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Abstract

This thesis describes an experiment using technology to develop conceptual
understanding of functions through graphical representations. It examines the effects of
including dynamic representations in a conceptual approach to the teaching of functions.
The study was implemented over a 5-day period in a Grade 9 class in a small, generally
working class, rural school in Eastern Massachusetts. Participating students were
observed during class discussions and video analysis, and their written responses and
created functions were analyzed. The procedure used in the experiment was based on the
Theory of Didactic Situations and used the Didactic Engineering methodology. The
structure and sequencing of the thesis is also based on these concepts. Conclusions are
drawn regarding the effects of using multiple representations systems to deepen
understanding of functional relationships and suggested improvements to the introduction

of the function concept in high school instructional programs are given.

Résume

Cette these décrit une expérimentation qui utilise la technologie pour
I’apprentissage du concept de fonction par I’intermédiaire des représentations graphiques.
Elle examine les effets de I’intégration des représentations dynamiques dans une
approche conceptuelle de 1'enseignement des fonctions. Cette étude a été mise en ceuvre
sur une période de cinq jours dans une classe de Grade 9 dans une petite classe ordinaire
d’une école de campagne a Massachusetts Est. Les étudiants participants ont été observés
pendant des discussions de classe et des analyses de vidéo, et leurs réponses écrites et les

fonctions créées ont été analysées. Le procédé utilisé dans I'expérimentation a été basé

vii



sur la Théorie des Situations Didactiques et la méthodologie employée a été celle de
I’ingénierie didactique. La structure et l'organisation de la thése sont également basées
sur ces concepts. Des conclusions sont tirées concernant les effets de 1’utilisation des
systémes de représentations multiples pour approfondir la notion de relation fonctionnelle
et des améliorations suggérées pour l'introduction du concept de fonction dans les

programmes de I’enseignement secondaire sont données.
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Introduction

At the core of my research is the teaching and learning of functional relationships
in mathematics with an emphasis on understanding. Functions are fundamental tools for
modeling scientific and social phenomena. Debates over such international issues as
those of global warming, population control, radioactive waste, inflation rates, and the
national debt, often revolve around understanding the mathematical behavior of
functions, especially how one quantity changes in relation to another, or how one
quantity changes over time. The importance of this for an educated citizenry is
indisputable. Furthermore, it will be critical for students of the 21st century to solve real-
world problems by creating and testing models of situations involving physical and
simulation data and analyzing the data by utilizing different forms of representation.
There is a need to democratize access to the mathematical concepts that are required to
understand, create, and test such models.

In my past research (Balyta, 1999), I showed that a conceptual understanding of
some aspects of functions can indeed be developed in students at an earlier stage (grade
6) than is comimon in mathematics curricula. Using technologies, in particular, the
motion detector technology proved to be beneficial for the development of the concept of
piecewise-defined functions by creating dynamic graphing situations that allowed the
students to see and to control physically relationships between dependent and
independent variables. The goal of this research was to suggest that middle school
instructional programs should include an emphasis on functions so that all students

understand the mathematical behavior of functional relationships. Among my findings



was that the use of motion detector technology created dynamic graphing situations
allowing students to see relationships between dependent and independent variables as
they occur in real time. I also reported that such powerful dynamic teaching and learning
tools allowing students to physically control these relationships deepened their
understanding of functions and their graphical representations as a foundation for deeper
understanding in middle school.

This thesis will investigate whether didactic situations can be engineered in these
new learning environments that improve student learning of traditional topics, render new
topics more accessible, and increase active participation. Thus, the goal of my research is
to determine how best to organize the didactic milieu to facilitate optimal interactions
between the students and the milieu in order for them to develop a conceptual
understanding of functional relationships. Specifically, I will focus on motion and its
associated functional relationships between position and time and the multiple
forms of representation within two carefully selected representation systems,
namely, graphical representations and simulated motion.

Representation can also be viewed as the process of transforming the contents of
consciences into a public form so that they can be stabilized, inspected, edited, and
shared with others (Eisner, 1993). Also, since the forms of representation differ, the way
understanding is acquired may also be different. As such, different forms of
representation allow us to construct meanings that might otherwise elude us (ibid.) and
there are relative strengths and weakness associated with each form of representation
(NCTM, 2000). This is especially true when the representations which can be viewed at

the same time are dynamically linked. For example, a change in one representation



simultaneously results in a change in another and vice versa. The effective and
appropriate use of multiple representations fosters the students’ ability to acquire
knowledge. Graphical representations are often effective in providing a clear picture of a
function and are beneficial in helping students visualize certain phenomena. For
example, graphical representations are often helpful in visualizing a complex relationship
between variables. Also, by using graphs, students can explore aspects of a context that
would otherwise not be apparent (Monk, 1994). Students often develop representations
during problem solving inferring mental or internal representations from graphs that they
have created and modified as they represented and interpreted problem situations (Goldin
& Steingold, 2001).

The experiment presented in this thesis explores the effects of dynamic
representation by incorporating additional technologies in the didactic milieu, allowing
for richer representation systems and social interaction among learners, using carefully
designed didactic situations that allow synergy to occur among networked handheld
devices, motion detector technology, and the classroom computer. The intention is to
open a rich opportunity space for learning about functions to allow exploring the active
physical, linguistic, and social participation of students employing simulations and the
effect of multiple representation systems on student understanding of functional
relationships. Classroom connectivity enables students to share mathematical functions
across diverse hardware platforms, and teachers to collect and aggregate these functions
into a common classroom display of their aggregated functions. Specifically, I explore
how to take advantage of the students’ personal connection with their individual

constructions in the aggregated and publicly displayed set of student constructions. I



propose that this develops important coordination skills that would deepen students’
understanding of the functional relationships involved in motion.

The thesis investigates the connection between formal mathematics and functional
relationships that are made possible through the effective and appropriate use of selected

technologies and their multiple representations.

Research Hypotheses

Motion is an important "live" context for functional relationships between
position and time. Historically, it has been the basis for a considerable amount of
mathematics. It is directly experienced, has immediate kinesthetic, cognitive and
linguistic aspects that can be tapped into, and fits into classrooms. I am interested in
learning about how motion in carefully constructed didactic situations in a milieu
leveraging multiple representation systems enhances students’ conceptual understanding
of functions. Therefore, for my experiment, the milieu will include devices allowing the
students to directly experience motion. They will interact with such a milieu and get
immediate feedback from the milieu that will contribute to the building of understanding
as explained in Section 2.1. It is my broad hypothesis that the use of multiple
representation systems in a didactic milieu that allows for individual and aggregated
mathematical constructions challenges students to coordinate multiple representations.
Furthermore the representational strategies involved in coordinating multiple
representations of the same functions (physical or simulation) will enhance the depth of
learning about functional relationships. My experiment will allow me to investigate the

following research hypotheses:



Hypothesis 1 Individual mathematical constructions that are directly experienced in a
“live” context have immediate kinesthetic, cognitive and linguistic aspects that will help
students develop an understanding of the relationship between distance and time in
problems of motion.

Hypothesis 2 Individual mathematical constructions in a “live” context facilitate the
development of understanding of independent and dependent variables.

Hypothesis 3 Multiple linked representations of the same function in a simulated
environment allowing for manipulation by the students improve their learning about rate
of change.

Hypothesis 4 Aggregated mathematical constructions challenge students to coordinate
multiple representations and deepen their understanding of functional relationships.

As a result of my work, I hope to suggest new approaches to help democratize the
learning of fundamental mathematical concepts required for students of the 21% century
and, in doing so, hopefully spark the mathematical imagination of all students.

My research is directed by didactic engineering (Artigue, 1992), a research
methodology which has been used exclusively for research in mathematics education,
mostly in France, and unfamiliar outside France. Didactic engineering is a method of
designing and evaluating the effect of instruction by a carefully structured series of steps:
a preliminary analysis of the epistemological, cognitive, and didactic dimensions of the
concept at stake, design and a priori analysis, experimentation, and a posteriori analysis
and validation. This methodology is based on the Theory of Didactic Situations
(Brousseau, 1997), and the whole dissertation is structured in the same way that an

experiment based on didactic engineering is structured. Thus, after Chapter 1 has



described and justified the Theory of Didactic Situations and didactic engineering, the
next three chapters are structured in the same way as a didactic engineering methodology.
Chapter 2 contains the preliminary analysis of the concept of function. The design of the
didactic situations employed in this study required a clear definition of the meaning of the
specific notions of function (the epistemological dimension), described in Chapter 2, and
helped by previous research studies (Sfard, 1991; Sierpinska, 1992). Chapter 2 also
describes the cognitive and didactic dimensions of functions. Chapter 3 presents the
design of the didactic situations employed and their a priori analyses required by didactic
engineering, and Chapter 4 will describe the results of experimentation with the a
posteriori analysis and validation of the research hypotheses. This will be elaborated at
the end of Chapter 1. Finally, Chapter 5 will present the conclusion and summary,
including an assessment of the limitations of this research, and suggestions for further

research.



Chapter 1 Theoretical framework and methodology

Since the Theory of Didactic Situations (Brousseau, 1997) constitutes the
theoretical framework for this study, forms the basis of its methodology and also the
structure of the thesis, this chapter will describe this theory in detail, then explore some
research methodologies used in mathematics education, before justifying didactic

engineering as the chosen methodology.

1.1 Theory of Didactic Situations (TDS)

The research makes use of tools for analyzing and designing situations aimed at
realizing the goals of schools, where the actions of learning and teaching cannot be
analyzed independently from each other. The students will be actively involved in
constructing their knowledge through a carefully designed sequence of didactic situations
that will be built on students' earlier knowledge and experiences. The Theory of Didactic
Situations (Brousseau, 1986, 1997), which is based on the constructivist approach, will
constitute the main theoretical framework of the research. I have also considered various
issues related to the appropriate use of technology in mathematics classrooms, since the
technology wili play an important part of the didactic milieu.

At the heart of the TDS are interactions between the teacher, the student(s), and

targeted knowledge in a didactic milieu, as outlined in Figure 1 below.



Didactic milieu Student
Part of environment in Construction of Knowletge Prior knowledge
interaction with a student Conceptions
Catalyst for contradictions,
challenges, disequilibriums, New lnowledge
and student adaptations

Theory of Didactic Situations

Teacher aims to control the relation

Figure 1. Interaction between a student and a milieu in the Theory of Didactic Situations

According to the TDS, a didactic milieu is a part of the environment with which
the student interacts (Brousseau, 1986). It constrains the student’s activity and, thus the
evolution of his knowledge. In order to play its role properly, a milieu is subject to two
constraints (Salin, 2002):

e The milieu acts as a catalyst for contradictions, challenges, and disequilibriums, and
thus students’ adaptations.
e The milieu has to allow the student to function autonomously.

Thus, a didactic milieu is the natural milieu of students in much the same way as a
cliff is the natural milieu for a rock climber. In both cases, one must understand certain
ground rules and develop strategies that will eventually result in a successful strategy,
whether to solve a problem or climb a cliff. In this sense, knowledge is the means of
understanding the ground rules and strategies associated with a milieu and the means of
elaborating winning solutions. The teacher’s role is critical in organizing the didactic
milieu in such a way that the targeted knowledge becomes necessary for the student to
‘survive’ in it (to win or to solve the problem). The TDS assumes that learning in a

school situation is largely an adaptation to the milieu (Sierpinska, 1999). As Sierpinska



(1999) explains, if the situations in a mathematics class are such that a certain type of
social behavior is sufficient for survival in the class, without any use of mathematical
knowledge, then it is the social behavior, not the mathematical knowledge that the
students will learn. According to the TDS, knowledge is understood as the outcome of
the interactions between the student and a specific milieu organized by the teacher in the

framework of a didactic situation.

The teacher organizes a milieu by setting up values of a certain parameters, called
didactic variables. A didactic variable is a parameter of a didactic situation that can be
assigned several values. The modification of these values gives rise to changes of the
students’ strategies. The student needs to change his/her strategy as it became too long,

too costly, too complex or erroneous.

Thus, the didactic variables on which a didactic situation appears to depend can
be controlled by the teachers as elements of the didactic system. For example, the
teacher will need to make choices about arranging the milieu such as choosing the type of
task, the resources, and the tools put at the disposal of the students. The teacher will also
need to make choices regarding his role in the milieu. Such variables help define the

actual didactic situation.

In the TDS, teaching is the devolution to the student of an adidactical situation
and learning is the student’s adaptation to this situation (Brousseau, 1997). An
adidactical situation is the setting up of a problem (that is, the organizing of the milieu)
so that the student does not need the intervention by a teacher to construct knowledge
(Artigue, 2005). The rules and strategies associated with the interactions between the

teacher, student and the milieu which are needed to solve a problem and specific to the



knowledge taught are referred to as a didactic contract (Brousseau, 1997). The TDS
presumes the existence of a didactic contract that is inherently social in nature
(Schoenfeld, 2002). The didactic contract can be explained as the idea that teacher and
students enter a classroom with implicit understandings regarding the norms for their
interactions and that these understandings shape the ways they act. The TDS is used both
to identify what mathematical knowledge is being constructed by the teacher and the
students in an actual lesson and also to engineer situations aimed at the construction of

certain piece of knowledge by the students (Sierpinska, 1999).

Sierpinska (1999) has described different types of didactic situations, defined by
Brousseau in his theory of didactic situations, in terms of the role of the teacher. In
situations of action, the teacher organizes a milieu for students to engage with but then
completely withdraws from the scene. Knowledge in this situation appears as a means
for solving a problem or a class of problems and the knowledge is personalized and
contextualized. In situations of formulation, the students exchange and compare
observations between themselves while the teacher focuses on managing communication
among the students. Knowledge, in this situation, appears as a result of a personal
experience which needs to be communicated, and thus slightly de-personalized and de-
éontextualized, in order to be understood by others. In situations of validation, the
teacher acts as a chair of a debate, only intervening to put some order in the debate
among students. He helps draw attention to possible inconsistencies in student
explanations and encourages more precision in the use of concepts. Knowledge has the
dynamic features of a theory in the making, not of a finished, institutionalized theory. In

situations of institutionalization, the teacher is the representative of the curriculum and

10



the students receive the instruction with explicit instructions and rules. Knowledge in
this situation is considered to be the understanding of the instructions and rules given by
the teacher. It is by means of the institutionalization that the knowledge becomes

completely de-personalized and de-contextualized.

1.2 Methodology

The research methodology that guided my research was that of didactic
engineering which is based on the TDS. The didactic engineering is qualitative in nature
and, as explained by Laborde (1989), has the following as a goal:

to apprehend teaching situations globally in order to develop a model
which encompasses their epistemological, social, and cognitive
dimensions and which attempts to take into account the complexity of
the interactions between knowledge, pupils and teacher within the
context of a particular class, or more generally of an educational
group.

(p.- 32)

Researchers are challenged with the important decision regarding which kinds of
methods are appropriate in which circumstances, a challenge only exacerbated by the
variety of methods currently available. Moreover, mathematics education research is a
young discipline, having developed extensively in the last third of this past century
(Lester & Lambdin, 2003). This serves, in large measure, to explain the diversity of
perspectives and methods seen today (Schoenfeld, 2002). The Handbook of Qualitative

Research in Education (LeCompte & al., 1992) and the Handbook of Research Design in
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Mathematics and Science Education (Kelly & Lesh, 2000) are 881 and 993 pages long,
respectively. Unfortunately the phenomenal growth of research methodologies over the
past few decades has been largely chaotic, making it critical to analyze corresponding
foundational assumptions and methods of investigation (English, 2002). The
development of widely recognized standards for research has not kept pace with the
development of new problems, new perspectives, and new research problems (Lesh,
2002).

Assuming one wants to conceive of and try a new way of teaching a piece of
mathematical knowledge, as Sierpinska (1999) suggests, there are essentially two ways of
going about that. One can use quantitative or qualitative research methodologies. I will
start with a brief discussion of quantitative methodology and my reasons for rejecting it
for this research. Next, [ will situate didactic engineering in its qualitative research
paradigm. The role of underlying assumptions in the conduct of this research and the
implications of (implicit or explicit) choices of theoretical frameworks will also be

outlined.

1.2.1 Quantitative methodologies

I have chosen to include this brief discussion on quantitative methodologies as
part of the rationale to support my choice of a qualitative research methodology for my
research. These are the comparative studies of experimental and control groups that
dominated educational research until a few decades ago and which remain important to
understand (Shoenfeld, 2002).

The objective of comparative studies in classic experimental research is to
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determine if desired outcomes are caused by specific actions (Campbell & Stanley,
1990). These comparisons are usually made between two groups: an experimental group
treated by a set of actions and a control group receiving no such treatment (Romberg,
1992). Comparative studies usually begin with an outline of a lesson containing
classroom activities, with a precise description of the role and actions for the teacher and
the expected responses of the students. The lesson contains advice for the teacher in case
the students make errors and mistakes of various types. The planning decisions
pertaining to the choice of the mathematical activities and problems could be justified by
curriculum prescriptions, some theory of learning, some principles of teaching,
knowledge of mathematics and personal experience. However, the evaluation of the
lesson will not be done on the basis of this justification. In fact, as Sierpinska (1999)
reports, this justification may not even be written down or otherwise made explicit in the
final report of the project. The project will be evaluated by testing the lesson on a group
of students, with a control group for comparison. The control group will be taught the
same mathematical content with traditional methods, and both groups will be
administered identical pre-tests and post-tests. In the case of similar results on the pre-
test, if the experimental group performs better on the post-test, then the teaching project
will be evaluated as “effective” (Sierpinska, 1999).

Although the US Department of Education is now actively encouraging
educational research communities and education technology companies to exclusively
use scientifically based research, many educators believe that, for ethical reasons, it may
be that such broad use of a research methodology with roots in the pharmaceutical

industry is not such a good idea in the classroom. In fact, there is still a lot of debate on
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this issue (Zaritsky & al., 2003). Because of my disquiet with these ethical issues, and
my wish for a richer data set than quantitative research can provide, I have rejected

quantitative methodologies for this study.

1.2.2 Qualitative methodologies

Qualitative research begins with questions and qualitative researchers seek
answers to their questions in the real world. They gather what they see, hear, and read
from people and places and from events and activities. Essentially they do their research
in natural settings rather that in laboratories or through written surveys (Rossman &
Rallis, 1998). According to these authors, qualitative research has two unique features:
(1) the research is the means through which the experiment is conducted, and (2) the
purpose of qualitative research is learning about some piece of knowledge. Both these
characteristics are integral to a view of learning that sees the learner as a constructor of
knowledge rather than a receiver of it.

As Sierpinska (1999) explains, if one rejects the “quantitative study”
methodology because one does not believe that it is possible to teach the same
mathematical content with two different sets of mathematical activities and different
pedagogical approaches, and if one does not believe that one can assess what the students
have learned by counting their scores on a standardized test, then one should seriously
consider using a methodology that supports instructional development. Qualitative
methodologies require the researchers to make explicit the rationale behind all of their
decisions, the specified theoretical perspective, an instructional theory and their theory of

what it means to know the particular mathematical content that they plan to teach the
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students, because that will be the basis by which their research projects will be evaluated.
Researchers using the qualitative paradigm also need to make predictions concerning the
knowledge that the students should construct as a result of participating in the planned
activities. After which, the researchers often attempt the scenario in a class with someone
else as a teacher while sitting in the classroom as an observer. The researchers generally
collect all possible documentation concerning the students' mathematical work by
recording the classes, and collecting all the students' written work. The researchers
analyze this material with the question: is the anticipated knowledge apparent in the
students’ productions? If not, then the researchers must try to determine what knowledge
has developed. They need to determine whether or not the new knowledge can be
explained in terms of the theoretical frameworks assumed a priori. The researchers need
to determine if an alternative theory is needed, or if the theory needs to be modified.
Finally, they need to analyze if the scenario can be improved to decrease the difference
between the anticipated and the actual knowledge produced by the scenario. On the basis
of this analysis, the researchers re-design their lesson and try it again.

If a researcher plans to use a qualitative research methodology as described above
and the theoretical framework is based on the theory of didactic situations
(Brousseau,1986), then the researcher would be using the methodology of didactic
engineering in developing a teaching project in mathematics (Sierpinska, 1999). The
concept of didactic engineering as a specific research methodology entered French
mathematics education in the early 1980s and is gradually becoming known in North

America (Kieran, 1998), although it has not been researched to any extent.
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1.3 Didactic engineering

Didactic engineering can be viewed as both a product, resulting from an a priori
analysis, and as a process, resulting from an adaptation to the implementation of the
product in the dynamic conditions of a classroom (Douady, 1997). Didactic engineering
seeks, among other things, to situate the possible actions of a teacher under the
constraints of his or her classroom and to determine the course of action required to
obtain a desired behavior. In order to do this, a researcher using didactic engineering
must formulate his or her questions and transform them into hypotheses in a developed
theoretical framework in order to construct an experiment. The results of the experiment
are then "confronted" with the predetermined expected behaviors before decisions are
made regarding the success of the experiment (Douady & al., 1987). This process of
confronting results with predetermined expected behaviors is referred to as “internal
validation”. According to didactic engineering, the validation of the research hypotheses
is essentially internal in the sense that it is based on the confrontation of the a priori and
a posteriori analyses, rather than external, based on the statistical comparison of the
achievements of experimental and control groups (Laborde, 1989; Douady & al., 1987;
Artigue, 1992; Artigue & Perrin-Glorian, 1991). It is predominately this type of internal
validation that differentiates didactic engineering from other research methodologies in
the field of mathematics education. As figure 2 shows, didactic engineering is essentially
composed of four parts: preliminary analysis, design and a priori analysis,

experimentation, and a posteriori analysis and validation.
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Preliminary Analysis

Epistemological Di L Cognitive Dimension Didactic Dimension
Locks at the historical development of the Focus on the students' different conceptions of Presents the way functions are usually introducad,
pt of function, the lated functions and on how students can develop a as well as new approaches to the teaching and
representations, meanings, and problems that goaod understanding of the function concepts. learning of functions using curriculum, curricufum
functions allow to be solved. materials, and technology.

Based on the results of the preliminary analysis. Isolates variables that are assumed to give rise to substantially different ways of
tearning, Le. the construction by the students of different meanings of the concept taught.

A priori analysis

includes a description of the alms of sach situation, the didactic choices and the resulting
characteristics of each situation. It alsx includes a pradictive part which attempts to clarify the real
benefits of the situation for the studant, the typss of behavior which might appear and the meaning
that could be given to thege, and to show that ths axpected behaviars really result from the knowledge
the situation aims to develop.

Experimentation

Deals with the effective realization of the didactic situations and the gathering
of data.

A posteriori analysis
& validation

Based on all the data gathered during the
expesrimentation and validation concerns the
research hypotheses and the choices made in the
design. This validation is done by confronting the 2
priori and the a posteriori analyses.

Figure 2. Didactic engineering research methodology

1.3.1 Preliminary analysis

The preliminary analysis in didactic engineering usually involves the
consideration of three dimensions:
(1) an epistemological dimension which looks at the historical development of a concept,
various aspects of a concept, problems based on the concept that may be solved;
(2) a didactic dimension which is mainly concerned with the usual introduction of the
concept in question, its effects on students’ achievements, the didactic constraints, and
recent developments in the teaching and learning of the concept through curriculum and
textbook studies;

(3) a cognitive dimension which deals with student conceptions about the concept.
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1.3.2 Design

The design phase is based on the results of the preliminary analysis. This key
phase of the methodology isolates a certain number of variables that are assumed to give
rise to substantially different ways of learning, i.e. the construction by the students of

different meanings of the concept taught.

1.3.3 4 priori analysis

The a priori analysis of the designed didactic situations includes a description of
the aims of each situation, the didactic choices and the resulting characteristics of each
situation. It also includes a predictive part which attempts to clarify the real benefits of
the situation for the student, the types of behavior which might appear and the meaning
that could be given to these, and to show that the expected behaviors really result from

the knowledge the situation aims to develop.

1.3.4 Experimentation

The experimentation phase deals with the effective realization of the didactic
situations and the gathering of data. In this phase, the students are assumed to be

learning, and data are gathered to assess whether this is true.

1.3.5 4 posteriori analysis and validation

The a posteriori analysis is based on all the data gathered during the
experimentation. This phase involves the validation of the research hypotheses and the

choices made in the design of didactic situations. It is done by confronting the a
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posteriori analysis with the one done a priori.

1.4 Summary

Chapter 1 described the theoretical framework and methodology for this study.
The Theory of Didactic Situations and didactic engineering was described and an
explanation for the choice of this methodology was presented. After situating didactic
engineering in the qualitative research paradigm, a detailed description of the phases
involved in didactic engineering was presented.

As well as being the methodology for this study, didactic engineering is also the
framework for the dissertation itself. Thus this dissertation will not follow the usual
format employed in most dissertations, but will reflect the structure of a didactic
engineering experiment, specifically as it relates to teaching functions.

In summary:

Chapter 2, Preliminary analysis, will analyze the epistemological, didactic, and

cognitive dimensions of functions.

Chapter 3, Teaching sequence: design and a priori analysis, will describe the

three teaching sequences employed, including the a priori analysis of the aims,
characteristics and expected outcomes of each.

