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Abstract

A novel class of three-limb, full-mobility parellel-kinematics machines (PKMs), dubbed

the SDelta, is proposed as a promising alternative to the traditional six-limb Stewart-

Gough platforms. This simple architecture, with fewer moving components, leads to a

lower inertia load, which extends its applications domain, the SDelta being deemed fit

for generating high-frequency, small-amplitude (HFSA) motions, which are needed, e.g.,

in the inertia-parameter identification of rigid bodies.

Prior work conducted by the applicant on three-limb, full-mobility PKMs includes

architecture design plus kinematics, singularity and dexterity analyses. This work was

conducted upon modelling the PKM as a multi-rigid-body system. However, for HFSA

applications, where high speeds are required, the inherent flexibility of the light limb rods

should be taken into account. Thus, the PKM should be modeled as a multibody system

with rigid and flexible links. In this vein, a concise lumped-parameter elastodynamics linear

model is essential, since it includes the system stiffness and vibration characteristics in a

swift, effective way.

Instead of a detailed n-degree-of-freedom(n-dof) generalized model considering flexi-

bility and inertia of all system links, this thesis focuses on the six-dof simplified model

in Cartesian space. This model is deemed suitable for flexible mechanical systems whose

operation link is much stiffer and heavier than its counterparts coupling it to the rigid

base. In this case, the system elastodynamics model can be simplified into a rigid moving

platform (MP) mounted on a massless, linearly elastic suspension. Under this assump-

tion, the system inertia is lumped into the rigid MP, while the system stiffness is lumped

into a Cartesian spring. The whole system is thus simplified into a Cartesian mass-spring

model. This model is not only a natural extension of its one-dof mass-spring counterpart,

but also a pertinent simplification of the n-dof generalized model. Our model is deemed to

be a convenient and useful tool in the preliminary-design stages, in which the detailed di-
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mensions of the mechanical system are not yet determined. Moreover, the Cartesian space

is more intuitive and visualizable than its n(> 6)-dof counterpart. With the help of screw

theory, geared to Cartesian models, engineers can gain insight into the elastodynamics

behavior of the mechanical system under design.

In the Cartesian mass-spring model, the system elastodynamics behaviour is gov-

erned by a second-order differential equation in the time-domain, in terms of the six-dof

small-amplitude displacement screw of the MP. The stiffness is represented by means of

Lončarić’s 6× 6 Cartesian stiffness matrix (CSM) of the Cartesian spring, the inertia by

what von Mises termed the inertia dyad, i.e., the 6× 6 Cartesian mass matrix (CMM) of

the rigid MP. The stiffness system modelling is based on the virtual joint method, whereby

each flexible link is replaced by a rigid link and a virtual joint. The PKM with flexible

links is thus transformed into a multi-rigid-body system. Then, with the help of knowledge

on the multi-rigid-body system, the CSM is put forward. By means of the modified eigen-

problem of the CSM, three types of elastostatic performance indices are defined. These

concepts are used to evaluate, respectively, the overall stiffness, the translational stiffness

and the torsional stiffness of the PKM. Different types of elastostatic performance indices

allow us to choose the most appropriate one to optimize the dimensions of the robot so

as to making it insensitive to frequencies affecting its higher modes. Furthermore, the

Cartesian frequency matrix (CFM) is defined as a congruent transformation of its stiff-

ness counterpart, the transformation matrix being the inverse of the square root of the

positive-definite CMM. The CFM thus defined is dimensionally-homogenous, symmetric

and at least positive-semidefinite. Upon the eigenvalue decomposition of the same matrix,

the natural frequencies and the corresponding natural modes, i.e., the eigenscrews of the

system, are obtained, to evaluate the system elasodynamics performance. The physical

meaning of the CFM, together with that of its eigenvalues and eigenscrews, are given due

interpretation in the thesis, within the context of screw theory.
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RÉSUMÉ

L’auteur epropose une nouvelle classe de machines à cinématique parallèle, à trois mem-

bres, et à mobilité complète (abrégée PKM dans la theśe), le SDelta, qui offre une alter-

native prometteuse aux plateformes traditionnelles dites Stewart-Gough à six membres.

Cette architecture, plus simple, à un nombre reduit de composants mobiles, offre une

charge inertielle plus faible, ce qui étend son domaine d’application. Le SDelta s’avère

capable de générer des mouvements à haute fréquence et de faible amplitude (HFFA), qui

peuvent être utilisés, par exemple, pour l’identification des paramètres d’inertie des corps

rigides.

Les travaux antérieurs sur les PKM à trois membres et à mobilité complète portent sur

la conception de l’architecture et sur l’analyse de cinématique, de singularité et de dex-

térité. Ces travaux out été effectué en modélisant le PKM comme un système à plusieurs

corps rigides. Cependant, pour les applications HFFA, où des vitesses élevées sont requi-

ses, la flexibilité inhérente des tiges de membres légèrs doit être prise en compte. Ainsi, le

PKM doit être modélisée comme un système multicorps portant des membrures rigides et

flexibles. Dans cette optique, un modèle linéaire élastodynamique à multiples paramètres

discrets est essentiel, car il comporte la rigidité du système et les caractéristiques de

vibration de manière exhaustive.

Au lieu d’un modèle généralisé détaillé à n degrés de liberté considérant la flexibilité

et l’inertie de tous les liens du système, l’auteur propose un modèle simplifié à six degrés

de liberté du système dans l’espace cartésien. Ce modèle convient particulièrement aux

systèmes mécaniques à membrures flexibles dont la plateforme d’opération est beaucoup

plus rigide et plus lourde que ses homologues la couplant à la base rigide. Dans ce cas,

le modèle du système se réduit à une plateforme mobile (PM) rigide montée sur une

suspension linéairement élastique à masse négligeable. Selon cette hypothèse, l’inertie du

système est regroupée dans la plateforme mobile rigide, tandis que la raideur du système
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s’exprime à l’aide d’un ressort cartésien. L’ensemble du système se reduit à un modèle

cartésien masse-ressort. Ce modèle s’avère non seulement une extension naturelle de son

homologue masse-ressort à un degré de liberté, mais aussi une simplification pertinente

du modèle généralisé à n degrés de liberté. Notre modèle est considéré comme un outil

pratique et utile dans le cadre des phases de conception préliminaires, dans lesquelles les

dimensions détaillées du système mécanique ne sont pas encore déterminées. En outre,

l’espace cartésien est plus intuitif et plus facile à visualiser que son homologue à n(> 6)

degrés de liberté. À l’aide de la théorie des vis, adaptée aux modèles cartésiens, l’ingénieur

peu visualiser le comportement élastodynamique du système mécanique en question.

Dans le modèle masse-ressort cartésien, le comportement élastodynamique du système

est gouverné par une équation différentielle du deuxième ordre dans le domaine temporel,

en termes de la vis de déplacement de faible amplitude à six degrés de liberté de la PM. La

raideur se modèle au moyen de la matrice cartésienne de raideur (MCR) 6×6 de Lončarić,

du ressort cartésien, et l’inertie par ce que von Mises a appelé la dyade d’inertie, c’est-à-

dire la matrice cartésienne 6 × 6 de masse (MCM) de la PM rigide. La modélisation de

la raideur du système se base sur la méthode de l’articulation virtuelle, où chaque lien

flexible est remplacé par un lien rigide et une articulation virtuelle. Le système mécanique

portant des liens rigides et flexibles se transforme ainsi en un système à plusieurs corps

rigides, dit multicorps. Ensuite, à l’aide des connaissances sur les systèmes multicorps,

l’auteur propose, la MCR. Au moyen du problème à valeurs propres modifié de la MCR

l’auteur définit trois types d’indices de performance élastostatique. Ces concepts sont

ensuite utilisés pour évaluer la raideur globale, la raideur de translation et la raideur de

torsion de la PKM. Différents types d’indices de performance élastostatique nous perme-

ttent de choisir la raideur la mieux adaptèe à l’optimisation des dimensions du robot de

manière à le rendre insensible aux fréquences affectant ses modes supérieurs. En outre,

la matrice cartésienne de fréquence (MCF) se définit comme transformation congruente
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de sa contrepartie de raideur, la matrice de transformation étant l’inverse de la racine

carrée de la matrice définie positive de MCM. La MCF ainsi définie est dimensionnelle-

ment homogène, symétrique et au moins semi-définie positive. Après analyse de valeurs

propres de cette matrice, on obtient les fréquences naturelles et les modes naturels cor-

respondants, c’est-à-dire les vis propres du système, qui servent à évaluer la performance

élastodynamique du système. La thèse se termine par l’interpretation physique de la MCF

au moyen de ses valeurs et vecteurs propres.
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Chapter 1

Introduction

1.1 Motivation and Background

A parallel-kinematic machine (PKM) is defined as a closed-loop mechanism whose moving

platform (MP) is linked to the base platform via at least two kinematic chains [1]. The

PKMs allow for a better performance in terms of accuracy, rigidity and load-carrying

capacity over their serial counterparts. Therefore, they have great potential in various

applications, such as flight simulators, pick-and-place machines and surgical robots, as

illustrated in Fig. 1.1. The Stewart-Gough platform [2, 3], consisting of one MP and one

BP connected via six limbs, as shown in Fig. 1.2, is the foremost and most widely used full-

mobility PKM in industry. However, its large number of components in the closed-loop

structure brings about significant drawbacks, namely, severe limb-interference, complex

kinematics and limited workspace, which leads to complex modelling, analysis and control

[4, 5].

In order to improve their performance, extensive research on the design of six-dof

PKMs with simpler architectures has been conducted. Among them, the three-limb, six-

dof symmetric PKMs are deemed to be promising alternatives to the traditional Stewart-

Gough platforms [6, 7]. Li and Angeles [8] proposed a novel class of three-limb, full-
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(a) CAE 7000 series flight simulator (b) Adept Quattro pick-and-place machine

(c) Da Vinci surgical robot

Fig. 1.1 Various application of the PKMs

mobility parallel robots with a 3CPS1 topology, dubbed SDelta, as shown in Fig. 1.3.

The reduction of the number of limbs from six to three is realized by virtue of the two-

dof cylindrical actuator, the C-drive [9], capable of driving the T-shaped tube with a

cylindrical motion: rotation around an axis and translation in a direction parallel to

the same axis. The simple architecture of the SDelta with only three limbs, reduces

limb-interference, thereby offering a larger workspace. More importantly, compared with

most alternative designs of three-limb, six-dof PKMs with some motors mounted on the

1
C, P and S stand for cylindrical, prismatic and spherical joints, respectively, the actuated joint being

underlined.
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MP

BP

Extensible Limb

Fig. 1.2 The Stewart-Gough platform

MP

BP

T-shaped tube

Limb-rod

Fig. 1.3 The SDelta Robot

moving links [10, 11, 12], or designs with all the motors on the base but with a complex

actuation system [13, 14], the C-drive allows all motors of the SDelta to be mounted

on the base, thereby calling for fewer components. The lower inertia load extends its

applications domain, making the SDelta suitable for generating high-frequency, small-

amplitude (HFSA) motions, which can be used, for example, for the inertia-parameter

identification of rigid bodies.

The identification of the 10 inertia parameters—the mass, the position vector of the

centre of mass (c.o.m.) and the inertia tensor—of a rigid body is crucial since the rigid-

body dynamic behaviour is significantly governed by these parameters [15]. A test spec-
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imen is attached to the MP of a full-mobility PKM and is excited by prescribed spatial

trajectories. Meanwhile, the motion (acceleration and velocity) of the specimen and the

wrench exerted onto it are recorded in the time domain. Then, the inertia parameters

can be estimated via the PKM dynamics model. A key issue for the identification process

is the exciting trajectory. Compared with the large-amplitude motion at a relatively low

frequency, the HFSM exciting trajectory is advantageous. On the one hand, the system

dynamics model is safely assumed to be constant along the whole exciting trajectory un-

der small-amplitude conditions. On the other hand, high-frequency excitation increases

the system signal-to-noise ratio, which allows for a better identification accuracy.

Prior work on the SDelta includes topology design, kinematics, singularity and dex-

terity analyses [8, 16]. These were conducted under the modelling of the PKM as a multi-

rigid-body system. However, when applying the PKM for HFSA manoeuvres, where high

speeds are required, the inherent flexibility of the light links should be taken into its

modelling and analysis.

In practice, a PKM with flexible links is usually modelled as a n-dof system, where

n, a finite integer usually in the tens, hundreds, or even higher orders, is the number of

generalized deformation coordinates that define the finite configuration of the deformed

system. However, a detailed n-dof model with high accuracy, considering flexibility and

inertia of all the system links, is not possible at the early design stages and, to some extent,

not even necessary. Then, a concise lumped-parameter elastic linear model is essential,

since it provides the system stiffness and vibration characteristics in a swift, effective way.

These features are the basis for the optimum design and real-time control of the PKM for

HFSA applications.
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1.2 Thesis Objectives

The thesis aims to establish a concise lumped-parameter linearly elastic model of the P-

KM with flexible links, intended for HFSA applications, in Cartesian space. Based on the

Cartesian model, elastostatics, which accounts for the system stiffness, and elastodynam-

ics, i.e., the dynamic response of the system to external and inertial loads, are studied

and evaluated.

The objectives of the thesis follow:

• Simplification of a PKM with flexible links into a Cartesian mass-spring model.

• Formulation of the Cartesian elastostatic model for the Cartesian mass-spring system

and identification of performance indices to be used to evaluate the system stiffness

characteristics.

• Establishing the Cartesian elastodynamics model for the Cartesian mass-spring sys-

tem and hence formulate performance indices to evaluate the system vibration re-

sponse.

• To validate the Cartesian mass-spring model of a novel three-limb, full-mobility

PKM, the SDelta robot.

1.3 Literature Survey

1.3.1 Cartesian Mass-Spring Model

The one-dof mass-spring system consists of a block of mass m suspended from the ceiling

by a linear2 spring of stiffness k. In this system, the mass is known to respond to a

perturbation from its equilibrium state with small-amplitude harmonic oscillations about

2Linearity refers here to the spring constitutive relation between the force acting at its ends and its
deformation, extension or compression.
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its equilibrium state, with a frequency ω =
√

k/m, termed the mass-spring system natural

frequency. This concept can be ported directly into a multi-dof purely rotational or

purely translational system, even in the presence of n degrees of freedom. However, a

systematic investigation on the generalization of the one-dof case to its six-dof counterpart

in Cartesian space, with rotation and translation coupled, is still lacking in the literature.

Compared with the one-dof mass-spring system, the point mass and the simple spring

in the Cartesian mass-spring model are replaced with the rigid body and the Cartesian

spring, respectively. The Cartesian spring is a fundamental generalization [17] of the

single translational or torsional spring to the six-dof Cartesian space. Thereafter, the

scalar quantities, i.e., the mass, the spring stiffness and the displacement, are extended to

their 6× 6 counterparts: the Cartesian mass matrix, i.e., the von Mises inertia dyad [18]

of the rigid body; the 6× 6 Cartesian stiffness matrix (CSM) [19, 20, 21, 22, 23, 24] of the

Cartesian spring; and the 6-dimensional rigid-body displacement screw [25]. Next, upon

bringing together the three foregoing concepts, the elastodynamics model of the Cartesian

mass-spring system is formulated.

This model is deemed a pertinent simplification for systems whose operation platform

is much stiffer than its light-weight structural components coupling it to a rigid base.

Such systems occur in compliant mechanisms, microelectromechanical systems and fast

robots. One important application targeted by this model is as a tool at the early stages

of design, in which the detailed dimensions of the mechanical system in question are

not yet determined. All the designer has at her/his disposal is the payload, the task

trajectory, and knowledge of structural mechanics. With this knowledge, it is possible to

plausibly assume the properties of a 6×6 stiffness matrix that encompasses the elastostatic

properties of the mechanical system playing the role of a Cartesian suspension. The latter

is a massless, linearly elastic body capable of following the rigid body attached to it through

its six-dimensional motion space.
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1.3.2 Elastostatics and Performance Evaluation

Compliant displacements of the PKM introduce negative effects on the accuracy, dynamic

stability and wear resistance [26]. Therefore, elastostatics, which studies the response of

a structurally elastic mechanical system to the applied load under static equilibrium,

is crucial in the design and control of a PKM intended for HFSA applications. The

elastostatic behaviour is taken into account by means of a 6 × 6 CSM, which maps the

six-dimensional small-amplitude displacement (SAD) screw of the operation link into the

applied wrench.

Generally speaking, three approaches can be adopted for elastostatic analysis: finite

element analysis (FEA), virtual-joint method (VJM) and matrix structural analysis (M-

SA).

In FEA, every component is modelled with its true dimensions and shape, which

guarantees a high accuracy and reliability of the stiffness analysis. However, the re-

meshing in FEA may lead to a high computational cost, which limits the applications of

FEA to the final stage of the design [27]. Corradini et al. [28] evaluated the stiffness of

a four-dof PKM, dubbed H4, by means of FEA, then extracted design rules in terms of

static behaviour from the analysis results for further improvement. Moreover, due to its

high accuracy, FEA is widely applied for validation and comparison with the results from

other elastostatic analysis tools [26, 29, 30].

