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Abstract 

Precise localization of epileptic activity is a necessity for those patients who may 

benefit from resective surgery. One common localization technique, EEG 

functional MRI (EEG-fMRI), localizes activity in an fMRI recording by finding 

blood oxygen level dependent (BOLD) signal correlates to epileptic events 

detected in a simultaneously recorded EEG. 2D temporal clustering analysis (2D-

TCA) is a relatively new fMRI-based epileptic activity localization technique that 

breaks BOLD activity into components based on timing, finding epileptic activity 

without simultaneously recorded EEG. This study evaluated the ability of 2D-TCA 

to detect both simulated epileptic activity and activity detected in patients using 

EEG-fMRI. Although it was found that 2D-TCA could effectively detect epileptic 

activity with certain characteristics, it also detected activity not associated with 

epilepsy. As such, it was determined that 2D-TCA can only be used to validate 

epileptic activity localization by other means or to create hypotheses as to where 

activity may occur. 
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Résumé 

Une localisation précise de l’activité épileptique est une nécessité pour les 

patients qui pourraient bénéficier d’une opération résective. L’EEG-IRM 

fonctionnelle (EEG-IRMf) est une nouvelle technique de localisation qui localise 

l’activité épileptique dans un enregistrement IRMf en trouvant un signal « blood 

oxygen level dependent » (BOLD) qui correspond à des événements épileptiques 

détectés simultanément par un enregistrement EEG. L’analyse temporelle 

groupée 2D (ATG-2D) est une technique de localisation de l’activité épileptique 

relativement nouvelle, qui est basée sur des données IRMf. Pour trouver 

l’activité épileptique, elle décompose l’activité BOLD en différentes composantes 

selon le moment où elles surviennent sans recourir à un enregistrement EEG 

simultané. Cette étude évalue la capacité de la technique ATG-2D à détecter une 

activité épileptique simulée ainsi que sa capacité à détecter une activité 

épileptique précédemment détectée chez des patients avec EEG-IRMf. Même 

nous avons montré que la technique ATG-2D pouvait détecter de façon efficace 

une activité épileptique ayant certaines caractéristiques,  il a aussi été trouvé 

qu’elle détectait de l’activité non épileptique. Il a été déterminé que la technique 

ATG-2D pouvait seulement être utilisée pour valider une activité épileptique 

localisée par d’autres moyens ou pour formuler des hypothèses concernant 

l’endroit où l’activité pourrait survenir. 
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1 Introduction 

Epilepsy is a neurological condition that affects approximately 0.7% of the 

population (Blume 2003) and can be described as a medical syndrome consisting 

of recurrent unprovoked seizures that can severely affect a patient’s quality of 

life. While the majority of patients are able to achieve reasonable seizure control 

through use of medication, a large percentage remain refractory to such forms 

of treatment. In such cases resective surgery of the epileptogenic zone may be 

considered, a procedure that can lead to complete seizure control. 

Electroencephalography (EEG) is the most common recording modality used to 

help in the diagnosis of epilepsy (Engel 1984), however in general it cannot 

localize an epileptogenic zone to the level of precision required by pre-surgical 

assessment. EEG-functional magnetic resonance imaging (EEG-fMRI) is technique 

that allows for precise localization of epileptic activity by looking for 

hemodynamic changes in the brain, recorded through fMRI, that correlate to 

epileptic events detected in the simultaneously recorded EEG of the patient. 

However, this technique is somewhat cumbersome as it requires the recording 

of EEG from within a running MR scanner. In addition, it is insensitive to epileptic 

activity restricted to deep brain structures as such activity would not be detected 

in the patient’s EEG. 

Temporal clustering analysis (TCA), and more specifically 2D-TCA, is a data based 

fMRI technique that has shown potential in being able to detect regions of the 

brain associated with epileptic activity with no dependency on EEG. This is done 

by clustering voxels based on the timing of activity detected in their time 

courses. 
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1.1 Project Objectives 
Although it has been shown that 2D-TCA can detect epileptic activity in fMRI 

data without the need for an EEG recording, this technique has only been carried 

out in a handful of studies, most of which applied the technique to a relatively 

select number of patient scans. As such, the limits of its capabilities to detect 

various forms of epileptic activity in terms of activation size, amplitude, and 

frequency have not been evaluated. This is an important step in determining 

whether or not the general application of 2D-TCA to detect epileptic activity is 

actually worthwhile. The project presented in this thesis consisted of 

implementing an improved 2D-TCA algorithm and investigating its ability to 

detect epileptic activity of various activation sizes, amplitudes, and frequencies 

in both simulated fMRI data, as well as in fMRI recordings of epileptic patients. 

This was done to determine how effectively 2D-TCA is able to detect epileptic 

activity of various forms and to determine its true potential, in comparison to 

other techniques such as EEG-fMRI, for this application. 

1.2 Thesis Organization 
This thesis is organized as follows: Chapter 2 will consist of literature review that 

will cover background topics including epilepsy, EEG, fMRI, EEG-fMRI, and TCA. 

This will be followed by the actual investigation carried out for this thesis, 

chapter 3 covering methods employed, chapter 4 results obtained, and chapter 5 

a discussion of those results, including possible next steps that could be taken. 

Chapter 6 will consist of a short conclusion summarizing what was investigated 

in the study and what was found. 
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2 Literature Review 

2.1 Epilepsy 
To understand what is meant by the term epilepsy, it is first important to have a 

clear definition of what a seizure is. The definition of a seizure, as accepted by 

the International League Against Epilepsy (ILAE), is “a transient occurrence of 

signs and/or symptoms due to abnormal excessive or synchronous neuronal 

activity in the brain” (Engel 2006). Approximately 5% of the general population 

will have a seizure at some point in their life (often in childhood), with common 

causes including sleep deprivation, hypoglycaemia, drug abuse, and head 

trauma, among others (Blume 2003). It is therefore important to distinguish 

between someone who has a seizure at some point in their life, and someone 

who is diagnosed with epilepsy. Epilepsy can be described as a medical 

syndrome consisting of recurrent unprovoked seizures and affects approximately 

0.7% of the population (Blume 2003) (from this point on, unless otherwise 

stated, any use of the term seizure will refer to a seizure associated with a 

diagnosis of epilepsy). Someone with epilepsy is then thought of as having an 

epileptogenic abnormality that is intrinsic to the brain, exists between seizures, 

and causes seizures to occur independently of any acute state of the body (Engel 

2006). This abnormality may cause random seizures in an individual for a short 

period of time, over many months, or even for an individual’s entire life and 

therefore can have a significantly detrimental effect on the physical and social 

well being of that individual. 

Due to its general nature, epilepsy should be thought of as consisting of a wide 

set of syndromes. While these syndromes may each have their own symptoms, 

which are dependent on what anatomical structures in the brain are involved 

with the epilepsy (the epileptogenic zone), they are all considered as epilepsy in 

that they result from randomly timed abnormal electrical activity. Factors that 
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can help separate one epileptic syndrome from another include localization of 

the epileptogenic zone, seizure frequency, the age at onset of the epilepsy, and 

neurological history, among others (Blume 2003). Although epilepsy is 

considered to occur due to randomly timed neuronal activity, precipitants 

(including flashing lights, hyperventilation, sleep, sleep deprivation, and others) 

that can help induce a seizure often exist and can also be used to help identify 

the exact syndrome seen in a patient (Frucht et al 2000). 

Epileptic syndromes and seizures can generally be considered as either 

“generalized” or “focal” (also referred to as “partial”). We now turn to defining 

what is meant by these two terms and will describe a few common syndromes 

associated with each. 

2.1.1 Generalized Epilepsy 

A generalized seizure refers to one that starts, or whose onset is, in widespread 

areas of both hemispheres of the brain. A syndrome is then referred to as 

generalized if the seizures associated with it are generalized. While all 

generalized seizures involve loss of consciousness in the individual, they can be 

subdivided based on the effect the seizure has on the individual’s body. The 

following are a few examples of common forms of generalized seizures. 

2.1.1.1 Tonic and/or Clonic Seizures 

Also referred to as “grand mal” seizures, tonic and/or clonic seizures are likely 

the most common form of seizures associated with epilepsy by the general 

public. While each can consist of a seizure in itself (i.e. a tonic seizure, or a clonic 

seizure), a tonic-clonic seizure can be divided into the two phases, tonic and then 

clonic, and is often preceded by some sort of clinical symptom, called an aura, 

that can be very short, or last several hours. Patients who do not have an aura 

associated with their seizures are often thought of as having primary generalized 

seizures while those who do have an aura have secondary generalized seizures 
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(i.e. a seizure that becomes generalized after some initial focal activity; see 

section 2.1.2). The aura seen in a patient who has secondary generalized seizures 

is determined by where the initial seizure focus occurs; some common aurae 

include déjà vu, light-headedness, dizziness, unusual emotions, and altered 

vision and/or hearing. While in the tonic phase, which usually lasts only a few 

seconds, an individual will lose consciousness and then their skeletal muscles will 

tense, often causing the person to fall. In the clonic phase the individual’s 

muscles will repeatedly contract and relax causing them to have convulsions 

(what is often mistakenly termed by the general public as a “seizure”). After the 

seizure has passed, the individual will often be confused for a period of time, not 

knowing what had happened and not remembering what they had been doing 

beforehand. 

2.1.1.2 Absence Seizures 

Also referred to as “petit mal” seizures, absence seizures often start in childhood 

or early adolescence (Blume 2003). An absence seizure consists of a sudden 

arrest of normal activity in an individual that lasts for approximately 5-20 s and 

then abruptly stops (Blume 2003). During this time, an outside observer would 

generally see the individual stare off into space as if without focus (in some cases 

some sort of unconscious movement such as blinking or a jerking arm might also 

be seen). After the seizure has passed, the individual will often continue as they 

were before hand, perhaps with a bit of initial confusion as to what had 

happened. Individuals who have absence seizures will typically have a few of 

these occurrences a day. 

2.1.1.3 Other Forms of Generalized Seizures 

Two other common forms of generalized seizures are myoclonic and atonic. A 

myoclonic seizure consists of the involuntary twitching of a muscle or a group of 

muscles; this differs from a clonic seizure in that a clonic seizure typically 

consists of much larger movements (e.g. a twitching lip compared to a full biting 
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motion). An atonic seizure consists of a complete, albeit brief, lapse in muscle 

tone; as the muscles completely relax this usually results in the person falling 

over. 

2.1.2 Focal Epilepsy 

A focal seizure refers to one whose onset occurs in part of one hemisphere of 

the brain (Engel 2006). A syndrome is then referred to as focal if the seizures 

associated with it are focal. Focal seizures can be divided into “simple”, in which 

the consciousness of the individual is unaffected, and “complex”, in which the 

consciousness of the individual is affected. It is also possible for a seizure to start 

focally, and then become generalized; such seizures are referred to as 

secondarily generalized. In fact, it is very unlikely that any form of seizure is 

strictly restricted to a focal region, independently from other areas; likewise, no 

seizure can be deemed as truly generalized (Engel 2006) in the sense that it may 

not involve absolutely the whole brain. We now turn to describing the most 

common form of focal epilepsy, temporal lobe epilepsy. 

2.1.2.1 Temporal Lobe Epilepsy 

The temporal lobe is the most common site for focal seizures (Blume 2003). Like 

tonic-clonic seizures, seizures associated with temporal lobe epilepsy (TLE) often 

begin in childhood or early adolescence (Blume 2003). In addition, this is the 

most common form of epilepsy seen in adults that does not respond to anti-

epileptic drugs. For example, 89% of patients with mesial temporal sclerosis (one 

of the causes of temporal lobe epilepsy) are uncontrollable with medication 

(Semah et al 1998). Most seizures in individuals with temporal lobe epilepsy are 

complex, often consisting of an aura associated with neuronal activity occurring 

in the temporal lobe, for example an epigastric sensation, fear, or an olfactory 

phenomenon (Blume 2003). 
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2.1.3 Effect of Epilepsy on a Patient’s Life 

Epilepsy is one of the most common of the serious neurological disorders. Even 

in the less severe cases, due to the sporadic nature of epileptic seizures, a 

patient’s independence can be severely restricted. Then depending on the actual 

severity of the condition many parts of the patient’s life, whether it be their 

education, employment, social relationships, or sense of self-worth, can be 

seriously affected. Activities that people with epilepsy can often be forbidden to 

take part in include driving, working with heavy machinery, or any other task 

that requires continuous and uninterrupted awareness. For example, driving 

accidents are up to 1/3 greater among drivers with epilepsy (Blume 2003). In 

some cases however, exceptions to the rule can be made, for example with 

those patients who consistently have a long aura before their seizure occurs, or 

whose seizures only occur during sleep. In the case of driving, a risk assessment, 

that takes into account many factors such as seizure frequency and loss of 

awareness, must be completed to determine whether or not a licence should be 

issued or suspended (Blume 2003). 

2.1.4 Treatment of Epilepsy 

2.1.4.1 Anti-Epileptic Drugs 

Most individuals with epilepsy find successful treatment with the use of anti-

epileptic drugs (AEDs). With continuous use, AEDs can help reduce a patient’s 

seizure frequency, in some cases completely stopping the seizures from 

occurring. This being said, AEDs can never cure a patient of their epilepsy. For 

example, if a specific AED is found to control a certain patient’s epilepsy, but 

then they are taken off this medication, their seizures will reappear. In some 

cases multiple AEDs can be prescribed to a patient at the same time, but in most 

cases monotherapy is sufficient (Blume 2003). However, like any form of 

medication, side effects can result from the use of AEDs. 88% of patients using 

an AED report at least one side effect from usage of the drug (Baker et al 1997), 
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the most common side effect being fatigue (Blume 2003). As the use of an AED is 

typically for a prolonged time, often lifelong, any side effects can have a serious 

effect on the life of the patient. 

When it is unclear what specific AED may be best suited to control a patient’s 

epilepsy, a set of probable candidates would be tested. Typically, a given AED 

would be tested by gradually increasing the dosage given to the patient until it 

works, or until any of its side effects become too intense to warrant further 

usage (Noachtar & Borggraefe 2009). One study showed that 47% of patients will 

achieve seizure control with the first AED tested, 14% with a second or third 

tested AED, and 3% with the use of two AEDs at the same time (Birbeck et al 

2002). To deem a patient’s epilepsy as medically intractable at least two or three 

AEDs must be shown to be ineffective when applied in monotherapy (Bourgeois 

2001). Approximately 30% of patients with epilepsy are found to be intractable 

to AEDs (Kwan & Brodie 2000). In these situations other methods, such as 

surgery, may be considered depending on how suitable a given patient’s case 

may be. 

2.1.4.2 Surgical Treatment 

The ultimate goal for surgical treatment is to achieve complete control of a 

patient’s epileptic seizures while minimizing any detrimental effect to the 

patient’s normal function. In some cases, where the patient no longer has 

seizures after the surgery, the treatment can be considered as curative, while in 

others the seizure frequency is greatly reduced post-operatively, and may then 

be controlled through the use of medication (Berg et al 2007). 

