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Abstract

String Gas Cosmology is a non-singular early universe scenario in which the universe begins

described by the thermal properties of a gas of strings. While this scenario leads to many

interesting predictions such as the emergence of three large dimensions and a scale-invariant

spectrum of cosmological perturbations, it still lacks a complete description. In this thesis,

which contains five published articles, we take steps toward obtaining a complete scenario for

String Gas Cosmology by considering matrix theory as a possible description. In particular,

we consider the BFSS and IKKT models, which are both non-perturbative descriptions of

superstring theory. Our work is divided into four parts. In the first one, we consider features

of an emergent universe as described by the BFSS and IKKT model at finite temperatures.

We find that thermal fluctuations in both models can source a scale-invariant spectrum of

cosmological perturbations, in line with expectations from String Gas Cosmology. In the

second part, we elaborate on features of the background in the context of the IKKT model.

More precisely, we formulate the notion of a space-time metric in this model based on features

from numerical simulation. In the third part, we investigate a dynamical mechanism in

which the IKKT model acquires a mass term, potentially realizing early universe solutions.

In the fourth part, we probe symmetry breaking in the BFSS model as potential evidence

for the emergence of three large dimensions. We find evidence that symmetry breaking

can occur at high temperatures using the Gaussian expansion methods. In conclusion of

this thesis, we find good evidence from matching experimental predictions and symmetry-

breaking processes that matrix theory can provide a framework for String Gas Cosmology,

with remaining aspects such as a complete background description left to be worked on.
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Abrégé

La cosmologie à gaz de cordes est un scénario dans lequel l’univers est initialement décrit

par les propriétés thermiques d’un gaz de cordes. Bien que ce scénario conduise à de nom-

breuses prédictions intéressantes, telles que l’émergence d’un universe à trois dimensions

et un spectre de perturbations cosmologiques invariant d’échelle, une description complète

de ce scenario n’a toujours pas été formulée. Dans cette thèse, qui contient cinq articles

publiés, nous faisons des progrès vers une description complete du scénario à gas de cordes

en considérant la théorie des matrices comme description potentielle. En particulier, nous

examinons les modèles BFSS et IKKT, qui sont tous deux des descriptions non-perturbatives

de la théorie des supercordes. Notre travail est divisé en quatre parties. Dans la première,

nous étudions les caractéristiques d’un univers émergent tel que décrit par les modèles BFSS

et IKKT à une temperature fixte. Nous constatons que les fluctuations thermiques dans ces

deux modèles peuvent être à l’origine d’un spectre de perturbations cosmologiques invari-

ant d’échelle, en accord avec la cosmologie à gaz de cordes. Dans la deuxième partie, nous

étudions les charactéristiques évolutives de l’espace-temps dans le cadre du modèle IKKT.

Plus précisément, nous formulons la notion d’une métrique de l’espace-temps dans ce modèle

en nous basant sur des caractéristiques issues de simulations numériques. Dans la troisième

partie, nous investiguons un méchanisme dans lequel le modèle IKKT acquière one masse,

ce qui pourrais mener à des solutions d’univers relié au début de l’univers dans ce model.

Dans la quatrième partie, nous étudions le possible bris de symétrie dans le modèle BFSS

comme une preuve potentielle de l’émergence de trois dimensions. Nous trouvons des in-

dices démontrant un possible bris de symétrie à haute températures en utilisant la méthode

d’expansion Gaussienne. En conclusion de cette thèse, nous trouvons de solides indications,

issues de la correspondance entre les prédictions expérimentales et un potentiel processus
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de bris de symétrie, que la théorie des matrices peut fournir un cadre pour la cosmologie à

gaz de cordes. Par contre, certains aspects tels qu’une description complète de l’évolution

cosmologique, restent à approfondir.
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Chapter 1

Introduction

One of the greatest challenges in theoretical physics today is to understand the origin of the

universe and the mechanisms at play during its formation. A major complication arises from

the fact that our current framework for the origin and evolution of the universe, Standard

Big Bang Cosmology (see [8] for a review), predicts that the universe begins with an initial

singularity. Conceptually, this singularity signals the breakdown of Einstein’s theory of

gravitation, meaning that general relativity cannot fully describe the true beginning of the

universe. To address this issue, new physics or a more fundamental theory is required.

Currently, string theory (see [21] for an introduction) is the leading candidate for this

task, as it provides a consistent theory of quantum gravity and its coupling to matter. In

string theory, there exists a fundamental length scale, the string scale, below which singu-

larities are expected to be resolved by stringy effects. Within this framework, one may hope

that the initial big bang singularity is properly resolved. Many scenarios inspired by string

theory have been proposed to resolve the singularity problem. Among them, String Gas Cos-

mology (see [11] for a review) presents an elegant solution. In this model, the early universe

evolves according to the thermal properties of a gas of strings, which possesses a maximum

temperature, the Hagedorn Temperature, linked to the string scale, hence imposing a max-

imum density. As a result, the initial space-time curvature in String Gas Cosmology must

be finite at the beginning of the universe, hence avoiding the singularity. After this initial

phase, the universe transitions into the standard Big Bang scenario, leaving behind two key

predictions. First, only three of the nine spatial dimensions in string theory become large,

17



offering an explanation for why we live in a three dimensional world out of the nine string

theory predicts. Second, thermal fluctuations of the string gas generate a scale-invariant

spectrum of cosmological perturbations, providing a mechanism for the current distribution

of matter in the universe.

Despite these promising features, the string gas scenario poses some challenges. Like

many string-inspired models, one must go to the non-perturbative (high-energy) regime of

string theory in order to fully describe the physics of the Big Bang. However, to this day, the

dynamics of string theory in this regime are not fully understood. As a result, performing

a full dynamical analysis of String Gas Cosmology remains a challenging task. There are,

however, descriptions of string theory that might show promise in taming non-perturbative

effects in the theory. This is the case of matrix models, for example. In matrix models, the

dynamics of string theory can be studied without prior notion of strings or knowledge on

how to carry out a perturbative expansion in string theory. Rather, strings, membranes,

interactions, and space-time are emergent in the theory. Moreover, matrix descriptions of

string theory are in general naturally non-commutative, which may give a hint on how to

resolve singularities. In light of these properties, matrix theory is an interesting candidate

to study the dynamics of the early universe.

In this thesis, which contains five published articles, we investigate matrix theory as a

potential non-perturbative framework for string gas cosmology. Our approach builds on the

BFSS [22] and IKKT [13] matrix models, which are respectively non-perturbative descrip-

tions of M-theory in the Discrete Light Cone Quantisation limit, and Type IIB string theory.

Our findings are presented in four parts, each summarized as follows. In the first part, we in-

vestigate thermal fluctuations of the BFSS and IKKT model at finite temperatures. We find

that these fluctuations can produce a scale-invariant spectrum of cosmological perturbation,

in agreement with the results of string gas cosmology. In the second part, we elaborate on

features of emergent cosmological backgrounds in the context of the IKKT model, in an at-

tempt to describe emergent cosmological solutions. More precisely, we formulate the notion

of a space-time metric in this model based on features from numerical simulation. In the

third part, we investigate a mechanism in which the IKKT model acquires an effective mass

term following compactification on a six-torus where fermions have anti-symmetric boundary
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conditions. It is known that the IKKT model with a mass term has cosmological solutions.

For this reason, the effective mass term acquired from compactification may lead to inter-

esting early universe solutions. Finally, in the fourth part, we probe symmetry breaking in

the BFSS model, as potential evidence for the emergence of three large dimensions using

the Gaussian Expansion Method [18]. Using this method, we find evidence that symmetry

breaking can occur at high temperatures, just like in String Gas Cosmology. In this case,

the symmetry of the system after such a transition is still an open question.
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Chapter 2

Review of key concepts

Before going into detail on how matrix theory may be related to String Gas Cosmology, let

us first review some important notions related to Standard Big Bang Cosmology, String Gas

Cosmology, and matrix cosmology. In what follows, we will review how Standard Big Bang

Cosmology describes our universe. We will also review how Standard Big Bang Cosmology

faces three challenges, namely the horizon, flatness, and singularity problem, and how a

mechanism is needed to explain the distribution of matter in our universe on large scales.

We will then review String Gas Cosmology, and how it can address some of the problems

of Standard Big Bang Cosmology. Moreover, we will review how thermal string fluctuations

can describe the observed distribution of matter on large scales. Finally, we will introduce

matrix theory and matrix cosmology. As part of this last section, we will introduce the IKKT

and BFSS matrix models, how strings and interactions are emergent in these models, how

cosmological solutions emerge in matrix theory, how a mass term can lead to cosmological

solutions, and how the Gaussian Expansion Method can be used to probe for symmetry

breaking in the IKKT model. These concepts will then be used later in the thesis to draw

comparisons between matrix theory and String Gas Cosmology.

2.1 Standard Big Bang Cosmology

Standard Big Bang Cosmology, also known as the ΛCDM (Lambda Cold Dark Matter)

model, is currently the leading model to explain the evolution of the universe from its early
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times to today. As the name suggests, the model assumes that the expansion of the universe

is driven by three forms of energy: dark energy (Lambda), cold matter (which includes

regular matter and dark matter), and radiation, which is not included in the name but

is also assumed to be present. In the next subsection, we will explain the framework of

Standard Big Bang Cosmology. Moreover, we will go over observational aspects, namely the

CMB spectrum, which we will try to explain in this thesis, along with some problems that

we will also try to address.

2.1.1 Dynamics of Standard Big Bang Cosmology

In Standard Big Bang Cosmology, the evolution of the universe is driven by Einstein’s

equations of motion

Rµν −
1

2
gµνR = 8πGNTµν , (2.1)

as derived from the Einstein action

S =
1

16πGN

∫
d4x
√
−g R + Smatter (2.2)

coupled to matter. In Einstein’s field equations, the field strength tensor Tµν induces cur-

vature of space-time, whose information is encoded in the Ricci tensor Rµν and the Ricci

scalar R. The strength of the induced curvature is mediated by Newton’s constant GN .

In the context of cosmology, one usually imposes the cosmological principle to obtain

cosmological solutions using the Einstein field equations. This principle asserts that on

sufficiently large scales, the universe is homogeneous (the same at every point) and isotropic

(the same in all directions). Under this assumption, the stress-energy tensor Tµν , must take

the following form:

T µν =


ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p .

 (2.3)

Here, ρ is the energy density per unit volume of matter in the universe, and p is the pressure

of matter in the universe.
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The cosmological principle also constrains the possible forms the space-time metric gµν

can take. For a homogenous and isotropic universe, the most general form of the metric is

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2

(
dθ2 + sin2θdφ2

))
. (2.4)

Here, a(t) is a scale factor that describes how the universe expands (or contracts, in certain

cases), and k is a constant related to the spatial curvature of our universe. In the present case,

k can only take three values, leading to cosmological solutions with different characteristics:

k = 0 (flat universe), k = −1 (closed universe), and k = 1 (open universe).

Substituting our ansatz for the stress tensor and the metric (equations 2.4 and 2.3), we

obtain the Friedmann-Robertson-Walker (FRW) equations for the evolution of the universe:

8πGN

3
ρ =

(
ȧ

a

)2

+
k

a2
, (2.5)

ä

a
= −4πGN

3
(ρ+ 3p) . (2.6)

In addition to these equations of motion, one usually assumes energy-momentum conserva-

tion, which implies that

∇µT
µν = 0 . (2.7)

This equation, named continuity equation, follows directly from imposing that the mat-

ter component of the Einstein action with matter (equation 2.2) is invariant under an in-

finitesimal change of coordinates (diffeomorphism invariance). For our choice of metric and

stress-energy tensor, the continuity equation specifically takes the following form:

ρ̇+ 3

(
ȧ

a

)
(ρ+ p) = 0 (2.8)

In Standard Big Bang cosmology, it is usually assumed that the expansion of the universe

is driven by three matter entities: radiation, cold matter, and dark energy. Each of these

entities obeys an equation of state of the form

p = ωρ , (2.9)

where ω = 1/3 for radiation, ω = 0 for matter, and ω = −1 for dark energy. Under this

assumption, the FRW equations and the continuity equation can be simultaneously solved,
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leading to the solutions

ρ ∝ a−3(1+ω) a(t) ∝

t
2/[3(1+ω)] ω 6= −1

eHt ω = −1

, (2.10)

In the present case, which of the three entities contributes to the Einstein equation is deter-

mined by which one dominates the energy density at a given point in time. At early times,

the energy is dominated by radiation (ρ ∼ a−4). The radiation era then leaves place to the

matter-dominated era (ρ ∼ a−3), then the dark energy-dominated era (ρ ∼ const.). This

transition between energies can be seen more accurately in Figure 2.1. This paints the picture

Figure 2.1: Visual representation of how each type of matter scale as a function of the redshift

z. At early times, radiation dominates followed by matter and vacuum energy. Here, the

redshift z is related to the scale factor a(t) of the universe via a(t) = a(t0)/(1 + z), where t0

is the age of the universe at the present time. The original figure can be found in [6].

of a universe that begins in a radiation-dominated era, transitions to a matter-dominated

era, and then ends eternally inflating in a dark energy-dominated era.

2.1.2 Observational status of Standard Big Bang Cosmoology

For the longest time, the energy content of the universe was largely unknown to cosmologists.

However, this all changed with the discovery of the Cosmic Microwave Background in 1965,
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and subsequent studies of this background which sparked a new era of precision cosmology.

These observations revolve around a period of the universe named the time of recom-

bination. This period describes a time of the universe where matter at high temperature,

which was then in the form of a plasma of protons and electrons, cooled enough under the

expansion of the universe to combine into a gas of hydrogen. Since plasma is opaque to

light, this period marks the time at which light first became ”free” in the universe, allowing

for observation. Consequently, the time of recombination is the oldest epoch of the universe

one can study using electromagnetic radiation. The residual radiation that can be observed

from this era bears the name Cosmic Microwave Background (CMB), coming from the fact

that this radiation can be observed in the microwave portion of the electromagnetic spec-

trum. A picture of this background can be found in Figure 2.2. In the CMB, one observes

Figure 2.2: Map of temperature fluctuations in the Cosmic Microwave Backgorund, as shown

in the Plank 2015 survey [20].

a background temperature with a value around 2.7 K with temperature fluctuations on the

order of
δT

T
∼ 10−4 . (2.11)

This shows remarkable agreement with the cosmological principle, which demands that the

24



universe must be homogeneous and isotropic.

From CMB spectrum data, along with data from galaxy surveys and measurements on the

current Hubble expansion rate H0, it is possible to infer the energy content of the universe.

For an energy species i, the relative abundance is often expressed as the ratio

Ωi ≡
ρi
ρc

(2.12)

of the energy density ρi of the species with respect to the critical density

ρc =
3H2

0

8πGN

, (2.13)

which is related to the sum of all energy species in a flat universe. According to the most

recent observations from the Planck satellite (Planck 2018 observations taking into account

distance measurements from baryon acoustic oscillations [23, 24]), our universe has the fol-

lowing energy content

ΩΛ = 0.6889± 0.0056 ,

Ωm = 0.3111± 0.0056 ,

Ωr ∼ 10−4 .

Here, ΩΛ is the energy fraction of dark energy, Ωm is the energy fraction of matter, and Ωr

is the energy fraction of radiation. Using observations, it is also possible to evaluate how

much energy in the universe is expressed in the form of curvature, as related to the curvature

parameter k. This is usually done by measuring the energy fraction of curvature Ωk, which

is defined as

Ωk ≡ Ω− 1 =
ρ− ρcrit

ρcrit

(2.14)

Here, ρ is the total energy density of the universe, which includes dark energy, matter,

radiation and curvature. In the present case, Ω = 1 describes a flat universe (ρ = ρc).

According to the Planck 2018 survey [24], on obtains

Ωk = 0.0007± 0.0019 , (2.15)

which is consistent with a flat universe (k = 0).
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Along with precision measurement of the energy content of the universe, valuable infor-

mation about the beginning of the universe can be found by studying the fluctuations around

the CMB background temperature. This analysis can be done by looking at the amplitude of

different Fourrier modes of oscillation. To extract these Fourrier modes, one usually assumes

the following spherical harmonics expansion

Θ(n̂) =
∆T (n̂)

T0

=
∑
lm

almYlm(n̂) .

where

alm =

∫
dΩY ∗lm(n̂)Θ(n̂) , (2.16)

is the amplitude of the various harmonics, and the Ylm(n̂)’s are spherical harmonic fonctions

in a direction n̂ in the sky. Taking the norm of these amplitudes, one obtains the angular

power spectrum

Cl =
1

2π

∑
m

〈a∗lmalm〉

which for the CMB can be plotted as in Figure 2.3. In Figure 2.3, there are three scales

Figure 2.3: Angular power spectrum Cl of the CMB as a function of the angular frequency

l. The original figure can be found in [8].

of interest, which are highlighted by Region I, II , and III. On large (super-Hubble) scales
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(Region I), fluctuations are frozen. These fluctuations are not related to matter oscillations,

and therefore must be explained by physics near the Big Bang. At intermediate scales

(Region II), we observe peaks related to oscillations of the matter fluid at the moment of

recombination. Finally, on small scales (Region III), fluctuations are damped because their

wavelengths are smaller than the mean free path of the photons.

In principle, any scenario that describes the early universe should be able to explain the

features of the CMB. Most importantly, it should explain the scale-invariance of pertur-

bations on large scales, which cannot be explained by conventional matter perturbations.

Fortunately, there exist scenarios, such as String Gas Cosmology, where these features can

be explained. In the next section, we will see how these fluctuations can be realized in this

context. In Part II, we will also see how this can be realized in matrix cosmology.

2.1.3 Problems of Standard Big Bang Cosmology

Despite the success of Standard Big Bang Cosmology in describing our universe, the model

suffers from a few conceptual issues. These issues, named the horizon problem, the flatness

problem, and the singularity problems, are summarised below.

The horizon problem

As we saw in the previous section, one observes in the CMB that the temperature of the

universe is approximately the same in all directions, signaling a homogeneous and isotropic

universe. A priori, this should mean that all parts of the universe came in causal contact at

some point before the time of recombination, and thermalized. However, if we look back at

the time evolution of the universe in Standard Big Bang cosmology, this simply cannot be

the case. This fact can be seen from computing the past light cone lp(trec) from the present

time t0 to the time trec of recombination, and the future light cone lf (trec) from the time of

the big bang to the time of recombination, which gives

lp(trec) =

∫ t0

trec

a(t)−1dt ≈ 3t
1/3
0

(
1−

(
trec
t0

) 1
3

)
, (2.17)

lf (trec) =

∫ trec

0

a(t)−1dt ≈ 3 trec
1
3 . (2.18)
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Figure 2.4: Schematic description of the past light cone lp and the future light cone at the

time of creation lf . As we can see, the past light cone is much larger than lf at trec, the time

of recombination. The original figure can be found in [9].

In the above, we assumed that the universe evolves in a matter-dominated phase, neglecting

the subdominant contribution from the radiation-dominated phase. Plotting the results,

which can be seen in Figure 2.4, we see that the past light cone is much larger than the future

light cone at the time of recombination. Consequently, distant patches in the early universe

cannot come into causal contact before recombination, leaving the present homogeneity of

the universe unexplained.

The flatness problem

The flatness problem emerges from the fact that in a radiation or matter universe, the uni-

verse deviates from flatness as a function of time. Consequently, we must impose incredibly

flat initial conditions on the universe in order to obtain the level of flatness observed today.

To see why this is the case, we can look at the curvature parameter defined in Section

2.1.2. Using Friedmann’s equations (Equation 2.6), along the solutions for the scale factor
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a(t) (Equation 2.10), we find that

Ωk =
k

(aH)2
∼ k t(1+3ω)/[3(1+ω)]. (2.19)

As we can see, if 1 + 3ω > 0, which is the case in a radiation or matter-dominated universe,

the energy fraction related to the curvature k increases as a power law as a function of time.

For this reason, for the energy fraction Ωk to be as small as it is measured today, it must

have been extremely small at the moment of the big bang. Without a mechanism that can

drive the universe to flatness, or imposing extremely flat initial conditions, Standard Big

Bang Cosmology cannot explain these extremely fine-tuned initial conditions.

The singularity problem

Finally, the last problem one encounters in Standard Big Bang Cosmology, or at least the

last we will discuss here, is the singularity problem. As one approaches the Big Bang in this

scenario, the density of the universe diverges as

ρ ∼ a−4 , a(t) ∼ t1/2 (2.20)

which is the case in a radiation-dominated universe. This leads to a curvature of the universe

which diverges as

R ∼ t−2 . (2.21)

as t → 0. This singularity signals the breakdown of general relativity. For this reason, to

explain the beginning of the universe, one must turn to new physics.

2.2 String Gas Cosmology

Many scenarios involving new physics have been suggested to answer the problems of Stan-

dard Big Bang Cosmology, along with the scale-invariance of the angular power spectrum on

large scales. In the present thesis, we will focus on only one of these scenarios, namely String

Gas Cosmology. String Gas Cosmology is a scenario in which the beginning of the universe

is explained by a gas of string at finite temperature. Below, we review the key aspects of

String Gas Cosmology, how it solves some of the problems of Standard Big Bang Cosmology,

and how it can explain the observed features of the CMB.

29



2.2.1 Dynamics of String Gas Cosmology

In the String Gas Cosmology scenario (see [10] for original work), the nine spatial dimensions

of the universe begin compactified on a torus of radius R. This assumption, which is made

in order to simplify the study of string thermodynamics, is not in contradiction with the

observed properties of our universe if one assumes that, in three of the directions, the size of

the compact space is at least equal to the size of the observed universe. This will be a natural

consequence of the present scenario as we will see shortly. In such a space-time, closed strings

acquire a spectrum that contains momentum modes, winding modes, and oscillatory modes:

M2 =
( n
R

)2

︸ ︷︷ ︸
Momentum modes

+

(
mR

α′

)2

︸ ︷︷ ︸
Winding modes

+
2

α′

(
N + Ñ − 2

)
︸ ︷︷ ︸

Oscillatory modes

.

In the spectrum above, the momentum modes are the stringy analogue of the Kaluza-Klein

modes, which quantum fields usually acquire when compactified on a torus, the winding

modes come from strings winding around the torus, and the oscillatory modes are the usual

modes found in closed strings in a non-compact space-time. In the expression above, α′ is a

constant related to the string tension T via α′ = 1/(2πT ), and N and Ñ are integers related

to the quantization of the string’s oscillatory modes.

The spectrum above has an important property named T-duality. This duality implies

that the momentum modes and the winding modes of closed strings can be interchanged

under the following relations

R←→ α′

R
, n←→ m.

As a result of T-duality, string gases acquire the following dynamical properties, which

are summarised in Figure 2.5. At large R, the winding modes are suppressed, and all the

energy is in the momentum modes. As one shrinks the size of R, the momentum modes

become heavy, the winding modes become light, the temperature increases, and the thermal

energy starts flowing in the winding and oscillatory modes. At some point near R ∼
√
α′, the

system will reach a limiting temperature, namely the Hagedorn temperature TH ∼ /
√
α′ [25],

which arises from the fact that the density of states of the closed string oscillatory modes

grows exponentially as one reaches this temperature causing the partition function of closed
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Figure 2.5: The temperature (vertical axis) as a function of radius (horizontal axis) of a gas

of closed strings in thermal equilibrium. The original figure can be found in [11].

strings to diverge. Then, as one shrinks R further, the temperature will become low enough

that the oscillatory modes are no longer excited, and all the energy will be found in the

winding modes, which are now light.

Given the aforementioned thermal properties of string gases, String Gas Cosmology as-

sumes that the universe starts in a meta-stable phase near the Hagedorn temperature. During

this time, this metastable equilibrium is maintained by counterbalancing the positive pres-

sure of the string momentum modes, and the negative pressure of strings winding around

the torus.

During the meta-stable phase, the negative pressure of the winding modes will prevent

space from expanding. There is, however, a nice dimension counting argument that can

explain how winding modes can annihilate, allowing the universe to leave the Hagedorn

phase and expand. In more than four dimensions, string world-sheets have measure zero

interaction probability. This comes from the fact that strings swipe two-dimensional world-

sheets, and that randomly placed strings will generally miss each other unless they overlap.

For this reason, closed strings with corresponding winding number and anti-winding number

will in general not find each other and annihilate. However, in a space-time with three

spacial dimensions or less, the world sheet of strings will generally meet each other, allowing

winding modes to annihilate (see Figure 2.6 for a visual representation of this process). For

this reason, String Gas Cosmology predicts that three spatial dimensions must become large

31



Figure 2.6: The process by which string loops are produced via the intersection of winding

strings. The top and bottom lines are identified and the space between these lines represents

space with one toroidal dimension un-wrapped. The original figure can be found in [11].

following the Hagedorn phase, leading to a four-dimensional emergent space-time.

It is important to note that supersymmetry plays a crucial role here in this dimension

counting argument. Given that strings are supersymmetric objects, they do not attract nor

repel each other since the attraction force from the string tension and the repulsion force

from the charge cancel out. In abscence of attraction between the strings, the string-crossing

probability determines the interaction probability.

Figure 2.7: Evolution of the scale factor in string gas cosmology. The vertical axis represents

the scale factor of the universe, the horizontal axis is time. The original figure can be found

in [11].

Compiling all the processes we have overviewed so far, String Gas Cosmology paints the

following picture for the evolution of the early universe (see Figure 2.7). At early times,
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the universe is in a meta-stable state near the Hagedorn temperature, and the scale factor is

approximately constant. Following this metastable state, the winding modes of closed strings

around a torus annihilate, and three dimensions become emergent. At this moment, the scale

factor of the universe starts increasing, and one transitions to the radiation-dominated phase

of Standard Big Bang Cosmology.

2.2.2 Resolution of the Standard Big Bang problems in String Gas

Cosmology

So far, we saw that the early-time evolution of the universe in String Gas Cosmology has

key differences from Standard Big Bang Cosmology. These differences allow String Gas

Cosmology to address some of the problems encountered in Standard Big Bang Cosmology.

We summarize answers to some of these problems below.

Singularity problem

In Standard Big Bang Cosmology, the singularity problem emerges because the density of

matter is allowed to become infinite, leading to infinite curvature. In String Gas Cosmology,

there is a limiting temperature called the Hagedorn temperature. For this reason, one

expects there exists a limiting density of strings in the early universe, and therefore a limiting

curvature. Consequently, the beginning of the universe in String Gas Cosmology is non-

singular. This then follows with a transition to Standard Big Bang Cosmology.

Horizon problem

In Standard Big Bang Cosmology, the Horizon problem arises because different regions of the

universe do not become in causal contact prior to the time of recombination. For this reason,

it is a puzzle as to why the universe is allowed to thermalize prior to CMB observations. In

String Gas Cosmology, this issue is resolved by the existence of a meta-stable state before

the Standard Big Bang evolution. During this phase, the physical distance between any two

points remains small for an extended duration. For this reason, assuming the meta-stable

state lasts for a sufficiently long amount of time, the universe will be able to thermalize.
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Once the universe starts expanding, the properties of this initial thermal state, including

homogeneity, will be preserved along different expanding patches, explaining the observed

homogeneity of our universe.

Flatness problem

The resolution of the flatness problem remains to this day one of the key limitations of string

gas cosmology, as it does not provide a mechanism to explain the observed flatness. One

should expect, however, that a non-perturbative description of String Gas Cosmology should

provide answers in this regard. This problem remains a topic of investigation.

All-in-all, the main strength of String Gas Cosmology is that it can solve the singularity

and horizon problems of Standard Big Bang Cosmology using quite general properties of

string theory. The flatness problem, however, is still to this day unanswered, and the subject

of ongoing research.

2.2.3 Experimental predictions of String Gas Cosmology

In addition to solving some of the problems of Standard Big Bang Cosmology, String Gas

Cosmology can explain the observed features of the CMB (see [12] for original work). This

is done in the following way. First, thermal fluctuations of strings, which are scale-invariant,

exit the Hubble radius during the Hagedorn phase and become frozen. At a later time, during

the Standard Big Bang phase, some of these modes then re-enter the Hubble horizon, start

oscillating again, and source the oscillation peaks of the CMB. Perturbations that remain

super-Hubble at the time of recombination, in their case, remain frozen and showcase the

same scale-invariant spectrum that was sourced when the modes exited the Hubble horizon

(see Figure 2.8).

The most important part of this process is that modes that exit the Hubble horizon must

be scale-invariant. For thermal fluctuations of strings, this scale invariance can be shown in

the following way. We first fluctuate around a cosmological background of the FRW form.

Here, we will assume a metric of the form

ds2 = (1 + 2Φ)dt2 − a(t)2 [(1− 2Φ)δij + hij] dx
idxj . (2.22)
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Figure 2.8: Sketch of how modes of oscillations of thermal strings exit and re-enter the

Hubble radius in String Gas Cosmology. The original figure can be found in [11].

where Φ describes the scalar component of the fluctuations, and hij describes the tensor

components of the fluctuations. We then relate Φ and hij to thermal properties of matter

using the linearized Einstein’s equations

∇2φ = 4πGNδT
0
0 , ∇2hij = −4πGNδT

i
j . (2.23)

In order to obtain the above, we assumed that transverse components δT 0
i are zero. We

then move to Fourrier space in order to find expressions for 〈|Φ(k)|2〉 and 〈|h(k)|2〉. Using

equations 2.23, we find

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 0
0 (k)δT 0

0 (k)〉 , (2.24)

and

〈|h(k)|2〉 = 16π2G2k−4〈δT ij (k)δT ij (k)〉 , i 6= j . (2.25)

In the above, the scalar spectrum and tensor perturbations relate to the expectation value

of density perturbations, and the expectation value of transverse excitations of the stress-
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energy tensor. Both quantities can be computed from the thermal partition function Z of

matter in the following way. First, we use the fact that thermal fluctuations of the stress

tensor can be encoded into the following tensor

Cµ
ν
σ
λ ≡

〈
T µν T

σ
λ

〉
−
〈
T µν
〉〈
T σλ
〉

= 2
gµα√
−g

∂

∂gαν
( gσδ√
−g

∂lnZ

∂gδλ
)
+2

gσα√
−g

∂

∂gαλ
( gµδ√
−g

∂lnZ

∂gδν
)
, (2.26)

where
〈
T µν
〉

can be computed from

〈T µν 〉 = 2
gµλ√
−g

∂lnZ

∂gνλ
. (2.27)

We then consider fluctuations in a three-dimensional box of characteristic size R = k−1, and

move to the position basis using

Cµ
ν
σ
λ(R) = k−3Cµ

ν
σ
λ . (2.28)

This allows us to use the following expression for the density perturbations

〈δT 0
0 (k)δT 0

0 (k)〉R = C00
00 =

T 2

R6
CV , (2.29)

along with the following expression for the transverse stress-energy perturbations

〈δT ij (k)δT ij (k)〉R = Cij
ij = α

T

R2

∂p̃

∂R
. (2.30)

These expressions depend on well-known properties of thermal systems. First, we can see

that the density perturbations depend directly on the heat capacity

CV =

(
∂E

∂T

)
V

, (2.31)

of the system. Additionally, the transverse stress-energy perturbation depend directly on

transverse pressure perturbations p̃, which can be computed from the free energy as follows

p̃ = − 1

V

∂F
∂lnR

. (2.32)

Consequently, the only two ingredients we need to compute the power spectra are the heat

capacity of the system CV , and the transverse pressure perturbations p̃.
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For closed strings at a finite temperature near the Hagedorn temperature TH , it has

been shown [12] that the heat capacity of closed strings in a three dimensional box with

characteristic size R obeys

CV ≈
R2/l3s

T (1− T/TH)
, (2.33)

with a pressure satisfying

p ≈ nHTH −
2

3

(1− T/TH)

l3sR
ln

[
l3sT

R2(1− T/TH)

]
. (2.34)

Using these two quantities, we can find the power spectrum PΦ(k) of scalar fluctuations and

the power spectrum Ph(k) of tensor fluctuations, which are related to the two-point functions

of Φ and hij via

PΦ(k) = k3〈|Φ(k)|2〉 , Ph(k) = k3〈|h(k)|2〉 . (2.35)

Using the thermal properties of strings, we find

PΦ = 16π2G2k2T 2CV = 16π2G2
N

T

l3s

1

1− T/TH
,

for the power spectrum of scalar perturbations, and

Ph ∼ 16π2G2
N

T

l3s
(1− T/TH) ln2

[
1

l2sk
2
(1− T/TH)

]
,

for the power spectrum of tensor perturbations. In both cases, the power spectrum is inde-

pendent of k, and is therefore scale-invariant. In String Gas Cosmology, the scale-invariance

of scalar fluctuations is explained by the fact that the heat capacity has ”holographic” scaling,

meaning that for box of size R3, the heat capacity scales as CV ∼ R2 instead of CV ∼ R3.

Given this scaling, one obtains a perfect cancelation of the powers of k in Equation 8.1,

leading to a scale-invariant spectrum of scalar perturbations. A similar phenomenon also

happens with the transverse pressure fluctuations of the system. In this case, a pressure

that scales as p ∼ 1/R, which is characteristic of a ”holographic” scaling of the free energy

(F ∼ R2), leads to a scale-invariant spectrum of tensor perturbations. Given that fluctu-

ation of thermal strings exit the Hubble radius with a scale-invariant power spectrum, one

obtains the expected behavior for the power spectrum measured in the CMB.

There is, however, a subtlety here that leads to a slight deviation from scale invariance

for both scalar and tensor perturbations. Let us first notice here that the Expressions 8.1
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and 2.2.3 depend on a temperature, which is defined here as the temperature T ≡ T (k) at

horizon crossing for a given mode k. As this temperature decreases in the Hagedorn phase,

modes exiting the Hubble horizon at different times will contribute to a slight tilt in the

spectrum (modes with larger values of k exit the Hubble radius at a later time, as pictured

in Figure 2.8). For the power spectrum of scalar perturbations, the factor of (1−T/TH) in the

denominator is responsible for giving the spectrum a slight red tilt. For the power spectrum

of tensor perturbations, this factor of (1− T/TH) is in the numerator, and is responsible for

giving the spectrum a slight blue tilt.

2.3 Matrix cosmology

Altough String Gas Cosmology is a promising scenario to explain the early universe, it still

lacks a complete description. In the present section, we will introduce matrix theory, and

review key concepts and results that inspired our study of matrix theory as a possible non-

perturbative basis for String Gas Cosmology. First, we will review the IKKT and BFSS

models, and how strings and interactions are emergent in these models. Then, we will see

how emergent universe solutions can arise in the IKKT model from numerical simulations,

how cosmological solutions can be found from adding a mass term to the theory, and how

symmetry breaking can be probed in the IKKT model using the Gaussian expansion method.

These concepts will later be used in Chapter 3, 4, 5, 6 and 7 to examine aspects of String

Gas Cosmology in matrix theory.

2.3.1 Introduction to the IKKT and BFSS matrix models

The first matrix model that will be of interest in this thesis is the BFSS model [22], which

is described by the action

SBFSS =
1

2g2

∫
dtTr

(
(DtA

i)2 − 1

2
[Ai, Aj]2 + ψ̄Γ0DtΨ− iΨ̄Γi[Ai,Ψ]

)
. (2.36)

In this action, the nine Ai matrices decribe space, Ψ is an associated fermionic matrix

superpartner to Ai, and t is an explicit time parameter. This model is often viewed as

a description of M-theory in the Discrete Light Cone Quantisation (DLCQ) limit, which
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amounts to a Type IIA a limit of M-theory. Hence, this model describes 1 + 9 space-time

dimensions, as opposed to 1 + 10 space-time dimensions as a description of M-theory would

suggest.

The second matrix model we will be interested in is the IKKT matrix model [13], which

is described by the action

SIKKT = − 1

4g2
Tr[Aµ, Aν ]2 − 1

2g2
TrΨΓµ[Aµ,Ψ] . (2.37)

As opposed to the BFSS model, there are no free parameters in this theory. In this action,

ten Aµ matrices describe space-time, and Ψ is an associated fermionic matrix superpartner,

and there is nothing else. This makes the IKKT model a prime candidate to describe time

and space in a single consistent non-perturbative framework. Similarly to the BFSS model,

the IKKT model also describes superstring theory, but this time in the Type IIB limit.

In matrix theory, string theory emerges without prior notion of strings, and irrespectively

of a string coupling expansion. Rather, the fundamental strings, string interactions, and

space-time are an emergent phenomenon. To see how this is the case, let us take a closer

view at the IKKT model. In the IKKT model, strings arise as solitonic excitations which

are found by minimizing the action. This is done by solving the equations of motion of the

system, which in the absence of fermions read

[Aµ, [A
µ, Aν ]] = 0 . (2.38)

In the large N limit, where N is the size of the matrix, these equations of motion admit

solutions of the form

A0 =
T√
2πn

q ≡ p0 , (2.39)

A1 =
L√
2πn

p ≡ p1 , (2.40)

other Aµ’s = 0 , (2.41)

where [q, p] = i. Given that the eigenvalue distribution of the operators q and p extend in

the A0 and A1 direction, this solution can be viewed as a static D1-string stretching in the

A1 direction. To see how interactions between multiple strings arise, one can also consider a
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block-wise solution of the IKKT model of the form

A0 =

 T√
2πn

q 0

0 T√
2πn

q

 ≡ p0 , (2.42)

A1 =

 L√
2πn

p 0

0 − L√
2πn

p

 ≡ p1 , (2.43)

A2 =

 d
2

0

0 −d
2

 ≡ p2, (2.44)

other Aµ’s = 0 , (2.45)

which describe two anti-parallel strings extending along the A1 direction and a distance d

from another. We then fluctuate around this background by considering the following ansatz

Aµ = pµ + aµ, (2.46)

ψ = χ+ ϕ, (2.47)

where aµ and ϕ contain off-diagonal contributions in the block diagonal structure showcased

in Equation 2.45. In the string theory language, adding these off-diagonal elements can be

viewed as adding open string degrees of free stretching between the two D1-branes. Inte-

grating out these open string degrees of freedom then allows us to get the effective potential

for the interaction between the two membranes. To do this, we follow the procedure in [13]

and expand the IKKT action to obtain

SIKKT = S0 + S2 + ... (2.48)

where S0 is a zeroth order piece and S2 is a piece quadratic in aµ and ϕ. Since the present

system is invariant under the gauge symmetry

δAµ = i[Aµ, α] , δψ = i[ψ, α] , (2.49)

we will fix this symmetry in order to simplify computations. This will be done by adding

ghost in order to impose the condition [pµ, a
µ] = 0. Adding the contribution from ghosts,

we obtain

S̃2 = Tr(
1

2
aµ(P 2

λδµν − 2iFµν)aν −
1

2
ϕ̄ΓµPµϕ+ bP 2

λc), (2.50)
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where b and c are the ghost matrices, and Pµ and Fµν are adjoint operators defined by

[pµ, X] = PµX , (2.51)

[fµν , X] = FµνX , (2.52)

fµν = i[pµ, pν ]. (2.53)

To get the interaction potential, we then integrate out aµ and ϕ to obtain the following

effective action

W = − log

∫
dadϕdcdb e−S̃2 (2.54)

=
1

2
Tr log(P 2

λδµν − 2iFµν)−
1

4
Tr log((P 2

λ +
i

2
FµνΓ

µν)(
1 + Γ11

2
)) (2.55)

− Tr log(P 2
λ ) + iθ (2.56)

= −8n(
TL

2πn
)3 1

d6
+O(

1

d8
) . (2.57)

Here, the projector 1+Γ11

2
imposes the Weyl condition on the fermions. This is a requirement

for the system to have supersymmetry. As we can see, we then obtain the correct interaction

potential between two long anti-parallel strings in ten dimensions (see [26] for a detailed

comparison). Here, let us highlight that choosing that the strings are anti-parallel (minus

sign in the second block of A1 in Equation 2.45) was crucial to obtain a non-zero interacting

potential. When choosing to work with parallel strings, the interaction potential vanishes as

a result of supersymmetry.

Similar to the D1-string, it can also be shown that other brane solutions can arise in the

IKKT model. Moreover, their interaction potential can be computed in a similar way [26,27].