VJM, which is also known as lumped modelling, is drawn from Gosselin’s work [31]. In

VJM, the stiffness of the elastic components is analyzed by adding virtual compliant joints

to their original rigid models. Upon simplification of the relations in the stiffness analysis,

VJM achieves a short computation time with acceptable accuracy, which makes it suitable

at the preliminary design stage [32]. Majou et al. [33] applied the VJM to conduct the

parametric stiffness analysis of the Orthoglide robot, from which the stiffest workspace

region was determined. A VJM model was also used by Caro et al. [30] to approximate
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the stiffness of a six-dof haptic interface device throughout the regular workspace at the

pre-design stage. However, in the VJM, the coupling between the rotational and the

translational deflections is neglected because of the use of one-dimensional virtual springs

in the model.

Compared to FEA, in MSA, each component of the robot is modelled as a simple

structural element, such as a beam, a cable or a rod, instead of a large number of ele-

ments. This kind of approximation in MSA is simpler but realistic, which reduces the

computational cost while maintaining the accuracy of more elaborate models [34]. Fur-

thermore, by means of MSA, the stiffness matrix can be obtained in parametric form,

which allows for optimum design, whereby the overall stiffness of the robot needs to be

maximized. The MSA was employed by Deblaise et al. [29] and Gonçalves and Carvalho

[26] to conduct the stiffness analysis of the Delta robot and the 6-RSS PKM, respectively.

Kefer et al. [35] applied MSA to model the stiffness of articulated industrial robots and

verified the method by FEA. The high accuracy and real-time computation potential of

VJM achieved by Kefer et al. [35] showed the importance of VJM in the applications of

mechanical design and real-time control of the PKMs.

Moreover, novel methods have been proposed based on the basic approaches cited

above. A new systematic method for computing the stiffness matrix of overconstrained

PKMs was reported by Pashkevich et al. [34]. This method is based on a multidimen-

sional lumped-parameter model, in which the flexible components are replaced by six-dof

virtual springs. Both the rotational/translational deflections and their coupling are well

described. Taghvaeipour et al. [36] proposed a novel method for the elastostatic analysis

of PKMs based on the concept of generalized spring. Specifically, each flexible component

was replaced with a six-dimensional linearly elastic spring, whose stiffness parameters were

obtained by means of FEA. This method followed the MSA, but developed the MSA by

using a novel formulation to model the six lower kinematic pairs. Thereafter, by means of
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stiffness matrices computed off-line, parametrically or numerically, the CSM of the robot

at any posture was available. This method was successfully applied to the elastostatic

analysis of the McGill Schönflies Motion Generator (MSMG), which is composed of four

Π-joints [37].

After deriving the CSM, frame-invariant scalar indices are to be defined from this

matrix to assess the robot stiffness. The said matrix CSM is defined in the realm of screw

theory [38, 39], representing not only the translational and rotational stiffness properties

of the PKM, but also their coupling. In the literature, some indices have been defined

independent of the physical meaning of the CSM. For example, Bhattacharya et al. [40]

first multiplied the CSM by its transpose3, then defined the determinant of the product

as the performance index. One major problem here lies in that the product—in the case

of a symmetric matrix, the said product is, in fact, the matrix-squared—i.e., the square

of the stiffness matrix, is physically meaningless, as it involves additions of quantities with

disparate units. Because of its dimensional incompatibility, the product of the CSM by its

transpose, or its square, for that matter, has no physical meaning. Xu et al. [41] defined

the stiffness index directly, as the minimum eigenvalue of the CSM. This index also poses

some challenges. Unlike the 3×3 purely translational stiffness matrix, the eigenvalues and

eigenvectors of the 6×6 CSM are not preserved under a change of frame. To cope with the

foregoing problems, Griffis and Duffy [42] and Patterson and Lipkin [19] considered the

eigenvalue decomposition of the CSM in a generalized form, with the help of a swapping

matrix. Thereafter, frame-invariant eigenscrews and their corresponding eigenstiffnesses

were derived to represent the properties of the CSM. Moreover, wrench-compliant and

twist-complaint axes [20, 43], together with their corresponding eigenvalues, were used to

reflect the robot stiffness.

3This step in fact, is not needed because this matrix is not only symmetric, but also, at least, positive-
semidefinite.
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1.3.3 Elastodynamics and Performance Evaluation

If the PKM is intended for HFSA applications, the inherent flexibility of the light-weight

limbs may lead to unwanted vibration [44]; thus, not only the elastostatics, but also

the elastodynamics, which studies the dynamic response of flexible multi-body systems

to external and inertial loads, should be taken into consideration in the PKM design

and control. Elastodynamic analysis, pertaining to vibration analysis, starts from the

elastodynamics modelling. Considering the inertia wrench due to the mass and moment

of inertia of the PKM, and neglecting damping, the linearized dynamics model of PKMs

becomes a simple system of second-order ordinary differential equations in the SAD of

the MP [45]. The coefficient of the SAD term is the posture-dependent CSM, while the

coefficient of the second-derivative of the SAD term is the posture-dependent CMM of the

whole system. Thereafter, the natural frequencies are calculated as the eigenvalues of the

dynamic matrix [46, 47, 48, 49, 50], which is defined as the product of the inverse of the

system mass matrix times the system stiffness matrix. The determination of the natural

frequencies of PKMs is needed for both design and control purposes, since they determine

a poor region of operation frequencies, where unwanted resonant vibrations are likely to

occur [51, 50]. Therefore, for the envisioned applications, PKMs should be designed with

a frequency spectrum outside of the range of the operation frequencies, which means that

the lowest natural frequency of PKMs should be placed above the expected spectrum of

the operation frequencies.

The calculation of the natural frequencies relies on the CSM and the CMM. The

CSM can be computed by the FEA, the VJM, the MSA or an ad-hoc method based

on them, which were reviewed in the foregoing paragraphs. Regarding the mass matrix,

this is generally obtained based on the system kinetic energy [52]. The mass matrix of

the robot is calculated as the Hessian matrix of the system kinetic energy with respect

to the generalized velocities [53]. With this method, Codourey [54] obtained the mass
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matrix of PKMs. Based on the same method, Taghvaeipour et al. [55] computed the mass

matrix of the MSMG at certain postures. With the Cartesian stiffness matrix computed

by the modified MSA, the natural frequencies over the test trajectory were calculated,

which provided important indices to evaluate the performance of the MSMG from the

elastodynamic point of view at the design stage.

1.4 Claim of Originality

To the knowledge of the author, the main contributions proposed in this thesis, as listed

below, are original:

• The six-dof Cartesian mass-spring model proposed as a simplification of the n-dof

generalized model to represent a PKM with flexible links.

• The Cartesian elastostatic model of the PKM with flexible links, considering differ-

ent types of stiffness.

• Frame-invariant performance indices, defined based on the Cartesian stiffness ma-

trix, to evaluate the overall, the translational and the rotational stiffness of the

PKM with flexible links.

• The Cartesian elastostatics model of the PKM with flexible links, based on the

Cartesian mass-spring model.

• The Cartesian frequency matrix, defined based on the Cartesian stiffness matrix and

the Cartesian mass matrix, as an extension of the natural frequency of the one-dof

mass-spring system to the six-dof Cartesian mass-spring system, to evaluate the

vibration characteristics of the PKM with flexible links.



1 Introduction 12

1.5 Thesis Organization

An outline of the thesis follows:

In Chapter 2, the six-degree-of-freedom (six-dof) Cartesian mass-spring model is in-

troduced as a simplification of the n-dof generalized elastodynamics model for particular

types of PKMs with flexible links. Then, the relation and comparison between the gen-

eralized model and the Cartesian model are explained. The significance of the Cartesian

mass-spring model is emphasized: it is concise and intuitive, which provides the engineer

not only with insight into the behaviour of the flexible mechanical system, but also with

guidance towards their design at the preliminary stage.

In Chapter 3, the Cartesian elastostatics model is established and studied on a novel

PKM with flexible links, intended for HFSA operations. Each flexible link is modelled as

a rigid link with a virtual joint. The CSM, representing the robot stiffness, is formulat-

ed from the stiffness values of the flexible links via the pertinent kinetostatic relations.

Within the formulation, a means to compare two different kinds of stiffness, namely, the

torsional and the translational stiffness of the different links, is proposed. Thereafter,

frame-invariant indices are defined based on the CSM to evaluate the overall stiffness,

the translational stiffness and the torsional stiffness of the PKM. Different elastostatic

performance indices allow us to choose the most appropriate one to optimize the geometry

of the robot so as to make it insensitive to frequencies affecting its higher modes. Finally,

the foregoing methods are applied on a desktop-scale PKM, dubbed the SDelta robot. By

comparison of the results with FEA simulation, the elastotatics model is validated.

In Chapter 4, the Cartesian elastostatics model is established and studied on a novel

PKM with flexible links, intended for HFSA operations. In particular, the main novelty is

the CFM definition: an analytic function of both the CMM and the CSM in a symmetric

expression, its properties being discussed. Then, the natural frequencies and the modal

screws calculated from the CFM are chosen to evaluate the elasodynamics performance
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of the system. Finally, numerical examples obtained at two postures of the SDelta are

included, to better understand the concept of CFM and the physical meaning of the

corresponding performance indices.

Finally, Chapter 5 includes conclusions and recommendations for future work.
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Chapter 2

Cartesian Mass-spring Model of

PKMs with Flexible Links

2.1 Overview

A concise lumped-parameter elastodynamics model is essential for the analysis of mechan-

ical systems with flexible links to evaluate their elastic properties. However, a detailed

n-dof generalized elastic model with high accuracy, considering flexibility and inertia of

all the system bodies, is not possible at the early design stages and, to some extent, not

even necessary. In this chapter, the six-dof Cartesian mass-spring model is introduced as

a simplification the n-dof generalized elastodynamics model for particular types of flex-

ible mechanical systems, namely, PKMs with flexible links intended for high-frequency

operations. Moreover, relations and comparison between the generalized and Cartesian e-

lasotdynamics models are provided. Finally, the significance of the Cartesian mass-spring

model is emphasized.
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2.2 Generalized Elastodynamics Model

The elastodynamics response of a mechanical system with flexible links is usually described

by n (≥ 6) generalized coordinates. Here, n equals the number of independent deformation

coordinates that define the system deformed configuration; its elastodynamics behaviour

in the generalized space is governed by the model [56, 57]:

M(q)q̈ + h(q, q̇) = φφφ (2.1)

where q is the n-dimensional generalized-coordinate array, whose entry qi, i = 1, · · · , n,

denotes the ith generalized coordinate, i.e., the deformation displacement of the cor-

responding flexible link along sliding joints (P) or about turning joints (R) the ith de-

formation axis, as the case may be. Furthermore, M(q) is the n × n posture-dependent

generalized mass matrix, φφφ the n-dimensional generalized-force array of the system. More-

over, the term h(q, q̇) is nonlinear in q and quadratic1 in q̇. Under a small-amplitude

deformation, eq. (2.1) is linearized around an equilibrium state, which yields

MEδq̈+CEδq̇ +KEδq = δφφφ (2.2)

with δq and δφφφ denoting the perturbed generalized-coordinate array and the perturbed

generalized-force array, respectively, while ME , CE and KE denote the constant gener-

alized mass, damping and stiffness matrices evaluated at the equilibrium state q = qE,

respectively. As well, since the damping term has usually little effect on the natural fre-

quencies and natural modes of the system [58], it is usually neglected in eq. (2.2). Then,

1While quadratic terms are also nonlinear, these terms have properties that are not present in arbitrary
nonlinear terms which are exploited in their analysis.
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the generalized elastodynamics model (GEM) of the system becomes:

MEδq̈+KEδq = δφφφ (2.3)

2.3 Cartesian Mass-spring Model

The n deformation coordinates of all the flexible links, defined as the generalized co-

ordinates, provide a suitable means of describing the system elastodynamics behaviour.

However, the n-dof model can be cumbersome when n is large—in the 10s or 100s. For

most mechanical systems with flexible links, particularly for the high-frequency PKMs of

interest in this thesis, the operation link—the link at which the given task is described—is

designed to be much stiffer and heavier than the limb-links connecting it to the base, as

shown in Fig. 2.1(a). Under this condition, the operation link, as well as the BP, is as-

sumed to be rigid, while the balance links are assumed to be flexible and massless. Then,

the system can be safely modelled as a rigid moving platform (MP) mounted on the base

platform (BP) via a massless, linearly elastic suspension, as illustrated in Fig. 2.1(b)2. In

this model, the inertia of the system is lumped into that of the rigid MP, the stiffness

of the system being lumped into that of the linearly elastic suspension, as a Cartesian

spring.

When all motors are locked, the MP, under an external-wrench disturbance, will un-

dergo small-amplitudemotion with respect to (w.r.t.) the BP, mainly by virtue of the com-

pliance of the limb-links. The motion of the MP, involving both rotation and translation,

is described by a six-dimensional screw defined in the three-dimensional special Euclidian

group SE(3) [59]. The suspension between the MP and the base is correspongdingly mod-

elled as a Cartesian spring, a.k.a. a six-dof generalized spring [17] in Cartesian space. The

2Note that the notation θ in Fig. 2.1(b) is purely illustrative, as rotations in 3D space are defined by
3× 3 rotation matrices.



2 Cartesian Mass-spring Model of PKMs with Flexible Links 18

⋯
⋯

Limb-link 1
Limb-link n

Operation link

(a) Conceptual representation

C

x

y
z

C ′

x′

y′z′

f

n

θ

u

Cartesian spring

MP

BP

(b) Cartesian mass-spring model, with θ de-
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Fig. 2.1 A Cartesian elastodynamic system

system is then simplified into the Cartesian mass-spring model depicted in Fig. 2.1(b).

Under a Cartesian mass-spring model, the system stiffness is visualized as a lump

of massless, linearly elastic material supported at the BP by a fixed rigid plate. This

lump carries, on another region of its boundary, a rigid MP fixedly attached to it. The

Cartesian spring is capable of deforming under a small-amplitude displacement of the MP

on top of it. This displacement is suitably represented by a small-amplitude displacement

(SAD) screw, namely, a rigid-body screw displacement [25, 60], involving concurrently a

“small” rotation3 about a given axis and a “small” translation—small w.r.t. the pertinent

longitudinal dimensions of the lump and the rigid body at stake—in the direction of the

foregoing axis. The SAD screw can be readily visualized if it is regarded as the product of

a twist [61] times a “small” time-increment—small enough to allow for a rotation through

a “small” angle that differs from its sine by a negligible amount.

The elastodynamics response of the Cartesian mass-spring system is thus governed by

Mδẍ+Kδx = w (2.4)

3Under the small-amplitude assumption, a rigid-body rotation admits a vector representation.
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where w is the six-dimensional external wrench applied onto the c.o.m. of the MP, while

δx is the six-dimensional SAD screw of the MP at its c.o.m. C. That is, δx is the per-

turbed pose of the MP, equivalent, in this case, to the perturbed displacement array of the

Cartesian mass-spring system, in response to the external wrench. Furthermore, M and

K denote the 6× 6 Cartesian mass and stiffness matrices that represent the correspond-

ing properties of the system. Equation (2.4) is thus the Cartesian elastodynamics model

(CEM) of the system.

For the sake of simplicity, henceforth, matrices and screws are represented w.r.t. the

system c.o.m., displacement screw and wrench being defined as

δx =






θθθ

u




 ∈ R

6, w =






n

f




 ∈ R

6 (2.5)

with θθθ = θe denoting the rotation vector of the body-fixed frame Cxyz through a “small”

angle4 θ around the axis of rotation parallel to vector e; as well, u is the small-amplitude

translation of C. Moreover, n and f denote the moment about and the force applied

at C. Furthermore, the SAD screw is defined in ray-coordinates, while the wrench in

axis-coordinates [62]. The purpose of this difference in representations is to enable the

definition of the work developed by a wrench w on a rigid bodymoving with a displacement

screw s as an inner product of the pertinent vector arrays5, i.e., as wT δx. When w = 0,

eq. (2.4) becomes

Mδẍ+Kδx = 0 (2.6)

which represents the free-vibration Cartesian model of the system.

The Cartesian mass matrix (CMM) M encapsulates all the inertia properties of the

4It is known that, while a rotation through a finite angle is represented by a 3× 3 proper orthogonal
matrix, rotations through “small” angles are isomorphic to three-dimensional vectors.

5Else, the reciprocal product of screws makes the presentation a bit cumbersome.
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system. The inertia of the operation link and the light-weight limb-links are integrated

into the MP of the Cartesian mass-spring model in Fig. 2.1(b). In our case, this is the von

Mises inertia dyad of the MP. Given the mass m of the MP and the moment of inertia I

about its c.o.m., M takes the form [18]:

M =






I O

O m1




 (2.7)

with 1 denoting the 3×3 identity matrix. The CMM is dimensionally inhomogeneous, its

upper and lower diagonal blocks bearing units of kg·m2 and kg, respectively. Moreover,

the CMM (i) is symmetric and positive-definite and (ii) takes a block-diagonal form when

it is represented at the body c.o.m. When represented at any other point, whether inside

or outside of the physical boundary of the body, the matrix is full [61].

The Cartesian stiffness matrix (CSM) K represents the stiffness properties of the

system. This is a 6× 6 matrix, describing the stiffness of the Cartesian spring, its block-

form being

K =






K11 K12

KT
12

K22




 (2.8)

with K11 denoting the 3× 3 rotational stiffness, carrying the pertinent units of N·m; K22

is its translational counterpart, bearing units of N/m; and K12 the 3× 3 block of coupled

rotational-and-translational stiffness, with units of N. The CSM is symmetric and at least

positive semi-definite.

