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ABSTRACT

The handling of topologic%i aspects in baundary valge problems of erigineering

.

2] -

electromagnetics 1§ offen(;‘considéred to be an engineer’s art and not a science. This
thes;is is an attempt to show that‘ the opposite is true. Through the use of differential
forms and rudimentary concepts from homology theory a paradigm variational boundary
value problem is formulated and investigated. It is seen that reasoning in terms of the
Tonti diagram for this problem may lead to false conclusions if coh‘omology groups are
ignored. A‘s a prelude to this investigation, a suitable orthogonal decomposition of

differential forms is derived and the roles played by the long exact homology sequence

and topological duality theorems for compact orientable manifolds with boundary are

]

.. considered in detail.
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liESUME . {4 - S

L'utilisation correcte Hes aspects topologiques des problémes avec conditions aux

¥

frontiéres tels que rencontrés en élex-:ti'omggnétismq, est souvent considérée comme un -
art plutét qu'une science. Cette thése tente de démontrer le contraire. En utilisant
des formes différentiablesiet des conce;.)ts rudimentaires de la théorie dg i’hornologie, un
modéle de probléme vaéiatl nnel avec conditions aux frontiéres est f\orm'ulé, puis analysé.
Il est démontré que, pour ce prob’léme, les raisonnements.utilisant les diagrammes de
Tonti peuvent conduirent a d¥s rfésulfats erronnés si les groupes de cohomologie sont

* ~
ignorés. Comme préjude & cette investigation, un théoréme sur la décomposition or-

-thogonale des formes différentiables est présenté et les réles joués par la longue s¢quence

"

* exacte d’homologie et les théorémes de dualité pour des variétés différentiables, orienta- -
o™ -

P 3

. E3 oy . 1z s ) .
bles, compactes’et avec frontiéres sont considérés.en détail. .
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‘ - : " CHAPTER 1
. I[«ntiroduﬂction and Prerequisite ideas from homology theory .

r
’

,' L)

“It tould be said if all the text that concerned the application of boundary con-
ditions in electromagnetic problems. ard all the topological arguments, were removed.
.from this,book, there would be fittle left. To some extent both toprcs could be said to

be more of an art than a science” .

E.R. Laithwaite,

Inductzon/ ’\/Iachznes for Special Purposes
) " [1966] p. 326.

“It seems probable to the author that many of the objectivély important problems

* in mathematical physics, geometry, and analysis cannot be solved without radical ad-

ditions to the methods of what is now strictly regarded as pure analysis. Any problem
which is non-linear in charactero which involves more than one coordinate system or
ni more than one variable, or whose structure is initially defined in the large, is I1ke1y to
require considerations of topology and group theory in order to arrive at its meaning
and its solution. In the solution of such problems classical analysis will.frequently ap-
pear as an instrument in the small, mtregrated over the whole problem with the aid of

group theory or topology

'
«
I

. - | . Marston Morse,

a
\ o '

The Calculus of Variations in the Large

. . ‘ ; ’ l1934' p. 111
# S, g \,/ o o\‘“p‘..v_h__‘
“We are here led to considérations beIongmg to the Geometry of Position. a subject
wh:ch though its impoftance was pointed out by, Letbmtz and zllustrated by Gauss, has

been little studied.” v !
e L I !
(4] ]
. , , ! = JamesClcrch/[axwell
i - ‘ ﬁ: A Tfreatzse on EleZ‘tnczty and Magnatzsm
- { '[1891] Art. 17
oL l/ \
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1.1 Introduction U

The purpose of this thesis is to show how homology groups play a key role in deriv-
ing orthogonal decompositions of differential forms which enable a variety of questioris
associated with variational boundary value problems of electromagnetics to be formu-
lated and answered in a general way. More precisely, an orthogonal decomposition and
a paradigm problem will be developed and it will be seen that questions regarding exis-
tence of potential, gauge tra.ps’formations,-and.ex"lstence of solution can only be answered
in a complete way if information concerﬁing certain relative homology groups is used.
The classical theorem of Helmholtz is an orthogonal decomposition which can be used

to give complete answers to the questions which will be adressed in the case where the

region of interest is IR® and the vector fields vanish at infinity.Unfortunately, boundary

bk » . . .
valae~problems of computational electromagnetics are usually set in compact regions

whic'h may have topological intricacies not encountered in R3. Thus, there is a need for
variants of the Helmholtz Theorem for finite regions of arbitrary topology. In classical
electromagnetics the need for such theorems was made obvious at an early stage in
thf area of cavity resonators throug the early papers of Teichmann and Wigner 1953|,
Kurokawa {1958 and Van Bladel 19601, [1962|. For bounded regions {2 the variants of
the Helmholtz theorem decompose a vector field into the grdadient of a scalar function,
the curl of a vector field, and a harmonic vector field which is both irrotational and
solenoidal. In Aadvditio’n, each of these three subspaces is subjected to cer}:ain boundary
condmons There have been many excellent papers on this subject, fO: example, Weyl
1940, Bykhovskn and Smirnov 1960], Werner [1963] [1983] Foias and Teman [1978],
and Saranen 1982, 1983i. Although most authors have stressed the interplay between
the harmonic vector fields and the topology of the region 2, to the best of the author’s

knowledge, the electrical engineer has no simple account of how homology groups are

related to orthogonal decompositions and other aspects of boundary value problems.

v 't‘ 2 ‘ ‘
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The interplay between orthogonal decompositions and homology groups of a man-
ifold- has been understood for a long time. In the seminal paper by de Rham 1931 an
isomorphism between the homology groups of a manifold and the cohomelogy groups
defined in terms of differential forms is established. This work prompted a series of in-
vestigations by Hodge 1952 which culminated in the Hodge decomposition theorem —
an orthogonal decomposition theorem for differential forms on closed manifo}ds which is
a generalisation of the Helmholtz Theorem. A nice exposition of the Hodge decomposi-
tion is given in the paper by Bidel and de Rham 1946! while the basic 1dea is explained
by Eckmann [1944!. For manifol'ds with bo;ndary the analogues of de Rham’s theo-
rems were developed by Duff [1952] while the analogues of the Hodge decomposition
are worked out by Duff and Spencer [1952]. The papers by Dyff, Connor, Friedrichs,
Gaffney. Milgram and Rosenbloom, Morrey and Eells should also be consulted. The
book by de Rham [1955] is often considered to mark the end of this cl'assical period.
Modern extensions and applications of the Hodge decomposition in the context of con-
tinuum mechanics are given in the book by Marsden .[1974] and in the paper by Sibner
and Sibner '1970 . All of the fundamental work in this area has been done in the formal-
ism of differential forms and unfortunately, if Ehe author’s experience is any indication,
practical people in computational electromagnetics often regard the formalism of dif-
ferential forms as a plot devised by a group of m;).thematicians intent on undermining
the greatness of Hamilton, Gibbs and Heaviside. Welcome exceptions to this view are
the'book by Balasubramanian et al. [1970] and the pap‘er'i)y Nedelec [1978|. Along an-
other route,.the paper by Milani and Negro [1982] show how the Hodge decomposition’

theorem can be used when prescribing boundary conditions on a vector potential.

It should be note% that there is along history of singular homology theory in nu-

merical analysis — one merely has to recall the work of Kron [1959] and Roth [1955].

3



More recently, the work of Bossavit 1;.)823, 11983! recognises t‘he essential role played
by homology. groups in boundary value problems for eddyv currents,'while Brown {1984’
has gone a step further and used standard techniques in the homology theory of simpli-
cxe;l complexes to show how topological intricacies associated with the so called T - Q
method can be handled by computer. Considering the work of Brown 1984], Mantyla
1983 . Eastman and Preiss [1984) it 15 obvious that singular homology theory will play
an essential role in the automatic construction of finite element models. Similarly,
through the,work of Kron [1959!, Kondo !195'5}. and Whitney 11957 one can see that
the practicioners of the finite element method have done very little to keep in touch
with useful techniques developed in algebraic topology. This view is clearly reinforced
by the work of Baker [1982], Komorowski [1975], and Dodziuk (1976, 1977‘, 1981 and
1982: These recent developments relieve much of the author’s guilt about using the

\ » .« . . . .
words “homology group” or “differential form” in an engineering thesis.

Certain accomodations have been made for tbe audience of this thesis. Fi'rstly the
calculus of differential forms (d, A, x,etc) is avoided as much ag possible in Chapter 1.
This enables the reader who has little inclination to learn about differential forms to get
an intuitive appreciation of ‘the formalism without being forced into any calculations.
Secondly, almost all questions of analysis have been ignoreci in this th.esisf [n‘partic-
ular, facts concerning topological spaces, and discussions of dire'ct; and inverse limi'ts
in the definitions of various cohomology theories, have been avoided while orthogonal .

. . .
decompositions are to be understood in the pre-Hilbert séace sense. Thirdly, in order
to avoid boredom on the part of the uninitiated reader, the development of homology
groups is entirely heuristic and all schemes for their compnutation have been ignored.
This enables one to apﬁremate the usefulness of homology‘theory in electromagnetics

at the earliest possible stage. [t is felt that making these accomodations does not de-

ter from the message of the thesis since every effort has been made to ensure that the

4



bibliography contains the material which fills in the gaps. Furtherrnore,. it is felt that
concentrating on the 1nt!uit1vg Lonséquences of homology theory without regard to any
partictilar scheme of computation s justified since the Steenrod axioms for a homology
theory (see for example Hu 1966.) enable one t;{/talk about the unique consequences of

a homology theory without regard to how homology is computed.

The objective of this introductory chapter is to give a heuristic appreciation of the

formalism of homology theory in the context of boundary value problems of classical

. electromagnetics. The handling of topological aspects in these problems is often con-

-

sidered to be an enginéer’s art and not a science, however, the author hopes to indicate
how homology groups totally characterise the relevant topological aspects. The first
step in this task is to formalise the geometric intuition gair{ed through using Maxwell's
equt;tionos in integral form. Hence the only prerequisite knowledge assumed for this
ingodu‘ctory chapter is familiarity with Maxwell’s equations ?n integral form, simple
vector analysis, and an aquaintance with linear space jargon. The basic reference for

linear algebra is taken to be Halmos {1958].

1.2 Chains, Cochains and Integration .

Homology theory characterises certain problems which arise in the use of the inte-
gral theorems of Gauf,s; Green, Newton-Leibnitz, Stokes and their generalistion. Stokes’
Theore}rl on manifolds which may be consid;ared to be the fundamental theorem of mul-
tivariable calculus is the generalisation of these classical integral theorems. In order to
appreciate how these problems arise, the process of integration must i)e reinterpreted

in an algebraic manner.



-

Consider a n-dimensional region (2 and let the set of all possible p-dimensional
regions, over which a p—'f\old integration can be performed, be denoted by C,(Q)1. Hére
it is understood that 0 < p < n and a O-fold integration is the sum of values o
function evaluated at some finite set of points. The elements of C,(Q2) will be called
p-chains. In order to serve their intended function, the elements of é'p(ﬂ) must be more
than p—dimens‘ional surfaces, for in evaluating integrals it is essential to associate an
orientation to a chain. The idea of an orientation is crucial if one is to consider the

oriented boundary of a chain; for example

Oc=b-a aS=el+02+C3+c4‘

The set of integrands of p-fold integrals is called the set of p-forms (or p-cochains) and

is denoted by C?(Q1). Thus for ¢ € Cp(N2) and w € CP(N) the integral of w over ¢ is

[

and hence integration can be regarded as a mapping:

denoted by

/:c,,(n)ch(n)qm; 0<p<n \

' An informal approach is required if one is to avoid a barrage of formalism.



{ ' T,
where R is the set of real numbers. Integration, with res'pect to p-forms, is a linear

'dﬁe&@.mon: that is. given a'.a? = R,w,wq € CP(N) and ¢ £ Cp(N):
N '

/alwl + awe = al/wl -rag/w2.
[ (o] [

Thus CP(Q1) may be regarded as a vector space and as such it can be denoted as
CP(Q1, R). Similarly, it is convenient to regard Cp (1) as having some algebraic structure.
For example it is often {onvenient to consider it as an abelian group as the following

example will show.

Fig. 1

When analysing an ideal transformer, a current ca.rryirfg coil with n turns which
can be considered as a 1-chain is modelled by n copies of another 1-chain as shown in

Fig. 1. Calculating the voltage induced in loop c in terms of the voltage of loop ¢’ yields

, ) Vc:/E-tdlzf E-tdl=n/E-tdl=nVc,.
¢ ne! T o "

Thus in this case it is convenient to regard linear combinations of 1-chains with

integer coefficients as 1-chains. In this.way C, (IR®) becomes an abelian group written

T ‘

o L .
J- ol

FUR
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additively That is, for all c.c/,c" & C(R?®)
¢~ € C (R?)
¢+ (x¢)=0

c+0=c¢c

c—¢c =c+c¢

-

o
n

ct+(c+c")=(c+c)+e¢

v
- -

- P . ®
Note that the inve-x:é%"gperation in the group reverses the orientation of the chain, that

is

!

Similarly, given any n-dimensional region (1, the set of p-chains Cp(ﬂ) can be con-
sidered to be an abelian group by taking linear combiantions of p-chains with coefficients

i‘r&‘\ Z, where Z is the set of integers. This group will be denoted by
C,(0,Z)

and called: “the group of p-chains with coefficients in Z”.

If in the above construction, linear combinations of p-chains with coeflicients in

[y

the field R are taken, the set of p-chains can be regarded as a vector space. This vector”

space will be used extensively in this thesis and can be denoted by

’
-

Cr(OR)

v

and called “the group of p-chains with coefficients in'IR”. In this case the following is

true. Fora;,a; € R,c1,¢c3 € Co(,R),w € CP(,R), .

1
/ w = al/ w+a.2/ w "\
ajcy+agey 31 €2,

t

8 ¢ . A
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In a similar fashion. taking a ring R and forming linear combinations of p-chains

with coefficients in R, an‘ R-module! is obtained:
Cuo(, R)

which is called: “the group of p-chains on ¥ with coefficients in R”. This constr.uction_
has as special cases the previous two. Also, for p-cochains it is possible to construct the

analogous p-cochain groups; there will be no need to do so in this thesis.

‘In order to resolve topological problems arising in multiple integration, it is suf-
- " -
ficient to regard the set of p-chains as a vector space. However, for the purposes of
numerical computation it may be advantageous to consider p-chains with coefficients
in Z. For this reason only the coefficients in IR or Z are considered in this thesis.
Furthermore, for simplicity, the following notatgon will be adopted
Cp(02) = Cp(0,IR)
4
CP(0) = CP(N,R). g
° For coefficients in IR, it is apparent that the operation of integration can be re-
garded as a bilinear pairing between p-chains and p-forms. Furthermore, for reasonable

-

p-chains and p-forms this bilinear pairing is nondegenerate. That is
W If /sz for all ¢ € Cp(Q), thenw =0
[

and

If /w:O for all w € CP(1), then ¢ = 0.

Although this statement requires some sophisticated discretisation procedure and lim-

iting argument. for its justification. it is sirnple to understand and is quite plausible.

t Knowledge of riﬁgs and modules is irrelevant at this point, the construction of
Cp(f, R) is intended to illustrate how the notation is developed.

9
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In conclusion, it is important to regard Cp(01) and C?(Q) as vector spaces and to

consider integration as a bilinear pairing befween them. In order to feinforce this point

of view, the procéss of integration will be written using the linear space notation:

/cw = [c,<‘u]

that is, CP(Q) is to be considered the dual space of Cp(f2).

1.3 Integral Laws and Homology

\ Consider the fundamental theorem of calculus

its analogues for two dimensional surfaces 1,

/grad¢-tdl=¢(p2)—-¢(p1), ce C(R), éxék\pi—p{

/curIF-ndS= F-tdl, S e C2(0)
S as

"and brethren from three dimensional vector analysis[zﬂ c R?)

5 e
/grad¢.tdl = ¢(p2) ~ o(p1), c€Ci(f), 3¢ = pr— py
/curlF-ndS=/ F-tdl, S e Cqy(N)
s as

/dideV=n F-nds, D € Cs(N).
D ébD

! When dealing with a p-chain ¢, its algebraic properties may be ignored and the

symbol ¢, may be used to denote a point set when no confusion may arise.

10

o~

PR

I - VI P FOY

Man® Ay



\
ant formulations of eleetromagpetics. are special"ii\stances of the general version
»

Stokes’ Theor.em on manifolds.\\The general theorem. which will be developed in \the

- | .

\

rlext chapter, takes the form \

\\‘ d | \\\\ ‘
- S Lo

v

where the linear operator \\ SN

3: ecp(\%) — &C,p_1(0)
p r

, {
J d: @cv-x—ﬁécp(n) -
n P

. A
defined in terms of direct sums are called\t\e boundary and the exterior
respectively (when p-forms aie called p-cochains, d is called the coboxfﬁdary operator).

[

For an n-dimension‘if/gegion (1 the following definition is made:

p<0, p>n.

cP() =0 _ o
o)

In this way, the boundary operator on p-chains has an intuitive meaning which \\
carries over from vector analysis. On the other hand, the exterfor derivative must be .

regarded as the operator which makes Stokes’ theorem true. When a formal definition

e

of the exterior derivative i;>given in the next chapter, it will be a simple computation ~

to verify the special cases-listed'above.

@

2 v

/’_/ " . . N 3
For the time being, let the restriction of the boundary operator to p-chains be

denoted By 9, and the restriction of the exterior derivative to p-forms be denoted by

dF. Thus
Oy : Cp() = Cp_1(Q) ' . ' ,

dP : CP(Q) — CPHL(Q). J

11 .
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Considering various n-dimensional regions {2 and p-chains for various values of p,

it is apparent that

L. ’ : (8p3p+'1)c:50\ for all c € Cpyy (N) L (1)

or. in words, “the boundary of-a boundary is zero”. The interesting question which
°garisés is the converse: “If the boundary,of a p— 1 cliéin is zero, then is the chain the
boundary of some other p-chain in Cp41(02}?” The answer to t‘}\xis is, of course, no in
,genéral, si.nce otherwise the question would not;\bg interesting. However, in order to

give a serious gnswer to the question and to'see its implications for vector analysis more

-

formalism is required.

Rewriting Equation (1) as

J ¢

Image\ap.H C Kernel 3, (2)

© " the question reduces to asking if the above inclusion is an equality. In order to regain
PR
the geometric flavor of the question, define
A
- Bp(N1) = Image 9p+1

Z,(N) = Kernel 3,

where lements of B,(Q) are called p-boundaries and elements of Z,(f) are called p-

" hand is really an inquiry into the size of the quotient group!

r

N ' Hy(0) = Z,(0)/ By (1)

\ ' i

when talking about the cosets of Hp(f1), the following equivalence relation is introduced:

—
1
-

Given z;,22 € Z,(0) -

z) ~ 23 (read 2, is homologous to 2;) if z; — 2; = b for some b € B,(Q)

t  This c\e{1$truction can be performed with any coefficient group. In the present
case Z,(Q1), B,(Q) are vector spaces and H, (1) is a quotient space.

) . 12

cycles. Thus the inclusion (2) can be rewritten as ‘BP(Q) C Zp(Q) and the question at |

.. . i ]
4 N which is called the pth homology group of (1. In order to simplify the language L{lsed
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Fig. 2

Hence z; is homologous to 22 if z) and 23 lie in the s@me coset of Hp(\m. In the present

case Hp(Q) is a vector spﬁcé and the dimension of the pth homology “group” is called
:the pth Betti number. i.e.

: Bp(0) = dim (H,p(11)) .

In order to see what the cosets of H,(12) mean and to get an answer to “the ﬁntere.sting

question”, consider a fe\\av examples. s .
N

-t

Example 1 (A three dimensional example, 8, # 0)

Consider three concentric spheres and let {2 be the three-dimensional shell whose .
boundary is formed by the innermost and outermost spheres. Next, let z € Z2(1) be

the sphere between the mn(rmost and outermost spheres, orlented by the unit outward -

normal. Since z is a closed surface, 322 = 0 however 2z is not the boundary of any three
dimensional chain in (2, that is 2 # dac for any ¢ € C3(1). Hence z represents a nonzero

coset in Hp(f2). In this case 8;((1) = 1 and H,() is generated by cosets of the form \

az + B,y() ‘where'a € R.

8

Example 2 (Another three-dimensional example, §; # 0)

13



Suppose 12 = R is the region occupied by a coffee cup. Let z € Z; () be a closed

curve going around the inside of the handle while 2’ < Zi(R® - Q) is a closed curve

y -

“linking” the handle (see Fig. 2). A little reflection shows that z ¢ B,((}) and that
Bf(ﬂ) = 1, that is, the cosets of Hl(ﬂ) look like ez — B,(0) 'wheré a € R. Dual‘ly,
2l ¢ Bi(R? ~ Q1) and B,(R® — Q) = 1, hence the cosets of H,{R> - () look like

o'z’ + B;(R® - Q)

where a’ € R.

¢ L

Example 3 (0 C R®, looking for Hy(12), Ho(R® - 12)) .

-

Suppose {1 is a compact! connected subset of R® and* 830 = SoUS,US;U...US,

where S; € Z,(0),0 < i < n are the connected components of 330, (Think of 0 asa

piece of swiss cheese). Furthermore, let So be the connected component of 9302 which,

when taken with the opposite orientation, becomes-the ‘boundary of the unbounded
component of IR® - 0. Given that Q is connected, it is possible to find n+1 components

0" of R® — 0 such that

-

‘3391=-Sz 0£1<n - S

It is obvious that S;, 0 < ¢ < n, cannot possibly represent independent generators

of H,(Q) since their sum (as chains) is homologous to zero, that is

f_:S, =330

1=0

or

> n
Y 8. ~o.
3 _*
J[ 1=0
J . . R -
T A compact et in this case, means a closed and bounded set.,

! By an abuse of language, we assume (), € C3(0?) where, when considered as a
chain, 91 has the usual orientation. That is () is considered as both a chain and set.

14
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However, it is quite plausible that Hz_(Q/) is generated by cosets of the form: °

]
!
i
o n I

.

Za‘;‘s; + By(S1). " \
t=1 -

. , .

The justification of this statement proceeds as follows. Choose O-cycles p, (points),

- |- B L3S
0 <1 < n, such that p, € Zo(Q)}) and define 1-chains (curves) &, € C1(R%),.1.& ¢ £ n,
by the fo]lowing:\\
— 5. dc, =.p; — po. o ‘
. © T . . ( . : . i
That is, p;, are n+1 generators of H o{R* -0 1) while the ¢, connect the components
. of R®~ Q. It is apparent that for 1 < 47 < n, ¢, caft-be arranged to intersect S, once .’

and not intersect S, 1*’1 # g. Thls being p.ossxble it is clear that if the ¢, are regarded

(R .
so(@(0e) )1 |

where in the latter case multlples of the O-cycle po can be taken to generate the Oth

as point sets,

uC: uC;

homology group. It is apparent that thxs property cannot be achieved by taking fewer

° ¢
a E

. =than n such ¢,. That is, for every ¢, which goes through {2 there corresponds one and

-

only one gengrator of H,(f). Hence in summary . ) 00
. Ba() == fFo(R>~0) - 1- '
i " ’ @ , . R i
where the n-independent cosets of the form . - L o '
n , - , :
Y S +B(R) “eeR.c ' SR
1=1 ° - {
n ‘ , Y i
e e I i
Y dP +B(R°-0) deR ) i‘
: - j
1':0 . 3 {

g * :
' 15 5
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can be used to generate Hy (), Ho(IR® — (1) respectivelyt.

The general case where {1 may be disconnected is handled by applying the above
argument to each connected component of {! and choosing the same p; for every com-

ponept. In this case it will also be true that

o . . \J (R — Q) = 32(Q) ~ 1.

End of Example 3

Example 4 (2 an orientable surface. H|(f1) of interest)

It is a well known fact that any orientable 2-dimensional surface is hdmeomorpﬁic
to “a sphere with n handles and k holes”. That is, for some integers n and k,'any
v 1

orientable 2-dimensional surface can be mapped in a2 1-1 continuous fashion into some

'

: surface like the one pictured in Fig. 3 (see Massey [1977] Chapter 1 or Cairns [1961]
\ . «
- |
Chapter 2 for more pictures and explanations).

? ) th handle

, P -
Fig 4 j ‘
v ‘ Lo . —

i ’ 5

! The arguments presented here are essentially those of Maxwell (1891) Article 22:

{ ‘ . In his terminology the periphrattic number of a region (1 is G(0).

- ' 16
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Fig 3

/1
Let 11 be the surface described above and let 3, = 2n + k — 1. Consider 1-cycles

z, € Z1(Q),1 <1 < §; where 22,1, 22;, 1 <7 < n is'a pair of cycles which are related
to the yth handle in the way shown in Fig. 4 while z3n4;, 1 < 7 <k — 1 is related to
the yth hole in tMay shown in Fig. 5. Note that the kth hele is ignored as far as the

2, are concerned.

It is obvious that 2z, € Z,(Q?) and 2z, & B, (1) for 1 <1 < ;. What is less obvious

is that A, () can be generated by 3, linearly independent cosets of the fQrm

B
Y az+Bi(0)  a€eR.

1=X1
4

That is, no linear combination with non-zero coefficients of the 2, is homologous to zero

and any l-cycle in Z1(f2) is homologous to a linear combination of the z,. In order to

17



Fig. 5

</

justify this statement, consider O-cycles (points) p,,1 < j < k, such that p, is on the

boundary of the yth hole that is, the p, can be regarded as generators of Hp(3211). Next

define 4, 1-chains ¢, € C(f?) such that

4

22y = C25-1
1<7<n
\ 29;-1 =Cy
ac2n+]:p]_pk 1<j7<k-1L

Furthermore, c, intersects z, once, 1 <1< (7 and does not intersect z; if 1 # (.

4]

Hence pictorially as seen in Fig. 6.

}

Notice that if the surface could be cut along the ¢, it would become simply coni-"
nected while remaining connected. Furthermete it is not possible to make (1 simply
connected with fewer than 3, cuts. Hence, regarding the ¢, as sets, one can write

\ o]
Hl - UC,' =0

=1 )
and the ¢, act ‘Iike branch-cuts in complex analysis. Since removing the ¢, successively
introduces a new generator H,(f1) at each step, it is clear that
| ' 0
Bi() =B =2n+k - i?

18 .



Fig 6

[

and that the z,, 1 <z < f,(Q) are indeed generators of H,(Q).

[
Throughout the above construction the reader may have wondered about the

special status of the kth hole. It should be clear that
k-1

0~ 8200 Y z2n—y + a(kth hole)

=1

hence associating a z2,4k to the kth hole as 22,4, is associated with the jth hole would
not introduce a new generator into Hy((?). Finally, if.( is not connected, then the above

considerations can be applied to each connected component of (1.

End of Example 4

]

Intuitively the ranks of H,(f)) were. respectively, 1,1,n,2n + k ~ 1, in Examples

1,2,3,4. In order to prove this fact, it is necessary to have a way of computing homology.

» 19



From the definiton H,(Q) = Z,(Q), B,{1) involving the quotient of two infinite groups
(vector spaces) it is not apparent that the homology groups should have finite rank! In
general, compact manifolds have homology groups of finite rank. It is not worthwhile
to pursue this point since no method of compu/ting homology has been introduced so
far. Instead the relation between homology ;nd vector analysis will now be explored in

order to show the importance of homology theory in the context of electromagnetics.

1.4 Cohomology and Vector Analysis

b

To relate homology groups to vector analysis consider Stokes’ Theorem -

/dw:/w '
c dc

rewritten for the case of p-chains on ()
[c,dP ™ w! = |8,¢c,w.

Stokes’ Theorem shows that dP~! and 8, act like adjoint operators. Furthermore, since
‘a\,,apﬂ = 0 we have ‘ .
[e,dPdP ™ w] = [Bp4 1, dp_lu;]
= [0pp+16,]

=0 for all ¢ € Cp(NN),w € CP(N).

Thus, assuming integration to be a non-degenerate bilinear pairing gives the operator

“~

equation ,

dPd*"!' =0  for all p.

Hence, sutveying the-classical versions of Stokes’ Theorem it is apparent that the fol-

lowing vector identities

' div (curl) = 0
curl (grad) =0

20
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follow as special cases.

In analogy with the case of the boundary operator, the identity d?dP~! = 0 does
not imply that w = dP~!n for some n € C?~1((l) whenever dPw = 0 and it is useful to

define subgroups of C?(12) ‘as follows: N
Z7(Q) = Kernel (dP),

the group of p-cocycles (or closed forms) on 1 and
BP(1) = Image (dF 1),

the group of p-coboundaries (or exact forms ) on 1. The equation

dPdP~! =0

can thus be rewritten as

B(Q) < Z°(0)

and

HP(Q) = ZP(0)/ BP(9),

3

t4

the pth cohomology group of {1, is defined as a measure of the extent by which the
inclusion misses bemg an equality!. In order not to become topgue-tned when talking
about the cosets of H?(), the following equivalence relation is introduced. Given

2!, 22 € ZP(N),

2! ~ 2% (read z' 15 cohomologous to 2s) g

I The groups BP(Q1), ZP(1) are vector spaces while H?({1) is a quotient space in
the present case since the coefficient group is R.

13
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1f 2! — 2% < bfor some b € BP(N).
That is. 2! is cohomologous to 2? if z! and 22 lie in the same coset of HP((2).

N

The topological problems in vector analysis can now be reformulated in a neat
way Consider a uniformly n-dimensional region 0 which is a bounded subset? of IR

and consider the following questions:

- Given a vector field D such that divD = 0 on {1, is it.possible to find a continuous

vector field C such that D = curl C? -

- Given a vector field H such that curlH = 0in Q, is it possible to find a continuous

1

| S,

sing}le’:\;;lued furction ¥ such that H = grad ¢¥?
[ N ‘
- Given a scalar functhnf@gh\ that grad¢ =0 in . is ¢ =0 in 1?
v / N )
[ )
It is apparent that for p = 2, 1,0 redpectively the above questions have the common

form: Given a w € ZP(fl) is w € BP(f1)? Alternatively, this question can be rephrased

as: Given w € ZP(1), is w cohomologous to zero? LY

Given an n-dimensional {1, suppose for a moment that, for all p, C?(Q) and C,(0)
are both finite dimensional. In this case, the fact that d, and dP~! are adjoint operators

gives an instant solution to the above questions since, the identity

Annihilator(Image d?~') = Kernel (8;)

that is, ‘

Annihilator (BP(Q)) = Z,(0)

4

! Technically speéking {1 is a compact 3-dimensional manifold with boundary ; the
appropriate definitions will appear in the next chapter. '

22



R,

can be rewritten in a more intuitive way:

» € BP(Q1) iff /w =0 forall z€ Z,(0). (3)

\

Next, suppose w € ZP (1) and consider the integral of w over the coset

z+ Bp(0) € Hp(Q).

€

o

'Letting b=0p.1¢ (¢! € Cps1(0)) be an arbitrary element of B,(02) gives

/ W= / w +/ w by linearity ¥
z+b z a :

p-r-l",

=/w+/ dPw by Stokes’' Theorem
z c!

:/w sincew € Z7(N).

Hence, when w € Z7(2), the compatibility condition (3) depends only on the coset of 2
in Hp(Q!). Thus condition (3) can be rewritten as:

w € BP(QY) iffu € ZP(Q) and / w=0, 1<1<6,(0)
.. z

1

* where H,(Q2) is generated by cosets of the form

Bp(£2)

Z a.z, + By(0).
1

1=

It turns out that the result of this simple' investigation is true under very general

conditions. The result of de Rham which is stated in the next section amounts to saying

HP(Q) ~ H,()

=

{ ' Simple since CP(f2),C,(N2) are seldomly finite dimensional.

%

23
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— an 1somorphism obtained through integration — and !

[

3P(Q) = 6,() < : )

where

Bp() =dim Hy(0),  B7(0) = dim H(Q).

. : L , . .
Hence. for an n-dimensional region () the answer to the question: “Given w € ZP(Q) is

/wZO
z

over f,(€1) independent p-cycles whose cosets in H,(() are capable of generating H, ().

z = BP(Q1)? is “yes” provided that

To the uninitiated, this point of view may seem unintuitive and excessively algebraic.

For this reason several examples illustrating de Rham’s theorem will be considered next

along with the original statement of de Rham'’s Theorem.

1.5 19th Century Problems Which Illustrate the Work of George de Rham

In order to state the theorems of de Rham in their original form the notion of a

period is required. Consider a n-dimensional region (. Define the period of w € Z?(Q)

on z € Z,(1) to be the value of the integral

[
. 2 A

Note that by Stokes’ Theorem, the period of w on z depends only on the coset of

z in Hy(Q) and the coset of w in HP((1). That is,

/ w+dP ! —/w+/ w+d”“‘w')+/d”“w'
a8 z

Z—+ P+1‘ p+lC,

=/w+/ de+/ W' by Stokes' Theorem °
Z ! 3p2

= / w since w € ZP(N), =z € Zp(N).

24
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[

Postponing technicalities pertaining to differentiable manifolds, de Rham’s original two

theorems can be stated as follows. Let 2, 1 <@ < §,(Q?) be homology classes (cosets

in H,(Q)) which generate H,(f)..Then:

.1

2)

}

h

A closed form whose periods. on the Z, vanish is an exact form. That is, w € BP(Q)
if w= 27(Q) and
‘ [,,u:o, 1 £ 1< Bp(0);

]

Given numbers a,,1 < ¢ < (,(9), there exist a closed form w such that the period
of wonz isa, 1< i< B,(0R). That is, given a,, 1 <1 < 8p(0), there exists a

w € ZP(N) such that
/Vw:a, 1 <1< 6p(92).

The two above theorems are an explicit wdy of saying that H?(Q1) and H,(Q) are

isomorphic.

The following examples vil’ill illustrate how the isomorphism between homology

and cohomology groups occurs in vector analysis and, whenever possible, the approach

will mimic the nineteenth century reasoning.

Example 5 (? ¢ R? H?(Q) is of coneern)

Let 2 be a three-dimensional subset of R? and consider a continuous vector field

D such that divD = 0 in 0. When is it possible to find a vector field C such that

D =curlC?

If 0 has no cavities, that is if R* ~ Q is connected, then it is safe to say that such

a vector field exists. (i.e. 0 = Ho(2) = H?(1) = 0.) In order to see that there may be

no such vector field C if H2(Q1) # O consider the following situation.

25
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Suppose a conducting ball of radius Al,, centred about the origin in R®, supports
a non zéro net charge Q. Suppose this ball is centred in a spherical metallic shell of
radius 3 and et {2 be the space interior to the shell but exterior to the ball. It is'obvious
that a sphere of radius 2, centered about the origin and oriented by its l}nit outward
normal is not homologous to zero and that f2(2) = 1. Interpreting D as the electric
flux density vector and assuming that it is related to an electric vector potential by the

relation

D=curlC

leads to a contradiction, because calculating the period of the field D over the nontrivial

homology class yields

QZ/D-n:/curlC-ndS
s s

:/ C-tdl=0 since 3§ =0
38
in other words 0 # @ = 0 - a contradiction.

More generally, the “intuitive” condition for ensuring that such-a vector field C
exists if divID = 0 can be given as follows (see also Stevenson (1954), Maxwell (1891)1,
Article 22). {

Consider; again the region 0 of Example 3 where the boundary of 1. had n +
1 connected components S,, 0 < ¢ < n, Sg being the boundary of the ﬁhhounded

component of R? — Q. In this case H,(() is generated by-linear combinations of the S;,

1 < i < n, and the conditions for ensuring that D = curlC in Q1 if divD =0 in Q are:

/D-ndSzO 1< < n=06,(Q) ~
Sl

t When reading Maxwell the following terminology is useful to know:
0 is a periphractic region - H,(Q) # O the periphractic number of {1 — 35(1).

26
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This 1s also the answer to be expected by de Rham’s Theorem. If is interesting to note

that the above integral condition is satisfied identically on Sp in this case since

Oz/dideV:/ D-ndS:Z/ D-ndS = |- D“ndS (
Q an =07 51 So

this reaffirms that
* n
Z S, ~ 0.
1=0

" The case where may not be connected is easily handled by applying the above con-

siderations to each connected component of Q.

End of Example 5 '

Example 6 (' ¢ R3, H°(Q') is of concern).

-

L}et 1 be a three dimensional subset of R® and consider a function ¢ such that
grad¢ = 0 in 1. When is it possible to say that ¢ € B~1(1), that is ¢ =07 If (V' is
connected then ¢ is determined to within a constant (i.e. 8o(f2) - 1< 6°0Q) =1). In
order to see that ¢ is not necesarily a constant if () > 1, consider the situation of

electrostatics:

. Suppose that there are n connected Bodies (2 each carrying acharge@,, 1 <1< n

inside a conducting shell } which supports a charge Qo. Let

0 =Ja.

1=0
Inside each conducting body the electric field vector E = —grad ¢ vanishes. However,

depending on the charges @, and hence o1 the charge
‘n
- - Z"Qt
=0 -

27
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somew here exterior to the problem. it is well known that

6| = ¢, (constants), 1<i<n .

nl
) »

ny

- -

can be assigned arbitrarily. In general, the scalar potential'¢ vanishes only if the above

constants all vanish, hence

ﬂo(n’) =n-+1

This trivial example can be used to illustrate an additional point. In electrostatics

—

it is customary to let {

-0 (datum)

n -
Qo = Z Q. (conservation of charge)
1=1

N

Let ' = R3® — Q where Q1,0 < ¢ < n are the connected components of ' while (1f is

the unbounded compc;nent of V. Using the final equation of Example 3, it is clear that
n= 6?((2) = fo(R®-0) - 1
- ﬁg(n’) - 1

Interpreting B2 (?) as the number of independent charges in the problem and o (') — 1
as the number of indépendent potential differences the above equation says that the

number of independent charges equals the number of independent potential differences.

End of Example 6

»>

JExample 7 (1 a 2 dimensional surface, H'(?) df interest) Let £ be a two dimensional -

. 28
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B

orientable %urface and consider the conjugate versions of the usual integral theoremst: .

) — ’ , )
/curlé-ndl = ¢(p2) — é(p1) ceC () &

[
k3

- aC=P2“P'1

/dideS ={ J-nd ¢ € Cy ().
c de

[y ~

where n is thé\ unit vector normal to the curve ¢. In this case, the operator identity
l‘ '
\

div (curl) =0 -

shows that it is natural to ask the following question. Consider a vector field J such

?

that divd =0 on . When is it possible to write J = curl¢ for some single valued

¢ ¥

stream function ¢?

If O is simply connected!, then it is well known that J = curlg,ie. 51()) =0=
B1(N) = 0. In order to see that it may not be possible to find such a ¢ if Q is néggimply )

\\ connected, consider the following example.
L

Sappose 2 is" homeomorphic to an annulus. On  let J flow outward in=the
- radial direction, and let z € Z,(0) be a- 1-cycle which encircles the hole (see Fig. 7).
Interpreting this situation as a steady current flow on a surface of finite thickness, the

=

periof-of J on the cycle z will be called “the current per unit 6f thickness through 2”

I curlg is defined as ' x grad¢ where n’ is the unjt normal vector to the two
dimensional orientable surface. The notation curl is taken from Nedelec {1978}, p.582.