A similar computation can also be made in the BFSS matrix model, where one computes

the interaction potential between D0-brane degrees of freedom [28,29].

2.3.2 Emergent cosmological solutions in matrix theory

In addition to string and membranes, the IKKT model admits emergent universe solutions.

These solutions have first been observed in numerical simulations using Monte-Carlo methods

[15], and remain a topic of study today in simulations using Complex Langevin methods
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(see [30] for a review of recent progress). We will here summarize features observed as a

result of these simulations.

In numerical simulations that show emergent cosmological solutions, one usually takes

the temporal matrix A0 as being diagonal, where the temporal eigenvalues are chosen to

be in increasing order. This choice is merely a choice of basis, which we are allowed to do

in matrix theory. In the case where A0, the spatial matrices Ai acquire a band-diagonal

structure of the form shown in Figure 2.9.

Figure 2.9: Band diagonal structure acquired by the matrices A0 and Ai as a result of the

numerical simulations. The original figure can be found in [16].

The reason why the matrices acquire such a structure is a current topic of study. A

possibility is that the simulations describe group-like solutions similar to the one we will

explore a bit later in Section 2.3.3. In these group-like solutions, some of the matrices usually

acquire off-diagonal elements associated with the form of raising and lowering operators in

certain bases, explaining the band-diagonal structure. Another possibility is that off-diagonal

elements fall off as a result of the Riemann-Lebesque Lemma. This possibility will be explored

later in Chapter 5.

Given the matrices described in Figure 2.9, one can define time evolution as follows. To

begin, we consider a submatrix

Ā
(ab)
i (m) = 〈tm+a|Ai|tm+b〉 , (2.58)

of size n×n located at a position m along the diagonal. Here, n is taken to be the character-

istic size of the band-diagonal, beyond which the values of the off-diagonal elements become

negligible. Then, we take time to be defined as the average of the temporal eigenvalues in
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this submatrix

t(m) =
1

n

n∑
a=1

tm+a . (2.59)

Since the temporal eigenvalues are chosen to be in increasing order, it is then possible to

probe the time evolution of the system by moving the location m of the submatrix along the

diagonal. We can then use various trace operators to describe the properties of the system

at a given time. For example, one can probe the ”size” of space at a given time using the

extent of space parameter

R(m)2 =
1

n
TrĀi(m)2 . (2.60)

This operator is the root-mean-square of the location of the spatial eigenvalues in a given

time interval n. For this reason, R(t) acts as a scale factor for the extent of space at a time

t(m). In addition to the extent of space parameter R(t), one can probe the extent of space

in different directions by considering the moment of intertia tensor

Tij(m) =
1

n
Tr
[
Āi(m)Āj(m)

]
. (2.61)

In this case, the eigenvalues of Tij(m) are related to the characteristic size of space in these

different directions.

In numerical simulations, one obtains the following results in solutions related to an

emergent three-dimensional space-time. At early times, R(m) and the eigenvalues of Tij(m)

are approximately constant, with the eigenvalues of Tij(m) being approximately the same

size. Then, after a critical time tc, the extent of space R(m) starts increasing, and three of

the nine eigenvalues of Tij(m) become large. This suggests that at the critical time tc, the

initial SO(9) symmetry of the system is broken, and three dimensions become large while

six stay small.

So far, the conditions that lead to the emergent solutions in numerical simulations are

still a topic of study. A possibility is that the fermions play a role in the symmetry breaking

of the system, which leads to three emergent dimensions. This possibility was investigated

in [19], which we will review in Section 2.3.4. In margin of this study, there are also some

known conditions that lead to cosmological solutions in the IKKT model. This is the case,

for example, when including a mass term in the theory (we will review this in Section 2.3.3).
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Perhaps the contributions from the fermions can be related to the present solutions in a

similar way.

Despite the fact that the present solutions remain to be fully understood, the emergent

features of these solutions are, of course, very appealing from the point of view of String

Gas Cosmology. Assuming the emergence of the three large dimensions can be understood

in matrix theory, one may hope that matrix theory can offer a framework that can explain

early universe dynamics in the String Gas Cosmology scenario.

2.3.3 Cosmological solutions from a mass term in matrix theory

In the present section, we will review some results found by imposing a cutoff on the extent

of time in the theory, which can be done by adding a Lagrange multiplier that plays to role

of a mass term (see [17] for the original work). We will see that, in this case, one obtains

solutions related to a bouncing or emergent universe.

To see how a mass term leads to consmological solutions, let us consider the action

S̃ = Tr

(
−1

4
[Aµ, Aν ][A

µ, Aν ] +
λ̃

2
(A2

0 − κL2)− λ

2
(A2

i − L2)

)
, (2.62)

which corresponds to the IKKT model where we have imposed the constraints

1

N
tr(A2

0) = κL2 , (2.63)

1

N
tr(A2

i ) = L2 , , (2.64)

using Lagrange multipliers λ and λ̃. In general, the Lagrange multipliers will break the

SO(1, 9) symmetry of the system. However, we will later see cases where λ = λ̃ and the

ten-dimensional Lorentz symmetry of the system is restored. This model has the equations

of motion

−[A0, [A0, Ai]] + [Aj, [Aj, Ai]]− λAi = 0 , (2.65)

[Aj, [Aj, A0]]− λ̃A0 = 0 , (2.66)

which can be found by extremizing equation 2.62 with respect to Aµ. To solve these equa-
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tions, we will restrain ourselves to the ansatz

A′0 = A0 ⊗ 1k ,

A′i = A1 ⊗ diag(r
(1)
i , r

(2)
i , · · · , r(k)

i ) , (2.67)

where r
(m)
i

2 = 1 (m = 1, · · · , k) , (2.68)

which amounts to a direct sum of multiple solutions involving A0 and A1. Under this ansatz,

the equations of motion reduce to the commutation relations

[A0, A1] = iE , [A0, E] = iλA1 , [A1, E] = iλ̃A0 , (2.69)

where E is an auxiliary matrix defined by [A0, A1] = iE. These commutation relations are

related to different algebras depending on the sign of λ and λ̃. However, in the Lorentz

invariant case λ = λ̃, the solutions are always related to the SU(1,1) algebra

[T0, T1] = iT2 , [T2, T0] = iT1 , [T1, T2] = −iT0 . (2.70)

The most interesting of these cases arise when λ, λ̃ < 0, and the matrices A0 , A1, and E

can be associated with the SU(1,1) algebra via

A0 = aT0 , A1 = bT1 , E = cT2 ,

λ = −a2 , λ̃ = −b2 , ab = c . (2.71)

In this case, the temporal matrix A0 coincides with the generator T0 of the SU(1,1) group.

Since for most representations of the SU(1,1) group T0 can be taken to be diagonal, we can

then find explicit descriptions of the matrices where the temporal matrix A0 is diagonal, and

the spatial matrices Ai have a band-diagonal structure.

To see how this is the case, let us consider the Primary Unitary Series Representation

(PUSR) of the SU(1,1) group. In this case, the submatrices running describing the time
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evolution of the system, as defined in Section 2.3.2, take the form

Ā0(n) = a


n− 1 + ε 0 0

0 n+ ε 0

0 0 n+ 1 + ε

 , (2.72)

Ā1(n) =
ib

2


0 n+ iρ− 1

2
+ ε 0

−n+ iρ+ 1
2
− ε 0 n+ iρ+ 1

2
+ ε

0 −n+ iρ− 1
2
− ε 0

 , (2.73)

where ε = 0 or 1/2, ρ is a non-negative number, and n is an integer related to the position

of the submatrices along the block-diagonal. In this case, we extent of space parameter, as

defined in Equation 2.60, takes the form

R(n) =

√
b2

3

(
n2 + ρ2 +

1

4

)
. (2.74)

To see how time evolution emerges in the system we can then define a time t = an, and take

the continuum limit a→ 0 while keeping a parameter α = b
a

fixed. In this case, we obtain

R(t) =

√
α2

3
(t2 + t20) , (2.75)

where t0 = aρ and ρ is tuned in a way that t0 is fixed. As shown in Figure 2.10, this extent

of space parameter describes a bouncing universe solution where R(t0) =

√
α2t20

3
is the lowest

value of the extent of space parameter at the bouncing point. Another similar solution can

be found by considering the discrete series representation of the SU(1,1). In this case, the

submatrices running describing the time evolution of the system take the form

Ā1(n) =
ib

2


0

√
(n+ τ)(n− τ − 1) 0

−
√

(n+ τ)(n− τ − 1) 0
√

(n− τ)(n+ τ + 1)

0 −
√

(n− τ)(n+ τ + 1) 0

 ,

(2.76)

where τ = −1,−2,−3, ... for ε = 0, and τ = −1/2,−3/2,−5/2, ... for ε = 1/2. In this case,

the extent of space parameter reads

R(n) =

√
b2

3
(n2 − τ(τ + 1)) , (2.77)

46



Figure 2.10: Evolution of the extent of space parameter R(t) for solutions related to the

Primary Unitary Series Representation of SU(1,1). The original figure can be found in [17].

and the continuum limit leads us to

R(t) =

√
α2

3
(t2 − t20) , (2.78)

where t0 = aτ(τ + 1) is held fixed. In this case, the extent of space parameter R(t) describes

a universe that emerges at t0, and expands indefinitely (see Figure 2.11).

2.3.4 Gaussian Expansion Method

In Section 2.3.2, we saw that three dimensions become emergent after a critical time tc in

the simulation. Following these results, the role of fermions in this symmetry breaking was

investigated using the Gaussian Expansion Method [18]. Roughly speaking, the Gaussian

Expansion Method is a mathematical trick that consists of adding and subtracting a Gaussian

term in the theory in order to facilitate perturbative computations. This trick is particularly

useful in theories that do not have a quadratic term, such as the IKKT model, and has

proven useful in probing the strong coupling regime of theories. In the present section, we

will introduce the Gaussian Expansion Method by using the simple example of a φ4 theory
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Figure 2.11: Evolution of the extent of space parameter R(t) for solutions related to the

Discrete Series Representation of SU(1,1). The original figure can be found in [17].

in 0 + 0 dimensions. We will then review how this method can be used to probe symmetry

breaking in the IKKT model, following the approach in [19].

Simple example : φ4 theory in 0 + 0 dimensions

One may think that by ”adding and subtracting” a Gaussian term in the theory, we are not

doing much as we are simply adding zero. However, this mathematical trick has shown to

be useful to probe the strong coupling limit of theories, while respecting the fact that the

added terms should not change the nature of the theory.

To see how this is the case, let us follow the example presented by Kabat and Lifschiytz

[18] and consider the simple case of a φ4 theory, which is exactly solvable in 0 + 0 dimensions.

Here, we will consider a theory with an action of the form

S =
1

g2

(
1

2
φ2 +

1

4
φ4

)
, (2.79)

where φ are simple scalars. Given the simplicity of this theory, the partition function, and
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therefore the free energy, can be computed exactly. One obtains

Z = e−BF =

∫ ∞
−∞

dφ e−S =
1√
2
e1/8g2K1/4

(
1

8g2

)
, (2.80)

where Kν(x) is the Kelvin function. Given that we have an exact expression, we can make

a suitable expansion to see what the theory would look like in the weak coupling limit and

the string coupling limit. In the g2 � 1 limit, one obtains

βF = −1

2
log
(
2πg2

)
+

3

4
g2 − 3g4 +

99

4
g6 +O(g8) , (2.81)

which is the result one would expect using well-known perturbation theory techniques. In

the opposite regime g2 � 1, one can also expand the exact solution to find

βF = −1

2
log g − log

π

Γ(3/4)
+O(1/g) . (2.82)

However, in this case, perturbation theory offers very little hope to obtain this expression.

This is where the perspective of new perturbative tools that can give us a window on the

string coupling regime, such as the Gaussian Expansion Method, becomes appealing.

To showcase the power of the Gaussian Expansion Method, let us consider the contribu-

tion of a Gaussian piece

S0 =
1

2σ2
φ2 , (2.83)

with an associated partition function

Z0 = e−βF0 =

∫ ∞
−∞

dφ e−S0 . (2.84)

Here, the width of the Gaussian σ2 is for the moment left arbitrary. In the φ4 theory, this

Gaussian piece can be added and subtracted to yield

Z =

∫
dφ e−S0e−(S−S0) . (2.85)

One can then expand the free energy of the system in terms of expectation values

〈 . 〉0 =
1

Z0

∫ ∞
−∞

dφ . e−S0 (2.86)

related to S0 to obtain

βF = βF0 − 〈e−(S−S0) − 1〉C,0 (2.87)

= βF0 + 〈S − S0〉0 −
1

2
〈(S − S0)2〉C,0 + · · · . (2.88)
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Here, the subscript C, 0 denotes expectation values related to connected diagrams in the

expansion. Evaluating each piece, we obtain

βF0 = −1

2
log 2πσ2 (2.89)

〈S − S0〉0 =
1

2

(
σ2

g2
− 1

)
+

3σ4

4g2
(2.90)

−1

2
〈(S − S0)2〉C,0 = −1

4

(
σ2

g2
− 1

)2

− 3σ4

2g2

(
σ2

g2
− 1

)
− 3σ8

g4
. (2.91)

As we can see, these contributions depend on the width σ2 of the Gaussian. Since we have

merely added zero, our answer should not depend on this parameter, and we must find a

way to remove it. To achieve this task, one can use the Schwinger-Dyson equations of the

theory, which in this case equate to

〈 1

g2

(
φ2 + φ4

)
〉0 = 1 . (2.92)

Evaluating this expression, we obtain a gap equation

1

σ2
=

1

g2
+

3σ2

g2
, (2.93)

which relates the Gaussian width σ2 to the coupling g2 of the theory. Solving this gap

equation at weak and strong coupling then allows us to obtain explicit expressions for the free

energy that do not depend on σ2. At weak coupling the gap equation implies σ2 = g2+O(g4),

and we obtain

βF0 = −1

2
log 2πg2 +O(g2) , (2.94)

which matches Equation 2.81. At strong coupling, where σ2 = g√
3

+O(1), on also obtain the

correct expression

βF0 = −1

2
log g − 1

2
log

2π√
3

+O(1/g) , (2.95)

which matches with Equation 2.82.

All-in-all, we find that the Gaussian Expansions Method gives the correct behavior at

both strong and weak coupling. Note that this method should be, moreover, independent

of the Gaussian term added. Different Gaussian terms will give us different gap equations.

However, the solution of these gap equations will lead to the same result for the free energy.
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Symmetry breaking in the IKKT model

Following the success of the Gaussian Expansion Method in probing the strong coupling

regime of theories, this method was used in the Euclidean IKKT model to probe for sym-

metry breaking in matrix theory. This was done by using the gap equation, and studying

how the gap parameters in this gap equation can be indicative of symmetry breaking. In

the Gaussian Expansion Method, the gap equations can be found by the Schwinger-Dyson

equations, or equivalently by minimizing the free energy of the system. Consequently, find-

ing symmetry-breaking solutions to the gap equations is equivalent to finding a symmetry

that is energetically favored in the system. In what follows, we summarise the results found

in [19]. More precisely, we will showcase the possible role of fermions in symmetry breaking.

Let us first start with the bosonic IKKT model, which is described by the action

S = −1

4
N Tr[Xµ, Xν ]

2 . (2.96)

To probe symmetry breaking, we will add and subtract the following symmetry-breaking

Gaussian piece

S0 =
D∑
µ=1

N

vµ
Tr (XµXµ) , vµ > 0 , (2.97)

where the vµ’s are arbitrary parameters. Just like we did for the φ4 theory case, we can then

evaluate the free energy, which we will define as

Z = e−F =

∫
dXe−(S−S0)e−S0 , (2.98)

from the partition function Z. To first order, the free energy then reads

F = F0 + 〈S − S0〉0 + ... , (2.99)

and evaluating each piece gives us

F0 = −1

2
(N2 − 1)

D∑
µ=1

ln vµ , (2.100)

F1 = 〈S − S0〉0 (2.101)

=
1

8
(N2 − 1)

(∑
µ6=ν

vµvν + 4D

)
(2.102)
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Minimizing the free energy then gives us the gap equation

0 =
1

N2 − 1

∂

∂vµ
(F0 + F1) = − 1

2vµ
+

1

4

∑
ν 6=µ

vν . (2.103)

which has the isotropic solution

v1 = v2 = · · · = vD =

√
2

D − 1
. (2.104)

Given these isotropic solutions, we conclude that there is no symmetry breaking at first order

in the Eucledian IKKT. This picture changes, however, if one adds fermions in the picture.

To see this, let us consider the supersymmetric version of the IKKT model, which has the

action

S = −1

4
N Tr[Xµ, Xν ]

2 − i

2
N Tr

(
Ψα(Γ̃µ)αβ[Aµ,Ψβ]

)
. (2.105)

In this case, we will consider the Gaussian term

S0 =
D∑
µ=1

N

vµ
Tr (XµXµ) +

N

2

N2−1∑
a=1

Φa
αAαβ Φa

β , (2.106)

where Aαβ is an anti-symmatric matrix. In the same way as for the bosonic case, we can

compute the gap equations by minimizing the free energy of the system at first order. In

this case, we obtain

0 = − 1

2vµ
+

1

4

∑
ν 6=µ

vν −
1

4
ρµ , (2.107)

0 = −1

2
Tr(A−1Bµνλ) +

1

8

∑
µ

vµTr
{

(A−1Γ̃µ)2A−1Bµνλ
}
. (2.108)

In the above, ρµ is defined as

ρµ =
1

4
Tr
(
A−1Γ̃µ

)2

, (2.109)

and we have chosen A to be parametrised as

A =
i

3!

∑
µνλ

wµνλ Bµνλ ; Bµνλ = C Γµ Γ†ν Γλ , (2.110)

where ωµνλ is a complex totally anti-symmetric tensor. Because of the contribution from

ρµ in Equation 2.107, solutions of the form v1 = v2 = ... = vD are no longer possible.

For this reason, one expects the preferred symmetry to be something other than SO(10),
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indicating symmetry breaking. In [19], possible preferred symmetries of the system have

been investigated by choosing values of vµ and wµνλ that preserve these symmetries, and

computing the free energy related to these different symmetries. It was found, to third

order in perturbation theory, that SO(4) plus some discrete subgroup of SO(10) is the

configuration of the system that gives the minimum free energy. These results support

the conjectured scenario that a four-dimensional space-time can be generated dynamically

in the IKKT model. A similar symmetry breaking will be observed in Chapter 7 for the

BFSS model. In this case, we will also find a similar symmetry breaking, with the preferred

symmetry of the system being left to future work.
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Part II

Experimental predictions of matrix

cosmology
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Chapter 3

Emergent Cosmology from Matrix

Theory

Suddhasattwa Brahma, Robert Brandenberger, and Samuel Laliberte

Department of Physics, McGill University, Montréal, QC, H3A 2T8, Canada

Addendum for thesis

In Section 2.2, we saw how thermal fluctuations of strings can source a scale-invariant spec-

trum of cosmological perturbations in String Gas Cosmology. Assuming matrix cosmology

is a possible description of String Gas Cosmology, one should hope to reproduce a similar

scale-invariant spectrum in this context. In the present chapter, we compute the spectrum

of cosmological perturbations sourced by thermal fluctuations of the BFSS matrix model at

finite temperature. Leading to this computation, we first explain how a cosmological back-

ground similar to the one reviewed in Section 2.3.2 can arise in a BFSS context, namely by

treating the zero mode as encoding information about the background evolution of the sys-

tem. Treating the non-zero modes as encoding information about thermal fluctuations, we

then proceed with the computation of the scalar and tensor power spectrum in the same way

as for String Gas Cosmology. We find a spectrum of scalar and tensor perturbations that is

scale-invariant, in agreement with results from string gas cosmology and CMB observations

on large scales.
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Erratum

There are a few typos in this article. First, there are missing parentheses in equations 3.12

and 3.14. These equations should read

xi(t)
2 ≡

〈
1

n
Tr((Āi)(t))

2

〉
, (3.1)

and

Tij ≡
〈

1

n
Tr((Āi)(t)(Āj)(t))

〉
(3.2)

respectively. Second, there is a missing plus sign in equation 3.49. The free energy should

read

CV =
3N2

4
χ2 +

3N4

8

(
d− 1

12
− p

8

) (
χ2 −

1

d
χ2 −

4

N2

)
χ1 T

−3/2 (3.3)

instead of

CV =
3N2

4
χ2

3N4

8

(
d− 1

12
− p

8

) (
χ2 −

1

d
χ2 −

4

N2

)
χ1 T

−3/2 . (3.4)

This sign was properly taken into account in our computations. Concerning the quantity

above, we will highlight that the second term is responsible for the scale invariant spectrum of

cosmological perturbations. The first term, while being the leading term in the perturbative

expansion, is subdominant on large scales. Hence, its contribution to the large-scale spectrum

can be neglected.

Abstract

Matrix theory is a proposed non-perturbative definition of superstring theory in which space

is emergent. We begin a study of cosmology in the context of matrix theory. Specifically,

we show that matrix theory can lead to an emergent non-singular cosmology which, at late

times, can be described by an expanding phase of Standard Big Bang cosmology. The

horizon problem of Standard Big Bang cosmology is automatically solved. We show that

thermal fluctuations in the emergent phase source an approximately scale-invariant spectrum

of cosmological perturbations and a scale-invariant spectrum of gravitational waves. Hence,
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it appears that matrix theory can lead to a successful scenario for the origin of perturbations

responsible for the currently observed structure in the universe while providing a consistent

UV-complete description.

3.1 Introduction

The inflationary scenario [1] is not the only early universe paradigm consistent with current

observations. As already pointed out a decade before the development of the inflationary

scenario [2], what is required in order to explain the origin of acoustic oscillations in the an-

gular power spectrum of the cosmic microwave background (CMB) and the Baryon Acoustic

Oscillations in the matter power spectrum is an early phase in the evolution of the universe

which generates an approximately scale-invariant spectrum of nearly adiabatic and nearly

Gaussian curvature fluctuations. Inflation is one way to obtain such a spectrum [3], but

there are others (see e.g. [4] for a comparative review of several scenarios).

Specifically, in [5] an emergent scenario was proposed in which the universe originates

in a quasi-static phase (“Hagedorn phase”) of a gas of strings at a temperature close to the

Hagedorn temperature [6], the limiting temperature of a gas of closed strings 1. Via a phase

transition (which in String Gas Cosmology is determined by the decay of string winding

modes, or more generally speaking, by the spontaneous breaking of the T-dual symmetry

of the state), this emergent phase connects to the radiation phase of Standard Big Bang

(SBB) cosmology. As shown in [7,8] (see [9] for a review), thermal fluctuations of the gas of

strings lead to an almost scale-invariant spectrum of cosmological fluctuations with a slight

red tilt [7], and of gravitational waves with a slight blue tilt [8]. Additionally, the String Gas

scenario yields a non-singular cosmology. Note that, unlike in inflationary cosmology where

the cosmological fluctuations (which are observed today) are generated in the early universe

in their quantum vacuum state, in String Gas Cosmology the initial state is assumed to be a

thermal one and the fluctuations are hence of thermal origin 2. However, in [5] no dynamics

for the Hagedorn phase were provided.

1In the following, we will call this scenario String Gas Cosmology.
2Note that there is a variant of standard inflation, namely warm inflation [10] in which the fluctuations

also emerge thermally.
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Recently, a very interesting proposal appeared [11] postulating that the early phase is a

topological phase, and demonstrating that the predictions of String Gas Cosmology for the

spectrum of curvature fluctuations can be recovered. Here, we propose an alternative view

of the emergent phase, a model based on matrix theory. In analogy to what is assumed in

String Gas Cosmology, the fluctuations are of thermal origin, and lead to power spectra of

scalar and tensor modes which are consistent with current observations.

Matrix theory is the suggestion that certain large N matrix models can provide non-

perturbative definitions of superstring theory. There are two main proposals for matrix

theory, the BFSS model [12] and the IKKT proposal [13] (see [14] for a recent review of these

and other matrix models). In the BFSS model, the matrices are functions of time, and space

emerges from the properties of the matrices which will be discussed in the following section 3.

In the IKKT proposal, time is emergent as well. The scenarios are related in the sense that

the high temperature limit of the BFSS model yields the IKKT action (compactification on

a thermal circle).

Our starting point will be the BFSS model, conjectured to be the non-perturbative

proposal for M-theory. Making use of the equivalence between the high temperature limit of

the BFSS model and the IKKT action, and starting in a thermal state, we will use the results

of detailed numerical studies of the IKKT model [17] to show that a background develops

in which there is a separation between three spatial dimensions which become large, and six

which remain compact, similar to what was argued to happen in String Gas Cosmology [5].

In this background, we then compute the thermal fluctuations of the energy-momentum

tensor and determine the resulting spectra of curvature fluctuations and of gravitational

waves.

We will consider a D = d + 1 dimensional space-time, where d is the number of spatial

dimensions (which is d = 9 for superstring theory and d = 3 after the phase transition in

the IKKT model). Roman indices will be used to refer to the spatial directions. When

discussing late time cosmology, we denote the cosmological scale factor by a(t), where t is

physical time, and use comoving spatial coordinates x. The Hubble expansion rate is given

3See also the c = 1 matrix model of [15] which yields a non-critical string theory with one spatial

dimension.
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by H ≡ ȧ/a, an overdot denoting the derivative with respect to time. The inverse of H is

the Hubble radius which plays a key role in the evolution of cosmological perturbations. As

usual, the commutator of two matrices A and B is denoted by [A,B].

3.2 Background

Our starting point will be the BFSS matrix model [12]. The basic objects in this model

are d = 9 bosonic N ×N Hermitian matrices X i
a,b and their sixteen fermionic superpartners

θa,b which transform as spinors under the SO(9) group of spatial rotations. There is a U(N)

gauge symmetry, and A is the associated gauge field, another N×N matrix. The Lagrangian

is given by

L =
1

2g2

[
Tr

{
1

2
(DtXi)

2 − 1

4
[Xi, Xj]

2

}
− θTDtθ − θTγi

[
θ,X i

]]
where Dt := ∂t − i [A(t), ·] is the usual covariant derivative. The large-N limit corresponds

to taking N →∞ while holding the ’t Hooft coupling λ := g2N fixed. The proposal of [12] is

that in the large-N limit the action (5.23) yields a non-perturbation definition of M-theory

(see [16] for a detailed review of this proposal using the discrete light-cone quantization in

the ‘infinite-momentum frame’). In particular, in this limit space is emergent. The spatial

coordinates are related to the eigenvalue distribution of the matrices X i in a similar way

to how the one spatial dimension arises in the c = 1 matrix model of non-critical string

theory [15].

As mentioned, there are d+1 bosonic matrices A(t), Xi(t) (i = 1, 2, . . . , d), each of which

is an N×N Hermitian matrix. At finite temperature T , the bosonic part of the BFSS action

is given by

S(β) =
1

g2

∫ β

0

dt Tr

{
1

2
(DtXi)

2 − 1

4
[Xi, Xj]

2

}
, (3.5)

where β = 1/T . One can set λ = 1 without any loss of generality, and thus we can trade

1/g2 for N in front of the action. We choose a unit convention in which the mass dimension

of X is 1 and that of g2 is 3 (we have set ls = 1 for now).

At high temperatures, the BFSS model reduces to the IKKT model [29, 30]. Since we

will use results from studies of the IKKT setup to establish our cosmological background,
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we recall the key points of the latter model.

The IKKT matrix model [13,17] (see [18] for a recent review) is defined by the following

action

S = − 1

g2
Tr

(
1

4

[
Aa, Ab

]
[Aa, Ab] +

i

2
ψ̄α (CΓa)αβ [Aa, ψβ]

)
, (3.6)

where ψα and Aa (α = 1, . . . , 16, a = 1, . . . , 10) are N ×N fermionic and bosonic Hermitian

matrices, respectively, the Γα are the gamma-matrices for D = 10 dimensions, and C is the

charge conjugation matrix. While a is a ten-dimensional vector index, α is a spinor index

such that ψα plays the role of a ten-dimensional Majorana-Weyl spinor. This action can be

seen as a matrix regularization of the worldsheet action of Type IIB superstring theory in the

Schild gauge. Depending on the metric which is used to raise and lower the indices (either

Euclidean or Minkowski), the action can be viewed as that of the Euclidean or Lorentzian

type IIB matrix model. If we choose to have the same coupling g2 for the IKKT model, as

before, with mass dimension 3, the matrices Aa will have mass dimension 3/4.

The action of the Euclidean matrix model [13] is given by the following functional integral

over the bosonic and fermionic fields

Z =

∫
dAdψ e−S , (3.7)

while the action of the Lorentzian model is defined by [17]

Z =

∫
dAdψ eiS . (3.8)

In the IKKT approach, both space and time are emergent, time being related to the

matrix AD, while space results from the other matrices. The SU(N) symmetry can be used

to diagonalize the matrix A10

A10 = diag(α1, ..., αN) , (3.9)

where without loss of generality the αi can be ordered in ascending magnitude. As was

shown in [17], the spatial matrices Ai then have a band-diagonal structure in the sense that

there is an integer n � N such that the matrix elements (Ai)ab for |a − b| > n are much

smaller than those for |a − b| ≤ n. Note that n is a fixed fraction of N and hence goes to

infinity in the limit N →∞.
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A time variable t (which will be the time variable of our emergent phase) can then be

defined by averaging the diagonal elements αi over n elements

t(m) ≡ 1

n

n∑
l=1

αm+l , (3.10)

where the index m runs from 1 to N − n. Time-dependent spatial matrices (Āi)I,J(t) of

dimension n× n can then be defined via

(Āi)I,J(t(m)) ≡ (Ai)m+I,m+J . (3.11)

In the limit N → ∞ we have n → ∞ and (Āi)I,J(t(m)) becomes the emergent continuum

space.

It is then natural to define the extent xi of a given spatial dimension i at time t by

xi(t)
2 ≡

〈
1

n
Tr(Āi)(t))

2

〉
, (3.12)

where the pointed brackets stand for the quantum expectation value in the state defined by

the partition function. Then, the total extent R(t) of space at time t is

R2(t) =
9∑
i=1

xi(t)
2 . (3.13)

Following [18], it is more convenient to define the moment of inertia tensor

Tij ≡
〈

1

n
Tr(Āi)(t)Āj)(t))

〉
(3.14)

which is a symmetric 9× 9 matrix whose eigenvalues can be denoted by λi.

A numerical analysis of this system shows [17] that as a function of time the SO(9)

spatial symmetry is spontaneously broken. Of the nine eigenvalues λi(t), three of them

become large, while six remain close to the original size. This is the same symmetry breaking

pattern obtained in String Gas Cosmology [5] from considerations of the annihilation of string

winding modes which can only liberate three spatial dimensions. What is observed in matrix

theory can be viewed as the non-perturbative picture of the scenario of [5].

A similar symmetry breaking pattern was first studied in the Euclidean framework.

There, the emergence of three large spatial dimensions can be seen both numerically and
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using a Gaussian expansion method in which the free energy is computed when approximat-

ing the functional integral via a Gaussian expansion about particular configurations, and

the resulting free energy is compared for different chosen configurations, to find that the

free energy is minimized for d = 3. See [19] for a selection of papers on this topic. On the

other hand, the analyses for the Lorentzian IKKT model is more subtle. Firstly, numerical

investigations are much more technically involved due to the ‘sign problem’. Although this

was averted using some approximations involving assuming a Gaussian action for the bosonic

part of the IKKT action in [17], it was soon realized that the expanding spacetime has only

two independent large eigenvalues (the so-called Pauli-matrix structure) [20]. In subsequent

work, this was found to be a pathology of the approximation which was used to solve the sign

problem and the numerical ‘complex Langevin method’ was introduced using two parameters

to denote Wick rotations on both the worldsheet and the target space. This culminated in

finding a true (smooth) (3 + 1)-d emergence of the background from the Lorentzian IKKT

model [21], where the presence of fermionic matrices turn out to be essential.

In the high temperature limit, the BFSS model reduces to the (Euclidean) IKKT sce-

nario. The BFSS gauge field matrix A(t) corresponds to the IKKT matrix AD(t) and the

BFFS spatial matrices Xi(t) become the matrices Ai(t) in the IKKT model. Hence, taking

the results from the analysis of the IKKT model described above back to the BFSS side, we

argue that in the high temperature limit (which is relevant for our discussion of the emergent

phase) the background which minimizes the free energy will experience spontaneous sym-

metry breaking in which three of the spatial dimensions (given by the quantum expectation

values of eigenvalue distribution of the matrices Xi) become large compared to the other six.

Note that this symmetry breaking occurs during the emergent phase, and not only at the

end of it.

Irrespective of whether one begins with the Euclidean or the Lorentzian version of the

IKKT model, this emergence can be understood more generally. Since the eigenvalues of

the matrices denote the target space coordinates, at very early times before the symmetry-

breaking phase transition takes place, the nine eigenvalues are of equal size and of a micro-

scopic scale, on which there does not exist a smooth geometric picture of spacetime. One way

to see this is that the eigenvalues denote positions of D-branes and the matrices, correspond-

62



ing to these, commute only in the limit after the symmetry breaking when the eigenvalues of

three matrices become large. The target space coordinates are inherently non-commutative

at very early times. This is a non-geometric phase from which our (3+1)-d universe emerges

in the matrix model. As the emergent phase proceeds and the three large spatial dimensions

grow in size, we will reach a point when the effective field theory description via Einstein

gravity yields a good approximation for the infrared modes which we are interested in when

considering cosmological perturbations measured at late times. Let us for now consider this

transition to take place at a fixed time tc, and we return to a discussion of how this transition

happens later on.

Let us summarize the background cosmology which we are proposing. We start in a high

temperature state of the BFSS matrix model which is equivalent to the IKKT matrix model

(as T → ∞). After Wick rotating the IKKT model, we can diagonalize the A10 matrix,

and the diagonal elements determine our emergent time variable. The diagonal blocks of

the Ai, i = 1, .., 9 matrices in this basis define an evolving space. All spatial dimensions

(measured as described above in terms of the expectation values of the spatial matrices) are

of the typical microscopic scale (the string scale). The spatial matrices evolve in time and

the emergent space undergoes symmetry breaking in which three spatial dimensions become

large and the other ones remain microscopic. The SO(9) symmetry of space is broken to

SO(3) × SO(6). As the three-dimensional space expands, General Relativity becomes a

good description of the low energy dynamics of the three dimensional space 4 A transition

to the expanding phase of Standard Big Bang cosmology occurs. Our subsequent analysis

of fluctuations is independent of the specifics of this transition in the same way that the

analysis of fluctuations in inflationary cosmology are in general insensitive to the details of

reheating.

At this point, let us give some justification for using General Relativity (GR) as the

low-energy limit of the matrix theory. How do we know that the low-energy gravity theory

is going to be GR and not something else? Firstly, note that the BFSS model is a proposal

for M-theory and therefore, we are guaranteed to have GR as the low-energy limit of (the

4Note that the Lorentz symmetry of the effective theory is a result of the SO(10) symmetry of the original

Euclidean IKKT matrix model.
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gravitatiuonal part of) this theory. Furthermore, within the IKKT model, it has been shown

that the underlying diffeomorphism symmetry of GR emerges naturally from this [22]. But

the most direct way to note this was shown within the operator interpretation of matrices in

the IKKT model, in which one could derive the vacuum Einstein equations starting from the

classical equations of motion of the IKKT model [23]. In this approach, matter and gauge

fields appear as fluctuations on top of a gravitational background and thus all fields of differ-

ent spins, including the graviton, emerge from the same IKKT model. Going to higher-order

corrections, one can find different quantum fields sourcing Einstein’s equations. However,

the exact dynamics of quantum fields are yet to be understood in this interpretation and,

therefore, we approach the problem from a different perspective. We consider a natural state

for our cosmological model, namely a thermal state, which yields the emergent background

from the IKKT model discussed above. Since the state is a thermal state, it includes ther-

mal fluctuations which yield source terms for late time cosmological perturbations. Based

on the above arguments, and the fact that after the time tc we are in the low-energy limit

of superstring theory, we use Einstein’s equations sourced by the thermal state to compute

the cosmological perturbations whose properties we calculate below.

In contrast to Standard Cosmology and the Inflationary paradigm, our proposed cosmol-

ogy does not suffer from an initial singularity problem because the early phase is a nonsin-

gular quantum mechanical matrix model which cannot be described by Einstein gravity. In

particular, there is no beginning of time in the sense of General Relativity. Furthermore,

recall that the BFSS matrix model is a quantum mechanical model and does not suffer from

field-theoretic divergences one has to contend within GR.

The origin of our proposed cosmology as a quantum mechanical matrix model also pro-

vides a solution to the Horizon Problem of Standard Big Bang cosmology. The initial thermal

state of the quantum mechanical matrix model automatically generates correlations over the

entire emergent spatial section. From the point of view of an emergent scenario it is very

reasonable to assume that we start in a thermal state 5. Thus, like in String Gas Cosmology,

the cosmological fluctuations and primordial gravitational waves will be of thermal origin,

5Note that it is only in the high temperature limit that the correspondence between the BFFS and IKKT

models has been established.
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unlike in inflationary cosmology where the inhomogeneities emerge from quantum vacuum

fluctuations.

Let us also point out a difference between our cosmological model emerging from matrix

theory and String Gas Cosmology. Unlike the latter, our model cannot be thought of as a

free collection of stringy objects, such as D-branes, whose thermal properties describe the

thermal state sourcing cosmological perturbations. It is tempting to interpret our results

as a collection of ‘free’ D0-branes in a box since our starting point is the BFSS model.

Similarly, one might be led to presume that a box of ‘free’ D(−1) branes would explain

the background dynamics due to its origins in the IKKT model. If this were to be true,

one could have studied the thermodynamics of free D-branes just like one does for a box

of strings in String Gas Cosmology. However, the crucial point to realize is that the BFSS

(or, similarly, the IKKT) model is not just any collection of D0-branes but a specific bound

state configuration of them. This gives rise to a very specific theory which allows us to

do our computations in a thermal state that, quite remarkably, gives rise to scale-invariant

perturbations in the early-universe, as we shall show later on. In fact, the thermal properties

of a collection of free D0-branes do not have the same properties as can be seen from [24].

The cosmological fluctuations and gravitational waves which we can measure today in

cosmological experiments have a length scale which even at the end of the emergent phase

is in the far infrared compared to the typical energy scale of the emergent phase. Hence, the

evolution of fluctuations on these scales will be described by the usual linear cosmological

perturbation theory based on Einstein gravity. Hence, as in the case of String Gas Cosmology

[9], the metric fluctuations will be determined by the correlation functions of the energy-

momentum tensor in the thermal state of the emergent phase. In the following section we

turn to the computation of these fluctuations.
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3.3 Fluctuations

3.3.1 Formalism

In the previous section we have described our model for the background of the emergent

period which results from matrix theory. Via a phase transition, the emergent period will

connect to the radiation phase of the SBB in 3 + 1 space-time dimensions. In this section

we will compute the spectra of cosmological fluctuations and gravitational waves which

arise from our background. In the framework of an emergent cosmology, and in contrast

to the situation in an inflationary model, the length scales on which we currently observe

the fluctuations were always many orders of magnitude larger than the typical microscopic

scales, e.g. the Planck length. Specifically, if the energy scale at which the transition from the

emergent phase to the radiation phase of the SBB occurs is 1016GeV, then the wavelengths

at that time were of the order of 1mm or larger. Hence, the description of fluctuations using

the usual theory of linear cosmological perturbations (see e.g. [25,26] for reviews) will apply.

We will write the metric of our four dimensional space-time (which we assume to be

spatially flat) in longitudinal gauge, i.e. in the form

ds2 = (1 + 2Φ)dt2 − a(t)2 [(1− 2Φ)δij + hij] dx
idxj , (3.15)

where Φ(x, t) is the relativistic generalization of the Newtonian gravitational potential, and

the transverse and traceless tensor hij represents the gravitational waves. Specifically, a

gravitational wave with dimensionless polarization tensor εij will have an amplitude h(x, t).

We are neglecting the contribution of vector modes since these modes decay in an expanding

universe.