In summary, in the Cartesian mass-spring model, the inertia of the system is concen-

trated at the MP, while the system stiffness is lumped into a six-dof generalized spring,

i.e., a Cartesian spring. Then, the elastodynamics response of the system is represented

by the small-amplitude motion of the MP in Cartesian space. The model of eq. (2.4) is

thus based on the well-known concept of the CSM, its companion, the CMM, and the
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two six-dimensional screws, the SAD screw and the wrench. The foregoing screws are

attributes pertaining to the mechanics of a rigid body, in our case, the MP.

2.4 Relation Between the Generalized and the Cartesian

Models

The kinematic relation between the SAD screw δx of the MP and the generalized-

coordinate array δq is represented as

Aδx = Bδq (2.9)

where A ∈ R
6×6 and B ∈ R

6×n are the forward and inverse Jacobian matrices of the

mechanical system under analysis. Further, both A and B are assumed to have full rank.

Hence, given a certain δq, δs is unique, i.e.,

δx = A−1Bδq (2.10)

However, since n ≥ 6, for a given δx, δq need not be unique, which means that different

sets of generalized coordinates may lead to the same SAD screw of the MP. Here, the

minimum-energy solution is taken,6 of eq. (2.9) to express δq as

δq = Gδx, G = K−1

E BT (BK−1

E BT )−1A ∈ R
n×6 (2.11)

The above δq is the most likely to occur, since it minimizes the total elastic potential

energy of the system. With the aid of eq. (2.11), the GEM is transformed into the CEM.

The mass matrix is the Hessian of the system kinetic energy w.r.t. the velocity array,

6The minimum-energy solution refers to the unique solution q of the eq. (2.9), that minimizes the
system elastic potential energy, K = (1/2)δqTKEδq.
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while the stiffness matrix is the Hessian of the system elastic potential energy w.r.t. the

displacement array. Moreover, the system kinetic energy is expressed as

K =
1

2
δq̇TMEδq̇ =

1

2
(Gt)TME(Gt) =

1

2
tTMt (2.12)

where, for a small time increment∆t, the time-rate of change of the perturbed displacement

vector δq can be expressed as

δq̇ =
δq

∆t
, t =

δx

∆t
≡






ωωω

u̇




 (2.13)

where t is the six-dimensional twist of the MP, ωωω the three-dimensional angular velocity

array of the MP. The system elastic potential energy is expressed, in turn, as

V =
1

2
δqTKEδq

T =
1

2
(Gδx)TKE(Gδx) =

1

2
δxTKδx (2.14)

which leads to the relations sought:

M = GTMEG, K = GTKEG (2.15)

By means of eqs. (2.10) and (2.15), the n-dof generalized model is reduced to a six-dof

Cartesian model.

Both the GEM and the CEM are abstract mathematical representations of the same

physical mechanical system with flexible links. The GEM is based on the model es-

tablished in the generalized space 7, considering all n independent deformations of the

flexible links. By contrast, the CEM is based on the model established in Cartesian spa-

ce, considering only the six degrees of freedom of a rigid-body motion, namely, the three

7i.e., the space described by the generalized coordinates.
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small-amplitude translations and the three small-amplitude rotations of the operation link

in Cartesian space. The GEM is more accurate but more complex, while the CEM is a

six-dof simplification of the GEM, in Cartesian space.

Next, the difference and the relation between the generalized and the Cartesian models

are discussed, from an algebraic viewpoint. The QR decomposition [63] of a full column-

rank rectangular matrix G ∈ R
n×6, with n > 6, is expressed as

G = Q






R

O




 , QTQ = 1n (2.16)

where: 1n represents the n×n identity matrix; O, the (n− 6)× 6 zero matrix; Q,a n×n

orthogonal matrix, while R is a 6× 6 upper triangular matrix.

Upon substitution of eq. (2.16) into eq. (2.10), the change of variables is expressed as

δx =

[

R−1 OT

]

QT δq (2.17)

From eq. (2.17), it is apparent that the transformation from the generalized-coordinate

array δq to the Cartesian array δx, takes place in two steps:

(i) rotate the coordinate system in 12-dimensional space by means of a rotation matrix

QT ;

(ii) reduce the dimension from n to six: the linear transformation, represented by R−1,

of the first six components of the 12-dimensional generalized array QT δq, becomes

the Cartesian array s.

Furthermore, upon substitution of eq. (2.16) into eq. (2.15), the transformation from

the generalized mass and stiffness matrices into their Cartesian counterparts is readily
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obtained:

M =

[

RT OT

]

QTMEQ






R

O




 (2.18a)

and (2.18b)

K =

[

RT OT

]

QTKEQ






R

O




 (2.18c)

Based on eqs. (2.18), the transformation of the Cartesian matrices undergoes two steps

as well:

(i) rotate the coordinate system in 12-dimensional space by means of Q;

(ii) reduce the dimension of the system thus resulting from n to six: the CMM is the

linear transformation, represented by R, of the the first 6× 6 diagonal block of the

12× 12 transformed matrix Q in (i).

When n = 6, both the forward and inverse Jacobian matrices are square. In this

case, G = B−1A, B denoting a 6 × 6 nonsingular matrix. The GEM and the CEM thus

have the same degree of freedom. The CEM is a similarity transformation of the GEM.

Therefore, the two systems are equivalent, as they share the same sets of natural modes

and natural frequencies. When n > 6, the degree of freedom of the GEM is larger than

that of the CEM. After the transformation in eqs. (2.17) and (2.18), the dimension of the

system reduces from n to six. According to eqs. (2.18), due to the zero block, information

in the 12-dimensional matrices, QTMEQ and QTKEQ, is partly lost.

In conclusion, the generalized model and the Cartesian model are usually established

in spaces with different dimensions, the transformation between them thus not being a

similarity transformation involving simply a change of coordinates. The Cartesian model

is thus a simplification of the n-dof generalized model. That is, the Cartesian model does
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not contain all the n-dimensional dynamics information of the system. The sets of the

Cartesian natural frequencies and natural modes do not identically equal the sets of the

first six generalized natural frequencies and natural modes.

2.5 Significance of the Cartesian Mass-spring Model

The value of the Cartesian mass-spring model lies in two aspects. On the one hand, the

Cartesian mass-spring system is a generalization of the one-dof mass-spring system

ms̈+ ks = 0 (2.19)

to its six-dimensional spatial counterpart. The CMM M, the CSM K and the SAD screw

s are the counterparts of the mass m of the particle, the stiffness k and the deformation

s of the one-dof linear 8 spring, respectively. The elastodynamics model of a particle

suspended by a simple spring is thus extended to the elastodynamics model of a rigid

body suspended by means of a Cartesian spring.

On the other hand, the Cartesian mass-spring model is a six-dof simplification of the

n-dof generalized model. The advantages of the Cartesian mass-spring model are:

(i) The Cartesian mass-spring model bears a concise expression, which makes it a useful

tool in the preliminary-design stages, where the detailed dimensions of the mechan-

ical system are not yet determined. All the designer has at her/his disposal is

the payload, the task trajectory and knowledge of structural mechanics. With this

knowledge, the properties of the Cartesian mass and stiffness matrices of the system

can be assumed appropriately. The CEM can be established swiftly, while providing

guidance towards the design of the system at stake.

(ii) The Cartesian space is more intuitive and visualizable than the n-dof generalized

8Linearity is understood here in the algebraic sense.
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space. The elastodynamics response is usually represented by the rigid-body motion

of the operation link. This kind of motion is described by the six-dimensional

displacement screw of the MP in the Cartesian space. With the help of screw

theory, engineers can thus gain insight into the elastodynamics behaviour of the

mechanical system under design.

2.6 Summary

Cartesian mass-spring models represent not only a generalization of the one-dof mass-

spring model, but also a practical simplification of the n-dof generalized elastodynamics

model for particular flexible mechanical systems, such as PKMs with flexible links intended

for high-frequency operations. In light of its concise expression, the Cartesian mass-spring

model provides a guidance to the design engineer on the spectrum of the elastodynamics

response of the system under design. This model is deemed to be valuable in: (i) the

stiffness and vibration evaluation of the system; (ii) the preliminary stages of design; and

(iii) the task-space real-time feedback control of flexible mechanical systems.
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Chapter 3

Elastostatics: Cartesian Stiffness

Modelling and Evaluation

3.1 Overview

Elastostatics is the study of linearly elastic systems under equilibrium conditions. In this

chapter, the Cartesian elstostatics of a novel parallel-kinematics machine (PKM) with

flexible links, intended for high-frequency, small-amplitude operations, is studied. The

PKM is modelled as a rigid body elastically attached to the base platform via a six-dof

Cartesian spring. Neglecting the inertia force in eq. (2.4), the elastostatics model of the

Cartesian mass-spring system takes the form:

Kδx = w (3.1)

The objective in this chapter is to establish the Cartesian stiffness matrix K, while defin-

ing stiffness performance indices capable of guiding the structural design of the robots of

interest.
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Fig. 3.1 Notations of the SDelta Robot

3.2 Assumptions and Stiffness Modelling of Flexible Links

The PKM of interest is the SDelta robot, shown in Fig. 3.1, which bears a symmetric

architecture. The MP and the BP, illustrated as equilateral triangles, are connected via

three identical limbs. Each limb is a CPS serial chain. The axes of the C joints define

corresponding sides of an equilateral triangle of vertices {Bj}31 and centre O. The MP

is also represented by an equilateral triangle, this one of vertices {Sj}31, and c.o.m. S,

which is the centroid of the triangle S1S2S3. Moreover, the intersection of each limb-axis

with the axis of the corresponding C-joint is denoted {Oj}31, j = 1, 2, 3. Each C joint is

actuated by a C-drive [64], capable of driving the (inverted) T-shaped element in Fig. 3.1,

henceforth referred to as the tube, with a cylindrical motion. Details of an implementation

of the C-joint are illustrated in Fig. 3.2 [9]. This motion includes both a rotation through

an angle φ around axis A, and a translation r in a direction parallel to the same axis. The

C-drive bears a RHHR1 topology. The SDelta works based on the synchronized rotation

of two nuts, driven by two parallel screws, one right-hand, one left-hand, with pitches of

identical absolute values, as depicted in Fig. 3.2. Details on the design and operation of

these drives are available [9].

1H and R stand for helical and revolute joints, respectively, underlines indicating actuated joints.
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Fig. 3.2 C-drive Schematic

Some assumptions are made in order to study the elastostatics of the SDelta Robot:

• Joint friction is negligible.

• The six motor-shafts, together with their corresponding couplings, connecting each

motor with its corresponding screw, are modelled as identical linearly elastic tor-

sional springs.

• The three limb-rods, connecting the tubes with the MP via S joints, are modelled

as identical linearly elastic beams of circular cross-section.

• The balance links, namely the MP, the BP, the tubes, the left- and right-hand screws

of the C-drives, are modelled as rigid bodies2.

3.2.1 Modelling of the Motor Stiffness

The motor shaft, transmitting torque from one motor to its screw, only bears torque

around its axis. The shaft does not bend because of its mounting on a highly stiff base,

supported by a stiff frame. The shaft is thus modelled as a massless, linearly elastic

torsional spring, of stiffness k1, given by

k1 =
GJ

ls
(N·m), J =

πd4s
32

(m4) (3.2)

2Screws are designed to withstand the design loads without significant deformation, which would jam
them.
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where G, J , ls and ds are, correspondingly: the shear modulus; the torsional constant for

a shaft with a circular cross-section; the shaft length; and the shaft diameter. Moreover,

the coupling between the motor shaft and its corresponding screw is assumed to exert

torque only around the shaft axis; this coupling is thus modelled as a linearly elastic

torsional spring, of stiffness k2. As a result, the six motor shafts, together with their

corresponding couplings in the three C-drives, are modelled as six identical linearly elastic

torsional springs. The elastic deformation allowed by the motor shaft and its coupling is

represented by a small-amplitude torsional displacement around the shaft axis. The total

torsional stiffness of the C-drive is thus calculated using the expression for a series array

of torsional springs, which yields

ks =
k1k2
k1 + k2

(N·m) (3.3)

3.2.2 Modelling of the Link Stiffness

The limb-rod, connecting each C-drive tube to the MP in each limb, is light and slender.

Hence, in HFSA applications, its compliance should be taken into consideration. The

objective of this subsection is the modelling of the stiffness of the limb-rod.

The upper end of the limb-rod, shown in Fig. 3.4, is connected to the MP via a S

joint, while its lower end is attached to the piston, which slides freely w.r.t. the tube.

Friction between piston and tube is neglected, the rod thus being assumed to be free of

any axial force, by virtue of a lubricant whose viscosity is neglected in our elastostatic

analysis. When an external wrench is applied onto the MP, given that the S joint can

only transmit force, the rod is subjected to both one bending force, normal to the limb-

axis at its upper end, and one axial force along the same axis. Notice that, in the

absence of friction, the axial force transmitted to the limb vanishes. The bending force

is decomposed into two mutually orthogonal components, denoted flj and fnj , that lie in
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Fig. 3.4 Bending of the jth limb-rod

planes Πlj and Πnj, respectively, as depicted in Figs. 3.3 and 3.4. Plane Πlj is spanned by

the jth limb axis Lj and the jth C-drive axis Aj, while plane Πnj is normal to plane Πlj,

passing through Lj. Thus, on the rod lower end, two reacting forces and two moments

are applied, transmitted by the tube, to balance the effect of the two pairs of forces. In

this case, bending occurs in the rod, i.e., neglecting longitudinal deformation, the rod

deforms in a direction perpendicular to its axis along the intersection of planes Πlj and

Πnj. The maximum deflection γmax occurs at its upper end. Then, the deflection γmax

is decomposed into two mutually orthogonal components, γlj and γnj, lying in planes Πlj

and Πnj, respectively.

As a result, the three limb-rods connecting the tubes with the MP are modelled as

three identical linearly elastic beams, the elastic deformation of the jth rod being repre-

sented by its maximum deflection γmax at the upper end. The calculation of the beam

deflection and the beam potential energy are described below.
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For modelling purposes, the limb-rods are simplified as identical clamped-free beams of

uniform circular cross-section. Shown in Fig. 3.5 is the free-body diagram of a limb-rod of

length lr, modulus of elasticity E, and cross-section area moment of inertia I. The u-axis

denotes the limb axis before bending, while the v-axis is normal to the limb axis. The

intersection of the u- and v-axes is the lower end of the limb-rod. An external force f of

magnitude F is applied in the direction of the v-axis at the upper end of the limb-rod.

Let x ≥ 0 denote the u-coordinate of an arbitrary point P on the elastica of the

limb-rod and γ(x) the bending deflection of the rod along the v-axis at P . The boundary

conditions associated with the limb-rod are

γ(0) = 0,
dγ(x)

dx

∣
∣
∣
∣
x=0

= 0 (3.4)

the rod elastica thus being given by

γ(x) =
F lr
2EI

x2 − F

6EI
x3, 0 ≤ x ≤ lr (3.5)

The maximum deflection of the jth limb-rod at its upper end is, therefore,

γmax =
√

γ2lj + γ2nj = γ(lr) =
F l3r
3EI

(3.6)
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Potential Energy

The strain energy of the beam, i.e., its potential energy, is given by [65]

V =

∫ l

0

EI

2

[
d2γ(x)

dx2

]2

dx =
F 2l3r
6EI

=
1

2

3EI

l3r
γ2max (3.7)

The potential energy of the limb-rod is thus quadratic in the maximum deflection

γmax, the rod stiffness being readily found as

kr =
3EI

l3r
(N/m), I =

πd4r
64

(m4) (3.8)

where dr is the rod diameter.

Since the jth limb-rod bends in planes Πlj and Πnj, its total potential energy is

Vj =
1

2
krγ

2

max =
1

2
kr(γ

2

lj + γ2nj) (3.9)

3.3 Cartesian Elastostatic Modelling

Within the elastostatic analysis, all the motors are assumed to be locked, thereby locking

the PKM at a reference posture 3. When an external wrench is applied onto the MP, the

PKM posture undergoes a perturbation due to the flexibility of the limb-rods and motor

shafts. Thereafter, the MP will undergo a small-amplitude displacement (SAD) screw

w.r.t. the reference MP pose in response to the applied wrench.

The relation between the MP SAD screw δx of a rigid body and the wrench w applied

3Posture pertains to a multi-body system. The emphasized term is used to describe the pose of all
the individual coupled bodies constituting the system.
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onto it is modelled as

w = Kδx, K =






K11 K12

KT
12

K22




 ∈ R

6×6 (3.10)

In general, the directions of the two screw vectors, δx and w, are different; so are their

pitches. Therefore, the mapping from δx into w is represented by a 6×6 matrix K, rather

than by a scalar. MatrixK is termed the Cartesian stiffness matrix [66], characterizing the

stiffness of the PKM. This matrix is symmetric and positive-(semi-)definite, carrying four

3× 3 blocks. Its diagonal blocks, K11 and K22, bear units of Nm and N/m, respectively,

its off-diagonal blocks carrying units of N.

The stiffness model of the PKM is now obtained based on the virtual-joint method

(VJM) [31, 67]. In this context, the stiffness of every flexible part is lumped into a virtual

spring. Then, all virtual springs are replaced with the virtual joints located at the distal

end of each link. The translational spring is regarded as a virtual P joint, the torsional

spring as a virtual R joint. The deformation axis of a flexible link is the axis of its

corresponding virtual joint. By means of the VJM, the multibody system with rigid and

flexible links is transformed into a multi-rigid-body system with virtual joints. Thereafter,

the Cartesian stiffness of the PKM can be modelled via its kinematic relations and the

principle of virtual work.

