is 

an object and an object's state is described by the values of its instance 

variables. Instance variables and their corresponding values are asserted 

in the database as: 

ivar«object>,<ivar>,<a value»2S 

For example: 

ivar( dogs,superclass,mammals). 

ivar(fido,class,dogs ). 

ivar( dogs,instance,fido). 

ivar(fido,age,12). 

An object can have more than one value for a given instance variable. 

For example: 

ivar(maurice,diet,meow _mix}. 

ivar(maurice,diet,cat_chow). 

ivar(maurice,diet,tendecmorsels ). 

25. Having the object's name as fll'st argument takes advanlage of SD-PROLOG's autornatic indexing 
on flfSt arguments. If no indexing were performed. SOAP would become very inefficient as more 
objects would be added. Ideally, the ivar/3 procedure should also be indexcd on the second argu­
ment. 
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Object names and instance variable names are Prolog atoms. Instance 

variable values can he any Prolog tenns. 

Creating a class 

When a class is added to SOAP) one must give both its superclass and 

define the instance variables its instances will have (in addition to those 

inherited). One can optionally derme class variables, which in SOAP are 

no more than the instance variables describing the class itse1f26. 

A class is created lly using one G! the following fonns: 

?- soap_class( name: <an atom>, 

superclass: <a class name>, 

instance_variables: [<ivar_definitioo>, ... D. 

?- soap_class( name: <an atom>, 

superclass: <a class name>~ 

instance_variables: [<ivar_definitioo>, ... l, 
class_ variables: f<ivar_definitioo>, ... D. 

The fonnat of an instance variable definition is described helow. SOAP 

allows the following shortcut: 

26. SOAP bas no such things as the class variables round in Smalltalk. 
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defaults to 

<ivar_name> :: known(l,-> 

For example: 

?- soap_class( name: dispatchers, 

superclass: objects, 

instance_variables: [ 

class_variables: f] 

). 

screen, 

status: :known(l ,[active,inactive])], 

A class DISPATCHERS is created with superclass OBJECfS and in­

stance variables SCREEN and ST ATUS. The definition of SCREEN de­

faults to 

known(l,_) 

which means that ils only value must he known (thus can not be 

defaulted - more on that subject later-). The value of the instance variable 

ST A TUS must then he known and can either be ACflVE or INACfIVE. 

Since no class variable is given, the other fonn soap_class/3, with no 

mention of class_ variables, could have been used. 

When a class is added to SOAP, any previous class of the same name and 

its metaclass are destroyed together with aU of the class' previous in­

stances. Then the new class is created and inserted in the taxonomy. Its 
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metaclass is automatically created and is itself inserted in the taxonomy. 

The class is made an instance of its metaclass. The instance variable defi­

nitions are checked for correctness (correct fonnat and no redefmition of 

an inherited instance variable definition); class creation aborts and breaks 

the execution if an error is detected. 

Instance variable detinition format 

When defining a class, the instance variables of its instances are de­

scribed by being given a name, a maximum cardinality (maximum per­

missible number of different concurrent values) and a description of the 

domain of pennissible values. The instance variable is also said to either 

allow default values (if a value is sought for a given instance and none 

exists, a default value defmed in the class is obtained) or disallow default 

values (if a value is sought and none exists, the search fails). 

Instance variable definitions (within class definitions) are of the fonn: 

<ivar_name>:: known«cardinality>,<domain» 

<ivar_name> :: c an_he ( <cardinality>,<domain» 

Disallowing default values(usiog known/2 to defme the instance 

variable's cardinality and domain) means that all of an instance variable's 

values are always explicitly known (asserted). Allowing default values 

(using can_be/2) means that either none or aIl of its values are explicitly 

given at aoy time. The set of an instance variable' s default values are 

those which can he shown to belong to its domaine 
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When an instance variable values are said to be always known, a verifier 

is supplied as the domain descriptor; otherwise a generator is supplied. 

A verifier is used only to check if a given value falls within the domain. 

A generator can act as a verifier but in addition it is also able to generate 

the domain. 

A verifier is either a free variable, a list or a predicate with arity n ~ O. A 

generator is either a list or a predicate with arity n ~ O. 

A free variable means that there is no restriction imposed on the domain. 

For example, an instance variable nickname for aIl cats cou Id he given an 

unrestricted domain (within the definition of class cats) as such: 

nickname :: known(l,_) 

A list is an explicit description of the domain. As a generator, il can he 

an incomplete lis t, like [blue, green, red 1_], thus only providing a partial 

enumeration of the domain. 

For example: 

eye_color:: can_be(2 , [brown,green,blue 1_] 

When the domain description is a predicate, it is used to compose a mes­

sage to he sent to the class of the instance which variable value is under 

scrutiny. The message is simply the predicate to which the value to vali­

date or to obtain is added as first argument. 
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For example, given domain defmition of the fonn 

<functor>( <arg> ... ), 

when domain membership verification or domain generation is required 

for the value of an instance's variable, the following message (with 

backtracking enabled -more on this later-) will he sent: 

<c1ass_of_instance> *<- <functor>(Value,<arg>".) 

When the message is used in a verifying capacity, the first argument is 

instantiated and must he successful for the argument ta represent a legal 

value (a value within the domain of permissible values). When the 

message is used in a generating capacity, it is uninstantiated at message 

sending time and must he instantiated during execution by a pennissible 

value. 

It is the responsibility of the class (or of one of its superclasses) to derme 

a method which will answer messages requesting domain checking or 

generation. A fair number of such methods are defmed in c1ass 

OBJECTS. These methods can he used to descrihe a domain to he all in­

stances of a given class or aIl positive integers etc. 

For example: 

r anY-JJlven_number/1 */ 
ivar(objects,method, r verHler */ 

[ 
[any -'Jiven_number '-' Term) , 

( 
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number(Term) 
) 

r any_class/1 ., 
Ivar(objects.method. 

[ 
r generator ./ 

)). 

[any_class,-,Class). 
( 
classes • <- [has-'nstance.Class) 
) 

Note: the code shown above is in SOAP's base syntax where a method's 

code for a class is a list which is the value of the attribute METHOD for 

the given class (more on that later). 

A class can redefine an inherited method which provides domain defini­

tian. This is the ooly mechanism aUowed in SOAP which redefines an 

instance variable's domain; a class is otherwise not allowed to redefine 

an instance variable inherited from its superclass. 

An instance variable's cardinality is the maximum number of different 

values it is pennitted to have27• 

If it is a free variable, then any number of values is pennitted. If it is an 

integer then at Most that number of values is permitted. We will see later 

on how cardinality checking interacts with adding new values to an in­

stance variable. 

27. The facl an instance variable bas a choice of differenl defaull values does not mcan dlal il has all 
of these values: il has only one which can be any of them. 
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( Accessing instance variables 

Instance variable handling is always done using a special set of messag-

es: =<-, ==<-, +<-, ++<-, -<-, and -+<- . 

<instance> =<- <ivar_name>( <value> ) 

This message attempts to unify <value> to one of the values of the 

object's instance variable <ivar_name> (to cbezk or retrieve a value Ü 

<value> is respectively bound or unbound). Both the receiver and the 

name of the instance variable must he instantiated when the message is 

sent. 

If the object bas no explicit value for this instance variable but is allowed 

to default it, then an attempt will he made to unify the argument with a 

default value. 

It is backtrackable. 

<object> ==<- [<ivar_name>,<value>] 

This message differs from the above in that no unification to a default 

value is ever attempted. It is offered as a faster, 'no-frins' means to ac­

cess instance variable values. 

It is backtrackable. 

<object> -<- [<ivar_name>,<value>] 
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Hthe receiver's instance variable bas a value which unifies with <value>, 

then this value is retracted. It is not backtrackable; so must be considered 

as a side-effect producing message. 

<object> +<- [<ivar_name>,<value>] 

The value <value> is added as the last value of the object's instance vari­

able. fi the cardinality limit is exceeded, then the first of its values is 

removed. This gives a FIF028 behavior, and for instance variables of car­

dinality 1, it boils down to a simple replace operation. 

H the value which is to he added can be unified to a known (non-default) 

one, the assertion does not take place and the cali succeeds. The value is 

also checked for memhership in the domain; if the check fails, an error 

message is sent and a break state is entered. 

It is not backtrackable and thus causes side-effects. 

<object> ++<- [<ivar>,<value>] 

The value <value> is added as the last value of the instance variable. No 

cardinality or domain membership checks are performed. This is to be 

used only when speed is critical and when the user is willing to take the 

risk of adding an out-of-domain value or willing to risk 'overflowing' the 

instance variable. It is not backtrackable. 