&
[

I Given a space X, “X is simply connected” means that the first homotopy group
7(X) is trivial which in turn implies that H,(X) = 0 by an old theorem of Poincar€ (see
Greenberg (1981) Chapter 12). Generally speaking, higher homotopy groups, m,(X),

can be defified, but they are useless for computing homology (see Bott (1982) p.225).
- ’
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Fig. 7

and denoted by /. In this case, relating J to a single valued stream functign ¢ leads to

-~

a contradiction since

- O#I:/J-ndl:/curld)-ndl: ¢ =0 since dz = 0.
‘ z z Oz

Hence 0 # [ = 0 - a contradiction.
B
More generally, (see Klein {1893| for more pictures, interpretations and\references

to the nineteenth century literature) consid/ceg/the surface {1 of Example 4 where there
are z,, 1 <1< 3,(Q) =2n +/&— 1 generators of H;(0) and cuts ¢,, 1 <1 < f;(11) such

that
By ()

N =0- U Cq
’ . 1=1

e
was connected and simply connected. Since 1~ is simply connected it is possible to

.

define a stream function ¢~ on 1~ such that

v

&
v

; J=curl¢~ onQ~

30



Letting the current flowing through z, be I,

/J-ndl:[l, "
P-4

)

1t is apparent from the integral laws that
I, = / . curl¢™ = (jump in ¢~ across c,).
z,N0~

« That is @~ 1s in general multivalued and it is single valued if and only if all the periods
of J on the 2, vanish, that is each I, must vanish. Hence J = curl @ on  for some single

valued ¢ if and only if divJ = 0 and

[ama=0 1ci<sm,

t

End of Example 7

Example 8 (1 C IR®, H!(0) is of concern)

Let 2 be a three dimensional subset of R® and consider a vector field H such that

curl H =0 in Q. Is there a sinéle valued function ¢ such that H = grad ¢?

k-4 '
If N is simply connected, that is, if every closed curve in ] Can be shrunk to a

point in a continuous fashion, then it is possible to find such a single valued function
¥. In other words, simple connectivity, H,(?) = 0, and H'(Q?) = O are equivalent

statements in this case.

In order to see that there may be no such function i if 2 is not simply connected,
consider the region 1 to be the regiogexterior to a thick resistive wire connected across a
battery and (' = R® - ) as shown in Fig. 8. Here, ,(Q1) = 8,(?') = 1,z € Z,(?), and

z' € Zi (1Y) represent nontrivial homology classes of H,(f) and H, (') respectively. Let

. Y
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Fig. 8

5,8 € Cz(IRa) be a pair of 2-chains which, when considered as sets, are homeomorphic
4

to discs and

Since the problem is assumed to be static, it is obvious that
curlH =0 in 0

curlE =0 in Q'
and that the periods

‘ . .
/H-tdl:I, /E-tdl=E.M.F.
P z 2!

>

=" are nonzero. However, assuming that E and H can be represented as gradients of single

valued scalar potentials 1)’ and ¥ respectively leads to contradictions since

'62

o¢1=/H/-’t_¢z\=/curl¢-td1= b =0

32
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since dz = 0 and

O;E.M.F.:/E~td1:/ curly' - tdl = Y =0
. z! az!

2!

since 9z’ = 0. In this case, note that

1

H(Q-5)=0
Hi(-S)=0

hence, the magnetic field can be represented as the gradient of a scalar ¢ in 1 - S’ where
the scalar has a jump of value I whenever S’ is traversed in the direction of its normal.
Similarly, the electric field can be represented as the gr%dient of a scalar v/ in ' - §
where the scalar has a jump of value E.M.F whenever S is traversed in the direction
of its normal. Note that 1, ¥’ are continuous 'and single valued on 1, 1 respectively if

and only if

i

I=0, EM.F =0.

Thus 1t is seen that the irrotational fields H in 2 and E in Q can be expressed in terms

of single-valﬁed scalar functions once the cuts S and S’ are introduced.

The general intuitive conditions for representing an irrotational vector field H as
the gradient of a scalar potential have been studied for a long time. See Kelvin [1867],
Maxwell ‘1891 articles’ 18-20, 421 and Lamb [1932} articles 47-55, 132-134, and 139-

141 are #so of in(tgjgst. A formal justification for introducing cuts into a space involves

duality theorems for homology groups of orientable manifolds. These theorems will be

-

! When reading articles 18-20 in Maxwell, the following correspondences are useful
to remember. 1 is acyclic means € is simply connected, Cyclosis means multiple con-
nectivity, cyclic constants are periods on generators of H,(f1). “Cyclic constants® were
usually called “Kelvin’s constants of circulation” in the nineteenth century literature.
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considered in Section 1.10 For the time being the géneral procedure for introducing

cuts will be illustrated by trying to generalize the above case involving a battery and a

wire

Let 0 be a connected subset of R®. The first thing to do is to find 2-chains

S! € Co(IR?), 1 <1 < n which when considered as surfaces satisfy the following:

1) 0—-(U-, S!) is connected and simply connected, and 85/ < ZI(IR.3;Q),2 <i1<n.

2) H,(IR® - Q) is generated by cosets of the form

) alds/+ B (R°-0), a€cR

=1 .

. and n is chosen such that n = 31 (R> — 11). Note that S’ ¢ Bi(R®-10),1 <1 <
B, (R® - Q).

A\l

It turns out that one can also do the reverse, that is find 2-chains S, € C2(IR®), 1 <1 <

n, which when considered as surfaces and satisfy the following:

3) (R®-Q) - (Ur, S:) is connected and simply connected, and 85, € Z1(R2),1 <

1 <n.

4) H( () is generated by cosets of the form

n

Y adS.+Bi(Q) acR

[} 1==1

Nt ot

) and n is chosen such than n = $1(R). Note 95, # By(N),1 <1 < B1(N).

If one is lucky, the 35S, intersect S] very few times and likewise for 85/ and S,. The

result!

A1(R) = b1 (R® — )

! This result was known to Maxwell (1891) Article 18.
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is apparent at this stage. _ '

If curlH =0 in Q) then by the above construction, there exist a

gl(n)
pecla-| |J s
1=1

such that

c A1)
H = grad ¢ on (1 — U ST
1=1

f’
Furthermore the jump in v over the surface S! can be deduced from the periods

H-tdl =1, 1 <1< Bi(D)
as,

-

by solving a set of linear equations which have trivial solutions if and only if all of the

eriods vanish.
P £
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As a simple instance of this procedure, consider a current carrying pretzel R:-0

and its complement (1 as shown in Fig. 9. Here

h

= H - tdl = (current flowing through S,)
38,

B(0) = 3 (R - 0) = 3

3
H=grady onfl- (U 5,’)
) 1=1]

and the jumps in ¢ across S, are given by [,. It is clear that the scalar potential will

be continuous and single valued in (1 if and only if [, =0,1 <1 < 3.

Although this illustration makes the general procedure look like a silly interpre-
tation of mesh analysis in netwofk theory, problems where the 95/ are necessarily not
in the same plane may be harder to tackle as are problems where 35(Q?) > 1. The
case where {1 may be disconnected is handled by reasoning in terms of the connected
components of {1, separately. As a non trivial mental exercise the reader may convince
himself that

-
Bi() =F/(R*-Q)=2n+k -1
when 1 is the two-dimensional region of Example 4. This is actually quite simple when
one realizes that generators of H({) can be taken to be the boundaries of cuts in

IR® - N and generators of H1(1R3 — Q1) can be constdered to be boundaries of surfaces

which intersect (2 along the cuts ¢,, 1 <2 < §,(f1).

1.6 Chain and Cochain Complexes ‘ ,

4

Chain and cochain complexes are the setting for homology theory. Algebraically
speaking, a chain complex C. = {C},d,} is a sequence of modules C, over a ring R and
a sequence of homomorphisms

8p:Cp = Cpy ‘
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v

such that

N

8,18, =0,

t
For the purposes Jf this thesis, the ring R will be R or Z in which case the

modules C, are vector spaces or abelian groups respectively. A familiar example is the

A [

chain complex

C.(%R) = {Cp(ni R), 8,,}

considered up to now. Similarly, one has the chain complex
C.(Z) = {Cp(HZ), 8, }

when the coefficient group is Z.

Cochain complexes are defined immlar fashion except that “the arrows are

reversed”. That is, a cochain complex C* = {CP,dP} is a sequence of modules C? and

homomorphisms .
© 7 ( d? : CP — CP+!
such that ’
dPtld? = 0.
An example of a the cochain complex is \
!
. . C'(®:R) = {CP(M R), d} v

which has been considered in the context of integration!. From the definition of chain
\

! When the coefficient group is not mentioned, it is understood to be RR.
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and cochain complexes,'it is obvious how homology and cehomology are defined:

B, = Image ?,,H BP = Image dr!
Z, = Kernel 9, ~ ZP = Kernel d°
B, Cc Z, B? Cc Z?
H,=2,/B, HP =77/B?

B, = Rank H, P = Rank H?
for homology for cohomology

When dealing with chain and cochain complexes, it is often convenient to supress
the subscript on 8, and the superscript on d® and let d and d be the boundary and®

coboundary operators in the complex where their interpretation is clear from context.

The read'er should realise that the intreduction has thus far aimed to mptivate
the idea of chain and cochain complexes and the resulting,homology and cohomology.
Explicit methods for setting up complexes and computing homology from triangulations
or cell decompositions can be found in many texts (see Massey [1980], Giblin [1981],
Wallace [1957], or Greenberg and Harper {1980|, for example) while computer programs -
to compute Betti numbers and other topological invariants have been around for almost
two decades (see Pinkerton [1966].) In contrast to the vast amount of literature on
homology theory, there seems to be no systematic exposition on its role in boundary
value problems of electromagnetic's — the papers by Bossavit [1981], [1982], Bossavit
and Verité [1982|, (1983], Milani and Negro (1982], Brown [1984|, Nedelec [1978] and

Post [1978], [1984] are valuable first steps.

It is important to realise that the notion of complex is actually a basic idea in
network theory where, if A is the usual incidence matrix and B is the loop matrix of a

network, there is a chain complex
BT A
0 — {meshes} = {branches} —— {nodes} — 0
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(since 48T = 0) in which 2-chains are linear combinations of mesh currents and 1-
chains are linear combinations of branch currents. Taking the transpose of this complex,

a cochain complex Is obtained
B AT
0.« {meshes} —— {branches} & {nodes} — 0

(since BAT = 0) where O-cochains are linear combinations of node potentials and
l-cochains are linear combinations of branch voltages (see Balabanian and Bickart
:1969; Sect 2.2 ) Furthermore, if the network is planar and A is the redg;}ced incidence
matrix obtained by ignoring one node in each connected component of the network,
then the homology of the complex is trivial. Kirchhoff’s laws can be expressed as
The Kirchhoff Voltage Law: v € Image AT “(-or v 15 a l-coboundary)
The Kirchhoff Current Law: 1 € Kernel A (or 1 is a 1-cycle)
so that if v = ATe for some set of nodal potentials e, then Tellegen’s Theorem is easily
deduced:
0= (e, A1) = (ATe,1) = (v,2).

»

Thus Tellegen’s Theorem is an example of orthogonality between cycles and cobound-
aries. This view of electrical network theory is usually attributed to Weyl [1923|, (See
also Slepian 1968, Flanders 1971] and Smale, [i972}). Systematic use of homology
theory in electrical network theory can be found in the work of J. P."Roth (see bibli-
ography) and Chisng [1968] Kron [1959] generalises electrical network theory by intro-
ducing branch relations associated with k-dimensional onés. Unfortunately, by calling
complexes “multidimensional space filters”, Kron manages to confuse much of his audi-
ence — engineer and mathematician alike. An explanati;)n of Kron's method as well as

references to additional papers by Kron can be found in Balasubramanian et. al [1970].

The interplay between continuum and network models through the use of com-

plexes is developed by Branin [1966| and Tonti [1977], and scattered throughout Kondo

39



o

'1955. Examples of cochain complexes for differential operators encountered in the

work of Tonti and Branin are

0 scalar grad frelds | .ur fluz div volume 0
functions vectors vectors densities
curl (grad) = 0

div (curl) =0

for vector analysis in three dimensions, and

F

0. { scalar } grad { 7""[‘1 } curl {densities} — 0

functions vectors

in two dimensions. Note that the above two complexes aré special cases of the complex
C () considered thus far and that when there is no mention of the domain 1 over
which functions are defined, it is impossible to say anything about the homology of the
complex. Hence, unless an explicit dependence on the domain (] is recognised in the
" definition of the complex, it is virtually impossible to say anything concrete about global
aspects of solvability conditions, gauge transformations or complementary variational
principles, since these aspects depend on the cohomology groups of the complex which
in turn depend on -tﬁg topology of the domain 2. Furthermore, imposing boundary
conditions on some subset S C J( necessitates the consideration of relative cohomblogy
groups to resolve questions of solvability, gauge ambiguity, etc., and again the situation
becomes hopelessly complicated unless a complex which depends explicitly on {1 and.
S is defined. The cohomology groups of this complex, which are called the relative
cohomology groups of {2 modulo S are the ones required to describe the global aspects
of the given problem. Rel:ative homology and cohomology groups will be considered in
the next section, and as a prelude, it is necessary to in'troduce the idea of chain and

cochain homomorphisms. y
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Just as groups, fields and vector spaces are examples of algebraic structures, com-
plexes are a type of algebfaic structure and as such it is useful to consider mappings
between complexes. In th(; case of a chain com‘ple’x the useful mappings to consider are
the ones which have nice properties when it comes to homology. Such mappings, called

chain homomorphisms, are defined as follows. Given two complexes
C.={Cp, 0}, C! = {C;,,&;,}

a chain homomorphism

N f.:C.-C!

is a sequence of homomorphisms { f,} such that

fp:Cp = Cy
and
3, fp = fp-10,.
That is, for each p, the following diagram is commutative \TMA
v fp v
C, — ()
3 ia;,
hd fp—-l ,
CP—I = Cp-—i
4, !

In the case of cochain complexes, cochain homomorphisms are defined analogously.

In order to illustrate chain'and cochain homomorphisms, consider a region {1 and

a closed and bourided subset S. ‘:S;ince

C,(S) C Cyl)  for all p
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and the boundary operator 8’ in the complex C.(S) is the restriction of the boundary

operator 4 in C.(Q), C.(S) is a subcomplex of C.(f) and there is a chain homomor-

il

phism
where

is an inclusion. Obviously
Ip-10,¢ = Bptpec  for all ¢ € Cp(S)

as required. Similarly, considering the restriction of a p-form on (1 to one on S for all

values of p. there is a cochain homomorphism
rr:CT(Q) > C7(S)

where

P CP () — CP(S).

If the coboundary operator (exterior derb‘fvative) in C*(Q) is d and the corresponding

coboundary operator in C*(S) is d' then

d'PrPy = P71 dPw for all w € C?(0)

as required.

1.7 Relative Homology Groups

Relative chain, cy;cle, boundary and homology groups of a region 2, modulo a

subset S will now be considered. It turns out that relative homology groups provide
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the generalisation of ordimary homology groups which is necessary in order to describe

the topological aspects gf cochains (forms) subject to boundary conditions.

Consider a region 2 and the chain complex C.{Q) = {Cp(Q1), 3y} associated with

it. Let S be’a compact subset of 1 and C.(S) = {Cp(S5),8,} be the chain complex

5

4y,

assotiated with-.S. Note that the boundary operator of C.(S) is (,ge one in C. () with

a restricted domain. Furthermore,

/ Cp(S) C Cp(02) for all p

i

&
It is useful to define the quotient group

CP(Q’S) = Cp(ﬂ)/cp(s)

— the group of p-chains on ! modulo S — when one wants to consider p-chains on

(1 while disregarding what happens on some subset S. In this way, the elements of

¢

Cp(N,S) are cosets of the form

c+Cp(S) where c € Cp(N). ¢

i

Although this definition makes sense vs:ith any coefficient ring R, when the coeffi-
cients are in IR tHe definitjon of C,(02,5) is 1:nade intuitive if one defines’ C?((2, S) to
be the subset of CP(01) where the support of w € CP((1, S) lies in 2 — S. In this case
it is possible to salvage the idea that integration should be a bilinear pairing bet‘vgeen
C5(9,S) and CP(1,S). That is '

/ L CP(Q,8) x'Cp(2, ) = R J

4

' This argument is intended to be entirely heuristic. ‘ - K
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should satisfy:

I

0 for all w e CP(N,S) = ceCy(S)

0 forall ce Cp(),S) 2w =0

.

/-
-
‘ .
Note that when S = o (the null set) the definitions of relative chain and cochain groups

reduce to those of their absolute counterparts.

Returning to the general case where the chains could be considered with coeffi-

cients in any ring such as IR or Z, the induced boundary operator
8;,' :Cp()/CH(S) — Cpo1 () /Cp-1(S)
makes the following definitions appropriate:
) a3

Z,(0,8) = Kernel | C,(0,5) -5 C,_1(Q,S) |.,

the group of relative p-cycles of ﬂ/glodulo S and
9511
B,(1,S) = Image | Cp+1(0,5) 25 Co(0,S) |,

the group of relative p-boundaries of 2 mod S. Intuitively, relative cycles and boundaries

can be interpreted as follows. Given z,b € Cp(0) .

»

2= Cy(S) € Z,(R,8) if 8z €151 (Cpo1(S))
b+ C,o(S) € By(R,S) if Bpprc—be,(Ch(S))

for some ¢ € Cp41(Q1). Hence, z is a relative p-cycle if its boundary lies in the subset §

* §
while b is a relative p-boundary if it-is homologous to some p-chain on S.

From the definition of dy, it is apparent that

A,y =0,

PP+

44



—

S £

Hence

B,(1,5) C Z,(0.S)

and the pth relative homology group of  modulo S and the relative pth Betti number

of {? modulo S can be defined as follows.
H,(0,5) = Z,(N, )/ Bp(Q,5)
6p(, S) = Rank H, (02, S).

) .
By defining C,(©2,5) = 0 for p < 0 and p > n, the above definitions make it

apparent that

C.(0,8) = {Cp(0,5),8}}

1s a complex Futhermore, if
I - Cpll) = (1, 5)

is the homomorphism which takes a ¢ € C,(f2) into a coset of C,(2,5) according to the

rule »

- u | Jple) =c + Cp(S)

i

then the collection” of homomorphisms j. = {3} is a chain homomorphism

di
trag " >

A
j.: C.(7) = C.(N, S)

since

8;;]})(0) = Jp-10p(c) for all ¢ € Cp(Q2).

Though the definitions leading to relative homology groups seem formidable at first

sight, they are actually quitea bit & fun as the following example shows.

P -
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Fig. 10

Example 9 (a 2-D example)

In this exampl‘e the relative homology groups associated with the crgss-section of
a coaxial cable are considered. The usefulness of relative homology groups will become
apparent in later sections once relative cohomology groups have been introduced. Con-
sider a piece of coaxial cable of elliptic cross section and let 0 be the “insulator” as
shown in Fig 10 and consider 1-chains z, 2/,2” and 2-chains ¢, ¢’ as shown in Fig. 11.

From the picture it is apparent that z,2’, 2" represent nontrivial cosets in Z1(12, 00)

but

(2) ~ 0 in Hy(0,090) since ¢ — z € 11 (C1(N))
n(2") ~n(2") in Hi(0,090) since ¢’ ~ 2’ + 2" €1, (C,(80)) .
However, it is apparent that j;(2’) is not homologous to zero in H,({1,9Q) and that

B1(02,051) =1 so that the cosets of H,(02,d1) look like

N

d ez’ + B,(,00) a€R. .
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. Fig 11

f

Next consider the other relative homology groups. If is obvious that 35(1,90) =

0 since any point in {1 can be joined fo the boundary by a curve which lies in .

Furthermore, considering {1 as a 2-chain in C»(Q2, df1) 1t is apparent that

Q€ Z,(N,090) since 95(N) € 1, (C,(9N))

5

hence, since B({2, 80N) = 0, 11 is a nontrivial generator of H2(,d0) and since the region
is planar, it is plaus.ible that there are no other independent generators of H,(Q}, 9Q).

Thus B2(2, 00) and the cosets of Hg(ﬂ,aﬂ)_ look like

afl a€R.

In the light of the previous examples the absolute homology groups of the region

1 are obvious once one notices that o(Q2) = 1, the l-cycle z is the only independent

generator of H,((2) hence 3;(€2) = 1, and f§,(0) = O since Z,(?) = 0. Hence in summary
Bo() = B2(0,09) =1

B1(0) = 4,(0,00) =1
B2(9) = Bo(2,60) =o.
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o' =8+ 8,
S = S{+S{'

Sy = S}+ S

Fig. 12

Next, in order to exercise the newly acquired concepts, suppose that the capaci-
tance of the cable was to be determined by a direct variational method. In this case it
is convenient to exploit the inherent symmetry to reduce the problem to one a quartef
of the original size. Thus consider the diagram shown in Fig. 12. It is apparent that

for ay,ay € IR, the cosets of H1(QV, S)) and H,(fY, S2) look like

»

a2 + Bl(ﬂ’,Sl)

and

azz, + By (Y, S2)

respectively and that

Z2(0,81) =0 = Z,(, S1).
Hence, it is apparent that:

Bo(Q', §1) = 0 = B,(Q, S)

B, S1) =1 = h(0, Sa)

:82(0,, Sl) =0= ﬂO(Q,v SZ)°

- End of Examplé 9
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Let the pth relative homology group of { modulo a subset S; with coefficient in
Z. be denoted by . .
" H,(N,S.Z)

Thisis an abelian group by construction. By the structure theorem for finitely generated
abelian groups (see Jacobson 1974 Theorem 3.13 or Giblin {1981] Theorem A.26 and
Corollz;ry A.27), this relative homology group is isomorphic to the direct sum of a free
abelian group F on 5,(f), S) generators and a torsion group T on 7,(f), S} generators,
where 7,(2,5) is called the pth torsion number of ! modulo S When homology is
computed with coefficients in IR one obtains all the information associated with the
free subgroup F and no information about the torsion subgroup T. If turns out that
(01, 5) = 01f Q1 15 2 subset of R® and S = ¢. In other words, for subsets of R* the

torsion subgroups of the homology groups

-

Hy (L) 0<p<3

are trivial (see, for example, Massey [1980] Chapter 9 exercise 6.6 for details). The
relationship between Hp(Q?, S, R) and Ho(Q2, S, Z) is important since problems in vector
analysis are resoh‘/ed by knowing the structure of H,(2, S,IR) while it is convenient to
use integer coefficients in numerical computations and determine H,(Q,S.Z). When
H,(Q,5,Z) is found the absolute homology groups with coefficients in R are easily
deduced and relative homology groups with coefficients in R are deduced by throwing
away torsioﬁ information. The following example illustrates a relative homology group

with non trivial torsion subgroup.

Example 10 (Torsion Phenomena Illustrated)

Consider a Mdbius band which is obtained by identifying the sides of a square IZ
as'shown in Fig. 13. Let ©-be the Mobius band and 5 = z; + 2 be a l-chain which

P
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is the edge of the band. Regarding S as a set, the following homology groups will be

deduced;
H (0 2), (0, S;Z).

It is easy to see that the cosets of H,(0;Z) look like

3

ez + B ((; Z), acl

so that 4;(Q7) = 1. In cor'm{st, something really neat happens when the relative homol-
ogy group is considered. Observe that j,(Z) is not hémologous to zero in H,(Q,S; Z),
that is 02 € Cy(S; Z) but there is no ¢ € C(N; Z) such that ¢ — Z € C,(S;Z). Note

however, that the square 2 from which 1 was obtained has boundary
(1Y) =27+ — 2

hence

3y (1) - 25 € 1, (C1(S:2))

or

71(22) ~ 0 in H,(Q, S; Z).
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Thus Z is an element of the torsion subgroup of the relative homology group since it is

not homologous to zero, but a multiple of it is. Similarly:
C iz) £0  m Hy(0, $;1)

I

|

n(2z) ~0 i Hy(Q,S;Z). |

|
|
|
I

The way to see this is to imagine the Mobius band to be made out of paper which can

be cut along the 1-cycle z to yield a surface ). The surface (1 is orientable and

32() =22— 2z, — 2
/

or

2z — 8,(Y) € C,(S; 4).
Hence z and Z are nontrivial generators of H,(1,S;Z). However z ~ 2 since})eferr/ing

back to the picture, it is apparent that

(I =% tz+H—2z,=%+z— 2

A82(1)251—3+52+zb=5—z+zb

/
/

hence /
) E-(—2) - 62(I3) €C1(S;Z)

/
/

3= (2) = 8y(I2) € C1(S: T) |

tilat is
nE) ~n(z) and  51(2) ~ —n(z) an Hi(Q, S;Z4).

Thus, is quite plausible that'

H(N,S;L)~X/2 (the integers modulo 2)

and hence in summary- . ’
Bi(0,5)=0 £(0Q) =1
Tl(n,S) =1 Tl(n) =0,
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/éf()f Example 10

Before considering the role of relative homology groups in resolving topological
problems of vector analysis 1t is useful to consider the long exact homology sequence

since it is the key to understanding relative homology.

1.8 The Long Exact Homology Sequence'

For the purposes of this thesis the long exact homology sequence is a result which
enables one to visuahse a full set of generators for the homology of a region {1 modulo a
closed subset S in situations where one’s intuition can only be trusted with the absolute
homolggygroups of ? and S. To see how the long exact homology sequence comes about,

consider the three complexes:
C.(Q) = {Cp(1),8,}
C.(S) ={Cy(S),0;}

C.(0,5) = {Cp(N, §), 0%}

and the two chain homomorphisms ..

v = {15}, J- = {1}
0-C.(S) 2= C.() & ¢.(n,8) =0

where 13, takes a p-chain on S and sends it to a p-chain which goincides with it on
.S and vanishes elsewhere on {1 — S while j, takes a ¢ € Cp(1) and sends it into
the coset ¢ + Cp(S) in Cp(1, S). It is clear that . is injective, j. is sutjective and that

Image (:.) = Kernel (5.). Such a sequence of three complexes and chain homomorphisms
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! .j. 1s an example of a “short exact sequence of complexes”. When written out in full,

the situation looks like:

- ) v ) +
0 — CpulS) 2 Cpu() T2 Con(0,8) — 0
V6;+l iap+1 la;’_’l
0 — C8) & cm A c@S — o0
tp-1 Jp—
0 — CpalS) = Cpu() = Cp(0,8) — 0
ia;"l lap-—l ‘[3;’—1

[t 15 a fundamental and purely algebraic result (see Jacobson [1980] Vol. II Sect
6 3 Theorem 6.1) that given such a short exact sequence of compféxes, there is a long
exact sequence in homology. This means that if 7, and j, are the homomorphisms
which :p and j, induce on homology, and é, is a map on homology classes which takes

2€ Z,(0,5) into 2’ € Z,_,(S) according to the rule
€
(' + By_1(S)) = (’p—l)—lap(.?p)_l (z + Bp(01,5))

then the diagram
0 —  Hu(S) =

satisfies
Kernel (3,) = Image (6,1) \ (1)
Kernel (7,) = Image () (i1)
Kernel (6,) = Image (3p)- (11)
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Although the above result is valid for the coefficient groups Z and IR, consider'fgr now,
the case where homology is computed with coefficients in R so that everything in sight

is a vector space. Let

Hp(0, 5) °
HP(Q,S) =~ (m) 9Kernel 6,,

and let the two summands be interpreted as follows

H,(Q,S)

et A ISP S N )
Kernel (6,) P (Image (65))

=~ 6! (Kernel (i,_,)) by (1)

and
Kernel (6,) = Image (J,) by (iu1)
( Hy(0) )
? \ Kernel (3,)
H,(0) .
(5t i)

Thus, combining the above three isomorphisms gives

¢

i
g,

?

R
<

H,(Q,8) ~ 67" (Kernel (1p_1)) @ J, <’f;—(}£[%(%ﬁ> '

Using the above identity it is usually easy to deduce a set of generators of Hp((,S)
if H,(S),Hp(Q), Hp—1(S) and Hp— () are known. This is accomplished by using the

following three step recipe:

Step 1 Find a basis for the vector space V,, where V), is defined by the following equation:

Hp(Q) = (Image (3,)) & V;

| Hence, 7p(Vp) gives (8,(0) — dim Image (7)) generators of H,(2, 5).
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Step 2 Find a basis for Kernel{i,_,) from the basis for H,_(S) so that the
dim Kernel (7,_ )
remaining generators of H,({2,5) can be deduced from

6, " (Kernel (3,_,)).

This 1s done as follows: Let 2, be a basis for Kernel (7,—) and find a set of 2,, 1 <2 <
dim Kernel (7,-1) such that

2, = Jp(ap)~lz;)—lzt'

Step 3 H,(Q,S) = (3,V,) ® 6, ! (Kernel (7,-1)) where a basis is given in Steps 1 and

2. Furthermore
Bp(0,S) = B,(0) — dim Image (7;) + dim Kernel (2p—,).

Although this recipe is quite algebraic, it enables one to proceed in a systematic but
intuitive way in complicated problems. The folowing example will illustrate this proce-

dure.

Example 11 (0 is the surface of Example 4)

Recalling the 2-dimensional surface with n “handles” and k& “holes” which was’

considered in Example 4, the following relative homology groups will now be deduced.

2) Hl (ﬂ,aﬂ)

1) Ha(R%,0)

1) Consider the long exact homology sequence for the pair (€2, 9Q):
0 mn) 2 m@en)

~

H(n) 2 #2000 2L

~ ~

22, H(en) -
SO H00) S Ho() X Hy(n,e0) — 0
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Following the three step recipe outlined above H;(f,0R) is obtained as follows.

Step 1 Image (71) and V; are readily indentified to be of the form

k—1 .
Z a2n+jy Z2n+j + Bl(n) 1

i=1

and
2n

Z:a,]zJ + B, (N)

=1

respectively. That is, 5;(22n4,),1 < j < k — 1, are homologous to zero in "H, ({2, 30)

while j1(2,),1 < j < 2n, are not homologous to zero in H,(1,00).

Step 2 Kernel (7p) is seen to be of the form

k-1

Y a,(p, — pe) + Bo(@R)

1=1
while the point px can be used to generat;e Ho(Q). Thus the curves jl(cz,..,:J 1< 5<
k-1, which/sérved as cuts in Example 4, can be used as k — 1 additional generators in
H,(0,90) since

0¢2nt; = Py — Pk 1<;<k-1

’ . o

Step 3 Looking at the definitions of the ¢,,1 <j < 2n+k —1, it is clear that

-

-~ 2n

Y " ay¢, + By(12,09) = Image (71)

1=1 ..
2n+k—1

- Y. a¢ + Bi(Q,80) = 67! (Kernel (i) .
1=2n41 » - s e
Thus, the cosets of Hy({2,30Q) look like: \
a 1
- . 2n+k+1 -
G.JCJ‘ + Bl(ﬂ, aﬂ)
1=1 \
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§ v,

A . “
that is to say, the chaing along which cuts were made to obtain a simply connected

surface vield a set of generators for H,(2,dQ) and

B1(N) =2n — k-1 = 3,(0, 80). ;

ii) Consider part of the long ‘exact homology sequence for the pair (R3, 1)

~ -~ ~ ~

1 2 o ) 1
. o L HRY 2 By(R%0) 22 A,(0) S Hi(RY) L

Noticing that .8y

R, ifp=0
Hp(]R3):{0, iEZ;eo

the part of the long exact sequence displayed above reduces to:

~ ~
i ‘

022 Hy(R?,0) % H(n) Lo,

Hence 62 is an isomorphism since the sequence is exact. It is instructive to déduce

H,(R®, 0) by using the three step recipe outlined above. ' N

-~

Step 1 Can be ignored since H2(R®) = 0 implies that Image (72) = O.

'Step 2 Since H_g(ﬂig, Q) ~ H, (1) take generators z, 1 <1 < 31(Q), of H () and see

what 65tz lool;s like. In other words, relative 2-cycles j3(S,) € Z2(1R3?0) must be

found such that \ /
| 1(S) = 2007 )ha 1< <Ai() |

can be used to gé}ﬁerate a basis vector of H1(1R3,ﬂ). By considering the “handles” and
“holes” of {1 individually, it is obvious that such a set can be found as seen in Fig. 14

for the jth handle and Fig. 15-for the jth holé.

Step 3 There is nothing to do at this stage, the cosets of H,(RR3,0) look like

2n+k~-1 . .
Z az“S1 + B2(1R3, ﬂ) Cay € R ) h

1=0" o
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Fig. 14

L<y<k-1

Fig. 15
and
B2(R%, Q) =2n + k-1 =8,(0).

¢ b

“" It is useful to realise that the exact same arguments holds if 0 is twisted up or has

“several connected components with the exception that the generators of basis vectors

of H2(IR®,0) may not look like discs.

End ofﬂExample 11 ) - ( '

¢

Instead "of considering more examples of relative homology groups, a heuristic

°

argument will now be considered in order to illustrate the use of relative homology

r
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(Y

groups in vector analysis.

ology and Vector Analysis

¢
2, one can form a vector space CP(1) by considering linear combi-

nations pf p-cochains (; s) which have compact support in §1. Since the coboundary

\
operator }exterior derivative) applied to a p-cochain of compact support yields a p + 1-

v
o

cochain of compact support, one can define a complex

C: () = {CF(Q),d"}

and by virtue of the fact that one has a complex, cocycle, coboundary, cohomology

groups, as well as Betti ng;lbers can be defined as usual:

[of

ZP(Q1) = Kernel (cg’(n) <&, cg’“(n))

Be(®) = tmage (c27'() £ criy) -
HE(R) = 25()/BE()

[of

B2(0) = Rank (HZ(1)). N
In general, if {2 is a compact region then the cohomology of the complexes

c: (), ¢ (n)

is identical. However, if {1 is an open set then the cohomology of the set of complexes
will in general be different since the cochains with compact support have restrictions

on the boundary of the set.

p—
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In order to formulate the idea of relative cohomology, let {} be a compact region,

S a compact subset, and consider the complexes

|

[t 1s understood that the coboundary opérator in the latter complex is the coboundary

_operator of the first complex except that the domain is restricted. In the heuristic moti-

vation for relative homology groups it was mentioned that, in order to regard integration
as a bilinear pairing between CP(1,S) and Cp(,S), the definition of Cp(11,S) makes
sense if CP(Q, S) is taken to be the set of linear combinations of p-forms whose support
lies in  — S. Hence 1n the present case where (? and S are assumed to be compact,
define the set of relative p-cochains to be

a cr(-S).

Hence there 1s a cochain complex
C: (- 85) ={Cl(n - 5),d"}
\

where it js understood that the coboundary operator is the restriction of the one in
C:(9). In analogy with the case of homology, consider the following sequence of com-

plexes and cochain homomorphisms, o=

¥
: 0—C: (0 = §) 2= Co(1) 2 Co(S)—0

e ={ef}, r ={r?}

where eP takes a p-cochain on {1 - S and it extends it by O to the rest of {1, while r? takes

an p-cochain on {1 and gives its restriction to S. Although this sequence of complexes
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fails to be exact at C' (1), (that 1s Image (e”) = Kernel{r ")), a careful limiting argument
shows that there is still a long exact sequence in cohomology (see Spivak [1979' p 589,
Theorems 12.13) Furthermore for there are relative de Rham isomorphisms (see Duff

1952 for the basic constryctions).
o

Instead of trying to develop the idea that the coboundary operator in the complex
C (Q1 — S) is adjoint to the boundary operator in the complex C.(Q, S), and trying to
Justify a relative de Rham i1somorphism, familiar examples of the relative isomorphism
will soon be considered. These examples will serve to solidify the notion of relative
homology am} cohomology groups and relative de Rham %som(;rphism so that an intuitive
feel can be developed before a more concise formalism is given in the next chapter. When
considering relative chains on C;({ — S) there are certain boundary conditions which
cochains must satisfy when approaching S from within (“{—-S‘:\Aithough these conditions
are transparent in the formalism of differential forms, in the next few examples they
will be stated often, without proof, since in specific instances they are easily, deduced

a

by using the integral form of Maxwell’s Equations.

In the upcoming examples. the relative de Rham isomorphism is understood to
r'neanr

H,(Q,S)~ HP(Q-S)  for all p.

Also, two forms wy,ws € ZZ(Q — S) are said to be cohomologous in the relative sense if
w] ~ w2 & Bf(ﬂ - S)

As usual, this forms an equivalence relation where the above is written as

4

W1 ~ Wa.
4.\::
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The notion of a relative period is defined as follows. If w € ZP(1 ~ S) and z € Z,(9, S)

[

ts called the relative period of w on 2z where, by Stokes Theorem, it is easily verified

[y

then the integral

that the period depends only on the cohomology and homology classes of w and =
respectively. Thus the relative de Rham theorem should be interpreted as asserting

that integration induces a nondegenerate bilinear pairing
/ H,(N,S) x HP(N - S) - R

where the values of this bilinear pairing can be deduced from evaluating the periods of
basis vectors of HP(1 — S) on basis vectors of H,(02,S). In most cases these periods

-4
have the interpretation of voltages currents, charges or fluxes

Example 12 (Three-Dimensional Electrostatics)

.

Consider a compact region {1 which contains no conducting bodies or free charges

" . .
bkt whose boundary 9{) may contain a subset which is an interface with a conducting

body. Let

-~

oM =84J8, (S1 N S, has no area)

where
nxE=0 on S,

D-n=0 on S,.
The(boundary condition on Sy is associated with the boundary of a conducting body
or certain symmetry plane while the boundary condition on Sz can be associated with
a symmetry plane. Alternatively, the boundary conditions associated with S, and S,
arise on 911 if one has an interface where there is a sudden change in permittivity as

I’}
one crosses of1.
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Elements of C} (1 - S) are associated with vector fields whose components tangent
to S; vanish, hence the electric field intensity E can be associated with an element of

¥

ZH 0 - Sy) since
curlE=0 in 1

nxE=0 on 5,.
Dually, elements of C*(f2 — S2) can be identified with vector fields whose component
normal to S; vanishes. Hence the electric field flux density D can be identified with an
element of Z2(Q1 — S,) since
" divD=0 in 1
D n=0 on Ss.
By considering a few concrete situations, Fhe reader can easily convince himself that the

periods of E on generators of H;(f,S;) are associated with prescribed E.M.F.’s while

the periods of D on the generators of Hz(f1,S2) are associated with charges.

It is useful to illustrate how the various spaces associated with the cochain com-
plexes C; (01 — S1) and C; (0 — S3) arise in variational principles. Assume that there is

a tensor constitutive relation

D =D(E,r)

and an inverse transformation’

E=¢(D.r)

such that

D (¢£(D,r),r) =D.

Furthermore, assume that the matrix

ap,
aE,
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is symmetric positive definite. Consequently

8¢,
oD,

is symmetric positive definite. In this case the principles of stationary capacitive energy

and coenergy can be stated as follows (see MacFarlane 1970! pages 332-333).