The CSM, key to elastostatics, is calculated as the Hessian 4 of the total elastic poten-

tial energy stored in the PKM w.r.t. the SAD screw of the MP [68]. The steps to derive

the CSM are listed below:

(1) Lock all the motors at a reference posture of the PKM and assume that an external

wrench is applied onto the MP.

4i.e., the n×n matrix of second-order partial derivatives of potential energy of a linearly elastic body
w.r.t. the n independent variables occurring in the pertinent expression.
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(2) Select a set of generalized coordinates to represent a perturbed PKM posture w.r.t.

the reference one.

(3) Derive the relation between the MP SAD screw and the array representing the

perturbed PKM posture.

(4) Calculate the total elastic potential energy and express the energy as a quadratic

form of the MP SAD screw.

(5) Derive the CSM as the Hessian matrix of the elastic potential energy w.r.t. the MP

SAD screw.

3.3.1 Virtual-joint Model of the PKM

Based on the virtual-joint model, the flexible limb-rod of Fig. 3.4 is replaced with a rigid

rod carrying a virtual P joint located at its upper end. The direction of the P joint is

parallel to the deflection direction of the limb-rod, its joint variable being the deflection of

the rod at the upper end. Moreover, the flexible motor shaft is replaced with a virtual R

joint. The joint axis is the shaft axis, while the joint variable is the torsional deformation

of the shaft. An abstract virtual-joint model of the C-drive is illustrated in Fig. 3.6, using

the notation introduced in Table 3.1. By virtue of the “small” deformation of the motor

shafts, the tube rotates about and slides along a direction parallel to the C-drive axis by

“small” amounts. Notice that tube rotation and sliding amount to a cylindrical motion,

coupled by the screw pitch values. The C-drive is thus replaced with a virtual C joint.

By means of the VJM, the PKM with flexible links is modelled as a multi-rigid-body

system coupled by both virtual and physical joints. An abstract virtual-joint model of

the PKM is shown in Fig. 3.7; for visualization purposes, the icons of its components are

listed in Table 3.1.
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Fig. 3.6 Virtual-joint model of the C-drive

Table 3.1 Abstract representations of the components of a VJ model

Components Geometrical Representations

Physical P, S, H joints
P S H

Virtual P, R, C joints
VP VR VC

Rigid link
Link

Rigid MP
MP

Rigid BP
Base

3.3.2 Kinematic Relations of the Virtual-joint Model

When all the motors are locked, the response of the SDelta under static load is fully

determined by the elastic deformation of each of its flexible parts. Therefore, the de-

flections of the three limb-rods at their upper ends and the small-amplitude torsional

deformations of the six motor shafts are selected as the generalized coordinates to define

the perturbed posture of the PKM under the applied wrench. These coordinates are stored

in a 12-dimensional array δq, termed the perturbed generalized-coordinate array (PGA) of
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the PKM, namely,

δq =

[

ψψψT γγγT
]T

, ψψψ ∈ R
6, γγγ ∈ R

6 (3.11a)

withψψψ representing the torsional-deformation array of the six motor shafts, γγγr the bending-

deflection array of the three limb-rods, i.e.,

ψψψ =









ψψψ1

ψψψ2

ψψψ3









, ψψψj =






ψLj

ψRj




 j = 1, 2, 3 (3.11b)

γγγ =









γγγ1

γγγ2

γγγ3









, γγγj =






γlj

γnj




 j = 1, 2, 3 (3.11c)
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ψLj and ψRj representing the torsional deformation of the motor shafts associated, respec-

tively, with the left- and the right-hand screws in the jth limb, γlj and γnj the maximum

bending deflections of the jth limb-rod in planes Πlj and Πnj, respectively.

In Fig. 3.7, the virtual C and P joints, which represent the motor-shaft flexibility and

the limb-rod flexibility, respectively, are regarded as the active joints of the system, the

physical P and S joints as passive joints. Therefore, each limb is a serial CPPS chain.

At the upper end of the limb-rod, the kinematic subchain composed of a virtual P joint

and a S joint becomes a sliding S joint5. The PGA δq is also the active-joint array of the

virtual-joint model of the PKM.

An expression for the MP SAD screw δx in terms of the PGA is derived via the

kinematic relations of the virtual-joint model, while regarding the perturbed MP pose

δx as t∆t, where t = [ωωωT , u̇T ]T is the (six-dimensional) twist of the MP, ∆t a “small”

time-increment6, as expressed in eq. (2.13). Moreover, ωωω and ċ represent the MP angular

velocity and the velocity of its c.o.m. Then, the relation between δx and δq can be

transformed into the corresponding relation at the velocity level, i.e., the relation between

MP twist t and active joint-rate array δq̇ of the virtual-joint model.

For the jth limb, the relations between the MP twist and the limb joint-rate array are

described by

t = Jjϑ̇ϑϑj (3.12a)

5In our case, at the upper end of the jth limb-rod, the sliding S joint allows five degrees of freedom,
i.e., one translation along each of the ej and fj directions, plus three independent rotations.

6“Small” here means w.r.t. the reciprocal of the highest design frequency, 10 Hz in our case.
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with

Jj =






ecj 0 0 0 0 ecj elj enj

ecj × p1j ecj elj ecj enj pj × ecj pj × elj pj × enj




 (3.12b)

ϑ̇ϑϑj =

[

u̇j φ̇j ḃj γ̇lj γ̇nj θ̇1j θ̇2j θ̇3j

]T

, j = 1, 2, 3 (3.12c)

where ϑ̇jϑjϑj is the array of the jth-limb rates, consisting of the passive joint rates and the

deformation rates, while Jj is the 6 × 8 Jacobian that maps the jth limb-rate array into

the MP twist. The unit vector ecj is parallel to the C-drive axis, the unit vector elj

parallel to the limb axis, and enj ≡ ecj × elj, as depicted in Fig. 3.4. Moreover, uj and φi

are the small-amplitude sliding and rotational displacement of the virtual R joint; bj the

small-amplitude translational displacement of the passive P joint; γlj and γnj the small-

amplitude translational displacement of the virtual P joint along the ecj and enj directions,

respectively. Besides, θ1j , θ2j and θ3j are the small-amplitude rotational displacements,

as allowed by the jth S joint. Furthermore, 0 is the three-dimensional zero vector, p1j

the vector stemming from Oj and ending at the MP c.o.m. S; finally, pj is the vector

stemming from the MP c.o.m. and ending at the centre of the jth S joint.

As shown in Fig. 3.6, the virtual C joint bears a 2-HR structure. The output dis-

placements, i.e., the small-amplitude sliding uj and rotational φj displacements of the

tube, are determined by the torsional displacements ψLi and ψRj of the virtual R joints.

The relation between the foregoing variables is expressed by the Jacobian matrix of the

C-drive, as described below [9]:

φ̇φφj = JCψ̇ψψj , j = 1, 2, 3 (3.13a)
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with

JC =






p/4π −p/4π

1/2ι 1/2ι




 , φφφj =






u̇j

φ̇j




 (3.13b)

where p is the pitch of the screws in the C-drive 7 and ι8 the total gear-reduction ratio

due to the planetary gear transmissions.

The next step is the elimination of the passive joint rates. The unit screws s1j and

s2j , representing the Plücker arrays [69] of the lines passing through the centre of the

jth S joint and parallel to ecj and enj, respectively, are introduced below. These screws

are reciprocal 9 to the third and the last three columns of Jj , the small-amplitude relative

translation allowed by the piston and the small-amplitude relative rotations allowed by

the Sj joint thus being eliminated. Therefore,

s1j =






ej

ej × pj




 , sT

1jΓΓΓJjϑ̇ϑϑj = u̇j + ẇlj (3.14a)

s2j =






gj

gj × pj




 , sT

2jΓΓΓJjϑ̇ϑϑj = ljφ̇j + ˙wnj (3.14b)

with ΓΓΓ defined below:

ΓΓΓ =






O 13

13 O




 = ΓΓΓ−1 ⇒ ΓΓΓ2 = 16 (3.15)

which is termed a swapping matrix. Indeed, matrix ΓΓΓ swaps the order of the two three-

dimensional vectors of a screw array, hence the moniker. Moreover, O is the 3 × 3 zero

matrix and 1k the k × k identity matrix, lj denoting the distance between Oj and the

centre of the jth S joint, i.e., a variable.

7One positive, one negative.
8Greek letter “iota”.
9Two screws s1 and s2 are said to be reciprocal if sT

1
ΓΓΓs2 = 0, with ΓΓΓ defined in eq. (3.15).
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According to eqs. (3.12)–(3.15), the relation between MP twist t and active joint-rate

array δq̇ is given by

Nt = DJδq̇ (3.16)

where

N =



















sT
11
ΓΓΓ

sT
21
ΓΓΓ

sT
12
ΓΓΓ

sT
22
ΓΓΓ

sT
13
ΓΓΓ

sT
23
ΓΓΓ



















=



















(ec1 × p1)
T eTc1

(en1 × p1)
T eTn1

(ec2 × p2)
T eTc2

(en2 × p2)
T eTn2

(ec3 × p3)
T eTc3

(en3 × p3)
T eTn3



















(3.17a)

DL =

[

L 16

]

∈ R
6×12, L = diag(1, l1, 1, l2, 1, l3) (3.17b)

J = diag(JL, 16) ∈ R
12×12, JL = diag(JC ,JC ,JC) ∈ R

6×6 (3.17c)

with the Jacobian JC of the C-drive defined in eq. (3.13b).

Under the small-amplitude assumption, the SAD screw of the MP, namely, the per-

turbed MP pose δx, is regarded as δx ≡ t∆t, where ∆t is a small time-increment, the

perturbed PKM posture δq being regarded as δq ≡ q̇∆t. Thus, the relation between δx

and δq is

Nδx = DJδq, DJ ≡ DLJ (3.18)

where DL ∈ R
6×12 is a full-rank rectangular matrix, J a nonsingular 12× 12 matrix.
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3.3.3 Calculation of the Elastic Potential Energy

The CSM is calculated as the Hessian of the elastic potential energy, as stated in the

preamble to this section. In turn, the elastic potential energy is determined by the de-

formation of the flexible parts, i.e., by the values of the generalized coordinates. The

total elastic potential energy is the sum of the elastic potential energy of motor shafts and

limb-rods, the elastic potential energy of the whole system thus taking the form

V =
3∑

j=1

[
1

2
ks(ψ

2

Lj + ψ2

Rj) +
1

2
kr(γ

2

lj + γ2nj)

]

=
1

2
ψψψTKsψψψ +

1

2
γγγTKrγγγ =

1

2
δqTKqδq

(3.19)

with

Ks = ks16, Kr = kr16 ∈ R
6×6, Kq = diag(Ks,Kr) ∈ R

12×12 (3.20)

and Kq denoting the generalized stiffness matrix (GSM), namely, the Hessian of the

system elastic potential energy w.r.t. the PGA δq.

To obtain the elastic potential energy in terms of the MP SAD screw, the mapping

from the SAD screw δx of the MP into the PGA δq is crucial. However, vectors δq and δx

carry different dimensions. That is, given δx, vector δq is underdetermined, which means

that nine different sets of perturbed coordinates may lead to the same MP SAD screw.

There is, however, one particular δq∗ array that minimizes the total elastic potential

energy of the system, displayed in eq. (3.19). This array, termed the minimum-energy

solution of eq. (3.18), is expressed as

δq∗ = Fδx (3.21)

with

F = K−1

q DT
JH

−1N, H ≡ DJK
−1

q DT
J (3.22)
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H−1 being available, as H is nosingular, besides being dimensionally homogeneous 10. The

total elastic potential energy of the robot associated with the foregoing δq∗ is the smallest

among all possible solutions of eq. (3.18), and hence, the most likely to occur. Therefore,

the elastic potential energy associated with δq∗ and the corresponding CSM are selected

to represent the overall stiffness of the robot for a given δx.

Under the above conditions, the elastic potential energy of the whole robot is then

rearranged into a quadratic form in terms of the MP SAD screw δx:

V ∗ =
1

2
δq∗TKqδq

∗ =
1

2
(Fδx)TKq(Fδx) =

1

2
δxT (FTKqF)δx (3.23)

3.3.4 Derivation of the Cartesian Stiffness Matrix

Given that the CSM K is calculated as the Hessian of the elastic potential energy w.r.t.

the MP SAD screw, eq. (3.23) leads to

K = FTKqF (3.24)

The CSM is thus a congruent transformation [70] of the GSM Kq via matrix F, represent-

ing the mapping of the MP SAD screw δx into the PGA δq∗ that leads to the minimum

potential energy.

10All the entries of H bear the same physical units.



3 Elastostatics: Cartesian Stiffness Modelling and Evaluation 44

Substitution of eqs. (3.21) and (3.22) into eq. (3.24) leads to

K = NTH−TDJK
−T
q KqK

−1

q DT
JH

−1N

= NTH−TDJK
−T
q (KqK

−1

q )DT
JH

−1N

= NTH−T (DJK
−T
q DT

J )H
−1N

= NT (H−THT )H−1N

= NTH−1N

(3.25)

Matrix H in the above equation turns out to be block-diagonal, namely,

H = diag(H1,H2,H3) ∈ R
6×6 (3.26a)

its jth diagonal block being

Hj =
1

ks
DLjJCJ

T
CD

T
Lj +

1

kr
12 =







1

k′s
+

1

kr
0

0
1

k′′sj
+

1

kr







(m/N) (3.26b)

with the definitions below:

k′s = 2

(
2π

p

)2

ks, k′′sj = 2

(
ι

lj

)2

ks, j = 1, 2, 3 (3.26c)

and ks introduced in eq. (3.3).

Generally speaking, due to their different physical units, the stiffness ks of the mo-

tor shaft and the stiffness kr of the limb-rod cannot be compared directly. However,

eqs. (3.26c) transform the torsional stiffness ks into its translational counterparts, k′s and

k′′sj. Upon comparing the magnitudes of the latter with the magnitude of kr, how the

stiffness of the motor shaft and that of the limb-rod contribute to the overall stiffness of
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the robot can be assessed.

Next, upon defining KD ≡ H−1, the CSM K takes the form

K = NTKDN (3.27)

with

KD = diag(KD1,KD2,KD3) (3.28)

its (diagonal) blocks being

KDj = H−1

j =







k′skr
k′s + kr

0

0
k′′sjkr

k′′sj + kr







(N/m), j = 1, 2, 3 (3.29)

The CSM K is thus a congruent transformation [70] of the matrix KD via matrix

N. Moreover, KD is determined by the stiffnesses of the flexible parts, i.e., the torsional

stiffness of the motor shaft and the translational stiffness of the limb-rod. This matrix

is diagonal and dimensionally homogeneous. Stiffness values of different units are then

transformed into the same units for comparison purposes. Moreover, each of the entries

of KD can be treated as the total stiffness of a series array of two springs whose stiff-

ness values are the transformed motor-shaft stiffness k′s (or k′sj, as the case maybe) and

the limb-rod stiffness kr. Therefore, the overall robot stiffness will be smaller than the

stiffness of any of its flexible parts, given that the ensemble forms a serial array of springs.

Matrix N is posture-dependent, besides depending on the dimensions of the robot. As

a result, the CSM is not only related to the stiffness of the flexible parts, but also to

the robot posture and its geometry. On the other hand, the GSM Kq is dimensionally

inhomogeneous, and depends only on the stiffness of the flexible parts, not on the robot

posture. Therefore, the CSM can fully capture the stiffness properties of the robot, thus
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representing the overall robot stiffness.

3.4 Elastostatic Performance Indices

For elastostatic analysis, the SDelta is modelled as a rigid MP elastically suspended on a

six-dof linear generalized spring, whose stiffness is characterized by a 6×6 symmetric and

positive-definite (SPD) CSM K. Because of its dimensional inhomogeneity, this matrix

cannot represent the whole PKM stiffness. Therefore, scalar performance indices need to

be defined to gain a clearer physical insight into the elastostatic response of the PKM.

To characterize the stiffness properties of the PKM, any performance index must be

independent of the coordinate frame used to represent the CSM. In this section, the

change of frame in screw theory is first recalled. Then, a modified eigen-decomposition of

the CSM is introduced, to define the elastostatic performance indices.

3.4.1 Cartesian-frame Transformation

In the realm of screw theory [38, 39], a change of frame calls for an affine transforma-

tion, involving both the rotation of the frame and the translation of the frame origin

[71]. The affine transformation between two frames is referred to as a Cartesian frame

transformation, represented by a 6× 6 matrix S [66, 72]:

S =






Q O

∆∆∆Q Q




 , ∆∆∆ = CPM(δδδ) ≡ ∂(δδδ × v)

∂v
, ∀v ∈ R

3 (3.30)

Q denoting, in turn, a 3 × 3 proper orthogonal matrix, representing the rotation of the

frame axes, ∆∆∆ a 3×3 skew-symmetric matrix representing the cross-product matrix of the

shift δδδ of the frame origin.
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The Cartesian-frame transformation S is invertible, but, in general, not orthogonal11,

namely,

S−1 =






QT O

−QT∆∆∆ QT




 , ST =






QT −QT∆∆∆

O QT




 (3.31)

ST = ΓΓΓS−1ΓΓΓ (3.32)

Under the foregoing change of frame, the CSM transforms into:

K′ = ΓΓΓS−1ΓΓΓKS = STKS (3.33)

The transformed CSM K′ is thus a congruent transformation of K via S, symmetry

and positive-definiteness of the stiffness matrix thus being preserved. However, since the

transformation matrix S is not orthogonal, K′ is not a similarity transformation of K.