<object> -+<- [<ivar>,<value>] 

28. First In Firsl Out 
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is identical to: 

<object> -<- [<ivat>,<value>] , 

<object> ++<- [<ivar>,<value>] 

Method invocation 

When a message that does not involve instance variable handling is sent 

to an object, an appropriate method is searched in the object's class and 

then up the hierarchy chain until one is found which will unify with il. As 

unification is used to select an appropriate method, arguments can be 

used in both input and output modes. More than one method can possibly 

be applicable. They can be successively invoked on backtracking. 

A method can have more than one defmition (or body) in a given class. If 

one definition is not successful (if its execution fails), the next one is 

tried. 

Methods are fully backtrackable (they are Prolog programs optionally 

using message sending constructs). Local methods completely ovenide 

inherited ones. 

Message sending can he either detenninistic or non-deterministic. 

To send a backtrackable message: 

<objeccname> *<- <method_name>«arg>, ... ) 
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To send a detenninistic message: 

<object_name> <- <method_name>«arg>, ... ) 

A detenninistic message commits to the first successful method invoca­

tion. 

FaUure due to the absence of an appropriate method does not cause an 

error condition. However both the receiver and the method name must be 

instantiated at message sending time or else an error condition will he 

generated. An error condition causes a message to appear on the screen 

and puts the program in a break state (source code can be edited using 

SO-Prolog' s editor and the execution can then be resumed or aborted). 

Messages invoking methods can be cascaded. A cascade is a series of 

consecutive messages sent to the same object where the object needs only 

be named once. 

objects <- <message> & <message> & ... 

In this particular case, because of the use of <-, the cascade as a who le is 

detenninistic (not necessarily the individual messages themselves). 

Method detinition 

A method is one of possibly Many values of a class' instance variable 

called METHOD. 
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A method consists of a head and of altemate bodies. If the head unifies 

with the message, then a body is executed. 

A method definition, in SOAP's surface syntax, bas the following fonn: 

1- soap_method( name: <predicate>, 

class: <an atoIn>, 

meanings: [<body>, ... ]). 

The list of method bodies are alternate meanings which will he tried in 

succession on backtracking. 

For example, the following method is defined with two bodies.29 

r Take color of superview. If no superview or its color - none, take that of the sereen ., 
1· soap_R18thod( name: eraseccolor(Color), 

class: views, 
meanings: [ 

r First body·' 
(self --<- superview(S), 
S --<- background(Color1), 
(Color1 - none, 
frames ._<- currencscreen(Screen), 
Sereen ._<- color(Color) 

Color .. Color1 
) ), 

/* second body·' 
(frames <- currenCsereen(Screen), 
Sereen -=<- color(Color) ) 

)). 

The following method has onlyone body. The atoms 'self' and 'super' 

are special names and have the usual meanings: 'self' refers to the receiv­

er of the message and 'super' also refers to the receiver but forces the 

corresponding method search to start from the superclass of the receiver's 

29. This method is pan of an unfmishcd user-interface IOOlkil wriuen in SOAP. 
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class. 

1- soap_method( name: reacuo(Event). 
clus: vlews. 
rneanlngs: [ 

«self --<- currenlJtem(I). 
1 <- react.Jo(Event) 
• 
super <- reacUo(Event) 
» 
]). 

A cut in a method body prevents backtracking within that body but will 

not prevent other bodies within the method or other meth~ds to he tried. 

This is due to SOAP's use of meta-caUs to effect method invocation. 

Because of the limited scope of the eut, SOAP enforces a more declara­

tive style of programming than standard Prolog. 

SOAP's programming environment 

Very little effort bas been spent on providing a complete development 

environment for SOAP. There is no browser, inspector or other necessi­

ties borrowed from SmaUtalk.30 

SD-Prolog's integrated text editor and incremental compiler have sup­

plied the necessary support for effective program development. In-situ 

compilation togetber with the necessary SOAP constructs to do class 

(re)creation, method (re)defmition and message sending provided 

enough of a development environment to write large SOAP programs. 

30. The development of such tools bas 10 await the completion of Ihe VIEWS object-orientcd user-in­
terface toolkit which itself prompted the development of SOAP. 
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What is sorely missed is a debugger which will abstract away the Prolog 

implementation of SOAP. SD-Prolog's debugger cao not be used to fol­

low a SOAP program since it does not enter a meta-calI. Since method 

invocation is done by meta-caUs, the first message will effectively create 

an execution 'black-out' in the debugger. 

Short of writing a Prolog meta-interpreter in SD-Prolog, the easiest solu­

tion was to have SOAP keep a trace in a file of all messages sent (in 

chronologie al order with memory statistics) and then open a 'text view' 

on that file when the overall goal tenninates. 

The message recorder is invoked by doing: 

/* A caU can he a nonnaI Prolog goal or a message sent to an 

object. */ 

?- debug <call>, .... 

The syntax presented so far is a friendly, surface syntaxe SOAP's 'real', 

base syntax is very similar but less friendly. In order to use the friendly 

syntax at the top level, one must use the operator 'do': 

?- do <caU>, ... 
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SOAP's pre-deftned methods 

Most of SOAP's functionality is defined in SOAP. Ali of SOAP's classes 

are defined using the base syntax (in ivar/3 fonnat). Class and instance 

creation, for example, are implemented respectively by the methods 

add_subclass/1 and new/l. The method add_subclass/l is defined in class 

CLASSES and new/1 is defmed in both CLASS_OBJECfS and 

METACLASSES31 

Note that a method body, in the base syntax, is a list which first element 

is itself a list containing, in order, the name of the method, an argument 

(Self) which will he unified with the receiver when invoked, and the 

actual arguments of the method. 

r add_subclass/1 *' 
ivar(classes,method, 

[ 

]). 

r new/1 *' 

[add_subclass,Self ,Name), 
( 
r not an object already */ 
not ivar(Name,_,-.J, 
/* give it a properly connected metaclass, thus maklng 

it an object *' 
ivar(Self ,class,Meta), 
Meta <- [new,Name), 
'* connect it *' 
assert(ivar(Self,subclass,Name)), 
assert(ivar(Name,superclass,Self) 
) 

r Given a class, create the corresponding metaclass and connect " as 
its subclass */ 

ivar(metaclasses, rnethod, 
[ 

[new,Self,Name), 
( 
concat('class_' ,Name ,Meta1), -----------

31. The reader is referred ID the appendix for a complete listing of SOAP's classes and thcir 8SSOCiated 
methods in file O_SOAP.PRO. 
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striflQ..atom(Meta1,Meta), 
asser1(lvar(Self ,subclass,Meta», 
asser1(lvar(Meta,superclass,SeIf» , 
asser1(lvar(Meta,lnstance,Name», 
asser1(lvar(Name,class,Meta», 
assert(lvar(metaclasses,lnstance,Meta», 

assert(ivar(Meta,class,metaciasses» 

The necessary methods for instance variable manipulation (put_ vaIue/2t 

gec value/2 and gec value_no_default/2) are defmed in OBJECTS. 

r puCvalue/2 ./ 
ivar(objects,method, 

[ 

). 

[puC value,Se",lvar, Value], 
( 
(ivar(Self,class,C), 
C <- [in_domain, Ivar, Value), 
l, 
A = ivar(Self,lvar,Value), 
r add it if not subsumed by another already Ihere ./ 
(call(A) ; assertz(A)),I, 
r retract first value if now too many·' 
( 

, 

Self <- [cardinality-violation,lvar), 
relract(ivar(Se" ,Ivar ,-» 
lrue 
) 

Self <- [error, "Incorrect new value for an attributel", 
[Self,lvar,ValueJ] 

),1 
) 

r cardinality_violation/1 ./ 
Ivar(objects,method, 

[ 
[cardinality _ violation,Self,lvar), 

( 
ivar(Self ,class,Class), 
Class <- [cardii·~,.Iity,lvar,Max), 
nonvar(Max) , 
A - ivar(SeH,lvar,J, 
counCclauses(A,N}, l, 
N>Max 
) 

76 



-

)). 

r Q8Cvaluel2 ., 
r get a known value ., 
Ivar(objects,method, 

[ 

)). 

[geCvalue,SeIf,lvar,Value), 
( 
ivar(Self ,lvar,Value) 
) 

r get a default one H permitted and none known ., 
ivar(objects,method, 

[ 

]) . 

[geCvalue.SeIf,Attr,Value), 
( 
not jvar(SeH,Attr,.J, 
ivar(SeH ,class,Class), 
Class *<- [default,Attr,Value) 
) 

r get a known value, no defauh·' 
ivar(objects,method, 

[ 

)). 

[geCvalue_no_default,Self,Attr,Value), 
( 
ivar(SeH ,AHr, Value) 
) 

OBJECfS provides the fundamental systems utilities: object printing, ob­

ject destruction, dependency relationships à la SmaUtalk with the associ­

ated signaling, broadcasting and updating capabilities. system informa­

tion (can an object respond to a given message?), error handling, meta­

message sending (send/l) etc32• 

CLASSES provides the methods needed to add/destroy classes, add/re­

tract methods and instance variable definitions to a class, remove an in­

stance, handle the domain checking and the default value generation, 

enumerate instances etc. 