Chapter 4, Experimentation, will complete the sequence, with a description of the

realization of the didactic situations and the a posteriori analysis of the data.
The next chapter will describe the preliminary analysis required by the process of

didactic engineering and end with a discussion of the technology used in this research.
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Chapter 2: Preliminary analysis

This chapter represents the preliminary analysis phase of the didactic engineering
methodology which is essentially composed of epistemological, cognitive, and didactic

dimensions.

2.1 Historical and epistemological dimension

In this section, I will provide an epistemological and historical analysis of the
concept of function with special attention to the dynamic aspects of functions which are
not easily observed in traditional paper/pencil based curriculum and outline the
epistemological roots of functional relationships and their dependence on time.

The concept of function is considered one of the most important concepts in
mathematics today (Luzin, 1998; Ponte, 1992; Youshkevitch, 1976). However, the
concept was not discovered or conceived by a single individual or at a particular time.
Instead, it evolved over a period of several centuries and continues to evolve today in
response to important problems in a number of different fields both within and outside of
mathematics. This is why, even today, no single formal definition can include a complete

description of the function concept.

2.1.1 Historical development of the concept of function

Youschkevitch (1976) outlined three main stages in the development of the idea
of function up to the middle of the 19th century. He outlined the stages as follows:

1. Antiquity - The stage in which the study of particular cases of dependencies
between two quantities had not yet isolated general notions of variable quantities and

functions. Examples of particular instances of functions from antiquity include counting,
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which implies a correspondence between a set of given objects and a sequence of
counting numbers; the four elementary arithmetical operations, which are functions of
two variables; and the Babylonian tables of reciprocals, squares, square roots, cubes, and
cubic roots which are also functions (Ponte, 1992). Because the literature of that time did
not suggest an abstract and more general idea which unifies separate concrete
dependences between quantities or numbers in whichever form these dependences
happen to be considered, the concept of function was not attributed to antiquity
(Youschkevitch, 1976).

2. The Middle Ages - The stage in which, in the European science of the 14th
century, these general notions were first definitely expressed both in geometrical and
mechanical forms, but in which, as in antiquity, each concrete case of dependence
between two quantities was defined by a verbal description, or by a graph rather than a
formula because the algebraic symbolism necessary to express functional relationship in
the form of a formula had not been available until the 16" century.

3. The Modern Period - The stage in which, beginning at the end of the 16th
century, and especially during the 17th century with the development of algebra and its
symbolism, analytical expressions of functions began to prevail. The class of analytic
functions generally expressed by sums of infinite power series soon became the main
class used.

Although the concept of function was not introduced until the 18th century,
graphs of functions were used to analyze their properties as early as the 14th century.
Oresme (1323-1382) was among the mathematicians who could be regarded as having

come close to a modern definition of function concept in studying the latitude of forms.
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Oresme developed this theory of latitudes of forms representing the distance covered by
an object moving with variable velocity. The graphical representation given by Oresme
to the latitude of forms, which was essentially a representation of the functional variation
in velocity with time to study the motions of bodies under uniform acceleration, is one of
the earliest instances in the history of mathematics using what we now call "the graph of
a function" (NCTM, 1969). Although he did not state the law of falling bodies, which
was later attributed to Galileo, Oresme essentially yielded that conclusion. The actual
emergence of a notion of function as an individualized mathematical entity can be traced
to the work of Descartes (1596-1650). Descartes clearly stated that an equation in two
variables, geometrically represented by a curve, indicates a dependence between variable
quantities (Ponte, 1992).

Newton (1642-1727) was one of the first mathematicians to show how functions
could be developed in infinite power series, thus allowing for the intervention of infinite
processes. He used the term "fluent" to designate independent variables, "relata quantitas"”
to indicate dependent variables, and "genita" to refer to quantities obtained from others
using the four fundamental arithmetical operations (Ponte, 1992). Newton presented a
clear kinematic-geometric interpretation of the basic conceptions which described
conceptions of time and motion and of their geometrical presentation originating with
Galileo and Oresme (Youschkevith, 1976). It was Leibniz (1646-1716) however, who
first used and therefore introduced the term "function" (in unpublished documents) in
1673 and as such, the concept of function was generally attributed to him. Perhaps
Newton illustrated the distinction between dependent and independent variables more

clearly than Leibniz, but Leibniz was the inspiration of the eighteenth century because of
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the pedagogical quality of his work (NCTM, 1969).

The term "function" was adopted in the correspondence interchanged by Leibniz
and Jean Bernoulli (1667-1748) between 1694 and 1698 when discussing the study of
curves (Ponte, 1992). The actual term "function" first appeared in a scientific article
written by Jean Bernoulli in 1698, while the first explicit definition of a function
appeared in another written by Bernoulli in 1718 and was widely disseminated
(Youschkevith, 1976). It contained his definition of a function of a variable as a quantity
that is composed in some way from that variable and constants. In 1748, Euler (1707-
1793), who was a former student of Bernoulli, later added his touch to this definition
speaking of analytical expression instead of quantity thereby creating an association
between the notion of function and the notion of analytical expression (Ponte, 1992).

The 19th century brought about lively interactions enlarging and clarifying the
notion of function. The most significant argument revolved around the study of motion
of a vibrating string outlined by Johann Bernoulli (1727) and questioned by d'Alembert
(1717-1783). Both Euler and Daniel Bernoulli (1700-1782), Johann Bernoulli's son,
attempted to find more general solutions to the vibrating string problem. For example,
Euler began with a concept of function similar to that of Leibniz, but broadened it in his
work on the vibrating string problem to include piecewise defined functions (Kaput,
1994). However, it was d'Alembert who gave an almost exhaustive solution of this
problem in a famous paper published in 1747. The debate around the vibrating string
continued for years with both Euler and Bernoulli providing their own ideas and
alternative solutions. In 1759, Lagrange (1736-1813) entered the debate by taking sides

with Euler and opposing both Bernoulli and d'Alembert and the debate lasted over 20
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years without a final solution (Kaput, 1994). In 1807, Fourier (1768-1830) gave the rule
for the coefficients of the trigonometric series representing an "arbitrarily given" function
f known as the Fourier formulas (Luzin, 1998). He also observed that his functions
included the piecewise-defined functions of earlier mathematicians. However, Fourier
never gave a mathematical proof for his solution. The challenge of outlining this
mathematical proof was later taken up by Lejeune Dirichlet (1805-1859) who succeeded
in defining a function that could be represented by a Fourier series. In 1837, Dirichlet
gave the following definition of a function: "if a variable y is so related to a variable x
that when a numerical value is assigned to x, there is a rule according to which a unique
value of y is determined, then y is said to be a function of the independent variable x."

Dirichlet also gave a well-known example of a function which is everywhere
discontinuous to emphasize the generality of his definition. He introduced the following
function f: R — R:

f(x)=1 if X is a rational number;
f(x)=0 if x is an irrational number.
(Usiskin & al., 2003)

However, it was Dirichlet's 1829 definition of function that was most Widely
accepted at the turn of this century (Kleiner, 1989 and Malik, 1980). Function was
defined by Dirichlet as follows:

y is a function of a variable x defined on the interval a<x<b, if to
every value of the variable x in this interval there corresponds a
definite value of the variable y. Also, it is irrelevant in what way

this correspondence is established.
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(Kleiner, 1989, p. 291)

The historical development of the concept of function gives perspective to the
current debate around the function concept in the 20th and 21st centuries. There has been
a gradual evolution in the understanding of the function concept. It has evolved from
Oresme’s graph, to an algebraic formula, to a correspondence between numerical
variables, to a mapping between ordered pairs during the 20th century.

It was not until Bourbaki, a well known proponent of abstract algebra, that the
definition of function evolved further. In 1939, Bourbaki offered the following definition
of function:

Let E and F be two sets, which may or may not be distinct. A
relation between a variable element x of E and a variable element y
of F is called a functional relation in y if, for all x in E, there exists
a unique y in F which is in the given relation with x.
We give the name of function to the operation which in this way
associates with every element x in E the element y in F which is in
the given relation x; y is said to be the value of the function at the
element x, and the function is said to be determined by the given
functional relation. Two equivalent functional relations determine
the same function.

(cited in Kleiner, 1989, p.299)

The historical emergence of the function concept is intimately related to the study
of motion (Biehler, 2005). It is ironic that this idea of function may be regarded as the

longstanding attempt to downplay the idea of motion. For example, motion was one of
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the ideas that Lagrange intended to cancel from the theory of analytical functions
(Laborde & Mariotti, 2002). The solution which was adopted consisted of substituting
for the metaphor of motion, a more suitable one, which. does not involve time. As such,
the modern definition of function definitely abandoned the metaphor of motion. This
definition de-contextualizes functions, and removes any dependencies on the use of
motion as a metaphor for functions, although the connection to this metaphor was

preserved in the idea of graph.

2.1.2 Summary of historical and epistemological dimension

The historical development of the concept of function gives a good overview of
how different representations emerged and how they contributed to a definition of
function that was commonly accepted.

The idea of motion played an important role in the emergence of the concept
through debates that were focused on solving real problems. Important contributions to
the concept of function and the notion of dependent and independent variables from
leading mathematicians and scientists appear to have been contextualized in problems of
motion. It is for these reasons that I have chosen the idea of motion as the context for my
research on the understanding of functional relationships.

It is interesting to observe that in attempts to de-contextualize a definition for
function, the important contribution of the idea of motion was suppressed. Even Euler,
who devoted a large part of his life working with a concept of function that was
contextualized in problems of motion, eventually focused on a more analytical view of

functions. In fact, it was Euler’s colleague, Lagrange who strove to remove the entire
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metaphor of motion from the definition of function. As a result, the modern definition of
function no longer has grounding in the idea of motion. Luckily this important idea is
still preserved in graphing.

There is no one representation of function that allows anyone to completely grasp
the notion of function. Thus, the complementarity of the various aspects and
representations of functions is very important. Therefore in my research, I will pay

special attention to representing the concept of function from various points of view.

2.2 Cognitive dimension of function

2.2.1 Understanding

An underlying assumption regarding learning with understanding during my
research is that such learning is generative. When students have an understanding of
some newly acquired knowledge, they can apply that knowledge to learn new concepts
and to solve new problems (Carpenter & Lehrer, 1999). It is also important to realize that
understanding is not an all-or-none phenomenon. As such, understanding can be thought
of as emerging or developing rather than presuming that someone either does or does not
understand a given concept or process (Carpenter & Lehrer, 1999). As a consequence,
understanding can be characterized in terms of mental activity that contributes to the
development of understanding rather than as a static attribute of an individual’s
knowledge. Carpenter & Lehrer (1999) propose five forms of mental activity from which
mathematical understanding emerges: a) constructing relationships, b) extending and
applying mathematical knowledge, c) reflecting about experiences, d) articulating what

one knows, and e) making mathematical knowledge one’s own.
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Formal mathematical concepts, such as the concept of function which forms the
basis of the high school mathematics curriculum, should be given meaning by relating
them to earlier intuition or ideas that students may have. Unless instruction constructs
relationships between children’s informal knowledge and targeted concepts they learn in
school, they may develop two separate systems of mathematical knowledge: one they use
in school and one they use outside school. Of course, developing understanding of
functional relationships involves more than simply connecting new knowledge with prior
knowledge: it involves developing relationships that reflect important mathematical
principles. For example, an understanding of a functional relationship may be extended
to more general forms of relationships between variables. Students should be able to
extend their understanding of functional relationships by making transitions or
connections between various representations of functions. Reflection about experiences
involves the conscious examination of one’s own activities and thoughts. Little reflection
is needed during the routine application of skills. However, problem solving often
involves consciously examining the relationship between one’s existing knowledge and
the condition of the problem situation. Students stand a better chance of acquiring this
ability if reflection is part of the learning process.

The notion of the emerging nature of understanding is seen in students’
developing ability to reflect on their thinking (Carpenter & Lehrer, 1999). Finally, the
ability to communicate or articulate one’s ideas is a benchmark of understanding.
Understanding involves the construction of knowledge by individuals through their own

activities so that they develop a personal investment in building knowledge.
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2.2.1.1 Concept image and concept definition

The distinction between a person’s concept definition and her/his concept image
was introduced and analyzed by Vinner (1983) and further discussed by Vinner and
Dreyfus. Their work (1989) serves as a foundation for much of the current research in
the learning of functions.

Concept definition is the way teachers define function and how we expect
students to define function. Developing a solid concept definition is often the primary
focus of the high school mathematics curriculum in North America. Historically,
mathematicians regarded function as an active process; typically, definitions described
some kind of relationship between two variables or even a requirement that one variable
is dependent on the other. This was especially true when the early mathematicians
focused on solving real problems involving motion where time was the independent
variable. This conception created an understanding of function that allowed continuous
and smooth functions. As the need grew for a more sophisticated definition for function,
mathematicians altered the definition of function to allow for wider examples of
functions, such as split domain functions. The current definition of function, known as
the Dirichlet-Bourbaki definition and explained earlier in this Chapter, allows for even
non-constructible functions and is defined as follows:

A function is a correspondence between two sets, known as the
domain and the codomain, where each element in the domain
corresponds to one element in the codomain.

(Stafslien & al., 2001, p.32)
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Clearly, all direct connection to variables and continuity disappear in the above
definition. In the course of the last century, teachers have progressed from using the
classical definition of a function to more abstract but powerful modern definitions.
Therefore, a student’s introduction to functions often involves a definition completely
separate from any intuitions he or she might develop concerning functions.

The concept image of function, on the other hand, embodies how students are able
to visualize and perceive functions in a variety of forms. The concept image comprises
the visual representations, mental pictures, experiences and impressions evoked by the
concept name (Thompson, 1994). As Thompson explains, this difference between the
concept image and concept definition is similar to the difference in understanding we
might have with the concept of “blue.” Although we can potentially offer a definition for
the concept of blue, we rarely use this definition when interacting with blue. For
example, if we were to ask the reader, whether the type in this paper is blue, we would
expect the reader to answer based on whether the type looks blue instead of analyzing the
text based on some formal definition of blue. Similarly, when we ask a student if an
expression is a function or could be a function, students typically answer based on their
previous experience with functions and not with an analysis using the Dirichlet-Bourbaki
definition of function. Ideally students use their concept image to inform their concept
definition. In particular, the formal definition should be the final decision-making factor
for solving a problem. Vinner (1983) and others argue that instead, a closer
approximation to a typical student approach to problems is similar to observations of the

color blue: students rely solely on concept image to formulate their thoughts on functions.
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The process definition of a function is akin to the historical perspective on
function. It acknowledges that function has a domain and a range, and views the function
as a process of moving from the domain to the range. This understanding has increased
flexibility and allows the student to include many more functions in their conception. As
explained earlier, the process conception of function is an adequate view of function for
most situations, excluding the life of a mathematician.

The most structural classification is the correspondence understanding. This
category on the level of concept definition implies that the student defines function in the
Dirichlet-Bourbaki fashion. Similarly, a correspondence understanding of concept image
moves beyond understanding function as a complex process. The Dirichlet-Bourbaki
definition, on the other hand, allows for even the existence of non-constructible
functions. That is, there are an infinite number of functions that we will never be able to
represent or construct. This last level of sophistication is rare in middle and high school
students. Even Sfard (1992), who extensively worked with a class of students to develop
their conception of function, could not convince most students of the existence of a non-
constructible function. Therefore, though students often reach the point where their
concept definition is of this type, their image conception rarely reaches this level.

By analyzing students’ understanding based on the above spectrum, one can
directly measure the depth of a student’s understanding of the concept of function. In the
literature, however, there seems to be an agreement that the concept definition aspect of a
student’s education should be significantly de-emphasized, so that their concept image
has a better chance of developing. Sfard (1992), for example, argues that introducing a

correspondence definition too early actually damages or hinders the student’s

31



development of the concept of function. She argues that we learn concepts only at the
level at which we absolutely need them. That is, the curriculum in a general K-12
education does not cover mathematics advanced enough to necessitate a correspondence
conception of function.
An alternative approach, then, is to let students develop as much power as they
need to fit situations that they encounter in the curriculum. In fact, it may be beneficial to
allow the concept image to develop at a higher level than the concept definition,
reversing the standard practice. Yerushalmy, for example, has examined the effects of
such an approach on seventh grade students. He gave seven students a problem involving
a function of multiple variables. They were told to model the following situation
(Yerushalmy, 1997):
A rental car company charges 100 shekels for a day and an additional
5 shekels per kilometer. The company would like to have a clear
description of the price that any client may have to pay when
returning the car. Suggest such a description.

This was extended by the following exercise.
You have won a 1000 shekels coupon from the rental car company.
Provide a detailed description of all your options to spend the exact
amount for renting and driving a car using the maximum of your
winnings.

(p-435)
The students had not received any formal definition for function, and only

minimal notation. The resulting models that students invented were remarkable. While
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several students tried to graph the situation, their various methods of generalizing from
the one-variable situation (which they had some experience in modeling) demonstrate
how differently students can construct their knowledge. For instance, while one student
graphed the solution on two two-dimensional graphs, another student constructed a three-
dimensional coordinate system (ibid.). The students analyzed the situation, and seemed
to decide against the three-dimensional graph. This suggested that for their situation, the
three-dimensional graph was not yet useful. Having thought of it, however, it will be
readily available when the student encounters situations where the two two-dimensional
graphs give less information. The lack of a formal definition gave rise to a rich dialogue
on concept image.

Concept definition and concept image are both aspects of a student’s
understanding of function, but the traditional method of beginning from the concept
definition promotes a large disparity between both concept definition and concept image
that can cause confusion and hinder development. On the other hand, if one initially
focuses on concept image, it seems as though the concept definition naturally follows and
students gain an appreciation of how and why these definitions develop. Mathematical
experts come to use concept images and concept definitions dialectically. Over time,
their images become tuned so that they are aligned with a conventionally accepted
concept definition, which in turn allows intuition to guide and support reason. Not every
student of mathematics attains equilibrium between definitions and images, however we
can increase their chances of success by giving explicit attention to imagery as an

important aspect of pedagogy and curriculum (Thompson, 1994).
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2.2.1.2 The importance of prototypes

Confrey and Smith (1991) use "prototype" functions to introduce families of
functions. They are in agreement with Schwartz and Yerushalmy (1992) that it is from
the study of the characteristics of these base functions that students come to know the
attributes of each family. The idea of prototype, applied to the concept of function by
Schwarz and Hershkowitz (1999), ties together many of the ideas in the previous two
sections. The idea of prototypes also provides a powerful mechanism for understanding
how students develop an image of the function concept, and the use of various
representations aids in the creation of beneficial prototypes.

It is important for students to develop a healthy concept image of function that not
only permits them to recognize a variety of functions, but also permits them to move
comfortably and wisely between appropriate function representations. The idea of
prototypes suggests that we think of object; and concepts in terms of examples (Brawner,
2001). When faced with a new extension or generalization, we either reject it on the
basis that it does not match our set of prototypes, or we adjust our prototypes to include
the given extension. In regard to functions, it is important to develop an increasingly
sophisticated palette of examples that are readily adaptable to new situations, yet middle
school and high school curriculum rarely go beyond the family of quadratic functions.

We all have a favorite set of functions; we differ, however, in how we apply our
examples of functions to different situations. For example, if we ask how many functions

pass through the three points on the graph in figure 3,
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Figure 3. Three points (Schwarz and Herschkowitz, 1999)
students have various options at their disposal. They could use their concept definition of
function, which is unlikely given the curricula they have probably followed, or they could
attempt to imagine functions that might pass through these three points. Here, their
previous experience with functions becomes critical. The errors that students frequently
commit are to either claim that there are no functions that pass through all three points, or
that there is only one function that passes through these points (Schwarz & Hershkowitz,
1999). In the first case, the students will typically justify their statement by claiming that
since no linear function can be drawn through the three points, no function can be drawn
through these three points. On the other hand, a common justification for there being
exactly one such graph is that while one cannot draw a linear function, one can draw a
quadratic function. The students apply their prototypes to the graph, and if the prototypes
do not work, the students conclude that no functions work.

Without requiring that our students automatically have a vast warehouse of
functions, it is nevertheless desirable to avoid this kind of static prototype. There is a
difference between the student who has had rigorous instruction solely in regard to linear
functions, but acknowledges this as a sample in the wide range of different functions, and
the student who insists his prototype is the sole representative of functions. Some
students use linearity as a popular prototype, whereas the other forces his prototype on

the situation. Similar results were found by other research studies such as those of
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Schwarz & Hershkowitz (1999).

Applying the concept of prototypes to functions is relatively new so there is much
research yet to be done in uncovering how to best help students develop a good set of
prototypes with an appropriate conception of function to expand their set. The idea of
prototype, however, underlies concept understanding and so can hopefully aid teachers in

understanding how their students develop a concept image of function.

2.2.1.3 Physical models and multiple representations

Monk (1994) investigated students’ conceptualizations of classical situations
having to do with related rates providing physical models for students’ experimentation
and asking questions about the situations that encouraged students to reason with the
physical devices. Monk observed that students have difficulty in developing a coherent
conceptualization of a physical model as a system of dependencies among quantities
whose values vary - even while holding the devices in their hands and playing with them.
Monk proposed that imagining situations as being functionally constituted was also part
of seeing generality in geometric diagrams, and that we can actively promote this ability
in students with carefully crafted curriculum and instruction. Attending to students’
conceptualizations of situations is especially important when applied to models involving
physical phenomena and physical quantities. The most effective situations will be those
that require meaningful and contextual interpretation of representations in a problem-
based approach (Coulombe & Berenson, 2001).

Physical phenomena such as motion taking place in a straight line can be

represented through simulation. Doing so allows students to capture a physical
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phenomenon so that it may be analyzed, edited, and shared with others for meaningful
interpretation in a problem-based approach. Algebraic representations on the other hand,
almost always offer concise, true, and effective representations of patterns and
mathematical models. Of course the inappropriate use of this representation may blur the
mathematical meaning or the nature of the represented object and cause difficulties in
students’ interpretation of results (Friedlander & Tabach, 2001). Numeric representations
can also be calculated or viewed on tables to provide detailed information regarding
discrete data points or other aspects of graphs. Fluency with multiple representations in
creating and testing models of mathematical relationships is critical in maximizing
students’ ability to acquire knowledge when solving real-world problems. Interpretation
and translation of representations are skills that can, for example, extend students’
algebraic thinking by helping them construct their mental images of patterns and
functions (Moschkovich & al., 1993). The simultaneous display of multiple linked
representations clearly illustrates interrelationships between the representations.

The core concept of function is not represented by any of what are commonly
called the multiple representations of functions, but instead by the connections made
among representational activities which produce a subjective sense of invariance,
important in understanding the function concept. Relating different representations to
each other is regarded as a basic element of meaningful teaching and learning of
functions (Biehler, 2005). The subtlety of the function concept with its various
representations and process-object duality proves to be highly complex, leading not only
to a concept with wide ranging powers, but also with widespread misunderstandings

among students. One of the main points found in the rich literature on this theme
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concerns the relationship between function and its graphical representation. In particular,
it seems that, for students, there is a lack of explicit relationship between function and
graph (Vinner & Dreyfus, 1989, Dreyfus & Eisenberg, 1983). Difficulties of interpreting
graphic information in terms of function are widely reported; generally speaking students
do not consider the graph of a function to be the representation of the relationship that
exists between the variables. Therefore, it is important to focus on graphs, expressions,
or tables as representations of something that, from the students’ perspective, is
representable, such as aspects of specific situations. The key issue outlined in the
preliminary analysis then becomes twofold: (1) To find situations that are sufficiently
rich that they can be represented in many different ways and (2) To orient students
toward drawing connections among their representational activities in regard to the
situation that initiated them. The situation being represented must be contextualized in
such a way that it highlights the connections among the representations. It is helpful
when the representations can be linked together such that a change to the function in one
representation is immediately reflected in the other representation of the same function.

Otherwise, students may only learn each topic in isolation from the others.

2.2.2 A constructivist approach

There is general agreement in the mathematics education community that a
constructivist approach is based on the following principles (Dugast, 1991):

e A student constructs his knowledge rather than receiving it passively from a teacher.
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e A new piece of knowledge is constructed based on a prior knowledge (therefore, a
teaching sequence must take into account this prior knowledge; in order to take it into
account, one must know students’ conceptions of the targeted knowledge.

e A student constructs a new piece of knowledge while engaged in a problem solving
activity where he experiences the limits of his current conceptions and realizes the
need to develop new ones.

e Formulation is an important phase in the process of knowledge construction.

e The role of the group contributes to the learning process. The construction of
knowledge in a classroom setting does not happen in isolation. Knowledge is
constructed during membership in a group. Classroom debates, exchanges of ideas,
procedures, and rationales cause students to modify their approach to a problem or

even their thinking,

2.2.2.1 Students’ conceptions of functions and obstacles

As stated earlier, no single formal definition can include the full description of the
function concept and today, different conceptions associated with the function concept
continue to evolve. Students also have difficulty distinguishing the concept of function
from its graphical representation. They may in fact believe the graphical representation
of the function is the actual function. For example, a curve may only be seen within its
continuity, and the students do not realize that a continuous function should be
considered a particular case of general function.