The first step in even considering surgery for a given patient is to confidently 

establish the medical intractability of the patient’s epilepsy. After this crucial 

step has been taken, the candidacy of the patient’s case for surgery must be 

determined. Criteria that must be met include: disabling seizures, motivated 
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patient, and a high probability that better seizure control will improve the 

patient’s quality of life (Noachtar & Borggraefe 2009). In addition, as the results 

of surgery generally depend on how well the epileptogenic zone can be localized, 

and how effectively it can be removed without damaging functionally essential 

brain structures, determining the candidacy of a patient mostly relies on the 

result of a rigorous pre-surgical evaluation consisting of many tests whose goal is 

to confidently localize the epileptogenic zone. These tests typically include: long-

term video-EEG monitoring, often over days, to record clinical and electrical 

manifestations of the epilepsy; neuroimaging, for example anatomical magnetic 

resonance imaging (MRI); and, neuropsychological tests. In some cases, when 

deemed necessary, invasive EEG may also be used if more precise localization is 

required, however, for 80-90% of patients who are being considered for surgery, 

non-invasive methods are sufficient to determine whether they are suitable or 

not (Noachtar & Borggraefe 2009). In the case of lesional epilepsies, an 

anatomical MRI can effectively indicate the lesion, which is often where the 

epileptogenic zone exists. On the other hand, the localization of a non-lesional 

epileptogenic zone must rely solely on functional tests. 

As mentioned before, TLE is the most common form of epilepsy seen in adults 

that does not respond to anti-epileptic drugs. Fortunately, surgery as treatment 

for TLE often provides effective and consistent results, even potentially reducing 

health costs (Wiebe et al 2001). One study found that 70% of TLE patients who 

undergo surgery become seizure free post-operatively, while 20% see a 

significant reduction in seizure frequency (Engel 1993). This high success rate is 

largely due to the fact that the limits of resection for TLE are often easier to 

define as compared to other forms of epilepsy for which the boundaries of the 

epileptogenic zone are more variable. In some cases, the goal of surgery may be 

to simply reduce the effects of a seizure on the state of a patient. For example, a 

callosotomy, which consists of disconnecting certain pathways between the two 
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cerebral hemispheres, may be carried out to prevent a patient’s seizures from 

generalizing to their entire brain, which would cause them to lose consciousness. 
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2.2 EEG 
EEG is the most common recording modality used to help in the diagnosis of 

epilepsy (Engel 1984). Though the diagnosis of epilepsy is typically made based 

on clinical observations, an EEG recording can help confirm that diagnosis and 

may then be able to characterize the specific syndrome. For example, various 

EEG patterns can be correlated to specific epilepsy syndromes, and therefore an 

EEG recording of a patient is very useful for prognosis and in determining the 

specific form of therapy that should be taken for a given patient (Noachtar & 

Remi 2009). Some of the benefits of EEG compared to other recording 

modalities, and reasons that it is so widely used for epilepsy, include its relative 

low cost, high temporal resolution, ability to directly record neuronal electrical 

activity, ability to be paired with simultaneous video recording of seizures, and 

the fact that patients are relatively free to move and will therefore have no 

issues with claustrophobia (particularly useful for prolonged recordings). 

2.2.1 Basis of the EEG Signal 

Figure 2.2-1 shows the main components of a neuron, the basic building block 

cell of the brain. It consists of dendrites, a cell body, an axon, and axon 

terminals. Neurons pass information to one another through use of electrical 

signals. For example, if the difference between the electrical potential inside and 

outside the cell body exceeds a certain voltage threshold (around -30 mV, the 

cell resting potential is typically -70 mV) the cell will become activated and an 

action potential, which essentially consists of a discrete electrical impulse, will be 

sent down the axon from the cell body. This impulse will then reach the axon 

terminals of the activated cell, which will connect to the dendrites of other 

neurons, each through a synapse (the point of connection between the terminal 

of the first neuron, deemed the pre-synaptic neuron, and dendrite of the second 

neuron, deemed the post-synaptic neuron). When the action potential reaches a 

synapse, the axon terminal will release neurotransmitters to the open area 
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between the terminal and dendrite, causing an electrical signal to be induced in 

the dendrite of the post-synaptic neuron. If the combination of electrical 

potentials in the dendrites of the post-synaptic neuron exceeds threshold, its cell 

body will send an action potential and the signal will continue down its axon to 

other neurons. It should be noted that one neuron can receive electrical signals 

from, and send electrical signals to, many neurons. 

 

Figure 2.2-1 Structure of a neuron and the direction of nerve message transmission. 
Reproduced from (Purves 2004). 

While one might think that EEG, which most commonly consists of electrodes 

placed on the scalp, records signals associated with the action potential, it is 

actually insensitive to these signals as they only cause local currents that do not 

penetrate far past the space surrounding the activated cell; these currents are 

also not likely to summate because of their short duration. EEG actually records 

electric fields associated with the post-synaptic potentials seen in neurons. 

However, this electrical field must be strong enough to reach the electrodes. As 

such, for EEG to be able to detect an electric field two criteria must be met: 1) 

the post-synaptic terminals of a large number of neurons must be activated at 

the same time, and 2) these synchronous neurons must be spatially oriented in a 

similar direction so that there is little interference between their potentials. If 
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these two criteria are met the field of the sum of these neurons will be strong 

enough to reach the electrodes and the signal will be able to be picked up by the 

EEG. 

Unfortunately only post-synaptic potentials from cortical neurons are 

detectable, and activity deep within the brain is generally not picked up. This is 

because electrical fields fall off with the square of distance, and because those 

signals originating deep in the brain are deteriorated by having to pass through a 

good portion of the brain, in addition to the meninges, the skull, and the scalp. 

These structures, especially the skull, also diffuse the signal causing 

deterioration in the overall spatial resolution achievable with EEG. 

2.2.2 EEG Recording and Analysis 

As mentioned, EEG typically consists of recording signals by placing electrodes 

on the scalp. These electrodes are placed using a conductive paste after the 

points of attachment on the scalp have been cleaned to remove dirt and dead 

skin that might impede the signal. Electrodes are typically placed in a very 

organized set of locations that adhere to the 10-20 system, as shown in Figure 

2.2-2 (it should be noted that the system allows for more electrodes to be placed 

than are shown in Figure 2.2-2). Adhering to this system ensures that the 

location and naming of the electrodes are consistent from one EEG lab/clinic to 

another. Each of these electrodes is then connected to a differential amplifier to 

which a common reference electrode is also connected. The difference signals 

are then passed through an anti-aliasing filter, and recorded using an analog to 

digital converter. A typical EEG consists of signals on the order of 30 μV in 

amplitude (Aurlien et al 2004). 
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Figure 2.2-2 The 10-20 system of EEG electrode placement as viewed from (A) the left, and (B) 
the top. Reproduced from(Malmivuo & Plonsey 1995). 

As the voltage signal associated with each electrode is actually a difference 

signal, a single EEG recording is often viewed in a variety of ways, each consisting 

of plotting out a specific set of differences between the various electrodes. In 

the case of epilepsy, analysis of an EEG recording typically consists of an 

electroencephalographer visually inspecting the recording, after it has been 

recorded, to detect any activity of interest, i.e. neuronal activity associated with 

epilepsy. To aid in increasing the chance that such activity is present when the 

actual recording of a patient is taking place, activation techniques, such as 

hyperventilation, photic stimulation (i.e. flashing lights), sleep, and sleep 

deprivation, may be used to induce the abnormal epileptic activity. 

2.2.3 Interictal Epileptic Discharges 

An epileptic patient can be considered as existing in one of two states, ictal and 

interictal. An ictal state refers to the period of time when the patient is actually 

having a seizure, while an interictal state refers to the period of time in between 

seizures. While an EEG is able to record neuronal activity associated with a 

seizure (Figure 2.2-3A), it can also pick up abnormal interictal activity (Figure 

2.2-3B), termed interictal epileptic discharges (IEDs), that are typically only seen 

in epilepsy patients. Although no hard definition for an IED exists, and even 
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electroencephalographers can disagree on what is and is not an IED (Noachtar et 

al 1999), this discharge usually consists of a short burst or spike of activity from 

the same area as the ictal (seizure) activity is believe to originate. It should be 

noted that unlike ictal activity, IEDs generally do not produce any clinical 

manifestations. 

 

Figure 2.2-3 Example EEG recordings of (A) a seizure, and (B) an IED. 

In addition to helping identify the specific syndrome of epilepsy in a given 

patient, the detection of IEDs is a very good indicator of whether an individual’s 

seizures are epileptic or if they arise from some other non-epileptic condition 

(Noachtar & Remi 2009). Only about 0.5% of the general population show IEDs in 

their EEG (Gregory et al 1993) compared to about 98% of epilepsy patients 

(Marsan & Zivin 1970). Long-term recordings as well as repeated EEGs, both 

done to increase the likelihood of recording an IED, are required for any 

conclusive diagnostics as it is not uncommon for an epilepsy patient to have a 

normal EEG recording (Noachtar & Remi 2009) or for non-epileptic EEG patterns 

to be incorrectly interpreted as IEDs. In addition, the same techniques 

implemented to induce ictal activity during an EEG recording, as described in 

section 2.2.2, also increase the likelihood of recording an IED (Noachtar & Remi 

2009). 
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2.2.4 Localizing Epileptic Activity Using EEG 

Precise localization of ictal and interictal activity, often through the use of an 

EEG recording, are crucial steps in defining the epileptogenic zone in a patient, 

especially for those who are candidates for resective surgery (Noachtar et al 

2003). Ictal recordings, especially when acquired simultaneously with video 

recordings, provide the best results (Noachtar & Remi 2009). When a regular 

scalp EEG does not provide precise enough results the use of invasive EEG may 

be considered, however, this depends on the given case. 

2.2.4.1 Video-EEG Recording 

While a routine EEG recording lasts around 30 minutes, to make sure that ictal 

activity is recorded, the EEG of an epilepsy patient may be continuously acquired 

over a considerably longer time, up to days. When possible, for example while 

the patient is in bed in their hospital room, video that is synchronized with the 

EEG recording is also recorded. These recordings can help characterize the 

syndrome of epilepsy within the patient so that appropriate treatment can be 

carried out. In addition, as mentioned in section 2.1.4.2, video-EEG recording is 

often one of the modalities used to help spatially localize the epileptogenic zone 

as part of a pre-surgery evaluation. The precision of localization required by a 

pre-surgery evaluation is not always achievable solely through use of a video and 

scalp EEG recording due to the EEG’s low spatial resolution. 

2.2.4.2 Inverse Methods 

As mentioned, visual interpretation of the scalp EEG by an 

electroencephalographer provides relatively imprecise localization, often only 

being able to confirm within which lobe the activity is taking place. The goal of 

using inverse methods is to precisely localize, using mathematical and physical 

models, the source of the epileptic activity given what is seen in the electrodes 

of an EEG recording. Investigations into the ability to localize sources via inverse 

methods have only become more common in the last decade, largely due to 
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advancements in computer processing and storage capabilities (Plummer et al 

2008). Applying inverse methods generally consists of the development and 

application of two models, forward and inverse. 

A forward model aims to solve the forward problem which consists of simulating 

the activity seen in the electrodes of an EEG recording given the source of the 

activity. This is solved by specifying a set of conditions for the head that often 

consists of defining the different compartments, surfaces, and conductivities 

seen within it. Forward models (Kybic et al 2006; Mosher et al 1999) can be as 

simple as a single spherical shell, or as complex as a four compartment model 

(i.e. brain, cerebral spinal fluid (CSF), skull, and scalp) where boundaries are 

defined by segmentation of the subject’s anatomical MRI scan. For a specific 

source of activity the forward model will simulate a specific distribution of 

activity in the electrodes, and as such can be thought as always providing a 

unique solution (Wilson & Bayley 1950). 

An inverse model aims to solve the inverse problem which consists of localizing 

the source of activity given what is seen in the electrodes of an EEG recording. 

Methods to create the inverse model can usually be divided into two groups: 1) 

equivalent current dipole methods, which assume that EEG activity is generated 

by a few dipolar sources, and 2) distributed source methods, which assume that 

EEG activity is generated by a large number of dipolar sources distributed within 

the brain or on the cortical surface. While equivalent dipole methods are most 

useful in the localization of IEDs (Merlet & Gotman 1999), distributed source 

methods are most useful in localizing spatially extended sources (Grova et al 

2006). Unfortunately, the inverse problem is in fact ill-posed as, theoretically, an 

infinite number of source configurations can produce the same electrical fields 

at the surface (Helmholtz 1853), meaning the inverse problem has no unique 

solution. As such, additional constraints/assumptions, both anatomical, for 
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example restricting possible source activity only to the cortical surface, and 

mathematical, for example finding the minimum energy solution, must be used 

to obtain a unique solution (Grova et al 2006). 

2.2.4.3 Invasive EEG 

In most cases, non-invasive recording methods provide precise enough results in 

the pre-surgical evaluation of a patient (Noachtar et al 2003), especially when 

imaging studies (i.e. MRI, positron emission tomography (PET)) find results 

congruent with what was expected based on the EEG and clinical observations 

(Noachtar & Remi 2009). Invasive recordings are therefore only used when 

either the non-invasive techniques do not provide precise enough localization 

(but provide enough information to have an idea as to where invasive electrodes 

should be placed), or if the epileptogenic zone is found to be very close to 

functionally essential cortex (Noachtar et al 2003). 

Invasive EEG consists of using one of three electrode types, epidural, subdural, 

or depth, each probing deeper into the brain than the previous (see Figure 

2.2-4). Epidural electrodes are placed, often through boreholes, just underneath 

the skull on top of the dura mater. Subdural electrodes often consist of a grid or 

strip of electrodes that are placed just under the dura mater on top of the cortex 

and therefore require a craniotomy. Depth electrodes are able to penetrate into 

the brain to record from deep structures, in addition to superficial ones, 

however trajectories for placement must be devised so that important brain 

structures and blood vessels are not damaged. Subdural and depth electrodes 

both provide a better signal to noise ratio (SNR) than epidural electrodes 

(Noachtar & Remi 2009), and all of these invasive techniques provide a better 

SNR than scalp EEG (on the order of mV rather than μV). For this reason, invasive 

EEG is able to detect activity that might be undetected by a scalp EEG (Noachtar 

& Remi 2009). However, in the case of subdural and depth electrodes it is crucial 
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that they are placed within a few mm of the epileptogenic zone, anything further 

and the recording will only show the spread of the epileptic activity and not the 

origin. In addition, like anything else that is invasive, the use of invasive EEG is 

less than ideal as 1-4% of patients have complications (i.e. hemorrhages, 

infection), most often temporary, that arise from the required surgery (Noachtar 

& Remi 2009). 

 

Figure 2.2-4 Placement of various invasive EEG electrodes. Reproduced from (Noachtar & Remi 
2009). 
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2.3 Functional Magnetic Resonance Imaging 
Magnetic resonance imaging (MRI) is a non-invasive technique that is able to 

acquire detailed 3D images of the brain and other body parts. It first evolved in 

the 1970s and has seen considerable growth since then, particularly as a 

diagnostic tool (Prasad & Storey 2008). While it is most often used to obtain a 

static image of the brain, which allows for analysis of brain anatomy, with the 

development of functional MRI (fMRI) in the 1990s it can now be used to record 

how the hemodynamics of the brain change with time. This section will review 

the physical basis of how an MR signal is actually acquired in addition to the 

nature of the signal recorded by fMRI and how it is typically analyzed. 

2.3.1 Physical Basis and Acquisition of the MR Signal 

MRI functions by exploiting the property of nuclear magnetic resonance seen in 

some atomic nuclei (i.e. a nucleus exposed to a strong static magnetic field will 

absorb and re-emit electromagnetic waves that resonate with it). As the 

resonant frequency of a nucleus is a precise measurement of its local magnetic 

field it is a good indicator of its molecular environment. This resonance seen in 

some nuclei arises from the fact that they possess a spin, or magnetic moment, 

which creates a small magnetic field around them, much like that seen in a bar 

magnet. Therefore, as shown in Figure 2.3-1, when a static external magnetic 

field is applied, the nucleus will begin to precess around the axis of the applied 

field, much like a wobbling spinning top under the influence of gravity. This 

precession occurs because the magnetic moment of the nucleus does not 

immediately align to the external magnetic field due to its spin, which continues 

to influence the direction of its magnetic moment. 
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Figure 2.3-1 Precession seen in a nucleus with spin when an external field is applied, as well as 
precession seen in a spinning top under the influence of gravity. Reproduced from (Prasad & 
Storey 2008). 