The eigenvalues and eigenvectors of the CSM are thus not preserved under the foregoing

transformation. Therefore, the conventional eigen-decomposition of the CSM can not be

relied on to define any frame-invariant stiffness index. Alternatives are introduced below.

3.4.2 Eigenstiffness and Eigenscrew

Upon pre-multiplying both sides of eq. (3.33) by ΓΓΓ, the Cartesian frame transformation

is obtained:

ΓΓΓK′ = S−1(ΓΓΓK)S (3.34)

which represents a similarity transformation between ΓΓΓK and ΓΓΓK′, the eigenvalues and

eigenvectors of the product ΓΓΓK thus being preserved 12.

11S need not be orthogonal because, in general, it carries one block with units of length.
12Eigenvalues, being scalars, are immutable under a similarity transformation; an eigenvector e changes,

under such a transformation S, to Se.
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The eigenproblem of the CSM K is then modified into that of ΓΓΓK:

ΓΓΓKki = µiki, i = 1, · · · , 6 (3.35)

Since K is a matrix with multiple units, as shown in eq. (3.10), the eigenvalue µi carries

units of N, the corresponding eigenvector ki being a unit screw, namely,

ki ≡






ei

pi × ei + piei




 , ‖ei‖ = 1, i = 1, · · · , 6 (3.36)

ei representing the direction of the ith screw axis, pi the position vector of one point of

this axis, and pi the screw pitch, carrying units of length.

Then, the CSM K can be uniquely decomposed into a linear combination of rank-1

matrices, namely,

K =
6∑

i=1

µi

2pi
kik

T
i (3.37)

This decomposition shows that K is fully determined by the frame-invariant µi, pi and ki.

The eigenvalues µi, for i = 1, · · · , 6, are termed the eigenstiffnesses, pi the eigenpitches

of K, and ki the eigenscrews.

For a SPD CSM, its eigenstiffnesses, eigenpiches and eigenscrews have the properties

[19, 66, 73]:

1. A SPD CSM has three negative and three positive eigenstiffnesses. They occur in

real, symmetric pairs.

2. A SPD CSM has a full set of eigenscrews. All the eigenscrews have non-zero, finite

pitches. The eigenscrews are mutually reciprocal.

3. Every eigenstiffness and its corresponding eigenpitch bear the same sign13.

13If the sign of the eigenstiffness is positive, the direction of the wrench axis is the same as that of the
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The eigenscrew decomposition in eq. (3.35) provides a means to interpret the PKM

stiffness. Along the eigenscrew axis, the PKM behaves as a screw spring14. Then, under

these conditions, the stiffness matrix K can be described by scalars {µi}61. The eigen-

stiffness µi reflects the PKM stiffness along the corresponding eigenscrew. Then, the rms

value µrms of the set of eigenstiffness values is adopted as the elastostatic performance

index κ to evaluate the overall PKM stiffness, namely,

κ ≡ µrms =

√
√
√
√1

6

6∑

i=1

µ2

i (N) (3.38)

In practice, an eigensolver is used to solve the eigenproblem of any square matrix. Any

eigensolver treats ΓΓΓK as a dimensionally homogeneousmatrix, then returns dimensionally

homogeneous eigenvalues λi and the corresponding unit, dimensionless eigenvectors λλλi,

namely,

ΓΓΓKλλλi = λiλλλi, ‖λλλi‖ = 1, i = 1, 2, · · · , 6 (3.39)

with λλλi expressed block-wise as

λλλi ≡






ηηηi

ςςς i




 ∈ R

6, i = 1, · · · , 6 (3.40)

Upon looking at eqs. (3.36) and (3.37), in light of eqs. (3.39) and (3.40), the eigen-

stiffnesses and eigenscrews {µi,ki}61 of the CSM K are derived from the results {λi,λλλi}61
screw displacement axis. Otherwise, these two directions are opposite. If the sign of the eigenpitch is
positive, the eigenscrew is right-handed. Otherwise, the eigenscrew is left-handed.

14Screw springs belong to a type of elastic devices, which provide coupling between a translational

spring and a torsional spring. A screw spring allows a screw deformation, given by the vector array xs,
containing a translational deformation along and a torsional deformation around the same axis. Moreover,
the behaviour of a screw spring is characterized by ΓΓΓws = ksxs; that is, the screw deformation xs only
produces a wrench ws along the same direction of xs[74].
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returned by the eigensolver, i.e.,

µi = λi, pi =
ηηηTi ςςς i

‖ηηηi‖2
, ei =

ηηηi
‖ηηηi‖

, pi =
ηηηi × ςςς i

‖ηηηi‖2
(3.41)

3.4.3 Translational Stiffness and Wrench-compliant Axis

Although the eigenscrew decomposition reduces the matrix nature of the Cartesian stiff-

ness to a scalar index, µi in our case, the eigenscrew ki still represents a decoupling between

translation and rotation. In the subsections below, the concepts of wrench-compliant axes

and twist-compliant axes are introduced. Along these axes, translation and rotation are

partially decoupled [19].

A wrench applied onto the wrench-compliant axis produces a pure translational defor-

mation parallel to the same axis, i.e.,






K11 K12

KT
12

K22











0

ewi




 = αiΓΓΓ






ewi

gwi






︸ ︷︷ ︸
wci

, i = 1, 2, 3 (3.42)

where the wrench-compliant axis is given by wci = [eTwi, g
T
wi]

T , the unit vector ewi repre-

senting the direction of the axis, while αi is a translational stiffness, carry units of N/m.

The set {αi, ewi}61 is calculated from the eigenvalues and the corresponding eigenvectors

of the SPD block K22, the set thus being frame-invariant 15.

In summary, a SPD CSM has three wrench-compliant axes, whose direction vectors

are mutually orthogonal. Along the wci axis, the PKM behaves as a quasi-translational

spring. The wrench applied onto the wrench-compliant axis wci can only produce a pure

translational deformation parallel to the direction twi of ewi. Moreover, the eigenvalue αi

of K22 reflects the PKM translational stiffness along the corresponding wrench-compliant

15Based on eq. (3.33), K′

22 = QTK22Q, where Q denotes an orthogonal 3 × 3 rotation matrix, which
indicates that the eigenvalues of K22 are preserved under a change of frame.
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axis. Then, the elastostatic performance index κt to evaluate the translational stiffness of

the PKM is defined as the rms value αrms of αi, for i = 1, 2, 3, namely,

κt = αrms =

√
√
√
√1

3

3∑

i=1

α2

i (N/m) (3.43)

3.4.4 Torsional Stiffness and Twist-compliant Axis

The elastostatics of the PKM can be also modelled as

δx = Cw (3.44a)

with

C ≡ K−1 =






C11 C12

CT
12

C22




 (3.44b)

denoting the Cartesian compliance matrix (CCM) of the PKM.

The twist-compliant axis is the dual of the wrench-compliant axis. A screw deformation

along an axis produces a pure moment around the same axis, i.e.,






C11 C12

CT
12

C22











βieti

0




 =






eti

gti






︸ ︷︷ ︸
tci

, i = 1, 2, 3 (3.45)

where the twist-compliant axis, tci ≡
[
eTti, g

T
ti

]T
, with the unit vector eti representing the

direction of the said axis, βi a torsional stiffness, carrying units of N·m. The set {βi, eti}61
is calculated from the inverse of the eigenvalues and the corresponding eigenvectors of the

SPD block C11, the set thus being frame-invariant 16.

16Under a change of frame S, the Cartesian compliant matrix C is transformed into C′ = S−1CS−T .
Then, C′

11
= QTC11Q, which denotes a similarity transformation of C11, given that Q is orthogonal.

Hence, the eigenvalues of C11 are preserved under a change of frame.
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In summary, a SPD CSM has three twist-compliant axes, whose direction vectors

are mutually orthogonal. Along the twist-compliant axis tci, the PKM behaves as a

quasi-torsional spring. The screw deformation along the twist-compliant axis tcj can

only produce a pure moment around the direction eti of tci. Moreover, the inverse βi of

the corresponding eigenvalue of C11 reflects the PKM torsional stiffness along the twist-

compliant axis. Then, the elastostatic performance index κr is defined as the rms value

βrms of βi, for i = 1, 2, 3, to evaluate the torsional stiffness of the PKM, namely,

κr = βrms =

√
√
√
√1

3

3∑

i=1

β2

i (N·m) (3.46)

In this subsection, under the modified eigenvalue-decomposition, three types of al-

ternative indices, namely, the eigenstiffness based on the eigenscrews, the translational

stiffness based on the wrench-compliant axes and the torsional stiffness based on the twist-

compliant axes, are defined from the CSM to evaluate the PKM stiffness; this allows us to

choose the most appropriate one for specific applications. For optimum design to achieve

better rigidity performance, the higher the stiffness indices are, the stiffer the PKM is.

3.5 Numerical Example: Elastostatic Analysis of the SDelta

Robot

3.5.1 Cartesian Stiffness Matrix

For the application of interest, the rigid-body inertia-parameter identification, the PKM

is required to generate six-dof small-amplitude vibration around a equilibrium position at

a high-frequency. The evaluation of the elastostatic performance throughout the whole

workspace is cumbersome, and to some extent, not necessary for such application; it is

thus desirable to calculate the foregoing elastostatic performance indices at a specific
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posture. This posture is the “symmetric” posture shown in Fig. 3.8. At this posture, the

PKM is most likely to attain its maximum dexterity (minimum condition number of the

forward Jacobian matrix) [16]. It is recalled, first, that both the MP and the BP bear

shapes of equilateral triangles, the operation point being the c.o.m. O of the MP triangle.

Moreover, the posture of choice satisfies the conditions below:

• The operation point S lies on the vertical (Z-axis of Fig. 3.1) of the centroid O of

the BP.

• The plane of the MP triangle is parallel to that of its BP counterpart.

Here, a, b and h denote, respectively, the side length of the BP triangle, that of the MP

triangle, and the Z-coordinate of the operation point O. For purposes of analysis, a frame

XY Z is attached to the BP, as shown in Fig. 3.1, with its origin located at the centroid

O of the BP triangle. The vertices of the latter are represented by {Bj}31. Moreover,

the X-axis points along the B1B2 direction; the Y -axis along the OB3 direction; and

the Z-axis, passing through O, is normal to X and Y , thereby completing a right-hand

orthogonal frame.

Next, the parameters to calculate the stiffness are introduced. The dimensions below

are intended for a desktop-scale prototype:

r = 150 (mm), R = 450 (mm), h = 150 (mm) (3.47)

where r denotes the circumradius of the MP plane and R that of the BP plane.

Moreover, Titanium is selected as the material of the limb-rod17. The length lr and

the diameter dr of the limb-rods are

lr = 115 (mm), dr = 11.5 (mm) (3.48)

17Titanium is ideal for this application because of its low density and high stiffness. Due to these
properties, Titanium is an ideal material for the limbs of the PKM intended for HFSA applications.



3 Elastostatics: Cartesian Stiffness Modelling and Evaluation 54

S1

S2S3

B1 B2

B3

S(O)

O1

O2O3

X

Y

a

b

(a) top view

O1(O) O2O3

S1(S) S2S3

B1 B2

X

Z

h

(b) front view

S

O1 B3O2(O3)

S1 S2(S3)

O

Y

Z

(c) side view

Fig. 3.8 Three views of the symmetric posture
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F = 100N

Fig. 3.9 Bending deflection of the limb-rod in ANSYS Workbench

The stiffness of the slender limb-rod is calculated by FEA. The CAD model of the rod

is then ported into ANSYS. Its lower end is assumed to be fixed and an external force

normal to its axis is applied onto its upper end, as shown in Fig. 3.9. According to the

ANSYS results, when the magnitude of the external force is 100N, the bending deflection

of the limb-rod at its upper end is 6.6506 × 10−4 m, the stiffness of the limb-rod thus

being

kr =
100

6.6506× 10−4
= 1.5036× 105 N/m (3.49)

The C-drive is actuated by two identical Yaskawa18 AC servomotors [75]. The length

ls, the diameter ds and the shear modulus of the motor shaft are

ls = 40 (mm), ds = 16 (mm), G = 75 (GPa) (3.50)

18SGMAH08AAF4C
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Thus, the stiffness k1 of the motor shaft is

k1 = 1.2064× 104 (N·m/rad) (3.51)

The coupling between the motor shaft and its corresponding screw is Disc Coupling19

MCSLCWK-50, whose torsional stiffness is

k2 = 3400 (N·m/rad) (3.52)

Therefore, the equivalent torsional stiffness of the motor shaft, together with the coupling,

is

ks = 2.6524× 103 (N·m/rad) (3.53)

Moreover, the speed-reduction ratio ι of the C-drive is20

ι = 6 (3.54)

Based on eq. (3.26c), when ι = 6, the torsional stiffness ks is transformed into its

translational counterparts, namely,

k′s = 5.8175× 107 (N/m) ≈ 387kr, k′′s = 6.7903× 106 (N/m) ≈ 45kr (3.55)

Upon comparing the values of k′s and k
′′

s with that of kr, the stiffness of the motor shaft,

together with its coupling, is shown to be much higher than that of the limb-rod. Although

the motor shaft and its coupling are more flexible when compared with other parts of the

C-drive, they are much stiffer than the limb-rod.

19The MCSLCWK is a disc coupling for servo motors provided by MiSUMi. Details of this coupling
are available at https://us.misumi-ec.com/vona2/detail/110300120520/?Tab=codeList.

20Greek letter ι.
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Based on the above dimensions, and taking both the C-drive and the limb-rod flexibil-

ity into account, the 3×3 blocks of the SDelta CSM at the foregoing “symmetric posture”

are21

K11 =









0.0993 0 0

0 0.0993 0

0 0 1.0123









× 104 (N·m) (3.56a)

K12 =









0 1.3239 0

−1.3239 0 0

0 0 0









× 104 (N) (3.56b)

K22 =









4.0149 0 0

0 4.0149 0

0 0 0.8826









× 105 (N/m) (3.56c)

3.5.2 Stiffness Performance Indices

Eigenstiffness

The six eigenforces are

µ1 = −µ2 = −1.4946× 104 (N)

µ3 = −µ4 = −1.4946× 104 (N)

µ5 = −µ6 = −2.9892× 104 (N)

(3.57)

the eigenpitches of the corresponding eigenscrews being

p1 = −p2 = −0.0372 (m)

p3 = −p4 = −0.0372 (m)

p5 = −p6 = −0.3387 (m)

(3.58)

21Notice that K11 and K22 are both isotropic in the X-Y plane because of both the symmetric design
and the chosen posture.



3 Elastostatics: Cartesian Stiffness Modelling and Evaluation 58

Moreover, the position and direction vectors of the corresponding eigenscrews are,

respectively,

p1 = p2 = [0, 0, −0.0330]T (m)

p3 = p4 = [0, 0, −0.0330]T (m)

p5 = p6 = 0

(3.59)

and

e1 = [−0.7485, 0.6631, 0]T

e2 = [−0.7485, −0.6631, 0]T

e3 = [0.7249, 0.6889, 0]T

e4 = [0.7083, −0.7059, 0]T

e5 = [0, 0, −1]T

e6 = [0, 0, −1]T

(3.60)

The axes of the first four eigenscrews lie in a plane parallel to the X-Y plane and

pass through the point P , of position vector [0, 0, 0.0330]T m. The first and the third

eigenscrews are left-handed, the second and the fourth right-handed. The eigenpitches of

the four eigenscrews are all 0.0372 m. Moreover, the stiffness of the PKM along the first

four eigenscrews is 1.4946× 104 N. The last two eigenscrews point in the Z-direction and

pass through the origin. Moreover, the fifth eigenscrew is left-handed, the sixth right-

handed. The eigenpitches of these two eigenscrews are both 0.3387 m. Furthermore, the

stiffness of the PKM along the last two eigenscrews is 2.9892× 104 N.

Thus, the elastostatic performance index κ that represents the overall stiffness of the

PKM is the rms value of the eigenforces, i.e.,

κ =

√
√
√
√1

6

6∑

i=1

µ2

i = 2.1137× 104 (N) (3.61)
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Translational Stiffness

The translational stiffness values αi are

α1 = 4.0149× 105 (N/m)

α2 = 4.0149× 105 (N/m)

α3 = 0.8826× 105 (N/m)

(3.62)

The pitches pwi, direction vectors ewi and position vectors pwi of the corresponding

wrench-compliant axes are

pw1 = 0, ew1 = [1, 0, 0]T , pw1 = [0, 0, −0.0330]T (m)

pw2 = 0, ew2 = [0, 1, 0]T , pw2 = [0, 0, −0.0330]T (m)

pw3 = 0, ew3 = [0, 0, 1]T , pw3 = 0

(3.63)

The first wrench-compliant axis is a line pointing in the X-direction, the second a

line pointing in the Y -direction. These two axes pass through point P , of position vector

[0, 0, −0.0330]T m. Moreover, the translational stiffness of the PKM along these two axes

is 4.0149×105 N/m. The third wrench-compliant axis is a line pointing in the Z-direction

and passing through the origin. The translational stiffness of the PKM along this axis is

8.826× 104 N/m.