When students come to think of an expression as producing a result of a

calculation, they have what several researchers have called an action conception of
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function (Dubinsky & Harel, 1992; Thompson, 1994). This conception views a function
as a rule which applies to numbers. Students holding an action conception of function
imagine that the rule remains the same across numbers, but that they must actually apply
it to some number before the rule will produce anything. They do not necessarily view
the rule as representing a result of its application. Sfard (1992) identifies two
conceptions associated with the function concept following this action conception: the
process conception and the object conception. The process conception of function views
a function as a formula or rule for computation. When students build an image of “self-
evaluating” expressions they have a process conception of function. From the
perspective of students with a process conception of function, an expression stands for
what you would get by evaluating it. They do not feel compelled to imagine actually
evaluating an expression in order to think of the results of its evaluation. Therefore, it is
not surprising that achieving a process conception of function is a non-trivial
achievement for students, and that for many students it is not achieved without receiving
instruction that focuses explicitly on its development (Dubinsky & Harel, 1992;
Goldenberg & al., 1992). A process conception of function opens the door to a wealth of
imagery. Goldenberg and Lewis (quoted in Dubinsky & Harel, 1992) have developed
visual supports for students to envision functions as processes applied over a continuum.
Once students are adept at imagining expressions being evaluated continually as they
“run rapidly” over a continuum, the groundwork has been laid for them to reflect on a set
of possible inputs in relation to a set of corresponding outputs.

A function viewed as a static entity on which operations can be performed

demonstrates the object conception of function. At the point where students have
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solidified a process conception of function so that a representation of the process is
sufficient to support their reasoning about it, they can begin to reason formally about
functions — they can reason about functions as if they were objects (Thompson, 1994).

To reason formally about functions seems to entail a scheme of conceptual operations
which grows from a great deal of reflection on functional processes. Of most importance
is the image of functional process as defining a correspondence between two sets: a set of
possible inputs to the process and a set of possible outputs from the process. The many
paths by which students achieve an object conception of function are long and complex
(Ayers & al., 1988), and explanations of it draw on a long tradition in philosophy and
epistemology regarding the notion of reflective abstraction (Dubinsky, 1991; von
Glaserfeld, 1991). One hallmark of a student’s object conception of functions is his’
ability to reason about operations on sets of functions. It is easy to think that students are
reasoning about functions as objects when it is actually the function’s literal
representation (i.e., marks on paper) that is the object of their reasoning (Sfard, 1992;
Sierpinska, 1992). Sfard also notes that the object conceptions usually develop out of
process conception.

Sfard (1992) identifies three components of the progression from the process to
the object conceptions of function: interiorization, condensation, and reification. In the
first stage, there is a process acting on an established object (interiorization). Then the
process becomes more compact-whole (condensation). Finally Sfard explains that an
ontological shift occurs when the student converts the condensed knowledge into an
object in its own right (reification). Sfard advocates a process-focused method of

teaching based on two principles: (a) Students must first develop a process conception of

! For the purpose of this thesis, the use of “his” includes “her” and “he” includes “she”.
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function. Specifically, the concept should not be introduced in structural terms. (b) An
object conception of function should be delayed as long as students can do without it.
Function as an entity should not be required until it provides an indispensable advantage
over its computational view. Sfard claims that these two principles are necessary for
reification to occur (1991). Sfard and Linchevski (1994) also explain that students must
grow gradually through these perspectives.

Confrey and Costa (1996) took issue with reification theory, particularly with its
hierarchical view of mathematics learning and they described the theory as an excessive
and narrow orientation towards abstraction. In addition, Confrey and Costa (1996) wrote
that reification theory tends to separate mathematical thinking from its origins in social
contexts. They explained that context does not have to be stripped away as students
move from concrete activities to the abstract and that connections should be made with
everyday applications.

Schwartz and Yerushalmy (1992) believe that function is the primary object of
algebra and that algebra courses should be restructured and re-sequenced in light of its
importance. Thus, functions should be introduced from the onset and the constructs of
algebra should build on the function concept. The multiple representations of functions
should be emphasized. Students traditionally learn about functions by manipulating the
symbols that represent them. However, representations such as graphs can provide a
richer, deeper understanding through the use of graphical operations such as translations,
reflections, and dilations. Through such operations with a small base of functions, one
can see the consequences of the actions, symbolically and graphically. In addition, the

direct manipulation offered by dynamic software such as Geometer’s SketchPad (Jackiw,
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1990), Cabri Geometry (Laborde, 2003) and MathWorlds (Roschelle & Kaput, 1996)
allow for the direct manipulation of the graphical representations themselves providing
opportunities for even deeper understanding. The perspective of Schwartz and
Yerushalmy is guided by the following assumptions: (a) function as a process can most
readily be seen through symbolic representation, (b) function as an object can most
readily be seen through graphical representation, (c) some operations such as composition
are best understood through symbolic representations, and (d) some operations such as
translations are best seen through graphical representations.

Like Sfard (1992), Confrey and Smith (1991) discussed two traditions in the
development of functions: as a co-variation between quantities (process conception) and
as a correspondence between values of two quantities (object conception). But unlike
Sfard, Confrey & Costa (1996) do not believe that reification should be the sole focus of
teaching and learning because it minimizes the importance of alternative approaches
involving the teaching of functions as a co-variation between quantities..

Herscovics (1989) explicated the notion of cognitive obstacle as it relates to
learning mathematics. An obstacle is a way of knowing something that gets in the way of
understanding something else. An obstacle can have various origins: epistemological
when it is related to the notion itself; cognitive when it is related to the students
capabilities; didactic when it is a consequence of the instruction. The origin of cognitive
obstacles is developmental. It is interesting to note that Balacheff and Gaudin (2003) and
their team no longer make reference to cognitive obstacles. Instead, they stress that
obstacles are in fact, student conceptions and that such student conceptions would be

replaced with new student conceptions of the concept being taught. In this context,
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learning takes place as students replace one conception by another one that is more
general. Without disagreeing with this argument, I will continue to use the label
cognitive obstacle in order to differentiate more easily student conceptions that get in the
way of understanding something else from those that do not interfere with learning. This
will be useful in completing the specific a priori analysis of my research project.

A typical obstacle that students demonstrate when moving from graphs to
algebraic expressions is to interpret the graph as a picture instead of a graph. For
example, Kerslake (quoted in Leinhardt & al., 1990) asked students to decide which of

the graphs in figure 4 represent journeys and to describe what happens in each case.

A A A
Distance Dist< Distance /

Time Time Time

v

v

Figure 4. Journeys (Leinhardt & al., 1990)

Many students answered that all were descriptions of journeys. For example the
first one apparently represents someone climbing a vertical wall, and the last climbing a
mountain. This type of cognitive obstacle creates significant difficulties in conveying the

connections between graphs and functions to students.
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2.2.2.2 The importance of communication

When students acquire knowledge using the different forms of representation
outlined above (as well as others) they rely on communication to share personal
interpretations with others. Recall that this should be considered another form of
representation — verbal representation. Students can build a shared understanding
through joint reference to the representation of the phenomena within a context (Monk,
1994). Other research has demonstrated that representations, when used as rhetorical
devices in collaborative environments, improve shared understanding (Kozma & al.,
2000). By combining the use of familiar types of representations and analogies to
familiar events, and communicating their understandings with others, students can

acquire knowledge of even complex mathematical relationships.

2.2.3 Summary of the cognitive dimension

Understanding in the general sense as outlined above can be characterized in
terms of mental activity that contributes to the development of understanding rather than
as a static attribute of an individual’s knowledge. The cognitive dimension focused on
the student’s different conceptions of functions and how students can develop a good
understanding of the function concept. A good understanding of functions means that
students should be able to make transitions or connections between various
representations of functions and be able to choose the representation which is best
adapted to solve a given problem. Different conceptions associated with the function
concept continue to evolve in the mind of students as they think about functional

relationships. Students develop a concept of function by first going through process
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conception. The object conception is developed from the process conception as a
consequence. A correspondence definition of function is not suitable to introduce the
notion of function. One of the defining characteristics of learning with understanding is
that knowledge is learned in ways that clarify how it can be used. The construction of
knowledge happens best in contextualized situations.

The concept of function is difficult for many students because it is often presented
to them as a decontextualized mathematical definition. Historically, we can observe that
the modern definition of function emerged only as a result of trying to solve real
problems that were grounded in the idea of motion. Not providing students with
situations that allow for the repeating of this pattern will surely make the concept difficult
to grasp. The concept of function turns out to be difficult because of the obstacles

presented above.

2.3 Didactic dimension

2.3.1 Concept of function in textbooks

In this section, I provide a didactical analysis on the teaching of functions
involving data about motion. I will outline some of the traditional methods being used in
schools today as well as new methods being supported by the National Council for the
Teaching of Mathematics utilizing multiple forms of representations. Specifically, I will
outline cases in which the appropriate and effective use of technology has allowed
students to learn concepts that were not accessible to them using traditional tools.

In combination with the Dirichlet definition, the Bourbaki definition would

eventually affect school mathematics curriculum for many years. Vinner and Dreyfus
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(1989) introduced the Dirichlet-Bourbaki definition of function as a correspondence
between two nonempty sets that assigns to every element in the first set (the domain)
exactly one element in the second set (the codomain). Although the formal definition of
function has been static since the 1950s, this Dirichlet-Bourbaki definition is still the
most accepted definition, taught in the majority of mathematics curricula, and the
majority of mathematics curricula continue to utilize this definition of function (Lloyd
and Wilson, 1998). The notion of function and how it can be learned and taught is still
evolving.

The modern definition has been expanded to include many relationships not
previously considered such as functions defined on split domains, discontinuous
functions, and piecewise defined functions. Since no single formal definition of function
can include the full description of the function concept, researchers like James Kaput
described these special types of functions in the larger context of the Dirichlet-Bourbaki
definition in order to help students understand the concept of function in contexts that
make sense to them. For example, Kaput described piecewise defined functions as
follows:

A piecewise defined function defined on an interval [a, b] subdivided into

subintervals differs from a function globally defined over [a, b] only in that its

values are defined independently on each subinterval. There may or may not be
additional constraints imposed on those subinterval definitions, continuity being
one example - which is the case for piecewise defined Position vs. Time functions
in most (but not all) MathWorlds documents. Another is piecewise defined Linear

function, which makes the function graphs into polygons (non-closed, obviously).
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It is possible to define the values of the piecewise defined functions in various
ways on the boundary points of the subintervals - that is, for a subinterval defined
by ¢ and d with a<c<d<b, they could be defined on (¢, d], [c, d), [c, d] or (¢, d).
Of course, on complementary subintervals, the function needs to be defined
appropriately.

Two other points:
(1) "Piecewise defined" is different from "Stepwise varying" - which is a
description of BEHAVIOR rather than of definition.
(2) 1t is possible to have a globally defined (and hence not piecewise defined)
function that is Stepwise varying: The greatest integer function, for example,
which is a step-function defined for all integers (f(x) = greatest integer < x, or < or
=).

J. Kaput (personal communication, August 3, 2004)

The purpose of this explanation is perhaps to avoid the conception “a function cannot

have more than one rule; a piece-wise function corresponds to more than one function”

(Mesa 2004, p. 278).

Using the above description of function to guide instruction will help the teacher

situate learning about functions in contexts that are familiar and interesting to the

students. Since function is defined by what is needed for application or development of

new fields of study, then in determining the appropriate definition and context with which

high school students should explore the function concept, teachers should constantly be

examining the purpose of studying functions in their own classroom (Mesa 2004). It is

important to focus on descriptions of functions that are appropriate for students according
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to where they are in their level of understanding and achievement. The research

described in this thesis is guided by descriptions of functions similar to the one provided

by Kaput above. Such descriptions of functions can be used by teachers to help students

conceptualize the concept in a way that engages the student to learn more about the

concept and be able to make the necessary transitions with other concepts.

Today, the teaching of functions essentially falls in one of two approaches used

by educational publishers of school algebra texts in North America. Table 1 provides a

basic overview of these common approaches to teaching about functions.

Table 1. Common publisher approaches to teaching about functions

Approach Algorithmic Conceptual
Definition of A relationship between input | A relationship between
Function and output where the output dependent and independent

depends on the input. There is
exactly one output for each
input.

variables.

Focus of learning

Basics of numerical and
symbolic manipulation so that
students have a foundation
composed of the algorithms

A core set of concepts so that
students have contexts and
motivation for learning the
algorithms.

needed for further
mathematics study.

Assumptions Students will develop Development of the concepts
understanding of concepts of variable, rate of change,
later, as they learn to apply and functions will lead
algorithms. naturally to the development

of core symbolic algorithms
that students will eventually
need.

Types of problems Problems that require Realistic problems grounded

manipulation of algorithms.
Many of the problems used in
this approach are void of
meaningful context for
students.

in contexts that are
meaningful to students. They
are often interesting problems
that include hands-on
activities.

Most frequent modes
of representation

Symbolic representations, set
notation, correspondence rule.

Words, graph, table, pattern,
symbolic.
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The first approach is rather algorithmic in nature considering algebra to be a set of
basic symbolic algorithms which the student must master as a basis for further
mathematical study. In this view of algebra, the learning of functions is about the basics
of symbolic manipulation, much as middle school is about the basics of numerical
manipulation. The students can develop understanding of the concepts later, as they learn
to apply the algorithms. The second approach is more conceptual. In this approach,
algebra is a set of core concepts, among which are number pattern, sequences, variables,
functions, etc. Development of these concepts will lead naturally to development of the
core symbolic algorithms that the student eventually needs to acquire. In other words, the
goals are much the same as in the algorithmic approach, but the conceptual approach
focuses on having students spend more time up front on the concepts so they have
context and motivation for learning the algorithms. This approach tends to depend
heavily on interesting problems and hands-on activities. Laying out an organized set of
transitions in the student's thinking about key mathematical concepts, including the
function concept, is essential for the learning of algebra. One of these important
transitions in student conceptions involves moving from recognizing patterns of numbers,
to systematic recursive definitions for the patterns, to explicit functional definitions of
mappings between two sets of patterns, to the relationships between variables, to a
complete concept of function. The successful implementation of the conceptual approach
is essentially focused on helping students make such transitions in their thinking (moving
from existing conceptions to more complete or accurate conceptions).

Both of these approaches are commonly used to cover many of the same topics.

One could argue that they may even form a progression in the teacher’s conception of
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important algebra concepts with the algorithmic approach preceding the conceptual.
Although research and even the curricula envisioned by most states and provinces are
basically conceptual in nature, the reality is that the majority of North American students
still learn about important algebra concepts like functions through the algorithmic
approach used by leading publishers like Pearson Education, McGraw-Hill Education,
Houghton Mifflin, and Reed Elsevier, who have respectively approximately 40%, 35%,

20% and 5% of the market share in the North American market (Resnick & al., 2004).

2.3.2 Calis for reform in the teaching of mathematics and the influence of

textbooks

As the concepts and transitions become more apparent in the teaching and
learning of algebra, visualization and rich discourse become increasingly more
important. One can train an individual to perform an algorithm without much discussion,
however, developing understanding of concepts requires real discourse between people.
The necessity of teaching the formal set definition of function at the school level is not
obvious and many teachers feel that pedagogical considerations were ignored while
designing the basic curriculum (Malik, 1980). More specifically, researchers question if
students actually understand this formal definition of function (Markovits & al. 1986).
Recall from the discussion of the cognitive dimension in Section 2.2, many researchers
today find that the formal definition is not appropriate to introduce the concept of
function.

Concerns from mathematics teachers and researchers about understanding and

pedagogy were key issues in the NCTM, Curriculum and Evaluation Standards for

51



School Mathematics (1989) and in the NCTM, Principles and Standards for School
Mathematics (2000). Since the publication of these two sets of Standards, there has been
a renewed focus on the teaching of mathematics so that students gain an appreciation for
its applications in the world around them. As a result of the emphasis being removed
from the formal definition of function, the focus of the study of function as described by
the NCTM (1989, 2000) became more conceptual and contextual in nature. Also,
Froelich et al. (1991) explained that the basic idea of function is that two quantities are
related in some way. Recall that this is how the concept of function was first developed
by Galileo when he studied physical problems associated with motion. Current
recommendations by the mathematics education research community with regards to the
study of function in school mathematics, such as the effective use of modeling, data
analysis, contextual and interdisciplinary applications, are not new ideas. These ideas
were expressed from the very beginning of the development of the function concept.
Neither are the new pedagogical goals outlined by researchers, new ideas. These ideas
include developing connections within mathematics through the use of function, using
function as a unifying theme, and engaging students to learn more about mathematics in
new ways. The goals today are so similar to the calls of the mathematicians and
educators of the early 1900s that, just as it did for Klein, the question comes to mind
"have we come full circle in the study of functions?" It appears that in terms of
recommendations for the intended curriculum for school mathematics, we have indeed
come full circle (Brawner, 2001).

The study of function in school mathematics in the context of physical problems

associated with motion is not a new idea, nor is the use of modeling and data analysis in
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real world contexts. However, if one assumes that today’s recommendations for intended
curriculum supporting the teaching and learning of functions have come full circle from
the recommendations made in the 1900s, it can be concluded that research communities
were simply not successful in influencing change necessary to make a difference in how
the concept is taught. In today’s environment, this would require successfully
influencing the majority of publishers to change the way they present functions.

The recommendations and intentions for mathematics curriculum have been
varied and at times unaligned with each other. As a result, many of the recommendations
have had limited impact on the actual mathematics taught in schools. There has been a
clear pattern throughout the history of curriculum reform efforts of misinterpretation or
partial implementation of curriculum recommendations, leading Stanic and Kilpatrick
(1992) to conclude that the achievement of intended outcomes of reform movements have
been limited. Textbooks tend to influence classroom teaching dramatically. In fact, 90%
of mathematics teachers in North America who use textbooks reportedly teach to the
book (Mickey, 2003). It is therefore important to examine the definition of the function
concept and the related definition of variable in the most popular textbooks today. The

following table outlines how function and variable are defined in today’s most popular

textbooks.
Table 2. Common publisher definitions of variable and function
Textbook, Publisher, | Definition of Function Definition of Variable
Year

A function is a relation

Algebra 1, Pearson-
Prentice Hall, a
division of Pearson
Education, 2004

that assigns exactly one
value in the range to each
value in the domain.
Note that a relation is
defined on the preceding
page as a set of ordered

A variable is a symbol,
usually a letter, that
represents one or more
numbers.
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pairs.
Algebra 1, Glencoe A function is a relationship | Variables are symbols
McGraw-Hill, 2005 between input and output. | used to represent

In a function, the output unspecified numbers of
depends on the input. values. Any letter may
There is exactly one output | be used as a variable.
for each input.
Algebra 1, McDougal | A function is a rule that A variable is a letter that

Littell, a division of establishes a relationship is used to represent one

Houghton Mifflin between two quantities, or more numbers. The

Company, 2004 called the input and the numbers are the values
output. For each input, of the variable.

there is exactly one output.
More than one input can
have the same output.

In these popular books, the function definition is presented without any context
and is of little use for helping students solve real problems. The definitions are variations
of the formal Bourbaki definition. The problems faced by the students in these books are
mostly intended to help the students learn the definition rather than to deepen their
understanding of the function concept. As explained in the cognitive dimension in
Section 2.2, such a formal set definition is very abstract to students and therefore not
appropriate to use when introducing the concept.

Publishing is a $8.4 Billion industry in North America with three clear market
leaders that compete aggressively with each other for precious market share (Shea, 2004).
Clearly, the top publishers do not see it as their role to change how functions should be
learned by students. Rather than implement the recommendations of researchers,
publishers rely extensively on critical feedback from teachers - their core customer base.
In this competitive environment, textbook publishers cannot afford to promote function
as a unifying theme in mathematics education unless requested by the great majority of

their customers. Although researchers suggest that teachers should take responsibility
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for what happens in their classrooms and that teachers must pay attention to the
recommendations being made by researchers, this is not a simple nor realistic task given
the current reliance on the textbook and the reality of teachers” work.

Function is a powerful and unifying topic in secondary mathematics, as
highlighted above, however currently no textbook can help teachers come to
this understanding. Teachers do have access to a wealth of knowledge in
helping them guide the study of functions in their classrooms. However, given
what is known about the teacher’s reliance on textbooks in mathematics, it may
be more effective in reaching the masses for mathematics education researchers
to mobilize, align themselves and approach the NCTM with explicit
recommendations regarding the teaching and learning of the function concept in
schools today. The NCTM could then conceivably influence its worldwide
membership — many of whom are leaders in mathematics education - to
consider new approaches to teaching such important concepts. Only after the
majority of the teachers begin to adopt new approaches to teaching functions,
will the large scale publishers change the way the concept is presented in their

textbooks.

2.3.3 Function as change

Since the middle ages, function was explained in the context of real problems
involving motion. Most of the discussions involved dependencies between quantities and

associated rates. For example, the early work of Oresme resulted in a representation of
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the functional variation in velocity with time to study the motions of bodies under
uniform acceleration.
One purpose of the function is to represent how things change (Tall, 1996).

Based on this meaning it is natural to consider the important concept of rate of change.
Grasping the idea of function requires grasping the idea of variation and that the idea of
variation is easily understood when some continuity (in a naive sense) is involved in the
variation (Laborde & Mariotti, 2002). Perception of change may be related to different
modalities (sense of touch, sense of sight...) of perception, but certainly sight plays an
essential role in learning about functions. It leads to the claim that space change over
time (motion) can be considered as one of the basic primitive perceptions of dynamic and
continuous variation.

In our everyday conceptual system, change is understood metaphorically in

terms of motion.

(Lakoff & Nuifiez, 2000, p.406)
Variation is appropriately demonstrated by dynamic features of dynamic

geometry environments, as is the dependency between two variables. Essentially,
dynamic geometry environments are very effective in representing a functional
dependency since constructions in such environments are expressed as functional
dependencies between geometric objects. The representation in such environments can
then be put in relation with other kinds of representations, such as algebraic or graphic
representations, depending on the context. For example, it has been claimed that ideas
related to variation (increase, decrease, constancy, maximum, minimum), and variation

within variation (fast and slow variation, rate of change, smoothness, continuity, and

56



discontinuity), are better grasped from graphical representations (Ponte, 1992). Clagett
(1968) attempts to capture the variational nature of a quality’s “intensity” (e.g.,
temperature) over position and time. Kaput (1994) extended Clagett’s analysis to trace
the evolution of today’s ideas of variable and variability in the calculus, concluding that
today’s static picture of function hides many of the intellectual achievements that gave
rise to our current conceptions.

Unfortunately there is very little emphasis on variation in today’s K-12
mathematics curriculum in North America. In examining the most recent editions of the
three most popular K-9 textbooks series in the U.S., we observe that the closest they
come to examining variation is to have students construct tables of data, and even then
there is a profound confusion between the ideas of random variable and variable
magnitudes. This is in stark contrast to the Japanese elementary curriculum (Kodaira,
1992) which repeatedly provokes students to conceptualize literal notations as
representing a continuum of states in dynamic situations (Thompson, 1994). It is also
surprising that so little has been investigated in regard to students’ concepts of variable
magnitude — the focus instead being on variable as literal representation of number
(Arcavi & Schoenfeld, 1987).

Students have difficulties grasping the idea of function as a relationship between
variables (one depending on the other). They have a discrete view of a function, in which
a function relates separate pairs of numbers with each number considered as an input
giving another number as result; students consider that there is a relationship between

numbers, but the relation is conceived separately for each pair. In any case, the

relationship of dependency between the two variables is not visible in the graph, that
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remains a static representation of the couple (x,y) and does not afford the meaning of

dependency between the two variables that rather play a symmetrical role.

2.3.4 Summary of didactic dimension

The didactic dimension outlined the way functions are usually introduced in
North American middle and high schools today. It also supported new approaches to the
teaching and learning of mathematics. The Dirichlet-Bourbaki definition of function as a
correspondence between sets continues to be the basis for the presentation of function in
the most utilized mathematics textbooks in the North American middle and high school
textbooks. Although different researchers have made important contributions towards
more modern definitions such as the notion of function as change, the Dirichlet-Bourbaki
definition, which has been static since the 1950s, is still the most accepted definition
today. The recommendations by the research community including the investigation of
functions through problems involving motion, modeling and data analysis are not new
ideas. It appears that we have come full circle in the study of function back to its very
roots. However, given the teacher’s reliance on popular textbooks in mathematics, it is
increasingly important for researchers to approach the NCTM and departments and
ministries of education with a consistent reccommendation regarding the teaching and
learning of the function concept in middle school and in high school classrooms in North

America.
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2.4 The role of technology in the teaching and learning of functions

Mathematics and, more specifically the study of functions, are rapidly changing
due to new technologies available to students (Hegedus & Kaput, 2002). Technology
provides students with the ability to learn about functions by providing easy access to
multiple forms of representation. The use of technology provides room for more
explorations, in a faster manner, of those different forms of representation (Brumbaugh &
al., 2006). As explained in the preliminary analysis, it is important to understand that the
way understanding happens may be different depending on the representation used.
Studying multiple linked representations of a function is even more powerful because it
makes the link between representations more dynamic. Direct manipulation
revolutionized the teaching and learning of geometry. These same ideas now allow
students to directly manipulate the representations of functions themselves.

Today, we can exploit the benefits of technology such as the graphing calculator
and computer software in exploring the concept of function. Research shows that the use
of technology in mathematics education causes students to become better problem solvers
and achieve a better overall understanding of functions when compared to students that
do not use technology in a traditional algebra curriculum (Brumbaugh & Rock, 2006).
Therefore, we should assume that very shortly, the teaching of functions will increasingly
involve the effective and appropriate use of various types of technologies. At the very
least, a graphing calculator or computer environment can free students from tedious
point-by-point plotting and move the instructional focus to understanding. Several
technological developments have had a very significant role in the study of functions.

