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Abstract 

This thesis describes an experiment using technology to develop conceptual 

understanding of functions through graphical representations. It examines the effects of 

including dynamic representations in a conceptual approach to the teaching of functions. 

The study was implemented over a 5-day period in a Grade 9 class in a small, generally 

working class, rural school in Eastern Massachusetts. Participating students were 

observed during class discussions and video analysis, and their written responses and 

created functions were analyzed. The procedure used in the experiment was based on the 

Theory of Didactic Situations and used the Didactic Engineering methodology. The 

structure and sequencing of the thesis is also based on these concepts. Conclusions are 

drawn regarding the effects ofusing multiple representations systems to deepen 

understanding of functional relationships and suggested improvements to the introduction 

of the function concept in high school instructional programs are given. 

Résume 

Cette thèse décrit une expérimentation qui utilise la technologie pour 

l'apprentissage du concept de fonction par l'intermédiaire des représentations graphiques. 

Elle examine les effets de l'intégration des représentations dynamiques dans une 

approche conceptuelle de l'enseignement des fonctions. Cette étude a été mise en œuvre 

sur une période de cinq jours dans une classe de Grade 9 dans une petite classe ordinaire 

d'une école de campagne à Massachusetts Est. Les étudiants participants ont été observés 

pendant des discussions de classe et des analyses de vidéo, et leurs réponses écrites et les 

fonctions créées ont été analysées. Le procédé utilisé dans l'expérimentation a été basé 
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sur la Théorie des Situations Didactiques et la méthodologie employée a été celle de 

l'ingénierie didactique. La structure et l'organisation de la thèse sont également basées 

sur ces concepts. Des conclusions sont tirées concernant les effets de l'utilisation des 

systèmes de représentations multiples pour approfondir la notion de relation fonctionnelle 

et des améliorations suggérées pour l'introduction du concept de fonction dans les 

programmes de l'enseignement secondaire sont données. 
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Introduction 

At the core of my research is the teaching and learning of functional relationships 

in mathematics with an emphasis on understanding. Functions are fundamental tools for 

modeling scientific and social phenomena. Debates over such international issues as 

those of global warming, population control, radioactive waste, inflation rates, and the 

national debt, often revolve around understanding the mathematical behavior of 

functions, especially how one quantity changes in relation to another, or how one 

quantity changes over time. The importance of this for an educated citizenry is 

indisputable. Furthermore, it will be critical for students of the 21 st century to solve real­

world problems by creating and testing models of situations involving physical and 

simulation data and analyzing the data by utilizing different forms of representation. 

There is a need to democratize access to the mathematical concepts that are required to 

understand, create, and test such models. 

In my past research (Balyta, 1999), 1 showed that a conceptual understanding of 

sorne aspects of functions can indeed be developed in students at an earlier stage (grade 

6) than is common in mathematics curricula. Using technologies, in particular, the 

motion detector technology proved to be beneficial for the development of the concept of 

piecewise-defined functions by creating dynamic graphing situations that allowed the 

students to see and to control physically relationships between dependent and 

independent variables. The goal of this research was to suggest that middle school 

instructional programs should include an emphasis on functions so that all students 

understand the mathematical behavior of functional relationships. Among my findings 



was that the use of motion detector technology created dynamic graphing situations 

allowing students to see relationships between dependent and independent variables as 

they occur in real time. 1 also reported that such powerful dynamic teaching and leaming 

tools allowing students to physically control these relationships deepened their 

understanding of functions and their graphical representations as a foundation for deeper 

understanding in middle school. 

This thesis will investigate whether didactic situations can be engineered in these 

new leaming environments that improve student leaming of traditional topics, render new 

topics more accessible, and increase active participation. Thus, the goal of my research is 

to determine how best to organize the didactic milieu to facilitate optimal interactions 

between the students and the milieu in order for them to develop a conceptual 

understanding of functional relationships. Specifically, 1 will focus on motion and its 

associated functional relationships between position and time and the multiple 

forms of representation within two carefully selected representation systems, 

namely, graphical representations and simulated motion. 

Representation can also be viewed as the process of transforming the contents of 

consciences into a public form so that they can be stabilized, inspected, edited, and 

shared with others (Eisner, 1993). Also, since the forms ofrepresentation differ, the way 

understanding is acquired may also be different. As such, different forms of 

representation allow us to construct meanings that might otherwise elude us (ibid.) and 

there are relative strengths and weakness associated with each form of representation 

(NCTM, 2000). This is especially true when the representations which can be viewed at 

the same time are dynamically linked. For example, a change in one representation 
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simultaneously results in a change in another and vice versa. The effective and 

appropriate use of multiple representations fosters the students' ability to acquire 

knowledge. Graphical representations are often effective in providing a clear picture of a 

function and are beneficial in helping students visualize certain phenomena. For 

example, graphical representations are often helpful in visualizing a complex relationship 

between variables. AIso, by using graphs, students can explore aspects of a context that 

would otherwise not be apparent (Monk, 1994). Students often develop representations 

during problem solving inferring mental or internaI representations from graphs that they 

have created and modified as they represented and interpreted problem situations (Goldin 

& Steingold, 2001). 

The experiment presented in this thesis explores the effects of dynamic 

representation by incorporating additional technologies in the didactic milieu, allowing 

for richer representation systems and social interaction among leamers, using carefully 

designed didactic situations that allow synergy to occur among networked handheld 

devices, motion detector technology, and the classroom computer. The intention is to 

open a rich opportunity space for learning about functions to allow exploring the active 

physical, linguistic, and social participation of students employing simulations and the 

effect of multiple representation systems on student understanding of functional 

relationships. Classroom connectivity enables students to share mathematical functions 

across diverse hardware platforms, and teachers to collect and aggregate these functions 

into a common classroom display oftheir aggregated functions. Specifically, 1 explore 

how to take advantage of the students' personal connection with their individual 

constructions in the aggregated and publicly displayed set of student constructions. 1 
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propose that this develops important coordination skills that would deepen students' 

understanding of the functional relationships involved in motion. 

The thesis investigates the connection between formaI mathematics and functional 

relationships that are made possible through the effective and appropriate use of selected 

technologies and their multiple representations. 

Research Hypotheses 

Motion is an important "live" context for functional relationships between 

position and time. Historically, it has been the basis for a considerable amount of 

mathematics. It is directly experienced, has immediate kinesthetic, cognitive and 

linguistic aspects that can be tapped into, and fits into classrooms. 1 am interested in 

leaming about how motion in carefully constructed didactic situations in a milieu 

leveraging multiple representation systems enhances students' conceptual understanding 

of functions. Therefore, for my experiment, the milieu will include devices allowing the 

students to directly experience motion. They will interact with such a milieu and get 

immediate feedback from the milieu that will contribute to the building of understanding 

as explained in Section 2.1. It is my broad hypothesis that the use of multiple 

representation systems in a didactic milieu that allows for individual and aggregated 

mathematical constructions challenges students to coordinate multiple representations. 

Furthermore the representational strategies involved in coordinating multiple 

representations of the same functions (physical or simulation) will enhance the depth of 

leaming about functional relationships. My experiment will allow me to investigate the 

following research hypotheses: 
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Hypothesis 1 Individual mathematical constructions that are directly experienced in a 

"live" context have immediate kinesthetic, cognitive and linguistic aspects that will help 

students develop an understanding of the relationship between distance and time in 

problems of motion. 

Hypothesis 2 Individual mathematical constructions in a "live" context facilitate the 

development of understanding of independent and dependent variables. 

Hypothesis 3 Multiple linked representations of the same function in a simulated 

environment allowing for manipulation by the students improve their leaming about rate 

of change. 

Hypothesis 4 Aggregated mathematical constructions challenge students to coordinate 

multiple representations and deepen their understanding of functional relationships. 

As a result of my work, 1 hope to suggest new approaches to help democratize the 

leaming of fundamental mathematical concepts required for students of the 21 st century 

and, in doing so, hopefully spark the mathematical imagination of aIl students. 

My research is directed by didactic engineering (Artigue, 1992), a research 

methodology which has been used exc1usively for research in mathematics education, 

mostly in France, and unfamiliar outside France. Didactic engineering is a method of 

designing and evaluating the effect of instruction by a carefully structured series of steps: 

a preliminary analysis of the epistemological, cognitive, and didactic dimensions of the 

concept at stake, design and a priori analysis, experimentation, and a posteriori analysis 

and validation. This methodology is based on the Theory of Didactic Situations 

(Brousseau, 1997), and the whole dissertation is structured in the same way that an 

experiment based on didactic engineering is structured. Thus, after Chapter 1 has 
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described and justified the Theory of Didactic Situations and didactic engineering, the 

next three chapters are structured in the same way as a didactic engineering methodology. 

Chapter 2 contains the preliminary analysis of the concept offunction. The design of the 

didactic situations employed in this study required a clear definition of the meaning of the 

specific notions offunction (the epistemological dimension), described in Chapter 2, and 

helped by previous research studies (Sfard, 1991; Sierpinska, 1992). Chapter 2 also 

describes the cognitive and didactic dimensions of functions. Chapter 3 presents the 

design of the didactic situations employed and their a priori analyses required by didactic 

engineering, and Chapter 4 will describe the results of experimentation with the a 

posteriori analysis and validation of the research hypotheses. This will be elaborated at 

the end ofChapter 1. Finally, Chapter 5 will present the conclusion and summary, 

including an assessment of the limitations of this research, and suggestions for further 

research. 
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Chapter 1 Theoretical framework and methodology 

Since the Theory of Didactic Situations (Brousseau, 1997) constitutes the 

theoretical framework for this study, forms the basis of its methodology and also the 

structure of the thesis, this chapter will de scribe this theory in detail, then explore some 

research methodologies used in mathematics education, before justifying didactic 

engineering as the chosen methodology. 

1.1 Theory ofDidactic Situations (TDS) 

The research makes use oftools for analyzing and designing situations aimed at 

realizing the goals of schools, where the actions of leaming and teaching cannot be 

analyzed independently from each other. The students will be active1y involved in 

constructing their knowledge through a carefully designed sequence of didactic situations 

that will be built on students' earlier knowledge and experiences. The Theory of Didactic 

Situations (Brousseau, 1986, 1997), which is based on the constructivist approach, will 

constitute the main theoretical framework of the research. 1 have also considered various 

issues related to the appropriate use of technology in mathematics c1assrooms, since the 

technology will play an important part of the didactic milieu. 

At the heart of the TDS are interactions between the teacher, the student(s), and 

targeted knowledge in a didactic milieu, as outlined in Figure 1 below. 
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Didactic milieu 

Part of environment in 
interaction wlth a student 

Catalyst for contradictions, 
challenges, dlsequlilbriurns, 
and student adaptations 

Theory of Didactic Situations 

Teacher a/ms to control the relation 

Student 

Prlor knowledge 
COnl:eptions 

New knowledge 

Figure 1. Interaction between a student and a milieu in the Theory of Didactic Situations 

According to the TDS, a didactic milieu is a part ofthe environment with which 

the student interacts (Brousseau, 1986). It constrains the student's activity and, thus the 

evolution ofhis knowledge. In order to play its role properly, a milieu is subject to two 

constraints (Salin, 2002): 

• The milieu acts as a catalyst for contradictions, challenges, and disequilibriums, and 

thus students' adaptations. 

• The milieu has to allow the student to function autonomously. 

Thus, a didactic milieu is the natural milieu of students in much the same way as a 

cliff is the natural milieu for a rock climber. In both cases, one must understand certain 

ground mIes and develop strategies that will eventually result in a successful strategy, 

whether to solve a problem or climb a cliff. In this sense, knowledge is the means of 

understanding the ground mIes and strategies associated with a milieu and the means of 

elaborating winning solutions. The teacher's role is critical in organizing the didactic 

milieu in such a way that the targeted knowledge becomes necessary for the student to 

'survive' in it (to win or to solve the problem). The TDS assumes that leaming in a 

school situation is largely an adaptation to the milieu (Sierpinska, 1999). As Sierpinska 
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(1999) explains, if the situations in a mathematics c1ass are such that a certain type of 

social behavior is sufficient for survival in the c1ass, without any use of mathematical 

knowledge, then it is the social behavior, not the mathematical knowledge that the 

students willleam. According to the TDS, knowledge is understood as the outcome of 

the interactions between the student and a specific milieu organized by the teacher in the 

framework of a didactic situation. 

The teacher organizes a milieu by setting up values of a certain parameters, called 

didactic variables. A didactic variable is a parameter of a didactic situation that can be 

assigned several values. The modification of these values gives rise to changes of the 

students' strategies. The student needs to change hislher strategy as it became too long, 

too costly, too complex or erroneous. 

Thus, the didactic variables on which a didactic situation appears to depend can 

be controlled by the teachers as elements ofthe didactic system. For example, the 

teacher will need to make choices about arranging the milieu such as choosing the type of 

task, the resources, and the tools put at the disposaI of the students. The teacher will also 

need to make choices regarding his role in the milieu. Such variables help define the 

actual didactic situation. 

In the TDS, teaching is the devolution to the student of an adidactical situation 

and leaming is the student's adaptation to this situation (Brousseau, 1997). An 

adidactical situation is the setting up of a problem (that is, the organizing of the milieu) 

80 that the 8tudent does not need the intervention by a teacher to construct knowledge 

(Artigue, 2005). The rules and strategies associated with the interactions between the 

teacher, student and the milieu which are needed to solve a problem and specific to the 
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knowledge taught are referred to as a didactic contract (Brousseau, 1997). The TDS 

presumes the existence of a didactic contract that is inherently social in nature 

(Schoenfeld, 2002). The didactic contract can be explained as the idea that teacher and 

students enter a classroom with implicit understandings regarding the norms for their 

interactions and that these understandings shape the ways they act. The TDS is used both 

to identify what mathematical knowledge is being constructed by the teacher and the 

students in an actuallesson and also to engineer situations aimed at the construction of 

certain piece ofknowledge by the students (Sierpinska, 1999). 

Sierpinska (1999) has described different types of didactic situations, defined by 

Brousseau in his theory of didactic situations, in terms of the role of the teacher. In 

situations of action, the teacher organizes a milieu for students to engage with but then 

completely withdraws from the scene. Knowledge in this situation appears as a means 

for solving a problem or a class of problems and the knowledge is personalized and 

contextualized. In situations of formulation, the students exchange and compare 

observations between themselves while the teacher focuses on managing communication 

among the students. Knowledge, in this situation, appears as a result of a personal 

experience which needs to be communicated, and thus slightly de-personalized and de­

contextualized, in order to be understood by others. In situations of validation, the 

teacher acts as a chair of a debate, only intervening to put sorne order in the debate 

among students. He helps draw attention to possible inconsistencies in student 

explanations and encourages more precision in the use of concepts. Knowledge has the 

dynamic features of a theory in the making, not of a fmished, institutionalized theory. In 

situations of institutionalization, the teacher is the representative ofthe curriculum and 
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the students receive the instruction with explicit instructions and rules. Knowledge in 

this situation is considered to be the understanding of the instructions and rules given by 

the teacher. It is by means of the institutionalization that the knowledge becomes 

completely de-personalized and de-contextualized. 

1.2 Methodology 

The research methodology that guided my research was that of didactic 

engineering which is based on the TDS. The didactic engineering is qualitative in nature 

and, as explained by Laborde (1989), has the following as a goal: 

to apprehend teaching situations globally in order to develop a model 

which encompasses their epistemological, social, and cognitive 

dimensions and which attempts to take into account the complexity of 

the interactions between knowledge, pupils and teacher within the 

context of a particular class, or more generally of an educational 

group. 

(p. 32) 

Researchers are challenged with the important decision regarding which kinds of 

methods are appropriate in which circumstances, a challenge only exacerbated by the 

variety ofmethods currently available. Moreover, mathematics education research is a 

young discipline, having developed extensively in the last third ofthis past century 

(Lester & Lambdin, 2003). This serves, in large measure, to explain the diversity of 

perspectives and methods seen today (Schoenfeld, 2002). The Handbook of Qualitative 

Research in Education (LeCompte & al., 1992) and the Handbook of Research Design in 
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Mathematics and Science Education (Kelly & Lesh, 2000) are 881 and 993 pages long, 

respectively. Unfortunately the phenomenal growth of research methodologies over the 

past few decades has been largely chaotic, making it critical to analyze corresponding 

foundational assumptions and methods of investigation (English, 2002). The 

development ofwidely recognized standards for research has not kept pace with the 

development of new problems, new perspectives, and new research problems (Lesh, 

2002). 

Assuming one wants to conceive of and try a new way of teaching a piece of 

mathematical knowledge, as Sierpinska (1999) suggests, there are essentially two ways of 

going about that. One can use quantitative or qualitative research methodologies. 1 will 

start with a brief discussion of quantitative methodology and my reasons for rejecting it 

for this research. Next, 1 will situate didactic engineering in its qualitative research 

paradigm. The role ofunderlying assumptions in the conduct ofthis research and the 

implications of (implicit or explicit) choices oftheoretical frameworks will also be 

outlined. 

1.2.1 Quantitative methodologies 

1 have chosen to inc1ude this brief discussion on quantitative methodologies as 

part of the rationale to support my choice of a qualitative research methodology for my 

research. These are the comparative studies of experimental and control groups that 

dominated educational research until a few decades ago and which remain important to 

understand (Shoenfeld, 2002). 

The objective of comparative studies in c1assic experimental research is to 
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determine if desired outcomes are caused by specific actions (Campbell & Stanley, 

1990). These comparisons are usuaHy made between two groups: an experimental group 

treated by a set of actions and a control group receiving no such treatment (Romberg, 

1992). Comparative studies usually begin with an outline of a lesson containing 

classroom activities, with a precise description of the role and actions for the teacher and 

the expected responses of the students. The lesson contains advice for the teacher in case 

the students make errors and mistakes of various types. The planning decisions 

pertaining to the choice of the mathematical activities and problems could be justified by 

curriculum prescriptions, sorne theory of leaming, sorne principles of teaching, 

knowledge ofmathematics and personal experience. However, the evaluation of the 

les son will not be done on the basis of this justification. In fact, as Sierpinska (1999) 

reports, this justification may not even be written down or otherwise made explicit in the 

final report of the project. The project will be evaluated by testing the lesson on a group 

of students, with a control group for comparison. The control group will be taught the 

same mathematical content with traditional methods, and both groups will be 

administered identical pre-tests and post-tests. In the case of similar results on the pre­

test, if the experimental group performs better on the post-test, then the teaching project 

will be evaluated as "effective" (Sierpinska, 1999). 

Although the US Department of Education is now actively encouraging 

educational research communities and education technology companies to exclusively 

use scientifically based research, many educators believe that, for ethical reasons, it may 

be that such broad use of a research methodology with roots in the pharmaceutical 

industry is not such a good idea in the classroom. In fact, there is still a lot of debate on 
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this issue (Zaritsky & al., 2003). Because of my disquiet with these ethical issues, and 

my wish for a richer data set than quantitative research can provide, 1 have rejected 

quantitative methodologies for this study. 

1.2.2 Qualitative methodologies 

Qualitative research begins with questions and qualitative researchers seek 

answers to their questions in the real world. They gather what they see, hear, and read 

from people and places and from events and activities. EssentiaUy they do their research 

in natural settings rather that in laboratories or through written surveys (Rossman & 

Rallis, 1998). According to these authors, qualitative research has two unique features: 

(1) the research is the means through which the experiment is conducted, and (2) the 

purpose of qualitative research is leaming about sorne piece ofknowledge. Both these 

characteristics are integral to a view of leaming that sees the leamer as a constructor of 

knowledge rather than a receiver of it. 

As Sierpinska (1999) explains, if one rejects the "quantitative study" 

methodology because one does not believe that it is possible to teach the same 

mathematical content with two different sets of mathematical activities and different 

pedagogical approaches, and if one does not believe that one can assess what the students 

have leamed by counting their scores on a standardized test, then one should seriously 

consider using a methodology that supports instructional development. Qualitative 

methodologies require the researchers to make explicit the rationale behind aU of their 

decisions, the specified theoretical perspective, an instructional theory and their theory of 

what it means to know the particular mathematical content that they plan to teach the 
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students, because that will be the basis by which their research projects will be evaluated. 

Researchers using the qualitative paradigm also need to make predictions concerning the 

knowledge that the students should construct as a result of participating in the planned 

activities. After which, the researchers often attempt the scenario in a class with someone 

else as a teacher while sitting in the classroom as an observer. The researchers generally 

collect aIl possible documentation concerning the students' mathematical work by 

recording the classes, and collecting aIl the students' written work. The researchers 

analyze this material with the question: is the anticipated knowledge apparent in the 

students' productions? If not, then the researchers must try to determine what knowledge 

has developed. They need to determine whether or not the new knowledge can be 

explained in terms of the theoretical frameworks assumed a priori. The researchers need 

to determine if an alternative theory is needed, or if the theory needs to be modified. 

Finally, they need to analyze ifthe scenario can be improved to decrease the difference 

between the anticipated and the actual knowledge produced by the scenario. On the basis 

of this analysis, the researchers re-design their les son and try it again. 

If a researcher plans to use a qualitative research methodology as described above 

and the theoretical framework is based on the theory of didactic situations 

(Brousseau,1986), then the researcher would be using the methodology of didactic 

engineering in developing a teaching project in mathematics (Sierpinska, 1999). The 

concept of didactic engineering as a specific research methodology entered French 

mathematics education in the early 1980s and is gradually becoming known in North 

America (Kieran, 1998), although it has not been researched to any extent. 
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1.3 Didactic engineering 

Didactic engineering can be viewed as both a product, resulting from an a priori 

analysis, and as a process, resulting from an adaptation to the implementation of the 

product in the dynamic conditions of a classroom (Douady, 1997). Didactic engineering 

seeks, among other things, to situate the possible actions of a teacher under the 

constraints ofhis or her c1assroom and to determine the course of action required to 

obtain a desired behavior. In order to do this, a researcher using didactic engineering 

must formulate his or her questions and transform them into hypotheses in a developed 

theoretical framework in order to construct an experiment. The results of the experiment 

are then "confronted" with the predetermined expected behaviors before decisions are 

made regarding the success of the experiment (Douady & al., 1987). This process of 

confronting results with predetermined expected behaviors is referred to as "internaI 

validation". According to didactic engineering, the validation of the research hypotheses 

is essentially internaI in the sense that it is based on the confrontation of the a priori and 

a posteriori analyses, rather than external, based on the statistical comparison of the 

achievements of experimental and control groups (Laborde, 1989; Douady & al., 1987; 

Artigue, 1992; Artigue & Perrin-Glorian, 1991). It is predominately this type of internaI 

validation that differentiates didactic engineering from other research methodologies in 

the field of mathematics education. As figure 2 shows, didactic engineering is essentially 

composed of four parts: preliminary analysis, design and a priori analysis, 

experimentation, and a posteriori analysis and validation. 
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Dldocllc Dimension 
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Based on ail the data gathered durlng th. 
e.perim.ntatlon and validation coneoms the 
research hypotheses and the choices made ln the 
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Figure 2. Didactic engineering research methodology 

1.3.1 Preliminary analysis 

The preliminary analysis in didactic engineering usually involves the 

consideration of three dimensions: 

(1) an epistemological dimension which looks at the historical development of a concept, 

various aspects of a concept, problems based on the concept that may be solved; 

(2) a didactic dimension which is mainly concemed with the usual introduction of the 

concept in question, its effects on students' achievements, the didactic constraints, and 

recent developments in the teaching and leaming of the concept through curriculum and 

textbook studies; 

(3) a cognitive dimension which deals with student conceptions about the concept. 
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1.3.2 Design 

The design phase is based on the results ofthe preliminary analysis. This key 

phase of the methodology isolates a certain number of variables that are assumed to give 

rise to substantially different ways of leaming, i.e. the construction by the students of 

different meanings of the concept taught. 

1.3.3 A priori analysis 

The a priori analysis of the designed didactic situations includes a description of 

the aims of each situation, the didactic choices and the resulting characteristics of each 

situation. It also includes a predictive part which attempts to clarify the real benefits of 

the situation for the student, the types of behavior which might appear and the meaning 

that could be given to these, and to show that the expected behaviors really result from 

the knowledge the situation aims to develop. 

1.3.4 Experimentation 

The experimentation phase deals with the effective realization of the didactic 

situations and the gathering of data. In this phase, the students are assumed to be 

leaming, and data are gathered to assess whether this is true. 

1.3.5 A posteriori analysis and validation 

The a posteriori analysis is based on aIl the data gathered during the 

experimentation. This phase involves the validation of the research hypotheses and the 

choices made in the design of didactic situations. It is done by confronting the a 
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posteriori analysis with the one done a priori. 

1.4 Summary 

Chapter 1 described the theoretical framework and methodology for this study. 

The Theory ofDidactic Situations and didactic engineering was described and an 

explanation for the choice of this methodology was presented. After situating didactic 

engineering in the qualitative research paradigm, a detailed description of the phases 

involved in didactic engineering was presented. 

As weIl as being the methodology for this study, didactic engineering is also the 

framework for the dissertation itself. Thus this dissertation will not follow the usual 

format employed in most dissertations, but will reflect the structure of a didactic 

engineering experiment, specifically as it relates to teaching functions. 

ln summary: 

Chapter 2, Preliminary analysis, will analyze the epistemological, didactic, and 

cognitive dimensions of functions. 

Chapter 3, Teaching sequence: design and a priori analysis, will describe the 

three teaching sequences employed, including the a priori analysis of the aims, 

characteristics and expected outcomes of each. 

Chapter 4, Experimentation, will complete the sequence, with a description ofthe 

realization of the didactic situations and the a posteriori analysis of the data. 

The next chapter will describe the preliminary analysis required by the process of 

didactic engineering and end with a discussion of the technology used in this research. 
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Chapter 2: Preliminary analysis 

This chapter represents the preliminary analysis phase of the didactic engineering 

methodology which is essentially composed of epistemological, cognitive, and didactic 

dimensions. 

2.1 Historical and epistemological dimension 

In this section, 1 will provide an epistemological and historical analysis of the 

concept of function with special attention to the dynamic aspects of functions which are 

not easily observed in traditional paper/pencil based curriculum and outline the 

epistemological roots of functional relationships and their dependence on time. 

The concept of function is considered one of the most important concepts in 

mathematics today (Luzin, 1998; Ponte, 1992; Youshkevitch, 1976). However, the 

concept was not discovered or conceived by a single individual or at a particular time. 

Instead, it evolved over a period of several centuries and continues to evolve today in 

response to important problems in a number of different fields both within and outside of 

mathematics. This is why, even today, no single formaI defmition can include a complete 

description of the function concept. 

2.1.1 Historical development of the concept offunction 

Youschkevitch (1976) outlined three main stages in the development of the idea 

offunction up to the middle of the 19th century. He outlined the stages as follows: 

1. Antiquity - The stage in which the study of particular cases of dependencies 

between two quantities had not yet isolated general notions of variable quantities and 

functions. Examples of particular instances of functions from antiquity include counting, 
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which implies a correspondence between a set of given objects and a sequence of 

counting numbers; the four elementary arithmetical operations, which are functions of 

two variables; and the Babylonian tables of reciprocals, squares, square roots, cubes, and 

cubic roots which are also functions (Ponte, 1992). Because the literature ofthat time did 

not suggest an abstract and more general idea which unifies separate concrete 

dependences between quantities or numbers in whichever form these dependences 

happen to be considered, the concept of function was not attributed to antiquity 

(Y ouschkevitch, 1976). 

2. The Middle Ages - The stage in which, in the European science ofthe 14th 

century, these general notions were first defmitely expressed both in geometrical and 

mechanical forms, but in which, as in antiquity, each concrete case of dependence 

between two quantities was defined by a verbal description, or by a graph rather than a 

formula because the algebraic symbolism necessary to express functional relationship in 

the form of a formula had not been available until the 16th century. 

3. The Modem Period - The stage in which, beginning at the end of the 16th 

century, and especially during the 17th century with the development of algebra and its 

symbolism, analytical expressions of functions began to prevail. The class of analytic 

functions generally expressed by sums of infmite power series soon became the main 

class used. 

Although the concept offunction was not introduced until the 18th century, 

graphs offunctions were used to analyze their properties as early as the 14th century. 

Oresme (1323-1382) was among the mathematicians who could be regarded as having 

come close to a modem definition of function concept in studying the latitude of forms. 
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Oresme developed this theory of latitudes of forms representing the distance covered by 

an object moving with variable velocity. The graphical representation given by Oresme 

to the latitude of forms, which was essentially a representation of the functional variation 

in velocity with time to study the motions of bodies under uniform acceleration, is one of 

the earliest instances in the history of mathematics using what we now call "the graph of 

a function" (NCTM, 1969). Although he did not state the law of falling bodies, which 

was later attributed to Galileo, Oresme essentially yielded that conclusion. The actual 

emergence of a notion of function as an individualized mathematical entity can be traced 

to the work of Descartes (1596-1650). Descartes clearly stated that an equation in two 

variables, geometrically represented by a curve, indicates a dependence between variable 

quantities (Ponte, 1992). 

Newton (1642-1727) was one of the first mathematicians to show how functions 

could be developed in infmite power series, thus allowing for the intervention of infinite 

processes. He used the term "fluent" to designate independent variables, "relata quantitas" 

to indicate dependent variables, and "genita" to refer to quantities obtained from others 

using the four fundamental arithmetical operations (Ponte, 1992). Newton presented a 

clear kinematic-geometric interpretation of the basic conceptions which described 

conceptions of time and motion and of their geometrical presentation originating with 

Galileo and Oresme (Y ouschkevith, 1976). It was Leibniz (1646-1716) however, who 

first used and therefore introduced the term "function" (in unpublished documents) in 

1673 and as such, the concept of function was generally attributed to him. Perhaps 

Newton illustrated the distinction between dependent and independent variables more 

clearly than Leibniz, but Leibniz was the inspiration ofthe eighteenth century because of 
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the pedagogical quality ofhis work (NCTM, 1969). 

The term "function" was adopted in the correspondence interchanged by Leibniz 

and Jean Bernoulli (1667-1748) between 1694 and 1698 when discussing the studyof 

curves (Ponte, 1992). The actual term "function" first appeared in a scientific article 

written by Jean Bernoulli in 1698, while the first explicit definition of a function 

appeared in another written by Bernoulli in 1718 and was wide1y disseminated 

(Y ouschkevith, 1976). It contained his definition of a function of a variable as a quantity 

that is composed in sorne way from that variable and constants. In 1748, Euler (1707-

1793), who was a former student of Bernoulli, later added his touch to this definition 

speaking of analytical expression instead of quantity thereby creating an association 

between the notion offunction and the notion ofanalytical expression (Ponte, 1992). 

The 19th century brought about live1y interactions enlarging and clarifying the 

notion of function. The most significant argument revolved around the study of motion 

of a vibrating string outlined by Johann Bernoulli (1727) and questioned by d'Alembert 

(1717-1783). Both Euler and Daniel Bernoulli (1700-1782), Johann Bernoulli's son, 

attempted to find more general solutions to the vibrating string problem. For example, 

Euler began with a concept of function similar to that of Leibniz, but broadened it in his 

work on the vibrating string problem to include piecewise defined functions (Kaput, 

1994). However, it was d'Alembert who gave an almost exhaustive solution ofthis 

problem in a famous paper published in 1747. The debate around the vibrating string 

continued for years with both Euler and Bernoulli providing their own ideas and 

alternative solutions. In 1759, Lagrange (1736-1813) entered the debate by taking sides 

with Euler and opposing both Bernoulli and d'Alembert and the debate lasted over 20 
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years without a final solution (Kaput, 1994). In 1807, Fourier (1768-1830) gave the mIe 

for the coefficients ofthe trigonometric series representing an "arbitrarily given" function 

fknown as the Fourier formulas (Luzin, 1998). He also observed that his functions 

inc1uded the piecewise-defmed functions of earlier mathematicians. However, Fourier 

never gave a mathematical proof for his solution. The challenge of outlining this 

mathematical proofwas later taken up by Lejeune Dirichlet (1805-1859) who succeeded 

in defming a function that could be represented by a Fourier series. In 1837, Dirichlet 

gave the following definition of a function: "if a variable y is so related to a variable x 

that when a numerical value is assigned to x, there is a mIe according to which a unique 

value of y is determined, then y is said to be a function of the independent variable x." 

Dirichlet also gave a well-known example of a function which is everywhere 

discontinuous to emphasize the generality ofhis definition. He introduced the following 

function f: R ~ R: 

f(x) = 1 

f(x) = 0 

if x is a rational number; 

ifx is an irrational number. 