The frequency of precession seen in a nucleus is known as the Larmor frequency 

and is easily calculated as ωL = γB0 where B0 is the strength of the externally 

applied field, and γ is the gyromagnetic ratio, a property specific to the nucleus 

type (e.g. γ = 42.58 MHz/T for hydrogen (Prasad & Storey 2008), the atom most 

commonly exploited in MRI). In a volume of tissue with many precessing nuclei, 

there will be a net magnetization consisting of a longitudinal component (along 

the axis of the applied field) and a transverse component (perpendicular to the 

applied field). When only the constant field B0 is applied, there will be a slight 

net longitudinal component in the direction of the applied field, however no net 

transverse component will exist as all the nuclei, precessing at a frequency of ωL, 

will be in random phase. By applying an external field in the transverse direction 

(perpendicular to the direction of B0) that oscillates at the Larmor frequency, all 

nuclei will come into phase and a net transverse field, which also oscillates at the 

Larmor frequency, can be detected; this process is referred to as radio frequency 

(RF) excitation. 

After the external RF pulse has finished the excitation process, the net 

transverse oscillating field in the tissue will slowly decay as the magnetic 

moments of the nuclei again start to fall out of phase due to random processes; 

this is referred to as transverse relaxation. In addition, the increase in the 
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longitudinal component caused by the RF pulse will subside due to energy loss to 

the surroundings; this is referred to as longitudinal relaxation. The timescale on 

which longitudinal relaxation occurs is captured in T1, a time constant value that 

differs from tissue to tissue. The timescale on which the transverse relaxation 

occurs (which is considerably shorter than T1) is captured in the value T2. T2 

relaxation occurs as a result of dephasing between the nuclei. This dephasing is 

caused by inhomogeneities in the local field due to the interactions between 

neighbouring nuclei and molecules. While the value of T2 describes the 

relaxation that occurs due to local interactions, inhomogeneities in the 

externally applied field will also cause dephasing to occur and will speed up the 

relaxation process. The effect of both dephasing mechanisms is captured in the 

time constant value T2*.  Figure 2.3-2 shows the relaxation in the net magnetic 

field according to T2*, as well as the associated signal recorded perpendicular to 

B0 by the MR scanner. 

 

Figure 2.3-2 (A) Relaxation of net magnetic field after excitation and (B) associated recorded 
signal which decays according to T2*.  Adapted from (Prasad & Storey 2008). 

To acquire data from a single slice a gradient field, that causes B0 to vary along 

one dimension of space, can be applied, insuring that only those nuclei within 

the slice will be excited as only they will have a resonant frequency equal to that 

of the RF pulse to be applied. Likewise, additional gradients can be applied along 

the two dimensions of the slice to spatially encode that data so that it can be 
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recorded in k-space, i.e. the spatial frequency domain. The real image of the 

acquired slice can then be obtained by simply taking the inverse Fourier 

transform of the k-space image. 

As the values of T1, T2, and T2* vary from tissue to tissue, by recording a function 

that is an appropriate combination of these parameters MRI acquisitions can be 

tailored so that they are sensitive to specific tissues or molecules. For example, 

while T1 and T2-weighted images (i.e. recordings that are functions of T1 and/or 

T2 decay) show good contrasts between grey matter, white matter, and CSF, T2*-

weighted images are sensitive to areas of magnetic susceptibility making them 

particularly useful in detecting changes in the hemodynamics of the brain, i.e. 

what is detected in fMRI. 

2.3.2 Vascular Response to Neuronal Activity 

One of the major changes caused by neuronal activity is that seen in the local 

cerebral hemodynamics (Ogawa et al 1993), i.e. the cerebral blood flow (CBF), 

cerebral blood volume (CBV), and blood-oxygen concentration. These changes 

are a result of the brain’s vascular response to neuronal activity. When a neuron 

becomes active it increases its energy consumption. This increase in energy 

consumption leads to an increase in oxygen extraction from the local blood 

source which in part increases the deoxyhemoglobin (dHb) concentration in the 

venous blood leaving the area of activity. This increase in dHb concentration 

then causes a vascular response to occur which consists of the dilation of the 

arterioles that feed the activated region, in part increasing the blood flow to the 

active area. With this increase in blood flow there is seen a decrease in the dHb 

concentration in the draining capillaries and venules (i.e. due to the large 

amount of oxyhemoglobin (Hb) flowing through). It takes a few seconds for 

these events to transpire. 
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While one may think that the hemodynamics will return to resting state levels 

once the neuronal activity has finished, this is not true. In actuality, the peak of 

the hemodynamic response will be followed by a period of time called the post-

stimulus undershoot, during which the concentration of dHb in the venous blood 

is actually slightly above what was seen in the resting state. This undershoot 

typically starts between 10-20 s after the initial stimulus (Fransson et al 1999), 

and can last up to 60 s (Bandettini et al 1997). While the cause of this 

undershoot has not been confirmed, there are a few potential theories (Chen & 

Pike 2009). One, referred to as the biomechanical model, attributes the increase 

in dHb to a temporary mismatch between the CBF and CBV responses during the 

post-stimulus undershoot period (Mandeville et al 1999). While the arterioles 

recover quickly, causing the CBF to do the same, the venules recover more 

slowly, causing the venous blood volume to remain above resting state levels for 

a period of time, in part creating the apparent increase in dHb associated with 

the undershoot. Another theory attributes the undershoot to a decoupling 

between the CBF and level of oxygen extraction, i.e. while the CBV and CBF 

return to normal levels relatively quickly, oxygen extraction levels may remain 

slightly elevated for a period of time in part increasing the amount of dHb in the 

blood (Frahm et al 1996). A third, more recent theory, attributes the post-

stimulus undershoot to a post-stimulus undershoot in the CBF (Behzadi & Liu 

2005). 

2.3.3 The Blood Oxygen Level Dependent Signal 

As Hb is diamagnetic, while dHb is paramagnetic, the overall magnetic property 

of blood depends on the level of its oxygenation and therefore on physiology 

(Pauling & Coryell 1936). Due to its paramagnetic nature, dHb in the capillaries 

and venules distorts the local magnetic field causing hydrogen atoms in water to 

dephase and therefore the signal strength in that area to decrease. As such, the 

recorded blood oxygen level dependent (BOLD) signal is inversely affected by the 
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concentration of dHb, which as indicated in section 2.3.2, is dependent on the 

local oxygen extraction, CBF, and CBV. BOLD fMRI is by far the most commonly 

used fMRI technique and is usually acquired with a gradient-echo scan sequence 

which is sensitive to the susceptibility changes caused by changes in the 

concentration of dHb (Ogawa et al 1990). 

2.3.4 The Hemodynamic Response Function 

Under many conditions, the BOLD response to neuronal activity has been found 

to be approximately linear (Boynton et al 1996). The goal of the development of 

a hemodynamic response function (HRF) is to effectively model the BOLD signal 

response to an impulse of neuronal activity. This would then allow one to find, 

by simple convolution, the expected BOLD signal that would result from any time 

course of neuronal activity. The first model of the HRF was developed using a 

Poisson distribution function and was found to adequately describe responses in 

the primary visual cortex (Friston et al 1994). More recent models consist of a 

gamma function (i.e. a delayed peak) (Lange & Zeger 1997) or a difference of 

two gamma functions, like the commonly used Glover HRF (Glover 1999), which 

allows for the modeling of the post-stimulus undershoot as described in section 

2.3.2. Figure 2.3-3 shows a plot of the Glover HRF, along with the stages 

associated with different parts of the vascular response. Although not modeled 

in the Glover HRF as it is essentially negligible, stage 1 consists of an initial dip in 

the BOLD signal below the baseline value of 0; this dip in the BOLD signal is a 

result of the increase in the dHb concentration due to the increase in oxygen 

extraction by the activated neurons. The vascular response (stage 2) to this 

initial dip is then seen as an increase in the BOLD signal (decrease in dHb 

concentration) caused by the increase in CBF and CBV. After the vascular 

response has subsided, the post-stimulus undershoot (stage 3) occurs until the 

signal returns to baseline after about 20 s. 



26 

 

Figure 2.3-3 Plot of Glover HRF with various stages indicated: 1) initial dip (not modeled), 2) 
vascular response, 3) post-stimulus undershoot. 

Although in practice it is often assumed that the HRF is identical for all 

individuals and in all areas of the brain, this is not necessarily true. In one study 

it was shown that the response in the sensory motor cortex varied across 

individuals (Aguirre et al 1998), while another study showed that in a single 

individual the impulse response derived from activity in the visual cortex differed 

from that derived from the auditory cortex (Robson et al 1998). Different HRFs 

are still relatively similar with the delay or peak time being the parameter that 

often makes the biggest difference in analysis. 

2.3.5 GLM and Statistical Analysis of fMRI Data 

Due to the nature of MRI, the BOLD signal can be recorded throughout the brain. 

However, as fMRI does not obtain a static image but rather a sequence of 

images that show changes in the BOLD signal over time, each volume must be 

acquired relatively quickly, usually accomplished by sacrificing the spatial 

resolution of the final scan. A typical fMRI scan contains around 25 slices 

acquired over a one to two-second window, each slice consisting of a 64x64 pixel 

image (total of 102 400 voxels, about 10 000 of which are in the brain) with voxel 

sizes of about 4x4x4 mm3; each voxel then has its own BOLD signal time course 

sampled at around 0.5 Hz. 
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The change seen in an MR signal due to the BOLD effect is actually relatively 

small. For example, in tasks involving the primary or sensory motor areas the 

BOLD signal increases by less than 5% as compared to baseline, while memory 

tasks see an increase of less than 1% (Huettel et al 2004).  As such, to get any 

reliable results statistical analysis methods must be employed. While early fMRI 

analysis techniques consisted of simply subtracting a resting state recording 

from an active state recording to determine changes associated with the active 

state, the most common analysis technique in use today is by far the general 

linear model (GLM). 

In short, the aim of the GLM is to see how well the expected BOLD response to a 

given task describes the time course of a given voxel; those voxels who are well 

described are then deemed as activated by the task in question. As shown in 

Figure 2.3-4, the expected response is typically created by convolving an HRF 

with an input function that describes the states of activity associated with the 

task (e.g. 0 indicating a resting state and 1 indicating an active state, for example 

tapping a finger). The resulting time course then describes how the BOLD signal 

associated with the given task is expected to vary. 

 

Figure 2.3-4 Convolution of input function and HRF to create BOLD response expected to result 
from given input function task. This BOLD response is then linearly fit to a given voxel time 
course. 
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One of the very powerful characteristics of the GLM is that a number of different 

regressors, each describing a different component of the fMRI data, can be easily 

added to or removed from the model. The final model consists of describing 

each voxel’s time course by a linear combination of all appropriate regressors as 

shown in the equation: 

y = Xβ + e = x1β1 + ... + xnβn + e 

where y is a column vector containing the time course of a given voxel, X is the 

design matrix containing all appropriate regressors as column vectors (i.e. x1, …, 

xn), β is a column vector containing scale factors for each regressor (i.e. β1, …, 

βn), and e is a column vector consisting of the noise not accounted for by the 

model. For example, in the very simple case of Figure 2.3-4, the voxel time 

course may be modeled, as shown in Figure 2.3-5, by a linear combination of the 

expected response x1, a constant valued regressor x2, and the error e. To find the 

most appropriate model using a given set of regressors, the β values must be 

estimated such that the amount of variance in the voxel’s time course described 

by the error, e, is minimized. This can be achieved through ordinary least squares 

estimation, i.e. β = (XTX)-1XTy. Each voxel then has its own β value for each 

regressor. 

 

Figure 2.3-5 Modelling a voxel time course as the linear combination of an expected response, 
a constant signal, and error. 

As previously mentioned, a voxel is deemed as activated by a given task when 

the expected BOLD signal response to that task describes its time course well 
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enough. This is determined through a t-test, which determines the probability 

that the voxel’s time course is actually from the null hypothesis (i.e. that it is not 

activated) while taking into account its intrinsic variation and the model being 

used (i.e. the calculated β values). In simple terms, a t-value can be thought of as 

a ratio of the effect in the voxel’s time course explained by the given model to 

the variance in the data that is unexplained by the model. Therefore, the higher 

the t-value is, the less likely that the voxel is not active. 

A t-map is obtained by calculating the t-value associated with every voxel time 

course. A t-value threshold must then be implemented to differentiate between 

which voxels show statistically significant activation and which do not. In 

conventional statistical analysis, a t-value that corresponds to a p value of 0.05 is 

chosen (i.e. the probability that a voxel would have a t-value above threshold 

and would be deemed as activated purely by chance is 0.05 or less). However, 

considering that there is approximately 10000 voxels in the brain, a multiple 

comparisons problem arises as this could result in around 500 false positives 

purely by chance. Many techniques exist which find a more appropriate t-value 

threshold by taking into account various data parameters. For example, 

Bonferroni correction, which assumes that voxel time courses are mutually 

independent, addresses the issue by dividing the initial p value (0.05) by the 

number of voxels (10 000) to obtain a new p value of 0.000005. This technique is 

often thought to be too conservative due to the fact that the signals at each 

voxel are not actually mutually independent but rather have some spatial 

correlation caused by intrinsic properties and smoothing applied in pre-

processing (see section 2.3.6.4). Random field theory is one technique that takes 

this smoothness into account by calculating an appropriate t-value based on the 

number of “resolution elements” rather than the number of voxels (Worsley et 

al 1996). In another technique, rather than controlling the number of expected 

false positives, the false discovery rate (ratio of false positives to total number of 
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positives found) is controlled to find an appropriate t-value threshold (Genovese 

et al 2002). In general, it is not uncommon to choose a p value of 0.001, which 

corresponds to a t-value threshold of 3.1. The anatomical region associated with 

the given task can then be easily visualized by overlaying the t-map on an 

anatomical scan of the same subject and applying the t-value threshold (as seen 

in Figure 2.3-6). 

 

Figure 2.3-6 Example of (A) a raw t-map, and (B) the same t-map thresholded and overlaid on 
an anatomical MR scan. 

2.3.6 fMRI Noise Sources and Pre-Processing 

2.3.6.1 Motion 

Although the subject’s head is often secured with padding to minimize head 

movement during an fMRI scan, slight movements on the order of a few mm can 

occur and have an effect on voxel time courses as the placement of a given voxel 

within the brain slightly shifts. In general, an fMRI scan is pre-processed by use 

of a motion correction algorithm that realigns all the volumes recorded in a 

single run. Multiple runs from the same recording session can then also be 

realigned to one another if necessary. This realignment most often consists of 

adjusting for rigid body movement (i.e. translation and rotation of the head) and 

can only be effectively applied if there is only a few mm of movement. However, 

even with rigid body motion correction residual movement artifacts may exist. 
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For this reason, the six movement time courses calculated during the motion 

correction process (i.e. those describing translational and rotational movements 

in the x, y, and z directions) are often added as confounds to the design matrix 

used in the GLM. While these measures help minimize the effect of movement 

from one volume to another, correcting for movement that may occur between 

slices, i.e. movement that occurs during the acquisition of one of the volumes in 

a run, is considerably more complex and generally not carried out. 