Stationary Capacitive Coenergy Principle

CiE) = Eezlmsg 5 )/ (/ P(&r) ) ,

subject to the constraint that on generators of H(f1,5)) periods are prescribed as

follows &

V,:/ Ed 1<1<6(05)

Stationary Capacitive Energy Principle

D
U'(D)=  .inf r§/(/ E(&,r) df) dv
Dez2(n-S9)¥n \Jo

subject to the constraint that on generators of H,(,S2) periods are prescribed as

t

follows:

-
Q,:/ D-ndS 15:532(0,52)-
>

Note that in both the variational principles the extremal is a relative cocycle and when'

the principal conditions are prescribed on the generators of a (co)homology group the

variation of the extremal is constrained to be a relative coboundary. This is readily seen °
from the identities: |
Z;(0-5) =H;(Q-5)® B (- $)
Z3(0 - S) =~ H}(Q - S2) ® B3(02 - Ss).
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’In the case&wl{ere the constitutive relations are linear, the coenergy and energy
principles can be used to obtain upper bounds on capacitance and elastance lumped
parameters respectively. This is achieved by expressing the minimum of the fun.ctional
as a quadratic form in the prescribed periods and making the identification

1} 31(9.81)
UE)=_ Y. V(.Y

1 )=1
B2(Q,S2)

Y. @p,Q;.

1y=1

(SR

U'(D) =

From the upper bound on elastance, a lower bound on capacitance can be obtained in
the usual way. The estimation of partial capacitance can be obtained by leaving certain

periods free so that their values can be determined as a by produét of the minimisation

Not only is the above statement of stationary capacitive energy and coenergy
principles succinct but it also gives a direct correspondence with the lumped parameter
versions of the same principles. The derivation of the corresponding variational prin-
ciples in terms of scalar and vector potentials is instructive since insight is gained into
why the coenergy principle is naturally formulated in terms of a scalar potential while
the formulation of the energy principle in terms of a vector potential requires topolog-
ical constraints on the model in order for the principle to be valid." Let the coenergy

principle in terms of a scalar potential be considered first.

Considering the long exact homology sequence for the pair (2, 5;), one has

Hy(0.8;) = 67 ' (Kernel 1) & Ji (ﬁ%{%%)m)

! The author ¢ould not resist including a discussion of this point since it clear}y
shows the necessity of using homology groups. ,
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where the relevant portion of the long exact homology sequence is

= H(S) - Hi(Q) ogn,5) -
\ LOHN(S) AN Hy(R) —
Let c;,l <1< 3,(N,S) be aset of curves which are associated with the generators of
H,(f,S5;). These curves can be arranged into two groups according to the three step

recipe.

Group 1 There are dimImage (j;) generators of H,({1,S;) which are homologous 1n
the absolute sense to generators of Hi(f1). These generators can be associated with
closed curves ¢,,1 < 1 < dimImage (7). In this case, the period

/E-dl:V,

1

is equal to the rate of change of magnetic flux which links ¢,. Thus, although there 1s a
static problem in 0. the above periods are associated with magnetic circuits in R - Q

(it is usually wise to set these periods equal to zero if one has the chance).

Group 2 There are dim Kernel (z;) remaining generators of H,;(Q?,S;) which can be
associated with simple open curves whose end points lie in distinct points of S;. In

other words, if

C (dim Image (37) +1) 1 <1 < dim Kernel (75)

are such a set of curves, then they can be defined (assuming (0 is connected) so that

ac(dlm Image (5').,.,) =D, — Po

where po is 2 datum node lying in some connected component of Sy and each p, lies in
some distinct connected component of S;. That is, there is one p, in each connerct,ed

component of S;. In this case, the period

/E-dlet
c

1
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/
s associated with potential differences between connected components of Si.

Now suppose that one can i1gnore the “magnetic circuits” in R® - 0 so that the
periods of E on generators of group 1 vanish In this case it is seen (from the long exact:
sequence) that the period of E vanishes on all generators of H(f1) since the tangential
components of E vanish on §; Hence. E may be expressed as the gradient of a single

{7 valued scalar ®. Furthermore, the scalar is a constant on each connected component of

Si. That is ‘
E = grade in ] -

6 = o(p,) on the tth component of S;.

When E is expressed in this form, the periods of E on the generators of H,(Q,S,)

which lie in group 2 are easy to calculate-

V(dlmlmage G+~ grad ¢ - dl = o(p,) ~ &(po)

C(dlm Image (;1)+z)
since
ac(d;m lmage (;1)+1) = P~ Po.

In this way the coenergy principle can be restated as follows:

Stationary Capacitive Coenergy Principle (E = gradg)

U(grad ¢) = inf /ﬂ (/; D (gradn,r) - grad (dn)) dv

zrad ¢€ch(9~51)
¢ !
subject to the constraints:

V(dlmlmage (;P)*“) = d)(pl) - @(Po), L << dimKernel (TO)

Note that for this functional the space of admissible variations is still B! (2 — S;), that

is, ¢ can be varied by any scalar which vanishes on §,.
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.&lthough the coenergy principle seems to be more natural when expressed in terms
of a scalar potential. the only difference between the two principles is how they treat
magnetic circuits in R® — 0. The situation is quite different when one tries to express
the energy principle in terms of a vector potential since, in general, the energy principle
cannot be reformulated in terms of the vector potential alone. Considering the long
exact homology sequence associated with the pair ({1, S;) one has

Hy(0,5,) = 5;1.(Kernel (71)> B o (M)
’ 12 (Ho(S2))

where the relevant portion of the long exact homology sequence 1s:

o

~

B Hy(S) 2 H () B Hy(0,5) —

~ ~

-2, Hi(S2) -4 H, () 2,

Let £,,1 <1< ,(0,S,) be a set of surfaces which are associated with the generators

of H2(0,S3). These surfaces can be arranged into two groups according to the three '

step recipe:

Group 1 There are dimImage (72) generators of H ({2, S3) which are homologous to
generators of H2(f1). These generators can be associated with closed surfaces, that is
¥.,1 <1< dimlmage (;2), can be associated with this ggoup and so L, = 0O for each

of these surfaces.

Group 2 There are dim Kernel (31) remaining generators of Hz({1,Sz) which can be

identified with open surfaces

L dim lmage (5y) +1 1 <1 < dimKernel (7;)
whose boundaries form, in H,(S2) a basis for Kernel (71).
If there are any generators of Ho ({2, S;) which belong to group 1 then the energy

principle cannot be reformulated in terms of a vector potential because it is not possible
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to prescribe a nonzero period on generators of Hy({1, S;) which have no boundary. In
@ '
other words, if

D =curiC in

then

QI:/ D ndS:/ curlC - ndS

t ~1

since
JdL, =0 1 <1 < dimlmage (72).

Al

This reasoning is straight out of Example 5. Recalling the counter example in
Example 5 it is apparent that it is not possible to estimate the capacitance of two
concentric conducting ellipsoids if there is no symmetry to be exploited. However if a
model of a problem can ‘be constructed (by exploiting symmetries etc.) in which there
are no nonzero periods of D on generators in group 1 then D can be expressed as the

cur| of a vector-potential C and the periods of D can be prescrib\g on the generators

of group 2 by prescribing

sz/ D~nd5:/ C-dl
EJ Bch

dimImage (j2) — 1 < < 32(Q, S2).

In this way, under the assumption that the periods of D vanish on all generators of

I

H,(12), the stationary capacitive energy principle can be stated in terms of a vector

potential as follows:

-

Stationary Capacitive Energy Principle (D = curl C)

c
U'(curlC) = inf / </ & (curl &,r) -curl_(dE)) dv
o \Jo ‘

curl Ce22(Q-38,)
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subject to the constraint on generators of group 2:

-+

Q; = / C -dl, dimImage(72) +1 < 7 < 32(02, S2).
. T, '

Note that for this functional the space of admissible variations is still B%(Q1 — 5,), that
is, the extremal D can be varied by thé curl of any vector field, whase components

tangent to, Sz vanish.

It is worthwhile considering how the tangential components of the vector potential
are prescribed on Sy in order to ensure that D -n = 0 and the integral constraints can

be satisfied. First, it is important to realise that one cannot ensure that

curlC-n =0 on 59

2\

by im{oii{xg I
: nxC=20 on 52

-

because this would imply

Q. = / C-dl=#0  sincedX, C S,.
8%

1

Instead, one has to let:
nxC=n xgrady _

= curly on Sq

~1where ¥ is a function of the coordinates on S; which is not necessarily single valued

and continuous. A single valued continuous function would set all the @, equal to zero.
[n order to get a better understanding of how the scalar-function ¥ is to be chosen, one

' can use the reasoning developed in the first part of Example 11.

Let d,,1 < 7 < B8{(S2,0S:), be a set of generators for Hy(Sz,8S5,) so that -

" ' -

A1(52,95;)
Hy | S - U d, | ~0.

)=1
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obons.

BN

In this way the scalar v can be made single valued on

B1(S2,837)

2= |J 4.

=1
Hence, it remains to find a way of prescribing the periods Q. in terms of the jumps in_

¥ as the “cuts” d, are traversed. By considering the following portion of the long exact

homology sequence for the pair (2, S2):

~ -~ ~

o Hy(0) 2 Ho(D,80) <2 H,(S2) 2L H(0) 2L Hi(0, S2)— ...

the exact same argument which led to the famous three step recipe can be repeated in

the context of H,(33) to yield ¥

Hy(Q, 5;) >

Hi(82) = () (Kernel (1)) .5 2200 %)

Thus the generators of H,(S2) can be arranged into two groups to which cycles z, €

Z,(S3) can be associated as follows:

Group 1

ar =z, 1 <1 < dimImageé,

dim Image (72)4-1

-this takes care of the part of H,(S;) which is associated with Image (5,).
Group 2 There are dim Kernel (Ji) remaining generators of H1(Sz)

@

/ Zdim Image (52)+; 1 S 1 S dim Kernel (:71)

which are homologous to closed curves associated with generators of H,(f2). Now in

order to prescribe the periods of the vector potential one merely has to find a way of

prescribing the periods of ¥ on the

&

2, 1 <1 < dimImage (67)
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.

by specifying the jumps in ¢ across the d,. Let

Iw\
Wiy,

denote the jump in v as d, is traversed in a given direction, and m,,; is the number of
v ¢

oriented intersections of z, with d,. In this case ' \
a
lem[mage(;z)ﬂ - C-d

. J3 ~
- dem Image (39) +1

: ) :/C-dl':/gradw-dl
. # 2

ﬁl(SZIBSZ) i v
= Z ml]{w]d-’
L/]:l
P

for 1 < ¢ < dimImage (62). This is a set of equations which expresses some of the

petiods of grad ¢ in terms of the {[wldl }- One can also choose arbitrarily constants

I3

-

a,, dimImage(6)+1<:< 3;(Ss) |

and fofm the equations

P1(52,85y)
a, = E m”{wm]
=1
where * . R . .

. dim Image (62) + 1 < 1 < 3,(S2).

b -
The above two sets of equations, taken together form a set of g S2) equations in

| B81(S2,352) unknowns. The Lefschetz duality theorem (see Greenberg [1980| page 242)
. _States th;at - Y , |
T e 31(S2) = Bi(S2 — 8S)
2 p ,
so that ; '

'
N

T 8)(52,05)= Au(S). -
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This result also follows from Example 11(i). Hence, the madrix whose entries are m,, is

N / . . .o .
square and from the Lefschetz Duality Theorem it.can be shown that it is nonsingular.
B

If M,, are the entries of the (matrix inverse to the matrix with entries m,, then

diru [mage (éq) By (Sq)
[ — ~
Wi = Z ‘Mk‘anmlmn.ge(Jz)ﬂ + Z My, a,.
1=1 t=dim Image (89)+1

Thus the periods of the vector potential can be specified indi\rebﬁly by the jumps [;D;dk.

i
Hence the stationary capacitive energy principle can be stated as follows.

Stationary Capacitive Energy Principle (D = curl C)

If the representation D = curl C is valid then

c
U'(curl C) = inf / (/ € (curl €,1) -curldf) dv
. Q 0

curl CEZ2(0-59)

subject to the condition:

n x C =curly on S,
where '¢']¢] are prescribed on generators of H,(S3,dS5;) but ¥ is otherwise arbitrary.

Several remarks are in order. Firstly, the method of prescribing the tangential
components of the vector potential in terms of a cocycle in S, was inspired by the
paper of Miilani ‘and Negro .1982|. The approach given here differs frgm theirs in that
S2 need not be 41 and Y need not be a harmonic function. Secondly, when the en-
ergy principle is stated in terms of a vector potential, the solution is nonuniqﬁe. The

nonuniqueness consists of an element of Z! (0 - $2), that is, an irrotational vector field

/
whose components tangent to 2 vanish. Since ° an
P ZN(Q-S)=H(Q-S)eBla-8)
73 .
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the nonuniqueness of the vector potential can be eliminated by specifying the periods of
C on generators of H,(1, S,) and constraining the part of the vector potential:associated

with B}(Q1 — S3). The elements of B}(1 — S,) look like

grad y in ()

where
Yy =0 on S,
hence if
divC specified in {1
C-n  specified on S
. 2
! then

div grad x specified in 1

x=0 on Sy

Ix

- specified on S;.
n

In this case, the gradient of x is uniquelﬁr defined, and the nonuniqueness of C associated
with B!(Q1 — S3) has been eliminated by specifying the divergence of C and its normal

component on Sj.

In summary, the problem of electrostatics involves a region {1 where
3

N =8,US,, . (S1NS, has no area) L
nxE ‘—200 on S[
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The electric field E is associated with an element of Z!(f2 - S,) while the electric flux
density D is associated with an element of ZZ(f) ~ S3). The nondegenerate bilinear

pairings which integration induces on homology and cohomology classes

‘

/ZH](Q,Sl) X Hcl(ﬂ—Sl) — R

/  Ha(0),$2) < H2(0 - S) — R

are associated with potential differences and charges respectively. The fact that there
are just as many independent potential differences as there are independent charges

seems to indicate that

- 3(Q, S1) = B2(0, S,)

which will be shown to be true later. For variational principles where the electric field
E is the independent variable and potential differences are prescribed, the variation
of the extremal lies in the space B!(f1 — S|). Dually, for variational principles where

the electric flux density D is the independent variable and charges are prescribed, the

variation of the extremal takes place in the space BZ(Q) — S,).

The long exact homology sequence is useful for showing the appropriateness of the
variation,al principles involving scalar potentials and the limited usefulness of variational
principles involving an electric vector potential. When the electric vector potential
is used, the long exact homology sequence indicates how to prescribe the tangential
components of the vector potentiai in terms of a scalar function defined on Sy. Finally,
the vector potential is unique up to an element of Z!(Q - S;) when its tangential

components are prescribed on Ss.

Example 13 (3-D Magnetostatics)
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Consider a connected compact three dimensional region 0 which contains no in-
fimtely permeable or superconducting material, but whose boundary may contain an

interface with an infinitely permeable or superconducting body. Let
oNl=39, .95, (S; > S2 has no area)

where
B-n=90 , on S]

nxH=20 on S,.
The boundary condition on S, is associated with the boundary of a superconductor, a
symmetry plane or, alternatively, when {2 contains a very permeable body part of whose |
boundary coincides with df) and it is known that no flux can escape through that part.
This latter situation occurs if s an ideal magnetic circuit. The boundary condition

on S, is associated with bounddries of infinitely permeable bodies or symmetry planes.

Assume that no free currents flow in . Sipce elements of C2(02 - §)) can be
identified with vector fields )gvhose component normal to S| vanishes, the magnetic flux
density B can be associated with an element of Z2(0 - S;) because

divB =0 in ]

’ : B-n=0 on(S i
Similarly, elements of C'! (02~ S,) can be associated with véctor. fields whose components
tangent to S; vanish. Since it is assumed that no free currents can flow, the magnetic

field intensity H can be associated with an element of Z} ({2 — S;) because

curlH=20 in (]
N . =0 Ss.
& nxH on S, o

As in the previous exaniple lumped variables are associated with the ‘generators

of relative homology groups. That is, if
L, 1 <0< B2(0,5)
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1s a set of surfaces associated with a basis of H,(1?, S;) and

N

e, 1 <0< 31(Q,85,)
is a set of curves associated with a basis of H ({2, S2) then the periods of B on the &,

<1>1=/ B - ndS, 1<¢ < 8,(0,8)
)

1

are associated with fluxes while the periods of H on the ¢,
1 <1< 3,(9,82)
4y

: ‘ . 2
are associated with currents in R~ —

L3

In order to illustrate the role of cochain complexes in the statement of variational

principles, a constitutive relation fnust be introduced. Let

H = X(B,r) \
be a a tensor constitutive relation and let

B =3(H,r)

o
+

be the inverse transformation which satisfies
B (¥(B,r),r) = B.

Furthermore, assume that the matrix with entries

X, .
oB,
is symmetric positive definite. Co‘nsequently, . .
. a8,
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is symmetric positive definite [n this case the principles of stationary inductive coenergy

and energy can be stated as follows (see Mac Farlane . 1970/ pages 330-332).

Stationary Inductive Coenergy Principle

T'(H) = inf // Bfr d&dV

Hezl(n-8,)

subject to the constraints which prescribe periods of H on generators of H;(Q}, Sq):

11:/ H.dl, 1<:1<6,(Q,85).

Stationary Inductive Energy Principle

T(B) = inf // }(E,r) dde
_ Bezl (-5,

subject to the constraints which prescribe periods of B on generators of Hy((1, Sy)

<I>J=/ B ndS 1 <1< 82(0,5).
x

. -

As in the previous example, in both variational principles the extremal is con-
strained to be a relative cocycle and when principal conditions are prescribed on the
generators of a (co)homology group the variation of the extremal is constrained to be a

relative coboundary. This is readily seen from’ the identities

Z Q- 52) = H (- S2) & B(Q - S2)

70 - S) ~ H Q- S1)@ B (0 - 8))

and the fact that the following relative de Rham isomorphisms have been assumed

L4 S

HNQ — S3) ~ Hy (D, 83) ‘ ‘
ch(ﬂ - Sl) ot Hz(ﬂ,Sl). N

v
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For Linear constitutive relations the coenergy principle gives an upper bound for
inductance while the energy principle gives an upper bound for inverse inductance.
This 1s done by expressing the minimum of the functional as a quadratic form in the

prescribed periods and making the identification

8,(02,85)

. T'H) = ) LLyl,
1,)=1
B2(2,51)

T(B)= Y &.rI,9,.
1,7=1

From the upper bound on inverse inductance a lower bound on inductance can be found
in the. usual way. The estimation of partial inductances can be obtained by leaving some

—

of the periods free in a given variational principle so that their values can be determined_

by the minimisation.

- These variational principles are interesting since they provide a direct link with
lumped parameters and show how the various subspaces of the complexes C; ({1-S,) and

S . Y .
C;(Q1 — S2) play arole. Asin the case of electrostatics it is useful to futher investigate

the relative (to)homology groups of concern in order to see how the above variational

principles can be rephrased in terms of vector and scalar potentials and to know the

topological restrictions which may arise. -~

Considering the long exact homology sequence for the pair (f2,.5,) one has

Hy(2, 51) = 65" (Kernel (1)) @ (T(WS_)’)

where the relevant portion of the long exact homology sequence is

s ~

2 Hy(S1) = H() A HA0S5) —
2 TH(S) S H(n)

v
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Thus, using the three step recipe. one can arrange the X,,1 < ¢ < §,(0,51) into two

groups.

Group 1 There are dim Image (J,) generators of Hy(Q2, S;) which are homologous in

the absolute sense to generators of Hy(Q2). Thus let
0L, =0, 1 <1 < dimImage (72) \

and associated to these ¥, is a basis of Image (j2) in H2(Q,5,).

Group 2 There are dim Kernel (7)) remaining generators of Hz(0,S5;) whose image

under 8, form in H,(S)) a basis for Kernel (7;). Hence let

oL =2z 1< <dimKernel (7))

dim Image (72 )+t
where the 2, are associated with Kernel (z,).

Considering the periods of B on the generators of H2(f1,S;) which are in the first

group, it is clear that if

B = curiA in (]

then the periods must vanish because
<I),:/ B-ndS=/ A-dl=0 ’
T, 3z, .

since

J%, =0, 1 <1 < dim Image (72).

Though this is a restriction, it is still natural to formulate the problem in ‘terras of a
. .

vector potential since the nonzero periods of B on the generators of group 1 can only be

associated with distributions of magnetic monopoles in R ~ Q1. Assuming then that the

periods of B on the generators of group 1 vanish, and B is related to a vector potential

4
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A, the periods of B on the generators of H,(0,S,) which lie in group 2, can easily be

expressed in terms of the vector potential as follows.

B ndS

dimi Imuage (;2)+1 =
\ dim Image (Jo)+1

= A - dl

ar ~
dim Image (j9)~1

=z, 1 <1 < dim Kernel (7} ).

since

aV‘

“dim Image (;2 Y+

Next, it is worthwhile considering how the tangential components of A are to be

prescribed on S; so that B -n = 0 and the above periods can be prescribed. One fBnot

impose

curlA-n=0 on S,

by forcing
n<A=20 on Sy

v

because this would imply

N

Qdim Image (3"2)+1 = /z A-d=0

since

Zgbe CCI(SI) d

Instead, as in the analogous case of electrostatics, one has to let

nx A =nxgrady

- Y .
= cur}1b .on S, N
) 0 : ’ .
i - v © 81 ‘ e



where ¢ 1s a multivalued function of the coordinates on S;. Following the reasoning in

Example 4, this function can be made single valued on

A
3

31(51.85;)
Si-a J 4
J=t

where the d, are a set of curves associated with the generators of H,,(S;,0S,) and the

periods of the multivalued function y are given by specifying the jumps, denoted by -

t
v

g, 1<7 < Bi(51,05)

of ¥ on the d,. To see how this is done, consider the following portion of the long exact

homology sequence for the pair (Q,5))

—  Hy(Q) 2 HQ.5) - - "

6o : 7 5
= H(§) - H(O) L €(@Os5) -

and using the same reasoning as in the “three siep recipe” one has

-t

H>(0Q,5,) )

H1(51) = (i) 7" (Kernel (51)) & ¢, <3"2“(“H7(ﬁ)“)

v r
b M

Thus the generators of H2(S;) can be arranged into two groups where one can

choose 3(52) curves z, and associate

i

i

3 | ’ -
’ : 2, 1 <1 < dimImage 2 . 0
with boundaries of generators of Hy(f1,S;) and ;
< a. .
o Zdim Image (Sg)+1> 1 <4< dimKernel (31)

;

w‘hi‘cl, are homologous in H(f1) to a set of generators of Image (7}).

.
LI~
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[n analogy with the previous example one can define a matrix whose elements m,,
count the number of orientedintersections of 2, with d,, so that if p, is the period of

grad v on z, then

’ p,:/ A dl /gradd)-dl

1 1

31(51.951)

Z mt][de]; 1< < ﬂl(sl)

J:

Il

Il

where
o~

p, = (Ddxm Image (';2)_“, 1< ) < dim Image (52)

and the remaining p, are prescribed arbitrarily. Assuming. as before, that the matrix
with entries m,; is nonsingular, the above system of linear equations can be irllverted
to give the jumps in the scalar ¥ in terms of the dim Image ()62) periods of the vector
potential and dim Kernel {Jyj=other arbitrary constants. Note that this technique gen-
eralises and simplifies that of Milani and Negro [1982]. The assumption that the matrix
with entries m,, is square and nonsingular is a consequence of the Lefschetz Duality

Theorem which will be considered soon. ;
¢

It is now possible to restate the stationary inductive energy principle in terms of

a vector potential. 9

Stationary Inductive Energy Principle (B = curl A)
A
T(curlA) = iﬁf/ / K(curl &, r) - curl (d€)dV .
Q

subject to the principal boundary condition

nxA=curly onS

i »
< 83
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where :\w'HJ is prescribed on generators of H,(S;,dS,) but ¥ is otherwise an arbitrary
single valued function. Note that in this formulation of the energy principle the extremal

A is unique to within an element of Z!(Q ~ $;). Since *
j v
ZXNQ-S)=H)N-S)eBYO-5)

the nonutﬁqueness can be overcome by specifying the periods of A on the generators

of H;(€,S,) and, in analogy with the uniqueness considerations of the electric vector |

potential, specifying the divergence of A and its normal component on S, eliminates the
ambiguity in B! (0 -~ S;). This statement refines the one in Kotiuga {1982|, Theorem

5.1.

Ped

> Returning to the case of the coenergy principle which will now be reformulated in

termd/of a scalar potential, consider the following portion of the long exact homology

sequence associated with the pair (0, S2)

2, H(S2) S m(@@) S H(0,S2) -

t

5 -
~ Ho(S2) - Ho(),
In order to gain a better understanding of how the_periods of H on the génerators of

H,(N,S;) are presclzibed, write

Hy(Q, S2) ~ 6] (Kernel (o)) & i <ﬁ—(l;%((%)£ﬁ)

¥
N .

and consider the three step recipe. Let - .

- e
=~ <
.

3
Cq, 1<:< ﬁls(ﬂis2)

f
\

be a set of curves which areRassociated with the éénera.tors of H,(1, .S"g) which are

arranged into two groups as follows.

v
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Group 1 There are dim Image(7;) generators of H,({2,Se) which are homologous in

-

the absolute sense to generators of H,({?): These generators can be associated with

closed curves ¢,,1 < ¢ < dim Image (7,). In this case, the period

/H-(ﬂ:[, '
¢ "t

is equal to the current in IR> - ! which links the generator of H,(f2, S2) associated with

c,. .

}

. ¢
Group 2 There are dim Kernel (i) remaining generators of H,(Q, S2) which can be as-

¢

sociated with simple open curves whose end points lie in distinct connected components

z
t

of S;. That is, in each connected component of {1, one can find curves

q

Cdim Image (77 )~ 1 <1 < dimKernel (1)

such that

racdim Image (71)—1-1 =P~ Do

where pp is a datum node lying in some connected component of So and each p, lies in

some other distinct connected component of S;. In this case, the period

- [ @<l  dmlmege() <i<mm5)
CJ . 0

is associated with a magnetomotice force. 4
r ° ! ’
It is often convenientto describe the magnetic field'intensity H in terms of a scalar

¢
5 £

potential ¢! since, from a practical point of view, it is much easier to work with a scalar -

‘function than three cbmponents of a vector field. However, when the periods of H do

~ 4 ‘\ - \
-1 The usual symbol for the scalar potential ¢ is 0 which cannot .be used here.

’

[ <
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not vanish on the l-cycles in group 1, then it is not possible to make ¢ continuous and"

» -

’singlg valued since this would imply r

L:/H-dl;/ grad¢-dl =0
cl . Cl l
" since "

dc, =0 1 <1< dim Image (71).

G

In order to overcome this difficulty one can perform an analogue of the procedure ased,

to prescribe the tangential components of the vector potential. In general, it i§ possible
M ¥

-

to find “barrier™ surfaces . .
T, - 1<1<dimImage(71)

such that the £’ age associated with dim Image (71) dimensional subspace of Hy(12, S1)
and if n,, is the number of oriented intersections of the 1-chain ¢, with the relative 2-
chain £ then the dimImage (71) x dim Image (7;) matrix with entries n,; is nonsingular.
(The reaso'n why this works will be apparent when duality theorems are considered.) It
turns out that one can make the scalar potential single valued on

dim Image (7;)

nm=0-  J I .

1=1

g

There is another way of looking at the selection of the X!. Considering the fol-

1

lowing portion of the long exact homology sequence for the pair (Q7,9,)

. — Hy(Q™,S;) —

1

~ ’;...
24 H(Sy) 2L B(07) A H(0m,5) —
2, Ho(S2) —

one has

Hi(07) = (57)" (Kernel (81)) @71 (52 (IZ}S-?,) sz))>'

86
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Since , L«

\

nxH=0 on Sy
f

Imége (71). Hence

the periods of H vanish on the generators of H{(f27) associated with
the field intensity H can be represented by the gradient of a single valued scalar ¢ on
1

(1~ if the barriers ¥) can be arranged so that 3] becomes the trividl homomorphism.

This is what happens wherflie n,, form a non singular matrix. -

Assuming that the I} have been chosen properly, the periods of H on the gener-
ators of H(9, S;) which lie in group 1 are easily expressed in terms of the jumps in ¢
as the L! are traversed. That is if {g],:: are these jumps then for 1 <1 <.difn [mage (3’1)

one has

' 1,:/1’1.41:/ grad¢ idl
N . C,‘ Cl
’ dim Image (71)

= Z nyy [¢] E; .

=1 |

Py

o’

This forms a set of linear equations which can be inverted to yield \

dim [Image (71) !
N -1
= L.
(S“]r,: ]§= 1: (nyy) ™1 f

-
-

Thus, once the “barriers™ have been selected, one has an explicit way of prescribing
. 1]

the first dim Image (7;) periods of H in terms of the jumps in ¢. In order to specify the
" remaining dim Kernel (7]) periods of H in terms of the scalar function ¢, one defines a

dim Kernel (o) x dim Image (7;) matrix whose entriss n;, count the number of oriented

intersections of

) . !
Cdim Image (31)+ with 21'
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Hence the -periods H on the remaining generators can be expressed as follows:

4 ' }y‘.
Idun Image (71)+t / H-d R +#
. “dim Image (71)7‘-1. )
. = grad¢ - dl |
“dim lm;xge (71)-44
a - dim Imng; Gl)
R = ¢(p) = ¢(po) + ng,lsler -
=1 . !
\
Hence, if ¢(po) is chosen arbitrarily then
\ i . dim Image (3:1)
6(ps) = 500) + Ly tmage Gs = 2o Pulsler
1=1 ' '
) dim Image (3'1) »
. -1
, = §(P0) + Idim Image (71)—.{-1. B Z n:J (nJl) I
- ,7=1
which is an explicit formula giving the value of ¢(p,) in terms of the remaining periods
to be prescribed.
Note that on the ith connected component of 53 ; ’ /

o ' ¢ =¢(p), 0 < ¢ < dim Image (61)

\
o

o

since the tangential components of H vanish on S». Having corhpleted the destription
of H in terms of a scalar potential, the stationary inductive co;:nergy principle can be
stated in terms of a scalar potential.

o

Stationary Inductive Coenergy Principle (H = grad ¢)

[
‘

) .
T'(grad¢) = '1r_1f/ / B(grad ¢,r) .grad (d€)dV
>, Q— .
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subject to the constraints:

g -
[g]):: pfescribed on barriers LI, 1 < ¢ < dimImage (71) on
and ’ e

=¢{p;). a given constant on each connected compongnt of Ss.
¢ C rnt ‘

sngytd

—

In summary, the problem of magnetostatics involves a region {1 where

. N
© 90 =S1US2 Sy A8y has no dred)
B-n=0 on S

Hxn=0 on Ss;.

a
8

The magnetic flux density B is associated with an element of Z%(1— S;) while the mag-
netic field intensity H is associated with an element of Z!(Q2 — S2). The nondegenerate

bilinear pairings which integration induces on homology and cohomology classes
/ tH2(0,51) x H* (- 81) - R

/ cH(Q,S) xH (O -S) - R
are associated with fluxes and magnetomotive forces respectively.

For variational principles involving the magnetic flux density B where fluxes are

prescribed, the variation of the extremal lies in the space B2(Q1 — S;). It is convenient

-

to reformulate such variational principles in terms of a vector potential A. When this
is done the tangential components‘of A are prescribed on Sy in order to specify fluxes

corresponding to generators of H?(f1 — §,) and to ensure that the normal component

of B vanishes on S;. In such cases the vector potential which gives the functional its

stationary value is unique to within an element of Z}(Q2 ~ §).
i
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" Dually, for variational principles where the magnetic field intensity H is the inde-.

e
ﬁ!‘

pendent variable and magnetomotive forces are prescribgd, the variation of the extremal
takes place in the space B! ({1 - S3). Though it is not possible i‘n éeneral to reformulate
such principles in terms of a continuous single valued scalar potential, it is possible to
find a scalar potential formulation if one introduces suitable barriers into (1, prescriubing
jumps to the scalar potential as these barriers are crossed and fixing the scalar potential

to be a different fixed constant on-each connected component of Ss.

"As-in the previous example, the long exact homology sequence played a crucial

role in understanding the topological implications of formulating variational principles

in"terms of potentials and prescribing boundary conditions for the vector potential.
End of Example 13
Example 14 (Currents in Three Dimensional Conducting Bodies)

Consider a connected compact region Q of finite, nonzero conductivity and whose

boundary may contain interfaces with nonconducting or perfectly conducting bodies.

Uet 5

- 0N =508 (S1 N Sz has no area)
divI=0 inQ ' .
& .
J - n=0 on Sy
curlE=0 in 0

nxE=0 onS’2.

It is readily seen that under the transformation

J-B

E—-H

=

90
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this problem is formally equivalent to Example 13. It is clear that current density J
¢

can be associated with an element of Z2(Q1 — S;) while the electric field intensity E can

be associated with an element of Z!}(Q2 - 5,). Note that the boundary condition on S,

r
Pl

can be associated with a symmetry plane or interface with a nonconducting Body while
/
, the boundary condition on Sy can be associated with another type of symmetry plane

¢ .
or the interface of a perfectly conducting body. Furthermore. if

\ EU 1Sl§ﬁ2(n.51)

a 2

is’ a set of surfaces associated with a basis of H,(0,5;) and ‘ : »

. €, " 1 <1< 6i(,52)

is a set of curves associated with a basis of H,((1, S3), then the periods of J on ‘the £,

L=/‘lnw, 1<1< B2(, 1) .
z

1

, are associated with currents and the periods of E on the ¢,.
m:/EdL‘lgiSmM£w
¢y

are associated with voltages, or .electromotive forces.. .~

In order to obtain a variational formulation of the problem, consider a constitutive

e

relatvion
E=¢(J,r) }
and an inverse constitutive relation , .
J = J(E,r)
{ a1



jf

which satisfies
. £ (J(E,r),r) = E. - °
Furthermore, assume that the two matrices with elements

& - 9
aJ,"  9E,

@

are symmetric and positive definite. In this case the ;Srinciples of stationary con-

tent and cocontent can be’stated as follows (see MacFarlane"-J,‘1970| pp 329-330).

s
Stationary Content PYinciple

‘ L 1
b G[d)=  inf /(/ 5(5,r)-d§> av
Jez2(a-s51) Ja,\Jo .

| subject 'to the constraints which prescribe the periods of J on generatprs of H,(f1,S;) ™

.

-~

1

- 1,:'/ J-ndS, 1<1<B(0,5))
E "

Stationary Cocontent Principle

«

o .
G'(E) = inf / ([ J(& ) - df) dv :
n v Eezl(n-59) /0 0 .

-

subject to the constraints which prescribe the periods of E on generators of H,(f}, S;)

yo . V::/E-dl, 1<i< B0, 5).

As in the previous two examples, the two variational principles stated above con-
strain the extremal to be a relative cocycle and when additional constraints are pre-

scribed on the generators of a (co)homology group, the variation of the extremal is.

constrained to be a relative coboundary. ) , ' ™~
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For linear constitutive relati‘ins the content principle gives an upper bound for

resistance while the cocontent prilmiple gi':;es an upper bound O‘I.I (l:onductance. As

usual the upper bounds are qbtainea by expressinjg the minimum of the functional as a
quadratic form in the prescribed pe)\lrliods and making the identification

A

Ba(2,51) . ~

‘ . ,; G(J)i&: Z ItRz]I] -

. 1,7=1 .

:\L;&ﬁl(QYSQ) , .
GE) = Y WG,V .

1y=1 L T
W
* ; N - > ¢y A
From the upper bound on conductance, a lower bound on resistance can\l{e found in
- ¢ -
q ~ o '
the usual way. . 33_;:’

By attempting to express the variational principles in terms of vector and scalar

potentials one will find, as in previous examples-,/nany topological subtleties. Noticing

the mathematical equivalénce between this example involving steady currents and the

!
§

. . . » . " £
previous one involving magnetostatics, one may form a transférmation of variables -

)

J—-B
E-H

- ) T — A . }»'A

<Y

Y

as soon as one fries to define potentials ¢ and T such that \ "
° . ¢

o J=curlT '_ .

>

E =grad ¢.

t

Summarising the results of exploiting the mathematical analogy, one can say the

y

following about the cocontent principle in terms of a vector potential T. As in the

3

.
s . ¢_;§ Lt .
. n °

3

o

¢
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previous example, one can consider the long exact: homology sequence for the pair

(0, S1)-and obtain
— » i~ ~ * H2(Q)
S =6HK ] O
Hz(ﬂ .1) 2 ( e€rne (ll))@‘h(i‘*)(ﬂg(sl)))
.where the relevant portion of the lorlg exact homology sequence is

& . . 2 )
2 Hy(S)) -5 Hy(Q) > Hy(0,S) —

1
v

.
- ¥

~ 3

5 )
2 H(S) = H(@Q) L ‘ .
As in the case of the vector potential A in Example 13, the surfaces £,,1 < ¢ < (2, S1)

r

can be split up into two groups where the first group is associated w‘r(gn a basis of the
i R [S "y

(»u

., 1 S ¢ < dim Image (J2)
is related to a ‘basis for Image (72) and / u
11 = / J ‘n dS v«
N ‘ £, ,

hee

9L, =0, . 1<7<dimlmage(72).

\ _

*, The second group is associated with a basis for the first term in the direct sum. The

periods of the current density J is easily expressed in terms of the ;fector"po‘tential in

this case. Let

\

T ;i mage (35)+1" 1 <1 <dim Imz?ge (62)

be associated with a basis of Image (2)

Idim [mage (;2)—0-1 = J-ndS .
.. ~
! dim Image (j9)+1
’ = T dl. S
azdim Image (;2)4-1 '
\\ '
# .\\ 94 \\ , - ]
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.one can explicitly describe the jumps {zj)]d] in terms of the periods

- In this way it {s possible to restate the stationary content principle as follows:

N \ .
The fact= ;ha%—thewermd‘sﬂﬁﬂ}’ Vanish o on “the ﬁr;~;-;11m Image (7;) generators of
Hz(ﬂ,Sl) in order for a vector potential to exist imposes no real constraint on the
problem s{nce these periods represent ihe rate of change of net charge 1n some connected
cemponent of R® - 1. Since the pnrob]em is assumed to be static, these periods are
taken to be zero. The next problem which ar15€§s is-the prescfiption of the tahgentlal
components of the vector potential on S; so that the normal component of J “vanishes
there and the periods of J on the 6, ' (Kernel (71)) remaining generators of H,(f,S))

can be prescribed in terms of the vector potential. This problem can be overcome by:

using exactly the same technique as in Example 13. That is, let

[

nxT=curly on Sy

where the jumps

Wx’]dj, 1< < B1(51,05:)

are prescribed on the curves d, which are associated with a basis of H,(S5,,05,). As

“in that previous example, selecting a set of curves z,,1 < 1.< 3,(S1), associated with a

_basis of H{{S,;) where

oL = 2z, o <1 < dim Image (62) ~

dim Image (39)+1

L i tmage (o) +1° . 1 <7 < dimImage (62). .

a

N

Stationary Content Principle (J = curl T)
T
s " Glcurl T) = ir%f/ / &(curl &,r) - curl (d€)dV
T Ja
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subject to the principal Boundary condition -
n>T=curlY on Sy .

where [z,b]dj are prescribed on curves representing generators of H(S;,dS5,) and ¢ is

otherwise an arbitrary single-valued function. ‘

o 4

Turning to the other variational principle, and using the mathematical analogy
between this example and the previous example, one sees that the stationary cocontent
principle cannot in general be expressed in-terms of a continuous single-valued scalar

potential. To see why this is so, one considers the following portion of the long exact

" homology sequence of the pair ({2, S,).