For example, with the aid of such technology, students can readily examine a variety of
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functions and altered functions. The effective and appropriate use of graphing calculators
and computers with appropriate software such as spreadsheets, graph plotters, and
symbol manipulation programs help students to develop a deeper mathematical
understanding of the function concept (Peressini & Knuth, 2005). Direct manipulation-
enabled software allows for new dynamic representations of functions. In earlier
multiple representation software, graphs were essentially static display representations.
The results of any actions were presented as new representations of mathematical objects.
Today, interactive software making effective and appropriate use of dynamic
manipulations allows students to act within a representation by transforming objects
dynamically (Kaput, 1992). Translations in functions, for example, are now permitted
with Cartesian representations in software programs such as Function Probe (Confrey,
1992), CabriGeometry IIPlus (Laborde, 2003), Geometer’s SketchPad (Jackiw, 1990),
and MathWorlds (Roschelle & Kaput, 1996). Even more recent developments bring the
power of direct manipulation to data. Using Fathom (Finzer, 2001) or TinkerPlots
(Konold, 2004), students can now directly manipulate data while simultaneously seeing
the effects on the graphical representations. Because of their affordability and
capabilities, handheld graphing and data collection devices provide greatly increased
access to the type of functionality provided by the above powerful software programs,
especially in resource-challenged schools that may not have funds for extensive
purchases of computer hardware (Berson & Balyta, 2004).

The interpretation of significant features of functions from their Cartesian graphs
deserves a prominent place in mathematics curricula. To be mathematically literate

means to be able to use mathematics concepts to make predictions, interpolate, and
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extrapolate. In the context of functions, it means to be able to establish relationships
among different functions by superimposing graphs, to be able to construct regression
curves that approximate relationships for empirically obtained data, and to estimate the
degree of association between two variables (Gomes Ferreira, 1997).
U.S. Secretary of Education, Rod Paige, commented that schools are still
struggling when it comes to truly integrating the appropriate use of technology.
Many schools have simply applied technology on top of traditional teaching
practices rather than reinventing themselves around the possibilities
technology allows. The result is marginal - if any -
improvement.... Technology can not only improve instruction but transform
what we think of as education.
(U.S. Department of Commerce, 2002, p. 4)
Technology clearly still has the potential to transform education. If it is to do so,
teachers must be able to take advantage of that potential. Therefore, to advance students’
conceptual understanding and achievement, technology implementation requires
integration into teaching practice and standards-based curricular materials. Many of the
technologies being purchased by schools and school districts are business tools that have
been repurposed for education. In contrast, handheld graphing and data collection
devices are built specifically to support the effective teaching and learning of
mathematical concepts that would otherwise not be accessible to most students, and in
addition, their affordability allows many students access to the technology.
Many studies examined the constructive contribution made by the use of

computers and by the dynamic visualization of functions used to overcome or at least
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lessen the classic problems of coordination between the various forms of representation
(Duval, 2000; Mavarech & Kramarsky, 1997; Vinner, 1992). Others have concentrated
on the possibilities offered by the emerging technologies in order to work on function as
a mathematical object (Borba & Confrey, 1996; Dagher & Artigue 1993; Kieran 1994,
1998). However, many of these studies are pitched at higher grade levels. There are
fewer studies on problems encountered by students approaching the function concept at
lower grade levels.

Different proposals have been suggested in order to help students learn about
functions by a conceptual approach. In many such cases, technology provides new
environments to explore the function concept in very different ways compared to
traditional algorithmic approaches using traditional tools like paper and pencil. For
example, new technology is affording creation of new qualitatively different
representations of functions. Kaput (1992) pointed out that historically, mathematical
notation systems have been instantiated in static, inert media, but new technologies now
afford a whole new class of dynamic, interactive notations of virtually any kind. When
software is used té represent function concepts, it is usually done graphically, often with
the option to represent them in table form. The way in which the graph is often drawn as
a curve may cause students to see it as a whole object. Kaput claimed that dynamic
technologies are also the natural “home” for variables, rather than static technology,
which requires the user to apply much of the variation cognitively. Unlike the paper and
pencil environment, the interactive environment can afford the representation of change
through motion; the idea of variation is grounded in motion, so that it is possible to

experience variation in the form of motion.
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The key notions supported by the interactive environments such as MathWorlds
are motion and the fact that motion preserves the links constructed between elements. As
a consequence, such interactive environments incorporate and represent the idea of
variation and that of functional dependency. This type of functional dependency
constitutes a very particular instance of function, differing from numerical function,
because it relates spatial elements instead of numbers. Thus interactive environments
such as MathWorlds offer a powerful environment incorporating the semantic domain of
space and time, where the notion of function can be grounded.

Some programs, such as RandomGrapher (Goldenberg & al., 1992) plot random
function values to build the graph as a collection of points. Although this gives a set of
points, further activities may be necessary to see the function process assigning to each
value of x the value of y=f(x). The authors also created DynaGraph, a dynamic visual
representation where the users can vary the variable having as feedback the value of the
function.

Other programs allow for the linking of alternative forms of representations, for
instance Function Probe (Confrey 1992) allows graphs to be directly manipulated, using
the mouse to transform graphs by translating, stretching, and reflecting. Such an
approach treats the graph as a single object to be transformed. Function Probe,
developed by the Mathematics Education Research Group at Cornell University, can be
considered a multiple representational (equation, graphs and tables) software tool that
enables students to explore the idea of real functions. Its goal was to encourage students
to enter mathematical thinking by using a tool built for them to investigate and model

phenomena using mathematical functions (Confrey & Maloney, 1996). Students can
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explore functions with actions either within one representation or with links made
between different representations. Thus, it preserves the integrity of each representation.
Such dynamic representations made possible by software such as Function Probe give a
new status to the Cartesian representations that become qualitatively different Cartesian
representations instantiated in paper and pencil.

The primacy of numerical representation (Goldenberg & al., 1992) and the lack of
experience with functional dependency in a qualitative way may be considered a source
of students’ difficulties. This is why it has been proposed that it is important to start in an
environment providing a qualitative experience of functional dependency independently
of a numerical setting (Laborde & Mariotti, 2002). Dynamic geometry incorporates
functional dependency and working in a dynamic geometry environment fosters the
thinking about geometrical links in terms of functional dependency. Usually functional
dependency remains implicit, i.e. “in action” (Vergnaud, 1991), but once made explicit it
provides a rich semantic context for the idea of function. MathWorlds also incorporates
this qualitative type of functional dependency focusing on the variation between
variables.

By assuming that the basic idea of function as outlined by NCTM (2000) is that
two quantities are related in some way, Kaput (1992; 1993) and Nemirovsky (1993)
approach the study of function in much the same way that Galileo did. In fact, Kaput and
Nemirovsky focus their research on the way students have intuitive sense of concepts
such as distance, velocity, acceleration, which can be utilized in conjunction with
computer simulations such as the MathWorlds microworld (Roschelle & Kaput, 1996) to

study different aspects of motion at an earlier age. They utilize technology-enabled
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simulations in familiar contexts linked to multiple representations of position versus time
so that students make effective use of multiple representations in meaningful introductory
contexts. Thus many of the important aspects of the function concept may be explored
by students at an early age and the resulting initial image should be appropriate for a wide
spectrum of students.

The technology framework underlying this research integrates hardware, specific
software, and device-connectivity designed specifically for the teaching and learning of
functions. The first representation system is the handheld graphing calculator in
combination with a data collection device and the second system is a computer-based
microworld designed specifically for the teaching and learning of the mathematics of
motion in combination with a data projector. Both these representation systems provide
multiple forms of representation. Interpretation and translation of representations are
skills that can, for example, extend students’ algebraic thinking by helping them construct
their mental images of patterns and functions (Moschkovich et al., 1993). The most
effective situations will be those that require meaningful and contextual interpretation of
representations in a problem-based approach (Coulombe & Berenson, 2001).

I hypothesize that fluency with multiple representations in creating and testing
models of mathematical relationships is critical in maximizing students’ ability to acquire
knowledge when solving real-world problems. One major similarity related to how
students acquire knowledge using the different forms of representation outlined above (as
well as others) is the reliance on communicating personal interpretations to others.
Students can build a shared understanding through joint reference to the representation of

the phenomena within a context (Monk, 1994). Other research has demonstrated that
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representations, when used as rhetorical devices in collaborative environments, advance
shared understanding (Kozma & al., 2000). By combining the use of familiar types of
representations and analogies to familiar events, students can acquire knowledge of even

complex mathematical relationships.

2.4.1 Choice of technologies for this study

Graphing calculators are a special type of multiple representation tools and have
many similarities with the technologies outlined above. However, graphing calculators
are different from the programs discussed above which require a powerful and expensive
computer. In the past, graphing calculators offered representations in numeric, graphic,
algebraic, and table form, but today, they can also offer geometric representations. For
example, the 77-84Plus Silver Edition graphing calculator from Texas Instruments and
the Classpad300 from Casio come preloaded with powerful geometry tools. Such
environments can provide new opportunities for the teaching and learning of the notion
of function, by making effective use of a dynamic geometry environment.

Traditionally, one of the largest challenges in the teaching of the connections
between representations has been the time it takes for students to construct the
appropriate tables and graphs associated with their functions. For example, by the time
the students have constructed a table for a sine curve and plotted sufficient points to get a
sense of how the curve acts, they lose much of the connection between the various
representations. The introduction of easily accessible technologies like the graphing
calculator has vastly changed this inhibiting factor in intuition development. A graphing

calculator or computer can quickly convert an algebraic expression into tables and
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graphs, allowing the student to explore how minute changes to the function affect the
graph of the function. Overall, graphing calculators or computers have increased the
opportunity for students to work with and to interpret a variety of different
representations efficiently.

With the use of graphing calculators or computers in the classroom, we must
reevaluate our goals for instruction. Today, if the student is able to find an algebraic
expression for the function, the initial graphing process is simple. Instead of evaluating
the expressions for several numbers, students can now focus on understanding how
certain graphs act under different transformations, but, while students using graphing
calculators or computers no longer have difficulties graphing functions, there are far
more critical elements in mathematics that they can and must consider. Without critical
thought and interpretation and the ability to make connections among representations, the
act of graphing functions on graphing calculators or computers becomes as meaningless
as, or even more meaningless than, the original computation. By carefully designing
activities, one also avoids the natural belief by students that the computer is omnipotent.
Like any other tool, the graphing calculator, the computer and their outputs have
limitations, and part of the student’s task is how to combat the limitations of various
representations to the best of his ability. Currently the graphing calculators do not
provide for powerful linked multiple representations of the same phenomena on the same
screen. Thus the incorporation of technology changes pedagogy by making new
demands on students’ thinking, while removing some of the mechanical factors that may

impede learning.
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In the didactic milieu employed in this experiment, the students and the teacher
each had a T1-84 Plus Silver Edition handheld device from Texas Instruments loaded
with the MathWorlds application from SimCalc Technologies. These tools were chosen
because of the multiple forms of representation that they make available to the students
and the fact that they constitute a technology that supports effective communication in
the classroom. Also, in combination with MathWorlds and the Calculator Based
Ranger™, (CBR), the graphing calculator provides the “live” context and immediate
feedback needed to test my research hypotheses H1, H2 and H3 (cf. p. 5). The teacher’s

version of the 7/-84Plus Silver Edition calculator had a projection screen attached.

Figure 5. TI-84 Plus Silver Edition graphing calculator

Each graphing calculator is loaded with the MathWorlds application.
MathWorlds is an environment rich in interactive motion simulations, visualization tools
such as qualitative graphs, and a motion animator (that replays imported motions) to
enliven and deepen understanding of important mathematical concepts. MathWorlds also
extends the graphing calculator by providing for direct experiences on these ubiquitous
devices. The software allows for the representation of motion in two different ways. The
bottom portion of the calculator screen presents a graphical representation of a motion.
The top portion of the calculator screen presents a simulation of the motion as a

representation of motion going from left to right.
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Figure 6. MathWorlds for the TI-84 Plus Silver Edition

In combination with the graphing calculator and the CBR, MathWorlds provided
the students with a multiple representation system that allows for the direct experience,
“live” context, and multiple linked representations needed to test the hypotheses.

The teacher’s computer, loaded with Connected MathWorlds software and
connected to a projection device, serves as a visualization, simulation coordination, and
classroom discussion tool. The teacher can also construct a function (or choose from
among student functions) and broadcast it to each student in the class. The software’s
ability to display any subset of student functions supporting comparison, contrast,
reflection, and group analysis is particularly suitable for the situations of formulation and
validation in reference to the theory of didactic situations employed in this experiment.
Connected MathWorlds provides the second representation system in this experiment.
Also, in combination with the T/-Navigator classroom network, it provides for the
collection, aggregation, and viewing of mathematical constructions needed to test the
fourth hypothesis which claims that aggregated mathematical constructions challenge
students to coordinate multiple representations and deepens their understanding of

functional relationships.
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Controls

Figure 7. MathWorlds for the computer

The teacher makes use of a CBR (Calculator Based Ranger™) from Texas
Instruments connected to his 77-84 Plus Silver Edition to collect and analyze real motion
data. The CBR works by sending out ultrasonic pulses and then measuring how long it
takes for those pulses to return after the have bounced off the closest object. The CBR,
like any sonic motion detector, measures the time interval between transmitting an
ultrasonic pulse and the first returned echo, but CBR has a built-in microprocessor that
also calculates the distance of the object from the CBR using a speed-of-sound
calculation. Then it computes the first and second derivatives of the distance data with
respect to time to obtain velocity and acceleration data. It stores these measurements in
lists within the graphing calculator for further analysis by teachers and students. The
CBR therefore allows the students to explore mathematical and scientific relationships
between distance, velocity, acceleration, and time using motion data collected from the
activities they perform. In combination with MathWorlds, it also allows for the
collection and animation of real student motion. In the past, students did an experiment,

collected data, analyzed the data, and then learned something about phenomena or
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concepts. With this kind of technology, students can start analyzing real-world data

while they are physically involved in collecting it.

Figure 8. The Calculator Based Ranger™

Finally, the TI-Navigator classroom network from Texas Instruments provides for
connectivity in the didactic milieu. The physical layout of this technology framework is

illustrated in Figure 9.

Figure 9. The TI-Navigator Classroom Network
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The TI-Navigator network acts as an aggregation and broadcast server on a centralized
computer that allows the teacher to harvest and combine students’ individually
constructed mathematical functions with those of their classmates.

The TI-Navigator Classroom Network depicted above has the following important

components:
1. The teacher desktop computer loaded with TI-Navigator software.
2. Wireless hubs that network the TI-84Plus Silver Edition graphing calculator.
3. The access point.
4. The teacher overheard projector and overhead panel for the TI-84Plus Silver

Edition graphing calculator.
5. Charging units for the wireless hubs.

The TI-Navigator Classroom Network will allow testing of the fourth research hypothesis
H4.

By combining physically constructed motions using CBR motion detector
technology, graphically constructible position vs. time functions and their animations in
MathWorlds on the handheld graphing calculators with the power of TI-Navigator to
collect and display them using MathWorlds on the teacher’s computer, students and
groups of students will be engaged in exciting new forms of mathematical activity,
including a “mathematical performance”, that bring new levels of engagement and
excitement to learning critically important ideas. Thus the power of these different pieces
of technology is integrated to establish a classroom environment which may enhance

teaching and learning, and where the research hypotheses may be tested.

2.5 Summary

Chapter 2 provided an epistemological and historical analysis of the concept of

function outlining the epistemological roots of functional relationships and their
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dependence on time. Understanding in the general sense was characterized in terms of
mental activity that contributes to the development of understanding rather than as a
static attribute of an individual’s knowledge. Chapter 2 also outlined students’ different
conceptions of functions as well as what it means to have a good understanding of
functions. The way functions are usually introduced using the Dirichlet-Bourbaki
definition of function and support for new approaches to the teaching and learning of
mathematics was also discussed. Chapter 2 concluded with an overview of the role of
technology in the teaching and learning of functions today as well as a presentation of the
technology framework underlying my research, complete with a description of the
technologies used in this study.

The next chapter will describe the design of the teaching situations employed in

this study to test the hypotheses.
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Chapter 3 Teaching sequence: design and a priori analysis

Recall that the a priori analysis contains a predictive part which attempts to
clarify the real benefits of the situation for the student, the types of behavior which might
appear and the meaning that could be given to these, and to show that the expected
behaviors really result from the knowledge the situation aims to develop. Since the
following section describes how the a priori analysis was conducted, the future tense is
used to report the process authentically. Also, it is important to remember that the design
phase relies on the preliminary analysis of the concept, in this case, function, previously

elaborated in Chapter 2.

3.1 Overview of design of teaching sequences

The teaching sequence is to be implemented in its entirety over a 5 day period.
The goal of the first day is essentially to familiarize the students with the new additions to
their regular learning environments, namely the research team and the five video cameras
which will be present in their classroom. The actual teaching sequence will be
implemented in the experimentation phase during the second, third, and fourth days, and
composed of two didactic situations intended to have the students progress through
situations of action, formulation, and validation in order for them to deepen their
understanding of the concepts. Both didactic situations will essentially be composed of
the following structure, according to the theory of Didactic Situations outlined in Chapter

1.
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. A preliminary activity where the students become familiarized with the
technology tools which are going to be used in the activities and the activities
themselves.

. Situations of action where student are involved physically in the creation of
graphical representations. The student searches for answers first individually,
then in groups.

. Situations of formulation where students need to formulate their strategies in
order to solve given problems involving functions. This is followed by the
presentation of the answers to the whole class and discussion.

o Situation of validation where the students try to explain some phenomena, or to
verify conjectures. This is essentially both a discussion and validation of the
answers by the students.

° Conclusion or synthesis of the activity is led by the teacher who is helped by the

students. This is the institutionalization phase.

The first series of didactic situations involves the CBR motion detector (Teaching
sequence 1 described below in Section 3.2) and is used to provide physical grounding for
the simulation-based activities that will engage the students to learn more about functions
and be able to make the necessary transition with other concepts such as slope as rate of
change. The goal of this teaching sequence is for students to develop an understanding of
the relationship that exists between the motions and their representations and to develop a

deeper understanding of independent and dependent variables.
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The second series of didactic situations involving the creation and modeling of
piecewise defined functions (Teaching sequence 2 described in Section 3.3) focuses on
challenging students to coordinate multiple representations to deepen their understanding
of functional relationship and the concept of rate and slope as rate of change, with
emphasis on modeling situations that involve interesting variability. This teaching
sequence will incorporate multiple representation systems in the didactic milieu that
allow for individual and aggregated mathematical constructions. As hypothesized in the
cognitive dimension of the preliminary analysis outlined in Chapter 2, the
representational strategies involved in such a didactic milieu will enhance the depth of
learning about functional relationships.

All of the activities included in the teaching sequences are designed to test the
first three hypotheses:

Hypothesis 1 Individual mathematical constructions that are directly experienced in a
“live” context have immediate kinesthetic, cognitive and linguistic aspects that will help
students develop an understanding of the relationship between distance and time in
problems of motion.

Hypothesis 2 Individual mathematical constructions in a “live” context facilitate the
development of understanding of independent and dependent variables.

Hypothesis 3 Multiple linked representations of the same function in a simulated
environment allowing for manipulation by the students improve their learning about rate
of change.

Only the last two activities, which include the classroom network, will actually

test the fourth and final hypothesis, namely, that aggregated mathematical constructions
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challenge students to coordinate multiple representations and deepen their understanding
of functional relationships.

The last day (Day 5) will provide the research team with the opportunity to ask
explicit questions to the students to probe their understanding of functions and their
ability to transfer the knowledge acquired with technology to the traditional paper and
pencil environment.

For all activities we precise initial required knowledge, milieu, variable, and
expected outcomes (students’ strategies, responses, behavior, difficulties, errors). Asa
result, a detailed a priori analysis will be presented for each activity comprising:

e goal of the activity

e the milieu (the role of the technology tool as a part of the milieu)
e didactic variables

¢ the type of situation and means of validation (when appropriate)
e class organization

e activity of the students (the instructions)

e role of the teacher

e prerequisites

e expected outcomes (behaviors, strategies, difficulties, and/or errors)

3.2 Teaching sequence 1: Exploring physical motion

The goal of this teaching sequence is for students to become familiarized with the
motion detector and enhance their understanding of:

e the relationship that exists between the x- and y-axes;
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¢ the concept of variable, and the notion of dependence between two variables;

e the concept of function as a relationship between a dependent variable and an
independent variable.

o the relationship that exists between the motions and their representations.

The physical motion is explored under four aspects: the actual physical motion in front of

the CBR motion detector, a verbal description of the motion, a graphical representation

and a horizontal simulation of the motion. The teaching sequence is aimed at making

relationships between verbal description, graphical representation and simulated

horizontal representation of the motion. The physical motion is used as a means of

validation of students’ answers.

The students’ understanding of these concepts and relationships will be developed
if they are successful in constructing relationships between the new knowledge and
knowledge that they already have. They will also have to be successful in articulating
verbally or in writing, what they know about the concepts and relationships.

The role of the CBR motion detector in this lesson is to ground the notion of
functions in the students’ own physical motion by having them import their own physical
motion data in a situation of action. In this situation of action, students use the CBR
motion detector to track their motion and then use the CBR Animator in MathWorlds to
plot and then animate their actual physical motion. This allows the students to compare
how differences between a synthetically built graph and a physically built graph are
reflected in differences between the motions, and vice-versa. It will be important for the
teacher to chair the exchanges and highlight some of the students’ formulations

throughout the different phases in this lesson. After organizing the didactic milieu, it will
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be important for the teacher to present a problem that focuses on the relation between the
graphs representing physical motion and the one representing synthetic motion. The
students will have the means to construct a solution by themselves by physically walking
in front of the CBR and then have the opportunity to try and explain their understanding
of the relationship being investigated in a seminar type setting.

This teaching sequence is initially a teacher-led situation followed by a situation
of action using the CBR motion detector and the CBR Animator, however, it quickly gets
transformed into a situation of formulation. The class demonstration will involve two
students, one to hold the CBR and the other to “walk” the motion. The rest of the class
will be engaged in the discussion and will be allowed to make suggestions to the student
doing the motion.

In order to appropriately participate in the discussion, the students will need to
know the important components of a graph (i.e. identification of units and graduations on
the axes). They will have been introduced to the concept of variable one month earlier by
the teacher in the context of algebraic manipulations, using the definitions found in
traditional textbooks (see table 2). The students will have received no formal

introduction to functions or to functional relationships up to this point.

The following table summarizes the four activities that comprise the first teaching

sequence. The goal, type of activity, and classroom organization are outlined for each

activity.
Table 3. Four activities comprising the first lesson
Goal Activity Class
Type Organization
Activity 1 | The students will familiarize Action Students working
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(TS1,A1) |themselves with the tool that will be individually and
used throughout the teaching sequence. in groups.
Find out the relationship between the Whole class
physical motion in front of the CBR discussion.
motion detector and the graph being
displayed
Activity 2 | The students will identify the two Formulation | Students
(TS1,A2) | variables involved in the representation working in
of the motion: time and position. small groups (4
or 5 students).
Whole class
discussion.
Activity 3 | The students will identify the two Formulation | Students
(TS1,A3) | variables involved in the representation working in
of the motion: time and position, and small groups (4
the relationship between them. or 5 students).
Whole class
discussion.
Activity 4 | The students will reinforce the acquired | Formulation | Students
(TS1,A4) | knowledge. working in
The students will also be able to small groups (4
coordinate multiple representations of or 5 students).
the same motion — the graphical
representation and the simulated
horizontal representation
The students will develop a good
understanding of the notion of
dependence and independence.
For the teacher: assess what the
students have learned
3.2.1 Activity 1 (TS1.A1)

Table 4. A priori analysis for Activity 1 of Teaching Sequence 1

Title

Getting Started

Description of

The students are asked to observe and make conjectures about the

the task relationship between the motion walked physically in front of the
CBR motion detector and the representations of the motion displayed.
Goal The students will:

- familiarize themselves with the technology tool that will be used
throughout the teaching sequence.
- find out the relationship between the physical motion in front of
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the CBR motion detector and the graph being displayed

Milieu

- CBR motion detector and CBR animator: graphical representation
of the physical motion and horizontal simulation of the motion.

- Real-time feedback from the graphical representation as the
student walks in front of the CBR.

- Other students’ observations and conjectures.

Variables

- Two ways of representing a motion - graphical representation and
simulation of the motion helps the understanding of the
relationship because each representation of the motion
accentuates different information regarding the motion. For
example, the graphical representation explicitly represents time as
one second for every graduation along the x-axis and distance in
meters along the y-axis. The horizontal representation does not
accommodate for the explicit visualization of time. Rather, it
accentuates distance away from the CBR and the direction of the
motion. Therefore, the two forms of representation have the
students reflect on different aspects of the motion. Conversely,
having the two representations of the same motion presented at
once may confuse the students with too much information. It
may also make it difficult for students to focus on the relationship
between the physical motion in front of the CBR motion detector
and the graph being displayed, which is the goal of this activity.

