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ABSTRACT 

The survival of breast cancer patients declines when tumors are invasive and have 

an increased possibility of metastasizing to distal sites. Transforming Growth Factor-beta 

(TGF-~) suppresses breast cancer formation by preventing cell cycle progression in 

mammary epithelial cells. However, at late stage of marnmary carcinogenesis, due to 

genetic and epigenetic alterations, TGF -p loses its cytostatic actions, and contributes to 

tumor invasion by promoting cell proliferation, Actin cytoskeletal reorganization, as weIl 

as Epithelial to Mesenchymal Transition (EMT). Despite the key role of TGF-~ 1 in 

tumor suppression as weIl as tumor progression, the molecular mechanisms underlying 

the conversion of TGF-~ form an inhibitor of proliferation in mammary breast cancer 

cens to an inducer of their cell growth and EMT have not been fully elucidated. Thus, 

acquiring a basic knowledge on the mechanism of TGF-~ regulating its target genes and 

its contribution to cancer progression may highlight new avenues for cancer therapy 

development. This prompted us to further investigate and identify TGF-~-inducible genes 

that may be involved in TGF-~ biological responses during tumorigenesis. 

In this thesis, we identified Talin as a novel TGF-~ 1 target gene that acts as an 

antagonist to inhibit TGF-~-mediated cell growth arrest and transcriptional activity in 

mammary cancer cell line, MCF -7. Searching for new partners of activated Smads, we 

found that TGF-~ 1 induces Talin translocation from cytosol to the plasma membrane 

where Talin physically interacts with the TGF-~l signaling components, the Smads and 

the receptors. Furthermore, we observed that TGF -~ 1 stimulation leads to the formation 

of Actin stress fibers where Talin was detected at the end ofthese stress fibers. Taken an 

together, the obtained data show that TGF-~ 1 positively induced expression of Talin and 

suggests a role for Talin, which acts as a negative feedback loop to control TGF-p 

biological responses. 
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RÉSUMÉ 

La durée de vie des patientes atteintes d'un cancer du sein est considérablement 

diminuée lorsque les tumeurs mammaires sont devenues invasives et développent des 

propriétés métastatiques. Le TGF-~l (pour «Transforming Growth Factor beta-l) 

réprime la formation de cancer du sein en inhibant la prolifération des cellules 

épithéliales mammaires. Cependant, du fait d'altération génétiques ou épigénétiques, le 

TGF -~ perd ses effets cytostatiques dans les phases tardives de la tumorigenèse 

mammaire. En effet, il participe dans ce cas à l'invasion des cellules tumorales en 

favorisant la prolifération cellulaire, la réorganisation de l' actine ainsi que la transition 

Epithelial-Mesenchymale (EMT). Bien que le rôle du TGF-~l dans la suppression et la 

progression tumorale soit connu, les mécanismes moléculaires impliqués dans la 

transition du TGF-~l en tant qu'inhibiteur de la prolifération des cellules cancéreuses 

mammaires à promoteur de leur croissance et de l'EMT reste peu caractérise. La 

compréhension du mécanisme par lequel le TGF -~ régule ses gènes cibles, et sa 

contribution à la progression tumorale permettrait la mise en évidence de nouvelles 

approches pour le développement de traitements contre le cancer du sein. Nous avons 

identifié différents gènes induits par le TGF -~, potentiellement impliqués dans les effets 

biologiques du TGF-~l durant la tumorogenèse. 

Dans cette thèse, nous avons identifié le gène Talin comme une nouvelle cible du 

TGF- ~l. Ce gène agit comme un antagoniste inhibant l'arrêt de prolifération induite par 

le TGF -~ ainsi que ses activités transcriptionnelles dans la lignée cellulaire de cancer du 

sein MCF-7. En cherchant de nouveaux partenaires des protéines Smads activées, nous 

avons mis en évidence que le TGF-~l induit la translocation de la protéine Talin depuis 

le cytosol jusqu'à la membrane plasmique. C'est à ce niveau que Talin interagit 

physiquement avec les acteurs de la signalisation du TGF-~l : les récepteurs, ainsi que 

les protéines Smads. De plus, nous avons observé que la stimulation par le TGF - ~ 1 
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entraîne la formation de fibre d'actine et la détection de la protéine Talin à l'extrémité de 

ces fibres. L'ensemble de ces résultats montre que le TGP-pl induit l'expression de Talin 

et suggère que cette protéine intervient dans une boucle de régulation négative afin de 

contrôler les effets biologiques du TGF-p. 
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CHAPTER 1: INTRODUCTION 

Since individual cells evolved into multicellular organism and ultimately into 

complicated life forms, the intracellular communication systems and tight control over 

the movement, division, and differentiation among cells become essential to ensure the 

proper behavior in organism. This brings up one of the simple curiosities of life, that is, 

how the growth and development of a complete organism from a single cell are 

controlled. Part of the answer includes the involvement of growth factor receptors and 

their respective ligands which transduce signaIs across cell membrane and into the 

nucleus for the transcriptional readout. The molecular nature of these intracellular signaIs 

determines type of signaIs, pathways involved, subsequent regulatory interactions, and 

eventual activation or repression oftranscriptional factor. 

Among the secretory polypeptides, the Transforming Growth Factor-~ (TGF-~) 

superfamily plays a major role in regulating cell growth and differentiation. TGF-~ 

family members are expressed in most cell types. As a multi-potent cytokine, TGF-~ 

plays a critical role in eukaryotic development and cell homeostasis through regulation of 

various cellular responses including cell growth, proliferation, differentiation, 

angiogenesis, immune suppression, Epithelial Mesenchymal Transition (EMT), cell 

migration, extracellular matrix production, as weIl as body organization (bone and sex 

organs) during embryonic development. 

TGF-~ exerts its biological effects and elicits multiple cellular responses by 

binding to its cell membrane receptor, a serine/threonine kinase designated types II 

(T~RII), which results in the recruitment of receptor type 1 (TI3RI or ALK5). Upon 

formation of hetero-tetrameric receptor complexes at the membrane, the signal is 

propagated to the nucleus through Smad transcriptional complexes, a family of 
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transcription factors, to convert TGF -p signaling into gene activation or represslon 

(Figure 1.1). 

Figure 1.1: TGF-p-Smad signaling pathway. A) TGF-p is a dimeric ligand, which 
exists inactive in its latent form. B) Upon release of TGF-p, the ligand converts to its 
active form and binds to the TGF-p membrane receptor type II, which induces the 
recruitment of the receptor type 1 and formation of a hetero-tetrameric receptor complex. 
C) The inhibitory prote in FKBP 12, which enforces the inactive basal state by binding to 
the regulatory region (GS domain) of type 1 receptor is then released D) Upon the release 
of FKBP12, the type II receptor phosphorylates GS domain of type 1 receptor, which 
creates a docking site for receptor Regulated-Smad, Smad2/3 proteins. E) ln the basal 
state, R-Smads and Co-Smad (Smad4) shuttle between nucleus and cytoplasm constantly. 
F) Anchor prote in, SARA captures Smad2/3 and presents the R-Smad to the activated 
type 1 receptor, which will phosphorylate R-Smads at the C-terminus. G) The active R­
Smads will be recognized by a basic motif in Smad4 resulting in the formation of Smads 
complex, H) which incorporates different DNA-binding cofactors and recruits either 
transcriptional coactivators or corepressors to regulate expression of several hundreds of 
target genes. 1) Dephosphorylation of R -Smads will terminate this signaling cycle. 
Adapted from Massagué et al., (2005) 
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Despite the critical role of TGF-~ signaling pathway in cellular homeostasis, 

aberrant TGF-~ signaling (mutation or deletion of members of the signaling) or 

deregulation of TGF-~ expression has been implicated in pathogenesis of many human 

diseases inc1uding carcinogenesis. On the basis of multiple evidences (Taya et al., 2003; 

Elliot and Blobe, 2005), TGF-~ has a dual role in tumor pathogenesis. For instance, in the 

eady stages of cancer development in tumor-derived mutations, TGF-~ limits the growth 

of normal epithelial tumors that defines the role of TGF-~ as a tumor suppressor. 

Whereas, in the later stages of cancer development despite of retaining TGF-~ signaling 

components, the aggressively growing tumor cells become resistance to the TGF-~ 

growth-suppressive effect due to the loss of the cytostatic gene responses. Moreover, 

cells become more invasive by undergoing Epithelial Mesenchymal Transitions (EMTs). 

In tumor-derived TGF-~ (where TGF-~ is actively secreted), cells that are in proximity to 

the growing tumors, such as immune cells are affected and the host-tumor immune 

response is suppressed. For the progressive growth and metastasis, TGF-~ can also 

provide a proangiogenic environment through direct effect on endothelial cell growth, 

survival, and motility where the tumor cells metastasis to specific organs. As mentioned 

above, TGF -~ signaling induction is involved in the regulation of gene expression, by 

which deregulation of this pathway may participate in cancer progression. Thus, 

understanding the molecular mechanism of TGF-~ signaling pathway provides new 

insights and strategies for treatment ofhuman cancer. 

In this chapter, an overvlew followed by a literature review on TGF-~ 

superfamily is presented. The attention is focused on the functional and structural 

features of the TGF-~ signaling pathway; and the outcome of the regulation or defects in 

this signaling pathway in preventing or promoting of human tumorigenesis is discussed. 

Ultimately, a brief overview ofprevious studies is introduced to focus on Talin, a protein 

which has been demonstrated in this thesis for the first time to be positively regulated by 

TGF-~. The aims and the objectives of this thesis which are to characterize the role of 

Talin in TGF-~ signaling pathway and its involvement in TGF-~ biological responses in 

human breast cancer celllines will be presented at the end ofthis chapter. 
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1.1 Overview of TGF -p Superfamily Members 

Transfonning Growth Factor-beta (TGF-~)s are members of a large superfamily 

of cytokines structurally related and characterized by six conserved cysteine residues that 

are encoded by 42 open reading frame (ORF)s in the human genome, nine in Drosophila 

melanogaster and six in the nematode Caenorhabditis elegans (Lander et al., 2001). The 

TGF-~ superfamily members are regulated proteins that have been classified into two 

subfamilies (Figure 1.2): 1) the three mammalian TGF-~ isofonns (TGF-~l, TGF-~2, 

and TGF-~3)/ActivinINodal subfamily, and 2) the BMP (Bone Morphogenetic 

Protein)/GDF (Growth and Differentiation Factor)/MIS (Muellerian Inhibiting Substance) 

subfamily (Shi and Massagué, 2003). The TGF-~ two subfamilies are not only defined by 

the sequence and structural homology but also by the particular signaling pathway that is 

activated through these ligands leading to different cellular responses. 

Type 1 

Type Il -

A 

ALK4 ALK4 ALK4.7 

T~RII ActRIIB ActRIIB ActRlIB 

~ 

--
500 target genes 

D 

AMHRII T~RII 

Figure 1.2: TGF -~ two subfamilies. A schematic relationship of the ligands, the type 1 
and II receptors, and the downstream R-Smad complexes illustrated for the two 
subfamilies: A) The TGF-~/ActivinINodal subfamily, and D) BMP (Bone Morphogenetic 
Protein)/GDF (Growth and Differentiation Factor)/MIS (Muellerian Inhibiting Substance) 
subfamily. Adapted from Shi and Massagué, (2003) 
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1.2 Review of the Literature 

1.2.1 TGF -(3 Discovery and Extracellular Regulation 

TGF -~ was initially described as an activity produced by retrovirally-transformed 

cells (Roberts et al., 1981). However, it is now obvious that the expression of TGF-~ is 

not only seen in transformed cells, but also in many normal cells and tissues. There are 

three homologous TGF-~ isoforms (TGF-~l, TGF-(32, and TGF-~3) expressed in 

mammals, and each is encoded by a distinct gene expressing a set of structurally and 

functionally related homodimeric pro-proteins (pro-TGF-(3) in a tissue-specific manner. 

TGF-~ 1 was the first member of the TGF-~ superfamily that was discovered, purified, 

and isolated from human and porcine blood platelets (Assoian et al., 1983) and was found 

enriched in human placenta (Frolik et al., 1983) and bovine kidney (Roberts et al., 1983). 

TGF-~ exists as a latent secreted homodimer, which is required to be converted to 

its active state for eliciting cellular responses. Inside the cell in the trans-golgi, the mature 

dimeric TGF -(3 is proteolytically cleaved from the C terminus of its precursor protein by 

furin-type enzymes, and remains non-covalently bound to its pro-protein, the Latency 

Associated Peptide (LAP), forming the Small Latent Complex, SLC (Figure 1.1). 

Dissociation or activation of TGF-(3 from LAP is a critical regulatory event. Like any 

other growth factor, TGF-(3 has binding proteins that are involved in the regulation of its 

distribution and extracellular activation, thereby modulating its metabolic effects (Frolik 

et al., 1983). The Latent TGF-~ Binding Proteins (LTBPs) are a family of extracellular 

glycoproteins also including fibrillin-1 and -2, the Extra-Cellular Matrix (ECM) proteins. 

Among the LTBP family members, the LTBP-1,-3,-4 are involved in the sequestering 

and binding to SLC via cysteine bonds to from a Large Latent Complex, LLC (Figure 

1.1). This complex maintains the cytokine in an inactive state and prevents it form 

eliciting cellular responses. Once, LLC targets TGF -(3 availability to various extracellular 

structures and circulates it in the bloodstream, TGF-~ is released and becomes active 

through proteolytic processing of the matrix-associated proteins. Only then, depending on 

the type and state of the ceIl, the active TGF -~ ligands elicit different cellular processes 
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by binding to the extracellular domain of the TGF-p receptors and inducing specific 

signaling pathways (Annes et al., 2003; Rifkin et al., 2004). 

1.2.2 TGF-p Signaling from the Cell Membrane tothe Nucleus 

1.2.2.1 TGF-p Signaling Receptors and Activation ofTGF-p Receptor Complexes 

The TGF-p superfamily members exert their biological effects through a 

conserved and weIl established signaling mechanism from the membrane receptors to the 

target genes in nucleus. The cell surface receptors that carry the TGF -p family signal into 

the cell are known as transmembrane serine/threonine kinases and are paired in different 

combinations as receptor complexes for different TGF-p family members. This 

serine/threonine kinase receptor complex consists of two distinct transmembrane 

proteins, known as the type 1 and type II receptors. TGF-p type 1 and II receptors are 

glycoproteins that have similar structural domains including, an extracellular N-terminal 

cysteine-rich ligand binding domain, a hydrophobic transmembrane domain, and a 

cytoplasmic C-terminal serine/threonine kinase domain. There is a conserved 30-amino 

regulatory segment rich in glycine and serine residues, termed the GS region that 

distinguishes type 1 receptor from type II. This GS region is named for the 

185TTSGSGSG192 sequence at its core and is located upstream of the serine/threonine 

kinase domain (Wieser et al., 1995). There are seven type 1 receptors also termed Activin 

receptor-Like Kinases (ALKI-7) and five type II receptors (ActRIIA, ActRIIB, BMPR­

II, AMHRII and TpRII) encoded in human genome, dedicated to TGF -p signaling 

(Figure 1.2). 

ln the absence of ligand, TGF -p type 1 and type II receptors are present as 

homodimers in the plasma membrane. Studies using mutated forms of TGF -p type 1 and 

type II receptors have indicated the requirement of at least two TGF -13 type 1 receptors in 

the signaling complex, and that the constitutively active transmembrane kinase activity of 

type II receptor is regulated through homodimerization (Dijkt et al., 2004). TGF-p 

signaling is initiated through activation of the ligand and formation of the type II 

receptor-ligand complex on the cell surface, where the ligand may undergo a 
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conformational change, exposing the binding epitope for the type 1 receptor (Shi and 

Massagué, 2003). Subsequently, receptor type 1 will be recruited and associated to the 

type II receptor, which in turn will be phosphorylated at the serine and threonine residues 

in the regulatory region (OS domain) by the type II receptor through its intrinsic kinase 

activity. In the absence of ligand, the OS region in type 1 receptor is hidden by FKBP12, 

an inhibitory protein which blocks the access to the phosphorylation sites and 

maintaining type 1 receptor inactive. While, upon TOF-~ stimulation, FKBP12 is released 

and the cytoplasmic kinase domain of type 1 receptor becomes active and is capable to 

recognize its substrate, the receptor-Regulated Smad (R-Smad) proteins. In the basal 

state, R-Smads shuttle between nucleus and cytoplasm constantly. Anchor proteins 

capture R-Smads and present them to the activated type 1 receptor, which will 

phosphorylate R-Smads. Phosphorylation of R-Smads at two conserved serines at the C­

terminal (SXS motif) produces a docking site for Smad4, the only Co-Smad, followed by 

Smad complex formations. Each of the R-Smads can then interact with a wide array of 

specific DNA binding proteins (Massagué et al., 2005; Attisano et al., 2002) to regulate 

transcriptional responses of TOF -~ target genes (Figure 1.1). 

1.2.2.2 TGF -~ Accessory Receptors 

Biochemical and genetic evidences have identified the existence of sorne 

accessory components of the TOF-~ receptor complexes functioning as co-receptors 

induding Betaglycan. This accessory receptor, also known as TOF -~ type III, is a 

membrane anchored proteoglycan with a large extracellular region and a short 

cytoplasmic tail with no discemible kinase function identified to date (Lopez et al., 1991; 

Chifetz et al., 1992). However, it is involved in mediating ligand access, particularly 

TOF-~2 to the type II signaling receptors; since TOF-~2 has a low affinity for the type II 

receptor in contrast to TOF-~l and TOF-~3 (Esparza et al., 2001; Lopez et al., 2001). 

Betaglycan might also have additional functions. According to Chen and his 

colleagues (2003), TOF-~ type II receptor can also phosphorylate the cytoplasmic part of 

Betaglycan, and as a result ~-arrestin is recruited to the receptor which leads to 
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endocytosis of both Betaglycan and TPRII, and ultimate1y, down regulation of TGF­

p signaling. 

1.2.2.3 Internalization of Membrane Bound Receptors 

Studies have suggested (Di Gugliemlo et al., 2003; Le Roy et al., 2005) that the 

intemalization of membrane bound receptors including Receptor Tyrosine Kinases 

(RTKs), and G-Protein Coupied Receptors (GPeRs) occurs mostly through two 

pathways: 1) the Iipid-raft (the caveolae to caveolin-positive vesicles) endocytotic 

pathway, and 2) the clathrin (the coated vesicles to early endosomes) endocytotic 

pathway. TGF-p receptor intemalization aiso occurs through both of these endocytotic 

pathways. 

The Iipid-raft-mediated endocytosis promotes degradation of the receptor 

complex through association of the TGF-p receptors with the Smad7/SMURF2 complex 

that is then recruited to the caveolin-1-enriched lipid rafts Ieading to the ubiquitin­

dependent degradation of the receptor. Besides trafficking in lipid-raft compartment, 

TGF-p receptor is also intemalized into the eady endosomes (clathrin endocytotic 

pathway). Despite the lipid-raft endocytotic pathway, the clathrin-mediated endocytosis 

plays a positive and crucial role in the TGF-p signal transduction through the TGF-p 

receptor-associated proteins. Among these proteins, SARA (Smad Anchor for Receptor 

Activation), which is abundant in endosomes, not only participates in intemalization with 

the endocytic machinery in endosomes, but also links Smad2 to TGF-p type 1 receptor, 

stabilizes their interaction, which enhances ligand induced Smad phosphorylation, gene 

expression, and TGF -p signaling (Tsukazaki et al., 1998). 