5 7 Py

2, Hi(Sy) =L H(0) A H(Q,S) —
5 %

L Ho(S:) % He(n) L
Let

c., 1 <1 < dimImage (71)

\

be a set of curves associated with a basis of Image (71) in H,(Q2,S2). The periods of the
electric field intensity E on these curves are in general non zero, but would be zero if
E is the gradient of a continuous single-valued scalar potential. As in Example 13, this

problem can be overcome by letting

z, 1 < < dimImage (71)

.
s ® .

be a set of surfaces associated with generators of H,((2,$;) which act like barriers that

enable the scalar potential to be single valued on .

dim Image (;1)
a-=0- |J =

1=1
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Furthermore, the periods .

vV, :/ E 4l 1< < dim%rmage (1)

1

can be prescribed irzbterm§ of the jumps

.WE:
T

and when this is done the remaining periods

E-dl

1% ~ =
dumn hitage (77 )+
¢ ~
dim Image (y)+t

«

can be expressed in terms -of the scalar potential which is constant value on each con-

nected component of S2. That is if ;

1

acd]m]mage (Gyj=1 = P~ Por 1 <1 < dimImage (6;)

¢ = d’(Pt)

v -
’ S

on the i1th connected cdmponent of Sy and if py is some datum node then the last

dim Image (61) periods of E can be prescribed: by specifying the potential differences

¢>(Pz).; &(po) I < ¢ < dim Image (6;).

When this is done the stationary cocontent principle can be rephrased in terms-of a

scalar potential as follows.

Stationary Cocontent Principle (E = grad ¢)

¢
G'(grad ¢) = igf/ / J(grad &,r) - grad (d€)dV
2
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subject to the constraints’

q

OE,, prescribed on barriers &/

~ and

¢ = o(p,), on the :th connected component of S,.

In summary, the problem of calculating steady current distributions in conducting
bodies and the problem of thrée dimensional magnetostatics are equivalent under the

»change of variables
A~ T, B ~J

¢ = o, HoE
hence the mathematical considerations in using vector or scalar potentials are the same

in both problems. Thus it is necessary to summarise only the physical interpretations of

A\

the periods and potentials. In this example vector fields J and E were associated withs
elements of Z2().— S1) and Z!(Q1 — S2) respectively and the nondegenerate bilinear

pairings which integration induces on homology and cohomology classes

e

/ CHy(0,8,) x H(Q - S)) = R

: /; H\(Q,S,) x HHQ - S,) — R

are associated with currents and electromotive forces respectively. The formulas

3

ZX0-8) = HXQ - 85)) @ B2 - 5y)

ZHO = 82) = H(Q - 52) @ Bi(Q - 82)
\

\
i

show that w\Ten there is a variational principle where either J or E are independent

o

variables, conditions fixing the periods of these relative cocycles restrict the variation of
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: the extremal to be a relative coboundary. Alternatively, when the variational principles

are formulated in terms of potentials, the potentials are unique to within an element of

&

Z2)(N-5) forT

we

oo . Z2(Q - S7) for ¢

- - ;r’“i
and techniques of the previous example show how to eliminate this nonuniquenes in the

]

case of the vector potential.

End of Ei‘(ample 14

The previous exa;mples show that homology groups arise naturally in boundary

. value problems of electromagnetics. It is beyond the intended scope of this thesis to
give a heuristic account of axiomatic homology theory in the context of the boundary
value problems being cons{éered because additional mathematical machinery such as
categorie:s, functors, and homotopies are required to explain the axioms which underlie

the theory (see Hocking and Youfig [1961] Sect 7.7 for an explanation of the axioms.)
;{:\\R&Suﬁices to say that the existence of a long exact homology sequence is only one of
_the seven axioms of a homology theory! The other six axioms of a homology theory,

once understood, are “intuitively obvious” in the present context and have been used

implicitly¥in many of the previous examples. . °

One of the virtues of axiomatic homology theory is that one can show that once a
v method of coniputing homology for a certain category of spaces, such as manifolds, has
been devised, the resulting homology groups are unique up to an isomorphism. Thus,

for example, the de Rham isomorphism can be regarded as a consequence of devising a

method of combuting cohomology with differential forms and simplicial complexes, and

3
¢ s
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showing that both methods satisfy the requirements of the axiomatic theory in the case

of differentiable manifolds.

1.10 Duality Theorems e

The next useful topic from homology theory which sheds light on the topological
aspects of boundary value problems are duality theorems. Duality theorems serve three

-
3

functions:

1. They show a duality between certain sets of lumped parameters which are conju-

gate in the sense of the Legendre tranformation.

2. They show the relationship between the generators of the pth homology é‘roup of
an n-dimensional space and.the n — p dimensional barriers which must be inserted

.

into the space to make the pth homology group trivial.

3. They show a global duality between compatibility conditions on the sources in
a boundary value problem and the gauge transformation or nonuniqueness of a

/ potential.

In order to simplify ideas, let the discussion be restricted to manifolds where

homology is calculated with coefficients in the field R. In general duality theorems are

formulated for orientable n-dimensional manifolds M and have the form

H? (something) ~ Hn_,(something else).

As will be seen in the next chapter, there is a way of multiplying an r-form and a ¢-
form to get an r + ¢-form. Thus multiplying a p-form and an n — p-form one obtains an

n-form. This multiplicatirjn, called the exterior product, leads to duality theorems as
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follows. For orientable manifolds one can construct an n-form so that integration over

-the manifold behaves like a nondegenerate bilinear pairing:
/ L CP(M) < C™P(M) — R
M A

which.induces a nondegenerate bilinear pairing on homology -

CHP(M) < H (M) —» R
M

/

where the multiplication on forms (exterior multiplication) induces a multiplication on
homology classes which is called the cup product. Summarising then, one can say
that duality theorems are a consequence of identifying a nondegenerate bilinear pairing
associated with integration just as the de Rham theorem comes about as a result of a
nondegenerate bilinear pairing between chains and cochains See Massey [1980! Chapter
9 or Greenberg and Harper [1981, Part 3 for derivations of the most useful duality

A}

theorems which do not depend on the formalism of differential forms.

The oldest form of these duality theorems is the Poincaré Duality theorem which

says that for an orientable n-dimensional manifold M which has no boundary one has:

‘ HP(M) ~ H,_,(M) ' ° v
where for compact closed manifolds the geometric picture is easily seen when one writes

‘ Hp(M).= Hnp (M) /

and verifies this for all of the 1 and 2 dimensional manifolds which one can think of.

For boundary value problems in electromagnetics one requires duality theorems

" _which apply to manifolds with boundary. The classical prototype of this type of theorem

is the Lefschetz Duality theorem which says that for a compact n-dimensional region Q_

101
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, HIP(Q) = Hy(0,00)

and so by de Rham’s Theorem

Hn- () ~ HP(Q - 89).

-Hence

3p(0) = Ba45(7,00)
\

~——

and by the de Rham Theorem —
Haop() = Hy(d},00).

In order to appreciate the intuitive content of this duality consider the following exam-

ples. ‘ -

Example 15,(3-D Electrostatics, n=3,p=1)
* -

Consider a dielectric region {1 whose boundary o5} is an interface to conducting
bodies. In this case each connected component of 8( is associated with an equipotential
and the generators of I?l(ﬂ,ah) can be associated with curves ¢,,1 <1 < B£1(0,00)
whose end points can be used to specify the 3, ({2,90) independent potential differences
in the problem. Dually, the generators of H5((1) can be a.sspcia‘ted with closed sufaces
Ll <i< B2{() which can be used to specify the total flux of the 85(f1) independent

charge distributions of the problem, That is,

/E-dl:m, 1<) <6(Q,00)

1




=

Furthermore, the equation

. T B1(0,80) = By(0)

expresses the fact that there are just as many indepentent 'poten.tial differences as there

are independent charges in the problem.

~.

Another interpretation of the Lefschetz Duality theorem is obtained by construct
ing a matrix of intersection numbers (m,,)} where m,, is the number of oriented inbersgc-
tions of ct/wi't;h £,. The Lefschetz theorem then asserts that this matrix is nonsingular. 7
Hence the ¢, ‘can be interpretéd as a minimal set of curves which when considered asr

obstacles make -
81(0,09)

Hy { 01— U ¢, | ~0

=1
¥ Q

vor in Maxwell’s terminology, the c, eliminate the periphraxity of the region 2. Thus if

o

Rl .
one replacés the ¢, by a tubular neighbourhood of the ¢,, one can always write

$1(0,09)°
D =curlC im0 - U c,

1=1
whenever

divD =0 in )
regardless of how charge is distributed in the exterior of the région and on the boundary.

End of Example 15

Example 16 (3-D Magnetostatics p = 2,n = 3)

Consider a nonconducting region (1 whose boundary 91} is an interface to super-
conducting bodies. In this case the genérators of Hy(2,01) can be associated with
open surfaces £,,1 <1 < (§,(0,00), which can be used to compute the §,(11, Q) in-

dependent fluxes in the problem. Dually, the generators of H,(f?) are associated with

w
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closed curves ¢,;,1 < j < 3,(0?) which can be used to specify the number of independent

w®

currents in the problem. That is, these generators are related to periods as follows:

qs,:/ B-ndS=] A-dl. 1<:<3,(0,00)
T ax,

1

I :/ H.dl, 1 <7< 8i(0).
Y

Furthermore, the equation

By(0, 091) = B1(0)

-

expresses the fact that there are just as many independent fluxes as there are currents

in the problem.

Another interpretation of the Lefschetz Duality theorem can be obtained by con-
structing a matrix of intersection numbers (m,;) where m,, is equal to the number of
oriented intersections of L, with ¢,. The Lefschetz theorem asserts that this matrix is

nonsingular. Hence the £, can be interpreted as a set of barriers which make

i
Ba (£2,69)

H |- U £, ~0

=1

or in Maxwall’s‘ terminology, the &, eliminate the cyclosis of the region (1. Thus one®

a

can always write
B2(0,30Q)

H =grad¢ in Q- U PIMN

==l

w4

whenever

curlH=10 in N

-

regardless of how currents flow in the exterior of the region and on the boundary.

v

End of Example 16 .

Example 17 (Steady currents in three dimensions p=2,n=3)
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. By making the substitutions

B -J AT ® I
H—-E. ) I —+ % z
the problem of steady currents.in a conducting region bounded by a nonconducting re-
gion becomes mathematically ider;tical to Example 16 and hence ti{e role of the Lefschetz
Duality Theorem in problems involving steady currents is; easily deduced by referring
to thel previous example. Thus the analogy between Examples 17 and 16 is ‘t‘he same as

N

the analogy between Examples 14 and 13.

AL

End of Example 17
Example 18 (Curreﬁts on orientable sheets p = 1,n = 2)

Consider a conducting sheet {1 which is homeomorphic to a sphere with n handles
and k holes as in Example 4. Suppose that slowly varying magnetic fields are inducing

currents on {1 and that the boundary of 2 does not touch any other conducting body.

s

Thus
divJ =0 on Q)

¢ J,=0 on 91
Note that this problem is dual to the one considered in Example 7 in the sense that
current flow normal to the boundary ofthe plate must vanish. Let us define a vector K

by the relation!
Jix Il/ =K

then, since locally,

J =curly = n' x grad ¢

! Readers familiar with differential forms will note that the operation n’x corre-
spor}ds to the Hodge star operator on 1-forms in two dimensions.

»
s

ey
7

[ (\)
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e

one has

e A

K = (n' x,grad¥) xn’ = (n’ - n')grad 4 - (n’ -grad ¢)n’ = grad y.
- /

Furthermore. since the current density J is tangent t6 the boundary, the wvector

fleld K has vanishing tangential components at the boundary and can be associated

#

with an element of

zHn -9a0).

LS

Thus if K can be described b'y a scalar potential ¢ then

&
¥ = constant -

on each connected component of 911.

Let ¢, 1 < <731 (02, 00) beg set of curves which are associated with generators

of Hi(0,0Q) and 2,1 < < §;(N2) be a set of curves associated with generators of

v

H1() as in Example 7. Dual to the situation in Examples 7 and 11 the 2, act like cuts

which enable ¥ to be single valued on

! » f

¢ By (%)
Q- U 2,
1=1

I
t

while ¢ = 0 on 3. Furthermore, the jumps of ¥ on the z,,[z/f]zz, are given by calculating

R

the periods

lz=/ J<n'-dl=] K-dl

v ¢y

By (0) '
A =/ grady - dl = Z muid)lz]

1 =1 * -

106 NS N
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where m,; is the number of oriented intersections of ¢, with z,. The matrix with entries

m,, is square since by the Lefschetz duality theorem

(31(0)°=Bf(n,an,) S

«

4

_and nonsingular if the €, and z; actually correspond to bases of H;(f2,1) and H(f1)

& respectively. The matrix can be inverted to yield

! ﬁl(ﬂ’an)
]w}zj = Z (mu)"ll,.
1=1

Hence the duality between the homology groups i useful in prescribing periods of vector

]

_ fields in terms of jumps in the scalar potential on curves assaciated with a dual group.:

LN

End of Example 18

!

Example 19 (Stream functions on orientable surfaces p = 1,n = 2)

o
.

When considering the current density vector J on a sheet as in Example 7 and
when prescribing the components of a vector tangent to a.surfage as in Examples 12,

13, 14, the following situation occured. Given a two dimensional surface S suppose
) ” (curlC) -n' =0

[N

or  (curlA)-n'=0

or (cdrl’i‘) n'=0

on S or if J is a vector field defined in the surface, suppose

divd =0 on S

and no boundary conditions are prescribed on @S. In this case it is useful to set

n’ xC =

nxA=| .
curl ¢ locally on S.
' n«xT=

J =
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v

v Next let z,,1 < < 3;(S). be a set of curves associated with a basis of H,(S) and

€, 17< 1 < B1(S,0S) be a set of curves associated with a basis of H,(S,d5).{ In this

case . S

Hl S*— U C, ~ 0

1=1
s%that the stream function can be made continuous and single valued if one avoids the

cuts ¢,. Furthermore tht jumps in ¥ on the cuts ¢, denoted by 19}, can’be used to

prescribe the periods .
~C , )
4
N
P :/ dl
z, | =T
‘ J xn'

Since

z

p,=/(c—mwan’)-dlz/,gradz/)-dl

1 ., i ) N

B

(5,85)

Z mz]{d’]\cl
]:z- ks
where m,, is the number of oriented'intersections of ¢, with 2z, and the Lefschetz duality
theorem ensures,that the above matrix equation is uniquely soluble for the [¢].. if the

¢, and 2z, are actually associated with a full set of generators for H1(S,3S) and H(S)

respectively.

i
End of Example 19

Example 20 (A counterexample)

It has been mentioned that the duality theorems are true for orientaple manifolds.
. ~
In order to see that the Lefschetz duality theorem is_not true in the case of a nonori-

0 as shown inj Fig. 16. Recall

entable manifolll, consider the Mobius strip of Exam
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(1 is the Mobius band

S is its edge

‘Fig. 16

that

F1(0,8) =04 1= 61(0).
Hence the Lefschetz duality theorem does not apply in this case.
»

» It is interesting to consider the Mébius band in the light of Example 17. That is

if
divy =0 on (1

Jn=0 on S

o

then.one attempts, since S is connected, to set
: o

J=curly onQ

and : r.

{ . ¥ = constant on S. ,

®

However, if the current flowing around the band is nonzero, then it is not possible to

»

set the stream function ¥ to a constant on S even if S is connected.” That is, if / is the
) b}

current which flows around the band then if ¢ is singfe valued

- Iéﬁ((mzp)xn’)-dl—_—w’s—ws.:o

&
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where v, is the value of ¥ on S. Furthermore, since N

° 3.(0,5) =0

there is no way to take a curve asgociated with a generator of H{(f2,S) and use it
to specify the current flowing around the loop. Thus it is seen that the methOfi of
consifiermg curves associated with generators of H,(Q) and H, (1, S) and using one set
as cuts and the other to specify }he periods of the vector field, is critically dependent
on the Lefschetz duality theorem. In order to see how the current flow can be described
in terms of a stream function, it is best to look at the problem in tt;,rms of Hy(9,S;XZ)

2

where 2 ~ 2.

The reader méy convince himself that this generator of the torsion subgroup of
A
H,(9,S; %) can be used as a cut in { which enables one to describe the current density

J in terms of a single valued stream function. Considering the diagram, there are two

a

obvious ways of doing this. é

Method # 1 Take z as the cut and impose the condition ¥ — — as one crosses the
cut and set '

ws:i

™|~

where the sign is chosen depending on the sense of the current.
#

Method # 2 Take 2 as the cut and note that S — 2 has two connected components
which shall be called S’ and S”. In order to describe the current flow in terms of the
stream function, let ¥y — —1 as one crosses the cut and let

I .
w.s’ = W= -‘té 3

5\’\
where again the sign is chosen depending on the sense of the current.
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The moral of this example is that one should not expect 'techniques which make
implicit use of duality theorems to work ip situations rwhere the hypotheses underlying

the duality theorems are not satisfied. ,

/

i End of Example 20

* 0

It is important to" realise that, for an n-dimensional manifold, the interpretation

of the Lefschetz Duality Theorem in terms of oriented intersections of p and n - p

dimensional submanifolds makes the duality intuitive when r is less than four. Fora
‘proper account of this interpretation see Greenberg and Harper ;1981 Chapter-31 while

for a-leisurely but rigorous development of intersections see Guillemin and Pollack 11974’

¥

Chapters 2 and 3. ‘ .

The boundary value problems considered in Examples 12, 13, and 14 show that the

¥

Lefs;hetz duality theorem is inadequate for dealing with complicated problems where
aifferent bound‘ary conditions occur on different connected components of d(1 or when
symmetry planes have been used to reduce a given problem to one a fraction of the
original size In other words the Lefschetz duality theorem is inadequate for many

problems formulated for numerical computation. For cases like Examples 12. 13. and

14, the following duality theorems apply:
HP(Q = S1) ~ Hn_p(f, $2)

s THP(Q ~ S9) = Ha_p(0,51)

where

I = S o Sy

a

Sy N S, has no (n — 1) dimensional volume.
&
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Here 1t is understood that the connected compon’er‘lts of S| and S, correspond
to intersections ;)f symmetry planes with sc;me original problem or to connected com-
ponents of the boundary of the onginal problem which was red{lce&d by identifying
symmetry planes. The abo;ze duality was first ol'?served (to the best of ‘the auth»or’s
knowledge) by Connor _195;} for the casewhere S| and S are the union of connected
components of 0. The proof of th’e theorem n this case is outlined in Vick 1973| Sect
5.25. The more general version which is assumJed in this thesis can be obtained from the
version known to Connor by the usnal method of doubling (see Duff [1952] or Friedrichs

B

11955)).

b

The above duality theorem implies that

\‘1 I‘(‘:\ ) ° e
' Bp(Q, 51) = Bn—p(Q2, S2)

[

and

-

Hy(0.S1) = Ho (0, S2) - .

where the isomorphism between these two homology groups can be interpreted as assert-

"mg that there is a nondegenerate bilinear pairing between the two groups which-can be

represented by a square nonsingular matrix whose entries count the number of oriented
intersections of p and n — p dimensional submanifolds associated with the generators
of both groups. The special cases of this theorem for the case n- = 3 can be‘found in

Examples 12, 13 and 14 (where p - l,%? respectively). [t is worthwhile to consider

several others.

3

Example 21 (p = 1,n = 2, currents on conducting surfaces)

7

Consider again the two dimensional surface of Example 4 which 1s homeomorphic

to a sphere with n handles and k holes and suppose-that the component of the magnetic
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|

A ) l f/ ’ -

(4

! field normal to the surface is negligible and that the freql*e\ncy of excitation is low enough . -

£

to make displacement currents negligible. Hence let .
A0 =S5 .8 |5 NS; has no length)

divl =0 ’}_on 9]
,“ ‘ J"i‘.“ w .
/ ‘ Jpo=0 on S
, ) curlE=0 =~ on 0l -
Et =0 on 52. 0

Thus 5, is associated with the edge of the plate which does not touch any other conduct-

ing body and Sy is associated with the interface of a perfect conductor. Alternatively

S, or. Sy can be identified with symmet;y planes. In this case the electric field E is

associated with an element of Z1(Q — S,) while
!

[
R * L

n'xJ - q'
where n' is the vector normal to the sheet, can'be associate®with an element of Z2((1 -

S]). That 'iS,
curl(n' xJ)-n'=0  on
. (.’ 1
(n'xJ)=0 on Sy.
Let ¢,,1 <1 < 81((2, S1) be a set of curves associated with generators of H1(f2, S1)
o>

and z;,1 <7 < G1{N, S2) be another set of curves which'are associated with generators

of H1(0.52) and let these sets of curves be arranged in jntersecting pairs as in Example

4. That is if m,, is the number of oriented intersections of ¢, with 2, then

. © m,, = §, (Kronecker delta).
Furtherdhore let the periods of the two cocycles on these sets of cycles be denoted by
\ . :
m L= [@a)-d, 1<ia@,8)
! -

"J=/ E-d, 1<j<B8(0,5)
%
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If ¢ is the thickness of the plate and o the conductivity of the material, the
stationary content and cocontent principles can-be restated as follows (note that J has

units of current per length in this problem)

Stationary Content Principle
Jn
GU) =  inf / < ds
Ixnlezl(a-s,) Ja 20d
subject to the constraints which prescribe the periods of J x n’ on generators of H, (12, S1)

[1 = / (J X n’) dl, 1 <1< ﬁl(ﬂ,Sl).

J
i

&
Statwnary Cocontent Principle

‘

Ef?

od
G inf / ds
/LEJ gezl(n-s,) Ja e

subject to the constraint w\m prescribe the periods of E on generators of H,(f2, S2)

v, :/ E-dl, 1<) <3(,852).
Jz
J

As in Examples 12, 13 and 14 the extremals are constrained to be relative co-
cycles and when the périods on generators of relative homology groups are specified.
the space of admissible variations of the extremal is the space of coboundaries These

considerations follow from the identities

ZHQ - S) 2 HH D - S,) 2 B~ Sy)

N

ZHD = $3) =~ HY(Q - Sy) & BY(Q — Sa).

The relationship of these variational principles to the lumped parameéters of resis-

tance and conductance is the same as in Example 1t and hence will not be discussed
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Fig. 17 B is small outside of the magnetic circuit.

here. Instead, it is instructive to reformulate the above variational principles in terms

of scalar potentials. By interpreting the ¢, and the z; as cuts, one can set

51(9152) i
J=curlv on0- |J =« ' o
3 1=1
=0 on S,
and let (Y], denote the jump of ¢ as z, is traversed. Similarly one can set
. A1 (2,8) ‘ N
E =grado on 1 - U ¢, .-

, 1=1

6=0 on 95

N

where the jumps of & on the ¢, are denoted by o' . Note that it i quite natural to
{

associate J with an element of Z)(Q2 ~ 51) which has nonzero periofds. These periods
result naturally from a.nonzero current being forced by time varyirg magnetic fields:

On the other hand the assumption that the electric feld is irrotational in the plate

seems to preclude the possibility of the electric field having nonzero periods. The fact

that this is not necessarily so is illustrated when the sheet links a magnetic circuit as \
-~

shown in Fig. 17.

iy
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The periods of the cocycles in terms of the jumps in the corresponding potentials

AJ

are easily calculated. Here the duality

| o
; Hi(Q,51) = H1(Q, S2)

|

comes in nicely, for if

m,, = 611
then

L=/(J><n’)-di=/ ((affl—zb)xn’)-dlzf grad ¥ - dl
é “ i .
’ '31(0152)
= S mylpls,  since de, € Co(S1)
="1

:W’]zu 1Si§,@1(ﬂ,51) ' - |

and similarly | : : /

v, = E-dl=/ gradg-dl .
- Je

%
8,0, w1)
= Z My [(P[cl since 821 € C’Q(SQ)
1= s

= (gle,. ' : | T

-

Thus when the bases of H(0Q,S5,) and H1(Q, S2) are arranged so that the intersection
. ) Vd

matrix is the unit matrix. the stationary content and cocontent principles can be restated
as: .o ’

Stationary Content Principle (J = curl )

-~

_ lcurly”
G(curly) = inf curl ¥,

d
v Q 20‘d S
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subject to

Yv=0 on S,

arid the constraints which prescribe the periods of J x n’ on generators of H;((2, S1):

+

L=l 1<i<@(a,5)

Stationary Cocontent Principle (E = grad ¢)

. 2
G’(grad¢) :.igf/ Mds L,

Q 2
subject to ¢ = 0 on S and the constraints which prescribe the periods of E on generators

of Hi(Q, S3):

Py

V‘l = [¢]Cl o7 [
Thus, by playing down the role implicitly played by the long exact homology sequence,
the role of duality theorems in handling topological aspects has become more apparent

in this'example.

End of Example 21 ~ .

Exémple 22 (Magnetostatics with Current Sources)

The purpose of this example is to show another manifestation of duality theo-
rems for orientable manifolds with boundary. Consider a magnetostatics problem in a

compact region Q where
0Nl =381 8, (S 183 hasno 2 - dimensi(')nal arena)
divB=0. n}
B-n=0 on S,
' curlf H=J . in
Hxn=0 on S.
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As before S, is an the interface to a superconductor or a symmetry plane while

S, is an interface to infinitely permeable bodies. As in Example 13, the magnetic flux
density vector B can be associated with an element of Z2(Q1 - S;) and in general it is

not a relative coboundary. However, considering the long exact h({nology sequence for

o,

the pair (?,5) one has

P

. I}z(n,sl) ~ 65 % (Kernel (~1~)) B 72 (f;?%)

[

where the relevant portion of the long exact sequence is

B, Hy(S) B Ho() B Hy(O,8) —
2 H(S) -2 H(0) S

Since the periods of B on the basis of Image (72) correspond to distributions of
magnetic poles ind R? - 0, it is natural to set these periods equal to zero. When this is

done the periods of B on the generators of H;(2) vanish and B can be written as
B=curlA inq.

However, as in Example 13, one cannot insist that the components of the vector potential
tangent to Sy vanish unless the periods of B on the basis of 6, ' (Kernel (7})) vanish.

Since this is not true in general, one lets

31(5.,98y)
n« A =curlw on Sy —- U d,

. t=1

a

as in Example 13, where d,,1 < 1 < J,(51,85,) form as basis for H,(S5,,05;). As

in Example 13, one can express the per'i'ods of B on the basid of 5, (Kernel (i;)) by

prescribing the jumps of ¥ on the d,.

By assuming a constitutive relation

0

H = ¥(B,r)
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4
which is defined in Example 13, one can rewrite the variational formultation for mag-

netostatics as follows (see Kotiuga [1982] Section 1.21).

Variational Principle (B=curl A)
curl A
F(A):extA// (& r)-dé — A-JdV
‘ Q

subject to the principal boundary condition

#1(81,95)) ’
nxA=curly onS;— U d,

1=1

where

¢

hb]d,’ lgzéﬂl(shasl)

are chosen so that the periods of B on 65 ' (Kernel (71)) have their desired values, and

¥ is otherwise arbitrarily chosen.

The above functional has a nonunique extremal (whenever an extremal exists)
and, as in the energy formulation of Example 13, this nonuniqueness corresponds to an
element of Z}!(Q0 — .Sl). That is. if A and A’ correspond to two'wmector potentials which

give the functional its stationary value, then

©

A-AcezZ{N-5).
As noted in Example 13, one can write

ZH0 - S1) ~ H' (1 - 51) & B - $))

4

and the nonuniqueness of A can be eliminated by specifying the periocis of A on gener-
ators of H,(f2, 5\) as well as the divergence of A in (2 and the normal component of A

on S3. This can be done by either making these conditions principal conditions on the
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above furrctional or, as in Kotiuga [1982], Chapter 5, by constucting another variational
formulation for which these conditions are a cot:uence of extremising the functional.
The question of alternate variational formulations-for this problem is taken up in full

generality in Chapter 3.

At this point one can expose the interplay between the nonuniqueness of A (the

gauge transformation) and the conditions on' the solvability of the associated boundary
W

value problem (the conditipns for the functional to have an extremum). As was noted in o=
Kotiuga [1982] certain convexity conditions on the constitutive relation are sufficient to
ensure that questions of solvability can be answered by a “Fredholm alternative” type

of argument which implies that the problems has a solution if and only if

0=F(A) - F(A") = /(A A" -JdV  forallA—A'c Z}Q - 5y).
. Q d&.hl

»

\" .
By brute force calculation (see Kotiuga [1982] Chapter 4 and in particular The-

orem 4.3) the above orthogonality condition can be restated entirely in terms of the
current density vector J. In the present case of homogeneous boundary conditions
on Sy, the conditions™on the current density vector J can be restated as follows. If
L, 1 <0< 32(0,S2) is a set of generators of H,(Q, S2) then the conditions for the

solvability of the equations for the extremum of the functional are:

locally: . :
divy =0 in 0

Jn continuous across interfaces:

4

J - n=0 onS-»;

~f

globally:
.
/ J-ndS=0 -1<i<3,(Q8),
Z

1

~
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where the global constraints are Yeriﬁed by using the three step recipe and the long
exact homology sequence for the pair ({1, S:) in the usual way. The local conditions in
this set of solvability conditions merélyxstate that J can be associated with an element
of Z3(Q— S,) whui‘le the global conditions ensure that the projection of this cocycle
into H2(Q - S.) is zero. Thus the solvability conditions merely state that J can be

associated with a relative coboundary in B2(f1 - S;). This, however, is exactly what

one requires of J in order to write

J =curlH. n

=

with b

nxH=0 onS.

Returning to the duality theorems, in Example 13 the duality between lumped

“

variables was expressed by
H‘g(ﬂ, S\) :'_"_" Hg_z(n, 52) = H1 (ﬂ, SQ)

Here, in constrast, when sources are added the duality

L]

Hl(ﬂ, 51) >~ Hg_l(ﬂ.S:)) = HQ(Q, Sg)

expresses a duality between global degrees of freedom in the gauge transformation and

compatibility conditions on the prescription of the current density vector J.

One final remark is in order. The global ambiguity of the gauge of the vector po-
tential js associated with unspecified fluxes through “handles” of Q or urispecified time
integrals of electromotive forces between connected components of S|, while the com-

patibility conditions on J ensure that Ampére’'s law can be used without contradiction.
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The intersection matrix for the generators of the groups H;((?,S5,) and H3(Q,S;) can
be used to help see how a magnetostatics problem is improperly posed by checking to
see which degrees of freedom in the ga.uge) t;ra:lsformation do not leave the value of the
functional invariant. To the best of the author’s knowledge this idea was first exploited,

L8

in a rather pedestrian way, in Kotiuga [1982], Chapter 5.
End of Example 22

Finally, the Alexander Duality Theorem will be considered.” Although the Alexan-
der Duality Theorem theorem is not considered as visual or easy as the Lefschetz or
Poincaré dualities, various special cases of this general theorem were known to Maxwell.

In its most general form the Alexander Duality Theoremstates that for an n-dimensional

manifold M and a closed subset @, —_.-
1 j

HP(Q) = Hop (M, M - Q).

There is a question of limits which has been ignored here (see Greenberg and
Harper {1981], p 233 for an exact statement). Skipping over the details of limits is
justified since one can safely say that the exceptions can truly be considered pathological

(see Massey [1980] Chapter 9, Sect. 6 for an example). For most applications M is taken

to be R® in which case the theorem says

H?(Q) = H,-,(R*,R® - Q).

., There is a classical version of the Alexander Duality theorem which can be ob-
tained as a corollary of the above one by the following simplified argument (see Green-

berg and Harper (1981 Sect. 27.9 for a proof which follows on similar lines). Consider

2
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the long exact homology sequence for the pair (R® IR3 - ).

0 — HyRP-0) 3 Hy(RY) 2 H(RR°-0) —
L5 mRP-) - H(RY) 2 Hy(RLRP-Q) —
v 2, 1 (R® - Q) A, Hi{R?) 2, H,(1R3,iR3— ) ~ :
SL HyRP-0) % Ho(RY) % Hy(R%,R®-0Q) — o0
Sinc’e .
o)< (& 270

then if ) # ¢ the long exact sequence tells us that

Q

Hy ,(R® ,R®-Q)~H, ,(R*-Q) 1fp#2

R ® Hz-P(IRSa IRS - n) = H?——p(IR?, - Q) lf p= 2.

Cc;mbir{ing this with the Alexander Duality theorem yields:

HP(Q) = Hy (R*-Q) ifp#2

R® H*(Q) ~ Hy(R® - Q)

3

or

Bo(Q) = 8o p(R®-01)  of p£2
1+ 35(0) = 8,(R° - Q). °

These are the classical versions of the Alexander Duality Theorem. The case where

p = | was known to Maxwell 1981}, Section 18 in the following form:

“The space outside the region has the same cyclomatic number as the region
h o

-

itself.”

and




“w

-/\ . -
“The cyclomatic number of a closed surface is twice that of either of the regions

it bounds.”
/

The reader may turn back to Example 6 to see how the classical version of the
Alexander Duality Theorm was u;ed in the case where p = 2, and Example 8 for the
case p=1. In geileral, the classical version of the Alexander duality is_very useful
when one wants to figure out how global aspects of gauge transfo;mations, solvability

conditions or potential formulations for a problem defined in a region (1 are a result of

. 3
sources in R” - 1.

In summary, there are three types of duality theorems which are invaluable when
considering electromagnetic boundary value problems in complicated domains. They

are

1. Lefschetz Duality Theorem (02 n-dimensional)

. )

H,(Q) = Hq_,(Q,59).

2. When (1 is n-dimensional and 002 = S| US; where S| and S2 are two regions whose
\iqtersection does not have any “n — l-dimensional volume” and are associated with

dual boundary conditions on symmetry planes and interfaces then

1

Ho(Q 81) = Ha_p(02, Su).

3. Alexander Duality Theorem

Hy(Q) ~ H;_,(R*~Q) p#2 ~ J

R 2 Hy(Q) = Hi(R® - Q).
) » S
It is also important to remember that the first two duality theorems can be inter-
preted in terms of an intersection matrix. The classical version of Alexander Duality

. e
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can be interpreted through the notion of a linkiig number (see Flanders [1963] section

4

6.4).

1.11 Outline of Thesis ;-
L
-

The ultim‘ate aim of th’is thesis is to develop orthogonal decoxmposit;ions of Jdiffer-
ential forms which enable a variety of questions associated with variational boundary
value problems of electromagnetics to be formulated and answered in a general way. In
order to derive such orthogonal decompostions, rudimentary concepts from homq!ogy
theory and the calculus ol‘«differential forms are required. Since it is not safe to ass;‘x—me
that these mathematical concepts are standard parts of an electrical engineer’s\tool kit,
the author has developed these subjects in Chapters ;:‘;gand 2 so that the main result‘s of

I
the thesis could be presented succinctly in Chapter 3.

The first chapter of this thesis may be regarded as an attempt to present certain
key results from homology theory in the context of electromagnetics and to develop
techniques for handling topological aspects of boundary value problems. To this end,

Sections 1.2-1.5 present the process of integration as relating global information in-

volving vector fields over a region (cohomology groups) to the “topology” of the region

(homology groups). The interrelationship between homology and cohamology (the de .

Rham isomorphism) is presented in Section 1.4 and illustrated in Section 1.5 by means
of several examples. Having established the de Rham isomorphismg, Sections 1.6-1.8
present certain algebrz;lc techniques which are required to handle boundary corlditgons.
These algebraic concepts are then illustrated in Section 1.9 by means of several lengthy

examples. More specifically, Section 1.6 introduces the notion of a complex which forms

the backdrop for homology theory and Section 1.7 goes on to develop the notien of
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a relative homology group which is the key to formalising intuitions about boundary
conditions. Section 1.8 presents the iong exa;:i hdrhology sequencé in order to develop
a facility for deducing the structure of relative homology groups of-a region (I modulo
a subset S in terms of absolute homology groups of {1 and S. The notion of relative
cohomology and the relative de Rham isomorphism is developed in Section 1.9 and
illustrated by several lengthy examples which demonstrate the role of relﬂanive homol-
ogy groups in familiar boundarg/ value problems. Finally, after the detailed analysis
of the boundary value problems of Section 1.9, commonly used duality theorems for
orientable manifolds with boundary are presented in Section 1.10 and their relevance in
electromagnetic theory is illustrated by additional examples. The duality theorems are
interpreted in terms of the matrices of intersection numbers between generators of two

“dual” homology groups.

The first chapter of this thesis has been written in a heuristic manner which aivoids
the formalism of differential forms. The second chapter complements this point of view
by dev:;luoping the formalism of differential forms and exterior‘;igebra, reorganising the
material found in the first chapter. and géing on to develop orthogonal decompositions
in a Hilbert space setting. Specifically, Sections 2.2-2 4 develo\p the notions of manifold.

.differential form, and'exterior algebra while Sections 2.5-2.8 present the cochain complex

associated with differential forms and exterior derivative on a manifold.and the resulting

o4 ’ ‘.‘, . ~ ) . ~¢ s
cohomology of the cochain complex. Havingthis basic material. in ,Section 2.9. Stokes

& - o~

theorem is presented, an mtegratioﬁ by parts formula .is l'derived. and much of the
material considered in Chapter 1 1s reconsidered. Speci’f-ically. the “five [erllma"" is
used to derive a relative de Rham isomorphism from the de; Rham isomorphism for
Sabsolute homology groups. and duality theorems are considered in the context of a

B bilinear pairing between cohomology groups which is induced by integration over the
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" whole manifold. Starting in Sectfon 2.10 a Hilbert space formalism is developed so that
orthogonal decompositions ocanr be derived. In Section 2.10 the Hodge star operator is
introduced so that an inner product can be defined. Given an inner product on p-forms,
Section 2.11 goes on to find an ope;ator adjoint to the exterior derivative. This sets
the stage for orthogonal decompositions. In Section 2.12, the Hodge decomposition is’
discussed an‘d in Section- 2.13 an orthogonal decomposition of p-forms on a manifold
with bomlmdary is derived and a proof of the duality theorems based on the Hodge star

oplerat'.or is given. [t is seen that the orthogonal‘ decomposition of p-forms on a manifold

with boundary is a consequence of the complex associated with différential forms and a

t;apic property concerning linear operators and-their adjoints. ‘

|

' Having developed the relevant aspects of homology theory and derived an orthog-
on‘al dé‘co'mposition theorem for differential forms which makes explicit the role played
by homology groups, the third chapter goes on to formulate and investigate a pa.ra.dlgm
situation encountered in classical electromagnetlc theory [n Section 3.1, this paradxgm

.
variational boundary value problem is introduced and various familiar instances are

-

listed. In Section 3.2 the conditions which must be imposed on the problem in order
for a potentiél to exist are investigated and when such a potential e;xists. a va‘riational .
gformulatlon of the probiem 1s given. The deep interrelationship between gauge trans- °
formations and compatibility condmons (conservation laws) is given in Section 3.3. In

particular, it is seen how the dualitﬁtheorems of homology theory give insight into the

, ,
ge transformations and conservation laws. In Sec-

t

global interrelationship between ga
tion 3.4 modified variational principlestare considered for which there is alwhys a unique
E extremal from which information concerning the solvability of the original problem can

> be deduced. More precisely, whenever the original problem is physically meaningful the

*unique gxtremal of the modified variational formulation corresponds to a solution of )
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the original problem and the projection of the extremal into the space of “gauge trans-
formations” vanishes. Altgrnatively, whenever the original problem is not posed in a
physically meaningful way, the unique extremal of the modified variational formulation
is a solution to the “nearest” physically meaningfull problem and the projectionr of the
extremal into the space of “gauge transformations” can be used to obtaiman a posteriori
measure of how the problem was unphysical. Finally, the thesis culminates in Section
3.5 where the Tonti diagram for the paradigm problem is considered along with the
complementary variational principle for the paradigm problem. The main observation
made is that the Tonti diagram is essentially two differential complexes, one complex
involvi.ng the operators adjoint to the operators 0% the other complex, and negelecting
the (co)homology groups of these complexes may lead to false conclusions when using
the Tonti diagram. In particular, the roles of the six different cohomology groups and
three duality isomorphisms are explained in the context of defining potentials, investi-
gating gauge invariance and determining compatibulity conditions for both the original

and complementary problems. The thesis ends with an outline for future work and a

list of original contributions. .