Then, the elastostatic performance index κt that represents the translational stiffness

of the PKM, defined as the rms value of the three foregoing values, is

κt =

√
√
√
√1

3

3∑

i=1

α2

i = 3.3175× 105 (N/m) (3.64)
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Torsional Stiffness

The torsional stiffness values βi are

β1 = 1/λt1 = 0.5564× 103 (N·m)

β2 = 1/λt2 = 0.5564× 103 (N·m)

β3 = 1/λt3 = 1.0123× 104 (N·m)

(3.65)

The pitches pti, direction vectors eti and position vectors pti of the corresponding

twist-compliant axes are, in turn,

pt1 = 0, et1 = [1, 0, 0]T , pt1 = [0, 0, −0.0330]T (m)

pt2 = 0, et2 = [0, 1, 0]T , pt2 = [0, 0, −0.0330]T (m)

pt3 = 0, et3 = [0, 0, 1]T , pt3 = 0

(3.66)

The first twist-compliant axis is thus a line pointing in the X-direction, the second a

line pointing in the Y -direction. These two axes pass through point P , of position vector

[0, 0, −0.0330]T (m). Moreover, the torsional stiffness of the PKM along these two axes

is 0.556× 103 (N·m). The third twist-compliant axis is a line pointing in the Z-direction

and passing through the origin. The torsional stiffness of the PKM along this axis is

1.0123× 104 (N·m).

Then, the elastostatic performance index κr that represents the torsional stiffness of

the PKM is

κr =

√
√
√
√1

3

3∑

i=1

β2

i = 5.8623× 103 (N·m) (3.67)

3.5.3 Discussion and Comparison

According to eqs. (3.55), the motor shaft, together with its coupling, is much stiffer than

the limb-rod. Therefore, under some conditions, for simplification, the compliance of the
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C-drive can be neglected.

When taking only the limb-rod flexibility into account, the torsional stiffness ks is

assumed to be infinite. In this case, the CSM of the robot is expressed as

K0 = NTKrN, Kr = kr16 (3.68)

Here, “condition 1” indicates that only the limb-rod flexibility is taken into account,

“condition 2” indicating that both the flexibility of the C-drive and that of the limb-

rod are taken into account. Under “condition 2”, the four blocks of the CSM at the

“symmetric posture” are

K11 =









0.1015 0 0

0 0.1015 0

0 0 1.0149









× 104 (N·m) (3.69a)

K12 =









0 1.3533 0

−1.3533 0 0

0 0 0









× 104 (N) (3.69b)

K22 =









4.0598 0 0

0 4.0598 0

0 0 0.9022









× 105 (N/m) (3.69c)

The stiffness indices calculated from the CSMs under these two conditions are listed

in Table 3.2.

Apparently, from Table 3.2, the overall stiffness of the PKM decreases by around

1.22% when the C-drive compliance is taken into account. Moreover, under the same

conditions, the translational and torsional stiffnesses of the PKM decrease by around

1.13% and 0.27%, respectively. This indicates, again, that the C-drive is much stiffer
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Table 3.2 Stiffness indices under two different conditions

Condition 1 Condition 2 Differences
µ2 = −µ1 = 1.4946× 104

µ4 = −µ3 = 1.4946× 104

µ6 = −µ5 = 2.9892× 104

κ = 2.1137× 104

(N)

µ2 = −µ1 = 1.5130× 104

µ4 = −µ3 = 1.5130× 104

µ6 = −µ5 = 3.0260× 104

κ = 2.1397× 104

(N)

1.22%

α1 = 4.0149× 105

α2 = 4.0149× 105

α3 = 0.8826× 105

κt = 3.3175× 105

(N/m)

α1 = 4.0598× 105

α2 = 4.0598× 105

α3 = 0.9022× 105

κt = 3.3555× 105

(N/m)

1.13%

β1 = 1/λt1 = 0.5564× 103

β2 = 1/λt2 = 0.5564× 103

β3 = 1/λt3 = 1.0123× 104

κr = 5.8623× 103

(N·m)

β1 = 0.5639× 103

β2 = 0.5639× 103

β3 = 1.0149× 104

κr = 5.8779× 103

(N·m)

0.27%

than the limb-rods. Compared with the limb-rod flexibility, that of the C-drive barely

influences the overall robot compliance. Therefore, under the dimensions adopted here,

for simplification, the complance of the C-drive can be neglected when conducting the

stiffness analysis of the robot.

3.6 Model Validation

3.6.1 Validation Method

The CAD model of the SDelta Robot is imported into a FEA environment. The three

limb-rods are defined as flexible bodies and analyzed by FEA, all other parts of the SDelta

being assumed rigid. During the simulation, at least six independent wrenches are applied

onto the MP c.o.m. Upon collecting the corresponding SADs of at least three noncollinear

reference points on the MP, the CCM of the SDelta can be estimated. The estimation is
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based on the relation

δx = Cw (3.70)

with C denoting the CCM of the PKM.

At the symmetric posture, several entries of the CCM C vanish:

C =



















c11 0 0 0 c15 0

0 c22 0 c24 0 0

0 0 c33 0 0 0

0 c24 0 c44 0 0

c15 0 0 0 c55 0

0 0 0 0 0 c66



















∈ IR6×6 (3.71)

Therefore, only eight scalars—three rotational compliances (c11, c22, c33), three trans-

lational compliances (c44, c55, c66) and two coupling compliances (c15, c24)—are to be

estimated from measurements.

For simplicity, three independent moments and three independent forces along the X ,

Y and Z axes are applied at the MP c.o.m., respectively. These components determine

six wrenches, arrayed columnwise in matrix W, as displayed below:

W =



















nX 0 0 0 0 0

0 nY 0 0 0 0

0 0 nZ 0 0 0

0 0 0 fX 0 0

0 0 0 0 fY 0

0 0 0 0 0 fZ



















(3.72)

whose first three diagonal entries denote moments, the last three forces.
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Based on relation (3.70), the corresponding SAD screws of the MP evaluated at the

c.o.m. C, arrayed columnwise in matrix X, are

X = CW (3.73)

i.e.,



















θ11 0 0 0 θ15 0

0 θ22 0 θ24 0 0

0 0 θ33 0 0 0

0 u42 0 u44 0 0

u51 0 0 0 u55 0

0 0 0 0 0 u66



















︸ ︷︷ ︸

X

=



















c11nZ 0 0 0 c15fY 0

0 c22nY 0 c24fX 0 0

0 0 c33nZ 0 0 0

0 c24nY 0 c44fX 0 0

c15nX 0 0 0 c55fY 0

0 0 0 0 0 c66fZ



















︸ ︷︷ ︸

CW

(3.74)

where θij , for i = 1, 2, 3, j = 1, . . . , 6, represent the entries of the MP rotation under the

jth wrench. Moreover, uij, for i = 4, 5, 6 and j = 1, . . . , 6, represent the translation of

the MP c.o.m., C, along the corresponding axis, under the jth wrench.

Furthermore, according to eq. (3.74), the small-amplitude translational/rotational en-

tries in X are proportional to the corresponding force/moment entries given by W, re-

spectively: 





u44 = c44fX

u55 = c55fY

u66 = c66fZ

,







u51 = c15nX

u42 = c24nY

,







θ11 = c11nX

θ22 = c22nY

θ33 = c33nZ

(3.75)

The coefficients in the foregoing relations are the translational, the coupled and the rota-

tional compliances under estimation.

The small-amplitude translational displacements of the reference points under given
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wrenches are computed directly by the simulation facility. Therefore, upon collecting the

translational displacements, u44, u55, u66, u15 and u24, of the MP c.o.m. O under the

forces applied along the X , Y and Z axes, along with the moments applied around the

X and Y axes, the translational and coupled compliances are readily estimated via the

linear relation in eq. (3.75). By contrast, the estimation of the rotational compliance is

a bit more demanding, since the rotation of a rigid body is not provided directly, which

needs to be calculated via the translation of at least three non-collinear points22 on the

body. In our case, the rotation of the MP is derived via the translational displacements

of the MP c.o.m. O and the MP triangle vertices, S1, S2 and S3. The SAD of S and the

SAD of Si are defined below:

δxS =






θ

δs




 , δxSi

=






θ

δsi




 , i = 1, 2, 3 (3.76)

with θ = θe denoting the rotation vector 23 of the MP through a “small” angle θ around

the axis of rotation e. Moreover, δs, δsi ∈ IR3 denote the small-amplitude translation

vector of points S and Si on the rigid MP under an external wrench. The translation

vector δsi can be derived from δs and θ:

δsi = s′ + p′

i − s− p = (s′ − s) + (Qpi − pi) = δs+ (Q− 1)pi (3.77)

s and s′ denoting the position vector of S before and after the application of the external

wrench, pi and p′

i the vector stemming from S and ending at Si. Furthermore, Q is the

22While the displacements of three non-collinear points of a rigid body determine the rotation of the
body, unavoidable noise measurements call for a richer set of points when conducting experiments.

23While a rigid-body rotation bears a tensor nature, represented by a matrix, small rotations behave
as vectors [76].
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rotation matrix that takes the general form given below:

Q = eeT + cos θ(1− eeT ) + sin θE, E ≡ CPM(e) (3.78)

Upon collecting the translational displacements of points S and {Si}31, the rotation of the

MP is derived via eqs. (3.77) and (3.78). Thereafter, the rotational compliance can be

estimated based on the linear relation between the angles of rotation and the magnitudes

of the moments in eq. (3.75).

3.6.2 Simulation Results

The translational displacements of the MP c.o.m. and the rotation of the MP under

different moments and forces are calculated via both FEA simulation software, ANYSYS

Workbench, and the mathematical model, with the results displayed in Figs. 3.10–3.12.

According to the plots therein the simulation results match the computed results reason-

ably well. A numerical comparison is provided in Table 3.3.

Table 3.3 Stiffness indices under different conditions

Mathematical Model FEA Simulation Units Differences
c11 +1.7735× 10−3 +1.7103× 10−3 N−1m−1 3.56%
c22 +1.7735× 10−3 +1.8686× 10−3 N−1m−1 5.36%
c33 +0.9853× 10−4 +0.8920× 10−4 N−1m−1 9.47%
c15 −5.9116× 10−5 −6.2037× 10−5 N−1 4.94%
c24 +5.9116× 10−5 +6.6508× 10−5 N−1 11.11%
c44 +4.4337× 10−6 +4.8726× 10−6 N−1m 9.90%
c55 +4.4337× 10−6 +4.7917× 10−6 N−1m 8.07%
c66 +1.1084× 10−5 +1.0912× 10−5 N−1m 1.55%
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Fig. 3.10 Rotation of the MP under the moments around X, Y and Z axes

3.7 Summary

The elastostatic modelling and stiffness evaluation of a three-limb, full-mobility parallel

robot, dubbed the SDelta, were studied in this chapter. The motor shafts, together

with their corresponding couplings, are modelled as identical linearly elastic torsional

springs, the light-weight limb-rods as identical linearly elastic beams. The numerical

stiffness values of different flexible parts were calculated and compared. According to the
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Fig. 3.11 Translation of the MP c.o.m. under the moments around X and
Y axes
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Fig. 3.12 Translation of the MP c.o.m. under the forces along X, Y and
Z axes
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numerical results, the motor shaft, together with its coupling, is much stiffer than the

limb-rod. Therefore, in some cases, the compliance of the C-drive can be neglected for

simplicity. By means of the VJM, the 6 × 6 CSM of the robot is obtained. The CSM

is posture-dependent and dimensionally inhomogeneous. Then, based on the modified

eigenproblem of the CSM, three types of elastostatic performance indices were defined,

associated with the eigenscrews, the wrench-compliant axes and the twist-compliant axes.

These allow, respectively, the evaluation of the overall stiffness, the translational and

the torsional stiffness of the PKM. The three alternative indices allow us to choose the

most appropriate one for our purposes. The CSM and the stiffness indices drawn from

the foregoing analysis were derived at a specific symmetric posture, for a prototype at

the desktop scale. These results were then validated by FEA simulation. The philosophy

adopted at the outset, for the Cartesian elstostatic modelling and evaluation of the SDelta

robot, is applicable to other, similar six-dof multi-loop mechanical systems.
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Chapter 4

Elastodynamics: Cartesian

Frequency Matrix and Vibration

Analysis

4.1 Overview

The elastodynamics behaviour of the Cartesian mass-spring system is governed by the

model:

Mδẍ+Kδx = 0 (4.1)

whereK is the 6×6 matrix representing the stiffness of the Cartesian spring, as introduced

in Chapter 3. Moreover, M is the 6 × 6 inertia dyad of the rigid body mounted on the

Cartesian spring. The system frequency spectrum, calculated from the elastodynamics

model, determines the upper limit of the operation frequency. When the former lies

below the latter, resonance is likely to occur. Therefore, vibration analysis is of the utmost

importance when designing a mechanical system intended for high-frequency operations.

The natural frequencies and natural modes of the Cartesian mass-spring system of
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eq. (2.6) are calculated upon solving the generalized eigen-problem 1:

ω2

iMhi = Khi, i = 1, . . . , 6 (4.2)

where {ωi}61 includes the six natural frequencies, {hi}61 the corresponding modal vectors

of the system. In eq. (4.2), two matrices, the CMM and the CSM, are required in the

analysis. Here comes the question: can a single matrix, based on the CMM and the CSM,

be defined to represent the system elastodynamics properties?

To answer the above question, the natural frequency of the one-dof mass-spring sys-

tem is recalled. The natural frequency is governed by eq. (2.19), ω =
√

k/m. As a

generalization of the concept of natural frequency in the mechanics of a particle, a 6× 6

Cartesian frequency matrix (CFM) can also be attributed to the Cartesian mass-spring

system. This chapter aims to define a symmetric, positive-(semi)definite and analytic

CFM whose eigenvalues and eigenvectors provide the natural frequencies and the natural

modes of the system under study.

4.2 Cartesian Frequency Matrix

4.2.1 Related Concepts

The concept of interest, frequency matrix, is not completely new. It has been extensi-

bly discussed in the generalized space on elastodynamics of n-dof mechanical systems in

various versions, under different names. The system usually includes n decoupled trans-

lational and rotational dimensions, which leads to simple diagonal forms of the system

stiffness and mass matrices. Therefore, the corresponding frequency matrix will be diago-

nal and dimensionally homogenous. Different versions of the generalized frequency matrix

1The emphasized term refers to the presence of a square matrix (other than the identity matrix) on
both sides of the model of eq. (2.9)
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are recalled, then they are applied to the Cartesian space, which contains six coupled

motions, namely, three translations and three rotations.

The best known pertinent concept is the dynamic matrix, defined as the product of

the inverse of the mass matrix times the stiffness matrix, in this order [46, 47, 48, 49, 50].

The natural frequencies of the system are then calculated as the square roots of the

eigenvalues of the dynamic matrix, while the natural modes of the system are obtained as

the corresponding eigenvectors. However, when applying the concept of dynamic matrix

to the Cartesian mass-spring system, two stumbling blocks occur.

First, the Cartesian mass-spring system is a “hybrid” elastodynamic system, involving

both rotational and translational modes, the Cartesian dynamic matrix (CDM) then being

dimensionally inhomogeneous, its physical meaning thus being elusive. Based on eqs. (6)

and (7), the CDM can be partitioned into four 3× 3 blocks with disparate units, namely,

D ≡ M−1K =






D11 D12

D21 D22




 (4.3)

where the diagonal blocks, D11 and D22, bear units of frequency-squared: rad
2s−2. How-

ever, D12 bears units of m−1rad2s−2, while D21 bears units of m·rad2s−2—the period in

the foregoing units is intended to prevent confusion with milliradians.

The second stumbling block is the lack of symmetry. The mass matrix is symmetric and

positive-definite, while the stiffness matrix is symmetric and at least positive semi-definite.

Although the dynamic matrix preserves positive-definiteness, it loses the symmetry of its

factors. “Symmetry” is an important property, since it guarantees real eigenvalues and

mutually orthogonal eigenvectors. In the realm of Lagrangian mechanics, the numerical

eigenvalues of the n × n dynamic matrix can be complex because of the unavoidable

roundoff error during number-crunching. In these cases, the usual practice is to simply

neglect the imaginary parts, while invoking roundoff error.
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Therefore, when analyzing the elastodynamics of a mechanical system in Cartesian

space, defining a dimensionally homogenous matrix that preserves the symmetry and

positive-(semi)definiteness of the mass and stiffness matrices, respectively, is of paramount

importance.

Related concepts were proposed by Inman [77] and Meirovitch [78] independently, as

pertaining to generic n-dof linear mechanical systems. In the two cases as well, the matrix

of interest is defined as a congruent transformation of the stiffness matrix, the transfor-

mation being given by the inverse of one of the factors of the Cholesky decomposition [79]

of the mass matrix. In the Cartesian mass-spring system, the matrix of interest is defined

as

ΩΩΩL ≡ L−1

M KL−T
M (rad2·s−2) (4.4)

where LM is the lower-triangular Cholesky factor of the CMM. Matrix ΩΩΩL is symmetric

and positive-(semi)definite. Moreover, this matrix is dimensionally homogeneous, bearing

units of angular-frequency squared. However, given that the Cholesky factors have no

physical meaning—they are numerical artifacts—the frequency matrix thus resulting is

not an analytic function of the mass and stiffness matrices.