2.3.6.2 Drift 

Drift consists of low frequency noise that occurs in essentially all fMRI scans. It is 

generally attributed to hardware instabilities (Lund et al 2006), particularly as it 

has been observed in phantom scans (Lund & Larsson 1999). Drift can be 

removed in pre-processing of the data by high-pass filtering, however if this is 

done one must ensure that the stimulation paradigm, i.e. the input function 

described in section 2.3.5, does not create signals lower than the filter’s cut off 

frequency. Otherwise, it is also common to remove drift by including drift terms 

(e.g. cosines, polynomials, splines) that can model the drift seen in a given voxel 

time course so that it may be accounted for in the GLM (i.e. by adding the terms 

as confounds to the design matrix). For example, a 3rd order polynomial may be 

used to account for low frequency drift in a 6 minute long fMRI run (Worsley et 

al 2002). 

2.3.6.3 Physiological Noise 

Physiological noise can be generally attributed to two groups, respiratory and 

cardiac. Respiratory noise can be broken down into 3 components: 1) head 

movement resulting from respiration, which is actually reflected in the 

movement parameters, 2) susceptibility changes in the brain due to the 

movement of organs in the abdomen, and 3) respiration dependent changes in 

the oxygenation of the blood (Windischberger et al 2002). Although it has the 

largest effect on regions containing CSF pools (i.e. ventricles, outline of the 
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brain), its effects are seen throughout the brain (Windischberger et al 2002). 

Cardiac noise results from a person’s heartbeat, which induces blood flow 

changes, and hence BOLD signal changes, in the blood vessels, while having little 

affect on other structures in the brain (Dagli et al 1999). 

Unfortunately, while the temporal sampling frequency of a typical fMRI is 

around 0.5 Hz, the fundamental frequency of cardiac noise ranges between 0.6 

and 1.5 Hz (Lund et al 2006). Likewise, it is not uncommon for a person to have a 

respiratory rate above 0.5 Hz while in the scanner, particularly if they are not 

used to the close quarters or scanner noises. Physiological noise is therefore 

heavily aliased during an fMRI scan and is often considered to be non-stationary 

(Lund et al 2006). In addition, while the effects of white noise diminish with 

higher magnetic field strengths, the effects of physiological noise actually 

intensify (Kruger & Glover 2001). All these characteristics make identifying and 

accounting for physiological noise a non-trivial task. For example, one method 

that attempts to remove the effects of physiological noise uses the signals 

recorded during the fMRI scan by a respiratory belt and pulse-oximeter (Glover 

et al 2000). These signals can then be used to detect the phases of the 

respiratory and cardiac oscillations at each fMRI time sample so that the noise 

can be modeled as a set of sines and cosines representing the aliased 

frequencies of the respiratory and cardiac noise. In another method the noise in 

a voxel time course is accounted for by breaking down the time course into 

components via independent component analysis (ICA) and then removing the 

component that best describes the signals seen in the CSF pools and blood 

vessels (Perlbarg et al 2007). 

2.3.6.4 Spatial Smoothing 

Spatial smoothing is a common pre-processing step that often consists of 

applying a 3-D Gaussian kernel of appropriate size (e.g. a 6 mm full width half 
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maximum) such that the voxels in an fMRI scan are spatially blurred by a slight 

amount. While this reduces the spatial resolution of the data, it helps increase 

the SNR. This is because while signals of interest, i.e. signals caused by changes 

in physiology, are expected to have a slight spatial correlation, white noise that 

arises in the recording process does not. By applying a spatial filter one is 

essentially averaging the signal within a given kernel. In fact, a better SNR can be 

obtained by recording volumes at half the resolution but twice the speed so that 

two volumes could be averaged to obtain one (Buxton 2002); this technique is 

usually not used but rather a Gaussian smoothing kernel of appropriate size (e.g. 

with 6 mm full width half maximum) is applied which will also condition the data 

for further statistical inference (i.e. the use of random field theory for the 

multiple comparisons problem). 

2.3.6.5 Slice Timing Correction 

In an fMRI scan a single frame (volume) is acquired over a time of about 2 s. As 

many slices are separately acquired within that volume, each slice represents 

data from a slightly shifted time point within that 2 s. In some cases this 

discrepancy between sample times is accounted for by the GLM applied by 

creating a specific design matrix for each slice by sampling each of the regressors 

at slice specific time points (Worsley et al 2002). Otherwise, slice-timing 

correction can be carried out as a pre-processing step by temporally 

interpolating all voxel time courses, often through linear or sinc interpolation, 

and then resampling each at a common time point (for example the time at 

which the first slice is acquired) (Henson et al 1999). 



34 

2.4 Localization in Epilepsy Through EEG-
fMRI 

While EEG remains the gold standard in the diagnosis, classification, and 

localization of epilepsy, it lacks spatial resolution, particularly for pre-surgical 

localization of the epileptogenic zone. On the other hand fMRI provides a much 

better spatial resolution, but by itself it is insensitive to epileptic activity and is 

rather most commonly used to localize sensory, motor, or cognitive functions. 

This is because the active and control states associated with these forms of 

function are easily controlled by the experimenter, allowing the input function 

used in the GLM process to be easily defined prior to the actual scan. 

Unfortunately, by definition, active states associated with epilepsy, i.e. epileptic 

events, occur randomly, resulting in an input function whose time course cannot 

be controlled. However, it is possible to define the active state in a patient as the 

time at which an epileptic event is detected in their EEG, while the control state 

can be defined as when their EEG is at baseline. The idea then behind EEG-fMRI 

is to record a patient’s EEG while they are in the MR scanner so that an 

appropriate input function, based on events seen in the EEG, can be found and 

used to localize activity, which is correlated to the EEG events, with higher 

spatial resolution in the fMRI data than in the EEG. However, as one can imagine, 

recording an EEG within an MR scanner has its own obstacles. Whereas, the EEG 

signals themselves are very small, their sensitivity to the changing magnetic 

fields in the scanner is very large. Nevertheless, recording EEG activity of interest 

within this environment is possible (Ives et al 1993). 

2.4.1 Issues with Recording EEG in an MR Scanner 

One issue that arises with recording EEG in an MR scanner is the potential for 

the electrodes to burn the patient’s scalp. As the electrodes are metallic, the 

changing magnetic fields of the scanner can cause the induction of fast currents 

that could potentially heat up the electrodes to the point that they would burn 
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the patient. This issue however can be avoided by using nonferrous electrodes, 

limiting resistors (Lemieux et al 1997), and by preventing the creation of current 

loops that involve the patient (Lazeyras et al 2001). Another issue that arises is 

the distortion of the EEG signal caused by slight movements of the head and 

wires in the static field of the scanner. This issue can easily be minimized through 

use of a very careful setup in which the head is immobilized by a vacuum 

cushion, the wires close to the head by bandages, and the wires leading to the 

amplifier by sandbags. 

Another more serious issue that arises is the creation of artifacts in the EEG by 

the changing gradient fields of the scanner. These artifacts can be up to 50 times 

larger than the background EEG (Gotman et al 2006) and therefore an amplifier 

that has a high dynamic range, such that it does not saturate, must be used. This 

amplifier must then be connected to a computer outside the scanner room via a 

fiber optic cable to ensure that the scanner room’s magnetic shielding is not 

broken. This gradient artifact can then be removed offline from the EEG signal 

assuming the EEG has been sampled at an adequate frequency (on the order of 

several kHz) (Benar et al 2003). The most common technique to do so consists of 

estimating the artifact, subtracting it from each frame, and then applying 

adaptive noise cancellation (Allen et al 2000). Another artifact commonly seen in 

EEGs recorded in an MR scanner is the ballistocardiogram artifact. This artifact is 

induced by small movements of the electrodes that result from the fast 

movement of blood in the arteries following each heartbeat. The 

ballistocardiogram artifact can be removed in a number of ways, some of which 

include averaging and subtraction, adaptive filtering, and through the use of ICA 

(Benar et al 2003). 
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While EEG recorded in an MR scanner suffers from many issues, good quality MR 

images can be obtained despite the presence of EEG equipment (Krakow et al 

2000). 

2.4.2 Data Acquisition and Analysis 

The first experiments with EEG-fMRI used a technique of image acquisition 

referred to as “EEG-Triggered scanning”. In this method, EEG artifacts induced by 

the scanner environment are avoided by recording a single fMRI volume after an 

event has been detected in the EEG (i.e. four or five seconds after a spike to 

catch the associated peak in the BOLD signal) (Gotman et al 2006). This volume 

would be deemed as representative of the active state and would then be 

compared to a control state volume to determine where the associated 

activation occurred. Drawbacks to this method include that only as many active 

volumes as detected events can be recorded, low-frequency drift cannot be 

accounted for, and an experienced electroencephalographer needs to be 

constantly monitoring the EEG during the scanning session. 

As touched upon in section 2.4.1, the most common method of data acquisition 

in current use consists of continuously recording both EEG and fMRI data during 

a session and then removing artifacts in the EEG offline. After this has been 

done, an electroencephalographer marks the epileptic event times seen in the 

EEG (Figure 2.4-1A). These event times will then be used to create the input 

function, which will be convolved with an HRF to obtain the BOLD signal 

expected (Figure 2.4-1B) to result from the given EEG detected activity. Like 

most other fMRI studies, this expected signal is then used in the GLM process to 

create a t-map that defines which voxels are believed to be associated with the 

given activity (Figure 2.4-1D). As it has been found that differences in the HRF 

can exist from patient to patient, from one brain region to another, and even 

from one scanning session to another (Aguirre et al 1998), it is not uncommon to 
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carry out the GLM process multiple times with a series of different HRFs, each 

with a different delay in their peak time. The results of these processes can then 

be compiled to obtain a single t-map that describes the region of activation 

associated with the EEG detected activity. 

 

Figure 2.4-1 Example of EEG-fMRI data analysis process: (A) marking of EEG activity, (B) BOLD 
signal expected to result from marked EEG activity, (C) time course of a voxel involved with the 
detected activity, (D) thresholded t-map showing activated voxels. 

2.4.3 Pros and Cons 

In addition to maintaining a high temporal resolution thanks to the EEG, by 

incorporating fMRI into the recording process EEG-fMRI achieves high spatial 

resolution and allows BOLD signals related to epileptic activity to be recorded 

throughout the brain. Epileptic activity that is restricted to deep brain structures 

would not be detected however, due to the fact that the activity must first be 

detected in the EEG; this deep activity would be detected only if it was not 

restricted to deep brain structures and was actually correlated to superficial 

activity detected in the EEG. Recording EEG-fMRI is also somewhat cumbersome 

as it requires a very specific and delicate setup, particularly for acceptable 

recording of the EEG (see section 2.4.1), the disruption of which would lead 

unusable data. In addition, data analysis of EEG-fMRI data is dependent on 

adequate markings of epileptic events within the EEG, something that can vary 

from one electroencephalographer to another (Noachtar et al 1999). 
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2.5 Temporal Cluster Analysis 
fMRI data consists of tens of thousands of voxel time courses. This means that, 

unlike EEG, it is impractical to detect activity of interest through visual analysis of 

the time courses. Temporal cluster analysis (TCA) is a data based fMRI analysis 

technique which was developed to map dynamic activity in the brain when the 

timing of said activity is not known. This technique works by exploiting the idea 

of temporal parcellation within the brain (Liu et al 1999), i.e. the probability of a 

voxel reaching its maximum value is equal and independent of time unless a 

stimulus is introduced. Put generally, TCA functions by collapsing the 4D data 

obtained in an fMRI scan into a 1D time course, or histogram, that consists of a 

count of the number of voxels, Nmax, in the original data that achieve their 

maximum value at each time point. 

2.5.1 Initial Studies Using Temporal Cluster Analysis 

TCA was first developed and implemented in a study that hoped to determine 

when and where the satiation signal in human beings occurs (Liu et al 2000). 

After a person eats, the brain senses a biochemical signal and then sends a 

neurological signal indicating satiation. Unfortunately, the timing of this satiation 

signal is unknown, which in terms of fMRI data analysis amounts to not knowing 

the time course of the input function to be used in the GLM. TCA was therefore 

employed to detect when this satiation signal was occurring. 

Subjects in the study ingested glucose at the 10 minute mark of a 48 minute 

fMRI scan. After the scan was completed, the data was processed offline using 

TCA to determine event times of interest. This consisted of finding the 1D 

histogram by looking at each time point in the scan and counting the number of 

voxels that reached their maximum value at that time point. Peaks in this 

histogram were then considered as events of interest. Figure 2.5-1 shows an 

example of the histogram found for one of the scans. As seen in this example, it 



39 

was found that TCA produced two peaks, one which occurred immediately after 

glucose ingestion and one that occurred 10.3 minutes after ingestion; this 

second peak was believed to result from the satiation signal. In contrast, no 

distinct peaks were seen for scans of control subjects who did not ingest glucose. 

Using these events times, appropriate input functions were created so that the 

activity associated with each peak could be mapped (activity associated with 

initial peak was found in the sensorimotor cortex, while activity associated with 

the second peak was found in the hypothalamus). It should be noted however 

that in this preliminary study only a single 10 mm thick mid-sagittal slice was 

imaged and processed. 

 

Figure 2.5-1 Example 1D histograms found by TCA in (A) a subject who ingested glucose at time 
0, and (B) a control subject. Adapted from (Liu et al 2000). 

The application of TCA, although with slight variations, has been seen in a few 

studies following this initial investigation. In one, referred to as “weighted one-

dimensional” TCA, rather than simply counting the number of voxels reaching 

their maximum value at each time point, the maximum values themselves were 

summed to create those found in the histogram (Yee & Gao 2002). In another 

study, TCA was carried out as an iterative process, each time on a smaller data 

set consisting of those voxels not counted in the largest peak of the histogram 

created in the previous iteration (Gao & Yee 2003). It has also been shown by 

one study (Zhao et al 2004) that TCA performs similarly to ICA in that they both 

generate similar activation maps for a set of event related fMRI experiments. 

However, TCA was found to be more computationally efficient and to have 

better repeatability. 
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2.5.2 Application of TCA to Epilepsy Localization 

As the goal of TCA is to detect events of unknown timing, it is understandable 

why its application to the detection of epileptic activity in fMRI data, 

independently of the EEG, may be fruitful. This is particularly true due to the 

high temporal synchronicity associated with epileptic activity. If shown to be 

effective, TCA could potentially be used as a good alternative to EEG-fMRI for 

the localization of BOLD correlates to epileptic activity as it is less cumbersome, 

i.e. does not require the EEG, and could potentially detect activity restricted to 

deep brain structures (not visible on scalp EEG). 

TCA was first used to localize interictal activity in fMRI data in 2004 by Morgan et 

al. (Morgan et al 2004). In this study, TCA was carried out on the fMRI data of 

two groups. The first group consisted of 6 TLE patients who had undergone 

resective surgery with successful seizure control, while the second group 

consisted of 3 patients whose seizure localization was deemed unclear in pre-

surgical evaluations. The TCA technique carried out differed slightly from 

previous implementations in that only those voxels whose maximum value was 

between 2 and 10% above its first value, and above a background threshold, 

were counted to create the histogram. Histograms were then created for each 

run with peaks in the histogram defined as occurring at those time points when 

the histogram went above a value of 100 voxels. These peak times were then 

considered as defining periods of activation in an input function which was then 

passed to the GLM to obtain maps that localized the detected activity (see Figure 

2.5-2). In the first group, higher t-values were consistently found in the 

hippocampus of the epileptogenic hemisphere when compared to those found 

in the hippocampus of the opposite hemisphere. In 3 of these cases statistically 

significant activation was seen in the appropriate hippocampus. Analyses 

involving the second group showed good agreement with the believed 

localization of the epileptogenic zone. The study concluded that the application 
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of TCA to epilepsy localization requires further testing, particularly on 

modifications to the technique that may provide better results. 