CHAPTER 2

A Short Course in Differential Forms

i

. [
- -

“The assemblage of points on a surface is a two manifoldness; the assemblage of
points in .tri-dimensional space is a three fold mamfoldness, the| values ofa continuous
function of n arguments an n- fold manifoldness.” ‘

G. C'rystal
Encycfopedw Britannica, 1892.

e 1

“The committee which was set up in Rome for \the unification of vector notation
did not have the slightest success, which was only tolhave been expected.”

| F. Klein,
Flementary Mathematics from an Advanced Standpoint, 1925,

“In the year 1844 two remarkable events occured, the publication by Hamilton.
[1844] of his discovery of quarternions, and the publication by Grassmann [1844] of his
"“Ausdehnungslehre”. With the advantage of hindsight we can see that Grassmann’s was
the greater contribution to mathematics, containing the germ of many of the concepts
of modern algebra, and including vector analysis as a special case. However, Grassmann
was an obscure high-school teacher in Stettin, W{}ile Hamilton was the world famous’
mathematician whose official titles occupy six lines of print after his name at the be-
ginning of his 1844 paper. So it is regrettable but not suprising, that quarternions
were hailed as a great discovery while Grassmann had to wait 23 years before his work
received any recognition at all from professional mathematicians.”

- _ . F.J. Dyson,
- Missed Opportunities,
Bull. AMS.78. Sept.(1972)p.644

2.1 Introduction

The systematic use of differential forms in‘electromagnetic theory started with the

truly remgirkable paper of Hargraves 1908 in which the space-time cov%u‘iant form of
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Maxwell's equations was deduced. Despite the efforts of great erlgineers such as Gabriel
Kron (see the book by Ba‘,ﬁisubramabign et al. [1970| for a bibliography) the use of
differential forms in electrical engineering is, unfortunately, still quite rare. The reader

is referred to the paper by Deschamps [1981r for an introductory vifW\e subject.

[y

The purpose of this chapter is to summarise the properties of differential forins
which are needed to-facilitate the presentation of the material in the next chapter. A
detailed development is\,' of course, impossible. There are two reasons f:or this. Firstly,
the body of results concerning applications of differential forms in mathematical physics
is so much greate\r than \whatjls required to understand this thesis that the uninitiated
reader would not apprecjate reading ‘more than the absolute minimum. Secondly, there
is little excuse to take up space with magerial which is so easily found elsewhere and
presented from so,many points of view. For example the book by Balasubramanian et
al. [1976] does a n{arvellousjob of presenting most of the topics in this chapter from the
point of view of the numerical analyst interested in network models for Maxwell’s equa-
tions. There are also the “Advanced Calculus” type of books by Loomis and Sgernberg
[1968], Flemming [1965], Lichnerowicz {1967|. Cartan {1967! and Spivak /1965.. The
books by Flanders '1963| Bioshop and Goldberg (1968}, Schutz 1980, Arnold '1974!,
Abraham et al. [1,983?(§nd von Westenholz (1978| are aimed at the physics student.
Alternatively. Hodge 1952' and Slebodazinski 11970| are excellent books which avoid all

modern notation while de Rham '1955. is the classic work.

There are se;veral books which the author found particularly invaluable. These
are Warner'[1971l Chapters 4 and 6 for a proof of Stoi(es’ theorem and the Hodge
decomposition for z; manifold without, bour{dary, Spivak {19791 Chapters 8 and 1! for
'integration theory and cohomology theory in terms of differential forms, Bott and Tu

(1982 for a quick route into cohomology and Yano (1970 for results concerning mani-

-~
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folds with boundary. Finally, the papers by Duff, Spencer, Conner, and Fiedrichs (see
bibliography) were always useful for basic intuitions ahout orthogonal decompositions

on manifolds with boundary.

L]

Though this chapter may seem more formal than the previous one, the basic in-
tuitions about differential forms come from integration which was considered in the
previous chapter. What remains to be developed is a systematic way of manipulating
differential forms which involves only basic linear algebra and partial differentiation. -

Once the basic operations on differential forms have been defined, all of the properties

of cohomology groups appear as in the previous chapter.

’2.2 Differentiable Manifolds

>

In order to talk about differential forms, it is tmportant first to have an aquaintance
with the notion of a differentiable manifold. Roughly speaking, a differentiable manifold

of dimension n can be described locally by n coordinates, that is, given any point p in

-




an n-dimens.ional differentiable manifold M, one can find a neighborhood U of p which
. is homeomorphic to a subset of R". More acc{lrately, the 1-1 continuous mapping
which takes U into a subset of R" is differentiable a specified numi)er of times. The
reason why one is required to work in terms of open sets and not the whole manifold is
because the simplest of; n-dimensional manifolds are not homeomorphic to any subset of

R™. Consider, for example, the two dimensional sphere shown in Fig. 18 which requires

at least two such open sets to cover it. >

f .
More formally, in order to describe an “n-dimensional differentiable manifold .M of

i,

class C*” one forms what is called an atlas. An atlas 4 is a collection of pairs (U,, o)

called charts whg{e U, is an open set of M ahd yp, is a 1-1 bijective map, differentiable
. ¥

“of class C*, mapping U, into an open set of R". In addition the charts in the atlas are

assumed to satisfy:

i

1) <p10<pj'l 20, (U,NU,) = @,(U,nU,) is a differentiable function of class C* whenever
s (U, 0.),(U;,0;) € A (see Fig. 19). The functions e goj‘l are called transition
functions.

2) UU,, = 1‘4. ) : /7

[
T

Thus, referring back to the example of the sphere we see that it is a 2-dimensional
differentiable manifold of class C'*® whicfl can be described by an atlas whi¢h contains
two charts. The actual definition of a differentiable manifold involves not only an atlas
but an equivalence class of atlases where if for a manifold M, A and B are atlases, then

AU B is also an atlas. That is if ' %

(Lo o0) €4

(W, w,) =8
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ob,

Fig. 19

then

©, 0 z/)J—l c U (UnW,) = o (U rW,)

L]
" is a continuous map whic‘l} is just as smoogth as p, or ¥;. Thus a set M together with

an equivalence class of atlases is called a differentiable manifold.

(3

°The local nature of the definition of a manifold is essential if one is not to constrain

‘the global topology of the manifold. A fundamental property_of differentiable manifolds

is paracompactness which enables one to construct partitions of unity (see pages 5-10
in Warner (1971, for a decent explanation of what all this means). The existence of
a partition of unity is what is required td si)ecify smoothly a geometrical object such
as a vector field, differential for’m or Riemannian structure globally on a differentiable
- ) .
manifold by specifying the geometrical ob\jEcc locally in terms of the coodrdinate charts.

Throughout this chapter it will be assumed that such geometrical objects are defined

élobally and most computations will be performed in local coordinate charts without

_regard to how the charts fit together globally. Another almost immediate consequence
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of the definition of a manifold is that once a notion of distance (Riemannian structure)
_ is defined, the cohomology of the manifold is easily computed in terms of differential
forms (see Bott [1982} §5). Holding off on the questions of homdlogy, cohomology etc.

the exposition will now concentrate on the algebraic properties of differential forms.

T
~
"

2.3 Tangent Vectors and the Dual Space of 1-forms

-

Suppose that in a neighborhood of a point p in an n-dimensional manifold M there

are local coordinates

z', 1

IN

1< n

The tangent space M, at the point p € M is defined to be the linear span of all linear

)

first order differential operators. That is, if X € M, then X can be represented as

X=Y X0 o

1=1

Tt is ob%ious that

— < <n
v 3.’1:‘ - -

'form a basis for A[,;. The interpretation of the tangent space is obtained by considering
n ‘ RN \\
: af 1
X(N)] =) X5, -

Thus it is 8een that the tangent vectors can be interpreted as giving directional deriva-
tives of functions. The collection of all tangent spaces to a manifold is called the tangent

bundle and is denoted by T(M). Thus

(M) = | M,

reM

%
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A vector field on M is defined to be a smooth section of the_‘tangent bundlé1 that is, if

Py
" one writes a vector field X in tetms of local coordinates in a neighborhood of p then
//h n a . E’
X = X' —
Z a:l!"
1=1
where the X' are smooth functions of the local coordinates.
Since a vector space has been defined it is natural to inquire about its dual space.
An element of the dual space to M), is a first order differential form (or l—form)'evaluated Vs
' /

at p. Such a beast looks like

n

W= Zal(p)da:‘. e

=1

The dual space to the tangent space M will be denoted by M;. In this scheme on/e/

identifies »

dr, 1<i1< A

as a basis for Mz; and the dual basis to /
o a 1 < -
- oz' Stsn
. - W
- Thus ’ . : .
11 a “ 1
dI ((—;I_]) = 61 i )
¢ s
and .
s(X)| = y a(p)dz’ i X(p) 2
'(P 1=1 =1 Brl
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R
e
S
)
QU
b’l—
o~
&
-~
SNe——

PR



oy

e,

/ W

/ & .

o

'//f'laving defined the dual space to vectors as differential forms, one can also define the

// cotangent bundle to the manifold M as

T (M) =] M. -
pEM .
/

In order to verify that w(X) is really an invariant quantity, it is essential to know

how w and X behaye under coordinate transformations. Suppose p is a mapping be-

L)

tween an m-dimensional manifold M’ and an n-dimensional manifold M:
o: M =M.

Choose points p' € M', p € M such that ©(p’) = p. What is desired is the form of the

induced transformations:

o# : T*(M) — T" (M)

p# : T(M') — T(M)

<

" on 1-forms (called a pull back) and vector fields respectively, which have the following ‘

property:
If 5 )
- wsT (M), XeT(M)
then
?
(*)(X)] = wlpsX)]| .
. p! ‘p ﬂ
Let (y!,...,y™),(z!,...,z?) be local coordinates around p’ = M and p = M respec-

tively. In terms of these local coordinates there is a functional relationship

=y, ... y"), 1<:<n , .



~

Hence, if
n ! '
W= Z a.(p)dz s\
=1
X= 3K o) 2
1= %
then
# m n , ax‘ ]
© (W)zz Zaz(ﬁo(l’))a—;; dy
=1 \i=l1
= ~ ozt d
= J —_—
o (X) Z (2_:1 X?(p) ay,> e
and ‘
n m axl N
P =22 a o) 55X (p(o")
t=1)= .
n m a‘rl . »
=2 el (P
1=1)=
=w(pzX)]|
» » 'p »
which is the desired transformation. Note that the transformation rule for the basis
T~
vectors ’
dr';, 1<:<n, -—a— l<‘J<m
) L) — — ayj ¥ . — —_—

make sense if these basis vectors are regarded as infinitesimals and partial derivatives.
and the usual rules of calculus are used. However the reader Should avoid making any

3
interpretation of the symbol d untill the exterior derivative is defined. That is,

d(something) T .o

1 3 7 \\\



) 2.4 Higher Order-Differential Forms and Exterior Algebra

should not be interpreted as an infinitesimal. /

\J

One more remark is in order. Suppose M" is another manifold'and there is a

transformation

w:M'\'—»M’

3

then there is a composite transformation ¢ o ¢ which makes the following-diagram

commutatii?e "
MY IW’ .
poy N\ ltp

M

and the chain rule for partial derivatives shows that the induced transformations on

vector fields and 1-forms make the followingndiaéranis commutative

¥ #
T(M") £ T(M) T-(M") &7 T (M)
/ (e¥)g N l*"# (pw)® N\ , ot
(M) O T(M)
Hence ‘ ‘ \
\
(P¥) 4 = pavs
~ |
: ‘ (p)# = pFp#, ‘

<

P

Thus vector fields transform covariantly while 1-farms transform contravariantl\y and
i -
the whole scheme is invariant under transformations.

Fa

The identification of 1-forms at a point p as elements of the dual space of .

enables one to regard a differential 1-form at a point p as a linear functional on the
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n

- o, - e
tangent space M,. Higher order k-forms are a generalisation of this idea. At a point .

p € M, a differential k-form is defined to be an alternating k-linear functional on the

tangent space M,. That is if w is a k-form then

. o ¥ . .
| RN . " :
w . “/I p X IWP X oo X IWP —r ]R. . i - . " . +*
p ¥ ~ i ¢
k times -t V3
. . ' " r .
e e . R . . . . -
which is linear in each argundient and satisfies the following. If T
f‘.
-’ . T P
X1, X3,..., Xk €M, 13 s
& t":.*

then for any permutation 7 of k integers (1,...,%)

]

w (X,r(l), Xr(2)se-s Xw(k)) = sgn(m)w (X1, Xoy..., Xk)

where
{ 1, if 7 is an even permutation,
sgn(m) =

—1, if 7 is an odd permutation. -

\‘ . '
Thus, the set of k-forms at a point p form a vector space. It is denoted by

v

Ak(l\’[,;)- ) . p

In addition, the following definitions are made: -

A
(]

Ak(“d—p") = O, . k
M(M;) = M;

Ao(M,) = values of functions evaluated at p.

When thinking of alternating multilinear mappings, it is useful to remember the Alter-

“

nation Mapping which sends any multilinear mapping into an alternating one: " -».
Al ' UM 1 (o X o))
Fs t(T(Xl’--..‘kk)): Z k! T(4 7{'(1’,. ,1-(‘2),-.." Tr(k))
R'ESk ‘.
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where Sy is the group of permutations of k& objects. The alternation mapping has the
exact same properties as the determinant function and from this fact one can' deduce:
i

Ak(M}:)zo Wf k>n.

o5 [y N Vo
The exterior algebra of M} is deﬁr;ed as :
) - $

A(M;) @ Ak(M;) )

" . By forming

- : oA = U .\:;(M,;)

pEM ‘

and considering the k-forms whose coefficients are differentiable functions of coordinates,

one has the exterior k-bundle of the manifold M. The set of ;ll differential forms on a

manifold M form the exterior algebra bundle of M which is defined as

n

A(M) = | ;) = @A;“(M).

peM k=0

i
@

-
In this swarm of definitions the reader has béen short—changed. The word exterior *

algebra has been used several times Wwithout any mention of what this aloebra is. There

is a proddct ) ' £ »

A A (M) x AT (M) — A (M)

‘i

which is called the exterior (wedge, Grassmann) product which takes a k-form and an

’

[-form and gives a k + l-form according to the followixig rule. Ifw = A (M), n < \; (M),

o

and (X,. Xa..... Xxu1) € T(M) then o
(w A )(vl,xo,...‘,xk_,) . *
1 -
= (/C " l)' Z Sgn(”)w (‘Yﬂ‘(l)" e v“(rr(k)) n (:Xvﬂ‘(k-i—l)s R v‘Yfr(le)) .
. ’ :'T":’:Sk_l -



T

E
a *

ISl

&~

The above definition of wedge multiplication is net very useful for explicit calculations;‘

its usefulness is like that of the formal definition of a determinant. For practical com-

P

1. Bilinear:

a

putations it is important to remember that wedge multiplication is:

\ A

»

wA (@11 + aznz) = ai(w A n1) + az2(w A n2)
for ay,aq € R.

(01'771 + a2172) ANw = al(r“ A w) + a2(172 A w)

. Associative:

(Arp)An=AA(pAn). . ;

. G{-aded commutative:

wAn - (—1)“7) ANw for w & A,;(t\/[),fl € AI(M)

~

Before considering some examples of wedge multiplication it is worth considering
s

k3

what differential forms look like at a point p € M where (z!;z%," ,z") are local

coordinates. Let

dz', 1<i<n

be a basis for M. By taking repeated wedge products in all possible ways, Ae(M;)

is seen to be Spanned by expressions of the form
dr't Adzx'2 AL A dotk, :
Furthermore for 7 = Sk one has

dr't A dz'2 AL Ado'k = sgn(w)dz'T() AL dr'Tik)
A N .

¢, v

and since dz*,1 <

[

< n span A(M,), one sees that A¢(M,) has a basis of the

form . § i o

£~

~

2 de't Adx'2 A LN dT'E, 1<y <...<ig<n. -
: X



Therefore, for k > 0,w € Ap(M;) looks like:
W = Z ' a,l,tz,,,_,k(p)dar:‘1 Adz'? AL N dTk
1< < . <1y
and )
n! n
i M)l= ———— = .
dim Ag( [p) CEA <k)

By the binomial theorem it is trivial to calculate the dimension of the exterior
“

algebra of M,

dim (A(M;)) = ) dim (Ax(M;)) = (Z)
k=0 k=0

=(1+1)" =2"

At this point it is useful to consider an example.

Example 23 (Wedge multiplication)

Consider the cotangent bundle to a three dimensional manifold embedded in R™

for some m > 3. Let p € M and dz', dr? dz® be a basis of A\ (M) = M,. If
Wi, W, ws & A[(Af‘[p‘), n = A\g(.\/f;;)
where ) -

.'hd.’El - A-zd.'l?zz + A,;dl‘d

w1
w2 = Bidr! ~ Bodz? + Blg,dz:3
wy = Cld:c" ~ C2dz’ + Cadz®

n = :Pld.r'z A dz® -‘-‘ Pydz> A dz' ~ Pydzt A dz?

»
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then using the rules for wedge multiplication one obtains

nAwg = (Pld:::2 A dz? + Pydz® A dr' + Padz! A dz?) A (Crdz! + Codz® + Cadz?)

_\i = (PIC'I + PgCQ + P;;Cg)d.’l:l A dz® A dz® .

w1 Aws = (Ardz! A Aadz? A A3dz®) A (Bydz! + Bada® + Badz®)

= (AQB:; - A3Bz)dl‘2 Adzsy + (A:;Bl - A[Bg)d13 Adzt -+ (.Ale - AzB1)dIl A dz®.
Identifying wq A wo with n, the above two formulas give

wWiAwa /\(4)3 = {(Ang—Ang)Cl +(A3B1 —‘4133)(:'3 'T‘(AlBg —AgBl)Cgldlfl "\dIZ/\d.’Ez:‘

Hence, the scalar product, vector product and scalar triple product of vector calculus
arise in the wedge multiplication of forms of various degrees on a three dimensional _

{ manifold.

End of Example 23

* 2.5 Behavior of Differential Forms Under Mappings

[n the previous section many of the properties of differential forms were seen Yo

- be properties of alternating multilinear functionals over a vector space. The following
z

1

fact is also a consequence of the definition of alternating multilinear functionals. Sup-
pose there is a linear transformation on M, then there is an induced exterior algebra

homomorphism. That is, suppose there is an homorphism
Ji 1\/[;, — M,

{ which induces
FP o A(M;) — A(M)).
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If

w— fty
n— f*n
-  whAn— fHwAn)
then
. f#(wnAn) = (ffw) A (fn): -
4: ! s +
\ Earlier, when discussing covariance and contravariance, the pull back p# on I-

forms induced by a mapping p was considered along with the induced transformation

w4 on vector fields. The above fact enables one to define a pull back on all differential

forms:

Theorem. Given p: M’ — M. there is an induced homomorphism

p#  AT(M) AT (M)

such that
. pF{wan) = (p™w) A (pFn)

for all w,n € A~ (M).

The significance of this result is best appreciated in local coordinates since it dic-
fates a “change of variables” formula for differential forms. Consider p = M with local

coordinates (z!,...,z") and p’ £ M’ with local coordinates (y',...,y™) along with
oM - M

such that 2(p') = p. This transformation induces (via 7) a linear transformation on

-~

A (M) where,

({ ' Ly o
dr Ijzz:la——y‘}—dy‘}
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-The exterior algebra homomorphism says that given a k-form, w € Ag(M) where

n

w = Z a11t2 (p)dz‘l Adri2 A ...Adztk
?_, 11 <1g<. <k .
we have )
’ n n lk
_—_— . \1\,' or )
w'w = Z al:[lz. Za—-——) dy 1 /\...7(,9\ Z p dyk
Yt / - By k
5 <. <y )El

This transformation is prec\isely the one required to leave’ _

} (¥ w)(X1,... . Xk) = w(pa X1y .., 08 Xk).

Furthermore, the change of variables formula for multiple integrals takes on the following

form .

f / pFu = / w.
R’ p(R') "
This change of variable formula is_most easily understood by .mearﬁ_gf a few examples.

I~

Example 24 (Change of variables formalain two dimensions)

Suppose R’ C M’ has local coordinates u,v while go(R’j C M has local coordinates

~8,t. Let

[ = / f{s,t)ds ~ dt
P(R’)

and consider the change of variables

s = s(u,v) t = t(u,v)
fnce
ds = ﬁdu - gb-dv
( _du v J
Jt ot
\ dt = d_ﬁudul hat %d'b
; 145



and .
(8, . Bs, at , ot
ds A dt = (ﬁdu + %dvj A,((—a—ddu + 5;dv> )
ds at ds Ot -
G .
d(u,v)
one has

= [ * f(s(u,v ‘uv 9(s, ) u A dv ‘ '
[—/R’f(‘(, ‘),t(.))‘a(u,v)d A dv. o

End of Example 24

4

. Example 25 (A variant on Example 24)

Suppose R’ € M’ has local coordinates.u, v, while p(R’) C M has local coordinates

z,y,2. Let
J = / } B,dz Ndy + Bydz A dz + B dy redz
‘ o(R)
where B;, By, B;, are functions of z,y, z. Consider a change of variables t

H

z =r(u,v), y=yu,v), z=z(uuv).

~ [

e

By the same type of calculation as in the previous example.

dr A dy = 9(z.y) du A dv,

u,v) .
AN
dzANdz = ... o
one has
' (z,y) d(z.z) d(y, 2)
= d dv.
4 R! {Bza(u,v) By (u, v) + Ba o(u,v) unav ,

" This is a generalisation of the usual change of variables formula.

-
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N

(End of Example 25)

Example 26 (Change of variables formula in three dimensions)

Suppose R' C M' has coordinates u,v, w while p(R') C-M has coordinates z, y, .
Let
I:/ pdz Ndy A dz.
p(R')

Tranforming coordintates,
z =z(u,v,w), y=ylv,v,w), z=z(u,v,w),

taking differentials, and using the triple product of Example 23 gives -
L 3

-,

0 N
[ / p2EY2) i dw.
gt O(u,v,w) ,

= IR
End of Example 26

[t is now time to consider the formal definition of the exterior derivative, which

will enable us to define a complex associated with the exterior algebra bundle and the

_corresponding cohomology in terms of differential forms.

2.6 The Exterior Derivative

The exterior derivative will now be introduced in a formal way and illustrated in

specific ‘instances. As a preliminary to its definition it is useful to introduce certain

vocabulary:

Definition: An endomorphism ! of the exteriar algebra bundle A*(M) is .
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a) a derivation if for w,n € A~ (M)

.

Hwnan)=lw)nn+wnl(n);

b) an antiderivation if for w &€ A (M), n € A™ (M)

I(w A n) = Uw) A~ (~1)%aw Al(n)

c) of degree k if ! :MA;' (M) — A; (M) forall .

The following theorem characterises the exterior derivative as a unique mapping which

satisfies certain properties.

Theorem: There exists a unique antiderivation d : A*~(M) — A" (M) of degree -1 such

~

i that

b) for f € A;(M), df(X) = X(f), that is. df is the differential of f.

e o . . . . .
/,.%K’/ For a globally valid construction of the exterior derivative, the reader is referred to
N J4 )
T

.

\ﬁ' . - - . . 0
Warner [1971]. Next it is advantageous to see what the exterior derivative does when
a local coordinaté system is introduced. To this end, an obvious corollary of the ahove

theorem is considered in order to strip the discussion of algebraic terminology.

Corollary: Consider, a chart about a point p = W where there is a local coordinate

system with cgordinates (z',...,.r"). In this chart there exist a unique mapping

cd (M) — AL (M)

3

which satisfies
a) ddw) =0,  forwe= AY(M), |

148




9,

Theorem: Given o : M’ — M and w & AT

b) df = ", 2Ldxt.  for f € Aj(M), /-’

t=1 3gt

‘Ld(ui//\n)zdw/\nJr(—l)k'w/\dn where w € A (M),n € A"(M).

From this corollary, it is easily verified that for a k-form

n
W= Z Q1)1g.. 1k(z-’)d1:‘1 AdT'2 A...Adz'k
ll<12< .<lk.
J
- the exterior derivative is given by: .

] .

]

r . da,, .

~dw = Z —al—'J“—k(zk)d:z:’ AdzZ'L A dLi2 AL A dEtR,
T

1< <y \y=1L _

Hence when local coordinates are introduced, the exterior derivative can be computed in
a straightforward way. The properties which the exterior derivative satisfies according

to the above corollary will now be examined. The property

d(dw) =0  for we Ki(M)y

should hold if Stokes’ theorem is io hold and the exterior derivative is to be consi
. he

.an operator adjoint to the bounda\\ry operator (recall Chapter 1). The property
. o Y -
Y . it
. df = Z 8—$sz

t=1

1

is what is required to make bases of the dual space to the tangent space transform in

a contravariant way. Finally the last congition of the corollary is what is required to

" make the following theorsm true:

pFdw = d(go#b);\_\
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For a proof of this theorem and the previous one, see Warner [1971] pages 65-68. The
. ~
next sensible thing to do is consider a series of examples which serve the dual purpose

of illustrating exterior differentiation and iwoducing Stokes’ Theorem.

Example 27 (An illustration of exterior differentiation in 1-dimension)

[

Consider a one dimensional manifold with local coordinate ¢ and a O-form."

w = f(t) implies dw = éﬁ—)-dt
o/

The fundamental theorem of calculus sta&es that

9f(t)
/a =1

b

a

or rewritten in terms of differential forms-

‘ ‘ dw = / w.
. (a,b] 3[a,b]

End of Example 27

Ex&mple-28 (Complex Variables)

Let f be a function of a complex variable. That is,

f(z) = flz+ ) =U(z,y) +:V(z,y). .

) &

Consider
w = f(z)dz = [U(z,y) +iV(z,y)| (dz ~ idy) “
hence
| dw = {?;Jj:d.zv %%dy *z%—g—d:cﬂ—z%‘yidy] A (dzﬁ-zdy)

._[_<aU av>+l_<au_av> Ui dh 2
= 5}7.‘-&—:; 5—; 5&' x Yy.
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In this case, “Green’s theorem in the plane” states that - ) -

o oOR R

and the Cauchy-Riemann equations

ov ov. oV oU

dy 9z’ dy Or .

4 .
are equivalent to the statement

do=0 inR. .
Hence, if the Cauchy-Riemann equations hold in the region R, the

f(z)dg'=0=/ .

aRr

This is the Cauchy integral theorem. Furthermore, if one considers the above equation
for arbitrary 1-cycles, partitions these cycles into homology classes and uses de Rham’s
Theorem, then one obtains the residue formula of complex analysis. Also, by parti-

tioning the above expressions into real and imaginary parts one obtains the integral

b . . . . . . . .
formulas associated with irrotational and solenoidal lows in two dimensions.

End of Example 28

Example 29 (The classical version of Stokes’ theorem) .

Let u,v,w be local coordinates in a three dimensional manifold and R a region in

a two dimensional submanifold. Consider the 1-form:

w= Ay, (u,v,w)du - A, (u,v,w)dv + A, (u,v,w)dw.




»-d
d

Using the rules for wedge multiplication and exterior differentiation one has

dw =dAy ANdu +dA, Ndv + dA, A dw

- aAv aAu aAw 8Au aAu aAu)
_<au—3v)du/\dv+<av aw)dvAdw-{-(aw* du)dw/\du

and the classical version of Stokes’ theorem becomes

o«
/ w :/ dw.
9R R

End of Example 29

»

Example 30 ( The divergence theorem in three dimensions)

Next consider a 2-form on a three dimensional manifold with local coordinates

u,v,w. Let
w = Dy(u,v,w)dv A dw + D,(u, v,w)dw A du + Dy (u,v,w)du A dv.

* Then using the usual rules one has i
N

dw = dD, Adv A dw + dD, A dw A du ~ dD,, A du A d

(9D, 9B, 4D,
"\ 9u T v dw

> du N dv A dw.

In this case, Ostrogradskii's formula becomes

/ w:/dw.
3R ' Jr

End of Example 30 . ¢

Example 31 (Electrodynamics)




[} 1 ~

Let " N . - \\:

a= Azdz + Aydy + A.dz — odt R ¢ \
B = (Ezdz + Eydy + E,dz) Adt + (Bgdy A dz + B;dz Adz + B.dz A dy)
n = (Hzdz + Hydy + Hzdz) A dt — (D:dy A dz + Dydz Adx + Ddx A dy)

N (Jedy ndz+ J,dz A dz + J.dz A dy) A @t - pdr A dy A dz.

4 Ry

By a straightforward calculation it is easy to verify that Maxwell’s equations can be

written as . ~
d3 =0
\1174. \\ %‘
) Furthermore, if ;o is a transformation of coordinates then the identity ST
w )
'p#d — d(p#

. an

is an expression of the principle of general covariance. Also, putting aside considerations
5

of homology theory, the identity d o d = 0 enables one to write the field in terms of

potentials

8 = da.

The general covariance_Qf/MéxWell’s equations is nicely expressed.in the paper by

e

Bateman [1909| and makes the study of electrodynamics in noninertial reference frames

tractable. Following Hargraves 1908 one can rewrite Maxwells equations in integral

’ . /
form by using Stokes’ theorem:

{ / J = / dg =0
' - 'J«-):Jcé r:.{3 !
Lo Lo
deg . g <y
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~
~ i

where bs is any Q-boundaryQ and ¢3,c} are any 3-chains. Hence, pﬁtting aside consider-

BT ‘
b4 - f ,3 = 0 -«
. 2y “

ations of homology -~
. o
- ey LT .
’ i ) ' / n :/ A
. ’ . deg €3 H

where z, is any 2-cycle. For modern uses_of these equations the reader is referred to

—_—

T — e

I3

Post [1978], [1984]. :

End of Example :’s’l .

<

3

2.7 ° Cohomology with Differential Forms

%

.1t is now possible to restate the ideas of Chapter L in a more formal way. Rewrite

Y

d: AT (M) = A" (M) |

"4 @A (M) — 845(M)
14 4

¢ ™

and define the restriction of the exterior derivative to p-forms by

u"‘. -

/;
A

& AL (M) — ,,H(M).l

a

As usual, one can define the set, of p-cocycles (or in the language of differential forms,

the space of closed p-forms) as

| T

ZP(M) =Kernel (A;(M) 24, (M) .

!

and the set of p-coboundaries (or in the langugge of differential forms, the space of exact

@

( p-forms) as R . )

. . ’ ' -1
. . BP(M) = Image (‘.\;_,(M)df—y 4, (M) .

an
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&

Thenequation \
\_fip-—}»[ o dp = 0

shows that A'(A/[)mis a cochain complex and that

\

: B*(M) C Z°(M).

Thtls one defines

HE o (M) = Z°(M)7 B (b

iz

to be the de Rham cohomology of the manifold. In order to relate the notation of this

and the previous chapter, &eﬁm\ {

b

o

where

CPM) = A{M).

3

It is important to note that one can define many other cohomology theories if the

definition of cohomolg’g/x is written out explicitly. That is if

HP(M) = (ZP(M) "\ CP(M)) / (=1 CP (M) 2 CP(M))

E)

Thus if C?(M) wer; p—f;)rms of tompa;ctrsqppc;rt or p-forms with ;quare inteérable coeffi-
cients then one would obtain “cohomolo)gy with compact support™ or *L? cohomology”.
Although these cohomology theories tend to agree on com;;act: manifolds, they do not
agree in general. The precise definition of compactly supported{c;ﬂiomology involves a

limiting procedure which can be avoided in this thesis (see Greenberg and Harper {1980

Chapter 26). Thus for example

Hip(R’) = 0.%# R~ H}{R®).
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Although this result has not been proven here, it is easily deduced from Spivak 11979)
Ap. 371. In this thesis the regions of interest are bounded subsets of R"™ and in this case
cohomology with compact support is easily interpreted in terms of boundary conditions,
an interpretation which will soon be given. As in'th‘e previous chapter, the complex
associated with dif;erential forms with compact support in a region {1 v;r'ill be denoted

by

C: Q)

and the associated cocycle, coboundary, and cohomology spaces will be distinguished

by the subscript c. y

The ;ie Rham cohomology vector spaces play a central role in this thesis as does
tHe cohomology with compact support in the context of relative cohomology. The L*
cohomology spaces, although important in the context of finite energy constraints on
variational functionals. will not be considered in this thesis. There are two reasons for
this. First, the properties of L2 cohomology are harder to articulate mathematically
and secondly, for bounded regions of R® thé de Rham cohoqlglogy and cohomology
with compact support give the required insight into L? cohomology while unbounded
domains in IR® can be handled by attaching a point at infinity and mapping R® onto
the unit sphere $% in R* (this procedure is analogous to stereographic p‘rojections in

complex variables).

’/ o

SN

2.8 Cochaijn Maps Induced by Mappings Betw:een‘ Manifolds

’

Having defined the cochain complexes associated with de Rham cohomologx and

cohomology with compact support, it is useful to consider how mappings between man-

€
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ifolds induce cochain maps'between cochain compklexes. Given a map

}
N 7
~ oM - M

there are covariant and contravariant transformations

o4 : T(M') = T(M)
e 1 A (M) — A (M) .
on vector fields and differential forms respectively. For a given k and

wEAM), X, eTM"),1<i<k

one has

° w (04 (X1)04(X2),- . 04(Xk)) = (PFW)(X1, Xay .o, X)
which express the invariance of the whole scheme. Having defined
C (M) =A"(M) ' =
C (M) = A" (M)
the formula -/
‘P#dM = dM"»O#
i where the d on the right is the coboundary operator (exterior derivat;ivej in the complex
N
‘/C‘(M’) while the d on the left is the exterior derivative in the complex C~(.M), shows

that ¢ # is a cochain homomorphism. That is, if ©? is the restriction of p# to p-forms

then the following diagram is commutative for all &:

| k- k-1 .

LdMl . \ A N
ceM) B oK)

! ’ ! k

dek\:/f :’dz\/I/

Pk+l -
CEU M) = ok

. kel k1
( : |y g

v
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A very important special case of this construction occurs when M’ is a submanifold

of M and p is the injection mapping. That is if § is a submanifold of M and
1:S =M

is the injection map then the pull back

@~

1# 1 C (M) — C(S)

is a cochain homomorphismn. When this happens, it is possible to construct a long
exact cohomology sequenced in several ways (see Spivak [1979] p. 571-591 or Bott and
Tu [1982] ’p. 78-79). This topic however, will not be pursued here since once the de

Rham theorem is established, it is easier to think in terms of cycles and the long exact

homology sequence.

t

2.9 Stokes’ Theorem, de Rham’s Theorems and Duality Theorgms

As a prelude to Stokes’ Theorem, the concep‘ts of an orientation and regular domain
are required. Since A,(M,) is one dimensional, it follows that A, (M) — {0} has two
connected components. An orientation of M, is a choice of connl ted componens of
A.(M;)~{0}. An n-dimensional manifold is said to be orientable if it is possible to make
an unambiguous choice of orientation for M at each p € M. If M is not connected then
M is orientable if each of its connected components is. Thus, following the Jiscussion
in Warner [1971] p. 138-140, the following proposition clears up the intuitive picture

about orientation.

B

Proposition: If M is a differentiable manifold of dimension n, the following are equiv-

4 .

alent:

t
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1) M is orientable,

2) there is an atlas A = {(U,:)} such that

"\/. (3(31 ' xn))
oy'y...,y") ) ~ \ ']

) whenever

(U,,@xl,...,zn)za,(UJ,(yl,...,y%))eﬂ, .

I3

3) there is a nowhere vanishing n-form on M.

oo
-~

The proof of this proposition can be found in the above reference. An example of a

nonorientable surface is the Mébius band of Example 10. The notion of a regular domain

is given by the following definition: o

Definition: A subset D of a manifold M is called a regula; domain if for each pe M

one of the following holds:

1) There is an open neighborhood of p which is contained in M — D.

e

2) There is an open neighborhood of p which is contained in D.

\

3) Given IR" with Gartesian coordinates (r!,...,r") there is a centered coordinate

4

system (U, ) about p such that p(Ur D) = o(U)N H"™ where H™'is the half-space

of R™ defined by r* > 0.

2

Thus iff)ne puts the point p in a regular domain under an infinitely powerful microscope,
- one would see Fig. 20. A property of a regular domain is that its boundary is a manifold.
In situations where this definition~is too restrictive, for example if-D is a square, one

can %se the notion of an almost regular domain (see Loomis and Sternberg [1968! p.

] v hd

424-427).



Fig. 20 .

T ' N
The main result of this section is /@a following version of Stokes’ Theorem.

\

Theorem: Let D be a regular domain in an oriented n-dimensional manifold M and

let w be a smooth (n — 1)-form of compact support. Then

P
/m:/ *w
D ap N

where ¢ : dD — M induces the pull back

i* . C*(M) — C*(3D).

For a nice, simple proof of this theorem, see Warner {1971 pages 140-148.