32. The appendix is indexed and contains the complete program implementing SOAP. 
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MET ACLASSES does not do very much but it knows how to create a 

new metaclass and knows how a metaclass should self-destruct. 

CLASS_OBJECfS knows how to fmd ail of the instances of a class and 

how to remove them all. It also implements the new/l method which is 

used to create new instances of a class. 

CLASS_CLASSES and CLASS_METACLASSES have no' defmed 

methods or instance variables. Right now they only bring m conceptual 

coherency to the class system, but should become more useful as SOAP 

evolves and as tbey get methods of their own. 
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d. The Implementation of SOAP 

A layered approach 

SOAP is a three-Iayer system. The first layer is written in Prolog; it im­

plements message passing, inheritance, the message recorder and 

SOAP's preprocessor (which converts SOAP's friendIier surface syntax 

into the base syntax). The second layer is the set of classes which define 

the basic system's capabilities of SOAP; they are implemented in 

SOAP's base syntaxe The third layer is the application layer and is ex­

pected to he defined in SOAP's nicer surface syntax, with the help of the 

preprocessor. 

Even though each layer seems to have its own particular language or dia­

lect, it needs not always he the case. In fact, standard Prolog is used in 

both the second and third layers when il is felt 10 he the best thing to do. 

Furthennore, there is sorne message passing used in the kemel (to imple­

ment =<-); 

r unify ivar value message, default permitted; backtrackable "/ 
=<-(lnstance,[lvar,Value]) :-

debuQ_soap((lnstance =<- [Ivar, Value))), 
atom(lnstanee), 
ivar(lnstance,class,Class), 
Ivacot(Class,lvar) , 
l, 
Instânee *<- [geCvalue,lvar,Value). 

=<-(lnstance,Message) :-
objects <- [error,"lncorrect attribute; canOt unHy(-<-)I", 

[Instance ,Message]1, 
1. 
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As a cule, in the third layer, one is expected to use only message passing 

in order to in~ract with objects. In the first layer and in the second layer 

to sorne extent, the Prolog database is directly modified as a means of 

changing objects states. This is done only when crucial optimizations are 

required and can not he achieved otherwise. 

For example: 

r new_superclass/1 *' 
ivar(classes,method, 

[ 

J). 

(new_superclass,SeIf,Super], 
( 
/* disconnects and reconnects itself *' 
retract(ivar(Self ,superclass,OldSuper», 
retract(ivar(OldSuper,subclass,Self» , 
assert(ivar(Self ,superclass,Super», 
assert(ivar(Super,subclass,SeIf) ) 
) 

The first layer was designed to contain as little of SOAP's functionality 

as possible without overly cornpromising efficiency. The goal in design­

ing the second layer was to have most of SOAP defined in SOAP. This 

objective led to sorne rather interesting code such as this self-describing 

statement part of CLASSES' defmition: 

ivar(classes,ivar,ivar::knownL,any_ivar_defmition».33 

33. The reader should disregard the othennosl ivar which is 'undemeath' SOAP. Only the second and 
third one participale in the self-referentiality of the statement This instance variable definitioo 
says lhat ail classes cao have instance variable defmiûons, and il describes their fonnat CLASSES 
is an instance of CLASS_CLASSES which is a subclass of CLASSES ... 
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The base syntax 

The base syntax is very close to the surface syntax. Essentially, messages 

are converted from the predicate fonn to a li st fonn. For example, 

an_object <- method(argl,arg2) 

becomes 

an_object <- [method,argl,Arg2] 

in the base syntax. 

When this message is interpreted by SOAP' s kernel, a list is fonned 

which is to be matched wiÛ1 the head of a method. In the base syntax, the 

head of a method has the foUowing format: 

[method_name, Self, <arg>, ... ] 

The first element of the list constructed from the message is the method 

name. lbe second is the receiver which will un if y with Self and the rest 

are the message's arguments. This is achieved by the following code: 

r Methods execution is tried until success or failure * / 
r fire_method/4 bypasses message passing for greater efficiency */ 
r Single message * / 
fire_method(lnstance.[MethodIArgs).Class) :- r local */ 

Ivar(Class.method.[[Method.lnstanceIArgsJ.Tail)). call(Tail). r 'Ire Il *' 
r inherited and not overridden *' 
fire_method(lnstance.[MethodIArgs).Class) :-

r none found overriding *' 
not ivar(Class.method.[[Method,JArgs),...]), 
ivar(Class,superclass,Super) , 
l, 
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( 
fire_mettlOd(lnstance.(MethodIArgs].Super). 

r Cascade-' 
fire_method(lnstance.&(Message.Messages).Class) :­

flre_method(lnstance.Message.Class). 
fire_method(lnstance.Messages.Class). 

The following is an example of a method definition in the base syntax, 

note the fonnat of the message invocation in the method body: 

Ivar(class_objects.method. 
[ 
[new,Self,Name], 

J). 

( 
Self <- [new_name,Name), 
r put in new object (avoid message passing)-' 
asserta(lvar(Name,class.Self», 
asserta(lvar(Self.lnstance.Name» 
) 

When a method is translated into the base syntax, all references to self 

and super are translated and all messages are converted to the basic 

SOAP fonnat. 

The special atom 'self' is transformed into a variable which is unified 

with the second argument (Self) of the method's head which is unified to 

the receiver at message passing time. This avoids the use of an instance 

variable called 'self' to implement self-referentiality. 

Calls to 'super' are translated into special caUs to Self. These special caUs 

force the search of a method to start above class Class. 

Self <- [<method>,<arg> ... ] @ Class 

Self *<- [<method>,<arg> ... ] @ Class 
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The variable Class is instantiated to the class of the receiver at message 

sending time.34 

Emciency and performance 

SOAP's perfonnance improved by a factor of 40 from its first implemen­

tation to its current state. It is felt to be reasonably perfonnant when run 

on a fast micro-computer1s. Message passing is at least twice as slow as 

a standard Prolog procedure caU (it takes longer when inheritance is in­

volved). A single message can trigger other messages which meanings 

may have to be searched up the hierarchy. Consequently, response time 

to a message can degrade very rapidly as the taxonomy and object inter­

actions grow in complexity. 

For example, the following cali, which looks for all objects in the system, 

takes balf a second36 to complete. It is assumed that no new classes or ob­

jects bave been added to the basic SOAP system. The smaU preprocess­

ing time is not taken into consideration: 

1- do objects <- has_instance(l),fail. 

This other calI, which tests instance and class creation as weil as destruc­

tion, takes slightly less than 2 seconds: 

1- do objects <- add_subclass(rats), 

rats <- new(Nl) & 

34. ReCer la the predicalef soap_method/4, add_methods/4 and soap_translate/4 in the appcndix. 
35. Anything Caster than a 6MHz IBM A '}'TM 

36. AU perConnance measurements were done on an 8MHz PC AT. 
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new(N2) & 

add_subclass(sewer_rats) & 

self_destruct, 

sewecrats <- self_destruct. 

Creating and destroying objects are expensive operations in SOAP. If the 

bulk of object and class creation is done as part of the development of an 

application and minimized during its execution, then acceptable perfor­

mance can be achieved. 

The domain checking construct +<-, which adds values to instance vari­

ables, seems to incur significant performance penalties because of the 

amount of message passing it triggers. We found ourselves using the 

risky, non-checking versions (++<- and -+<-) most of the time. 

We used standard Pro log as one would use a lower levellanguage to im­

plernent perfonnance-critical code (drawing a box, filling a region, clip­

ping a string etc.). Objects were then used as repositories for state de­

scriptions to he loaded as parameters into fast Prolog procedures. 
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5. Conclusions 

a. An appraisal of SOAP and avenues for further 

improvement 

We found SOAP to be a very productive programming too1. Il provided 

the benefits of 0-0 programming we had hoped for (modular program de­

sign, data abstraction, support for complex data structure representation 

and manipulation, default and differential programming) without taking 

away any of Prolog's best features (non-detenninism, multi-purpose pro­

cedures/methods, pattem-directed invocation). 

Since most of SOAP is written in SOAP, it became quite robust early in 

its own development and few bugs were found du ring the development of 

applications, such as an experimental user interface toolkit. 

Even though the set of tools generally associated with an 0-0 program­

ming environment are largely missing, productivity did not unduly suffer 

since SD-Prolog's own programming environment proved quite flexible. 

However, as the number of classes and methods grew, it became more 

and more difficult to navigate from one to the other. 

A browser would be a very useful addition to SOAP's embryonic 

programming environment. A true debugger would be very useful. 

Nevertheless the post-mortem trace mechanism (the message recorder) 

was sufficient to rapidly detect most bugs. Finally, an inspector would 

certainly help in examining the changing states of the objects populating 

an application. 
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Certain improvements could be made to the syntaxe An object should not 

always have to send messages to itself in order to examine or modify its 

own instance variables. It should possible for an instance variable to 

receive messages which request state infonnation or modification. The 

preprocessor would then translate in context the se messages to the 

current fonn for efficient execution. 