(Usiskin & al., 2003) 

However, it was Dirichlet's 1829 definition of function that was most widely 

accepted at the turn of this century (Kleiner, 1989 and Malik, 1980). Function was 

defined by Dirichlet as follows: 

y is a function of a variable x defined on the interval a<x<b, ifto 

every value of the variable x in this interval there corresponds a 

definite value ofthe variable y. Also, it is irrelevant in what way 

this correspondence is established. 
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(Kleiner, 1989, p. 291) 

The historical development of the concept of function gives perspective to the 

current debate around the function concept in the 20th and 21 st centuries. There has been 

a graduaI evolution in the understanding ofthe function concept. It has evolved from 

Oresme's graph, to an algebraic formula, to a correspondence between numerical 

variables, to a mapping between ordered pairs during the 20th century. 

It was not until Bourbaki, a well known proponent of abstract algebra, that the 

defmition offunction evolved further. In 1939, Bourbaki offered the following definition 

of function: 

Let E and F be two sets, which may or may not be distinct. A 

relation between a variable element x ofE and a variable element y 

ofF is called afunctional relation in y if, for all x in E, there exists 

a unique y in F which is in the given relation with x. 

We give the name offunction to the operation which in this way 

associates with every element x in Ethe element y in F which is in 

the given relation x; y is said to be the value of the function at the 

element x, and the function is said to be determined by the given 

functional relation. Two equivalent functional relations determine 

the same function. 

(cited in Kleiner, 1989,p.299) 

The historical emergence of the function concept is intimately related to the study 

of motion (Biehler, 2005). It is ironie that this idea of funetion may be regarded as the 

longstanding attempt to downplay the idea of motion. For example, motion was one of 
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the ideas that Lagrange intended to cancel from the theory of analytical functions 

(Laborde & Mariotti, 2002). The solution which was adopted consisted of substituting 

for the metaphor of motion, a more suitable one, which does not involve time. As such, 

the modem definition of function definitely abandoned the metaphor of motion. This 

definition de-contextualizes functions, and removes any dependencies on the use of 

motion as a metaphor for functions, although the connection to this metaphor was 

preserved in the idea of graph. 

2.1.2 Summary ofhistorical and epistemological dimension 

The historical development of the concept of function gives a good overview of 

how different representations emerged and how they contributed to a definition of 

function that was commonly accepted. 

The idea of motion played an important role in the emergence of the concept 

through debates that were focused on solving real problems. Important contributions to 

the concept of function and the notion of dependent and independent variables from 

leading mathematicians and scientists appear to have been contextualized in problems of 

motion. It is for these reasons that 1 have chosen the idea of motion as the context for my 

research on the understanding of functional relationships. 

It is interesting to observe that in attempts to de-contextualize a defmition for 

function, the important contribution of the idea of motion was suppressed. Even Euler, 

who devoted a large part of his life working with a concept of function that was 

contextualized in problems of motion, eventually focused on a more analytical view of 

functions. In fact, it was Euler's colleague, Lagrange who strove to remove the entire 
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metaphor of motion from the defmition of function. As a result, the modem definition of 

function no longer has grounding in the idea of motion. Luckily this important idea is 

still preserved in graphing. 

There is no one representation of function that allows anyone to completely grasp 

the notion of function. Thus, the complementarity of the various aspects and 

representations of functions is very important. Therefore in my research, 1 will pay 

special attention to representing the concept offunction from various points ofview. 

2.2 COgnitive dimension of function 

2.2.1 Understanding 

An underlying assumption regarding leaming with understanding during my 

research is that such leaming is generative. When students have an understanding of 

sorne newly acquired knowledge, they can apply that knowledge to leam new concepts 

and to solve new problems (Carpenter & Lehrer, 1999). It is also important to realize that 

understanding is not an aU-or-none phenomenon. As such, understanding can be thought 

of as emerging or developing rather than presuming that someone either does or does not 

understand a given concept or process (Carpenter & Lehrer, 1999). As a consequence, 

understanding can be characterized in terms of mental activity that contributes to the 

development of understanding rather than as a static attribute of an individual' s 

knowledge. Carpenter & Lehrer (1999) propose five forms ofmental activity from which 

mathematical understanding emerges: a) constructing relationships, b) extending and 

applying mathematical knowledge, c) reflecting about experiences, d) articulating what 

one knows, and e) making mathematical knowledge one' s own. 
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Formai mathematical concepts, such as the concept of function which forms the 

basis ofthe high school mathematics curriculum, should be given meaning by relating 

them to earlier intuition or ideas that students may have. Unless instruction constructs 

relationships between children's informaI knowledge and targeted concepts they leam in 

school, they may develop two separate systems of mathematical knowledge: one they use 

in school and one they use outside school. Of course, developing understanding of 

functional relationships involves more than simply connecting new knowledge with prior 

knowledge: it involves developing relationships that reflect important mathematical 

principles. For example, an understanding of a functional relationship may be extended 

to more general forms of relationships between variables. Students should be able to 

extend their understanding of functional relationships by making transitions or 

connections between various representations of functions. Reflection about experiences 

involves the conscious examination of one's own activities and thoughts. Little reflection 

is needed during the routine application of skills. However, problem solving often 

involves consciously examining the relationship between one' s existing knowledge and 

the condition of the problem situation. Students stand a better chance of acquiring this 

ability if reflection is part of the leaming process. 

The notion of the emerging nature of understanding is seen in students' 

developing ability to reflect on their thinking (Carpenter & Lehrer, 1999). Finally, the 

ability to communicate or articulate one's ideas is a benchmark ofunderstanding. 

Understanding involves the construction of knowledge by individuals through their own 

activities so that they develop a personal investment in building knowledge. 
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2.2.1.1 Concept image and concept definition 

The distinction between a pers on 's concept defmition and her/his concept image 

was introduced and analyzed by Vinner (1983) and further discussed by Vinner and 

Dreyfus. Their work (1989) serves as a foundation for much of the current research in 

the leaming of functions. 

Concept defmition is the way teachers define function and how we expect 

students to define function. Developing a solid concept definition is often the primary 

focus ofthe high school mathematics curriculum in North America. Historically, 

mathematicians regarded function as an active process; typically, defmitions described 

some kind of relationship between two variables or even a requirement that one variable 

is dependent on the other. This was especially true when the early mathematicians 

focused on solving real problems involving motion where time was the independent 

variable. This conception created an understanding of function that allowed continuous 

and smooth functions. As the need grew for a more sophisticated definition for function, 

mathematicians altered the defmition of function to allow for wider examples of 

functions, such as split domain functions. The current definition of function, known as 

the Dirichlet-Bourbaki definition and explained earlier in this Chapter, allows for even 

non-constructible functions and is defined as follows: 

Afunction is a correspondence between two sets, known as the 

domain and the codomain, where each element in the domain 

corresponds to one element in the codomain. 

(Stafslien & al., 2001, p.32) 
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Clearly, all direct connection to variables and continuity disappear in the above 

defmition. In the course ofthe last century, teachers have progressed from using the 

classical definition of a function to more abstract but powerful modem definitions. 

Therefore, a student' s introduction to functions often involves a defmition completely 

separate from any intuitions he or she might develop conceming functions. 

The concept image of function, on the other hand, embodies how students are able 

to visualize and perceive functions in a variety of forms. The concept image comprises 

the vi suai representations, mental pictures, experiences and impressions evoked by the 

concept name (Thompson, 1994). As Thompson explains, this difference between the 

concept image and concept defmition is similar to the difference in understanding we 

might have with the concept of "blue." Although we can potentially offer a definition for 

the concept ofblue, we rarely use this definition when interacting with blue. For 

example, if we were to ask the reader, whether the type in this paper is blue, we would 

expect the reader to answer based on whether the type looks blue instead of analyzing the 

text based on some formaI defmition ofblue. Similarly, when we ask a student if an 

expression is a function or could be a function, students typically answer based on their 

previous experience with functions and not with an analysis using the Dirichlet-Bourbaki 

defmition of function. Ideally students use their concept image to inform their concept 

definition. In particular, the formaI definition should be the final decision-making factor 

for solving a problem. Vinner (1983) and others argue that instead, a closer 

approximation to a typical student approach to problems is similar to observations ofthe 

color blue: students rely solely on concept image to formulate their thoughts on functions. 

30 



The process defmition of a function is akin to the historical perspective on 

function. It acknowledges that function has a domain and a range, and views the function 

as a process of moving from the domain to the range. This understanding has increased 

flexibility and allows the student to include many more functions in their conception. As 

explained earlier, the process conception offunction is an adequate view offunction for 

most situations, excluding the life of a mathematician. 

The most structural classification is the correspondence understanding. This 

category on the level of concept defmition implies that the student defines function in the 

Dirichlet-Bourbaki fashion. Similarly, a correspondence understanding of concept image 

moves beyond understanding function as a complex process. The Dirichlet-Bourbaki 

definition, on the other hand, allows for even the existence of non-constructible 

functions. That is, there are an infinite number of functions that we will never be able to 

represent or construct. This last level of sophistication is rare in middle and high school 

students. Even Sfard (1992), who extensively worked with a class of students to develop 

their conception of function, could not convince most students of the existence of a non­

constructible function. Therefore, though students often reach the point where their 

concept defmition is ofthis type, their image conception rarely reaches this level. 

By analyzing students' understanding based on the above spectrum, one can 

directly measure the depth of a student' s understanding of the concept of function. In the 

literature, however, there seems to be an agreement that the concept definition aspect of a 

student's education should be significantly de-emphasized, so that their concept image 

has a better chance of developing. Sfard (1992), for example, argues that introducing a 

correspondence defmition too early actually damages or hinders the student's 
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development of the concept of function. She argues that we learn concepts only at the 

level at which we absolutely need them. That is, the curriculum in a general K-12 

education does not cover mathematics advanced enough to necessitate a correspondence 

conception of function. 

An alternative approach, then, is to let students develop as much power as they 

need to fit situations that they encounter in the curriculum. In fact, it may be beneficial to 

a110w the concept image to develop at a higher level than the concept defmition, 

reversing the standard practice. Yerushalmy, for example, has examined the effects of 

such an approach on seventh grade students. He gave seven students a problem involving 

a function of multiple variables. They were told to model the fo11owing situation 

(Yerushalmy, 1997): 

A rentaI car company charges 100 shekels for a day and an additional 

5 shekels per kilometer. The company would like to have a clear 

description of the price that any client may have to pay when 

retuming the car. Suggest such a description. 

This was extended by the fo11owing exercise. 

You have won a 1000 shekels coupon from the rentaI car company. 

Provide a detailed description of a11 yOuf options to spend the exact 

amount for renting and driving a car using the maximum of yOuf 

wmnmgs. 

(p.435) 

The students had not received any formaI definition for function, and only 

minimal notation. The resulting models that students invented were remarkable. While 
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several students tried to graph the situation, their various methods of generalizing from 

the one-variable situation (which they had sorne experience in modeling) demonstrate 

how differently students can construct their knowledge. For instance, while one student 

graphed the solution on two two-dimensional graphs, another student constructed a three­

dimensional coordinate system (ibid.). The students analyzed the situation, and seemed 

to decide against the three-dimensional graph. This suggested that for their situation, the 

three-dimensional graph was not yet useful. Having thought ofit, however, it will be 

readily available when the student encounters situations where the two two-dimensional 

graphs give less information. The lack of a formaI defmition gave rise to a rich dialogue 

on concept image. 

Concept defmition and concept image are both aspects of a student' s 

understanding of function, but the traditional method of beginning from the concept 

definition promotes a large disparity between both concept definition and concept image 

that can cause confusion and hinder development. On the other hand, if one initially 

focuses on concept image, it seems as though the concept definition naturally follows and 

students gain an appreciation of how and why these definitions develop. Mathematical 

experts come to use concept images and concept definitions dialectically. Over time, 

their images become tuned so that they are aligned with a conventionally accepted 

concept defmition, which in tum allows intuition to guide and support reason. Not every 

student of mathematics attains equilibrium between defmitions and images, however we 

can increase their chances of success by giving explicit attention to imagery as an 

important aspect of pedagogy and curriculum (Thompson, 1994). 
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2.2.1.2 The importance of prototypes 

Confreyand Smith (1991) use "prototype" functions to introduce families of 

functions. They are in agreement with Schwartz and Yerusha1my (1992) that it is from 

the study of the characteristics of these base functions that students come to know the 

attributes of each family. The idea of prototype, applied to the concept of function by 

Schwarz and Hershkowitz (1999), ties together many of the ideas in the previous two 

sections. The idea of prototypes also provides a powerful mechanism for understanding 

how students develop an image of the function concept, and the use of various 

representations aids in the creation of beneficial prototypes. 

It is important for students to develop a healthy concept image of function that not 

only permits them to recognize a variety of functions, but also permits them to move 

comfortably and wisely between appropriate function representations. The idea of 

prototypes suggests that we think of objects and concepts in terms of examples (Brawner, 

2001). When faced with a new extension or generalization, we either reject it on the 

basis that it does not match our set of prototypes, or we adjust our prototypes to inc1ude 

the given extension. In regard to functions, it is important to develop an increasingly 

sophisticated palette of examples that are readily adaptable to new situations, yet middle 

school and high school curriculum rarely go beyond the family of quadratic functions. 

We all have a favorite set of functions; we differ, however, in how we apply our 

examples offunctions to different situations. For example, ifwe ask how many functions 

pass through the three points on the graph in figure 3, 
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Figure 3. Three points (Schwarz and Herschkowitz, 1999) 

students have various options at their disposaI. They could use their concept definition of 

function, which is unlikely given the curricula they have probably followed, or they could 

attempt to imagine functions that might pass through these three points. Here, their 

previous experience with functions becomes critical. The errors that students frequently 

commit are to either claim that there are no functions that pass through aIl three points, or 

that there is only one function that passes through these points (Schwarz & Hershkowitz, 

1999). In the first case, the students will typically justify their statement by claiming that 

since no linear function can be drawn through the three points, no function can be drawn 

through these three points. On the other hand, a common justification for there being 

exactly one such graph is that while one cannot draw a linear function, one can draw a 

quadratic function. The students apply their prototypes to the graph, and if the prototypes 

do not work, the students conclude that no functions work. 

Without requiring that our students automatically have a vast warehouse of 

functions, it is nevertheless desirable to avoid this kind of static prototype. There is a 

difference between the student who has had rigorous instruction solely in regard to linear 

functions, but acknowledges this as a sample in the wide range of different functions, and 

the student who insists his prototype is the sole representative of functions. Sorne 

students use linearity as a popular prototype, whereas the other forces his prototype on 

the situation. Similar results were found by other research studies such as those of 
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Schwarz & Hershkowitz (1999). 

Applying the concept of prototypes to functions is relatively new so there is much 

research yet to be done in uncovering how to best help students develop a good set of 

prototypes with an appropriate conception of function to expand their set. The idea of 

prototype, however, underlies concept understanding and so can hopefully aid teachers in 

understanding how their students develop a concept image of function. 

2.2.1.3 Physical models and multiple representations 

Monk (1994) investigated students' conceptualizations of classical situations 

having to do with related rates providing physical models for students' experimentation 

and asking questions about the situations that encouraged students to reason with the 

physical devices. Monk observed that students have difficulty in developing a coherent 

conceptualization of a physical model as a system of dependencies among quantities 

whose values vary - even while holding the devices in their hands and playing with them. 

Monk proposed that imagining situations as being functionally constituted was also part 

of seeing generality in geometric diagrams, and that we can actively promote this ability 

in students with carefully crafted curriculum and instruction. Attending to students' 

conceptualizations of situations is especially important when applied to models involving 

physical phenomena and physical quantities. The most effective situations will be those 

that require meaningful and contextual interpretation of representations in a problem­

based approach (Coulombe & Berenson, 2001). 

Physical phenomena such as motion taking place in a straight Hne can be 

represented through simulation. Doing so allows students to capture a physical 
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phenomenon so that it may be analyzed, edited, and shared with others for meaningful 

interpretation in a problem-based approach. Aigebraic representations on the other hand, 

almost always offer concise, true, and effective representations of patterns and 

mathematical models. Of course the inappropriate use of this representation may blur the 

mathematical meaning or the nature of the represented object and cause difficulties in 

students' interpretation ofresults (Friedlander & Tabach, 2001). Numeric representations 

can also be calculated or viewed on tables to provide detailed information regarding 

discrete data points or other aspects of graphs. Fluency with multiple representations in 

creating and testing models of mathematical re1ationships is critical in maximizing 

students' ability to acquire knowledge when solving real-world problems. Interpretation 

and translation of representations are skills that can, for example, extend students' 

algebraic thinking by helping them construct their mental images of patterns and 

functions (Moschkovich & al., 1993). The simultaneous display of multiple linked 

representations c1early illustrates interrelationships between the representations. 

The core concept offunction is not represented by any ofwhat are commonly 

called the multiple representations of functions, but instead by the connections made 

among representational activities which pro duce a subjective sense of invariance, 

important in understanding the function concept. Relating different representations to 

each other is regarded as a basic element of meaningful teaching and learning of 

functions (Biehler, 2005). The subtlety of the function concept with its various 

representations and process-object duality proves to be highly complex, leading not only 

to a concept with wide ranging powers, but also with widespread misunderstandings 

among students. One of the main points found in the rich literature on this theme 
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concems the relationship between function and its graphical representation. In particular, 

it seems that, for students, there is a lack of explicit relationship between function and 

graph (Vinner & Dreyfus, 1989, Dreyfus & Eisenberg, 1983). Difficulties ofinterpreting 

graphic information in terms of function are widely reported; generally speaking students 

do not consider the graph of a function to be the representation of the relationship that 

exists between the variables. Therefore, it is important to focus on graphs, expressions, 

or tables as representations of something that, from the students' perspective, is 

representable, such as aspects of specific situations. The key issue outlined in the 

preliminary analysis then becomes twofold: (1) To find situations that are sufficiently 

rich that they can be represented in many different ways and (2) To orient students 

toward drawing connections among their representational activities in regard to the 

situation that initiated them. The situation being represented must be contextualized in 

such a way that it highlights the connections among the representations. It is helpful 

when the representations can be linked together such that a change to the function in one 

representation is immediately reflected in the other representation of the same function. 

Otherwise, students may only leam each topic in isolation from the others. 

2.2.2 A constructivist approach 

There is general agreement in the mathematics education community that a 

constructivist approach is based on the following princip les (Dugast, 1991): 

• A student constructs his knowledge rather than receiving it passively from a teacher. 
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• A new piece ofknowledge is constructed based on a prior knowledge (therefore, a 

teaching sequence must take into account this prior knowledge; in order to take it into 

account, one must know students' conceptions of the targeted knowledge. 

• A student constructs a new piece of knowledge while engaged in a problem solving 

activity where he experiences the limits ofhis current conceptions and realizes the 

need to develop new ones. 

• Formulation is an important phase in the pro cess ofknowledge construction. 

• The role of the group contributes to the leaming process. The construction of 

knowledge in a classroom setting does not happen in isolation. Knowledge is 

constructed during membership in a group. Classroom debates, exchanges of ideas, 

procedures, and rationales cause students to modify their approach to a problem or 

even their thinking. 

2.2.2.1 Students' conceptions offunctions and obstacles 

As stated earlier, no single formaI definition can include the full description of the 

function concept and today, different conceptions associated with the function concept 

continue to evolve. Students also have difficulty distinguishing the concept of function 

from its graphical representation. They may in fact believe the graphical representation 

of the function is the actual function. For example, a curve may only be seen within its 

continuity, and the students do not realize that a continuous function should be 

considered a particular case of general function. 

When students come to think of an expression as producing a result of a 

calculation, they have what several researchers have called an action conception of 
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function (Dubinsky & Harel, 1992; Thompson, 1994). This conception views a function 

as a rule which applies to numbers. Students holding an action conception of function 

imagine that the rule remains the same across numbers, but that they must actually apply 

it to sorne number before the rule will produce anything. They do not necessarily view 

the rule as representing a result ofits application. Sfard (1992) identifies two 

conceptions associated with the function concept following this action conception: the 

process conception and the object conception. The process conception of function views 

a function as a formula or rule for computation. When students build an image of "self­

evaluating" expressions they have a process conception of function. From the 

perspective of students with a process conception of function, an expression stands for 

what you would get by evaluating it. They do not feel compelled to imagine actually 

evaluating an expression in order to think of the results of its evaluation. Therefore, it is 

not surprising that achieving a process conception of function is a non-trivial 

achievement for students, and that for many students it is not achieved without receiving 

instruction that focuses explicitly on its development (Dubinsky & Harel, 1992; 

Goldenberg & al., 1992). A process conception of function opens the door to a wealth of 

imagery. Goldenberg and Lewis (quoted in Dubinsky & Harel, 1992) have developed 

vi suaI supports for students to envi sion functions as processes applied over a continuum. 

Once students are adept at imagining expressions being evaluated continually as they 

"run rapidly" over a continuum, the groundwork has been laid for them to reflect on a set 

of possible inputs in relation to a set of corresponding outputs. 

A function viewed as a static entity on which operations can be performed 

demonstrates the object conception of function. At the point where students have 
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solidified a process conception of function so that a representation of the process is 

sufficient to support their reasoning about it, they can begin to reason formally about 

functions - they can reason about functions as ifthey were objects (Thompson, 1994). 

To reason formally about functions seems to entail a scheme of conceptual operations 

which grows from a great deal of reflection on functional processes. Of most importance 

is the image of functional process as defining a correspondence between two sets: a set of 

possible inputs to the process and a set of possible outputs from the process. The many 

paths by which students achieve an object conception of function are long and complex 

(Ayers & al., 1988), and explanations of it draw on a long tradition in philosophy and 

epistemology regarding the notion ofreflective abstraction (Dubinsky, 1991; von 

Glaserfeld, 1991). One hallmark ofa student's object conception offunctions is hisl 

ability to reason about operations on sets of functions. It is easy to think that students are 

reasoning about functions as objects when it is actually the function's literaI 

representation (Le., marks on paper) that is the object oftheir reasoning (Sfard, 1992; 

Sierpinska, 1992). Sfard also notes that the object conceptions usually develop out of 

process conception. 

Sfard (1992) identifies three components of the progression from the process to 

the object conceptions of function: interiorization, condensation, and reification. In the 

first stage, there is a process acting on an established object (interiorization). Then the 

process becomes more compact-whole (condensation). Finally Sfard explains that an 

ontological shift occurs when the student converts the condensed knowledge into an 

object in its own right (reification). Sfard advocates a process-focused method of 

teaching based on two principles: (a) Students must first develop a process conception of 

1 For the purpose ofthis thesis, the use of "his" includes "her" and "he" includes "she". 
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function. Specifically, the concept should not be introduced in structural terms. (b) An 

object conception of function should be delayed as long as students can do without it. 

Function as an entity should not be required until it provides an indispensable advantage 

over its computational view. Sfard claims that these two principles are necessary for 

reification to occur (1991). Sfard and Linchevski (1994) also explain that students must 

grow gradually through these perspectives. 

Confreyand Costa (1996) took issue with reification theory, particularly with its 

hierarchical view of mathematics leaming and they described the theory as an excessive 

and narrow orientation towards abstraction. In addition, Confrey and Costa (1996) wrote 

that reification theory tends to separate mathematical thinking from its origins in social 

contexts. They explained that context does not have to be stripped away as students 

move from concrete activities to the abstract and that connections should be made with 

everyday applications. 

Schwartz and Yerushalmy (1992) believe that function is the primary object of 

algebra and that algebra courses should be restructured and re-sequenced in light of its 

importance. Thus, functions should be introduced from the onset and the constructs of 

algebra should build on the function concept. The multiple representations of functions 

should be emphasized. Students traditionally leam about functions by manipulating the 

symbols that represent them. However, representations such as graphs can provide a 

richer, deeper understanding through the use of graphical operations such as translations, 

reflections, and dilations. Through such operations with a small base of functions, one 

can see the consequences of the actions, symbolically and graphically. In addition, the 

direct manipulation offered by dynamic software such as Geometer 's SketchPad (Jackiw, 
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1990), Cabri Geometry (Laborde, 2003) and MathWorlds (Roschelle & Kaput, 1996) 

allow for the direct manipulation of the graphical representations themselves pro vi ding 

opportunities for even deeper understanding. The perspective of Schwartz and 

Yerushalmy is guided by the following assumptions: (a) function as a process can most 

readily be seen through symbolic representation, (b) function as an object can most 

readily be seen through graphical representation, (c) some operations such as composition 

are best understood through symbolic representations, and (d) some operations such as 

translations are best seen through graphical representations. 

Like Sfard (1992), Confrey and Smith (1991) discussed two traditions in the 

development of functions: as a co-variation between quantities (process conception) and 

as a correspondence between values oftwo quantities (object conception). But unlike 

Sfard, Confrey & Costa (1996) do not believe that reification should be the sole focus of 

teaching and learning because it minimizes the importance of alternative approaches 

involving the teaching of functions as a co-variation between quantities .. 

Herscovics (1989) explicated the notion of cognitive obstacle as it relates to 

learning mathematics. An obstacle is a way ofknowing something that gets in the way of 

understanding something else. An obstacle can have various origins: epistemological 

when it is related to the notion itself; cognitive when it is related to the students 

capabilities; didactic when it is a consequence of the instruction. The origin of cognitive 

obstacles is developmental. It is interesting to note that Balacheff and Gaudin (2003) and 

their team no longer make reference to cognitive obstacles. Instead, they stress that 

obstacles are in fact, student conceptions and that such student conceptions would be 

replaced with new student conceptions of the concept being taught. In this context, 
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leaming takes place as students replace one conception by another one that is more 

general. Without disagreeing with this argument, 1 will continue to use the label 

cognitive obstacle in order to differentiate more easily student conceptions that get in the 

way of understanding something el se from those that do not interfere with leaming. This 

will be useful in completing the specific a priori analysis of my research project. 

A typical obstacle that students demonstrate when moving from graphs to 

algebraic expressions is to interpret the graph as a picture instead of a graph. For 

example, Kerslake (quoted in Leinhardt & al., 1990) asked students to decide which of 

the graphs in figure 4 represent joumeys and to de scribe what happens in each case. 

Distance Distance Distance / 

Time Time Time 

Figure 4. Joumeys (Leinhardt & al., 1990) 

Many students answered that aIl were descriptions ofjoumeys. For example the 

first one apparently represents someone climbing a vertical wall, and the last climbing a 

mountain. This type of cognitive obstacle creates significant difficulties in conveying the 

connections between graphs and functions to students. 
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2.2.2.2 The importance of communication 

When students acquire knowledge using the different forms of representation 

outlined above (as well as others) they rely on communication to share personal 

interpretations with others. Recall that this should be considered another form of 

representation - verbal representation. Students can build a shared understanding 

through joint reference to the representation of the phenomena within a context (Monk, 

1994). Other research has demonstrated that representations, when used as rhetorical 

devices in collaborative environments, improve shared understanding (Kozma & al., 

2000). By combining the use of familiar types of representations and analogies to 

familiar events, and communicating their understandings with others, students can 

acquire knowledge of even complex mathematical re1ationships. 

2.2.3 Summary of the cognitive dimension 

Understanding in the general sense as outlined above can be characterized in 

terms of mental activity that contributes to the development of understanding rather than 

as a static attribute of an individual' s knowledge. The cognitive dimension focused on 

the student's different conceptions offunctions and how students can develop a good 

understanding of the function concept. A good understanding of functions means that 

students should be able to make transitions or connections between various 

representations of functions and be able to choose the representation which is best 

adapted to solve a given problem. Different conceptions associated with the function 

concept continue to evolve in the mind of students as they think about functional 

relationships. Students develop a concept of function by first going through process 
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conception. The object conception is developed from the process conception as a 

consequence. A correspondence defmition of function is not suitable to introduce the 

notion of function. One of the defining characteristics of leaming with understanding is 

that knowledge is leamed in ways that clarify how it can be used. The construction of 

knowledge happens best in contextualized situations. 

The concept of function is difficult for many students because it is often presented 

to them as a decontextualized mathematical definition. Historically, we can observe that 

the modem definition of function emerged only as a result oftrying to solve real 

problems that were grounded in the idea of motion. Not providing students with 

situations that allow for the repeating ofthis pattern will surely make the concept difficult 

to grasp. The concept of function tums out to be difficult because of the obstacles 

presented above. 

2.3 Didactic dimension 

2.3.1 Concept offunction in textbooks 

In this section, 1 provide a didactical analysis on the teaching of functions 

involving data about motion. 1 will outline sorne of the traditional methods being used in 

schools today as weIl as new methods being supported by the National Council for the 

Teaching ofMathematics utilizing multiple forms ofrepresentations. Specifically, 1 will 

outline cases in which the appropriate and effective use oftechnology has allowed 

students to learn concepts that were not accessible to them using traditional tools. 

In combination with the Dirichlet definition, the Bourbaki defmition would 

eventually affect school mathematics curriculum for many years. Vinner and Dreyfus 
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(1989) introduced the Dirichlet-Bourbaki defmition offunction as a correspondence 

between two nonempty sets that assigns to every element in the first set (the domain) 

exactlyone element in the second set (the codomain). Although the formaI definition of 

function has been static since the 1950s, this Dirichlet-Bourbaki definition is still the 

most accepted definition, taught in the majority of mathematics curricula, and the 

majority of mathematics curricula continue to utilize this definition of function (Lloyd 

and Wilson, 1998). The notion of function and how it can be leamed and taught is still 

evolving. 

The modem defmition has been expanded to include many relationships not 

previously considered such as functions defined on split domains, discontinuous 

functions, and piecewise defined functions. Since no single formaI definition of function 

can include the full description of the function concept, researchers like James Kaput 

described these special types offunctions in the larger context of the Dirichlet-Bourbaki 

definition in order to help students understand the concept of function in contexts that 

make sense to them. For example, Kaput described piecewise defined functions as 

follows: 

A piecewise defined function defmed on an interval [a, b] subdivided into 

subintervals differs from a function globally defmed over [a, b] only in that its 

values are defined independently on each subinterval. There may or may not be 

additional constraints imposed on those subinterval definitions, continuity being 

one example - which is the case for piecewise defined Position vs. Time functions 

in most (but not aIl) MathWorlds documents. Another is piecewise defined Linear 

function, which makes the function graphs into polygons (non-closed, obviously). 
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It is possible to define the values of the piecewise defmed functions in various 

ways on the boundary points of the subintervals - that is, for a subinterval defmed 

by c and d with a<c<d<b, they could be defmed on (c, d], [c, d), [c, d] or (c, d). 

Of course, on complementary subintervals, the function needs to be defined 

appropriately. 

Two other points: 

(1) "Piecewise defined" is different from "Stepwise varying" - which is a 

description ofBEHA VIOR rather than of defmition. 

(2) It is possible to have a globally defmed (and hence not piecewise defined) 

function that is Stepwise varying: The greatest integer function, for example, 

which is a step-function defined for all integers (f(x) = greatest integer < x, or < or 

=). 

J. Kaput (personal communication, August 3, 2004) 

The purpose ofthis explanation is perhaps to avoid the conception "a function cannot 

have more than one rule; a piece-wise function corresponds to more than one function" 

(Mesa 2004, p. 278). 

U sing the above description of function to guide instruction will help the teacher 

situate leaming about functions in contexts that are familiar and interesting to the 

students. Since function is defined by what is needed for application or development of 

new fields of study, then in determining the appropriate definition and context with which 

high school students should explore the function concept, teachers should constantly be 

examining the purpose of studying functions in their own c1assroom (Mesa 2004). It is 

important to focus on descriptions of functions that are appropriate for students according 
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to where they are in their level of understanding and achievement. The research 

described in this thesis is guided by descriptions of functions similar to the one provided 

by Kaput above. Such descriptions of functions can be used by teachers to help students 

conceptualize the concept in a way that engages the student to learn more about the 

concept and be able to make the necessary transitions with other concepts. 

Today, the teaching offunctions essentially falls in one oftwo approaches used 

by educational publishers of school algebra texts in North America. Table 1 provides a 

basic overview of these common approaches to teaching about functions. 

y; hl 1 C a e br h h b fun f ommonpu IS er approac es to teac mg a out c Ions 
Approach Algorithmic Conceptual 
Definition of A relationship between input A relationship between 
Function and output where the output dependent and independent 

depends on the input. There is variables. 
exactly one output for each 
input. 

Focus oflearning Basics of numerical and A core set of concepts so that 
symbolic manipulation so that students have contexts and 
students have a foundation motivation for learning the 
composed of the algorithms algorithms. 
needed for further 
mathematics study. 

Assumptions Students will develop Development of the concepts 
understanding of concepts of variable, rate of change, 
later, as they learn to apply and functions willlead 
algorithms. naturally to the development 

of core symbolic algorithms 
that students will eventually 
need. 

Types of problems Problems that require Realistic problems grounded 
manipulation of algorithms. in contexts that are 
Many of the problems used in meaningful to students. They 
this approach are void of are often interesting problems 
meaningful context for that inc1ude hands-on 
students. activities. 