At this point it is worthwhile interpreting integration as a bilinear pairing between
diﬁ"erential forms and chains so that the de Rham isomorphism is easy to understand.
It has been assumed all along that integration is a bilinear pairing between chains and
cochains (forms). In the heuristic development of Chapter 1 this was emphasised by
writing Cg

s

/ : Cp(M) x CP(M) — R.
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Furthermore, the reader was lead to believe that differential forms were linear functionals

on differentiable chains. This was emphasised notationally by writing

S~

/w = e wl.
[

Stokes’ Theorem was then written as

and hence was interpreted as sa.yin% that the exterior deriv&tive (coboundary) operator
@
and the boundary operator were adjoint operators. This is the setting for de Rham’s

theorem, for if the domain of the bilinear pairing is restricted to cocycles (closed forms)

Dpc,w| = {c,d”_lw] < for all q

and cycles, that is

then it is easy to show that the value of this bilinear pz}lring depends only on the

homology class of the cycle and the cohomology class of the closed form {cocycle). This

/ : Z,(M) < ZP(M) - R

is easily verified by the following calculation. Let

then

—1,p—1] —1,p—1 —1_p-1;
[2p + Ops1cps1, 2 = dP P = [z, 27| + [2p,d" 7 'eP ]T[8p+1cp+|,z”+d” P

=P = ZP(M) P tecrY(M)

2

p € ZP(AM) Cp+1 € Cp+1(1\/[)

(by linearity)
¥ -

=[2,,2F| + [szp,cp‘l} + [cpﬂ,d”zp +dPf o dp"‘c”‘l}

) (by Stokes’ Theorem)
e [0, + 0

(by definition)

G
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. Hence.if is verified that when the domain of the bilinear pairing is restricted to chains

and cochains one obtains a bilinear pairing between homoloéy and cohomology. The
theorems of de Rham assert that this induced bilinear pairing is non degenerate and

hence there is an isoint?,rphism :
Hy(M) = HY, 5 (M).

As noted in Chapter 1, this thesis is not the place to prove that such an isomorphism
exists since no formal way of computing homology is considered. The reader will find
down to earth proofs of the de Rham isomorphism in de Rham {1931} or Hodge {1952/,
Chapter 2. A sophisticated modern proof can be found in Warner [1971], Chapter 5
while less formal proofs can be found in Goldberg [1962], App'endix A or Massey {1980!,?

.

Appendix.

Thoughout this thesis a de Rham type of isomorphism is required for rela/ti:/e‘
homology and Fohomolégy groups. Though this type of isomorphism is not read*ily
found in books (if at-all) there are two methods of obtaining such an isomorphism once\
the usual de Rham isomorphism is established. The first approach.is to read the paper
by Duff {1952 and refrain from sweating blood while following the argu’ments presented
there. The second approach is to reduce thé problem to a purely algebraic one and use '

the so called five lemma. Though this second approach is straightforward, the author

is unable to find it in the literature and hence was forced to present it here.

Consider, for example, a manifold M with compact cb,ounda,ryVBM. In thisica.se

(see Spivak {1979 Theorem 13 p. 589) there is the following long exact cohomology

¢

sequence.

-&n ¢ °

e — HE(M) — HYOM) — HFTY (M - OM) — H¥Y(M) - H M) — ...
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Also-there is a long exact homology sequence (see Greenberg and Harper (1981| Chapter

1

14 for example)

> -

.. He(M) — He(OM) « Hiy1(M,0M) — Hipy (M) — Hier(OM) ...

and the following de Rham isomorphisms are known fo exist

\ ’ Hi(M) =~ H5(M)' (M compact) for all k
‘ H(OM) ~ H*(8M).

The above isomorphisms are induced by integration and there is also a bilinear pairing
between H *'(M — 8M) and Hg+1(M,0M) which is induced by integration. In this

case the following diagram is commutative:

Hip(0M) — Hy (M) —  Hep (M, 0M) - Hi(oM) — Hi(M)

R T S

H*YOM) — HMYM) — HSV'(M-3M) — HFOM) — HE(M)

What_is required is to show that the middle vertical arrow in this picture (and hence

.
every third arrow in the long sequence of commutative squares) is an isomorphisfn. To -

do this one first considers the dual spaces:.

(H*(oM))”

Y
(H¥(M))
(HE(M - aM))

s

and notices that, by definition there is a commutative diagram

HE+1OM)  —  HEUM)  —  HMUM -0M) ~  HEOM) — H*M)

T ~
['z I: [-:' . , |
v v

(H @MY~ (B D) — (HEM - M) — (HE@M)) — (HE(
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-

where the vertical arrows are all ismorphisms, the two rows are exact sequences and
F) t

the mappings on the bottom row are the adjoints of the mappings directly above them. -

\

“Combining the above two commutative diagrams one has the following commutative

diagram:
He (M) - Hip (M), — He (M, 0M) —  H (M) — < Hp(M)
T ’ H " T
| =~ I’:’ . [ .L-

(H Y @OM)) = (HE Y M) = (HESY(M -oM)] — (H@M)) — (H*(M))
where the rows are exact sequences and one wants to know whether the middle ho-

I
momorphism is an isomorphism. To see that the answer is yes consider the following

lemma (see Greenberg and Harper [1981] p. 77-78).

Five Lemma: Given a diagram of R-modules and homomorphisms with all rectangles

commutative e a 2 s
3
Ay b A4, B A S AL A4

i |5 [
! 2
J"" b - b l b L b 3
By, -% By = By % By 4% Bs
L]
such that the rows are exact (at joints 2, 3, 4) and the four outer homomorphisms -

o, 3,0, € are isomorphisms, then ~+ is an isomorphism.

[

It is obv'ious that the five'lemma applies in the above situation (since a vector space

over R is an instance of an R-module) and hence .
’ . Hyo (M, 0M) ~ (HETY (M - 0M) .
. !
Thus
Heor (M OM) ~ HEPY(M - 0M) - v

and the relative de Rham isomorphism is proven. It is also obvious that the isomorphism -

would be true if 9M were replaced by a collection of connected components of 61\1 or'
' _~
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parts of dM w}'lich‘—a,rise from symmetry planes as in Chapter 1 all that is required is the

existence of long exact (co)homology sequences and the usual de Rham isomorphism.

.

Having seen how the de Rham isomorphism can be understood with the help of

Stokes’\sl;zheorem, a simple corollary of Stokes’ Theorem will now be used to give a

heuristic understanding of duality theorems. Suppose M is an oriented n-dimensional

‘manifold, D is a regular domain in M and A € C¥(M),u € C"~*~1(M). Since A has

]
compact support, if

¥

W=AAU

<

then
w e Cr (M),

Furthermore -

S dw=dAAp) = (dA)Au+ (=1)kA A dy

-

and if : is the injection of dD into M then, as usual,.the pull back i# satisfies
4

iFlw) = (A ) = i) A it ().

’ {

Substituting this expression for w into Stokes’ Theorem _gne obtains the following im-
! .

port'a.nt; corollary

Corollary: (Integration by parts)
al

If D is a regular domain in an oriented n-dimensional manifold M and
XeCE(M), pecCm M)

then

(—1)"_/0 AAdy = /i;;i#,\) N /D‘dx A
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where

1:0D- M

induces
{

- b

o # . C (M) - C*(8D).

Just as Stokes’ Theorerﬁ is often called the fundamental theorem of multivariable
calculus since it generalises the usual fundamental theorem of integral calculus, the
above corollary is the multivariable version of “integration by parts”. This integration
by parts formula is of fundamental importance in the calculus of variations and in
obtaining an interpretation of du‘ality theorer“q)s on manifolds. These duality t};eorems

will be considered next.

4

Consider first the situation of a manifold without boundary M and the Poincaré

’

duality theorem. In this case the integration by parts formula.reduces to

’ (—l)k/MA/\du=—/M(df\)/\ﬂ \

whenever A € C¥(M),u € C*~*—1(M). Also there is a bilinear pairing -
4

/ :CP(M) x C"7P(M) - R

) M

where a p-form of compact support is wedge multiplied with an (n - p)-form to yield
an n-form of compact support which is then integrated over the entire manifold. The

heart of the proof of the Poincaré duality theorem involves restricting the domain of

I s .

this bilinear pairing from cf‘lsains to cycles and noticing that one hHas a bilinear pairing
on dual (p ahd n — p) cohomology groups. To see how happens. Though the Poincaré
Duality Theorem will not be proved in this thesis, it is useful to see how this bilinear

pairing on cohomology comes about. Consider

/ : ZP(M) x Z"P(M) — R
M

+
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orif Mis compact

where for

P e ZP(M), 2P € Z"P(M)

: 2P A 2P,
M ' ,

To see that the value of this integral depends only on the cohomology classes of 2” and

one computes

2”7 ? one lets

=L e cPY M), e crP (M) o

Rt

and considers the following computation

:\.

( +dP lcp l) A (Zn~p _}idn—p—lcn—p—l)

/ Zp/\ z "P_{_/,A (dp“'lcp—l) A Zn—p +/ (ZP+dP,“lcP—-l) /\dn'—p-—lcn—p-—l
M M M

~

it

/ 2PN ZTP (- 1)”/ cPELA dnP P —(——I)P/‘ (dP2P +dP o dP'cP™t) A P L
M Moo .

Y

(integrating by parts)

= / 2PN 2T (using the definition of cocyclé_).
M

”
”

Thus it is seen that restricting the domain hke bilinear form from cochains to cocycles

induces the fol’low'mg bilinear pairing on cohomology

f HP (M) x HE (M) — R.

" The Poincaré Duality Theorem asserts that this bilinear pairing is nondegenerate. Thus

HP (M) = H;‘ER”( M) forall p

. HE o (M) ~ H; F(M).
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ﬁ_ This statement othe Poincaré Duality theorem is not the most general version (see (

Bott atid Tu [1982] pp. 44-47 for a proof and explanation of the subtleties encountéred |

in generalising the above). The implicit assumptipn in the above argument is the finite °
dimensionality of the cohomology vector spaces. A nice discussion of thls aspect is given
in Spwak [1979] p. 600 and the pages leading up to page 600. As was mentxoned in the
previous chapter \/[assey (1980] Chapter 9 and Greenberg and Harper {1981] Chapter

26 have proofs of the Poincaré Duahty theorem which do not appeal to the formalism

of differential forms. RS o
“ 0y

%
When the manifold M is not compact, the Poincaré duality theorem may be used

to show the difference between de Rham cohomology and cohomology with compact

support. Take for example IR™ where. by Poincaré duality and the arguments of the
-3
last chapter one has

-

§

2

- n n IR-, if =0
B () = i R7) = { 0 0P 0

-

Hence, in the case of R® . - o S e
HY(R®) ~ R #0~ Hj p(R®) ’ ;

H3, p(R?) ~R % 0 ~ HO(R?, :

-

" As stated in the previous chapter. the Pomcare duality theorem does not have many

direct applications in boundary value problems of electromagnetlcs For the purposes

of this thesis, attention will'be paid to compact manifolds with boundary and for these

S
there is a variety of duality-theorems. -In this case. it is useful to get certain ideas

@

. established once and for all. First, if - , .

oM - M _ ' )

' + ‘ ’ |
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—r

. # . C'(M) — C*(OM)
then . - o ]
¢ €CH(M - 0M) . \
if T /
i#e =0..

Thus
2P € ZP(M - M) if dz? =0, i"2P =0,

b € BP(M — M)  if bP =dcP~! for some ¢®~! € CP~' (M - dM).
. "fﬂ

In this case, it is customary tg)ienote the symbol i# by ¢, and avoid refe}ring to

the injection . Thus tw denotes the pull back of w to M and is the “tangential” part

- -

of w. In this notation the integration by parts formula takes fhe form:

¥ -

t(__.l)k/M,;/\du = LM(tA) A (te) — /M(dA) /\u

o

where )\is_alc\-form, and g is a (n ~ & - 1)-form. 3

To see how the Lefschetz Duality Theorem comes about, consider an orientable .,

compact n-dimensional manifold with boundary and the bilinear pairing -

»\\

/ L CP(M = OM) x C™P(M) -'R.
M ¥ r

"

" Note that if the boundary of the manifold is empty then the situation is identical to
b N

1

that of the Poincaré duality theorem. Restricting the ‘domain of this bilinear pairing:to

cocycles (closed forms) one can easily show that there is an induced bilinear pairing on

N

~ : . “‘ - )
. two cohomology groups. That is considering

n

/ . ZP(M — OM) & Z"P(M) - R ¢
M . -

-

o



the integ?ﬁQn by parts formula shows that the integral

/ 2P AP )
LI M .

depends only on the cohomology classes of 27 and 27 w};enever
e ZE(M - 9M), 2"7Pe Z"“P(l\./[). s
Hence there is a bflinear pairing
/M t HP(M ~ dM) x Hi 7 F (M) - R

induced by integration. The Lefschetz Duality Theorem asserts that this bilinear pairing -

is non degenerate. Hence W

.

HP(M — M) ~ HIP(M).

Again one’ can find the proof of this type of theorem in Massey '1980; Sect 9.7,

or Greenberg and Harper 1981/ Chapter 28. Connor {1954] has shown that there is a )

generalisation of the Lefschetz duality theorem. To see what this generalisation is, let

OBLMIOCL

-~ =1

where each ¢, is a connected manifold without boundary and let

'where M is a compact, orientable n-dimensional manifold with boundary. In this case

the result of Connor states that

¢

HY(M = S,) = H*P(M ~ Sa):
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This result can be interpreted, as before, by daying that the bilinear pairing 4

/ LCP(M = Sy) x CM=P(M — S,)
M

+

descends into a nondegenerate bilinear pairing on cohomology when the domain is re-
stricted to cocycles. This is verified by using the integration by garts formula to show

that the restricted bilinear pairing does indeed depend on cohomology classes only.

In this thesis, the situation is slightly more general in that S; and S; are not
necessarily disjoint but at the intersection S, N Sy, a symmetry plane and a compibnent
of the boundary of some original problem meet at right angles. From the usual proofs of
the Lefschetz duality theorem (which construct the double of a manifeld) it is apparent

’that the duality theorem

TN
.

HP(M - $1) = HI™7 (M - $,)

is still true. It is useful to note that the interpretation of the above duality t}ileorems is
in some sense dual to the approach‘ taken in the previous chapter in that t'he homology
point of view stresses intersection tumbers while the cohomology point of view stresses
the bilinear pairing induced by integrationl [t is important to keep this interplay in mind‘
since topological problems in electromagnetics involve the bilinear pairing in cohomology
and these problems can be resolved very conveniently by thinking in terms of intersection
numbers. In the.case of the Alexander duality theorem there is no nice intersection

number or integral interpretation. This is apparent from the proof of the Alexander

Duality Theorem (see Massey '1980! Sect 9.6 or Greenberg and Harper {1981] Chapter

27),, For a different but down to earth exposition of intersection numbers from the point
of view of differential forms and many other topics treated so fap in this chapter the

> reader is referred to Hermann {1977! Part 5 Chapter 34.
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2.10 Riemannian Structures, the Hodge Star Operator and an Inner Prod-

“

uct for Differential Forms

So far in this chapter those aspects of differential forms which are independent of
the notion of distance in the manifold have been considered. These include the complex
structure associated with the exterior algebra bundle of the manifold, change of variables

formulas for integrals, Stokes’ theorem, de Rham’s theorems, and duality theorems in

homology and cohomology. The next thing to do is to put the whole framework in a

Hilbert space setting.

» . . o - [
The inner product on differential forms is a consequence of an inner product struc-
ture on the tangent bundle of the manifold or Riemannian structure. Since this idea is

so important, it is worthy of a formal definition

' A

Definition: A Riemannian structure on a differentiable manifold M is a smooth choice

of a positive definite inner product (-,-) on each tangent space M, (recall M, is the

- tangent-space to M at p). .

In the above definition, smoath means that if the functions in the charts of an
atlas for M are differentiable of order C* and if X,Y < T{M) have components which
are C* differentiable, then the fungtion (X,Y) is a C* differentiable function of the
coordinates of M. It is a basic fact in Riemannian geometry that any manifold admits
a Riemannian structure (see %or example Warner 1971, p. 52 or Bott and Tu ;1982
p.“42—43). A Riemannian manifold is. by definition. a dilfferentiable manifold with a
Riemannian structure, hence any differentiable manifold can be made into a Riemannian

manifold.

R



In terms of local coordinates (z!,...,z") about a point p€ M, if X,Y € M, and

. n la n la
X=) Xom V=) Vo

=1 =1

then there is a symmetric positive definite matrix (called the metric tensor) with entries

A

(525
7=\ 82 8ar
so that .
o (X:¥)p =) ) X'g,Y.
1=17=1"

°

Since 1-forms were defined to be elements of M, (the dual space to M,). the above

Il

inner product induces one on the dpal space. That is, if w,n & Mp‘ where in terms of

-

local coordinates .
n

w = Zd,d_z:‘, n= i:bjdz] ’

=1 ) 1=1

then . . ' .

n n
\ (@) =) ) agdh,

=1 ;=1

‘

where

9,9°% = 6f (Kronecker delta).

A Riemannian structure on a diffe'rer}biable manifold induces an inner product on
k-forms and the immediate objecti\;é at this point is to see how this inner product comes
about. Given a Riemannian structure on the tangent bundle of a manifold it is always !
possible to do local corf;putanions in terms of an orthonormal basis obtained by the

Gram-Schmidt procedure and patching together the results with a partition of unity.

Hence, in order to define a pointwise inner product on k-forms it suffices to work in
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terms oif local coordinates. Having made these observations, let w,,1 < ¢ < n be an

orthonormal basis for M;, (that is, A{(M;) in some coordinate chart. This means:

(wy,w,) =6, (Kronecker delta).-

By taking all possible exterior products of these basis forms it is seen that Ak(MI;) is

P

spanned by (}), k-forms which look like

_L Wiy Awig Awe Awyy, 1<y <np<...<tx<n

and in particular A,{M;) is spanned by the one element

©

l)ﬂx

e » 4

wiAwe AL Awy. . \

This n-form is called the volume form. Next', by the symmetry of binomial coefficients -

& L 3

it is seen that

dim Ax (M) =<Z> - (n i Ic) =dim A,k (M,). ;

Hence the two spaces are isomorphic. Consider an isomorphism (called the Hodge star

operator)

ko Ak(z\/[;) — ‘\n_k(Mp‘)

which acts on the a.bgve basis vectors in the following way. [et 7 be a permutation of

!
n integers and let ’ ° TR 2

a

W) NWr(2) Ao A Wr(k)
0 . ' ’ ©
be a basis vector in Ax(M,) so that

Wr(k+1) ANWr(k+2) N v -0 AWr(n)
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becomes a basis vector in A, (M, ). Define 5

ok (w,r(l) A2y M- Wn(k)) = sgn(7T) (Wr(k+1) N+ A We(n))

and hence, since the linear transformation is defined on the basis vectors of Ak(M) the
linear transformation is completely defined. Alternatively one can define the operation

of ¢ on basis vectors of Ax(M,) by the following

v
s .

(w,,(l) A Wr(2) AR /\w,,.(k))‘/\ * (w'ﬂ.(l)“/\b. - /\w,r(k)) =Wy Awe AL AWy,

Using the usual abuse of nm“ation, one defines the volume form
! 4
dV =wiAwe AL . Aw,

where it is understood that dV' is not necessarily the exterior derivative of any (n —1)-

.

form. If

b szw(l)/\-“/\ww(k)

»

then the rules for wedge multiplication and the definition of the star operator show that

vy

dV = w A (+w)

c= (1) R ) A w

22
and .

4V = () A (r(sw)) . "

N\
hence

k= (»—[.)k("_k)w. | = #(dV). . -

-

By linearity, this is true for all k-forrﬁs. Furthermoreif w,n & Ak(Ml;) then

L

“(wAkp) = «nA ew) \
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is a symmetric positive definite function (an inner product) on A*(M;) (see Flanders

\

{1‘963] Chapter 2 for a discussion .of this result). This completes the construction of a

1

pointwise inner product on differential forms. At this point several remarks are in order:

' o

1. Given an orientation on A,(M,), the deﬁr;ition of the Hodge star operator is in-
dependent of the orthonormal-basis chosen. That is, if the Hodge star operator is
defined in terms of an orthonormal basis then the definition of the star operator
is satisfied on any other orthonormal basis related to the first by an orthogenal

matrix with positive determinant.

2. On an orientable manifold, it is possible to choose an arientation consistently. over

the whole manifold and hence the star operator can be defined smoothly as a

mapping

‘o

> kAL (M) — AL (M) :

or equivalently .
.k n-k
’2:\‘ (=4
3. When there is a pseudo-Riemannian structure on the manifold, that is, a Rie-
mannian structure which is nondegenerate but not positive definite then it is still

possible to define a star operator, but it does not give rise to a positive definite

bilinear pairing on k-forms. Such a star operator depends on the “signature” of

i

e

the metric and occurs in four dimensional formulations of electrodynamics (see

Flanders [1963! Sects 2.6, 2.7 and Balasubramanian et al. '1970; Sect 3.5).

The §olowing examples shows how the operations (d. V, r) are related to the oper-

" . ) b <
,ators of vector analysis. P

Example 32 (Three dimensional vector analysis)

° {
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e |

ot 4

Suppose z!,z2%, z°

< {h% ifi=y
997 10 ifiz)

so that w! = h,dz',1 < < 3 is an orthonormal basis for 1-forms. In this case, if 7 is

the permutation of three integers which sends 1, 2. 3 into ¢, 3,k then .

‘1=d1/\w2/\w:3 k(wl/\ujz/\wg):l

El

H(w; Awg) = sgn(r)w,

Wi = sgn(T)w, A w,

hence
¢l = h]hzhgd.’tl A dIz A d:cs
~ ¢(dz¥) = sgn(n) (éﬁbi) dz' A dz?
, hi
*(dz? A da:'k) = sgn(m) P dr’
iy hyhy
1
‘A dz! Adz¥) = :
*(dr' A dz? A dz”) hlhthSgn(w) \

Furthermore, if ' .

ES
3 3
w=)Y_ Fuw =)Y_Fhds

=1 1==]

©

3 3
n=Y Guw =) Ghdz

i=1 =1

~and f is a function, then it is a straightforward computation to show that

wi wa 3
" hohsg hihs hiha
.. 3

[
A
-1 .
rdw = ¢ Sl 3:7 \8<.c§
|
|
|

hiFy hoFy haFs \
0 a )
*d ¥ W = ——(h2h3F1)+ va—;;(hlhan)ﬁ- é—zi(hltha)}

1
hihzhs [a:rl
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“(.’.d A LL)_LF] Fy F3
Gy G, G

2
|

(wAen) = F1G) + F2G2 — F3G3.

Thus the operations grad ,curl,div, x and - from vector analysis are easily constructed
from operations on differential forms and the correspondence is made clear by making

the following identifications:

£

fc
”

d°f o grad f \ :
xd'w « curl F -
td' *w — divF
_*(w/\n)HFxG ‘

.k {w A xn) ~F-G.

-

v

Note that in vector analysis it is customary to identify flux vector fields (arising from
2-forms) with vector fields arising from 1-forms by means of the Hodge star operator.

Furthermore, one has N
xd(df).= *(dd)f = 0 = curl grad f =0

td % (*dw) = rd(rt)dw = *(dd)w = 0 = divcurlF =0

as well as the following identities which are used when integrating by parts.

ed ¢ (f;{) = o (d(f rw)) = H(df A rw) = f wod+ w = div(fF) = (grad J) - F + fdivF

a

*d(fw);;*(dew)+f*dz:a=>curl(fF) = (grad f) x F + fcurlF o o
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#dx (x(wAn)) =+ (dxe(wAn)) = «(d(wArn))
| t((dw) An) — «(w A dn)

= +(¢(*dw‘)./\ n) - «(w /\*(*dn)). N

{ = div(F x G) = (curl F) - G — F‘~ (curlG)

I

Thus, once the algebraic rules for manipulating differential forms areL understood, com-

monly used vector identities can be derived systematlcally

End of Example 32

[l ya

Example 33 (Two dimensjonal vector analysis)

A

Suppose z!,z? are orthogonal curvilinear coordinates in a 2-dimensional manifold,
that is )
— 2 ,
RN he 1= &
e — 1 3
- T gl] { 07 4 #‘hf

*

so that w* = h,dz*,1 <1 < 2 is an orthonormal basis for 1-forms. In this case
a
Hl=wiAwy, v = wy,  fwp = —wp,  ¥wp Awg) =1

hence . N
hihadz' A do?
hy N

1
~ +(dz!) = il-z-dzz "dz,z = hzdzl’ \
— hy .

_Furthermore, if

*
[
it

2 2 ‘@
i w:ZFth;ﬁ ﬂzg:cth’ L0
N 1=1 =1 . ,/
and f is an‘;r)function, then it is a straightforward comput.at:ion to show that
1 aff’ 1 of
df = | — — ,
() ()

‘ " 1 af 1 9f

df = { — — — 1 7
: ‘ A ( hzaﬂ)“’ *(hlaﬂ)“”
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= _L <-‘?_(th,) - —0—‘(th\))'

hihg \ 9zt 2P T gz ,
1 /3 %)
dxw= —— 1\ —{h, _— P
¥ w h1h2 (81:1( .Fl)‘ axz(th~)>

*(w A ‘7)) = FlG', + Fsz.
s

Thus the operators grad,curl,curl,div and - are easily constructed from operations
[}

on differential forms and the correspondence is made explicit by making the following
!

identifications
. d°f < grad f
e url £,
«d'w < curlF .

xd' kw — divF
s(wAsn) »F- G.

In addition one sees that )
*‘d(df) = ¢(ddf) =0 = curlgrad f = 0
«d % (¢df) = +d(x+)df = — x ddf =0 = divcur[f =0

4

td < (df) = «d(xdf) = divgrad f = — A [ = curlcur] f
and the following commonly used identities used when integrating by parts:
kd x (fw) = «d(f *w) = «(df\/\ sw) + frdrw
0 _ = div(fF) = (grad f) - F + fdivF

\ wd(fuw) = ¢ (d(w)

Co=w(df Aw)+ [ kdw

_/77 )

W = {(*(%(df)) Aw|+ f *dw

= curl (fw) = — (curl f) - F + feurlF.
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These are.the formulas used in Nedelec 1978]. Once again with the use of the formalism

of differential forms commonly used vector identities can be derived systematically.”
End of Example 33

Hopefully the reader has realised that the formalism of differential forms encom-
passes the types of computations encountered in vector analysis and more general com-
putations in n-dimensional manifolds. For simple calculations invo@:\/{axwell‘s equa-

tions in four dimensions, see Flanders {1963 Sects. 2.7, 4.6 and Balsubramanian et al.

119701 Chapter 4. Returning to the topic of inner products, recall that for‘\zin\orientable

Riemannian manifold, the expression

r
) N

#(w A x7) w,n € CKM)

” ~
A e

can be used to define a smooth symmetric positive definite bilinear form on Ay (M;) for .

all pe M. .Ijjénce let

| (ome = [ (o nem)|dV o

M
be an inner product on C*¥(M). This inner product will be of fundamental importance
in deriving orthogonal decompositions. Before movi_x}-g on, there are three fundamental

properties of the star operator which should be remembered. They are

£ v w = (—1)knk)y,
. ba,w e CHM)
WAk = A *w

«dV =1 where dV/ is the volume n form.

* These expressions enable one to express the above inner product in four different ways.
/

i /
Note that ' “ * /
ew A )| dV = cx (+lw A )] V)

RN = % [k(w /\(‘m){
= (w A #7).
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Hence psing this expression and the symmetry of the inner product gives

aw,n‘)k.: "(w A ‘Tr)'dV:/ WAk
M M -

:/L*(‘r”\kw)'d":/ n A sw. Y- ¢
M M ‘ ,°

For simplicity, assume that M is compact. The above inner product makes C*(M) intoa

7

Hilbert space. This is the first step toward obtaining useful orthogonal decompogitions.

2.11 The Operator  Adjoint to the Exterior Derivative

3

| Having an inner pro"ducw the exterior k-bundle of an orientable Riemannian

manifold M (which will henceforth be assumed comp;ct) and an operator
d? : CP(M) — CP*1(M),

one wants to know the form of the Hilbert space adjoint

4

Spar 1 CPHL(M) — CP(M)

it

which satisfies the following equation:

[

“~
Q

“{dPw,n)prr = (W, 0p41m)p + bou?ldary terms forw € CP(M), ne CF YM).

) .
This type of formula will now be deduced from the integration by parts formula which
or f

was developed as a corollary to Stokes’ Theorem. Let -

W ECHM), peC"TPTHM)

then

v

4



anm Eg ke
.

Next let pu = ¢n) for some n € CPT1(M) so that

[ . . ;&g" |
: ' (dw,n)pct1 = / dw A *n .
. M ,

- . = /aMtw /\F(m) - (-1)? /Mu) A d(¥7).

However, using the fact that (—1)P("=P) « ¥y = v, v & CP(M) and
g _(_l)p(_l)p(n—p) = (;1)np+l*p(1—p) = ("_l)np*l
one has -

s = =07 [ wndien)+ [ twntten
' _(‘l)p(_l)p(ﬁ—p)/

M

fl

w/\*(*d*h)-ﬁ-/ twAs(¥n) &
oM

; = wA*[{=1)"PT! «d« .
Ao ltdenl - it

Hence

@M = i bpranly + [t aton)
M

3

where

bpr1 = (—1)"PFT1 x gn-P! »  on (p+1)-forms.
In order to gain an inttuitive understanding of what is happening on the boundary,
let us rework the boundary term. Up to now the operator ¢ which gives the taxigential
components of a differential form was considered to be the pull back on differential

forms induced by the map or

M — M. .

That is, ¢ = ¢#. Given a Riemannian metric on M and if M is smooth then given

a point p € M one can find a set of orthogonal curvilinear coordinates such that

w

NN v
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r
Ji;
p has coordinates. (0....,0), M has local coordinafes (ul,. n=2 y"~1,0), and
- ] - N

&
¢

-
.
.

(uﬂuﬂ...fkﬂ)‘, u” < 0 are a set of local coordinate$ in M. [n terms of these local
| N
i

coordinates a k-form looks like: -

'U) = Eléz1<12<'_.<lkslnag1;2:“1kdu’f‘l /\f’uiz A‘adn /\ d:lllk.\

On oM. thg'fomponent of this form tangent to M is given by

. s

bw = 1<) <9< g <nliag. 1 du‘l /\‘d 2 A0 A du‘k

-

while the normal component is given by \
|
nw =w — tw. \\ N

- .
It is apparent that each term in nw involves dz™. This definition of the normal com-

ponent of a differential form seems to be due to Duff [1952] and is heavily used in

-

subsequent literature (see for instance the papers by Duff, Spencer, Morrey, and Con-

nor in the bibliography). By considering the k-form w vjvrltten as
. w = tw + nw \
|

, f o

in the above orthogonal coordinate system, it is apparent that *w can be decomposed
|

I ’ * v
:

_in the following two ways: 3 4
' ((w) = *(tw) + «(nw)
. R ‘ \
| () = t(s) + nfxw).

Thus subtracting the above two equations, one deduces that’ ' -
fw —nkw = fnw — ¢ kw,

Noticing that each term in the right hand side of this equation involves dz™ and that

no term in the left hand side involves dz™ one has:

2 -

°, t*w = *nw

184 ‘
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. From the above identities involving the. normal components of a differentia] form, one

o bt N o

=

n*w = tw. - @ . .&-':

5

E‘urthe;:more, since exterior differentiation commutes with-pull backs one has

) : dt;\z tdw A "

and - \

‘ . dt« w = td * w.

&

This formula as well as the above formulas relating normal and tangential components

can be used to derive the following identity: .
. dt vw=td*w |
. ’ = tdt kw = #td v w ’ ‘

:>*d*nw:“n4=d*%

= dnw = néw, PRI . .

Thus in summary . : -

nw=w — tw
nxw = xtw

*nw =t *w

fa)
< - N

T diw = tdw

bnw. = nbw.

.

L) - , .
Finally, the above identities can be used to rewrite the integration by parts formula.

/

has. . ]

(d"w,n) = (W, 6k1m) +/ S A ¥,
oM

185 o .
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1

~t

.

Next, suppose 8M S 52 where S NSy 'is (n— 2) dxmensnonal and where Sl and Sz

*

are collectlons of connegted components of OM or parts of M where symmetry planes

exist. In this latter case S; and S» may not be dlsconnected but meet at right angles.
. & . N,
The above integration by parts formula can then be reworked into the following form

which will be essential in the derivation 'qf orthogonal decws:

(dkw,n)kH - / tw A *«nnp = lw, 6k1m)k +/ tw A xny.
Sy S2 .

’ k R
- w

- 2.12 The”I'Iodge Decomposition - P

»

On a compact orientable Riemannian manifold, an inner product structure on

Mﬁand an operator adjoint to the exterior derivative enables one to deﬁne jh

\
Laplace-Beltrami operator 'y,

o Dy =dPT 4 Gy dP
% . .

(an elliptic operator on p-forms) and harmonic forms (solutions of thie equation Aw = 0).

Furthermére when the, manifold has no boundary, one has the Hodge decomposmon

theorem whlch generalises the Helmholtz Theorem of .vector analysns For compact

orientable manifolds without boundary, the Hodge decomposition theorem asserts that

S CP(M) = Tmage (d~") @ Image (6,+1) ® X* (M),

.where ¥P(M) is the space of harmonjc-p-forms. Using thé tools of elliptic operator

theory and the de Rham isomoryhism; one can show that

" dim A7 (M) = 3,(M) <

' N ——
and that the basis vectdrs for the de Rham cohomology vector spaces may be represented
3

A sélf contained proof of the Hodge decomposition_as-well as

by harmonic forms.

&@
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an explanation of the relevant rnachinéry from elliptic operator theory can be found
in Warner [1971] Chapter 6. Alternatively, a short and sweet account of the ﬁodge

decomposition theorem along the lines of this chapter is given in Flanders [1963! Section

6.4 while a nice proof of the theorem in the case of 2-dimensional surfaces is usually given .

. -
in any decent book on Riemann surfaces (see for example Springer [1957] or Schiffer

and Spencer [1954)).

-
- -]
-

3
7 ;

For orthogonal decompositions of p-forms on oriéntable’Riemannian manifolds with
boundary, the tools of elliptic operato;' theory are less sucessful in obtaining a nice
orthogonal decomposition which relates harmonic forms to the relative cohomology
agrpups of the manifold. The history of this problem starts with the papers. of Ko-
. daira [1948],Duﬁ and Spencer 11952/, and engf with the work of Friedrichs [1955], Mor-
rey (1956, and Connor [1956]. A gene?al :r:éferent‘:e for this problem is the book by
Morrey (1966 Chapt;,r 7. The basic proble;n encountered in,the case of a manifold
with boundary is that the space of harmonic p-forms is generally iﬁﬁnite dimensional

!

and the questions of regularity at the boundary are quite thorny. There is a way of.
getting an orthogonal decompositil’on'for p-forms on manifolds' with boundary whicl;
. completely avoids ellipti;: operator theory by defining harmon{c p-fields (p-forms which
satisfy dPw = 0, §,w = 0). Such a decomposition 1s called a Kodaira decomposition after
Kunihiko Kodaira {1948] who introduced the notion of a 'harmo\nic field and the associ-

ated_decompositions of p-forms. It turns out that for compact orientable Riemannian

manifolds without boundary the proof of the Hodge decomposition theorem shows that

harmonic fields and harmonic forms are equivalent concepts. Thus the decomposition -

of Kodaira in some way generalises the Hodge decomposition and variants of it will now

be derived by using the differential cochain complexes already defined. .

12
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.2¥13 . Orthogonal Decompositions of p-Forms and Duality Theorems

-~

/

The immediate objective is to show that the structure of a complex with an inner
product enables one to derive useful orthogonal decompositions of p-forms. As usual let

-

M be a compact orientable n-dimensional Riemannian manifold with boundary where

aM':S]US;;

z

~and 5171 Sz is an n — 2 dimensional manifold where a symmetry plane meets the

boundary of some original prgblem at right. angles. Consider the cochain complexes

C~(M),C; (M - 5,) and recall that

* <

Cf(M%:g:fz {wlwe é"(M),tw =0 on Sl}
ZP(M - §)) = {w|w € CP(M ~ 5),dw =0} -

*
BY(M - 8)={w|w=drvsCr ' (M~ 5)}

ot

H?(M — S\),= ZP(M — S1)/BE(M — 51). e

, o .
Next define the complex Cg(M, S3) where

5,,(1\/1, Sa) = {w l wE CP(M),nw =0 on 52}

Z;;
and the “boundary operator” in this complex is the Hilbert space formal adjoint 6 of the

-

exterior derivative d. Note that 7,(M, §3) is actually a complex sincé if nisa p— 1-form

in this complex then

nn =0 on Sy = bpr1nn =n(bp11n) =0 o0n S,

and ( /'

(21) 8B am = #d™P 1P P71 s g = (~1)R(0) 4 PGPl s = 0,
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' Hence define —~.

¢

,Z (M Sg { ne Cfp M 52) pr]‘: 0}
oM, S3) = {n iy = 6p+1'7 Y€ Cper(M, Sz)} |
H,tM, S2) _—Z(M,S;.)/BP(M, Ss). - |

The “cycles” of this complex are called coclosed diﬁerentigxi ‘forms while the “bound

aries” are called) coexact differential forms. The first step in deriving an orthogonal

decomposition of \p-forms on C?(M) is to recall the inner product version of the inte-|

.

gration by,parts forfnula: : S e

~

(@ w,n)ks1 — / tw A ani = (W, k417 k +/ tw A .
S 52

If k = pand w € ZP(M — Sy) then the left side of this formula vanishes and it is seen

w

that closed p-forms are grthogonal to coexact p-forms in é,(M, S2). Alternatively,.if

k+1=pandn E:ZP(M, S3) then it is easily seen that coclosed p-forms are orthogonal |

to the exact p-.forms in C%st,(M - S}). Actually, one has

=y

CP(M) = 2P(M - $1) & By (M, Si~

¢ (1)
CP(M) = Z,(M, S3) ® BP(M, M ~5,) |

Since these identitities express the fact that if A is‘an operator betygten Hilbert spaces,

then
(Image (A))* = Kernel (4%%).

Next by virtue of the fact that CP(M — S,;) and 5,,(M, S,) are complexes, one has

Bo(M, S2) C Z,(M. S2)
"BP(M - 81) C B*(M - 8))
Finally, defiriing the relative harmonic p-fields as

NP(M, 81) = Z,p(M, S2) N Z7(M - 5y)
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Fig- 21 . »

. .t
* * ~ . . £

” .
* \ .

the orthogonal decomposition is immediate once Equations ¢1) and (2) above are ex-

pressed in terms of a Venn diagram of orthogonal s:paceé as shown in Fig. 21. Thus

v e ¢ !
0 .  Z,(M,55) = By(M, &) © X7 (M, 51) 2
: . ZP(M - 8)) = BY(M - S,) @ *(M. §)) L
e . CP(M) = By(M, 1) @ H"(M, 5,) @ BP(M - §;)

-

where the direct summands are mutually orthogonal with respect to the inner produth

Py

. & .
v (y )p- In order to relate this orthogonal decomposition to the relative cohomology of

the pair (M, $,) consider the identities

ZP(M — Sy) = BP(M — S,) @ ¥*(M, S))
HY*(M — 81) = ZP(M —8,)/B?(M - S,)
and so, one ha‘s n )

. : a H}(M - 5) = }P(M, 5y)

T f
+
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- that is. in each de Rham cohomology class there is exactly one harmonic field. A more

-

.Eoncrete way of seeing this is to write the above or/thogor\f?f\decomposi‘tion explicity in
terms of differential forms and use the de Rham isomorphism. That js. if w € CP(M)

_then w can be decomposed ir;tb three unique, mutually orthogonal factors as follows

%&r »

~

- \

. w=dv+6y+x

. B
i Y .

‘where v € CP-H(M - §y),7 € Cpe1(M, S2),X € XP(M, Sy). Furthermore.

¢

" }
w€EZYM — 51) = w = dv +x ,

w€E Z,,(M,SJ > w=067+x.