One should also be able to send messages to Prolog terms, for example 

[1,2,3] <- reversed(L), so that it would he possible to write programs en­

tirely in SOAP and still make use of Prolog's data types. 

Porting SOAP onto faster Prologs would obviously speed it up. A Prolog 

allowing indexing on the second argument of the ivar/3 procedure would 

certainly bring sorne improvement since this argument is used ta name 

the instance variable (the tirst argument names the object). 

Overall, we feel that SOAP is a useful and reasonably clean 0-0 extension 

to Pro log. However it must be rnixed with standard Prolog for best re­

sults. 

b.Object-oriented Prologs: how successful can they be? 

The degree of success of an object-oriented Prolog design and 

implementation very much depends on what goals it set out to achieve. 

The aim rnight be ta attain a better understanding of the design issues in 

integrating both logic and object-oriented paradigms, or it rnight he 

simply to provide a better system building too1. 
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Many object-oriented Prologs are object extensions to Prolog(37; 38] or 

Prologs implemented using object-oriented languageS[44; 4S]. The added 

paradigm inherits the characteristics of the implementation language 

paradigm in a rather straightforward way. Such implementations do not 

go very far in achieving a fundamental integratioll of both paradigms. 

Our experience has shown that simple object-oriented extensions to 

Prolog, as with SOAP, produce a more efficient language, in tenns of 

execution speed, than Prologs implemented on top of object-oriented 

languages. This is probably due to the fact these Prolog implementations 

were not optimized to any significant degree. Comparatively, adding 

object capabilities to Pro log is far simpler and dots not necessarily incur 

a dramatic execution penalty. 

Pushing basic object-oriented language capabilities, ~uch as inheritance 

through semantic unification, into the core of Prolog[l4; 15; 62J, if 

optimized, could further improve the performance of object layers added 

on top of such 'enhanced' Prologs. 

The object-oriented extensions to Prolog we surveyed provided a much 

fmer integration of the two paradigms than the Prologs ilnplemented on 

top of object-oriented languages. In the later case, a Prolog database 

would, in its entirety, he the set of 'logical' methods known to a class of 

objects. 

More extensive experiments in object-oriented Prologs seem to he just 

that: experiments. While they provide powerful insights into merging the 

logic and object-oriented programming paradigms, they are much too 

inefficient to he used in building significant, deliverable programs. These 
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object-oriented Prologs[6; 15; 48; 51; 52; 53; 54; 55; 57; 58J are more than 

extended standard Prologs, they are new languages in their own rights, 

even though they often subsume standard Prolog. 

POL and its derivativeS[48; 40] are the object-oriented Prologs we 

surveyed which go the farthest in merging both paradigms: they allow 

concepts from both paradigms to interpenetrate each other, to become 

part of each other's definition. In POL, for example, indetenninacy and 

inheritance are interlocked. 

In our opinion, the most promIs mg, and satisfying, of these self­

contained object-oriented Prologs is the Vulcan-Concurrent Prolog pair[6; 

[58]. Concurrent Prolog allows the creation of objects without 

necessitating side-effects and elegantly unlocks the inherent concurrency 

capabilities of objects. Vulcan provides a language preprocessor which 

makes it a lot easier to . defme classes and use objects than with 

Concurrent Prolog alone. 

The expressIve richness of the language is tremendous as it supports 

capabilities such as message passing (through communication channels), 

message queues (and message look-ahead), delegation (and thus 

inheritance) and more. AlI oÏ these capabilities can be achieved without 

twisting the intents of the language, that is they can he implcmented in a 

totally declarative manner. 

When, and if, successful implementations of Concurrent Prolog on 

massively parallel computers become available, object-oriented Prolog 

may cease to be something of a curiosity to become an efficient and 

indispensable programming language. 
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APPENDIXi Tbe SOAP listings 

A. Creating, saving and restoring a SOAP image 

rFILE: MASTER.PRO 

This flle contains the code needed to create and restore a SOAP Image. 
*/ 

cleaeall :- cleacdatabase(top_oCheap/O),assert(top_oCheap). 

r CONSTRUCTING A NEW SOAP IMAGE "' 

r 
r If SOAP itself was mOdified, execute tirst these two lines. * / 
1- compiJe(soap). 
?- load(soap). 

r Saving ail SOAP objects and ail objects defined in SOAP by a hypothetical application 
called soap_app into image.prm 
*/ 
?- cie ar_ail. 
1-load(soap). 
1- consult(o_soap). 
?- consult(soap_app). r replace "soap_app" by application na me */ 
?- save_soap. r Saves compiled ivar/3 in image.prm */ 

*/ 

r LOADING AN IMAGE */ 
1- cleaeaU. 
?- load(soap). 
1- load(image). 
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B. The tirst layer: message sen ding, utilities and pre-processor 

r 
FILE: SOAP.PRO 

SOAP: a Simple Object-oriented Addition to Prolog 

Author: Jean-François Cloutier 

Last modified: 28'04'1988 

r IMPLEMENTATION NOTE: STATE/1 is reserved by SOAP. 
BAGOF'3 behaves like the standard FINDALU3 *' 

r Operators *' 
?- op«-,xfx,1 01 0). /* deterministic method invocation *' 
?- op(* <-,xfx,1 01 0). /* non-deterministic method invocation *' 
?- op(=<-,x1x,1 010). r unify ivar value, default seeked if needed "' 
?- op(==<-,xfx,1 01 0). /* unify ivar value, no default "' 
?- OP(-<-,xfx,1010). /* "retract" ivar value "' 
?- op(+<-,x1x,1 010). r FIFO addlreplace ivar value "' 
?- op(++<-,xfx,1010). r fast_add ivar value, no cardinality check */ 
?- op(-+<-,xfx,1 01 0). r retract th en fascadd ivar value "' 
?- op(@,xfx,1 011). /* method search anchor: used to implement "super' *' 
?- op(::,xfx,900). /* ivar::value_definition *' 
?- op(debug,fx, 1 023). /* debugger *' 
7- op(do,fx,1 023). /* soap top-Ievel executive *' 
?- op(&,xfy,1 009). r cascade operator"' 

/* SOAP PRIMITIVES *' 

/* method execution *' 

/* Search method definition from superclass of Class and invoke *' 
@(*<-(lnstance,Message),Class) :-

debug_soap((lnstance *<- Message @ Class)}, 
atom( 1 nstance), 
ivar(Class,superclass,Super), 
l, 
fi re _method( Instance, Message ,Super). 

@(*<-(lnstace,Message),Class) :-
objects <- [error,"lIlegal super messagel",[lnstance,Messagell. 

@«-(lnstance,Message),Class) :-
debug_soap((lnstance *<- Message @ Class», 
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atom(lnstance), 
ivar(Class,superclass,Super) , 
l, 
f1re_method(lnstance,Message,Super), 
1. 

@«-(lnstace,Message),Class) :-
objects <- [error,"lIIegal super messagel",[lnstance,Messagell. 

r non-deterministic method or cascade invocation *' 
*<-{lnstance,Message) :-

debug_soap«lnstance *<- Message)), 
atom(lns1ance), 
l, 
ivar(lnstance,class,Class), 
fire_method( Instance,Message ,Class). 

r iIIegal message (no such instance or Message is var) *' 
*<-(lnstance,Message) :-

abjects <- [error,"lIIegal messagel",[lnstance,Message)). 

r deterministic method or cascade invocation. 
Note that in the case of a cascade, it is the cascade which is deterministlc, not the indlvldual 
messages. *1 
<-(lnstance,Message) :-

debug_soap«lnstance <- Message», 
atom(lnstance), 
l, 
ivar(lnstance,class,Class), 
fire_method( Instance ,Message ,Class), 
!. 

/* illegal message (no such instance or Message is var) *' 
<-(lnstance,Messagp.) :-

abjects <- [errar,"lliegal messagel",[lnstance,Message)]. 

r attribute mezsages *' 
r unify Ivar value message, default permitted; backtrackable *' 
=<-(lnstance,[lvar,Value]) :-

debug_soap((lnstance =<- [lvar,Value])), 
atom(lnstance), 
ivar(lnstance,class,Class), 
ivacof( Class,lvar), 
1 ., 
Instance *<- [get_value,lvar,Value]. 

=<-(lnstance,Message) :-
abjects <- [errar,"tncorrect attribute; can't unify(=<-)I", 

[lnstance,Message]], 
!. 