The involvement of this different intracellular pathway in regulation of the 

receptor signaling may be due to the composition of the heteromeric receptor complexes 

and the interaction of co-receptors, such as Betaglycan (Derynck et al., 2003). As 

mentioned before, the cytoplasmic part of Betaglycan is phosphorylated by TGF-p type II 
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receptor, Ieading to the recruitment of p-arrestin to the receptor and regulation of TGF-p 

receptor complexes internalization (Chen et aL, 2003). 

1.2.2.4 The Intracellular Mediators of TGF -p Signaling 

Smad Proteins 

Smads are intracellular proteins downstream of distinct TGF -p family of 

serine/threonine kinase receptors playing a critical role in transmitting signaIs form the 

membrane to specifie target genes in the nucleus. The prototypic members of the Smad 

family, SMA and MAD were first identified through genetic screens in worms: 

Caenorhabditis elegans (Das et aL, 1999), and in flies: Drosophila (Raftery et aL, 1999), 

respective1y. The related proteins were consequently identified in mammals. Therefore 

the name "Smad" was created upon the similarity of human Smadl sequence and 

function to the SMA protein in C. elegans, and the MAD protein in Drosophila (Liu et 

al., 1996). There are eight Smad proteins (Smadl-8) encoded in the human genome that 

are categorized into three distinct subclasses (Figure 1.3): Receptor-regulated Smads (R­

Smads), Common-partner Smads (Co-Smads), and Inhibitory Smads (I-Smads), each of 

which plays a distinct role in the pathway. 

Among the eight Smad proteins, there are five first identified substrates of the 

TGF-p family of type 1 receptors referred as Receptor-regulated Smads. Among R­

Smads, Smad2 and Smad3 are substrates for the TGF-p, Activin, and Nodal receptors 

that transduce TGF-p-like signaling pathways; whereas Smadl, Smad5, and Smad8 are 

substrates for BMP and Anti-Muellerian (AMH) receptors that mediate signals 

characteristic ofthose initiated by BMPs (Figure 1.2). As suggested by Goumans and his 

colleagues (2003), these two signaling pathways have opposing effects and define the 

balance in endothelial cell migration and proliferation. 

Smad4, also known as DPC4 (Deleted in Pancreatic Cancer-locus 4) belongs to 

the group of Co-Smad, which acts as a common partner for all R-Smads once 

phosphorylated. 
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Smad6 and Smad7 both are Inhibitory Smads (I-Smads) interfering with the 

Smad/Smad or Smad/receptor interactions, and thereby, terminating TGF-13 signaling. 

Structural Features of Smad Proteins 

Smad proteins with around 500 amino acids in length contain two conserved 

globular domains, the amino-terminal Mad-Homology 1 (MH1) domain, and the 

carboxyl-terminal Mad-Homology 2 (MH2) domain flanking a proline-rich divergent 

middle linker region (Figure 1.3). The X-ray crystallographic analysis of individual Smad 

domains has provided insights into the important structural features of the MH1 and MH2 

domains, inc1uding Smads interactions with other proteins as well as with DNA (Shi et al., 

1998). 

The MH1 domain (Figure 1.3) is conserved in all the R-Smads and the Co-Smad 

but not the I-Smads. With the exception of Smad2, the MH1 domain of Smads bind to a 

sequence-specifie DNA via a l3-hairpin structure and this binding is stabilized by a tightly 

bound zinc atom (Chai et al., 2003). However, Smad2 lacks this DNA-binding activity 

due to a 30 amino-acid insertion encoded by exon 3 which is thought to displace the 13-

hairpin loop and block DNA binding (Shi et al., 1998). 

The flexible linker region, which is quite different between the subgroups, 

contains a PY motif that is recognized by SMURFs, the HECT -domain-containing E3 

ubiquitin ligases (Figure 1.3). As one of the Smad-interacting proteins, SMURFs catalyze 

ubiquitin-mediated degradation of certain Smads and Smad-associated proteins, including 

the nuclear oncoprotein SnoN, and the TGF-I3-receptor complex (Bonni et al., 2001; 

Kavsak et al., 2000; Ebisawa et al., 2001). In other words, Smads can function as 

adapters for the E3 ligases to induce degradation of Smad-associated proteins. Besides 

the PY motif, there are sorne phosphorylation sites for several protein kinases (Figure 1.4) 

allowing specifie crosstalks with other signaling pathways including Mitogen-Activated 

Protein Kinases (MAPKs) that may prevent or activate the function of R-Smads (Zhang 

et al., 1999). Previously our lab identified another R-Smad-interacting protein, protein G­

coupled Receptor Kinase 2 (GRK2), which also phosphorylates the linker region of the 
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R-Smads. The Phosphorylàtion of the R-Smads linker region by GRK2 was shown to 

inhibit phosphorylation of R-Smads carboxyl-terminal by the type 1 receptor kinase, thus 

preventing nuc1ear translocation of the Smads complex, leading to the inhibition of TGF­

j3-mediated target gene expression, cell growth inhibition and apoptosis (Ho et al., 2005) 

The linker region in Smad4 contains a Nuc1ear Export Signal, NES (Pierreux et 

al., 2000) and a Smad Activation Domain, SAD (Qin et al., 1999) that overlaps the linker 

and MH2 regions (Figure 1.3). The SAD region in Smad4 is involved in transcriptional 

activationlrepression through interactions with transcriptional activators/repressors (Qin 

et al., 1999; Massagué et al., 2005). 

The highly conserved structure of C-terminal MH2 domain is a versatile protein 

interacting module, which provides specificity to the Smad function. For instance it 

mediates Smad activation through Smad-receptor association, Smads oligomerization 

through Smad-Smad interaction, and Smads nuc1eocytoplasmic shuttling through 

interacting with the nuc1ear pore complex (Xu et al., 2002). Smad mutational studies 

(Baker et al., 1996; Hata et al., 1997) suggest that there is an association between MH1 

and MH2 domains in the inactive state. However, upon ligand stimulation and receptor 

activation, MH1 and MH2 dissociate from each other to be functionally active and be 

able to heterodimerize with Smad4 or other R-Smad partners. In the case of R-Smads 

there is a conserved C-terminal-Ser-X-Ser motif that becomes phosphorylated and 

activated by the phosphorylated type 1 receptors, and thus allowing hetero­

oligomerization with Smad4 (Figure 1.3). A pocket lined with basic residues (basic 

pocket) has also been found in the MH2 domain ofboth R-Smads and Smad4 (Figure 1.3) 

that interacts with the phosphorylated region of the activated type 1 receptor in the case of 

R- Smads, and with the phosphorylated tail of R-Smads in the case of Smad4. According 

to the crystal structure analysis of the Smad2 (Wu et al., 2000), there is a set of 

hydrophobic patches (hydrophobic corridors) on the surface ofMH2 domain (Figure 1.3), 

which serves as a binding site for several proteins inc1uding the DNA-binding co factors , 

anchor proteins such as SARA to retain the R-Smads in the cytoplasm, and the 

nuc1eoporins for nuc1eocytoplasmic shuttling. 

11 



R-Smad Co-Smad l-Smad 
(Smad1,2,3,5,8) (Smad4) (Smad6,7) 
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Figure 1.3: Schematic representation of Sm ad proteins and their structural elements. 
AH Smad proteins consist of two conserved globular domains, the MH1 and MH2 
domains which are linked to a variable linker region. Except for I-Smads, there is a p­
hairpin structure in the MH1 domain which is essential for binding to DNA. The linker 
region in R-Smads and I-Smads contains a PY motif for recognition by the WW domains 
in SMURF ubiquitin ligases and a Nuclear Localization Site (NLS), while the linker 
region of Smad4 contains a Nuclear Export Signal (NES) domain important for shuttling; 
and a Smad4 Activation Domain (SAD) important for transcription. There is a basic 
pocket in the MH2 domain which is required for interaction of R-Smads with activated 
type l receptors in the case of R-Smads, and in the case of both the R-Smads and Smad4 
is required for interaction with the pS-x-pS motif (red baIl) of R-Smads. There is a set of 
hydrophobie patches or hydrophobie corridor on the surface of the MH2 domain of R­
Smads which serves as a site for multiple interactions. Adapted from Massagué et al., 
(2005) 

Smad1 

Smad2/3 

+CDK • MAPK .CAM kinase Il .. GRK2. TI3RI/BMPRI 

Figure 1.4: The position of phosphorylated residues in R-Smads. The linker region of 
R-Smads contains multiple phosphorylation sites for MAPKs, CDKs, GRK2, and other 
protein kinases which are indicated with different shapes. Adapted from Xu et al., (2006) 
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Smad Adaptors for Smad-Receptor Interaction 

Studies based on genetic description, biochemical characterization, as weIl as 

structural features of Smad proteins, have provided an understanding of the molecular 

mechanism ofhow Smads are involved in transmitting TGF-J3 superfamily signaIs. These 

studies have also revealed essential signaling determinants that mediate the interaction of 

Smads with the receptors, transcriptional partners, and other associating proteins. 

There are several adaptor proteins involved in facilitating Smad-receptor­

interaction. Among them, SARA is the most weIl characterized functioning as Smad2/3 

adaptor for cytosolic retention in the basal steady state (Tsukazaki et al., 1998). SARA is 

a multi-domain protein containing a FYVE-domain that mediates binding to phosphatidyl 

Inositol 3-phosphate (PtdIns3P) on the membrane (Itoch et al., 2002), being localized at 

plasma membrane, and being exc1usively enriched in EEA1-containing early endosomes. 

SARA also contains an 80-amino-acid Smad-Binding Domain (SBD) that interacts with 

MH2 domain of Smad2 and Smad3 in the cytosol. Upon activation of receptor complex 

induced by TGF-J3, SARA is required for the recruitment of Smad2/3 to the activated 

receptor complex at the plasma membrane. However, as SARA restricts Smad2/3 

proteins to the plasma membrane as weIl as the early endosomes, this interaction may 

also appear to occur in early endosomes. Roy and his colleagues (2005) reported that 

SARA may recruit TGF-J3 receptor trafficking into the early endosome, leading to Smad2 

phosphorylation. Therefore, the complex formation of receptors with SARA and Smad2/3 

in the early endosomes may be important in TGF-J3 signaling. 

Besides SARA, there are some other adaptor pro teins that have also been 

suggested to facilitate Smad2/3-receptor interaction inc1uding Hgs (Miura et al., 2000), 

Disabled-2 (Hocevar et al., 2001), Dok-1 (Yamakawa et al., 2002), Axin (Furuhashi et al., 

2001), ELF J3-spectrin (Tang et al., 2003), and a cytoplasmic isoform of the 

ProMyelocytic Leukemia (cPML) protein (Lin et al., 2004). 

Lin et al. (2004) have demonstrated the interaction of cPML with SARA, 

Smad2/3, and the TGF-J3 receptor and have suggested that this protein is critical for 
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phosphorylation of Smad2/3 and TGF-p signaling. Sorne proteins such as TRAP-1 

(Wurthner et al., 2001) and TLP (Felici et al., 2003) have been reported to act as an 

adaptor through interacting with the receptor complex and mediating the formation of 

Smad2/3-Smad4 complexes. 

ln addition to adaptor proteins playing a role in Smad2/3-receptor interaction, 

cytoskeletal proteins are involved in the localization and signaling of Smads through 

interacting with R-Smads. For instance, TGF-p stimulation induces dissociation between 

unphosphorylated Smad2/Smad3 and microtubule filaments and enhancing 

Smad2/Smad3 phosphorylation and activation (Dong et al., 2000). Filamin, an Actin­

binding protein that participates in the anchoring of membrane proteins to the Actin 

cytoskeletal protein is also involved in TGF-p signaling through interaction with Smads. 

It has been demonstrated that cells defective in Filamin expression have impaired TGF-p 

signaling and Smad2 phosphorylation (Sasaki et al., 2001). 

Several other proteins may also interact with R-Smads acting as their adaptors or 

interacting partners. However, a detailed examination will be required before their 

involvement in TGF-p signaling can be predicted. 

Phosphorvlation and Activation of the Smad Proteins 

As was mentioned previously, at the basal state, the inhibitory-FKBP12 protein 

interacts with Type 1 receptor at a conserved Leu-Pro motif adjacent to the GS domain 

and prevents phosphorylation, activation and intemalization of type 1 receptor, and 

ultimately blocks R-Smads phosphorylation. However, upon stimulation ofTGF-p ligand 

and formation of type II receptor-ligand complex on the cell surface, FKBP12 protein is 

released. As a result, the constitutively active transmembrane kinase domain of type II 

receptor phosphorylates the GS region of type 1 receptor which becomes active and 

exposes the GS region as a binding site for Smad2/3 (Huse et al., 2001). The activated 

cytoplasmic kinase domain of type 1 receptor then recognizes and phosphorylates the C­

terminal SXS motif of R -Smads. 
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It has been reported that upon TGF-p stimulation, phosphorylation of Smad2/3 

occurs within 15 to 30 minutes in cells being exposed to TGF-p. The steady-state of 

phospho-Smad levels will be maintained for several hours as long as TGF-p receptors 

remain active. Eventually, R-Smads will become dephosphorylated as a result of drop in 

TGF-p extracellular levels, negative feedback mechanisms, or inactivation of TGF-p 

receptors through intemalization and degradation among others (Massagué et al., 2005). 

Thus, the activity of Smad signaling is tightly based on the receptor activation. 

In addition to the C-terminal SSXS motif that is phosphorylated by type I 

receptors, R-Smads contain additional potential phosphorylation sites in the linker region 

(Figure 1.4) that are recognized by different cytoplasmic kinases including MAPK, which 

is involved in activation, and nuclear translocation of R-Smad; and GRK2 which inhibits 

R-Smads activation and nuclear translocation (Ho et al., 2005). 

Phosphorylation of R-Smads is a key event in Smad activation and is involved in: 

1) destabilizing R-Smads interaction with the receptor complex as well as SARA, and 

inducing the release of phosphorylated R-Smads from the complex presumably because 

of conformational changes; 2) allowing formation of R-Smads/Co-Smad heteromeric 

complex through providing a docking site for the basic surface pocket of the MH2 

domain of Co-Smad of which Smad4 is the only member; and 3) exposing a nuclear 

import region on the Smad MH2 domain for the movement and accumulation of Smad 

complex in the nucleus (Attisano et al., 2002), where Smads can bind to DNA and 

transcription cofactors to regulate target gene expression. 

Nuclear Localization of Smads 

In the basal state, R-Smads are retained predominantly in the cytoplasm and 

Smad4 is located throughout the ceIl, shuttling between the cytoplasm and the nucleus 

(Watanabe et al., 2000). However, following TGF-p stimulation, the phosphorylated R­

Smads are translocated into the nucleus via direct interaction of the hydrophobie corridor 

in the MH2 domain of R-Smads with the nuclear pore components, the Nup153 and 

Nup214 nucleoporins (XU et al., 2002). 
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Upon receptor-mediated phosphorylation of R-Smads, Smad4 also becomes 

concentrated in the nucleus through heteromeric complex formation of R-SmadlSmad4. 

Moreover, the NES motif which is only found within the Smad4 linker region and is 

generally recognized by CRMI (a nuclear export factor) will be masked and therefore 

blocking Smad4 nuclear export through CRMI pathway (Xu et al., 2004). 

Based on the over expression studies, it has been suggested that Smad3 and 

Smad4 can undergo nuclear import via an alternative mechanism, that is, importin­

dependent pathway. Importin a and p are the nuclear translocation components, involved 

in transporting most cargo proteins to the nucleus. Importin a recognizes a Nuclear 

Localization Signal (NLS) motif in the cargo proteins and binds to importin p, which 

directly interacts with the nuclear pore components. The importin-p-importin-a-cargo 

complex then passes into the nucleus (Massagué et al., 2005). In case of Smad3, it has 

been demonstrated that importin p interacts with the nuclear NLS-like motif at N­

terminal MHl domain of Smad3 followed by translocation to the nucleus (Xiao et al., 

2000). However, this importin-dependent pathway is considerably weaker and is not as 

efficient as the nucleoporins pathway (Xu et al., 2003). 

As mentioned earlier, R-Smads contain additional potential phosphorylation sites 

in the linker region with multiple serine and threonine sites that are recognized by 

different cytoplasmic kinases including MAPK, which is involved in phosphorylation, 

activation, and nuclear translocation of R-Smad (Smad3). G 1 Cyclin-Dependent Kinases, 

CDKs (Massagué et al., 2004) and ERK, another MAP kinase (kretzschmar et al., 1997), 

also mediate phosphorylation of the linker region in response to the ligand in a cell­

context dependent manner. However, this phosphorylated site not only decreases Smad 

signaling activity (in both cases) but also attenuates nuclear accumulation (in the case of 

ERK). 

In conclusion, Smad2, 3, and 4 directly interact with nucleoporins and undergo 

nuclear import. Nevertheless, in the case of Smad3 and 4, this process is mediated via 

nuclear translocation component, importin p. 
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Transcriptional Complexes of Smads 

Upon receptor mediated R-Smad phosphorylation, a heterotrimeric complex 

comprising two phospho-R-Smad molecules and one Smad4 molecule is formed and 

translocated into the nucleus through nucleoporins pathway to activate or repress the 

expression of different TGF-B target genes. R-Smads (with the exception of Smad2) bind 

directly with a very low affinity to Smad-specific DNA-binding motifs in the promoters 

oftarget genes through their MHl domain for transcriptional regulation. 

The Smad specific DNA-binding motif, named Smad Binding Element (SBE), 

was originally defined as the 5'-GTCTAGAC-3' sequence (Zawel et al., 1998) and later 

as 5'-GTCT-3', or its complement 5'-AGAC-3' sequence. Based on the crystal structure 

of the R-Smad MH1-SBE complex, Smads recognize the 5'-GTCT-3' sequence through 

the B-hairpin in the MHl domain (Shi et al., 1998). In addition to the canonical SBE 

motif, the Smad-DNA interaction can be also found in the GC-rich region in the 

promoters of Vestigial (Kim et al., 1997) and Tinman (Xu et al., 1998), which are 

required for the transcriptional repression. Furthermore, in the case of Jdl promoter, SBE 

and GC-rich elements are both required for Smad complex (Smad1/Smad4 or Smad3/ 

Smad4) binding to DNA. Nevertheless, sorne TGF-B responsive regions such as TGF-B 

Inhibitory Element (TIE) in the c-Myc promoter lack a canonical SBE but contain a 

"degenerate" SBE which binds to Smad complex (Chen et al., 2002). 