- Number of physical motions in front of CBR

Type of
situation

- Situation of action for the volunteering students

Means of
validation

- Validation by the milieu of the student’s conjectures: walking in
front of the motion detector and making adjustments to
understand the relationship between his movement and the
graphical representation.

Classroom
organization

- Students working individually and in groups.
- Whole class discussion.

Student
activity

(See Appendix 1 for detailed instructions to students)
- Observe what happens with the graph when somebody moves in
front of the CBR.

- Write down the observations.

Role of teacher

(See Appendix 2 for detailed instructions to the teacher)

- Manipulate the CBR motion detector and the CBR Animator.

- Animate the discussion without giving any clues of the expected
answer

Prerequisite(s)

None
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Expected outcomes

Strategies and answers: The students will observe that the graph depends on the position

of the student moving in front of the CBR and on the speed of the motion. They will first

observe what happens and make conjectures. They will be able to verify their conjectures
by moving themselves in front of the motion detector. As in the historical development
of the concept of function, it is expected that the student will rely on verbal descriptions
of the motion or the graph to describe the motion. Also, as outlined in the cognitive
dimension of the preliminary analysis, the ability to articulate what one knows about the
functional relationship involved in motion is an important indicator of understanding. An
early indicator that the students are beginning to understand the relationship between

distance and time in problems of motion will be their ability to contextualize the x and y-

axes respectively as elapsed time and distance away from the CBR.

Four main difficulties are anticipated:

- Initial struggling with understanding the relationship that exists between the distance
away from the CBR and the graphical representation of the motion. This may be
observable when students make wrong conjectures regarding the slope of the
graphical representation when walking towards the CBR and walking away from the
CBR. 1t is anticipated that exploration with physical motion in front of the CBR and
the direct feedback given to the students will resolve this issue.

- Students may have difficulty conceptualizing two different representations of the
same motion (graphical and horizontal) because it may be too much information to

process at once causing them to focus on only one representation.
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Students who will be focusing on the graphical representation of the motion will have
difficulty understanding scale and intervals in the horizontal representation of the
motion because they may choose to ignore this information.

Because this is really an exploration activity for familiarizing students with the
technology, it is anticipated that students may confuse how distance in front of the
CBR is measured and represented. For example, students may believe that the
starting point for this activity is some location far from the CBR and that the graph
will measure distance away from the location. Therefore, it is also anticipated that
students may have difficulty understanding the concept of position in relation to the

CBR.

3.2.2 Activity 2 (TS1,A2)

Table 5. A priori analysis for Activity 2 of Teaching Sequence 1

Title Activity 2

Description of | Given a graphical representation of a motion and a horizontal

the task simulation of the physical motion, the students are asked to describe
a motion that matches the target motion. The requirement to describe
forces the students to reflect on precise attributes of the motion
(where to start, how long to walk, how quickly, ...).

Goal - To identify the two variables involved in the representation of the
motion: time and position.
Milieu - CBR motion detector and CBR animator: graphical

representations of the physical motion and horizontal simulations
of the motion. Feedback provided by the milieu in the form of
real-time representation of the physical motion in two forms
(graphical and horizontal simulation) allows the students to see if
their motion matches the targeted graph.

- Other students in the group.

Variables - The shape of B’s motion (easy or not to reproduce by physically
moving).

- B’s motion represented by a graph and a simulated horizontal
representation of the motion: non-verbal representation, the
students are given no indication of the variables involved in the
situation.
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- As explained earlier, the two ways of representing a motion:
graphical representation and simulation of the motion help or
hinder the understanding of the relationship.

- The fact that a student from another group is walking a physical
motion: the description of the motion must be precise enough so
that another student who had not participated in the group work
could understand the instructions.

Type of - Situation of formulation
situation
Means of - Validation by the milieu: walking the described physical motion
validation by a student
Classroom - Students working in small groups (4 or 5 students).
organization |- Whole class discussion.
Student (See Appendix 1 for detailed instructions to students)
activity - Find out how to walk a physical motion to match a given motion

as closely as possible.

- Compare two motions.

Role of teacher | (See Appendix 2 for detailed instructions to the teacher)

- Manipulate the tool.

- Make sure that all groups understand the problem and get
involved in its solution.

- The teacher will ask the students to be precise when describing
the motion.

Prerequisite(s) | - Being familiar with the tool.

- An understanding of the concept of variable.

Expected Outcomes

Strategies and Answers: The students should be able to describe the meaning of the x-
and y-axes and in doing this, identify the two variables involved in the representations of
the motion: time and position. It is expected that most of the students will not have
difficulty identifying time as a variable in this activity because they have already been
taught the concept of variable by their teacher. However, it is expected that some
students will confuse speed with position as the second variable. The expectation is that
this misunderstanding will be corrected as the students discuss the motion and the
meaning of the axes and reflect on their thinking. The students should be able to describe

the motion as a relationship between the x- and y-axes. Perfect matches are not expected.
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Instead, it is expected that students will explain where the graph is the same and where it
is different and why. An example of a partially complete description would look like:
“From 2 to 4 seconds, B’s graph was on top of A’s and B was ahead of A. Then, A
caught B at 4 seconds, where they were both at 2 meters.” It is also expected that the
students will start using descriptions involving slope defined as rate of change to describe
the motions (eg. faster, slower, steeper, etc.).

Three main difficulties are anticipated:

- Students may have difficulty describing the motion in the context of the functional
relationship between dependent and independent variables involved.

- Ttis expected that some students may still have difficulty with the concept of position
in relationship to the CBR. However, it is also anticipated that the group will be able
to help those understand this concept through group discussion.

- Another anticipated difficulty with this question would be the cognitive obstacle
seeing the graph as a literal picture. The group discussion should help students

overcome this obstacle.

3.2.3 Activity 3 (TS1,A3)

Table 6. A priori analysis for Activity 3 of Teaching Sequence 1

Title Activity 3
Description of | Given a graphical representation and a simulated horizontal
the task representation of a motion, the students are asked to describe a

motion with constraints (e.g., slower than the given motion, catches
the given motion at the end). In order to satisfy the constraints, the
students need to make relationships between the graphical
representation and attributes of the motion (position, time, speed).

Goal - To identify the two variables involved in the representation of the
motion: time and position, and to describe the relationship
between them.

Milieu - Other students in the group during the group work.
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- Other students in the class during the class exchanges and
discussion.

Variables - B’s motion represented by a graph and a simulated horizontal
representation, but additional constraints on A’s motion given
verbally: the students need to interpret these constraints in terms
of the graphical representation and they are thus forced to make
relationships between the graphical representation and attributes
of the motion (position, time, speed)

- Constraints allowing for multiplicity of motions: validation is not
straightforward

- As explained earlier, there are two ways of representing a motion
(graphical representation and horizontal representation of
simulated motion), which either help or hinder the understanding

of the relationship.
Type of - Situation of formulation
situation
Means of - Validation by the milieu: a student walking the described physical
validation motion
Classroom - Students working in small groups (4 or 5 students).
organization |- Whole class discussion.
Student (See Appendix 1 for detailed instructions to students)
activity - Find out how to walk a physical motion satisfying several
constraints.

- Compare two motions.

Role of teacher | (See Appendix 2 for detailed instructions to the teacher)

- Manipulate the tool.

- Make sure that all groups understand the problem and get
involved in its solution.

Prerequisite(s) | - Being familiar with the tool.

- Have an idea of the relationship between physical motion in front
of the CBR motion detector and its representation in the tool.

Expected outcome

Strategies and Answers: At the end of this situation, the students should understand what
variables are represented in the x- and y-axes and what is the relationship between them.
They will show this understanding by correctly articulating their ideas regarding position
and time. For example, position away from the CBR is represented by y values and time
elapsed is represented by x values (along the x-axis). It is expected that some students

will begin coordinating between the horizontal representation of motion and graphical
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representation of motion in order to describe and validate their motion among the group.

For example, it is easier to be precise about distance and direction when referring to the

simulated horizontal representation in discussions. This is because position away from

the CBR is clearly identified in close proximity to the representation of the motion on the

screen.

Three main difficulties are anticipated:
It is expected that some students will still have difficulty seeing the connection
between the horizontal representation of motion and graphical representation of
motion. Students may be more comfortable with one form of representation than
another. For example, it is expected that most students will naturally lean towards
graphical representations because they have already used such representations in their
books. Although they may initially have difficulty relating two forms of
representation, their familiarity with one should help make connections with the
other.
Students will be able to describe the motion in the context of the functional
relationship between distance away from the CBR and time elapsed. They will use
terms such as steeper and faster to describe the differences in the rate of change.
Some students will describe the motion in general terms while others will try and be
more specific referring to units and rates of change.
The students may have difficulty to recognize that there are many different motions
that satisfy the requirements of the problem. The main requirement is that A starts off
slower than B and that they both end in a tie. A lot of different variations in the

motion could happen in between these two events.
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3.2.4 Activity 4 (TS1,A4)

Table 7. A priori analysis for Activity 4 of Teaching Sequence 1

Title Activity 4
Description of | The students are asked to draw a graph representing a motion and
the task give a description of the physical motion.
Goal For the students: reinforce the acquired knowledge
- The students will also be able to coordinate multiple
representations of the same motion — the graphical representation
and the simulated horizontal representation
- The students will also develop a good understanding of the notion
of dependence and independence.
For the teacher: see what the students have learned
Milieu - Other students in the group during the group work.
- Other students in the class during the class exchanges and
discussion.
Variables - The shape of B’s motion is to be chosen freely by the students:
initial sketches of graphs that cannot represent a motion may
occur. However, the constraint that the graph must represent a
possible motion forces the students to check for the possibility
which requires making connections between the graph and
attributes of the motion.
Type of - Situation of formulation
situation
Means of - Validation by the milieu: walking the described physical motion
validation by a student
Classroom |- Students working in small groups (4 or 5 students).
organization
Student (See Appendix 1 for detailed instructions to students)
activity - Find out how to walk a physical motion to match a given motion

as closely as possible.
- Compare two motions.

Role of teacher

(See Appendix 2 for detailed instructions to the teacher)

- Manipulate the tool.

- Make sure that all groups understand the problem and get
involved in its solution.

Prerequisite(s) | - Being familiar with the tool.
- Have an idea of the relationship between physical motion in front
of the CBR motion detector and its representation in the tool.
Expected Outcomes

Strategies and Answers: Two main strategies can be anticipated: either the students will

start by drawing a graph and will then invent the story fitting the graph and perhaps
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adjusting it, or they will start by inventing a story and then draw a graph representing the
motion involved in the story. Both strategies require making relations between graph and
physical motion. It is expected that the groups will begin by discussing motions that
could be created by simple graphs (“graph — description of motion” strategy). However,
it is also expected that students will try to invent creative stories (“description of motion
— graph” strategy) and will challenge the other teams. It is expected that students will
be able to reproduce the shape of letters while walking in front of the CBR. An
interesting discussion should arise about why some letters cannot be reproduced while
walking in front of the CBR. It is planned that the notion of dependence and
independence will surface during this activity and that students will construct meaning
regarding the relationship between the two variables involved in motion much like it did
for Newton in the 1600s. Specifically, the students will directly experience the concept
of independent variable. For example, a student physically trying to reproduce the final
portion of the letter P (slanted) will understand and even perhaps “feel” that he is unable

to make time go backwards.
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Figure 10. The letter P created using the CBR

This will be recognizable when the student moving towards the CBR slowly comes to a
stop and starts leaning towards the CBR while watching the graphing representation

continue to plot points further and further away from the y-axis. Another example would
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be attempts to reproduce the letter R. It would pose the same challenges as those found
in the attempt to reproduce P. However, it would accentuate the impossibility of being in
two places at once. This physical experience enables the mental activity for the student
to construct the relationship between position and time, and to apply this knowledge
directly in a milieu that allows him to get immediate feedback, reflect, adjust, and apply
knowledge. By the end of this experience, it is expected that the students will articulate
their understanding without being prompted by the teacher. Some students may even be
creative about how to reproduce a letter which one would initially think is not possible to
produce while walking in front of a CBR (i.e. not based on a functional relationship). For
example, it is expected that students may show how to create a slanted J so that the

motion respects the independence of time.

[ DCH) Fi
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Figure 11. The letter J created using the CBR

Two main difficulties are anticipated:

- An anticipated difficulty associated with this question is that motivated students may
want to try at all costs. Also, some students may still not completely understand the
relationship between the distance away from the CBR and the time elapsed.

- As explained in the cognitive dimension of the preliminary analysis, it is also

expected that students will have difficulty in developing a coherent conceptualization
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of the physical models as a system of dependencies among quantities whose values
vary. Therefore some students might initially struggle with the functional
relationship between the dependent variable — distance away from the CBR, and the
independent variable — time elapsed. Most of these anticipated difficulties should be

overcome in the group discussions or in a class discussion.

3.3 Teaching sequence 2: Modeling and piecewise defined functions

This teaching sequence uses multiple representations systems in the didactic
milieu to enable individual and aggregated mathematical constructions. The activities in
this teaching sequence are designed to help students deepen their understanding about
concepts and relationships by helping students connect new knowledge with prior
knowledge, extend and apply the new mathematical knowledge, reflect on experiences,
articulate what they know, and make the target knowledge their own through their
interactions with the milieu. Specifically, students are challenged to coordinate the
multiple representations to deepen their understanding of functional relationships and
slope as rate of change in problems of motion. The representational strategies involved
in such a didactic milieu as well as the effective use of technology will enhance the depth
of learning about functional relationships and slope as rate of change.

The students will create and use piecewise-defined position vs. time graphs as a
way of describing and controlling motion through individual mathematical performances
and then aggregated functions. It is expected that in this teaching sequence, the students

will:
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- deepen their understanding of functional relationships as they coordinate multiple
representation systems of the same functions (physical or simulation)

- deepen their understanding of the concept of variable and the notion of
dependence between two variables.

- generate mathematics-based excitement as they deepen their understanding of

slope as rate of change and functional relationships

This teaching sequence combines situations of institutionalization, action,
formulation, and validation. In order to appropriately participate in the discussion, the
students must have a strong understanding of the important components of a graph in the
context of motion activities. Their prior experiences and teaching sequence 1 should
provide appropriate prior knowledge. The students will need to be able to act out a
motion based on a set of instructions.

The following table lists the four activities that comprise the second teaching

sequence. The goal, type of activity, and classroom organization are outlined for each

activity.
Table 8. Four activities comprising the second teaching sequence
Goal Activity Class
Type Organization
Activity 1 | - The students will familiarize N/A Class
(TS2,A1) | themselves with the MathWorlds participation
software on the TI-84 Plus. with
- The students will understand how demonstrations
motion could be represented by more and discussions

than one form of representation and the
differences between these
representations.

- A common framework and language for
discussion of functional relationships will
be institutionalized.
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Activity 2 | - The students will familiarize themselves | Formulation | Group work
(TS2,A2) | with the graphical editing of piecewise Validation | with exchanges
defined functions through direct between groups
manipulation. and group
- The students will enhance their discussion
understanding of the critical ideas of
functions and slope as rate of change.
Activity 3 | - The students will familiarize Validation | Group/class
(TS2,A3) | themselves with a new representational discussion
system that will be used through the rest
of this teaching sequence.
(This activity is essentially a continuation
of the previous activity.)
Activity 4 | - The students will display an Formulation | Group work
(TS2,A4) | understanding of the concept of variable, | Validation | with exchanges
and the notion of dependence between between groups
two variables in their descriptions. In and group
this case, distance and time. The student discussion

will do this by creating and formulating a
description of a motion given constraints
in small groups.

- The students will be challenged to
coordinate multiple representation
systems to deepen their understanding of
functions as a relationship between
dependent and independent variables and
slope as rate of change. They will be
able to explain how the created motion is
similar and why some parts are different.
- The students will be engaged
personally with their mathematical work
and students who might otherwise feel
alienated from mathematics will be
offered a chance to “perform”
mathematically.

- The students will be able to act out a
motion based on the formulation of the
motion given by a different group of
students.

- The students will also sharpen their
focus modeling using Position vs. Time

graphs.
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The activities that constitute this lesson do not have the same mathematical
analyses, expected outcomes, or anticipated difficulties as teaching sequence 1. As a

result, a detailed a priori analysis will be presented for each activity.

3.3.1 Activity 1 (TS2.A1)

Table 9. 4 priori analysis for Activity 1 of Teaching Sequence 2

Title Getting Started
Description of | The students are asked to observe the simulation run by the teacher
the task and answer a few questions.
Goal The students will:

- familiarize themselves with a new feature of the technology tool
that will be used throughout the teaching sequence.

- understand how motion could be represented by more than one
form of representation and the differences between these
representations. The new feature will focus the students’
attention on the simulated horizontal representation.

- be introduced to a common language for discussion of functional
relationships.

Milieu - CBR motion detector, CBR animator, stepping functionality and
the marking functionality: graphical representation of the physical
motion, simulation of the motion, ability to slow down the
simulated horizontal representation and the graphical
representation of the motion, and the ability to drop marks at
regular time intervals during the simulated motion.

- Other students’ observations and conjectures.

Variables - Two ways of representing a motion (graphical representation and
simulated horizontal representations of the motion) help or hinder
the understanding of the relationship

- Ability to slow down the re-creation of the two representations of
the motion helps the understanding of the relationship because it
provides time for students to think about what is happening and to
reflect on the representations or their created motion.

- Ability to “drop marks” at regular time intervals during the
simulated motion helps the understanding of the relationship. As
the motion is simulated marks are “dropped” along the path at
regular time intervals. Personalizing the tool in this way focuses
attention on the simulated horizontal representation. It also lays
the ground for interesting discussion on rate of change. For
example, if marks are set to drop every second but the distance
between drops grows, students will hopefully see that that means
more distance was covered during those seconds. Personalizing
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the tool is such a way may also create difficulties for students if
they choose not to experiment with this new feature by adjusting
the rate at which marks are dropped. This may lead some
students to believe that the rate of change is always the same.
Number of physical motions in front of CBR

Means of - Validation by the milieu: walking in front of the motion detector
validation and making adjustments to understand the relationship between
student’s movement and the graphical
- Validation also occurs in the class discussion: the conjectures are
validated or invalidated by peers, under the teacher’s control.
Classroom |- Students working individually
organization |- Whole class discussion
Student (See Appendix 1 for detailed instructions to students)
activity - Observe how things slow down when stepping through the graph.

Observe what happens when marks are dropped at regular time
interval.

Students will need to increase the level of analysis in order to
answer the detailed questions from the teacher (i.e. When is B
going the fastest? When is B going the slowest? When does B
seem to change speed? How far apart are they in the 3 part
of the trip? Exactly how fast is B moving during each part of
the trip? Which part of the graph is the steepest and which
part is the least steep?)

Role of teacher

(See Appendix 2 for detailed instructions to the teacher)

Manipulate the tool by turning on the stepping feature and the
dropping of marks feature.

Animate the discussion without giving any clues to the expected
answer.

Prerequisite(s)

Being familiar with the tool.

Have a good idea of the relationship between physical motion in
front of the CBR motion detector and its representation by the
tool. In order to successfully complete this activity, the students
must have a strong understanding of the important components of
a graph in the context of the motion activities. They must also
understand how motion is represented in the context of both
representations (horizontal and graphical). The students must
also understand rate of change.

Expected Outcomes

Strategies and Answers: It is expected that the students will start using descriptions

involving slope as rate of change in discussing these questions and in articulating their

understanding. The new features being introduced in this activity (i.e. “stepping™ and
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“dropping marks”) will focus the students’ attention on the simulated horizontal
representation. Therefore, it is also expected that students will start utilizing information
from both forms of representations of the motion to answer this question. By doing so,
they will extract knowledge from newly formed relationships between the two forms of
representation. For example, slowing down the motion by “stepping” through it is best
represented on the graphical representation, while the “dropping of marks” is best
contextualized on the horizontal representation of the motion where the marks are
actually dropped every 1 second. It is also expected that students will reflect on their
experiences with both tools and articulate their understanding to each other. At the end
of this activity, the teacher will take a moment to summarize some of the highlights of the
discussion, thereby establishing a common language for discussing functional
relationships. For example, he will try to get the students to use the following
terminology in their future conversations: dependent and independent variables, rate of
change, etc. An example of expected correct behavior is the following: “B is going
fastest in the middle section of the race. This is the section with the steepest slope with a
rate of change of X meters/second. B is going slowest in the first section of the race
where the rate of change is only Y meters/seconds compared to X meters/second in the
middle section and Z meters/seconds in the last section. The first section is also the
section that has the slope with the smallest incline.”
Two main difficulties are anticipated:
- It is expected that students will need to adjust to the new level of precision made
possible by the “stepping” and “dropping marks” as the motion is animated. This

anticipated difficulty is desirable because it will encourage the students to refine the
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analyses of their observations. An anticipated difficulty is that some students may

have trouble linking between the two representations of the motion. For example,

they may have trouble understanding the significance of the marks (on the horizontal

representation of the motion) in the context of the graphical representation of the

motion.

Another anticipated difficulty outlined in the cognitive dimension of the preliminary

analysis is that students may have difficulty considering the actual graph to be the

representation of the relationship that exists between the variables.

3.3.2 Activity 2 (TS2A2)

Table 10. A priori analysis for Activity 2 of Teaching Sequence 2

Title

Creating exciting sack races

Description of
the task

The students are first asked to answer a few questions about attributes
of a motion that is simulated and represented by a graph and a
horizontal representation of the simulated motion. Next, they have to
draw a graph of a motion described verbally. Finally, they have to
sketch a graph and provide a description of a motion that can be
represented by this graph.

Goal

The students will:

familiarize themselves with the graphical editing of piecewise
defined functions through direct manipulation.

enhance their understanding of the critical ideas of functions and
slope as rate of change. The core mathematical ideas being
addressed and contextualized in this activity are the concepts of
function as a relationship between distance and time and the
qualitative idea of slope as rate of change where the rate in this
case is velocity: positive vs. negative, steeper means faster
(greater rate), zero slope means zero rate (zero velocity).

Milieu

CBR motion detector, CBR animator, stepping functionality and
the marking functionality, the ability to edit and directly
manipulate piecewise defined functions: graphical representation
of the physical motion and simulation of the motion.

Other students’ observations and conjectures.

The role of the technology tool as a part of the milieu here is still
to give the students an opportunity to examine the motions and
graphs more closely and to help them deepen their understanding
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of functional relationships and slope as rate of change.

Variables

Two ways of representing a motion (graphical representation and
simulation of the motion) can help or hinder the understanding of
the relationship.

As explained earlier, the ability to slow down the recreation of
the two representations of the motion - help or hinders the
understanding of the relationship.

The ability to drop marks at regular time intervals during the
simulated motion helps or hinders the understanding of the
relationship.

Ability to add piecewise defined functions to the graphical
representation helps the understanding of the relationship because
it is a means for students to articulate their understanding of the
functional relationship through direct manipulation.

Ability to edit the existing graphical representation through direct
manipulation (i.e. stretching a section increasing/decreasing of
the graph and/or changing the slope) should help because it
allows the students to make immediate changes to their original
constructions based on their new understanding of the functional
relationship involved.

Type of
situation

Situation of formulation: Requires the students to describe a
motion so that another team could reproduce the same graph.
Situation of validation: The groups that receive the descriptions
for motions described by another group will follow the
instructions to validate the description.

Means of
validation

Validation by the milieu: walking in front of the motion detector
following the verbal instructions and matching the graph.

Classroom
organization

Students working individually
Whole class discussion

Student
activity

(See Appendix 1 for detailed instructions to students)

The students will be asked to reflect, discuss, and document a
group response to a series of questions in the context of a race
before collaborating to solve a problem. The series of questions
are intended for students to exchange and compare observations
regarding how the motions of A and B are different.

The students in their groups will then be challenged to reflect
upon, discuss, sketch, and create a graph representing motion that
would satisfy the new criteria.

The students in their groups are also instructed to be ready to
explain their motion and have their animation assessed by another
group.

Role of teacher

(See Appendix 2 for detailed instructions to the teacher)

Manipulate the tool by turning on the stepping feature and the
dropping of marks feature.

Animate the discussion without giving any clues of the expected
answer.
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Prerequisite(s) | - Being familiar with the tool.

- Have a good idea of the relationship between physical motion in
front of the CBR motion detector and its representation in the
tool.

- In order to successfully complete this activity, the students
understand that the horizontal axis represents time measured in
seconds (Time), and the vertical axis and the motion represents
distance measured in meters (Distance). They should understand
that the objects both start at zero, which is indicated by the
dashed tick mark where their respective right edges are in the
animation.

Expected Outcomes

Strategies and Answers: It is expected that some of the groups will “step through” the
motion when describing their motion to each other. This is because the motion will most
likely go too quickly for most scripts. Such actions will help the students to better reflect
on what is happening and to articulate their understanding more easily to each other. It is
also expected that students will drop marks during the simulations to analyze the motion
more carefully in terms of the script communicated to them from the other teams. It is
expected that the groups will make their stories seem exciting. The mark of a good race
is spontaneous applause when it ends! An example of a correct behavior is illustrated in

Figure 12 below.

Figure 12. A student generated sack race

It is expected that the students in their groups will explore different ways of creating the
graphical representations by directly manipulating the different segments of the graph.