According to the above discussion, a symmetric, positive-(semi)definite and analytic

frequency matrix based on the Cartesian mass-spring model is needed.

4.2.2 Definition of the Cartesian Frequency Matrix

The 6 × 6 Cartesian frequency matrix (CFM) is introduced formally in this subsection.

Let
√
M represent the unique positive-definite square root of the CMM. Pre-multiplying

eq. (2.6) by
√
M

−1

, the Cartesian elastodynamics model becomes

√
Ms̈+ (

√
M)−1K(

√
M)−1(

√
Ms) = 0 (4.5)
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with

√
M =






√
I O

O
√
m1




 (4.6)

where, again,
√
I denotes the unique positive-definite2 square root of I.

Upon the change of variable y =
√
Ms, eq. (4.5) becomes

ÿ +ΩΩΩ2y = 0 (4.7)

with

ΩΩΩ2 ≡ (
√
M)−1K(

√
M)−1 (rad2·s−2) (4.8)

ΩΩΩ being the CFM. Thereafter, the eigen-decomposition of ΩΩΩ provides full information on

the elastodynamics behaviour of the system. The square of this matrix is defined as a

congruent transformation of the CSM via the inverse of the positive-definite square root3

of the CMM.

Here, the CMM is assumed, plausibly, to be of full rank. Moreover,
√
M is a real-

valued analytic function of M. Based on the Cayley-Hamilton Theorem [62],
√
M can be

expressed as a linear combination of the first six powers of M, i.e.,

√
M = f(M) =

5∑

i=0

γkM
k, γk ∈ R (4.9)

Notice that, in order to make the square-root matrix
√
M meaningful, the CMM must

be block-decoupled, i.e., defined w.r.t. the system c.o.m., as explained presently. The

2Positive-definiteness, or semi-definiteness for that matter, are not really needed, but chosen so for
uniqueness.

3In general, a n×n positive-(semi)definite matrix admits 2n square roots, only one of which is positive-
(semi)definite.
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CMM referred to an arbitrary point A bears a general block-form:

MA =






IA m(C−A)

m(C−A)T m1




 (4.10)

where IA denotes the 3 × 3 moment-of-inertia matrix of the body w.r.t. A. Moreover,

C and A are the cross-product matrices4 of the position vectors of the c.o.m. C and

point A, respectively. Due to the non-zero off-diagonal blocks, the powers of MA involve

additions of blocks that carry different physical units, which renders the square root of

MA meaningless. To cope with this quandary, the CFM ΩΩΩ should be defined after shifting

the frame origin to the system c.o.m., so as to render it block-diagonal [61].

4.2.3 Properties of the Cartesian Frequency Matrix

Based the above definition, the properties of the CFM are summarized below:

(i) The CFM is an analytic function of the CMM and the CSM.

(ii) The CFM is dimensionally homogeneous, bearing units of angular frequency, rad/s.

(iii) The CFM preserves the symmetry and positive-(semi)definiteness of the CSM.

Property (i) becomes advantageous in the optimization of a scalar function f(ΩΩΩ) w.r.t.

the entries of the matrix, since an analytic function of a matrix argument is amenable to

explicit differentiation. Moreover, the analyticity of the CFM allows for the representation

of the time-response of an elastodynamic system in the form of an analytic matrix function

of time. Property (ii) indicates that the CFM is closely related to the frequency response

of the system. Furthermore, property (iii), symmetry, makes the eigen-decomposition of

4The cross-product matrix A of the three-dimensional vector a is defined as A = CPM(a) = ∂(a ×
v)/∂v, ∀v ∈ R

3.
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the CFM more reliable and accurate than the CDM in terms of numerical calculation, as

shown in Section 4.4.

Table 4.1 Properties of three types of frequency matrices in Cartesian
space

D ΩΩΩL ΩΩΩ
Symmetry ✘ ✓ ✓

Dimensional-homogeneity ✘ ✓ ✓

Analyticity ✓ ✘ ✓

Properties of the foregoing three types of frequency matrices in the Cartesian space

are summarized in Table 4.1. Apparently, the novel CFM, ΩΩΩ, carries all three properties

of Table 1. The above properties make the CFM a direct extension of the natural fre-

quency in the single-dof case to the six-dof Cartesian space. Moreover, the CFM should

be a convenient and useful engineering tool for the analysis of the elastodynamics of a

mechanical system in task space.

4.3 Vibration Analysis: Natural Frequencies and Natural

Modes

4.3.1 Eigenvalue Decomposition of the Cartesian Frequency Matrix

By virtue of the symmetry and positive-(semi)definiteness of the CFM, the matrix admits

six real non-negative eigenvalues {ωi}61 and a complete set of real, mutually-orthogonal

eigenvectors {vi}61, namely,

ΩΩΩvi = ωivi, i = 1, 2, . . . , 6, ΩΩΩV = ΛΛΛV (4.11)

with

V =

[

v1 v2 · · · v6

]

, VTV = 16 (4.12a)
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and 16 denoting the 6× 6 identity matrix, while

ΛΛΛ = diag(ω1, ω2, · · · , ω6) (4.12b)

The eigenvectors vi are, as usual, defined as non-dimensional unit vectors, while the

eigenvalues ωi bear units of angular frequency, rad/s.

In the six-dimensional Cartesian space, where both translation and rotation are in-

volved, the frame-invariance of the eigenvalues and eigenvectors of the CFM should be

proven, to guarantee the above eigenvalue decomposition meaningful.

Under a Cartesian frame transformation S defined in eq. (3.30), the SAD screw, the

wrench, the CMM, and the CSM change accordingly:

s′ = S−1s =






θθθ′

u′




 , w′ = ΓΓΓS−1ΓΓΓw = STw






n′

f ′




 (4.13)

M′ = ΓΓΓS−1ΓΓΓMS = STMS =






M′

11
M′

12

(M′

12
)T M′

22




 (4.14a)

K′ = ΓΓΓS−1ΓΓΓKS = STKS =






K′

11
K′

12

(K′

12
)T K′

22




 (4.14b)

with

ΓΓΓ ≡






O 1

1 O




 , ΓΓΓ−1 = ΓΓΓ (4.15)

ΓΓΓ thus denoting a swapping matrix 5. Moreover, O and 1 are the 3 × 3 zero and iden-

tity matrices, respectively. An affine transformation keeps the units of scalars, vectors

5This matrix swaps the two three-dimensional blocks in a screw, a twist or a wrench, hence the
moniker. The swapping is needed to transfer screw arrays from ray-coordinates into axis-coordinates, and
vice-versa, in order to lead to meaningful operations in the ensuing analysis.
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and matrices, while preserving the symmetry and positive-definiteness6 of the mass and

stiffness matrices, their physical meaning thus being kept.

Based on eqs. (4.3) and (4.8), the square of the CFM is a similarity transformation of

the CDM D via matrix
√
M defined in eq. (4.6), namely,

ΩΩΩ2 =
√
MD(

√
M)−1 (4.16)

which shows that ΩΩΩ2 andD share the same set of eigenvalues, their corresponding eigenvec-

tors being related via the linear transformation given by matrix
√
M. Therefore, proving

the frame-invariance of the eigenvalue decomposition of ΩΩΩ is equivalent to proving that

of D.

Under a change of frame represented by S, the transformed matrix D′ of D becomes

D′ = (M′)−1K′ = (STMS)−1STKS

= S−1M−1KS = S−1DS

(4.17)

which proves that D′ is, indeed, similar to D. Therefore, the eigenvalue decomposition of

the CFM is preserved under a change of Cartesian frame. Therefore, the eigenvalues and

eigenvectors of the CFM are characteristic concepts that can help engineers gain insight

into the elastodynamic response of a mechanical system, especially at the design stage.

4.3.2 Caculation of Natural Frequencies and Natural Modes

The eigenvalue problem associated with ΩΩΩ now follows:

ΩΩΩ2vi ≡ ωiΩΩΩvi = ω2

i vi (4.18)

6Or semi-definiteness, as the case may be.
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Substitution of eq. (4.8) into eq. (4.18) leads to

(
√
M)−1K(

√
M)−1vi = ω2

i vi (4.19)

Upon premultiplying both sides of eq. (4.19) by
√
M, one obtains

K(
√
M)−1vi = ω2

iM
[

(
√
M)−1vi

]

(4.20)

Further, under a change of variable7

hi = (
√
M)−1vi (4.21)

one obtains

Khi = ω2

iMhi (4.22a)

i.e.,
(
ω2

iM−K
)
hi = 0 ∈ R

6, i = 1, 2, . . . , 6 (4.22b)

Equation (4.22b) indicates that the Cartesian-spring equation (2.6) can be fully decoupled

via the eigenvalue decomposition of the CFM. The eigenvalues {ωi}61 of the CFM are

the natural frequencies of the system. Moreover, the ith natural mode associated with

the ith natural frequency ωi is hi. The natural modes {hi}61 of the system are linear

transformations of the eigenvectors vi of the CFM, the transformation given by the square

root of the CMM. Furthermore, the eigenvectors vi are mutually orthogonal; therefore,

7The change of variable introduced in eq. (4.19) is not a change of frame, since the matrix (
√
M)−1

does not represent an affine transformation.
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the natural modes hi of the system are mutually orthogonal w.r.t. the CMM M, i.e.,

hT
i Mhj =







1, i = j

0, i 6= j
, i, j = 1, 2, . . . , 6 (4.23)

Furthermore, the modal vector hi is dimensionally inhomogeneous. It can be parti-

tioned, as vector s in eq. (2.5), into two three-dimensional vectors, each with its own units.

The dimensionless eigenvector vi of the frequency matrix ΩΩΩ and the system natural mode

hi are partitioned as

vi =






ai

bi




 , ‖ai‖2 + ‖bi‖2 = 1, ai, bi ∈ R

3

hi = (
√
M)−1vi =






ηηηi

ζζζ i




 , ηηηi, ζζζ i ∈ R

3

(4.24)

Then, the relation between the eigenvectors of the frequency matrix and its corresponding

natural modes follows:

ηηηi =
√
I−1 ai

(
kg−1/2·m−1

)

ζζζ i = (1/
√
m)bi

(
kg−1/2

)
(4.25)

vector hi thus being dimensionally inhomogeneous. The striking similarity between the

two above expressions is to be highlighted: the counterpart of the matrix coefficient of

ηηηi is the coefficient in parenthesis in the expression for ζζζ i, (1/
√
m)1, with the identity

matrix 1 obviated in the latter. The units of ζζζ i are those of ηηηi times units of length.

Then, hi can be normalized into a unit screw ρρρi. The normalized screws ρρρi are the modal

screws, or eigenscrews, of the system.



4 Elastodynamics: Cartesian Frequency Matrix and Vibration Analysis 82

If ai 6= 0 and ηηηi 6= 0, then the ith modal screw ρρρi can be expressed as

ρρρi =
1

‖ηηηi‖
hi =






ei

pi × ei + piei




 , i = 1, 2, . . . , 6 (4.26)

with

ei =
1

‖ηηηi‖
ηηηi, pi =

ηηηi × ζζζ i

‖ηηηi‖2
, pi =

ηηηTi ζζζ i

‖ηηηi‖2
(4.27)

the unit vector ei ∈ R
3 representing the direction of the axis of the eigenscrew, pi ∈ R

3

the position vector c and a of the point of the screw axis that lies closest to the origin,

and pi the pitch of the screw. If hi turns out to be a zero-pitch screw, i.e., if pi = 0,

then the screw array degenerates into a pure rotation, whose representation is known to

degenerate, in turn, into the Plücker array [39] of a line, i.e., the vibration mode becomes

a pure rotation about that line.

When ai = 0 and bi 6= 0, then ηηηi = 0 and ζζζ i 6= 0. Hence, the modal screw ρρρi becomes

ρρρi =






0

ni




 , ni =

1

‖ζζζ i‖
ζζζ i (4.28)

which represents a screw of infinite pitch. In line geometry [69], the foregoing six-

dimensional array represents a line at infinity, which means that, in this case, the vibration

mode becomes a pure translation.

Upon normalizing the modal vector hi, eq. (4.22b) becomes

(
ω2

iM−K
)
ρρρi = 0 ∈ R

6, i = 1, 2, . . . , 6 (4.29)

The unit eigenscrew ρρρi is the modal screw of the system, associated with the natural

frequency ωi. A natural mode of the system is not necessarily associated with a pure
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rotation or a pure translation. When ηηηi = 0 and ζζζ i 6= 0, the mode ρρρi in question is a

pure translation along a direction parallel to ni. When ηηηi 6= 0 and pi = 0, the mode ρρρi

represents a pure rotation whose axis is parallel to ei and located by pi. When ηηηi 6= 0 and

pi 6= 0, the mode ρρρi represents a combination of rotation and translation, both related by

the pitch pi.

Moreover, in most cases, the three rotations and the three translations of the system

cannot be decoupled. An arbitrary system doesn’t necessarily entail three independent

rotational modes and three independent translational modes. In general, a natural mode

represents a screw motion, particular cases being a pure rotation and a pure translation.

The natural frequency of the PKM determines the upper limit of the operation fre-

quency under the corresponding natural mode. When the operation frequency lies above

the system natural frequency, resonance is likely to occur. In order to further improve

the PKM performance and expand the range of its operation frequency, the natural fre-

quencies of the PKM should be prescribed as high as the conditions permit.

4.4 Case Study: Vibration Analysis of the SDelta Robot

The foregoing modelling and analysis methods are now applied to a three-limb, full-

mobility PKM, the SDelta robot, depicted in Fig. 3.1. Using the VJM, the mechanical

system with rigid and flexible links, is transformed into a multi-rigid-body system actuated

by virtual joints, as depicted in Fig. 3.7 8. The expression of the CSM K of the SDelta is

shown in eqs. (3.27–3.29).

Furthermore, a homogeneous stainless steel cube test-specimen is assumed to be at-

tached to the MP. The c.o.m. of the test-specimen lies right above, i.e., on the vertical of,

the c.o.m. of the MP triangle. The mass mt and the side length at of the specimen are

8The figure is intended to convey information on the system topology, not on its geometry.



4 Elastodynamics: Cartesian Frequency Matrix and Vibration Analysis 84

assumed to be

mt = 3 (kg), at = 72 (mm) (4.30)

Then, the elastodynamics behaviour of the SDelta is analyzed below at two distinct

postures.

4.4.1 The “Symmetric” Posture

Three views of the “symmetric” posture of the SDelta robot are shown in Fig. 3.8. A

detailed description of the “symmetric” posture and parameters of the prototype at this

posture are shown in Section 3.5.1.

At the above “symmetirc posture”, the CMM MS of the system, referred to the MP

c.o.m. S is, block-wise, given below:

MS
11

=









0.0125 0 0

0 0.0125 0

0 0 0.0117









(kg·m2) (4.31a)

MS
12

=









0 −0.1267 0

0.1267 0 0

0 0 0









(kg·m) = (MS
21
)T (4.31b)

MS
22

=









4.4857 0 0

0 4.4857 0

0 0 4.4857









(kg) (4.31c)

The mass m of the system is 4.4857 kg. Vector δδδm, defined as directed from O to the
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system c.o.m. C, is, thus,

δδδm = vec(MA
12
/m) = vec(∆∆∆m) =









0

0

28.3









(mm) (4.32)

where vec(·) denotes the axial vector 9 of a 3 × 3 matrix. This means that the system

c.o.m. C is located above the MP c.o.m. S on the Z-axis. Moreover, the distance between

S and C is 28.3 mm.

Furthermore, the 3 × 3 blocks of the SDelta CSM w.r.t. the MP c.o.m. S at the

“symmetric posture” has been calculated, as shown in eq. (3.56).

Upon shifting the reference point from the MP c.o.m. S to the system c.o.m. C, the

CMM M at the system c.o.m. is obtained from the inertia dyad I and the mass m,

namely10,

I =









0.0089 0 0

0 0.0089 0

0 0 0.0117









(kg·m2), m = 4.4857 (kg) (4.33)

9The axial vector of a 3×3 matrixA is defined as the vector a with the property, a×v = (A−AT )v/2,
∀v ∈ R

3

10Notice that I is isotropic in the X–Y plane, a result of both the symmetric design and the chosen
posture.
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In turn, the blocks of the CSM K at the system c.o.m. C are

K11 =









0.2488 0 0

0 0.2488 0

0 0 1.2003









× 104 (N·m) (4.34a)

K12 =









0 2.9570 0

−2.9570 0 0

0 0 0









× 104 (N) = KT
21

(4.34b)

K22 =









4.8011 0 0

0 4.8011 0

0 0 1.0669









× 105 (N/m) (4.34c)

The Cartesian Frequency Matrix

Upon substitution of eqs. (4.33) and (4.34) into eq. (4.8), the CFM ΩΩΩ is calculated as

ΩΩΩ =



















0.4894 0 0 0 0.1966 0

0 0.4894 0 −0.1966 0 0

0 0 1.0121 0 0 0

0 −0.1966 0 0.2615 0 0

0.1966 0 0 0 0.2615 0

0 0 0 0 0 0.1542



















× 103 (rad/s) (4.35)

The system natural frequencies, namely, the eigenvalues of ΩΩΩ, are arrayed in vector λλλ:

λλλ = [148.2, 148.2, 154.2, 602.7, 602.7, 1012.1]T (rad/s)

= [23.6, 23.6, 24.5, 95.9, 95.9, 161.1]T (Hz)

(4.36)

The system non-normalized natural modes, i.e., the linear transformation of the eigen-
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vectors of ΩΩΩ via matrix
√
M−1, arrayed as the columns of matrix H, are displayed below:

H =



















5.2791 0 0 9.1623 0 0

0 5.2791 0 0 −9.1623 0

0 0 0 0 0 9.2382

0 0.2599 0 0 0.4946 0

−0.2599 0 0 0.4946 0 0

0 0 0.4722 0 0 0



















(4.37)

Orthogonality of the Natural Modes

The orthogonality of the natural modes w.r.t. both the CMM and the CSM is verified

below with four decimals of precision:

HTMH =



















1.0000 0 0 −0.0000 0 0

0 1.0000 0 0 0.0000 0

0 0 1.0000 0 0 0

−0.0000 0 0 1.0000 0 0

0 0.0000 0 0 1.0000 0

0 0 0 0 0 1.0000



















(4.38a)

HTKCH =



















0.0220 0 0 −0.0000 0 0

0 0.0220 0 0 0.0000 0

0 0 0.0238 0 0 0

−0.0000 0 0 0.3633 0 0

0 0.0000 0 0 0.3633 0

0 0 0 0 0 1.0244



















× 106 (4.38b)
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The orthogonality of the natural modes w.r.t. the CMM and CSM is verified, in turn, by

means of the Frobenius norm11 of the two matrices:

‖HTMH− 16‖F = 4.5206× 10−15 (4.39a)

‖HTKCH−ΛΛΛ2‖F = 1.4592× 10−10 (rad/s)2 (4.39b)

with ΛΛΛ defined in eq. (4.12b).