 

Figure 2.5-2 (A) Example histogram created and peaks detected by TCA and (B) expected BOLD 
response associated with the detected peaks. Adapted from (Morgan et al 2004). 

2.5.3 Development of 2D-TCA for Epilepsy Localization 

It has been found that BOLD signal changes due to epileptic discharges may be 

relatively small when compared to the influences of noise, motion, or other 

neuronal activity (Morgan et al 2008). Likewise, it was found that TCA is very 

sensitive to motion and physiological noise (Hamandi et al 2005). This is due to 

the fact that in TCA, as a single histogram is created, one is unable to 

differentiate between the different forms of activity that occur during a given 

scan. 2D-TCA is a technique that was developed to overcome this issue by 

creating multiple histograms, or reference time courses (RTCs), based on the 

timing of activity (Morgan et al 2008). Each of these RTCs may then be assumed 

to result from a different source. 

2D-TCA consists of first detecting when events occur in a given voxel time course 

(i.e. whenever the value goes over a given threshold) to create an event time 

course (i.e. with a value of 1 where the events were detected and 0 elsewhere) 

for that voxel. This event time course is then added to one row of a 2D 
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histogram, each row of which consists of a separate 1D histogram. Initially, the 

time point at which the first event in an event time course occurred was used to 

define to which row the event time course was added (Morgan et al 2008); 

however, it was found that the peak time of the voxel may be a more 

appropriate characteristic to determine placement (Morgan & Gore 2009). For 

example, if voxel A and voxel B both reach their maximum values in frame 15 

(i.e. volume 15 of the scan), their corresponding event time courses will be 

added to row 15, while if voxel C and voxel D reach their maximums in frame 77, 

their event time courses will be added to row 77. After this process has been 

completed, those rows, or RTCs, that show the largest amount of activation (i.e. 

have the largest event counts) are selected, grouped if found to be similar, and 

separately passed as input functions to the GLM so that corresponding t-maps 

may be obtained for each. 

The initial study that implemented 2D-TCA (Morgan et al 2008) tested its 

application on computer simulated phantom data containing activity of 

amplitude between 1 and 4% above baseline, as well as on TLE patient data. 

Overall, when applied to the phantom data, the performance of 2D-TCA in 

producing accurate t-maps was better than that of TCA and comparable to the 

performance of ICA. This being said, 2D-TCA, which generally produces fewer 

components, was found to perform slightly worse than ICA when detecting 

multiple independent signal time courses. When applied to the small set of TLE 

patients, 2D-TCA produced t-maps showing mesial temporal activation, i.e. the 

expected area of activation. In addition, even though the patients were asked to 

remain still with their eyes closed, it was not uncommon that t-maps showing 

visual or motor activity as well as activity in areas associated with the default 

mode network (Gotman et al 2005) were found. In another study (Morgan & 

Gore 2009), the capability of 2D-TCA to detect and localize transient visual, 

auditory, and motor activity in control subjects was found to be similar to what 
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was achievable using event related processes (i.e. by use of a previously known 

input function), while in another study (Morgan et al 2010) 2D-TCA generally 

found the expected epileptogenic region in a homogenous group of 5 TLE 

patients. 

2D-TCA has been shown to have the potential to detect and localize transient 

neuronal activity of unknown timing. This would be particularly useful in the 

localization of epileptic activity as it would do so with high resolution, could 

potentially detect activity restricted to deep brain structures, and would not be 

as cumbersome as EEG-fMRI. Unfortunately, the limits of its capabilities to 

detect various forms of activity in terms of activation size, amplitude, and 

frequency have not been evaluated. This is an important step in determining 

whether or not the general application of 2D-TCA to detect epileptic activity is 

worthwhile. 
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3 Methods 

3.1 Data Acquisition 
All data was obtained from a database of individuals (patients with epilepsy and 

control subjects) who underwent EEG-fMRI acquisitions. Images were acquired 

with a 3T Siemens Trio Scanner. Anatomical MR images were acquired with the 

following parameters: TR = 23 ms, TE = 7.4 ms, flip angle of 30o, 1 mm isotropic 

voxel size, 256x256 matrix, 176 sagittal slices. Functional MR images were 

acquired over 6-min scanning runs with the following parameters: TR = 1.75s, TE 

= 30 ms, flip angle of 90o, 5 mm isotropic voxel size, 64x64 matrix, 25 transverse 

slices. 

Runs were acquired over a 2 hour scanning session unless the subjects were 

prematurely taken out of the scanner due to discomfort or, in the case of 

patients, if they had a seizure during the scan that could have potentially caused 

them injury. A single scanning session then consisted first of acquisition of the 

anatomical MRI, followed by acquisition of approximately 9 fMRI runs 

(sometimes more, sometimes less depending on time constraints). EEG was 

continuously recorded during this time with 25 MR-compatible Ag/AgCl 

electrodes placed on the scalp according to the 10-20 system (19 standard 

locations) referenced to FCz with extra electrodes at F9, F10, T9, T10, P9, and 

P10. In addition, two electrodes were placed on the upper back to record the 

electrocardiogram. All electrodes were adjusted such that their impedance was 

below 5 kΩ, a value that was monitored throughout the scanning session so that 

electrodes could be readjusted between runs if needed. The EEG was low pass 

filtered at 1 kHz and sampled at 5 kHz using a BrainAmp amplifier (Brain 

Products, Gilching, Germany). After scanning had completed, gradient artifacts 

were removed from the EEG using an averaged subtraction method (Allen et al 

2000) implemented by BrainVision Analyzer software (Brain Products, Gilching, 



46 

Germany). The ballistocardiogram artifact was then removed using an ICA 

method (Benar et al 2003). An electroencephalographer would then visually 

inspect the EEG and mark the timing of any recorded epileptic activity. 

3.2 Simulated Data 
A large set of fMRI scans containing simulated epileptic activity was created by 

adding BOLD signals, simulated using values based on current knowledge of 

BOLD responses to epileptic activity, to time courses of voxels in specific regions 

of interest (ROIs) in 6 control subject runs (see Figure 3.2-1). Simulated 

responses were created by convolving a Glover HRF, of appropriate amplitude, 

with a simulated epileptic activity time course (i.e. a function that had a value of 

1 when activity occurred and 0 elsewhere). Activity associated with spikes was 

simulated in 3 ROIs (left temporal lobe, right frontal lobe, and right 

hippocampus) using all combinations of the following characteristics (all values 

used for a given characteristic were chosen based on values commonly seen in 

the EEG-fMRI results of epileptic patients): 1, 5, or 10 randomly timed spikes per 

run; HRF amplitudes of 0.5-2% above baseline, in 0.25% increments; and ROI 

sizes of 12, 27, 36, 64, 80, and 125 voxels. In addition to spikes, a single 5 s long 

event was simulated in a parietal lobe ROI with the above HRF amplitudes in ROI 

sizes of 64, 125, and 216 voxels. 

Each run was simulated such that it contained all 4 forms of epileptic activity (i.e. 

1 spike, 5 spikes, 10 spikes, and one 5 s event), one in each ROI. For example, a 

given run may contain 1 spike in the temporal lobe, 5 spikes in the frontal lobe, 

10 spikes in the right hippocampus, and a 5 s event in the parietal lobe. 

Simulations were repeated 6 times such that each of the three ROIs containing 

spikes could simulate each number of spikes (1, 5, or 10) twice; accordingly, 

simulations of the 5 s event were repeated 6 times. This allowed for the final  
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Figure 3.2-1 Examples of 4 ROIs to which simulated data was added: (A) left temporal lobe 
(3x3x3 voxels), (B) right frontal lobe (3x3x3 voxels), (C) right hippocampus (2x2x3 voxels), (D) 
left parietal lobe (4x4x4 voxels). In addition to the cluster sizes shown, larger versions of each 
ROI were simulated by increasing each dimension by 1 voxel (i.e. 3x3x3 would become 4x4x4 
and then 5x5x5). 
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number of uniquely simulated runs to be 756 (6 control subject scans x 3 ROI 

sizes x 7 HRF amplitudes x 6 repetitions), for a total of 3024 unique simulated 

BOLD responses to epileptic activity (4 forms of activity/run x 756 runs). After 

being created, all simulated runs were pre-processed (see section 3.3.1). Then, 

using these runs, a modified version of the 2D-TCA algorithm as developed by 

Morgan and Gore (Morgan & Gore 2009) was created and its limits, in terms of 

responses that it is able to detect, were investigated. 

3.3 Steps/Development of the 2D-TCA 

Algorithm 

3.3.1 Pre-Processing  

Pre-processing consists of 4 main steps. First, as the nature of 2D-TCA is to 

aggregate events seen in voxels that peak at the same time, it is important to 

carry out slice timing correction to ensure that voxel time courses from different 

slices are re-sampled at the same time points. This is followed by within run 

motion correction and spatial smoothing by a 6 mm full width half maximum 

Gaussian kernel. Finally, using the associated anatomical scan, an appropriate 

brain mask is created for the functional data so that only those voxels recorded 

within the brain are considered in the following steps; this differs from the 

technique implemented in (Morgan & Gore 2009) in that they simply apply a 

background threshold to differentiate between those voxels that should be 

considered and those that should be ignored. 

3.3.2 Temporal Filtering 

While in (Morgan & Gore 2009) high frequency white noise was removed from 

voxel time courses by applying a 3-point temporal averaging filter, it was felt 

that applying a rectangular window to a voxel’s frequency spectrum, such that 

those frequencies that a BOLD response is not expected to contain would be 

removed, would be more appropriate as its effects are more easily understood. 



49 

In addition, the effects of low frequency drift could be removed by this means. 

As 2D-TCA is only interested in detecting activity associated with the HRF, it 

would be appropriate to define the window’s borders according to the 

frequency spectrum of the HRF. Figure 3.3-1(A) shows the frequency spectrums 

of the Glover HRF, as well as the frequency spectrum of the Glover HRF after 

being convolved with an 8 s step function (i.e. 8 s of simulated activity). The low 

cut-off frequency of the window can then be defined by the low -3 dB mark on 

the 8 s event spectrum (i.e. at 0.006 Hz), while the high cut-off frequency can be 

defined by the high -3 dB mark on the HRF spectrum (i.e. at 0.085 Hz), as shown 

in Figure 3.3-1(A). Figure 3.3-1(B) shows an example of a raw voxel time course 

that contains 5 spikes (indicated by the red impulses), simulated using an HRF 

amplitude of 1% above baseline, while Figure 3.3-1(C) shows the same voxel 

time course after frequency components not within the designated window have 

been removed. It should be noted that although this window is applied, as 

shown in Figure 3.3-1(C) the mean value of the time course (i.e. the 0 Hz 

frequency component) is not removed; this is so that the next step, which 

appropriately normalizes the data, can be effectively carried out. It should also 

be mentioned that in applying this frequency spectrum window, BOLD responses 

to epileptic events with duration longer than 8 s will be removed from voxel time 

courses and therefore are expected to be undetectable with this 2D-TCA 

technique. 

3.3.3 Baseline Definition and Normalization 

BOLD signal data is recorded in arbitrary units. Therefore, to compare activity 

occurring in different voxels, their time courses must first be normalized to the 

same scale. Ideally, one would normalize a voxel by its baseline value. However, 

this would require one to know the timing of activity and inactivity, the very 

characteristic which 2D-TCA aims to discover. As such, the baseline value of a 
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given voxel time course must be estimated by other means. In (Morgan & Gore 

2009) a voxel time course is normalized by the average of its first 5 values. This  

 

Figure 3.3-1 (A) Plots of HRF Frequency spectrums with indicated band pass filter cut-off 
frequencies. Also, an example of a voxel time course containing 5 simulated spikes (B) before 
the band pass filter is applied, and (C) after. 

technique is not very robust as: 1) the average is calculated from only 5 values 

and therefore is not a particularly strong estimation of baseline in the statistical 

sense, and 2) it assumes that a patient is at baseline during the first 5 frames of 

the fMRI scan, a characteristic that cannot be controlled due to the intrinsic 

randomness of epileptic activity. Therefore, other methods were considered. 

The first method consisted of defining a voxel’s baseline value by the mean of its 

time course. Unfortunately, due to the non-symmetric nature of the HRF, using 

the mean of a voxel time course would theoretically provide a positively biased 

baseline value (see Figure 3.3-2(A)). As such, a second technique was employed. 

This consisted of applying k-means clustering analysis, a technique that aims to 

partition n observations into k clusters in which each observation belongs to the 
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cluster with the closest mean. To find an appropriate baseline, the n = 200 values 

(i.e. the number of time samples) of a voxel time course were grouped into k = 2 

clusters, one containing the higher values seen in the voxel time course, 

assumed to represent values associated with activity in the voxel, and one 

containing the lower values, assumed to represent values associated with 

inactivity. The mean of the cluster that contained the lower values would then 

be used to estimate the baseline value for that voxel. While this technique may 

theoretically impose a slight negative bias on the baseline value (see Figure 

3.3-2(A)), it is more effective than simply using the mean. Figure 3.3-2(B) shows 

the baseline value (black line) estimated using the k-means technique for the 

same voxel time course as shown in Figure 3.3-1(C) (for comparison, the green 

line indicates the mean value); Figure 3.3-2(C) shows this same time course after 

it has been normalized by the k-means baseline value. 

 

Figure 3.3-2 (A) Estimates of baseline for the Glover HRF using the mean and through use of 
the k-means clustering process. (B) Application of the k-means process to define baseline value 
in an example time course (mean value is also shown in green). (C) Normalization of the time 
course by the k-means calculated baseline. 
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3.3.4 Detection of Candidate Voxels 

Having brought all voxel time courses onto the same scale, those voxels that may 

show activity of interest must be differentiated from those that do not. In 

(Morgan & Gore 2009) this is carried out by defining a predetermined threshold 

range, between 0.5 and 8% above baseline, within which BOLD signal changes 

associated with the activity of interest are expected to exist. While the lower 

threshold of 0.5% was implemented to ignore those voxels which can be 

considered to be inactive during the run, the upper threshold of 8% allows 2D-

TCA to ignore voxels whose activity may be much larger than what would ever 

be expected to occur as a result of neural activity (i.e. activity larger than 8% 

may be attributed to some form of noise). If a voxel’s maximum value exists 

within this range, the voxel is then considered as a “candidate”. 

For this study, it was decided that a similar technique would be employed, but 

that a number of range boundaries would be tested to find the most appropriate 

values. Lower boundary values tested were chosen to border the HRF 

amplitudes used to create the simulated data (i.e. the values of BOLD responses 

expected to be associated with epileptic activity); values tested were 0, 0.5, 1, 

1.5, and 2% above baseline. On the other hand, upper boundary values tested 

were chosen to border the 8% value implemented in (Morgan et al 2008); values 

tested were 3-11% above baseline with increments of 1%. All combinations of 

range boundaries were tested on all simulated runs to determine their ability to 

differentiate between those voxels that contained simulated activity and those 

that did not. The best range was determined as that which provided the best 

average specificity across runs while maintaining an average sensitivity of at 

least 90% to the voxels that contained simulated epileptic activity. This range 

was found to be between 1 and 6% above baseline and provided a true positive 

rate (TPR) of 0.90 and a false positive rate (FPR) of 0.59. Figure 3.3-3 shows the 
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application of this threshold to the same example voxel time course as in Figure 

3.3-2(C). 

 

Figure 3.3-3 Example of a voxel being defined as a candidate based on its maximum value. 