Most frequent modes Symbolic representations, set Words, graph, table, pattern, 
of representation notation, correspondence rule. symbolic. 
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The first approach is rather algorithmic in nature considering algebra to be a set of 

basic symbolic algorithms which the student must master as a basis for further 

mathematical study. In this view of algebra, the learning of functions is about the basics 

of symbolic manipulation, much as middle school is about the basics of numerical 

manipulation. The students can develop understanding of the concepts later, as they learn 

to apply the algorithms. The second approach is more conceptual. In this approach, 

algebra is a set of core concepts, among which are number pattern, sequences, variables, 

functions, etc. Development ofthese concepts wi11lead naturally to development ofthe 

core symbolic algorithms that the student eventually needs to acquire. In other words, the 

goals are much the same as in the algorithmic approach, but the conceptual approach 

focuses on having students spend more time up front on the concepts so they have 

context and motivation for leaming the algorithms. This approach tends to depend 

heavily on interesting problems and hands-on activities. Laying out an organized set of 

transitions in the student's thinking about key mathematical concepts, including the 

function concept, is essential for the learning of algebra. One ofthese important 

transitions in student conceptions involves moving from recognizing patterns of numbers, 

to systematic recursive definitions for the patterns, to explicit functional definitions of 

mappings between two sets of patterns, to the relationships between variables, to a 

complete concept offunction. The successful implementation of the conceptual approach 

is essentially focused on helping students make such transitions in their thinking (moving 

from existing conceptions to more complete or accurate conceptions). 

Both of these approaches are commonly used to coyer many of the same topics. 

One could argue that they may even form a progression in the teacher's conception of 
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important algebra concepts with the algorithmic approach preceding the conceptual. 

Although research and even the curricula envisioned by most states and provinces are 

basically conceptual in nature, the reality is that the majority of North American students 

still learn about important algebra concepts like functions through the algorithmic 

approach used by leading publishers like Pearson Education, McGraw-Hill Education, 

Houghton Mifflin, and Reed Elsevier, who have respectively approximately 40%, 35%, 

20% and 5% of the market share in the North American market (Resnick & al., 2004). 

2.3.2 Calls for reform in the teaching ofmathematics and the influence of 

textbooks 

As the concepts and transitions become more apparent in the teaching and 

learning of algebra, visualization and rich discourse become increasingly more 

important. One can train an individual to perform an algorithm without much discussion, 

however, developing understanding of concepts requires real discourse between people. 

The necessity of teaching the formaI set defmition of function at the schoolievei is not 

obvious and many teachers feel that pedagogical considerations were ignored while 

designing the basic curriculum (Malik, 1980). More specifically, researchers question if 

students actually understand this formaI definition of function (Markovits & al. 1986). 

Recall from the discussion of the cognitive dimension in Section 2.2, many researchers 

today find that the formaI defmition is not appropriate to introduce the concept of 

function. 

Concems from mathematics teachers and researchers about understanding and 

pedagogy were key issues in the NCTM, Curriculum and Evaluation Standards for 
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Schoo/ Mathematics (1989) and in the NCTM, Princip/es and Standardsfor Schoo/ 

Mathematics (2000). Since the publication ofthese two sets of Standards, there has been 

a renewed focus on the teaching of mathematics so that students gain an appreciation for 

its applications in the world around them. As a result of the emphasis being removed 

from the formaI definition of function, the focus of the study of function as described by 

the NCTM (1989, 2000) became more conceptual and contextual in nature. AIso, 

Froelich et al. (1991) explained that the basic idea offunction is that two quantities are 

related in sorne way. Recall that this is how the concept of function was first developed 

by Galileo when he studied physical problems associated with motion. Current 

recommendations by the mathematics education research community with regards to the 

study of function in school mathematics, such as the effective use of modeling, data 

analysis, contextual and interdisciplinary applications, are not new ideas. These ideas 

were expressed from the very beginning of the development of the function concept. 

Neither are the new pedagogical goals outlined by researchers, new ideas. These ideas 

include developing connections within mathematics through the use of function, using 

function as a unifying theme, and engaging students to leam more about mathematics in 

new ways. The goals today are so similar to the calls of the mathematicians and 

educators of the early 1900s that,just as it did for Klein, the question cornes to mind 

"have we come full circle in the study of functions?" It appears that in terms of 

recommendations for the intended curriculum for school mathematics, we have indeed 

come full circle (Brawner, 2001). 

The study of function in school mathematics in the context of physical problems 

associated with motion is not a new idea, nor is the use of modeling and data analysis in 
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real world contexts. However, if one assumes that today's recommendations for intended 

curriculum supporting the teaching and learning of functions have come full circle from 

the recommendations made in the 1900s, it can be concluded that research communities 

were simply not successful in influencing change necessary to make a difference in how 

the concept is taught. In today's environment, this would require successfully 

influencing the majority of publishers to change the way they present functions. 

The recommendations and intentions for mathematics curriculum have been 

varied and at times unaligned with each other. As a result, many of the recommendations 

have had limited impact on the actual mathematics taught in schools. There has been a 

clear pattern throughout the history of curriculum reform efforts of misinterpretation or 

partial implementation of curriculum recommendations, leading Stanic and Kilpatrick 

(1992) to conclude that the achievement ofintended outcomes ofreform movements have 

been limited. Textbooks tend to influence classroom teaching dramatically. In fact, 90% 

of mathematics teachers in North America who use textbooks reportedly teach to the 

book (Mickey, 2003). It is therefore important to examine the definition ofthe function 

concept and the related defmition of variable in the most popular textbooks today. The 

following table outlines how function and variable are defined in today's most popular 

textbooks. 

Table 2. Common publisher definitions of variable and function 
Textbook, Publisher, Definition of Function Definition of Variable 
Year 
Aigebra 1, Pearson- A function is a relation A variable is a symbol, 
Prentice Hall, a that assigns exactly one usuallya letter, that 
division of Pearson value in the range to each represents one or more 
Education, 2004 value in the domain. numbers. 

Note that a relation is 
defined on the preceding 
page as a set of ordered 
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paIrs. 
Algebra 1, Glencoe A function is a relationship Variables are symbols 
McGraw-Hill, 2005 between input and output. used to represent 

In a function, the output unspecified numbers of 
depends on the input. values. Any letter may 
There is exactly one output be used as a variable. 
for each input. 

Algebra 1, McDougal A function is a rule that A variable is a letter that 
Littell, a division of establishes a relationship is used to represent one 
Houghton Mifflin between two quantities, or more numbers. The 
Company, 2004 called the input and the numbers are the values 

output. For each input, of the variable. 
there is exactly one output. 
More than one input can 
have the same output. 

In these popular books, the function definition is presented without any context 

and is of little use for helping students solve real problems. The defmitions are variations 

of the formaI Bourbaki defmition. The problems faced by the students in these books are 

mostly intended to help the students leam the definition rather than to deepen their 

understanding of the function concept. As explained in the cognitive dimension in 

Section 2.2, such a formaI set definition is very abstract to students and therefore not 

appropriate to use when introducing the concept. 

Publishing is a $8.4 Billion industry in North America with three clear market 

leaders that compete aggressively with each other for precious market share (Shea, 2004). 

Clearly, the top publishers do not see it as their role to change how functions should be 

leamed by students. Rather than implement the recommendations of researchers, 

publishers rely extensively on critical feedback from teachers - their core customer base. 

In this competitive environment, textbook publishers cannot afford to promote function 

as a unifying theme in mathematics education unless requested by the great majority of 

their customers. Although researchers suggest that teachers should take responsibility 
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for what happens in their classrooms and that teachers must pay attention to the 

recommendations being made by researchers, fuis is not a simple nor realistic task given 

the current reliance on the textbook and the reality of teachers' work. 

Function is a powerful and unifying topic in secondary mathematics, as 

highlighted above, however currently no textbook can help teachers come to 

this understanding. Teachers do have access to a wealth ofknowledge in 

helping them guide the study of functions in their classrooms. However, given 

what is known about the teacher's reliance on textbooks in mathematics, it may 

be more effective in reaching the masses for mathematics education researchers 

to mobilize, align themselves and approach the NCTM with explicit 

recommendations regarding the teaching and leaming of the function concept in 

schools today. The NCTM could then conceivably influence its worldwide 

membership - many of whom are leaders in mathematics education - to 

consider new approaches to teaching such important concepts. Only after the 

majority of the teachers begin to adopt new approaches to teaching functions, 

will the large scale publishers change the way the concept is presented in their 

textbooks. 

2.3.3 Function as change 

Since the middle ages, function was explained in the context of real problems 

involving motion. Most of the discussions involved dependencies between quantities and 

associated rates. For example, the early work ofOresme resulted in a representation of 
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the functional variation in velocity with time to study the motions of bodies under 

uniform acce1eration. 

One purpose of the function is to represent how things change (TaU, 1996). 

Based on this meaning it is natural to consider the important concept of rate of change. 

Grasping the idea of function requires grasping the idea of variation and that the idea of 

variation is easily understood when sorne continuity (in a naive sense) is involved in the 

variation (Laborde & Mariotti, 2002). Perception of change may be related to different 

modalities (sense of touch, sense of sight ... ) of perception, but certainly sight plays an 

essential role in leaming about functions. It leads to the c1aim that space change over 

time (motion) can be considered as one of the basic primitive perceptions of dynamic and 

continuous variation. 

In our everyday conceptual system, change is understood metaphorically in 

terms of motion. 

(Lakoff & NUfiez, 2000, pA06) 

Variation is appropriately demonstrated by dynamic features of dynamic 

geometry environments, as is the dependency between two variables. Essentially, 

dynamic geometry environments are very effective in representing a functional 

dependency since constructions in such environments are expressed as functional 

dependencies between geometric objects. The representation in such environments can 

then be put in relation with other kinds of representations, such as algebraic or graphic 

representations, depending on the context. For example, it has been c1aimed that ideas 

related to variation (increase, decrease, constancy, maximum, minimum), and variation 

within variation (fast and slow variation, rate of change, smoothness, continuity, and 
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discontinuity), are better grasped from graphical representations (Ponte, 1992). Clagett 

(1968) attempts to capture the variational nature of a quality' s "intensity" (e.g., 

temperature) over position and time. Kaput (1994) extended Clagett's analysis to trace 

the evolution oftoday's ideas of variable and variability in the calculus, concluding that 

today's static picture offunction hides many of the intellectual achievements that gave 

rise to our current conceptions. 

Unfortunately there is very little emphasis on variation in today's K-12 

mathematics curriculum in North America. In examining the most recent editions of the 

three most popular K-9 textbooks series in the U.S., we observe that the closest they 

come to examining variation is to have students construct tables of data, and even then 

there is a profound confusion between the ideas of random variable and variable 

magnitudes. This is in stark contrast to the Japanese elementary curriculum (Kodaira, 

1992) which repeatedly provokes students to conceptualize literaI notations as 

representing a continuum of states in dynamic situations (Thompson, 1994). It is also 

surprising that so little has been investigated in regard to students' concepts of variable 

magnitude - the focus instead being on variable as literaI representation of number 

(Arcavi & Schoenfeld, 1987). 

Students have difficulties grasping the idea of function as a relationship between 

variables (one depending on the other). They have a discrete view of a function, in which 

a function relates separate pairs of numbers with each number considered as an input 

giving another number as result; students consider that there is a relationship between 

numbers, but the relation is conceived separately for each pair. In any case, the 

relationship of dependency between the two variables is not visible in the graph, that 
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remains a static representation of the couple (x,y) and does not afford the meaning of 

dependency between the two variables that rather play a symmetrical role. 

2.3.4 Summary of didactic dimension 

The didactic dimension outlined the way functions are usually introduced in 

North American middle and high schools today. It also supported new approaches to the 

teaching and leaming ofmathematics. The Dirichlet-Bourbaki defmition offunction as a 

correspondence between sets continues to be the basis for the presentation of function in 

the most utilized mathematics textbooks in the North American middle and high school 

textbooks. Although difIerent researchers have made important contributions towards 

more modem definitions such as the notion offunction as change, the Dirichlet-Bourbaki 

definition, which has been static since the 1950s, is still the most accepted definition 

today. The recommendations by the research community including the investigation of 

functions through problems involving motion, modeling and data analysis are not new 

ideas. It appears that we have come full circle in the study of function back to its very 

roots. However, given the teacher's reliance on popular textbooks in mathematics, it is 

increasingly important for researchers to approach the NCTM and departments and 

ministries of education with a consistent recommendation regarding the teaching and 

leaming of the function concept in middle school and in high school classrooms in North 

America. 
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2.4 The role oftechnology in the teaching and leaming offunctions 

Mathematics and, more specifically the study of functions, are rapidly changing 

due to new technologies available to students (Hegedus & Kaput, 2002). Technology 

provides students with the ability to leam about functions by providing easy access to 

multiple forms of representation. The use of technology provides room for more 

explorations, in a faster manner, ofthose different forms ofrepresentation (Brumbaugh & 

al., 2006). As explained in the preliminary analysis, it is important to understand that the 

way understanding happens may be different depending on the representation used. 

Studying multiple linked representations of a function is even more powerful because it 

makes the link between representations more dynamic. Direct manipulation 

revolutionized the teaching and leaming of geometry. These same ideas now allow 

students to directly manipulate the representations of functions themselves. 

Today, we can exploit the benefits oftechnology such as the graphing calculator 

and computer software in exploring the concept of function. Research shows that the use 

oftechnology in mathematics education causes students to become better problem solvers 

and achieve a better overall understanding of functions when compared to students that 

do not use technology in a traditional algebra curriculum (Brumbaugh & Rock, 2006). 

Therefore, we should assume that very shortly, the teaching of functions will increasingly 

involve the effective and appropriate use of various types of technologies. At the very 

least, a graphing calculator or computer environment can free students from tedious 

point-by-point plotting and move the instructional focus to understanding. Several 

technological developments have had a very significant role in the study of functions. 

For example, with the aid of such technology, students can readily examine a variety of 
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functions and altered functions. The effective and appropriate use of graphing calculators 

and computers with appropriate software such as spreadsheets, graph plotters, and 

symbol manipulation programs help students to develop a deeper mathematical 

understanding ofthe function concept (Peressini & Knuth, 2005). Direct manipulation­

enabled software allows for new dynamic representations of functions. In earlier 

multiple representation software, graphs were essentially static display representations. 

The results of any actions were presented as new representations of mathematical objects. 

Today, interactive software making effective and appropriate use of dynamic 

manipulations allows students to act within a representation by transforming objects 

dynamically (Kaput, 1992). Translations in functions, for example, are now permitted 

with Cartesian representations in software programs such as Function Probe (Confrey, 

1992), CabriGeometry IIPlus (Laborde, 2003), Geometer's SketchPad (Jackiw, 1990), 

and Math Worlds (Roschelle & Kaput, 1996). Even more recent developments bring the 

power of direct manipulation to data. Using Fathom (Finzer, 2001) or TinkerPlots 

(Konold, 2004), students can now directly manipulate data while simultaneously seeing 

the effects on the graphical representations. Because of their affordability and 

capabilities, handheld graphing and data collection devices provide greatly increased 

access to the type of functionality provided by the above powerful software programs, 

especially in resource-challenged schools that may not have funds for extensive 

purchases of computer hardware (Berson & Balyta, 2004). 

The interpretation of significant features of functions from their Cartesian graphs 

deserves a prominent place in mathematics curricula. To be mathematically literate 

means to be able to use mathematics concepts to make predictions, interpolate, and 
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extrapolate. In the context of functions, it means to be able to establish relationships 

among different functions by superimposing graphs, to be able to construct regression 

curves that approximate relationships for empirically obtained data, and to estimate the 

degree of association between two variables (Gomes Ferreira, 1997). 

U.S. Secretary of Education, Rod Paige, commented that schools are still 

struggling when it cornes to truly integrating the appropriate use oftechnology. 

Many schools have simply applied technology on top oftraditional teaching 

practices rather than reinventing themselves around the possibilities 

technology allows. The result is marginal - if any -

improvement .... Technology can not only improve instruction but transform 

what we think of as education. 

(U.S. Department of Commerce, 2002, p. 4) 

Technology clearly still has the potential to transform education. If it is to do so, 

teachers must be able to take advantage of that potential. Therefore, to advance students' 

conceptual understanding and achievement, technology implementation requires 

integration into teaching practice and standards-based curricular materials. Many of the 

technologies being purchased by schools and school districts are business tools that have 

been repurposed for education. In contrast, handheld graphing and data collection 

devices are built specifically to support the effective teaching and leaming of 

mathematical concepts that would otherwise not be accessible to most students, and in 

addition, their affordability allows many students access to the technology. 

Many studies examined the constructive contribution made by the use of 

computers and by the dynamic visualization of functions used to overcome or at least 
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lessen the c1assic problems of coordination between the various forms of representation 

(Duval, 2000; Mavarech & Kramarsky, 1997; Vinner, 1992). Others have concentrated 

on the possibilities offered by the emerging technologies in order to work on function as 

a mathematical object (Borba & Confrey, 1996; Dagher & Artigue 1993; Kieran 1994, 

1998). However, many ofthese studies are pitched at higher grade levels. There are 

fewer studies on problems encountered by students approaching the function concept at 

lower grade levels. 

Different proposaIs have been suggested in order to help students leam about 

functions by a conceptual approach. In many such cases, technology provides new 

environments to explore the function concept in very different ways compared to 

traditional algorithmic approaches using traditional tools like paper and penci!. For 

example, new technology is affording creation of new qualitatively different 

representations of functions. Kaput (1992) pointed out that historically, mathematical 

notation systems have been instantiated in static, inert media, but new technologies now 

afford a whole new c1ass of dynamic, interactive notations ofvirtually any kind. When 

software is used to represent function concepts, it is usually done graphically, often with 

the option to represent them in table form. The way in which the graph is often drawn as 

a curve may cause students to see it as a whole object. Kaput c1aimed that dynamic 

technologies are also the natural "home" for variables, rather than static technology, 

which requires the user to apply much of the variation cognitively. Unlike the paper and 

pencil environment, the interactive environment can afford the representation of change 

through motion; the idea of variation is grounded in motion, so that it is possible to 

experience variation in the form of motion. 

62 



The key notions supported by the interactive environments such as Math W orlds 

are motion and the fact that motion preserves the links constructed between elements. As 

a consequence, such interactive environments incorporate and represent the idea of 

variation and that of functional dependency. This type of functional dependency 

constitutes a very particular instance of function, differing from numerical function, 

because it relates spatial elements instead of numbers. Thus interactive environments 

such as Math Worlds offer a powerful environment incorporating the semantic domain of 

space and time, where the notion of function can be grounded. 

Some programs, such as RandomGrapher (Goldenberg & al., 1992) plot random 

function values to build the graph as a collection of points. Although this gives a set of 

points, further activities may be necessary to see the function process assigning to each 

value ofx the value ofy=f(x). The authors also created DynaGraph, a dynamic visual 

representation where the users can vary the variable having as feedback the value of the 

function. 

Other programs allow for the linking of alternative forms of representations, for 

instance Function Probe (Confrey 1992) allows graphs to be directly manipulated, using 

the mouse to transform graphs by translating, stretching, and reflecting. Such an 

approach treats the graph as a single object to be transformed. Function Probe, 

developed by the Mathematics Education Research Group at Cornell University, can be 

considered a multiple representational (equation, graphs and tables) software tool that 

enables students to explore the idea of real functions. Its goal was to encourage students 

to enter mathematical thinking by using a tool built for them to investigate and model 

phenomena using mathematical functions (Confrey & Maloney, 1996). Students can 
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explore functions with actions either within one representation or with links made 

between different representations. Thus, it preserves the integrity of each representation. 

Such dynamic representations made possible by software such as Function Probe give a 

new status to the Cartesian representations that become qualitatively different Cartesian 

representations instantiated in paper and pencil. 

The primacy ofnumerical representation (Goldenberg & al., 1992) and the lack of 

experience with functional dependency in a qualitative way may be considered a source 

of students' difficulties. This is why it has been proposed that it is important to start in an 

environment providing a qualitative experience of functional dependency independently 

of a numerical setting (Laborde & Mariotti, 2002). Dynamic geometry incorporates 

functional dependency and working in a dynamic geometry environment fosters the 

thinking about geometricallinks in terms offunctional dependency. Usually functional 

dependency remains implicit, i.e. "in action" (Vergnaud, 1991), but once made explicit it 

provides a rich semantic context for the idea of function. Math Worlds a1so incorporates 

this qualitative type of functiona1 dependency focusing on the variation between 

variables. 

By assuming that the basic idea of function as outlined by NCTM (2000) is that 

two quantities are related in some way, Kaput (1992; 1993) and Nemirovsky (1993) 

approach the study of function in much the same way that Galileo did. In fact, Kaput and 

Nemirovsky focus their research on the way students have intuitive sense of concepts 

such as distance, velocity, acceleration, which can be utilized in conjunction with 

computer simulations such as the Math Worlds microworld (Roschelle & Kaput, 1996) to 

study different aspects of motion at an earlier age. They utilize technology-enabled 
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simulations in familiar contexts linked to multiple representations of position versus time 

so that students make effective use of multiple representations in meaningful introductory 

contexts. Thus many of the important aspects of the function concept may be explored 

by students at an early age and the resulting initial image should be appropriate for a wide 

spectrum of students. 

The technology framework underlying this research integrates hardware, specific 

software, and device-connectivity designed specifically for the teaching and learning of 

functions. The first representation system is the handheld graphing calculator in 

combination with a data collection device and the second system is a computer-based 

microworld designed specifically for the teaching and learning of the mathematics of 

motion in combination with a data projector. Both these representation systems provide 

multiple forms of representation. Interpretation and translation of representations are 

skills that can, for example, extend students' algebraic thinking by he1ping them construct 

their mental images of patterns and functions (Moschkovich et al., 1993). The most 

effective situations will be those that require meaningful and contextual interpretation of 

representations in a problem-based approach (Coulombe & Berenson, 2001). 

1 hypothesize that fluency with multiple representations in creating and testing 

models of mathematical relationships is critical in maximizing students' ability to acquire 

knowledge when solving real-world problems. One major similarity related to how 

students acquire knowledge using the different forms of representation outlined above (as 

weIl as others) is the reliance on communicating personal interpretations to others. 

Students can build a shared understanding through joint reference to the representation of 

the phenomena within a context (Monk, 1994). Other research has demonstrated that 
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representations, when used as rhetorical devices in collaborative environments, advance 

shared understanding (Kozma & al., 2000). By combining the use offamiliar types of 

representations and analogies to familiar events, students can acquire knowledge of even 

complex mathematical relationships. 

2.4.1 Choice of technologies for this study 

Graphing calculators are a special type of multiple representation tools and have 

many similarities with the technologies outlined above. However, graphing calculators 

are different from the programs discussed above which require a powerful and expensive 

computer. In the past, graphing calculators offered representations in numeric, graphic, 

algebraic, and table form, but today, they can also offer geometric representations. For 

example, the TI-84Plus Si/ver Edition graphing calculator from Texas Instruments and 

the Classpad300 from Casio come preloaded with powerful geometry tools. Such 

environments can provide new opportunities for the teaching and leaming of the notion 

of function, by making effective use of a dynamic geometry environment. 

Traditionally, one of the large st challenges in the teaching of the connections 

between representations has been the time it takes for students to construct the 

appropriate tables and graphs associated with their functions. For example, by the time 

the students have constructed a table for a sine curve and plotted sufficient points to get a 

sense ofhow the curve acts, they lose much ofthe connection between the various 

representations. The introduction of easily accessible technologies like the graphing 

calculator has vastly changed this inhibiting factor in intuition development. A graphing 

calculator or computer can quickly convert an algebraic expression into tables and 
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graphs, allowing the student to explore how minute changes to the function affect the 

graph of the function. Overall, graphing calculators or computers have increased the 

opportunity for students to work with and to interpret a variety of different 

representations efficiently. 

With the use of graphing calculators or computers in the classroom, we must 

reevaluate our goals for instruction. Today, if the student is able to fmd an algebraic 

expression for the function, the initial graphing process is simple. Instead of evaluating 

the expressions for several numbers, students can now focus on understanding how 

certain graphs act under different transformations, but, while students using graphing 

calculators or computers no longer have difficulties graphing functions, there are far 

more critical elements in mathematics that they can and must consider. Without critical 

thought and interpretation and the ability to make connections among representations, the 

act of graphing functions on graphing calculators or computers becomes as meaningless 

as, or even more meaningless than, the original computation. By carefully designing 

activities, one also avoids the natural belief by students that the computer is omnipotent. 

Like any other tool, the graphing calculator, the computer and their outputs have 

limitations, and part of the student's task is how to combat the limitations ofvarious 

representations to the best ofhis ability. Currently the graphing calculators do not 

provide for powerfullinked multiple representations of the same phenomena on the same 

screen. Thus the incorporation of technology changes pedagogy by making new 

demands on students' thinking, while removing sorne of the mechanical factors that may 

impede learning. 
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In the didactic milieu employed in this experiment, the students and the teacher 

each had a TI-84 Plus Si/ver Edition handheld device from Texas Instruments loaded 

with the MathWorlds application from SimCalc Technologies. These tools were chosen 

because of the multiple forms of representation that they make available to the students 

and the fact that they constitute a technology that supports effective communication in 

the c1assroom. AIso, in combination with MathWorlds and the Calculator Based 

Ranger™, (CBR), the graphing calculator provides the "live" context and immediate 

feedback needed to test my research hypotheses Hl, H2 and H3 (cf. p. 5). The teacher's 

version of the TI-84Plus Si/ver Edition calculator had a projection screen attached. 

Figure 5. TI-84 Plus Silver Edition graphing calculator 

Each graphing calculator is loaded with the Math Worlds application. 

Math Worlds is an environment rich in interactive motion simulations, visualization tools 

such as qualitative graphs, and a motion animator (that replays imported motions) to 

enliven and deepen understanding of important mathematical concepts. Math Worlds also 

extends the graphing calculator by providing for direct experiences on these ubiquitous 

devices. The software allows for the representation of motion in two different ways. The 

bottom portion of the calculator screen presents a graphical representation of a motion. 

The top portion of the calculator screen presents a simulation of the motion as a 

representation of motion going from left to right. 
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Figure 6. Math W orlds for the TI-84 Plus Si/ver Edition 

In combination with the graphing calculator and the CBR, MathWorlds provided 

the students with a multiple representation system that allows for the direct experience, 

"live" context, and multiple linked representations needed to test the hypotheses. 

The teacher's computer, loaded with Connected MathWorlds software and 

connected to a projection device, serves as a visualization, simulation coordination, and 

classroom discussion too1. The teacher can also construct a function (or choose from 

among student functions) and broadcast it to each student in the class. The software' s 

ability to display any subset of student functions supporting comparison, contrast, 

reflection, and group analysis is particularly suitable for the situations of formulation and 

validation in reference to the theory of didactic situations employed in this experiment. 

Connected MathWorlds provides the second representation system in this experiment. 

AIso, in combination with the TI-Navigator classroom network, it provides for the 

collection, aggregation, and viewing of mathematical constructions needed to test the 

fourth hypothesis which claims that aggregated mathematical constructions challenge 

students to coordinate multiple representations and deepens their understanding of 

functional relationships. 
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Figure 7. Math Worlds for the computer 

The teacher makes use of a CBR (Calculator Based Ranger™) from Texas 

Instruments connected to his TI-84 Plus Si/ver Edition to collect and analyze real motion 

data. The CBR works by sending out ultrasonic pulses and then measuring how long it 

takes for those pulses to retum after the have bounced offthe closest object. The CBR, 

like any sonic motion detector, measures the time interval between transmitting an 

ultrasonic pulse and the first retumed echo, but CBR has a built-in microprocessor that 

also calculates the distance of the object from the CBR using a speed-of-sound 

calculation. Then it computes the first and second derivatives of the distance data with 

respect to time to obtain velocity and acceleration data. It stores these measurements in 

lists within the graphing calculator for further analysis by teachers and students. The 

CBR therefore allows the students to explore mathematical and scientific relationships 

between distance, velocity, acceleration, and time using motion data collected from the 

activities they perform. In combination with MathWorlds, it also allows for the 

collection and animation of real student motion. In the past, students did an experiment, 

collected data, analyzed the data, and then leamed something about phenomena or 
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concepts. With this kind oftechnology, students can start analyzing real-world data 

while they are physically involved in collecting it. 

Figure 8. The Calculator Based Ranger™ 

Finally, the TI-Navigator classroom network from Texas Instruments provides for 

connectivity in the didactic milieu. The physicallayout ofthis technology framework is 

illustrated in Figure 9. 

Figure 9. The TI-Navigator Classroom Network 
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The TI-Navigator network acts as an aggregation and broadcast server on a centralized 

computer that allows the teacher to harvest and combine students' individually 

constructed mathematical functions with those of their classmates. 

The TI-Navigator Classroom Network depicted above has the following important 

components: 

1. The teacher desktop computer loaded with TI-Navigator software. 
2. Wireless hubs that network the TI-84Plus Si/ver Edition graphing calculator. 
3. The access point. 
4. The teacher overheard projector and overhead panel for the TI-84Plus Si/ver 

Edition graphing calculator. 
5. Charging units for the wireless hubs. 

The TI-Navigator Classroom Network will allow testing of the fourth research hypothesis 

H4. 

By combining physically constructed motions using CBR motion detector 

technology, graphically constructible position vs. time functions and their animations in 

Math Worlds on the handheld graphing calculators with the power of TI-N avigator to 

collect and display them using MathWorlds on the teacher's computer, students and 

groups of students will be engaged in exciting new forms of mathematical activity, 

inc1uding a "mathematical performance", that bring new levels of engagement and 

excitement to leaming critically important ideas. Thus the power of the se different pieces 

of technology is integrated to establish a c1assroom environment which may enhance 

teaching and leaming, and where the research hypotheses may be tested. 

2.5 Summary 

Chapter 2 provided an epistemological and historical analysis ofthe concept of 

function outlining the epistemological roots of functional relationships and their 
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dependence on time. Understanding in the general sense was characterized in terms of 

mental activity that contributes to the development of understanding rather than as a 

static attribute of an individual' s knowledge. Chapter 2 also outlined students' different 

conceptions of functions as well as what it means to have a good understanding of 

functions. The way functions are usually introduced using the Dirichlet-Bourbaki 

defmition of function and support for new approaches to the teaching and leaming of 

mathematics was also discussed. Chapter 2 conc1uded with an overview of the role of 

technology in the teaching and leaming of functions today as well as a presentation of the 

technology framework underlying my research, complete with a description of the 

technologies used in this study. 

The next chapter will describe the design of the teaching situations employed in 

this study to test the hypotheses. 
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Chapter 3 Teaching sequence: design and a priori analysis 

Recall that the a priori analysis contains a predictive part which attempts to 

c1arify the real benefits of the situation for the student, the types of behavior which might 

appear and the meaning that could be given to these, and to show that the expected 

behaviors really result from the knowledge the situation aims to develop. Since the 

following section describes how the a priori analysis was conducted, the future tense is 

used to report the process authentically. Also, it is important to remember that the design 

phase relies on the preliminary analysis of the concept, in this case, function, previously 

elaborated in Chapter 2. 

3.1 Overview of design ofteaching sequences 

The teaching sequence is to be implemented in its entirety over a 5 day period. 

The goal of the first day is essentially to familiarize the students with the new additions to 

their regular leaming environments, namely the research team and the five video cameras 

which will be present in their c1assroom. The actual teaching sequence will be 

implemented in the experimentation phase during the second, third, and fourth days, and 

composed of two didactic situations intended to have the students progress through 

situations of action, formulation, and validation in order for them to deepen their 

understanding of the concepts. Both didactic situations will essentially be composed of 

the following structure, according to the theory of Didactic Situations outlined in Chapter 

1. 
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• A preliminary activity where the students become familiarized WÎth the 

technology tools which are going to be used in the activities and the activities 

themselves. 

• Situations of action where student are involved physically in the creation of 

graphical representations. The student searches for answers first individually, 

then in groups. 

• Situations of formulation where students need to formulate their strategies in 

order to solve given problems involving functions. This is followed by the 

presentation of the answers to the whole class and discussion. 

• Situation of validation where the students try to explain some phenomena, or to 

verify conjectures. This is essentially both a discussion and validation ofthe 

answers by the students. 

• Conclusion or synthesis ofthe activity is led by the teacher who is helped by the 

students. This is the institutionalization phase. 

The first series of didactic situations involves the CBR motion detector (Teaching 

sequence 1 described below in Section 3.2) and is used to provide physical grounding for 

the simulation-based activities that will engage the students to leam more about functions 

and be able to make the necessary transition with other concepts such as slope as rate of 

change. The goal of this teaching sequence is for students to develop an understanding of 

the relationship that exists between the motions and their representations and to develop a 

deeper understanding of independent and dependent variables. 