Since the affinity of Smad proteins for the SBE is too low (Shi et al., 1998), 

sufficient binding of the Smad complex for their cognate DNA binding sites and 

selectivity for specific target genes are achieved by incorporation of various sequence­

specific transcription factors into the R-Smad/Smad4 complex at the promoters. These 

transcription factors are involved in the recruitment of a wide range of coactivators or 

corepressors for transcriptional activation or repression oftarget gene promoters. 

Smad2, as compared to Smad3 Can not bind directly to the specifie DNA-binding 

motifs, owing to the presence of a 30 amino-acid insertion within the MHl domain. Thus, 

the transcription of genes that are dependent on Smad2 requires the recruitment of 
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transcriptional factors such as FoxHl (FAST-l), a Forkhead family member. FoxHl was 

the rust identified Smad-interaction transcription factor to permit the binding of the 

complex of Smad2/Smad4/F AST -1 to active-response element on the Mix2 promoter 

region in response to ActivinINodal-like signaIs in Xenopus (Chen et al., 1996; Chen et 

al., 1997). 

Smad-Mediated Transcriptional Regulation ofTGF-B Target Genes 

Upon engagement of TGF-p signaling in the nucleus, the specificity of the Smad 

signaling in the regulation of transcriptional activity of TGF -p target genes is achieved 

through four leve1s: 1) target gene specificity: recognition of the target genes with the 

presence of the specific Smad cognate DNA sequence located in the proper orientation 

and distance on their promoter; 2) cel! type specificity: expression of certain Smad DNA­

binding protein partners in certain cell types for targeting a specific gene 3) pathway 

specificity: recognition of Smad2/Smad3 or Smad1/Smad5/Smad8 through the 

recruitment of proper DNA-binding protein partners; and finally 4) specificity in 

transcriptional effect: activation or repression of certain target genes through recruitment 

ofspecific cofactors (coactivators or corepressors). 

The molecular mechanisms of transcriptional responses of the target genes 

through Smad complexes may either be direct or indirect. The direct mechanism is 

defined through association of Smads with specific protein partners such as FOX, HOX, 

RUNX, E2f, API, CREB/ATF, Zinc-finger and other families and their involvement in 

activation or repression of a gene promoter. Based on the nature of the Smad protein 

partners; coactivators such as p300/CBP, P/CAF and ARC105; or corepressors such as 

TG-Interacting Factor (TGIF), SKI, and SnoN are then recruited to a specific target gene 

promoter and assembled to the transcriptional complexes, which may be or not be 

restricted to a cell- type specific. 

The indirect mechanism or "self-enabled" gene responses is defined by Smads 

interacting with the product of expression of certain genes induced through Smads 

enabling the expression of other Smad-dependent gene response (Figure 1.5). For 
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instance, in mammalian epithelial cells the Smad3-Smad4 complex binds to the ATF3 

promoter and mediates expression of DNA-binding cofactor ATF3 (Kang et al., 2003). 

Following accumulation of ATF3, it can be recruited to the Id1 promoter as a partner of 

Smad3-Smad4 complex bound to the TGF -~ responsive region to repress the expression 

of Id1 gene (Figure 1.5). 

A 

B 

Figure 1.5: Self-enabling gene response: Induction of a repressor co factor. A) Upon 
TGF-~ stimulation, ATF3 expression which is a repressor cofactor is induced by the R­
Smad/Smad4 complex binding to a specifie DNA sequence in ATF3 promoter, in concert 
with the Smad partners, the cofactors. B) ATF3 expression becomes accumulated and 
then interacts with Smad3/Smad4 complex on the Idl promoter to mediate the repression 
of Idl. Adapted from Massagué et al., (2005) 

1.2.3 Alternative TGF-~ Signaling Pathways 

Smads are known to be the crucial signal transducers in TGF-~ signaling pathway 

that are involved in most actions of TGF-~ family members. However, based on 

evidences regarding Smad4-deficient organisms and tumor cell lines, Smad4 is not 

necessary for all actions of TGF-~ family members (Sirardet al., 1998). Therefore, 

signaling via R-Smads independently of Smad4 remains possible. 
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Upon binding of TGF-~ ligands to their receptor complexes, several signaling 

pathways are activated that have sorne effects on physiological outcomes and regulation 

of TGF -~ signaling. In addition, since the cells are almost exposed to several 

extracellular signaIs (mitogenic signaIs), TGF-~ signaling can be propagated or modified 

by cross talking with other signaling cascades such as Ras pathway cooperatively as weIl 

as antagonistically during development and oncogenesis (Massagué et al., 2003). 

Moreover, activation of these signaling pathways following TGF-~ treatment occurs in 

cell-context dependent manner and varies extensively in kinetics (Massagué et al., 2000). 

For example, receptor tyrosine kinases can modify TGF-~ signaIs via activation of the 

Erk Mitogen-Activated Protein Kinase (MAPK) which phosphorylates R-Smads (Smads 

1, 2, and 3) in the linker region. This phosphorylation occurs at low levels of TGF-~ 

which regulates Smad activation through inhibiting ligand-induced nuclear localization of 

Smads stimulation and thereby the TGF-~ antiproliferative response (kretzschmar et al., 

1997). In contrast, at higher levels ofTGF-~ stimulation, phosphorylation ofR-Smads in 

the linker region promotes accumulation of Smads in the nucleus, yet leads to alteration 

of other responses to Smads suggesting that ERK activation has other effects on Smad 

signaling. Wide range of studies supports that TGF-~ superfamily and MAPK-coupled 

signaIs synergize rather than antagonize each another. Engel and his colleagues have 

demonstrated that mitogenic and stress signaIs activate JNK, another MAP kinases, 

which is involved in phosphorylation, activation, and nuclear translocation of Smad3 

(Engel et al., 1999). 

One molecular explanation of how TGF -~ signaling pathway integrates with those 

of other growth factors can be through the interactions of Smads with the transcription 

factors that functions in other signaling cascades (Attisano et al., 2002). For instance in 

epithelial cells, p38 and JNK activity by agonists such as Tumor Necrosis Factor a. 

(TNFa.) induces ATF3 expression, which represses Id1 expression by TGF-~-activated 

Smads (Kang et al., 2003). Moreover, our lab demonstrated that activation ofp38 MAPK 

pathway in response to Activin (a TGF-~ family member) leads to phosphorylation of 
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ATF2 transcription factor which is required for cell growth inhibition of human breast 

cancer cells (Cocolakis et al., 2001). 

Activation of PI3K-AKT pathway by mitogenic growth factors has aiso been 

reported to affect TGF-p signal transduction (Seoane et al., 2004). It has been shown that 

high levels of AKT activity phosphorylates FoxO (a Forkhead transcription factor) and 

blocks its localization into the nucleus to function as a partner of Smad3/Smad4 

complexes (Brunet et al., 1999). Therefore, as a result of the activation of PI3K-AKT 

pathway and phosphorylation of FoxO, expression ofp21Cip1 gene induced by TGF-p is 

attenuated leading to cell survival (Seoane et al., 2004). 

TGF-p signaling can also be propagated independently of Smads through 

activation of Mitogen-Activated Protein Kinases (MAPKs); ERK1/2, p38, and JNK1I2; 

PI3-kinase/AKT; Protein Phosphatase2A (PP2A); and small Rho-like GTPases (RhoA, 

Rac and Cdc42). For instance, TGF-p activated kinase-1 (TAK1), a member of the 

MEKK family, links TGF-p receptors to the MAPK kinase kinase (MKK) activation 

biochemically and independently of Smads (Yamaguchi et al., 1995). It has also been 

reported that members of the Rho family of small GTPases are involved in the coupling 

of TGF-p receptors to JNK activation (Eagle et al., 1999). Nevertheless, the precise 

molecular mechanism of activation ofthese pathways by TGF-p receptors, the direct link 

between them and the TGF -p receptors, and their biological consequences remain 

unknown. 

In addition to gene expression responses, the cross talks between TGF -p signaling 

pathway and other prominent signaling cascades are involved in the regulation of turnor 

biology as weIl. For instan~e, the Wnt pathway has been shown to cooperate with the 

TGF-p signaling pathway to regulate tumorigenesis (Nishita et al., 2000). Sorne other 

evidences have demonstrated that activation of small GTPases by TGF-p may play a part 

in mediating TGF-p-induced changes in cytoskeletal organization such as membrane 

ruffling, lamellipodia, stress-fiber formation, and epithelial-to-mesenchymal 

transdifferentiation (Edlund et al., 2002). 
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ln summary, depending on the cell type and cell signaling context, several 

cytoplasmic kinases exert different or even opposite effects on both Smad-dependent and 

-independent TGF-p signaling pathway. 

1.2.4 Negative-Regulation/Termination of TGF -p Signaling 

TGF-p signaling is also modulated by negative regulators for the ligand access to 

the membrane receptors, which interferes with the ligand induced receptor complex 

formation; posttranslational modification of Smads (ubiquitination); recruitment of 1-

Smads, Smad phosphatases; transcriptional corepressors; or involvement of other 

signaling cascades, alIleading to attenuation ofTGF-p signal transduction. 

1.2.4.1 Regulation of Ligands Access to the Signaling Receptors 

The function and regulation of TGF-p is initiated with its secretion. Despite the 

numerous soluble proteins such as Latency-Associated Protein (LAP) which binds to 

TGF-p superfamily members and prevents their access to the membrane receptors, a 

group of membrane-anchored proteins such as Betaglycan has been identified as an 

enhancer ofligand-access to the TGF-p signaling receptors (Lopez et al., 1993). Rowever, 

Betaglycan can also prevent Activin signaling by promoting Inhibin (an Activin 

antagonist) binding to the type II receptor and therefore, blocking Activin access to the 

type II receptor (Lebrun et al., 1997; Lewis et al., 2000). 

1.2.4.2 Regulation of Membrane Receptors Activity 

The crystal structure analysis of unphosphorylated TGF -p type 1 receptor has 

demonstrated that at basal state, a cytosolic inhibitory protein named Immunophilin 

FKBP12 binds to a region between unphosphorylated GS region and kinase domain of 

type 1 receptor (Ruse et al., 1999). FKBP12 inhibits TGF-p signaling and prevents the 

leaky activation of ligand-independent phosphorylation of type 1 receptor by type II 

receptor or any other protein kinases (Chen et al., 1997) through blocking access to the 

22 



GS region phosphorylation site. The X-ray crystal structure of the FKBPI2-TpRI 

cytoplasmic domain complex demonstrated that FKBP12 also stabilizes the inactive 

conformation of type 1 receptor kinase domain (Ruse et al., 1999) and finally eliminating 

the binding site for R-Smad substrates. 

BMP and Activin Membrane-Bound Inhibitor (BAMBI) is another negative 

regulator for membrane receptors with a similar extracellular domain sequence to TGF-p 

type 1 receptors(pseudoreceptor). This transmembrane protein interferes with the ligand 

induced receptor complex formation and activation of type 1 receptors by forming 

heterodimers with type 1 receptors (Onichtchouk et al., 1999). 

There are several other receptor-interacting proteins with WW protein-protein 

interaction domain including TGF-p-Receptor Interaction Protein-l (TRIP-l/TRAP-l), 

Protein Phosphatase2A (PP2A), and Serine Threonine kinase Receptor Associated 

Protein (STRAP) that could be involved in receptor regulation or signal propagation. For 

instance, STRAP interacts with both TGF -p type 1 and type II receptors in a ligand­

independent manner and attenuates TGF-p signaling possibly by recruiting Smad7 (Datta 

et al., 1998). 

1.2.4.3 Regulation of TGF -p Receptor Complex and R-Smads Level by the 

Ubiquitin Ligase, SMURF 

Among several posttranslational modifications of Smads, ubiquitination is 

involved in termination of TGF-p signaling. One of Smads interacting proteins, Smad 

Ubiquitination Regulatory Factors (SMURFs) have been identified to ubiquitinate and 

degrade R-Smads. As mentioned previously, SMURFs are E3 ubiquitin ligases that 

contain a HEeT -domain and a WW protein-protein interaction domain through which 

they recognize and interact with the PPXY motif found in the linker region of R-Smads 

and I-Smad. The interactions between SMURFs and R-Smads lead to their immediate 

ubiquitination and degradation. While, the interactions between SMURfs and Smad7 

result in shuttling the Smad7/SMURFs complex to the cytoplasm and targeting SMURFs 
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to the TGF-13 receptor complex for degradation leading to downregulation of TGF-13 

signaling (Kavsak et al., 2000). 

ln conclusion, SMURFs are involved not only in decreasing the steady-state 

levels of R-Smads and interfering with Smad-activated transcription, but also in the 

regulation ofTGF-13 membrane receptor complexes. 

1.2.4.4 Feedback Regulation by Inhibitory Smads (I-Smads) 

ln contrast to R-Smads and Co-Smad carrying TGF-13 signal from receptor into 

the nucleus, the I-Smads (Smad6, Smad7) are capable to attenuate ligand-induced Smad 

activation and gene expression and ultimately abrogate TGF-13 family signaling. At the 

basal state, 1 -Smads reside in the nucleus and upon ligand stimulation the expressions of 

I-Smads are increased followed by their shuttling to the cytoplasm (Itoh et al., 1998), 

therefore, an auto-inhibitory feedback mechanism for ligand-induced signaling is 

achieved through elevated expression ofthe transcriptional regulators, I-Smads. 

Inhibition of TGF -13 signaling occurs through binding of the inhibitory Smad7 MH2 

domains to the type 1 receptor (Heldin et al., 1997; Massagué et al., 1998), thus 

preventing R-Smads recruitment and activation (Figure 1.6). Whereas, inhibition ofBMP 

signaling occurs through the inhibitory Smad6 which competes with Smad4 for binding 

to Smadl, and results in an inactive Smadl-Smad6 complex without interfering with the 

function of receptor (Massagué et al., 2000). 

Besides TGF -13 signaling pathway, other pathways such as interferon-y (IFN-y) is 

also involved in inducing Smad7 expression. IFN-y increases Smad7 expression by Jakl 

tyrosine kinase and STATI transcription factor therefore, inhibiting TGF-I3-mediated 

Smad3 phosphorylation and signal transduction (Ulloa et al., 1999). 
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Figure 1.6: Auto-inhibitory feedback mechanism for TGF -~-induced signaling. 
Following TGF-~ stimulation, the expression of the inhibitory Smad7 is increased and 
following translocation to the cytoplasm, it is capable to inhibit R-Smads phosphorylation 
and attenuate ligand-induced-Smad activation and gene expression. 

1.2.4.5 Smad Clearance from the Nucleus by Activation of Smads Phosphatases 

Lin and his colleagues uncovered PPMIA as Smad2 and Smad3 phosphatase 

through overexpression approach and screening for mammalian phosphatases that target 

R-Smads. They confirmed that PPMIA which is abundant in the nucleus may terminate 

TGF-~ responses through dephosphorylation of Smad2 at the C-terminal SXS motif and 

facilitate nuclear export of Smad2 or Smad3. They also reported that high level of 

PPMIA inhibited the anti-proliferation function ofTGF-~ (Lin et al., 2006). 

1.2.4.6 Transcriptional Corepressor, TG-Interacting Factor (TG IF), Sloan­

Kettering Institute ( c-Ski) or Ski-related novel gene N (SnoN) 

Upon localization of Smad complex in to the nucleus, this complex may associate 

with transcription coactivators or altematively with transcriptional corepressors. 

Depending on the nature of the Smad partners, the recruitment of corepressors such as 
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TGIF (Wotton et al., 1999), EVIl, SKI, or SnoN (Akiyoshi et al., 1999; Luo et al., 1996; 

Sun et al., 1999) to the Smad complex attenuates and antagonizes Smad-mediated 

transactivation ofTGF-B signaling (Liu et al., 2001; Wang et al., 2000). 

Wotton and his colleagues have reported that in response to TGF-~, TGIF 

interacts directly with Histone DeACetylases (HDACs) and recruits them to 

Smad2/Smad4 complex to inhibit nuclear function of Smads (Wotton et al., 1999). Lo 

and his colleagues demonstrated that in response to TGF-~, TGIF protein can be 

phosphorylated by MEK signaling (in Ras-MEK-MAPK pathway) therefore, resulting in 

the stabilization of TGIF protein and formation of Smad2/TGIF complex to repress target 

gene transcriptional activity (Lo et al., 2001). 

Evi-1 corepressor inactivates TGF-~-responsive reporters and attenuates TGF-~­

induced growth inhibition through interacting with Smad3 and preventing binding of 

Smad3/Smad4 complex to DNA (Kurokawa et al., 1998). 

There are two mechanisms involved in repression of TGF -~ signaling mediated 

by SKI and SnoN: 1) Recruitment of the nuclear transcriptional corepressor (N-CoR) and 

histone deacetylase and therefore, opposing the function of the histone acetyltransferase 

activity associated with the transcriptional coactivator, p300/CBP. 2) Competition with 

R-Smads for interaction with Smad4 and interfering with the formation of Smad4/R­

Smads complexes (Kim et al., 2000). However, Upon TGF-~ stimulation, the negative 

regulation on Smads mediated by SnoN is removed by ubiquitination and degradation 

either through recruitment of 1) E3 ubiquitin ligase, Anaphase Promoting Complex, APC 

(Stroschein et al., 2001), or 2) SMURF2 which is also bound to Smad2 (Ebisawa et al., 

2001). 

Taken all together, the activation or repression of TGF-~ target genes is relied on 

the aspects that regulate Smads nuclear accumulation, post translational modification, and 

interaction with transcriptional cofactors. 
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1.2.5 TGF -(3 and Cancer 

The complex process of tumor formation and progression requires a series of 

events to take place enabling cancer cells to acquire hallmarks such as: 1) resistance to 

growth inhibitory factors; 2) proliferation in the absence of exogenous growth factors; 3) 

escape from apoptosis; 4) angiogenesis induction; 5) immortality; 6) evasion form 

immune defense; and finally 7) invasion and metastasis (Hanahan et al., 2000). Signaling 

transduction pathways such as TOF -~ cascades are involved in the regulation of each of 

these hallmarks to maintain tissue homeostasis whereas, alteration or disruption of these 

signaling pathways contribute to human tumorigenesis. 

TOF -~ maintains the cellular homeostasis through regulation of a diverse set of 

cellular processes, including cell growth, proliferation, differentiation, and apoptosis in 

various tissue or cell types such as epithelial, endothelium, stromal fibroblasts, and 

immune cells. Moreover, the balance between these cellular processes (rather than their 

simple presence or absence) is critical to many physiological processes which will 

determine the final output of TOF-~ signaling. Breaking this balance is often associated 

with variety of diseases. There is enough evidence showing that deregulation in cell 

proliferation and cell death have been implicated in a variety of human diseases such as 

cancer. For instance, excess of apoptosis in immune cells results in immunodeficiency 

where as insufficient apoptosis may be observed in autoimmunity and human cancers 

(Oupta et al., 2000). 