3.3.5 Global Time Course Removal 

After designating which voxels are candidates, the 2D-TCA technique employed 

in (Morgan & Gore 2009) creates a “global voxel time course”, calculated as the 

mean of the time courses of those voxels that are not candidates. This global 

voxel time course is then subtracted from all candidate voxel time courses. 

Although, the exact effect of this may not be clear, it is expected that doing so 

removes any global forms of activity or noise that may mask the BOLD signals 

specific to each candidate voxel. Although no in-depth investigation was carried 

out, this study found that removing this global time course did in fact allow for 

somewhat better performance in the next step, event detection within the voxel 

(section 3.3.6). For this reason, calculation and removal of the global time course 

was retained as a step in the 2D-TCA algorithm developed for this study. Figure 

3.3-4(A) shows an example of a global voxel time course, while Figure 3.3-4(B) 

shows the time course from Figure 3.3-3 after this global voxel time course has 

been removed. In this example it can be seen that removal of the global time 

course has a beneficial effect in that through this process activity seen in the first 

50 seconds of the voxel’s time courses is reduced, while activity associated with 

the first and second spikes is increased. 
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Figure 3.3-4 Examples of (A) a global voxel time course, and (B) a voxel time course after the 
global voxel time course has been removed. 

3.3.6 Event Detection within a Voxel 

To detect when events occur in a given voxel time course the technique in 

(Morgan & Gore 2009) applies a threshold of 1.5 standard deviations, i.e. any 

time the voxel’s value is larger than 1.5 standard deviations above the mean of 

its time course, an event is counted. It is expected that values in the voxel time 

course which peak by a significant amount above the voxel’s standard deviation 

indicate points of transient neural activity, similar to what is expected to result 

from epileptic activity. This technique was retained in the 2D-TCA algorithm 

developed for this study. However, as the definition of baseline in this study 

differs from that in (Morgan & Gore 2009) (see section 3.3.3), a different, more 

appropriate, threshold value needed to be found. A variety of threshold values 

above baseline, all multiples of the voxel’s standard deviation, were tested on 

every simulated voxel time course to determine which provided the most 

accurate event detection. A total of 11 threshold values were tested ranging 

from 0 to 2 standard deviations above baseline in increments of 0.2. The best 

threshold value was determined as that which provided a maximum average 

specificity to events in all simulated time courses while maintaining an average 

sensitivity of at least 90% to those same events. This value was found to be 1.2 

standard deviations above baseline and provided a TPR of 0.91 and an FPR of 

0.29. Figure 3.3-5(A) shows the application of this threshold to detect events in 
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the time course from Figure 3.3-4(B), while Figure 3.3-5(B) shows the resulting 

event time course for the voxel. 

In addition, although not implemented in (Morgan & Gore 2009), it was decided 

that a spatial constraint would be imposed in the event detection step due to 

the high level of synchronicity and spatial clustering associated with epileptic 

activity. This constraint consisted of counting an event in a voxel time course 

only when events were also detected at the exact same time point in 4 of the 

voxel’s 6 closest neighbours. By incorporating this condition it is hoped that 

those events that may occur due to white noise, or other activity that does not 

have a strong spatial correlation, would be ignored. Although no detailed 

investigation was done, this criterion was chosen on the basis that it did not 

seem overly conservative or liberal. In actuality, it is very likely that better 

criteria may exist, however, this would require deeper investigation. 

 

Figure 3.3-5 (A) Event threshold being applied to an example voxel time course, and (B) the 
resulting event time course. 

3.3.7 Creation of 2D Histogram 

Creation of the 2D histogram is a crucial step in 2D-TCA as this is where the 

actual temporal clustering is carried out. The technique described in (Morgan & 

Gore 2009) aggregates the event time courses of different candidate voxels into 

a 2D histogram according to the time frame in which the voxels reach their 

maximum values, i.e. the frame in which a voxel reaches its maximum value 
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defines to which row in the 2D histogram its corresponding event time course 

will be added. This similarity mechanism makes sense as it is expected that the 

voxels associated with the same activity will generally peak at the same time. 

This event time course clustering technique was therefore retained in the 2D-

TCA algorithm developed in this study.  Figure 3.3-6 shows this clustering 

process being carried out on three example voxel time courses (voxel 1 being the 

voxel whose time course is shown in Figure 3.3-5(A)). As voxel 1 and voxel 2 both 

peak at frame 174 (Figure 3.3-6(A)), their event time courses (Figure 3.3-6(B)) 

will both be added to row 174 of the 2D histogram (Figure 3.3-6(C)). On the 

other hand, as voxel 3 peaks at frame 93, its event time course will be added to 

row 93 of the 2D histogram. After the 2D histogram has been created, those 

rows to which no event time course was added are discarded. 

 

Figure 3.3-6 Process of 2D histogram creation showing (A) detection of voxel peaks, and 
addition of  (B) event time courses to appropriate rows of (C) the 2D histogram (a lighter shade 
of gray indicates a higher event count at that time point in that row; black indicates an event 
count of 0). 

3.3.8 Grouping Similar Rows in the 2D Histogram 

The temporal clustering technique applied in the previous step aims to create 

many time courses, each of which describes, hopefully uniquely, underlying 

activity common to many voxels. However, it is probable that after the 2D 
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histogram is created, more than one row will describe the same activity. This 

arises from the fact that voxels associated with the same activity may in fact 

peak at different times due to slight variations in their time courses. Events in 

the time courses of these voxels will still be detected at similar times. As such, 

those rows of the histogram that describe similarly timed activity should be 

grouped. 

In the 2D-TCA algorithm developed in this study, grouping was carried out in two 

steps. The first consisted of comparing the time courses of all rows to one 

another and then summing those whose correlation coefficient to each other 

was above a certain threshold. A range of correlation coefficient thresholds, 

from 0 to 1 in increments of 0.1, was tested on all simulated runs. To determine 

the performance of each threshold value, t-maps, thresholded at t > 3.1 (P < 

0.001), were created from each of the grouped histograms that resulted from 

applying the given threshold value. Those t-maps whose regions of activation 

best described the four simulated ROIs in a given run, determined by their TPR 

(the associated FPR of voxels within the brain was generally negligible), were 

selected and the overall TPR associated with the given threshold value was 

calculated as the number of true positives in those selected t-maps divided by 

the number of voxels known to be active in that run. The best threshold was 

then chosen as that which performed the most grouping of rows (i.e. the lower 

the threshold the more the grouping) while maintaining a reasonable TPR. Figure 

3.3-7 shows both the average TPR and number of resulting rows for all tested 

threshold values. As the TPR started to severely decline for a threshold of 0.7 

and below, a threshold of 0.8 was found to be appropriate (i.e. if the correlation 

coefficient between two rows is 0.8 or higher they will be summed). This 

provided an average TPR across all simulated runs of 0.81 and an FPR, which for 

a given run was calculated as the average of the FPRs of the four selected t-

maps, of 0.012; by applying this threshold an average of 140 rows would remain 
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after grouping had been carried out in this first step (for comparison, if no 

grouping is done an average of 183 rows would remain). 

 

Figure 3.3-7 Average TPR and number of rows created for all tested correlation coefficient 
threshold values. 

Unfortunately, simply grouping according to correlation is not sufficient as those 

rows that describe similar activity, but whose peaks occur at distant time points, 

will not be grouped due to the nature of the correlation coefficient calculation. 

The second step applied in the grouping technique aims to account for this 

situation. It consists of applying a threshold to each row, equal to the mean of 

the non-zero values of that row, and then grouping those rows whose activity 

above threshold overlaps for at least a certain percentage of their combined 

time of activity. The step would be performed after the previous grouping by 

correlation. A range of time overlap values, from 0 to 100% in increments of 

10%, were tested on all simulated runs with performance being determined by 

the same technique applied to determine performance of the first grouping step. 

Figure 3.3-8 shows both the average TPR and number of resulting rows for all 
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tested threshold values. As the TPR started to severely decline for a threshold of 

20% time overlap and below, a threshold of 30% was found to be appropriate 

(i.e. if the time courses of two rows, thresholded by their mean values, overlaps 

for more than 30% of their combined time of activity, they are grouped). This 

provided an average TPR across all simulated runs of 0.70 and an FPR of 0.026; 

by applying this threshold an average of 59 rows would remain after grouping 

had been carried out by this second step. The two above described grouping 

steps were not parts of the original 2D-TCA algorithm. 

 

Figure 3.3-8 Average TPR and number of rows created for all tested time overlap threshold 
values. 

Figure 3.3-9 shows examples of three rows whose time courses were found to be 

similar, as well as the final component resulting from the sum of these rows. 

While the time courses of row 130 and 131 are deemed similar through use of 

the correlation coefficient, the time course of 121 is not as its peak value occurs 

at a distant frame number. However, by applying the second grouping step the 

time course of row 121 is also considered as similar to those of row 130 and 131. 
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Figure 3.3-9 Examples of similar rows and the final component arising from their sum. While 
row 130 and 131 are deemed similar through correlation, row 121 is deemed similar by the 
second step in the grouping process. 

3.3.9 Removal of Insignificant Components 

After similar rows have been grouped, the resulting time courses can be 

considered as separate components because each will be passed to the GLM as a 

separate input function and will therefore have a corresponding t-map of 

activation. However, before this is done, to lower the number of t-maps that will 

be created only those components with significant activation will be passed to 

the GLM. In (Morgan & Gore 2009) the mean and standard deviation of 

component maximum values are calculated. Those components whose 

maximum value is larger than 1 standard deviation above the calculated mean 

are then considered as significant and are passed to the GLM. In applying this 

threshold, this study found that components describing simulated activity were 

often inappropriately discarded. As such, the 2D-TCA algorithm developed in this 

study takes a less conservative approach by applying a lower threshold, applied 

to the actual peak number of events in a component, such that those 

components that can be considered as insignificant are removed. A range of 

threshold values, from 0 to 65 in increments of 5, were tested on all simulated 

runs with performance being determined by the same technique applied to 

determine performance of the two grouping steps (see section 3.3.8). As this 
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measure of the TPR started to severely decline at a threshold of 20 events or 

higher, a threshold of 15 events was found to be appropriate (i.e. a component 

was discarded if its maximum event count was below 15). This provided an 

average TPR across all simulated runs of 0.65 and an FPR of 0.029. A threshold of 

15 was chosen over lower values, which provided lower FPRs, as it produced 

fewer components (on average a total of 15). Figure 3.3-10 shows examples of a 

component that is deemed insignificant by this threshold and another that is 

retained. 

 

Figure 3.3-10 Examples of a component that is deemed insignificant and a component that is 
retained. 

3.4 Creation of t-maps from Components 
Components created by 2D-TCA are then passed, along with the motion 

parameters calculated during motion correction, to the GLM (Worsley et al 

2002) as input functions to obtain their corresponding t-maps. These maps were 

then thresholded at t > 3.1 (corresponding to uncorrected P < 0.001) to 

determine regions of activation. It should be noted that as component time 

courses describe changes in the BOLD signal itself rather than neuronal activity, 

the peak value of the HRF used in the GLM does not include a delay. In fact, the 

HRF that was used in this study was simply a version of the Glover HRF, 

positioned such that the peak occurred at time 0.  
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3.5 Selection and Analysis of Patient Data 
Patient data used to test the capabilities of 2D-TCA were selected based on the 

technique’s performance in detecting the simulated activity. This consisted of 

determining for what characteristics (i.e. event frequency, HRF amplitude, and 

activation cluster size) the 2D-TCA algorithm was able to effectively detect 

simulated activity. Patient runs containing activity with similar characteristics, 

determined from EEG-fMRI results, would then be selected from a large 

database (only those patients who showed clear activation in their EEG-fMRI 

results were considered). This resulted in 2D-TCA being tested on a total of 60 

runs obtained across 20 separate patients. In 40 of these runs interictal spikes 

were detected by the EEG, while in the other 20, prolonged forms of interictal 

activity were detected (nothing longer than 8 s was selected). 

The effectiveness of 2D-TCA to detect epileptic activity within a given patient run 

was determined by qualitatively comparing its results to results obtained by EEG-

fMRI for the same run. Cases in which 2D-TCA created at least one component 

(i.e. a t-map) that accurately described what was seen by EEG-fMRI were further 

investigated by a neurologist. The neurologist was asked to consider the results 

of 2D-TCA as a substitute for EEG-fMRI. This was done by blinding the 

neurologist to the EEG-fMRI results, but allowing them to have full access to all 

other patient data (i.e. routine EEG, anatomical MRI, clinical data, etc.). Given 

this knowledge, the neurologist was then asked to rank each of the components 

created by 2D-TCA based on how likely it is that they describe epileptic activity 

within the given patient. This was done on a scale of 1 to 5, 1 indicating a 

component that is definitely not associated with epileptic activity and can 

therefore be ignored, 3 indicating a component whose source is unclear (i.e. 

could be epileptic activity or not), and 5 indicating a component that is most 

likely arising from epileptic activity (scores of 2 and 4 were simply intermediary 

values used to give the neurologist some flexibility). 
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4 Results 

4.1 Performance in Detecting Simulated 
Activity 

Ideally, the only outputs created by 2D-TCA when it is applied to a simulated run 

would be t-maps that describe those ROIs containing simulated activity. 

However, it should be kept in mind that the final output of 2D-TCA will most 

likely also include other t-maps describing other forms of transient activity 

detected in a run. It is therefore important to determine whether or not within 

this larger set of generated t-maps there is one that corresponds to each of the 

four ROIs simulated in a run (i.e. a total of four t-maps, each describing a 

different form of simulated activity, i.e. 1 spike/run, 5 spikes/run, 10 spikes/run, 

or a 5 s event). Figure 4.1-1 shows the average TPR (calculated across all runs 

containing the specified form of simulated activity) for the t-map produced by 

2D-TCA whose region of activation best described the given form of activity 

simulated in the run, i.e. that t-map which had the highest TPR for the associated 

ROI (the corresponding FPR values of voxels within the brain were all very small, 

on the order of 0.01). For each form of activity, this value is shown across all 

simulated HRF amplitudes and ROI sizes. While in all cases an increase in the HRF 

amplitude used to simulate the activity leads to an increase in the TPR, an 

increase in the ROI size has nearly no effect. In fact, no major trend associated 

with ROI size was expected to be seen, except that 2D-TCA may have the most 

trouble in detecting a 12-voxel ROI of activity as only those components with a 

maximum count of 15 voxels or more are retained to create corresponding t-

maps. In fact, looking at Figure 4.1-1, one could argue that, when detecting 

spikes, 2D-TCA performs the worst when the simulated ROI is only 12 voxels 

large. We attribute the lack of a more drastic difference to the counting of non-

simulated voxels that happen to peak at the same time point, which increases 

the maximum of the given component to 15 or more, causing it to be retained. 
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Figure 4.1-1 TPR in detecting simulated activity of different HRF amplitudes and ROI sizes in the 
case of (A) 1 spike per run, (B) 5 spikes per run, (C) 10 spikes per run, and (D) one 5 s event per 
run. As 2D-TCA creates a number of components for a given run, the TPR values shown are 
those associated with that component whose corresponding activation map best described the 
ROI of the simulated epileptic activity. Labels T, F, and H indicate brain areas containing the 
ROI (T = left temporal lobe, F = right frontal lobe, and H = left hippocampus); it should be 
reiterated that the 5 s event was only simulated in the right parietal lobe ROI. 