/* unify Ivar value message, no default permitted; backtrackable *' 
==<-(lnstance,{lvar,ValueJ) :-

debug_soap«lnstance ==<- [lvar,ValueJ), 
atom(lnstance), 
1 ., 
Ivar(lnstance,lvar, Value). 
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--<-(lnstance,Message) :-
objects <- [error,"lncorrect attribute: can't unify ( ..... -)1", 

[Instance ,Message]J, 1. 

r remove ivar value message: non-backtrackable *' 
-<-(lnstance,[lvar,Value]) :-

debug_soap«lnstance -<- [lvar,Value))), 
atom(lnstance), 
ivar(lnstance,class,-.J, 
l, 
retract(ivar(lnstance,lvar,Value)), ,. 

-<-(lnstance,Message) :-
objects <- [error,"lIIegal message; this instance do es not eXist''', 

Instance]. 

r Adding/replacing by a new ivar's value ./ 
+<-(lnstance,[lvar,Value]) :­

debug_soap«lnstance +<- [lvar,Value))), 
atom(lnstance), 
ivar(lnstance,class,-.J, 
1 
" 

Instance <- [puCvalue,lvar,Value], 
+<-(lnstance,Message) :-

objects <- [er/'or,"llIegal message; this instance do es not existl", 
11stance]. 

r Adding without any consistency checking ., 
++<-(lnstance,{lvar, Va"Je]) :­

debug_soap«lnstance ++<- [lvar,Value]), 
atom(lnstance), 
ivar( Instance,class,-1, 
1 
" 
assert(iva((lnstance,lvar,Value). 

++<-(lnstance,Message) :-
objects <- [error,"llIegal message; this instê,nce does not exisU", 

Instance]. 

r fast replace ivar vr: "le message; non-backtrackable */ 
-+<-(lnstance,[lvar,Vallle]) :-

debug_soap«lnstance -+<- [lvar,Value])), 
atom(lnstance), 
ivar(lnstance,Class,-1, 
!, 
(retract(ivar(lnstance,lvar,-1) ; true), 
assert(ivar(lnstance,lvar,Value»,!. 

-+<-(lnstance,Message) :-
objects <- [error,"lIIegal message; this instance does not existl", 

Instance]. 

r Methods execution is tried until success or tallure *' 
r fire_methodl4 bypasses message passing for greater efficiency ., 
r Single message ., 
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fire_method(lnstance,[MethodIArgsJ,Class) :- r Iocal-' 
ivar(ClasS,method,((Method,lnstanceIArgs],Tall]), call(Tall). r flre it -, 

r inherited and not overrlden-' 
fire_method(lnstance.[MethodIArgsJ.Class) :-

r none found overridlng-' 
not ivar(Class,method.[[Method .-'ArgsJ,.J). 
ivar(Class.superclass,5uper). 
1. 
fire_method(lnstance,[MethodIArgs],5uper). 

r Cascade-' 
fire_method(lnstance.&(Message,Messages).Class) :. 

fire_method(lnstance,Message.Class). 
fire_method( Instance, Messages. Class). 

r Finds given Ivar as Ivar of an)' instance of Class. Climbs up tha hlerarchy. Must not use 
message passing or else the definition of '<.' would be circular. -, 
ivar_of(Class,lvar) :. 

ivar(Class.ivar,lvar::.J,I. 
ivar_of(Class,lvar) :. 

ivar(Class ,superclass.Super) .1. 
ivar_of(Super,lvar),1. 

r Basic utllities *' 
a_number( 1). 
a_number(N) :. 

a_number(M), 
N is M + 1. 

update{T) :. 
T = .. [F,Key.VaI1, 
T1 = .. [F,KeY.-1, 
(retract(T1) : true). 
assert(T). !. 

update(T) :. 
T = .. [F,Val], 
T1 = .. [F,.J. 
(retract(T1) : true). 
assert(T).!. 

replace(Old.New.[OldIR],[NewIR» :- 1. 
replace(Old,New.[EIIR],[EIIR1]) :. 

replace(Old.New,R,R1 ). 

deep_replace(Old.New,ltem.New) :. 
Item == Old.l. 

deep_replace(Old.New,ltem.ltem) :. 
(atomic(ltem) :var(ltem)).!. 

deep_replace(Old.New,[HITJ.[H1IT1]) :­
deep_replace(Old,New,H,H1}.!, 
deep_replace(Old,New,T,T1). 
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( 
deep_replace(Old,New ,Pred,Pred1) :­

Pred -" [FuncIArgs],I, 
deep_.replace(Old,New ,[FunclArgsJ,[Func1lArgs1]), 
Pred1 -" [Func1IArgs1J,'. 

delete(EI,{EIIRI,A) :. 1. 
delete(EI,{HIRJ,[HIA1» :­

delete(EI,A,A1 ). 

I/scoUength(O,O). 
I/scoUength(N,LlAJ) :­

N> O. 
N1 is N • 1,1, 

IisCoUength(N1,R). 

firstN(O,L,{J) . 
firstN(N,{),[J) :. 

N> O. 
firstN(N,[HIR1,(HIR1]) :. 

N> 0, 
N, is N • 1,1, 
firstN(N1,R,A1 ). 

ends(l1,L2) '. 
reverse(L 1,A1), 
reverse(L2,R2), 
beglns(R1,R2). 

begins([], L), 
begrns([HIR],[HIR1]) :. 

begins(R,A1). 

1* Counting the number of clauses which match Clause in the database. The state 1 is used. 
~ . 

councclauses(Clause,N) :. 
slale( 1, 0), 
break_clause(Clause,Head, Tail) , 
councciause1 (Head,Tail), 
state(1,N),l. 

counCciause1 (Head,Tail) :. 
clause(Head,Tail), 
inc_state(1 ), 
fail, 

counCclause 1 L,"'). 

break_clause(Clause,Head,Tail) :­
functor(Clause,:·,2), 
Clause - .. L,Head,Tail],!. 
break_clause(Clause,Clause,true). 

inc_slate(State) :. 
state{State,N), 
N1 is N + " 
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state(State ,N 1),1. 

f················ SOAP PRE·PROCESSOR ••••••••••••••••• , 

soap_clasS(name:N,superclass:S,instance_variables:l,class_varlables:C) :. 
soap_ClaSs(name:N,superclass:S,instance_variables:I), 
writeln("Class variables:"), 
ivar(N,class,Meta), 
add_instance_variables(Meta,C),1. 

f The class Name replaces any object of the same name. (A bit crude, but will do for now.) ., 
soap_class(name:Name,superclass:Superclass, 

instance_ variables:lnstance_ variables) :. 
( 
ivar(Name,_,.J, r if already a SOAP object, destroy it first'·' 
wntef("Destroying old %t. .. \n",Name), 
Name <. [selCdestruct] f if Name is a class, ail instances are gone·' 

true 
) ,!, 
wntef("Adding %t \nas kinds of %t...\n\n",Name,Superclass). 
Superclass <. [add_subclass,Name], 
wnteln("lnstance vanables:"), 
add_instance _ vanables(Name, Instance_ vanables),!. 

soap_class( name :Name ,superclass:Superclass,.J .• 
ivar( Name ,superclass,Superclass), 
r was inserted in hierarchy, so must be extracted ., 
Name <. sel'-destruct, 
!,fall. 

soap3lass( name :Name ,superclass :Superclass,.J :. 
obJects <. [error,"Could not install classl",[Name]]. 

addjnstance_ vanablesL,[]). 
add_instance_ variables(Name ,[lvar::DefIR]) :. 

1 ., 
tab( 4), wnteln( Ivar), 
Name <. [add_ivar,Jvar::Def],!, 

add_instance_ vanables( Name, R). 
add_instance_ variables(Name,[lvarIA]) :­

tab( 4), writ eln( Ivar), 
Name <- [add_ivar,lvar::known(1 ,->],1, 
add_instance_varrables(Name,R). 

f Replaces the old method by the new, if it exists ., 
soap_method( name :Message ,class :Class, meanings :Meanings) :­

wntef("(Re)defining method\nfor %t\n\n %t",Class,Message), 
Message = .. [NameIArgs], 
length(Args,L), 
IiscoClength(L,Args1) , 
(retract(ivar(Class,method,[[Name,JArgs1 ],..]»,fail ; true) , 
add_methods(Name,Args,Class,Meanings),1. 

add_methodsL,_,_,[]) :­
nl,nl. 
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add_methods{Name ,Args, Class,[MeaningIR)) :­
write(",") , 
soap_translate(Meaning,Trans,Self ,Class), 
assert(ivar(Class,method,[[Name,SeIfIArgs),Trans))),I, 
add_methods(Name ,Args, Class, Al, 

soap_translate((COnj,R),(C'')nJl,R1 ),Sert,ClaSS) :­
translate _conj( Con j, Conj1 ,Se If, Class),!, 
soap_translate(R,A1,Self,Class), 

soap_translate(Conj,Conj1,Self,Class) :­
translate_conj(Conj,Conjl,Se/f,Class), 

1* Method translation ., 
trans/ate_message(Message,Message,.J :­

var(Message),l. 
translate_message(&(First,Aest),Message1,Self) :-

1 
" 

translate _message( First, First1 ,Self), 
translate _message( Rest, Aest1 ,Self), 
Message1 = .. [&,First1,Aest1), 

translate_message(Message,Message1,Se/f) ;­
Message = .. [MethodlArgs1, 
1 
" 

deep_replace(self ,Self,Args,Args 1), 
Messagel = [MethodIArgS1], 

translate_message(Message,[Message1,Self) :­
atomic(Message), 

trans/ate_conJ(lnvoc,lnvocl,Self,Class) :­
Invoc = .. [Arrow,Aeclplent,Message1, 
soap_arrow(Arrow) , 
1 
" 

translate_message(Message,Message',Self), 
Invoc2 = .. [Arrow,Aeclplent1 ,Messagel], 
( 
Recipient == self, 
Aecipient1 = Self, 
Invoc1 = Invoc2 