Note that in a thermal state, the fluctuations on the typical microscopic state may be large

in amplitude, but on the infrared scales relevant to cosmological observations they will be

Poisson suppressed and hence small in amplitude such that linear cosmological perturbation

theory applies and all Fourier mode of the fluctuating fields evolve independently.

According to the theory of linear cosmological perturbations, the curvature fluctuation

on a scale k (where k denotes comoving wave number) is given by the energy density per-
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turbations on that scale via

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 0
0 (k)δT 0

0 (k)〉 , (3.16)

where T µν is the energy-momentum tensor of matter (also evaluated in longitudinal gauge),

and G is Newton’s gravitational constant. Similarly, the amplitude h(k) of a gravitational

wave mode is determined by the off-diagonal pressure fluctuations via 6

〈|h(k)|2〉 = 16π2G2k−4〈δT ij (k)δT ij (k)〉 , i 6= j (3.17)

On sub-Hubble scales, matter fluctuations dominate over the induced curvature fluctu-

ations. Hence, following the logic used in String Gas Cosmology in [7, 8], we will first use

the partition function Z of our model to determine the correlation functions of the energy-

momentum tensor. Using these results, we apply (3.16) and (3.17) to determine the initial

amplitude of the curvature fluctuations and gravitational waves when the length mode k

exits the Hubble radius at the end of the emergent phase. From then on until the present

time the usual evolution of the cosmological fluctuations applies.

In a thermal state, the fluctuations in the energy-momentum tensor in a box of radius R

are determined in terms of the finite temperature partition function of the system. Specifi-

cally, since

〈T µν 〉 = 2
gµλ√
−g

∂lnZ

∂gνλ
(3.18)

the fluctuations of the energy-momentum tensor in a box of radius R are given by (see [9]

for details)

Cµ
ν
σ
λ ≡

〈
T µν T

σ
λ

〉
−
〈
T µν
〉〈
T σλ
〉

= 2
gµα√
−g

∂

∂gαν
( gσδ√
−g

∂lnZ

∂gδλ
)
+2

gσα√
−g

∂

∂gαλ
( gµδ√
−g

∂lnZ

∂gδν
)
, (3.19)

where Z is the partition function restricted to the box. Specifically, the energy density

fluctuations are determined by

C00
00 = δρ2 =

T 2

R6
CV (3.20)

6The notation is a bit loose here: the indices i and j correspond to the polarization state of the gravita-

tional wave.
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where CV is the specific heat capacity in a box of radius R and is given by the partial

derivative of the internal energy E(β) with respect to temperature T at constant volume V :

CV =

(
∂E

∂T

)
V

. (3.21)

The gravitational waves, in turn, are given by

Cij
ij =

〈
T ij

2〉−〈T ij〉2
i 6= j (3.22)

where the indices i and j are related to the polarization tensor of the wave which is being

considered.

In the case of String Gas Cosmology, the thermal correlation functions for a gas of closed

strings in the high temperature Hagedorn phase have holographic scaling, i.e. CV ∼ R2,

and correspondingly for the other correlation functions [27]. This result can be understood

heuristically from the fact that strings look like point particles in one lower spatial dimension.

This then leads to the scale-invariance of the spectrum of cosmological perturbations and

gravitational waves. The fact that the temperature is a slightly decreasing function of time

towards the end of the Hagedorn phase (when scales exit the Hubble radius) leads to a slight

red tilt of the spectrum of cosmological perturbations (modes with larger values of k exit the

Hubble radius later). The fact that the pressure is an increasing function of time towards

the end of the Hagedorn phase leads to a characteristic slight blue tilt in the spectrum of

gravitational waves [8] 7.

3.3.2 Cosmological Perturbations in Matrix Cosmology

We will now perform the calculation of the spectra of cosmological perturbations and grav-

itational waves in our scenario. Specifically, we are interested whether a scale-invariant

spectrum of cosmological perturbations emerges 8. We cannot apply the abovementioned

7Recall that inflation models in the context of General Relativity (with matter obeying the usual energy

conditions) always leads to a slight red tilt of the spectrum of gravitational waves. This characteristic blue tilt

of the spectrum of gravitational waves is also obtained [28] in the recently proposed version of the Ekpyrotic

scenario in which an S-brane motivated by superstring theory leads to a nonsingular transition between an

Ekpyrotic contracting phase and the radiation phase of the SBB.
8In the case of the proposal of [11] such a spectrum emerges because of the conformal invariance of the

emergent topological phase.

68



heuristic argument for such a spectrum since our calculation is not based on classical string

degrees of freedom. On the other hand, since our scenario in the perturative limit will re-

duce to perturbative string theory, it would not be surprising if the holographic scaling of

the specific heat capacity emerges.

Our starting point is the finite temperature action S(β) (3.5) of the BFSS matrix theory.

The resulting finite temperature partition function is given by the functional integral

Z(β) =

∫
[DA]β [DX]β e−S(β) , (3.23)

where the subscript β implies that the fields to be integrated are over this range. Given this

partition function, the internal energy E is given by

E = − d

dβ
lnZ(β) . (3.24)

One can now calculate this internal energy as follows:

E = − 1

Z(β)
lim

∆β→0

Z(β′)− Z(β)

∆β
, (3.25)

where β′ = β + ∆β. Z(β′) is given by

Z(β′) =

∫
[DA′]′β [DX ′]′β e−S(β′) , (3.26)

where S ′ can be obtained from the action by replacing β, t, A(t), Xi(t) with β′, t′, A′(t′), X ′i(t
′).

While the measures remain invariant, [DA′]′β = [DA]β and [DX ′]′β = [DX]β, the fields and

time-parameter are related by the transformations

t′ =
β′

β
t , A′(t′) =

β

β′
A(t) , X ′i(t

′) =

√
β′

β
Xi(t) . (3.27)

Under this transformation, the kinetic term remains invariant while the interaction term in

S ′ is related to that in S as follows:

∫ β′

0

dt′Tr
{[
X ′i(t

′), X ′j(t
′)
]2}

=

(
β′

β

)3 ∫ β

0

dtTr
{

[Xi(t), Xj(t)]
2} . (3.28)

One can now write down the relation

Z(β′) =

∫
[DA′]′β [DX ′]′β e−S exp

(
−N

∫ β

0

dt
1

4
Tr

{
[Xi, Xj]

2 −
(
β′

β

)3

[Xi, Xj]
2

})

=

∫
[DA′]′β [DX ′]′β e−S

{
1− 3

4
N

∫ β

0

dt Tr
(
[Xi, Xj]

2) ∆β

β
+O((∆β)2

}
= Z(β)

(
1−N2∆β〈E〉+O((∆β)2)

)
, (3.29)
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where

E = −3

4

1

Nβ

∫ β

0

dt Tr
(
[Xi, Xj]

2) . (3.30)

Therefore, we can write down the internal energy as

E = N2〈E〉 , (3.31)

where 〈·〉 is the expectation value calculated with respect to the partition function Z(β).

It has been shown in [29] that the BFSS action reduces to the IKKT one at high tem-

peratures. If one Fourier expands the fields as

Xi =
∑
n

Xn
i e

inωt , (3.32)

where ω = 2π/β are the Matsubara frequencies, then the BFSS action becomes

SBFSS = S0 + Skin + Sint . (3.33)

Let us first consider the leading order behaviour of the action, in the high temperature limit,

which is given by the zero modes of the Fourier expansion, and therefore

S0 ≡ −Nβ Tr

{
1

2

([
A,X0

i

])2
+

1

4

([
X0
i , X

0
j

])2
}
. (3.34)

We rescale the zero modes as 9

Ai := T−1/4X0
i (i = 1, 2, . . . , d), AD := T−1/4A , (3.35)

where D = d+ 1. This tells us that

S0 =
1

4
N Tr (Fµν) =: SIKKT , Fµν := −i [Aµ, Aν ] . (3.36)

Here we assume (µ, ν = 1, 2, . . . , D). On the other hand, the kinetic term of the action go as

Skin ≡ Nβ tr

{
1

2

∑
n6=0

(nω)2X i
−nX

i
n

}
(3.37)

and the interaction terms as

9Note the consistency of the mass dimensions using the conventions introduced at the beginning of Section

II.
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Sint = −Nβ tr

{∑
n6=0 nωX

i
−n[A,X i

n] + 1
2

∑
n6=0[A,X i

−n][A,X i
n]

+1
4

∑
npq [X i

−n−p−q, X
j
n][X i

p, X
j
q ]

}
, (3.38)

where the n = p = q = 0 term is excluded in the last sum. We only show the bosonic

terms above and ignore the terms corresponding to the fermionic and the ghost fields to

avoid clutter (see [29] for more details). While we use S0 to calculate the leading order

terms, Skin and Sint become important when calculating the next-to-leading order terms.

Given this, we can calculate two quantities of interest to us – the extent of the eigenvalue

distribution and the internal energy. The extent of the eigenvalue distribution is given by

R2 :=
1

Nβ

∫ β

0

dt Tr (Xi(t))
2 , (3.39)

We begin by taking its expectation value with the BFSS partition function and we find that

〈R2〉BFSS ' χ1T
1/2 , (3.40)

where

χ1 :=

〈
1

N
Tr(Ai)

2

〉
IKKT

. (3.41)

Note that although expression (3.39) is an exact definition, (3.40) is the leading order (in

temperature) relation between R and χ1. The leading term is given by the zero modes. Note

that the extent of space parameter in the IKKT model is given by the quantity χ1 defined

above (compare with (3.13) above). The dependence of the extent of eigenvalue distribution

on the spatial volume is characterized by χ1, whereas we explicitly separate its dependence

on temperature as above. The numerical simulations of the IKKT model tell us how the

extent of space parameter (3.13) evolves with time. The temperature (coming from the

Euclideanized time direction) can be assumed to be constant in the model and χ1 will give

us the value of the background volume for this given time.

More relevantly for us, the internal energy E = N2〈E〉BFSS can be calculated to get

E ' 3N2

4
χ2 T , (3.42)
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where

χ2 :=

〈
1

N
Tr(Fij)

2

〉
IKKT

. (3.43)

This shows that the internal energy, to the leading order in temperature, does not depend

on the spatial volume (as this expression does not depend on χ1).

Let us make a quick note regarding the dimensions involved in the above equations.

Recall that since we have set the ’t hooft coupling λ = 1, we need to replace factors of N by

1/g2, which has mass dimension of −3. The Yang-Mills coupling g is related to the string

length ls by the dimensionless string coupling constant gs, via g2 = gs/l
3
s . Therefore, for

restoring appropriate dimensions, one needs to insert proper powers of g in the expressions

above. For instance, for the internal energy to have mass dimension 1, we therefore require

that χ2 ∼ l−6
s (due to the factor of N2 ∼ 1/g4 in (3.42) above). Similarly, the extent of space

parameter R2 must have a factor of l7s in its definition (3.40) for it to have mass dimension of

−2. We continue to suppress these dimensional parameters for simplicity and would reinstate

them in the final expression for the power spectra.

Going to the next to leading order in temperature, one can calculate the internal energy

to be (we follow the conventions of [29]):

E ' 3N2

4
χ2 T −

3N2

4

(
d− 1

12
− p

8

)
(χ5 − χ6 − 4χ1) T−1/2 , (3.44)

where

χ5 :=
〈
Tr (Fij)

2 .Tr (Ak)
2〉

IKKT

χ6 :=
〈
Tr (Fij)

2 .Tr (AD)2〉
IKKT

. (3.45)

In the above expression, p denotes the number of fermionic superpartners of the d bosonic

matrices.

Let us calculate χ5 and χ6 using the following approximation

χ5 =
〈
Tr (Fij)

2 .Tr (Ak)
2〉

IKKT

'
〈
Tr (Fij)

2〉
IKKT

〈
Tr (Ak)

2〉
IKKT

= N2 χ2 χ1 (3.46)
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and

χ6 =
〈
Tr (Fij)

2 .Tr (AD)2〉
IKKT

'
〈
Tr (Fij)

2〉
IKKT

〈
Tr (AD)2〉

IKKT

=

(
N2

d

)
χ2 χ1 . (3.47)

Let us make two observations regarding the above calculation. Firstly, the next to leading

order values for these quantities can be evaluated explicitly by considering the propagators,

from the kinetic term in the action, and from the interaction terms. However, although we

only showed the bosonic terms in (3.37) and (3.38) for simplicity, one also needs to take

into account the fermionic fields (and the ghost terms corresponding to our gauge-fixing)

to carry out the explicit calculation. And finally, one needs to integrate out only over the

non-zero modes in order to arrive at the above-mentioned results. The zero modes (in the

Matsubara frequencies) are what gives rise to the IKKT action and therefore, we express our

results in terms of quantities evaluated in the IKKT model and the temperature T . Note

that since we have set the ’tHooft coupling λ = g2N = 1, our only dimensionful parameter

for perturbation theory is T−3/2 [31]. In other words, once one integrates out non-zero modes

using perturbation theory, the leftover integration over the zero modes can be thought of as

taking the expectation value of Green’s functions using the bosonic part of the IKKT action.

We now have the ingredients needed to evaluate the power spectrum of energy density

fluctuations in our scenario using (3.20) and (3.21). Let us consider a comoving momentum

scale k. The associated volume is 〈R2〉3/2BFSS which we will in the following abbreviate by R3.

The dimensionless power spectrum P (k) on the scale R related to the wavenumber k via

R = 2πk−1 is given by

P (k) ∼ k3〈|Φ(k)|2〉

= 16π2G2k−1〈δT 0
0 (k)δT 0

0 (k)〉 (3.48)

= 16π2G2k−4(δρ)2

= 16π2G2k−4T 2CVR
−6 ,

= 16π2G2k2T 2CV (kR)−6
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where the factor of k−3 in going from the second to the third line comes from converting

momentum space to position space density.

Thus, the scalar power spectrum depends mostly on the specific heat CV . Let us calculate

it to the next-to-leading order in the high temperature limit. From (3.44), we find

CV =
3N2

4
χ2

3N4

8

(
d− 1

12
− p

8

) (
χ2 −

1

d
χ2 −

4

N2

)
χ1 T

−3/2 . (3.49)

Note that the CV > 0 for d = 3, p = 4 and the thermodynamics is well-defined in this case.

The first term hence yields a contribution to the power spectrum proportional to k2.

Since χ1 ∼ k−2, the second term yields a scale invariant contribution. On microscopic scales,

the first term dominates. It corresponds to a Poisson spectrum and is what we expect for

thermal fluctuations on scales close to the correlation length of the system. On infrared

scales relevant for current cosmological fluctuations, however, it is the second term which

dominates, and it corresponds to a scale-invariant spectrum, and its value is

P (k) = 16π2G2k2(kR)−6T 1/2N2χ1
3

8

(d− 1

12
− p

8

)(
N2χ2 −

N2

d
χ2 − 4

)
. (3.50)

Substituting for χ1 making use of (3.40), and reinstating dimensional parameters, yields

P (k) = 16π2 (kR)−4

(
1

lsmpl

)4(
3

8

)(
d− 1

12
− p

8

)(
(d− 1)2

d

(
1− 1

N2

)
− 4

)
, (3.51)

from which it follows that the amplitude of the spectrum is given by

A ∼ (lsmpl)
−4 , (3.52)

the same scaling as in String Gas Cosmology [7]. In (8.5), we have used the explicit expression

for χ2 [32]:

χ2 = (d− 1)

(
1− 1

N2

)
, (3.53)

where all dimensional factors have been accounted for and there is no further g dependence

coming from the N2 term. Note that this result does not depend on the exact dynamics of

how the background volume expands with time (beyond the general evidence the numerical

analysis provides for the emergence of 3 large spatial dimensions).
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3.3.3 Gravitational Waves in Matrix Cosmology

Tensor perturbations are sourced by the off-diagonal pressure perturbations, as described in

(3.22). Specifically, the dimensionless power spectrum of gravitational waves on a comoving

momentum scale k is given by

Ph(k) = 16π2G2k−4Cij
ij (R(k)) , (3.54)

where we recall that Cij
ij (R(k)) is the position space expectation value of the square of the

off-diagonal pressure perturbation (i 6= j), and R(k) is the length scale corresponding to

k. In a thermal state we expect the off-diagonal pressure perturbations to be smaller but

of similar magnitude as the diagonal pressure contribution. We will denote the suppression

factor of the off-diagonal term compared to the diagonal term by a positive constant α < 1.

Hence,

Cij
ij = α

T

R2

∂p̃

∂R
, (3.55)

where the pressure p̃ is given by

p̃ = − 1

V

∂F
∂lnR

. (3.56)

To calculate the pressure, let us begin with the free energy of our system, calculated up

to next-to-leading order

F =
3N2

4β

[
χ2 lnβ − 2

3

(
d− 1

12
− p

8

)
(χ5 − χ6 − 4χ1) β3/2

]
.

We can use the same approximations as before to write χ5 and χ6 in terms of χ1 and χ2.

We then obtain

Cij
ij = α

T 1/2

R4
N2
(d− 1

12
− p

8

)
(N2χ2 −

N2

d
χ2 − 4) , (3.57)

from which it follows that the dimensionless power spectrum of gravitational waves will also

be scale-invariant with an amplitude Ph(k) given by (on restoring the dimensional factors,

and using (3.53), as before):

Ph(k) = α 16π2 (kR)−4

(
1

lsmpl

)4(
3

8

)(
d− 1

12
− p

8

)(
(d− 1)2

d

(
1− 1

N2

)
− 4

)
. (3.58)

Comparing the results (8.7) and (3.50) for the tensor and scalar power spectra, we find

that the tensor to scalar ratio r is given by

r =
8

3
α . (3.59)
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In order to be consistent with the current observational bound on r, the value of α needs

to be of the order O (10−2) or smaller. Note that although the off-diagonal elements are

naturally suppressed compared to the diagonal ones, for thermal fluctuations, they are not

expected to get fine-tuned to be extremely small. In other words, we expect the parameter

α to be a smaller than 1 but not by many orders of magnitude [7]. Note that in String Gas

Cosmology the value of r is suppressed by the ratio between the pressure and the energy

density in the Hagedorn phase [8]. In the topological phase model of [11], no primordial

gravitational waves are generated to leading order in the analysis. However, since α is not

expected to be many orders of magnitude smaller than 1 for our model, we expect to find an

observable signal for primordial gravity waves in our model. This is a significant difference

between our model and those other approaches to early universe cosmology. It is hence

important to estimate the value of α which results from our matrix theory model.

3.4 Conclusions and Discussion

In this paper we have suggested a concrete realization of a non-singular emergent cosmology

based a matrix theory, a proposed non-perturbative definition of superstring theory in which

space is emergent. The starting point is a gauge action for nine Hermitean N ×N matrices

Xi. The covariant derivative involves another N × N matrix A. We consider this matrix

model in a finite temperature state. Space is emergent in the sense that in the large N

limit, the expectation values of X2
i yield the size of the i’th spatial dimension. We have

used results of numerical and analytical studies of matrix theory to show that a spontaneous

breaking of the SO(9) spatial symmetry takes place, and that exactly three dimensions of

space become large. We have argued that at late times, a phase transition to the radiation

phase of Standard Big Bang cosmology takes place, signalling the end of the emergent phase.

Our scenario automatically solves some problems of Standard Big Bang cosmology such as

the horizon problem, in the same way that they are solved in the proposal of [11]. A quick

way to see this is to realize that the emergent spatial dimensions appear from the early

non-geometric phase when the matrices are not commuting and their eigenvalues cannot be

said to describe a smooth (3 + 1)-d spacetime. Thus, the entire emergent space is born out
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of the same matrix action and is interacting with each other in the non-geometric phase,

naturally resolving the horizon problem 10.

However, background dynamics is not sufficient for understanding the properties of the

emergent cosmology derived from matrix theory. One needs to calculate the spectrum of

primordial perturbations in this model and this is where the novelty of our work lies. We

have computed the thermal correlation functions of the energy-momentum tensor in the

emergent phase. These determine the spectrum of cosmological density fluctuations and

gravitational waves. In analogy to what is assumed in String Gas Cosmology, the fluctuations

are of thermal origin. They do not originate as quantum vacuum perturbations as they do in

canonical inflationary models. We find that the spectrum of cosmological fluctuations have

two components, one of which has Poisson scaling and dominates on small scales, the other

one being scale-invariant which dominates on scales relevant to cosmological observations.

The spectrum of gravitational waves is also scale-invariant. We have computed the tensor to

scalar ratio r on large scales. The resulting amplitude is given by the ratio of the off-diagonal

to the diagonal pressure fluctuations, a ratio which we denote by α in the text. In order not

to exceed the observational upper bound on r, the value of α needs to be sufficiently small.

An open problem is to derive the value of α from our matrix theory model.

Note that the spectrum of both density perturbations and primordial tensor modes is

not expected to be exactly scale-invariant on observable scales. Small deviations from scale-

invariance, and a corresponding small tilt, naturally appear in our model when one goes to

the next order in temperature. In addition, the processing of the fluctuations through the

phase transition can induce a tilt, as it does in String Gas Cosmology. One can calculate the

bispectrum and other higher order moments from higher order calculations in perturbation

theory for the thermal state under consideration. We leave these topics for future work.

Note that our scenario does not involve a period of inflationary expansion. Since it

is based on a non-perturbative approach to superstring theory, the scenario is free from

any swampland constraints, consistency conditions which rule out many inflationary models

(see [33] for reviews of the swampland program, and [34] for applications to inflation). The

scenario is clearly consistent with the trans-Planckian censorship conjecture (TCC) [35] since

10Since space is emergent, the very concept of causality is also emergent in this theory.
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the wavelengths of fluctuation modes which we observed today were never smaller than the

Planck length (the fluctuations are generated towards the end of the emergent phase on

scales which are macroscopic compared to the string length). This is another difference

compared to the inflationary scenario, where the TCC sets a very restrictive upper bound

on the energy scale of inflation [36], a bound which most models of inflation fail to satisfy.

Lastly, note that there are other approaches to obtaining space-time and cosmology from

matrix theory. For example, Steinacker has a research program (see [37] for some original

articles and [38] for a review) in which matrices satisfying the equations of motion derived

from the matrix action are represented on a Poisson manifold. Specifically, one can choose

the Poisson manifold to have space-time dimension four. This corresponds to choosing

a background matrix set with Xa = 0 for a 6= 0, 1, 2, 3. Matrix fluctuations about this

background then yield an action for gauge fields and scalar fields, and fermions if one starts

from a supersymmetric matrix model. Gravity is induced on the background. Our work is

different in that we obtain space-time directly from the matrix theory.

We would also like to mention recent work of Klinkhamer [39] which further develops some

of the ideas of [19] for the Lorentzian matrix model, argues that matrix theory will yield a

nonsingular emergent cosmology, and extracts space and the cosmological scale factor from

a numerical analysis of the model. However, no attempt is made to compute cosmological

perturbations and compare with observations.

The most important open issue for our scenario is the study of the transition from the

emergent phase analyzed in this paper to the radiation phase of Standard Big Bang cosmol-

ogy. In the case of String Gas Cosmology, the transition proceeds via the annihilation of

string winding modes, resulting in the generation of string loops which lead to radiation. The

transition is smooth and a high density radiation bath is automatically generated, obviating

the need of a separate reheating phase, a phase which is needed in inflationary cosmology.

In the same way, in our scenario the exit from the emergent phase will automatically lead

to a high density radiation bath. The details of the transition, however, are not known, and

these details will be important in order to be able to make precise predictions for the slopes

of the spectra of scalar and tensor modes. Work on this issue is in progress.
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Addendum for thesis

Following the steps in Chapter 3, we explore here another way of obtaining a scale-invariant

spectrum from a string-theoretic matrix model. In the present case, we explain how a scale-

invariant spectrum of cosmological perturbations can be realized in the context of the IKKT

model at finite temperature. We begin by formulating a description of the IKKT model

at finite temperature, taking inspiration from string theory. In string theory, a description

of strings at finite temperature can be found by compactifying the Eucledian target space

of strings on a thermal circle where the radius of the thermal circle is identified with the

inverse temperature. To define the IKKT model at finite temperature, we proceed in the

same way as in string theory, and compactify the Euclidean time direction of the theory

on a thermal circle with radius identified with the inverse temperature of the system. We

obtain that the action of the IKKT model becomes exactly the action of the BFSS model
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up to T-duality. Motivated by this fact, we then compute the spectrum of cosmological

perturbations of the IKKT model in the same way as in Chapter 3. Like for the BFSS

model, we find a scale-invariant spectrum of scalar and tensor perturbations in agreement

with string gas cosmology and CMB observations on large scales.

Abstract

Matrix theory is a proposed non-perturbative definition of superstring theory in which space

is emergent. Recently, it was shown that space-time can emerge with a scale-invariant

spectrum of cosmological perturbations which is sourced by thermal fluctuations of the BFSS

model at finite temperature. Inspired by these results, we begin a study of the IKKT model

at finite temperature. We find that in this model, which is closely related to the BFSS

model at finite temperature, thermal fluctuations can also source a scale-invariant spectrum

of scalar and tensor fluctuations.

4.1 Introduction

Superstring theory is a promising candidate for a self-consistent unified theory of quantum

gravity and particle physics. From the perspective of a cosmologist, a promising aspect

of string theory is that it can potentially describe the physics of the early universe where

the Standard Model of Particles Physics and Einstein gravity are known to break down.

Specifically, in [1], an emergent scenario based on string theory (String Gas Cosmology) was

proposed in which the universe emerges from a quasi-static phase, the Hagedorn phase, as a

gas of strings at a temperature close to its limiting temperature, also known as the Hagedorn

temperature [2]. In this emergent phase, thermal fluctuations of the gas of strings lead to

an almost scale-invariant spectrum of cosmological perturbations with a slight red tilt [4],

and of gravitational waves with a slight blue tilt [3]. These thermal fluctuations provide a

source for structure formation as the emergent phase transitions to the radiation-dominated

phase of Standard Big Bang Cosmology. This model provides an interesting alternative to

inflation, which is known to be hard to realize in string theory [5]. Moreover, the String Gas
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Scenario yields a non-singular cosmology.

One problem of String Gas Cosmology, however, is that the background evolution of the

universe near the Hagedorn temperature, which leads to the resolution of the singularity,

is not well understood. This is the case because string theory is usually considered at the

perturbative level of an an effective field theory on a classical background space-time. Such

description is known to break down at very high densities and curvatures, and in particular

in the very early universe. Therefore, to study the early universe in the high curvature

regime, one should consider a non-perturbative formulation of string theory. There have

been many proposals for non-perturbative formulations of string theory, most of which rely

on matrix models. The idea behind these models is that certain system of N ×N matrices

can provide non-pertubative description of superstring theory in the large N limit. There

are two main proposals for matrix theory, the BFSS model [6] and the IKKT model [7]. In

the BFSS model, the eigenvalue distribution of the matrices describe space and depend on

a continuous parameter t which plays the role of time. In the IKKT model, space-time is

fully described by large N matrices: one holds information about time and the others hold

information about space1. These models provide a non-perturbative description of M-theory

and the Type IIB string respectively.

Recently, a novel emergent scenario was suggested which makes use of the BFSS model [8].

In this scenario, the universe emerges in a thermal state described by the BFSS model at

finite temperature. While doing so, thermal fluctuations of the BFSS model lead to an

almost scale-invariant spectrum of scalar and tensor perturbations, just like in the case of

String Gas Cosmology. The universe then transitions to the radiation dominated phase of

Standard Big Bang Cosmology, and thermal perturbations source structure formation. Steps

have also been made to understand the time evolution of the metric at early times in the

universe in matrix theory [9], which is something that was as hitherto out of reach of most

perturbative approaches (See [10] for a review on these two topics).

Given the recent success of the BFSS model in explaining structure formation, we now

suggest an alternative scenario, in which the IKKT model at finite temperature sources struc-

ture formation. In the new scenario that we are proposing in this paper, the universe emerges

1A review of this model will be provided in section 4.2
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from a non-perturbative phase of the supersymmetric IKKT model2 at finite temperature,

and thermal fluctuations source the spectra of scalar and tensor perturbations which are

both (approximately) scale-invariant. When space-time emerges, the universe transitions to

the radiation dominated phase of Standard Big Bang Cosmology, and thermal perturbations

source structure formation as was the case in the BFSS scenario.

Our new early universe scenario makes use of the IKKT model at finite temperature

which, to the knowledge of the authors, is a system that has not yet been studied in the

literature. Consequently, the first portion of the paper will be dedicated to defining a thermal

state for the IKKT model, and studying its properties. Our approach to defining a thermal

state for the IKKT model will build on known properties of string theory, where strings

at finite temperature can be studied by compactifying the Euclidean time component of

the string target space on a circle where space-time fermions acquire suitable anti-periodic

boundary conditions (see [11] for relevant papers on this topic). Since the IKKT model

provides a non-perturbative description of the Type IIB string target space, we postulate

that the IKKT model at finite temperature can be studied by compactifying the Euclidean

time component of the matrices on a circle where the fermionic matrices acquire anti-periodic

boundary conditions. Following this prescription, we will evaluate the free energy and energy

of the system, and study the thermal fluctuations which lead to structure formation.

The present paper is structured as follows. In section 4.2, we review some aspects of

the IKKT matrix model and how space-time emerges from it. In section 4.3, we obtain the

IKKT action at finite temperature by compactifying the Euclidean time component of the

model on a thermal circle where fermions acquire boundary conditions. In section 4.4, we

evaluate the free energy of the system at finite temperature in the low temperature regime.

Finally, in section 4.5, we show how space-time can emerge with a scale-invariant spectrum

of scalar and tensor perturbations.

2This model is described by bosonic matrices which describe space-time, and fermionic matrices which

describe space-time fermions.
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4.2 Review of the matrix models and emergent space

The IKKT model is a proposed non-perturbative formulation of Type IIB string theory. The

idea behind this model is to describe the world sheet of the Type IIB string using large N

matrices. To see how this can be done, let us start with the Green-Schwarz action of the

Type IIB string:

SGS = −T
∫
d2σ

(√
−h+ 2iεab∂aX

µψ̄Γµ∂bψ
)
, hab = ∂aX

µ∂bXµ . (4.1)

Equivalently, the action above can be rewritten in the following ”Schild” form

SSchild = −T
∫
dσ2√g

(
−α

4
{Xµ, Xν}2 +

i

2
ψ̄Γµ{Xµ, ψ}+ β

)
, (4.2)

where the Poisson brackets are defined by:

{Xµ, Xν} =
1
√
g
εab∂aX

µ∂bX
ν . (4.3)

This new action depends on an auxiliary field
√
g, which satisfies the equation of motion

√
g =

√
α

2β

√
−h , h =

1

2
{Xµ, Xν}2 (4.4)

Substituting the result above in the Schild action gives us

SSchild = −T
∫
d2σ

(√
2αβ
√
−h+

i

2
ψ̄Γµ{Xµ, ψ}

)
, (4.5)

which is equivalent to the Nambu-Goto action of the Type IIB string provided that 2αβ =

1 and that we normalize the fermions. In the Schild formalism, the string dynamics is

determined by the Poisson bracket {Xµ, Xν}. By analogy with quantum mechanics, the

Schild action can be discretised by replacing the Poisson brackets by a commutator and the

integral by a trace.

{ , } =⇒ −i[ , ] ,

∫
dσ2√g =⇒ Tr . (4.6)

In this case, the target space coordinates Xµ and associated fermions ψ3 are now described

by large N ×N matrices, and we obtain the IKKT model action

SIKKT = −T
4
αTr [Xµ, Xν ]2 − T

2
Tr ψ̄ Γµ [Xµ, ψ]− β Tr1 . (4.7)

3We will suppress the spinor indices here and everywhere below to avoid clutter.
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The last term in the action above is non-dynamical and can be neglected. Hence, by con-

vention, we will use the following form for the IKKT model action

SIKKT = − 1

4g2
Tr [Aµ, Aν ]2 − 1

2g2
Tr ψ̄ Γµ [Aµ, ψ] , (4.8)

where we have defined Xµ ≡ Aµ. The action above can also be obtained by dimensionally

reducing the action of a 10-dimensional super Yang-Mills theory to a point. In all cases,

the resulting action is invariant under SU(N) transformation. In the action above, the µ, ν

is contracted with respect to the flat metric ηµν = diag(+,−, ...,−). Hence, this model is

often referred to as the Lorentzian IKKT model. For the action to be supersymmetric in

10 dimensions, the fermions must be described by Majorana-Weyl spinors, which satisfy

ψ̄ = ψ C10. Here, C10 is the charge conjugation operator in ten dimensions, which we will

take to satisfy C10ΓµC−1
10 = −ΓT and CT

10 = −C10.

4.3 Compactification, SUSY breaking and thermody-

namics

In superstring theory, one can obtain a thermal state of the string by compactifying the

time direction of a Euclidean target space on a torus together with suitable anti-periodic

boundary conditions for the target space fermions.4 This antiperiodic boundary condition

for the fermions is required to break supersymmetry, which is expected to occur in any

thermal system. Given that the IKKT model describes the target space of the Type IIB

string, one should expect to be able to construct a thermal state of the IKKT model by

compactifying the matrices on such a torus. The precise sense in which this can be done

has already been explored by Taylor [13] (symmetric boundary conditions for the fermions),

Banks [14] (anti-symmetric boundary conditions for the fermions) and many other authors

( [15], [16] and more). In the present section, we will build on the approach of these authors

to compactify the IKKT model on a Eucledian time circle, and study the thermodynamic

properties of this system.

4This choice of compactification is closely related to the Scherk-Schwartz orbifolding procedure [12].
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4.3.1 Compactification and thermodynamics

Let us start by Euclideanising the IKKT action. For a Lorentzian metric in the mostly minus

signature (+,−, ...,−), this can be done by the changes A0 → iA0 and Γi → iΓi in the IKKT

action (Equation 4.8). We obtain

SIKKT = − 1

4g2
Tr[Aµ, Aν ]2 − i

2g2
Tr (ψC10Γµ[Aµ, ψ]) , (4.9)

where the indices are now contracted with respect to the Euclidean metric gµν = δµν . We

will then compactify the time direction in the Euclidean IKKT model on a circle where the

fermions acquire anti-periodic boundary conditions. To do this, let us presume the existence

of an operator U which translates the matrices by an amount 2πβ in the A0 direction, where

β = 1/T is identified as the inverse temperature of the system. To impose the desired

boundary conditions, we want this operator and the matrices Aµ and ψ to satisfy:

U−1A0U = A0 + 2πβ (4.10)

U−1AiU = Ai (4.11)

U−1ψU = −ψ . (4.12)

In other words, Ai and ψ must have periodic and anti-periodic boundary conditions re-

spectively, and A0 must be periodic up to the circumference 2πβ of the Euclidean time

circle. These constraint equations can be solved by using operators q and p that satisfy the

Heisenberg commutation relations [q, p] = i5. Let us consider the unitary operator

U = 1⊗ e−i2πqe−ip , (4.13)

which translates a state a eigenvector |q〉 of the operator q to |q + 1〉 up to a phase e−i2πq,

and assume Ai and ψ take the form

Ai =
∑
n

Ain ⊗ einp , ψ =
∑
r

ψr ⊗ eirp . (4.14)

5Note that contrary to some papers in the literature, we will not assume that q is an integer. Here, q can

take any value on the real axis just like in quantum mechanics. Let us remember that this is something we

are allowed to do if Aµ and ψ are sufficiently large matrices, which we will be assuming here.
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Here, we will assume the Ain’s and ψr’s are large M ×M matrices that live in a Hilbert

space different from the one of q and p, where we will take the latter to be described by large

N×N matrices. Hence, Ai and ψ will be described by large MN×MN matrices. Using the

ansatz of equation 6.21 and 4.14, the constraint equations 4.11 and 6.19 can easily be solved

by invoking that n and r must be integers and half integers respectively. This result follows

from the fact that the phase factor e−i2πq behaves like a fermion parity operator (−1)F in the

sense that it commutes with the bosonic matrices Aµ and anti-commutes with the fermionic

matrices ψ given the equation 4.14.6 Hence, we obtain the desired boundary conditions for

the bosonic and fermionic matrices. A0 can be found in a similar way by adding a term of

the form 2πβq, which transforms like U−1(2πβq)U = 2πβ under the action of U . We obtain

A0 =
∑
n∈Z

A0
n ⊗ einp + 1⊗ 2πβq . (4.15)

The resulting matrices Aµ and ψ, in the q-basis, can be written as

A0
q′q = 〈q′|A0|q〉 =

∑
n∈Z

A0
n ⊗ δq′−n,q + 2πβqδq′q (4.16)

Aiq′q = 〈q′|Ai|q〉 =
∑
n∈Z

Ain ⊗ δq′−n,q (4.17)

ψq′q = 〈q′|ψ|q〉 =
∑

r∈Z+1/2

ψr ⊗ δq′−r,q . (4.18)

The matrices above have (or at least partly in the case of A0) some sort of Toeplitz structure

in the sense that they satisfy Aiq′q = Aiq′−q when q is an integer and ψq′q = ψq′−q when q is a

half-integer. This structure describes a system of mirror D-objects that live on the diagonal

of Aµq′q and ψq′q. The system of mirror objects is composed of a fundamental region, described

by Aµ0 and φ0, which is translated by a distance 2πβ for each adjacent diagonal block (See

Figure 4.1). The off-diagonal elements, on the other hand, are related to interactions between

each fundamental region.

These off-diagonal elements can also be associated to modes of a string winding around

a circle. Independently of the q-basis chosen above, this can be seen by substituting the

6Notice that this is where our approach departs from Tom Banks approach in [14]. The matrices Aµ and

ψ we obtain are slightly different in our case. However, they satisfy the desired properties given by equation

4.10, 4.11 and 6.19.
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t = 0 t = 2πβ t = 4πβ t = 6πβ

Figure 4.1: Sketch of mirror D-instantons in the duplicated fundamental regions along the

Euclidean time direction. Each fundamental region, where the distribution of D-instantons

is described by Aµ0 , has an infinite number of mirror regions located at a distance t = 2πβn

from each other along the A0 direction, where n is an integer.

constrained values of Aµ and ψ in the IKKT action. We obtain

SIKKT =
N

2g2
Tr

(∑
n

(2πβn)2Ai−nA
i
n + i

∑
r

2πβrψ−rC10Γ0ψr (4.19)

+
∑
nm

4πβn[A0
−n−m, A

i
m]2Ain −

∑
nml

[A0
−n−m−l, A

i
l][A

0
m, A

i
n] (4.20)

−1

2

∑
nml

[Ai−n−m−l, A
j
l ][A

i
m, A

j
n]− i

∑
rn

ψ−r−nC10Γ0[A0
n, ψr]− i

∑
rn

ψ−r−nC10Γi[Ain, ψr]

)
.

(4.21)

Here, we made use the identities

[q, einp] = −neinp , Trei(n±m)p = Nδ(n±m) , (4.22)

and traced over the q, p degrees of freedom to simplify the sums over n and r. The com-

pactified IKKT model action has the structure of a mode expansion, where the first two

terms describe the contribution of bosonic and fermionic winding modes with frequencies
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ωn = 2πβn (n ∈ Z and n ∈ Z + 1/2 for fermions), and the other term describe interactions

between the different modes. In the decompactification limit β → ∞, the non-zero modes

become heavy and decouple from the system. The system is then well approximated by the

bosonic IKKT model action

SIKKT = − N

4g2
Tr[Aµ0 , A

ν
0]2 . (4.23)

In the mirror objects picture, this means the mirror region are far from each other that the

interactions between each region can be neglected. We recover N copies of the fundamental

region, as reflected by the extra factor of N in the action. It’s also interesting to note

that fermions are projected away in the decompactification limit, which is a consequence of

supersymmetry breaking.