75 



The second series of didactic situations involving the creation and modeling of 

piecewise defmed functions (Teaching sequence 2 described in Section 3.3) focuses on 

challenging students to coordinate multiple representations to deepen their understanding 

of functional relationship and the concept of rate and slope as rate of change, with 

emphasis on modeling situations that involve interesting variability. This teaching 

sequence will incorporate multiple representation systems in the didactic milieu that 

aUow for individual and aggregated mathematical constructions. As hypothesized in the 

cognitive dimension of the preliminary analysis outlined in Chapter 2, the 

representational strategies involved in such a didactic milieu will enhance the depth of 

leaming about functional relationships. 

AU of the activities included in the teaching sequences are designed to test the 

first three hypotheses: 

Hypothesis 1 Individual mathematical constructions that are directly experienced in a 

"live" context have immediate kinesthetic, cognitive and linguistic aspects that will help 

students develop an understanding of the relationship between distance and time in 

problems of motion. 

Hypothesis 2 Individual mathematical constructions in a "live" context facilitate the 

development of understanding of independent and dependent variables. 

Hypothesis 3 Multiple linked representations of the same function in a simulated 

environment aUowing for manipulation by the students improve their leaming about rate 

of change. 

Only the last two activities, which include the classroom network, will actuaUy 

test the fourth and final hypothesis, namely, that aggregated mathematical constructions 
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challenge students to coordinate multiple representations and deepen their understanding 

of functional relationships. 

The last day (Day 5) will provide the research team with the opportunity to ask 

explicit questions to the students to probe their understanding of functions and their 

ability to transfer the knowledge acquired with technology to the traditional paper and 

pencil environment. 

For aIl activities we precise initial required knowledge, milieu, variable, and 

expected outcomes (students' strategies, responses, behavior, difficulties, errors). As a 

result, a detailed a priori analysis will be presented for each activity comprising: 

• goal of the activity 

• the milieu (the role ofthe technology tool as a part of the milieu) 

• didactic variables 

• the type of situation and means of validation (when appropriate) 

• class organization 

• activity of the students (the instructions) 

• role of the teacher 

• prerequisites 

• expected outcomes (behaviors, strategies, difficulties, and/or errors) 

3.2 Teaching sequence 1: Exploring physical motion 

The goal of this teaching sequence is for students to become familiarized with the 

motion detector and enhance their understanding of: 

• the relationship that exists between the x- and y-axes; 
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• the concept of variable, and the notion of dependence between two variables; 

• the concept of function as a relationship between a dependent variable and an 

independent variable. 

• the relationship that exists between the motions and their representations. 

The physical motion is explored under four aspects: the actual physical motion in front of 

the CBR motion detector, a verbal description ofthe motion, a graphical representation 

and a horizontal simulation of the motion. The teaching sequence is aimed at making 

relationships between verbal description, graphical representation and simulated 

horizontal representation of the motion. The physical motion is used as a means of 

validation of students' answers. 

The students' understanding of these concepts and relationships will be developed 

if they are successful in constructing relationships between the new knowledge and 

knowledge that they already have. They will also have to be successful in articulating 

verbally or in writing, what they know about the concepts and relationships. 

The role ofthe CBR motion detector in this les son is to ground the notion of 

functions in the students' own physical motion by having them import their own physical 

motion data in a situation of action. In this situation of action, students use the CBR 

motion detector to track their motion and then use the CBR Animator in MathWorlds to 

plot and then animate their actual physical motion. This allows the students to compare 

how differences between a synthetically built graph and a physically built graph are 

reflected in differences between the motions, and vice-versa. It will be important for the 

teacher to chair the exchanges and highlight sorne of the students' formulations 

throughout the different phases in this lesson. After organizing the didactic milieu, it will 
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be important for the teacher to present a problem that focuses on the relation between the 

graphs representing physical motion and the one representing synthetic motion. The 

students will have the means to construct a solution by themselves by physically walking 

in front of the CBR and then have the opportunity to try and explain their understanding 

of the relationship being investigated in a seminar type setting. 

This teaching sequence is initially a teacher-Ied situation followed by a situation 

of action using the CBR motion detector and the CBR Animator, however, it quickly gets 

transformed into a situation of formulation. The class demonstration will involve two 

students, one to hold the CBR and the other to "walk" the motion. The rest of the class 

will be engaged in the discussion and will be allowed to make suggestions to the student 

doing the motion. 

In order to appropriately participate in the discussion, the students will need to 

know the important components of a graph (i.e. identification of units and graduations on 

the axes). They will have been introduced to the concept of variable one month earlier by 

the teacher in the context of algebraic manipulations, using the definitions found in 

traditional textbooks (see table 2). The students will have received no formaI 

introduction to functions or to functional relationships up to this point. 

The following table summarizes the four activities that comprise the first teaching 

sequence. The goal, type of activity, and classroom organization are outlined for each 

activity. 

a e 1'. bl 3 F l' '1' our ac IVI les compnsmg th fi tl e Irs esson 
Goal Activity Class 

Type Or2anization 
Activity 1 The students will familiarize Action Students working 
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(TS1,Al) themselves with the tool that will be individually and 
used throughout the teaching sequence. m groups. 
Find out the relationship between the Whole c1ass 
physical motion in front of the CBR discussion. 
motion detector and the graph being 
displayed 

Activity 2 The students will identify the two Formulation Students 
(TS1,A2) variables involved in the representation working in 

of the motion: time and position. small groups (4 
or 5 students). 
Whole c1ass 
discussion. 

Activity 3 The students will identify the two Formulation Students 
(TS1,A3) variables involved in the representation working in 

of the motion: time and position, and small groups (4 
the relationship between them. or 5 students). 

Whole c1ass 
discussion. 

Activity 4 The students will reinforce the acquired Formulation Students 
(TS1,A4) knowledge. working in 

The students will also be able to small groups (4 
coordinate multiple representations of or 5 students). 
the same motion - the graphical 
representation and the simulated 
horizontal representation 
The students will develop a good 
understanding of the notion of 
dependence and independence. 
For the teacher: assess what the 
students have leamed 

3.2.1 Activity 1 (TS1,Al) 

1: hl 4 A a e 1 . :6 A f ·t 1 fT h· S prIOri analysls or c lVl y 0 eac mg equence 1 
Title Getting Started 

Description of The students are asked to observe and make conjectures about the 
the task relationship between the motion walked physically in front of the 

CBR motion detector and the representations of the motion displayed. 
Goal The students will: 

- familiarize themselves with the technology tool that will be used 
throughout the teaching sequence. 

- fmd out the relationship between the physical motion in front of 
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the CBR motion detector and the graph being displayed 
Milieu - CBR motion detector and CBR animator: graphical representation 

of the physical motion and horizontal simulation of the motion. 
- Real-time feedback from the graphical representation as the 

student walks in front of the CBR. 
- Other students' observations and conjectures. 

Variables - Two ways of representing a motion - graphical representation and 
simulation of the motion helps the understanding of the 
relationship because each representation of the motion 
accentuates different information regarding the motion. For 
example, the graphical representation explicitly represents time as 
one second for every graduation along the x-axis and distance in 
meters along the y-axis. The horizontal representation does not 
accommodate for the explicit visualization oftime. Rather, it 
accentuates distance away from the CBR and the direction of the 
motion. Therefore, the two forms of representation have the 
students reflect on different aspects of the motion. Conversely, 
having the two representations of the same motion presented at 
once may confuse the students with too much information. It 
may also make it difficult for students to focus on the relationship 
between the physical motion in front of the CBR motion detector 
and the graph being displayed, which is the goal ofthis activity. 

- Number of physical motions in front of CBR 
Type of - Situation of action for the volunteering students 
situation 
Means of - Validation by the milieu of the student's conjectures: walking in 
validation front ofthe motion detector and making adjustments to 

understand the relationship between his movement and the 
graphical representation. 

Classroom - Students working individually and in groups. 
organization - Whole cIass discussion. 

Student (See Appendix 1 for detailed instructions to students) 
activity - Observe what happens with the graph when somebody moves in 

front of the CBR. 
- Write down the observations. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the CBR motion detector and the CBR Animator. 
- Animate the discussion without giving any cIues of the expected 

answer 
Prerequisite( s) None 
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Expected outcomes 

Strategies and answers: The students will observe that the graph depends on the position 

of the student moving in front of the CBR and on the speed of the motion. They will first 

observe what happens and make conjectures. They will be able to verify their conjectures 

by moving themselves in front of the motion detector. As in the historical development 

of the concept of function, it is expected that the student will rely on verbal descriptions 

of the motion or the graph to de scribe the motion. AIso, as outlined in the cognitive 

dimension of the preliminary analysis, the ability to articulate what one knows about the 

functional relationship involved in motion is an important indicator of understanding. An 

early indicator that the students are beginning to understand the relationship between 

distance and time in problems of motion will be their ability to contextualize the x and y­

axes respectively as elapsed time and distance away from the CBR. 

Four main difficulties are anticipated: 

Initial struggling with understanding the relationship that exists between the distance 

away from the CBR and the graphical representation of the motion. This may be 

observable when students make wrong conjectures regarding the slope ofthe 

graphical representation when walking towards the CBR and walking away from the 

CBR. It is anticipated that exploration with physical motion in front of the CBR and 

the direct feedback given to the students will resolve this issue. 

Students may have difficulty conceptualizing two different representations of the 

same motion (graphical and horizontal) because it may be too much information to 

process at once causing them to focus on only one representation. 
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Students who will be focusing on the graphical representation of the motion will have 

difficulty understanding scale and intervals in the horizontal representation of the 

motion because they may choose to ignore this information. 

Because this is really an exploration activity for familiarizing students with the 

technology, it is anticipated that students may confuse how distance in front of the 

CBR is measured and represented. For example, students may believe that the 

starting point for this activity is sorne location far from the CBR and that the graph 

will measure distance away from the location. Therefore, it is also anticipated that 

students may have difficulty understanding the concept of position in relation to the 

CBR. 

3.2.2 Activity 2 (TSl,A2) 

Table 5. A priori analysis for Activity 2 ofTeaching Sequence 1 
Title Activity 2 

Description of Given a graphical representation of a motion and a horizontal 
the task simulation ofthe physical motion, the students are asked to de scribe 

a motion that matches the target motion. The requirement to de scribe 
forces the students to reflect on precise attributes of the motion 
(where to start, how long to walk, how quickly, ... ). 

Goal - T 0 identify the two variables involved in the representation of the 
motion: time and position. 

Milieu - CBR motion detector and CBR animator: graphical 
representations of the physical motion and horizontal simulations 
of the motion. Feedback provided by the milieu in the form of 
real-time representation of the physical motion in two forms 
(graphical and horizontal simulation) allows the students to see if 
their motion matches the targeted graph. 

- Other students in the group. 
Variables - The shape ofB's motion (easy or not to reproduce by physically 

moving). 
- B' s motion represented by a graph and a simulated horizontal 

representation of the motion: non-verbal representation, the 
students are given no indication of the variables involved in the 
situation. 
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- As explained earlier, the two ways ofrepresenting a motion: 
graphical representation and simulation of the motion help or 
hinder the understanding of the relationship. 

- The fact that a student from another group is walking a physical 
motion: the description of the motion must be precise enough so 
that another student who had not participated in the group work 
could understand the instructions. 

Type of - Situation of formulation 
situation 
Means of - Validation by the milieu: walking the described physical motion 
validation bya student 
Classroom - Students working in small groups (4 or 5 students). 

organization - Whole class discussion. 
Student (See Appendix 1 for detailed instructions to students) 
activity - Find out how to walk a physical motion to match a given motion 

as closely as possible. 
- Compare two motions. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the too1. 
- Make sure that aIl groups understand the problem and get 

involved in its solution. 
- The teacher will ask the students to be precise when describing 

the motion. 
Prerequisite( s) - Being familiar with the too1. 

- An understanding of the concept of variable. 

Expected Outcomes 

Strategies and Answers: The students should be able to de scribe the meaning of the x-

and y-axes and in doing this, identify the two variables involved in the representations of 

the motion: time and position. It is expected that most of the students will not have 

difficulty identifying time as a variable in this activity because they have aIready been 

taught the concept of variable by their teacher. However, it is expected that some 

students will confuse speed with position as the second variable. The expectation is that 

this misunderstanding will be corrected as the students discuss the motion and the 

meaning of the axes and reflect on their thinking. The students should be able to describe 

the motion as a relationship between the x- and y-axes. Perfect matches are not expected. 
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Instead, it is expected that students will explain where the graph is the same and where it 

is different and why. An example of a partially complete description would look like: 

"From 2 to 4 seconds, B's graph was on top of A's and B was ahead of A. Then, A 

caught Bat 4 seconds, where they were both at 2 meters." It is also expected that the 

students will start using descriptions involving slope defmed as rate of change to describe 

the motions (eg. faster, slower, steeper, etc.). 

Three main difficulties are anticipated: 

Students may have difficulty describing the motion in the context of the functional 

relationship between dependent and independent variables involved. 

It is expected that sorne students may still have difficulty with the concept of position 

in relationship to the CBR. However, it is also anticipated that the group will be able 

to help those understand this concept through group discussion. 

Another anticipated difficulty with this question would be the cognitive obstacle 

seeing the graph as a literaI picture. The group discussion should help students 

overcome this obstacle. 

3.2.3 Activity 3 (TSI,A3) 

a e ~ bl 6 A prIOri ana ySIS or c IVI y 0 eac mg 1 . ft A f 't 3 fT h' S equence 1 
Title Activity 3 

Description of Given a graphical representation and a simulated horizontal 
the task representation of a motion, the students are asked to describe a 

motion with constraints (e.g., slower than the given motion, catches 
the given motion at the end). In order to satisfy the constraints, the 
students need to make relationships between the graphical 
representation and attributes of the motion (p_osition, time, speed). 

Goal - To identify the two variables involved in the representation of the 
motion: time and position, and to de scribe the relationship 
between them. 

Milieu - Other students in the group during the group work. 
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- Other students in the c1ass during the c1ass exchanges and 
discussion. 

Variables - B' s motion represented by a graph and a simulated horizontal 
representation, but additional constraints on A' s motion given 
verbally: the students need to interpret these constraints in terms 
of the graphical representation and they are thus forced to make 
relationships between the graphical representation and attributes 
of the motion (position, time, speed) 

- Constraints allowing for multiplicity of motions: validation is not 
straightforward 

- As explained earlier, there are two ways ofrepresenting a motion 
(graphical representation and horizontal representation of 
simulated motion), which either help or hinder the understanding 
of the relationship. 

Type of - Situation of formulation 
situation 
Means of - Validation by the milieu: a student walking the described physical 
validation motion 
Classroom - Students working in small groups (4 or 5 students). 

organization - Whole c1ass discussion. 
Student (See Appendix 1 for detailed instructions to students) 
activity - Find out how to walk a physical motion satisfying several 

constraints. 
- Compare two motions. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the too1. 
- Make sure that all groups understand the problem and get 

involved in its solution. 
Prerequisite( s) - Being familiar with the too1. 

- Have an idea of the relationship between physical motion in front 
ofthe CBR motion detector and its representation in the too1. 

Expected outcome 

Strategies and Answers: At the end ofthis situation, the students should understand what 

variables are represented in the x- and y-axes and what is the re1ationship between them. 

They will show this understanding by correctly articulating their ideas regarding position 

and time. For example, position away from the CBR is represented by y values and time 

elapsed is represented by x values (along the x-axis). It is expected that sorne students 

will begin coordinating between the horizontal representation of motion and graphical 
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representation of motion in order to describe and validate their motion among the group. 

For example, it is easier to be precise about distance and direction when referring to the 

simulated horizontal representation in discussions. This is because position away from 

the CBR is clearly identified in close proximity to the representation of the motion on the 

screen. 

Three main difficulties are anticipated: 

It is expected that sorne students will still have difficulty seeing the connection 

between the horizontal representation of motion and graphical representation of 

motion. Students may be more comfortable with one form of representation than 

another. For example, it is expected that most students will naturally lean towards 

graphical representations because they have already used such representations in their 

books. Although they may initially have difficulty relating two forms of 

representation, their familiarity with one should help make connections with the 

other. 

Students will be able to describe the motion in the context of the functional 

re1ationship between distance away from the CBR and time elapsed. They will use 

terms such as steeper and faster to describe the differences in the rate of change. 

Sorne students will describe the motion in general terms while others will try and be 

more specific referring to units and rates of change. 

The students may have difficulty to recognize that there are many different motions 

that satisfy the requirements of the problem. The main requirement is that A starts off 

slower than Band that they both end in a tie. A lot of different variations in the 

motion could happen in between these two events. 
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3.2.4 Activity 4 (TSl,A4) 

a e y; bl 7 A prIOri ana ySIS or c IVI y 0 eac mg equence 1 . :6 A f ·t 4 fT h· S 1 
Title Activity 4 

Description of The students are asked to draw a graph representing a motion and 
the task give a description of the physical motion. 

Goal For the students: reinforce the acquired knowledge 
- The students will also be able to coordinate multiple 

representations of the same motion - the graphical representation 
and the simulated horizontal representation 

- The students will also develop a good understanding of the notion 
of dependence and independence. 

F or the teacher: see what the students have learned 
Milieu - Other students in the group during the group work. 

- Other students in the c1ass during the c1ass exchanges and 
discussion. 

Variables - The shape ofB's motion is to be chosen freely by the students: 
initial sketches of graphs that cannot represent a motion may 
occur. However, the constraint that the graph must represent a 
possible motion forces the students to check for the possibility 
which requires making connections between the graph and 
attributes of the motion. 

Type of - Situation of formulation 
situation 
Means of - Validation by the milieu: walking the described physical motion 
validation bya student 
Classroom - Students working in small groups (4 or 5 students). 

organization 
Student (See Appendix 1 for detailed instructions to students) 
activity - Find out how to walk a physical motion to match a given motion 

as c10sely as possible. 
- Compare two motions. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the too1. 
- Make sure that all groups understand the problem and get 

involved in its solution. 
Prerequisite( s) - Being familiar with the too1. 

- Have an idea of the relationship between physical motion in front 
of the CBR motion detector and its representation in the too1. 

Expected Outcomes 

Strategies and Answers: Two main strategies can be anticipated: either the students will 

start by drawing a graph and will then invent the story fitting the graph and perhaps 
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adjusting it, or they will start by inventing a story and then draw a graph representing the 

motion involved in the story. Both strategies require making relations between graph and 

physical motion. It is expected that the groups will begin by discussing motions that 

could be created by simple graphs ("graph ~ description of motion" strategy). However, 

it is also expected that students will try to invent creative stories ("description of motion 

~ graph" strategy) and will challenge the other teams. It is expected that students will 

be able to reproduce the shape ofletters while walking in front of the CBR. An 

interesting discussion should arise about why sorne letters cannot be reproduced while 

walking in front ofthe CBR. It is planned that the notion of dependence and 

independence will surface during this activity and that students will construct meaning 

regarding the relationship between the two variables involved in motion much like it did 

for Newton in the 1600s. Specifically, the students will directly experience the concept 

of independent variable. For example, a student physically trying to reproduce the fmal 

portion of the letter P (slanted) will understand and even perhaps "feel" that he is unable 

to make time go backwards . 

. , 

Figure 10. The letter P created using the CBR 

This will be recognizable when the student moving towards the CBR slowly cornes to a 

stop and starts leaning towards the CBR while watching the graphing representation 

continue to plot points further and further away from the y-axis. Another example would 
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be attempts to reproduce the letter R. It would pose the same challenges as those found 

in the attempt to reproduce P. However, it would accentuate the impossibility ofbeing in 

two places at once. This physical experience enables the mental activity for the student 

to construct the relationship between position and time, and to apply this knowledge 

directly in a milieu that allows him to get immediate feedback, reflect, adjust, and apply 

knowledge. By the end ofthis experience, it is expected that the students will articulate 

their understanding without being prompted by the teacher. Sorne students may even be 

creative about how to reproduce a letter which one would initially think is not possible to 

produce while walking in front ofa CBR (i.e. not based on a functional relationship). For 

example, it is expected that students may show how to create a slanted J so that the 

motion respects the independence of time. 

, . 

T(S) 

... =1.(111............-

Figure Il. The letter J created using the CBR 

Two main difficulties are anticipated: 

An anticipated difficulty associated with this question is that motivated students may 

want to try at aIl costs. AIso, sorne students may still not completely understand the 

relationship between the distance away from the CBR and the time elapsed. 

As explained in the cognitive dimension of the preliminary analysis, it is also 

expected that students will have difficulty in developing a coherent conceptualization 
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of the physical models as a system of dependencies among quantities whose values 

vary. Therefore sorne students might initially struggle with the functional 

relationship between the dependent variable - distance away from the CBR, and the 

independent variable - time elapsed. Most of these anticipated difficulties should be 

overcome in the group discussions or in a class discussion. 

3.3 Teaching sequence 2: Modeling and piecewise defined functions 

This teaching sequence uses multiple representations systems in the didactic 

milieu to enable individual and aggregated mathematical constructions. The activities in 

this teaching sequence are designed to help students deepen their understanding about 

concepts and relationships by helping students connect new knowledge with prior 

knowledge, extend and apply the new mathematical knowledge, reflect on experiences, 

articulate what they know, and make the target knowledge their own through their 

interactions with the milieu. SpecificaIly, students are challenged to coordinate the 

multiple representations to deepen their understanding of functional relationships and 

slope as rate of change in problems of motion. The representational strategies involved 

in such a didactic milieu as weIl as the effective use of technology will enhance the depth 

of leaming about functional relationships and slope as rate of change. 

The students will create and use piecewise-defined position vs. time graphs as a 

way of describing and controlling motion through individual mathematical performances 

and then aggregated functions. It is expected that in this teaching sequence, the students 

will: 
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deepen their understanding of functional re1ationships as they coordinate multiple 

representation systems of the same functions (physical or simulation) 

deepen their understanding of the concept of variable and the notion of 

dependence between two variables. 

generate mathematics-based excitement as they deepen their understanding of 

slope as rate of change and functional re1ationships 

This teaching sequence combines situations of institutionalization, action, 

formulation, and validation. In order to appropriately participate in the discussion, the 

students must have a strong understanding of the important components of a graph in the 

context of motion activities. Their prior experiences and teaching sequence 1 should 

provide appropriate prior knowledge. The students will need to be able to act out a 

motion based on a set of instructions. 

The following table lists the four activities that comprise the second teaching 

sequence. The goal, type of activity, and c1assroom organization are outlined for each 

activity. 

Table 8. Four activities comprising the second teaching sequence 
Goal Activity Class 

Type Organization 
Activity 1 - The students will familiarize NIA Class 
(TS2,Al) themse1ves with the MathWorlds participation 

software on the TI-84 Plus. with 
- The students will understand how demonstrations 
motion could be represented by more and discussions 
than one form of representation and the 
differences between these 
representations. 
- A common framework and language for 
discussion of functional relationships will 
be institutionalized. 
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Activity 2 - The students will familiarize themselves Formulation Groupwork 
(TS2,A2) with the graphical editing of piecewise Validation with exchanges 

defined functions through direct between groups 
manipulation. and group 
- The students will enhance their discussion 
understanding of the critical ideas of 
functions and slope as rate of change. 

Activity 3 - The students will familiarize Validation Group/class 
(TS2,A3) themselves with a new representational discussion 

system that will be used through the rest 
of this teaching sequence. 
(This activity is essentially a continuation 
ofthe previous activity.) 

Activity 4 - The students will display an Formulation Groupwork 
(TS2,A4) understanding of the concept of variable, Validation with exchanges 

and the notion of dependence between between groups 
two variables in their descriptions. In and group 
this case, distance and time. The student discussion 
will do this by creating and formulating a 
description of a motion given constraints 
in small groups. 
- The students will be challenged to 
coordinate multiple representation 
systems to deepen their understanding of 
functions as a relationship between 
dependent and independent variables and 
slope as rate of change. They will be 
able to explain how the created motion is 
similar and why sorne parts are different. 
- The students will be engaged 
personally with their mathematical work 
and students who might otherwise feel 
alienated from mathematics will be 
offered a chance to "perform" 
mathematically. 
- The students will be able to act out a 
motion based on the formulation of the 
motion given by a different group of 
students. 
- The students will also sharpen their 
focus modeling using Position vs. Time 
graphs. 
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The activities that constitute this lesson do not have the same mathematical 

analyses, expected outcomes, or anticipated difficulties as teaching sequence 1. As a 

result, a detailed a priori analysis will be presented for each activity. 

3.3.1 Activity 1 (TS2,Al) 

Table 9 A prIOn analysis for Activify 1 ofTeaching Sequence 2 
Title 

Description of 
the task 

Goal 

Milieu 

Variables 

Getting Started 
The students are asked to observe the simulation run by the teacher 
and answer a few questions. 
The students will: 
- familiarize themselves with a new feature of the technology tool 

that will be used throughout the teaching sequence. 
- understand how motion could be represented by more than one 

form of representation and the differences between these 
representations. The new feature will focus the students' 
attention on the simulated horizontal representation. 

- be introduced to a common language for discussion of functional 
relationships. 

- CBR motion detector, CBR animator, stepping functionality and 
the marking functionality: graphical representation of the physical 
motion, simulation of the motion, ability to slow down the 
simulated horizontal representation and the graphical 
representation of the motion, and the ability to drop marks at 
regular time intervals during the simulated motion. 

- Other students' observations and conjectures. 
- Two ways of representing a motion (graphical representation and 

simulated horizontal representations of the motion) help or hinder 
the understanding of the relationship 

- Ability to slow down the re-creation of the two representations of 
the motion helps the understanding of the relationship because it 
pro vides time for students to think about what is happening and to 
reflect on the representations or their created motion. 

- Ability to "drop marks" at regular time intervals during the 
simulated motion helps the understanding of the relationship. As 
the motion is simulated marks are "dropped" along the path at 
regular time intervals. Personalizing the tool in this way focuses 
attention on the simulated horizontal representation. It also lays 
the ground for interesting discussion on rate of change. For 
example, if marks are set to drop every second but the distance 
between drops grows, students will hopefully see that that means 
more distance was covered during those seconds. Personalizing 
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the tool is such a way may also create difficulties for students if 
they choose not to experiment with this new feature by adjusting 
the rate at which marks are dropped. This may lead sorne 
students to believe that the rate of change is always the same. 

- Number of physical motions in front of CBR 
Means of - Validation by the milieu: walking in front of the motion detector 
validation and making adjustments to understand the relationship between 

student's movement and the graphical 
- Validation also occurs in the cIass discussion: the conjectures are 

validated or invalidated by peers, under the teacher's control. 
Classroom - Students working individually 

organization - Whole cIass discussion 
Student (See Appendix 1 for detailed instructions to students) 
activity - Observe how things slow down when stepping through the graph. 

- Observe what happens when marks are dropped at regular time 
interval. 

- Students will need to increase the level of analysis in order to 
answer the detailed questions from the teacher (i.e. When is B 
going the fastest? When is B going the slowest? When does B 
seem to change speed? Dow far apart are they in the 3rd part 
of the trip? Exactly how fast is B moving during each part of 
the trip? Which part of the graph is the steepest and which 
part is the least steep?) 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the tool by tuming on the stepping feature and the 

dropping of marks feature. 
- Animate the discussion without giving any cIues to the expected 

answer. 
Prerequisite( s) - Being familiar with the tool. 

- Have a good idea of the re1ationship between physical motion in 
front ofthe CBR motion detector and its representation by the 
tool. In order to successfully complete this activity, the students 
must have a strong understanding of the important components of 
a graph in the context of the motion activities. They must also 
understand how motion is represented in the context of hoth 
representations (horizontal and graphical). The students must 
also understand rate of change. 

Expected Outcomes 

Strategies and Answers: It is expected that the students will start using descriptions 

involving slope as rate of change in discussing these questions and in articulating their 

understanding. The new features being introduced in this activity (i.e. "stepping" and 
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"dropping marks") will focus the students' attention on the simulated horizontal 

representation. Therefore, it is also expected that students will start utilizing information 

from both forms of representations ofthe motion to answer this question. By doing so, 

they will extract knowledge from newly formed relationships between the two forms of 

representation. For example, slowing down the motion by "stepping" through it is best 

represented on the graphical representation, while the "dropping of marks" is best 

contextualized on the horizontal representation of the motion where the marks are 

actually dropped every 1 second. It is also expected that students will reflect on their 

experiences with both tools and articulate their understanding to each other. At the end 

ofthis activity, the teacher will take a moment to summarize sorne ofthe highlights of the 

discussion, thereby establishing a common language for discussing functional 

relationships. For example, he will try to get the students to use the following 

terminology in their future conversations: dependent and independent variables, rate of 

change, etc. An example of expected correct behavior is the following: "B is going 

fastest in the middle section of the race. This is the section with the steepest slope with a 

rate of change of X meters/second. Bis going slowest in the first section of the race 

where the rate of change is only Y meters/seconds compared to X meters/second in the 

middle section and Z meters/seconds in the last section. The first section is also the 

section that has the slope with the smallest incline." 

Two main difficulties are anticipated: 

It is expected that students will need to adjust to the new level of precision made 

possible by the "stepping" and "dropping marks" as the motion is animated. This 

anticipated difficulty is desirable because it will encourage the students to refine the 
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analyses oftheir observations. An anticipated difficulty is that some students may 

have trouble linking between the two representations of the motion. For example, 

they may have trouble understanding the significance of the marks (on the horizontal 

representation of the motion) in the context of the graphical representation ofthe 

motion. 

Another anticipated difficulty outlined in the cognitive dimension of the preliminary 

analysis is that students may have difficulty considering the actual graph to be the 

representation of the relationship that exists between the variables. 

3.3.2 Activity 2 CTS2A2) 

Table 10. A priori analysis for Activity 2 ofTeaching Sequence 2 
Title Creating exciting sack races 

Description of The students are first asked to answer a few questions about attributes 
the task of a motion that is simulated and represented by a graph and a 

horizontal representation of the simulated motion. Next, they have to 
draw a graph of a motion described verbally. Finally, they have to 
sketch a graph and provide a description of a motion that can be 
represented by this graph. 

Goal The students will: 
- familiarize themselves with the graphical editing of piecewise 

defined functions through direct manipulation. 
- enhance their understanding of the critical ideas of functions and 

slope as rate of change. The core mathematical ideas being 
addressed and contextualized in this activity are the concepts of 
function as a relationship between distance and time and the 
qualitative idea of slope as rate of change where the rate in this 
case is velocity: positive vs. negative, steeper means faster 
(greater rate), zero slope means zero rate (zero velocity). 

Milieu - CBR motion detector, CBR animator, stepping functionality and 
the marking functionality, the ability to edit and directly 
manipulate piecewise defined functions: graphical representation 
of the physical motion and simulation of the motion. 

- Other students' observations and conjectures. 
- The role of the technology tool as a part of the milieu here is still 

to give the students an opportunity to examine the motions and 
graphs more closely and to help them deepen their understanding 
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of functional relationships and slope as rate of change. 
Variables - Two ways of representing a motion (graphical representation and 

simulation ofthe motion) can help or hinder the understanding of 
the relationship. 

- As explained earlier, the ability to slow down the recreation of 
the two representations of the motion - he1p or hinders the 
understanding of the relationship. 

- The ability to drop marks at regular time intervals during the 
simulated motion helps or hinders the understanding of the 
relationship. 

- Ability to add piecewise defined functions to the graphical 
representation helps the understanding of the relationship because 
it is a means for students to articulate their understanding of the 
functional relationship through direct manipulation. 

- Ability to edit the existing graphical representation through direct 
manipulation (i.e. stretching a section increasingldecreasing of 
the graph and/or changing the slope) should help because it 
allows the students to make immediate changes to their original 
constructions based on their new understanding of the functional 
relationship involved. 

Type of - Situation of formulation: Requires the students to de scribe a 
situation motion so that another team could reproduce the same graph. 

- Situation of validation: The groups that receive the descriptions 
for motions described by another group will follow the 
instructions to validate the description. 

Means of - Validation by the milieu: walking in front of the motion detector 
validation following the verbal instructions and matching the graph. 
Classroom - Students working individually 

organization - Whole cIass discussion 
Student (See Appendix 1 for detailed instructions to students) 
activity - The students will be asked to reflect, discuss, and document a 

group response to a series of questions in the context of a race 
before collaborating to solve a problem. The series of questions 
are intended for students to exchange and compare observations 
regarding how the motions of A and B are different. 

- The students in their groups will then be challenged to reflect 
upon, discuss, sketch, and create a graph representing motion that 
would satisfy the new criteria. 