Recipient == super, 
Recipientl = Self, 
Invocl = .. ['@',lnvoc2,Class] 

Recipient1 = Aecipient, 
Invocl = Invoc2 

), !. 

r arguments of a predicate can me messages (metacalling) *' 
translate_conj(Call,CaIl1,Self,Class) :-

not Iist(Call), 
Cali =" [FuncIArgs], 
translate_all(Args,ArgS1,Self,Class}, 
Call1 = .. [FunclArgs1 J, 

translate_conl(Call,CaIl1,Self • .J :­
deep_replace(selt,Se/f,Call,CaIl1) , 
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translate_all(O,O,_..J· 
translate_all([ArgIArgsJ,[Arg1IAros1],Self,Class) :­

translate_conj(Arg,Arg1,SeH ,Class),I, 
translate_all(Args,Args 1,SeH ,Class). 

soap_arrow('<-'). 
soap_arrow('· <-'). 
soap_arrow('-<-'). 
soap_arrow(' ... <-'). 
soap_arrow(' +<-'). 
soap_arrow('-<-') . 
soap_arrow('++<-'). 
soap_arrow('-+<-') . 

r .... TOP-LEVEL EXECUTIVE AND DEBUGGING COMMANDS ....... / 

r Top-Ievel executive·/ 
do(Calls) :­

retractall(debugginQ..soap/O), 
do_do(Calls). 

do_do«Call,Calls» :-
do_do(Call),', 
do_do(Calls). 

do_do(Call) :­
translate_conj(Call,CaIl1,_,.J ,l, 
Ca1l1. 

r Top-Ievel debugging ./ 
debug(Calls) :-

assert(debugging_soap), 
assert( debuQ..tab( 1 » , 
open(soap_debug,"soap.dbg",write), 
state(stdout,So ,soap_debug), 
writeln(" SOAP TRACE"), wrltet("%t:\n\n",Calls), 
stdout(So), 
(do_do(Calls)~ailure),I, 
stdout(So). 
close( soap_debug). 
view_debug_file("soap.dbg") , 
retractall(debug_tab/1 ), 
retractall( debugging_soap/O). 

debug_soapU :-
not debuggin9..soap,1. 

debug_soap(Message) :­
stdout(So), 
stdout(soap_debug) , 
write_message(Message), 
write_stack_usage, 
stdout(So). 
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wrlte_staek_usage :­
statlstics(staek,U1,51 ), 
statlstics(copy. U2,52), 
statistles(trail, U3.53). 
P1 Is Integer«U1/ 51) • 1 00). 
P2 is Integer«U2/ 52) • 1 00), 
P3 Is Integer«U3 / 53) • 1 00), 
wrltef(" (5:%t,C:%t,T:%t)",P1.P2,P3), 
nI. 

wrlte_message(M) :-
M = .. [@.lnvoe,ClassJ. 
writef("Super{%t): ".Class).I, 
write_message( Invoe). 

write_message(M) :-
M - .. [Arrow,Reeipient,[Name)). 
1. 
writef("%t %t %t".Reciplent.Arrow.Name). 

write_message(M) :-
M = .. [Arrow.Recipient,[NameIArgs]], 
P = .. [NameIArg&j, 
writef("%t %t %t",Reeipient,Arrow,P). 

fallure :­
stdout(So), 
stdout( soap_debug), 
writeln("" FAILURE! **\n") , 
stdout(So). 

view_debug_file(File) :-
stdlo(SI,So), 
open(view_debug,3:8,19:64,b:yellow:b,J, 
stdlo(view_debug), 
view(File,13), 
stdio(Si.So). 
close(view _debug) ,1. 

r···· ...... · .. ·· SAVING ALL SOAP OBJECTS ............... / 

save_soap :-
open( save, 'image.pro·,write), 
state(stdout,So,save), 
ni, 
save_alLobjeets, 
stdout(So), 
close(save), 
compile('image .pro'), 
delete_file('image.pro'). 

save_alLobjects :­
ivar(Name,lvar,Value), 
dlsplay(lvar(Name,lvar,Value», 
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put(46), 
ni, 
fall. 

save_aILobjects. 

1* End of file -, 
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t c. The second layer: SOAP's basic classes 

r FILE: 

r DEFINITION OF SOAP'S BASIC CLASSES *1 

r The core classes are deflned as Immediate assertions ln lvar/3 format *1 

rOBJECTS 

Ivars: class,dependant,dependanCon 

methods: changedlO,prlnt_string/1,responds_t0I2, 

class: 
depandant: 
dependant_on: 
Instance(s) : 
superclass: 
subclass: 
*1 

should_noClmpiement/2,update/1 ,error/2,klnd_of/1 , 
seH_destructlO,broadcast/1,slgnall2, 
Instance_variable/1,PUCvalue/2,geCvalue/2, 
geCvalue_no_defauIt/2, 
ackCdependant,remove_dependant, 
any_.atorn/1 ,any_classl1 ,any_value_definitlon/1 
any _kind_ofl2,yourseIf/1 ,send/2, cascade/2 

class_obJects 
none definad 
none definad 

none defined 
none defined 

classes 

ivar(objects,class,class_objects) . 
Ivar(objects,subclass,classes) . 

r definitions for Ivars of instances of objects *' 
ivar(objects,ivar,class::known(1,any_class)). 
Ivar(objects,ivar,dependant::knownL.any _instance)). 
ivar(objects,ivar,dependancon::knownL,anyJnstance)). 

r method definKlons *' 
r yourself/1 *1 
ivar(objects,method, 

[ 

)). 

[yourself,Self,Self), 
( 
true 
) 

r puCvalue/2 *1 
ivar(objects,method, 

1 
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n 

)). 

(puLvalue,SeN,lvar, Value), 
( 
(Ivar(SeN,class,C), 
C <- [ln_domaln,lvar,Value), 
l, 
A -lvar(SeH,lvar,Value), 
r add It If not subsumed by another already thare ./ 
(call(A) ; assertz(A),I, 
r retract flrst vlilue If now too many */ 
( 

, 

Self <- [cardlnallty_vlolatlon,lvar), 
retract(lvar(SeN ,Ivar ..J) 

true 
) 

Self <- [error,"lncorrect new value for an attributel", 
[SeN ,Ivar, VaiueD 

),1 
) 

r cardlnallt/_vlolation/1 *' 
ivar(objects,method, 

[ 

)). 

[cardlnallty_vlolatlon,Self,lvar), 
( 
ivar(SeN,class,Class), 
Class <- [cardlnallty,lvar,Max), 
nonvar(Max) , 
A = ivar(Self,lvar,J, 
counCclauses(A,N),I, 
N>Max 
) 

r geCvalue/2 *' 
r get a known value * / 
ivar(objects,method, 

[ 

)). 

[geL value ,Self,lvar, Value). 
( 
ivar(Self,lvar,Value) 
) 

r get a default one if permitted and none known *' 
Ivar(objects,method, 

[ 
[geLvalue,SeN,Attr, Value), 

( 
not ivar(Self,Attr,J, 
ivar(Self,class,Class), 
Class *<- [defauh,Attr,Value) 
) 
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t 

( 

)). 

r get a known value, no detau" tl 
Ivar(objects,method, 

( 

)). 

[geLvalue_no_default,Self,Attr, Value], 
( 
lvar(Self ,AHr, Value) 
) 

r Instance_varlable/1 t, 
r Name Is an Instance_variable of Self tl 
Ivar(objects,method, 

[ 

)). 

[lnstancs_variable,Self ,Name], 
( 
Self t<_ [kind __ of,Class), 
ivar(Class,lvar,Name::..) 
) 

r changediO t, 
ivar(objects,method, 

[ 
[changed,Self), 

( 
forall(iYar(Self ,dependant,Dep), 
Dep <- (update,Self)) 
) 

)). 

r update la t, 
ivar(objects,method, 

[ 

)). 

[update,.J, 
( 
true 
) 

r broadcastl1 t, 
ivar(objects,method, 

[ 
[broadcast,Self ,Signal). 