Although TOF -~ is a potent growth inhibitor in epithelial tissues with cytostatic 

and differentiative effects preventing tumor emergence and progression, loss of these 

responses is a hallmark of cancer. Alterations in the TOF-~ signaling cascade including 

mutations or deletions in the central components of TOF-~ signaling pathway (the 

receptors and Smads) may disrupt the antiproliferative and apoptotic functions of TOF-~ 

and contribute to tumor formation thus, supporting the tumor suppressive nature of TOF­

~ in human cancers. 
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While mutational inactivation of TGF-p signaling components increases cancer 

risk, high level of TGF-p secretions enhances the aggressiveness of several types of 

tumors. At later stages of carcinogenesis, while retaining functional TGF-p receptors and 

Smad activity, the aggressive human tumor cells that have lost their growth-inhibitory 

responsiveness to TGF-p and have become resistant to TGF-p mediated cytostasis or 

apoptosis may utilize TGF-p as a tumor progression factor. For instance, breast cancer 

cells often lose TGF-p cytostatic responses without inactivation of TGF-p signaling 

members (Jennings et al., 1998; Anbazhagan et al., 1999). In response to TGF-p 

stimulation, these tumor cells induce gene responses that promote tumor growth (Gold et 

al., 1999), cell migration, invasion ( Derynck et al., 2001; Kang et al., 2005), evasion of 

immune surveillance (Gorelik et al., 2002; Thomas et al., 2005; Wojtowicz-Praga et al., 

2003), and metastasis (Roberts et al., 2003; Siegel et al., 2003; Kang et al., 2005). 

Whereas, the tumor-derived TGF-p has the ability to affect the tumor cells as well as 

many other cell types inc1uding stromal fibroblasts, endothelial cells and immune cells 

that are in proximity to the growing tumor leading to invasion and metastasis to other 

tissues. 

1.2.5.1 TGF-p Receptor and Smad Mutations in Cancer 

The alterations in TGF -p signaling System such as mutations found in the TGF-p 

receptors or Smads disrupt the antiproliferative and apoptotic functions of TGF -p and 

promotes tumorigenesis validating the role of TGF-p signaling components as bona fide 

tumor suppressor (Massagué et al., 2000). 

Mutational inactivation of TpRII is often found in most human colorectal and 

gastric carcinomas as the result of MicroSatellite Instability, MSI (Markowitz et al., 

1995). In both sporadic and hereditary colon and gastric tumors, these mutations occur as 

a result of insertion or deletion of bases within TpRII extracellular domain generating 

truncated and inactivated forms of the receptor. It was also reported that 15% of MSI 

colon cancers containing missense mutations are mostly found within the kinase domain 
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of TJ3RII (Grady et al., 1999). Since the MSI tumor formation has not been found in the 

pancreas, liver, and breast cancers (Myeroff et al., 1995; Tomita et al., 1999; Furuta et al., 

1999), the mutational inactivation found in TpRII are special for only certain cancers of 

specific tissue origins. 

Mutational inactivation within TGF-p type 1 receptor are less frequently observed 

in ovarian (Wang et al., 2000), breast (Chen et al., 1998), pancreatic cancers (Goggins et 

al., 1998), as well as T -celllymphomas (Schiemann et al., 1999). A variant of the TpRI 

gene (TpRI*6A) is carried by approximate1y 14% of the general population, which is 

involved in decreasing growth inhibition mediated by TGF-p (Kaklamani et al., 2003). 

Kaklamani and his colleagues have reported that the overall cancer risk is increased by 70 

and 19% among TpRI*6A homozygotes and heterozygotes, respectively, suggesting that 

this variant of the Tpru gene (TJ3RI*6A) may become a target for cancer 

chemoprevention. 

Among the Smads, Smad4 was first identified as a tumor suppressor gene that 

was homozygously de1eted in 50% of pancreatic carcinoma (Hahn et al., 1996). Since 

then, Smad4 mutations were identified resulting in 10% of all colon cancers and 30% of 

metastatic colon cancers. The mutations found in Smad2 have been rarely found in 

colorectal and lung cancers (Eppert et al., 1996; Uchida et al., 1996). Moreover, no 

Smad3 mutation has yet been found in human cancer. However, homozygous de1eted 

Smad3 mice develop metastatic colorectal cancer (Zhu et al., 1998). 

1.2.6 Dual Role of TGF -J3 in Tumorigenesis 

ln the early stage of cancer, the tumor suppressor role ofTGF-p is supported by cell 

growth inhibition in epithelial tissues with cytostatic and differentiative effects 

preventing tumor progression. Whereas, in the late stage of tumors, cells become resistant 

to growth inhibitory effect ofTGF-p due to the loss of cytostatic gene responses and gain 

more aggressive phenotype such as: epithelial-mesenchymal transdifferentiation, invasion, 
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immunosuppression, angiogenesis, extravasation, and metastasis (Siegel et al., 2003; 

Elliott et al., 2005). However, the precise mechanism for the dichotomous function of 

TGF-~ in human cancers remains elusive. 

In conclusion, TGF-~ a potent growth inhibitor in epithelial tissues, not only 

functions as a tumor suppressor at early stages of cancer, but also exerts tumorigenic 

effects and promotes cancer progression at Iater stages of carcinogenesis. Moreover, the 

Ioss of cytostatic, differentiative and antiproliferative effects of TGF-~ in preventing 

tumor emergence as well as tumor progression are hallmark of cancer and are considered 

essential components of tumorigenesis. 

1.2.7 Tumor Suppressor Role 

1.2.7.1 Cell Cycle Arrest 

Antiproliferative and mitogenic growth signaIs are involved in regulation of 

cellular proliferation by acting upon cell cycle regulators. The growth inhibitory effects 

of TGF -~ as well as its ability to induce differentiation are also mediated through a 

pro gram of cytostatic gene responses, which are barrier to tumor formation and 

progression (Massagué et al., 2006). 

According to the initial studies and recent microarray analysis on transcriptional 

responses of TGF -~ target genes in skin, lung, and mammary epithelial cells, a set of 

TGF-~ gene responses have been found that are involved in cell cycle regulation and 

control the TGF-~ cytostatic effect in a Smad-dependent manner (Massagué et al., 2006). 

Cyclin Dependent Kinase (CDK) inhibitors p15INK4b (Hannon et al., 1994), p21CIP1 (Datto 

et al., 1995), and p27KiP1 (Polyak et al., 1994), which are transcriptionally active and 

upregulated upon TGF-~ stimulation, mediate TGF-~ growth inhibition in late Gl phase 

at cell cycle arrest. These CDK inhibitors block cycling and prevent CDKs form 

phosphorylating the Retinoblastoma protein (Rb) allowing the hypophosphorylated form 

of Rb to bind and sequester the transcription factor E2F that mediates cycIins expressions 

necessary for S phase progression. At the same time, expression of c-MYC (Alexandrow 
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et al., 1995), a growth-promoting transcriptional factor, as weIl as (ID)-l, -2, and -3 

(which are nuc1ear factors involved in preventing cell differentiation) are repressed (Kang 

et al., 2003). 

Since transcriptional activation or repression of genes in response to TGF-~ are 

mediated by Smad-cofactors, p21 CIP1 and p15INK4b expressions are induced by activation 

of Smad-FoxO (Seoane et al., 2004) and Smad-FoxO-C/EBP~ transcriptional 

complexes (Gomis et al., 2006), respectively. While Smad-E2F4/5-C/EBP~ (Chen et al., 

2002) and Smad-ATF3 complexes (Kang et al., 2003) repress expressions of c-MYC and 

Id-l, respectively. Interestingly, C/EBP~ not only induces p15INK4b expression but also 

represses c-MYC by Sniads, and the induction of CDK inhibitors only occurs when c­

MYe expression is dec1ined. 

Furthermore, there have been reports suggesting that the growth-inhibitory effect 

of TGF-~ can be also mediated by the Smad-independent pathways inc1uding the MAPK 

(Hu et al., 1999) and the PP2A1p70S6 (Petritsch et al., 2000) kinase pathways. 

1.2.7.2 Apoptosis 

Besides regulation of cellular proliferation, TGF-~ also controls cell number by 

induction of pro gram cell death (apoptosis), which involves caspases activation (Inman et 

al., 2000) as weIl as the change in expression, localization, and activation of both pro­

and anti-apoptotic members of the BCL2 family (Mot yi et al., 1998). 

Some TGF -13 pro-apoptotic target genes have also been identified as components 

of the TGF-~ cell-death network that are involved in the regulation of apoptosis in a cell 

and context dependent manner. For instance, increased expression of transcription factor, 

TGF-~-Inducible Early-response Gene 1 (TIEG1) in various epithelial cell types 

(Tachibana et al., 1997), and Death-Associated Protein Kinase (DAPK) in hapatoma 

cells (Jang et al., 2002), inhibit proliferation and induce apoptosis. 
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Our lab has also demonstrated that in hematopoietic cells, TGF-P/Activin induces 

apoptosis through upregulation of SH2-doamin-containing Inositol-5-Phosphatasel 

(SHIP1) expression, which inhibits the survival protein kinase AKT signaling in a Smad­

dependent pathway (Valderrama-Carvajal et al., 2003). 

Moreover, the Smad-independent pathways, inc1uding DAXX-mediated JNK 

activation, may also be involved in the regulation of programmed cell death by TGF-p 

(Perlman et al., 2001). 

1.2.8 Tumor Promoter Role 

1.2.8.1 Angiogenesis 

The growth of solid tumors greater than 1 to 2 mm in diameter depends on the 

blood supply to pro vide the tumors required oxygen and nutrients through the formation 

of new blood vessels. Several evidences, inc1uding aberrant angiogenesis due to deletion 

ofTGF-pl (Dickson et al., 1995), TpRI (Larsson et al., 2001), and TpRII (Oshima et al., 

1996) in mice have supported a pro-angiogenic role for TGF-p. The formation of new 

blood vessels and stimulation of angiogenesis mediated by TGF-p is accompli shed 

through induction of Vascular Endothelial Growth Factor, VEGF (Yamamoto et al., 

2001), which is a maj or stimulus in the promotion of angiogenesis among others. 

1.2.8.2 Immunosuppression 

Immune system is normally involved in recognizing cancer cells expressing 

tumor-specific antigen followed by their destruction. However, during tumorigenesis, 

most cancer cens are capable to escape this immunosurveillance. One of the major 

mechanism by which cancer cells escape an immune response is through producing and 

secieting TGF-p ( Bodmer et al., 1989) known as a potent immunosuppressive cytokine 

(Kirkbride et al., 2003). The immunosuppressive effects of TGF-p are mediated through 

potent effects on Antigen Presenting cens (APCs), and T cells (Brandes et al., 1991). 

With the lost of TGF-p cytostatic response in cancer cens, T lymphocytes become the 
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primary targets for TGF-~-mediated immune suppression during immune response. TGF­

~ which is produced by T cens prevents InterLeukin 2 (IL2) production and inhibits 

proliferation of T cens (Kehrl et al., 1986). It has also the ability to prevent naïve T cens 

from acquiring their effectors (cytotoxic or helper) functions and inhibits differentiation 

of T cells (Gorelik et al., 2002). TGF-~ is also secreted by macrophages and is involved 

in preventing activation of tissue macrophages (Bogdan et al., 1992). 

In summary, TGF-~ plays a crucial role in the escape of tumor from host 

immunity and anowing the tumor to change the tumor microenvironment and host 

Immune response. 

1.2.8.3 Epithelial-Mesenchymal Transition (EMT) 

Epithelial-Mesenchymal Transition (EMT) is a well-established biological 

process characterized by disassembly of cell-cell contacts, where epithelial cell layers 

lose their cellular polarity (epithelial phenotype) and manifest a flattened migratory 

phenotype (Thiery et al., 2002), which is usually accompanied by reorganization of the 

Actin cytoskeletal prote in into stress fibers. This transition is critical for both embryonic 

development and wound healing. However, it also occurs during progression of benign 

tumors towards highly invasive malignancies including 24% to 45% of human breast 

cancers (Thiery et al., 2002; 2003, Zavadil et al., 2005). 

The loss of cytoplasmic expreSSIOn of E-cadherin protein, transcriptional 

repression of its mRNA, and increase in cell motility are the critical steps driving EMT 

(Thiery et al., 2002; 2003). Several autocrine factors and signal transduction pathways 

are contributed to EMT including TGF-~, which downregulates E-cadherin expression 

and therefore, enhances tumor cell invasiveness in a number of cancer models through 

both Smad-dependent (Zavadil et al., 2004), and Smad-independent signaling pathways 

inc1uding PAR6, PI3K-AKT, RHOA and p38 MAPK (Zavadil et al., 2005). 
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Based on phenotypic analysis in epithelial cells, EMT induced by TGF-p occurs 

in a coordinated temporal sequence of disassembly of cell junctions, cytoskeletal 

reorganization, loss of epithelial polarity, and remodeling of cell-matrix adhesions 

(Zavadil et al., 2001). However, the precise mechanism ofTGF-/3-induced EMT in vivo 

has not yet been clarified. 

Since invasion and metastasis are the most lethal features of cancer and cause of 

cancer-related death, a thorough understanding of the molecular mechanisms underlying 

TGF-p mediating tumorigenesis through the cross-talk with other signaling pathways in 

different human cancers may shed new light in providing novel therapeutic modalities for 

the treatment of cancer. 

1.2.9 Involvement of a.vP3 Integrin in Facilitating TGF-/3-Mediated Induction of 

EMT in Mammary Epithelial CeUs (MECs) 

The organization of the epithelial cells within the tissue depends upon cell-cell 

adhesion as weIl as cell interactions with the extracellular matrix that underlies the 

epithelial units and makes up most of the organization of the stroma. Therefore, cell 

adhesion to the extracellular matrix is critical in many biological processes and is 

mediated by several different proteins that are associated with sites of cell adhesion to the 

Extra Cellular Matrix (ECM) such as ECM ligands, transmembrane adhesion receptors, 

adaptor proteins, cytoskeletal-binding proteins, and signaling proteins (Figure 1.7). 

Cell adhesion to the ECM is primarily mediated by a class of heterodimeric 

transmembrane adhesion receptors called integrins, each composed of a a.p heterodimer. 

Integrins are a widely distributed family involved in the regulation of numerous 

biological pro cesses including homeostasis, proliferation, differentiation, migration, 

tissue organization, immune response, wound healing, angiogenesis, embryogenesis, as 

well as tumorigenesis (Hynes et al., 1992). 
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These transmembrane receptors are c1ustered at focal adhesions and Hnk the 

matrix with an intracellular structural scaffold, the cytoskeleton (Figure 1.7), as well as 

with signaling enzymes that direct cell survival, proliferation, differentiation, and 

migration. Therefore, integrin signaling affects cell adhesion, migration, differentiation, 

proliferation, and survival (Giancotti et al., 1997). 

Extracellular matrix 

Figure 1.7: Pro teins involved in linking the extracellular spaces to the inside the celle 
Fibronectin, an ECM protein binds to integrin receptor, which are also linked to Actin 
cytoskeletal proteins at focal adhesion complexes consisting of Src, F AK, Talin, and 
Paxilin. Therefore, these transmembrane receptors, the integrins, link the matrix to an 
intracellular structural scaffold, the cytoskeleton. Adapted from Campbell, (2003) 

TGF-J3 is a potent regulator of integrin-substrate interactions. It has been 

demonstrated that TGF -J3 upregulates the expression of several integrin subunits which 

obtain a more adhesive phenotype, as weIl as expression of ECM proteins (collagens, 

fibronectin [FN], and laminin) that are recognized by integrins (Ignotz and Massagué, 

1986). 

As mentioned previously, TGF-J3 suppresses tumor formation by inducing cell 

cycle arrest and apoptosis. However, during tumorigenesis TGF-J3 loses its cytostatic 

function (due to genetic and epigenetic changes) and acquires the ability to promote 

development of metastatic phenotypes. Unfortunate1y, the molecular mechanisms 
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underlying the conversion of TGF -~ as a tumor suppressor to a tumor promoter are not 

weIl defined. However, according to Galliher and Schiemann (2006) this conversion may 

involve the signaling inputs from integrins. They have recently presented an approach for 

TGF-~ mediated tumor suppression in progressing human breast cancers. They 

demonstrated that upon TGF-~ stimulation in Mammary Epithelial Cells (MECs), 

~3integrin expression increases which alters TGF-~ signaling. They showed that the 

~3integrin directly couples to the TGF -~ signaling system by interacting physically with 

T~RII, promoting and Src-mediated T~RII tyrosine phosphorylation, enhancing cell 

proliferation and the ability of TGF-~ to activate MAPKs and consequently, to induce 

EMT. 

TGF-~ contribution to tumor invasion, EMT, and cancer progression is also 

mediated by increasing the motility of tumor cells. Kloeker and et al. (2004) performed 

cDNA microarray analysis on a TGF-~-responsive cellline, Human Mammary Epithelial 

Cells (HMEC), to identify TGF-~-inducible genes and whether they are involved in TGF­

p-mediated migration and EMT. They reported that Kindlerin, which has been implicated 

in human cancers and significantly overexpressed in lung and colon cancers (Weinstein et 

al., 2003) was found to be regulated by TGF-~ at both mRNA and protein level. 

Kindlerin contains' a putative FERM (Four point one Ezrin, Radixin, Moesin) domain 

identified in several proteins induding Talin that connects the cytoplasmic domains of 

transmembrane proteins to the Actin cytoskeletal proteins (Bretscher et al., 2002). 

Based on the homology of the FERM domain of Kindlerin with the integrin­

binding residues found in Talin, they also demonstrated localization of kindlerin at sites 

of integrin-rich membrane-substratum adhesion (focal adhesions) and complex formation 

with the cytoplasmic domain of integrin~. Since integrins have a critical role in 

mammalian cell adhesion and migration, based on siRNA studies performed by the same 

group, they were able to demonstrate the impact of kindlerin on cell spreading. They 

showed that in HACaT cells after 48 hours of exposure to TGF-p kindlerin levels 

increased; whereas, E-cadherin expression which is a marker for EMT declined. In 
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conclusion, they suggested that kindlerin may mediate TGF-p signaling in tumor 

progression via contributions to integrin-dependent cellular functions. 

Since, all FERM domain containing proteins share homologous structural 

domains, they are therefore proposed to be regulated by similar mechanisms. Talin is 

known for its role in linking integrins to the Actin cytoskeletal proteins (Horwitz et al., 

1986), as well as in integrin-mediated adhesion and developmental events. Mutant studies 

in Drosophila ovarian follicle cells have also uncovered a new role for Talin in regulating 

E-cadherin-mediated cell adhesion, that is, inhibition of DE-cadherin transcription 

through modulation of transcription mechanism independent of integrins (Becam et al., 

2005). In this study, we found Talin, another FERM do main containing protein is 

positively regulated by TGF-p1 in breast cancer celllines, which is involved in TGF-p 

biological responses. Therefore, to have a better understanding of Talin and its functional 

roles, a brief overview and a concise literature review on Talin are presented in the 

following section. 