Figure 4.1-2 shows the same data as in Figure 4.1-1 except collapsed across ROI 

sizes such that the TPR in detecting the various forms of simulated activity (i.e. 1 

spike/run, 5 spikes/run, 10 spikes/run, one 5 s event) could be seen on the same 

plot. It was decided that for determining effective and consistent detection of a 

given form of simulated activity, 2D-TCA should produce an average TPR of at 

least 0.95. It can be seen from this plot that for effective detection by 2D-TCA, 1 

spike per run is insufficient (maximum TPR of 0.897 for an HRF amplitude of 2%), 

while 5 spikes per run requires an HRF amplitude of at least 1.5% above baseline 

(corresponding TPR of 0.999), 10 spikes per run at least 1.25% (TPR of 0.959), 

and one 5 s event at least 1% (TPR of 0.976). Although 2D-TCA can consistently 

create components that precisely describe simulated epileptic activity with these 
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characteristics, it is important to keep in mind that it also creates many other 

components not associated with the simulated activity, some of whose 

corresponding t-maps may contain significant regions of activation. Figure 4.1-3 

is a box plot showing, for runs simulated with an HRF amplitude of 1% or larger 

(i.e. the minimum HRF amplitude for which simulated activity was consistently 

detected), the number of components created by 2D-TCA whose corresponding 

activation maps contain, within the brain, clusters larger than a range of sizes. 

The number of activation maps steadily decreases with increasing cluster size 

thresholds until it starts to plateau around a cluster size threshold of 120 voxels. 

In fact, when applying a cluster size threshold of around 100 voxels or larger a 

median of only 2 or 3 components remain with significant activation. While this 

amounts to a significant reduction in the number of final components, even 

when applying a cluster size threshold of 220 voxels, which is larger than the 

largest simulated ROI (216 voxels), up to 3 components can still create significant 

activation that, in some cases, could be interpreted as arising from epileptic 

activity. 

 

Figure 4.1-2 TPR for various HRF amplitudes and forms of epileptic activity. As 2D-TCA creates a 
number of components for a given run, the TPR values shown are those associated with that 
component whose corresponding activation map best described the ROI of the simulated 
epileptic activity. 
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Figure 4.1-3 The number of components whose activation maps have cluster sizes above 
various threshold levels. Only tests using epileptic activity simulated with an HRF amplitude of 
1% or more are considered. Vertical black lines indicate the simulated epileptic activity ROI 
sizes (i.e. 12, 27, 36, 64, 80, 125, and 216). 

4.2 Performance in Detecting Epileptic 
Activity in Patients 

Patient runs used to test the performance of 2D-TCA were selected based on the 

limits of detection found by the simulation tests. A run was selected if its EEG-

fMRI results showed that there was clear activation and if the characteristics of 

this activation were similar to the consistently detectable forms of simulated 

activity described in section 4.1. However, to increase the number of analyzed 

patient runs, criteria, as found from the simulation results, were slightly relaxed 

(for example, very few patient runs would contain a single event lasting for 

about 5 s as was simulated). This meant that for a run to be selected at least 4 

spikes or multiple prolonged events, whose total time of activity was 3 s or 

longer, needed to be detected in the EEG. In addition, the HRF amplitude 

associated with the activity, found from the EEG-fMRI results, needed to be at 

least around 1% above baseline. A total of 60 runs, 40 of which contained spikes 

and 20 of which contained prolonged events, were selected from across 20 

patients. These 20 patients were selected from a larger pool of 43 patients (runs 
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recorded for the other 23 patients comprising this larger pool did contain activity 

which passed the above stated criteria). 

Table 4.2-1 shows the performance of 2D-TCA, as compared to EEG-fMRI, in 

detecting spikes in patient data runs (each row represents a separate run) after 

cluster size thresholds of 15, 50, 100, and 200 have been applied to resulting t-

maps (these thresholds were chosen based on the range of cluster sizes 

obtained from the EEG-fMRI results associated with spikes), while Table 4.2-2 

shows the performance in detecting longer events for the same cluster size 

thresholds in addition to thresholds of 500 and 1000 (chosen based on the range 

of cluster sizes obtained from the EEG-fMRI results associated with long events); 

both tables also give the characteristics of the epileptic activity recorded in the 

run. A case in which 2D-TCA produced at least one t-map that passed the given 

cluster size threshold and, qualitatively, closely described what was seen in the 

EEG-fMRI results (i.e. similar regions of activation with spatially close peaks in 

activation), an example of which is shown in Figure 4.2-1, is indicated by a green 

cell, while a case in which no such similarity was seen for any of the t-maps is 

indicated by a red cell. A yellow cell indicates a case in which close similarity was 

not found, but that one of the t-maps created by 2D-TCA, that passed the given 

cluster size threshold, largely overlapped with what was seen in the EEG-fMRI 

results but did not include the maximum t-valued voxel (for example see Figure 

4.2-2). Also given is the number of components created by 2D-TCA for each run, 

as well as the number whose corresponding t-maps actually contain significant 

activity within the brain, and the number that contain a cluster of activity larger 

than the a applied thresholds (note that performance before the 15 voxel cluster 

threshold is applied was not considered as any t-maps not passing this criteria 

could be considered as resulting from noise as t-maps are only created for those 

components who have a maximum voxel count of 15 or more). In terms of spike 

detection, Table 4.2-1 shows that in the majority of cases 2D-TCA is not able to 



68 

effectively detect what is found by EEG-fMRI, although it was found that there 

may be a slight dependence on the actual size of the activation (it was found 

that there was no dependency on number of spikes or HRF amplitude). On the 

other hand, by looking at Table 4.2-2, it seems that 2D-TCA is able to effectively 

detect what is found by EEG-fMRI when a run contains 2 or more interictal 

events of longer duration (on the order of a few seconds), while if only 1 event 

occurs it is essentially undetectable. For those runs in which 2D-TCA created a t-

map that described what was seen by EEG-fMRI (i.e. what is indicated by a green 

cell), applying increasing cluster size thresholds generally didn’t result in a 

deterioration of performance; this is also true for many of the runs for which 2D-

TCA created a t-map whose activation overlapped what was seen by EEG-fMRI 

(i.e. what is indicated by a yellow cell). While performance was maintained for 

these runs, increasing the cluster size threshold reduced the number of t-maps 

that would be considered. 

As mentioned, the output of 2D-TCA will be a set of t-maps, each of which 

hopefully describe a different form of activity. Figure 4.2-3(A) shows a box plot 

indicating the number of t-maps created for all 40 patient runs that contained 

spikes, as well as the number containing activity in the brain and the number 

containing a cluster of activity larger than the applied thresholds; Figure 4.2-3(B) 

shows the same data for all 20 patient runs that contained prolonged events. It 

is obvious that by increasing the cluster size threshold one reduces the number 

of t-maps that are considered. In an ideal case, by applying this cluster size 

threshold only a single t-map would remain, and that t-map would describe the 

epileptic activity. In fact, for 8 of the 15 runs in which similar activity was 

detected (indicated by green cells in Table 4.2-1 and Table 4.2-2), that map 

which closely described what was seen in the EEG-fMRI results contained the 

largest cluster of activity out of all 2D-TCA maps created for that run; however, 

in the 7 other cases this was not true and another form of activity showed larger  
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Epileptic Activity Characteristics 
(obtained from EEG-fMRI data) 

2D-TCA Results 

Patient 
# 

# of 
spikes 

HRF Amplitude 
(% above baseline) 

Size 
(voxels) 

# of 
components 

# of t-maps 
with activity 

# of t-maps with 
cluster size of: 

15 50 100 200 

1 6 1.81 762 14 11 10 8 7 4 

1 17 1.03 733 9 8 7 6 4 3 

2 13 1.81 710 16 10 10 10 9 6 

3 5 1.53 697 3 3 2 1 0 0 

4 4 1.18 623 2 1 1 1 0 0 

5 4 1.45 507 28 18 15 12 8 5 

6 6 1.06 478 1 1 0 0 0 0 

7 18 1.87 424 2 2 2 2 2 2 

8 5 1.86 219 6 8 6 4 4 3 

9 5 1.36 201 9 8 6 4 2 1 

2 4 1.13 164 15 8 6 6 5 4 

1 7 0.99 155 7 3 3 3 3 1 

2 4 1.69 152 10 4 4 4 4 2 

2 5 1.56 132 14 6 5 4 3 3 

10 4 0.94 127 9 6 4 4 2 1 

11 11 1.75 114 3 2 2 1 0 0 

12 8 1.83 106 11 8 6 3 3 3 

5 7 1.65 102 10 8 8 8 6 5 

6 13 1.58 100 3 2 2 2 1 1 

4 15 1.31 99 2 1 0 0 0 0 

5 15 1.22 98 7 6 6 3 2 2 

13 5 1.68 97 7 6 6 4 3 2 

1 14 1.64 84 6 3 3 3 3 3 

1 18 1.29 82 7 6 5 5 5 1 

7 30 1.07 81 6 3 3 3 2 0 

13 6 1.61 78 3 3 3 3 2 2 

5 4 2.12 69 13 8 7 4 2 1 

4 9 2.05 63 4 3 2 0 0 0 

3 4 1.18 60 4 2 2 2 2 2 

10 5 1.92 51 2 2 2 1 0 0 

2 5 1.3 42 6 5 4 3 2 1 

14 7 1.73 36 10 5 5 2 1 0 

11 9 1.59 33 3 3 1 1 0 0 

11 5 1.22 29 9 8 7 2 2 2 

4 4 1.72 27 8 2 2 1 1 0 

8 5 1.85 26 8 6 5 4 1 0 

9 9 1.34 25 3 2 2 2 2 2 

15 10 1.26 23 13 11 8 7 5 2 

16 8 0.95 19 15 8 6 6 6 3 

8 6 1.64 17 17 10 10 7 5 4 

Table 4.2-1 Performance of 2D-TCA in detecting spikes in patient runs when different cluster 
size thresholds are applied. Runs are sorted by EEG-fMRI activation size from highest to lowest.
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Epileptic Activity Characteristics 
(obtained from EEG-fMRI data) 

2D-TCA Results 

Patient 
# 

# of 
events 

Average event 
duration (s) 

Total time 
active (s) 

HRF Amplitude 
(% above baseline) 

Size 
(voxels) 

# of 
components 

# of t-maps 
with activity 

# of t-maps with 
cluster size of: 

15 50 100 200 500 1000 

17 18 2.97 53.46 1.42 3341 10 7 6 6 6 4 1 0 

17 9 3.19 28.71 1.33 3159 11 10 10 9 6 6 2 0 

17 7 3.16 22.12 1.72 2845 13 13 8 6 3 2 2 0 

7 4 2.65 10.6 1.14 1385 5 5 5 5 4 3 2 0 

18 3 6.6 19.8 1.75 6469 5 3 2 2 2 2 0 0 

19 3 2.63 7.89 1.36 3843 11 9 9 7 5 3 0 0 

7 3 2.27 6.81 1.23 1312 18 6 5 3 3 2 1 1 

17 2 6.3 12.6 3.01 3478 8 8 7 5 4 4 1 0 

20 2 2.57 5.14 1.95 726 14 11 10 6 4 3 2 1 

20 2 2.38 4.76 1.08 621 13 13 8 3 3 1 0 0 

19 2 4.7 9.4 1.58 3678 10 8 7 6 5 4 1 0 

19 2 3.8 7.6 1.28 3556 6 3 3 3 2 2 1 0 

17 1 3.1 3.1 1.29 2142 6 6 5 3 3 2 0 0 

1 1 4.2 4.2 2.41 71 8 8 7 5 4 4 3 1 

20 1 4.07 4.07 1.06 597 3 3 3 2 2 2 1 0 

7 1 6.2 6.2 1.22 1440 5 5 2 2 1 0 0 0 

17 1 5 5 1.12 2798 7 6 5 2 2 1 1 0 

19 1 4.5 4.5 1.07 3802 4 2 2 1 1 1 0 0 

7 1 3.4 3.4 1.45 1189 16 13 10 4 3 3 0 0 

7 1 3.5 3.5 1.29 845 16 10 10 5 2 2 0 0 

Table 4.2-2 Performance of 2D-TCA in detecting longer interictal events when different cluster size thresholds are applied. Runs are sorted by 
number of events detected in the EEG from highest to lowest.
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A 

   

3.1  8.9 
t-value 

B 

   

3.1  6.9 
t-value 

Figure 4.2-1 Example of strong concordance (indicated by green in Table 4.2-1 and Table 4.2-2) 
between the t-map created by (A) EEG-fMRI and (B) one of the 2D-TCA components. The 
purple circle indicates the exact voxel whose slices are shown. 

activation than the detected epileptic activity. Looking at Figure 4.2-3(A) it can 

be seen that, for all runs that contained spikes, even when a cluster size 

threshold of 200 voxels is applied (which only provided a median of 2 remaining 

t-maps), up to 6 t-maps can remain. Likewise, for all runs that contained 

prolonged events, when a cluster size threshold of 500 voxels is applied (which 

provided a median of 1 remaining t-map), up to 3 t-maps can remain. 

While some of these components may include those that describe epileptic 

activity, many of them may describe other forms of activity that, without 

knowledge of EEG-fMRI results, may or may not be interpreted as arising from 

epileptic activity depending on the region of activation and the other 

information available (e.g. EEG, clinical observations, anatomical MRI, etc.). 
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A 

   

3.1  6.6 
t-value 

B 

   

3.1  5.4 
t-value 

Figure 4.2-2 Example of some overlap (indicated by yellow in Table 4.2-1 and Table 4.2-2) 
between the t-map created by (A) EEG-fMRI and (B) one of the 2D-TCA components. The 
purple circle indicates the exact voxel whose slices are shown. Note the activity in the frontal 
lobe in the sagittal slice of the EEG-fMRI map and its absence in the 2D-TCA map. 

Among these extra components, when a cluster size threshold of 15 voxels was 

applied, two were found to be common across a number of runs from different 

patients. The first, which was found to occur in 14 of the 60 runs, consisted of 

activation inside or close to the ventricles, an example of which is shown in 

Figure 4.2-4. It is believed that these maps may describe BOLD signal changes 

arising from residual movement artifacts, the patient’s respiration, or the 

patient’s heartbeat as the ventricles are susceptible to these forms of noise (see 

section 2.3.6). The second form of common activity, which was found to occur in 

12 of the runs, consisted of bilateral activity close, often slightly posterior, to the 

central sulcus, an example of which is shown in Figure 4.2-5. It is believed that 

these maps may describe motor or somatosensory activity that occurred in the  
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A 

 

B 

 

Figure 4.2-3 Box plot showing, for (A) all 40 patient runs containing spikes and (B) all 20 patient 
runs containing prolonged events, the number of t-maps created, number of those created that 
contain activity in the brain, and number of those that contain a cluster of activity larger than 
the applied threshold levels. 

patient, or was imagined by them, during the run. In fact, this region of 

activation is very similar to the common motor cortex activation observed in 

(Morgan et al 2008). In that study they state that the cause of the activity is not 
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completely understood, but that it is most likely due to some sort of motor 

activity by the subject even though no such deliberate task was required of 

them. 

 

3.1  7.8 
t-value 

Figure 4.2-4 Example of commonly found activation in the ventricles. 
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3.1  6.1 
t-value 

Figure 4.2-5 Example of commonly found activation near (in this case slightly posterior to) the 
central sulcus. 