( 
forall(IYar(SeH ,dependant,Deps), 
Dep <- [signal,Self,Signal)) 
) 

)). 

r slgnaV2 t, 
r destruction signai received; remaye dependency IInk t, 
ivar(objects,method, 
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[ 

]). 

[slgnal,Self,lnstance,destroyed), 
( 
Self -<- [dependancon,lnstance] 
) 

r do nothlng: should be redeflned by subclasses *' 
Ivar(obJects,method, 

[ 

)). 

(slgnal,_,_,Slgnaq, 
( 
Signai \ •• destroyed 
) 

r prlncstrlng/1 *' 
ivar(objects,method, 

[ 

)). 

(princstring,Self ,Ps], 
( 
Ivar(Self ,class,C), 
strll'1Q..atom(S,C), 
concat("an Instance of ",S,Ps1), 
concat(" named ",Self,Ps2), 
concat(Ps1,Ps2,Ps) 
) 

r responds_tol1 *' 
Ivar(objects,method, 

( 

)). 

[responds_to,Self ,MethodlN], 
( 
Self *<- [klnd_of,Class], 
IisCoUength(N,Args1 ), 
ivar(Class,rnethod,[[Method,-1Args1 ],-1 ) 
) 

r should_notjmplement/2 *' 
ivar(objects,method, 

[ 

)). 

(shoukCnoUmplement,Self ,Method,Args), 
( 
·;tril'1Q..atom(M,Method), 
ivar(Self ,class,Class), 
strin~atom(C,Class), 
concat(M," should have been deflned in a subclass of ", 

E1), 
concat(E1,C,E), 
Self <- (error,E,(Self,Method)) 
) 
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( 

( 

r kincLof/1 *1 
ivar(objects,method, 

[ 

)). 

[klncLof ,Self,Class), 
( 
lvar(Self ,class,Class) 
) 

Ivar(objects,method, 
[ 

)). 

[klncLof,Self,Class), 
( 
Ivar(Self,class,C), 
C *<- [soreot,Class) 
) 

r error/2*1 
Ivar(objects,method, 

[ 

)). 

[ error,_,Message,Context), 
( 
stdio(Si,So), 
open(soap_err,9:10,8:60,w:red,"SOAP ERROR"), 
stdio(soap_err), 
write(Message), 
cursor(soap_err,3:0), 
write("Context: "), 
write(Context). 
cursor(soap_err,5:41 ), 
getkeyU, 
strtio(SI,So), 
break, 
close(soap_err), 
I,fail 
) 

r selCdestructlO *1 
Ivar(objects,method, 

[ 

)). 

[seICdestruct,Self) , 
( 
1* undo dependance links *1 
Self <- [broadcast,destroyed), 
forall(ivar(Self ,dependanc on,O), 
Self <- [remove_dependant,O)), r hook *1 
r remove Self as instance */ 
Ivar( Self ,class, Class), 
Class <- (removeJnstance,Self), ,. hook *1 

forall(retract(lvar(Self ,-.....),true) 
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o r adcLdependantl1 */ 
Ivar(objects,method, 

[ 
(add_dependant,SeIf,Dep), 

( 
Self +<- [dependant,Dep) 
) 

)). 

r remove_dependant/1 */ 
Ivar(objects,method, 

[ 
(remove_dependant,Self ,Dep), 

( 
Self -<- [dependant,Dep] 
) 

)). 

r any _atorn/1 

r any _atorn/1 */ 
Ivar(objects,method, r verifier */ 

[ 

)). 

[any_atorn,_,Terrn), 
( 
atom(Term) 
) 

r any...,positive_integer/1 *' 
Ivar(objects,method, /* generator */ 

[ 
[any...J)Ositive_integer,_, Terrn) , 

( 
a_number(Term) 
) 

)). 

r any~iven_nurnber/1 *' 
ivar(objects,method, '* verifier '" 

[ 
[any~iven_nurnber,_, Terrn) , 

( 
nurnber(Terrn) 
) 

)). 

r any_cldss/1 */ 
ivar(objects,method, 

[ 
r generator "/ 

[any_class,-,Class), 
( 
classes "<- [has_lnstance,Class) 
) 
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<-

(~ 

)). 

r any_lnstance'1 *' 
Ivar(objects,method, 

[ 
r generator *' 

». 

[any_lnstance,_,lnstance), 
( 
abjects *<- [has_instance,lnstance) 
) 

r any_klnd_ofl1 *' 
Ivar(objects,method, 

[ 
r generator *' 

». 

[any_klnd_Of,_,I,Class), 
( 
Class *<- [subsumes,Sort), 
Ivar(Sort,lnstance,1) 
) 

r any_lvar_deflnltlon/1 *' 
Ivar(objects,method, r verifier *' 

[ 

). 

[any_lvacdefinition,Self,lvacdef), 
( 
Ivacdef .. (Ivacname::Def), 
Def = .. [Known_ocnot,Card,Domain), 
(Known_ocnot == known ; Known_ocnot == can_be), 
(var(Card) ; Integer(Card),Card > 0), 
(var(Domain) ; atom(Domain) ; Iist(Domain) ; 
tuple( Domain)), 
'* ivar's name can not be confused with any LOCAL 

method's name (it will shadow inherlted methods of 
the same name) *' 

not( ivar(Self,method,[lvacname,J.J,~) 
) 

r any _method/1 *' 
ivar(objects,method, 

[ 
r verifier *' 

». 
r send/2 */ 

[any_method,Self,Clause), 
( 
Clause - [[Name.VarIArgs)..j, 
var(Var), 
Iist(Args), 
r method name can not be confused wlth an (inherited) 

Ivar name*' 
not (Self *<- [sort_of,Sort), 
ivar(Sort,ivar,Name::.J) 
) 
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u r An object 18 asked to send a determlnlstlc message ., 
lvar(obJects.method. 

[ 

)). 

[send.Self.Reclplent.MessageJ. 
( 
(lIst(Message). 
r ln pre-proce8sed format ., 
Recipient <- Message 
• 
Message - .. Message1. 
r needs to be pre-processed *' 
Recipient <- Message1 

),1 
) 
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( 

r ~LASSES 

wlth Ivars: lvar,lnstance,superclass,subclass,method 

wlth methods: adc:Lsubelass/1, ackLmethod/3, remove_method/1, 
add_lvarl2,remove_lvar/1 ,remove_'nstancel1, 
remove_subclass-"nkl1,defauItl2, 
cardlnallty/2,ln_domaln/2, seICdestruet/O, 

sorCofl1 ,subsumes/1, has_lnstance/1 
·1 

prin'-string/1 , 

r the lvar,lnstance,superclass,subclass and method Instance variables are clrcularly Inherited 
slnee CLASSES Is an Instance of CLASS_CLASSES whlch Is a subelass of CLASSES ., 
Ivar(classes,lvar,lvar::knownL,any -'var_deflnltlon». r strange Ioop·, 
Ivar(classes,lvar,lnstance::knownLany_atom». 
ivar(classes,lvar,superclass::known(1 ,any _class». 
lvar(classes,lvar,subclass::knownL,any_atom». 
Ivar(classes,lvar,method::knownL,any_method». 
r ·1 
Ivar(classes,superclass,objects) . 
Ivar(classes,subelass,class_objects). 
Ivar(classes,subclass,metaclasses). 
Ivar(classes,class,class_classes). 

r methods·' 

r adcCsubclassJ1 ., 
ivar(classes,method, 

[ 

)). 

[ackCsubclass,Self,Name), 
( 
,. not an object already ., 
not Ivar(Name,-,.J, 
,. give It a properly oonnected metaclass, thus making 

it an object ., 
Ivar( SeH ,class, Meta) , 
Meta <- [new,Name), 
r connect il *1 
assert(ivar(SeH ,subclass,Name», 
assert(ivar(Name,superclass,SeH» 
) 

r remove_subclass_link/1 ., 
r removes both subelass and associated metaclass connections *' ivar(classes,method, 

[ 
[remove_subelass_link,SeH,Name), 

( 
retracl(ivar(SeH ,subclass,Name», 
ivar(SeH,class,Meta), 
lvar(Name,class,SubMeta), 
retract(lvar(Meta,subelass,SubMeta» 
) 
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f) -

)). 

r add_n18thod/1 *1 
Ivar(classes,method, 

[ 

)). 

(add_method,SeIf,Method), 
( 
Self +<- [method,Method] 
, 
Self <- [error,"'nvalld methodl",[Self,Method]],1 
) 

r remove_methodl1 *1 
Ivar(classes,method, 

[ 

)). 

(remove_method.Self .predlN), 
( 
IIscoUength(N.L). 
Head • [Pred..jL). 
forall(Self -<- [method,[Head.J1.true) 
) 

Ivar(classes.method. 
[ 

)). 

[remove_method.Self.Pred), 
( 
Pred\-/LJ. 
Head • [Predl-U, 
forall(Self -<- [method,(Head.J),true) 
) 

r removejnstance/1 *1 
Ivar(classes.method. 