‘Thus if w € ZF(M — 8,) and 2, € Zp(M, S) then

- ‘ /w:] du-f—/ 5(=/ X ,sihce/ dv = 0.
Zp ZP ZP Zp . Zp
t

. . - , \
“ . 'Hence there is at least one harmonic field in each de Rham cohombology class. However

it is easy to show that there cannot be more than one distinct harmonic field in each

»

- Mye Rham cohomology cl;}ss. Suppose that

L . . © w1 - W = df g€ C’f”l(M* S1) . AR

& ‘ . ‘P . !
* . _and’ o R N ' X

a t' ; . , (:)1‘: dul +h‘1~ \ - »

A ' Wwe = dus + ha
then ' ’ . -
‘ t ¢ ’ - »
S hl - h2 = d(ﬁ - 1/1'+ I/Q),";:‘ BE(M - S[)

- Ll
.

but by the orﬁhogonaf decomposition

LY

[ . ~

hy—ho € HP(M,S)), NP(M,Sy) LBEM-S) -

-
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so hy = hy and there is neces‘sla’rily exactly one h@rrrionic field in each de Rham coho-

mology class. Thus, explicity, it has been shown that

HP (M = Sy) ~ ¥P(M, 51)
hence ) ‘ _ : o
~ T .,
. 00> P,(M,5) =M ~ 5;) = dim¥P (M $))

El

s ' - a ‘ ) X
where the first equality results from the de Rham theorem. The above isomorphism

shows that the projection of w on ¥#(M,S;) is deduced from the periods of w on a basis

of H,,(M, Sl)

A

At this.point it is best to sumrharise the al\)ove discussion in the form of a theorem.

ot . 1

Fon '
E

" Theorem (Orthogonal Decomposition of p—forrps). Given M, S,, S as usual and

i | ¢

XP(M, S1) = ZP(M — sl\ A 5, (M, )
. } ) ‘
one hab : ' )

2

-

_ 1) direct sum decompositions:

./
/

C*(M) = BI(M - 51)® w(‘»'\w. $1) @ By(M, 52)
ZP(M - S1) = BY(M - S\) & ¥* (M, 1) s

Z,(M, S2) = By(M, S2) ® X7 (M, 51)

where the direct summands are mutually orthogonal wit\h respect to the inner

product (, )p:

2) ;\unique harmonic field in each de Rham cohomology class, that is, an isomorphism
- "HP(M,S,) =~ HP(M - §))
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so that

00 > Bo(M.S)) = 8P(M — §1) = dim H?(M, Sy).

Having established the orthogonal decomposition theorem, it is useful to see how
duality theorems come about as a result of the Hodge star operatdr. As a preliminary,

*

- several formulas must be derived. Recall that ifw e C?(M) then

, prw= ()PP o= ()P UEL gy, e

+

Thus :

1

‘*5,) — (_l)n(pa—l)ﬂ ¢ <d™ Pk = (‘l)n(p-rl)+l+(p+l)(n~P—l)d_n—p*
cxd™TP = (—1)PP) L g = (_l)p(n—p)+n(p+l)+15p‘* .

Cleaning up the exponents with modulo 2 arithmetic gives .
C by = (=1)Pd" TPy, #d"TP = —(—1)"TPb,x

and hence

tbnp = (~1)"Pdpt, xd” = —(=1)Pb_p .

Next recall the identities

k= nx, *n=1{x*,

-

—

The above six formulas will now be used to make some useful observations. Let A €

"Ck(A/I), and u € C"~¥(M) where *A = u. In this case one has

*
~

7‘« i
Beh =06 0= v = (—1)*d™* « A = (=1)kd"

45X =06 0= xdih = —(—=1)%6p_k t A = —(=1)*b_pps
IA=00=«tA =nxA=nu
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nAd =0.0=«nd =txA =tu.

In otkfizr word,s, if A\, ueC (M) arEi +*A =y then
" dA=0edu=0, dA\=0®bu=0
";A:0¢nu:Q nA=0<tu=0.
With a little reflection, the above four equivalences show that the Hodge star operator

o
ks

induces the following isomorphisms, (here'1 <31 < 2.1 <k < n)
_ . . .
. CP(M) ~ C" P(M)

Ce(M,S,) = CI*(M ~ 5,)
" Ze(M,S,) =~ Z"*(M - 5,)
By(M,S,) ~ B**(M - 8,)

He(M,S,) ~ H5(M - 8,).

—_—

What is particularly interesting is the following computation: (here 1 <1i,7 < 2,7 #

2,1 << n)
*}(’(M,Sl).:e[(ZL‘M S.)) 1(2,(1\4,5,))] e
= (2 - 8)] 0 [+ (Zaes))|
= (Zu(M,8)) 0 (227! (M - 5))
° = X" (M, S,)
%

In order to interpret this result, notice that the derivation of the orthogonal decompo-
" sition is still valid if S| and S, are interchanged everywhere. Hence juxtaposing the

following two orthogonal decompositions,
CP(M) = BP(M — 8;)-@ ¥*(M, S,) ® B,(M, Ss)
C™"P(M) = Bn_,(M,5) ® X""P(M, S3) & BF"P(M - S)
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i

it' is seen that each term in the above decompositions is related to the ong,directly above

or'below it by the Hodge star operator. Also, the star operation performed twice maps

o

-

XP(M.S1),4""P(M,Sz) isomorphically back onto themselves, since in this case
' (=1)P(*=P) 4« = Identity.

Hence - ] o

¥P(M,Sy) ~ ¥""P(M,S,).

At this point it is useful to summarise the isomorphisms in (cojhomology derived in this
chapter where coefficients are taken in IR (of course) and M is an orientable, compact,,
n-dimensional Riemannian manifold {lvjth boundary where dM = S; U S5 in the usual

way. This is best exprésééd in the form of the follpwing theorem

Theorem: -

HE(M,Se) =~ HE(M-8)) =~ H(M,S$) :
12 T ‘.
Hn=K(M,S2) =~ HM*(M - S3) Hp (M, S2)

This theorem expresses the relative de Rham isomorphism (on the right), the repre-

1

sentability of relative de Rham ‘cohomology classes by harmonic fields (in the center),

" and the duality isomorphism induced on harmonic fields by the Hodge star (on the left).

For the inspiration behind this theorem see.Connor {1954].

‘In order to let the orthogonal decomposition sink in. it is useful to rewrite it in -

terms of differential forms and then consider several concrete examples. Thus consider
the following theorem which restates the orthogonal decompostion theorem in a more
~ L’t

palatabie way: . \

)

o \ 7
Theorem: If M, Sy, and S; have their usual meaning and w € CP(M) then w has the

\

unique repr%sentation 3 o
! ‘ o 1
| i

w=dv +éy+ x
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where
tv =0, (x=0 -on Sy

ny=0, nx =0 on S
o : dx=0, 6x=0 in M and on OM.

Furthermore,

_-1) the three factors are mutually orthogonal with respect to the inner product (, )

-

2) if dou =0in M and tw = 0 on S; then one can take 7 =0

3) fbw=0m M qnd nw = 0 on S, then one can take v = 0.
Le‘t the theorém be illustrated by a couple of examples.
Example 34 (Three dimensional vector analysis, n = 3,p = 1)

In vector analysis it is customary to identify flux vector fields (arising from 2-forms)

with vector fields arising from 1-forms by means of the Hodge star operator. Keeping

this in mind, the identifications established in Example 32 show that in the case of
n = 3,p = 1 the above theorem can be rewritten as follows. If M is an orientable,

compact three dimensional manifold with boundary embeded in R® then any vector

field V can be uniquely expressed as

D . .
° V =gradp +curlF + G-

_ 2
~where | : '
s ‘ =0, nxG=0 onS ' )
F.-n=0, n-G=0 onS, .
) ‘curl G =0, divG =0 in M and on -8M.
| Furthermore,’ }

h 13
| ’ °
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1) the three factors are mutually orthogonal with respect to the inner product:
» v @

U >1=/ U-Vdv;
y \

2) if curlV=0in M andn < V =0 on S, then F may, be set equal to zero;
o A
N i

]

\3) if divV=0inM and V-n =0on S» then p may bé set equal to zero.

Note that in ;.)ractical problems it is customary to describe G by a (possibly multivalued)
scalar potential and that the dimension of the space of harmonic vector fields which

- satisfy the conditions imposed on Gis Br(M — Sy) = B(M — S3).
End of Example 34

Example 35 (Two dimensional vector analysis n =2,p = 1) *

-

Let M be an grientable compact 2-dimensional Riemanian manifold with boundary

where M = S, US, in the usual way. Using the identifications established in Example

33 one can rephrase the orthogonal decomposition theorem as follows. Any vector field

»

V on M can be written as

V =grad ¢ + curl)+ G

where ‘
=0, nxG=0 on\S,
w $»=0, G:;n=0 onf T
o
curl G =0, divG =0 in M and on M.
Furthermore,

1) the three factors are mutually orthogonal with respect to the inner product given

by the metric tensor in the usual way:

(U, V) = /MU-WV;' p

ayt
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2) fcurlV=0in M andn x V:’: 0 on S| then ¢ may be set equal to zero;
3) ifdivVi=0in M and V- n =0 on S, then ¢ may be set equal to zero.

. Note that in practical problems G is invariably described in terms of a {possibly multi-
valued) scalar pot&htial or stream function and l‘?hat the dimension of the space of har-

monic vector fields which satisfy the conditions imposed on G is 3;(~S,) = (M — S;).

2]

End of Example 35

One final remark is appropriate. In the case of ¢lectrodynamics there is no positive
, definite inner product on p-forms since the metric tensor is not positive definite. One

can, however, define all of the spaces found in the orthogonal decomposition and obtain

a direct sum decomposition of CP(M) even though there is no positive definite inner

{ product.
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' CHAPTER 3
~ .
A Paradigm Problem in Electromagnetic Theory

(} >

- N

“The paradox is now fully established that the utmost abstractions are the true
welpons with which to control our thought of concrete fact.”

A.N. Whitehead

4

Science and the modern world, 1925

“It is important for him who wants to discover not to confine himself to one chapter
of science, but to keep in touch with various others.”

13

Jacques Hadamard

The psychology of invention in the mathematical freld

“It has been said many times that Geometry is the art of correct reasoning sup-
ported by incorrect figures, but in order not.to be misleading,these figures must satisfy

certain conditions...” . ) \

Henr: Poincaré
Analysis Situs Paper, 1895

®

3.1 Introduction to the Paradigm Problem

\
N

The purpose of this chapter is to show how the formalism of differential forms re-

duces various broad classes of problems in computational electromagnetics to a common .

1

" form. For this class of problems, the differential complexes and orthogonal decomposi-

tions associated with differential forms make questions of existence arid uniqueness of

solution simple to answer in a complete way which exposes the role played by relative ho--

mology groups. When this class of problems is formulated variationally, the orthogonal

i ~
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decomposition theorem developed in the last chapter generalises certain well known in-
terrelationships be‘Pween gauge transformations and conservation laws (se'e Tonti [1968])
to include global conditions between dual cohomology gfoupé. The orthogonal decom-
;;osition theorem can then be used to construct an alternate variational principle whose

unique extremal always exists and can be used to obtain a posteriori measures of prob-

lem solvability, that is.to verify if any conservation law wads violated in the statement of

. @
the problem. Finally, a diagraminatic representation of the problexL along the lines of
Tonti [1972a] will be given and the role of homology groups will be reconsidered in this

context. This of course will be of interest to people working in the area complemen-

.

tary variational prinéip‘les. In addition to the usual literature cited in the bibliography, ”

the work of Tonti [1968], (1969, [197'2:1], (1972b] and [1977], Sibnet and Sibner (1970},

[1979], [1981] and Kotiuga [1982] have been particularly useful in developing the ideas

@

presented in this chapter.

//

The paradigm problem of this chapter will now be considered. Let, M be a compacét
orientable n-dimensional Riemannian manifold with boundary. In the paradigm problem

to be considered, the field is described by two differential forms ~—

BeCH M), ne C"P”(M) -

which are related to another differential form

A e CcrPri(M)

k3

which describes the sources in the problem. These differential forms are required to

satisfy the following pair of ;equations: N




/\

for all c,u) € Cpir(M)ycnpit = Crnpri(M). If Sisa sét of n — 1 dimensional

* N
interface surfaces where 3 may be discontinuous, the. first integral equation-implies

that: v " B -
dB=0 onM-S.

~ I3 .

Also one can define an orientation on S so that there is a plus side and a minus side

and

tBT =tB~  ‘as S is traversed.

~

It is natural to inquire whether there exists a potential

T

¢ ' ac C”"(M)

such that —— '
P . B=da.

In other words, the first integfal equation shows that 8 is a ;:losed form and one would

like to know whetheg: it is.exact. The answer, of course, is given by $he de Rham iso-

morphism, that i's, B3is exact if all of its periods vanish on a basis of the homology group

Hy(M). Iﬁ addition to the above structure, the paradigm problem to be considered has\

a constitutive relation relating 3 and 5. Further consideration will not be given to this

constitutive relation until the next section.

~

Although various boundary conditions can be imposed on 3 and n so that a bound-
ary value problem can be defined, to simplify the presentation it is assumed in accor-

‘dafice with the general philosophy of this thesis that
i oM .= S5 U S,

, ) - ta =0 on S

tn =0 on Sy

201 , 3
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¥
where.S; M S, is an (n — 2)-dimensional manifold whose connected comporients represent
% .
intersections between symmetry planes and connected components of the boundary of °
an original problem where symmetries were not exploited. Finally, beforé going on, it

is important to list the specific problems which occur as special cases of this general

problem. They are:
1) Electrodynamics in four dimensions.
2) Electrostatics in three dimensions.
3) Magnetostatics in three dimensions.

_4) Currents in three dimensional conducting bodies where displacement currents are

neglected.

5) Low frequency steady or eddy current problems where currents are confined to
surfaces which are modelled as two dimensional manifolds. In this c::ﬁe, the local
sources or “excitation” is the time variation of the magnetic field transverse to the

surface.

. 6) Magnetostatics problems which are two dimensional in nature because of transla-

tional or rotational symmetry in a given three dimensional problem.

°

7) Electrostatics problems which are two dimensional in nature because of transla-

tional or rotational symmetry in a given three dimensional problem.

4

Note that the last two problems have not been discussed so far in this thesis bgcause
of their “topologically uninteresting” properties. They are included here for complete-
ness, and a word of caution is in. order. For two dimensional problems which arise from
axially symmetric three dimensional problems it is important to remember that the

metric tensor on M is not the one inherited from IR? but rather is a function of the
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distance from the axis of symmetry.

Tables 1 and 2 summarise the correspondence between the paradigm
fined in terms of differential forms and the various cases listed above. Note that two
dimensional problems are assumed to be embedded in a three dimensional space where

n’ is the unit normal to M. Also Table 2 lists examples considered so far in this thesis

s W
f

which are useful for sorting out topological or other details.

’“’\

-

-

) _
n,p( o B n’ A tﬂ=Oorf:Sl. tn=0o0n S,
N
: nxE=0 nxH=0
1/4,2|A,¢ | E;B | D.H J.p

B-n=0- D:n=0

213,1 },q‘) E D nxE=0 D-n=0
: 3(3,2] A B H B-n=0 nxH=0
432 H | I E -4 Jon=0 [ nxE=0
5021 ¥ In'xJ | E |-2.0| J,=0" E;=0
6[2,1]| 4, |[nxB| H J.n' B, =0 H =0
712,1] ¢ E n' x D | p/length E:=0 D,=0

Example of paradigm prob}em

Previous example relevant

=3 O Uv b N =

31

5,6,12,15,19,23,32,34

8,13;16,19,22,23,32,34

8,14,17,19,23,32,34

4,7,11,18,19,33,35
7,33,35

7,33,35

Table 2 -
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Thus, in summary, the paradigm problem considered in this chapter takes place on

an oriented compact n-dimensional Riemannian manifold M where §; U Sp = M in
'
- - \

the usual way and ’

4

a) thereisa g & ZP(M - S,) for which one would like to find a potential & € C?~1(M)
such that >

A = da.

»

.In the language of Tonti [1972a] this equation is called the defining equation.

8

b) There is an n € Cf‘PiM — 53) and a prescribed A € B2 ~P*!(M - §;) such that

%

dn = A

\ .
in ordet to satisfy the integral equation relating n and A. Thus when prescribing

A, care must be taken' to ensure that A is an exact form.in the relative sense. In

the language of Tonti {1972a/ this equation is called a balance equation.

8) There is a constituitive relation relating 3 and n which will be discussed next.
r - - C e

)

3.2 The Constitutive Relation and Variational Formulation

In order to define a constitutive relation between 3 and 7, consider a mapping

®

C: CP(M) — CP(M)

which, when restricted to a point of M, becomes a transformatipn which maps one

Faa

differential form into another. In addition, if

) . .
w,wi,ws € CP(M)
fl./
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but are otherwise arbitrary and there is a positive definité Riemannian structure on M
which induces a positive definite inner product ( , J, on CZ(M) then the following two

propertiés are required of the mapping C':.

T e 1) Strict monotonicity: < ) )

(Clw) — Clwg),wy —wq) 20

1

. with equality if and only if w; = ws.

2) Symmetry: defining the linear functional

S ‘ ;}(wl) = (C(w)wi)e |

«

and denoting its' Gateaux variation by

1. f:J(wl,W2) = (C(:,(WZ)’,WI)P’

1

sy

©

. Y ' .
- . it is required-that this function is a symmetric bilinear function of wy-and wz. That
is - ' l
* (C(:,(wl)a‘#'?)p = (C,(w2),w1)p.

\

The first of these two conditions ensures the invertibility of C (see Tonti {1972b]
Theorem 10). When there is a pseudo Riemannian structure on the manifold the inner
product { , }, jigindeﬁnite as is the case in four dimensional versions of electromagnetics
and the appropri;ite reformulation of Condition 1 is found in Tonti [1972b| pp. 351-
352. The second of the above two conditions will imply that there exisps a variational
-principle for the problem at hand. See Vainberg [1964] or Tonti {1969| for a thorough

. discussion. This being said. let the constitutive relation between 3 and 7 be of the form

- '
A e

i st

Tk W et 1
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The next step in formulating the paradigm problem variationally, is to relate §
ZP(M~S)) toa pbtential a. In all of the special cases of the paradigm problem shown
in Table 1, with the exception of Case 3 involving current flow on sheets, the physics of.

the problem shows that it is reasonable to assume .

B=d - -
) ° . ¥

since M C R™ and the above equation is true for R”. In Case 5 involving currents

<

on sheets, one can use the techniques developed in E;cample 21 to express the current
density vector in terms of a stream function which has jump discontinuities on a set of
curves representing generators of H 1‘(M ,S2). The values of these jump discontim.lities
are related to th: time rate of change of magnetic flux through “holes” and “handles”
and are prescribed as a principal condition in any vagriational formulation.. Keeping this

in mind, it is assumed that

”

3 = da for some o € CP~ (M)

in the paradigm problem. The next thing to do in formulating a variational principle,

Py

where 3 € ZP(M — S)) is imposed as a principal condition, is to. figure out a way of

imposing the condition ' . . , \/

tB-—-O 671 S] 4

@

in terms of a vector potential a. In géngral the observation that

[ ta=0=0=dta = tda = tf on S,
does not mean that it is advisable to make the pullback of & to 5{1 vanish. To see why

this is so. consider the following portion of the long exact homology sequence for the

pair (M, S1): - (
J t
ESOH(S) B H(M) B H(M,S) —

~

~

2 Hy(S) B OH, (M) P H,L(M,S5) —
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‘ Following the three’step recibe introduced in Chapter 1 gives
h ) . >
- ‘ ’ ? ~ ~ H,(M .
H,(M.5) ~ 5;1 (Kernel(zp_l)) P Jp (;_p(_)_.) )
) : tp (Hp(51))

- -

e

The above arguments concerning the existence of a potential o deal with th; periods
of 3 on generators of H,(M) and hence the gene.rators ;)f H,(M,S,) corresponding to
Image (J~p). It remains to consider how the periods of 3 on generators of H,(M, S,)
corresponding to 5;1 (Kernel (7,,_1)) depend o“n the tang;antial components of a on
Si. Let zp € Z,(M, S1).represent a nonzero homology class in §,! <I.{e;nel (7,,_1)) and
c\onsider the calculation of the period of 8 on this homology clas\s:‘ )

\

-

/ﬁ:/@:/ ta =0 ifta=0o0nS1."
. Y zp dzp

Hence, unless the periods of 3 vanish on 6,1 (Kernel (:p_1)> there is no hope of making
the tangential components of a vanish on S,. Instead, one must find a way of prescribing

ta on S; such that

\ dto = tda =t =0 on S

and the periods of 3 on generators of 6;’ (Kernel (fp__l)) are prescribed. This, of
course, is simple in the case where p = 1 since a scalar potential or stream function
is forced to be a constant on each connected component of S; if its exterior de;‘ivative
vanishes there. For vector potentials (p = 2).the problem is a little more tricky since
"the tangential components of the vector potentiai on S are related to some scalar func-
tion which has jump discontinuities on curves representing generators of H;(S2,8S2).

This situation should present no difficulties since it has been considered ad nauseam in

Examples 12, 13, 14.

o charr o et~
+
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As a prelude to the variational formulation of the paradigm problem, one has

. n =+C(3) in M
3 = da& in M X
~ " ‘ $
g t specified on S;.

The last two conditions are used to ensure that § = ZP(M — S;) and the periods of 3

~

on 51;"1 (Kernel (ip_l)) arg prescribed in some definite way. One jg now required to find
a variational principle which would have
. . dn =\ in M 7 .

o

tn =0 on Sy .

as Euler-Lagrange equation and natural boundyry condition respectively. A variational .

principle for this problem is a functional

(=4

F:Cr'M)-R

which is stationary .at the Qp — 1 form «a and satisfies the above requirements. In ‘or-
der to define a variational principle. consider a family of (p -~ 1)-forms parametrized

differentiably by s, that is, a curve in C?~!(M)

\ , . v:[0,1] = CcP~H{M)
o -

] -

", where o
v(0) = ap, some initial state,

\ v(1) = @, an extremal A

\ dnd in order to respect the principal boundary condition on St
ty(s) = ta  for all s € {0,1]

" is fixed. In addition to the above, no other constraints are placed on - so that

I

3% =a the variation of the extremal,
s )
3=

1 ' .
-
.
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can be any arbitrary element of C?(M — §,), the'space of admissible variationis. Next,

the symmetry condition which states that:
o (Co(wr),wa)p = {Cy(wa), w1)p

for all w,w;,ws € C?(M) ensures that’the value of the furictional F defined by:

| F.(c‘x) = Flao) + /c;l (<0(d7°(s)) ,d(‘?’;is)»p +(-1)7 <*,\, "’g(:)>p_l) ds )

where r = (n —p+1)(p - 1) + (p — 1) is independent of the path in CP~!(M) joining ,""’

o and a. That is, the value of-the right hand side of the above equation does not

]

depend on the way in which ~y(s) goes from g to o as s goes from zero to one (see Ty

&

Tonti 1972 b]). For a general view of this formulation of variational functionals the
1 ° .

reader is referred to Tonti [1969] and Vainberg [1964]. "

In order to verify that the extremal of the above functional has the properties :

required of it, recall that an extremal of the functional and the variation of the extremal

" are assumed to be .

ov(s)|.

(1) = a, s = a.

8=1

This implies that variations of the extremal can"be considered by looking at v(1 — ¢) for

¢ sufficiently small, and that the condition for the functional to be stationary at « is:
»]

3
J

- =o
‘b e=0

Using the definition of the inner product, one can rewrite the above functional as

i [ ([ (30) 7 (502

[

[
Using this form of the functional it is seen that the functional is stationary at « when

o= ([ () e <o () )
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N /Md (ﬁ(gﬂ) *C‘/(dfy(l)) ~ (—1)1’“1/M (% A A

:—/ do A *C(da)—(—l)””l/ an i
M ’

M

for all & € C?~!(M = S1). The integration by parts formula which was obtained as a

Fy
Ed

corollary to Stokes’ theorem shows that:

! /r da A kC(da) =/ ta /\“t(*C(da)) —(—I)PfI/ andx*C(da).
M M . M ¢

o

Combining the above two equations, it is seen that the functional is stationary at « if

0= (~1)P"! /MaA (d+ Cfda) - A) - /m t& At (+C(da))

for all & € C}~'(M ~ $1). This of course means that
d*C(da) = A in M
t(*C(da)) =0 “oh OM — 51 = SQ

ate the Etler-Lagrange equation and natural boundary conditions respectively. Noting

/
that . ‘ y

/

o n=+C(B), B =da

the Euler-Lagrange equation and the natural boundary conditions state €That the func-

r

tional is stationary when :
. Tdnp = A in M

|

1

) tn=0 on:Sa. !
Thus i is seen that the paradigm problem is amenable to a variational formulation.
Before moving to the questions of existence and uniqueness of gxtremal, it is use-
fl{l /Eb mention how the interface conditions assoc'ifate‘d with the two integral laws of

the paradigm problem are handled in the variational formulation, since this aspect has

been ignored in the above calculations. Interface conditions are considered when the
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function C is discontinuous along some (n — 1)-dimensional manifold $. In the vari-,

ational formulation it is assumed that the potential a is ‘continuous everywhere in M
: ¢ >

and differentiable in M — S. One can define an orientation locally on S 4@ hence a

plis side and 2 minus side. In this case if superscripts refer to a limiting value of a

* L}

differential form from a particylar side of S then =

fl

6~ =t~ on S

"
is the interface condition associateg with the integral law .
) // ‘ ‘
=0 for all cps1 € Cps1(M).
Cp+1

P
o oy . . .
That this interface condition results as a consequence of the continuity requirements

imposed on « is seen from the following argument. Since « is continuous in M one has

f tat =ta” on S.

\
A

Both sides of the above equation are differentiable with respect to the directions tangent
o § because a is assumed diffetentiable in M — S. The exterior derivative in C*(S)

involves only these tangential directions and ‘therefore one has

'
t

dtat = dta”™ on S.

but P A -

tda™ = tda™ on S .

or

18t =t~ on S

I3

since exterior differentiation commutes with pull backs. Similarly, when A has bounded

coefficients, the interface condition . -

tn* =tn

on S
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is associated with the integral law

foood
Jep—p+1 ¢

n-p+1

In order to see how this interface condition comes out of the variational formulation,

notice that ,

d* C(da)

~

need not exist on.S. Hence, if there-are interfaces. then taking the variation}

functional one must use the integration by parts formula in M — S. When this is doné,

one obtains the exact same answer as before plus the following term:

, _/ ta At (xC(dat) —+C(da)).
s -

The arbitrariness of t& on S implies that
t«C(da™) =t * C{da™).

Thus identifying
‘ n=+C(B), B=da

3

one has the desired result. This completes the discussion of the constitutive relation

1

and the variational principle. f

\ . ° \

3.3 Gauge Transformations and Conservation Laws

.t

The objective of this section is to develop a feeling for how nonunique the solution
of the paradigm problem can be and to show how this nonu\niqueness is related to the

compatibility conditions which must be satisfied in order for a solution to the paradigm

. 212 N



m £ The gauge transformation is assumed to have the following form

+

problem to exist. The approach taken in this section is basically due to Tonti [1968],.

however, it is more generé‘l than Tonti’s in that the role of j‘iomology groups is considered.

. Every effort is made to avoid using the words local and global because the mathematical

usage of the words local and global does not coincide with the meanings attributed to

these words by physicists working in field theory.
For the paradigm problem being considered let us define a gauge transformation as
a transformation on the potential o which leaves the following quantities untouched:
8 =da n M

ta on S,.

% w-“"\
1

o — a+ag in M °

N

where ag € ZP~1(M - S;). It is obvious that ac cannot lie in any bigger space since,

) -

by definition -

20 M~ §1) = {w|weCl (M - 81),dw = 0in M} -

By the ./ort,hogonal decomposition of Chapter 2, it is known that®

*
ZPY (M ~ S)) = BETHM ~ 51) & X7~ H(M, §1)

" where - £,
Y (M, S,) = {w{ we fol(M—- S,);nw =0 o0n S;,6w =01 M}

afid ) co
ﬂp.—l(M,S[) = dim}lp"l(M,Sl).
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This orthogonal decompositi&n enables one to characterise the space oi' the gauge trans-
formations. Ir; scalar potential problems, that is Cases 2, 5, 6, 7 in Table 1, p is equal
to one and ag & }("'(M, S1) since BY(M - §y) is the space containing only the zero
vector. :This situation is trivial to interprét since ag is equal to some constant in each

connected component of M which does not contain a subset ‘of S,. In problems where

¢

p is equal to two, that is Cases 1, 3, 4 in Table 1, one has

ag € B;(r\'f —51) QB,VI(M,Sl).

Thus it is expected that the gauge transformation can be described by a scalar function

which vanishes on S; and 'ﬁl(M,BSI) other degrees of freedom. The case where # is

equal to three is treated explicitly in Kotiuga [1982] Sect. 4.2.2.

a

. ) , .
Since the gauge transformation is supposed to leave the differential form § invariant,
one would hope that the gauge transformation would also leave the stationary value of

the functional invariant. In order to formalise this intuition, suppose « is an extremal

,and let ’ o .

7:[0,1] = CIYM ~ §,)

: wherq ‘

v(s) = a+ sag

and

: 679(8) =ace "I (M-8) foralls€0,1].
” :

In this case recalling the definition of the variational functional for the paradigm problem

. one has .

-

Fla+ag) - F(a) = F(1(1))- F(v(0)) )

(L) e (5) )
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T
2
L}
L3

= (—1')"‘-‘/01 (/w aG AX) ds since d(ag(:)> =0

= (_1)P—1/ ac A
. M

Thus the gauge transformation leaves the value of the functional invariant if and only if

~

/ agAA=0  forallag € ZP~H (M — S).
M '

\ . . .
This condition can be rewritten as

’

(oG, *A)p—1 :([ ~forall ag € ZCP‘I(M - 51).

However, from the orthogonal decomposition theorem developed in the last chapter, it

is known that

~ N

(ZP=Y(M - 51)) " = B,_1(M,S2) = «x BI"PT (M — Sy)
| AN
hence <A € *BPP+1(M — S3) or. A € Br=P+1{M — S,). This condition is precisely the

~

compatibility condition which ensures that the equations
dg =2 in M

tn =0 on Sy

N
are solvable for n. Thus it is seen that the Euler-Lagrange equation and the natural
boundary conditions can _be satisfied only when the statiof?ary value of the functional

is invariant under any gauge transformation. !

The compatibility condition on A is not amenable to direct verification in its present

[y

form. However, since <

23PN (M - S;) = BRPHU(M - ;) @ HETPYH(M - 5,)

++ 515

o e s



Fig.21

one sees that the compatibility condition can by verified by checking L

dA =0 in M
: => A€ ZM P M - S,)

tA=0 an 52 N

and then verifying that the periods of A vanish on a set of generators of H,_;..i(M, S2).

This, in particular confirms the results given. in Kotiuga [1982] which were considered

in Example 22. This method of verifying the compatibility condition on X also shows

that the duality theorem

Hf_l(M -Sl) s Hé"—p-H(M - 52)

4

1

plays a crucial role in interrelating degrees of freedom in the gauge transformation and

degrees of freedom in A constrained by the compatibility condition. .
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[t is worth meptioning that

/ C A EBMTPYI M = 5y)
Y

e

implies that the value of the functional is not invariant under every ghuge transforma-

/

tion and that the Euler-Lagrange equation or the natural boundary conditions cannot
" be satisfied. Ir; this case the functional has no extremum and it is useful to have a geo-
_metrical picture of the si%uation. Consider the diagram given in Fig. 21. The graph of
the functional in the F(CP=i(M))-(ZP~ (M — Sl))‘L “plane” is convex upward when-
ever the Riemannian structure on M is positive deﬁpite. This comes abou\t\\as a result
of the.strict monotonicity assumption on the constitutive relation which is a valid ab-
surmption to. make in all of the'cases of the paradigm problem .listed in Table 1 with the

exception of electromagnetism in four dimensions. For simplicity, in the remainder of

- this section the discussion will focus on the case of convex functionals.

When the functional is invariant under gauge transformations, moving in the direc-
tion of ZP~!(M — S;) does not change the value of the functi;)nal so that the graph looks
like an infinitely long level trouéﬁ which is convex upward in the “plane” F(CP~!(M))-
(Zp—YM - Sl‘))J'. Hgwever, when the functional is not invariant under gauge trans-
formations, that is, A & B;‘""“(M — §32) the trough is tilted and the func;;iona.l has no

‘ stationary point. In this case the graph in the F(CP~Y(M))-(Z27 1 (M - sl))L “plane”
remains the same but the slope in the ZP~!(M — ) direction has a nonzero value
depending on the value of the projection

fM ag A A
V <QG, aG)p‘-—l .

Thus; the interplay between gauge conditions and conservation laws arises from the

above projection and gives a geometrical picture as to what happens when conservation

laws are violated. = - .
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It has been seen that the compatibility condition A € B}~P+}(M - S,) is necessary

for the functional to have a minimum. In the case of a linear constitutive relation the

Euler-Lagrange equation is a linear operator equation so that if the spaces in question

are chosen so that the range of the operator is closed then the condition
{ag,*A)p_1 =0 for all ag € ZP~'(M - ;)

is sufficient to ensure the solvability of the Euler-Lagrange equation (see Tonti [1968])
since the Fredholm alternative is applicable in this case. In the case of a nonlinear
strictly monotone constitutive relation, the resulting convex functional may fail to }‘1ave
an extremum even if the above ortkhogonality condition holds. The extra condition.

which is required is ]
<C(w)sw>p — oo
(wa w)P

for all w € CP(M). The reason why this condition is necessary is best understood in

as (w,w)p — 00

terms of an example. : . .

Example 36 (A convex function without a minimum.)

Let
f(€) =vV1+ &2 -1 lLec R

" It is readily verified that

fI(E) — f(l + EZ)—1/2 .y
f”(f) = (1+§2)-—3/2'

Since the second derivative of this function is always positive, it is seen that the function
is convex for all values of A. However if £ is the minimum value of this function then £ -
must satisfy

F1(E) =0 = £(1 + €2)7Y/2 —
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or :
t ® l
. :[ 1 2\1/2 — .

‘ E=lr )T ===

Thus, this convex function has no minimum if |{| > 1. In order see how this example

relates to the above condition the identifications

(C(r)s7) = 7C(7) 5

are made so that

£
c(e)=f' = ————
(€)= f(¢) + Vi
and in this case : .
cle)e, & g

lim

Nlel—oo €] VIxE2E] VIt EZ -

so that the extra condition imposed on the constitutive relation is violated.

End of Exa.rr;ple 36 \“

Example 36 shows that in the paradigrﬁ problem being considered, if

¥

im Gk
Cawip—~oo V{W,@)p
then one expects that for some A € B"’“”‘“(M S2) with sufficiently large norm,
the functlona.l of the paradxgm problem may fall/to have a minimum. The mterpreta—
tion of this extra condition in terms of the tn]ugh' picture is as follows. Suppose A €
Br—P+1(M-S,) and consider the graph of the functional in the F ((Zg-l(M - Sl))l)- )
(Zp~Y(M - Sl))'L plane as a function of the norm of ‘A as show in Fig. 22. This diagram
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s &
illustrates how the minimum value of the functional may tend to minus infinity as the

norm of A increases and the condition

‘ (Cw),w) _
hwllp—oo  [lwl|p

is violated. Thus, when thinking of the graph of F(a) as a trough, one sees that the

trough is tilted in the ZP~!(M — S;) direction when X violates some conservation law,
~

and the trough “rolls over” when the above condition is not satisfied and ) is chosen in,

a suitable way.

F(2% ()

2

Tncrusina I\

Fig. 22

For the purposés of numerical work, one would like a variational principle whose
extremum always exists and is unique. The variational principle for the paradigm
problem has a unique solution if and only if the space ZP~!(M - Sy which is homologous
to B{."’lu(M—— S1)@HP~Y(M-S,) conta{ns only the null vector. By the above direct sum
decomposition this happens in practic;al problems where p = 1 (so that BY(M — 6:1) =

0) and there is a Dirichlet’condition imposed on some part of the boundary of each
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( N conz;ected component of M, (so that HO(M — S;) = 0). When the extremal of the
functional is nonunique, the usual algorithms for minir-nising convex functionals can be

. generalised to the case where the extremum of the funct/ional is nonunique, For example,
Newton’s method as described by Luenberger [1969] Section 10.4 can be generalised as in

Altman [1955]. However, in such cases it is usually easier to re:formula,te the variational

principle for the paradigm problem in such a way that there always exist a unique

solution. There are two basic approaches ta this problem which will be considered next.
A . .
L \ -

3.4 Modified Variational Principles

. The purpose of this section is to formula.jc/e/variational principles for the paradigm
I;roblem for which the potential « is unique.! Such variational principles will have
interesting consequence; for conservation laws since a unique solution for the potential

~ aimplies that there is no gauge transformation which in turn implies that there is no

conservation law which is naturally associated with the functional.

The first approach to the problem is to note that once the principal boundary
conditions have been imposed on S, the space of admissible variations of the extremal
is CP~1(M — S;) and the space of gauge transformations is ZP—'(M — S;). Hence if
the space of admissible variations-of-the functional and the domain of the functional is

restricted to

g (2PY(M = $y)) " nCPY M - )

then the functional’s previous minimum can still be _attained but the solution is now

unique. By the orthogonal decomposition- de\;eloped in the last chapter, one has

(. C(ZHM - 81))T = B (M, 5) - e
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hence the spacé of admissible variations becomes

-

Bp 1 (M, So)ﬂC"’ 1(J‘{[ SQz{&?t&:Oon 51,a=5pw in M

EE . for some w € CP(M) with nw = 0 on S»},

1
-

1 This procedure raises an interesting question. By the observations of Tonti [1968] one

\
knows that the number of degrees of freedom in the gauge transformation is equal to the

re 1
v ~

/" number of degrees of freedom by which the source, described by A, is constrained by a

conservation law, Hence'in this case where the domain of the functional is cbnstrained,
' ' <.

so that the extremal is uni@ue, one expects that the variational principle is completely

insensitive to violations of the conservation law A € B*~?+1(M — S,). In order to see .

why this is so, consider the unique decomposition:

°
>
r

. ) A = Aeons + )\no.nc b

v A€ Crrrl(M) ' .
" deons € BMPYIM - 53) *'

b , - /\nonc\-(B" PHL(M — S)) . o

1 W}f?t is required is to show that the extremal of the functional is independent of the

}‘j‘ way in which Appc is fprescribed. Considering the functional of the paradigm problem

as a function of A, when «a is restricted as above, one has
5o .

e

F(@) = Fraona(2) = (<107 [ &4 Ao | P
M . . . i
D L (=)= %x)(pﬂ)/ Aons At
M N .
Py ‘\w '
= (_l)(p—l) / Anonc A ¥ k@ ~ .
, y x |
{ _ :(_1)(P—1) (Anonca*a>n_p+1' q’ %
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However, one has o ’ , ‘ - o ’
Y ' l " ) *aét((Zc””‘(}\/I—Sl))L) :*gp_b(M,Sg)
1 B ‘ : ’ — Bgn—-p+l(M __52) "
but -
!. \)‘mmc E (Bzy,—-p‘:l-““l (M"' 52))-]-‘ ‘ . o

! e ’ NE !
and combining the above two resu&s, one has -

! r
| ¢

!

i

'(Anqnca *a)n_p+1 =0 .

|
1

so that |
i ' |

Fy(0) = Froons ().