4.3.2 Relation to the BFSS model at finite temperature

Given that the IKKT model is a description of the Type IIB string, it should be possible to

link Equation 4.21 to the mode expansion of the Euclidean BFSS model, which is related to

the Type IIA string, using T-duality. Let us start with the Euclidean BFSS action

SBFSS =
1

2g2

∫
dτTr

(
(DτX

i)2 − 1

2
[X i, Xj]2 + ψ̄Γ0Dτψ − iψ̄Γi[X i, ψ]

)
, (4.24)

where the covariant derivative is defined by

DτX = ∂tX − i[X0, X] , (4.25)

and the fermions are Majorana-Weyl spinors that satisfy ψ̄ = Cψ. Substituting the mode

expansion

X0 =
∑
n

X0
ne

iωnt , X i =
∑
n

X i
ne
iωnt , ψ =

∑
r

ψre
iωrt (4.26)

in the BFSS action, we obtain

SBFSS =
β

2g2
Tr

(∑
n

(2πTn)2X i
−nX

i
n + i

∑
r

2πTrψ−rC10Γ0ψr (4.27)

+
∑
nm

4πTn[X0
−n−m, X

i
m]2X i

n −
∑
nml

[X0
−n−m−l, X

i
l ][X

0
m, X

i
n] (4.28)

−1

2

∑
nml

[X i
−n−m−l, X

j
l ][X

i
m, X

j
n]− i

∑
rn

ψ−r−nC10Γ0[X0
n, ψr]− i

∑
rn

ψ−r−nC10Γi[X i
n, ψr]

)
,

(4.29)
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where we have used ω = 2π/T . Letting T → 1/T , we recover the mode expansion of the

IKKT model (equation 4.21) up to a normalization of the gauge coupling g2. This implies

that the thermodynamics of the IKKT and BFSS are related by T-duality. For example, the

high-temperature limit (T → ∞) will be related to the low-temperature limit (T → 0) of

the IKKT model. For the BFSS model, the high-temperature limit is a perturbative limit.

Similarly, the low-temperature limit of the IKKT model will also be a perturbative limit,

which we will explore in the following section.

Notice also that the diagonal elements of the compact IKKT action become the Mat-

subara frequencies of the BFSS model under T-duality. This property is a consequence of

the Toeplitz structure of the compactified Aµ and ψ matrices, which was recently utilized

to rewrite quantum field theories compactified on a Toroidal space-time in terms of Toeplitz

matrices [17].

4.4 Free energy of the IKKT model at finite tempera-

ture

In the IKKT model, space-time time emerges from the bosonic Aµ matrices. As we saw in

the previous section, this picture becomes different once the IKKT model is compactified.

Instead of describing a single system, the IKKT describes an infinite number of copies of the

same system that interact more and more with each other as we increase the temperature.

In the zero temperature limit, one recovers N copies of the fundamental region which are

far away from each other, and hence do not interact with each other. To understand the

thermodynamics of this system, we will treat the low temperature limit of the IKKT model in

the same way as was done in [18] for the high temperature limit of the BFSS model. We will

integrate out the interactions (non-zero winding modes) in order to obtain the effective free

energy felt in the fundamental regions (zero modes) as a function of temperature. This will

later allow us to study thermodynamic properties of the fundamental regions (e.g., thermal

fluctuations), which are relevant for cosmology.
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4.4.1 Gauge fixing and other considerations

Before computing the free energy, there are some considerations we have to make. First, let

us choose an appropriate gauge fixing to evaluate the path integral. To do this, note that the

compactification procedure is equivalent to studying fluctuations of the matrices Aµ and ψ

around a background where A0 = 2πβq, Ai = 0 and ψ = 0. In other words, we are imposing

Aµ = Xµ + Ãµ (4.30)

ψ = ξ + ψ̃ , (4.31)

where we choose

X0 = 2πβq , X i = 0 , Ãµ =
∑
n

Aµne
inp (4.32)

ξ = 0 , ψ̃ =
∑
r

ψre
irp . (4.33)

Here, the only difference is that we are also imposing that the fluctuation matrices Ãµ and

ψ̃ are symmetric and anti-symmetric under the action of the unitary operator in equation

6.21. Such expansions have been studied extensively in [7] and [19]. In these cases, the

appropriate gauge fixing condition is

PµA
µ = 0 , (4.34)

where P µ is the adjoint operator

PµY = [Xµ, Y ] (4.35)

associated to the background matrices Xµ. In the case at hand, imposing the gauge condition

projects out the non-zero modes of X0, giving us X0 = A0
0. This gauge can be fixed by adding

a ghost part

Sgh = − 1

g2
Tr ([Xµ, c̄][A

µ, c]) (4.36)

to the IKKT action. Here, the ghost matrices c will also be compact and hence take the

form

c =
∑
n∈Z

cne
inp (4.37)
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Tracing out the q and p degrees of freedom in the ghost action, we obtain the following mode

expansion

Sgh =
N

g2

∑
n

(2πβn)2Tr(c̄ncn)− N

g2

∑
nm

2πβ(n+m)Tr(c̄n+m[A0
m, cn]) . (4.38)

As a second consideration, we will assume the gamma matrices Γµ and the charge conjugation

operator C10 are in the following representation:

Γ0 = 116 ⊗ σ1 (4.39)

Γi = γi ⊗ σ2 (4.40)

C10 = C9 ⊗ iσ2 (4.41)

Here, the γi’s are a set of nine-dimensional (Euclidean) gamma matrices which satisfy

{γi, γj} = 2δij, and C9 is the associated charge conjugation matrix satisfying C9γ
iC−1

9 = γiT .

We will also choose γi to be in the Majorana representation (where the nine γi are taken to

be real and symmetric), in which case the charge conjugation matrix takes the simple form

C9 = 116. Finally, we will impose the following choice of Majorana-Weyl spinor:

ψ = φ⊗

1

0

 . (4.42)

Here, φ is a sixteen-component Majorana fermion.

Given the considerations above, the compactified IKKT action, including the ghosts, can

be rewritten as a sum of the zero mode action S0, winding mode terms Sw and interaction
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terms Sint in the following way

SIKKT = S0 + Sw + Sint (4.43)

S0 = − N

4g2
Tr[Aµ0 , A

ν
0]2 (4.44)

Sw =
N

g2
Tr

(
1

2

∑
n6=0

(2πnβ)2A0
−nA

0
n +

1

2

∑
n6=0

(2πnβ)2Ai−nA
i
n +

i

2

∑
r

2πrβφ−rφr +
∑
n

(2πnβ)2c̄ncn

)
(4.45)

Sint = − N

2g2
Tr

( ∑
n=m6=0

4πnβ[A0
−n−m, A

i
m]2Ain +

∑
n=m=l 6=0

[A0
−n−m−l, A

i
l][A

0
m, A

i
n] (4.46)

+
∑

n=m=l 6=0

1

2
[Ai−n−m−l, A

j
n][Aim, A

j
l ] + i

∑
rn

φ−r−n[A0
n, φr]−

∑
nr

φ−r−nγ
i[Ain, φr]

(4.47)

+
∑
nm

4π(n+m)βc̄n+m[A0
m, cn]

)
, (4.48)

where
∑

n=m 6=0 and
∑

n=m=l 6=0 respectively imply that the m = n 6= 0 and m = n = l = 0

terms are excluded from the sum. Notice that we added a winding mode term for A0 in the

action. We can do this because the gauge condition PµA
µ = 0 imposes that all A0

n’s are zero

when n 6= 0. Hence, adding the winding mode term for A0 is equivalent to adding zero in

the action. Since we recovered a winding mode term for A0, it’s useful to rewrite SIKKT in

the more condensed form

SIKKT = S0 + Sw + Sint (4.49)

S0 = − g2

4N
Tr[Aµ0 , A

ν
0]2 (4.50)

Sw = Tr

(
1

2

∑
n6=0

(2πβn)2Aµ−nA
µ
n +

i

2

∑
r

2πβrφ−rφr +
∑
n

(2πβn)2c̄ncn

)
(4.51)

Sint = −1

2

√
g2

N

∑
n=m 6=0

4πβnTr([A0
−n−m, A

i
m]2Ain) (4.52)

− 1

4

g2

N

∑
n=m=l 6=0

Tr([Aµ−n−m−l, A
ν
l ][A

µ
m, A

ν
n])− i

2

√
g2

N

∑
nr

Tr(φ−r−n[A0
n, φr]) (4.53)

+
1

2

√
g2

N

∑
nr

Tr(φ−r−nγ
i[Ain, φr])−

1

2

√
g2

N

∑
nm

4π(n+m)Tr(c̄n+m[A0
m, cn]) , (4.54)

98



were we made the redefinitions Aµn →
√
g2/NAµn, ψr →

√
g2/Nψr and ψr →

√
g2/Nψr to

get rid of the N and g2 dependance in Sw. The form above will be useful when evaluating

the free energy. As we can see from the action above, the SO(10) symmetry of the system is

explicitly broken when the temperature of the system is non-zero. The symmetry is restored

when T → 0 and the zero modes dominate the effective action.

4.4.2 Free energy at leading order

Let us now derive the free energy of the system at leading order. We start with the partition

function

Z =
∏
lrmn

∫
DAµl DφrDc̄mDcn e

−S0−Sw−Sint (4.55)

= Z0Zw〈e−Sint〉 , (4.56)

of the compact IKKT action. As shown above, this partition function can be split into a

contribution from the zero-mode partition function Z0, the winding modes partition function

Zw and the expectation value of the interaction terms 〈e−Sint〉. Here, Z0, Zw and 〈.〉 are

defined as.

Z0 =

∫
DAµ0e

−S0 , Zw =
∏
l 6=0

∏
rmn

∫
DAµl DφrDc̄mDcn e

−Sw (4.57)

〈 . 〉 =
1

Z0Zw

∏
lrmn

∫
DAµl DφrDc̄mDcn . e

−S0−Sw (4.58)

Given the partition functions above, the free energy

F = −T lnZ (4.59)

= −T lnZ0 − T lnZw − T ln〈e−Sint〉 , (4.60)

can be evaluated perturbatively. At leading order in perturbation theory, only the first two

terms contribute significantly to the free energy. The first term, which depends on lnZ0, is

not very interesting since lnZ0 does not depend on β. Hence, we won’t pay much attention

to it. For the second term, the contribution to the energy can be found by carrying out a
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series of Gaussian integrals. We first split the winding modes partition function in a bosonic

part Zb, a fermionic part Zf , and a ghost part Zgh in the following way:

Zw = ZbZfZgh , (4.61)

Zb =
∏
n6=0

∫
DAµn e

− 1
2

Tr(
∑
n 6=0(2πβn)2Aµ−nA

µ
n) , (4.62)

Zf =
∏
r

∫
Dφr e

−i 1
2

Tr(
∑
r 2πβrφ−rφr) , (4.63)

Zgh =
∏
nm

Dc̄nDcm e
−Tr(

∑
n(2πβn)2c̄ncn) . (4.64)

The Gaussian integrals above can be carried out to obtain the expression below:

Zb =

(∏
n6=0

(2πβn)2

)−DM2/2

, (4.65)

Zf =

(∏
r

2πβir

)pM2/2

, (4.66)

Zgh =

(∏
n6=0

(2πβn)2

)M2

. (4.67)

Here, D is the number of space-time dimensions and p is the dimension of the φ spinors,

which are respectively D = 10 and p = 16 in the present case. However, we will keep D and

p arbitrary for the sake of generality. The products above are manifestly divergent. However,

these divergences can be tamed using the identities

∞∏
n=1

(
2πn

α

)−2

=
1

α
,

∞∏
n=1

(
2π(n− 1/2)

α

)2

= 2 (4.68)

found by zeta function regularisation (See Appendix 4.7). Using the identities above, we

obtain

Zb = βDM
2/2 , (4.69)

Zf = 2pM
2/2 , (4.70)

Zgh = β−M
2

. (4.71)
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Including all the terms above, we obtain the following contribution to the free energy at

leading order

Fleading = −T lnZ0 − T lnZw (4.72)

= −T lnZ0 − TM2(D − 2) ln (β)− 1

2
TpM2 ln 2 , (4.73)

and the following expression for the energy:

Eleading = −∂β lnZ0 − ∂β lnZw = −M2(D − 2)T . (4.74)

Here, lnZ0 is a constant that does not depend on the temperature of the system, and

hence does not contribute to the energy. Note that unlike for the BFSS model, the leading

order contribution to the energy is negative. This is a consequence of the fact that the

Matsubara frequencies of the system are winding modes, and not Kaluza-Klein modes of a

field compactified on a thermal circle like in thermal field theory. The positive sign found

for the BFSS model can be recovered by letting T → 1/T in the partition function, and

computing the energy again using equation 4.74. Also note that, similar to the BFSS model

(or all supersymmetric theories for that matter), the breaking of supersymmetry plays an

important role in obtaining an non-vanishing contribution to the energy at leading order.

If supersymmetry was restored by giving the fermions periodic boundary conditions, the

contribution from the bosonic sectior, the fermionic sectior and the ghosts would cancel

giving lnZw = 0 and Eleading = 0, and leaving only a contribution from lnZ0 to the free

energy.

This is to be expected since, as we mentioned before, our chosen compactification is

equivalent to perturbing the action around a background Xµ where X0 = 2πβq, X i = 0

and ξ = 0, and imposing that the bosonic and fermionic fluctuations have periodic and

anti-periodic boundary conditions respectively. Such backgrounds describe a distribution

of D-instantons that satisfy the BPS condition Fµν = i[Pµ, Pν ] = 0. In this case, the one-

loop partition function is known to vanish as a consequence of supersymmetry. However,

supersymmetry is broken here because of our choice of boundary conditions, so we obtain a

non-vanishing contribution to the energy.

101



4.4.3 Free energy at next to leading higher order

The next to leading order terms in perturbation theory can be evaluated by expanding

〈e−Sint〉 and evaluating the expectation values. To obtain an effective description of the zero

modes of the theory, we will evaluate the expectation values 〈〈 . 〉〉 associated to the non-zero

modes of theory in order to obtain an expression that depends on the expectation values

〈.〉0 related to the zero modes in the theory. The resulting expression will give us corrections

to the zero-mode effective action. Here, the expectation value 〈〈 . 〉〉 with respect to the

non-zero modes is defined by

〈〈 . 〉〉 =
1

Zw

∏
l 6=0

∏
rmn

∫
DAµl DφrDc̄mDcn . e

−Sw . (4.75)

and the expectation value 〈.〉0 with respect to the zero modes Aµ0 is defined by

〈 . 〉0 =
1

Z0

∫
DAµ0e

−S0 . (4.76)

To evaluate the correction terms, it’s useful to write down the two-point functions associated

to the bosonic matrices, the fermionic matrices and the ghosts:

〈〈(Aµm)ab(A
ν
n)cd〉〉 =

δµνδn+m,0δadδbc
(2πβn)2

(4.77)

〈〈(φαr )ab(φ
β
s )cd〉〉 =

δβαδr+s,0δadδbc
2πβir

(4.78)

〈〈(c̄m)ab(cn)cd〉〉 =
δnmδadδbc
(2πβn)2

. (4.79)

Here, α, β and a, b, c, d are respectively spinor and matrix indices. We will also separate the

interaction part of the action into five different interaction terms in the following way:

Sint =
5∑
p=1

Vp . (4.80)

102



Here, each interaction term can be written as:

V1 = − g2

4N

∑
n=m=l 6=0

Tr
(
[Aµ−n−m−l, A

ν
l ][A

µ
m, A

ν
n]
)
, (4.81)

V2 = −1

2

√
g2

N

∑
n=m 6=0

4πβnTr
(
[A0
−n−m, A

i
m]Ain

)
, (4.82)

V3 = − i
2

√
g2

N

∑
nr

Tr
(
φ−r−n[A0

n, φr]
)

(4.83)

V4 =
1

2

√
g2

N

∑
nr

Tr
(
φ−r−nγ

i[Ain, φr]
)

(4.84)

V5 = −
√
g2

N

∑
nm

2π(n+m)βTr(c̄n+m[A0
m, cn]) . (4.85)

Using the interaction terms above, the corrections to the effective action at two-loop order

can be written as

ln〈e−Sint〉 = −〈V1〉+
1

2
〈V 2

2 〉+
1

2
〈V 2

3 〉+
1

2
〈V 2

4 〉+
1

2
〈V 2

5 〉+ ... , (4.86)

where each expectation value in the expansion above is given by

〈V1〉 =
(D − 1)

12

MT 2g2

N
Tr〈Aµ0A

µ
0〉0 +O(T 4) (4.87)

〈V 2
2 〉 =

(D − 1)

3

MT 2g2

N
Tr〈A0

0A
0
0〉0 +

1

6

MT 2g2

N
Tr〈Ai0Ai0〉0 +O(T 4) (4.88)

〈V 2
3 〉 = −p

4

MT 2g2

N
Tr〈A0

0A
0
0〉0 +O(T 4) (4.89)

〈V 2
4 〉 =

p

4

MT 2g2

N
Tr〈Ai0Ai0〉0 +O(T 4) (4.90)

〈V 2
5 〉 = −1

6

MT 2g2

N
Tr〈A0

0A
0
0〉0 +O(T 4) . (4.91)

Here, we made use of the sum identities∑
n6=0

1

(2πn)2
=

1

12
,
∑
r

1

(2πr)2
=

1

4
(4.92)

to evaluate the expectation values. Moreover, we only kept the terms to quadradic order

in temperature, which provides the dominant next to leading order contribution. Adding

all the terms together and restoring the initial dimensions of the zero modes by letting
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Aµ0 →
√
N/g2Aµ0 , we obtain the following expression for the corrections to the effective

action at two-loop order:

ln〈e−Sint〉 =

(
D − 2

12
− p

8

)
MT 2

(
Tr〈A0

0A
0
0〉0 − Tr〈Ai0Ai0〉0

)
+O(T 4) . (4.93)

Here again, the contribution above is a consequence of broken supersymmetry. If we were

to restore supersymmetry by giving the fermions periodic boundary conditions, the p/8

prefactor in the expression above would get replaced by p/24, leading to a cancelation of the

term above.

Note that the expression above can be explicitly related to the expectation value of the

extent of space 〈R2〉0 = 1
M

Tr〈Ai0Ai0〉0 of the system and what we could define as the expec-

tation value of the extent of time 〈T 2〉0 = 1
M

Tr〈A0
0A

0
0〉0. Here, 〈R2〉0 and 〈T 2〉0 should be

respectively viewed as the characteristic size of space and duration of time in the fundamen-

tal regions. Since SO(10) symmetry is preserved at tree level, we expect the distribution of

eigenvalues of A0 to be similar to the distribution of eigenvalues of Ai. Consequently, we

expect that 〈T 2〉0 can be approximated by

〈T 2〉0 ≈
1

D − 1
〈R2〉0 . (4.94)

Substituting the expression above in the effective action, we obtain the following correction

to the free energy

Fnext = −T ln〈e−Sint〉 =

(
D − 2

12
− p

8

)
D − 2

D − 1
M2T 3〈R2〉0 (4.95)

and the following correction to the energy of the system

Enext = −∂β ln〈e−Sint〉 = −2

(
D − 2

12
− p

8

)
D − 2

D − 1
M2T 3〈R2〉0 . (4.96)

4.5 Application to early universe cosmology

In the last section, we studied the IKKT model at finite temperature and derived its free

energy up to the next to leading order. Let us now consider a scenario where the universe

emerges in a thermal state described by the IKKT model at finite temperature. Here, we
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will assume a 4 dimensional universe emerges and that thermal fluctuations are sourced by

a four-dimensional version of the IKKT model (D = p = 4).

If the theory of linear cosmological perturbations apply, we can show that the spectrum

of scalar and tensor perturbations sourced by thermal fluctuations of the IKKT model is

scale invariant following the prescription given in [4]. To do this, let us assume space-time

is described by the following longitudinal gauge metric

ds2 = (1 + 2Φ)dt2 − a(t)2[(1− 2Φ)δij + hij]dx
idxj (4.97)

where Φ is the relativistic generalisation of the Newtonian gravitational potential, hij is

a transverse traceless tensor which describes excitations of the metric due to gravitational

waves, and a(t) is the scale-factor of an arbitrary cosmological background.

According to linear cosmological perturbation theory, the amplitude of curvature fluc-

tuations on a scale k , where k denotes the comoving wave number, is related to energy

fluctuations on that scale via

〈|Φ(k)|2〉 = 16π2G2k−4〈δT 0
0 (k)δT 0

0 (k)〉 , (4.98)

where T µν is the energy-momentum tensor of matter, and G is Newton’s gravitational con-

stant. Similarly, the amplitude h(k) of tensor perturbations can be related to transverse

pressure fluctuations via

〈|h(k)|2〉 = 16π2G2k−4〈δT ij (k)δT ij (k)〉 , i 6= j . (4.99)

If matter is in a thermal state, then the amplitude of density and transverse pressure per-

turbations in a box of radius R can be found from the finite temperature partition function

of the system. Specifically, since

〈T µν 〉 = 2
gµλ√
−g

∂ lnZ

∂gνλ
, (4.100)

the fluctuations of the stress-energy tensor can be expressed as

〈δT µν (k)δT σλ (k)〉 ≡ 〈T µν T σλ 〉 − 〈T µν 〉〈T σλ 〉 (4.101)

= 2
gµα√
−g

∂

∂gαν

(
gσδ√
−g

∂ lnZ

∂gδλ

)
+ 2

gσα√
−g

∂

∂gαλ

(
gµδ√
−g

∂ lnZ

∂gδν

)
(4.102)
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The expression above may seem complicated. However, component-wise, it can be expressed

in terms of rather simple thermodynamic observables. To obtain these expressions, we first

move to the position space representation of the matter perturbation correlation functions

using

〈δT 0
0 (k)δT 0

0 (k)〉 = k−3〈δT 0
0 (k)δT 0

0 (k)〉R , (4.103)

〈δT ij (k)δT ij (k)〉 = k−3〈δT ij (k)δT ij (k)〉R , (4.104)

where 〈.〉R denotes the expectation value in the position space representation. Then, the

energy density correlation function can be expressed in terms of the heat capacity

CV =

(
∂E

∂T

)
V

(4.105)

of the system in the following way

〈δT 0
0 (k)δT 0

0 (k)〉R = 〈δρ2〉R = 〈ρ2〉R − 〈ρ〉2R =
T 2

R6
CV . (4.106)

Similarly, the correlation function of the off-diagonal spatial components of the stress tensor

〈δT ij (k)δT ij (k)〉R = 〈(T ij )2〉R − 〈T ij 〉2R , i 6= j (4.107)

can be related to transverse pressure perturbations in the following way

〈δT ij (k)δT ij (k)〉R = α
T

R2

∂p̃

∂R
, (4.108)

where the pressure p̃ is related to the free energy F of the system via

p̃ = − 1

V

∂F

∂ lnR
. (4.109)

Here, α is a suppression factor of the transverse pressure perturbations compared to the

diagonal pressure perturbations which satisfies |α| < 1.

If we assume that matter behaves in the way described by the thermodynamics of the

IKKT model, then it’s possible to find the spectrum of cosmological perturbations sourced

by the IKKT model from the effective action derived in Section 4.4. Let us start with the

power spectrum of scalar cosmological perturbations, which is defined by

PΦ(k) = k3〈|Φ(k)|2〉 . (4.110)
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Making use of equations 4.98 and 4.104, the power spectrum can then be related to the

position space density fluctuations via

PΦ(k) = 16π2G2k−4〈δρ2(k)〉R . (4.111)

As we saw before, the density perturbations can be related to the heat capacity of the system

via equation 4.106. This gives us

PΦ(k) = 16π2G2k2T 2CV (kR)−6 . (4.112)

As we can see above, the spectrum of fluctuations can be scale invariant as long as CV ∼ k−2.

This feature is known to arise in String Gas Cosmology, and in an emergent scenario involving

the BFSS model as shown recently. Indeed, we will now show that this feature also arises

when considering the thermodynamics of the IKKT model. Using the expression for the

energy derived in section 4.4, find the heat capacity

CV = −N2(D − 2) + 6

(
p

8
− D − 2

12

)
D − 2

D − 1
M2T 2〈R2〉0 . (4.113)

The first term gives a contribution to the power spectrum proportional to k2, which is sub-

dominant on large scales. The second term, however, gives us a scale-invariant contribution

since 〈R2〉0 ∼ k−2. Putting everything together, the scale-invariant contribution to the power

spectrum gives us

PΦ(k) = 96π2G2(kR)−4

(
p

8
− D − 2

12

)
D − 2

D − 1
M2T 4 (4.114)

Similarly, one can evaluate the power spectrum of tensor fluctuations from the position space

representation of transverse matter perturbations using

Ph(k) = k3〈|h(k)|2〉 , (4.115)

which, using equations 4.99 and 4.104, can be related to the transverse matter fluctuations

in the following way:

Ph(k) = 16π2G2k−4〈δT ij (k)δT ij (k)〉R . (4.116)

Making use of equations 4.108 and 4.109 and the free energy derived in section 4.4, we obtain

〈δT ij (k)δT ij (k)〉R = 2α

(
D − 2

12
− p

8

)
D − 2

D − 1
M2T 4R−4 . (4.117)
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This gives us a contribution to the spectrum of cosmological perturbations of the form

Ph(k) = 32π2G2(kR)−4α

(
D − 2

12
− p

8

)
D − 2

D − 1
M2T 4 , (4.118)

which is also scale-invariant. Note that for equation 8.11 to be positive, α must be a negative

quantity. Hence, we expect the diagonal and off-diagonal pressure perturbations to have

opposite sign in this system.

Comparing the results (8.9) and (8.11), we find that the tensor-to-scalar ratio is given by

r =
|α|
3
. (4.119)

In order to be consistent with the current observational bound on r, the value of α needs to

be of the order O(10−1). This is slightly better than for cosmological perturbations sourced

from thermal fluctuations of the BFSS model, where we need α to be of the order O(10−2)

to obtain a result consistent with observations. Recall that although the transverse pressure

perturbations are naturally smaller compared to the diagonal ones for thermal perturbations,

they are not expected to get fine-tuned to be extremely small. Hence, we expect α to be

smaller than one, but not by many orders in magnitude. In this sense, the IKKT model at

finite temperature is more likely to source perturbations with the correct value of r than the

BFSS model at finite temperature.

4.6 Conclusion

In this paper, we began a study of matrix model thermodynamics and suggested an emergent

scenario in which a non-singular cosmology emerges from a thermal system described by the

IKKT model at finite temperature. Inspired by string thermodynamics, we defined the IKKT

model at finite temperature by compactifying its Euclidean time matrix on a circle where

fermions acquire anti-periodic boundary conditions. We found that if the early universe

emerges in a thermal state of the IKKT model, then structure formation can be sourced by

thermal fluctuations of the IKKT model at finite temperature, which yield scale invariant

scalar and tensor perturbations.

So far, we have assumed that the universe transitions to the radiation-dominated phase

of Standard Big Bang cosmology after the emergent phase. However, as discussed in section
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4.3, the low-temperature regime of the theory is dominated by the bosonic IKKT action.

Hence, it’s possible that the late-time dynamics of the system can be described by known

cosmological solutions of the bosonic IKKT model (e.g. [20]) with perhaps some thermal

corrections. This scenario could share interesting similarities with new numerical results [21]

involving the IKKT model which suggests space-time can emerge accompanied by a transition

from a Euclidean space-time metric to a Lorentzian space-time metric. In our scenario, the

Euclidean portion of our space-time could be described by a thermal state of the IKKT

model which transitions into a Lorentzian space-time described by the bosonic IKKT model

plus some thermal corrections. The details of this late time transition and the subsequent

time evolution of the universe needs to be worked out in future work.

Our early universe model shares many properties of String Gas Cosmology, where the

evolution of the universe is driven by a gas of strings at finite temperature. In comparison,

our model relies on a matrix description of strings at finite temperature, which yields similar

results. Namely, we obtain an emergent 4-dimensional space-time from superstring theory,

which lives in 10 dimensions, and thermal fluctuations in the emergent universe yield a

scale-invariant spectrum of perturbations. The details of the symmetry breaking have not

been discussed here. However, numerical evidence suggests that such a process is realizable

in matrix theory [22]. The details of this transition are currently under study (see [23] for

progress on this topic, also see for an [24] alternate approach to trying to solve this problem).

It could be interesting to figure out the connection between these results for the traditional

world sheet description of the superstring, and its matrix description. In doing so, perhaps

matrix theory could give us a better understanding of String Gas Cosmology at early times.

In addition to it’s resemblance with String Gas Cosmology, our new scenario shares

interesting similarities with another recent emergent scenario [25] where the early universe

begins in a topological phase, which then transitions to Standard Big Bang Cosmology with

a scale-invariant spectrum of cosmological perturbations. Large N matrix models are known

to have interesting topological properties [26]. Hence, it would be interesting to understand

how (and, if) the two scenarios are related to one another. This could be the another subject

of further study.
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Appendix

4.7 Zeta function regularisation

While evaluating the contribution of the winding modes to the path integral, we used the

identities
∞∏
n=1

(
2πn

α

)−2

=
1

α
,

∞∏
n=1

(
2π(n− 1/2)

α

)2

= 2 (4.120)

to regulate various divergent products obtained by integrating over Aµn, ψr, and cn at one

loop order. Such products show up frequently in quantum mechanics and quantum field

theory, and can be tamed using Zeta function regularisation. To obtain the first identity in

equation 4.120, let us define the function

ζb(s) =
∞∑
n=1

(
2πn

α

)−2s

=
( α

2π

)2s

ζ(2s) (4.121)

where

ζ(s) =
∞∑
n=1

n−s (4.122)

is the Riemann Zeta function. Taking the derivative of ζb(s) with respect to s, we obtain

ζ ′b(s) =
∞∑
n=1

(
2πn

α

)−2s

ln

(
2πn

α

)−2

(4.123)

= 2
( α

2π

)2s (
ln
( α

2π

)
ζ(2s) + ζ ′(2s)

)
. (4.124)
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The expression above can be used to express the product
∏∞

n=1

(
2πn
α

)−2
as a function of the

Zeta function and its derivative. In the limit where s = 0, we obtain

eζ
′
b(0) =

∞∏
n=1

(
2πn

α

)−2

=
( α

2π

)2ζ(0)

e2ζ′(0) . (4.125)

Using the known values ζ(0) = −1
2

and ζ ′(0) = −1
2

ln(2π) of the Zeta function, we recover

the desired identity:
∞∏
n=1

(
2πn

α

)−2

=
1

α
. (4.126)

The section identity in equation 4.120 can be obtained in a similar way. We first define the

function

ζf (s) =
∞∑
n=1

(
2π(n− 1/2)

α

)−s
=
( α

2π

)s
ζ(s, 1/2) , (4.127)

where

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
(4.128)

is the Hurwitz Zeta function. Then, we take the derivative of ζf (s) to obtain

ζ ′f (s) =
∞∑
n=1

(
2π(n− 1/2)

α

)−s
ln

(
2π(n− 1/2)

α

)−1

(4.129)

=
( α

2π

)s (
ln
( α

2π

)
ζ(s, 1/2) + ζ ′(s, 1/2)

)
. (4.130)

Here again, the expression above can be related to the product
∏∞

n=1

(
2π(n−1/2)

α

)2

via the

expression

e−2ζ′f (0) =
∞∏
n=1

(
2π(n− 1/2)

α

)2

=
( α

2π

)−2ζ(0,1/2)

e−2ζ′(0,1/2) . (4.131)

Using the value ζ(0, 1/2) = 0 and ζ ′(0, 1/2) = −1
2

ln(2) of the Hurwitz Zeta function, we

obtain
∞∏
n=1

(
2π(n− 1/2)

α

)2

= 2 , (4.132)

as desired.

111



Bibliography

[1] R. H. Brandenberger and C. Vafa, “Superstrings in the Early Universe,” Nucl. Phys. B

316, 391-410 (1989) doi:10.1016/0550-3213(89)90037-0

[2] R. Hagedorn, “Statistical thermodynamics of strong interactions at high-energies,”

Nuovo Cim. Suppl. 3, 147-186 (1965) CERN-TH-520.

[3] R. H. Brandenberger, A. Nayeri, S. P. Patil and C. Vafa, “Tensor Modes from a Pri-

mordial Hagedorn Phase of String Cosmology,” Phys. Rev. Lett. 98, 231302 (2007)

doi:10.1103/PhysRevLett.98.231302 [arXiv:hep-th/0604126 [hep-th]];

R. H. Brandenberger, A. Nayeri and S. P. Patil, “Closed String Thermody-

namics and a Blue Tensor Spectrum,” Phys. Rev. D 90, no.6, 067301 (2014)

doi:10.1103/PhysRevD.90.067301 [arXiv:1403.4927 [astro-ph.CO]].

[4] A. Nayeri, R. H. Brandenberger and C. Vafa, “Producing a scale-invariant spectrum of

perturbations in a Hagedorn phase of string cosmology,” Phys. Rev. Lett. 97, 021302

(2006) doi:10.1103/PhysRevLett.97.021302 [arXiv:hep-th/0511140 [hep-th]].

[5] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, “De Sitter Space and the Swamp-

land,” [arXiv:1806.08362 [hep-th]];

A. Bedroya and C. Vafa, “Trans-Planckian Censorship and the Swampland,” JHEP 09,

123 (2020) doi:10.1007/JHEP09(2020)123 [arXiv:1909.11063 [hep-th]];

A. Bedroya, R. Brandenberger, M. Loverde and C. Vafa, “Trans-Planckian Cen-

sorship and Inflationary Cosmology,” Phys. Rev. D 101, no.10, 103502 (2020)

doi:10.1103/PhysRevD.101.103502 [arXiv:1909.11106 [hep-th]].

112



[6] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, “M theory as a matrix model:

A Conjecture,” Phys. Rev. D 55, 5112-5128 (1997) doi:10.1103/PhysRevD.55.5112

[arXiv:hep-th/9610043 [hep-th]].

[7] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, “A Large N reduced model as

superstring,” Nucl. Phys. B 498, 467-491 (1997) doi:10.1016/S0550-3213(97)00290-3

[arXiv:hep-th/9612115 [hep-th]].

[8] S. Brahma, R. Brandenberger and S. Laliberte, “Emergent cosmology from matrix the-

ory,” JHEP 03, 067 (2022) doi:10.1007/JHEP03(2022)067 [arXiv:2107.11512 [hep-th]].

[9] S. Brahma, R. Brandenberger and S. Laliberte, “Emergent metric space-time from ma-

trix theory,” JHEP 09 (2022), 031 doi:10.1007/JHEP09(2022)031 [arXiv:2206.12468

[hep-th]].

[10] S. Brahma, R. Brandenberger and S. Laliberte, “BFSS Matrix Model Cosmology:

Progress and Challenges,” [arXiv:2210.07288 [hep-th]].

[11] J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees

of Freedom of String Theory,” Nucl. Phys. B 310, 291-334 (1988) doi:10.1016/0550-

3213(88)90151-4;

R. Blumenhagen, C. Kneissl and A. Makridou, “De Sitter quantum break-

ing, swampland conjectures and thermal strings,” JHEP 10, 157 (2021)

doi:10.1007/JHEP10(2021)157 [arXiv:2011.13956 [hep-th]];

E. Alvarez and M. A. R. Osorio, “Superstrings at Finite Temperature,” Phys. Rev. D

36, 1175 (1987) doi:10.1103/PhysRevD.36.1175;

K. R. Dienes, M. Lennek and M. Sharma, “Strings at Finite Temperature: Wilson

Lines, Free Energies, and the Thermal Landscape,” Phys. Rev. D 86, 066007 (2012)

doi:10.1103/PhysRevD.86.066007 [arXiv:1205.5752 [hep-th]].

[12] J. Scherk and J. H. Schwarz, “Spontaneous Breaking of Supersymmetry Through Di-

mensional Reduction,” Phys. Lett. B 82, 60-64 (1979) doi:10.1016/0370-2693(79)90425-

8

113



[13] W. Taylor, “D-brane field theory on compact spaces,” Phys. Lett. B 394, 283-287 (1997)

doi:10.1016/S0370-2693(97)00033-6 [arXiv:hep-th/9611042 [hep-th]].

[14] T. Banks and L. Motl, “A Nonsupersymmetric matrix orbifold,” JHEP 03, 027 (2000)

doi:10.1088/1126-6708/2000/03/027 [arXiv:hep-th/9910164 [hep-th]].

[15] A. Connes, M. R. Douglas and A. S. Schwarz, “Noncommutative geometry and

matrix theory: Compactification on tori,” JHEP 02, 003 (1998) doi:10.1088/1126-

6708/1998/02/003 [arXiv:hep-th/9711162 [hep-th]].

[16] P. Schreivogl and H. Steinacker, “Generalized Fuzzy Torus and its Modular Properties,”

SIGMA 9, 060 (2013) doi:10.3842/SIGMA.2013.060 [arXiv:1305.7479 [hep-th]].

[17] Y. Yargic, J. Lanier, L. Smolin and D. Wecker, “A Cubic Matrix Action for the Standard

Model and Beyond,” [arXiv:2201.04183 [hep-th]].

[18] N. Kawahara, J. Nishimura and S. Takeuchi, “High temperature expansion in su-

persymmetric matrix quantum mechanics,” JHEP 12, 103 (2007) doi:10.1088/1126-

6708/2007/12/103 [arXiv:0710.2188 [hep-th]].

[19] A. Fayyazuddin, Y. Makeenko, P. Olesen, D. J. Smith and K. Zarembo, “Towards a

nonperturbative formulation of IIB superstrings by matrix models,” Nucl. Phys. B 499,

159-182 (1997) doi:10.1016/S0550-3213(97)00321-0 [arXiv:hep-th/9703038 [hep-th]];

Y. Kitazawa and H. Takata, “D-brane scattering in IIB string theory and IIB ma-

trix model,” Nucl. Phys. B 551, 617-649 (1999) doi:10.1016/S0550-3213(99)00073-5

[arXiv:hep-th/9810004 [hep-th]].

[20] S. W. Kim, J. Nishimura and A. Tsuchiya, “Late time behaviors of the expanding

universe in the IIB matrix model,” JHEP 10, 147 (2012) doi:10.1007/JHEP10(2012)147

[arXiv:1208.0711 [hep-th]].

[21] J. Nishimura, “Signature change of the emergent space-time in the IKKT matrix model,”

PoS CORFU2021, 255 (2022) doi:10.22323/1.406.0255 [arXiv:2205.04726 [hep-th]];

K. N. Anagnostopoulos, T. Azuma, K. Hatakeyama, M. Hirasawa, Y. Ito, J. Nishimura,

114



S. K. Papadoudis and A. Tsuchiya, “Progress in the numerical studies of the type IIB

matrix model,” [arXiv:2210.17537 [hep-th]].

[22] S. W. Kim, J. Nishimura and A. Tsuchiya, “Expanding (3+1)-dimensional universe

from a Lorentzian matrix model for superstring theory in (9+1)-dimensions,” Phys.

Rev. Lett. 108 (2012), 011601 doi:10.1103/PhysRevLett.108.011601 [arXiv:1108.1540

[hep-th]].

[23] S. Brahma, R. Brandenberger and S. Laliberte, “Spontaneous symmetry breaking

in the BFSS model: Analytical results using the Gaussian expansion method,”

[arXiv:2209.01255 [hep-th]].

[24] H. C. Steinacker, “Gravity as a quantum effect on quantum space-time,” Phys. Lett. B

827, 136946 (2022) doi:10.1016/j.physletb.2022.136946 [arXiv:2110.03936 [hep-th]];

H. C. Steinacker, “One-loop effective action and emergent gravity on quantum spaces

in the IKKT matrix model,” [arXiv:2303.08012 [hep-th]].

[25] P. Agrawal, S. Gukov, G. Obied and C. Vafa, “Topological Gravity as the Early Phase

of Our Universe,” [arXiv:2009.10077 [hep-th]].