1.2.10 Talin 

Talin is a member of the 'band 4.1' superfamily of membrane protein-cytoskeletal 

adaptor proteins (Rees et al., 1990; Pearson et al., 2000). This protein was initially 

identified as the first cytoplasmic protein binding to integrins (Horwitz et al., 1986) and 

linking them to the Actin cytoskeletal proteins (Jockusch et al., 1995; Critchley et al., 

2000). Talin proteins are found in a wide variety of organisms, from slime molds 

(Kreitmeier et al., 1995) to human (Co iller et al., 1984) in different ti~sues including 

leukocytes, lung, placenta, small intestine, liver, kidney, spleen, thymus, colon, skeletal 

muscle, and heart (Ben-Yosef et al., 1999). Chen et al. (2000) also demonstrated that 

Talin is highly expressed in several prostate and breast cancer cell Hnes. Based on the 

obtained results in the present thesis, Talin is not only expressed highly in human breast 

cancer cells but also positively regulated by TGF-p1 (will be discussed in more details in 

Chapter-III). 
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The human Talin gene is mapped to chromosome 9p13 (Gilmore et al., 1995), 

extending over more than 23 kb consisting of 57 exons and 56 introns (Ben-Y osef et al., 

1999). In mammals, there are two Talin genes, TIn1 (approx. 30 kb) and Tln2 (> 200 kb) 

encoding proteins containing 2541 amine acids with approximately 74% identity. 

However, Tin2 has a different size due to the presence of much larger introns and has a 

more restricted pattern of expression than the ubiquitous TIn1 (Monkley et al., 2001). 

Regarding the distribution of Talin protein in various types of cells and tissues, 

immunocytochemical studies have demonstrated that Talin is localized in a variety of 

structures. For instance in platelets, it may be distributed from cytosol to membrane in 

response to thrombin activation (Table-1), which is associated with Talin 

phosphorylation on serine/threonine residues located on the Talin head domain 

(Bertagnolli et al., 1993; Critchley, 2004). However, after the discovery of the second 

Talin gene, TIn2 and its recognition by several antibodies it is difficult to interpret the 

reported data so far. 

Table-l: Talin Distribution 

• Cell-extracellular matrix junctions 
- Focal adhesion 

- Basal surface epithelial/endothelial 

- Myotendinous junctions 

• Cell-cell junctions 
- Endothelial cell-cell junctions 

- T-cells at junctions with antigen presenting cells 

- Neuromuscular jucntions 

• Other sites 
- Membrane ruffles 

- Golgi and endoplasmic reticulum 

- Platelets (translocates trom cytosol to membrane in response to thrombin) 

Table 1.1: Distribution of Talin in different ceUs and tissues. Adapted form Critchley, 
(2004) 
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1.2.10.1 TaUn Domain Structure and Different Protein Binding Sites 

Talin is a large (270 kDa) prote in containing approximately 2541 amino acids 

which exists as a flexible, elongated (approx.60 nm) anti-parallel homodimer (Isenberg et 

al., 1998). As shown in Figure 1.8, Talin contains two protein domains, an N-terminal 

globular head region (residues 1-435) and a C-terminal flexible rod region (residues 

2270-2541). There is a calpain proteolytic cleavage site between the Talin head and rod 

domains liberating the N-terminal head form the C-terminal Rod domain and another 

protease-sensitive region within the rod domain (Critchley, 2004). 

FERMDOMAIN 

F1 F2 F3 

N c 

( ) E ) 

Head (50 kDa) Rod (220 kDa) 

• F-actin (102-433, 951-1327, 2345-2541) • Laylin (280-435) 

• Integrin (358-400,1984-2113) ElU FAK(225-357) 

; Vinculin (607-636, 853-876,1044-1969) -4"' Cal pain cleavage (432) 

* High stoichiometry phosphorylation 1144, 150,466) 

Figure 1.8: Talin domains. Protein domains of Talin include an N-terminal globular 
FERM domain (FI, F2, and F3) and a C-terminal flexible Rod domain. There is a calpain 
proteolytic cleavage site between these two domains. The binding sites for different 
proteins are shown in different shapes. The stars indicate sites with high possibility of 
phosphorylation. Adapted form Ratnikov et al., (2005) 

The globular Talin head contains sequences similar to the FERM (band four­

point-one, ~zerin, radixin, moesin) domain found in the ERM ~zerin, radixin, moesin) 
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family of proteins that characterizes these proteins. FERM domain (residues 86-400) 

which consists of three subdomains FI, F2, and F3, is enriched in basic amino acids 

(Rees et al., 1990) with binding sites for p-integrin, layilin, Focal Adhesion Kinase 

(FAK), PIP kinase (type Ir isoform ofphosphoinositide 4,5-kinase), and Actin (Garcia et 

al., 2003; Borowsky et al., 1998; Ling et al., 2002; Hemmings et al., 1996). 

F3, one of the subdomains of FERM domain, is the major binding site for Talin 

interacting with integrinp subunit. This region has the same structural fold as Phospho 

Tyrosine Binding (PTB) domains, which interacts with the NPx Y motif in the 

cytoplasmic tails of integrinp subunit (Calderwood et al., 2002; Garcia-Alvarez et al., 

2003). This interaction increases the affinity of integrin extracellular domains for ligands 

(inside-out signaling) through conformational changes in the integrin extracellular 

domain (Calderwood et al., 2004). Moreover, Talin head region contains binding sites for 

the type 1 y661 isoform of Phosphatidyl-inosital-4-phosphate 5-kinase, PIPK (Ling et al., 

2002; Di paolo et al., 2002), and F AK (Borowsky et al., 1998), which are required for 

localization of Talin to the membrane and cell-ECMjunctions (focal adhesions). 

The Talin rod domain contains a conserved C-terminal tail with different binding 

sites inc1uding Actin-binding site (Hemmings et al., 1996), a second integrin-binding site 

(Xing et al., 2001; Tremuth et al., 2004), and several binding sites for vinculin, another 

cytoskeletal protein (Bass et al., 1999). It has been reported that this domain is also 

responsible for Talin homodimerization (Molony et al., 1987; Muguruma et al., 1995). 

1.2.10.2 TaUn Functional Roles 

In addition to the key function of Talin in coupling the integrin family of cell 

adhesion molecules to the Actin cytoskeletal proteins (Critchley, 2004), Talin is also 

involved in integrin signaling. The integrin inside-out signaling occurs through binding of 

Talin FERM domain to the integrin cytoplasmic tails, which induces conformational 

changes in the integrin extracellular domains and therefore increases their affinity to its 

extracellular matrix ligands inc1uding fibronectin or laminin (Barsukov et al., 2003; de 
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Pereda et al., 2005; Di Paolo et al., 2002; Ling et al., 2002; Nayal et al., 2004). Whereas, 

binding of Talin FERM domain to FAK (a non-receptor tyrosine kinase) and layilin (a 

transmembrane protein) is involved in integrin outside-in signaling, modulating cell 

adhesion and motility (Borowsky et al., 1998; Bono et al., 2001). 

Several evidences from different sources such as functional studies using antibody 

microinjection (Nuckolls et al., 1992) and antisense RNA (Albiges-Rizo et al., 1995) 

supported the essential role of Talin in integrin-mediated cell adhesion through 

confirming the involvement of Talin in focal adhesion assembly (cell-extracellular matrix 

junctions), actin stress fibers, and cell migration. Talin is also known for its role in a 

variety of integrin-mediated developmental events. Gene knockout studies (Cram et al., 

2003, Brown et al., 2002; Monkley et al., 2000) where Talin CI-) embryos were 

embryonic Iethal at the gastrulation stage, have confirmed the pivotaI role of Talin in 

embryogenesis development. 

Interestingly, Becam et al. (2005) have reported that Talin has a second, integrin­

independent function. They demonstrated that Talin downregulates DE-cadherin 

transcriptional expression in Drosophila ovarian follicle cells. This discovery placed 

Talin among the proteins found at cellular junctions that can also regulate gene 

expression. So far, the possible mechanism involved in Talin repressing DE-cadherin 

expression has not been defined. Tepass and Godt (2005) have suggested that since Talin 

has not been detected in the nucleus, perhaps it may recruit a transcriptional repressor to 

block DE-cadherin expression. Similar to the protein Zo-l that sequesters ZONAB at the 

tight junction and suppresses proliferation in epithelial cells, Madin-Darby Canine 

Kidney (MDCK) cells (Balda et al., 2003). Therefore, it will be important to elucidate if 

Talin is essential in the regulation of E-cadherin gene expression in other tissues and 

organisms, and discover the signaling pathway and mechanisrn involved in this event. To 

accornplish this, a better understanding of how Talin bec ornes regulated and activated is 

required. 
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1.2.10.3 Talin Regulation and Activation 

Since Talin may incorporate many signaIs, it would be interesting to know how 

Talin is activated. There are several potential mechanisms implicated in Talin regulation, 

including proteolytic cleavage by calpain separating the N-terminal-FERM domain from 

the C-terminal rod domain; Talin phosphorylation; or Talin interacting with inositol 

phospholipids, which will induce a conformational change in Talin enhancing its affinity 

for the P subunit ofintegrin cytoplasmic tail (Martel et al., 2001). 

As illustrated in Figure 1.9, integrin signaling leads to tyrosine phosphorylation of 

type 1 gamma Phosphatidyl-Inositol Phosphate Kinase (PIPKly) by Src, which is 

potentially regulated by F AK. Phosphorylation of PIP kinase increases its affinity for 

binding to Talin and competing with integrin P subunit. Upon formation of PIPKly-Talin 

complex, not only PIPK is targeted to the focal adhesions but also increases its catalytic 

activity to produce PIP2 at focal adhesions. PIP2 is a key lipid messenger playing a 

pivotaI role in regulating a variety of cellular signaling pathways. This membrane 

phospholipid promotes the recruitment of many cytosolic proteins to the plasma 

membrane for protein-protein interactions and for the modulation of protein activities 

through allosteric structural transitions. PIP2 production at FA also enhances integrin­

Talin interaction which may then displace PIPKly from Talin leading to the reduction of 

PIP2 production pointing to a critical role of Talin in regulating the generation of PIP2 in 

integrin signaling complexes. 

Since PIPKly661 and integrin share the same binding site on Talin F3 FERM 

subdomain (PTB domain), Ling and his colleagues (2003) demonstrated a model which 

was supported by mutational studies. They suggested that upon phosphorylation of 

PIPKIy on Y644, Talin switches from binding to integrin to PIPKIy661. Y644 forms a 

charge-charge interaction with Talin residues, K357 and R358, which are located close to 

Y644. Phosphorylation of integrin P subunit on Y788 results in the loss of integrin 

binding to Talin head do main due to the fact that this tyrosine-phosphorylated residue 

may be sterically hindered from interacting with K357, or R358 of Talin. 
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Figure 1.9: Activation of Talin and complex formation of integrinffalin/actin. A) 
PIP kinase and Talin remain inactive in cytosol. B) Upon formation of Talin-PIP kinase 
complex, PIP kinase becomes active C) followed by the translocation of the complex to 
the plasma membrane where PIP kinase becomes further active through tyrosine 
phosphorylation of PIP kinase by Src and is exposed to its substrate PtdIns4P. This 
promotes D) conversion of PtdIns (4, 5) P3 to PtdIns (4, 5) P2; E) activation of the bound 
Talin at the plasma membrane where it exposes its integrin-binding site as well as 
dimerization sites; F) activation of the cytosolic pool of Talin; G) activation of integrin 
and dissociation of P-subunit from a-subunit by Talin; H) providing the link to the actin 
cytoskeletal protein; 1) and finally displacement of PIP kinase to its inactive cytoplasmic 
pool, or (J) binding of PIP kinase to one of the two FERM domains in the Talin dimer. 
Adapted from Critchley, (2004) 

In this thesis, Talin was explored to be positively regulated by TGF-p, 

translocated to the plasma membrane, co-Iocalized at the end of Actin stress-fibers, and 

coupled to TGF-p signaling system. It was also demonstrated that Talin antagonizes 

TGF-p biological responses. 
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In summary, TGF-~ as a member of a large superfamily of structurally related 

regulatory proteins regulates diverse cellular events including cell proliferation, 

differentiation and cell migration among others. Despite the fact that TGF-~ is known as 

a potent growth inhibitory in epithelial cells, during tumorigenesis it functions as a tumor 

suppressor at early stages of carcinogenesis and as a stimulator of malignant progression 

at later stages. Under certain circumstances, one of these two roles of TGF -~ may be 

dominant over the other. However, the mechanism undedying this switch is not well 

characterized. Thus, learning more about the TGF-~ target genes and Smad interacting 

partners that may lead to cross talk with other signaling pathways is crucial. 

1.2.11 Objectives and Hypothesis 

TGF-~ signaling cascade plays a crucial role in the maintenance of the cellular 

homeostasis in various tissues and organisms through regulation of different cellular 

physiological processes including proliferation, differentiation, and cell growth arrest 

among the others. Inappropriate regulation of TGF -~ signaling pathway has been linked 

to many human pathogenesis inc1uding cancer. During tumorigenesis, TGF-~ can either 

negatively regulate tumor development by inhibiting cell growth and proliferation or can 

positively promote cancer through enhancing EMT, angiogenesis and immune 

suppression. Although much is known about the mechanism of TGF-~ signaling via 

knockout mouse models either for the ligands, TGF -B receptors, or downstream signaling 

proteins; the complex dual role of TGF-~ during tumorigenesis remains elusive. 

Therefore, obtaining better knowledge of TGF-~ signaling network, characterizing the 

novel Smad-interacting proteins and understanding the molecular mechanism by which 

aberrant TGF -~ signaling may contribute to human cancer will reveal insights for 

improving targeting TGF -~ signaling through the development of novel clinical 

treatments. 

Kindlerin, a FERM domain-containing protein is positively regulated by TGF-~ 

and is involved in TGF-~l-mediated migration and EMT in human mammary epithelial 
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cells (Kloeker et al., 2004). Similar to Kindlerin, Talin is also a FERM domain containing 

protein, which is highly expressed in breast cancer celllines (Chen et al., 2000). Since 

FERM domain containing proteins share homologous structural domains, they are 

proposed to be regulated by similar mechanisms through physical interaction with the 

cytoplamic domains of transmembrane proteins or receptors (Bretscher et al., 2002). 

y oun Yi et al. (2002) demonstrated that TGF -p 1 stimulation increased surface expression 

of integrin ŒvP3 and induced EMT in human cervical squamous carcinoma cellline based 

on actin stress fiber formation, focal translocalization of Talin and integrin av subunit, as 

well as translocalization and down regulation of E-cadherin. Therefore, we hypothesized 

that Talin may also be a TGF-p target gene, which may be translocated to the plasma 

membrane following TGF-pl stimulation and involved in TGF-p biological responses in 

mammary tumor cells. It has also been demonstrated that sorne Actin-binding proteins 

(Filamin) participating in the anchoring of membrane proteins for the actin cytoskeleal 

proteins are involved in TGF-p signaling through interaction with Smads (Sasaki et al., 

2001). Since, Talin is a constituent of focal adhesions and an Actin-associated-integrin 

binding protein we hypothesized that Talin may also be involved in TGF-p signaling 

through interaction with Smads. 

Briefly, the main goals ofthis thesis are to identify Talin as a downstream TGF-p 

target gene in human epithelial breast cancer celllines and to elucidate the role of Talin 

in TGF-p signaling pathway and cellular responses. 

1.2.12 Thesis Organization 

In the earlier sections of this chapter (Chapter 1) the introduction, a detailed 

review of the literature directly relevant to this research, motivation for this work and 

objectives were presented. In Chapter II, all the reagents as weIl as the experimental 

setup and procedures employed in this study are introduced. The experimental results are 

presented and discussed in Chapters III and IV. Finally, in Chapter V the contributions of 

this thesis are summarized, and sorne recommendations for extensions of this work are 

offered. 
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CHAPTER II: MATERIALS AND METHODS 

2.1 Growth Factor, Antibodies, and Reagents 

Human TGF-Bl #100-21R was purchased from Pepro Tech Inc. Mouse 

monoclonal [8D4] antibody against Talin (ab11188) was purchased form Abcam Inc. 

Rabbit polyclonal antibodies (PAb) against Smad2/3 (FL-425): sc-8332, TGFB RI (V -22): 

sc-398, TGFB RII (C-16): sc-220, SARA (H-300): sc-9135; and mouse monoclonal 

antibodies (mAb) against Smad4 (B-8) sc-7966 were aU purchased fonn Santa Cruz 

Biotechnology Inc., CA. Rabbit polyclonal antibodies (pAb) against phospho-Smad3 

[Sigma Chemical Co. (St. Louis, MO)]; mouse antibodies against B-Tubulin [BD 

Transduction Laboratories, Ontario, Canada]; and Polyclonal antibodies (PAb) against 

ERKl/2 [New England Biolabs, Pickering, Ontario, Canada] were used. Goat anti-mouse 

HorseRadish Peroxidase (HRP) and goat anti-rabbit HRP were supplied from Santa Cruz 

Biotechnology. Goat anti-mouse Rhodamine Red X was supplied from Jackson 

ImmunoResearch Laboratories (West Grove, PA). A- and G-Sepharose beads were 

purchased from Amersham Biosciences/GE Healthcare (Quebec, Canada). 

Oligonucleotides for human Talin primers and siRNA were purchased from Alpha DNA 

(Quebec, Canada) and Sigma respectively. LipofectAMINE 2000 reagent [Invitrogen 

(Ontario, Canada)]; and TRITC-conjugated phalloidin [Sigma Chemical Co., St. Louis, 

MO, USA)] have been utilized in this study. 
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2.2 Plasmid Constructs 

The 3TPLuc reporter construct was a gift from Dr. Joan Massagué (Memorial 

Sloan-Kettering Cancer Center, NY). This construct contains TGF-f3/Activin-responsive 

elements of the plasminogen activator inhibitor 1 (PAI-l) and collagenase promoters 

which is widely used to assess TGF-f3/Activin signaling requirements. 

2.3 Cell Culture 

Ruman mammary adenocarcinoma cell lines, MCF7 and MDA-MB-231 were 

cultured in Dulbecco's Modified Eagle's Medium (DMEM) in the presence of 10% Fetal 

Bovine Serum (FBS), and 2 mM L-Glutamine. Cells were passed every 3rd day or at 80% 

confluency. They were detached by trypsinization, followed by washing with DMEM 

containing 10% FBS to neutralize the trypsin effect, counted with hematocytometer, and 

plated in the culture dish. W orking cultures were incubated and maintained at 37°C in a 

humidified atmosphere of 95% air, and 5% CO2• 

2.4 Reverse-Transcription PCR (RT-PCR) 

2.4.1 RNA Extraction 

Cells were starved ovemight and were then mock treated (control cells) or 

stimulated with 100 pM TGF-f31 in DMEM without serum media. The total RNA was 

extracted using Trizol reagents (Invitrogen) according to the manufacturer's protocol. 

Briefly, the cells were lysed directly in the culture dish by addition of Trisol solution. 

Celllysates were then passed several times through a pipette to lyse the cells completely. 