-

v

Thus, by restricting the class of admissible wvariations of the functional’s extremal,one
obtains a.variational f'o"rmulationc whose unique, extremal is insensitive to violations of

the compatibility condition A € B""P*!(M — S;). This approach to the problem is

'

- useful in the context of direct variational methods such as the Ritz method or the finite

“element method only when it is possible to find basis functions which ensure that
) -

t
|

L ae (ZFHM - $1)T = Bpoi (M, Sy).
) ‘/ ’ /‘

b -The second method for obtaining a variational formulation of the paradigm problem

¥

- in which the extx;Zemal is unique is inspired’by Kotiuga [1982] Chapter 5. In this method,
/ <

which at first siéht resembles the “penalty function method” (see Luenberger {1969] Sect
10.11), the domain of the functional before principal boundary conditions are imposed
'_is CP=1(M). The miethod involves finding a functional F+(a) whose graph lopks like a

_trough perpendicular to the trough of F(a) as is illustrated in Fig. 23.
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Fig. 23

In this scheme the functional
G(a) = F(a) + F*(a)

has a unique minimum which lies above the (Z7~1(M - 51))l “axis” whenever the

trough associated with F(a) is not tilted. That is if F-(a) is d®signed so that its

fminix;:lirﬁn is the (ZP~1(M ——'Sl))L “axis” then the minimum of G(a) should lie above
the (Zg"‘ln(Mg Sl))'L “axis” whenever A€ B"‘P“(M Sz) 1t is also desired that
the contrapositﬁves of these statements are also true in the following sense. If A ¢
}3;“‘1\"”1(M - S,) so tha;: the trough associated with F(a) is “tilted” then the distance
of the extremum of thé functional G(&) to the G(a)— (2P} (M - Sl))'L plane measures,

in some sense, the value of the projection
¢

max / ac N A
agezl " WM-s,)IM ~

lacip-1-

Havmg this plcture in mind, the first thing to do is consﬁruct a functional with the

properties desired of F+(c). In order to find a functional which is definite on ZP~1(M -

b 3
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S,) and level on (ZP='(M ~ S;))". one notes that{ by the orthogonal decomposition of

[
|

| -

last chapter
" 9

(ZP~YM - $1))" = B,_,(M,S2) ;

ZP UM - §,) = (E,,_I(M, SQ)BJ' .

Hence, one actually wants a functional F+{a) which is level\m E?_l(M. S2) and convex

on (Ep_l(]\/l, Sz)) ‘L. ) ; ‘ \ \

‘ L L
\As a prelude to the construction of FJ-(zj), let K be a map !

K :CP~3(M) — CP~%(M) \

satisfying the same conditions associated with the constitutive %pping. That is, for

w,wiwy € CP72(M) the following three properties are assumed to }i\?ld.ll

1) Strict monotonicity: \

(K (w1) — K(w2) w1 —w2),_, >0

3

with equality if and only if w; = wa. T

2) Symmetry: defining the functional

4 R

fulwi) = (K(w),w1),y
and denoting the Gateaux variation of this functional by

f:;(wlvw2) = (K,L(Ldg),:(dﬁ —2
)

a

it is required that this function is a symmetric bilinear function of w; and wz. That

- > ' [
1S , \

<K;(wl)7w2>p_2 = <K(:l(w2)’wl)p—-2'
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3) Asymptotic property:

l. (K(W),Ld;)p_z
1 ——————— T

m —
flwllpztoo  ilwlip-2
In addijtion to these usual properties the mapping K will also be assumed to satisfy the

following condition:

4) K(0) = 0 where O is the differential fortn whose coefficients vanish relative to an'y
basis.
Given a mapping K which satisfies the above four conditions, consider the func-

<

tional Fi(a) defined as follows

-~

FQICP_I(M,Sz)—*IR -~

where if

then one has \ A

R (1) = Fola(o)) + [

0

1 (K@) g5 (6r(s)) s

p—2

By construction, this functional is convex in the subspace
. L~ i
(Zp_l(M,Sz)) N Cp-1(M, 52)

and “level” in the subspace 2,,_1(M~ S2)- ‘Furthérfmore Fo(a) > Fy(0) with equality if |
I

oy T !

and only if @ € 2,,_1(M, S2).

At this stage, the const@: of F+(a) is actually simple.‘ Considering the or-
thogonal decomposition of the previous c,hapter,'the following diagrams are readily seen
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J -

to be true

Br-Y (M-S, <= ZrYM-5) = BIYM-S) & Xr-1(M,S)
| ) I | o
(Zo-1(M.52)) " = (Ba(M,82)) " = %)) B HPNM,5)

(1)

A

and

~

Booi(M,S2) O Zpa(M,Sy) B,i(M,S;)  ® NPYUM,S))

I | [ e

(ZrHM - 50)* € (B M-S)t = (2T -5))" e SR
_ 2

il

where’

$HTPHU M, Sp) = NP~ H(M, Sy) = 2271 (M ~ §1) N Z,_1 (M., S3).

Looking at these dia'grams, it is seen th;a.t in (1) F* is supposed to be convex on the
spacés listed in the second column while Fg is convex in the spaces listed in the first
column. Similarly in (3), F* is invariant w\'rth respe&. to variations in the spaces listed
-in the first column while Fp is invaraianV with respect to variations in the spaces listed in
the second column. Thus. observing the direct sum decompositions in the third column
of (1) and (2) it is obvious that the functional Fy meets all of the specifications of F1
except on the space ¥P~1(M,S,). More specifically, the functional F1 is required to

constrain the periods of a p— 1 form in ¥? f‘(M , S1) while the functional Fo does not.

In order to fix this discrepancy, let

Zy, 1 <2< npt1(M,S3) /
be a set of generators of Hn_py1 (M, Sa), and

by 1<0< Bamprr(M,52)
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be a set of positive constants. If
_7 10,1 = M)
then the functionals

F:cri(M)—R, 1<i<B(M,S)

defined by

" have the property
Fi(a) > F,(0)

—

with equality if and only if the integral of *a over z, vanishes. Next, consider the

“candidate” functional
Pr—p+1(M,Sz2)

Fipa@)= Y . Fia).

1=0

Immediately, from the definitions of the F;, one has

4
'Bn—p+1 (M!SZ)

ina(@) - Fia0)= Y. (R(a) - F(0) 20

1=0 T 2

wit‘h equality if and only if
~r‘w1 ' ' F(a) = F,(0), 0<7< Bp_ps1(M,S).

This last condition is equivalent to

-

a€Z, 1(M,S2)

/ =0, 1<i< Bupii(M,S5)
Z

i
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or

~

0 < rZp_1(M.S2) = ZP7PTHM - )
/ o = 0, 1< < 3, p101(M, S2)
z
which, by the relative de Rham is:)mprphism, is equivalenp to ‘
; € BT M - S)
and finally, this is equivalent to Q
a € +BMPTY M — S5) = B,Y (M, $;) = (ZP WM - Sl)) : ‘
Hence, in sunymary L
Foana(a) = Fi5nq(0) >0
with equality if and only if
€ (2P7Y(M - 51))~
Furthermore, by c'onstruccion FL . is convex when its domain is restricted to the
space Zf“l(M - 51). Thurs interpreting FL , as"a trough, it is seen that it satisfies the
requirements of F+ and hence can be used to define FL. Hénce if one defines a curv'e:
Y 4:0,1) — 5,{:;(M, Sa)
then one can define the fun;:tional "
Ft:Cp_y(M,S2) = R
as follows: ‘ |

Ft(y(1)) = F£ (7(0)) = Fig (v(1)) ~ F5 g (1(0))

ﬁn—p+1(M’S2)

= Y (RGO -FGAO)

. =0 ’
S
'=/ <K(5 (), 5(33(5)» ds c
woJ0O N p—2
B 1 (M,S3)

SIS (o) ([ B0

1=1 1

r
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Finally one can complete the quest for a variational forrﬁulation of the paradigm problem

in which the extremal of the functional is unique by letting

G(o) - G(0) = (F(a) - F(0)) + (F*(a) - F~(0))

]
while respecting the following principal boundary conditions: \

T e

\
na=20 on Ss.

In order to define G(e) more explicitly, consider a continuous differentiable curve

~v:[0,1] = Cp_y(M, S2)

with s
~(0) = ag some initial state
(1) = &y an extremal
and in order to respect the principal boundary conditions, one has .

¥ tap=ta=ty(s) on 51

noag = na = ny(s) =0 on 8y
for all s € [0,1]. I\io other constraints are placed on v so that

—

o ,
NG\ (M,S)NCPY(M-S,) forallse 0,1

ads

3

and the variation of the extremal . -

o7

d
63-”&,___l

can be chosen to be any admissible variation where the space of admissible variations is

5,,_1(M, S3) N CP~Y(M ~ §). Thus writing out the functional G(a) explicitly one has

Gla) - Gao) = G(7(1)) - G (+(0))
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_ /01 Kc (d~(s)) 58;- (dv(s))>p = (=1 <*’\’ 63?) >,,_1
%(67(8))> _J ds
Prn—p+1(M,S2) p

S () ] 5

=1

+ (K (50,

-

where r = (n—p+1)(p—1)+(p—1). To investigate the stationary point of the functional

.

one E‘ecalls that

a=‘y(1)€Cf'1(M—Sl), a= 35 €~Cf"l(M—Sl)ﬂCp_l(M,Sg)
- a=1
and insists that .
’ b
SGH1-)| =0

for all admissible @. Doing this shows that the following identity must be true for all .

0= (C(da).d&), + (=1)" (+),),_, + (K(be),6@),_,

Br—-p+1(M,S2)

(L) L)

=1l

{

N .

» It is in general not possible to integrate by parts to obtain an Euler-Lagrange
equat\ion in the usual sense becausg of the integral p'erms which constrain the integrals
of *a on a set of generators of I P— 1(M, Sa). Fur.therr'rrlore, M the present case it
is not necessary to derive an Euler-Lagrange equation since the functional is designed
_to be extremised by direct variational methods. What is necessary to verify is the
geometric picture developed when thinking about the troughs associated with the graphs
of the functionals F(a) and F*(«). That is, it must be verified that when A obeys the

conservation law

A€ B P (M - Sy)
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and a can be expressed as

the extremal of G(a) providés a physically meaningful solution to the paradigm problem

and the projection of the extremal into ZP~!(M — S)) vanishes. Alternatively, when

the conservatiop law is violated one hopes that the extremal of G(a) can be interpreted

as providing a “least squares” solution to the nearest physically meaningfull problem

. where the conservation law is not violated and that the projection of the extremal into

Zr~ Y (M ——‘Sl)? measures in some sense the extent by which the conservation law is

violated. Hence let A be prescribed in some way which does not necessarily respect a

conservation law and consider the orthogonal decomposition
A = Acons + Anone

where
Acons € BY TP M - 8,)

n— 1 _ 5
Anonc € (Bc p+l(M - Sg)) = Zn—p+1(Ma Sh).
From this orthogonal decomposition, it follows immediately that /

s
t
, . .-
*A = *Acona Tt *Anone /

>

1
*Acons = *Bc

UM - 55) = B,_1 (M, $5)

where !

*Anone = *§n—-P+1(M’ Sl) = Z‘?—I(M —vSl)‘
Similarly for a € 6p_1(M ,S2) one has the orthogonal décorffposition

~ ~

Cpr(M, 52) = Bpr(M, 52) @ (2271 (M = $1) n G,y (M, 53))

a=at+oag *

where -
ao E BP—I(M9 Sz)

ag € ZP7H (M - §;) N C,p—1(M, S,).
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Finally, for & € 5p_1(l\1, S2) N CP~Y(M — S)) ane has the orthogonal decomposition

Coo (M, S) N CP~NM = 5) = (ﬁp_;(M, S2) N CPY M - 51))
_ o 9
. ' ) @(Zf“‘(M~Sl)n‘cp_1(M,Sg))

and & can be expressed as
a= ao + &G

where ‘ -
80 € BpZy(M,S;)ncrT (M - 8y)

dg € ZP~Y(M - §1) N Cp_1(M, S2).
Before returning to the condition that ensures that the functional G is stationary at o,

note that expressing ap and @, as ~

L

ap = 60, Go =60 ' =
« it becomes apparent that

/*a0=/ *50:(—1)P/ d+8 =0, 1 <4< Brpiri(M - 853)

1 1 t

[ o= [ wsi= [ arizo, 1<i<hi -
4 F-4 z

t 1 1

since the integral of a coboundary on a cycle vanishes. Next. recall the identity which
must be. satisfied for all @ € CP~}(M - S¢) N 5,,_1(M, S,) in order for the functional

G to be stationary at a:
0= (C(da),d&)p + <K(5a),5&)p_2 +(=1)7 (x\, &)

/ Bp—p+1(M,S2) \
- h- }: k, ([ m) (/ *&).
' 2 2

1=1

p—1

Substituting the above orthogonal decompositions into this identity and recalling the

definitions of the spaces involved gives
‘ 0= (C(dao,d'&rOP -~ <K(6ac,5&c>p_2 bt

+ (=1)" (#Acons * *Anone, 8o + ac;)p_l

ﬁn—p+1(MJSZ) ’
+ Z k,</xaa)(f*ac).
z,, z,

=1

’
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Keeping in mind that the spaces ZP~}(M — S,) and ép_l(M, S,) are mutually orthog-
onal, the inner product involving the source term and the variation of the extremal can

be simplified to yield
0 = (C(dan), d&s), = (~1)" (*Acons, Fo),_,

T (-:A’(&‘QG), 6aG)p...2 + (— l)r <*)\nonc, 8lG>p_1
Bn-—p-t-[(Mvs'.)) . R
+ k. / *OG / *E{:G .
Z t ( 2, ) ( z )

1=1 1

It is obvious by the independence of & and and &g that the above condition is equivalent

to the following two conditions:

0= <C(da0)1da0>p + ("'l)r <*Acons; &o)p-l

for all & € Bp_1(M, Sa) N CP~1(M — Sy);

M o

4

N ﬁn-7p+l(Mr52) l \
0= (K(&ac),&&c)p_z-f-(-l)’ (k/\nonc,ac>p_,1 + Z (/ QG) (/ &'G>
’ —_— z, Z,

=1
forallac ZP"Y M - 5,) ép-—l(Mv S3). . .

Thus in order to deduce the properties of the extremal a = ay + ag of the functional
G, one can look at the consequences of the above two identities. This can be done in

two steps as follows. _ Y

*

[N —

Consequences of (1)

- 3 - »



Condition (1) is preéisely the criterion for the orginal functional F to (ée‘"étationalry

at a0 = (ZF~'(M - S1))” and where the source is Acons. Previous calculations show

that the above identity implies /

~d ’1‘( C-(dao) = Ag_‘ons in M
t * C(da?) =0 inS2
so that the potential which makes G’(a) stationary givés a solution to the paradigm

problem where A is replaced by Acons. By the definition of Acons it follows that

le | <
min J A= &.}ln—p%-l:” A - Acona “n—p+l .
seBl Pt (M- 5y) ‘

~

Hence one can say that the extremal of G provides a solution to the nearest physically

meaningful paradigm problem.
/

Consequences of (2)

¢
Noticing that ¢ and a¢ both belong to théjvspace 7Y M - §)n 5,,_1(M, Sa)

and ac is arbitrary, one can let a¢ be equal to ag so that the identity (2) becomes

v

Bn—p+1(M,S3)

2
_(_1)‘r (*’\r’wneaaG>p_1 = <K’(6aG)» 600‘)1)_2 T Z k; (/ *QG> >0
1 z“ .

=1

~ ~ L
with equality if and only if ag € B,-1(M, S2). Since ag is an element of Z7~!(M - 5))

it is seen that the .expression becomes an equality if and only if ag = 0. Thus it is

. apparent that

. fAnome =0 implies ag =0
and /
ac # 0 impliésﬂ * Anonc % 0. -
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In order to prove the conversés of these statements )j"tt‘ is necessary to show that it is

possible to find a J&G, such that “if Anonc # 0 then

~ o S
(*Anoncs aG)p—l #0 L : !
and that a¢ is such an &g. Unfortunately, .
*Anone € ZP7H(M — 5)) s
- ' A ’ p
and ¥ .

e € 2P (M - $1)n Cp_1(M,Ss) L

N

hence &g can be selected to reflect the projection of Aponc in Zg"‘l.(A/I——Sl)ﬂép_l(M, Sz)

and nothing more. Note however that if one imposes with complete certainty
tA=0 on S;

then A€ CP~P+1(M — S;) and hence

)

*Anone € *Z’n_g,H(M,Sl) N+CPPHYM — §;)'= ZP~Y{(M - §;) n 5,,_1(M, S.).
In this case ag, @G and «A,,nc all belong to the ~spa<;e

‘ ZP"Y M - 5;) N Cpi(M, S2)

Y
and it is always possible to.find an ag such that if *Anonc 7 0 then
4' -

<*Anonc, &G)p—-l 7-/: 0.\

However, by Equation (2) this implies that ag # 0 and since Equation (2) is valid for

- s
all possible @, one can set a¢ equal to ag to obtain

. ! , Br—p+1(M,S52) 2
_(—1)'<*z\nonc,ac)p_l = (K(&aa),&ac:)p_z 5 Z k. (/ *ac) > 0.
L z,

1=1
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. 5.
! ® ¥
* ‘ ’)ﬂ t\ v l“ ke
"Hence
K Anonc # 0 implies© ag #0
3 4
. 1 ‘\, °
or ;
- 5 . . ;
oc =0 implies Anone. =0 . .o

1
3 . ' :
o

and it is proved that

v L -

>

_ag=0 ifandonlyif & Anonc =0: .

It is seen that the identities (1) and (2) adequately describe what happens in a neigh-

bourhood of the extremal a in 5’,,_1(1\/1, S2) when one thinks in terms of tilted troughs.

Two ﬁrg}al points are in order. Thp first pbint is that the value of the functional
o \ . . .

FL evaluated at the extremal of G provides an a posteriori eétim7le of how large Anone

.is. This is apparent from the trough picture. The second point/is that when there is

i”
a pseudo-Riemannian structure on the manifold M, the expression ( , )& is no longer

‘ 1
positive definite, hence the functionals considered are no longer convex and the trough

[ o . -
picture is no longer valid. Although the orthogonal decomposition of the last chapter is
- ~
J

still a legitimate direct sum decomposition and when 3,_,+;(M,S2) = 0 the functional

G still provides an effective way of imposing the Lorentz gauge
/o ‘ , e ,

~ s

) ba=0
whenever the consérvatian of charge

t . ° '

dA=0

»

J
5

is respected, it is not clear what the exact properties’ of G are. From the point of view
of cofnputational electromagnetics, there is little motivation for pursxiing this question

and so the case of pseudo-Riemannian structures is ignored. .
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3.5 Tonti Diagrams

In this final section, Tonti diagrams and the associated framework for complemen-

&
5

tary variational principles will be. considered. This work is well known to people in the

; field of comptﬂtatiO_nal electromagnetics and an overview of the literature in this context

‘ is given in the thesis of Fraser [1982] and; more recently, in the pa;\)exj by Penmann and

Fraser £19'84]. In this connection the author also found the seminar paper by Cambrell

'1983! most useful. The basis of the foliowing discussion are the papers of Enzo Tonti

'1972a, 1972b; where certain short exact sequences asociated with differenti;l operators

cappearing in field equations are recognized as behing a basic ingredient in formulating a

’common structure for a l(qrge class of physical theories. This work of Tonti fits hand in ~

. " glove with the work of J.J. Kohn [1972] on differential complexes. The point of view

taken here is that for the practical problems described b}} the paradigm problem being

considered in this chapter, the interrelationship between the work of Tonti ar—ld Kohn is

easily seen by considering the complexes associated with the exterior derivative z;nc; its

adjoint on a Riemannian manifold w{th boundary. The idea of introd’ucing complexes

and various concepts éom algebra,ic topology into Tonti diagrams is not new and is
developed in the compar;ion papers of Branin [1977 and Tonti [1977.

The main conclusion to be drawn from the present approach is that the differential

complexes associated with the exterior derivative give, when applicable, a deeper insight

& into Tonti c/iiagrams than ‘is u§ua,lly p’ossible since the de Rham isomc;rphism enables

one to give.concrete and intuitive answers to questions involving the (co)homology of

‘ the differential complexes. More precisely, the usual development of Tonti diagrams

¢ involves differential complexes where the'symbol sequence of the differential operators

" involved is exact while what is actually desired is that the (co)homology of th?complex

238



P

AN
be trivial. That-is, if the (cojhomology of the differential complex is nontrivial, then
reasoning with the exactness of the symbol sequence alone may lead to false conclusions

concerning the existence and uniqueness of solutions to equations. To the best of the
N .

“author’s knowledge, the only differential complexes of practical use for which something

concrete can be said about (co)homology, are the differential complexes associated with

e

the exterior derivative since in this case the de Rham isomorphism applies.

In order to formulate a Tonti diagram for the paradigm problem, consider first-the

’ paradigm problem and suppose that HP~1(M - S,) is trivial. In this case,

ZPrY (M - Sy) = B2"H(M - 5))

and

a — a -+ dy, X €CP~YM - §,)

r
is a gauge transformation which describes the nonuniqueness in ghe/potantial a. Next,
e

when dealing with complementary variational principles, it is necessary to find an

Npart € C770(M — S2) = *5P(Ma S2)

such that
d"’part =A

L

-
t

and

-

N — Mpart € B?—p(M -8, = *'EP(M, S,).

o

In this case the forms § and 7 are determined by reducing the problem to a boundary

value problem for

a

veCIPHM — 83) = Cpi1(M, S2)

where v is defined by

dv = N — Npart-:
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This boundary valie problem for v is deduced from the equations

di =0 in M
t3=0 on S,
_\t o AU+ Npare =¢C(B) n M. s
- i“rom these éﬁuatiops the boundary value prob[ém is seen to be
d(c! '((—1)P(n—v) (Mpare = W))) =0 in M

t(C"1 ((_1)pEn—p) * (Npart — du))) =0 on S,

~

tr =0 onSs.

The variational formulation for this problem is obtained by considering a curve

y:10,1; = C*;P 1M — Ss)

cf

and defining the functional for the complementary problem as follows:

J((1) = I (+(0))

= _(<1)? (n—P)[1<C" ((~1)P"P) « (pare +d1(s))) ,*(npm+d(‘9:;(:))>>pds
D / / 1)P(=P) (nparwd*/(S)))) A (anarwd (ag(:_))) ds.

In order to verify that this is indeed the correct functional let

(1) =v

d+(s)
c’?s

~a
1

a=1

be the extremal and any variation of the extremal of the functional where the space of’

~

$
admissible variations is C} 7P~ 1(M — S3) = *C,41(M, S2). The functional is stationary

when ) " g " _ . \ 5/\

aJ . ~
65((1—5))5=0=o N
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for all admissible variations qf the extremal. This conditions amountsj' to

I3
) —
s=10

0= /M ¢t ((—1)"(";‘“)“* (Mpare + dy(1)) ) A d ( a‘;f:)

13

or

0= / c-t ((——1)”("””) ¥ (Npart = du)) A dU
M \

for all admissible V. Integrating this expression by parts and using the fact that

"
¢

tv=0" ’on—:S';

one obtains

0= /M d(c! ((—1)1’(”—") “ (part = av)) ) A T
: - /ﬁt (C"l <(-1)p(""’) * (Npart + du))) NtV

\

from w ich it is apparent that the functional is the desired one since I.can be taken
to be an uadmissible variation. In this formulation, thel extremal of the functional J is
uniqué up an to an element of Z*~P~!(M — S;) and the nonuniqueness can be described
by a gauge transformation |

’ v—v+ug where vg € Z2 P71 (M — Sa).

Hence whenever there is a Riemannian structure on M which induces the inner product

(, )x on k-forms, the functional J is convex on

© (Z2PYM = 83))F = Bropo1 (M, S))

il

«BETH(M - 51)

and level on the space
]

22PN M - 8,) = *§p+1(M, S).
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Just as the construction of a functional - enabled one to modify the functional F in

order to construct a variational formulation involving a functional

1
G(a) = F(a) +~ F*+{a) y

for which the resulting extremal is unique, one can construct a functional J+(v) such
that
- I(v) = J(v) + J+(v)

is a functional whose unique extremal is also an extremal of the functional J. This, of

o
course, happens when the functional J- is constructed so that it is convex on the space
Zr7PHM = §5) = Zp41(M, S2)

and level on , , i

(Z27P UM = 85))" = Ba_poi (M, S1)

=«BFTUM — §)).

Thus, again, one is led to a situation involving two troughs as shown in Fig. 24.

5

_Having this picture in mind, the functional .J 1 can be constructed in analogy with
“the construction of F1. Consider first a mapping

-

: K': C"P=Y(M) - CmP (M)

!

which satisfies the same symmetry, monotonicity, and asymptotic properties required

of the function K .used in the construction of F+. Deﬁﬁe a functional J+ as follows,

L

Given ' - L.

v:]0,1] — 5,,_,,_.1(M, 5)

let

JL (v(1)) _ gt (v(0)) = —/ﬂl <I;"l (6~(s)) ’5.(87623) >>n_p_;

PR () (e

1=0
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Fig. 24 /\}

—

where the z, are associated with generators of the homology group Hpi1(M,5) and

the {, are positive constants. The functional J J-/thus defined is convex on the space

: - - T £z
Z:_P"I(M - 87) = (Bn—-p—l(M’Sl))
&,

Lo

and level on the space

a4

(227771 (M = $2))" = Baepi (M, 51).

This fact is easily seen to be true since the situations involving F+ and J1 become

. identical if one interchang:es the following symbols:

v [

JL o Ft
N ° S, « S,
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Hence the functional I“d_eﬁned as

Iv) =J(w) +J+(v)

with domain 5n_p_1(M, S)n C;‘“’"l(.M — S3), has a unique extremum.

Finally in order to finish this prelude to the Tonti diagram, note that if
* Bn—p—l(M,SQ):O

then the nonuniqueness in the complementary potential v, when the variational formu-

lation involving the functional J is used, can be described by a éauge transforration

¥

v—v+d

where

b€ CIP"HM — 53) = +Cpiz(M, 52).

Furthermore, when considering the Tonti diagram it is convenient to assume that B may
be related to some type of source p through the equation

df = p._
g

=

where in the present case p = 0. Hence, in terms of the notation introduced so far, the
above formulation of the complementary variational principle for the paradigm problem

is summarised by the following Tonti type diagram used extensively in Fraser [1982]
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‘and Penman and Fraser 11984!:

’

" For the purposes of this thesis, the above diagram presents a simplistic view of
the paradigm problem since boundary conditions and domains of definition of operators
have been ignored. Thus it is impossible to‘get'a clear uﬁ%i"erlstar)lding of how homology
groups come into play. In order to remedy this situation, one must realize that when
boundary conditions are imposed, the left hand side éf the abovg diagram is associated
with the complex C (M — S;) while the right hand side of the ;iiagram is associated with

the complex C(M - §3) = *&(M, S3). Thus to be more e;(plicit, the above diagram

should be rewritten as
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idp—~3 ?dn—p-i-?

Cr3 (M - S1) Cp=PY(M - S)

idp—z ?dn—p+l

Cr (M - 8) CI P (M - Ss)
e e

CPHM - 5)" =5  CpmP(M -5y

\’ dP | Td"—P"l

Crri(M - §)) Cr=r= (M - §;)

gp+1 Tdn—p—b

CPH(M — §1) Cr=P=*(M - S2)

) ar+2 Tdn—p—ﬂ

A\

R

R

L

5P(M7 52)

T'sp;H

~

Cp+1(M, S2)

T‘5p+2

~

’ CP+2(M’ S2)

T
. , op_-r—3

Once this structure has been identified, it is apparent from-the previous sections of

this chapter that questions of existence and uniqueness of potentials and questions of

existence and uniqueness of sotutions to boundary value problems are easily handled -

by using the orthogonal decomposition developed in the last chapter. Though these

questions have been considered in detail in the case of the potential a and the results for

. .
" the complementary’potential v follow analogously, it is useful to outline the role played.

by various cohomology groups (vector spaces). Speciﬁcally, the role of the following

pairs of groups and isomorphisms will be summarised:

i) HP='(M — 8§;) ~ HP=p+1(M — Sy),

+

i) HP(M — S1) = H}"P(M = Sq),
i

iii) HPYYM - §y) =~ Hr P~ H{M — Sy),

&

Consequences of i)
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- Once to is prescribed on S, the group HP~!(M - S;) was seen to describe the
nonuniqueness of a in the paradigm problem which cannot be: described by a gauge

transformation of the form
a — a-+dy, x € CP73(M - §,). .

In other words, the nonuniqueness of « is described by ZP~!(M — S;) while the above
gauge transformation involves Br—1{M — S,), hente the difference is described by

HP~Y(M — S,) since by definition
HP=Y(M - 8,) = ZP-Y(M — 8,)/BF-Y(M - S,).

Dually, HF=Pt1(M — S,) was seen to be associated with the global conditions which
ensure that A € B? ?*!{M — $3) once it is known that A € Z2 P+ (M — S5). Finally,

the isomorphism o .

H?"Y(M ~ S,) = HP"P+ (M ~ S)

expresses the duality between the global degrees of freedom in the nonuniqueness (gauge
transformation) of a and the solvability condition (conservation law) involving A. This
isomorphism is exploited in the construction of the functional F'* and its interpretation

is best apphreciated by using the de Rham isomorphism to reduce the above isomorphism
A
to ’ . i - B
/ .
’ Hyp (M, S51) = Hn—p+1'(MaS2)
3

- \ ¥ : ’

and to interprete this isomorphism in terms of the intersection numbers of the generators

kS
(g

of these two homology gfoups as in Chapter 1.

Consequences of ii) : -

The group HP(M - S,) is associated ‘with global conditions which ensure that

B € BP(M — S;) once it is determined that § € ZP(M + Sy). Furthermore it gives
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insight into the condjtions which a must satisfy on Sy if # = da. Dually the group
H™"P(M - S5) is associated with global conditions which Npart mMust satisfy in order

for there to be a v € CZ P~ !(M — S2) such that .

—

d"part =A
. in M.
dv.= n- npart
Thus the cohomology group HF(M — S;) is used in formulating a primal variational

principle while the cohomology group HIP(M — Ss) is used in formulating a dual

variatiorntal principle and the isomorphism

1 o

HP(M — 1) ~ H* P(M - 55)

then expresses the fact that the number of global conditions is the same in both the
\ !

original and complementary formulations. Ngte that for most problems, the periods of

closed forms on the generators of

H,(M,S,), Hn,_,(M,S,)

have the interpretation of a lumped parameter current, potential difference, or flux as
was seen in Examples'IQ, 13, .14, and 21. Thus in these examples the isomorphism in

homology has a direct interpretatih.

Consequences of ifi)

w

Had 3 not been a closed form but rather tied té an equation of the form
dB =p

then if p € ZP+1(M —-S;) the group HP*!(M — S) is associated with the conditions

which ensure that p € Bp+ l(M — 81). Thus the group }I§+1(M — 8)) is asgociated with
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the global conditions which ensure the solvability of the equations for the extrernal v of
the complementary variational principle. Dually, the group H?~P~! (M — S3) describes
the nonuniqueness in v which cannot be described by a gauge transformation of the

-

form

v vtdf, 8eCTTPEH(M - S,).

/
In other words, the nonuniqueness of v is described by 277 “(M/,—/ S32) while the above

gauge transformation involves B?~?~!(M — S;) and the difference is characterised by

H»?P=}Y(M = S,). Finally the isomorphism '
" .
HI*H (M — $1) = HI 7P~ (M - )

expresses the duality between the global degrees of freedom in the nonuniqueness (gauge
transformation) of v and the solvability condition (¢onservation law) p € BP+1(M - S,).
Thus the above isomorphism plays the same role in the complementary variational

formulation as the isomorphism in i) played in the primal variational formulation. This

shows how the above isomorphism played a role in the construction of the functional

J*t.

Having considered the role of homology and cohomology groups in the cc;ntext of
the Tonti diagram for the pa{.;adigm problem, one of the principaLaims of this thesis
has been achieved. Furthermore the Tonti diagram for the pax;adigm problem includes
as special cases electrostatics, magnetostatics and electromagnetics hence it unifies all
of the cases' considered in the paper by Penman and Fraser [1984] and makes explicit
the role of homology groups in this context.

- ¢
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CHAPTER 4 o

Final Remarks

4.1 Future Work y

w
The principal goal of this thesis is to demonstrate the usefulness of the formalism
of differential forms and homology theory in the context of Maxwell’s eéuations and,
to an extent, thls goal is achieved in the formulation and analysxs of the paradigm
problem of Chapter 3. It is however useful to mention whlch other routes could have

been followed in order to reach thls goal. That is, it is useful to mention other links

between homology theory and electromagnetics which could have been developed. In

- particular the author believes that the following three areas look promising.

Sinéular Homoloéy Theory and Finite Elements

Although the homology groups have played a central role in this thesis, no algo-
rithm for their computation has been given. It is however a very fortunate coincidence
that one of the most popular methods for computing nun.le‘rically electromagnetic fields .
is the finite element method while one of the easiest ways of computing the homology
groups of a manifold.is done by computing the homology groups associated with a trian-
gulation of the manifold by means of the techniques of singular homology theory. This
coincidence is fortunate since the cell complexes (triangulations) of singular homology
theory are essentially finite element meshes. In the context of the T-Q ;nethod this

connection is made very clear in the paper by Brown [1984] while the papers of East-

‘man and Preiss [1984] and Mantyla [1983] are useful in the context of solid modeling.

Background material for computing homology groups from triangulations can be founde
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in the recent, books by Munkres [1984] Chapter 1 a.nd \/Iassey {1980, Chapter 4 whlle
the paper by Pmk’erton 1966] implements a computer program for the computatlon of
Betti numbers of manifolds. Along another route, it is "useful to note that the theory of
polynomial differential forms over triangulations and asso.ciated orthogonal decomposi-
tnons have been studied by Baker [1982], Komorowsk1 11975, and Dodzxuk {1976 which
leads the aut}i/r to believe that a fundamental connection between homology groups

and finite element interpolation w111‘ be recogmzed in the next few yea.rs .
Eddy Current Problems -

In the paper of Bossavxt [1982] and Bossavit and Vérité [1983|, the connection
between several results in homology theory and boundary value problems for eddy
current is made. In particular, it is seen that orthogonzﬁ decomposmons for differential
forms on manifolds with boundary and the Alexander dual{ty theorem play an essential
role in tqhe global formulation of bougdary velue problems for eddy currents whenever
the magnetic field is described by some hybrid seé of potentials euoh as in the case of
the T-01 method. The computa.tiop of eddy currents in complicated tl}ree dimensional

geometries is a very important engineering problem. For this reason, it is important to

further the study of the formulation of such problems.

- " . v
v -
.

Electrodynamics in Four Dimensions ——

Of the various instances of the paradigm problem listed in.Table 1 of Section 3.1,

the case of electromagnetics in four dimensions is often neglected. The author believes

that this state of affairs is due primarily to two main obstacles. first because there is no

systematic notation for vector calculus in four dimensions analogous to div, grad, and

curl in three dimensions, and second because it is impossible to visualize the topological

problems inherent in boundary value problems over four dimensional regions. The first
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obstacle is of course removed through the use of differential forms since the formalism of

differential forms is suitable for any n-dimensional manifold. In the case of the second
obstacle, it is instructive to note that many boundary value problems are set over a

product manifold

o

M-——IWSXM;‘

. 3
where M, is a three dimensional space manifold and M; is a one dimensional time

manifold which, for example, may be S! (the circle) in problems involving st;itionary
boundaries and periodic excitations. The Kunneth formula (see for example Munkres
[1984] Section 58) enables one, to' rephrase many ql~1estions about the homology of the

product manifold M in terms of the homology of M, and M, and hence the topological

Q

. intricacies associape‘d with M can be resolved by “staring at pictures” and ‘the second

obstacle mentioned above is removed. It i$ important to note that the London equations
of superconductivity are stated in a four dimensionally covariant way and the topological

aspects have been investigated by Post [1978 and 1984].

o

Y
vy
1

4.2 Outline of Original Contributions

.

The purpose of this thesis is to show how systematic use of homology groups and

o

- orthogonal decompositions of differential forms facilitate the formulation and solution

of many theoretical pr;)blems associated with va‘riationa:l boundary value problems of
electroma’gﬁeticé. Adma,jor contribution of the thesis is then the formulation’fin Chapter
3_, of the paradigm problem in térms of differential forms. This formulation makes trans-
parent th;: interpretationi of the Tonti diagram in terms of two diffetential complexes

associated with the exterior derivative. The (co)homology of these complexes is easily

interpreted through the use of the de Rham isomérphism and the relevance of homology

-
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groups and duality-theorems in variational boundary value problems of electromagnét-

ics becomes undeniable once this connection is made. The construction of the modified

variational principles in Chapter 3 should not be considered as a majof contribution

1

since the method used and the geometric pictures emphasized (troughs) are an adap-

tion to the present context of material found in Kotiuga [1982]. Undoubtably, the main

original contribution in Chapter 3 is the sufnmary, in Section 3.5, of the role played by

relative homology groups and duality theorems and their relation to the Tonti diagram.

Though the geometric intuition behind the construction of the mddified variational
principles in Chapter 3 is obtain¢d by thinking in terms of “troughs”, the justification of
the arguments hinges on the orthogonal decomposition and duality theorems wi'lich were
derived in Section 2.13. The validity of the orthogonal decomposition was apparent once
the complex C. (M, S) was introduced and the author believes that the introdu(é;ion of
this complex is something new. 'Furthermore, the use of the Hodge star operator for

proving the duality}\f theorem

.

XP(M, 51) ja~d )(n—p(M,Sg)

is ‘also sorething which the author has never seen before.

Finally, the implicit use of homology theory in engineering electromagnetics is
widespread but seldom is the connection between these two subjects made explicit. For
this reason it is very hard to make confident claims of originality for the material in

Chapter 1. In addition to the general synthesis of ideas, there are two uses of homology

-

theory in Chapter 1 which the author believes are original and demonstrate an essential

role for homology theory. They are:

1. The use of the long exact homology sequence, in Examples- 12, 13, and 14, in order

to resolve the global considerations in prescribing the tangential components of a

-
«
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vector potential on part of a surface where it is known that the normal component

of the curl of the potential must vanish.

. The use of duality theorems and intersection numbers in making “cuts” which
g

modify a region so as to make some relative homology group' trivial. Though this
technique is evident in Maxwell [1891], Section 22, the author knowé of no place
in the e'lectromagnetic§ literature where mixed boﬁndary conditior}s have been
studied so extensively ‘By means of relative homology groups. Furthermore, the
limitations of the method in the context of nonorientable surfaces has not been

exposed as ir?'*Example 20. ‘
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