[26] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72, 461

(1974) doi:10.1016/0550-3213(74)90154-0

115



Part III

Background in matrix cosmology

116



Chapter 5

Emergent metric space-time from

matrix theory

Suddhasattwa Brahma1, Robert Brandenberger2, and Samuel Laliberte2

1Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of

Edinburgh, Edinburgh EH9 3FD, UK

2Department of Physics, McGill University, Montréal, QC, H3A 2T8, Canada

Addendum for the thesis

In Section 2.3.2, we saw how numerical simulations suggest the existence of emergent cos-

mological solutions where three dimensions become large, and six stay small in the IKKT

model. In the present chapter, we investigate how to define a metric tensor in the IKKT

model, in an attempt to describe these emergent cosmological solutions. To define such a

metric, we consider smaller ni× ni submatrix of the submatrices showcased in Figure 2.9 as

describing space in a comoving interval of size ni. We then take li,phys(t, ni) = 〈Tr(Ānii (t))2〉

to be the physical length of this comoving space interval. These assuptions then allows

us to compute the gii component of the metric in the i’th direction via the expression

g
1/2
ii (t, ni) = d

dni
li,phys(t, ni). For the emergent cosmological solutions, we find the metric to

be of the form gii(t, ni) = A(t)δii for the three large dimensions, indicative of a homogeneous

and isotropic metric gij(t, ni) = A(t)δij for the emergent three large dimensions.
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Abstract

The IKKT matrix model yields an emergent space-time. We further develop these ideas and

give a proposal for an emergent metric. Based on previous numerical studies of this model,

we provide evidence that the emergent space-time is continuous and infinite in extent, both

in space and in time, and that the metric is spatially flat. The time evolution describes the

transition from a string-theoretic emergent phase to a phase in which the SO(9) symmetry

of the model is spontaneously broken to SO(6) × SO(3), with three dimensions of space

expanding, becoming classical and at later times evolving like in a radiation-dominated uni-

verse, and the remaining six dimensions of space stabilized at the string scale. We speculate

on how this analysis can be extended to yield an early universe cosmology which, in addi-

tion to the above-mentioned properties, also leads to a roughly scale-invariant spectrum of

cosmological fluctuations and gravitational waves.

5.1 Introduction

Evidence is mounting that in order to obtain a model of the very early universe which is

consistent with the required quantum treatment of matter, we must go beyond a description

based on naive effective field theory 1. One of the reasons is based on unitarity problems

of any effective field theory description of an expanding universe [1, 2]. A ultraviolet cutoff

is required to make sense of such a model, and to maintain this ultraviolet cutoff at a

fixed physical scale in an expanding universe, continuous creation of effective field theory

modes is required. This time-dependence of the low-energy Hilbert space obviously implies

the breakdown of unitarity. Demanding that, during the time evolution of the system, no

such modes which are created ever exit the Hubble horizon (when these modes freeze out,

become squeezed and can classicalize) leads to the Trans-Planckian Censorship Conjecture

(TCC) [3] which results in serious constraints on inflationary cosmology [4] (see e.g. [5] for

recent discussions).

1By naive effective field theory we mean the usual approach to (Fock)-quantizing fields in which the

fields are expanded into comoving modes, and each such mode is canonically quantized like the standard

quantization of a harmonic oscillator.
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Another problem for an effective field theory analysis of cosmology is the following: Since

each of the modes of the effective field theory has a ground state energy, such an effective

field theory analysis leads to the famous cosmological constant problem, the fact that the

predicted value of the vacuum energy is many orders of magnitude larger than what is

consistent with observations if the vacuum energy gravitates.

Keeping these problems in mind, it is worth considering that although the inflationary

scenario [6] has become the standard paradigm for early universe cosmology, there are al-

ternative scenarios which are also consistent with current data. One class involves bouncing

cosmologies (see e.g. [7] for reviews) in which the universe is initially contracting and then

undergoes a bounce transition to an expanding phase, while another class is the emergent

scenario (see e.g. [8] for a review), in which the universe begins in a quasi-static phase and

then undergoes a phase transition to an expanding radiation phase. To realize bouncing and

emergent cosmologies, however, physics beyond standard effective field theory of matter and

Einstein gravity is required.

To obtain a consistent description of the early universe, we hence need to start with a

model which is well defined and has no problems at high energy scales. For a long time,

the hope has been that superstring theory will be able to provide such a description. The

phenomenology of string theory is, however, usually explored in an effective field theory limit,

and in this limit the aforementioned conceptual problems cannot be resolved. Thus, instead

of trying to evaluate four-dimensional effective potentials using string-theoretic quantum

effects, we believe a more fruitful way would be to start with the full theory itself and give

a prescription for coarse-graining the cosmological degrees of freedom from it.

In this paper we provide some indications that a viable emergent cosmology will emerge

from matrix model descriptions of string theory. Specifically, we consider the IKKT matrix

model [9], a proposed non-perturbative definition of Type IIB superstring theory. This is a

quantum mechanical model of Hermitean N × N matrices (with, a priori, no space and no

time). We will indicate how in the N → ∞ limit a continuous space-time with three large

spatial dimensions and with infinite extent both in space and time emerges. We provide

a prescription for an emergent metric for the (3 + 1)-dimensional space-time involving the

three large spatial dimensions, and provide indications that the emergent metric is spatially
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flat, and described by a cosmological scale factor a(t) which has a late time limit which

corresponds to a radiation dominated universe. The effective cosmological constant vanishes

in this model. 2.

In the following we first review the IKKT matrix model [9]. Over the past two decades

there has been a lot of numerical work on this model (see e.g. [10, 11] for reviews, and [12]

for more recent numerical studies), and we will summarize the results which are relevant for

our analysis. In Section 3, we then show how continuous space-time with infinite extent of

both space and time variables emerges, give a proposal for an emergent metric, and show

that the resulting cosmological metric corresponds to a spatially flat manifold. In Section

4, we speculate that the same result will also emerge in the BFSS matrix model, a matrix

theory (with an intrinsic time, but no space) which was proposed [13] as a non-perturbative

definition of M-theory3. As shown in previous work [20], thermal fluctuations in a high

temperature state of the BFSS model yield scale-invariant spectra of curvature fluctuations

and gravitational waves, with a Poisson component of the curvature perturbations on short

distance scales.

We will be working with units in terms of which the speed of light, Boltzmann’s constant

and Planck’s constant are all set to 1.

5.2 Review of the IKKT Matrix Model and Emergence

of Continuous Time

The IKKT matrix model [9] (see [10, 11] for recent reviews) has been proposed as a non-

perturbative definition of Type IIB superstring theory. It is a pure matrix theory (no space

and no time), given by the action

S = − 1

g2
Tr

(
1

4

[
Aa, Ab

]
[Aa, Ab] +

i

2
ψ̄α (CΓa)αβ [Aa, ψβ]

)
, (5.1)

2The late time analysis does not take into account the presence of fermionic matrices, and matter will

arise from that sector.
3For other related approaches to emergent space in the context of matrix models see e.g. [14], [15], [16],

[17], [18]. For early work on matrix models as a means to quantize a theory of membranes see [19].
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where Aa and ψα (a = 0, . . . , 9, α = 1, . . . , 16, ) are N × N are bosonic and fermionic

Hermitian matrices, respectively, the Γα are the gamma-matrices for D = 10 dimensions,

and C is the charge conjugation matrix. Note that a is a ten-dimensional vector index, while

α is a spinor index. The vector indices are raised and lowered with the Minkowski symbol

ηab. g is a gauge-theory coupling constant. It is in the limit N → ∞ with λ ≡ g2N held

fixed that this action leads to a non-perturbative definition of Type IIB superstring theory.

The action of the Lorentzian matrix model [9] is given by the following functional integral

over the bosonic and fermionic matrices (with the standard measures)

Z =

∫
dAdψeiS . (5.2)

Since the matrices are Hermitean, it is possible to choose a basis in which A0 is diagonal.

We can also label the basis elements such that the eigenvalues αa are ordered such that

αa < αb if a < b. Numerical studies of the theory show that for large values of N [21]

1

N

〈
TrA2

0

〉
∼ κN , (5.3)

where κ is a constant (κ < 1), where the pointed brackets in 〈O〉 indicate the expectation

value of the operator O

〈O〉 ≡ 1

Z

∫
dAdψO eiS . (5.4)

This implies that in the N →∞ limit, the total extent of time becomes infinite, time running

from −∞ to +∞. More precisely, time runs from −tm to +tm with tm scaling as
√
N . To see

this, assume for concreteness that the temporal eigenvalues are evenly spaced, with spacing

∆t. In this case, the expectation value on the left hand side of (5.3) becomes the sum of

squares of integers from 1 to N/2, multiplied by (∆t)2. Making use of the formula for the

sum of squares of integers, we find that the left hand side of (5.3) is proportional to N2(∆t)2.

Hence, time becomes continuous with

∆t ∼ 1√
N
, (5.5)

and the total extent of space becomes infinite, as N →∞

tm ∼ N∆t ∼
√
N . (5.6)
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Turning our attention now to the spatial matrices Ai, numerical work [21] has shown that

these matrices have band-diagonal structure in the sense that if we consider the expectation

values of the off-diagonal elements of the matrix, then they decay to zero if the distance n

from the diagonal exceeds a critical value nc, i.e.∑
i

〈
|Ai|2ab

〉
→ 0 for n ≡ |a− b| > nc . (5.7)

The numerical studies [21] also show that

nc ∼
√
N . (5.8)

This result can also be understood by first performing the partial functional integral dAab

in (5.4). Schematically,〈
|Ai|2ab

〉
∼
∫
d|Ai|ab

|Ai|2ab
Z

ei/2g
2(αa−αb)2|Ai|2ab (5.9)

where

Z =

∫ ∏
a

dαa
∏
a>b

(αa − αb)2

∫
dAie

i/2g2(αa−αb)2|Ai|2ab (5.10)

For values of |Ai|2ab (αa − αb)2 /g2 > 1, i.e. when |a − b| > nc, the integrand becomes very

rapidly oscillating, and by the Riemann-Lebesgue Lemma the integral hence tends to zero

(in the sense of generalized functions). In the following we will assume that∑
i

〈
|Ai|2ab

〉
∼ const for n ≡ |a− b| < nc , (5.11)

which is supported by the same consideration of the dAab integral. From the above (5.9), it

is also easy to check that the scale nc scales as (for a− b = nc):

(αa − αb)2

g2
∼ 1 ⇒ nc ∼ g

√
N , (5.12)

where we have used the relation αa − αb = nc∆t ∼ nc/
√
N (from (5.5)).

Let us briefly return to the temporal matrix A0. A time variable t(m) corresponding to

the m’th temporal eigenvalue can then be defined by averaging the diagonal elements αi over

n elements [22]

t(m) ≡ 1

n

n∑
l=1

αm+l , (5.13)

122



Time-dependent spatial matrices (Āi)I,J(t) of dimension n× n can then be defined via [23]

(Āi)I,J(t(m)) ≡ (Ai)m+I,m+J . (5.14)

It is then natural to define the extent xi of a given spatial dimension i at time t by [24]

Ri(t)
2 ≡

〈
1

n
Tr(Āi)(t)

2

〉
, (5.15)

where the pointed brackets stand for the quantum expectation value in the state given by

the partition function.

Figure 5.1: Temporal matrix A ≡ A0 (top panel) and spatial matrices Ai (bottom panel) in

the basis in which the temperal matrix is diagonal. The spatial matrices Ai (bottom panel)

have “block-diagonal form” and can be used to define the sizes of the spatial dimensions at

time t via sub-matrices Āi(t) of Ai centered a “distance” t along the diagonal of Ai. This

figure is taken from [11] with permission.

Various numerical studies [25] of the IKKT mode indicate the as t increases, the initial

SO(9) symmetry of the matrix model is spontaneously broken to SO(6)×SO(3), with three

of the Ri(t) increasing in time in a nearly isotropic manner, while the other six remain small.

If we identify Ri(t) as the extent of space parameter in direction i as a function of tiime

(which is done in the work on the IKKT matrix model), then we find the emergence of
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precisely three large spatial dimensions. Using Gaussian expansion analyses, one can verify

that the state with SO(6)× SO(3) symmetry has a smaller free energy than the state with

the full SO(9) symmetry, and that this symmetry breaking pattern is in fact preferred over

other ones.

This symmetry breaking which leads to three large spatial dimensions with the other

six remaining small occurs in String Gas Cosmology [26]. In that model, a gas of closed

strings in considered on a nine dimensional spatial torus. At high densities, the string gas

will contain, in additional to the center of mass momentum modes and the string oscillatory

modes, winding modes – strings winding the torus. It is then argued that for space to be able

to expand, the winding modes need to annihilate into string loops, and this cannot happen

in more than 3 large spatial dimensions since for more than three large spatial dimensions

the strings would have vanishing probability to meet. We conjecture that there might be a

relationship between the symmetry breaking dynamics in the matrix model and in String

Gas Cosmology: there is evidence that the strings are coherent states of the matrix model in

which one spatial matrix is excited. Such a coherent state will prevent space from expanding

in the same way that a string does in the String Gas Cosmology picture.

5.3 Emergent Space and Metric

Let us now return to the spatial matrices Ai for the dimensions which become large. As

already indicated in the previous section, we now consider a ni×ni submatrix Ānii (t) centered

a distance t down the diagonal, as indicated in Figure 5.1. We let ni range from 0 to nc,

and we propose to view ni as a comoving spatial coordinate in direction i 4. Then, we adapt

(5.15) and define the physical length of a curve along the i coordinate axis from n = 0 to n

as

l2i,phys(t, ni) ≡
〈
Tr(Āi

ni)(t))2
〉
. (5.16)

4The comoving coordinate thus defined runs from 0 to nc. With a slight change of the definition we can

extend the range to −nc < ni < nc. We focus on the upper (lower) diagonal submatrix of the |ni| × |ni|

matrix for positive (negative) values of ni. The resulting length (and metric) will be symmetric under

ni → −ni.
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Making use of (5.11), we see that the quantity (5.16) scales as n2
i (there are ni eigenvalues

to sum over, and each eigenvalue obtains contributions from ni matrix elements). Thus, the

total physical extent of space out to a comoving distance nc scales as nc ∼ N1/2, and the

physical distance δx between neighboring comoving coordinate values scales as

δx ∼ N1/2

N
∼ N−1/2 . (5.17)

Thus, we obtain continuous space with infinite spatial extent in the N →∞ limit.

Since for a metric space the physical length of a line along the i axis between comoving

coordinates 0 and x allows us to obtain the gii metric component via

li,phys(t, x) =

∫ x

y=0

√
gii(t, y)dy , (5.18)

we propose to define the emergent metric as

g
1/2
ii (t, ni) =

d

dni
li,phys(t, ni) . (5.19)

Making use of (5.16) we get

g
1/2
ii (t, ni) =

1

2

(
d
dni

〈
Tr
(
Āi

ni
)2

(t)
〉)

(〈
Tr
(
Āi

ni
)2

(t)
〉)1/2

. (5.20)

Since (based on (5.11) we have seen that (5.16) scales as n2
i , we find that the metric compo-

nent is independent of ni. This is a very important finding as it tells us that the emergent

spacetime is spatially flat. Note that this crucially depends on the block diagonal structure

of the spatial matrices with respect to our coarse-grained time. If, indeed, the spatial ma-

trices were all diagonal or of some other form, then the scaling of the metric of n2
i would

have been very different and would not have led to this result. The block-diagonal form, in

turn, depends sensitively on the Lagrangian of the IKKT model and this type of an emer-

gent structure would not appear in any matrix model but rather one that comes from string

theory.

In the end, we obtain

gii(ni, t) = A(t)δii , (5.21)
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where A(t) is the time-dependent amplitude. This result corresponds to a homogeneous and

commutative space for the three large dimensions. Making use of the SO(3) symmetry of

the system we then obtain a homogeneus and isotropic cosmological metric

gij(t) = A(t)δij . (5.22)

We identify the amplitude A(t) with the cosmological scale factor a(t) of the three-

dimensional space which becomes large. At early times (before the symmetry breaking

phase transition) the scale factor is constant and corresponds to a state of string density.

After the phase transition, the scale factor increases. Since quantum effects are expected to

become negligible once the amplitude A(t) is large (by Ehrenfest’s Theorem), the late time

dependence of A(t) can be obtained by solving the classical equations of motion. This has

been done in [27] with the result that A(t) ∼ t1/2 which corresponds to the expansion of

space in the radiation phase of Standard Big Bang cosmology.

We have thus obtained a first principles realization of the String Gas Cosmology (SGC)

scenario put forwards in [26]. The SGC scenario is obtained by considering matter to be

a thermal gas of strings on a nine-dimensional background space which admits long-lived

winding string states. There is a maximal temperature of a gas of closed strings, the Hage-

dorn temperature [28] TH . For a large range of energy densities, the temperature T remains

close to TH , and it is not unreasonable to assume that this phase (the Hagedorn phase) is

quasi-static. At some point, however, a symmetry breaking phase transition occurs [26],

allowing three dimensions of space to become large. This transition is triggered by the decay

of winding modes. When the world sheet of two winding strings with opposite orientations

meet, they can interact and produce string loops, thus eliminating the winding which pre-

vents space from expanding, and leading to a radiation-dominated phase of expansion. Since

string world sheets have zero probability for intersecting in more than four large space-time

dimensions, it is precisely three spatial dimensions which can become large, while the others

remain at the string scale. The weak point of the SGC scenario is the assumption of a

quasi-static Hagedorn phase. Such a phase cannot be obtained using effective field theory

techniques.

We have argued that matrix theory can provide a first principles realization of the dy-
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namics of space-time assumed in SGC. The universe begins in a quasi-static phase in which

all nine spatial extent parameters are the same, time independent and of string scale. This

corresponds to the Hagedorn phase of SGC. There is a phase transition in which the SO(9)

symmetry of the Lagrangian is spontaneously broken to SO(6) × SO(3). The same transi-

tion also occurs in SGC. After the phase transition, the three dimensions which become large

expand like in the radiation phase of Standard Big Bang cosmology, the same dynamics as

once again occurs in SGC.

Note that there are other approaches to obtaining SGC dynamics from first principles.

In the approach of [29], the analog of the Hagedorn phase of SGC is a topological phase. In

the context of Double Field Theory [30], there have also been recent studies on how to obtain

an initial cosmological phase which has properties in common with the Hagedorn phase of

SGC [31].

Note that, as already pointed out in [32], the cosmological constant problem is absent in

this model. The quantization of the model does not involve an effective field theory analysis

in which fields are expanded in Fourier modes, and the ground state energy of the Fourier

modes then adds up to yield a cosmological constant which is many orders of magnitude

too large. Here, we are quantizing a matrix model Lagrangian, extracting an effective late

time metric, and observing that the time evolution is inconsistent with the presence of a

cosmological constant. We thus see that the cosmological constant problem may be an

artefact of an effective field theory point of view.

5.4 Discussion

At about the same time that the IKKT matrix model was proposed, there was another

proposal for a non-perturbative definition of string theory, namely the BFSS [13] matrix

model. In contrast to the IKKT model, this model contains a time variable t, and is given by

a Lagrangian involving 9 spatial Hermitean N×N matrices Xi(t) and a temporal Hermitean

N ×N matrix A0(t):

S =
1

2g2

∫
dtTr

[
1

2
(DtXi)

2 − 1

4
[Xi, Xj]

2 − θTDtθ − θTγi[θ,X i]

]
, (5.23)
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where Dt ≡ ∂t − i[A0(t), ..] is a covariant derivative operator. The θ are sixteen fermionic

superpartners which are spinors of SO(9), and g2 is a coupling constant. In the large N limit,

(with the ‘t Hooft coupling λ ≡ g2N = gsNl
−3
s (where gs and ls are string coupling constant

and string length, respectively) held fixed, this model was argued to yield a non-perturbative

definition of M-theory.

In the high temperature limit, the leading term in the action of the bosonic sector of the

BFSS matrix yields the bosonic part of the IKKT action. This is seen by expanding the Xi

matrices in terms of Matsubara frequencies

Xi(t) =
∞∑
m=0

Xm
i e

imωt , (5.24)

with ω = 2π/β, β being the inverse of the temperature T , and m running over the positive

semi-definite integers. The BFSS action becomes

S = S0 + S1 , (5.25)

where S0 contains the terms which only depend on the zero modes X0
i . At high temperature,

the terms in S1 are small amplitude correction terms, and under the rescaling

Ai ≡ T 1/4X0
i , (5.26)

the action S0 becomes the bosonic part of the IKKT action.

Starting with the BFSS model in a high temperature thermal state, we recently showed

(using results from [33]) that the thermal fluctuations which are inevitably present in such a

state lead to scale-invariant spectra of curvature fluctuations and gravitational waves, with a

Poisson tail which dominates in the ultraviolet in the case of the curvature fluctuations [20].

The results parallel those obtained in the case of String Gas Cosmology [34,35], in which case

the scale-invariance can be traced back to the fact that the fluctuations have holographic

scaling as a function of the radius of the box in which the fluctuations are computed. Note

that it is the correction terms S1 in the high temperature expansion of the BFSS action

which play an important role in determining the fluctuations.

We now suggest the following scenario: starting from the BFSS matrix model and taking

a high temperature thermal state, we extract an emergent space-time and an emergent
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metric using the results from the IKKT model presented above. In order to be able to

apply these arguments, we need to make sure that the SO(9)→ SO(6)× SO(3) symmetry

breaking also occurs in the case of the BFSS model. Since the fermions appear to play

an important role in the phase transition in the IKKT model [25], this is a non-trivial

assumption. However, we have recently shown [36] that a phase transition which breaks the

SO(9) symmetry indeed occurs in the BFFS model [36]. Next, we also need to verify that

the evolution of the expectation values 〈Tr|A0|2〉 and 〈|Ai|2ab〉 is not changed. If successful,

we would have a first principles realization of an emergent early universe cosmology in

which infinite range continuous time, infinite range continuous space (with exactly three

large spatial dimensions) and a homogeneous and spatially flat metric which leads to a

radiation-dominated three dimensional expanding space all naturally emerge from the matrix

model. Thermal fluctuations then lead to scale-invariant spectra of density fluctuations and

gravitational waves with an ampitude which is set by (ηs/mpl)
4, where ηs is the string energy

scale, and mpl is the Planck mass [20].

In the appendix, we give a simple toy model realization of late-time dynamics for the

BFSS action. Instead of going through the steps mentioned above, we use the classical

equations of motion of the BFSS model to find cosmological solutions using a time gauge

that had been overlooked earlier to find a universe with radiation-dominated expansion. If

nothing else, this serves as an indication that a realization of a ultraviolet-complete model,

as above, maybe possible in the BFSS model.

5.5 Conclusions

We have reviewed how continuous and infinte range time and space emerge from the IKKT

matrix model in the N → ∞ limit. As has been shown, this model undergoes symmetry

breaking between an early stage of SO(9) symmetry in which the extent of space parameters

in all nine spatial directions are microscopic, and a stage when the SO(9) symmetry breaks

to SO(6) × SO(3), allowing exactly three spatial dimensions to become large. We have

proposed a definition of comoving distance coordinates and corresponding physical distance,

with which it becomes possible to extract an emergent metric for the four large space-time
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dimensions. The resulting metric is homogeneous, isotropic and spatially flat. At late times,

the three large dimensions expand like in the radiation-dominated Friedmann model. Hence,

the matrix model leads to vanishing cosmological constant, as already pointed out in [32] 5.

We have suggested that the method of extracting time, space and a metric from a matrix

model also holds if we start from the BFSS matrix theory. Based on this starting point,

we also have a mechanism by which thermal fluctuations lead to scale-invariant spectra of

curvature fluctuations and gravitational waves.
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Appendix: Late-time evolution in the BFSS model

Although we have described how one can extract a metric for the IKKT model in this paper,

let us show some evidence that, at late times, one does find a cosmological evolution for

the BFSS model on the lines of what we have conjectured above. Our main assumptions in

deriving such dynamics are as follows:

1. We can examine the classical equations of motion of the BFSS model in order to gain

some insight into late-time evolution. We expect that this assumption certainly breaks

down before the critical time when we expect the spontaneous symmetry-breaking to

take place.

2. We assume a homothetic anstaz, as have been previously chosen in [39].

5For other approaches towards extracting cosmology from the IKKT matrix model see [37] and [38].
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The classical equations for the bosonic matrices from the action (5.23) is given by

Ẍ i +
[
Xj,

[
Xj, X i

]]
= 0 , (5.27)

where repeated indices are summed over irrespective of their position. Since we are assuming

these equations to hold only after the symmetry-breaking takes place, it is natural to suppose

that the i index now runs from (1, 2, 3). The homothetic ansatz implies

X i = a(τ) Θi . (5.28)

Before solving (5.27) with our ansatz above (5.28), let us make a few remarks. Firstly, note

that the BFSS model implies classical equations for a Galilei invariant system. In doing

so, we depart from previous studies where it was customary to add a mass term for the

matrices which led to the symmetry group being that of a Newton-Hooke system (the non-

relativistic contraction of de Sitter). Not only would adding such a mass term be unnatural

from the point of view of the BFSS model (as derived from M-theory), requiring a positive

cosmological constant would, in fact, imply having a negative (or tachyonic) mass term.

Secondly, note that the time parameter is intrinsic in the BFSS model unlike its IKKT

counterpart. Therefore, it is not clear how to relate the time parameter appearing in these

equations with the different choices of time gauges one can choose in General Relativity.

However, this is where we make our most important conjecture – what if the equation of

motion written above describes dynamics with respect to conformal time? Although, at this

point, this is simply a hypothesis on our part, note that this choice is just as good as choosing

the time parameter to be equivalent to cosmic time, as has been typically assumed in the

past. In future work, we will explore more into this question of which time gauge does this

time parameter correspond to for our cosmological scenario. For now, we simply identify

with proper time and go on to explore the consequences.

Finally, as in well known for the BFSS model, the dynamics described by (5.27) is topped

off by the following (Gauss) constraint on initial conditions:[
Ẋ i, X i

]
= 0 . (5.29)

Since all the time-dependence of our ansatz (5.28) is contained in the overall pulsating

function, which we have suggestively called a(τ) to coincide with the scale factor, (5.27) can
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be written as

ä(τ)

a3(τ)
+
[
Θj,
[
Θj,Θi

]] (
Θi
)−1

= 0 , (5.30)

where both the terms on the left hand side must be independent of time now. (Keep in mind

that an overdot denotes a derivative with respect to conformal time in our convention.) Let

us choose the constant for the separation of variables to be λ, i.e.

ä(τ) = λ a3(τ) , (5.31)[
Θj,
[
Θj,Θi

]]
= −λΘi . (5.32)

Let us begin analyzing the equation (5.31) as the Raychaudhuri equation for the scale factor,

whose first integral gives the more familiar Friedmann equation:

d

dτ
(ȧ(τ)) = λa3(τ)⇒ ȧ2(τ)

2
=
λa4(τ)

4
+K , (5.33)

where K is a constant of integration. Next, we can switch over to cosmic time, recalling

d/dτ = a(t)d/dt, and doing a little bit of algebra to find

1

a2

(
da

dt

)2

=
K

a4
+
λ

2
. (5.34)

This is the standard Friedmann equation with a radiation component as well as a cosmolog-

ical constant term (the sign of λ is yet to be determined).

However, recall how we expect these classical equations to only be valid for late times

in which regime we expect the bosonic matrices to commute with each other since they

are far separated and give rise to ordinary smooth spacetime geometry. In this case, for

near-commuting matrix degrees of freedom, it is natural to have λ = 0 as can be seen by

inspecting (5.32). If we plug it into the above Friedmann equation (5.34), we get

3M2
PlH

2 =
C

a4
, (5.35)

where C = 3M2
PlK is the constant for the radiation energy density. In fact, this is where the

fact that we consider that this equation is satisfied after the symmetry-breaking phase comes

into play. For a 9-d universe, the equation of state corresponding to the Friedmann equation

(5.35) would be given by p = −(5/9) ρ. However, for d = 3, this is given by p = ρ/3, as

expected. We will come back to this point later on.
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We could have also set λ = 0 directly into the Raychaudhuri equation (5.31) to find

ä = 0, whose solutions are given by

a(τ) = a0 + a1τ . (5.36)

As expected, this is indeed the solution for the scale factor for a radiation dominated universe

along with a possible quasi-static phase. It is interesting that this is indeed the type of

cosmological history predicted by the String Gas scenario (a pressureless fluid corresponding

to the quasistatic phase followed by radiation)! Of course, we should only trust this solution

after the symmetry-breaking phase and only find the description of the emergent (or non-

geometric) phase as quasistatic to be intriguing.

Let us compare this result with previous investigations of BFSS cosmology [39]. Since it

was always assumed that the time parameter corresponds to cosmic time in existing liter-

ature, this inevitably led to unphysical matter components along with a possible curvature

term. Sometimes, a mass term was added by hand to the BFSS Lagrangian which led to

a cosmological constant term. Apart from the radiation phase, what is remarkable is that

using our interpretation of the time parameter as conformal time, one immediately finds that

there is no spatial curvature term in the Friedmann equation above! This is consistent with

our finding of a flat metric from the IKKT model as described in the previous section. More-

over, this conclusion is completely independent of our natural supposition that the matrices

become commuting at late times. Even if we choose to keep a non-zero λ, this would act

as an effective cosmological constant and not behave as a curvature term in the Friedmann

equation. This is one of our main findings from the BFSS model – unless there are additional

terms put in by hand, the Friedmann equations describe a flat, radiation dominated universe

at late time with our choice of the time variable.

Finally, let us comment about choosing to work with d = 3 in interpreting the above

equations. At first sight, this might seem like an extremely restrictive condition and the

reader might view this as our most drastic assumption. However, this is not the case. To

begin with, as explained, it only makes sense to use the classical equations to describe the

dynamics at late times and this would naturally be after the symmetry-breaking phase. So,

the real question is whether there is any such symmetry-breaking phase in the BFSS model,
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and this has recently been shown to be the case [36]. But, more importantly, note that if

we allow for a parametric separation between the magnitude of the scale-factor a(t) of the

external cosmological background and those of the 6-dimensional internal spacetime, say

ã(t), then it is break-up the original equations of motion (5.27) into two parts – one for

the external and one for the internal spacetimes. Given this, it is perfectly possible that

the internal spacetimes do not become commuting at late time and indeed has a λ̃ that is

nonzero. That would simply imply that the Friedmann equation for the internal scale factor

ã, has an additional cosmological constant term in λ̃. In fact, as has been shown in [39],

this constant is typically negative and takes the value λ̃ = −2 if we assume the internal

dimensions to have an SO(3) × SO(3) form. For an SO(6) symmetry, λ would also be

negative but a little more complicated to evaluate. What is important is that in deriving our

Friedmann equation (5.35) above, we do not need to assume a BFSS toy model for d = 3.

All we need is the knowledge that the solution of the classical BFSS equations of motion

would be satisfied by an anisotropic ansatz since the scale factors of the internal and external

dimensions must be parametrically separated due to the symmetry-breaking phase preceding

it. However, we are still working with the full BFSS model, as derived from M-theory, for

arriving at our solution for the (3 + 1)-d cosmological scale factor.
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Addendum for the thesis

In Section 2.3.3, we saw how adding a mass term in the IKKT model can lead to cosmological

solutions. Despite the fact that these solutions are appealing, the mass term is not a feature

known to naturally arise in the IKKT model. In the present chapter, we investigate a

mechanism that can realize such a mass term in the IKKT model. Our approach consists in

compactifying six dimensions of the IKKT model where the fermions acquire anti-periodic

boundary conditions. In this case, the IKKT model acquires an effective mass term that

breaks the SO(1, 9) symmetry of the IKKT model to SO(1,3)× SO(6). Given this symmetry-

breaking mass term, a cosmological solution where three dimensions become large and six

stay small may exist in this setup. This remains to be investigated in future work.
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Abstract

The IKKT model is a promising candidate for a non-perturbative description of Type IIB

superstring theory. It is known from analytic approaches and numerical simulations that the

IKKT matrix model with a mass term admits interesting cosmological solutions. However,

this mass term is often introduced by hand, and serves as a regulator in the theory. In the

present paper, we show that an effective mass matrix can arise naturally in the IKKT model

by imposing a toroidal compactification where the space-time fermions acquire anti-periodic

boundary conditions. When six spatial dimensions are chosen to be compact, the effective

mass matrix breaks the SO(1,9) space-time symmetry of the IKKT model to SO(1,3) ×

SO(6). This paves the way for space-time solutions of the IKKT model where SO(1,9)

symmetry is naturally broken to SO(1,3) × SO(6).

Erratum

There is a typo in this article. Below equation 6.20, there is a mistake in the text. The

statement ”X is a M ×M matrix” should read ”Y is a M ×M matrix” instead. Moreover,

below 6.8 and above equation 6.29, one should read V = L−6 since the parameter σ lies in

the interval [0, L−1[.

6.1 Introduction

Superstring theory is a promising candidate for a self-consistent unified theory of quantum

gravity. An interesting feature of the theory is that the dimensionality of space-time is not

arbitrary, but comes from the consistency of the theory. Specifically, the theory is only

consistently defined in ten space-time dimensions. For this theory to describe our world, one

must impose that six out of the nine spatial dimensions are compactified. This can be done

in many ways, resulting in a vast landscape of effective descriptions of string theory in four

dimensions. In addition to the four dimensional vacua, there exist other ways to consistently

compactify string theory to an arbitrary number of dimensions, which results in vacua that

are not four dimensional. Clarifying why four dimensional vacua are prefered in the theory
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remains an open question, which to this day does not have an answer in perturbative string

theory.

Another area where perturbative string theory lacks predictive power is in the context of

cosmology. While string theory can be used to make predictions about the universe at late

time, the cosmic stringularity is not resolved generally in perturbative string theory [1–4].

Therefore, in order to study the very early universe, and explain the dimensionality of our

world, we definitely a non-perturbative description.

There have been many proposals for a non-perbative descriptions of string theory, most

of them relying on matrix models [5–7]. Among these theories, the IKKT model [7], a non-

perturbative description of Type IIB superstring theory, stands out as a natural choice to

explain the birth of the universe. This model is built around the action

SIKKT = − 1

4g2
Tr[AM , AN ]2 − 1

2g2
Trψ̄ΓM [AM , ψ] , (6.1)

where large bosonic matrices AM ’s encode information about space-time, and large fermionic

matrices ψ’s are added to preserve supersymmetry. In the action above, g is a gauge coupling

which is related to the string scale ls via g ∼ l2s , and the indices are contracted using

the minkowski metric in the mostly minus sign convension ηMN = diag(1,−1,−1, ...,−1).

Given the causal structure of the space, A0 encodes information about time and Ai encodes

information about space, where i ∈ {1, ..., 9} labels the nine space dimensions.

Over the years, there have been many attempts to find solutions of the IKKT model

that correspond to an emergent four-dimensional universe. The first steps towards finding

these solutions were done by analysing the model using Gaussian expansion method [8, 9]

to investigate symmetry breaking in the theory. Using this method, it was shown that the

SO(10) symmetry of the Euclidean version of this model can be spontaneously broken to

SO(4) [10–13]. Monte Carlo simulations have also shown consistant results [14, 15], and a

recent analysis in the context of the BFSS model has also shown progress in this direction [16].

Then, Monte-Carlo simulations of the Lorentzian model showed that an expanding (1+3)-

dimensional space-time can emerge from an SO(1,9) symmetric state of the model after

a critical time [17–20]. To achieve this result, approximations were made to avoid the

sign problem of the Lorentzian theory. However, further studies have shown that these
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approximations which are no longer valid when the four space-time dimensions emerge [21].

Since then, the Lorenzian model has been studied without this approximation using the

Complex Langevin Method, where the emergence of four space-time dimensions remain a

topic of study [22–27].

Despite the challenges encountered in studying the IKKT model from a numerical point

of view, it was found in [17] that an important feature seems to be required to obtain the

emergence of (1+3)-dimensions. When (1+3)-dimensions become large, certain bounds used

to regulate theory,

1

N
Tr(A0)2 ≤ κ

1

N
Tr(Ai)

2 , (6.2)

1

N
Tr(Ai)

2 ≤ κL2 , (6.3)

become saturated. Saturating the constraints above is equivalent to adding the following

piece to the IKKT action

Sconst. =
λ̃

2
Tr
(
A2

0 − κL2
)
− λ

2
Tr
(
A2
i − L2

)
, (6.4)

where λ and λ̃ are Langrange multipliers. Minimising the IKKT action in the presence

of the constraint above, it was shown analytically [28] and numerically [29] that various

cosmological solutions of the equation of motions can be found. An important point to

notice is that adding the constraint piece in equation 6.4 to the IKKT action is equivalent

to adding a mass term to the theory, which may or may not be Lorentz invariant depending

on the choice of λ and λ̃. Hence, adding a mass term to the theory can lead to interesting

cosmological solutions. In fact, various analyses of the Lorentzian IKKT model with a mass

term have been done before, in which case it was shown that cosmological solutions can also

be found [30–33].1

Since an effective mass term arises as a possible explanation for the emergence of cosmo-

logical solutions, it seems natural to ask what conditions are necessary for a mass term to

naturally appear in the theory, and what causes the symmetry of space-time to break from

SO(1,9) to SO(1,3) × SO(6). In the present paper, we explore this question by studying

1See [34–38] for other deformations of the IKKT model which admit cosmological solutions, and [39–41]

for recent progress in the study of cosmological solutions in the IKKT model.
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compactifications of the IKKT model. We find that if six spatial dimensions are compactified

in a way that supersymmetry is broken, space-time fermions are quenched and the IKKT

model action develops an effective mass matrix that breaks the SO(1,9) symmetry of the

model to SO(1,3) × SO(6). This leads the way for solutions of the IKKT model where the

SO(1,9) symmetry of space-time is naturally broken to SO(1,3) × SO(6).

6.1.1 Outline

To obtain the mass matrix, we will proceed as follows. In section 6.2, we will Wick rotate

the Lorentzian IKKT model by imposing the change of variables A0 → iA0 and Γi → iΓi to

obtain the Euclidean IKKT model action

SIKKT = − 1

4g2
Tr[AM , AN ]2 − i

2g2
Trψ̄ΓM [AM , ψ] . (6.5)

This transformation to Euclidean space will be done to simplify computations. Then, we will

compactify this action on a six-dimensional torus where the space-time fermions ψ acquire

anti-periodic boundary conditions, hence breaking supersymmetry. As a result, the IKKT

model action under compactification will become equivalent to a six-dimensional Yang-Mills

theory with the following action

SC =
1

2g2
eff

∫
dσ6

V
Tr

(
1

2
FabF

ab +DaAµD
aAµ − 1

2
[Aµ, Aν ]2 + ψ̄ΓaDaψ (6.6)

−iψ̄Γµ[Aµ, ψ]
)
, (6.7)

where we have substituted the mode expansion

AM =
∑
na∈Z6

AM(na)ein
aσa , ψ =

∑
ra∈Z6+1/2

ψ(ra)eir
aσa . (6.8)

Here, µ ∈ {0, ..., 3} labels the non-compact directions, a ∈ {4, 5, .., 9} labels the compact

directions, V = (2πL)6 is the volume of the internal space, g2
eff = g2/N is an effective

gauge coupling, and N is a large integer that we will introduce later. In this six-dimensional

Yang-Mills theory, the zero modes describe non-compact degrees of freedom, and the non-

zero models describe interactions between these non-compact degrees of freedom. Hence,

integrating out the non-zero modes in the theory, one can obtain a Wilsonian effective action
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for the non-compact degrees of freedom in the theory. In section 6.3, we will compute this

Wilsonian effective action from the expression

S0
eff = − ln

 ∏′

na∈Z6

∏
rb∈Z6+1/2

∫
DAM(na)Dψ(rb) e−SE

 . (6.9)

Here,
∏′

means that we are not integrating over the zero modes na = 0 of the theory.

This computation will be done in the decompactification limit L� g
1/2
eff , where perturbation

theory is valid and we expect to obtain a result close to the IKKT action without the

compactification constraint (equation 6.1). Carrying out the computation to leading order

in perturbation theory and Wick rotating back to Lorentzian space, we will find that the

effective action takes the form

S0
eff = − 1

4g2
eff

Tr[AM(0), AN(0)]2 +
1

2
M2

MNTr(AM(0)AN(0))2 + ... , (6.10)

where the mass matrix

M2
MN =

ηµνM2
4 0

0 ηabM
2
6

 (6.11)

arises as a first order correction which breaks SO(1,9) symmetry to SO(1,3) × SO(6). In the

expression above, the masses M2
4 and M2

6 take the values

M2
4 = 16 (SF1 − SB1)

NM

L2
, (6.12)

M2
6 =

32

3
(SF1 − SB1)

NM

L2
, (6.13)

where the constants SB1 and SF1 are determined by the following sums

SB1 =
∑′

na∈Z6

1

(2πna)2
, SF1 =

∑
ra∈Z6+1/2

1

(2πra)2
. (6.14)

The sums SB1 are SF1 are divergent in the large na and ra limit. However, the difference

between these two sums is finite and takes the value SF1 − SB1 ≈ 0.0397887 when evaluated

numerically.