RNA was extracted by the addition of Chloroform and was precipitated with isopropanol 

followed by washing with 70% ethanol (EtOR). The pellets were air dried, dissolved in 

diethylpyrocarbonate (DEPC) treated water, and incubated at 65°C for 15 minutes for 

complete dissolving. The total RNA extracts were quantified spectrophotometrically at a 

wavelength of 260 nm (Optimal density OD260nm of 1 = 40 Jlg/ml of signal stranded 

RNA). 
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2.4.2 RT-PCR 

cDNA synthe sis was carried out using oligo-dT primers, 2 !J.g of total RNA, and 

Superscript First Strand Synthesis System for RT-PCR (invitrogen). Thermal cycling 

conditions were performed for 25 cycles of 94°C for 2 min, 94°C for 30 s,57°C for 30 s, 

72°C for 45 s. AU PCR products were revealed by ethidium bromide staining of agarose 

gels. The oligonuc1eotide primer sequences used for PCR reactions were as foUows: 

hTalin-sense: 5'-GTCGCCAGGAAGATGTCATT -3'; 

hTalin-antisense: 5'-CGCCAACCATCTTCTCTTTC-3'; 

hGAPDH-sense: 5 '-ACCACCATGGAGAAGGCTGG-3'; 

hGAPDH-antisense: 5'-CTCAGTGTAGCCCAGGATGC-3'. 

Densitometry analysis was performed for quantification of the mRNA induction 

by TGF-/3l normalized to GAPDH levels. P<0.05 compared with no TGF-/31 treatment. 

2.5 siRNA Transfections 

Silencing Talin expreSSIon ln breast cancer ceUs was achieved by small 

interfering RNA (siRNA) with specific sequence for human Talin purchased from Sigma. 

Cells were plated in complete growth medium (DMEM containing 10% FBS) at 3 x 105 

ceUs/ml density per well in 6-well dishes. The following day cells were washed with IX 

Phosphate Buffer Saline (PBS) at pH 7.4 (8 g NaCI; 2 g KCl; 11.5 g Na2HP04 H20; 2 g 

KH2P04 per liter for 10X solution), and transfected or not with hTalin siRNA using 

Lipofectamine 2000 transfection reagent (lnvitrogen) according to the manufacturer's 

instructions. Briefly, 120 nM of siRNA and 3 /-11 of Lipofectamine 2000 reagent were 

each diluted and mixed gently in the appropriate amount of Opti-MEM 1 Reduced Serum 

Medium without serum media (lnvitrogen). After 5 minutes incubation at room 

temperature, the diluted Lipofectamine 2000 was added to the diluted siRNA, mixed and 

incubated for 15 minutes at room temperature to allow complex formation of 

siRNAILipofectamine 2000. The complete DMEM medium was replaced to Opti-MEM 
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medium followed by adding the siRNNLipofectamine 2000 complex to the cells and 

gently rocking the plate back and forth. After 4-6 hours incubation at 37°C in a 5% CO2, 

the Opti-MEM 1 medium was replaced to DMEM containing 10% FBS and incubated for 

24 hours. The following day, cells were trypsinized, split, plated into 6- or 12-well dishes, 

and allowed for recovery. Cells were then washed with PBS, cells were stimulated with 

100 pM TOF -~ 1 in DMEM without serum media for the indicated periods of time. The 

control cells were mock treated in DMEM without serum media for the indicated periods 

of time as well. The expression levels of hTalin were monitored by Western blot and 

were maximally suppressed after 96 hours post-transfection. The sense siRNA sequence 

corresponds to the positions 6,043-6,063 relative to the Talin1 mRNA start codon. hTalin 

siRNA sequences were as follows: 

hTalin-sense: 5'-AAUCGUGAGGGUACUGAAACU-3'; 

hTalin-antisense: 5'-AGUUUCAGUACCCUCACGAUU-3'. 

2.6 Cell Viability Assay (MTT Colorimetrie Assay) 

Cells were trypsinized and plated in 6-well dishes at 3 x 105 cells/ml density in 

complete medium (DMEM containing 10% FBS). The following day, cells were 

transfected or not with hTalin siRNA (described in siRNA transfections section) for 24 

hours. Cells were then washed with PBS, trypsinized, and plated in triplicates in 96-well 

dishes, at 10 x 103 cells/100 ml density in DMEM containing 10% FBS. After 'allowing 

the cells to recover, cells were stimulated with 100 pM TGF-~l in DMEM containing 2% 

FBS and incubated for 72 hours. The control cells were mock treated and incubated in 

DMEM containing 2% FBS for 72 hours as weIl. Cell viability was then assessed using 

the non-radioactive MTT cell growth assay for eukaryotic cells (Cell Titer 96. Promega 

G4000). Absorbance was measured at 570 nm with a reference wavelength at 450 nm, 

using a Bio-tek Microplate reader. Results are presented as mean ± standard deviation of 

3 separate experiments. 
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2.7 Transfection and Reporter Assay 

A day before transfection, ceIls were plated in 6-weIl plates at of 3 x 105 ceIls/ml 

density in complete medium (DMEM containing 10% FBS). The cells were co­

transfected with expression plasmids encoding luciferase reporter construct 3TP-Luc (2 

J.lg), ~-galactosidase (pCMV -lacZ; 0.5 J.lg), in the presence or absence of hTalin siRNA 

(120 nM) using Lipofectamine 2000 (invitrogen). The following day, ceIls were 

trypsinized, split, and plated in 12 weIl dishes containing complete medium (DMEM 

containing 10% FBS). After allowing ceIls to recover, cells were starved ovemight in 

DMEM with no serum and stimulated with 100 pM TGF -~ 1 for 18 hours. The control 

ceIls were mock treated and incubated for 18 hours as weIl. CeIls were washed with PBS 

and lysed in 100 J.lI of lysis buffer (1 % Triton X-100; 15 mM MgS04; 4 mM EGTA; 1 

mM dithiotheitol; 25 mM glycylglycine ph 7.8) on ice. The luciferase activity of each 

lysate was measured using 45 J.lI of cell lysate (EG & G Berthold Luminometer) and 

normalized to the relative values of ~-galactosidase activity for transfection efficiency. 

Results are presented as mean ± standard deviation of 3 separate experiments. 

2.8 Western Blot Analysis 

Cells were stimulated with 100 pM TGF-~lor mock treated (control cells) and 

were then grown for the indicated periods of time in DMEM containing 2% FBS. Cells 

were washed with cold IX PBS, lysed and harvested on ice in the lysis buffer (1 % NP-40, 

150 mM NaCl, 50 mM Tris-HCl pH 8, 0.1% SDS, 0.05% sodium deoxycholate) 

supplemented with protease inhibitors, 1 mM phenylmethylsulphonyl fluoride (PMSF), 

10 J.lg/ml aprotinin, 10 J.lg/ml leupeptin, and 2 J.lg/ml pepstatin. Total cell extracts were 

then separated on a 7.5% Sodium Dodecyl Sulfate-PolyAcrylamide Gel Electrophoresis 

(SDS-PAGE), electrotransferred onto nitrocellulose at a constant current 0.15 mA for 1 

hour in transfer buffer (25 mM Tris-base, 192 mM Glycine, 20% MeOH, 3.6% SDS). 

The membranes were blocked with TBS buffer (10 mM Tris at pH 7.5, 150 mM NaCI, 

0.05% Tween 20) containing 5% dried nonfat milk for 1 hour and were then incubated 

with the indicated specific antibodies ovemight at 4°C. AlI the antibodies were diluted in 
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antibody buffer (10mM Tris pH 7.5, 150 mM NaCI, 0.05% Tween 20, 0.25% Gelatin, 

0.05% NaAzide). Membranes were then washed twice for 10 minutes in TBST (50 mM 

Tris-Cl at pH 7.6, 200 mM NaCI, 0.05% Tween 20) and incubated with a proper 

secondary antibody conjugated to horseradish peroxidase (Santa Cruz; at al: 1 0,000 

diluted in blocking solution) for 1 hour at room temperature. Following incubation, 

membranes were washed four times for 15 minutes in TBST. Immunoreactivity was 

normalized by chemi-Iuminescence (Lumi-light Plus Western Blotting substrate, Roche) 

according to the manufacturer's instructions and revealed using an Alpha Innotech 

Fluorochem Imaging System (Pachard Canberra, Montreal, Quebec, Canada). 

2.9 Co-Immunoprecipitation Analysis 

Cell were starved overnight and the next day cells were stimulated with 100 pM 

TGF-p1 or mock treated (control cells) for the indicated periods of time as indicated in 

the figures. Cells were washed with IX PBS and lysed in 1 % NP-40 buffer (1 % NP-40, 

150 mM NaCI, 50 mM Tris-HCl pH 8, 0.1% SDS, 0.05% sodium deoxycholate), 

supp1emented with protease inhibitors 1 mM PhenylMethylSulphonyl Fluoride (PMSF), 

10 Ilg/ml aprotinin, 10 Ilg/mlleupeptin, and 2 Ilg/ml pepstatin. Lysates were incubated 

with 0.5 Ilg ofrabbit anti-SMAD2/3 (Fl-425) antibody (Santa Cruz), rabbit anti-TGFpRI 

(V-22) antibody (Santa Cruz), rabbit anti-TGFp RII (C-16), rabbit anti-SARA (H-300), 

or mouse monoclonal antibody against SMAD4 (B-8) for an overnight period. The 

following day, 40 III of either a 50% protein A or protein G sepharose beads slurry 

solution (SantaCruz) was added for 2 hours at 4°C. Immunoprecipitates were then 

washed three times in the same RIPA buffer, eluted with 2% SDS loading buffer, boiled 

for 5 minutes, resolved by 7.5% SDS-P AGE, transferred onto nitrocellulose, and 

incubated with the indicated specifie antibodies overnight at 4°C. 

2.10 Confocallmmunofluorescene 

MCF -7 cells were plated on 13 mm non-coated glass coverslips in complete 

medium. The next day, cells were stimulated with TGF-pl or mock treated (control cells) 
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for the indicated periods of time in starvation medium and fixed with 4% 

paraformaldehyde in PBS at room temperature for 15 minutes. Fixed cells were 

permeabilized for 30 minutes with 0.2% Triton-X-I00 and 2% BSA dissolved in PBS, 

washed three times for 5 minutes in PBS, and incubated for 1 hour with the primary 

antibody (mouse monoclonal anti-Talin) diluted in permeabilized buffer (1 :400 dilution 

of mouse anti-Talin antibody). After three times washing in PBS for 5 minutes, cells were 

incubated for 1 hour with Goat anti-mouse Rhodamine Red X antibody and then co­

stained with 1 :500 dilution of TRITC-conjugated phalloidin (Sigma Chemical Co., St. 

Louis, MO, USA) for 30 minutes at 37°C, fOllowed by three times washing in PBS for 5 

minutes. Coverslips were mounted and observed using an LSM-510 Zeiss confocal 

microscopy. 

2.11 Statistical Analysis 

Results are expressed as mean ± standard deviation. Differences were assessed by 

one-way ANOV A or the unpaired t test. P<0.05 was considered significant. 
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CUAPTERIII: RESULTS 

3.1 TGF-~ Upregulates Talin Gene Expression at mRNA Level in MCF-7 and 

MDA-MB-231 Human Mammary Adenocarcinoma Cell Lines 

The role of TGF-~ in turnor progression prompted us to further investigate and 

identify the potential TGF-~-inducible genes that may be involved in TGF-~ biological 

events during tumorigenesis. 

As discussed in the first chapter, Talin proteins are found in a wide variety of 

organisms, from slime molds to human. A survey of various human tissues by Northern 

blot showed Talin expression in leukocytes, lung, placenta, liver, kidney, spleen, thymus, 

colon, skeletal muscle, and heart (Ben-Y osef and Francomano, 1999). Chen et al. (2000) 

also demonstrated by Western-blot analysis that Talin is highly expressed in several 

prostate and breast cancer ceIllines. To verify whether Talin expression itself is regulated 

by TGF-~1, we used two different human breast cancer ceIllines MCF-7 and MDA-MB-

231 that are highly responsive to TGF-~ 1. Moreover, these breast cancer cell lines 

display different malignant phenotypes ranging from highly to poody tumorigenic and 

metastatic in the order of MDA-MB-231>MCF-7 (Xin et al. 2000). MCF-7 and MDA­

MB-231 cells were first starved overnight and were then mock treated (control cells) or 

stimulated with TGF-~1 in starvation media. Total RNA was extracted and Reverse­

Transcription Polymerase Chain Reactions (RT-PCRs) were performed (Figure 3.1, A 

and B) using primers specific to human Talin and the house-keeping gene, 

Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH). Following cDNA amplifications, 

densitometry analysis was performed for quantification of the mRNA induction by TGF­

~1 normalized to GAPDH levels (Figure 3.1, C and D). 

53 



The resulting data revealed a slight increase in Talin gene expression following 

TGF-pl treatment in both breast cancer celllines, MCF-7 and MDA-MB-231, which led 

us further to evaluate the effect of TGF-p 1 on the abundance of Talin protein. 

A 

TGF~l: 

c 

MCF-7 CeUs 

lCF-j3: 

MCF-7 

+ 

+ 

CJ-TGF-j3 
_+TGF-j3 

B 

hTaUn 

GAPDH 

D 

lCF-j3: 

MDA-MB-231 

+ 

MDA-MB-231 CeUs 

+ 

CJ-TGF-j3 
_+TGF-j3 

Figure 3.1: TGF-~ upregulates TaUn mRNA expression in human breast cancer 
cell Unes. (A, B): MCF-7 and MDA-MB-231 cells were starved overnight. The cells 
were then stimulated with TGF-pl for 8 h or were mock treated (control cells) in 
starvation medium, followed by the total RNA extraction. Reverse transcription reactions 
were performed using oligo-dT. cDNAs were amplified for 20 cycles using specific 
oligonucleotide sequences to hTalin and GAPDH which served as an internaI control. (C, 
D): Densitometry analysis was performed for quantification of the mRNA induction by 
TGF-p 1 normalized to GAPDH levels. P<0.05 compared with no TGF-p treatment. 
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3.2 TGF-13 Increases Talin Expression in MCF-7 and MDA-MB-231 Human 

Mammary Adenocarcinoma CeU Lines 

In order to verify the induction of Talin protein expression by TGF-131, Western 

blot analysis was performed on MCF-7 and MDA-MB-231 whole cell extracts, which 

were first mock-treated (control cells) or stimulated with TGF-131 in DMEM without 

serum for 24 hours. Cell lysates were separated by SDS polyacrylamide gel 

electrophoresis (SDS-P AGE) and the resolved proteins were transferred to a 

nitrocellulose membrane for immunoblotting using an antibody against human Talin 

(hTalin). Despite an slight increase in Talin expression at mRNA levels following TGF-

131 treatment, TGF-131 enhanced significantly the levels of Talin protein (shown by arrow) 

in both MCF-7 and MDA-MB-231 cell lines (Figure 3.2, A and B, upper panel). The 

membranes were stripped and re-probed with 13-Tubulin antibody to normalize for equal 

protein levels (lower panel). Collectively, based on the obtained data from RT-PCR and 

Western blot analysis, for the first time, TGF-131 has been identified as a positive 

regulator of human Talin expression in breast cancer celllines. Due to an increase in 

Talin expression level following TGF -131 stimulation, we speculated that Talin might act 

as a downstream mediator of TGF-131-induced cellular responses in breast cancer cell 

lines. Thus, we next investigated contribution of Talin in TGF-13 signal transduction. 

A B 

MCF-7 MDA-MB-231 
Mock Mock 

lB: anti-hTalin 

lB: anti-l3-Tubulin 

Figure 3.2: TGF -13 induces upregulation of Talin protein in breast cancer ceUlines. 
(A and B) MCF-7 and MDA-MB-231 cells were first mock treated (control cells) or 
stimulated with TGF -13 in starvation medium for 24 hours. The whole cell lysates were 
then analyzed by Western blot using a specific monoclonal antibody against hTalin 
(upper panel). Equal loadings were confirmed by re-probing the membrane with 13-
Tubulin antibody (lower panel). 
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3.3 Talin Is Subcellulary Translocated from Cytosol to the Plasma Membrane 

and Co-Iocalized to the Ends of Actin Stress Fibers in Response to TGF-pl in 

. MCF -7 Cells 

The capacity of TGF-p inducing Epithelial-Mesenchymal Transition (EMT) 

contributes to invasive transition of tumors at later stages of carcinogenesis. Y oun Yi et 

al. (2002) demonstrated that TGF -p 1 stimulation increased surface expression of integrin 

a vP3 and induced EMT in human cervical squamous carcinoma cell line based on actin 

stress fiber formation, focal translocalization of Talin and integrin av subunit, as weIl as 

translocalization and down regulation ofE-cadherin. 

Similar to integrin a vp3, in this study Talin was shown to be positively regulated 

by TGF-p1. Moreover, as tabulated in Table 1.1, immunocytochemical studies have 

demonstrated that Talin prote in is localized in a variety of structures in different types of 

cells and tissues, for instance in platelets, it may be distributed from cytosol to membrane 

in response to thrombin activation. 

Since Talin as a constituent of focal adhesions and an Actin-associated-integrin 

binding protein establishes a pivotai role in bi-directional integrin signaling; in order to 

gain insights into the role of Talin in TGF-pl mediated cytoskeletal reorganization we 

speculate that in response to TGF-pl, Talin is translocalized to the plasma membrane and 

co-Iocalized with Actin cytoskeletal protein, which may function as one of the 

downstream mediators ofTGF-p-initiated EMT in breast cancer celllines. 

To determine the subcellular localization of the Talin protein and Actin 

cytoskeletal reorganization induced by TGF-p 1, MCF-7 cells were plated on non-coated 

glass coverslips and were mock treated (control cells) or stimulated with TGF-p at the 

indicated periods of time. The cells were then fixed and incubated with specific primary 

mouse monoclonal antibody against Talin. Immunofluorescence staining was performed 

using goat anti-mouse Rhodamine Red X secondary antibody to detect localization of 
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endogenous Talin which was co-stained with fluorescent TRITC-conjugated phalloidin to 

visualize Actin. Based on immunstaining analysis under confocal microscopy, 

visualization of filamentous Actin by fluorescent phalloidin in green and Talin in red 

demonstrated that after 1 hour of TGF-~ 1 treatment, Actin cytoskeletal proteins were 

reorganized from a network of filaments delineating each cell colony (Figure 3.3, A), to 

the formation of short and thin Actin stress fibers (Figure 3.3, B, C and D). 

Simultaneously, localization of a fraction of Talin to the ends of Actin stress fibers 

became apparent following 1 hour stimulation with TGF-~l (Figure 3.3, D). 

In conclusion, TGF-~ 1 induced the reorganization of the Actin cytoskeleton from 

circumferential ring-like structure into Actin stress-fiber-like projections in MCF-7 cells. 

Moreover, localization of Talin to plasma membrane was noticed after exposure to TGF­

~1 for short period of time. Interestingly, Talin was also detected at the end of Actin 

stress-fibers in a ligand dependent manner, suggesting that Talin may be involved in 

TGF-~l-mediated cytoskeletal reorganization. However, since Talin upregulation 

induced by TGF-~l occurred after 24 h ligand stimulation, we speculate that Talin may 

be a consequence rather than a causing event of TGF-~l-induced cytoskeletal 

reorganizations. 