- The students in their groups are also instructed to be ready to 
explain their motion and have their animation assessed by another 
group. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the tool by turning on the stepping feature and the 

dropping of marks feature. 
- Animate the discussion without giving any cIues of the expected 

answer. 
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Prerequisite( s) 

Expected Outcomes 

Being familiar with the too1. 
Have a good idea of the relationship between physical motion in 
front ofthe CBR motion detector and its representation in the 
too1. 
In order to successfully complete this activity, the students 
understand that the horizontal axis represents time measured in 
seconds (Time), and the vertical axis and the motion represents 
distance measured in meters (Distance). They should understand 
that the objects both start at zero, which is indicated by the 
dashed tick mark where their respective right edges are in the 
animation. 

Strategies and Answers: It is expected that some ofthe groups will "step through" the 

motion when describing their motion to each other. This is because the motion will most 

likely go too quickly for most scripts. Such actions will help the students to better reflect 

on what is happening and to articulate their understanding more easily to each other. It is 

also expected that students will drop marks during the simulations to analyze the motion 

more carefully in terms of the script communicated to them from the other teams. It is 

expected that the groups will make their stories seem exciting. The mark of a good race 

is spontaneous applause when it ends! An example of a correct behavior is illustrated in 

Figure 12 below. 

Figure 12. A student generated sack race 

It is expected that the students in their groups will explore different ways of creating the 

graphical representations by directly manipulating the different segments of the graph. 

For example, students might add a segment and stretch it to the right by one second (so it 
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is 2 seconds in Duration) and then upward until it is above A's graph by a decent amount. 

Students will have access to paper and pencil, but it is expected that most students will 

explore the creation of graphical representations by directly manipulating the different 

segments of the graph on the graphing calculator rather than on the graph paper provided 

to them. It is expected that some students will add segments and then adjust them so that 

they have zero slope. They may be slow to suggest this because it is a subtle idea. 

However, the students should be able to show this understanding of zero slope by 

applying the knowledge they leamed earlier in satisfying this constraint. It is expected 

that students will discuss and experiment in their groups how to represent "going 

backwards" graphically. The correct behavior would be for students to explain that they 

need to add a new segment that must slope downward, or have negative slope. It is also 

expected that students will discuss how to represent "fmishing in tie". The correct 

behavior would be for them to explain to each other that one more segment must be 

added and extended it to the right and upward as needed so that its right endpoint 

coincides with that of A's graph. The actual endpoint may be partially obscured by the 

label "POS" so it might take more than one try. By this time, it is also expected that the 

students can be autonomous while working in groups with the technology such that they 

can explore, make conjectures, verify them and then adjust their actions. 

Main difficulty anticipated: 

Many of the criteria that the students must satisfy in creating their race will challenge 

their conceptual understanding of motion as a functional relationship between 

distance and time. As such, it is expected that sorne students may initially struggle 

with the misconception associated with interpreting or constructing a literaI picture of 
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a situation. This misconception was identified as an obstacle in the cognitive 

dimension of the preliminary analysis. Although extra time will be taken in the 

earlier activities to reduce the amount of misconceptions associated with graphical 

representations that students presently encounter, it is expected that the criteria given 

to the students in this activity may bring to the surface sorne of these misconceptions. 

For example, an anticipated difficulty associated with this activity is for sorne 

students to initially create a negative sloping segment going down to zero to represent 

the criterion - "Due to a wild burst of speed, B falls down for 2 seconds". The 

corresponding correct expected behavior would be for the other students in the group 

to discuss this criterion in the context of the race and in the context of the graphical 

representation of the motion. AIso, sorne students will focus on the horizontal 

representation of the motion and quickly overcome the misconception. Through such 

group discussions and experimentation with both representations of the motion 

(graphical and horizontal), the misconceptions should quickly be resolved. 

3.3.3 Activity 3 (TS2,A3) 

Table 11. A priori analysis for Activity 3 ofTeaching Sequence 2 
Title Find your exciting sack race 

Description of AlI the students' functions produced in activity 2 are collected by the 
the task teacher and displayed all together on the screen. The students are 

asked to predict the position of all slow B' and of all fast B', then to 
identify their own function. 

Goal - The students will familiarize themselves with a new 
representational system that will be used through the rest of this 
teaching sequence. 

(This activity is essentially a continuation of the previous activity.) 
Milieu - The TI-84 Plus Si/ver Edition, CBR motion detector, CBR 

animator. 
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Graphical representation of the physical motion and simulated 
horizontal representation of the simulated motion. 
Stepping and marking functionality for analysis of graphical and 
horizontal representations. 
The ability to edit and direcdy manipulate piecewise defined 
functions. 
The TI Navigator classroom network for collecting and 
aggregating student races. 
Other students' observations and conjectures. 
The role of technology as a part of the milieu here is to challenge 
the students to coordinate multiple representation systems to 
"find" their individual constructions among the manY 
representations in the shared space. They will need to use a deep 
understanding of the functional relationship involved in their 
graphical representation. The milieu here introduces students to 
the process of relating their personal constructions to the larger 
collection of objects that appears on the "big screen" when their 
work is aggregated with that of their peers. This process requires 
them to reflect upon and think through the kinds of issues that are 
at the heart of the mathematics we want them to leam. 
The milieu in this activity provides a safe environment by 
providing anonymity. For example, before asking the next 
question, the teacher will "hi de" the identity of the functions and 
their "owners." Provision has been made to preserve student 
anonymity in the shared representation space - the teacher will 
click the box in the lower left corner of the screen where 
identifiers appear. Then no names will appear either here or 
when we hover over a dot or graph. The teacher will then ask: 
Where are you? Can you find yourself? Ifthere is a position 
with a single dot, then a single student should be able to identi:fy 
himselflherself. It can be confirmed by selecting it (by clicking 
on it) and then checking the box in the lower-Ieft corner of the 
.,..., .. ...,..."c ... where that student's identifier will <>1'\1""'~'" 
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MathWorlds 

- It is usually fun to run the animation with aIl the dots showing (as 
illustrated in Figure 13 above). But the detailed analysis is best 
done with a smaller set of dots, which follows. 

- The milieu also provides for students identifiers and colors to 
facilitate the investigation of the connection between the motion 
and its graphical representation. 

Variables - Two ways of representing a motion on two different 
representation systems: graphical representation and simulation 
of the motion on the TI-84 Plus Si/ver Edition graphing calculator 
screen and in higher resolution and color using a data projector 
and Connected MathWorlds helps the understanding of the 
functional relationship. 

- The ability to slow down the recreation of the two representations 
of the motion helps the understanding of the relationship. 

- The ability to drop marks at regular time intervals during the 
simulated motion helps the understanding of the relationship. 
This should help because it provides the students with a tool to 
analyse rate of change during any specifie time interval. 

- The ability to add piecewise defined functions to the graphical 
representation helps the understanding of the relationship. This 
should help because it is a means for students to articulate their 
understanding of the functional relationship through direct 
manipulation. 

- The ability to edit the existing graphical representation through 
direct manipulation (i.e. stretching a section 
increasing/decreasing ofthe graph and/or changing the slope) 
should help because it allows the students to make immediate 
changes to their original constructions based on their new 
understanding of the functional relationship involved. 

- The ability to display smaller set of motions to help the students 
identify the one they are looking for. 

Type of Situation of validation: The students are expected to make 
situation conjectures about the links between the motions (i.e. moving dots) 

and graphs and provide arguments to support these. 
Means of - Validation by the milieu: Students will try to find themselves on 
validation the new representation systems using the properties of their 

graphical representation. They will also walk in front of the 
motion detector following the verbal instructions and matching 
the graph 

- It is important for the teacher to let the students validate by the 
physically moving in front of the motion detector the description 
and the correspondence between the obtained graph and B' s 
motion graph. 

Classroom - Students working individually. 
organization - Whole class discussion. 
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Student (See Appendix 1 for detailed instructions to students) 
activity - The students are asked the following question by the teacher: 

Where will ail the Slow B's appear, and where will ail the Fast 
B's appear? 

- It is important that the teacher develop the habit of asking the 
students to predict before any display of action. Here the fast B' s 
all appear to the left of 0 and the slow ones to the right, with those 
sharing the same initial position "stacked vertically." (Note that it 
is expected that the teacher will refer to the "students" and their 
"dots" interchangeably). 

- Next, the students are informed that the teacher will run the 
animation and that their job is to figure out which graph goes with 
which dot. Depending on how different the motions and graphs 
are, the teacher may need to Step through the motions. This is an 
important learning opportunity to examine subtle differences in 
the graphs and how they are reflected in differences in the 
motions, so the teacher should repeat the Stepping and encourage 
discussion till a consensus has developed. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the TI Navigator cIassroom network and Connected 

MathWorlds. 
- Animate the discussion without giving any cIues of the expected 

answer 
- The teacher will show "AlI" in the View Matrix World (Graph) 

column to showall of the students' dots. The milieu here 
introduces students to the process of relating their personal 
constructions to the larger collection of objects that appears on the 
"big screen" when their work is aggregated with that of their 
peers. This process requires them to think through the kinds of 
issues that are at the heart of the mathematics we want them to 
learn. 

Prerequisite( s) - Have a good idea of the relationship between physical motion in 
front of the CBR motion detector and its representations. 

- The students must have a strong understanding of the important 
components of a graph in the context of the motion activities. 
They must also understand how motion is represented in the 
context of both representations (graphical and simulated) and be 
familiar with the Math Worlds software on the device. The 
students must also understand rate of change. 

Expected Outcomes 

It is expected that the students will start identifying themselves with their objects 

by referring to those objects as "my dot". This is a desired behavior because it links the 
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students psychologically to the mathematical object that they have built. This could be 

seen as evidence that students have developed a personal investment in building 

knowledge - another indicator of understanding. Because of differences such as size of 

screen, representation of the axes and intervals, resolution, and color, and the fact that 

several of the graphs looked very similar, it is expected that students will need to identify 

certain aspects oftheir mathematical objects on their graphing calculators and look for 

them in the public display. Putting the students in a situation where they will need to 

coordinate both systems in applying their mathematical knowledge regarding the same 

functional relationship in two representation systems should encourage the students to 

reflect more about the relationship, thereby increasing their understanding. Putting the 

students in this situation will also require them to be able to c1early articulate what they 

know about the critical ideas of functions and slope as rate of change when identifying 

themselves in the public display. The students whose graphs are NOT now displayed 

will also be able to determine which graph goes with which dot given their understanding 

ofhow the horizontal simulated representation and the graphical representation are 

linked. Re1ating students to their functions, and especially their motions to their graphs, 

is a powerful way of getting students engaged mathematically, it is also a place where the 

teachers' experience and knowledge oftheir students will directly come into play. The 

teacher will know who is likely to err, who is likely to be embarrassed, who enjoys 

attention, and so on. The teacher can also quickly review the student function graphs 

before making them public and not choose to display those that he feels would either be 

unproductive to examine or embarrassing to their creators. The technology amplifies the 

impacts of the teachers' pedagogical decisions. 
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3.3.4 Activity 4 (TS2,A4) 

Table 12. A priori analysis for Activity 4 ofTeaching Sequence 2 
Title Exciting races 

Description of The students are asked first to write a story describing their own race 
the task with A which ends in a tie, and to make a Position graph for B that 

makes their race happen. The stories are exchanged between groups 
and each group has to create a graph representing the story of another 
group. 

Goal The students will 
- display an understanding of the concept of variable, and the 

notion of dependence between two variables in their descriptions. 
In this case, distance and time. The student will do this by 
creating and formulating a description of a motion given 
constraints in small groups. 

- be challenged to coordinate multiple representation systems to 
deepen their understanding of functions as a relationship between 
dependent and independent variables and slope as rate of change. 

- be able to explain how the created motion is similar and validate 
why sorne parts are different. 

- be able to act out a motion based on the formulation of the motion 
given by a different group of students. 

- sharpen their focus modeling using Position vs. Time graphs. 
Milieu - The TI-84 Plus Si/ver Edition, CBR motion detector, CBR 

animator, and stepping functionality and the marking 
functionality, the ability to edit and directly manipulate piecewise 
defined functions: graphical representation of the physical motion 
and simulation of the motion. 

- The TI Navigator c1assroom network for collecting and 
aggregating student races. 

- Other students' observations and conjectures. 
- Stories written by other students. 
- The role of the technology tool as a part of the milieu here is to 

give the students an opportunity to examine the motions and 
graphs in two representations and to challenge the students to 
coordinate multiple representation systems (MathWorlds on the 
TI-84Plus Si/ver Edition & Connected MathWorlds on the data 
projector) to deepen their understanding offunctional 
relationships and slope as rate of change. 

Variables - Two ways of representing a motion on two different 
representation systems: graphical representation and simulation 
of the motion on the TI-84Plus Si/ver Edition graphical calculator 
screen and in higher resolution and color using a data projector 
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and Connected MathWorlds - helps the understanding of the 
relationship. 

- Scale: It is important to note that the scale has changed in this 
activity. 

- The ability to slow down the recreation of the two representations 
of the motion - helps or hinders the understanding of the 
relationship. 

- The ability to drop marks at regular time intervals during the 
simulated motion - helps or hinders the understanding of the 
relationship. 

- The ability to add piecewise defined functions to the graphical 
representation - helps or hinders the understanding of the 
relationship. 

- The ability to edit the existing graphical representation through 
direct manipulation (Le. stretching a section 
(increasing/decreasing of the graph and/or changing the slope). 

- Instructions given to students in the form of questions created by 
other groups of students should help the understanding of the 
relationship because it gives students the opportunity to organize 
their understanding and articulate their ideas so that others can 
recreate the functional relationship. 

Type of - The second part of this activity is a situation of formulation. It 
situation then progresses to a situation of validation where the teacher will 

act as a chair of a scientific debate aiming at validating the 
students' answers only intervening to put sorne order in the debate 
among students. The teacher will also help draw attention to 
possible inconsistencÏes in student explanations and encourage 
more precision in the use of the vocabulary describing the motion. 

Means of - Validation by the milieu: Students will try to find themselves on 
validation the new representation systems using the properties of their 

graphical representation. 
- To validate the answer ofB, the two graphs, both drawn on a 

paper, are compared by both groups A and B. Ifthey are 
considerably different, the students have to find the reasons of the 
differences: the message of A is wrong? The interpretation of B is 
wrong? If there is no agreement between A and B, a physical 
moving in front of the motion detector will be used to validate. 

Classroom - Students working in small groups 
organization - Whole c1ass discussion 

Student (See Appendix 1 for detailed instructions to students) 
activity - The students are asked to write an exciting race story-script for 

their own race with A which ends in a tie, and to make a 
Position graph for B that makes their race happen. 

- They are also instructed that the teacher will then collect their 
graph and run it for the whole c1ass to see while they read their 
exciting story! They are asked to describe each segment of their 
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graph. 
- A group (X) draws on a paper a graph of a motion another group 

(Y) will have to reproduce. Group X writes a description of the 
motion and gives this message to the group Y. The group Y tries 
to figure out the graph corresponding to the given motion. 

- Next, the students are informed that the teacher will run the 
animation and that their job is to figure out which graph goes with 
which dot. Depending on how different the motions and graphs 
are, the teacher may need to Step through the motions - use a 
Step-Time of 1 second (set by opening the botlom part of the 
Controls Window). This is an important leaming opportunity to 
examine subtle differences in the graphs and how they are 
reflected in differences in the motions, so the teacher should 
repeat the Stepping and encourage discussion till a consensus has 
developed. 

Role of teacher (See Appendix 2 for detailed instructions to the teacher) 
- Manipulate the TI Navigator cIassroom network and Connected 

MathWorlds. 
- Animate the discussion without giving any cIues of the expected 

answer. 
Prerequisite( s) - Same as the previous activity. 

Expected Outcomes 

It is expected that the students will be autonomous while working in groups with the 

technology such that they can explore, make conjectures, verify them and then adjust 

their actions. 

It is expected that the groups will make their stories seem very exciting and difficult 

for members of other groups to recognize. 

It is expected that students will be able to formulate their motions correctly so that 

another team will be able to re-create the motion which meets the constraints of the 

story. This is important because in order to articulate their ideas, they must first 

reflect on them in order to identify and described critical elements. The ability to 

communicate or articulate one's ideas is a benchmark ofunderstanding (Carpenter & 

Lehrer, 1999). 
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It is expected that students will be able to recognize the graphical representations of 

their motion on the large projected screen. Most students will make the connection 

right away, while others might still need to see the simulation before grounding their 

motion in the new representation system offered by MathWorlds for TI-Navigator. 

It is expected that the students who successfully coordinate between their personal 

creation on the device and the more refined version of the graphical representation 

offered by the computer version of Math Worlds will have a deeper understanding of 

functions as a relationship between dependent and independent variables and slope as 

rate of change. Relating back to the cognitive dimension of the preliminary analysis, 

where understanding was characterized in terms of mental activity that contributes to 

the development of understanding, a deep understanding of functional relationships 

and slope means the following for this activity. First, this activity forces the students 

to construct relationships between the two representational systems in order to "find 

themselves". It also requires students to extend and apply their mathematical 

knowledge when comprising the two representational systems. It is expected that 

students initially might have difficulty articulating their ideas for selecting their 

graphical representation, however by struggling to articulate their rational, students 

develop the ability to reflect on and articulate their thinking. Therefore, another 

important characteristic of students' developing understanding reinforced by this 

activity is that they become increasingly able to reflect on their thinking. The ability 

for students to communicate their motions so that others may actually act out the 

targeted motion will also be seen as an important indicator of understanding. 

109 



It is expected that students will enjoy leaming about the functional relationship 

involved in motion in this way. This is important because understanding involves the 

construction of knowledge by individuals through their own activities so that they 

develop a personal investment in building knowledge. 

3.4 Teaching sequence 3: Summarizing individual and group understanding 

Recall that the goal of this sequence is to provide the research team with the 

opportunity to ask explicit questions to the students highlighting the conceptions of 

functions students have developed through the first two teaching sequences. As most of 

the activities are going to be worked in groups, we wish to assess each individual 

student's understanding offunctions. The goal ofthis sequence is also to see to what 

extent the students are able to transfer the knowledge acquired in technology-based 

environment to the traditional paper and pencil environment. The outcomes of this 

sequence should give a good picture of the students' individual and group understanding 

of the concepts explored in the first two lessons. 

The students will individually complete each activity and then take part in an 

open teacher-mediated discussion with the rest ofthe c1ass to validate, defend, and/or 

refine their solutions. It is important for the teacher to focus on organizing a discussion 

around the correctness of students' descriptions rather than trying to simply get the 

correct desired response. It is expected that in this sequence, the students will 

demonstrate the understanding of the following concepts: 

Functional relationship between distance and time in problems of motion. 
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The concept of variable and variability, and the notion of dependence between two 

variables. 

Rate of change and slope as rate of change. 

It is expected that students will demonstrate this understanding by applying newly 

acquired knowledge to solve new problems of motion and by constructing relationships 

with past experiences. They will also demonstrate understanding by being able to c1early 

communicate their ideas on paper and in a public form. 

The following table lists the three activities that comprise the third teaching 

sequence. The goal and c1assroom organization is outlined for each activity. 

Table 13. Three activities comprising the third lesson 
Goal Class 

Ol"2anization 
Activity 1 To determine if students have a good understanding of Individual work, 
(TS3,A1) the functional relationship between distance and time followed by 

in problems of motion and solid understanding of c1ass 
independent and dependent variables. participation 

with 
demonstrations 
and discussions 

Activity 2 To determine ifstudents are able to transfer what they Groupwork 
(TS3,A2) have leamed about the functional relationship in with exchanges 

problems of motion involving the motion detector to between groups 
more general problems. Another goal is to determine if and group 
the students deepened their understanding of slope as discussion 
rate of change. 

Activity 3 To determine if students have a good understanding of Group/c1ass 
(TS3,A4) the functional relationship between distance and time discussion 

in problems of motion; a deep understanding of slope; 
and the ability to obtain important information by 
analyzing graphical representations of functional 
relationships between distance and time in a motion 
problem of a different context. 
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This sequence is different from the other two teaching sequences. The activities 

aIl contain a phase of individual work followed up with a phase of group discussion. The 

milieu is void of any use of technology. Instead they make use of the traditional tools 

like paper, pencils, chalk and blackboard. 

3.4.1 Activity 1 (TS3,Al) 

In this activity the students are presented with a story and are asked to select the 

appropriate graphical representation from four different graphs. The goal ofthis activity 

is to determine if the students have a good understanding of the functional relationship 

between distance and time in problems of motion and solid understanding of independent 

and dependent variables. 

See Appendix 1 and 2 for detailed instructions to the teacher and the student respectively. 

Expected Outcomes 

Strategies and Answers: It is expected that the students will select the correct 

graphical representation for this problem (d). The other three incorrect graphical 

representations were chosen as distracters because they each represent different 

possible literaI interpretations of the problem - misconceptions that this experiment 

was designed to help students overcome. 

It is also expected that interesting discussions will arise when students are asked why 

the other representations were not selected. It is expected that the students will 

recognize that these graphical representations do not represent functional 

relationships. For example, students may comment that the graphs show time going 

backwards (b and c) or a person being at more than one location at one point in time 
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(a). Being able to communicate why the distracter graphs are not appropriate to 

represent the given situation is also an important indicator of understanding. 

Two main difficulties are anticipated: 

It is anticipated that sorne students will have difficulty explaining their rationale for 

not choosing the other graphical representations for their choices. Here it will be 

important to engage the class in being specifie about why the other representations 

were not appropriate. This is another important aspect of understanding. By 

struggling to communicate their ideas, students develop the ability to reflect on and 

articulate their own thinking. Articulation in this sense can be considered to be a 

public form of reflection. 

Sorne students may still have difficulties overcoming a literaI representation of the 

graph. Classroom discussion should help those troubled students overcome this 

obstacle. However, as it was noted in the cognitive dimension ofthe preliminary 

analysis, this type of obstacle creates significant difficulties in conveying the 

connections between graphs and functions to students. As a result, should this 

obstacle persist in sorne students, more one-to-one remediation with these students 

will be required with those students following this research project. 

3.4.2 Activity 2 (TS3,A2) 

In this activity the students are asked to create a graphical representation of a 

motion given descriptions for specifie segments. One goal for this activity is to 

determine if the students are able to transfer what they have leamed about the functional 

relationship in problems of motion involving the motion detector to more general 
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problems. Another goal is to determine if the students deepened their understanding of 

slope as rate of change. 

Reflection plays an important role in the solving ofunfamiliar problems and 

problem solving often involves consciously examining the relation between one's 

existing knowledge and the conditions of a problem situation. As such, the empty graph 

that the students are given for this activity has the following conditions. The x-axis is 

divided into fifteen intervals to represent time (no mention ofunits) and the y-axis is 

divided into seven intervals to represent distance (no mention ofunits). 

There are three important didactic variables that are outlined beIow: (1) a very 

rough description of motion leaving a place for multiple correct graphs, which can 

destabilize students. The students are actually used to have a unique solution to a given 

problem, and exact based on the givens ofthe problem. It is not the case here. (2) the 

students need to analyze the situation in order to construct a correct representation of the 

motion: e.g., same pace means that the line segments representing these portions of the 

motion are paralle1 (this is something that was not explicitly addressed in the teaching 

sequences), (3) the grid is pre-constructed: the students must decide what a unit 

represents (e.g., if a unit represents 1 second, the whole joumey would take only 15 

seconds which is quite unlikely in reality, if a unit represents 1 minute, then it would be 

difficult to represent 1 second break). 

See Appendix 1 and 2 for detailed instructions to the student and the teacher respectively. 

Expected Outcomes 
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Strategies and Answers: There are many possible graphical representations students 

could use to represent this problem of motion. However, the expected correct 

behavior is for students to use their understanding of functional relationships in 

problems of motion to correctly represent the given segments graphically. This 

would include the ability to effectively represent slope (positive, negative and zero) 

with different rates of change. An example of a correct behavior is illustrated in 

Figure 14 below. 
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Figure 14. Example of a correct behavior for activity one of lesson three 

Two main difficulties are anticipated: 

It is anticipated that sorne students may have difficulties with the relative nature of 

this activity (e.g. walking slowly, at a fast pace, etc.). It is also expected that many 

students will need to start their graph over several times in order to make effective 

use ofthe graph paper provided. For example, sorne students will get through several 

criteria and then observe that they will not have enough room on the provided graph 

paper to complete the problem. The constraints provided by the graph paper will 

push the students to focus on the important properties of the graphical representation. 
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It is aiso anticipated that sorne students will have difficulty with the units as they are 

not specified. 

An anticipated strategy is for sorne students to resort back to literaI representations of 

segments of graphs when unsure ofhow to represent the trip correctIy. 
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3.4.3 Activity 3 (TS3,A3) 

This activity is similar to the first two in that its goals are: to determine if students 

have a good understanding of the functional relationship between distance and time in 

problems of motion; a deep understanding of slope; and the ability to obtain important 

information by analyzing graphical representations of functional relationships between 

distance and time in a motion problem of a different context. This activity requires the 

students to focus on reading graphs and providing accurate descriptions of the attributes 

of the motions represented. 

See Appendix 1 and 2 for detailed instructions to the teacher and the student respectively. 

Expected Outcomes 

Strategies and Answers: It is expeeted that almost aIl students will eorrectly respond 

to the first three questions. A starts at 0 km, A finishes his trip after 14 minutes, and 

B finishes his trip at 5 km. The expected correct behavior for question 4 is for 

students to answer A and by providing the following rationale. The students should 

explain that the slope is steeper and/or that A has a greater rate of change. The 

students might even provide the actual rates of change for each graph. They can also 

say that A rides less time and goes further than B. The expected correct behavior for 

question 5 is for students to identify B as the biker that has traveled farther after 5 

minutes. It is expected that the students will foeus on the dependent variable 

distance in answering this question. They will determine which graph has the 

greatest difference in distance over the given time frame. It is expeeted that almost 

aIl students will correctly answer questions 6 and 7. However, in question 7, the 
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students will have to look at the intersection point and read the coordinates. The 

expected correct behavior for question 8 is for students to identify A as the biker that 

traveled the greater distance over its entire trip. 

Three main difficulties are anticipated: 

One anticipated difficulty is for students to make the false assumption that the bikers 

started the trip from the same location. This would result in wrong answers to many 

of the questions. However, it is also expected that after spending more time reflecting 

on the question, even the students experiencing difficulty with the question, will 

display the correct behavior. It is also expected that sorne students may simply 

confuse A for B in answering sorne or all of the questions in this activity. This is not 

so much of a concem and is easy to recognize. Also students who make this mistake 

will still provide data that will help us validate the goals ofthis activity. 

Sorne students may still confuse the x and y-axes. 

It is also expected that sorne students may have difficulty reading the graph and 

interpreting the point of intersection. 

3.5 Summary 

Chapter 3 has described the design and a priori analysis of the didactic situations 

that was conducted as part of didactic engineering before conducting the experiment. It 

will be seen that the design and analysis involve a considerable amount of detailed 

thought and planning before entering the classroom. This detail allows difficulties to be 

anticipated and focuses attention on leaming goals to be evaluated. 
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Chapter 4 Experimentation 

This Chapter will de scribe the realization and the analysis of the teaching 

sequences and the last day assessment. The experiment took place in a grade 9 c1assroom 

in a small rural school in Eastern Massachusetts in December 2004. The quiet New 

England communities that feed into the local high school are generally working c1ass 

with many of the families having ties to the fishing industry. Over 50% ofthe students in 

the high school are from low-income families as defined by the No Child Left Behind 

Act (NCLB; U.S. Public Law No. 107-110,2002). Over 20% of the students had a first 

language that was not English and over 16% of the students were on Individualized 

Education Plans. According to United States federallaw, adequate yearly progress 

(A YP) is defined as a measure ofthe extent to which students in a school demonstrate 

proficiency in English language arts and mathematics (Fusarelli, 2004). Based on an 

analysis of the performance and improvement this school demonstrated toward achieving 

A YP, it has been identified as being in need of improvement in each of the last 6 years. 

4.1 Classroom setting 

Twenty-three students participated in the experiment and most were already 

familiar with the graphing calculator. The c1assroom teacher was interviewed before the 

experiment and identified a wide range of understandings and capabilities among these 

students in this c1assroom. While many of the students were well engaged in the learning 

process and had a good track record of achievement, others had more difficulties. For 

example, nine of the 23 students were either failing or had unsatisfactory standing in the 
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course. Two of these students had individual education plans and two others had been 

recommended by other teachers for evaluation. The school was aware that four students 

in the class were on medication for sorne form of attention deticit disorder. One ofthese 

students was also one of the two students with an individual education plan. Two of the 

students who were failing in the course were also documented as having severe behavior 

problems. Two days before the start ofthis experiment, a student in this class had been 

expelled from the school due to several behavior problems and the inability to follow his 

individual education plan. Thus the interview with the teacher before the experiment 

gave visibility to a group of students in the class that had a range of abilities and aptitudes 

and were quite representative ofhigh school students. That is, they were not specially 

selected for the study on any criteria. 

The mathematics teacher who delivered the teaching sequence was very familiar 

with the technology being introduced and had a good understanding of the concept of 

function. The teacher was also part of several Sim Cale research projects using similar 

technologies conducted by the University of Massachusetts in Dartmouth, Massachusetts. 

As a result, the teacher was comfortable having a research team in his classroom. 
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Public space for projection viewing 

1 Teacher's Desk 

Figure 15. Organization of the class 

The teaching sequence was implemented over a 5-day period as planned. The 

goal of the first day was essentially to familiarize the students with the new additions to 

their regular leaming environments, name1y the research team and the seven video 

cameras to be present in their c1assroom. The actual teaching sequence was implemented 

during the second, third, and fourth days. The research team had the opportunity to ask 

explicit questions of the students during the last day for additional validation oftheir 

responses against predictions made in the a priori analysis of the design. 

For this teaching sequence, the c1ass was divided into five groups of 4-5 students 

each, as shown in figure 15. The students are identified by pseudonyms. Each c1ass was 

83 minutes long, the norm in this particular school. The data presented below were 
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obtained by videotapes recorded by five stationary video cameras (CAM 3, 4, 5, 6, 7), 

two mobile video cameras (CAM 1,2), my field notes and those provided by four 

research assistants who assisted in the filming of the experiment. The principal data 

source was video of discussions and interactions between students and of discussions 

between the teacher and the students. Following each c1ass, a short debriefing session 

was conducted to verbally exchange observations between myself, the teacher, and the 

research assistants. These debriefing sessions were also videotaped. In addition, data 

were obtained from student-written responses to worksheets (see Appendix 1) and from 

student-created functions in the form of Connect MathWorlds files. 

The TI-84Plus Si/ver Edition graphing calculator with MathWorlds and 

Connected MathWorlds software loaded on the teacher's desktop computer were used 

throughout the experiment. The CBR™ motion detector in combination with the TI-

84Plus Si/ver Edition graphing calculator overhead set-up was also used. The TI­

Navigator c1assroom network provided the c1assroom connectivity between the students' 

graphing calculators and the teacher's desktop computer, and a data projector was used to 

project a public display. The research assistants also provided technical assistance when 

the need arose. For example, sorne ofthe graphing calculators needed new batteries and 

sorne of the TI-Navigator hubs needed to be re-set. The research assistants quietly 

reminded students to document their stories and graphs on their worksheets so that this 

physical data would also be available for analysis. 
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4.2 A posteriori analysis and validation 

The a posteriori analysis has similar structure for each teaching sequence. The 

most significant frndings from the teaching sequence, descriptions of important 

discussions and interactions that took place during the activities in small groups and the 

interventions of the teacher will all be presented. Extracts of student discussions, student 

created artifacts and teacher interventions will also be provided to highlight significant 

frndings. For validation purposes, each teaching sequence will also inc1ude the 

highlighting of relevant information with links back to the a priori analysis presented in 

Chapter 3. 

Recall that the following hypotheses were made in the theoretical framework 

outlined in Chapter 2: 

Hypothesis 1 Individual mathematical constructions that are directly experienced in a 

"live" context, have immediate kinesthetic, cognitive and linguistic aspects that will help 

students develop an understanding of the relationship between distance and time in 

problems of motion. 

Hypothesis 2 Individual mathematical constructions in a "live" context facilitate the 

development of understanding of independent and dependent variables. 

Hypothesis 3 Multiple linked representations of the same function in a simulated 

environment allowing for manipulation by the students improves their leaming about rate 

of change. 

Hypothesis 4 Aggregated mathematical constructions challenge students to coordinate 

multiple representations and deepen their understanding of functional relationships. 
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4.3 Teaching sequence 1: Exploring physical motion 

The first teaching sequence involved the CBR motion detector and was used to 

provide physical grounding for the simulation-based activities intended to engage the 

students in leaming more about functions. 

4.3.1 Activity 1 (ST1,Al) 

The goal of this activity was for students to familiarize themselves with the 

technology tool that would be used over the teaching sequence and allow them to fmd out 

the relationship between the physical motion in front of the CBR motion detector and the 

graph being displayed. 