The reason why we obtain equation 8.17 and not equation 6.1 in the decompactification

limit is because of broken supersymmetry. Since the fermions have anti-periodic boundary

conditions, the fermionic zero modes are projected away in the mode expansion. Hence, the
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fermionic sector does not enter the zero-mode effective action. We are left with the bosonic

part of the IKKT action, and a mass matrix coming from integrating out interactions between

the zero modes degrees of freedom in the theory. If supersymmetry is restored by imposing

that fermions have periodic boundary conditions, ra becomes summed over Z6 instead of

Z6 + 1/2 in the sum SF1 . In this case, the masses M2
4 and M2

6 vanish since SB1 = SB2 , the

fermions acquire a zero-mode term, and we obtain the IKKT model action (equation 6.1)

with an effective gauge coupling geff .

6.2 Compactification of the IKKT model

Compactifying a matrix model presents a different challenge than compactifying a field

theory. For one, there are no free parameters in the matrix model that we can choose to

be compact. Hence, we must impose conditions on the matrices themselves. To overcome

this challenge, we will make use of the method of mirror images, which was first brought

forward by Washington Taylor in the context of D-brane mechanics [42]. This method

proved successful to explain graviton scattering under toroidal compactification of the BFSS

model [43], and has recently been used to explain three gravition amplitudes [44] and soft

theorems [45] in this same model.

This method builds on the fact that toroidal compactification is equivalent to duplicating

a fundamental region of the target space an infinite number of time along said direction. For

example, let us suppose we wish to compactify the real line x ∈ R on a circle S1 of radius

R. One option would be to confine the real line to an interval x ∈ [0, 2πR[ where we impose

periodic boundary condition. Another would be to invoke the fact that periodic boundary

conditions are equivalent to duplicating the interval [0, 2πR[ an infinite number of times

along the real line. In other words, each point on the real line can be associated to a point

a distance x→ x+ 2πR away from this point. The mathematical term for this operation is

called going to the universal cover of the circle.

The same procedure can be applied to matrix models to impose a compactification. Since

the matrix model describes a target space, we can impose that the target space contains

duplicated objects in the direction we want to compactify in an attempt to replicate the
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effects of a compact space. To see how this is done in the context of the IKKT model, let

us first Wick rotate the Lorentzian IKKT model to Euclidan space by imposing the change

of variables A0 → iA0 and Γi → iΓi in the Laurentzian IKKT model action. We obtain

SIKKT = − 1

4g2
Tr[AM , AN ]2 − i

2g2
Trψ̄ΓM [AM , ψ] . (6.15)

As previously mentioned, we will be interested in configurations of the IKKT model where

six spatial directions Aa are compact, and where fermions acquire anti-periodic boundary

conditions. Such compactifications were first studied in the BFSS model [46], and have more

recently been used to obtain a thermal state of the IKKT model [48]. In the present case, we

will generalise the approach taken in [48] to the case where six dimensions are compactified.

To do this, we will invoke the existence of unitary operators Ua, which generate a translation

in the Aa direction of the target space. In addition, we impose that these operators commute

with each other,

UaU b = U bUa , (6.16)

so that translations in different compact directions can be made independently of each other.

Following our previous discussion, capactifying the target space on a six-dimensional torus

where fermions acquire anti-periodic boundary conditions should be equivalent to imposing

the conditions

(U b)−1AµU b = Aµ (6.17)

(U b)−1AaU b = Aa + 2πLδab (6.18)

(U b)−1ψU b = −ψ , (6.19)

where L is the torus radius. Here, µ labels the non-compact space-time directions and a

labels the compact space directions. To solve the constraint equation above, we will use a

approach similar to the one in [49] and assume that the Hilbert space that the A’s and ψ’s

act on has the tensor product form

X = Y ⊗ Z , (6.20)

where X is a M ×M matrix that will remain invariant under the translation, and Z is a

N ×N matrix associated to the Hilbert space the translations act on. We will then invoke
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that Ua takes the following form

Ua = IM ⊗ e−i2πq
a

e−ip
a

, (6.21)

where IM is the M -dimensional identity operator and qa and pb are operators that satisfy

the Heisenberg algebra [qa, pb] = iδab. With the form above, the unitary operator Ua satisfies

(Ua)−1qaUa = qa + 1, and generates a shift from qa to qa + 1. The extra factor of e−i2πq
a

does not affect this shift. However, it will play a role in achieving the anti-periodic boundary

conditions for the fermions. Next, we will note that a matrix of the form

B =
∑
na

B(na)⊗ einapa , (6.22)

satisfies (Ua)−1BUa = B if na is an integer, and (Ua)−1BUa = −B if na if a half-integer.

Consequently, it’s possible to solve the constraint equations by imposing that the matrices

Aµ, Aa, and ψ take the following form

Aµ =
∑
nb∈Z6

Aµ(nb)⊗ einbpb (6.23)

Aa =
∑
nb∈Z6

Aa(nb)⊗ einbpb + 2πL IM ⊗ qa (6.24)

ψ =
∑

rb∈Z6+1/2

ψ(rb)⊗ eirbpb . (6.25)

In the expressions above, nb and rb are summed over N integers and half-integers respectively,

where N is taken to be large but finite. It’s possible to show that, when written in the |qa〉

basis, that the matrices above take the block Toeplitz form depicted in Figure 6.1. In this

block Toeplitz form, the diagonal blocks describe the distribution of objects within an interval

[0, 2πL[, and their interactions. The off-diagonal blocks, on their side, describe interactions

between the duplicated fundamental regions. Substituting the matrices above in the IKKT

model action and using the identities

[qa, einp
b

] = −neinpbδab , Trei(n±m)pb = Nδ(n±m) , (6.26)

we obtain the momentum space representation of the Yang-Mills action

SC =
1

2g2
eff

∫
dσ6

V
Tr

(
1

2
FabF

ab +DaAµD
aAµ − 1

2
[Aµ, Aν ]2 + ψ̄ΓaDaψ (6.27)

−iψ̄Γµ[Aµ, ψ]
)

(6.28)
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Aµ =



... ... ... ... ...

... Aµ(0) Aµ(1) Aµ(2) ...

... Aµ(−1) Aµ(0) Aµ(1) ...

... Aµ(−2) Aµ(−1) Aµ(0) ...

... ... ... ... ...



Aa =



... ... ... ... ...

... Aa(0)− 2πL Aa(1) Aa(2) ...

... Aa(−1) Aa(0) Aa(1) ...

... Aa(−2) Aa(−1) Aa(0) + 2πL ...

... ... ... ... ...


Aa = 0 Aa = 2πL Aa = 4πL Aa = 6πL

Figure 6.1: Left: The diagonal blocks (black) describe the distribution of objects and their

interactions in the duplicated regions, and the off-diagonal blocks (red) describe interactions

between the duplicated regions. Right: Sketch of the duplicated regions along a compact

direction Aa. The line between the black dots depict interactions inside (black) and across

duplicated regions (red).

where g2
eff = g2/N is an effective gauge coupling, V = (2πL)6 is the volume of the internal

space and AM and ψ are expanded using the mode decomposition

AM =
∑
na∈Z6

AM(na) ein
aσa , ψ =

∑
ra∈Z6+1/2

ψ(ra) eir
aσa . (6.29)

Here, σ takes values inside the interval [0, L−1[. Moreover, AM and ψ respectively satisfy

periodic and anti-periodic boundary conditions. In the mode expansion above, the zero

modes are related to the distribution of objects and their interactions in the fundamental

regions, and the non-zero modes are associated to interaction between fundamental regions

[50]. In the decompactification limit L � g
1/2
eff , one should expect the fundamental regions

to be far away from each other. In the case, interactions will be suppressed, and we should

obtain a theory which is approximately described by the dynamics of the zero-modes of the

theory. This can be seen by looking at the mode expansion

SC = − 1

4g2
eff

Tr[AM(0), AN(0)]2 +
1

2g2
eff

∑
na∈Z6

(2πLna)2Tr
(
AM(−na)AM(na)

)
(6.30)

+
1

2g2
eff

∑
ra∈Z6+1/2

(2πLrai)Tr
(
ψ̄(ra)Γaψ(ra)

)
+ ... , (6.31)
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of the compact IKKT action. In the L � g
1/2
eff limit, the non-zero winding modes ωna =

2πLna and ωra = 2πLra associated to the second and third term become heavy, and inter-

actions become suppressed in the path integral. As a result, we expect the compact IKKT

action to be effectively described by the zero modes of the system. This means we should

recover the bosonic IKKT model action

SC = − 1

4g2
eff

Tr[AM(0), AN(0)]2 + ... , (6.32)

and possible corrections coming from interactions between the fundamental regions. The

fermions, in this case, do not contribute since their zero mode are projected away by the

anti-periodic boundary conditions. As the radius of compactification L decreases, one should

expect that interactions become important, leading to more corrections to equation 6.32. In

the following sections, we will derive the leading corrections to equation 6.32 by evaluating

a Wilsonian effective action for the zero modes AM(0) of the theory. In the limit where

L � g
1/2
eff , we will see that the effective action of the zero modes aquires a mass matrix as

first order correction, leading to symmetry breaking in the theory.

6.3 Wilsonian effective action

To compute an effective action for the zero modes of the theory, which describes the non-

compact degrees of freedom, we will adopt a Wilsonian approach. This appraoch will consist

in integrating out the non-zero modes in the path integral in order to obtain an action that

depends exclusively on the zero modes of the theory.

To see how this can be done, let us remind ourselves that a Wilsonian effective action can

be used to find an effective description of the low energy modes of a theory by integrating out

high energy modes above a cutoff Λ. For example, let us consider the action S[Φ] associated

to a scalar field Φ. To obtain the low energy effective action for some long wavelength modes

ΦL, we can split the scalar field Φ = ΦL + ΦS into the contributions from ΦL and the short

wavelength component ΦS. Then, the contribution of the short wavelength modes ΦS can
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be integrated out in the partition function in the following way

Z =

∫
DΦe−S[Φ] (6.33)

=

∫
DΦL

(∫
DΦSe

S[ΦL+ΦS ]

)
(6.34)

=

∫
DΦLe

−Seff [ΦL] , (6.35)

to obtain a Wilsonian effective action Seff [ΦL] of the short wavelength component ΦL. This

Wilsonian effective action can be then computed from the expression

Seff [ΦL] = − ln

(∫
DΦSe

S[ΦL+ΦS ]

)
. (6.36)

In the present case, we want to obtain an effective action of the zero modes AM(0) of

the theory. This means that, in the Wilsonian sense, we must integrate out all the non-

zero modes AM(na) for na 6= 0 and ψ(ra) in the path integral. To do this, we can split

AM = AM(0) +
∑′

na∈Z6
AM(na)ein

aσa into the zero-mode component AM(0) and and the

non-zero-mode component
∑′

na∈Z6
AM(na)ein

aσa . Here,
∑′

means that we don’t sum

over the zero modes na = 0. We will then integrate out the non-zero-modes in the partition

function in same way as for our scalar field example. For the compact IKKT action (equation

6.28), this gives us

Z =
∏

narb∈Z6

∫
DAM(na)Dψ(rb) e−SC (6.37)

=

∫
DAM(0)

 ∏′

na∈Z6

∏
rb∈Z6+1/2

∫
DAM(na)Dψ(rb) e−SC

 (6.38)

=

∫
DAM(0)e−S

0
eff , (6.39)

where

S0
eff = − ln

 ∏′

na∈Z6

∏
rb∈Z6+1/2

∫
DAM(na)Dψ(rb) e−SC

 , (6.40)

can be identified as the zero-mode effective action. Here again, we remind the reader that∏′
means we integrate over all the modes na ∈ Z6 except the zero modes na = 0 of the

theory. This means that S0
eff will depend exclusively on the zero modes AM(0) that haven’t

been integrated over. The goal of the next sections will be to compute the quantity above.

This will be done using standard perturbative methods.
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6.3.1 Choice of gamma matrix representation and gauge fixing

As a first step towards computing equation 6.40, we will choose a convenient representation

for the gamma matrices that reflects the fact that SO(10) symmetry is broken to SO(4) ×

SO(6) by our choice of compactification. We will do this in a way to preserves the Majorana

and Weyl conditions

Γ11ψ = ψ , ψ̄ = ψTC10 (6.41)

which the fermions must satisfy for the theory to be supersymmetric. Here, Γ11 and C10 are

respectively the chirality operator and the charge conjugation operator in 10 dimensions.

In the present case, we will use the representation introduced in [51] and consider Gamma

matrices of the form

Γa = Γ̃a ⊗ 1 , Γµ = Γ̃7 ⊗ γµ , (6.42)

where Γ̃a are SO(6) gamma matrices, Γ̃7 is the chirality operator these matrices and γµ

are SO(4) gamma matrices (see [52] for other convenient representations). We will further

require that the SO(4) gamma matrices are in the Weyl representation

γµ =

 0 σµ

σ̄µ 0

 (6.43)

where σµ and σ̄µ are Pauli 4-vectors which satisfy

σ̄0 = σ0 = 1 , σ̄i = −σi , {σi, σj} = −2δij . (6.44)

In this representation, the chirality and charge conjugation operator for the 10 dimensional

Gamma matrices take the form

Γ11 = Γ̃7 ⊗

1 0

0 −1

 , C10 = C6 ⊗

iσ2 0

0 −iσ2

 . (6.45)

Therefore, the Majorana and Weyl conditions reduce to

ψ =

ψA+
ψA−

 , Γ̃7ψ
A
± = ±ψA± , ψA± = ±εABC6(ψ̄A±)T , (6.46)
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where A = 1, 2. Given our choice of gamma matrices, the compact IKKT action takes the

form

SC =
1

2g2
eff

∫
dσ6

V
Tr

(
1

2
FabF

ab +DaAµD
aAµ − 1

2
[Aµ, Aν ]2 +

1

2
ψ̄A+Γ̃a∂aψ

A
+ (6.47)

+
1

2
ψ̄A−Γ̃a∂aψ

A
− −

i

2
ψ̄A+Γ̃a[Aa, ψ

A
+]− i

2
ψ̄A−Γ̃a[Aa, ψ

A
−] +

i

2
ψ̄A+(σµ)AB[Aµ, ψ

B
− ] (6.48)

− i
2
ψ̄A−(σ̄µ)AB[Aµ, ψ

B
+ ]

)
. (6.49)

In addition to our choice of gamma matrices, we will choose to work in the Lorenz gauge

∂aA
a = 0. This choice can be imposed by adding the ghost term

Sgh =
1

g2
eff

∫
dx6

V
Tr (∂ac̄Dac) . (6.50)

to the compact IKKT action.

6.3.2 Mode expansion

Next, we will decompose the compact IKKT action into its different Fourier modes and

separate the zero mode and the non-zero mode of the action. To do this, we will first

separate the compact IKKT action Sc = Skin + Sint in a kinetic part

Skin =

∫
dx6

V
Tr

(
1

2
∂aAN∂

aAN +
1

2
ψ̄A+Γ̃a∂aψ

A
+ +

1

2
ψ̄A−Γ̃a∂aψ

A
− + ∂ac̄∂

ac

)
, (6.51)

and an interaction part

Sint =

∫
dx6

V
Tr

(
−i∂aAN [Aa, AN ]− 1

4
[AM , AN ]2 − i

2
ψ̄A+Γ̃a[Aa, ψ

A
+] (6.52)

− i
2
ψ̄A−Γ̃a[Aa, ψ

A
−] +

i

2
ψ̄A+(σµ)AB[Aµ, ψ

B
− ]− i

2
ψ̄A−(σ̄µ)AB[Aµ, ψ

B
+ ]− i∂ac̄[Aa, c]

)
. (6.53)

Then, we will rescale the gauge fields, the fermions and the ghosts to make them dimension-

less using the change of variable

AM → λLAM , ψ+ → λL3/2ψ+ , ψ− → λL3/2ψ− , c→ λLc . (6.54)
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Here, λ is a dimensionless parameter defined by λ2 ≡ g2
eff/L

4, which will play a role later in

the perturbative expansion of equation 6.40. Finally, we will substitute the mode expansion

AM =
∑
na∈Z6

AM(na)ei2πLn
aσa , (6.55)

ψ =
∑

ra∈Z6+1/2

ψ(ra)ei2πLr
aσa , (6.56)

c =
∑
na∈Z6

c(na)ei2πLn
aσa , (6.57)

in SC = Skin + Sint. After this sustitution, the compact IKKT action can be written in the

form SC = S0 + S ′kin + S ′int, where

S0 = −λ
2

4
Tr[AM(0), AN(0)]2 (6.58)

is the zero mode part of the action, and

S ′kin =
1

2

∑′

na∈Z6

(2πna)2Tr
(
AM(na)AM(−na)

)
+

1

2

∑
ra∈Z6+1/2

(2πrai)ψ̄A+(ra)Γ̃aψA+(ra) (6.59)

+
1

2

∑
ra∈Z6+1/2

(2πrai)ψ̄A−(ra)Γ̃aψA−(ra) +
∑′

na∈Z6

(2πna)2Tr (c̄(na)c(na)) (6.60)

is the kinetic part where the zero modes, which do not contribute, are not summed over. The

final term, corresponding to the interaction part where the zero modes have been removed,

takes the form

S ′int =
5∑
i=1

Vi , (6.61)
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where the Vi’s are given by

V1 = −λ
2

4

∑′

namala∈Z6

Tr
(
[AM(−na −ma − la), AN(na)][AM(ma), AN(la)]

)
(6.62)

V2 = −λ
∑′

nama∈Z6

2π(na +ma)Tr
(
AM(−na −ma)[Aa(na), AM(ma)]

)
(6.63)

V3 = − i
2
λ

∑′

ra∈Z6+1/2 , na∈Z6

Tr
(
ψ̄A+(ra + na)Γ̃b[Ab(n

a), ψA+(ra)]
)

(6.64)

V4 = − i
2
λ

∑′

ra∈Z6+1/2 , na∈Z6

Tr
(
ψ̄A−(ra + na)Γ̃b[Ab(n

a), ψA−(ra)]
)

(6.65)

V5 =
i

2
λ

∑′

ra∈Z6+1/2 , na∈Z6

Tr
(
ψ̄A+(ra + na)(σµ)AB[Aµ(na), ψB−(ra)]

)
(6.66)

V6 = − i
2
λ

∑′

ra∈Z6+1/2 , na∈Z6

Tr
(
ψ̄A−(ra + na)(σ̄µ)AB[Aµ(na), ψB+(ra)]

)
(6.67)

V7 = −λ
∑′

na∈Z6+1/2 ,ma∈Z6

2π(na +mb)Tr (c̄(na +ma)[Aa(n
a), c(ma)]) . (6.68)

6.3.3 Zero mode effective action

We are now in a position to evaluate the Wilsonian effective action for the zero modes of

the theory. Before taking on the task of evaluating equation 6.40, let us pause and notice

that the only free parameter in equation 6.58 to 6.68 is the dimensionless quantity λ. In the

computation that follows, λ will play the role of expansion parameter. Since S0 is an O(λ2)

quantity, we will only be concerned with corrections to S0 that contribute at O(λ2) order,

neglecting the higher order corrections. This approximation is valid when λ� 1, or in other

words when L � g
1/2
eff . In the IKKT model, g2 is related to the string scale ls via g2 ∼ l4s .

Hence, our approximation will be valid when the compactification radius L is much larger

than the string lenght ls.

To evaluate 6.40, we will first substitute SE = S0 + S ′kin + S ′int in our definition for the
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zero mode effective action of the theory (equation 6.40). We obtain

S0
eff = − ln

 ∏′

na∈Z6

∏
rb∈Z6+1/2

∫
DAM(na)Dψ(rb) e−SC

 (6.69)

= − ln

e−S0

∏′

na∈Z6

∏
rb∈Z6+1/2

∫
DAM(na)Dψ(rb) e−S

′
kin−S

′
int

 (6.70)

= S0 − lnZkin − ln〈e−S′int〉 , (6.71)

where we have defined

Zkin =
∏′

na∈Z6

∏
rb∈Z6+1/2

DAM(na)Dψ(rb) e−S
′
kin , (6.72)

〈 , 〉 =
1

Zkin

∏′

na∈Z6

∏
rb∈Z6+1/2

∫
DAM(na)Dψ(rb) . e−S

′
kin . (6.73)

As expected, the first term lets us recover the bosonic part of the IKKT action. The second

term, on its side, does not depend on AM(0) and is non-dynamical. For this reason, we

will simply ignore it. Finally, we have the term − ln〈e−Sint〉 which is dynamical and will

bring correction to the bosonic IKKT action. This term can be evaluated perturbatively by

expanding it in the form

− ln〈e−Sint〉 = 〈Sint −
1

2
S2
int + ...〉c (6.74)

= 〈V1〉c −
1

2
〈V 2

2 〉c −
1

2
〈V 2

3 〉c −
1

2
〈V 2

4 〉c − 〈V5V6〉c −
1

2
〈V 2

7 〉c + ... (6.75)

where 〈.〉c denotes the fact that only connected diagrams contribute to the expectation

value. In the expression above, we have only kept the terms that contribute to leading order

(O(λ2)). All other contributions from the vertex terms (equation 6.63 to 6.68) either vanish,

contribute at next to leading (O(λ4)) order, or at a higher order in the expansion parameter
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λ. To evaluate the quantities above, it’s useful to write down the two point functions

〈AM(na)AN(ma)〉 =
δMNδna+ma,0

(2πna)2
(6.76)

〈ψ̄A+α(ra)ψB+β(sa)〉 = −i
2πraΓ̃aαβδABδra,sa

(2πra)2
(6.77)

〈ψ̄A−α(ra)ψB−β(sa)〉 = −i
2πraΓ̃aαβδABδra,sa

(2πra)2
(6.78)

〈c̄(na)c(ma)〉 =
δna,mb

(2πna)2
, (6.79)

for the gauge fields, the fermions and the ghosts.2 Using the two point functions above, we

find

〈V1〉c = 9λ2MSB1Tr(AN(0))2 (6.80)

〈V 2
2 〉c = 2λ2M

(
(17SB2 + SB1) Tr(Aa0)2 + SB1Tr(Aµ(0))2

)
(6.81)

〈V 2
3 〉c = −8λ2M(2SF2 − SF1)Tr(Aa(0))2 (6.82)

〈V 2
4 〉c = −8λ2M(2SF2 − SF1)Tr(Aa(0))2 (6.83)

〈V5V6〉c = 8λ2MSF1Tr(Aµ(0))2 (6.84)

〈V 2
7 〉c = −2λ2MSB2Tr(Aa(0))2 (6.85)

where SB1 , SB2 , SF1 and SF2 are defined as follows

SB1 =
∑′

na∈Z6

1

(2πna)2
, SF1 =

∑
ra∈Z6+1/2

1

(2πra)2
(6.86)

SB2 =
∑′

na∈Z6

(2πn1)2

(2πna)4
, SF2 =

∑
ra∈Z6+1/2

(2πr1)2

(2πra)4
. (6.87)

Adding each term in the expansion, we find

− ln〈eiSint〉 = −8 (SF1 − SB1)λ
2MTr(Aµ(0))2 (6.88)

− 8 (SF1 − SB1 − 2 (SF2 − SB2))λ
2MTr(Aa(0))2 +O(λ4) . (6.89)

2In equation 6.76 to 6.79, we did not write down the matrix indices to avoid cluttering the notation.

Here, the two point functions of any two matrices Aab and Bcd should take the form 〈AabBcd〉 ∼ δadδbc,

where a, b, c and d are matrix indices.
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The expression above can be simplified by noting that SB1 = 6SB2 and SF1 = 6SF2 . Adding

the corrections terms to S0, the zero mode effective action at O(λ2) takes the form

S0
eff =

(
−1

4
Tr[AM(0), AN(0)]2 − 8 (SF1 − SB1)MTr(Aµ(0))2 (6.90)

−16

3
(SF1 − SB1) Tr(Aa(0))2

)
λ2 +O(λ4) . (6.91)

Hence, we find that at leading order, the corrections to S0 take the form of two mass terms:

one associated to the non-compact directions Aµ, and one associated to the compact direc-

tions Aa. As expected, these corrections break the SO(10) symmetry of the target space to

SO(3)× SO(6). This is to be expected since by making the choice to compactify six spatial

dimensions, we are picking six special directions in space. The zero mode effective action at

leading order in perturbation theory reflects this fact.

The expression above can be more neatly written after undoing our previous change of

variable via AM → λ−1L−1AM . In passing, we will also go back to Lorentzian signature by

imposing A0 → −iA0. In this case, the effective action takes the form

S0
eff = − 1

4g2
eff

Tr[AM(0), AN(0)]2 +
1

2
M2

MNTr(AM(0)AN(0))2 + ... , (6.92)

where we have defined a mass matrix

M2
MN =

ηµνM2
4 0

0 ηabM
2
6 ,

 (6.93)

which includes two mass terms

M2
4 = 16 (SF1 − SB1)

NM

L2
, (6.94)

M2
6 =

32

3
(SF1 − SB1)

NM

L2
. (6.95)

In the expression above, the sums SB1 and SF1 individually diverge in the limit where N is

large. However, it’s possible to isolate the divergence in these sums by rewriting them as an

integral and using Poisson resummation. What we find is rather interesting. It turns out

that SB1 and SF1 have the same divergent piece which is canceled by the difference SF1−SB1 .

It is then possible to evaluate difference numerically, which gives SF1 −SB1 ≈ 0.0397887 . A

detailed derivation of this result can be found in Appendix 6.5.
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Notice that the breaking of supersymmetry plays a crucial role in obtaining non-vanishing

masses M2
4 and M2

6 . If supersymmetry is restored by imposing that fermions have periodic

boundary conditions, then ra becomes summed over Z6 instead of Z6 + 1/2, and the masses

vanish since SB1 = SB2 . Moreover, the fermions are indeed projected away by the anti-

periodic boundary conditions, as expected. When suppersymmetry is restored, the fermions

have zero modes terms that will appear at leading order in perturbation theory, and we

recover the non-compact IKKT model action (equation 6.1) with an effective gauge coupling

geff .

Moreover, notice that the mass term correction arise at leading order when integrating

out the non-zero modes of the theory. This means that, in the decompactification limit, one

cannot ignore residual interactions between duplicated regions. This potentially implies that

interactions between regions are long ranged, and cannot be ignored even at large distances.

A consequence of this phenomenon seems to be the breaking of gauge invariance in

the fundamental regions. Since interactions between regions cannot be ignored, the theory

develops an effective potential that takes the form of a mass term. This mass term, which

impacts the distribution of objects and their interactions in the fundamental regions, also

breaks the gauge invariance of the theory.3 One may view this as being problematic since,

naively, it should be expected that gauge invariance is preserved in the decompactification

limit. This intuition comes from the fact that in the decompactification limit, we should

recover the same theory we started with, along with the same symmetries. However, we

should remind ourself that this is not the case when compactifying matrix theories. Instead

of recovering the initial system, we recover a large N number of copies of the initial system, as

reflected by the overall factor of N in the equation which is absorbed in the effective coupling

g2
eff = g2/N . These copies come from the fact that we have duplicated a fundamental region

N times along the compact directions. Since we don’t recover the same system we stated

with, it’s possible that some symmetries of the original system are not preserved. In the

present case, we find that gauge symmetry in the fundamental regions is dependant on

the structure of the interaction between them. If supersymmetry is preserved, interactions

3The IKKT model action is invariant under the gauge variations δAM = i[AM , α] and δψ = i[ψ, α], where

α is an arbitrary matrix. Including a mass term in the theory breaks this symmetry.
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vanish and gauge symmetry is preserved. If supersymmetry is broken, the gauge symmetry

is broken.

It is worth noting that compactifying a matrix theory on a higher dimensional torus

can lead to some issues. For example, in the BFSS matrix model, decoupling breaks down

when the theory is compactified on T k where k > 5 (see [47] for more detail). However, this

problem only arises when the compactification radius L is taken to be small, and the system

starts behaving like a dual quantum field theory. In the present case, the compactification

radius is taken to be large, and the obtained system is closer to the IKKT model than a dual

quantum field theory. Hence, we do not expect this issue to arise here. 4

6.4 Conclusion and discussion

In this paper, we compactified the IKKT matrix model on a six-dimensional torus where

the space-time fermions acquire anti-periodic boundary conditions, and we found that the

Wilsonian effective action for the non-compact degrees of freedom in the theory acquires an

effective mass term which breaks the SO(1,9) symmetry of the IKKT model to SO(1,3) ×

SO(6). This mass matrix arises as a result of broken supersymmetry. If supersymmetry is

restored, the conventional IKKT action (equation 6.1) is recovered.

It would be interesting to see if the equations of motion of the effective action we have

found have interesting cosmological solutions. Given that the SO(1,9) space-time symmetry

of the IKKT model is broken to SO(1,3) × SO(6), one may expect there exist solutions

where three space dimension expand, and the six other stay small. In this case, it might

be possible that a SUSY breaking compactification is responsible for the emergence of three

large space dimensions in recent numerical simulations of the IKKT model.

Assuming interesting cosmological solutions exist, it might be possible to use them to test

recent predictions in matrix cosmology, one of them being the scale invariance of cosmological

perturbations [48,53] (see for [54] a summary of progress and challenges in these scenarios).

Another avenue of research would be to test a recent space-time metric proposal in the

IKKT matrix model [55] using these solutions, or repeat our anaylsis in the BFSS matrix

4We thank Savdeep Sethi for bringing this point to our attention.
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model. In this case, one may find a possible connection with cosmological scenarios found

in non-supersymmetric string theories [56].

Another exciting perspective is that higher order correction to the Wilsonian effective

allow for Fuzzy de Sitter space solutions [57–60]. For example, Fuzzy dS4 is described by

four ”Pauli-Lubanski” vectors that act as Casimir operators of the SO(1,4) group. Since

these operators are built out of Lorentz generators of the SO(1,4) group, they satisfy well-

known commutation relations. It would be interesting to see if these commutation relations

are solutions of the IKKT model under compactification when higher order corrections are

considered.

Finally, it is worth to mention that effective mass terms have been found in matrix

models before, notably in the following work [61, 62]. However, in this case, the analysis

was done for bosonic (1+D) and (2+D)-dimensional Yang-Mills theories where all all but

one or two of the space-time matrices are integrated out. (1+D) and (2+D)-dimensional

Yang-Mills theories can be viewed as a (1+D) and (2+D)-dimensional IKKT model where

one or two dimensions are compactified on a torus. Hence, our analysis can be viewed as a

special case of this work in which we consider a (6+4)-dimensional Yang-Mills theory where

fermions are included, supersymmetry is broken, and all bosonic matrices are remain in

the effective action. Contrary to [61, 62], we have restrained ourselves to the limit where

the compactification radius L is large but finite. It would be interesting to see if phase

transitions appear as we decrease the compactification radius.

Acknowledgements

The author wishes to thank Robert Brandenberger, Keshav Dasgupta, Suddhasattwa Brahma

and Savdeep Sethi for useful comments on the draft of this paper. Discussions with Herman

Verlinde and Dionysios Anninos are also aknowledged. Additionally, the author wishes to

thank the Erwin Schrodinger International Institute for Mathematics and Physics (ESI) for

the hospitality during the workshop “Large-N Matrix Models and Emergent Geometry” in

Vienna, where many good discussions with other participants helped shape the direction

of this project. The author is supported in part by the Fonds de recherche du Québec
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Appendix

6.5 Epstein Series Regularisation

When deriving the zero mode effective action of the IKKT model, we encountered the sums

SB1 and SF1. These sums involve Epstein and Epstein-Hurwitz series that are divergent in

the limit where N → ∞. In the present section, we show that the divergent part of these

sums can be isolated by introducing a regulator in the sums. When this is done, we find that

SB1 and SF1 have the same divergent part, which is canceled in the difference SF1 − SB1.

Evaluating the difference numerically, we find SF1 − SB1 ≈ 0.0397887.

6.5.1 Bosonic Sum

We will first start by treating the divergence of the bosonic sum

SB1 =
∑′

~n∈Z6

1

|2π~n|2
. (6.96)

Here, we will use the vector notation na = ~n for simplicity. This sum involves the Epstein

series

EB =
∑′

~n∈Zd

1

|~n|2
, (6.97)

which diverges when d/2 > 1. To treat the divergence, we will modify the sum to include a

UV regulator. Let us consider the expression∑′

~n∈Zd

e−α
2|~n|2

|~n|2
. (6.98)

Here, α2 plays the role of cutoff which truncates the modes above N ∼ α−1 out of the sum,

hence taming the divergence. In the limit where α2 → 0, all modes contridute to the sum

and the expression above reduces to EB. Equation 6.98 can rewritten in integral form using
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the property
1

|~n|2
=

∫ ∞
0

dte−t|~n|
2

. (6.99)

We obtain ∑′

~n∈Zd

e−α
2|~n|2

|~n|2
=

∫ ∞
0

dt
∑′

~n∈Zd
e−(t+α2)|~n|2 (6.100)

= π

∫ ∞
α2/π

dt
(
θd(t)− 1

)
, (6.101)

where we made use of the function

θ(t) =
∞∑

n=−∞

e−πtn
2

. (6.102)

Since θ(t) ∼ t−1/2 when t → 0, the integrand in equation 6.101 diverges in the limit when

the regulator α2 goes to zero. To deal with the divergent part of the integral, we will rewrite

the part of the integral in the interval t ∈ [α2/π, 1] by making use of the property

θ(t) =
1

t1/2
θ(1/t) , (6.103)

which can be derived using Poisson’s resummation formula. Substituting the expression

above in 6.101, we obtain∫ 1

α2/π

dt
(
θd(t)− 1

)
=

∫ π/α2

1

dt td/2−1
(
θd(t)− 1

)
− d

d− 2
+ α2 +

2

d− 2

( π
α2

)d/2−1

. (6.104)

In the expression above, the integral is finite for all values of d. Hence, for d/2 > 1, the only

divergent piece when α2 → 0 comes from the last term which is inversely propotional to α2.

Piecing everything together and letting α2 go to zero, we obtain

EB = π

(∫ ∞
1

dt
(
1 + td/2−1

) (
θd(t)− 1

)
− d

d− 2
+

2

d− 2

( π
α2

)d/2−1
)
. (6.105)

When d = 6, which is the case we are interested in, substituting the value of the EB in SB1

gives us

SB1 =
1

4π

(∫ ∞
1

dt
(
1 + t2

) (
θ6(t)− 1

)
− 3

2
+

1

2

( π
α2

)2
)
. (6.106)
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6.5.2 Fermionic Sum

Finally, we will evalutate the fermionic sum

SF1 =
∑

~n∈Z6+1/2

1

|2π~n|2
, (6.107)

where the vector notation na = ~n is used for simplicity. In this case, we will be interested in

the Epstein-Hurwitz series

EF =
∑
~n∈Zd

1

|~n+ a|2
, (6.108)

when a 6= 0. Here again, we will modify the sum to include a regulator α2, which trunctates

the modes above N ∼ α−1 out of the sum. In the present case, the expression of interest

will be ∑
~n∈Zd

e−α
2|~n+a|2

|~n+ a|2
, (6.109)

which reduces to EF when α2 goes to zero. Making use of equation 6.99, the sum above can

be rewritten as an integral. We obtain∑
~n∈Zd

e−α
2|~n+a|2

|~n+ a|2
=

∫ ∞
0

dt
∑
~n∈Zd

e−(t+α2)|~n+a|2 (6.110)

= π

∫ ∞
α2/π

dt θd(t|a) , (6.111)

where we defined the function

θ(t|a) =
∞∑

n=−∞

e−πt(n+a)2 . (6.112)

Just like θ(t), the function above can be approximated as θ(t|a) ∼ t−1/2 when t → 0, so

the integrand in equation 6.111 diverges in the limit when the regulator α2 goes to zero. To

treat this divergence, we will rewrite the divergent part of the integral by making use of the

property

θ(t|a) =
e−πa

2t

t1/2
θ(1/t|iat) (6.113)

which can be derived using Poisson’s resummation formula. In this case, the divergent part

of the integral can be written as∫ 1

α2/π

dt θd(t|a) =

∫ π/α2

1

dt td/2−1
(
e−πda

2/tθd(t|ia/t)− 1
)
− 2

d− 2
(6.114)

+
2

d− 2

( π
α2

)d/2−1

. (6.115)
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The integral on the right-hand side of the expression above is convergent for all values of d.

Hence, when d/2 > 1, the only divergent piece comes from the last term which is inversely

proportional to α2. Piecing everything together and letting α2 go to zero, we obtain

EF = π

(∫ ∞
1

dt θd(t|a) +

∫ ∞
1

dt td/2−1
(
e−πda

2/tθd(t|ia/t)− 1
)
− 2

d− 2
(6.116)

+
2

d− 2

( π
α2

)d/2−1
)
. (6.117)

Letting d = 6 and a = 1/2, we can finally evaluate SF1 by substituting EF in equation 6.107.

We obtain

SF1 =
1

4π

(∫ ∞
1

dt θ6(t|1/2) +

∫ ∞
1

dt t2
(
e−

3π
2t θ6(t|i(2t)−1)− 1

)
− 1

2
+

1

2

( π
α2

)2
)
. (6.118)

As we can see, the divergent piece in SF1 is the same one that we obtained for SB1. This is

decause in the t → 0 limit, the theta function in the integrand (6.111) behaves as θ(t|a) ∼

t−1/2 independantly of a. Consequently, integrating θ(t|a)d in the viscinity of t → 0 yields

the same divergent piece regardless of if a takes the value zero (in the bosonic case) or 1/2

(in the fermionic case). This means that substracting SB1 from SF1 should give a finite

value, which can be otained by carrying out each integrals in SB1 and SF1 . Carrying out the

integrals numerically, we obtain

SF1 − SB1 = 0.0397887 . (6.119)
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Addendum for the thesis

In Section 2.3.4, we saw how the Gaussian Expansion method can be used to probe symmetry

breaking in the Euclidean IKKT matrix model. We found that for the bosonic IKKT model,

there is no symmetry breaking. We then found that for the supersymmetric IKKT model, the

contribution of fermions breaks the SO(10) symmetry of the system. In the present section,

we explore a potentially similar symmetry breaking in the Euclidean BFSS matrix model.

Using the Gaussian Expansion Method, we find that the bosonic BFSS matrix model retains

its SO(9) symmetry, while the contribution from fermions breaks the SO(9) symmetry of

the system in the supersymmetric case. This symmetry-breaking may relate to a similar

symmetry-breaking process in String Gas Cosmology, where three dimensions become large
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following the Hagedorn phase. However, further studies remain to be made to confirm this

hypothesis.

Abstract

We apply the Gaussian expansion method to the BFSS matrix model in the high temperature

limit. When the (Euclidean) BFSS action is expanded about a Gaussian ansatz, it is shown

that the SO(9) symmetry is spontaneously broken, analogous to what happens in the IKKT

model. The analysis of the free energy, using the set of gap equations which determines the

width of the Gaussian terms, is sufficient to show that this symmetry breaking happens only

when the fermionic terms are included and is absent in the bosonic case.

7.1 Introduction

Understanding the quantum origin of space and time in the very early universe requires

starting from a consistent non-perturbative theory which is complete in the ultraviolet (UV),

i.e. in the high energy limit. String theory is the most promising candidate for such a theory.

To understand string theory at the high densities of the very early universe, it is crucial to

start from a non-perturbative approach1. In the late 1990s it was realized that large N matrix

models could provide non-perturbative definitions of string theory. Two key examples are

the BFSS [5] and the IKKT [6] matrix models.