A: MOCK 

Actin Talin Overlay 
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B: TGF-Bl-15' 

Actin Talin Overlay 

C: TGF-Bl-30' 
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~ .. D: TGF-J31-60' 

Actin TaUn Overlay 

Figure 3.3: TGF-~ effect on Talin subcellular localization. (A-D): MCF-7 cells were 
plated on non-coated glass coverslips and were mock treated (control cells) or stimulated 
with TGF-131 at the indicated periods oftime in starvation medium. Cells were then fixed, 
followed by incubation with specifie primary mouse monoclonal antibody against Talin. 
The endogenous Talin proteins were labeled with goat anti-mouse Rhodamine Red X 
secondary antibody and co-stained with TRITC-conjugated phalloidin to visualize Actin. 
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3.4 TaUn Knock Down in MCF-7 and MDA-MB-231 CeUs 

To determine the function of Talin in TOF-~ signal transduction, small interfering 

RNA (siRNA) approach was first employed to inhibit Talin expression in human breast 

cancer cell lines. For this, cells were transfected or not (mock) with different 

concentrations of siRNA duplexes specifie to human Talin. After 72 hours 

posttransfection of the siRNA, as shown by Western blot analysis (Figure 3.4), Talin 

expressions were significantly reduced in lysates prepared form MCF-7 and MDA-MB-

231 cells transfected with different concentrations of Talin siRNA (60, 120 and 200 nM) 

as compared with the lysates prepared from the cells that were not transfected with Talin 

siRNA (Mock). However, the efficiency of Talin knockdown by siRNAs appears to work 

more efficiently in MCF-7 (A) vs. MDA-MB-231 (B) celllines. To demonstrate equal 

loading, the membranes were stripped and probed using ~-Tubulin antibody. 

Since Talin expression was successfully diminished via siRNA duplexes specifie 

for Talin in all indicated concentrations, to assess the function of Talin in TOF -~ 1 signal 

transduction, we employed Talin siRNA (120 nM) approach in the following sections. 

A B 

MCF-7 MDA-MB-231 

MOCK 60 120 200 siRNA-Talin (nM) MOCK 60 120 200 

lB: anti-hTaUn 

lB: anti-~-Tubulin 

Figure 3.4: Talin knock down. (A and B): MCF-7 cells were transfected or not (mock) 
with specifie siRNA duplexes targeted against human Talin using lipofectamine 2000. 
Western blot analysis was performed on MCF-7 and MDA-MB-231 celllysates from 
mock and Talin siRNA transfected cells. The membranes were probed with Talin 
antibody (upper panel). To demonstrate equivalent protein levels, ~-Tubulin antibody 
was used (lower panel). 

60 



3.5 The Inhibitory Effect of Talin on TGF-~l-Mediated 3TP-Luc Promoter 

Activity in MCF-7, Breast Cancer Cell Line 

To determine the role of Talin in TGF-~-mediated gene expression, the.activity of 

TGF-~-responsive gene promoter (3TP-Iuc) was assessed in breast cancer cell lines. 

MCF-7 and MDA-MB-231 cells were first co-transfected with or without Talin siRNA 

along with 3TP-Iuc reporter construct fused to the luciferase gene and ~-galactosidase 

expression plasmids. After 48 hours posttransfection cens were mock treated or 

stimulated with TGF -~ 1 for 18 hours before the luciferase activity was assessed. 

As shown in Figure 3.5 (A), 3TP-Iuc luciferase activity was significantly induced 

in response to TGF-~ 1 stimulation in MCF-7 cens. However, when Talin expression was 

inhibited using Talin siRNA, the TGF-~1 effect on 3TP-Iuc luciferase activity was 

significantly enhanced; suggesting that Talin may play an inhibitory role downstream of 

TGF-~1 in MCF-7 cens (Figure 3.5, A). Interestingly, the TGF-~I-mediated an increase 

in 3TP-Luc luciferase activity observed in MDA-MB-231 cells was not further increased 

when Talin siRNA was used (Figure 3.5, B); suggesting that Talin may mediate its 

inhibitory effect on TGF -~ 1 signaling pathway only at early stage of cancer and not when 

the tumor cens become more invasive at late stage of carcingogenesis. Moreover, this 

difference may also reflect the slight difference in the efficiency of Talin siRNA in these 

cenlines. 

Having established that TGF-~1 treatment induces an upregulation of Talin 

protein levels in breast cancer cen lines, and inhibition of Talin enhances TGF-~I­

mediated gene expression significantly in MCF -7 cens; the effect of Talin on TGF -~ 1-

induced cen growth inhibition was next examined. 
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Figure 3.5: TaUn inhibits TGF-J3-mediated gene expression in MCF-7 cells. MCF-7 
(A) and MDA-MB-231 (B) cells were co-transfected with 2 f.lg 3TP-Iuc reporter 
construct (as a control), 0.5 f.lg J3-galactosidase expression plasmid, and cotransfected or 
not with 120 nM of specifie Talin siRNA. After 48 hours posttransfection, cells were 
mock treated or stimulated with TGF-J31 for 18 hours. The TGF-J31 response was 
measured by luciferase assay and the activities were normalized to the relative 13-
galactosidase activities. Results represent means and standard deviations of three 
independent experiments. P<0.05 compared with no TGF-J3 treatment (Mock). 
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3.6 Talin Inhibits TGF-~l-Induced Cell Growth Arrest in MCF-7 Cells 

TGF -(3 is known to induce cell growth arrest in a variety of cell lines inc1uding 

epithelial, endothelial, lymphoid, and hematopoietic cells (Burgess et al., 1996, Burrows 

et al., 1995). To evaluate Talin role in TGF-(3-induced cell growth inhibition, MCF-7 and 

MDA-MB-231 cells were first transfected or not with siRNA duplexes specific to Talin 

to diminish Talin expression. After 24 hours posttransfection, the cells were mock treated 

or stimulated with TGF-(31 for 72 hours and the cell viability was assessed by MTT assay. 

As shown in Figure 3.6 (A), TGF-(31 stimulation of the MCF-7 cells resulted in a 

25% cell growth inhibition. However, when Talin expression was inhibited using Talin 

siRNA, TGF-(31 significantly enhanced the cell growth inhibition to 56%, suggesting that 

Talin may play an inhibitory role in cell growth arrest downstream ofTGF-(31 in MCF-7 

ce Ils (Figure 3.6, A). In contrast, since MDA-MB-231 ceUs have high capacity of 

invasion and have lost their sensitivity to TGF -(31 mediated cell growth inhibition, ceU 

viability was not affected in response to TGF-(31 as compared to the mock (Figure 3.6, B). 

Moreover, when Talin expression was diminished using siRNA approach, ceU viability in 

response to TGF-(31 stimulation insignificantly decreased (only by 10%); suggesting that 

once again, Talin may mediate its inhibitory effect on TGF-(31-mediated cell growth 

arrest only at early stage of cancer. In addition, the different efficiency of Talin siRNA in 

these ceIllines may also reflect this difference in the inhibitory effect of Talin on TGF-(31 

biological response in MCF -7 and MDA-MB-231 ceIllines. 

Taken aU together, these findings strongly indicate that elevated levels of Talin 

expression in MCF-7 ceUs induced by TGF-(31 may contribute to Talin's antagonistic 

effect upon TGF-(3-induced growth inhibition and 3TP-Luc promoter activity at early 

stage of cancer in MCF-7 cells. 
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Figure 3.6: Talin inhibits TGF-13-induced cell growth arrest in MCF-7 ceUs. MCF-7 
(A) and MDA-MB-231 (B) cells were mock transfected, or transfected with specifie 
siRNA sequence to Talin. Cells were mock treated or stimulated with TGF-131 for 72 
hours before cell growth was assessed by cell viability colorimetrie (MTT) assay. Values 
are representative of three independent experiments performed in triplieate, and are 
expressed in arbitrary units. P<O.05 eompared with no TGF-131 treatment. 
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3.7 Talin Knock Down Has no Effect on TGF-J31-Induced R-Smad 

Pbospborylation in MCF -7 Cells 

Similar to Talin, Filamin is also an Actin-binding protein that participates in the 

anchoring of membrane proteins to the Actin cytoskeletal protein and is also involved in 

TGF-J3 signaling. It has been demonstrated that cens defective in Filamin expression have 

impaired TGF-J3 signaling and Smad2 phosphorylation (Sasaki et al., 2001). To explain 

the potential mechanism for Talin preventing TGF-J31-induced cell growth arrest and 

gene expression, we hypothesized that the antagonistic effect of Talin on TGF­

J3 biological events may be due to Talin having an effect on Smad3 activation. Thus, we 

next examined Smad3 phosphorylation induced by TGF-J31 in the absence of Talin. For 

this, MCF-7 cens were transfected or not with Talin siRNA followed by TGF-J31 

treatment for the indicated short period of time. Western blot analysis was performed on 

the total cell lysates using a specifie antibody recognizing C-terminal phosphorylated 

serine residues of Smad3 and the membrane was stripped and re-probed using ERK1I2 

antibody. As shown in Figure 3.7 (upper panel), TGF-J31-induced Smad3 

phosphorylation was not affected in the absence of Talin; suggesting that antagonistic 

effect of Talin on TGF-J3 biological events is not due to Talin having an effect on Smad3 

activation. MCF-7 
MOCK TALIN-siRNA 

TGFJ31: o 30' 60' 

lB: anti-ERK1I2 

Figure 3.7: Talin bas no effect on Smad3 phosphorylation induced by TGF-J31. 
MCF-7 cells were transfected or not with Talin siRNA duplexes (120 nM). A day after 
transfection cens were trypsinized and divided into three. Cells were starved overnight 
prior to the stimulation with TGF-J31 for the indicated periods of time. Prote in 
phosphorylation level was then monitored by Immunoblotting using antibodies against 
anti-phospho-Smad3 (upper panel).The membrane was stripped and reprobed with anti­
ERK1I2 antibody (lower panel) to verify the equal protein levels. 
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3.8 Talin Physically Associates with Smad3, Smad4, T~RI, and SARA; and 

Dissociates from T~RII in a TGF-~l-Dependent Manner in MCF-7 Cells 

Smad-dependent signaling initiated by TGF -~ superfamily members can be 

modulated by a variety of interacting proteins. It has been demonstrated that sorne Actin­

binding proteins (Filamin) participating in the anchoring of membrane proteins to the 

actin cytoske1etal protein are involved in TGF-~ signaling through interaction with 

Smads (Sasaki et al., 2001). As a plasma membrane protein, Talin is thought to 

participate in many different signaling pathways through interaction with plasma 

membrane proteins as well as different transmembrane receptors such as integrins. In this 

study, it is speculated that one potential mechanism by which Talin modulates TGF-~ 

biological events may be through formation of possible immunocomplexes with TGF-~ 

signaling components such as the receptors and the Smads. 

To determine if Talin binds to R-Smads and whether this interaction is mediated 

by TGF-p1stimulation, co-immunoprecipitation experiments were performed using anti­

Smad2/3 antibody in the celllysates prepared form MCF-7 celllines, which were mock 

treated (control cells) or stimulated with TGF-p1 for the indicated periods oftime (Figure 

3.8, A). The proteins in the complex were then revealed by immunoblot analysis using a 

mouse monoclonal antibody directed against Talin to recognize the endogenous protein. 

As illustrated in Figure 3.8, A (first panel), TGF-p1 stimulation induced the formation of 

an endogenous TaliniSmad2/3 complexes after 1 hour, suggesting that Talin may act as 

R-Smad interacting partner upon ligand stimulation. Moreover, Since Talin does not 

antagonize TGF-p1-mediated endogenous Smad2/3 phosphorylation (Figure 3.5) but 

inhibits TGF-p1 transcriptional activity (Figure 3.6, A), it is expected that Talin 

interacting with Smad2/3 leads to a reduction in TGF -p 1-induced Smad2/3/Smad4 

heterocomplex. Therefore, the membrane was stripped and re-blotted against Smad4 

antibody. As shown in Figure 3.8, A, (second panel), on the contrary to our expectation, 

no reduction was observed in the formation of Smad2/3/Smad4 heterocomplex. 
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To further support this result, immunocomplex formation between Talin and 

Smad4 was then examined. For this, the celllysates prepared forrri MCF-7 celllines were 

mock treated or stimulated with TGF -~ 1 for the 1 hour and were immunoprecipitated 

using anti-Smad4 antibody (Figure 3.8, B). The proteins in the complex were then 

revealed by immunoblot analysis using Talin antibody. We found that Talin also interacts 

with Smad4 in response to TGF -~ 1, suggesting that Talin may act as an adaptor protein 

for Smads which does not prevent formation of Smad2/3/Smad4 heterocomplex in 

response to ligand stimulation. Based on these results, Talin (similar to Filamin) interacts 

with Smads which may be the mechanism of how Talin has an effect on TGF-~ 

biological responses in MCF-7 cells. 

We next evaluated the complex formation between Talin and SARA (membrane­

associated Smad Anchor for Receptor Activation) using anti-SARA antibody based on 

the following reasons: 1) Talin is translocated from cytosol to plasma membrane upon 

TGF-~l stimulation (Figure 3.3, D), 2) Talin interacts with Smads (Figure 3.8, A), and 3) 

R-Smads are localized to the plasma membrane by SARA to be recognized by TGF-~ 

type 1 transmembrane receptor. As shown in Figure 3.8 (C) upon ligand stimulation, 

Talin strongly interacted with SARA. It would be interesting to determine if Talin 

interacts with Smad2/3 through SARA and forms a heterocomplex of 

TaliniSARAISmad2/3. 

As an anchor protein, since SARA presents Smad2/3 to TGF-~ type 1 receptor, 

the affinity of Talin for the TGF-~l receptors was next evaluated using anti-T~RI and 

T~RII antibodies. As shown in Figure 3.8 (D and E), the immunocomplexes results for 

Talin and TGF-~ 1 receptors indicate that at basal state, Talin is constantly associated 

with T~RII. However, in the presence of the ligand, Talin loses its affinity for T~RII and 

associates with TR~I. 

Collectively, in MCF-7 cells, following TGF-~l stimulation, Talin association 

with Smads, SARA, and T~RI may be one potential mechanism involved in Talin 
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antagonistic effect in TGF-r31 mediated gene transcriptional activity and cell growth 

arrest. Moreover, these associations can not be related to the TGF-131-induced increase in 

Talin expression which occurs at later time point. The MCF-7 immunocomplexes data 

prompted us to further examine the complex formation of TGF-131 signaling system in 

MDA-MB-231 cells. Since Talin mediates its inhibitory effect on TGF-131 signaling 

pathway at early stage and not at later stage of tumorigenesis (possibly through 

interaction with Smads, SARA, and T13RI), we hypothesized that Talin association with 

Smads, SARA, and TGF-13 type 1 receptor will be attenuated in MDA-MB-231 cells 

following ligand stimulation. 

MCF-7 

A IP: Anti-Smad3 

TGFIH: 

TB: anti-hTalin 

TB: anti-Smad4 

Input 
lB: anti-hTalin 

B IP: Anti-Smad4 

TGF131: + 

TB: anti-hTalin 

lB: anti-Smad4 

Input 
lB: anti-hTalin 
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c 
IP: Anti-SARA 

TGFJH: + 

lB: anti-hTalin 

Input 
lB: anti-hTalin 

D 

IP: Anti-TR~I 
TGF~l: 

lB: anti-hTalin 

E F 

IP: Anti-TR~I IP: Anti-TR~II 

+ TGF~l: + 

lB: anti-hTalin 

Input 
lB: anti-hTalin 

Figure 3.8: TGF-~l induces complex formation between Talin and Smad3, Smad4, 
T~RI, and SARA; and attenuates the formation Talin/T~RII complex in MCF-7 
ceUs. (A-F): MCF-7 cell were mock treated and stimulated with TGF-/31 for the indicated 
periods oftime and the celllysates were immunoprecipitated with anti-Smad3, -Smad4, -
SARA, -T/3RI, and -T~RII antibodies. The immunocomplex formations were analyzed by 
immunoblotting using anti-hTalin antibody. Immunoblotting using antibody against 
Smad4 was used as a positive control for Smad3 immunoprecipitation. The total cell 
lysates, representing 10% of the immunoprecipitating inputs were analyzed by 
immunoblotting, using antibodies against hTalin. 
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3.9 Talin PhysicaUy Associates with T~RII, and Dissociates from Smad3, SARA 

in a TGF -~-Dependent Manner in MDA-MB-231 CeUs 

In previous section, we speculated that one potential mechanism by which Talin 

modulates TGF-~l biological responses in MCF-7 may be through formation of possible 

immunocomplexes with TGF-~l signaling components such as the receptors and the 

Smads. Based on the immunoprecipitation experiments performed in MCF-7 cells, Talin 

was shown to have high affinity for Smad2/3, Smad4, SARA, and T~RI after 1 hour 

exposure to TGF-l)l, whereas Talin affinity for TI)RII was lost. We speculated that these 

interactions would not occur in MDA-MB-231 cells, which may explain why Talin has 

no affect in TGF -~ 1 biological responses in this invasive cellline. 

To determine the formation of possible immunocomplexes between Talin and 

TGF-l)l signaling components in MDA-MB-231 cells following TGF-~l stimulation, co­

immunoprecipitation experiments were performed using anti-Smad2/3, -Smad4, -T~RI, -

TI)RII and -SARA antibodies in the celllysates prepared form MDA-MB-231 cell1ines 

stimulated with TGF-I) 1 for the indicated periods oftime or mock treated (Figure 3.9, A­

D). The proteins in the complex were revealed by Immunoblot analysis using a mouse 

monoclonal antibody directed against Talin. In contrast to MCF -7, the immunocomplexes 

results in MDA-MB-231 cells revealed that in the absence of the ligand, Talin is in 

complexes with Smad3 and SARA (Figure 3.8, A-C), and upon TGF-~l treatment for 1 

hour, Talin dissociates from Smad3, and SARA and physically interacts with T~RII 

(Figure 3.9, D). Interestingly, no immunocomplex formation was observed between Talin 

and Smad4 (Figure 3.9, B), and in the case ofTRI)I, Talin was weakly bound to TR~I in 

a ligand independent manner (Figure 3.9, C). 

These differences in immunocomplex formations in these two cell lines might 

reflect the stage of carcinogenesis these celllines are at or the activity of other signaIs, in 

particular integrin signaling. As discussed in the review of literature, Galliher and 

Schiemann (2006) have recently shown that 1)3integrin alters TGF-I) signaling in 
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Mammary Epithelial Cells (MECs) by interacting physically with the TpRII mediating 

TpRII tyrosine phosphorylation by Src, thereby enhancing TGF-p-mediated invasion and 

EMT. Since, Talin is an integrin-interacting partner involved in integrin cellular 

responses, we speculate that in highly invasive MDA-MB-231 cells formation of Talin­

TpRII complex upon TGF-p stimulation may involve integrin signaling, enhancing TGF­

p 1 mediated invasion and EMT, which require further investigations. 