For example, students might add a segment and stretch it to the right by one second (so it
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is 2 seconds in Duration) and then upward until it is above A’s graph by a decent amount.
Students will have access to paper and pencil, but it is expected that most students will
explore the creation of graphical representations by directly manipulating the different
segments of the graph on the graphing calculator rather than on the graph paper provided
to them. It is expected that some students will add segments and then adjust them so that
they have zero slope. They may be slow to suggest this because it is a subtle idea.
However, the students should be able to show this understanding of zero slope by
applying the knowledge they learned earlier in satisfying this constraint. It is expected
that students will discuss and experiment in their groups how to represent “going
backwards” graphically. The correct behavior would be for students to explain that they
need to add a new segment that must slope downward, or have negative slope. It is also
expected that students will discuss how to represent “finishing in tie”. The correct
behavior would be for them to explain to each other that one more segment must be
added and extended it to the right and upward as needed so that its right endpoint
coincides with that of A’s graph. The actual endpoint may be partially obscured by the
label “POS” so it might take more than one try. By this time, it is also expected that the
students can be autonomous while working in groups with the technology such that they
can explore, make conjectures, verify them and then adjust their actions.
Main difficulty anticipated:
- Many of the criteria that the students must satisfy in creating their race will challenge
their conceptual understanding of motion as a functional relationship between
distance and time. As such, it is expected that some students may initially struggle

with the misconception associated with interpreting or constructing a literal picture of
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a situation. This misconception was identified as an obstacle in the cognitive

dimension of the preliminary analysis. Although extra time will be taken in the

earlier activities to reduce the amount of misconceptions associated with graphical

representations that students presently encounter, it is expected that the criteria given

to the students in this activity may bring to the surface some of these misconceptions.

For example, an anticipated difficulty associated with this activity is for some

students to initially create a negative sloping segment going down to zero to represent

the criterion — “Due to a wild burst of speed, B falls down for 2 seconds”. The

corresponding correct expected behavior would be for the other students in the group

to discuss this criterion in the context of the race and in the context of the graphical

representation of the motion. Also, some students will focus on the horizontal

representation of the motion and quickly overcome the misconception. Through such

group discussions and experimentation with both representations of the motion

(graphical and horizontal), the misconceptions should quickly be resolved.

3.3.3 Activity 3 (TS2,A3)

Table 11. A priori analysis for Activity 3 of Teaching Sequence 2

Title Find your exciting sack race
Description of | All the students’ functions produced in activity 2 are collected by the
the task teacher and displayed all together on the screen. The students are
asked to predict the position of all slow B’ and of all fast B’, then to
identify their own function.

Goal - The students will familiarize themselves with a new
representational system that will be used through the rest of this
teaching sequence.

(This activity is essentially a continuation of the previous activity.)
Milieu - The TI-84 Plus Silver Edition, CBR motion detector, CBR

animator.
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Graphical representation of the physical motion and simulated
horizontal representation of the simulated motion.

Stepping and marking functionality for analysis of graphical and
horizontal representations.

The ability to edit and directly manipulate piecewise defined
functions.

The TI Navigator classroom network for collecting and
aggregating student races.

Other students’ observations and conjectures.

The role of technology as a part of the milieu here is to challenge
the students to coordinate multiple representation systems to
“find” their individual constructions among the many
representations in the shared space. They will need to use a deep
understanding of the functional relationship involved in their
graphical representation. The milieu here introduces students to
the process of relating their personal constructions to the larger
collection of objects that appears on the “big screen” when their
work is aggregated with that of their peers. This process requires
them to reflect upon and think through the kinds of issues that are
at the heart of the mathematics we want them to learn.

The milieu in this activity provides a safe environment by
providing anonymity. For example, before asking the next
question, the teacher will “hide” the identity of the functions and
their “owners.” Provision has been made to preserve student
anonymity in the shared representation space — the teacher will
click the box in the lower left corner of the screen where
identifiers appear. Then no names will appear either here or
when we hover over a dot or graph. The teacher will then ask:
Where are you? Can you find yourself? If there is a position
with a single dot, then a single student should be able to identify
himself/herself. It can be confirmed by selecting it (by clicking
on it) and then checking the box in the lower-left corner of the

10 2
Positionf

Figure 13. An aggregated view of multiple representations in Connected
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MathWorlds

It is usually fun to run the animation with all the dots showing (as
illustrated in Figure 13 above). But the detailed analysis is best
done with a smaller set of dots, which follows.

The milieu also provides for students identifiers and colors to
facilitate the investigation of the connection between the motion
and its graphical representation.

Variables

Two ways of representing a motion on two different
representation systems: graphical representation and simulation
of the motion on the TI-84 Plus Silver Edition graphing calculator
screen and in higher resolution and color using a data projector
and Connected MathWorlds helps the understanding of the
functional relationship.

The ability to slow down the recreation of the two representations
of the motion helps the understanding of the relationship.

The ability to drop marks at regular time intervals during the
simulated motion helps the understanding of the relationship.
This should help because it provides the students with a tool to
analyse rate of change during any specific time interval.

The ability to add piecewise defined functions to the graphical
representation helps the understanding of the relationship. This
should help because it is a means for students to articulate their
understanding of the functional relationship through direct
manipulation.

The ability to edit the existing graphical representation through
direct manipulation (i.e. stretching a section
increasing/decreasing of the graph and/or changing the slope)
should help because it allows the students to make immediate
changes to their original constructions based on their new
understanding of the functional relationship involved.

The ability to display smaller set of motions to help the students
identify the one they are looking for.

Type of
situation

Situation of validation: The students are expected to make
conjectures about the links between the motions (i.e. moving dots)
and graphs and provide arguments to support these.

Means of
validation

Validation by the milieu: Students will try to find themselves on
the new representation systems using the properties of their
graphical representation. They will also walk in front of the
motion detector following the verbal instructions and matching
the graph

It is important for the teacher to let the students validate by the
physically moving in front of the motion detector the description
and the correspondence between the obtained graph and B’s
motion graph.

Classroom
organization

Students working individually.
Whole class discussion.
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Student
activity

(See Appendix 1 for detailed instructions to students)

The students are asked the following question by the teacher:
Where will all the Slow B’s appear, and where will all the Fast
B’s appear?

It is important that the teacher develop the habit of asking the
students to predict before any display of action. Here the fast B’s
all appear to the left of 0 and the slow ones to the right, with those
sharing the same initial position “stacked vertically.” (Note that it
is expected that the teacher will refer to the “students” and their
“dots” interchangeably).

Next, the students are informed that the teacher will run the
animation and that their job is to figure out which graph goes with
which dot. Depending on how different the motions and graphs
are, the teacher may need to Step through the motions. This is an
important learning opportunity to examine subtle differences in
the graphs and how they are reflected in differences in the
motions, so the teacher should repeat the Stepping and encourage
discussion till a consensus has developed.

Role of teacher

(See Appendix 2 for detailed instructions to the teacher)

Manipulate the 71 Navigator classroom network and Connected
MathWorlds.

Animate the discussion without giving any clues of the expected
answer

The teacher will show “All” in the View Matrix World (Graph)
column to show all of the students’ dots. The milieu here
introduces students to the process of relating their personal
constructions to the larger collection of objects that appears on the
“big screen” when their work is aggregated with that of their
peers. This process requires them to think through the kinds of
issues that are at the heart of the mathematics we want them to
learn.

Prerequisite(s)

Have a good idea of the relationship between physical motion in
front of the CBR motion detector and its representations.

The students must have a strong understanding of the important
components of a graph in the context of the motion activities.
They must also understand how motion is represented in the
context of both representations (graphical and simulated) and be
familiar with the MathWorlds sofiware on the device. The
students must also understand rate of change.

Expected OQutcomes

It is expected that the students will start identifying themselves with their objects

by referring to those objects as “my dot”. This is a desired behavior because it links the
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students psychologically to the mathematical object that they have built. This could be
seen as evidence that students have developed a personal investment in building
knowledge — another indicator of understanding. Because of differences such as size of
screen, representation of the axes and intervals, resolution, and color, and the fact that
several of the graphs looked very similar, it is expected that students will need to identify
certain aspects of their mathematical objects on their graphing calculators and look for
them in the public display. Putting the students in a situation where they will need to
coordinate both systems in applying their mathematical knowledge regarding the same
functional relationship in two representation systems should encourage the students to
reflect more about the relationship, thereby increasing their understanding. Putting the
students in this situation will also require them to be able to clearly articulate what they
know about the critical ideas of functions and slope as rate of change when identifying
themselves in the public display. The students whose graphs are NOT now displayed
will also be able to determine which graph goes with which dot given their understanding
of how the horizontal simulated representation and the graphical representation are
linked. Relating students to their functions, and especially their motions to their graphs,
is a powerful way of getting students engaged mathematically, it is also a place where the
teachers’ experience and knowledge of their students will directly come into play. The
teacher will know who is likely to err, who is likely to be embarrassed, who enjoys
attention, and so on. The teacher can also quickly review the student function graphs
before making them public and not choose to display those that he feels would either be
unproductive to examine or embarrassing to their creators. The technology amplifies the

impacts of the teachers’ pedagogical decisions.
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3.3.4 Activity 4 (TS2,A4)

Table 12. A priori analysis for Activity 4 of Teaching Sequence 2

Title

Exciting races

Description of
the task

The students are asked first to write a story describing their own race
with A which ends in a tie, and to make a Position graph for B that
makes their race happen. The stories are exchanged between groups
and each group has to create a graph representing the story of another

group.

Goal

The students will

display an understanding of the concept of variable, and the
notion of dependence between two variables in their descriptions.
In this case, distance and time. The student will do this by
creating and formulating a description of a motion given
constraints in small groups.

be challenged to coordinate multiple representation systems to
deepen their understanding of functions as a relationship between
dependent and independent variables and slope as rate of change.
be able to explain how the created motion is similar and validate
why some parts are different.

be able to act out a motion based on the formulation of the motion
given by a different group of students.

sharpen their focus modeling using Position vs. Time graphs.

Milieu

The T1-84 Plus Silver Edition, CBR motion detector, CBR
animator, and stepping functionality and the marking
functionality, the ability to edit and directly manipulate piecewise
defined functions: graphical representation of the physical motion
and simulation of the motion.

The T1 Navigator classroom network for collecting and
aggregating student races.

Other students’ observations and conjectures.

Stories written by other students.

The role of the technology tool as a part of the milieu here is to
give the students an opportunity to examine the motions and
graphs in two representations and to challenge the students to
coordinate multiple representation systems (MathWorlds on the
TI-84Plus Silver Edition & Connected MathWorlds on the data
projector) to deepen their understanding of functional
relationships and slope as rate of change.

Variables

Two ways of representing a motion on two different
representation systems: graphical representation and simulation
of the motion on the T1-84Plus Silver Edition graphical calculator
screen and in higher resolution and color using a data projector
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and Connected MathWorlds — helps the understanding of the
relationship.

Scale: It is important to note that the scale has changed in this
activity.

The ability to slow down the recreation of the two representations
of the motion - helps or hinders the understanding of the
relationship.

The ability to drop marks at regular time intervals during the
simulated motion - helps or hinders the understanding of the
relationship.

The ability to add piecewise defined functions to the graphical
representation — helps or hinders the understanding of the
relationship.

The ability to edit the existing graphical representation through
direct manipulation (i.e. stretching a section
(increasing/decreasing of the graph and/or changing the slope).
Instructions given to students in the form of questions created by
other groups of students should help the understanding of the
relationship because it gives students the opportunity to organize
their understanding and articulate their ideas so that others can
recreate the functional relationship.

Type of
situation

The second part of this activity is a situation of formulation. It
then progresses to a situation of validation where the teacher will
act as a chair of a scientific debate aiming at validating the
students’ answers only intervening to put some order in the debate
among students. The teacher will also help draw attention to
possible inconsistencies in student explanations and encourage
more precision in the use of the vocabulary describing the motion.

Means of
validation

Validation by the milieu: Students will try to find themselves on
the new representation systems using the properties of their
graphical representation.

To validate the answer of B, the two graphs, both drawn on a
paper, are compared by both groups A and B. If they are
considerably different, the students have to find the reasons of the
differences: the message of A is wrong? The interpretation of B is
wrong? If there is no agreement between A and B, a physical
moving in front of the motion detector will be used to validate.

Classroom
organization

Students working in small groups
Whole class discussion

Student
activity

(See Appendix 1 for detailed instructions to students)

The students are asked to write an exciting race story-script for
their own race with A which ends in a tie, and to make a
Position graph for B that makes their race happen.

They are also instructed that the teacher will then collect their
graph and run it for the whole class to see while they read their
exciting story! They are asked to describe each segment of their
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graph.

A group (X) draws on a paper a graph of a motion another group
(Y) will have to reproduce. Group X writes a description of the
motion and gives this message to the group Y. The group Y tries
to figure out the graph corresponding to the given motion.

Next, the students are informed that the teacher will run the
animation and that their job is to figure out which graph goes with
which dot. Depending on how different the motions and graphs
are, the teacher may need to Step through the motions — use a
Step-Time of 1 second (set by opening the bottom part of the
Controls Window). This is an important learning opportunity to
examine subtle differences in the graphs and how they are
reflected in differences in the motions, so the teacher should
repeat the Stepping and encourage discussion till a consensus has
developed.

Role of teacher

(See Appendix 2 for detailed instructions to the teacher)

Manipulate the 77 Navigator classroom network and Connected
MathWorlds.

Animate the discussion without giving any clues of the expected
answer.

Prerequisite(s)

Same as the previous activity.

Expected Outcomes

It is expected that the students will be autonomous while working in groups with the

technology such that they can explore, make conjectures, verify them and then adjust

their actions.

It is expected that the groups will make their stories seem very exciting and difficult

for members of other groups to recognize.

It is expected that students will be able to formulate their motions correctly so that

another team will be able to re-create the motion which meets the constraints of the

story. This is important because in order to articulate their ideas, they must first

reflect on them in order to identify and described critical elements. The ability to

communicate or articulate one’s ideas is a benchmark of understanding (Carpenter &

Lehrer, 1999).
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It is expected that students will be able to recognize the graphical representations of
their motion on the large projected screen. Most students will make the connection
right away, while others might still need to see the simulation before grounding their
motion in the new representation system offered by MathWorlds for TI-Navigator.

It is expected that the students who successfully coordinate between their personal
creation on the device and the more refined version of the graphical representation
offered by the computer version of MathWorlds will have a deeper understanding of
functions as a relationship between dependent and independent variables and slope as
rate of change. Relating back to the cognitive dimension of the preliminary analysis,
where understanding was characterized in terms of mental activity that contributes to
the development of understanding, a deep understanding of functional relationships
and slope means the following for this activity. First, this activity forces the students
to construct relationships between the two representational systems in order to “find
themselves”. It also requires students to extend and apply their mathematical
knowledge when comprising the two representational systems. It is expected that
students initially might have difficulty articulating their ideas for selecting their
graphical representation, however by struggling to articulate their rational, students
develop the ability to reflect on and articulate their thinking. Therefore, another
important characteristic of students’ developing understanding reinforced by this
activity is that they become increasingly able to reflect on their thinking. The ability
for students to communicate their motions so that others may actually act out the

targeted motion will also be seen as an important indicator of understanding.
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- It is expected that students will enjoy learning about the functional relationship
involved in motion in this way. This is important because understanding involves the
construction of knowledge by individuals through their own activities so that they

develop a personal investment in building knowledge.

3.4 Teaching sequence 3: Summarizing individual and group understanding

Recall that the goal of this sequence is to provide the research team with the
opportunity to ask explicit questions to the students highlighting the conceptions of
functions students have developed through the first two teaching sequences. As most of
the activities are going to be worked in groups, we wish to assess each individual
student’s understanding of functions. The goal of this sequence is also to see to what
extent the students are able to transfer the knowledge acquired in technology-based
environment to the traditional paper and pencil environment. The outcomes of this
sequence should give a good picture of the students’ individual and group understanding
of the concepts explored in the first two lessons.

The students will individually complete each activity and then take part in an
open teacher-mediated discussion with the rest of the class to validate, defend, and/or
refine their solutions. It is important for the teacher to focus on organizing a discussion
around the correctness of students’ descriptions rather than trying to simply get the
correct desired response. It is expected that in this sequence, the students will
demonstrate the understanding of the following concepts:

- Functional relationship between distance and time in problems of motion.
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- The concept of variable and variability, and the notion of dependence between two
variables.
- Rate of change and slope as rate of change.

It is expected that students will demonstrate this understanding by applying newly
acquired knowledge to solve new problems of motion and by constructing relationships
with past experiences. They will also demonstrate understanding by being able to clearly
communicate their ideas on paper and in a public form.

The following table lists the three activities that comprise the third teaching

sequence. The goal and classroom organization is outlined for each activity.

Table 13. Three activities comprising the third lesson

Goal Class
Organization

Activity 1 | To determine if students have a good understanding of | Individual work,
(TS3,A1) [ the functional relationship between distance and time followed by

in problems of motion and solid understanding of class

independent and dependent variables. participation
with
demonstrations

and discussions

Activity 2 | To determine if students are able to transfer what they | Group work

(TS3,A2) |have learned about the functional relationship in with exchanges
problems of motion involving the motion detector to between groups
more general problems. Another goal is to determine if | and group
the students deepened their understanding of slope as discussion

rate of change.

Activity 3 | To determine if students have a good understanding of | Group/class
(TS3,A4) | the functional relationship between distance and time discussion
in problems of motion; a deep understanding of slope;
and the ability to obtain important information by
analyzing graphical representations of functional
relationships between distance and time in a motion
problem of a different context.

111



This sequence is different from the other two teaching sequences. The activities
all contain a phase of individual work followed up with a phase of group discussion. The
milieu is void of any use of technology. Instead they make use of the traditional tools

like paper, pencils, chalk and blackboard.

3.4.1 Activity 1 (TS3.A1)

In this activity the students are presented with a story and are asked to select the
appropriate graphical representation from four different graphs. The goal of this activity
is to determine if the students have a good understanding of the functional relationship
between distance and time in problems of motion and solid understanding of independent
and dependent variables.

See Appendix 1 and 2 for detailed instructions to the teacher and the student respectively.

Expected Outcomes

- Strategies and Answers: It is expected that the students will select the correct
graphical representation for this problem (d). The other three incorrect graphical
representations were chosen as distracters because they each represent different
possible literal interpretations of the problem — misconceptions that this experiment
was designed to help students overcome.

- Itis also expected that interesting discussions will arise when students are asked why
the other representations were not selected. It is expected that the students will
recognize that these graphical representations do not represent functional
relationships. For example, students may comment that the graphs show time going

backwards (b and c) or a person being at more than one location at one point in time
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(a). Being able to communicate why the distracter graphs are not appropriate to
represent the given situation is also an important indicator of understanding.

Two main difficulties are anticipated:

- It is anticipated that some students will have difficulty explaining their rationale for
not choosing the other graphical representations for their choices. Here it will be
important to engage the class in being specific about why the other representations
were not appropriate. This is another important aspect of understanding. By
struggling to communicate their ideas, students develop the ability to reflect on and
articulate their own thinking. Articulation in this sense can be considered to be a
public form of reflection.

- Some students may still have difficulties overcoming a literal representation of the
graph. Classroom discussion should help those troubled students overcome this
obstacle. However, as it was noted in the cognitive dimension of the preliminary
analysis, this type of obstacle creates significant difficulties in conveying the
connections between graphs and functions to students. As a result, should this
obstacle persist in some students, more one-to-one remediation with these students

will be required with those students following this research project.

3.4.2 Activity 2 (TS3,A2)

In this activity the students are asked to create a graphical representation of a
motion given descriptions for specific segments. One goal for this activity is to
determine if the students are able to transfer what they have learned about the functional

relationship in problems of motion involving the motion detector to more general
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problems. Another goal is to determine if the students deepened their understanding of
slope as rate of change.

Reflection plays an important role in the solving of unfamiliar problems and
problem solving often involves consciously examining the relation between one’s
existing knowledge and the conditions of a problem situation. As such, the empty graph
that the students are given for this activity has the following conditions. The x-axis is
divided into fifteen intervals to represent time (no mention of units) and the y-axis is
divided into seven intervals to represent distance (no mention of units).

There are three important didactic variables that are outlined below: (1) a very
rough description of motion leaving a place for multiple correct graphs, which can
destabilize students. The students are actually used to have a unique solution to a given
problem, and exact based on the givens of the problem. It is not the case here. (2) the
students need to analyze the situation in order to construct a correct representation of the
motion: e.g., same pace means that the line segments representing these portions of the
motion are parallel (this is something that was not explicitly addressed in the teaching
sequences), (3) the grid is pre-constructed: the students must decide what a unit
represents (e.g., if a unit represents 1 second, the whole journey would take only 15
seconds which is quite unlikely in reality, if a unit represents 1 minute, then it would be
difficult to represent 1 second break).

See Appendix 1 and 2 for detailed instructions to the student and the teacher respectively.

Expected Outcomes
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Strategies and Answers: There are many possible graphical representations students
could use to represent this problem of motion. However, the expected correct
behavior is for students to use their understanding of functional relationships in
problems of motion to correctly represent the given segments graphically. This
would include the ability to effectively represent slope (positive, negative and zero)
with different rates of change. An example of a correct behavior is illustrated in
Figure 14 below.

DISTANCE

A! ¢ TIME

Figure 14. Example of a correct behavior for activity one of lesson three

Two main difficulties are anticipated:

It is anticipated that some students may have difficulties with the relative nature of
this activity (e.g. walking slowly, at a fast pace, etc.). It is also expected that many
students will need to start their graph over several times in order to make effective
use of the graph paper provided. For example, some students will get through several
criteria and then observe that they will not have enough room on the provided graph
paper to complete the problem. The constraints provided by the graph paper will

push the students to focus on the important properties of the graphical representation.
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It is also anticipated that some students will have difficulty with the units as they are
not specified.
- An anticipated strategy is for some students to resort back to literal representations of

segments of graphs when unsure of how to represent the trip correctly.
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3.4.3 Activity 3 (TS3.A3)

This activity is similar to the first two in that its goals are: to determine if students

have a good understanding of the functional relationship between distance and time in

problems of motion; a deep understanding of slope; and the ability to obtain important

information by analyzing graphical representations of functional relationships between

distance and time in a motion problem of a different context. This activity requires the

students to focus on reading graphs and providing accurate descriptions of the attributes

of the motions represented.

See Appendix 1 and 2 for detailed instructions to the teacher and the student respectively.

Expected Outcomes

Strategies and Answers: It is expected that almost all students will correctly respond
to the first three questions. A starts at 0 km, A finishes his trip after 14 minutes, and
B finishes his trip at 5§ km. The expected correct behavior for question 4 is for
students to answer A and by providing the following rationale. The students should
explain that the slope is steeper and/or that A has a greater rate of change. The
students might even provide the actual rates of change for each graph. They can also
say that A rides less time and goes further than B. The expected correct behavior for
question 5 is for students to identify B as the biker that has traveled farther after 5
minutes. It is expected that the students will focus on the dependent variable
distance in answering this question. They will determine which graph has the
greatest difference in distance over the given time frame. It is expected that almost

all students will correctly answer questions 6 and 7. However, in question 7, the
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students will have to look at the intersection point and read the coordinates. The
expected correct behavior for question 8 is for students to identify A as the biker that
traveled the greater distance over its entire trip.

Three main difficulties are anticipated:

- One anticipated difficulty is for students to make the false assumption that the bikers
started the trip from the same location. This would result in wrong answers to many
of the questions. However, it is also expected that after spending more time reflecting
on the question, even the students experiencing difficulty with the question, will
display the correct behavior. It is also expected that some students may simply
confuse A for B in answering some or all of the questions in this activity. This is not
so much of a concern and is easy to recognize. Also students who make this mistake
will still provide data that will help us validate the goals of this activity.

- Some students may still confuse the x and y-axes.

- It is also expected that some students may have difficulty reading the graph and

interpreting the point of intersection.

3.5 Summary

Chapter 3 has described the design and a priori analysis of the didactic situations
that was conducted as part of didactic engineering before conducting the experiment. It
will be seen that the design and analysis involve a considerable amount of detailed
thought and planning before entering the classroom. This detail allows difficulties to be

anticipated and focuses attention on learning goals to be evaluated.
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Chapter 4 Experimentation

This Chapter will describe the realization and the analysis of the teaching
sequences and the last day assessment. The experiment took place in a grade 9 classroom
in a small rural school in Eastern Massachusetts in December 2004. The quiet New
England communities that feed into the local high school are generally working class
with many of the families having ties to the fishing industry. Over 50% of the students in
the high school are from low-income families as defined by the No Child Left Behind
Act (NCLB; U.S. Public Law No. 107-110, 2002). Over 20% of the students had a first
language that was not English and over 16% of the students were on Individualized
Education Plans. According to United States federal law, adequate yearly progress
(AYP) is defined as a measure of the extent to which students in a school demonstrate
proficiency in English language arts and mathematics (Fusarelli, 2004). Based on an
analysis of the performance and improvement this school demonstrated toward achieving

AYP, it has been identified as being in need of improvement in each of the last 6 years.