Recently, there has been a new proposal to understand the origin of space and time in

the context of these matrix models [7]. It has been shown how, starting from abstract matrix

degrees of freedom, one not only obtains emergent space and time, but one can also extract

variables which meaningfully depict the dynamical history of our universe. The resulting

scenario has aspects in common with String Gas Cosmology (SGC) [8], a model of early

time cosmology in which the universe was taken to begin in a high temperature equilibrium

1Effective field theory approximations run into serious conceptual problems (see e.g. [1] for an overview),

and effective field theories consistent with string theory are constrained by several criteria such as the

“swampland” conditions [2] (see [3] for recent reviews) and the “Trans-Planckian Censorship Conjecture” [4].
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state of a gas of strings, and the thermal fluctuations were shown [9] to lead to scale-invariant

spectra of both cosmological perturbations and gravitational waves, again like what results

in SGC [10]. What was missing in SGC, however, was an embedding of the model into

a consistent dynamical framework coming from string theory. Our present model provides

such an embedding 2

Let us summarize our new findings in a bit more detail. Firstly, it was shown in [9]

that, assuming a thermal state of the BFSS matrix model, one can extract an early universe

cosmology in which the thermal fluctuations lead to roughly scale-invariant spectra for both

the primordial gravitational waves and the (observable, infrared) curvature fluctuations.

Moreover, the amplitude of these perturbations is given by the ratio of the string scale to

the Planck scale, exactly as in SGC, and agrees with current observations for a string scale

of the order of that of Grand Unification (a string scale which in agreement with what

is expected from string particle phenomenology in heterotic superstring theory [12]). The

remarkable bit about this result is that it arises solely due to the form of the BFSS Lagrangian

itself and the result is independent of any fine-tuning (as compared with the freedom offered

by the choice of the scalar field potential for inflation). The choice of a thermal state for

primordial perturbations is also natural, as we work in the Euclidean BFSS model at high

temperatures. The main leap of faith in our model was that, at high temperatures, the BFSS

model was assumed to exhibit a symmetry-breaking pattern in which there would emerge

exactly three large spatial dimensions. The intuition behind this assumption comes from

the IKKT model, where it has been long demonstrated [13] that a large (3 + 1)-d universe

emerges from the full 10-d theory due to a spontaneous symmetry breaking (SSB) of the

isometry group (see [14] for more recent results). In fact, this was one of the motivating

factors for choosing a high temperature state in the BFSS model, since it is well known [15]

that the BFSS model approaches the IKKT model as T →∞3.

Although it was well-motivated, there were a couple of strong assumptions in the afore-

2See also [11] for another approach to an emergent early universe scenario based on fundamental principles

of string theory which connects with SGC.
3Coincidentally, it is indeed in this limit that we have a well-defined perturbative expansion for the

thermodynamic quantities of interest for the BFSS model since the perturbation parameter g2N/T 3 is small

in this limit.
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mentioned calculation. Firstly, at high temperatures, the fermions decouple in the BFSS

model and one only recovers the bosonic IKKT action in this limit. On the other hand,

it has been argued from different directions that the presence of fermions is crucial for the

SO(10) symmetry-breaking in the IKKT model. Secondly, there has been a combination of

analytical and numerical results which have demonstrated that although all the eigenvalues

of the bosonic matrices start out small (on the string scale) for the IKKT model, the SSB

leads to 3 of them becoming large after the symmetry-breaking time. In the absence of any

such evidence for the BFSS model, it is a rather strong assumption to say that there is a

similar dynamical explanation happening for the BFSS action.

It is precisely this lacuna which we seek to (at least, partially) fill in this paper. We will

show using well-established methods that there is a SSB of the SO(9) group for the Euclidean

BFSS model, in the presence of fermions. This will be done by employing the Gaussian

expansion method, [16] in which we will approximate the BFSS Lagrangian with a Gaussian

action and then systematically calculate the corrections to this ansatz, by expanding about

the Gaussian term. The Gaussian action contains a host of free parameters (or “masses”)

which are determined by solving the so-called ‘gap’ or ‘self-consistency’ equations. When

truncated to any finite order, this constitutes an approximation, as mentioned above. To put

it differently, in this method one adds and subtracts a Gaussian piece S0 to the action and

then regards S + S0 as the classical action and the −S0 as the one-loop counter-term [17].

Our goal is to then calculate the free energy for such an expanded action, and see if it

gets minimized for a specific choice of the Gaussian variables. Naturally, for any finite

truncation, the result of the Gaussian expansion will depend on the “mass” parameters in

the ansatz. Nevertheless, in a lot of models which are exactly solvable, it has been shown

that there exist regions of parameter space where the action is independent of the Gaussian

parameters. These regions signal local minima of the effective action and identifying the

region with the smallest free energy enables one to predict the true vacuum of the theory.

In order to examine the symmetry-breaking pattern of the model, we will start with an

ansatz that preserves the U(N) gauge group of the BFSS model but not the isometry group.

The goal is to show that there exists a region of parameter space where the free energy is

minimized, and that this occurs for a configuration which corresponds to the breaking of
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SO(9) to SO(6). In this work, we will be content with studying the gap equations which

deal with the bosonic Gaussian parameters4, and show that such a gap equation cannot be

solved by a SO(9)-symmetric solution in the presence of fermionic terms. In other words,

we will demonstrate that as long as there are some fermionic contributions to the Gaussian

ansatz, there must be a SSB of the BFSS model. Our result mimics previous computations

of the IKKT model although the presence of an intrinsic time parameter complicates the

application of the Gaussian method to the BFSS action. Thus, we find first evidence of SSB

in the BFSS model which is at the same footing as in the IKKT model.

In the next section, we review the results of the applying the Gaussian expansion method

to the IKKT model in order to introduce this technique and highlight the minimum ingre-

dients required for showing that there must be a SSB in such a matrix model. In Sec-3, we

show that, analogous to what happens in the IKKT model, there is no symmetry breaking

for the bosonic BFSS action. Finally, we present our main result in Sec-4 demonstrating

why there must be SSB for the full BFSS model in the presence of fermions. We conclude

in Sec-5, highlighting future directions and why our result has deep consequences for matrix

cosmology.

7.2 Review of the IKKT results

Let us briefly review the results of applying the Gaussian expansion technique to the Eu-

clidean IKKT model [18, 19]. The main goal of this section is to show what the precise

requirements are to obtain spontaneous breaking of the SO(10) symmetry. For the IKKT

model, the analytical arguments have been supplemented with numerical studies [13] which

show that the SO(10) symmetry in fact breaks to some SO(4) group (cross some other sym-

metry group for the internal dimensions). We are at the moment unable to carry out the

full analyses for the BFSS model, since it would require a considerable amount of numerics

to do so. As a result, we are not yet in the position to determine the end state of the sym-

metry breaking. Nevertheless, by identifying the necessary ingredients required to identify

4By this term, we will throughout refer to the “mass” terms assigned to the bosonic matrices of the model

since the spatial directions emerge from the eigenvalue distribution of these matrices in the BFSS model.
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the symmetry-breaking, we will be able to show definitively that the SO(10) symmetry must

necessarily be broken in the BFSS model.

The partition function of the Euclidean IKKT model is given by (we will closely follow

the notation of [18] for consistency)

Z =

∫
dXdΦ e−SIKKT , (7.1)

where the IKKT action is defined as:

SIKKT = −1

4
N Tr [Xµ, Xν ]

2 − i

2
N Tr

(
Φα

(
Γ̃µ

)
αβ

[Xµ,Φβ]

)
=: S

(b)
IKKT + S

(f)
IKKT . (7.2)

In the above expressions we have rescaled the 10 bosonic matrices Aµ → λ1/4Xµ and their 16

fermionic superpartners Ψα → λ3/8 Φα by some powers of the ’t Hooft coupling λ = g2N , so

as to make the action independent of the Yang-Mills coupling g. The 10−d gamma matrices

in the Weyl basis, Γµ, are multiplied by the charge conjugation matrix C, to get Γ̃µ = CΓµ.

From now on, we will assume the number of bosnic matrices to be d (i.e., µ = 1, 2, . . . , d),

while the fermionic ones to be p (i.e., α = 1, 2, . . . , p), to be completely general. The reason

for separating out the bosonic and fermionic parts of the IKKT action will be clear later on.

The general idea of the Gaussian expansion method [16,17] is to approximate the above

action by a Gaussian ansatz which is the most general SU(N)-invariant action and yet

does not assume an SO(d) symmetry. One then expands the action around this Gaussian

ansatz and calculates quantities such as the free energy to whichever order in perturbation

theory is desired, and minimizes the free energy by solving a set of gap equations which fixes

the parameters of the Gaussian terms. In general, for large-N theories, it is known that

planar diagrams are the only ones which contribute to the gap equations when calculating

corrections to the Gaussian approximation.

More concretely, we introduce a Gaussian action of the form

S0 =
d∑

µ=1

(
N

vµ

)
Tr (XµXµ) +

(
N

2

)N2−1∑
a=1

Φa
αAαβ Φb

β =: S
(b)
0 + S

(f)
0 , (7.3)

where the Gaussian parameters are vµ > 0 can, a priori, take d distinct values and A is a

p× p matrix, and we have separated out the bosonic and fermionic Gaussian terms. 5

5We have expanded the fermionic fields Φα in terms of the N2 − 1 SU(N) generators, the Φaα being the

expansion coefficients.
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7.2.1 No symmetry breaking for bosonic IKKT

In order to understand the full power of the Gaussian expansion method in exploring the

symmetry breaking pattern of the model, let us first apply it to the bosonic part of the

IKKT model, i.e. to the S
(b)
IKKT = −1

4
N Tr [Xµ, Xν ]

2 part of the action. Naturally, we will

now only consider the part of the Gaussian ansatz S
(b)
0 that depends on the “bosonic mass”

parameters vµ.

First, let us express the partition function in terms of an expansion around S
(b)
0 , namely

Z
(b)
IKKT = Z

(b)
0

〈
e
−
(
S
(b)
IKKT−S

(b)
0

)〉
0

, (7.4)

where Z
(b)
0 ∼

∫
dXeS

(b)
0 and the expectation values (denoted by the angled brackets) are

taken with respect to Z
(b)
0 and we have ignored factors of λ in the prefactor as they are of no

consequence to us. Although one can systematically calculate the free energy of the bosonic

part of the IKKT action from the partition function above F
(b)
IKKT = − lnZ

(b)
IKKT by expanding

it in a power series [18, 19], for our purposes, it will be sufficient to consider only the first

order correction.

More concretely, once the bosonic matrices are expanded with respect to SU(N) gen-

erators and the measure of the integrals written appropriately in terms of them, it is easy

to carry out a series of arduous but straight-forward Gaussian integrals to express the free

energy as6:

F
(b)
0 := − lnZ

(b)
0 =

1

2

(
N2 − 1

) [
C1 −

d∑
µ=1

ln vµ

]
, (7.5)

F
(b)
1 :=

〈
S

(b)
IKKT

〉
0
−
〈
S

(b)
0

〉
0

=
1

8

(
N2 − 1

) [∑
µ 6=ν

vµvν − C2

]
, (7.6)

where C1 and C2 are constants which depend on the λ and d and contain some numerical

factors.

6See [18] for details of these calculations. More explicitly, we need to do a bunch of Gaussian integrals

after writing out the measure as dX =
∏N2−1
a=1

∏d
µ=1 dxaµ. Specifically, the prefactor of (N2 − 1) arises

since the gauge group is SU(N) and has N2 − 1 generators. Note that we have ignored some factors of π

throughout.
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Our simple goal is to minimize the (bosonic) free energy, to this order, by varying the

Gaussian parameters vµ, i.e.

∂

∂vµ

(
F

(b)
0 + F

(b)
1

)
= 0 , (7.7)

which gives us the bosonic gap equations:

− 1

2vµ
+

1

4

∑
µ6=ν

vµ = 0 . (7.8)

Note that these are actually d equations written in a compact form. What is important is

that, given that vµ ≥ 0 in our ansatz (which is still the most general Gaussian action one

can choose), we find that the solution of the above equation is given by a SO(d) symmetric

solution:

v1 = v2 = · · · = vd =

√
2

d− 1
. (7.9)

Therefore, although we did not start with an SO(d) symmetric ansatz for the Gaussian term,

the bosonic part of the IKKT action is such that the solution which minimizes the free energy

is SO(d) symmetric thereby indicating that the symmetry is unbroken. However, looking

ahead, note that we will always look at the bosonic gap equations to tell us if there is a

symmetry breaking in the theory as it is indeed the eigenvalue distribution of the bosonic

matrices which is conjectured to give us the emergent spacetime in this theory.

7.2.2 Symmetry breaking and the role of the fermionic terms

Let us now go back to the full IKKT action, including the fermionic terms, and therefore

include the fermionic part of the Gaussian ansatz S
(f)
0 . The Gaussian parameters are encap-

sulated in the p× p anti-symmetric matrix A:

Aαβ :=
i

3!

∑
µνλ

ωµνλ (Bµνλ)αβ , (7.10)

where Bµνλ ∼ CΓµΓ†νΓλ and we have suppressed the spinor indices in the last expression to

avoid clutter. Note that A could have had a term of the form ωµΓµ which is absent due to

the Majorana nature of the fermions in 10-d. However, this is not crucial for our arguments
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below. In fact, the explicit form of A will not enter our expressions and all we willneed is

its SO(d) index structure.

Before going through the calculation, note that we will have to collect the expanded terms

in the free energy in a slightly different way due to the fermionic terms. For instance, we

have to count terms of the form S
(f)
0 and

(
S

(f)
IKKT

)2

to be of the same order in the reorganized

expansion [20]. Keeping this in mind, and once again expanding only to first order, one finds

that

F0 := − lnZ0 =
1

2

(
N2 − 1

) [
C3 −

d∑
µ=1

ln vµ − ln (PfA)

]
, (7.11)

F
(b)
1 :=

〈
S

(b)
IKKT

〉
0
−
〈
S

(b)
0

〉
0
− 1

2

〈(
S

(f)
IKKT

)2
〉

0

(7.12)

=
1

8

(
N2 − 1

) [∑
µ6=ν

vµvν + C4 − 4
∑
µ

ρµvµ

]
,

where the constants C3 and C4 have new contributions (compared to the corresponding

constants C1 and C2 in (7.5)) coming from the fermionic terms which, like before, depend on

N, d and now on p. All the expectation values are now taken with respect to the full Gaussian

action (but we still keep the same subscript 0 to denote this). We have also introduced the

Pfaffian of the Gaussian matrix A, defined as PfA := detA1/2. More importantly, we have

defined

ρµ :=
1

4
Tr
[(
A−1Γµ

)2
]
, (7.13)

where we have taken the trace over p-dimensional spinor indices α, β. The details of the

above terms will not be important for our argument. We will only need to focus on the

bosonic gap equation (the self-consistency equation according to the definition of [18,19]) at

first order:
∂

∂vµ
(F0 + F1) = 0 (7.14)

which yields

− 1

2vµ
+

1

4

∑
µ6=ν

vµ −
1

4
ρµ = 0 . (7.15)

Just by inspecting this equation (7.15), we can conclude that there must be a breaking of

the SO(d) symmetry. The argument simply depends on realizing that the ρµ, as defined
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in (7.13), are different for different choices of µ due to the appearance of the Γ function.

Therefore, this bosonic gap equation cannot have a solution of the form v1 = v2 = · · · = vd, as

before. As promised, the explicit form of the matrix A did not play a role in this derivation.

This point was already pointed out in [18].

The main reason for the symmetry breaking is the form of the interaction between the

fermionic and bosonic matrices, as encoded in S
(f)
IKKT in (7.2). The appearance of the Γ

function in that term is the reason why the bosonic gap equation gets a “source” term for

the vµ which is not µ-independent What is important for us is that inspecting the bosonic

gap equation is sufficient to detect the presence (or absence) of symmetry-breaking. Of

course, the contributions of the fermionic terms to this gap equation is what turned out to

be crucial. In fact, symmetry breaking is guaranteed as long as A has some non-zero entries,

i.e. the Gaussian parameters ωµνλ are not all zero. And that is why we never even needed

to write down the fermionic gap equation to draw this conclusion.

Of course, without inspecting the full system of gap equations, it will not be possible to

conclude what the SO(d) symmetry break into. In the case of the IKKT model, numerical

tools were required to demonstrate what the symmetry of the solution which minimizes

the free energy is. But at the moment we do not have the required tools to study this

question for the BFSS model, at least not in this work. It would be nice to gain a good

physical understanding for why the resulting symmetry of the Lorentzian matrix model is

SO(3), and why the solution corresponds to three expanding dimensions while six remain

microscopical. This is a question we are currently working on. But in the following, we will

address the restricted question of showing, in analogy with what was described above in the

case of the IKKT model, that there is symmetry breaking in the BFSS model as long as the

contributions of the fermionic terms are taken into account.
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7.3 Gaussian expansion method for the bosonic BFSS

model

Just like for the Euclidean IKKT model, we will start with the bosonic BFSS action first and

apply the Gaussian expansion technique to it. As we described in the case of the symmetry

breaking analysis in the IKKT model, we will not assume a SO(D) symmetric ansatz to

begin with and will consider the most general U(N)-invariant Gaussian ansatz7 which is,

however, not SO(D) symmetric.

The bosonic part of the Euclidean BFSS action is given by (now we follow the notation

of [16] for easy comparison):

S
(b)
BFSS =

1

g2

∫
dτ Tr

{
1

2
DτX

iDτX
i − 1

4

[
X i, X i

]2}
. (7.16)

There are D = 9 SU(N) bosonic matrices for the BFSS model, denoted by X i above. We

have changed the indices from Latin µ to Roman i to indicate that i = 1, 2, . . . , d− 1, in the

notation of the previous section. Let us keep the dimension arbitrary as before and denote

D = d − 1 to make connection with the previous section. τ here denotes the Euclidean

time direction and β := 1/τ . We would typically be interested in the high-temperature

(confined) behaviour of the model since this is the regime which is interesting for early-

universe cosmology [9].

The first new complication of the BFSS model is to have a gauge-covariant derivative

Dτ := ∂τ + i [A0, ·]. We fix the gauge as ∂τA0 = 0 ⇒ A0 := A00/
√
β = const.. On

introducing the necessary ghost fields α, ᾱ, we can write the action as:

S
(b)
BFSS =

1

g2

∫
dτ Tr

{
1

2
∂τX

i∂τX
i − 1

2

[
A0, X

i
]2

+ i
[
A0, X

i
] (
∂τX

i
)
− 1

4

[
X i, X i

]2
+∂τ ᾱDτα} . (7.17)

Then we can Fourier expand all the fields (in their Matsubara frequencies in units of ω =

7There is going to be a minor difference between the calculations done here compared to what was done

in the previous section in the choice of the gauge group. While we chose it to be SU(N) in the case of the

IKKT analysis summarized above, we will stick to U(N) for the BFSS model as was done in [16].
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2π/β) as

Xi(τ) =
∑
l

X i
l e

ilωτ , α(τ) =
∑
l 6=0

αle
ilωτ and ᾱ(τ) =

∑
l 6=0

ᾱle
−ilωτ , (7.18)

using which, we can expand the BFSS action to get

S
(b)
BFSS =

1

2g2

∑
l

(
2πl

β

)2

Tr
(
X i
lX

i
−l
)

+
1

g2

∑
l 6=0

(
2πl

β

)
Tr (ᾱlαl) (7.19)

− 1

g2
√
β

∑
l

(
2πl

β

)2

Tr
(
X i
l

[
A00, X

i
−l
])

+
1

g2
√
β

∑
l 6=0

(
2πl

β

)
Tr (ᾱl [A00, α−l])

+
1

2g2β

∑
l

Tr
([
A00, X

i
l

] [
A00, X

i
−l
])
− 1

4g2β

∑
l+m+n+p=0

Tr
([
X i
l , X

j
m

] [
X i
n, X

j
p

])
.

It is easy to see that the bosonic part of the Euclidean BFSS action, written as above, is

the same as the one used in [9, 15] when we rescale some the fields by some factors of β.

Moreover, the sums over the Fourier modes are arranged in a slightly different way than

in [15] , and the Mastsubara frequencies have been written out explicitly. Finally, the ’t

Hooft coupling has not been set to one, as is typically done.

Let us now introduce our Gaussian ansatz for the above bosonic action as:

S
(b)
0 = −N

Λ
Tr
(
U + U †

)
+
∑
l

D∑
i=1

1

2vl,i
Tr
(
X i
lX

i
−l
)
−
∑
l 6=0

1

sl
Tr (ᾱlαl) , (7.20)

where U := Pei
∮

dτA0 = ei
√
βA00 is the holonomy of the gauge connection A00 and takes

its value in the SU(N) group. Clearly, the first term corresponding to U is not a quadratic

term, and so the action is not strictly-speaking a Gaussian one. However, this is the appro-

priate term to include for angular variables as argued in [16, 17]. The Gaussian parameter

corresponding to this is given by Λ whereas we keep calling the ‘bosonic mass’ parameters

vl,i in accordance with the previous section (and differing from what has been done in [16])..

However, recall that vl,i > 0 for us. More importantly, we have added an i index to this

Gaussian parameter to allow for a breaking of the SO(D) symmetry, as was done for the

IKKT model. This is a necessary new generalization for us (say, as compared to [17]) since

we are interested in studying symmetry-breaking. However, as we will show later, we can

derive the SO(D)-symmetric solution of [16], which was found by studying the gap equations

in the bosonic case.
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From a practical point of view, what complicates the case for the BFSS model is the ap-

pearance of the l index due to the presence of an intrinsic time parameter which necessitates

expansion in terms of Fourier modes. Finally, the ghost fields have the usual form, with sl

denoting the Gaussian parameters. Already before going into the calculations, we can see

that the gap equations even for the purely bosonic case will be of three types – one for the

Wilson loops, one for the bosonic matrices and one for the ghost terms. Contrast this with

the single type of gap equations we had for the bosonic IKKT model (7.8). However, as we

will show explicitly below, some of the gap equations will decouple and allow us to study the

bosonic gap equations, relevant for discovering symmetry-breaking patterns, in isolation.

The necessary ingredients for doing the calculations are to calculate propagators for the

bosonic and ghost field, as well as the expectation values of the Wilson-loop operators. Let

us begin by diagonalizing the holonomy U = diag. (eiα1 , eiα2 , . . . , eiαN ), and then quoting the

one-plaquette partition function for the holonomy [17,21]:

Z� = e−βF� =

exp
(
N2
(
− 2

Λ
− 1

2
ln Λ

2
+ 3

4

))
Λ ≤ 2

exp (−N2/Λ2) Λ ≥ 2 ,

(7.21)

with a phase-transition at Λ = 2. Similarly, the expectation value of the Wilsonian loop is

〈TrU〉� =

N(1− Λ/4) Λ ≤ 2

N/Λ Λ ≥ 2 .

(7.22)

These will be useful for calculating the free energy to the first order. Next, it is easy ot

calculate the propagators of the gauge field, the bosonic and the ghost fields (using the

Gaussian action (8.21)):

〈(A00)AB (A00)CD〉0 = ρ2
0 δAD δBC ,〈(

X i
l

)
AB

(
Xj
m

)
CD

〉
0

= vl,i δ
ij δl+m δAD δBC ,

〈(ᾱl)AB (αm)CD〉0 = sl δlm δAD δBC , (7.23)

where the expectation values are taken with respect to the Gaussian action in (8.21), and

we have defined ρ0 in terms of the eigenvalues of the holonomy α as:

ρ2
0 =

1

βN

∫
dαα2ρ�(α) . (7.24)
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The explicit expression for the above can be found in [16] but this is not important for our

purposes.

Before going ahead with the calculation, let us make one observation. In the IKKT model

(7.2), there are no quadratic (or kinetic) terms. However, this is not the case in the BFSS

model as can be seen from the presence of terms of the form:

1

g2

[
1

2

∑
l

(
2πl

β

)2

X i
−lX

i
l +
∑
l 6=0

(
2πl

β

)2

ᾱlαl

]
. (7.25)

Naturally, these terms will also give contributions to the propagators for the bosonic and

the ghost field, of the form:

〈(
X i
l

)
AB

(
Xj
m

)
CD

〉
=

(
gβ

2πl

)2

δij δl+m δAD δBC ,

〈(ᾱl)AB (αm)CD〉 =

(
gβ

2πl

)2

δlm δAD δBC , (7.26)

where the form of the delta functions δADδBC can be understood by writing out the matrices

explicitly in some basis of generators of the U(N) group. The angled brackets above refer

to calculating the expectation values with respect to the BFSS partition function, and not

with respect to the Gaussian one. Crucially for us, to the next-to-leading order that we will

consider for calculating the free energy, we will not need the above propagators to do the

computation. More explicitly, for evaluating (F0 + F1), we only need 〈S〉0 and 〈S0〉0 – none

of which will require going beyond the propagators given in (7.23).

Given this background, we can write the free energy to zero’th order as:

βF0 = βF�(Λ)− N2

2

D∑
i=1

∑
l

ln vl,i +N2
∑
l 6=0

ln sl . (7.27)

The details of this calculation has been delegated to Appendix (7.6.1). To calculate the first

order correction to the free energy, we recall that

F1 = 〈(S − S0)〉0 . (7.28)
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Once again, we have left the details to Appendix (7.6.2), and only quote the final result here:

F1 = F
(1)
� (Λ) +

N2

2

D∑
i=1

∑
l

[
1

g2

(
2πl

β

)2

vl,i

]
− N2D

2

∑
l

1

+N2
∑
l 6=0

[
1

g2

(
2πl

β

)2

sl + 1

]
+
N3

g2β
ρ2

0

D∑
i=1

∑
l

vl,i

+
N3

2g2β

D∑
i=1

D∑
j=1︸ ︷︷ ︸

j 6=i

∑
l,k

vl,i vk,j , (7.29)

where

F
(1)
� (Λ) =

N

Λ

〈
Tr (U + U †)

〉
�

=


2N2

Λ

(
1− Λ

4

)
, Λ ≤ 2

N2

Λ2
, Λ ≥ 2

(7.30)

Once we have the free energy calculated to the next-to-leading order, we can evaluate

the gap equations as:

∂

∂vl,i
(F0 + F1) = 0 (7.31)

∂

∂sl
(F0 + F1) = 0 (7.32)

∂

∂Λ
(F0 + F1) = 0 . (7.33)

While the first equation is the one of interest for us, as it gives the gap equation for the

bosonic Gaussian parameter, the second one refers to the gap equation for the ghosts and

the third one for the Wilson loop parameters. Since the full free energy takes the form

F0 + F1 = βF�(Λ)− N2

2

D∑
i=1

∑
l

ln vl,i +N2
∑
l 6=0

ln sl +
N

Λ
F

(1)
� (Λ)

+
N2

2

D∑
i=1

∑
l

[
1

g2

(
2πl

β

)2

vl,i

]
− N2D

2

∑
l

1 +N2
∑
l 6=0

[
1

g2

(
2πl

β

)2

sl + 1

]

+
N3

g2β
ρ2

0

D∑
i=1

∑
l

vl,i +
N3

2g2β

D∑
i=1

D∑
j=1︸ ︷︷ ︸

j 6=i

∑
l,k

vl,i vk,j , (7.34)

the gap equations for the ghosts can be written as:

N2

sl
+N2

(
2πl

β

)2
1

g2
= 0 ⇒ g2

sl
= −

(
2πl

β

)2

l 6= 0 . (7.35)
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This shows that, to this order, the ghost fields are completely decoupled from the rest as

their solutions are free from the other parameters. This, of course, greatly simplifies our

analysis. The gap equations obtained by varying the holonomy parameter Λ can be written

as8:

−
(

1− 2

Λ

)
ln

(
1− Λ

2

)
+ 1 =

Ng2β

4
∑D

i=1 〈(Ri)2〉
, Λ ≤ 2 (7.36)

Λ =
Ng2β

2
∑D

i=1 〈(Ri)2〉
, Λ ≥ 2 , (7.37)

where we have introduced the ‘extent of space parameters’ for the eigenvalue distribution of

the bosonic matrices, and therefore gives an estimate of the “size” of the system, as:〈
(Ri)2

〉
:=

1

N
Tr
〈(
X i(τ)

)2
〉

=
N

β

∑
l

vl,i . (7.38)

Importantly, note that there is no sum over the i index in the above equation. These are

the same extent of parameters which one uses in extracting cosmological solutions from the

BFSS model and when spatial isotropy of the large dimensions is assumed (which is why we

will simply get factors of D in the denominator in front of 〈(Ri)2〉 in (7.36)). We will have

more to say about this later on. However, for now note that the bosonic parameters vl,i are

indeed coupled to Λ through the term N3/(g2β) ρ2
0

∑D
i=1

∑
l vl,i in the free energy.

Finally, let us derive the gap equations for vl,i, which are given as

− 1

vl,i
+

1

g2

(
2πl

β

)2

+
2N

g2β
ρ2

0(Λ) +
2N

g2β

∑
6=i

∑
l

vl,j = 0 . (7.39)

Although we did not choose a Gaussian ansatz which is SO(D) symmetric to begin with,

we can now search for solutions of the above equations to examine if SO(D) symmetric

solutions are allowed or not. Notice the remarkable similarity between this equation and

the gap equation for the bosonic IKKT action given in (7.8). This encourages us to look for

solutions of the form vl,i = vl,2 = · · · = vl,D =: vl , ∀ l ∈ Z, and plugging this ansatz into

(8.22), we find

g2

vl
=

(
2πl

β

)2

+
2N

β
ρ2

0(Λ) +
2N(D − 1)

β

∑
l

vl . (7.40)

8The reason why the extent of space parameter appears in the gap equation for Λ is that there is a term

in (7.34) which involves both ρo(Λ) and vl,i.
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This is the same gap equation which had been derived in [16] assuming an SO(D)-symmetric

Gaussian action. Therefore, we have proved that the SO(D) group remains unbroken for

the bosonic BFSS action9. Note that our proof neither requires the explicit form of ρ0(Λ)

nor the analyses of the other gap equations (7.35) and (7.36), as was hinted earlier on.

However, for the sake of completeness, we will go on to show the solutions of (7.40),

which can be written as (following the notations of [16]):

vl =
g2(

2πl
β

)2

+m2
eff

, (7.41)

where the effective thermal mass is defined as

m2
eff =

2N

β
ρ2

0(Λ) + 2(D − 1)
〈
R2
〉
. (7.42)

For the case when there is no symmetry breaking, it is easy to identify the usual extent of

space parameter as 〈
(Ri)2

〉
:=

1

N
Tr
〈(
X i(τ)

)2
〉

=
N

β

∑
l

vl , (7.43)

and is the same in all the i-directions10.

Before ending this section, let us note that the gap equation for the Gaussian parameters

corresponding to the bosonic fields in the bosonic BFSS model is very similar to the one we

had derived in the bosonic IKKT model. The appearance of the (infinite number of) Fourier

modes does not actually complicate the story for the SO(D) symmetry-breaking, i.e. the

vl’s for all the different i’s are the same in the bosonic model. Thus, the main finding of

this section is that the bosonic BFSS model has an unbroken SO(D) symmetry, just like

in the IKKT case. In hindsight, we could have guessed this conclusion from the results

of [16]; however, our calculation by not assuming an SO(D)-symmetric Gaussian action will

be extremely helpful in the next section when including the fermionic terms.

9Strictly speaking, we have proved that our more general gap equation allows for SO(D)-symmetric

solutions and we have not proven the uniqueness of the ensuing solution. However, given that the gap

equation is an algebraic one, it easily follows that the SO(D)-symmetric solution of [16] is the only one.
10The case for cosmology is a bit more subtle. In that case, we find a symmetry breaking to give us three

large spatial dimensions which are expanding; however, one does assume spatial isotropy amongst these large

external directions. In essence there is an unbroken SO(3) symmetry in that case when defining the extent

of space parameters.
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7.4 Symmetry breaking in the BFSS model

The full BFSS model has the following additional terms due to the presence of fermionic

matrices:

S
(f)
BFSS =

i

2g2

∑
r

(
2πr

β

)
ψ−rψr −

i

2g2
√
β

∑
r

Tr (ψ−r [A00, ψr])

− 1

2g2β

∑
r,s

Tr
(
ψrΓi

[
X i
−r−s, ψs

])
, (7.44)

where we have now Fourier expanded the fermionic fields as

ψα(τ) =
∑
r

ψαr e
irωτ . (7.45)

We have suppressed the spinor index α throughout in (7.44) above. The Gamma matrices

are p× p symmetric matrices satisfying the anti-commutation relations {Γi,Γj} = 2δij. The

above Fourier expanded terms comes from the two following fermionic terms in the Euclidean

BFSS action:

S
(f)
BFSS ∝

1

2g2

∫
dτTr

(
ψαDτψα − ψα (Γi)αβ [Xi, ψβ]

)
. (7.46)

Including the fermionic terms in the BFSS action (7.44) requires adding to the Gaussian

ansatz the following term:

S
(f)
0 =

p∑
α,β

∑
r

Tr
(
ψαrAαβψ

β
−r

)
, (7.47)

where we use the same symbol for the Gaussian parameter matrix A as we had done for the

IKKT model. Recalling the wisdom gained from the IKKT case, we do not try to expand this

matrix in terms of Gaussian parameters ωµνλ and ωµ since this was not important to explore

the question of existence of symmetry-breaking in the model, and unnecessarily complicates

the gap equations.

Before going through with the explicit calculations for the fermionic terms, let us make

the following initial observations:

� As we see from (7.44), the fermions do not interact with the ghost fields and therefore,

the gap equation for the ghost propagator will obviously remain decoupled.
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� On the other hand, we find that the fermions couple to the bosonic fields X i
l , A00

through cubic interactions. However, and this the most subtle part of the calculation,

although cubic terms of the form Tr
(
X i
l

[
A00, X

i
−l
])

and Tr (ᾱl [A00, αl]) do not con-

tribute to the free energy (to the order we are interested in), as shown in the previous

section, things are a bit different with fermionic terms. In fact,

〈(
S

(f)
BFSS

)2
〉

does

contribute to F1 [20]. Thus, the cubic interactions, involving the fermion bilinears, will

end up affecting the gap equation for the bosonic Gaussian parameters (vl,i).

� The purely fermionic terms, on the other hand, can only contribute to the gap equation

for the fermionic parameters alone. So, we will ignore the contribution and focus only

in the interaction terms which will have an effect on the vl,i-gap equations.

Keeping the above general comments in mind, we will not try to calculate the full ex-

pression for the free energy, up to the next-to-leading order, including the fermionic terms.

Instead, we will only try to identify the contribution which effect the vl,i-gap equation (8.22).

The main ingredients required for doing this calculation are the fermionic propagators, cal-

culated with respect to the Gaussian action (8.24):〈(
ψαr

)
AB

(
ψβs
)
CD

〉
0

=
(
A−1

)αβ
δr,−s δAD δBC . (7.48)

As before, we will never need the expression for the propagator for the fermions calculated

using the BFSS action itself, to the order we are considering, but we present that result here

for completeness: 〈(
ψαr

)
AB

(
ψβs
)
CD

〉
=

g2

2πir
δαβ δr,−s δAD δBC . (7.49)

We begin with the following term: − i
2g2
√
β

∑
r Tr (ψ−r [A00, ψr]), whose contribution to

the free energy will scale as

〈(
S

(f)
BFSS

)2
〉

. Using the propagators from above, we can evaluate

the contribution of this term as

∼
∑
s

∑
r

(
A00

)
AB

(
ψαr

)
BC

(
ψβ−r

)
CA

δαβ

(
A00

)
DE

(
ψα
′

s

)
EF

(
ψβ
′

−s

)
FD

δα′β′

∼ ρ2 δAE δBD δDB δCF δFC δEA

[
(A)−1

αβ δ
αβ
]2

∼ ρ2N3
[
Tr
(
A−1

)]2
. (7.50)
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Although we have dropped a lot of numerical prefactors in the above calculation, the impor-

tant conclusions are the following:

1. There are no free SO(D) or (i) indices in the above expression, as is expected from

the structure of the term itself. This clearly implies that even if the above term is to

somehow influence the gap equation for vl,i, it will surely allow for a SO(D)-symmetric

solution of the form vl,1 = vl,2 = · · · = vl,D , ∀ l ∈ Z.

2. However, more specifically in this case, the above term does not contain any factors

of vl,i, and can therefore not appear in the gap equation for vl,i. The only way it can

influence this gap equation is through ρ0. Since the above equation does depend on ρ0,

and the latter appears in the vl,i-gap equation, it can indirectly affect the solutions of

vl,i through ρ0. However, due to the argument mentioned above, it will not have any

effect on the symmetry-breaking pattern.

3. This small calculation demonstrates that any type of a fermionic term will not lead to

a SO(D) symmetry breaking. In other words, having a matrix model action involving

fermionic terms does not guarantee any symmetry-breaking and the structure of the

Lagrangian itself is very important in exploring the pattern of symmetry-breaking.

We are now finally in the position to tackle the main term that will give us evidence of

symmetry-breaking in the BFSS model, namely the term

− 1

2g2β

∑
r,s

Tr
(
ψrΓi

[
X i
−r−s, ψs

])
. (7.51)

Notice the striking similarity of this term with the (only) fermionic term in the IKKT model,

which was ultimately responsible for symmetry-breaking in that case. Remembering that its

contribution to the free energy is going to be at the quadratic order, we find

D∑
i=1

D∑
j=1

∑
p,q,r,s

〈(
ψαr

)
AB

(Γi)αβ
(
X i
−r−s

)
BC

(
ψβs

)
CA

(
ψα
′

p

)
DE

(Γj)αβ
(
Xj
−p−q

)
EF

(
ψαr

)
FD

〉
∼

D∑
i=1

D∑
j=1

∑
p,q,r,s

δr,−q δs,−p δ−r−s+p+q δ
ij N3 v(−r−s),i

(
A−1

)αβ′
(Γi)αβ

(
A−1

)βα′
(Γi)α′β′

∼
D∑
i=1

∑
p,q

N3 v(p+q),i Tr
[(
A−1 Γi

)2
]
. (7.52)
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Since (p, q) ∈ Z/2, and we have an infinite sum over both, we can replace this index by some

l ∈ Z, such that we now have

D∑
i=1

∑
l

N3 vl,i Tr
[(
A−1 Γi

)2
]
. (7.53)

This, of course, depends explicitly on vl,i and would therefore contribute to the gap equation

of interest. In fact, its contribution to the gap equation will be a term of the form

N

g2β
Tr
[(
A−1 Γi

)2
]
. (7.54)

When we include this in (8.22), we get an equation of the form:

− 1

vl,i
+

1

g2

(
2πl

β

)2

+
2N

g2β
ρ2

0(Λ) +
2N

g2β

∑
 6=i

∑
l

vl,j −
N

g2β
Tr
[(
A−1 Γi

)2
]

= 0 . (7.55)

The last term shows that this equation cannot have an SO(D) symmetric solution as long as

the matrix A has at least one non-zero entry. This is analogous to saying that the fermionic

Gaussian parameters are not trivially zero, and for the reasons emphasized earlier for the

IKKT model, we are assured that the solution to the above equation must break SO(D)

symmetry.

7.5 Conclusion

The recent developments in matrix cosmology have provided a promising new direction in

understanding our early universe. For the IKKT model, it has been shown [7] how analytical

methods can be used to extract a spacetime metric, with an infinite extent for both space

and time, from the (block-diagonal) structure and dynamics of the matrices. This was shown

to naturally solve the flatness problem of standard big bang cosmology, and hint towards

a solution for the cosmological constant issue. On the other hand, a thermal state in the

BFSS model has been shown to provide a natural solution to the horizon problem as well as

predict an almost scale-invariant spectrum of primordial perturbations [9]. A crucial input

input the scenario of [9] was the assumption that the spatial rotational symmetry of the

BFSS Lagrangian is spontaneously broken in the state which minimizes the free energy. to

a configuration in which the extent of space only becomes large in three spatial directions.
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The existence of such a phase transition has been established in the IKKT model, but not

yet in the BFSS scenario.