A 

MDA-MB-231 

IP: Anti-Smad3 Anti-Smad4 

TGFpl: + + 

lB: anti-hTalin 

lB: anti-Smad4 

Input 
lB: anti-hTalin 
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B 

IP: Anti-SARA 

TGFrU: + 

lB: anti-hTalin 

Input 
lB: anti-hTalin 

c D 

IP: Anti-TR~I IP: Anti-TR~II 

+ TGF~l: + 

lB: anti-hTalin 

Input 
lB: anti-hTalin 

Figure 3.9: TGF -p induces hTalinrr~RII complex formation; attenuates 
Talin/Smad3, and Talin/SARA complex formations; and has no effect on 
Talinrr~RI complex formation in MDA-MB-231 ceUs. (A-D): MDA-MB-231 cells 
were mock treated or stimulated with TGF-~l for the indicated periods oftime. The cell 
lysates were immunoprecipitated with anti-Smad3, -Smad4, -T~RI, -T~RII, and -SARA. 
The immunocomplexes were analyzed by immunoblot using anti-hTalin antibody. Cell 
lysates representing 10% of the immunoprecipitating inputs were analyzed by 
immunobloting using antibodies against hTalin. 
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f": 
In summary, in the present study, we found Talin as a novel TGF-p 1 target gene 

which is positively regulated both at mRNA and protein levels in presence of the ligand. 

Moreover, we showed that at short time exposure to TGF-pl, Actin structure was 

reorganized; Talin was translocated to the plasma membrane and colocalized at the end 

of Actin stress fibers. Interestingly, we also found that at early stage of cancer, Talin acts 

as an antagonist inhibiting TGF -p I-mediated cell growth arrest and transcriptional 

activity. To explain the potential mechanism involved in antagonistic effect of Talin on 

Smad-dependent signaling initiated by TGF-p, we showed: 1) Talin has no effect on 

Smad3 activation by using siRNA approach. 2) Talin physically interacts with or 

dissociate from TGF -p 1 signaling components, raising the possibility that Talin may be 

involved in the modulation of TGF-p-Smad-dependent signaling through physical 

interactions with TGF-p 1 signaling system which requires further investigation. 
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CHAPTER IV: DISCUSSION 

TGF -~ superfamily members are known as potent growth inhibitors in epithelial 

ceUs. At early stages of carcinogenesis, TGF -~ 1 is known to act as a tumor suppressor 

(Pierce at al., 1995). However, as tumor ceUs acquire several genetic alterations they may 

be rather insensitive to TGF-~s in regard to growth inhibition. There are several 

evidences showing that TGF-~ contributes to malignant progression (Arteaga at al. 1993) 

which is attributed to its effect on EMT that promotes cell migration via Actin 

cytoskeletal reorganization (Boland et al. 1996). The molecular mechanisms underlying 

this conversion of TGF-~ function require further research. Since TGF-~ elicits its most 

biological effects by activation or inhibition of a Smad-dependent transcriptional pro gram, 

identification of TGF-~ target genes that function downstream of TGF-~ signaling and 

have an impact on TGF-~ physiological effects are likely to be critical. 

In the present study, we identified Talin as a novel TGF-~1 target gene, which is 

positively regulated in response to the ligand, and its contribution to TGF-~ cellular 

responses in mammary cancer celllines has also been investigated. 

4.1 Regulation of Talin Expression by TGF-~1 

Several pieces of circumstantial evidences prompted us to determine the 

physiological relevance of Talin in TGF -~ mediated cellular responses in mammalian 

cancer cells, which are as followings: 1) Talin protein is found in a wide variety of 

organisms inc1uding various human tissues (Ben-Y osef and Francomano, 1999; Chen et 

al., 2000), and is highly expressed in human breast cancer celllines (Chen et al., 2000); 2) 

TGF-~I-induced EMT at subcellular levels in human cervical squamous carcinoma cell 

line was based on several criteria inc1uding actin stress fiber formation, focal 
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translocalization of Talin, as well as translocalization and down regulation of E-cadherin 

(Youn Yi et al., 2002); 3) Kindlerin protein, which is a FERM domain containing protein 

similar to Talin is positively regulated by TGF-pl and is involved in TGF-pl-mediated 

migration and EMT in human mammary epithelial cells (Kloeker et al., 2004); and 4) 

since FERM domain containing proteins share homologous structural domains, they are 

therefore proposed to be regulated by similar mechanisms through physical interaction 

with the cytoplasmic domains of transmembrane proteins or receptors and therefore, 

connecting them to Actin cytoskeletal protein (Bretscher et al., 2002). 

Based on these rationales, we first assessed the regulatory effect of TGF-pl on 

Talin mRNA and protein expressions in mammary cancer celllines, MCF-7 and MDA­

MB-231. We characterized Talin as a novel TGF-pl target gene in breast cancer cell 

lines by RT-PCR and Western blot analysis, and similar to Kindlerin, Talin protein 

expression is positively induced by TGF-pl at later time points. However, further 

investigation is required to determine ifthe enhanced transcription ofthe Talin gene occurs 

through a direct transcriptional regulatory mechanism or a secondary response to TGF-pl 

stimulation by using the protein synthesis inhibitor, cyc1oheximide. 

4.2 The Net Effect of Talin on TGF-p Physiological Cell Responses 

As discussed in review of the literature, TGF-p/Smad signaling has been 

recognized as a prometastatic pathway contributing to tumor invasion and cancer 

progression by inducing EMT and promoting cell migration via Actin cytoskeletal 

reorganization in mammary tumors (Siegel et al, 2003; Boland et al., 1996; Bakin et al., 

2000; Bhowmick et al., 2001). Some key proteins involved in tumor invasion have been 

identified as targets in the TGF-p pathway, such as Snail and Kindlerin, which are 

positively regulated by TGF-p and are known to mediate EMT (Romano and Runyan, 

2000; Kloeker et al., 2004). Recently, Galliher and Schiemann (2006) demonstrated that 

TGF-p stimulation induced <XvP3 integrin expression in a manner that coincided with 

EMT through down regulation ofE-cadherin in Mammary Epithelial Cells (MECs). 
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Since, Talin is an integrin-interacting protein partner, which provides the initial 

connections between integrins and the Actin cytoskeletal protein and establishes a pivotaI 

role for these connections in bi-directional integrin signaling; we investigated the 

subcellular translocalization of Talin in response to TGF-rn stimulation. As tabulated in 

Table 1.1, Talin protein is localized in a variety of structures in different types of cells 

and tissues. For instance in platelets, it may be distributed from cytosol to membrane in 

response to thrombin activation. 

In this study, the confocal immunstaining analysis in MCF-7 cells showed that 

Talin is translocalized to the ,plasma membrane after exposure to TGF-~l for a short 

period of time. In addition, we also investigated other characteristic features of EMT 

including Actin cytoskeletal reorganization. It was observed that upon TGF-~l 

stimulation, Actin structure is reorganized from circumferential ring-like into stress-fiber­

like projections, where Talin is co-localized at the end of these actin stress fibers in a 

ligand dependent manner. This suggests that Talin may be involved in TGF-~l-mediated 

cytoskeletal reorganization. However, since Talin upregulation induced by TGF-~l 

occurred after 24 hours ligand stimulation, we speculate that Talin may be a consequence 

rather than a causing effect of TGF-~l-induced cytoskeletal reorganizations. Based on 

the obtained data, to explore if Talin has a role in TGF -~ 1-mediated EMT or cell invasion, 

further criteria such as changes in cell morphology leading to the loss of ceIl-ceIl contact 

and instability of E-cadherin on the cell surface are required to be investigated. 

Since TGF-~ 1 is known to play a major role in cell growth arrest and 

transcriptional activity, Talin contribution to the regulation of these cellular responses 

was next investigated. To assess the function of Talin, small interfering RNA (siRNA) 

was employed to knock down Talin expression in the cells. It was observed that 

following TGF -~ exposure, Talin is able to enhance a marked proliferative response and 

block transcriptional activity in MCF-7 but not in MDA-MB-231 cells. 

Taken all together, the se findings indicate that elevated levels of Talin expression 

induced by TGF-~l may contribute to the antagonistic effect of Talin on TGF-~-induced 
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growth inhibition and 3TP-Luc promoter activity at early stage of cancer in MCF-7 cells. 

We suggest that the different effects of Talin on these breast cancer cell lines not only 

reflect the different stages of carcinogenesis these cell Hnes are at, but may also reflect 

the different efficiency of Talin siRNA in these celllines. 

4.3 The Potential Mechanism Involved in Antagonistic Effect of Talin on TGF-(3 

Biological Events 

Studies on specifie TGF-/3 target genes have identified numerous non-Smad 

proteins that interact with Smads to cooperate with the Smad and regulate expression of 

TGF-(3 target genes. Filamin, an Actin-binding protein that participates in the anchoring 

of membrane proteins for the Actin cytoskeleton is also involved in TGF-/3 signaling 

through interaction with Smads. It has been demonstrated that cells defective in filamin 

expression have impaired TGF -/3 signaling and Smad2 phosphorylation (Sasaki et al., 

2001). 

Since Talin is an Actin-binding protein and in this study was shown to be 

involved in TGF-/3 biological responses (Figure 3.5, 3.6), we next investigated the 

phosphorylation state of Smad2/3 upon TGF-(31 stimulation in the absence of Talin to 

find out if Talin is involved in modulation of Smad2/3 activation. As is illustrated in 

Figure 3.7, the involvement of Talin in TGF-/3 biological events is not related to Smad2/3 

activation. 

Galliher and Schiemann (2006) showed that /33 integrin interacted physically with 

the TGF-/3 receptor type II (T/3R-II), thereby enhancing TGF-/3-mediated gene 

transcription, blocking cell growth arrest, and increasing TGF-/3 mediated invasion and 

EMT. Since Talin is an integrin interacting partner involved in regulation of integrin 

signaling, and its expression is increased following TGF-/31 treatment, it was 

hypothesized that Talin may also regulate TGF-/3 signaling in part via interacting with 

TGF-/3 signaling components. Co-immunoprecipitation studies in MCF-7 cells suggest 

that at basal state, Talin is bound to TGF-/3 receptor type II, and upon ligand binding 
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Talin dissociates from receptor type II and associates with receptor type l, Smad2/3, and 

Smad4. Moreover, a physical interaction between Talin and SARA protein is also 

observed following exposure to TGF-~1. On the contrary, in MDA-MB-231 cells in the 

absence of ligand, Talin is shown to be bound to Smad3, SARA, and in a ligand 

independent manner to TGF-~ type 1 receptor. However, following exposure to TGF-~l, 

the activated TGF-~ receptor type 1 terminates or reduces all these interactions, and Talin 

interacts with TGF-~ type II receptor. In addition, in contrast to MCF-7 cells, Talin has 

no affinity for Smad4 in MDA-MB-231 cells in the presence or absence of the ligand. 

These differences in MCF-7 and MDA-MB-231 cells may reflect the stage of 

carcinogenesis these cell lines are at, or may be due to the activity of other signaIs, in 

particular integrin signaling. Thus, to further elucidate the different effects of Talin on 

these celllines, it is required to investigate the differences between these cells in terms of 

integrin signaling, or any other signaling pathways that might contribute the differences 

observed in TGF-~ signaling with respect to Talin. 

To conclude, it can be speculated that at early stage of cancer, due to the physical 

interactions between Talin and TGF -~ receptor type 1 and Smads following ligand 

stimulation in MCF-7 cells, a co-repressor may be recruited to the Smad2/3/Smad4 

complex which will bind to Smad3 and blocks the transcriptional activity of cell cycle 

dependent kinase inhibitors and therefore enhancing cell proliferation. Besides, since 

Talin is not found in nucleus (Tepass and Godt, 2005), it is expected that Talin 

dissociates from the Smads complex and will be released in cytosol following nuclear 

tranlocalization of Smads complex. Comparing to MCF-7 cells, since these interactions 

between Talin and TGF-~ signaling components are different in MDA-MB-231 cells, it is 

suggested that upon ligand stimulation, Talin association with TGF -~ type II receptor 

may be the reason Talin has no antagonistic effect on cell growth arrest or transcriptional 

activity induced by TGF-~l and may have other potential effects on TGF-~ signal 

transduction such as EMT or cell migration. 

Collectively, in this study for the first time, a novel role for Talin in modulating 

TGF-~ biological events through interacting with TGF-~ transmembrane serine/threonine 
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kinase receptors and Smads mediated TGF-[3 signal transduction was established. To 

have a better understanding of the mechanism, further investigations are required such as 

the incorporation of genomic and proteomic approaches combined with mouse genetic 

manipulation, which will provide better understanding of the antagonistic effects of Talin 

on cellular responses to TGF-[3 in maintaining cell and tissue homeostasis. 
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CHAPTER V: CONCLUSION 

5.1 Conclusion 

In this the sis, Talin has been identified as a novel TGF-~ target gene, 

antagonizing TGF-~l biological effects at early stage of mammary carcinogenesis. 

However, since Talin upregulation induced by TGF-~ 1 occurred after 24 h, we speculate 

that this antagonistic effect of Talin may be a consequence rather than a causing event. 

To obtain a better understanding ofhow Talin negatively modulates TGF-~/Smad 

signal transduction, the following model is proposed as is schematically illustrated in 

Figures 5.1-3. At the basal state, Talin has been shown to be associated with TGF-~ 

receptor type II in MCF-7 cells (Figure 5.1). 

However, upon ligand binding (Figure 5.2) and activation of TGF-~ type 1 

receptor (A), Talin loses its affinity for T~RII and physically interacts with TGF-~ 

receptor type l, Smad3, and SARA followed by the recruitment of Smad3-SARA 

complex (B). On the other hand, TGF-~l induces Talin subcellular translocalization, 

where it can interact with plasma membrane proteins, SARA and R-Smads functioning as 

an adaptor protein. Upon Smad2/3 activation, SARA is dissociated (C) and Talin/Smad3 

complex becomes free to bind to Smad4 (D). Since Talin is not detected in the nucleus, it 

is speculated that Talin dissociates from the Smads complex and is released in the cytosol 

(E). We hYPothesize that the antagonistic effect of Talin on TGF-~l-mediated cell 

growth arrest and transcriptional activity is expected to occur via recruitment of a 

repressor to Smad4/Smad2/3 complex. Thus, upon release of Talin, a repressor is 

recruited to the Smads complex followed by translocation to the nucleus (F). The Smads 

complex is then bound to the Smad Binding Element and through recruitment of a 
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corepressor (G) blocks transcriptional activity of TGF-~ target genes involved in cell 

growth arrest (H). 

Taken aIl together, as illustrated in Figure 5.3, Talin is an inducible antagonist of 

TGF-~ signal transduction, mediating ceIl proliferation and inhibiting gene expression. 
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Figure 5.1: Physical interactions ofTalin with TGF-~ signaling components in the absence ofTGF-~ in MCF-7 cells 
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Figure 5.2: Physical interactions of Talin with TGF-~ signaling components in the presence ofTGF-~ in MCF-7 cells 
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Figure 5.3: Antagonistic effects of Talin in TGF-13 signal transduction in MCF-7 ceUs 
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5.2 Future Remarks 

Based on the obtained data the future extensions ofthis study can be summarized 

as followings: 

Talin was shown to be positively regulated by TGF-pl. To reveal if this 

regulation is through a direct or a secondary response to TGF-p1, the transcriptional 

regulatory mechanism of Talin gene should be investigated by using the protein synthesis 

inhibitor, cycloheximide. 

As discussed in Chapter l, Talin head region contains binding sites for the type 

1y661 isofonn ofPhosphatidyl-inosital-4-phosphate 5-kinase, PIPK (Ling et al., 2002; Di 

paolo et al., 2002), and FAK (Borowsky et al., 1998), which are required for localization 

of Talin to the membrane and ceIl-ECM junctions (focal adhesions). Therefore, the 

possibility of the involvement ofFAK, and PI3-K in TGF-p signaling pathway leading to 

TGF-p1-induced Talin translocalization and Actin cytoskeletal reorganization should be 

examined. 

Kloeker and his colleagues (2004) illustrated that Kindlerin, a FERM domain 

containing protein (similar to Talin) is positively regulated by TGF-p, which is known to 

mediate EMT in human mammary epithelial cells. Therefore, to find out if Talin is 

involved in TGF-p-mediated EMT, further criteria such as changes in cell morphology 

leading to the loss of ceIl-cell contact and instability of E-cadherin on the cell surface are 

required to be investigated in tenns of Talin. 

Moreover, Becam et al. (2005) have reported that Talin has a second, integrin­

independent function. They demonstrated that Talin downregulates DE-cadherin 

transcriptional expression in Drosophila ovarian follic1e cells. To explore if Talin has any 

effect on E-cadherin expression in MCF-7 and MDA-MB-231 breast cancer celllines, 

hTalin siRNA technique should be employed. 
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To better understand the potential mechanism of Talin antagonistic effect on 

TGF-\3-induced cell growth arrest, the regulation of cyclin-dependent kinase inhibitors 

p15INK4B, p21CIP1WAF1, and p27 and other ceIl cycle regulatory genes induced by 

TGF -\31 should be investigated in terms of Talin. 

We have illustrated that Talin physically interacts with Smads and TGF-\3 

receptors in response to TGF-\31 in breast cancer celllines. Thus, the identification of the 

required domains involved in these interactions, and ifthese interactions lead to cross talk 

with other signaling pathways may provide a new path for future studies. 

As mentioned before, Talin is an integrin-interacting partner involved in integrin 

cellular responses. In this thesis it was shown that Talin is an inducible antagonist of 

TGF-\3 signal transduction at early stage of tumorigenesis. We speculate that in highly 

invasive MDA-MB-231 cells formation of Talin-T\3RII complex upon TGF-\3 stimulation 

may involve integrin signaling, enhancing TGF-\31 mediated invasion and EMT. 

Therefore, further investigations are required in terms of integrin signaling, or any other 

signaling pathways that might contribute to the differences observed in TGF-\3 signaling 

in MCF-7 and MDA-MB-231 cells with respect to Talin. 

Studies have shown that phosphorylation of the FERM family of proteins 

regulates their interactions with transmembrane proteins (Tsukita and Y onemura, 1999). 

There are several evidences showing that Talin as a FERM containing protein is also 

phosphorylated on different residues (Qwamstrom et al., 1991 ; Tidball and Spencer, 

1993 ; Turner et al., 1989 ; Watters et al., 1996 ; Beckerle et al., 1989 ). For example, it 

has been illustrated that Talin is an in vitro substrate of Protein Kinase C (PKC) and is 

phosphorylated on both serine and threonine residues in blood platelets (Litchfield and 

BaIl, 1990 ; Litchfield and BalI, 1986 ; Murata et al., 1995 ). Given the number of 

protein partners that Talin interacts with, Talin phosphorylation could control when and 

where these interactions occur (Ratnikov et al. 2005). In this thesis it has been shown that 

in response to TGF-\31, Talin physically interacts with T\3RI in MCF-7 cells and T\3RII in 

MDA-MB-231 cells. Thus, to point to the possibility that Talin phosphorylation could be 
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of importance for regulating its biological functions and its antagonistic effects in TOF-~ 

signal transduction, it is important to investigate if these serine/threonine kinase receptors 

or any other kinases are involved in phosphorylation of Talin in response to TOF -~ 1. 
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