There was a lot of discussion where students articulated conjectures and referred 

to the milieu for validation. As was anticipated in the a priori analysis and consistent 

with the historical deveIopment of the concept offunction, the students relied heavily on 

verbal descriptions of the motion or its graphical representation to describe the functional 

relationship. The students engaged in rich discussions to help each other overcome sorne 

of the anticipated difficulties. For example, after sorne free exploration with one of the 

students (Kelly) walking in front of the motion detector, the students were able to 

contextualize the x and y-axes and agree on where the best starting point would be (in 

terms of distance away for the CBR motion detector). Coming to the realization that the 

x-axis represents time and the y-axis represents distance away from the CBR as described 

in the a priori analysis, is an early indicator that students are beginning to understand the 

relationship between distance and time in problems of motion. AIso, the students 

demonstrated sorne understanding of the notion of dependence when they realized that 
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the height of the graph directly depended on the students' location/position in front of the 

CBR. The milieu which gives the students real-time feedback helps the students validate 

or invalidate their conjectures. For example, in the extract below, Kelly's realization that 

she went too far and Jim's conjecture regarding the starting point, was validated by the 

milieu. 

AlI of the extracts use the following code in order to situate them in the 

experiment. The first two characters identify the teaching sequence, the second two 

characters identify the activity, and the last two characters number the extract. For 

example, SlAlEl identifies the fIfst extract (El) ofthe first activity (Al) in Teaching 

Sequence 1 (S 1). 

S lA lE 1 [extract of a discussion regarding the initial location of the volunteer] 

Kathy: Look, Kelly is controlling the A. Vou (referring to Kelly) need to start a little 
further away. You're too close. 

Kelly: Where do you want me to start? Here? 
Kathy: A little further ... Yes, that should be good. 
Kelly: See, now 1 am too far (observing after the CBR started) 
Kathy: Yes, but move forward now and get on the graph (matching Kelly's A motion 

with the animated B motion). 
Kelly: Check it out! l'm right on, oops! There you go - back on. 
Teacher: OK, now where should Kelly stand so that he is exactly where he needs to be at 

the beginning ofthe motion? 
Jim: About 3 feet. 
Teacher: Why do you say that? 
Jim: There are 6 little tics marks on the bottom of the screen. 
Kathy: They're not feet, they are meters. 
Jim: Ok, then 3 meters. 
Kelly: Let me try it again. 
Jim: (After the start of the CBR) 1 was right. He was right on. 

The effects on the representations of the forward and backward motions in front 

ofthe CBR motion detector were not obvious to everyone at first. Initially, there were 

opposing views on what would happen if one were to move towards the CBR motion 
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detector. The majority of the students were correct in conjecturing that the graph would 

"go downwards" as a person moved towards the CBR motion detector and it would "go 

upwards" as a person walked away from it. However, one student, Mark, said that he 

believed that the graph "would go upwards" if a person walked towards the CBR. This 

temporary confusion was anticipated and described in the a priori analysis and was 

quickly resolved. After a volunteer actually walked the motion, Mark quickly saw that 

this initial conjecture was wrong. This was a good example of a milieu invalidating a 

conjecture. Mark needed evidence to be certain that the opposite was true. He did this 

by asking the volunteering student to move away from the CBR motion detector and 

commented: 

S1AIE2 

Teacher: So, what do you think will happen when Kelly moves towards the CBR? 
Mark: The graph would go up. 
Teacher: Kelly, give it a try. Move towards the CBR. 
Mark: Oh, it' s going down. 
Kelly: It gets lower and lower as 1 get closer to the CBR. 
Mark: Move back now (meaning away from the CBR). OK, 1 see it. 

From this brief exchange and the visible immediate feedback from the CBR, Mark 

was able to examine his earlier thoughts and the conditions of the situation and was able 

to start understanding the relationship between position in front of the CBR and its 

representation on the y-axis. The students were also able to verbalize the effect of speed 

on the representations of the motion. 

S1AIE3 

Tim: Y ou're not moving fast enough at the end. 
Jess: 1 could do it. 
Teacher: OK, Jess, explain what you will be doing. 
Jess: 1 would start over here (approximately 0.5 meters away from the CBR), move 
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towards the CBR for a little bit and then sprint out. 
Teacher: Does anyone have other suggestions or concerns. 
Kelly: Va, when Jess moves towards the CBR, he needs to do it slowly. 
Jason: Mr. Y, you better open the c1assroom door so that he doesn't crash into it. He's 

going to be going very fast at the end. 

Onlyone student near the end ofthis activity made reference to the horizontal 

representation of the simulated motion in describing the actual motion. This may be 

explained by the fact that the students were not familiar with this type of representation 

for motion. However, after a student's short explanation of the representation, other 

students seemed to pay more attention to it and use it in subsequent activities. 

This activity allowed students to familiarize themselves with the technology too1. 

It was successful in having the students discover the relationship between physical 

motion in front of the CBR and the graph being analyzed. The technology was valuable 

because it gave the students immediate and direct feedback allowing them to reflect on 

their thinking and examine their thoughts. It also provided them with a means of 

validation for their conjectures. 

4.3.2 Activity 2 (TSl,A2) 

The goal of this activity was for students to identify the two variables involved in 

the representations of the motion: time and position. 

This activity showed some of the expected difficulties outlined in the a priori analysis. 

These are addressed be1ow. The teacher also made a judgment to add additional instructions 

which were somewhat counter to the design of the activity. In order for students to get to the 

leve1 of detail targeted by this activity, the teacher asked students to be more precise. The 

teacher took it upon himse1f to make this specifie intervention. 
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S lA2E 1 [extract of unplanned teacher intervention] 

Teacher: While you think about how you would walk a motion so that A matches B's 
motion, think about where you would need to be standing when you start, the 
direction you would need to walk, where you would need to change directions, 
etc. 

It was discovered after the c1ass that the teacher's reason for this intervention was 

to increase the likelihood that the research team would collect valuable data. This 

intervention was not necessary because the students would have realized they needed to 

be more specific. This situation was designed so that students would naturally increase 

the level of detail in their exchanges because the feedback they were getting from the 

milieu (other students and the technology in this case) required them to do so. 

In their groups, the students also started discussing the meaning ofthe x and y-

axes. AlI groups came to understand that the x-axis represented time and that the 

graduations along the x-axis represented seconds. It took longer for students to be able to 

articulate what was actually represented by the y-axis. After 3 minutes into this activity, 

two of the five groups were accurately describing the meaning of the y-axis as a 

representation oftheir position in front of the CBR motion detector. After 7 minutes into 

the activity, all but one of the groups was actually describing the meaning of the y-axis. 

The one group that was not able to do so focused on describing the speed and direction of 

motion over time without providing details regarding the position in terms of specific 

distances away from the CBR motion detector. It tumed out that in their group 

discussions, this group focused more on the horizontal simulated representation of the 

motion which simply does not make use ofthe y-axis. Following this situation of 

formulation, the students in this group understood the need to be more specific with 
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regards to position as it relates to the distance away from the CBR motion detector. For 

example, the group quickly realized that they needed to provide the volunteer with more 

details in order for him to match the motion accurately and they were able to do this 

using information from the horizontal representation. Therefore, even with the 

unplanned teacher intervention, the students still saw the need to increase the level of 

detail in their exchanges because of the feedback they were getting from the milieu. 

The majority of the students were able to identify time as a variable in the representation 

of the motion, however as anticipated in the a priori analysis, sorne students said that 

speed was the second variable in the motion. This misunderstanding ofthe representation 

of the motion was corrected as the students discussed the motion in the context of the x-

andy-axes. 

S lA2E2 [extract of a discussion in Group 3 regarding the two variables involved in the 

representation] 

Trish: 
Tim: 
Jess: 
Tim: 

WeU time is a variable. 
Right, and speed is the other variable. 
No way. Distance is other variable. 
Speed affects the steepness of the lines, not distance. 

Trish: Look, distance is the other variable. The steep sections just say that you move 
more during a certain time. 

By the end of the activity, the students were successful in identifying the two 

variables involved in the representation of the motion. Although the unplanned 

intervention by the teacher did take away for the planned interactions between the 

students and milieu, the students stillleamed from the milieu that they needed to 

articulate more detailed instructions to the person walking the motion. 
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4.3.3 Activity 3 (TSl,A3) 

The goal of this activity was for students to identify the two variables involved in 

the representations of the motion: time and position, and the relationship between them. 

The students still relied heavily on verbal descriptions of the motions and their 

representations. The teacher and the research assistant often had to remind the groups to 

write their descriptions on their worksheets. As anticipated, the groups quickly 

recognized that there are many different motions that satisfy the requirements of the 

problem. 

In this activity, the students were beginning to show a betier understanding of the 

meaning of the x- and y-axes and the variables that they represent. For example, in the 

conversation among the students in Group 3 in the extract below, the students are making 

reference to position and time and the relationship between them while describing the 

motions. Whereas Tim initially struggled with the definition of distance as the dependent 

variable above, Jess and Tim now show an understanding ofhow speed as rate of change 

is represented graphically. As explained earlier, the ability to communicate one's ideas is 

a benchmark of understanding. 

SlA3El [a continuation ofextract SlA2E2] 

Tim: Yes, but the steep parts show speed. 
Jess: You are saying the same thing as she is. The more you move during a certain 

time, the steeper the line. That's speed. 
Tim: That's what 1 said. 
Trish: No, you didn't 
Tim: It's what 1 meant to say. 

Many more of the students started using the horizontal representation of the 

simulated motions in their discussions while describing the motion. As anticipated in the 
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a priori analysis, many of the students used the horizontal representation to obtain 

detailed information regarding the distance and direction. This was because the distance 

intervals in the horizontal representation were clearly identified in close proximity to the 

graphical representation of the motion. It also made it easier for students to identify 

where both A and B were at the same position. This can be seen in the following 

extracts: 

S lA3E2 [extract of a discussion using the horizontal representation in Group 5 regarding 

the two variables involved in the representation] 

Bruce: 
Kevin: 
Bryan: 
Lacey: 

We could not move for 4 seconds and run until the dots are on top of each other. 
How do you fix it so that the dots are on top of each other at exactly 6 seconds? 
1 could do it. 
So could 1. 

S lA3E3 [extract of a discussion using the graphical representation in Group 2 regarding 

the two variables involved in the representation] 

Lin: 

Ann: 

Lin: 
Kathy: 

Look, an we need to do is start off slowly and then run fast to get on top of the 
line. 
Where do we start? Oh, we start at the same place and as long as we walk really 
slowly, we will stay under the Hne. But we need to be at the same place after 6 
seconds. 
6 seconds is just 6 tick marks away. 
So as long as we get there in time, we are good. 

Aiso anticipated in the a priori analysis, many of the students were able to 

de scribe the motion in the context of the functional relationship between position 

(distance away from the CBR motion detector) and time elapsed. Most of the students 

used terms such as steeper and faster to describe the differences in the rate of change. 

For example, this can be seen in the extract below: 

SlA3E4 [extract ofa discussion describing motion as a functional relationship between 
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position and time] 

Frank: Let's start offby going really slow. Then we could sprint to the fmish line and 
beat them. 

Ruth: 
Frank: 

Patrick: 

Right, but we don't want to beat them. We need to finish in a tie. 
OK, why don't we start slow and go really fast and almost catch up. Wait a 
couple seconds and then floor it? 
80 what would that look like? 

Ruth: Almost a flat line at the beginning, then a really steep line going up, then a flat 
line, then a steep line going up and hitting the other line at the end. 

Fewer students were able to provide a more detailed description ofthe motion by 

providing more specifie information referring to units and rates of change. 2 of the 5 

groups provided this level of information in their descriptions. By the end ofthis 

activity, the students were easily able to identify the two variables involved in the 

representation of motion. Most of the students were also able to show an understanding 

of the relationship between these two variables through their ability to correctly articulate 

the relationship between distance and time. 

4.3.4 Activity 4 (SIA4) 

The goal of this activity was for students to reinforce the acquired knowledge and 

to be able to coordinate multiple representations of the same motion - the graphical 

representation and the simulated horizontal motion. Another goal was for students to 

develop a good understanding of the notion of dependence and independence. 

As expected, the students certainly came up with very interesting stories. In fact, 

many of the initial brainstorms from the groups were more centered on finding the 

craziest story. It took several minutes for students to ground themselves in reality. Once 

they did this, the activity really took off as expected. It was expected that the students 
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would try to invent creative stories and would challenge the other teams. They certainly 

succeeded. Below is an example of discussion that took place in the initial brainstorm. 

SlA4El [extract ofa discussion in Group 4 in brainstorm mode] 

Danny: You're on a skateboard going really fast before you hit the ramp and do a 360 [a 
360 degree rotation in the air] before hitting the ground and wiping out. 

Nancy: What about a car chase where one of the cars spins out of control? 
Danny: What ifllanded my 360 and then spun out of control? 

However, a:fter 2-3 minutes, the group brought themselves to reality when they started to 

discuss the implementation of sorne of these crazy stories in the context of the graphical 

and horizontal representations available to them. For example, 

S lA4E2 [extract of a discussion in Group 4 in implementation mode] 

Frank: 

Ruth: 
Danny: 
Ruth: 

Patrick: 

Danny: 
Patrick: 
Danny: 

Patrick: 

Ruth: 
Danny: 
Patrick: 
Ruth: 
Danny: 
Frank: 

Patrick: 

Does anyone actually have a car or a skateboard and ramp that could be used to 
show this? Remember, Mr. Smith said that it had to be doable. 
Let's use Danny's skateboard idea without the skateboard. 
What? 
Like Frank said, you don 't have a skateboard here and it would not work 
without a ramp. You could pretend you are doing it on the skateboard. 
OK, so going really fast away from the CBR would look like this [holding a 
graph with a very steep and positive slope]. What happens when you hit your 
jump? 
You get into your 360. 
Do you stop in the air to do it? 
No, you get into the rotation as you go up and finish it just before your wheels 
hit the ramp. 
OK, so the next part looks like this [a very short section with zero slope 
followed by a section with very steep negative slope]. 
Don 't forget the crash at the end. 
Right, that graph cornes to a dead stop. 
What? 
No, when you hit the ground, your line goes flat. 
Right, you don 't move but the time keeps ticking. 
He doesn'tjust stop. Even ifhe crashes, there's always a little slide before he 
stops. 
OK, so we make the last section look like this [very small negative slope 
followed by a long section with zero slope]. 
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AIso, as anticipated in the a priori analysis, sorne students offered graphs that did not 

represent motions but were functional relationships. In no instances did these graphs 

remain candidates for group submissions very long because they were void of any 

physical reality. In attempting to describe the physical motion, students quickly realized 

that no motion could represent the graph. However, only in situations where sorne 

students held firm to their beliefs did very rich discussions around the re1ationship 

between position and time and the notion of dependence and independence occur. For 

example, below is an excerpt of an explanation a student (Lee) was giving while 

attempting to physically create a motion that would be represented by graph in the shape 

ofthe letter P. Another student (Ann) used an anticipated argument in challenging Lee. 

SlA4E3 [extract ofa discussion from Group 2] 

Lee: Look, 1 am telling you, 1 could do the P. Youjust need to move very fast. 
Ann: How are you going to create the bottom portion of the P? 
Lee: Tha!' s where you need to be very fast and run back towards the thing. 
Ann: Can you run so fast that you could make time go backwards? You can't make it 

go back. 
Lee: What do you mean? 
Ann: No matter what you do, the thing keeps going. You can't make it stop. 
Lee: 1 am telling you, 1 could do it. 
Ann: Whatever. Why don't you do it in front of the c1ass? 
Lee: 1 will. 
Tina: Look guys, we got to get this thing done. Why don 't we do something that you 

guys won 't argue about? 

After the groups had an opportunity to create other groups' scripts, the teacher asked if 

anyone wanted to volunteer to create the letter P or other difficult letters. Lee from group 

2 raised his hand to volunteer. 

SlA4E4 [extract of exchange between the teacher and Lee] 

Teacher: So Lee, let me know when you are ready. Make sure you are standing where 
you want to be when 1 hit start. 
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Lee: No prob. Mr. Smith. Ready. 
Lee: (as he is walking away from the CBR) See, here we go with the first 

part ... doing the curve at the top ... coming around quickly to close ... to close ... 
come on now! (moving his upper body towards the CBR without moving his 
feet). l'm stuck. 

Ann: Told you. 
Teacher: Lee, why can't you fmish the bottom portion ofthe P? 
Lee: 1 can 't make it stop. 
Teacher: What can't you stop? 
Lee: The time 

The notion of dependence and independence surfaced naturally during this 

activity and the students appeared to better understand the relationship between the two 

variables involved in motion. The notion of dependence and independence in a problem 

of motion surfaced naturally in much the same way it did for Newton in the 1600s as 

outlined in the preliminary analysis. Specifically, the notion of dependence and 

independence really surfaced when the students were directlY experiencing the concept of 

independent variable as they were physically creating the motion that was being 

represented. As reported above, the student physically trying to reproduce the final 

portion ofthe letter P (slanted) understood and even perhaps "felt" that he was unable to 

make time go backwards. This was directly observed when the student moving towards 

the CBR slowly came to a stop and started leaning towards the CBR while watching the 

graphing representation continue to plot points further and further away from the y-axis. 

The milieu in this activity provided the students with real-time feedback allowing them to 

quickly adjust their thinking and their actions. 

One student was creative about how to reproduce a letter which one would 

initially think is not possible to produce while walking in front of a CBR (i.e. not based 

on a functional relationship). He showed how to create a slanted J so that the motion 
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respected the independence of time by walking towards the CBR, slowing down, 

changing directions, then walking away from the CBR at an increasing pace. 

This activity was successful in having the students develop a good understanding 

of the notion of dependence and independence. They were able to show this new 

understanding by being able to articulate their understanding of the relationship between 

the variables. Specifically, many of the students were able to clearly communicate (after 

their experience) that time was an independent variable. Their understanding of 

dependence was a little more subtle in that they were able to communicate that they were 

able to control the dependent variable. It should also be noted that few ofthe students 

actually made any reference to the horizontal motion in this activity. 

4.4 Teaching sequence 2: Modeling and piecewise defined functions 

The second teaching sequence leverages multiple representations in order to 

enable individual and aggregated mathematical constructions. The goal is to challenge 

students to coordinate multiple representations of functional relationships and slope as 

rate of change in problems of motion. 

4.4.1 Activity 1 (TS2,Al) 

The goal of this activity was for students to familiarize themselves with a new 

feature of the technology tool that could be used throughout the teaching sequence and 

for students to understand how motion could be represented by more than one form of 

representation and the differences between these representations. A common framework 
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and language for discussing functional relationships was institutionalized throughout the 

activity. 

This activity was essentially a teacher led discussion. The students participated 

by being part ofthe class discussion and/or through the action ofthe volunteering 

student. As was anticipated in the a priori analysis, this activity focused the students' 

attention on the simulated horizontal representation of the motion. Similar to the first 

"Getting Started" activity, the students relied heavily on verbal descriptions of the motion 

and their observations. 

In order for students to get to the level of detail targeted by this activity, the 

teacher asked students to be more precise. For example, after a brief discussion regarding 

the students' initial reaction to what was going on in the demonstration, the teacher asked 

the students the following questions: When is B going the fastest?; When is B going the 

slowest?; When does B seem to change its speed? These specifie questions forced the 

students to be more specifie with their responses: 

S2A lE 1 [extract of a discussion regarding rates of change at different locations - a 

disagreement] 

Bruce: The first section is going fast, the middle section is going fastest, and the last 
section is slowing down. 

Ann: Mr. Smith 1 would say it differently. B is going fastest in the middle section 
and slowest in the first section. The middle section has the steepest slope and 
the first section has the smallest slope. 

Teacher: And when does B change speeds? 
Ann: There and there. 
Teacher: Can you be more specifie about when? 
Ann: After about two and half seconds, it goes faster and slows down after about five 

seconds. 
Frank: 1 think the last section is the slowest section. 
Teacher: Let's see ifwe could investigate this more to determine the actual slowest 

section. 
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The introduction of the STEP feature allowed the students to place the time cursor 

on top of the vertical axis where each subsequent press caused the verticalline to slide 

along the animation one Step-Time value. This proved to be helpful in obtaining more 

detail during their investigations. This feature was a tool used to explore the functional 

relationship in the graphical representation. 

The introduction of the MARKS feature allowed students to drop marks at regular 

time intervals during the animation in the horizontal representation. This led to rich 

discussion with students trying to justify their answers to the first three exploratory 

questions posed by the teacher. 

S2AIE3 [extract ofa discussion regarding the actual slowest section of the graph] 

Teacher: So how could we tell which section is the slowest? 
Lee: The one with the most space between marks. 
Teacher: What do the rest ofyou think about this? 
John: Most distance between each section should be fastest. The second section is 

twice as fast as the first section. [See figure 16 below.] 
Frank: Right, and the last section is a little faster than the first. 1 was wrong. 
Teacher: No big deal. They were very close. Without dropping marks, it would have 

been tricky. 

Figure 16. The MARKS feature 

The students appeared to adjust to the new level of precision made possible by the 

"stepping" and "dropping marks" as the motion was animated. These new features 

encourage the students to refine the analyses oftheir observations. The students appeared 

to agree with the rationale provided by several students in answering the questions at the 

end ofthis activity. 

An interesting discussion surfaced when the students were asked "exactly how 
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fast is B moving during each part ofthe trip". Through the following exchange among 

three students, the notion of rate of change emerged quite naturally. In fact, it seems to 

have been a real eye opener for one particular student ("oh so that's what rate of change 

" ) means .... 

S2AIE4 [extract of a discussion regarding actual speeds during the sections] 

Teacher: Now, 1 would like us to de scribe exactly how fast B is moving during each part 
of the trip. 

Lee: The first section is moving one tick per second. 
Teacher: One tick? 
Mark: One meter per second. 
Lee: Oh yes, the tics are for meters. 
Teacher: How fast is B moving during the second section? 
Peter: Two meters per second. 
Teacher: How did you get that? 
Peter: WeIl, there are two tics between each drop in that section. 
Teacher: What's the difference between the rate in the first section and the rate in the 

second section? 
Peter: That one [referring to the first section] has one tick per mark and the middle 

section has two tics per mark. 
Teacher: What does this tell us? 
Patrick: The second section is twice as fast as the first section. 
Teacher: Right, the rate of change in the second section is twice as fast as that ofthe first 

section. 
Linda: So that's what rate of change means ... 
Teacher: What did you think it meant? 
Linda: Well, 1 never really thought about it. 
Teacher: WeIl, 1 am glad that you understand it now. Can anyone tell us what the actual 

speed for the last section is? 
Patrick: 1 would say one and half meters per second. 
Teacher: What do the rest ofyou think about this? 
Lee: That's about right. 
Teacher: How can we be sure? 
Lee: We could take out a ruler and measure. 
Teacher: That would be a great idea. However, 1 think most ofthe c1ass accepts 1.5 

meters per section as the rate of change for the last section. 

This activity achieved its goal of familiarizing the students with the new features 

of the technology. The students' understanding ofhow motion could be represented in 
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more than one way and the differences between their representations surfaced when they 

used the new features to refme their analysis in the horizontal representations. They were 

able to clearly communicate what was happening in both representations. 

4.4.2 Activity 2 (TS2,A2) 

The goal of this activity was for students to enhance their understanding of the 

critical ideas of functions and slope as rate-of-change. The core mathematical ideas 

being addressed and contextualized in this activity are the concepts of function as a 

relationship between distance and time and the qualitative idea of slope as rate of change 

where the rate in this case is velocity: positive vs. negative, steeper means faster (greater 

rate), zero slope means zero rate (zero velocity). The students were to familiarize 

themselves with the graphical editing of piecewise defined functions through direct 

manipulation enabled by a new feature ofthe technology tool that was to be used 

throughout the teaching sequence. 

As expected in the a priori analysis, the students were able to use the graphical 

editing features to help them analyze the first series of questions. Only two of the five 

groups were making use of the new features that they had been introduced to in the 

previous activity. This was largely because the motion was designed to go very quickly. 

AlI of the groups were able to quickly answer the first two questions. Just by looking at 

the representations, the students were able to observe that B was represented by the dot 

below the tick marks and by the shorter graph below the longer graph. The more 

interesting discussions happened when the students were asked to reflect, discuss, sketch, 

and create a graph. 
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Two groups used the Marks feature to "drop marks" during their motions to 

analyze the motion more carefuIly using the horizontal representation. The other four 

groups chose to focus only on the representations ofthe simulations without using the 

new tools. Both groups who started by using the Marks feature also switched to the more 

visual approach to answer the questions. AlI groups were able to correctly answer the 

questions. By being able to accurately articulate their ideas regarding slope as rate of 

change, they were able to demonstrate their understanding. The tool also aIlowed the two 

groups to develop their understanding by providing them with additional information that 

had them reflect on their own thinking. 

S2A2E 1 [Exploring distances and durations] 
Lee: B goes slower than A. Look at the marks. 
Kathy: Yes but we just need to say how long they each traveled for. 
Jim: They want to know time and distance for each one. 
Lee: WeIl that's easy. 
Ann: A goes for ten seconds and covers ten meters. 
Tina: B only goes for 4 seconds. 
Lee: Right, and it goes on for only about 2 meters. 

The students came up with very interesting graphs when it came time for students 

to reflect upon, discuss, sketch, and create a graph for a motion that would satisfy the 

given criteria.- AlI the students in aIl the groups explored different ways of creating the 

graphical representations by directly manipulating the different segments of the graph on 

the graphing calculator rather than on the graph paper provided to them. AIso, each of 

the groups made use of a section with a slope of zero. This was anticipated in the a priori 

analysis because it was anticipated that students would be able to apply their knowledge 

of zero slope. It was expected that students would discuss and experiment in their groups 

how to represent "going backwards" graphicaIly. The correct behavior was for students 
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to explain that they needed to add a new segment that must slope downward, or have 

negative slope. This is an example ofhow it was discussed: 

S2A2E2 
Lee: 
Ann: 

So first, the graph has to go up very fast. Then it goes flat for 2 seconds .... 
Going in the wrong direction would be like coming back. The graph would be 
coming down. 

Kathy: 
Ann: 
Lee: 

It's like moving towards the CBR. 
Right. And then we must end in a tie. 
That means we need to create a section that connects with A at the very end. 

It was also expected that students would discuss how to represent "fmishing in a tie". 

The correct behavior was for them to explain to each other that you must add one more 

segment and extend it to the right and upward as needed so that its right endpoint 

coincided with that of A's graph. Although the majority of the groups had little 

difficulty finishing in a tie, one particular group helped one student overcome a difficulty 

with the concept. 

S2A2E3 [A group helping a student who thought that a tie meant making sure the last 

segment went all the way to the end and that it did not need to coincide with A's graph.] 

Jess: 
Trish: 
James: 
Trish: 
Peter: 
Tim: 
Trish: 

... OK, now we need to end in a tie. 
Let's create a section which goes to the end. 
Like this [showing a section which coincides with A at the end]. 
That's good but so is this [showing a section which has B finish below A]. 
No, that one does not work. 
It must be exactly on top of A at the end to finish in a tie. 
As long as it goes to the end, ifs a tie. Oh no, you're right. 1 forgot about the 
distance. You are right. It does need to be on top of A at the very end. 

Another student made a literaI picture ofB falling down as a segment sloping 

down to the x-axis. This incorrect conception has been identified as an obstacle in the 

cognitive dimension of the preliminary analysis and the students in his group were able to 
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help this student overcome this obstacle by discussing the meaning of the x and y-axes in 

their contexts. 

S2A2E4 

Linda: 
John: 
Linda: 

... and then the graph goes straight down for two seconds. 
Falls down is the same as stopping. It's just a flat line. 
Right. But the graph goes down before it goes flat. 

Jim: Going down means going back towards the start. Remember the CBR thing. 
When we walked away from it the graph went up and when we walk towards it, 
it went down. 

Linda: When we stood still, it was a flat line. OK, OK, 1 get it. 1 wasn't thinking. 

This activity put students in a situation where they were required to reflect upon 

the functional relationship involved in motion and communicate their understanding. 

Sorne students like Trish and Linda, who at first struggled with their ideas, developed the 

ability to reflect on and articulate their knowledge. This activity was successful in 

familiarizing the students with the editing feature for the editing and creation of the 

piecewise defined functions. This was evident because all the students were using this 

new feature as they were creating their graphical representations while attempting to 

respect the constraints. 

4.4.3 Activity 3 (TS2,A3) 

The goal of this activity was for students to familiarize themselves with the new 

representational system that was to be used throughout the rest of this teaching sequence. 

The students were provided with the first experience to "see" all of the representations 

that had been collected, especially overlapping graphs and they will be challenged to 

coordinate multiple representation systems to "find" their constructions. This activity 

was essentially a continuation of the previous activity. 

143 



The role of technology as a part of the milieu in this activity was to challenge the 

students to coordinate multiple representation systems to "fmd" their individual 

constructions among the many representations in the shared space. The milieu here 

introduced students to the process of relating their personal constructions to the larger 

collection of objects that appeared on the "big screen" when their work was aggregated 

with that of their peers. 

As was anticipated in the a priori analysis, the students immediately started creating 

psychologicallinks with the mathematical objects that they created, referring to them as 

"my dot". This personal investment in the building ofknowledge as outlined in the 

cognitive dimension ofthe preliminary analysis is an important indicator of 

understanding. Most students were able to successfully coordinate their mathematical 

objects in the two different representation systems - Connected MathWorlds in the shared 

space being projected to the class using the data projector and MathWorlds in the 

personal space on their graphing calculators. Because of differences such as size of 

screen, representation of the axes and intervals, resolution, and color, and the fact that 

several of the graphs looked very similar, students needed to identify certain aspects of 

their mathematical objects on their graphing calculators and look for them in the public 

display. The students were successful in overcoming this challenge by reflecting on and 

applying their knowledge of the functional relationship involved in problems of motion. 

Figure 17 is an aggregated view of aIl of the groups' constructions. The justification 

from the students below showed that they relied on a good understanding of the 

functional relationship represented in the graphical representation on their graphing 

calculator in order to apply this mathematical knowledge and locate the same 
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mathematical object in the public display even though it looked a little different. 

S2A3E1 [Group 2 identification oftheir construction.] 

Lee: Look, there's our graph. 
Teacher: How do you know for sure that that's your graph. 
Lee: Because, we took off as fast as we could - that's why. 
Ann: That's right. And 1 know that we fell down after only 1 second. No other 

graphs up there do that. 
Teacher: You guys really know your graph. 

Figure 17. Aggregated view of group constructions 

S2A3E2 [Group 1 & 3 identification oftheir constructions.] 
Kelly: Our graph must be the orange one [G1 graph above was orange on the projected 

screen] because it goes the highest. 
Mark: Yes, ours went off our graph on the graphing calculator. 
Tim: No, the orange one is our graph. We went high also. 
John: Could you see the graph on the graphing calculator. 
Peter: Yes, we could. Our graph only went up to about Il meters. 
Tim: OK, right, so our graph is the green one [G3] ... or the brown one (G5). 
Peter: Ours is the green one [G3]. 
Teacher: Why do you say that? 
Peter: Well we fell down farther than 10 meters away ... it was more like .. 
James: 12 meters away. 
Peter: Right it was about 12 meters away. Look the green (G3) one is exactly 12 
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meters away. 
James: The brown (G5) one felliess than 10 meters away. 

S2A3E3 [Group 4 identification oftheir construction.] 
Teacher: What other group would like to point out their construction for us? 
Danny: We would. 
Teacher: OK, which is it and why? 
Danny: It's the pink one [G4] because we did nothing for the first few seconds. 
Tina [from group 2]: You couldn't do that! You had to start with a wild burst of speed. 
Ruth: It did not say that it had to start with that. We did our wild burst of speed a:fter 4 

seconds. Mr. Smith? 
Teacher: Keep explaining why the pink one is your graph. 
Danny: That's basically it. We were the only ones that started that way so it's easy to 

spot our graph. The rest ofthe pieces look very similar. 
Ruth: Right. And we were the only ones to stop at 9 meters. 

As a continuation ofthe previous activity, this activity was successful in having 

students enhance their understanding of function as a relationship between distance and 

time and the qualitative idea of slope as rate of change. The students displayed this by 

successfully applying their mathematical knowledge of functional relationships and of 

slope as rate of change. The students also demonstrated a personal investment in the 

building of knowledge as they constructed relationships between the mathematical 

representations they created on their graphing calculators and the representations of the 

same objects on the shared public display. AIso, the students were successful in 

communicating their justification for the correct identification oftheir representations in 

the shared public display. 