4.2.1 Analysis by Neurologist 

Runs for which 2D-TCA created a t-map that closely described what was seen in 

the EEG-fMRI results (i.e. those 16 rows with green in Table 4.2-1 and Table 

4.2-2; only those t-maps created for these runs that had a cluster size of at least 

15 voxels were considered) were given to a neurologist for further analysis. This 

was done to determine, without the knowledge of EEG-fMRI results, the number 

of t-maps created by 2D-TCA that may be interpreted as describing epileptic 

activity within a given patient and the number that can be ignored on the basis 

that they show regions of activation that are highly unlikely to be generated by a 

given patient’s epileptic activity. Figure 4.2-6 shows a box plot indicating the 

number of t-maps created in these cases, as well as the number containing 

activity in the brain, the number containing a cluster of activity of at least 15 
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voxels, and the number that the neurologist indicated may be interpreted as 

arising from potential epileptic activity. While for all these runs it was known 

that only one of the t-maps created by 2D-TCA closely described what was seen 

with EEG-fMRI, the neurologist found that a median of 2 and a maximum of 5, 

each describing a different region of activation, could not be ignored and 

therefore could be considered as potentially being associated with the epileptic 

activity. For five of these runs the neurologist gave a score of 4 or 5 (values given 

for a t-map which describes areas of activation that are most likely resulting 

from epileptic activity) to a 2D-TCA created t-map that showed similar activation 

to what was seen in the EEG-fMRI results, while in three other runs the 

neurologist gave a score of 4 to a t-map that was known not to show similar 

activity to what was obtained by EEG-fMRI; the neurologist gave a maximum 

score of 3 (value given for a t-map which describes areas of activation that may 

or may not be resulting from epileptic activity) for t-maps created for the 

remaining 8 runs. So, while for some runs it was possible to easily select those 

2D-TCA created activation maps that describe epileptic activity, for 11 of the 16 

analyzed runs this was not possible. 

 

Figure 4.2-6 Box plot showing, for those runs that 2D-TCA created a t-map that closely 
described what was seen in the EEG-fMRI results, number of t-maps created, number of those 
created that contain significant activity in the brain, number of those with a cluster of activity 
of 15 voxels or larger, and number that, in the opinion of the neurologist, could not be ignored 
and therefore may describe epileptic activity. 
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5 Discussion 

The main advantage to localizing epileptic activity in fMRI data, for example by 

EEG-fMRI, is the ability to do so throughout the entire brain with high spatial 

precision. However, if this can be done without dependence on events detected 

in a simultaneously recorded EEG, the scanning process would be much more 

manageable and activity restricted to deep brain structures, which is 

undetectable by EEG, may actually be detected. This study investigated the 

ability of 2D-TCA, a data based method that detects transient activity in fMRI 

data independently of EEG, to detect BOLD signal changes resulting from 

epileptic activity of various forms in both simulated and patient data. Activity 

characteristics that were investigated included event frequency/duration, spatial 

extent, and associated HRF amplitude. When applied to the simulated data it 

was found that 2D-TCA functioned similarly in detecting activity of various spatial 

extents, but that it could only consistently detect activity in a run containing 5 

spikes/run, with an associated HRF amplitude of 1.5% above baseline or larger, 

10 spikes/run, with an HRF amplitude of 1.25% or larger, or one 5 s long event, 

with an HRF of 1% or larger. In all other cases, for example if there were fewer 

than 5 spikes/run or if the HRF amplitude was too small, 2D-TCA could not 

effectively detect the activity. When applied to patient data that contained 

activity similar to what was found to be detectable in the simulated data, it was 

found that only epileptic activity for which the EEG showed multiple prolonged 

events (each on the order of a few seconds) could be consistently detected by 

2D-TCA, while the detection of activity consisting of interictal spikes, although in 

some cases very accurate, was generally inconsistent. This better performance in 

detecting longer events may not only be due to the longer duration of activation 

(which would allow for a larger number of detected events), but also because for 

the same HRF, a prolonged event will cause a larger change in the BOLD signal 

than a spike will. It is also interesting to note that t-maps created by 2D-TCA, 
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which showed very similar activation to what was obtained by EEG-fMRI, often 

had more focal activation regions than their EEG-fMRI counterparts. This may 

indicate that 2D-TCA is more sensitive to the initial source of epileptic activity 

than EEG-fMRI is, a quality that would require further investigation to confirm. It 

should be noted that when creating t-maps from multiple regressors (i.e. 

components) the common practice is to pass all regressors through the same 

GLM analysis. However, in this study, as the number of components created by 

2D-TCA (greater than 5 and up to 15) was generally larger than the number used 

in typical event related fMRI studies, t-maps were created by passing each 

regressor through a separate GLM analysis. This was done to insure that any 

possible co-linearity between components did not diminish the level of 

activation seen in a given component’s t-map. The downside of this is that the 

model’s accuracy in describing activity may suffer. For example, if one voxel is 

actually affected by two separate types of activity, each described by a separate 

regressor, then the activity in the voxel is a function of both regressors and the 

model will be more accurate (i.e. produce a smaller error) if both regressors are 

passed through the same GLM, as opposed to passing each separately. 

The issue then arises: if 2D-TCA will only detect epileptic activity that has the 

above described characteristics which, in the case of a patient, are 

uncontrollable, how can it be determined, in the absence of EEG, if activity is 

expected to be detected in a given patient? In fact, given these conditions, it 

would not be possible to determine beforehand if a patient’s epileptic activity is 

expected to be detected with 2D-TCA. Rather, the above described 

characteristics, which concern the HRF amplitude and frequency/length of the 

activity, might be incorporated into the analysis of the t-maps generated by 2D-

TCA. For example, the HRF amplitude associated with activity described in each 

t-map could be calculated by taking the average peak amplitude of all voxels that 

are clustered to the same final component. Those components for which the HRF 
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amplitude is not deemed as sufficient could then be ignored. To determine 

whether or not activity described by a given t-map consisted of frequent and/or 

long enough activity one would simply have to look at the actual time course of 

the final component used to create that t-map. If the component’s time course 

does not describe frequent or long enough activity, its corresponding t-map 

could then potentially be ignored. 

Another possible method to reduce the number of considered t-maps would be 

to apply a cluster size threshold. For cases in which 2D-TCA created a t-map that 

closely described what was seen by EEG-fMRI, applying larger and larger cluster 

size thresholds led to fewer and fewer t-maps, but retained that which described 

the epileptic activity. Unfortunately, as the size of the activation region 

associated with a patient’s epileptic activity is not known before hand, it is hard 

to determine an optimal cluster size threshold that would maximally reduce the 

number of t-maps while retaining that which describes the epileptic activity. It 

would be inappropriate to exclusively select that t-map which showed the 

largest activation region as it would not necessarily be the one that describes the 

epileptic activity. The best way to treat the situation may be to reduce the 

number of considered t-maps, to something reasonable for visual inspection, by 

applying a cluster size threshold of 15 (for those runs in which activity similar to 

the EEG-fMRI results was obtained, applying this threshold resulted in a median 

of 6 t-maps). This reduced set could then be investigated by a neurologist to 

determine whether any of the included t-maps show activity of interest. In this 

study it was found that while a neurologist is able to ignore some of these maps 

on the basis that they describe activation regions that are highly unlikely to be 

associated with the syndrome of epilepsy seen in a given patient, in most cases 

more than one will remain, leading to an uncertainty as to which of the 

remaining activation maps describes the activity of interest. In addition, it was 

found that for 5 out of the 16 runs for which 2D-TCA created a component which 
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closely described what was seen by EEG-fMRI, the neurologist, blind to the EEG-

fMRI results, could not confidently qualify the t-map as describing regions of 

activation associated with the given patient’s epilepsy. This lack of confidence in 

determining which t-maps are and are not associated with epilepsy results from 

2D-TCA’s lack of specificity in detecting activity associated with epilepsy (EEG-

fMRI achieves this specificity by finding BOLD correlates to epileptic activity 

detected in the patient’s EEG). As such, 2D-TCA can only be effectively used to 

validate localization by other means or to create hypotheses as to where 

epileptic activity may be occurring. 

5.3 Advantages Compared to EEG-fMRI 
As mentioned, one of the major advantages of 2D-TCA when it is compared to 

EEG-fMRI is its potential to detect activity restricted to deep brain structures. 

While this was evident when 2D-TCA was applied to the simulated data (i.e. 

detection of activity in the right hippocampus ROI), it was not as clear from the 

patient data. This study saw three cases in which 2D-TCA applied to patient data 

created a t-map that the neurologist decided most likely described a region 

associated with epileptic activity but was not similar to what was seen in the 

EEG-fMRI produced map. However, it is expected that the areas of activation in 

all three cases would have been detected in the EEG as all were relatively 

superficial and consisted of an activated area of cortex larger than the minimum 

10 cm2
 required for EEG detection (Tao et al 2007) (why similar regions were not 

detected by EEG-fMRI may be a result of inadequate EEG markings, or, more 

likely, indicative that these regions were in fact not associated with epileptic 

activity). In fact, depth electrode recordings, which confirm that a patient’s 

epileptic activity is restricted to deep brain structures, would most likely be 

required for comparison to determine whether 2D-TCA is able to detect such 

activity or not; unfortunately, the patients included in this study had no such 

recordings. 
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Another point to consider is the assumption that EEG-fMRI requires one to 

impose in terms of the delay of the HRF, something that can be different from 

one person to another or even from one brain structure to another. Some 

techniques try to overcome this problem by processing the same fMRI data 

multiple times, each time with an HRF of different delay. On the other hand, 2D-

TCA requires no such assumption as it is a data based technique that detects 

events straight from the BOLD signal itself; only the exact shape of the HRF must 

be assumed, something that does not show nearly as much variability across 

different people or brain structures. 

5.4 Comparison to ICA 
Although independent component analysis (ICA) was not carried out in this 

study, the performance of 2D-TCA in detecting transient BOLD activity as 

compared to ICA has been previously investigated by Morgan et al. (Morgan et al 

2008). They found that detection by 2D-TCA was comparable to that by ICA (2D-

TCA provided slightly worse sensitivity), but with significantly fewer detected 

components (on the order of 5 compared to 10 or 100) and hence a higher 

specificity. Based on the 2D-TCA results obtained in this study and the findings of 

Morgan et al., we would predict a similar outcome; that is, applying ICA to the 

data used in this study would in fact provide better sensitivity than 2D-TCA did, 

but the number of extra components it creates compared to the number created 

by 2D-TCA makes 2D-TCA the more practical technique of the two. 

5.5 Future of TCA for Detection of Epileptic 
Activity 

Although it may be considered that 2D-TCA produces less certain results than 

EEG-fMRI, as the t-maps it creates lack specificity to epileptic activity, some 

changes not considered in this study may provide improvements in the 
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technique’s ability to detect epileptic activity, particularly of lower amplitude 

and event frequency. 

The first change involves the method by which event time courses are clustered 

into the 2D histogram. By the current method, event time courses are clustered 

based on the time point at which the voxel achieves its maximum value. An issue 

which arises is that if a voxel which is associated with epileptic activity is also 

associated with some other sort of larger activation during the scanning run, this 

other activation will define when its peak value occurs, and therefore how its 

event time course is clustered into the 2D histogram. This issue will reduce the 

ability of the algorithm to create final components that correlate with specific 

forms of activity. One idea to overcome this problem would be to cluster event 

time courses based on how similar they are to one another (e.g. by correlation or 

k-means cluster analysis) rather than by when their associated voxels reach their 

maximum values. In addition, spatial constraints, based on proximity and/or 

anatomy, could be imposed to define which event time courses can and cannot 

be clustered together. By implementing such a technique, which treats the 

temporal clustering step much more rigorously, it is believed that the final 

components created by 2D-TCA will more accurately describe different forms of 

activity seen in a given run. 

Another idea to consider would be to investigate the ability of 2D-TCA to detect 

epileptic activity within a restricted ROI. As applied in this study, 2D-TCA 

processed all voxels within the brain. However, its performance may improve if it 

is only applied to a specific region of the brain (for example one hemisphere, or 

lobe) within which the epileptogenic zone is expected to exist (i.e. based on what 

is observed from a patient’s EEG and other evaluation techniques). As fewer 

voxels would be processed, fewer voxels would be added to a given row in the 

2D histogram simply by chance, and therefore, 2D-TCA would create final 
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components that more accurately describe the detected activity. In addition, as 

activity occurring outside of the specified ROI would be ignored, it is expected 

that the number of t-maps would be reduced. It should be noted that in such a 

situation a new, more appropriate, insignificant component threshold value may 

need to be applied due to the fewer number of voxels being processed. 

Finally, the ability of 2D-TCA to detect epileptic activity across multiple fMRI runs 

should be investigated. Many EEG-fMRI techniques increase their statistical 

strength by combining the results obtained from separate runs recorded during 

the same scanning session. This idea could be incorporated into 2D-TCA in two 

ways. The first would be to simply concatenate multiple runs into a single scan 

consisting of voxels with much longer time courses. 2D-TCA could then be 

applied onto this single scan, although some steps in the 2D-TCA algorithm 

would have to be appropriately modified to account for the increased number of 

time samples, the differences in baseline that may exist from one run to another, 

and other issues of discontinuity that may arise when concatenating runs 

together. This would potentially help detect activity consisting of fewer events 

per run as more events would be able to be detected over this longer period. 

The second method would be to apply 2D-TCA on a run by run basis, but to then 

compare t-maps created for separate runs from the same scan session. While 

this would not improve 2D-TCA’s ability to detect activity consisting of few 

events, it may aid in determining which t-maps describe regions of activation 

associated with epileptic activity and which do not. It is expected that while t-

maps that describe the epileptogenic zone may be created for a number of runs, 

other t-maps that describe other transient activity might be specific to one run. 

As such, those t-maps for which a similar region of activation is seen across many 

runs may be retained, while those for which such similarity is not seen may be 

ignored. This would only work for patients who consistently have a frequent 

number of events such that many would occur during each 6 min run. 
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6 Summary and Conclusion 

This thesis has provided information related to the localization of epileptic 

activity within patients, specifically investigating the use of a relatively new 

technique, 2D-TCA, for this purpose. First, information was provided regarding 

the condition of epilepsy, specifically looking at common syndromes of epilepsy, 

as well as current methods of treatment. This was then followed by a review of 

the most common epileptic activity recording modality, EEG, which included 

information on the physical basis of its acquisition, as well as how it can be used 

to detect and localize epileptic activity. A review of fMRI was then presented, 

specifically looking at the physical basis of how the MR signal is recorded, the 

hemodynamic changes in the brain caused by neuronal activity, how these 

changes can be recorded through the BOLD signal, the most common fMRI data 

analysis method, the GLM, and the sources that cause noise in a typical fMRI 

scan. This was then followed by a description of common recording and analysis 

methods for EEG-fMRI, a technique used to localize epileptic activity with high 

resolution, as well as the advantages and disadvantages associated with using 

this technique. The initial development of TCA, a relatively new technique 

implemented to detect transient activity in fMRI data, was then presented along 

with information concerning its first applications to detect epileptic activity 

independently of the EEG, as well as the development of 2D-TCA for this same 

purpose. 

This thesis then provided the methods, results, and discussion associated with a 

study carried out to investigate the ability of 2D-TCA to effectively detect 

epileptic activity of various forms in both simulated and patient fMRI data. It was 

found that in certain circumstances, namely if enough events were recorded 

during an fMRI run and the HRF associated with those events was of adequate 

amplitude, 2D-TCA could consistently detect epileptic activity. However, due to 
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its lack of specificity in creating activation maps that describe epileptic activity, it 

was concluded that 2D-TCA can only be effectively used to validate localization 

of epileptic activity by other means or to create hypotheses as to where this 

activity may be occurring. This being said, the ability to confidently detect 

epileptic activity with 2D-TCA should not be necessarily ruled out as it may be 

further developed through the application of certain modifications that could 

potentially improve its performance, some examples of which have been 

presented in this thesis. 
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