As per the above results, the CFM in eq. (4.35) bears a symmetric structure. The

symmetry of the CFM guarantees both real eigenvalues and the mutual orthogonality of

the eigenvectors. The real natural frequencies and the orthogonality among the natural

modes w.r.t. the CMM and the CSM are thus preserved in the numerical caculation.

FEA Validation

The first six natural frequencies, obtained by means of ANSYS Workbench, a FEA soft-

ware package, are illustrated in Fig. 4.1. A comparison of the natural frequencies found

by the CEM and ANSYS is shown in Table 4.2. The differences are all smaller than

Table 4.2 Comparison of the natural frequencies (Hz), as found by the
CEM and ANSYS

CEM FEA Differences
1 23.6 21.4 9.3%
2 23.6 22.2 5.9%
3 24.5 23.9 2.4%
4 95.9 100.7 5.0%
5 95.9 104.3 8.8%
6 161.1 175.3 8.8%

10%, which shows that our CFM analysis is reasonably accurate. The numerical results

11The Frobenius norm of a matrix is nothing but the rms value of its elements.
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Fig. 4.1 The first six natural frequencies found under FEA simulation

calculated from the CFM are thus deemed fairly reliable.

Interpretation of the Natural Modes

The six natural frequencies of the system are arrayed in vector wf
12 :

wf =



















148.2

148.2

154.2

602.7

602.7

1012.1



















(rad/s) =



















23.6

23.6

24.5

95.9

95.9

161.1



















(Hz) (4.40)

12Notice that the system at this posture shows a partial isotropy of the mass and stiffness matrices: it
entails two pairs of identical natural frequencies.
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Upon normalization of H, the unit natural modes, i.e., the eigenscrews (or modal screws)

of the system, arrayed as the columns of matrix Es
13, are displayed below:

Es =



















1.0000 0 0 1.0000 0 0

0 1.0000 0 0 −1.0000 0

0 0 0 0 0 1.0000

0 0.0492 0 0 0.0540 0

−0.0492 0 0 0.0540 0 0

0 0 1.0000 0 0 0



















(4.41)

The third eigenscrew is a line at infinity, of axis pointing in the Z-direction, which

represents a pure translation along the Z-axis. The position vectors and pitches of the

eigenscrews are obtained from matrix Es as

p1 = [0, 0, −0.0492]T (m), p1 = 0

p2 = [0, 0, −0.0492]T (m), p2 = 0

p3 undefined, p3 → ∞

p4 = [0, 0, 0.0540]T (m), p4 = 0

p5 = [0, 0, 0.0540]T (m), p5 = 0

p6 = [0, 0, 0]T (m), p6 = 0

(4.42)

The physical meaning of the eigenvalue decomposition of the system is now described.

The first natural frequency of the system, f1 = 23.6 Hz, is associated with a pure rotation

around an axis parallel to the X-direction and passing through P1, whose relative coordi-

nates w.r.t. C are [0, 0, −0.0492]T m. The second natural frequency, identical to the first

one, f2 = f1, is associated with a pure rotation around an axis parallel to the Y -direction

and passing through P1, whose relative coordinates w.r.t. C are [0, 0, −0.0492]T (m).

13The first three rows are dimensionless, the last three bearing units of length, m in our case.
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Fig. 4.2 Eigenscrews of the SDelta at the symmetric posture

The third natural frequency of the system, f3 = 24.5 Hz, represents a pure translation

parallel to the Z-axis. The fourth natural frequency, f4 = 95.9 Hz, is associated with a

pure rotation around an axis parallel to the X-direction and passing through P4, whose

relative coordinates w.r.t. C are [0, 0, 0.0540]T m. The fifth natural frequency, identical

to the fourth one, f5 = f4, is associated with a pure rotation around an axis paral-

lel to the Y -direction and passing through P4, whose relative coordinates w.r.t. C are

[0, 0, 0.0540]T m. The sixth natural frequency of the system, f6 = 161.1 Hz, is associated

with a pure rotation around an axis parallel to the Z-direction and passing through C.

The numerical results also show that the first natural frequency of the SDelta at the

symmetric posture is 23.6 Hz, which means that the SDelta is safe to provide vibration

for a 3 kg payload at frequencies below 23.6 Hz at its symmetric posture.

The “symmetric” posture thus has five natural modes associated with a pure rota-

tion and one natural mode associated with a pure translation. The distribution of the

eigenscrews in the Cartesian space is shown in Fig. 4.2.
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4.4.2 An Arbitrary Posture

The “symmetric” posture was selected as the reference posture. Now, an arbitrary posture

is defined by the rotation matrix Q representing an orientation of the MP from the

reference attitude, and the position vector c of the MP c.o.m. Assuming that the posture

of interest is attained by rotating the MP around the Z axis through 10◦, around the X

axis through 5◦, and around the Y axis through 8◦, the rotation matrix of the MP pose

thus resulting is

Q = Rz(10
◦)Rx(5

◦)Ry(8
◦) =









0.9731 −0.1730 0.1520

0.1839 0.9811 −0.0608

−0.1386 0.0872 0.9865









(4.43)

with the MP c.o.m. S, of position vector a, given below:

a = [5, 3, 155]T (mm) (4.44)

Three views of this posture are shown in Fig. 4.3.

Upon following a procedure similar to that in Subsection 4.4.1, the relative coordinates

of the c.o.m. C of the system w.r.t. the MP c.o.m. S are derived. They are given by

[0.0062, −0.0025, 0.0402]T (m).

The system moment-of-inertia matrix I w.r.t. its c.o.m. is

I =









0.9002 −0.0031 0.0618

−0.0031 0.8959 −0.0347

0.0618 −0.0347 1.1643









× 10−2 (kg·m2) (4.45)
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Fig. 4.3 Three views of the symmetric posture
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the total mass of the system being, as before,

m = 4.4857 (kg) (4.46)

In turn, the blocks of the CSM K at the c.o.m. of the system are

K11 =









0.2943 −0.0356 0.0714

−0.0356 0.2205 −0.0412

0.0714 −0.0412 1.1843









× 104 (N·m) (4.47a)

K12 =









0.0745 2.9135 −0.2830

−2.8903 0.1171 −0.2439

−0.1007 −0.1968 −0.1916









× 104 (N) = KT
21

(4.47b)

K22 =









4.8571 −0.0199 0.0333

−0.0199 4.7564 −0.0736

0.0333 −0.0736 1.0557









× 105 (N/m) (4.47c)

Then, the CFM is calculated as

ΩΩΩ =



















0.5365 −0.0448 0.0187 −0.0101 0.1829 −0.0243

−0.0448 0.4455 −0.0121 −0.2080 0.0233 −0.0279

0.0187 −0.0121 1.0075 −0.0072 −0.0123 −0.0070

−0.0101 −0.2080 −0.0072 0.2540 0.0120 −0.0136

0.1829 0.0233 −0.0123 0.0120 0.2677 0.0085

−0.0243 −0.0279 −0.0070 −0.0136 0.0085 0.1479



















× 103 (rad/s)

(4.48)

The six natural frequencies of the robot, given by the eigenvalues of ΩΩΩ, are arrayed in
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vector wf :

wf =



















85.0

163.4

191.1

572.4

638.5

1008.7



















(rad/s) =



















13.5

26.0

30.4

91.1

101.6

160.5



















(Hz) (4.49)

After both a change of variable and the normalization introduced in Section 4.3.2, the

corresponding modal screws, i.e., the eigenscrews of the system, arrayed as the columns

of matrix Es, are displayed below:

Es =



















−0.4438 −0.0461 0.9222 0.3509 −0.9330 0.0125

−0.8960 −0.9989 −0.3761 0.9363 0.3535 −0.0083

−0.0109 −0.0111 −0.0900 0.0112 0.0679 0.9999

−0.0310 −0.0523 −0.0258 −0.0534 −0.0181 −0.0022

0.0182 0.0086 −0.0599 0.0212 −0.0462 −0.0041

−0.0463 0.1544 −0.0168 0.0020 0.0004 −0.0004



















(4.50)

The position vectors and pitches of the eigenscrews are, in turn,

p1 = [0.0417, −0.0202, −0.0359]T (m), p1 = −0.0021 (m)

p2 = [−0.1541, 0.0077, −0.0527]T (m), p2 = −0.0079 (m)

p3 = [0.0009, 0.0178, −0.0649]T (m), p3 = 0.0002 (m)

p3 = [0.0017, −0.0013, 0.0574]T (m), p4 = 0.0011 (m)

p5 = [0.0033, −0.0009, 0.0495]T (m), p5 = 0.0006 (m)

p6 = [0.0041, −0.0022, −0.0001]T (m), p6 = −0.0004 (m)

(4.51)

Apparently, all the natural modes are associated with non-zero-pitch eigenscrews,
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and hence, represents motions involving, concurrently, rotations and translations. For

example, the first natural frequency of the system, f1 = 13.5 Hz, is associated with a

screw motion of screw axis L1 parallel to e1 = [−0.4438, −0.8960, , −0.0109]T and passing

through P1 with relative coordinates w.r.t. C given by [0.0417, −0.0202, −0.0359]T m, and

pitch p1 = −0.0021 m. This screw motion represents a combination of a translation along

e1 and a rotation around the axis L1. Moreover, the ratio of the velocity of the translation

to the angular velocity of the rotation is given by the pitch p1. The above results also

show that a natural mode is not necessarily associated with a pure rotation or a pure

translation.

4.5 Summary

A mechanical system bearing the morphology of a PKM, with compliant, light-weight

links, can be modelled as a rigid body mounted on a six-dof Cartesian spring. The model,

then, leads to a Cartesian mass-spring system. The simplified Cartesian model admits a

6×6 CFM, defined as the positive-(semi)definite square root of the congruent transforma-

tion of the CSM via the inverse of the positive-definite square root of the CMM. Therefore,

the CFM is dimensionally homogeneous, symmetric and positive-(semi)definite. More-

over, the decoupling conditions of the CSM and the CMM are indenpendent; therefore,

the CSM and the CMM cannot be block-diagonalized concurrently, in gen-

eral. Consequently, a natural mode of a Cartesian mass-spring system, in general, is a

screw motion involving both a rotation about and a translation in a direction parallel to

the same axis. Upon the eigenvalue decomposition of the CFM, the elastodynamics model

of the system is fully decoupled. The six non-negative eigenvalues of the CFM are the

natural frequencies of the given system. Moreover, the natural modes of the system are

obtained from a linear transformation of the eigenvectors of the CFM via the inverse of

the positive-definite square root of the CMM. The six natural modes can be normalized
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into corresponding six unit screws, i.e., the eigenscrews of the system, which shows that a

natural mode is not necessarily associated with a pure rotation or a pure translation. That

is, in general, a natural mode involves both rotation about a distinct axis and translation

in a direction parallel to the same axis. Numerical examples obtained at two postures

of the SDelta are included, to better understand the concept of CFM and the physical

meaning of the natural modes. Applications envisioned include the design of multibody

systems with flexible elements that are used for shaking operations, for example. Such

applications occur in a few industrial operations, e.g., in the mixing of liquids, and in

finding experimentally the inertia matrix of heavy machinery, like land vehicles.
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Chapter 5

Closing Remarks and

Recommendations

A novel class of three-limb, full-mobility PKMs were proposed as a promising alternative

to the traditional six-limb Stewart-Gough platforms. The reduction of the number of limbs

from six to three is realized by virtue of a two-dof cylindrical actuator, the C-drive. This

simpler architecture, with fewer moving components, extends its application domain for

generating HFSA motions. For such applications, the inherent flexibility of the compliant

links is taken into account. In this thesis, the Cartesian elastodynamics modelling of

PKMs with flexible links is studied. The PKM is simplified into a six-dof Cartesian mass-

spring model; then, a concise lump-parameter linear elastodynamics model is established

to evaluate the system stiffness and vibration characteristics in a swift, effective way.

These characteristics are deemed applicable to the optimum design and real-time control

of PKMs for HFSA applications.
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5.1 Conclusions

A PKM with compliant, light-weight links, is modelled as a rigid body mounted on a

six-dof Cartesian spring, which leads to a Cartesian mass-spring model. In this model,

the system stiffness is represented by means of a 6 × 6 CSM of the Cartesian spring, the

system inertia by what von Mises termed the inertia dyad, i.e., the 6 × 6 CMM of the

rigid MP.

The key to elstostatics is the CSM. Each flexible link is modelled as a rigid link with

a virtual joint. By means of the VJM and screw theory, the CSM, representing the robot

stiffness, is formulated. During the derivation, a means to compare two different kinds of

stiffness, namely, the torsional stiffness and the translational stiffness of different links, is

proposed. The CSM is, of course, posture-dependent and dimensionally inhomogeneous.

Based on the modified eigenproblem of the CSM, three elastostatic performance indices

are defined to evaluate the overall stiffness, the translational and the torsional stiffness

of the PKM. In terms of elasodynamics, a novel concept, the CFM, is proposed. The

6 × 6 CFM is defined as the positive-(semi)definite square root of the congruent trans-

formation of the Cartesian stiffness matrix via the inverse of the positive-definite square

root of the Cartesian mass matrix. The CFM is dimensionally homogeneous, symmetric

and positive-(semi)definite. Upon the eigenvalue decomposition of the CFM, the Carte-

sian elastodynamics model is fully decoupled. The system natural frequencies are the six

non-negative eigenvalues of the CFM, while the system natural modes are a linear trans-

formation of the eigenvectors of CFM. In general, a natural mode involves both rotation

about a distinct axis and translation in a direction parallel to the same axis.

The foregoing modelling methods were applied and validated on a desktop-scale proto-

type of the SDelta robot. In terms of stiffness analysis, the CSM and the stiffness indices

are derived at a specific symmetric posture under various conditions. As per the numeri-

cal results, the motor shaft, together with its coupling, is much stiffer than the limb rod.
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Therefore, in some cases, the compliance of the C-drive can be neglected for simplicity.

In terms of vibration analysis, numerical examples at two postures of the SDelta are ob-

tained to better understand the concept of CFM and the physical meaning of the natural

modes. The philosophy adopted at the outset, for the formulation of the elastodynamics

model of the SDelta Robot, is deemed to be applicable to other, similar six-dof parallel

robots.

The Cartesian mass-spring model is a practical simplification of the n-dof generalized

elastodynamics model for some flexible mechanical systems, such as PKMs with flexible

links intended for HFSA operations. Due to its concise expression and intuitive signifi-

cance, the Cartesian mass-spring model provides engineers, swiftly and effectively, insight

into the elastic properties of the PKM under design. This model is thus deemed valuable

in: the stiffness and vibration evaluation of the system; the preliminary stages of design;

and, further, the design of task-space real-time feedback control schemes applicable to

flexible mechanical systems.

5.2 Recommendations for Further Research

Finally, some research directions are recommended for further work:

• This thesis focuses on the Cartesian elstodynamics modelling of PKMs intended for

HFSA applications. The optimum design of these systems based on the proposed

elastodynamic and elastodynamics performance indices, is to be under taken.

• In order to provide a pertinent representation of the real system, the damping term

needs to be considered in the Cartesian elastodynamics of the PKMs. The Cartesian

frequency matrix defined based on the Cartesian mass matrix, stiffness matrix and

damping matrix is to be studied in further research.
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• The numerical calculation and FEA simulation on the desktop-scale SDelta robot

shows that it is stiff and capable of producing high-frequency (<23.6 Hz) motions.

A prototype of the SDelta is to be built. Experiments should be conducted on the

prototype to further validate its elastodynamic response.

• Cartesian real-time feedback control of the PKM considering the deformation of the

flexible links should be further investigated.

• Applications of the PKM with flexible links intended for tasks such as rigid-body

inertia-parameter identification under HFSA motions, should be conducted.
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