In this paper, we have provided first evidence for a SO(9) symmetry-breaking in the BFSS

model, similar to what happens in the IKKT case, by employing the Gaussian expansion

method (the same methods which were used in the case of the IKKT model to show the

existence of the symmetry breaking phase transition). The inclusion of the contribution of

fermions is crucial to reach this conclusion. In the absence of fermions, the state which

minimizes the free energy maintains the SO(9) symmetry. In the case of the IKKT model,

numerical studies (both full matrix model simulations and also numerical evaluations of the

free energies) have shown that the energetically favored state has SO(3) symmetry with

three dimensions of space becoming large. A next step in our research program is to perform

similar analyses in the case of the BSFF model in order to determine the symmetry and

features of the configuration after the breaking of the SO(9) symmetry. This would require

going well-beyond the next-to-leading order calculations done here and cannot be achieved

by analytical tools alone. However, since the corresponding calculations for the IKKT model

have been manageable, it is only natural to push for examining if such a similar result can be

obtained for the BFSS model. If possible, such a result would be prove that a large (3 + 1)-d

universe can spontaneously emerge in the BFSS matrix model.

There has already been a wealth of similarities between results coming out of matrix

cosmology and string gas cosmology. For instance, the amplitude of (scale-invariant) per-

turbations for the thermal state in the BFSS model is exactly the same as in string gas

cosmology (see e.g. [22] for a review). It is well known that three large dimensions do emerge

in the string gas model since space cannot expand unless the winding modes of the strings

annihilate into string loops, the probability for which is zero only if there are more than three

large spatial dimensions. We believe that this striking similarity in explaining the emergence

of a large (3 + 1)-d universe from full string theory, in both string gas cosmology and matrix

models, is not a mere coincidence and that the physical reason underlying both must be the

same. In fact, there must be a well-defined sense in which one can recover the string gas

model from the full dynamics of matrix theory. Another goal for the future will be to further

explore the physical reason behind the SSB in the BFSS and IKKT models since this might
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point to the aforementioned connection.
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Appendix

7.6 Computation of the free energy for the bosonic

BFSS action

In the appendix, we give details of the computation of the free energy, up to the first order,

for the bosonic BFSS model which has been used in the main draft to derive the gap equation

for the bosonic Gaussian parameters.

7.6.1 Derivation of F0

We want to find the expressions for all the terms appearing in (7.27), which we reproduce

here for convenience:

βF0 = βF�(Λ)− N2

2

D∑
i=1

∑
l

ln vl,i +N2
∑
l 6=0

ln sl . (7.56)

The first term is what it is by definition, and its explicit form can be read from (7.21). Let

us begin by deriving the second term on the r.h.s. of the equation above which involves the
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second term in the Gaussian ansatz (8.21):

Sbosonic
0 =

∑
l

D∑
i=1

1

2vl,i
Tr
(
X i
lX

i
−l
)

=
∑
l

D∑
i=1

N2∑
a=1

1

2vl,i
Tr
(
X i a
l X

i
−l a
)
, (7.57)

where we have explicitly written the trace in terms of the U(N) generators, and a refers to

the U(N) index. Given this action, the corresponding partition function (for the above term

in the Gaussian action) is given by:

Zbosonic
0 =

∫ N2∏
a=1

D∏
i=1

dxai e
−Sbosonic

0 (7.58)

=

∫ N2∏
a=1

e
−
∑
l

1
2vl,1

(xa1x1 a)
∫ N2∏

a=1

e
−
∑
l

1
2vl,2

(xa2x2 a) . . .

∫ N2∏
a=1

e
−
∑
l

1
2vl,D

(xaDxDa)

=

(
2
∑
l

vl,1

)N2/2 (
2
∑
l

vl,2

)N2/2

. . .

(
2
∑
l

vl,D

)N2/2

︸ ︷︷ ︸
D number of terms

,

where we have omitted several factors of numerical constants (involving π in the multiple

Gaussian integrals) as this will only give a constant contribution to the free energy which is

irrelevant for the gap equation. We have also suppressed a factor of β which we will restore

later by noting that Z ∼ e−βS. Thus, a factor of β will appear in the denominator after

carrying out the Gaussian integrals and will finally cancel with the β from βF0.

Moving forward, the free energy corresponding to this is given by

F bosonic
0 = − lnZbosonic

0 (7.59)

= −N
2

2

[∑
l

ln vl,1 +
∑
l

ln vl,2 + . . .+
∑
l

ln vl,d

]
(7.60)

= −N
2

2

D∑
i=1

∑
l

ln vl,i . (7.61)

A similar analysis for the ghost fields yields:

F ghost
0 = N2

∑
l 6=0

ln sl . (7.62)
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7.6.2 Derivation of F1

Let us calculate this term by term for the (bosonic part of the) BFSS action given in (7.19),

as well as the Gaussian action, which we rewrite below and label the different terms, as

follows:

S
(b)
BFSS =

1

2g2

∑
l

(
2πl

β

)2

Tr
(
X i
lX

i
−l
)

︸ ︷︷ ︸
(1)

+
1

g2

∑
l 6=0

(
2πl

β

)
Tr (ᾱlαl)︸ ︷︷ ︸

(2)

(7.63)

− 1

g2
√
β

∑
l

(
2πl

β

)2

Tr
(
X i
l

[
A00, X

i
−l
])

+
1

g2
√
β

∑
l 6=0

(
2πl

β

)
Tr (ᾱl [A00, α−l])︸ ︷︷ ︸

(6)

+
1

2g2β

∑
l

Tr
([
A00, X

i
l

] [
A00, X

i
−l
])

︸ ︷︷ ︸
(3)

− 1

4g2β

∑
l+m+n+p=0

Tr
([
X i
l , X

j
m

] [
X i
n, X

j
p

])
︸ ︷︷ ︸

(4)

.

S
(b)
0 = − N

Λ
Tr
(
U + U †

)︸ ︷︷ ︸
(5)

+
∑
l

D∑
i=1

1

2vl,i
Tr
(
X i
lX

i
−l
)

︸ ︷︷ ︸
(1)

−
∑
l 6=0

1

sl
Tr (ᾱlαl)︸ ︷︷ ︸
(2)

, (7.64)

We will repeatedly use the propagators written down in (7.23) in order to do the explicit

calculation. As mentioned earlier, and shown below, we will never need to consider the

propagators given in (7.26) for evaluating F1.

The easiest to calculate are the (5) terms involving the Wilson loop operators which are

given by

〈(S − S0)〉0 =
N

Λ

〈
Tr
(
U + U †

)〉
�
, (7.65)

the expression for which has been given in (7.30).

Next we focus on the terms labelled by (1):

〈S〉0 ∼
D∑
i=1

∑
l

1

2g2

(
2πl

β

)2

vl,i δAAδBB =
D∑
i=1

∑
l

N2

2g2

(
2πl

β

)2

vl,i , (7.66)

and

〈S0〉0 ∼
D∑
i=1

∑
l

1

2vl,i

〈
Tr
(
X i
lX

i
−l
)〉

0
=
N2

2

D∑
i=1

∑
l

1 . (7.67)
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Although we could have carried out the sum over i in the second term above, we keep it in

this form since in this way it is easier to organize the terms later on.

The terms labelled by (2) can be evaluated as:

〈S〉0 ∼
N2

g2

∑
l 6=0

(
2πl

β

)2

sl , (7.68)

and

〈S0〉0 ∼ N2
∑
l 6=0

1 . (7.69)

Note that naively the sum over the Fourier modes give an infinite contribution to each of

these terms, but this is not a problem for us since the terms are independent of the bosonic

gap parameters.

Although the terms marked (3) look more complicated, they can easily be evaluated by

keeping in mind the following considerations. Firstly, there are no such quartic terms in the

Gaussian ansatz (7.64). And secondly, we need to only calculate the dominant (connected)

term in the large-N limit (which corresponds to choosing the right contractions of the U(N)

indices A,B,C,D etc.):

〈S〉0 ∼
1

g2β

D∑
i=1

∑
l

〈
(A00)AB(A00)BC(X i

l )CD(X i
−l)DA

〉
0

=
N3

g2β
ρ2

0 (Λ)
D∑
i=1

∑
l

vl,i . (7.70)

Similarly, the term marked (4) can be evaluated to be:

N3

2g2β

D∑
i=1

D∑
j=1︸ ︷︷ ︸

j 6=i

∑
l

vl,i vl,j . (7.71)

Finally, the terms marked (6) actually do not give any contribution to the free energy

to the order we are considering at all. This comes from the simple observation that these

terms are cubic and thus have zero contribution for the (quadratic) Gaussian propagators.

However, the important observation in this regard is that this conclusion is only true for the

X i
l , A00 and αl fields since they are all bosonic in nature, and would not be applicable for

the fermionic fields as we will see later on.
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Chapter 8

Discussion

In the present chapter, we review the status of the matrix theory as a potential description

of String Gas Cosmology in the light of the work Part II, Part III, Part IV, and Part V.

The chapter will be divided in four different sections, each highlighting the results of the

different parts, and how they align with predictions from String Gas Cosmology. In Section

8.1, we will compare the scale-invariant spectrum found from the BFSS and IKKT models at

finite temperature to the one found from thermal fluctuations of closed strings in String Gas

Cosmology. In Section 8.2, we will review the definition of the metric given in Chapter 5,

compare with expectations from String Gas Cosmology, and point to possible improvements.

In Section 8.3, we will investigate the similitudes and differences between the dynamical

mechanism used to realize the mass term in Chapter 6, and String Gas Cosmology. Finally,

in Section 8.4, we will review the symmetry breaking of the Euclidean BFSS model, as

suggested by the Gaussian Expansion Method, and discuss how it aligns with expectations

from String Gas Cosmology.

8.1 Comparison of experimental predictions in matrix

cosmology and String Gas Cosmology

In the present section, we will aim to make a comparison between the experimental predic-

tions of String Gas Cosmology and matrix cosmology. Before making this comparison, let
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us review the key results of String Gas Cosmology.

In String Gas Cosmology, the spectrum of cosmological perturbations is computed by

considering a gas of closed string at finite temperature, and how its thermal fluctuations

behave in an expanding background. The key aspect of this computation is that scalar

perturbations are sourced by thermal density perturbations, which are directly related to

the heat capacity

CV ≈
R2/l3s

T (1− T/TH)
, (8.1)

of close strings at finite temperature. Similarly, tensor perturbations are sourced by trans-

verse energy density perturbations, which are related to the pressure perturbations

p ≈ nHTH −
2

3

(1− T/TH)

l3sR
ln

[
l3sT

R2(1− T/TH)

]
, (8.2)

of the system. Using the heat capacity and the pressure of the system, we then obtained

PΦ = 16π2G2k2T 2CV = 16π2G2
N

T

l3s

1

1− T/TH
,

for the power spectrum of scalar perturbations, and

Ph ∼ 16π2G2
N

T

l3s
(1− T/TH) ln2

[
1

l2sk
2
(1− T/TH)

]
,

for the power spectrum of tensor perturbations. In String Gas Cosmology, the key feature

that leads to the scale invariance of the scalar fluctuation power spectrum is the ”holo-

graphic” scaling of the heat capacity, which scales as CV ∼ R2 instead of CV ∼ R3 for

thermal fluctuations of closed strings in a three-dimensional box. Given this scaling, one

obtains a perfect cancelation of the powers of k, leading to a scale-invariant spectrum of

scalar perturbations. Similarly, a pressure that scales as p ∼ 1/R, which is characteristic of

a ”holographic” scaling of the free energy (F ∼ R2), leads to a scale-invariant spectrum of

tensor perturbations.

Let us now look at the results from the BFSS and IKKT models. In the BFSS model,

we found that the heat capacity scales as

CV =
3N2

4
χ2 +

3N4

8

(
d− 1

12
− p

8

) (
χ2 −

1

d
χ2 −

4

N2

)
χ1 T

−3/2 , (8.3)
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where χ2 is a constant and

χ1 :=

〈
1

N
Tr(Ai)

2

〉
IKKT

. (8.4)

is the expectation value of the extent of space parameter related to the zero modes of the

BFSS model, which are related to the IKKT model. Given that χ1 scales as χ ∼ R2, we

obtained the scalar power spectrum

P (k) = 16π2 (kR)−4

(
1

lsmpl

)4(
3

8

)(
d− 1

12
− p

8

)(
(d− 1)2

d

(
1− 1

N2

)
− 4

)
, (8.5)

which is scale-invariant. We also computed the pressure

p̃ = − 1

V

∂F
∂lnR

, (8.6)

and found the free energy

F =
3N2

4β

[
χ2 lnβ − 2

3

(
d− 1

12
− p

8

)
(χ5 − χ6 − 4χ1) β3/2

]
.

In this case, we found a scale-invariant spectrum of tensor perturbations of the form

Ph(k) = α 16π2 (kR)−4

(
1

lsmpl

)4(
3

8

)(
d− 1

12
− p

8

)(
(d− 1)2

d

(
1− 1

N2

)
− 4

)
. (8.7)

Similarly, in the IKKT model, we found a heat capacity of the form

CV = −N2(D − 2) + 6

(
p

8
− D − 2

12

)
D − 2

D − 1
M2T 2〈R2〉0 . (8.8)

In this case, the expectation value 〈R2〉0 of the extent of space parameter also scales as

〈R2〉0 ∼ R2. For this reason, we obtain a scale-invariant spectrum of scalar fluctuations of

the form

PΦ(k) = 96π2G2(kR)−4

(
p

8
− D − 2

12

)
D − 2

D − 1
M2T 4 . (8.9)

Using the next-to-leading order contribution

Fnext = −T ln〈e−Sint〉 =

(
D − 2

12
− p

8

)
D − 2

D − 1
M2T 3〈R2〉0 , (8.10)

for the free energy of the system, we then computed the spectrum of tensor perturbations

and obtained

Ph(k) = 32π2G2(kR)−4α

(
D − 2

12
− p

8

)
D − 2

D − 1
M2T 4 , (8.11)
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which is also scale invariant. Here, we dropped the leading contribution of the free energy

because it does not depend on R, and hence does not contribute to the pressure and hence

the power spectrum.

For both the BFSS and IKKT model a finite temperature, the features of the power

spectrum of scalar and tensor perturbations align well with expectations from String Gas

Cosmology. First, one obtains a scale-invariant spectrum of scalar and tensor perturbations

in both the IKKT and BFSS models, which agrees with expectations from String Gas Cos-

mology. Second, the reason why the power spectrum is scale-invariant in the BFSS and the

IKKT model seems to be the same as in String Gas Cosmology. In String Gas Cosmology,

one obtains a ”holographic” scaling for the heat capacity and the free energy of the system,

meaning that we have CV ,F ∼ R2 for closed strings in a three-dimensional box. This ”holo-

graphic” scaling of the heat capacity and the free energy is also found in the BFSS and IKKT

model, and leads to a scale-invariant spectrum for both scalar and tensor perturbations.

However, the IKKT and BFSS models may lead to slight differences in predictions for the

tilt of the power spectrum, as reflected by the temperature dependence of the power spectrum

which differs from the one computed in String Gas Cosmology. In String Gas Cosmology,

one expects a slight red tilt for the power spectrum of scalar perturbations, as the power

spectrum decreases as the temperature decreases. For the spectrum of tensor fluctuations,

one expects a blue tilt since the power spectrum increases as the temperature decreases. This

behavior has so far not been observed in the BFSS model since both the power spectrum of

scalar perturbations and tensor perturbations do not depend on the temperature. However,

it might be that corrections to the power spectrum at higher order in perturbation theory

lead to the correct behavior. This topic remains to be investigated. In the IKKT model

case, the power spectrum of scalar and tensor perturbations both depend on temperature,

leading to a tilt. In both cases, the power spectrum decreases as a function of temperature,

which leads to a red tilt. For the power spectrum of scalar perturbations, this red tilt is

consistent with what one would expect in String Gas Cosmology. However, the observed red

tilt in the power spectrum of tensor perturbations contrasts with the blue tilt expected from

String Gas Cosmology. Perhaps higher-order corrections could change this result. However,

this remains to be investigated.
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8.2 Robustness of matrix theory as a description of the

background in String Gas Cosmology

As mentioned in Chapter 2, an issue of String Gas Cosmology is that it currently lacks

a complete non-perturbative description. In Chapter 5, we made progress towards such a

non-perturbative description by defining a metric tensor in the IKKT model, in an attempt

to describe the emergent cosmological solutions observed in simulations. To define such a

metric, we considered smaller ni × ni submatrix of the submatrices showcased in Figure 2.9

as describing space in a comoving interval of size ni. We then took

li,phys(t, ni) = 〈Tr(Ānii (t))2〉 (8.12)

to be the physical length of this comoving space interval. These assumptions then allowed

us to compute the gii component of the metric in the i’th direction via the expression

g
1/2
ii (t, ni) =

d

dni
li,phys(t, ni) , (8.13)

for which we obtained

g
1/2
ii (t, ni) =

1

2

(
d
dni

〈
Tr
(
Āi

ni
)2

(t)
〉)

(〈
Tr
(
Āi

ni
)2

(t)
〉)1/2

. (8.14)

For emergent cosmological solutions, we found

gii(t, ni) = A(t)δii , (8.15)

for three large dimensions, indicative of a homogeneous and isotropic metric

gij(t, ni) = A(t)δij (8.16)

for the emergent three large dimensions. In light of the present results, the present metric

definition seems to properly describe the features of a universe emerging from a Hagedorn

phase, as one would expect from String Gas Cosmology.

However, some progress remains to be made in order to put the present framework on a

firmer basis. For one, the present metric proposal has only been formulated and tested using
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input from one background, namely the one described as a result of the present simulations.

In order to put the present proposal on a firmer basis, one should hope that the present

definition reproduces the expected features of other well-known backgrounds. This, however,

remains to be tested.

Related to this issue, it would be helpful to use a background with a known Einstein

gravity description in order to test the present metric description. Recently, there has been

new work on a ”polarised” Euclidean IKKT model [32–34], where the present IKKT model

is deformed by a mass term that breaks the SO(10) symmetry of the system but preserves

supersymmetry. This system has been proposed as a dual for a background describing a

Euclidean D1-brane in a finite, Euclidean, ellipsoidal cavity in Type IIB superstring theory.

Perhaps this background could be used in some way to test the present metric definition.

To end the present section, it would also be good to formulate a framework in which

Einstein’s equations, or another description of gravity, naturally emerge with the present

metric definition. So far, such a framework has yet to be formulated. However, there

has been work on the IKKT model as a non-commutative description of gravity that may

shed light on this question. In non-commutative gravity (see [35] for a review), Einstein’s

equations naturally emerge as a result of a mechanism called induced gravity [36]. Perhaps

this mechanism may be used to put the present metric definition on a firmer basis.

8.3 Comments on the dynamical mechanism leading to

a mass term in the IKKT model

In Chapter 6, we explored a dynamical mechanism by which the IKKT model acquires a mass

term, potentially leading to emergent cosmological solutions. To obtain this mass term, we

compactified the IKKT model on a six-dimensional torus where the fermions acquire anti-

periodic boundary conditions. We then computed the effective action related to the zero

modes of the compact IKKT model, which are related to the degrees of freedom of the non-

compact theory. After proceeding with the computations of the zero modes effective action,
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by integrating out the non-zero modes of the theory, we found

S0
eff = − 1

4g2
eff

Tr[AM(0), AN(0)]2 +
1

2
M2

MNTr(AM(0)AN(0))2 + ... , (8.17)

where

M2
MN =

ηµνM2
4 0

0 ηabM
2
6

 , (8.18)

is a mass matrix that results from integrating out the ”compact” degree of freedom in the

theory. Here, the elements of this mass matrix are given by

M2
4 = 16 (SF1 − SB1)

NM

L2
, (8.19)

M2
6 =

32

3
(SF1 − SB1)

NM

L2
. (8.20)

This symmetry-breaking term and the potential cosmological solutions that could emerge by

considering this term may have much in common with String Gas Cosmology. First, notice

that the mass term breaks the symmetry of the theory from SO(1, 9) to SO(1, 3)× SO(6),

which is a result of the fact that we have chosen six spatial dimensions to be compactified.

Given this symmetry of the system, one may expect that there exist solutions where three

dimensions become large (the i directions) and six other directions stay small (the a direc-

tions). This could be the case, for example, if we showed to study solutions where the µ

directions and a directions do not commute with each other [Aµ, Aa] = 0. In this case, the

equations of motions for Ai and Aa decouple, and one may recover solutions in the form of

Equations 2.68 for Aµ.

However, there are key differences may pose a challenge in reconciliating the present

mechanism with String Gas Cosmology. The most important one is that, in order to neglect

subleading parts in Equation 8.17, we must work in the regime where six compact dimensions

are large, and the others remain not compactified. These conditions are quite different

from the initial conditions in String Gas Cosmology, where all dimensions are taken to

be compactified and small. It is possible that the present conditions are related to the

transition phase where three dimensions become large. However, a more involved analysis

would be needed to establish this link. Related to this issue, in String Gas Cosmology,

symmetry breaking occurs spontaneously without imposing any condition. However, here,
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we have imposed a condition, namely the compactification of six dimensions, in order to

obtain the symmetry breaking. A more involved analysis would be required to find if the

present conditions can be realized spontaneously, and hence realize a spontaneous symmetry

breaking in the IKKT model.

Despite the challenges in linking the present mechanism to String Gas Cosmology, the

present mechanism may have ties to current progress in non-supersymmetric string the-

ory. For example, it was shown in [31] that compactifying one dimension on a torus where

fermions acquire anti-periodic boundary conditions (Rohm circle [37]) can lead to interest-

ing cosmological solutions in Type IIA or Type IIB string theory. It would be interesting to

investigate the connection between these backgrounds and the cosmological solutions related

to the present effective action.

8.4 Comparison of symmetry breaking in matrix cos-

mology and String Gas Cosmology

In Chapter 7, we investigated a possible symmetry breaking of the Euclidean BFSS model

using the Gaussian Expansion Method. Before drawing a comparison with String Gas Cos-

mology, let us first review the results.

To begin, in the bosonic version of the Euclidean BFSS model, we considered adding and

subtracting the following term

S
(b)
0 = −N

Λ
Tr
(
U + U †

)
+
∑
l

D∑
i=1

1

2vl,i
Tr
(
X i
lX

i
−l
)
−
∑
l 6=0

1

sl
Tr (ᾱlαl) , (8.21)

in order to perform the Gaussian Expansion Method. By minimizing the energy of the

system, we then found that the gap equation must be satisfied

− 1

vl,i
+

1

g2

(
2πl

β

)2

+
2N

g2β
ρ2

0(Λ) +
2N

g2β

∑
6=i

∑
l

vl,j = 0 . (8.22)

Moreover, we saw that the gap equation has the solution vl,1 = v2,1 = ...vl,D = vl, where vl

is given by

vl =
g2(

2πl
β

)2

+m2
eff

. (8.23)
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Given that this solution preserves the SO(D) symmetry of the system, we concluded that

there is non-symmetry breaking in the bosonic BFSS model at first order.

We then added fermions in order to consider the supersymmetric BFSS model, and

performed the Gaussian Expansion Method by also adding the following Gaussian term

S
(f)
0 =

p∑
α,β

∑
r

Tr
(
ψαrAαβψ

β
−r

)
, (8.24)

for the fermions. Minimizing the free energy, we then found the gap equation

− 1

vl,i
+

1

g2

(
2πl

β

)2

+
2N

g2β
ρ2

0(Λ) +
2N

g2β

∑
 6=i

∑
l

vl,j −
N

g2β
Tr
[(
A−1 Γi

)2
]

= 0 . (8.25)

Just like for the IKKT model, we found that fermions contribute to a term that breaks

SO(D) invariance in the gap equations. For this reason, we expect the SO(D) symmetry of

the BFSS model to be broken by fermionic contributions.

Part of the work that remains to be done in the BFSS model is to determine which

symmetry-breaking pattern is preferred in the theory. In order to perform this task, one

would need to choose values of vl,i and A that preserve certain symmetries, and compute the

free energy of the system for these symmetries. Admitting SO(3)× SO(6) is the symmetry

with the lowest free energy, one would then find evidence that SO(3) is the preferred sym-

metry of the system. This would support the hypothesis that a symmetry-breaking process

where SO(9) breaks to SO(3)× SO(6) can occur in the theory.

Despite the fact that the preferred symmetry of the system remains to be found in the

BFSS model, the evidence for symmetry breaking in the model (including the fermions),

seems to align well with expectations from String Gas Cosmology. In String Gas Cosmology,

the universe begins described with SO(9) symmetry. This symmetry is then spontaneously

broken to SO(3) × SO(6) when winding modes decay, and three space dimensions become

large. In the present case, we have a model, namely the BFSS model, which has intrinsic

SO(9) symmetry. We then found evidence that symmetry breaking can occur in the theory

using the Gaussian Expansion Method. Assuming we can show that SO(3) × SO(6) is the

preferred symmetry of the system, this would show a strong tie with String Gas Cosmology,

and a potential realization of its dynamical symmetry-breaking mechanism.
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The role of the fermions in the symmetry-breaking process is, moreover, interesting. In

String Gas Cosmology, we saw that supersymmetry, and therefore the presence of fermions,

is required in order for the symmetry-breaking process that leads to three large dimensions

takes place. In the BFSS case, fermions also need to be required in order for the symmetry-

breaking process to occur. This is furthermore evidence that the symmetry-breaking process

in String Gas Cosmology and in the BFSS model may have something in common.

To find further similarities between symmetry breaking in the BFSS model and symmetry

breaking in String Gas Cosmology, it would be interesting to investigate if a mechanism such

as the decay of winding modes can be linked to symmetry breaking in the BFSS model.

Recently, it has been shown that interactions between long winding strings in the IKKT

models vanish in a background that which breaks the SO(9) symmetry of space in the IKKT

model to SO(3) × SO(6) [38]. This shows evidence that winding modes of strings can decay

in the IKKT matrix model, leading to a potentially emerging three-dimensional space just

like in String Gas Cosmology. Assuming this effect can be shown in the BFSS model, it would

be further evidence for symmetry breaking in this model, and the potential emergence of

three dimensions.

Finally, to help with the present efforts in linking the features of symmetry breaking in

the BFSS model to String Gas Cosmology, it would be interesting to use new tools, in a

similar way as the Gaussian Expansion Method, to probe symmetry breaking. Lately, there

has been interest in using bootstrap methods to find the allowed energy states in the BFSS

model [39, 40], and other matrix theories [41]. The idea behind this method is to use the

statement of positivity, along with several other constraints, in order to constrain possible

values for the correlators in the system. These constraints can then be used to rule out

values of the energy as a function of various correlators in the system. Given this fact, it

would be interesting to probe the allowed values of quantities such as the expectation value

of the moment of inertia tensor

〈Tij〉 =
1

N
〈TrXiXj〉 (8.26)

in the context of the BFSS model. As we saw in Section 2.3.2, the eigenvalues of the moment

of inertia tensor are related to the characteristic size of space in different directions. For this
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reason, probing allowed values of 〈Tij〉 could help constrain symmetries at different energies,

and help shed light on a possible dynamical symmetry-breaking process in the BFSS model.
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Chapter 9

Conclusion

In this thesis, we studied matrix theory as a possible description of String Gas Cosmology.

First, we investigated if the BFSS and IKKT model can give rise to a scale-invariant spectrum

of cosmological perturbations on large scales. In both cases, we find good evidence that

a thermal state of the BFSS and IKKT model can source a scale-invariant spectrum on

these distance scales, which agrees with expectations from String Gas Cosmology. Second,

we provided a possible definition for a space-time metric in the IKKT model, and found

that it reproduces some expected features such as isotropicity assuming some features from

numerical simulations. Given its ties to simulations describing an emergent universe, this

metric could be used in a non-perturbative description of the background in String Gas

Cosmology. Third, we investigated a mechanism in which the IKKT model acquires a mass

term as a result of a compactification of six spacial dimensions. Since this mechanism requires

the compact dimensions to be large, it is unclear if it can be tied to cosmological solutions

in String Gas Cosmology where all dimensions start small and then three expand. However,

perhaps a connection to solutions in non-supersymmetric string cosmology exists. Fourth,

we investigated symmetry breaking in the BFSS matrix model using the Gaussian expansion

method. In agreement with String Gas Cosmology, we found evidence for symmetry breaking

at high temperatures. However, work still needs to be done to understand if a (3 + 6)-

dimensional space is the preferred symmetry of this system.

All-in-all, we have found good evidence that matrix theory can provide a description of

String Gas Cosmology. The most conclusive piece of evidence comes from the emergence of a
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scale-invariant spectrum from thermal excitations of matrices. This result, which is realized

in the same way as for string gas cosmology from a ”holographic” scaling of the heat capacity

and free energy, is strong evidence in support of a realization of String Gas Cosmology in

matrix models. The second most promising piece of evidence is the realization of symmetry

breaking in the BFSS matrix model. Although the preferred symmetry of the system still

needs to be found, the evidence for symmetry breaking may point to an emergent lower

dimensional universe in the theory, in agreement with String Gas Cosmology.

Despite this evidence, there are some important aspects that need to be improved in order

to establish matrix theory as a non-perturbative framework for String Gas Cosmology. One of

our main motivations for studying matrix theory was the promise of a fully non-perturbative

description of the dynamics of the early universe. Despite some evidence from numerical

simulations that this framework may exist, a full analytic understanding of how a three-

dimensional universe emerges in matrix models remains lacking. A step we have made in this

direction is the definition of a space-time metric in the IKKT model. However, this metric

definition still needs to be thoroughly tested, and a complete framework for the gravitational

equations of motion skill needs to be established. Ongoing work on matrix theory and their

gravity duals in string theory may bring an answer to these issues. Associated to this

background, work still remains to be done to understand why three large dimensions are

emergent in matrix models. New tools, such as the matrix bootstrap, may be helpful to

probe this symmetry breaking.

We will end by highlighting that the quest to understand how three dimensions become

large in matrix theory is the subject of ongoing work at McGill. In addition to the present

work, it has been shown that interactions between long winding strings in the IKKT models

vanish in a background which breaks the SO(9) symmetry of space in the IKKT model to

SO(3) × SO(6) [38]. This shows evidence that winding modes of strings can decay in the

IKKT matrix model, leading to a potentially emerging three-dimensional space just like in

String Gas Cosmology. In light of these results and ongoing work on the topic, one should

expect the status of matrix theory with respect to String Gas Cosmology to become clearer

in the upcoming years.

221



Bibliography

[1] S. Laliberte and S. Brahma, “IKKT thermodynamics and early universe cosmology,”

JHEP, vol. 11, p. 161, 2023.

[2] S. Laliberte, “Effective mass and symmetry breaking in the Ishibashi-Kawai-Kitazawa-

Tsuchiya matrix model from compactification,” Phys. Rev. D, vol. 110, no. 2, p. 026024,

2024.

[3] S. Brahma, R. Brandenberger, and S. Laliberte, “Emergent cosmology from matrix

theory,” JHEP, vol. 03, p. 067, 2022.

[4] S. Brahma, R. Brandenberger, and S. Laliberte, “Emergent metric space-time from

matrix theory,” JHEP, vol. 09, p. 031, 2022.

[5] S. Brahma, R. Brandenberger, and S. Laliberte, “Spontaneous symmetry breaking in

the BFSS model: analytical results using the Gaussian expansion method,” Eur. Phys.

J. C, vol. 83, no. 10, p. 904, 2023.

[6] W. H. Kinney, “TASI Lectures on Inflation,” 2 2009.

[7] D. Baumann, “Inflation,” in Theoretical Advanced Study Institute in Elementary Par-

ticle Physics: Physics of the Large and the Small, pp. 523–686, 2011.

[8] D. Baumann, “Primordial Cosmology,” PoS, vol. TASI2017, p. 009, 2018.

[9] R. H. Brandenberger, “Inflationary cosmology: Progress and problems,” in IPM School

on Cosmology 1999: Large Scale Structure Formation Tehran, Iran, January 23-

February 4, 1999, 1999.

222



[10] R. H. Brandenberger and C. Vafa, “Superstrings in the Early Universe,” Nucl. Phys. B,

vol. 316, pp. 391–410, 1989.

[11] R. H. Brandenberger, “String Gas Cosmology,” 8 2008.

[12] R. H. Brandenberger, A. Nayeri, S. P. Patil, and C. Vafa, “String gas cosmology and

structure formation,” Int. J. Mod. Phys. A, vol. 22, pp. 3621–3642, 2007.

[13] N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, “A Large N reduced model as

superstring,” Nucl. Phys. B, vol. 498, pp. 467–491, 1997.

[14] K. L. Zarembo and Y. M. Makeenko, “An introduction to matrix superstring models,”

Phys. Usp., vol. 41, pp. 1–23, 1998.

[15] S.-W. Kim, J. Nishimura, and A. Tsuchiya, “Expanding (3+1)-dimensional universe

from a Lorentzian matrix model for superstring theory in (9+1)-dimensions,” Phys.

Rev. Lett., vol. 108, p. 011601, 2012.

[16] B. Ydri, “Review of M(atrix)-Theory, Type IIB Matrix Model and Matrix String The-

ory,” 8 2017.

[17] S.-W. Kim, J. Nishimura, and A. Tsuchiya, “Late time behaviors of the expanding

universe in the IIB matrix model,” JHEP, vol. 10, p. 147, 2012.

[18] D. N. Kabat and G. Lifschytz, “Approximations for strongly coupled supersymmetric

quantum mechanics,” Nucl. Phys. B, vol. 571, pp. 419–456, 2000.

[19] J. Nishimura and F. Sugino, “Dynamical generation of four-dimensional space-time in

the IIB matrix model,” JHEP, vol. 05, p. 001, 2002.

[20] R. Adam et al., “Planck 2015 results. I. Overview of products and scientific results,”

Astron. Astrophys., vol. 594, p. A1, 2016.

[21] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge

Monographs on Mathematical Physics, Cambridge University Press, 12 2007.

223



[22] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, “M theory as a matrix model:

A conjecture,” Phys. Rev. D, vol. 55, pp. 5112–5128, 1997.

[23] N. Aghanim et al., “Planck 2018 results. I. Overview and the cosmological legacy of

Planck,” Astron. Astrophys., vol. 641, p. A1, 2020.

[24] N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astro-

phys., vol. 641, p. A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[25] R. Hagedorn, “Statistical thermodynamics of strong interactions at high-energies,”

Nuovo Cim. Suppl., vol. 3, pp. 147–186, 1965.

[26] Y. Kitazawa and H. Takata, “D-brane scattering in IIB string theory and IIB matrix

model,” Nucl. Phys. B, vol. 551, pp. 617–649, 1999.

[27] A. Fayyazuddin, Y. Makeenko, P. Olesen, D. J. Smith, and K. Zarembo, “Towards

a nonperturbative formulation of IIB superstrings by matrix models,” Nucl. Phys. B,

vol. 499, pp. 159–182, 1997.

[28] K. Becker and M. Becker, “A Two loop test of M(atrix) theory,” Nucl. Phys. B, vol. 506,

pp. 48–60, 1997.

[29] Y. Okawa and T. Yoneya, “Multibody interactions of D particles in supergravity and

matrix theory,” Nucl. Phys. B, vol. 538, pp. 67–99, 1999.

[30] M. Hirasawa, K. N. Anagnostopoulos, T. Azuma, K. Hatakeyama, J. Nishimura, S. Pa-

padoudis, and A. Tsuchiya, “The emergence of expanding space-time in the Lorentzian

type IIB matrix model with a novel regularization,” PoS, vol. CORFU2022, p. 309,

2023.

[31] E. J. Martinec, D. Robbins, and S. Sethi, “Non-Supersymmetric String Theory,” JHEP,

vol. 10, p. 078, 2011.

[32] S. A. Hartnoll and J. Liu, “The Polarised IKKT Matrix Model,” 9 2024.

[33] S. Komatsu, A. Martina, J. a. Penedones, A. Vuignier, and X. Zhao, “Einstein gravity

from a matrix integral – Part I,” 10 2024.

224



[34] S. Komatsu, A. Martina, J. Penedones, A. Vuignier, and X. Zhao, “Einstein gravity

from a matrix integral – Part II,” 11 2024.

[35] H. Steinacker, “Emergent Geometry and Gravity from Matrix Models: an Introduction,”

Class. Quant. Grav., vol. 27, p. 133001, 2010.

[36] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of

gravitation,” Dokl. Akad. Nauk Ser. Fiz., vol. 177, pp. 70–71, 1967.

[37] R. Rohm, “Spontaneous Supersymmetry Breaking in Supersymmetric String Theories,”

Nucl. Phys. B, vol. 237, pp. 553–572, 1984.

[38] R. Brandenberger and J. Pasiecznik, “On the Origin of the SO(9) → SO(3) × SO(6)

Symmetry Breaking in the IKKT Matrix Model,” 8 2024.

[39] H. W. Lin, “Bootstrap bounds on D0-brane quantum mechanics,” JHEP, vol. 06, p. 038,

2023.

[40] H. W. Lin and Z. Zheng, “Bootstrapping ground state correlators in matrix theory. Part

I,” JHEP, vol. 01, p. 190, 2025.

[41] X. Han, S. A. Hartnoll, and J. Kruthoff, “Bootstrapping Matrix Quantum Mechanics,”

Phys. Rev. Lett., vol. 125, no. 4, p. 041601, 2020.

225


	I Introduction and Theoretical Background
	Introduction
	Review of key concepts
	Standard Big Bang Cosmology
	Dynamics of Standard Big Bang Cosmology
	Observational status of Standard Big Bang Cosmoology
	Problems of Standard Big Bang Cosmology

	String Gas Cosmology
	Dynamics of String Gas Cosmology
	Resolution of the Standard Big Bang problems in String Gas Cosmology
	Experimental predictions of String Gas Cosmology

	Matrix cosmology
	Introduction to the IKKT and BFSS matrix models
	Emergent cosmological solutions in matrix theory
	Cosmological solutions from a mass term in matrix theory
	Gaussian Expansion Method



	II Experimental predictions of matrix cosmology
	Emergent Cosmology from Matrix Theory
	Introduction
	Background
	Fluctuations
	Formalism
	Cosmological Perturbations in Matrix Cosmology
	Gravitational Waves in Matrix Cosmology

	Conclusions and Discussion

	IKKT Thermodynamics and early universe cosmology
	Introduction
	Review of the matrix models and emergent space
	Compactification, SUSY breaking and thermodynamics
	Compactification and thermodynamics
	Relation to the BFSS model at finite temperature

	Free energy of the IKKT model at finite temperature
	Gauge fixing and other considerations
	Free energy at leading order
	Free energy at next to leading higher order

	Application to early universe cosmology
	Conclusion
	Zeta function regularisation


	III Background in matrix cosmology
	Emergent metric space-time from matrix theory
	Introduction
	Review of the IKKT Matrix Model and Emergence of Continuous Time
	Emergent Space and Metric
	Discussion
	Conclusions


	IV Dynamical mechanism for emergent solutions in matrix cosmology
	Effective mass and symmetry breaking in the Ishibashi-Kawai-Kitazawa-Tsuchiya matrix model from compactification
	Introduction
	Outline

	Compactification of the IKKT model
	Wilsonian effective action
	Choice of gamma matrix representation and gauge fixing
	Mode expansion
	Zero mode effective action

	Conclusion and discussion
	Epstein Series Regularisation
	Bosonic Sum
	Fermionic Sum



	V Symmetry breaking in matrix cosmology
	Spontaneous symmetry breaking in the BFSS model: Analytical results using the Gaussian expansion method
	Introduction
	Review of the IKKT results
	No symmetry breaking for bosonic IKKT
	Symmetry breaking and the role of the fermionic terms

	Gaussian expansion method for the bosonic BFSS model
	Symmetry breaking in the BFSS model
	Conclusion
	Computation of the free energy for the bosonic BFSS action
	Derivation of F0
	Derivation of F1



	VI Discussion and Conclusion
	Discussion
	Comparison of experimental predictions in matrix cosmology and String Gas Cosmology
	Robustness of matrix theory as a description of the background in String Gas Cosmology
	Comments on the dynamical mechanism leading to a mass term in the IKKT model
	Comparison of symmetry breaking in matrix cosmology and String Gas Cosmology

	Conclusion