4.1 Classroom setting

Twenty-three students participated in the experiment and most were already
familiar with the graphing calculator. The classroom teacher was interviewed before the
experiment and identified a wide range of understandings and capabilities among these
students in this classroom. While many of the students were well engaged in the learning
process and had a good track record of achievement, others had more difficulties. For

example, nine of the 23 students were either failing or had unsatisfactory standing in the
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course. Two of these students had individual education plans and two others had been
recommended by other teachers for evaluation. The school was aware that four students
in the class were on medication for some form of attention deficit disorder. One of these
students was also one of the two students with an individual education plan. Two of the
students who were failing in the course were also documented as having severe behavior
problems. Two days before the start of this experiment, a student in this class had been
expelled from the school due to several behavior problems and the inability to follow his
individual education plan. Thus the interview with the teacher before the experiment
gave visibility to a group of students in the class that had a range of abilities and aptitudes
and were quite representative of high school students. That is, they were not specially

selected for the study on any criteria.

The mathematics teacher who delivered the teaching sequence was very familiar
with the technology being introduced and had a good understanding of the concept of
function. The teacher was also part of several SimCalc research projects using similar
technologies conducted by the University of Massachusetts in Dartmouth, Massachusetts.

As a result, the teacher was comfortable having a research team in his classroom.
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Public space for projection viewing

Teacher's Desk

Figure 15. Organization of the class

The teaching sequence was implemented over a 5-day period as planned. The
goal of the first day was essentially to familiarize the students with the new additions to
their regular learning environments, namely the research team and the seven video
cameras to be present in their classroom. The actual teaching sequence was implemented
during the second, third, and fourth days. The research team had the opportunity to ask
explicit questions of the students during the last day for additional validation of their
responses against predictions made in the a priori analysis of the design.

For this teaching sequence, the class was divided into five groups of 4-5 students
each, as shown in figure 15. The students are identified by pseudonyms. Each class was

83 minutes long, the norm in this particular school. The data presented below were
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obtained by videotapes recorded by five stationary video cameras (CAM 3, 4, 5, 6, 7),
two mobile video cameras (CAM 1, 2), my field notes and those provided by four
research assistants who assisted in the filming of the experiment. The principal data
source was video of discussions and interactions between students and of discussions
between the teacher and the students. Following each class, a short debriefing session
was conducted to verbally exchange observations between myself, the teacher, and the
research assistants. These debriefing sessions were also videotaped. In addition, data
were obtained from student-written responses to worksheets (see Appendix 1) and from
student-created functions in the form of Connect MathWorlds files.

The T1-84Plus Silver Edition graphing calculator with MathWorlds and
Connected MathWorlds software loaded on the teacher’s desktop computer were used
throughout the experiment. The CBR™ motion detector in combination with the T/-
84Plus Silver Edition graphing calculator overhead set-up was also used. The 717-
Navigator classroom network provided the classroom connectivity between the students’
graphing calculators and the teacher’s desktop computer, and a data projector was used to
project a public display. The research assistants also provided technical assistance when
the need arose. For example, some of the graphing calculators needed new batteries and
some of the TI-Navigator hubs needed to be re-set. The research assistants quietly
reminded students to document their stories and graphs on their worksheets so that this

physical data would also be available for analysis.
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4.2 A posteriori analysis and validation

The a posteriori analysis has similar structure for each teaching sequence. The
most significant findings from the teaching sequence, descriptions of important
discussions and interactions that took place during the activities in small groups and the
interventions of the teacher will all be presented. Extracts of student discussions, student
created artifacts and teacher interventions will also be provided to highlight significant
findings. For validation purposes, each teaching sequence will also include the
highlighting of relevant information with links back to the a priori analysis presented in
Chapter 3.

Recall that the following hypotheses were made in the theoretical framework
outlined in Chapter 2:

Hypothesis 1 Individual mathematical constructions that are directly experienced in a
“live” context, have immediate kinesthetic, cognitive and linguistic aspects that will help
students develop an understanding of the relationship between distance and time in
problems of motion.

Hypothesis 2 Individual mathematical constructions in a “live” context facilitate the
de?elopment of understanding of independent and dependent variables.

Hypothesis 3 Multiple linked representations of the same function in a simulated
environment allowing for manipulation by the students improves their learning about rate
of change.

Hypothesis 4 Aggregated mathematical constructions challenge students to coordinate

multiple representations and deepen their understanding of functional relationships.
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4.3 Teaching sequence 1: Exploring physical motion

The first teaching sequence involved the CBR motion detector and was used to
provide physical grounding for the simulation-based activities intended to engage the

students in learning more about functions.

4.3.1 Activity 1 (ST1.A1)

The goal of this activity was for students to familiarize themselves with the
technology tool that would be used over the teaching sequence and allow them to find out
the relationship between the physical motion in front of the CBR motion detector and the
graph being displayed.

There was a lot of discussion where students articulated conjectures and referred
to the milieu for validation. As was anticipated in the a priori analysis and consistent
with the historical development of the concept of function, the students relied heavily on
verbal descriptions of the motion or its graphical representation to describe the functional
relationship. The students engaged in rich discussions to help each other overcome some
of the anticipated difficulties. For example, after some free exploration with one of the
students (Kelly) walking in front of the motion detector, the students were able to
contextualize the x and y-axes and agree on where the best starting point would be (in
terms of distance away for the CBR motion detector). Coming to the realization that the
x-axis represents time and the y-axis represents distance away from the CBR as described
in the a priori analysis, is an early indicator that students are beginning to understand the
relationship between distance and time in problems of motion. Also, the students

demonstrated some understanding of the notion of dependence when they realized that
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the height of the graph directly depended on the students’ location/position in front of the
CBR. The milieu which gives the students real-time feedback helps the students validate
or invalidate their conjectures. For example, in the extract below, Kelly’s realization that
she went too far and Jim’s conjecture regarding the starting point, was validated by the
milieu.

All of the extracts use the following code in order to situate them in the
experiment. The first two characters identify the teaching sequence, the second two
characters identify the activity, and the last two characters number the extract. For
example, S1A1E1 identifies the first extract (E1) of the first activity (A1) in Teaching
Sequence 1 (S1).

S1A1E] [extract of a discussion regarding the initial location of the volunteer]

Kathy: Look, Kelly is controlling the A. You (referring to Kelly) need to start a little
further away. You’re too close.

Kelly: Where do you want me to start? Here?

Kathy: A little further... Yes, that should be good.

Kelly: See, now I am too far (observing after the CBR started)

Kathy: Yes, but move forward now and get on the graph (matching Kelly’s A motion
with the animated B motion).

Kelly: Check it out! I’m right on, oops! There you go — back on.

Teacher: OK, now where should Kelly stand so that he is exactly where he needs to be at
the beginning of the motion?

Jim: About 3 feet.
Teacher: Why do you say that?

Jim: There are 6 little tics marks on the bottom of the screen.
Kathy: They’re not feet, they are meters.
Jim: Ok, then 3 meters.

Kelly: Let me try it again.
Jim: (After the start of the CBR) I was right. He was right on.

The effects on the representations of the forward and backward motions in front
of the CBR motion detector were not obvious to everyone at first. Initially, there were

opposing views on what would happen if one were to move towards the CBR motion
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detector. The majority of the students were correct in conjecturing that the graph would
“go downwards” as a person moved towards the CBR motion detector and it would “go
upwards” as a person walked away from it. However, one student, Mark, said that he
believed that the graph “would go upwards” if a person walked towards the CBR. This
temporary confusion was anticipated and described in the a priori analysis and was
quickly resolved. After a volunteer actually walked the motion, Mark quickly saw that
this initial conjecture was wrong. This was a good example of a milieu invalidating a
conjecture. Mark needed evidence to be certain that the opposite was true. He did this
by asking the volunteering student to move away from the CBR motion detector and
commented:

S1A1E2

Teacher: So, what do you think will happen when Kelly moves towards the CBR?
Mark: The graph would go up.

Teacher: Kelly, give it a try. Move towards the CBR.

Mark: Oh, it’s going down.

Kelly: It gets lower and lower as I get closer to the CBR.

Mark: Move back now (meaning away from the CBR). OK, I see it.

From this brief exchange and the visible immediate feedback from the CBR, Mark
was able to examine his earlier thoughts and the conditions of the situation and was able
to start understanding the relationship between position in front of the CBR and its
representation on the y-axis. The students were also able to verbalize the effect of speed
on the representations of the motion.

SIAIE3
Tim: You’re not moving fast enough at the end.
Jess: I could do it.

Teacher: OK, Jess, explain what you will be doing,.
Jess: I would start over here (approximately 0.5 meters away from the CBR), move
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towards the CBR for a little bit and then sprint out.

Teacher: Does anyone have other suggestions or concerns.

Kelly: Ya, when Jess moves towards the CBR, he needs to do it slowly.

Jason: Mr. Y, you better open the classroom door so that he doesn’t crash into it. He’s
going to be going very fast at the end.

Only one student near the end of this activity made reference to the horizontal
representation of the simulated motion in describing the actual motion. This may be
explained by the fact that the students were not familiar with this type of representation
for motion. However, after a student’s short explanation of the representation, other
students seemed to pay more attention to it and use it in subsequent activities.

This activity allowed students to familiarize themselves with the technology tool.
It was successful in having the students discover the relationship between physical
motion in front of the CBR and the graph being analyzed. The technology was valuable
because it gave the students immediate and direct feedback allowing them to reflect on

their thinking and examine their thoughts. It also provided them with a means of

validation for their conjectures.

4.3.2 Activity 2 (TS1.A2)

The g;)al of this activity was for students to identify the two variables involved in
the representations of the motion: time and position. |

This activity showed some of the expected difficulties outlined in the a priori analysis.
These are addressed below. The teacher also made a judgment to add additional instructions
which were somewhat counter to the design of the activity. In order for students to get to the
level of detail targeted by this activity, the teacher asked students to be more precise. The

teacher took it upon himself to make this specific intervention.
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S1A2E] [extract of unplanned teacher intervention]

Teacher: While you think about how you would walk a motion so that A matches B’s
motion, think about where you would need to be standing when you start, the
direction you would need to walk, where you would need to change directions,
etc.

It was discovered after the class that the teacher’s reason for this intervention was
to increase the likelihood that the research team would collect valuable data. This
intervention was not necessary because the students would have realized they needed to
be more specific. This situation was designed so that students would naturally increase
the level of detail in their exchanges because the feedback they were getting from the
milieu (other students and the technology in this case) required them to do so.

In their groups, the students also started discussing the meaning of the x and y-
axes. All groups came to understand that the x-axis represented time and that the
graduations along the x-axis represented seconds. It took longer for students to be able to
articulate what was actually represented by the y-axis. After 3 minutes into this activity,
two of the five groups were accurately describing the meaning of the y-axis as a
representation of their position in front of the CBR motion detector. After 7 minutes into
the activity, all but one of the groups was actually describing the meaning of the y-axis.
The one group that was not able to do so focused on describing the speed and direction of
motion over time without providing details regarding the position in terms of specific
distances away from the CBR motion detector. It turned out that in their group
discussions, this group focused more on the horizontal simulated representation of the
motion which simply does not make use of the y-axis. Following this situation of

formulation, the students in this group understood the need to be more specific with
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regards to position as it relates to the distance away from the CBR motion detector. For
example, the group quickly realized that they needed to provide the volunteer with more
details in order for him to match the motion accurately and they were able to do this
using information from the horizontal representation. Therefore, even with the
unplanned teacher intervention, the students still saw the need to increase the level of
detail in their exchanges because of the feedback they were getting from the milieu.
The majority of the students were able to identify time as a variable in the representation
of the motion, however as anticipated in the a priori analysis, some students said that
speed was the second variable in the motion. This misunderstanding of the representation
of the motion was corrected as the students discussed the motion in the context of the x-
and y-axes.
S1A2E2 [extract of a discussion in Group 3 regarding the two variables involved in the
representation]
Trish:  Well time is a variable.
Tim: Right, and speed is the other variable.
Jess: No way. Distance is other variable.
Tim: Speed affects the steepness of the lines, not distance.
Trish:  Look, distance is the other variable. The steep sections just say that you move
more during a certain time.

By the end of the activity, the students were successful in identifying the two
variables involved in the representation of the motion. Although the unplanned
intervention by the teacher did take away for the planned interactions between the

students and milieu, the students still learned from the milieu that they needed to

articulate more detailed instructions to the person walking the motion.
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4.3.3 Activity 3 (TS1,A3)

The goal of this activity was for students to identify the two variables involved in
the representations of the motion: time and position, and the relationship between them.

The students still relied heavily on verbal descriptions of the motions and their
representations. The teacher and the research assistant often had to remind the groups to
write their descriptions on their worksheets. As anticipated, the groups quickly
recognized that there are many different motions that satisfy the requirements of the
problem.

In this activity, the students were beginning to show a better understanding of the
meaning of the x- and y-axes and the variables that they represent. For example, in the
conversation among the students in Group 3 in the extract below, the students are making
reference to position and time and the relationship between them while describing the
motions. Whereas Tim initially struggled with the definition of distance as the dependent
variable above, Jess and Tim now show an understanding of how speed as rate of change
is represented graphically. As explained earlier, the ability to communicate one’s ideas is
a benchmark of understanding.

S1A3E1 [a continuation of extract SIA2E2]

Tim: Yes, but the steep parts show speed.

Jess: You are saying the same thing as she is. The more you move during a certain
time, the steeper the line. That’s speed.

Tim: That’s what I said.

Trish: No, you didn’t

Tim: It’s what I meant to say.

Many more of the students started using the horizontal representation of the

simulated motions in their discussions while describing the motion. As anticipated in the
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a priori analysis, many of the students used the horizontal representation to obtain

detailed information regarding the distance and direction. This was because the distance

intervals in the horizontal representation were clearly identified in close proximity to the
graphical representation of the motion. It also made it easier for students to identify
where both A and B were at the same position. This can be seen in the following
extracts:

S1A3E2 [extract of a discussion using the horizontal representation in Group 5 regarding

the two variables involved in the representation]

Bruce: We could not move for 4 seconds and run until the dots are on top of each other.

Kevin: How do you fix it so that the dots are on top of each other at exactly 6 seconds?

Bryan: Icoulddoit.

Lacey: So could L

S1A3E3 [extract of a discussion using the graphical representation in Group 2 regarding

the two variables involved in the representation]

Lin: Look, all we need to do is start off slowly and then run fast to get on top of the
line.

Ann:  Where do we start? Oh, we start at the same place and as long as we walk really
slowly, we will stay under the line. But we need to be at the same place after 6
seconds.

Lin: 6 seconds is just 6 tick marks away.

Kathy: So as long as we get there in time, we are good.

Also anticipated in the a priori analysis, many of the students were able to
describe the motion in the context of the functional relationship between position
(distance away from the CBR motion detector) and time elapsed. Most of the students
used terms such as steeper and faster to describe the differences in the rate of change.

For example, this can be seen in the extract below:

S1A3E4 [extract of a discussion describing motion as a functional relationship between
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position and time]

Frank: Let’s start off by going really slow. Then we could sprint to the finish line and
beat them.

Ruth:  Right, but we don’t want to beat them. We need to finish in a tie.

Frank: OK, why don’t we start slow and go really fast and almost catch up. Wait a
couple seconds and then floor it?

Patrick: So what would that look like?

Ruth:  Almost a flat line at the beginning, then a really steep line going up, then a flat
line, then a steep line going up and hitting the other line at the end.

Fewer students were able to provide a more detailed description of the motion by
providing more specific information referring to units and rates of change. 2 of the 5
groups provided this level of information in their descriptions. By the end of this
activity, the students were easily able to identify the two variables involved in the
representation of motion. Most of the students were also able to show an understanding

of the relationship between these two variables through their ability to correctly articulate

the relationship between distance and time.

4.3.4 Activity 4 (S1A4)

The goal of this activity was for students to reinforce the acquired knowledge and
to be able to coordinate multiple representations of the same motion — the graphical
representation and the simulated horizontal motion. Another goal was for students to
develop a good understanding of the notion of dependence and independence.

As expected, the students certainly came up with very interesting stories. In fact,
many of the initial brainstorms from the groups were more centered on finding the
craziest story. It took several minutes for students to ground themselves in reality. Once

they did this, the activity really took off as expected. It was expected that the students
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would try to invent creative stories and would challenge the other teams. They certainly

succeeded. Below is an example of discussion that took place in the initial brainstorm.

S1A4E1 [extract of a discussion in Group 4 in brainstorm mode]

Danny:

Nancy:
Danny:

You’re on a skateboard going really fast before you hit the ramp and do a 360 [a
360 degree rotation in the air] before hitting the ground and wiping out.

What about a car chase where one of the cars spins out of control?

What if T landed my 360 and then spun out of control?

However, after 2-3 minutes, the group brought themselves to reality when they started to

discuss the implementation of some of these crazy stories in the context of the graphical

and horizontal representations available to them. For example,

S1A4E2 [extract of a discussion in Group 4 in implementation mode]

Frank:

Ruth:
Danny:
Ruth:

Patrick:

Danny:

Patrick:

Danny:

Patrick:

Ruth:
Danny:

Patrick:

Ruth:
Danny:
Frank:

Patrick:

Does anyone actually have a car or a skateboard and ramp that could be used to
show this? Remember, Mr. Smith said that it had to be doable.

Let’s use Danny’s skateboard idea without the skateboard.

What?

Like Frank said, you don’t have a skateboard here and it would not work
without a ramp. You could pretend you are doing it on the skateboard.

OK, so going really fast away from the CBR would look like this [holding a
graph with a very steep and positive slope]. What happens when you hit your
Jjump?

You get into your 360.

Do you stop in the air to do it?

No, you get into the rotation as you go up and finish it just before your wheels
hit the ramp.

OK, so the next part looks like this [a very short section with zero slope
followed by a section with very steep negative slope].

Don’t forget the crash at the end.

Right, that graph comes to a dead stop.

What?

No, when you hit the ground, your line goes flat.

Right, you don’t move but the time keeps ticking.

He doesn’t just stop. Even if he crashes, there’s always a little slide before he
stops.

OK, so we make the last section look like this [very small negative slope
followed by a long section with zero slope].
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Also, as anticipated in the a priori analysis, some students offered graphs that did not
represent motions but were functional relationships. In no instances did these graphs
remain candidates for group submissions very long because they were void of any
physical reality. In attempting to describe the physical motion, students quickly realized
that no motion could represent the graph. However, only in situations where some
students held firm to their beliefs did very rich discussions around the relationship
between position and time and the notion of dependence and independence occur. For
example, below is an excerpt of an explanation a student (Lee) was giving while
attempting to physically create a motion that would be represented by graph in the shape
of the letter P. Another student (Ann) used an anticipated argument in challenging Lee.

S1A4E3 [extract of a discussion from Group 2]

Lee: Look, I am telling you, I could do the P. You just need to move very fast.

Ann:  How are you going to create the bottom portion of the P?

Lee: That’s where you need to be very fast and run back towards the thing.

Ann: Can you run so fast that you could make time go backwards? You can’t make it
go back.

Lee: What do you mean?

Ann:  No matter what you do, the thing keeps going. You can’t make it stop.

Lee: I am telling you, I could do it.

Ann: Whatever. Why don’t you do it in front of the class?

Lee: I will.

Tina:  Look guys, we got to get this thing done. Why don’t we do something that you
guys won’t argue about?

After the groups had an opportunity to create other groups’ scripts, the teacher asked if

anyone wanted to volunteer to create the letter P or other difficult letters. Lee from group

2 raised his hand to volunteer.

S1A4E4 [extract of exchange between the teacher and Lee]

Teacher: So Lee, let me know when you are ready. Make sure you are standing where
you want to be when I hit start.
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Lee: No prob. Mr. Smith. Ready.

Lee: (as he is walking away from the CBR) See, here we go with the first
part...doing the curve at the top...coming around quickly to close... to close...
come on now! (moving his upper body towards the CBR without moving his
feet). I’'m stuck.

Ann: Told you.

Teacher: Lee, why can’t you finish the bottom portion of the P?
Lee: I can’t make it stop.
Teacher: What can’t you stop?
Lee: The time

The notion of dependence and independence surfaced naturally during this
activity and the students appeared to better understand the relationship between the two
variables involved in motion. The notion of dependence and independence in a problem
of motion surfaced naturally in much the same way it did for Newton in the 1600s as
outlined in the preliminary analysis. Specifically, the notion of dependence and
independence really surfaced when the students were directly experiencing the concept of
independent variable as they were physically creating the motion that was being
represented. As reported above, the student physically trying to reproduce the final
portion of the letter P (slanted) understood and even perhaps “felt” that he was unable to
make time go backwards. This was directly observed when the student moving towards
the CBR slowly came to a stop and started leaning towards the CBR while watching the
graphing representation continue to plot points further and further away from the y-axis.
The milieu in this activity provided the students with real-time feedback allowing them to
quickly adjust their thinking and their actions.

One student was creative about how to reproduce a letter which one would

initially think is not possible to produce while walking in front of a CBR (i.e. not based

on a functional relationship). He showed how to create a slanted J so that the motion
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respected the independence of time by walking towards the CBR, slowing down,
changing directions, then walking away from the CBR at an increasing pace.

This activity was successful in having the students develop a good understanding
of the notion of dependence and independence. They were able to show this new
understanding by being able to articulate their understanding of the relationship between
the variables. Specifically, many of the students were able to clearly communicate (after
their experience) that time was an independent variable. Their understanding of
dependence was a little more subtle in that they were able to communicate that they were
able to control the dependent variable. It should also be noted that few of the students

actually made any reference to the horizontal motion in this activity.

4.4 Teaching sequence 2: Modeling and piecewise defined functions

The second teaching sequence leverages multiple representations in order to
enable individual and aggregated mathematical constructions. The goal is to challenge
students to coordinate multiple representations of functional relationships and slope as

rate of change in problems of motion.

4.4.1 Activity 1 (TS2.A1)

The goal of this activity was for students to familiarize themselves with a new
feature of the technology tool that could be used throughout the teaching sequence and
for students to understand how motion could be represented by more than one form of

representation and the differences between these representations. A common framework
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and language for discussing functional relationships was institutionalized throughout the

activity.

This activity was essentially a teacher led discussion. The students participated
by being part of the class discussion and/or through the action of the volunteering
student. As was anticipated in the a priori analysis, this activity focused the students’
attention on the simulated horizontal representation of the motion. Similar to the first
“Getting Started” activity, the students relied heavily on verbal descriptions of the motion
and their observations.

In order for students to get to the level of detail targeted by this activity, the
teacher asked students to be more precise. For example, after a brief discussion regarding
the students’ initial reaction to what was going on in the demonstration, the teacher asked
the students the following questions: When is B going the fastest?; When is B going the
slowest?; When does B seem to change its speed?. These specific questions forced the
students to be more specific with their responses:

S2A1E1 [extract of a discussion regarding rates of change at different locations — a

disagreement]

Bruce: The first section is going fast, the middle section is going fastest, and the last
section is slowing down.

Ann: Mr. Smith I would say it differently. B is going fastest in the middle section
and slowest in the first section. The middle section has the steepest slope and
the first section has the smallest slope.

Teacher: And when does B change speeds?

Ann: There and there.

Teacher: Can you be more specific about when?

Ann:  After about two and half seconds, it goes faster and slows down after about five
seconds.

Frank: I think the last section is the slowest section.

Teacher: Let’s see if we could investigate this more to determine the actual slowest
section.
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The introduction of the STEP feature allowed the students to place the time cursor
on top of the vertical axis where each subsequent press caused the vertical line to slide
along the animation one Step-Time value. This proved to be helpful in obtaining more
detail during their investigations. This feature was a tool used to explore the functional
relationship in the graphical representation.

The introduction of the MARKS feature allowed students to drop marks at regular
time intervals during the animation in the horizontal representation. This led to rich
discussion with students trying to justify their answers to the first three exploratory
questions posed by the teacher.

S2A1E3 [extract of a discussion regarding the actual slowest section of the graph]

Teacher: So how could we tell which section is the slowest?

Lee: The one with the most space between marks.

Teacher: What do the rest of you think about this?

John:  Most distance between each section should be fastest. The second section is
twice as fast as the first section. [See figure 16 below.]

Frank: Right, and the last section is a little faster than the first. I was wrong.

Teacher: No big deal. They were very close. Without dropping marks, it would have
been tricky.

Figure 16. The MARKS feature

The students appeared to adjust to the new level of precision made possible by the
“stepping” and “dropping marks™ as the motion was animated. These new features
encourage the students to refine the analyses of their observations. The students appeared
to agree with the rationale provided by several students in answering the questions at the
end of this activity.

An interesting discussion surfaced when the students were asked “exactly how
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fast is B moving during each part of the trip”. Through the following exchange among

three students, the notion of rate of change emerged quite naturally. In fact, it seems to

have been a real eye opener for one particular student (“oh so that’s what rate of change

means”..

).

S2A1E4 [extract of a discussion regarding actual speeds during the sections]

Teacher:

Lee:

Teacher:

Mark:
Lee:

Teacher:

Peter:

Teacher:

Peter:

Teacher:

Peter:

Teacher:

Patrick:

Teacher:

Linda:

Teacher:

Linda:

Teacher:

Patrick:

Teacher:

Lee:

Teacher:

Lee:

Teacher:

Now, I would like us to describe exactly how fast B is moving during each part
of the trip.

The first section is moving one tick per second.

One tick?

One meter per second.