4.4.4 Activity 4 (TS2,A4) 

The goal of this activity was for students to display an understanding of the 

concept of variable, and the notion of dependence between two variables in their 

descriptions - distance and time. The students were challenged to coordinate multiple 
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representation systems, the personal graphing calculator/CBR/MathWorlds representation 

system and the public TI-Navigator/Connected MathWorlds representation system, to 

deepen their understanding of functions as a re1ationship between a dependent (distance) 

and an independent (time) variables. The goal was also for students to deepen their 

understanding of slope as rate of change. Implicitly there was still the goal to engage the 

students personally with their mathematical work and to reach students who might 

otherwise feel alienated from mathematics by offering them a chance to "perform" 

mathematically. 

As was anticipated in the a priori analysis, the students were very autonomous 

while working in groups. They appeared excited about the activity and their stories were 

very exciting. Initially, most groups focused on verbalizing stories that they felt would 

be difficult to re-create. During this brainstorm, other members of the team tried to bring 

the brainstorm something that could be contextualized on their devices. 

S2A4El [Wild story brainstorm in group 5] 
Bruce: ... and then the rocket ship goes ... 
Lacey: Hey! Is that something that could be done on this screen? .. 
Bruce: Y a, but we need to think of something cool. What if we start by making a really 

ugly graph and then fmd a story for it? .. OK? 

The students used the technology to explore and to verify the stories and then 

adjusted their stories so that they fit the representations that they created. These students 

focused on the representations ofthe mathematical object fIfSt. They needed to have a 

good understanding of the relationships between distance and time over the different 

sections that they created in order to come up with story lines that reinforced the 

relationships during the appropriate times. The notion of dependence and independence 

was discussed in the exchange between these students below. Although this type of 
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discussion was not anticipated in the a priori analysis, the arguments that were used in 

the discussion were predicted. 

S2A4E2 [Discussion time and position in group 5] 
Bruce: Look, the guy wants an exciting race, let' s give him one. 
Lacey: Yes, but you are talking about going back in time. That's not possible. 
Bruce: Let's make it possible ... How do we show it on the calculator? 
Bryan: We11, uh, we could uh .. . 
Lacey: Give an example of where it would work. 
Bruce: OK, let's say you run super fast to get near the end and then you forgot your 

phone, you could stop the time, floor it to get back and zoom back to where you 
were, the time would start up again and we cross the finish line. .. How would 
you graph that? 

Kevin: 
Bruce: 
Kevin: 

The graph would have a bunch of lines behind where you stopped. 
OK, how do we do it on this [calculator]? 
Oh, you can't because you can't stop time on this calculator. 

Bruce: OK, you are right, we can't change that but we can change where we are -let's 
go a11 over the place as fast as we cano 

Although this excerpt showed that one of the students got carried away trying to change 

the environment, the students did display a strong understanding of the independent 

variable in this activity - time. The above discussion did force the students to reflect on 

their initial ideas and their thinking about this story. In the end, they were able to apply 

their understanding oftime as an independent variable and adjust their story. 

Other students started from a story, explored and validated the story, and then 

adjusted the graphs so that they fit their story. 

S2A4E3 [excerpt of a discussion in Group 2] 
Lee: Let's start here ... you need to go up quickly ... 
Ann: Yes but not as quickly as you'11 need to go later - we start out kind of slow, we 

stop, and then take off to the finish 
Kathy: So the third section needs to be steeper than the first section. 
Ann & Lee: Right! 

This excerpt demonstrates that the students had a good understanding of slope as rate of 

change. This was observable in their ability to communicate c1early about the concept. 
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The actual exercise of creating graphical representations for the exciting races that were 

delivered from the other groups also resulted in sorne great discussion displaying a 

deeper understanding of the functional relationships. The ability to formulate a clear 

description of the motion to other teams to foUow in order to reproduce the graphical 

representation is an important indicator of understanding. 

82A4E5 [Group 3 - Creating a Position vs Time Graph for another group's story] 
Jess: 80 they want us to start far away. Then they want us to move towards the CBR. 
They want us to be jogging. 
Trish: Then they want us to sprint back to exactly where we started. 
Peter: John probably thinks none ofus could run as fast as he cano 
Tim: 1 cano 1 want to do it. 

AU the groups were able to recognize their graphical representations after the 

teacher coUected them aU, aggregated them and projected them in the public display 

using a data projector. As anticipated in the a priori analysis, the students who 

successfuUy coordinated between their personal creation on the device and the more 

refined version of the graphical representation offered by the computer version of 

MathWorlds in the public display had a deeper understanding offunctions as a 

relationship between dependent and independent variables and slope as rate of change. 

As anticipated in the a priori analysis, the development of understanding by the students 

in this activity emerged as the students constructed relationships, extended and applied 

mathematical knowledge, reflected about experiences, articulated what they knew, and 

made mathematical knowledge their own. This was also observed by the descriptions 

that they gave of the functional relationships being represented by the graphical 

representations. 
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Sorne students were more challenged than others in coordinating the 

representations on the two devices - the graphing calculator and the public display. For 

example, groups 4 and 5 had difficulty recognizing their graphical representations 

because sorne of the sections of both graphs overlapped making it difficult to see just one 

graph. The teacher helped by hiding sorne of the overlapping graphs and the students 

were able to fmd their own graphs. 

This activity was successful in having the students display their understanding of 

the notion of dependence and independence. The challenge of coordinating the two 

representational systems also helped the students deepen their understanding of function 

as a relationship between distance and time in problems of motion. 

4.5 Teaching sequence 3: Summarizing understanding 

Recall that the goal of this sequence was to provide the research team with the 

opportunity to ask explicit questions to the students to probe their understanding of the 

concept of function and their ability to transfer knowledge acquired with technology to a 

traditional paper and pencil environment. 

4.5.1 Activity 1 (TS3,Al) 

The goal of this activity was to determine if the students had a good 

understanding of the functional relationship between distance and time in problems of 

motion and solid understanding of independent and dependent variables. 

As was anticipated in the a priori analysis, the majority of the students (22 out of 

the 23) selected the correct graphical representation for this problem (d). It is difficult to 
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know exactly why the one student chose the incorrect representation or what meaning he 

had constructed to do so. In the class discussion, this student might have been the first 

presenting hislher answer and the teacher could have asked the reasons for this choice. It 

would have allowed having an insight to the understanding ofthis student. However, 

assumptions for this have been made in the a priori analysis. Recall that the obstacle 

related to student difficulties overcoming literaI representations of graphs was outlined in 

the cognitive dimension ofthe preliminary analysis and that this type of obstacle creates 

significant difficulties in conveying the connections between graphs and functions to 

students. As a result, more one-to-one interview by the teacher was required with this 

student following the research project. 

An interesting class discussion took place when the teacher asked the class why 

the other representations were not selected. The students were able to recognize that the 

other graphical representations did not represent functional relationships. The 

expectation was that the students would comment that the incorrect graphs showed time 

going backwards or a person being at more than one location at one point in time. As 

described below, this did in fact happen. AIso, recall that Frank was the student in the 

first lesson who strongly believed that he could create the letter P because he was a fast 

runner. His comment below shows that he now has a good understanding of the function 

relationship between distance and time in this problem of motion. 

S3AIEI [Excerpt of discussion around the distracters] 
Peter: You can 't be at a bunch of places at exactly the same time 
Frank: You can't go backwards in time. 
Ann: How did you create these graphs anyway? It should not be possible for you to 

do these. What's up Mr. Smith? 
Teacher: WeIl, these are actually fake graphs ... 
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4.5.2 Activity 2 CTS3,A2) 

One goal for this activity was to determine if the students were able to apply what 

they had learned about the functional relationship in problems of motion involving the 

motion detector in a different context without technology. Another goal was to determine 

if the students deepened their understanding of slope as rate of change. 

As was anticipated in the a priori analysis, the majority of the students were able 

to use their understanding of functional relationships in problems of motion to correctly 

represent the given segments graphically. Specifically, 19 out of the 23 students were 

able to represent slope (positive, negative and zero) appropriately with different rates of 

change and displayed a good understanding of position in this activity. 

As expected, many of the students needed to start their graph over several times in 

order to make effective use of the graph paper provided. Most of these students got 

through several criteria before realizing that they ran out graph paper to complete the 

problem. This limitation pushed the students to focus on representing important 

properties of the functional relationship graphically. 

It was promising that no students appeared to resort back to literaI representations 

of segments of graphs when unsure ofhow to represent parts of Santa's trip correctly. 

Most of the mistakes that were made on this problem dealt with accuracy. For example, 

Nancy had a short portion of a negative slope representing the front tire blow out instead 

of the zero slope that was expected. However, Nancy did have zero slope representing 

the one-second stop. Unfortunately, 1 did not have the opportunity to discuss this with 

Nancy, however, it may be that she thought the wagon had moved slightly backwards 

a:fter getting the blow out. Linda, Bryan, and Kevin all had final sections (G) which had 
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slopes that were slightly different from the slope in section A. Perhaps this is because the 

instructions for the last section were not clear enough. SpecificaIly, perhaps the students 

had difficulty interpreting same rates as parallelline segments. This is not obvious and it 

was not addressed explicitly in the previous activities. Although aIl three of these 

students did not have the exact same slope as they did in the first section, they aIl had 

slopes that were relatively close. 

The students were able to successfully transfer what they had learned about 

problems of motion involving the motion detector to a different context and to a paper 

and pencil environment. AIso, the students' graphs communicated a good understanding 

of slope as rate of change demonstrating a greater depth of understanding than at the 

beginning. 

4.5.3 Activity 3 CS3A3) 

The goal of this activity was similar to the first two in that it attempted to 

determine if the students had a good understanding of the functional relationship between 

distance and time in problems of motion and a deep understanding of slope. This activity 

also attempted to determine if the students had the ability to obtain important information 

by analyzing graphical representations of functional relationships between distance and 

time in a motion problem set in a different context. 

As was anticipated in the a priori analysis, the majority ofthe students were able 

to use their understanding of functional relationships and displayed the ability to obtain 

important information by analyzing graphical representations of functional relationships 

between distance and time in a motion problem set in a different context. SpecificaIly,13 
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out ofthe 23 students were able to answer aIl questions successfully. 5 out of 23 students 

had difficulty with number 5. As anticipated in the a priori analysis, this is most likely 

because these students made the faise assumption that the bikers started the trip from the 

same location. Two of the students answered aIl of the questions matching A and B with 

the wrong graphical representations. Although, these students' answers were wrong, 

their answers were correct within the context of the matching they used. 

This lesson was successful in providing a good picture of the students' individual 

and group understanding of the concepts explored in the first two lessons. 

4.6 Summary 

This chapter described the realization and the analysis of the teaching sequences 

and the last day assessment. The next chapter will present the conclusion and summary 

for this thesis. 
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Chapter 5 Conclusion and Summary 

The goal ofthis experiment was to explore the effects of using multiple 

representation systems on student understanding of functional relationships involved in 

problems of motion. Historically, motion has been the basis for a considerable amount of 

mathematics, especially in the development of the concept of function, and 1 was 

interested in leaming about how motion in a didactic milieu making effective use of 

multiple representation systems enhances students' understanding of functions. 1 will 

now consider each hypothesis and relate the results of the experiment to the hypotheses. 

Hypothesis 1: Individual mathematical constructions that are directly experienced in a 

"live" context, have immediate kinesthetic, cognitive and linguistic aspects that will help 

students develop an understanding of the relationship between distance and time in 

problems of motion. 

The selected technology included in the milieu did succeed in allowing the 

students to experience motion directly. As a result oftheir interactions with the milieu, 

the students were able to get immediate feedback from their actions allowing them to 

reflect on their thinking and examine their thoughts and consequently adjust their actions, 

thus contributing to the building of understanding of the relationship between distance 

and time in problems of motion. Consistent with the historical development of the 

concept of function, the students in this experiment relied heavily on verbal descriptions 

of the motion and its representations to de scribe the functional relationship. The students 

engaged in rich discussions helping each other overcome sorne of the anticipated 
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difficulties. As outlined in the first chapter, the ability to articulate what one knows 

about the functional relationship involved in motion is an important indicator of 

Wlderstanding. The free exploration where each student walked in front of the CBR at 

least twice allowed the volWlteering students to directly experience the relationship that 

exists between their motions and graphical representations that simultaneously were 

being graphed as they walked. By being directly involved in the creation of the motion 

and its graphical representation, the students were able to get immediate feedback from 

their physical actions. They were c1early able to analyze the results oftheir past physical 

motion with the targeted graphical representation and refine their motion to match the 

desired graph more c10sely on the second try. These activities encouraged the conscious 

examination of their own actions and thoughts, and as outlined in Chapter 2, the notion of 

the emerging nature of Wlderstanding is seen in the students' ability to reflect on their 

own thinking (Carpenter & Lehrer, 1999). Either in the context of entire c1ass 

discussions or in smaller group discussions, students had the opportWlity to observe the 

direct effect of motion on its graphical representation. Several of the activities involved 

having students formulate descriptions of motion for others to act out physically in front 

ofthe CBR. This required the students doing the formulation to think about the different 

aspects of the motion and refme their descriptions Wltil the desired motion could be acted 

out. 

The simulated horizontal representation of the motions that could be played back 

on demand by the students allowed them to see a simulated model of their physical 

motion representing someone walking in front of a CBR as often as they liked. The 

ability to play back the motion in the form of a simulation while simultaneously watching 
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the graph of the motion being created allowed the students to explore the phenomena at 

their own pace. This really seemed to help students refine their thinking about functional 

relationships in problems of motion. 

Bythe end of the second activity in Teaching Sequence 1, most ofthe students 

were able to show their understanding of this relationship between distance and time by 

correctly articulating their ideas regarding position and time. By the end of the third 

activity in Teaching Sequence 1, they were able to correctly articulate relationship 

between distance and time in problems of motion. 

Hypothesis 2: Individual mathematical constructions in a "live" context facilitate the 

development of understanding of independent and dependent variables. 

Students started demonstrating some understanding of the notion of dependence 

as early as the first activity in Teaching Sequence 1 when they realized that the height of 

the graph directly depended on the students' position in front of the CBR. The real-time 

kinesthetic feedback provided by the milieu helped the students validate or invalidate 

their conjectures and develop their understanding of independent and dependent 

variables. AIso, the challenge provided to students in the rmal activity of T eaching 

Sequence 1 resulted in very creative stories and the students appeared to be very engaged 

in the mathematical experience. The major goal ofthe last activity of Teaching Sequence 

1 was to have the students construct meaning regarding the relationship between the two 

variables in motion and the notion of dependence in much the same way early 

mathematicians did. The notion of dependence and independence surfaced when the 

students were directly experiencing the concept of independent variable by physically 
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creating the motion and simultaneously seeing it represented on the screen. For example, 

the student physically trying to reproduce the final portion of the letter P (slanted) 

understood and even perhaps "feh" that he was unable to make time go backwards. This 

was observed when the student moving towards the CBR slowly came to a stop and 

started leaning towards the CBR while watching the graphing representation continue to 

plot points further and further away from the y-axis. One student was creative about how 

to reproduce a letter which one would initially think was impossible to produce while 

walking in front of a CBR (i.e. not based on a functional relationship). This student 

showed how to create a slanted J so that the motion respects the independence of time. 

The milieu in this activity provided the students with real-time feedback allowing them to 

quickly adjust their thinking and their actions. 

Teaching sequence 2 was successful in having the students develop a good 

understanding of the notion of dependence and independence. They were able to show 

this new understanding by being able to articulate their understanding of the relationship 

between the variables. Specifically, after their experiences with the CBR, many of the 

students were able to clearly communicate that time was an independent variable. Their 

understanding of dependence was a little more subtle in that they were able to 

communicate that they were able to control the dependent variable - distance away from 

the CBR. 

Hypothesis 3: Multiple linked representations of the same function in a simulated 

environment allowing for manipulation by the students improves their leaming about rate 

of change. 
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As expected, sorne students had difficulty coordinating between the simulated 

horizontal representation of the motion and the graphical representation of motion. Most 

students were simply more familiar with the graphical representation than the simulated 

horizontal representation, but their familiarity with graphical representations helped them 

make connections. Seeing the same motion represented in different ways caused them to 

focus on the relationship involved in the motion, and the properties of the simulated 

horizontal representations allowed the students to refme their analyses of the motion. 

Specifically, it was observed in this experiment that the students were able to refme their 

thinking about distance away from the CBR and the direction of the motion. 

The graphical representation had different benefits: the majority ofthe students 

chose the graphical representation when discussing and analyzing slope as rate of change. 

The third activity of Teaching Sequence 2 showed that these multiple linked 

representations of the same motion (i.e. graphical and horizontal simulated 

representations) allowed the students to improve their leaming about the functional 

relationship involved in motion and about rate of change. Therefore, while analyzing the 

motion using two linked representations, the students could focus on different aspects of 

the functional relationship depending on the representation they were focusing on. This 

allowed the students to quickly refine their thinking, especially when they were leaming 

about rate of change. By the end of the fourth activity in Teaching Sequence 2, the 

majority of the students were able to display a good understanding of slope as rate of 

change by being able to communicate clearly about the concept when describing their 

motions to other teams, so that they could reproduce the graphical representation. 

Teaching Sequence 3 also confirmed that students had a good understanding of slope as 
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rate of change when 19 out of 23 students were able to represent slope (positive, negative 

and zero) appropriately with different rates of change and in the contexts of different 

situations of motion. 

The direct experience resulting from deeper engagement with the mathematical 

objects - functions, allowed the students to link them to the representations that they had 

built. This became very evident in the third activity of Teaching Sequence 2 when the 

students began referring to their representations as "my dot", "my graph", or "that's me". 

As described in the cognitive dimension of the preliminary analysis, this personal 

investment in the building of knowledge is an important indicator of understanding. 

Hypothesis 4: Aggregated mathematical constructions challenge students to coordinate 

multiple representations and deepen their understanding of functional relationships. 

The final activity of Teaching Sequence 2 confirmed that students who can 

successfully relate their personal creation on the handheld device to the more refined 

version of the graphical representation offered by the computer version of Math Worlds in 

the public display, had a deeper understanding of functions as a relationship between 

dependent and independent variables and slope as rate of change. The development of 

understanding by the students in this activity appeared to emerge as the students 

constructed relationships, extended and applied mathematical knowledge, reflected about 

experiences, articulated what they knew, and made mathematical knowledge their own. 

This was also observed by the descriptions that they gave of the functional relationships 

being represented by the graphical representations. The challenge of coordinating the 

two representational systems also helped the students to deepen their understanding of 
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function as a relationship between distance and time in problems of motion. Most 

students were able to successfully coordinate their mathematical objects in Connected 

MathWorlds in the shared space that was projected to the class using the data projector, 

and Math Worlds in the personal space on their graphing calculators. Because of 

differences such as size of screen, representation of the axes and intervals, resolution, and 

color, and the fact that several of the graphs looked very similar, students needed a way 

to relate their personal constructions to the larger collection of objects that appears on the 

"big screen" when their work was aggregated with that oftheir peers. Figure 17 from the 

third activity of Teaching Sequence 2 showed an aggregated view ofall of the groups' 

constructions. The students identified certain aspects oftheir mathematical objects on 

their graphing calculators and looked for them in the public display. This internaI 

process required the students to reflect on and apply their knowledge of the functional 

relationship involved in problems of motion. 

Teaching Sequence 3 showed that the students were able to successfully transfer 

what they had learned about problems of motion involving the motion detector to 

problems involving motion in a different context. AIso, the students' responses 

communicated a good understanding of slope as rate of change, a marked improvement 

over their understanding at the beginning of the experiment. 

Finally, it was clear from the observations ofthe student interactions and 

participation during this activity that they really enjoyed learning about the functional 

relationship involved in motion in this way compared with the day of filming that 

preceded the implementation of this research design. 
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5.1 Limitations 

In order to investigate the validity of my research hypotheses in a diverse rural 

high school setting, it was necessary to deal with the dynamics of a regular classroom. 

Therefore, in addition to implementing the experiment, the teacher needed to spend a lot 

of time managing the students' behaviors. The size of the classroom was another 

limitation. If the experiment could have been conducted in a much larger forum, the 

design could have included a station for each group so that each group would have had 

their CBR set ups. Doing so would have involved more of the students in the physical 

creation of the motion and associated explorations. AIso, there were at least two students 

who required individual intervention and were in fact receiving individual interventions 

by the school district on a regular basis. The design of this experiment did not 

accommodate these needs. 

It may be thought that a limitation of the experiment was that understanding was 

not assessed by formaI testing, either before or after the instruction. However, the 

richness of the students' language and their ability to apply their knowledge to the new 

problems presented in Teaching Sequence 3 was clear evidence oftheir leaming and of 

their understanding of the concept of function, so this evidence validated the a priori 

analysis ofthe teaching sequence. Since a goal ofthe study was to apply didactic 

engineering to a teaching sequence, it was designed according to the sequence a priori 

analysis -+ experimentation -+ a posteriori analysis. This paraUels the classic quasi­

experimental sequence of pre-test -+ intervention -+ post-test, so it meets the conditions 

ofMessick's "Consequences as Validity Evidence." (Messick, 1995). 
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Because the effectiveness of this experiment was controlled by didactic 

engineering and therefore mediated by research-based teaching practices and the control 

of the variables, the scaling up ofinnovative-based mathematics to a wide variety of 

teachers and students and classroom settings is a concern. There are also concerns that 

only teachers who are comfortable with technology, interested in mathematics education 

research, and with a high level of support and guidance would be able to implement such 

innovations. It has already been observed that the teacher did not always follow 

instructions, which may have affected the outcome, but this factor is inevitable in the 

naturalistic setting of the real classroom and did not seem to influence the students 

unduly, and indeed, the teacher is a necessary component of the didactic milieu. 

Additionallimitations included the fact that the only variables used were time and 

distance functions, the activities addressed mostly piecewise linear functions, and that 

specific technology tools were used. 

5.2 Practical contributions 

Through didactic engineering of teaching sequences, students may construct, 

manipulate, and analyze graphical representations to important effect even in the absence 

of a shift to a learner-centered constructivist pedagogy by the teacher. Carefully designed 

sequences that take advantage of the affordances of specific representational technologies 

may increase the students' opportunities to learn. 

Although historically, early notions of function were expressed in graphical forms 

representing a dependence between two quantities involved in motions, work done in the 

early 1900s to explore the concept attempted to downplay the idea of motion. It should 
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not be surprising therefore, that the modem definition of function has abandoned the 

metaphor of motion. Helping students come to understand important mathematical 

concepts such as functions might be more effective if the concept were presented to them 

in contexts similar to the ones that housed real problems that early mathematicians 

debated while developing the concept. If important contributions to the concept of 

function and the notion of dependent and independent variables from leading 

mathematicians and scientists appear to have been contextualized in problems of motion, 

then students should be put in similar situation early on to help them develop a solid 

foundation for understanding functional relationships. This is a pattern of proven success 

that should be repeated. 

Learning about functions by studying their multiple linked representations is very 

powerful because it makes the links between multiple representations more dynamic and 

therefore, more visible to the students. Whereas direct manipulation of conjecturing 

software has revolutionized the teaching and learning of geometry over the last ten years, 

these same ideas now have the opportunity to revolutionize the teaching and learning of 

functions. Teachers can use a variety of educational software products to help students 

leam about functions, as suggested in this experiment. Ubiquitous devices such as the 

graphing calculator greatly increase access to the functionality and capabilities that was 

once only provided by powerful mathematics software for computers (Berson & Balyta, 

2004). The most appropriate technology will be the technology that can provide all 

students with meaningful and contextual interpretations of representations in a problem­

based approach, and handheld graphing calculators are inexpensive enough and powerful 

enough to satisfy these criteria. 
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Taking advantage of the students' personal connection with their individual 

constructions in an aggregated and publicly displayed set of student constructions 

appeared to have helped the students develop important coordination skills that deepened 

their understanding of functional relationships involved in motion. As classrooms 

become more technologically advanced, the potential will exist to aggregate student work 

in this anonymous and powerful way. 

5.3 Theoretical contributions 

It appears that this experiment was the first doctoral dissertation in North America 

based on the Theory of Didactic Situations and didactic engineering. The Theory of 

Didactic Situations formed the theory base for the experiment, and the experiment 

showed that applying the process of didactic engineering in these new leaming 

environments could result in improved student leaming of functions, and increase active 

participation and interest. It is hoped that the success of the experiment might stimulate 

other teachers and other researchers to employ the methodology. 

5.4 Recommendations for future research 

Much of the preliminary analysis and the a priori analysis driving this research 

over the last several years has contributed to the new product development plans of a 

major educational technology company which will continue to research the effectiveness 

of its products on the teaching and leaming of functions and other important 

mathematical concepts. It is recommended that future researchers and teachers take 

advantage of the multiple linked representations within such new integrated leaming 
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environments to determine if they are successful in deepening student understanding of 

functions. For example, the ability to view one function through severallinked 

representations should deepen student understand of functions, both as a process and as 

an object. Therefore one important question to explore in the future is whether or not the 

appropriate and effective use of multiple linked representations could help students 

through the progression from the process to the object conception of functions as 

described in Chapter 2. Specifically, it would be valuable to learn if it helps students 

reach the reification stage where an ontological shift occurs when the student converts the 

condensed knowledge into an object in its own right (Sfard, 1992). It would also be 

interesting to learn how students could go through this progression. 

Other questions related more directly to this experiment that can be addressed in 

the future such as long term effects of the sequences and the use of this particular 

technology on avoiding sorne of the well known obstacles to understanding functions. 

Another recommendation was derived from the preliminary analysis. Given the 

pattern throughout the history of curriculum reform efforts resulting in misrepresentation 

or partial implementation of curriculum recommendations, textbooks continue to 

influence classroom teaching and learning dramatically. Because publishers rely on 

extensive feedback from teachers, it would be important for mathematics researchers to 

mobilize, align themselves, and become more effective in reaching the masses. This also 

implies the necessity ofwork done with teachers to influence their conceptions of 

teaching and learning. In addition to recommendations already made in the preliminary 

analysis, researchers in mathematics education might spend less time debating points on 

which they disagree, and more time making explicit recommendations on the issues on 
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which they agree, like the introduction of the function concept. A large-scale quantitative 

collaborative research project led by severalleading researchers in the field resulting in 

major adoptions of curriculum and pedagogical recommendations around the teaching 

and leaming of functions should influence publishers to change the way the concept of 

function is introduced in their textbooks, thereby changing how the concept is taught in 

the majority of North American classrooms. 
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Group Name: 
------~-----------

Lesson 1: Exploring Physical Motion 

Activity 1: Getting Started 

Instructions for the students: 
In the space provided below, write down your observations regarding what you think is 
happening. F ollowing the demonstration, the teacher will ask you to share your 
observations and explain the relationship between the CBR motion detector and the 
graph. 

Write your observations below. 
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Lesson 1: Exploring Physical Motion 
Group Name: ---------

Activity 2: Matching Motions 
Walk a physical motion so that A matches B's motion as closely as possible. 

Instructions for the students: 
Describe how someone would walk a physical motion so that A matches B' s motion as 
closely as possible. 

In the space provided below, write down a description of a physical motion for A. (One 
description per group is sufficient.) 

Write your description below. 
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Lesson 1: Exploring Physical Motion 
Group Name: --------

Activity 3: Catch Up Motions 
Walk a physical motion so that A starts off slower than B, but catches up to B at the 
end of the motion, at 6 seconds. 

Instructions for the students: 
Describe how someone would walk a physical motion so that A starts off slower than B, 
but catches up to B at the end of the motion, at 6 seconds. 

In the space provided below, write down a description of a physical motion for A. (One 
description per group is sufficient.) 

Write your description below. 
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Lesson 1: ExpJoring Physical Motion 
Group Name: ---------

Activity 4: The Challenge! 
Groups will challenge each other to create graphs of interesting motions. 

Instructions for the students: 
Create a graph for a physical motion that you feel would be difficult for other teams to 
reproduce. However, make sure that it is possible to reproduce it. 

In the space provided below, draw a detailed sketch of the graph and provide a story for 
the physical motion needed to create it. (One graph and description per group is 
sufficient. ) 

Story for the physical motion: 
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Lesson 2: Modeling and Piecewise Defined Functions 
Group Name: 

Activity 1: Getting Started 

Instructions for the students: 
This activity is designed to familiarize you with a new piece of software. It is very 
important to understand how this software works to be able to complete the other 
activities. 
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Lesson 2: Modeling and Piecewise Defined Functions 
Group Name: 

Activity 2: Creating Exciting Sack Races 

Instructions for the students: 
• Open menu item 1, "Piecewise Animations" from the Lesson 2 "L2: WarmUp" in the 

Math W orlds application. 

• Run the animation by pressing the _ SoftKey and reflect and discuss what is 
going on in your group. 

o Reflect, discuss, and answer the following questions: 

Which graph goes with which object? 

How are the motions of A and B different? 

How long does A travel- in time and in distance? 

How long does B travel- in time and in distance? 

• Reflect upon, discuss, sketch, and create a graph for a motion that would satisfy the 
following criteria: 

o Due to the wild burst of speed, B falls down for 2 seconds! 
o In the confusion of falling down, B gets up and goes in the wrong direction. 
o The race must end in an exciting tie! 
o Every team member needs to have a graph for a motion that satisfies the 

above criteria. 
o Be ready to explain your motion and have your animation assessed by another 

team. 
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You switch to Function Edit Mode to make changes to your function. Notice that the 
labels when switch modes. 

In the space provided below, draw a detailed sketch ofthe graph and provide a story for 
the physical motion needed to create it. (One graph and story per group is sufficient.) 

Story for the physical motion: 
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Lesson 2: Modeling and Piecewise Defined Fonctions 
Group Name: 

Activity 3: Find Your Exciting Sack Race 

Instructions for the students: 
• The teacher will collect yOUf Sack-Races. It is important to listen to his instructions. 
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Lesson 2: Modeling and Piecewise Defined Functions 
Group Name: ------------------Activity 4: Mathematical Performances - Exciting Races 

Instructions for the students: 
• In your groups, create an exciting sack race story-script for your own race with A 

which ends in tie, and create a Position vs Time Graph for B that makes your race 
happen. 

In the space provided below, write down a story for an exciting sack rack story­
script for B. (One description per group is sufticient.) 

Write your story below. 
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Creating a Position vs Time Graph to model your exciting sack race. 

• You'Il open MthWrlds from the APPS menu and choose the I st of2 activities - "Sack 
Races." 

y ou switch to Function Edit Mode to make changes to your function. Notice that the 
labels when switch modes. 

You'Il use the blue Cursor 

1. Press the MODE or DEL Key to switch to Function Edit Mode. 
Make an exciting Position graph for B by adding and adjusting segments on B' s 
Position graph. 
Scaling: Note that the scale of the "world" is now 1 m, so A travels 20 m in 10 
sec. The vertical scale of the Position graph is no longer 1, but 2 m. 
Because the vertical scaling is now 2 m, there are times when you ADD a new 
segment that is 1 sec wide your new segment wi11look horizontal. Rowever, 
when you stretch it to the right to 2 sec in width, you see that it slopes upward by 
1 tic mark, which stands for 2m. Rence to make it flat, you need to drag it down 
by one tic mark. 

2. Be careful not to extend your segments too far or add so many segments that your 
graph extends far off the screen. If this happens, then you will be adding, deleting 
or adjusting segments that are out of sight and it will seem like nothing is 
happening! Vou might then need to delete segments (using the DEL SoftKey, 
NOT the DEL hardkey) till you get back to something you can see! At least for 
now, try to keep most ofyour graph and motion on the screen. 
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3. You can adjust segments to the left of the last one by moving the Hotspot from 
segment to segment-use the two left-most SoftKeys that look like arrows, which 
move the HotSpot left or right. 

4. When you think you have the Position-graph you want, retum to Animation Mode 
to try out your race. To re-adjust it, go back to Function Edit Mode. 

5. As you are testing and finalizing your race, write your script in the form of a list 
of descriptions, one for each segment of your graph. Draw your graph on paper to 
accompany your written story. It may be helpful to label your list using letters A, 
B, C, etc. 

6. Bring your exciting sack race story-script to one ofthe other groups so that they 
could create a Position vs Time Graph to match it. 

7. Create a Position vs Time Graph for the exciting sack race story-script that was 
delivered to you from another group. (Everyone in the group should create this 
Position vs Time Graph.) 
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8. When you have the motion and function you want Pause Math Worlds so yOuf 
teacher can collect this function. 

PAUSING MATHWORLDS TO 

HAVE YOUR FUNCTION COLLECTED 

Make sure that your calculator is connected to a Hub WITH 
the black wire firml plu ed in at each end. 

Pressing the 2nd Key followed by the STO Key takes you this screen where you enter 
yOuf identifier: 

Now use the ALPHA Keys to enter yOuf name, or yOuf Group Number-Count-OfT 
Number (like 0304 for Group Number 3, Count-OffNumber 4) followed by yOuf 
name, as directed by yOuf teacher. 

Using the ALPHA Keys to enter letters is easier ifyou press rd Key followed by the 
ALPHA Key. This keeps the ALPHA Keys active til! you press the ALPHA Key again. 