[ 

)). 

[remove_instance.Self .Instance). 
( 
retract(ivar(Self ,instance. Instance) ) 
) 

r add_ivar/1 *1 
ivar(classes,method, 

[ 
(add_lvar.Self.Name::Deij. 

( 
( 
Ivar(Self.lvar,Name::J.I. 
Self <- [error."Can't add Ivar; It already exlstsl". 

[Self.Name.DefD 

( 
Self +<- [ivar.Name::Def] 
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( 

)). 

, 
Self <- [error,"lIIegal Ivar deflnltionl", 

(SeH,Name,Def]] 
),1 

),1 
) 

r defauH/2 ., 
Ivar(classes,method, 

( 

)). 

[defautt,Self, Ivacname, Default), 
( 
Ivar(Self,ivar,lvacname::Def), r its loca'*' 
Def - .. [can_be,_,Domain), r if can be defaulted */ 
(var(Domain) 

(list(Domaln'"rnember(Defautt,Domain) 
, 

) 
) 
) 

Domain - .. [PredIArgs), 
Generator - [Pred,DefaultIArgs), 
Self * <- Generator 

Ivar(classes,method, 
[ 

)). 

[defautt,Self ,Ivacname, Defautt), 
( 
,. It nust be Inherited *' 
not (Ivar(Self,lvar,lvacname::-l), 
Ivar(Self ,superclass,Super), l, 
Super ·<-[default,lvacname,Default) 
) 

r In_domain/2 */ 
ivar(classes,method, 

[ 
[ln_domaln,Self,lvacname,Value), 

( 
Ivar(Self,ivar,lvacname::Def), r it's Iocal*' 
De' ..... L_,Domain), 
(var(Domain) 

) 
) 

(list(Domain),member(Value,Domain) 

) 

Domain - .. [PredIArgs), 
Verifier - [Pred,ValueIArgs), 
Self <- Verifier 
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û 
». 

Ivar(classes,method, 
[ 

». 

[ln_domaln,Self ,Ivacname, Value], 
( 
r It must be inherited -, 
not (ivar(Self,ivar,lvacname::-l), 
ivar(Self ,superclass,Super) ,l, 
Super <- [ln_domaln,lvacname,Value] 
) 

r self_destruct/O-' 
ivar(classes,method, 

[ 

». 

[selCdestruet,Self], 
( 
r destroys ail instances-' 
forall(ivar(Self,instance,I), 1 <- [seICdestruct», 
,- destroys itself as a class -, 
Ivar(Self ,superclass,Super), 
ivar(Self ,class,Meta), 
Ivar(Super,class,SuperMeta) , 
r reconneets subclasses and thelr metaclasses·' 
forall(ivar(Self,subclass,Sub), 

( 
Sub <- [new_superclass,Super). 
ivar(Sub,class,SubMata), 
SubMeta <- [new_superclass,SuperMeta) », 

r destroys Itself as object ., 
Super <- [remove_subclass_link,Self), 
Self <- [self_destruet] @ classes, 
Meta <- [selCdestruct] r metaclass destruction ., 
) 

r new_superclass'1 ., 
ivar(classes,method, 

[ 

n· 

[new_superclass,Self,Super], 
( 
,- disconnects and reconnects ltself -, 

retract( ivar( Self ,!uperclass, OldSuper», 
retract(ivar( OldSuper, subclass,Self», 

assert(ivar(Self,superclass,Super», 
assert(ivar(Super,subclass,SeIf)} 
) 

r prlnCstring/1 ., 
ivar(classes,method, 

[ 
[prinCstring,Self,Psl, 

( 
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concat("a class named ",Self,Ps) 
) 

)). 

r cardlnallty/2 */ 
Ivar(classes,method, 

( 
(cardlnallty ,Self,lvacname,Card), 

( 
ivar(Self ,lvar,lvacname ::Oef), 
Oef = .. LCard,.J 
) 

)). 
Ivar( classeS,mettlOd, 

[ 
[cardinality,Self,lvacname,Card), 

( 
not ivar(Self,ivar,lvacname::Oef), 
ivar(Self ,superclass,Super), l, 
Super <- [cardinality,lvar_name,Card) 

)). 

r sorCof/1 */ 
Ivar(classes,method, 

( 

)). 

[sorcof,Self,Self), 
( 
true 
) 

Ivar( classes,method, 
( 

[sorCof,Self,Sort), 
( 
ivar(Self ,superclass,Super), l, 
Super * <- (sort_of ,Sort) 
) 

) . 

r subsumes/1 */ 
Ivar(classes,method, 

[ 

)). 

[subsumes,Self,Self], 
( 
true 
) 

Ivar(classes,method, 
[ 

(subsumes,Self,Subs), 
( 
Ivar(Self ,subclass,Sub), 
Sub *<- (subsumes,Subs] 
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]). 

r has_lnstancel1 */ 
ivar(classes,method, 

[ 
[has_lnstance,Self,lnst), 

( 
Self • <- [subsumes,Class), 
Ivar(Class,instance,lnst) 
) 

]}. 
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(, r METACLASSES 

wlth Ivars: none yet 

wlth methods: 

*' 
new'1, s81CdestructlO 

Ivar(metaclass8s,superclass,classes). 
Ivar(metaclasses,class,class_rnetaclasses). 
Ivar(metaclasses,lnstance,class_metaclasses). 
Ivar(metaclasses,lnstance,clals_obJects). 
Ivar(metaclasses,lnstance,class_claslI8s). 

r methods *' 

r newl1*' 
r Glven a class, creates the correspondlng metaclass and connects Il as 

Its subelass *' 
Ivar(metaclasses,method, 

( 

)). 

(new,Self,Name), 
( 
concat('class_' ,Name,Meta1), 
strincLatom(Meta1,Meta) , 
assert(iva~Setf ,subelass,Meta», 
assert(lvar(Meta,superclass,Self» , 
assert(lva~Meta,instance ,Name», 
assert(lva~Name,class,Meta», 
assert(ivar(metaclasses,lnstance,Meta», 

assert(ivar(Meta,class,metaclasses» 

r self_destructlO *' 
r simple self_destruction *' 
Ivar(metaclasses,method, 

( 

)). 

(selCdestruct,Self], 
( 
(retract(ivar(Setf I-,J) ,fail 
, 
true) , 
retract(ivar(metaciasses,instance,Self» 
) 
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wlth Ivars: cnone> 
with methods: <none> 

*' lvar(class_classes,I'I.Jperclass,class_objects). 
lvar(class_classes,lnstanc8,cIa88es). 
lvar(class_class8s,class,m8taclasses). 
Ivar(class_clasS8s,subclass,cla8S_m8taclasses). 
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whh Ivars: <none> 

whh methods: 
*/ 

new/1, aIUnstances/1,remove_aIUnstanceslO 

Ivar(class_objects,class,metaclasses). 
Ivar(class_objects,superclass,classes). 
Ivar(class_objects,subclass,class_classes). 
Ivar(class_objects,lnstance,obJects). 

r methods */ 

r new/1 */ 
Ivar(class_objects,method, 

[ 
[new,Self,Name), 

( 
SeH <- [new_name,Name], 
r put in new object (avold message passing) *' 
asserta(lvar(Name,class,SeIf», 
asserta(lvar(Self,lnstance,Name» 
) 

)). 

1* new_name/1 *' 
Ivar(class_objects,method, 

[ 
[new_name,SeH,Name), 

( 
var(Name), 
SeH *<- [gensym,Name], 
not ivar(Namet-,-> 
) 

)). 
Ivar(class_objects,method, 

[ 

)). 

[new_name,SeH,Name), 
( 
nonvar(Name), 
not Ivar(Narnet-,-> 
) 

r gensym/1 */ 
Ivar(class_objects,method, 

[ 
[gensym,SeH ,Name], 

( 
a_number(N), 
strlnsLatom(S1,SeH), 
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() 

)). 

concaWl.-klncLoC·,81,S2), 
strlng..Jnteger(S3,N), 
concat(S2,S3,S4), 
strll1O-atom(S4,Name) 
) 

r aiUnstancesJ1 *' 
Ivar(class_objects,method, 

[ 

)). 

[alUnstances,Self ,List), 
( 
bagof(I,Self *<- [has_lnstance,I],lIst) 
) 

r remove_alUnstancesJO */ 
ivar(class_obJects,method, 

[ 

)). 

[remove_aIUnstances,8elf), 
( 
10rall(8elf *<- [has_instance,I], 
1 <- (seICdestruct)) 
) 
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( r CLASS_METACLASSES 

wlth Ivars: none yet 
wlth methods: nona yat ., 
Ivar(class_m8taclasses,superclass,class_classes). 
Ivar(class_m8taclasses,class,metaclasses). 
Ivar(class_m8taclasses,lnstance,metaclasses). r clrcularlty·/ 
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