When you have entered your identifier press the ENTER Key. You'll see this screen: 

Press the ENTER Key to Pause Math Worlds. The calculator will retum to its Home 
Screen, ready for yOuf teacher to collect yoUf function. 

KEEP THE FOLLOWING IN MIND 

1. DO NOT RUN MATHWORLOS WHILE VOUR FUNCTION IS BEING 
COLLECTEO. MathWorlds prevents network communication when it is 
running! 

2. DO NOT EXIT MATHWORLOS. Exiting, rather than Pausing, will cause 
MathWorlds to delete the data it needs to Resume processing your 
work. If you Exit MathWorlds you will start at the Main Menu and you'lI 
have to open the activity again. 

3. Leave the calculator in Pause, at least until you see the word 
SUCCESS appear on the display. 
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Lesson 3: Summarizing Individual and Group Understanding 

NAME: ---------------------
Activity 1: Distance vs. Time Graphs 

Instructions for the students: 

Cirele the Distance vs. Time Graph That Goes with This Motion (If there' s more than 
one, circle them aIl.) 

Henri walks away from the zero-mark, stops for awhile, and then retums to his starting 
point. 

DISTANCE 
(b) DISTANCE (a) 

TIME TIME 

(c) (d) 
DISTANCE DISTANCE 

TIME TIME 
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Lesson 3: Summarizing Individua). and Group Understanding 

Activity 2: Santa 's Having a Bad Day. 
N~: ____________ __ 

Instructions for the students: 

Things are tough up at the North Pole. No snow, the reindeer broke out oftheir pen. 
BIves quit. 

Santa made a 7-part trip as described below in A to G. 

On the Distance vs. Time axis system below, graph his trip using segments. Label the 
segments with the letters A to G so we can see which part of yOUf graph goes with which 
part ofhis trip. 

A. Santa heads off on foot walking slowly with his heavy bag. 
B. After awhile, he decides to drop the bag and rush back to his starting point to 

get his wagon-bike. 
C. He jumps on the bike & heads out at a fast pace to pick up his bag. 
D. He stops for 1 second to toss the bag in the wagon. 
E. He then continues at his same fast pace till his front tire blows out. 
F. He stops for one second to jump off the bike and grab the bag. 
G. Finally, he heads off at his same slow walking pace again for the rest ofhis 

journey. 

DISTANCE 

TIME 
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Lesson 3: Summari:dng Individual and Group Understamling 

Activity 3: Comparing Bikers A and B 
N~: ____________ __ 

Instructions for the students: 
Below are graphs of two bikers who start a trip at the same time. A has the dotted graph 
and B has the solid graph. Use these graphs to answer the questions below. Time is in 
minutes and distance is in km from the starting line, which is at zero km. 

1. Where does A start? -------------------------------------
2. When does A fmish his trip? ___________________ _ 

3. Where does B finish his trip? ____________________________ __ 

4. Which biker travels faster? ___ Explain your answer: _______________ _ 

5. Which biker has traveled farther at 5 minutes? __ Explain your answer: __ 

6. Who is ahead at 5 minutes? ------

7. Is there a time when the 2 bikers are the same dist. from the starting line? Y N 
a. If your answer to #6 is Yes, what is that time? ____ _ 
b. If your answer to #6 is Yes, what is the distance? ___ _ 

8. Which biker traveled the greater distance over its entire trip? ___ _ 

DISTANCE (Kilometers) 

u .. ' ••••• 

•• 1.----.. --•• 
~ 

"W ~ 
~ ......-: -~ •• 

~. •• 
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5 10 TIME 
(Minutes) 
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Appendix 2 - Teachers' guide 
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Lesson 1: Exploring Physical Motion 

Activity 1: Getting Started 

Instructions for the teacher: 
• The teacher will open MthWr1ds from the APPS menu and then choose Lessons 3, 

the CBR Lesson, which has one section. Then choose the 1 st activity - "CBR 
Motions". 

• Ask for one student volunteer and have that student move freely in front of the 
CBR. Ask aIl other students to observe what is happening. Repeat this with 2 or 3 
(or even more, it depends on how this part goes on) other volunteer students. 

• Make sure that aIl of the students are ready to make observations and conjectures 
about what the graph corresponds to. 

• The teacher will ask questions in order to see what are the students' observations 
and conjectures about what is happening. The teacher must be as neutral as 
possible regarding the students suggestions. He may reformulate students 
observations, but must not give his opinion about their correctness. 

• The teacher should make a short summary about what the students had observed 
(it may be a review ofthe various students' conjectures for example). 

Instructions for the students: 
In the space provided below, write down your observations regarding what you think is 
happening. F oIlowing the demonstration, the teacher will ask you to share your 
observations and explain the relationship between the CBR motion detector and the 
graph. 

Write your observations below. 
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Lesson 1: ExploringPhysical Motion 

Activity 2: Matching Motions 
Walk a physical motion so that A matches B's motion as closely as possible. 

Instructions for the teacher: 
• Have the students get into groups (4 or 5). 
• Ask the students to reflect and discuss in their groups regarding how someone 

would have to move in front of the CBR in order to match B's motion. 
• Have them document the motion in their workbooks. 
• Ask for one volunteer student to create a motion. 
• Have the spokesperson from a different group read their directions to the 

volunteer student who will walk their motion. (Please make sure that the 
volunteering students understand that they must try and follow the instructions as 
closely as possible.) 

• Repeat so that all groups have an opportunity to give their directions. 
• Let the students validate the description and the correspondence between the 

obtained graph and B's motion graph (situation of validation - the teacher should 
organize a discussion about the correctness of students' descriptions; the students 
are asked to say whether the reproduced graph is close to B' s motion graph, and if 
not, say what was wrong: the instructions coming from the description or the 
student who was moving in front of CBR hadn't follow the instructions correctly). 

• Ask the students in the class to describe how the differences between A's 
Position graph and B's Position graph match specific differences in their 
motions. 

Instructions for the students: 
Describe how someone would walk a physical motion so that A matches B' s motion as 
closely as possible. One student from another group will move in front of CBR following 
your description and he should reproduce a graph matching B's motion as closely as 
possible (you can of course modify the formulation of the task, but it is important to add 
this to motivate the students to do a good work). 

In the space provided below, write down a description of a physical motion for A. (One 
description per group is required. 

Write your description below. 
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Lesson 1: Exploring .Physical Motion 

Activity 3: Catch Up Motions 
Walk a physical motion so that A starts off slower than B, but catches up to B at the 
end of the motion, at 6 seconds. 

Instructionsfor the teacher: 
• Keep the students in their groups. 
• Ask the students to reflect and discuss in their groups regarding how someone 

would have to move in front of the CBR in order to walk a physical motion so 
that A starts off slower than B, but catches up to B at the end of the motion, 
at 6 seconds. 

• Have them document the motion in their workbooks. 
• Ask for one volunteer student to create a motion. 
• Have the spokesperson from a different group read their directions to the 

volunteer student who will walk their motion. (Please make sure that the 
volunteering students understand that they must try and follow the instructions as 
c10sely as possible.) 

• Repeat so that all groups have an opportunity to give their directions. 
• Ask the students in the c1ass to describe how the differences between A's 

Position graph and B's Position graph match specific differences in their 
motions. (It is important that the teacher only intervenes to draw the students 
attention to possible inconsistencies, and to encourage more precision in the 
discussion around the concepts.) 

Instructions for the students: 
Describe how someone would walk a physical motion so that A starts off slower than B, 
but catches up to B at the end of the motion, at 6 seconds. 

In the space provided below, write down a description of a physical motion for A. (One 
description per group is required.) 

Write your description below. 
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Lesson 1: Exploring Physical Motion 

Activity 4: The Challenge! 
Groups will challenge each other to create graphs of interesting motions. 

Instructions for the teacher: 
• Keep the students in their groups (an even number of groups would be better here, 

so that you can have pairs of groups challenging each other). 
• Ask the students to reflect and discuss in their groups on potential graphs that may 

be difficult to recreate while walking in front of the CBR (eg. the first letter of 
sorne names). 

• Have each group decide on one graph to be used in the challenge. Have them 
sketch this graph in their workbooks. Remind them that it must be possible to 
reproduce. 

• Ask one group to challenge another group. 
• The challenged group must have one member get ready to walk a motion. 
• Have one spokesperson from challenging group read their directions to the 

volunteer student who will walk their motion. (Please make sure that the 
volunteering students understand that they must try and follow the instructions as 
c10sely as possible. AIso, remind the students that no one el se should be talking. 
(easier said then done©) 

• Repeat so that all groups have an opportunity to give their directions. 
• Ask the students in the c1ass to describe how the differences between A's 

Position graph and B's Position graph match specific differences in their 
motions. (lt is important that the teacher only intervenes to draw the students 
attention to possible inconsistencies, and to encourage more precision in the 
discussion around the concepts.) 

• Ask students to volunteer to re-create the first letter oftheir names. 

Instructions for the students: 
Create a graph for a physical motion that you feel would be difficult for other teams to 
reproduce. However, make sure that it is possible to reproduce it. 

In the space provided below, draw a detailed sketch of the graph and a description ofthe 
physical motion needed to create it. (One graph and description per group is sufficient.) 

Sketch of the graph: Description of the physical motion: 
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Lesson 2: Modeling and Piecewise Defined Functions 

Activity 1: Getting Started 

Instructions for the teacher: 
• The teacher will open menu item 1, "Piecewise Animations" from the Lesson 2 "L2: 

WarmUp" in the MathWorlds application. 

• The teacher will simply run the animation by pressing the .1 SofiKey and ask 
the students to explain what is going on. 

o The goal is to get them to recognize that B's motion relates closely to the 
graph, and that, as the discussion proceeds, they should come to see it as a 
Position vs. Time graph for B's motion. The teacher will want to have the 
student bring up, via questions, discussion and by highlighting some 
formulations, that the vertical axis measures the position ofB while the 
horizontal axis gives its time. 

• Following a discussion regarding B's motion, the teacher will establish a common 
framework and language, informing the students to treat the object on the lower 
part of the screen as B, which can be thought of as a person moving, and where 
the tic marks measure meters. 

• Ask: 
o When is B going the fastest? 
o When is B going the slowest? 
o When does B seem to change its speed? 

• The teacher can also step through the animation to slow things down a bit, giving 
the students an opportunity to examine the motions and graphs more closely and 
to help them create a common language and agree on some common meanings. 

• Using the STEP SofiKey. Reset the animation and then press the Step SofiKey. 
Notice that this first press ofthe Step SofiKey places the time cursor on top ofthe 
vertical axis (our motions begin at time equal to 0 seconds) making the vertical 
axis appear dashed. Each subsequent press advances the animation one Step­
Time value, which is controlled by the right-most SofiKey. When the teacher 

reaches the end ofthe animation, they could press the reset, ."a) SofiKey to 
put the animation back to the beginning. 
The Step-Time is set to 1.0 now but can be changed by pressing the right-most 
Sofikey (it cycles through 1.0, 0.5, 0.25, and 2.0.) It is recommended that the 
teacher leave the Step-Time at 1.0. 
With each press ofthe Step SofiKey, the teacher should ask students: How far 
does B move? 

• Dropping MARKS. Afier a couple ofruns and discussion of the questions, it will 
be helpful to have B "leave Marks." Marks are dropped by objects at regular time 
intervals, agai~ controlled by the right-most StiÎnir So~Key, as the: move. 

• The teacher wdl press the 4th SofiKey, labeled' ' .. ,whlch changes It to 

indicating that Marking is ON. This indicates that marks are dropped at 
the Step-Time shown in the rightmost SoftKey -when the animation is running or 

204 



during Stepping. Now, when B moves, it willleave Marks at each l.O-second 
time interval during the trip so students can see more c1early how far B travels in 
each second. Students should note how the distance between the Marks changes 
as B .... u'" .. ~5 • ..," 

The teacher will ask students the following questions: 
o How far apart are the Marks in the lst part of the trip? How far 

apart are they in the 2nd part of the trip? How far apart are they in 
the 3rd part of the trip? 

o Exactly how fast is B moving during each part of the trip? 
o Which part of the graph is the steepest and which part is the least 

steep? 
• The teacher will then have the students debate and validate all of the answers. 

Instructions for the students: 
This activity is designed to familiarize you with a new piece of software. It is very 
important to understand how this software works to be able to complete the other 
activities. 
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Lesson 2: Modeling and Piecewise Defined Fundions 

Activity 2: Creating Exciting Sack Races 

Instructions for the teacher: 
• Keep the students in their groups. 
• The students and teacher will open menu item 1, "Piecewise Animations" from the 

Lesson 2 "L2: WarmUp" in the MathWorlds application. 

• The teacher will simply run the animation by pressing the' .... 1 •• l1li
., • SoftKey and ask 

the students to reflect and discuss what is going on in their grou.1 students 

should also be encouraged to explore the animation by pressing the ., SoftKey 
on their own handheld. 
• Ask the students to reflect, discuss, and document a group response to the 

following questions: 
o Which graph goes with which object? 
o How are the motions of A and B different? 
o How long does A travel- in time and in distance? 
o How long does B travel - in time and in distance? 

• The teacher will then ask the students to exchange and compare observations 
regarding how the motions of A and B different? (For example, we want them 
to note how B's graph is shorter and B's duration is shorter.) 

• The same remark as the previous one regarding the debate and validation of the 
students' answers. 

• The teacher will then explain that they now want to make a motion for B by 
extending B's Position vs. Time graph so that B enacts an exciting Sack Race 
with A which ends in a tie. 

o In the context ofthe situation (from a race point ofview), the teacher will 
ask the students: From the Race point ofview, what is happening early in 
the race? (B is starting slowly, falling behind A.) 

• Ask the students to reflect, discuss, sketch, and create a graph for a motion that 
would satisfy the following criteria: 

o Due to the wild burst of speed, B falls down for 2 seconds! 
o In the confusion of falling down, B gets up and goes in the wrong 

direction. 
o The race must end in an exciting tie! 

• AH students in a group should have a graph for the motion that satisfies the above 
criteria. 

• A representative from each group must take their animations to another group to 
validate that it meets the race criteria. 

• The teacher will then ask the students to exchange and compare observations 
regarding how the motions were similar and how they were different. 
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Instructions for the students: 
• Open menu item 1, "Piecewise Animations" from the Lesson 2 "L2: WarmUp" in the 

Math Worlds application. 

• Run the animation by pressing the 
going on in your group. 

SoftKey and reflect and discuss what is 

o Reflect, discuss, and answer the following questions: 

Which graph goes with which object? 

How are the motions of A and B different? 

How long do es A travel- in time and in distance? 

How long do es B travel- in time and in distance? 

• Reflect upon, discuss, sketch, and create a graph for a motion that would satisfy the 
following criteria: 

o Due to the wild burst of speed, B falls down for 2 seconds! 
o In the confusion of falling down, B gets up and goes in the wrong direction. 
o The race must end in an exciting tie! 
o Every team member needs to have a graph for a motion that satisfies the 

above criteria. 
o Be ready to explain your motion and have your animation assessed by another 

team. 
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You switch to Function Edit Mode to make changes to your function. Notice that the 
labels when switch modes. 

In the space provided below, draw a sketch a detailed sketch of the graph and provide a 
story for the physical motion needed to create it. (One graph and story per group is 
sufficient. ) 

Story for the physical motion: 
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Lesson 2: Modeling and Piecewise Defined Ftmctions 

Activity 3: Find Your Exciting Sack Race 

Instructions for the teacher: 
• Students remain in their groups 
• Collect the students' Sack-Race functions -their B functions, which they have just 

created in Activity 2. 
• Display and animate them on the screen. 

• In order for the collection to be successful, the following instructions must be 
followed. 

1. Make sure that each calculator is connected to a Hub with the black wire firmly 
plugged in at each end. 

2. First tell the students to press the 2nd Key followed by the STO Key. This takes 
them to a screen that looks like this: 

3. Student should use the DEL Key to erase what appears in the input field and then 
use the ALPHA Keys to input a short version of their name, or their initiaIs. This 
identifier will as the name of the student' s function in Java Math W orlds. 

This student's B function will appear as "MY NAME_B", where the "B" is used to 
differentiate from the "A" function which may be collected in other activities. 

4. When the Students have entered their names they must press the ENTER Key. 
They will see this screen: 
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Press the ENTER Key a second time to Pause Math Worlds. Now the teacher can Collect 
your B-function! 

5. Now, from the Connect Menu in Java MathWorlds, the teacher will select Collect, 
that they are collecting B only. 

The teacher will be able to identify how many functions have been collected by looking 
at the Transfer window during the transfer. AIso, you can ask students to identify 
themselves if "SUCCESS" does not on their screen. 

0341~\52.~f6B13 Done 
Ll 03::?276241C07 Done 
I..,cc 04765Ù~8277 [1one 
Li 05223[15755B1 Done 
Ll 013450083312 Done 
L, 04154F6isB12 cDone 
Ll 0401F4376"C5.t; Done 

None of the collected functions or actors (in the Dots World) will be displayed until you 
decide to display them. 

6. Showing AlI the Students' Dots - Viewing the Slow B's and Fast B's. The 
teacher will show "AlI" in the View Matrix World (Graph) column to show aIl of the 
students' dots. The goal here is to introduce students to the process of relating their 
personal constructions to the larger collection of objects that appears on the "big screen" 
when their work is aggregated with that of their peers. This process requires them to 
think through exactly the kinds of issues that are at the heart of the mathematics we want 
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them to learn. Hence, before clicking Apply, the teacher will ask the students: 
Where will ail the Slow B's appear, and where will ail the Fast B's appear? It is 
important that the teacher instill the habit of getting a prediction from the students before 
any display action. Here the fast B's aIl appear to the left of 0 and the slow ones to the 
right, with those sharing the same initial position "stacked vertically." (Note that it is 
expected that the teacher will refer to the "students" and their "dots" interchangeably. It 
is expected that the students will be the ones to start using this terminology when 
identifying themselves with ''their dot." This is a desired behavior because it links the 
student psychologically to the mathematical object that they have built.) 

7. Anonymity and "Finding Yourself': before asking the next question, the teacher 
will "hide" the identity of the functions and their "owners." Provision has been made to 
preserve student anonymity - the teacher will click the box in the lower left corner of the 
screen where identifiers appear. Then no names will appear either here or when we hover 
over a dot or graph. The teacher will then ask: 
Where are you? Can you find yourself? 
If there is a position with a single dot, then a single student should be able to identify 
himselflherself. It can be confirmed by selecting it (by clicking on it) and then checking 
the box in the lower-Ieft corner of the screen, where that student's identifier will appear. 

It is usually fun to run the animation with aIl the dots showing. But the detailed analysis 
is best done with a smaller set of dots, which follows. 

8. Preparing for the Graph-Motion Connection Investigation - Student Identifiers 
and Colors. 
The teacher will need to look at their graphs to see if they can connect their respective 
graphs to their dot. This is important because it is likely to be the case that for most 
positions from -2 to +3 there will be more than one dot at that position. 

9. Using the View Matrix to Narrow the Focus to a Few Students and Their Graphs. 
The teacher will now open the View Matrix again so that they can hide a11 but the 
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relevant dots, plus A, and then show only the graphs of the chosen set of dots. 

10. Relating Graphs to Motions: Here the idea is to get the students whose graphs are 
NOT now displayed to determine which graph goes with which dot. (Their owners 
presumably already know.) The teacher will tell the students: 
1 will ron the animation and your job is to figure out which graph goes with which 
dot. 
Now run the animation. Depending on how different the motions and graphs are, the 
teacher may need to Step through the motions - use a Step-Time of 1 second (which you 
can set by opening the bottom part ofthe Controls Window). This is an important 
leaming opportunity to examine subtle differences in the graphs and how they are 
reflected in differences in the motions, so the teacher should repeat the Stepping and 
encourage discussion till a consensus has developed. 

Il. Relating Graphs to Motions For More Sets. The teacher will repeat the above 
process for another set of dots with the same initial position: 
(1) Show all the dots, (2) pick a set, (3) make their colors the same, (4) displaythe dots 
and position graphs for that set, (5) run or step the animations as needed until the non­
owners of the set have formed a consensus. 

12. Dealing with Student Errors. While relating students to their functions, and 
especially their motions to their graphs, is a powerful way of getting students engaged 
mathematically, it is also a place where your experience as a teacher and your knowledge 
of your students directly come into play. You know who is likely to err, who is likely to 
be embarrassed, who enjoys attention, and so on. You can also quickly review the student 
function graphs before making them public and not choose to display those that you feel 
would either be unproductive to examine or embarrassing to their creators. The 
technology amplifies the impacts of your pedagogical decisions. 
If it is a group production, it will perhaps be easier to deal with errors. There are usually 
not such psychological effects in groups. The students must be involved in the validation 
of the answers. 

13. Resuming and Exiting the Application: When this activity is complete, the teacher 
should have the students resume the application ifthey haven't already, and then EXIT 
the application as described above (2nd -QillT followed by EXIT). Otherwise the next 
time Math W orlds is selected in the APPS menu, Math W orlds will open to the prior state 
rather than to the menus, requiring a 2nd -QillT to get to the menus. 

Students should now be ready for the next set of activities. 

Instructions for the students: 
• The teacher will collect your Sack-Races. It is important to listen to his instructions. 
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Lesson 2: .Modeling Piecewise Defined Functions 

Activity 4: Mathematical Performances - Exciting Races 

Instructions for the teacher: 
• Collect the students' Sack-Race functions -their B functions, which they have created 

using another group' s story-script. 
• Display and animate them on the screen. 

• In order for the collection to be successful, the following instructions must be 
followed. 

1. Make sure that each calculator is connected to a Hub with the black wire firmly 
plugged in at each end. 

2. First tell the students to press the 20d Key followed by the STO Key. This takes 
them to a screen that looks like this: 

(This is where they enter their names so you can identify their function later. Names 
must be unique!) 

3. Student should use the DEL Key to erase what appears in the input field and then 
use the ALPHA Keys to input a short version of their name, or their initiaIs. This 
identifier will as the name of the student's function in Java MathWorlds. 

This student's B function will appear as "MY NAME_B", where the "B" is used to 
differentiate from the "A" function which may be collected in other activities. 
(As usual, using the ALPHA Keys is easier if you press 20d Key followed by the ALPHA 
Key, which keeps the ALPHA Keys active till you press the ALPHA Key again.) 

4. When the Students have entered their names they must press the ENTER Key. 
will see this screen: 
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Press the ENTER Key a second time to Pause MathWorlds. Now the teacher can Collect 
your B-function! 
(Math Worlds will put their function data into List 1 where it can be collected using Java 
Math W orlds. Their function data is stored in List 1 in active RAM, whereas the state of 
the calculator is archived as a list, SSO, that is reactivated when the students retum to 
Math Worlds by choosing it from the APPS Menu.) 

5. Now, from the Connect Menu in Java MathWorlds, select Collect, and specify 
are collecting B only. 

When the teacher presses the Collect button, Math W orlds will collect the B function from 
each student whose TI-83 Plus is connected with a black wire to a hub and is not running 
Math W orlds. The teacher will be able to identify how many functions have been 
collected by looking at the Transfer window during the transfer. 

There are likely to be widely varying functions of many shapes and here the teacher will 
need to use judgment regarding whose to show first, whose to ignore, etc. The teacher's 
choice will be informed both by the class dynamics, questioning of the students regarding 
what they did and wrote, looking at their calculator screens, etc. (Depending on the 
teacher's and the students' style, there could be sorne wild stories!) However, the teacher 
will also want to take a quick look using the View Matrix of the students' Position 
functions. Renee: 

6. (Privately) Viewing AlI the Students' Position Graphs. The teacher will first view 
aIl of the students' Position graphs (privately) before making a choice regarding whose to 
display and run. 

7. The teacher will then ask the student to read the story as they run the animation. 
The student will read it in advance, run the animation, and finally Step through the 
animation as the story is repeated because the animation is usually too quick to parallel 
the story. 

Again, the students must be involved in the discussion ofthe correctness ofthe 
productions. 

8. Looking at the Motion, Story and Graph More Closely, and Doing More 
Performances. Depending on the story and the graph, the teacher may be able to glean a 
lot of leaming by analyzing things more closely once the performance aspect has 
occurred. 
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Using the Collected Functions to Support More Learning 

Beyond the performance opportunity, typically there are many opportunities to pUfsue 
important mathematical ideas across the collected functions and stories, including: 
• Steeper Means Faster 
• Horizontal Means Stopped 
• Negative Slope Means Backward Motion 
• Simultaneity (when do A and B's graphs cross?) 
• The Difference Between ParaUel Graphs and Coincident Graphs 

There are also opportunities to examine issues ofhow realistic are the models? For 
example, consider continuity of change. Could any physical object move the way the 
animations do? (It's an interesting contrast where objects with stable mass never move 
with discontinuous velocity, but other, say money quantities, almost always have 
discontinuous rate-changes.) The CBR activities in Lesson 1 provide direct contact with 
these issues as students (among many other activities) attempt approximations of 
"corners." 

9. Relating Graphs to Stories: After running and discussing a few story-graph pairs, 
an interesting twist is to turn off the identifiers (making the graphs anonymous) and pick 
a smaU set of graphs and dots to display, say 3-4. The teacher will then ask one student, 
whose work is displayed, to read their story and ask the class to figure out which graph 
and dot goes with the story. The resulting discussions will help the students in deepening 
their graph interpretation skills while simultaneously giving additional students the floor, 
especially those with graphs and stories that might not be very original or distinct. 

The teacher will say: 1 will run the animation and your job is to figure out which 
graph and dot goes with the story. 

Given that the animations were created from story-scripts that were given to the students 
by other groups, ask if there are any differences between the original graphs that 
accompanied the original story-scripts. 

Feel free to repeat the animation or stepping and encourage discussion till a well­
reasoned consensus has developed regarding the fit. 

Instructions for the students: 
• In yOuf groups, create an exciting sack rack story-script for yOuf own race with A 

which ends in tie, and create a Position vs Time Graph for B that makes your race 
happen. 

Write yOuf description below. 
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Creating a Position vs Time Graph to model your exciting sack race. 

• You'll open MathWorlds from the APPS menu and choose the lst of2 activities­
"Sack Races." 

.. MimI_ ... F~ 
Iil·ModfI 

Vou switch to Function Edit Mode to make changes to your function. Notice that the 
labels when switch modes. 

1. Press the MODE or DEL Key to switch to Function Edit Mode. 
Make an exciting Position graph for B by adding and adjusting segments on B's 
Position graph. 
Scaling: Note that the scale of the "world" is now 1 m, so A travels 20 m in 10 
sec. The vertical sc ale of the Position graph is no longer 1, but 2 m. 
Because the vertical scaling is now 2 m, there are times when you ADD a new 
segment that is 1 sec wide your new segment will look horizontal. However, 
when you stretch it to the right to 2 sec in width, you see that it slopes upward by 
1 tic mark, which stands for 2m. Rence to make it flat, you need to drag it down 
by one tic mark. 

2. Be careful not to extend your segments too far or add so many segments that your 
graph extends far off the screen. If this happens, then you will be adding, deleting 
or adjusting segments that are out of sight and it will seem like nothing is 
happening! Vou might then need to delete segments (using the DEL SoftKey, 
NOT the DEL hardkey) till you get back to something you can see! At least for 
now, try to keep most ofyour graph and motion on the screen. 
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3. Vou can adjust segments to the left of the last one by moving the Hotspot from 
segment to segment-use the two left-most SoftKeys that look like arrows, which 
move the HotSpot left or right. 

4. When you think you have the Position-graph you want, retum to Animation Mode 
to try out your race. To re-adjust it, go back to Function Edit Mode. 

5. As you are testing and finalizing your race, write your script in the form of a list 
of descriptions, one for each segment of your graph. Draw your graph on paper to 
accompany your written story. It may be helpful to label your list using letters A, 
B, C, etc. 

6. Bring your exciting sack race story-script to one of the other groups so that they 
could create a Position vs Time Graph to match it. 

7. Create a Position vs Time Graph for the exciting sack race story-script that was 
delivered to you from another group. (Everyone in the group should create this 
Position vs Time Graph.) 

Sketch of the graph: 
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8. When you have the motion and function you want Pause Math Worlds so your 
teacher can collect this function. 

PAUSING MATHWORLDS TO 

HAVE YOUR FUNCTION COLLECTED 

Make sure that your calculator is connected to a Hub WITH 
the black wire firml plu ed in at each end. 

Pressing the 2nd Key followed by the STO Key takes you this screen where you enter 
your identifier: 

Now use the ALPHA Keys to enter your name, or your Group Number-Count-Off 
Number (like 0304 for Group Number 3, Count-OffNumber 4) followed by your 
name, as directed by your teacher. 

Using the ALPHA Keys ta enter letters is easier if you press :rd Key followed by the 
ALPHA Key. This keeps the ALPHA Keys active till you press the ALPHA Keyagain. 

When you have entered your identifier press the ENTER Key. You'll see this screen: 

Press the ENTER Key to Pause Math Worlds. The calculator will retum to its Home 
Screen, ready for your teacher to collect your function. 

KEEP THE FOLLOWING IN MIND 

1. DO NOT RUN MATHWORLD5 WHILE YOUR FUNCTION 15 BEING 
COLLECTED. MathWorlds prevents network communication when it is 
running! 
2. DO NOT EXIT MATHWORLD5. Exiting, rather th an Pausing, will cause 
MathWorlds to delete the data it needs to Resume processing your work. If 
you Exit MathWorlds you will start at the Main Menu and you'lI have to open 
the activity again. 
3. Leave the calculator in Pause, at least until you see the ward 
5UCCE55 a ear on the dis la . 
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Lesson 3: Summarizing Individual and Group Understanding 

Activity 1: Distance vs. Time Graphs 

Instructions for the teacher: 
• Have the students complete this activity. 
• Lead a discussion to validate the correct answer and to provide rationale for not 

choosing the distracters. 

Instructions for the students: 
Circle the Distance vs. Time Graph That Goes with This Motion (Ifthere's more than 
one, circ1e them aIl.) 

Henri walks away from the zero-mark, stops for awhile, and then retums to his starting 
point. 

DISTANCE 
(h) DISTANCE (a) 

TIME TIME 

(c) (d) 
DISTANCE DISTANCE 

TIME TIME 
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Lesson 3: Summari:dng Individual and Group Understanding 

Activity 2: Santa 's Having a Bad Day. 

Instructions for the teacher: 
• Have the students complete this activity. 
• Lead a discussion to validate, defend, and/or refine their solutions. 

Instructions for the students: 
Things are tough up at the North Pole. No snow, the reindeer broke out oftheir pen. 
Elves quit. 

Santa made a 7-part trip as described below in A to G. 

On the Distance vs. Time axis system below, graph his trip using segments. Label the 
segments with the letters A to G so we can see which part of your graph goes with which 
part ofhis trip. 

A. Santa heads off on foot walking slowly with his heavy bag. 
B. After awhile, he decides to drop the bag and rush back to his starting point to get his 

wagon-bike. 
C. He jumps on the bike & heads out at a fast pace to pick up his bag. 
D. He stops for 1 second to toss the bag in the wagon. 
E. He then continues at his same fast pace till his front tire blows out. 
F. He stops for one second to jump off the bike and grab the bag. 
G. Finally, he heads off at his same slow walking pace again for the rest ofhis journey. 

DISTANCE 

TIME 
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Lesson 3: Summarizing Indi.vidm:d and Group Understanding 

Activity 3: Comparing Bikers A and B 

Instructions for the teacher: 
• Have the students complete this activity. 
• Lead a discussion to validate, defend, and/or refine their solutions. 

Instructions for the students: 
Below are graphs of two bikers who start a trip at the same time. A has the dotted graph 
and B has the solid graph. Use these graphs to answer the questions below. Time is in 
minutes and distance is in km from the starting Hne, which is at zero km. 
1. Where does A start? -------------------------------------
2: When does A finish his trip? ____________________________ _ 

3. Where does B finish his trip? ____________________________ _ 

4. Which biker travels faster? __ Explain your answer: ________________ __ 

5. Which biker has traveled farther at 5 minutes? _ Explain your answer: __ 

6. Who is ahead at 5 minutes? -----------

7. Is there a time when the 2 bikers are the same dist. from the starting line? Y N 
a. If your answer to #6 is Yes, what is that time? ______ _ 
b. If your answer to #6 is Yes, what is the distance? ______ _ 

Which biker traveled the greater distance over its entire trip? ______ _ 

DISTANCE (Kilometers) 

f 

U 

•• .... ••• 
... :; ," ~ --~ i"""""'"' 

".,.,..... .. --/ •• 

---~ .•. 
~ - ••••• • 

-~ ~ ..... .. 
• •••• 

••••• 

•••• 
••••• 

•• 

5 10 TIME 
(Minutes) 

221 



Appendix 3 - Certification of ethical acceptability 
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