Oh yes, the tics are for meters.

How fast is B moving during the second section?

Two meters per second.

How did you get that?

Well, there are two tics between each drop in that section.

What’s the difference between the rate in the first section and the rate in the
second section?

That one [referring to the first section] has one tick per mark and the middle
section has two tics per mark.

What does this tell us?

The second section is twice as fast as the first section.

Right, the rate of change in the second section is twice as fast as that of the first
section.

So that’s what rate of change means...

What did you think it meant?

Well, I never really thought about it.

Well, I am glad that you understand it now. Can anyone tell us what the actual
speed for the last section is?

I would say one and half meters per second.

What do the rest of you think about this?

That’s about right.

How can we be sure?

We could take out a ruler and measure.

That would be a great idea. However, I think most of the class accepts 1.5
meters per section as the rate of change for the last section.

This activity achieved its goal of familiarizing the students with the new features

of the technology. The students’ understanding of how motion could be represented in
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more than one way and the differences between their representations surfaced when they
used the new features to refine their analysis in the horizontal representations. They were

able to clearly communicate what was happening in both representations.

4.4.2 Activity 2 (TS2,A2)

The goal of this activity was for students to enhance their understanding of the
critical ideas of functions and slope as rate-of-change. The core mathematical ideas
being addressed and contextualized in this activity are the concepts of function as a
relationship between distance and time and the qualitative idea of slope as rate of change
where the rate in this case is velocity: positive vs. negative, steeper means faster (greater
rate), zero slope means zero rate (zero velocity). The students were to familiarize
themselves with the graphical editing of piecewise defined functions through direct
manipulation enabled by a new feature of the technology tool that was to be used
throughout the teaching sequence.

As expected in the a priori analysis, the students were able to use the graphical
editing features to help them analyze the first series of questions. Only two of the five
groups were making use of the new features that they had been introduced to in the
previous activity. This was largely because the motion was designed to go very quickly.
All of the groups were able to quickly answer the first two questions. Just by looking at
the representations, the students were able to observe that B was represented by the dot
below the tick marks and by the shorter graph below the longer graph. The more
interesting discussions happened when the students were asked to reflect, discuss, sketch,

and create a graph.
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Two groups used the Marks feature to “drop marks” during their motions to
analyze the motion more carefully using the horizontal representation. The other four
groups chose to focus only on the representations of the simulatidns without using the
new tools. Both groups who started by using the Marks feature also switched to the more
visual approach to answer the questions. All groups were able to correctly answer the
questions. By being able to accurately articulate their ideas regarding slope as rate of
change, they were able to demonstrate their understanding. The tool also allowed the two
groups to develop their understanding by providing them with additional information that
had them reflect on their own thinking,.

S2A2E]1 [Exploring distances and durations]

Lee: B goes slower than A. Look at the marks.

Kathy: Yes but we just need to say how long they each traveled for.
Jim: They want to know time and distance for each one.

Lee: Well that’s easy.

Ann: A goes for ten seconds and covers ten meters.

Tina: B only goes for 4 seconds.
Lee: Right, and it goes on for only about 2 meters.

The students came up with very interesting graphs when it came time for students
to reflect upon, discuss, sketch, and create a graph for a motion that would satisfy the
given criteria.. All the students in all the groups explored different ways of creating the
graphical representations by directly manipulating the different segments of the graph on
the graphing calculator rather than on the graph paper provided to them. Also, each of
the groups made use of a section with a slope of zero. This was anticipated in the a priori
analysis because it was anticipated that students would be able to apply their knowledge
of zero slope. It was expected that students would discuss and experiment in their groups

how to represent “going backwards” graphically. The correct behavior was for students
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to explain that they needed to add a new segment that must slope downward, or have

negative slope. This is an example of how it was discussed:

S2A2E2

Lee: So first, the graph has to go up very fast. Then it goes flat for 2 seconds....

Ann:  Going in the wrong direction would be like coming back. The graph would be
coming down.

Kathy: It’s like moving towards the CBR.

Ann:  Right. And then we must end in a tie.
Lee: That means we need to create a section that connects with A at the very end.

It was also expected that students would discuss how to represent “finishing in a tie”.

The correct behavior was for them to explain to each other that you must add one more

segment and extend it to the right and upward as needed so that its right endpoint

coincided with that of A’s graph. Although the majority of the groups had little

difficulty finishing in a tie, one particular group helped one student overcome a difficulty

with the concept.

S2A2E3 [A group helping a student who thought that a tie meant making sure the last

segment went all the way to the end and that it did not need to coincide with A’s graph.]

Jess: ... OK, now we need to end in a tie.

Trish: Let’s create a section which goes to the end.

James: Like this [showing a section which coincides with A at the end].

Trish: That’s good but so is this [showing a section which has B finish below A].

Peter:  No, that one does not work.

Tim: It must be exactly on top of A at the end to finish in a tie.

Trish:  As long as it goes to the end, it’s a tie. Oh no, you’re right. I forgot about the

distance. You are right. It does need to be on top of A at the very end.

Another student made a literal picture of B falling down as a segment sloping

down to the x-axis. This incorrect conception has been identified as an obstacle in the

cognitive dimension of the preliminary analysis and the students in his group were able to
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help this student overcome this obstacle by discussing the meaning of the x and y-axes in

their contexts.

S2A2E4

Linda: ...and then the graph goes straight down for two seconds.

John:  Falls down is the same as stopping. It’s just a flat line.

Linda: Right. But the graph goes down before it goes flat.

Jim: Going down means going back towards the start. Remember the CBR thing.
When we walked away from it the graph went up and when we walk towards it,
it went down.

Linda: When we stood still, it was a flat line. OK, OK, I get it. I wasn’t thinking.

This activity put students in a situation where they were required to reflect upon
the functional relationship involved in motion and communicate their understanding.
Some students like Trish and Linda, who at first struggled with their ideas, developed the
ability to reflect on and articulate their knowledge. This activity was successful in
familiarizing the students with the editing feature for the editing and creation of the
piecewise defined functions. This was evident because all the students were using this

new feature as they were creating their graphical representations while attempting to

respect the constraints.

4.4.3 Activity 3 (TS2,A3)

The goal of this activity was for students to familiarize themselves with the new
representational system that was to be used throughout the rest of this teaching sequence.
The students were provided with the first experience to “see” all of the representations
that had been collected, especially overlapping graphs and they will be challenged to
coordinate multiple representation systems to “find” their constructions. This activity

was essentially a continuation of the previous activity.
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The role of technology as a part of the milieu in this activity was to challenge the
students to coordinate multiple representation systems to “find” their individual
constructions among the many representations in the shared space. The milieu here
introduced students to the process of relating their personal constructions to the larger
collection of objects that appeared on the “big screen” when their work was aggregated
with that of their peers.

As was anticipated in the a priori analysis, the students immediately started creating
psychological links with the mathematical objects that they created, referring to them as
“my dot”. This personal investment in the building of knowledge as outlined in the
cognitive dimension of the preliminary analysis is an important indicator of
understanding. Most students were able to successfully coordinate their mathematical
objects in the two different representation systems — Connected MathWorlds in the shared
space being projected to the class using the data projector and MathWorlds in the
personal space on their graphing calculators. Because of differences such as size of
screen, representation of the axes and intervals, resolution, and color, and the fact that
several of the graphs looked very similar, students needed to identify certain aspects of
their mathematical objects on their graphing calculators and look for them in the public
display. The students were successful in overcoming this challenge by reflecting on and
applying their knowledge of the functional relationship involved in problems of motion.
Figure 17 is an aggregated view of all of the groups’ constructions. The justification
from the students below showed that they relied on a good understanding of the
functional relationship represented in the graphical representation on their graphing

calculator in order to apply this mathematical knowledge and locate the same
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mathematical object in the public display even though it looked a little different.
S2A3E1 [Group 2 identification of their construction.]

Lee: Look, there’s our graph.
Teacher: How do you know for sure that that’s your graph.

Lee: Because, we took off as fast as we could — that’s why.
Ann:  That’s right. And I know that we fell down after only 1 second. No other
graphs up there do that.

Teacher: You guys really know your graph.

Figure 17. Aggregated view of group constructions

S2A3E2 [Group 1 & 3 identification of their constructions.]

Kelly:  Our graph must be the orange one [G1 graph above was orange on the projected
screen] because it goes the highest.

Mark: Yes, ours went off our graph on the graphing calculator.

Tim:  No, the orange one is our graph. We went high also.

John:  Could you see the graph on the graphing calculator.

Peter:  Yes, we could. Our graph only went up to about 11 meters.

Tim: OK, right, so our graph is the green one [G3]... or the brown one (GS).

Peter:  Ours is the green one [G3].

Teacher: Why do you say that?

Peter:  Well we fell down farther than 10 meters away... it was more like..

James: 12 meters away.

Peter:  Right it was about 12 meters away. Look the green (G3) one is exactly 12
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meters away.
James: The brown (G5) one fell less than 10 meters away.

S2A3E3 [Group 4 identification of their construction.]

Teacher: What other group would like to point out their construction for us?

Danny: We would.

Teacher: OK, which is it and why?

Danny: It’s the pink one [G4] because we did nothing for the first few seconds.

Tina [from group 2]: You couldn’t do that! You had to start with a wild burst of speed.

Ruth: It did not say that it had to start with that. We did our wild burst of speed after 4
seconds. Mr. Smith?

Teacher: Keep explaining why the pink one is your graph.

Danny: That’s basically it. We were the only ones that started that way so it’s easy to
spot our graph. The rest of the pieces look very similar.

Ruth:  Right. And we were the only ones to stop at 9 meters.

As a continuation of the previous activity, this activity was successful in having
students enhance their understanding of function as a relationship between distance and
time and the qualitative idea of slope as rate of change. The students displayed this by
successfully applying their mathematical knowledge of functional relationships and of
slope as rate of change. The students also demonstrated a personal investment in the
building of knowledge as they constructed relationships between the mathematical
representations they created on their graphing calculators and the representations of the
same objects on the shared public display. Also, the students were successful in

communicating their justification for the correct identification of their representations in

the shared public display.

4.4.4 Activity 4 (TS2.A4)

The goal of this activity was for students to display an understanding of the
concept of variable, and the notion of dependence between two variables in their

descriptions - distance and time. The students were challenged to coordinate multiple
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representation systems, the personal graphing calculator/CBR/MathWorlds representation
system and the public TI-Navigator/Connected MathWorlds representation system, to
deepen their understanding of functions as a relationship between a dependent (distance)
and an independent (time) variables. The goal was also for students to deepen their
understanding of slope as rate of change. Implicitly there was still the goal to engage the
students personally with their mathematical work and to reach students who might
otherwise feel alienated from mathematics by offering them a chance to “perform”
mathematically.

As was anticipated in the a priori analysis, the students were very autonomous
while working in groups. They appeared excited about the activity and their stories were
very exciting. Initially, most groups focused on verbalizing stories that they felt would
be difficult to re-create. During this brainstorm, other members of the team tried to bring
the brainstorm something that could be contextualized on their devices.

S2A4E1 [Wild story brainstorm in group 5]

Bruce: ...and then the rocket ship goes...

Lacey: Hey! Is that something that could be done on this screen?...

Bruce: Ya, but we need to think of something cool. What if we start by making a really
ugly graph and then find a story for it?...0K?

The students used the technology to explore and to verify the stories and then
adjusted their stories so that they fit the representations that they created. These students
focused on the representations of the mathematical object first. They needed to have a
good understanding of the relationships between distance and time over the different
sections that they created in order to come up with story lines that reinforced the

relationships during the appropriate times. The notion of dependence and independence

was discussed in the exchange between these students below. Although this type of

147



discussion was not anticipated in the a priori analysis, the arguments that were used in
the discussion were predicted.

S2A4E2 [Discussion time and position in group 5]

Bruce: Look, the guy wants an exciting race, let’s give him one.

Lacey: Yes, but you are talking about going back in time. That’s not possible.

Bruce: Let’s make it possible... How do we show it on the calculator?

Bryan: Well, uh, we could uh...

Lacey: Give an example of where it would work.

Bruce: OK, let’s say you run super fast to get near the end and then you forgot your
phone, you could stop the time, floor it to get back and zoom back to where you
were, the time would start up again and we cross the finish line... How would
you graph that?

Kevin: The graph would have a bunch of lines behind where you stopped.

Bruce: OK, how do we do it on this [calculator]?

Kevin: Oh, you can’t because you can’t stop time on this calculator.

Bruce: OK, you are right, we can’t change that but we can change where we are — let’s
go all over the place as fast as we can.

Although this excerpt showed that one of the students got carried away trying to change
the environment, the students did display a strong understanding of the independent
variable in this activity — time. The above discussion did force the students to reflect on
their initial ideas and their thinking about this story. In the end, they were able to apply
their understanding of time as an independent variable and adjust their story.
Other students started from a story, explored and validated the story, and then

adjusted the graphs so that they fit their story.
S2A4E3 [excerpt of a discussion in Group 2]
Lee: Let’s start here...you need to go up quickly...
Ann:  Yes but not as quickly as you’ll need to go later — we start out kind of slow, we

stop, and then take off to the finish
Kathy: So the third section needs to be steeper than the first section.
Ann & Lee: Right!

This excerpt demonstrates that the students had a good understanding of slope as rate of

change. This was observable in their ability to communicate clearly about the concept.
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The actual exercise of creating graphical representations for the exciting races that were
delivered from the other groups also resulted in some great discussion displaying a
deeper understanding of the functional relationships. The ability to formulate a clear
description of the motion to other teams to follow in order to reproduce the graphical
representation is an important indicator of understanding.

S2A4ES [Group 3 - Creating a Position vs Time Graph for another group’s story]

Jess: So they want us to start far away. Then they want us to move towards the CBR.
They want us to be jogging.

Trish: Then they want us to sprint back to exactly where we started.

Peter: John probably thinks none of us could run as fast as he can.

Tim: Ican. I want to do it.

All the groups were able to recognize their graphical representations after the
teacher collected them all, aggregated them and projected them in the public display
using a data projector. As anticipated in the a priori analysis, the students who
successfully coordinated between their personal creation on the device and the more
refined version of the graphical representation offered by the computer version of
MathWorlds in the public display had a deeper understanding of functions as a
relationship between dependent and independent variables and slope as rate of change.
As anticipated in the a priori analysis, the development of understanding by the students
in this activity emerged as the students constructed relationships, extended and applied
mathematical knowledge, reflected about experiences, articulated what they knew, and
made mathematical knowledge their own. This was also observed by the descriptions

that they gave of the functional relationships being represented by the graphical

representations.
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Some students were more challenged than others in coordinating the
representations on the two devices — the graphing calculator and the public display. For
example, groups 4 and 5 had difficulty recognizing their graphical representations
because some of the sections of both graphs overlapped making it difficult to see just one
graph. The teacher helped by hiding some of the overlapping graphs and the students
were able to find their own graphs.

This activity was successful in having the students display their understanding of
the notion of dependence and independence. The challenge of coordinating the two
representational systems also helped the students deepen their understanding of function

as a relationship between distance and time in problems of motion.

4.5 Teaching sequence 3: Summarizing understanding

Recall that the goal of this sequence was to provide the research team with the
opportunity to ask explicit questions to the students to probe their understanding of the
concept of function and their ability to transfer knowledge acquired with technology to a

traditional paper and pencil environment.

4.5.1 Activity 1 (TS3,A1)

The goal of this activity was to determine if the students had a good
understanding of the functional relationship between distance and time in problems of
motion and solid understanding of independent and dependent variables.

As was anticipated in the a priori analysis, the majority of the students (22 out of

the 23) selected the correct graphical representation for this problem (d). It is difficult to
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know exactly why the one student chose the incorrect representation or what meaning he
had constructed to do so. In the class discussion, this student might have been the first
presenting his/her answer and the teacher could have asked the reasons for this choice. It
would have allowed having an insight to the understanding of this student. However,
assumptions for this have been made in the a priori analysis. Recall that the obstacle
related to student difficulties overcoming literal representations of graphs was outlined in
the cognitive dimension of the preliminary analysis and that this type of obstacle creates
significant difficulties in conveying the connections between graphs and functions to
students. As a result, more one-to-one interview by the teacher was required with this
student following the research project.

An interesting class discussion took place when the teacher asked the class why
the other representations were not selected. The students were able to recognize that the
other graphical representations did not represent functional relationships. The
expectation was that the students would comment that the incorrect graphs showed time
going backwards or a person being at more than one location at one point in time. As
described below, this did in fact happen. Also, recall that Frank was the student in the
first lesson who strongly believed that he could create the letter P because he was a fast
runner. His comment below shows that he now has a good understanding of the function
relationship between distance and time in this problem of motion.

S3A1E1 [Excerpt of discussion around the distracters]

Peter:  You can’t be at a bunch of places at exactly the same time

Frank: You can’t go backwards in time.

Ann: How did you create these graphs anyway? It should not be possible for you to

do these. What’s up Mr. Smith?
Teacher: Well, these are actually fake graphs...
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4.5.2 Activity 2 (TS3,A2)

One goal for this activity was to determine if the students were able to apply what
they had learned about the functional relationship in problems of motion involving the
motion detector in a different context without technology. Another goal was to determine
if the students deepened their understanding of slope as rate of change.

As was anticipated in the a priori analysis, the majority of the students were able
to use their understanding of functional relationships in problems of motion to correctly
represent the given segments graphically. Specifically, 19 out of the 23 students were
able to represent slope (positive, negative and zero) appropriately with different rates of
change and displayed a good understanding of position in this activity.

As expected, many of the students needed to start their graph over several times in
order to make effective use of the graph paper provided. Most of these students got
through several criteria before realizing that they ran out graph paper to complete the
problem. This limitation pushed the students to focus on representing important
properties of the functional relationship graphically.

It was promising that no students appeared to resort back to literal representations
of segments of graphs when unsure of how to represent parts of Santa’s trip correctly.
Most of the mistakes that were made on this problem dealt with accuracy. For example,
Nancy had a short portion of a negative slope representing the front tire blow out instead
of the zero slope that was expected. However, Nancy did have zero slope representing
the one-second stop. Unfortunately, I did not have the opportunity to discuss this with
Nancy, however, it may be that she thought the wagon had moved slightly backwards

after getting the blow out. Linda, Bryan, and Kevin all had final sections (G) which had
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slopes that were slightly different from the slope in section A. Perhaps this is because the
instructions for the last section were not clear enough. Specifically, perhaps the students
had difficulty interpreting same rates as parallel line segments. This is not obvious and it
was not addressed explicitly in the previous activities. Although all three of these
students did not have the exact same slope as they did in the first section, they all had
slopes that were relatively close.

The students were able to successfully transfer what they had learned about
problems of motion involving the motion detector to a different context and to a paper
and pencil environment. Also, the students’ graphs communicated a good understanding
of slope as rate of change demonstrating a greater depth of understanding than at the

beginning.

4.5.3 Activity 3 (S3A3)

The goal of this activity was similar to the first two in that it attempted to
determine if the students had a good understanding of the functional relationship between
distance and time in problems of motion and a deep understanding of slope. This activity
also attempted to determine if the students had the ability to obtain important information
by analyzing graphical representations of functional relationships between distance and
time in a motion problem set in a different context.

As was anticipated in the a priori analysis, the majority of the students were able
to use their understanding of functional relationships and displayed the ability to obtain
important information by analyzing graphical representations of functional relationships

between distance and time in a motion problem set in a different context. Specifically, 13
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out of the 23 students were able to answer all questions successfully. 5 out of 23 students
had difficulty with number 5. As anticipated in the a priori analysis, this is most likely
because these students made the false assumption that the bikers started the trip from the
same location. Two of the students answered all of the questions matching A and B with
the wrong graphical representations. Although, these students’ answers were wrong,
their answers were correct within the context of the matching they used.

This lesson was successful in providing a good picture of the students’ individual

and group understanding of the concepts explored in the first two lessons.

4.6 Summary

This chapter described the realization and the analysis of the teaching sequences
and the last day assessment. The next chapter will present the conclusion and summary

for this thesis.
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Chapter S Conclusion and Summary

The goal of this experiment was to explore the effects of using multiple
representation systems on student understanding of functional relationships involved in
problems of motion. Historically, motion has been the basis for a considerable amount of
mathematics, especially in the development of the concept of function, and I was
interested in learning about how motion in a didactic milieu making effective use of
multiple representation systems enhances students’ understanding of functions. I will

now consider each hypothesis and relate the results of the experiment to the hypotheses.

Hypothesis 1: Individual mathematical constructions that are directly experienced in a
“live” context, have immediate kinesthetic, cognitive and linguistic aspects that will help
students develop an understanding of the relationship between distance and time in
problems of motion.

The selected technology included in the milieu did succeed in allowing the
students to experience motion directly. As a result of their interactions with the milieu,
the students were able to get immediate feedback from their actions allowing them to
reflect on their thinking and examine their thoughts and consequently adjust their actions,
thus contributing to the building of understanding of the relationship between distance
and time in problems of motion. Consistent with the historical development of the
concept of function, the students in this experiment relied heavily on verbal descriptions
of the motion and its representations to describe the functional relationship. The students

engaged in rich discussions helping each other overcome some of the anticipated
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difficulties. As outlined in the first chapter, the ability to articulate what one knows
about the functional relationship involved in motion is an important indicator of
understanding. The free exploration where each student walked in front of the CBR at
least twice allowed the volunteering students to directly experience the relationship that
exists between their motions and graphical representations that simultaneously were
being graphed as they walked. By being directly involved in the creation of the motion
and its graphical representation, the students were able to get immediate feedback from
their physical actions. They were clearly able to analyze the results of their past physical
motion with the targeted graphical representation and refine their motion to match the
desired graph more closely on the second try. These activities encouraged the conscious
examination of their own actions and thoughts, and as outlined in Chapter 2, the notion of
the emerging nature of understanding is seen in the students’ ability to reflect on their
own thinking (Carpenter & Lehrer, 1999). Either in the context of entire class
discussions or in smaller group discussions, students had the opportunity to observe the
direct effect of motion on its graphical representation. Several of the activities involved
having students formulate descriptions of motion for others to act out physically in front
of the CBR. This required the students doing the formulation to think about the different
aspects of the motion and refine their descriptions until the desired motion could be acted
out.

The simulated horizontal representation of the motions that could be played back
on demand by the students allowed them to see a simulated model of their physical
motion representing someone walking in front of a CBR as often as they liked. The

ability to play back the motion in the form of a simulation while simultaneously watching
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the graph of the motion being created allowed the students to explore the phenomena at
their own pace. This really seemed to help students refine their thinking about functional
relationships in problems of motion.

By the end of the second activity in Teaching Sequence 1, most of the students
were able to show their understanding of this relationship between distance and time by
correctly articulating their ideas regarding position and time. By the end of the third
activity in Teaching Sequence 1, they were able to correctly articulate relationship

between distance and time in problems of motion.

Hypothesis 2: Individual mathematical constructions in a “live” context facilitate the
development of understanding of independent and dependent variables.

Students started demonstrating some understanding of the notion of dependence
as early as the first activity in Teaching Sequence 1 when they realized that the height of
the graph directly depended on the students’ position in front of the CBR. The real-time
kinesthetic feedback provided by the milieu helped the students validate or invalidate
their conjectures and develop their understanding of independent and dependent
variables. Also, the challenge provided to students in the final activity of Teaching
Sequence 1 resulted in very creative stories and the students appeared to be very engaged
in the mathematical experience. The major goal of the last activity of Teaching Sequence
1 was to have the students construct meaning regarding the relationship between the two
variables in motion and the notion of dependence in much the same way early
mathematicians did. The notion of dependence and independence surfaced when the

students were directly experiencing the concept of independent variable by physically
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creating the motion and simultaneously seeing it represented on the screen. For example,
the student physically trying to reproduce the final portion of the letter P (slanted)
understood and even perhaps “felt” that he was unable to make time go backwards. This
was observed when the student moving towards the CBR slowly came to a stop and
started leaning towards the CBR while watching the graphing representation continue to
plot points further and further away from the y-axis. One student was creative about how
to reproduce a letter which one would initially think was impossible to produce while
walking in front of a CBR (i.e. not based on a functional relationship). This student
showed how to create a slanted J so that the motion respects the independence of time.
The milieu in this activity provided the students with real-time feedback allowing them to
quickly adjust their thinking and their actions.

Teaching sequence 2 was successful in having the students develop a good
understanding of the notion of dependence and independence. They were able to show
this new understanding by being able to articulate their understanding of the relationship
between the variables. Specifically, after their experiences with the CBR, many of the
students were able to clearly communicate that time was an independent variable. Their
understanding of dependence was a little more subtle in that they were able to
communicate that they were able to control the dependent variable — distance away from

the CBR.

Hypothesis 3: Multiple linked representations of the same function in a simulated
environment allowing for manipulation by the students improves their learning about rate

of change.
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As expected, some students had difficulty coordinating between the simulated
horizontal representation of the motion and the graphical representation of motion. Most
students were simply more familiar with the graphical representation than the simulated
horizontal representation, but their familiarity with graphical representations helped them
make connections. Seeing the same motion represented in different ways caused them to
focus on the relationship involved in the motion, and the properties of the simulated
horizontal representations allowed the students to refine their analyses of the motion.
Specifically, it was observed in this experiment that the students were able to refine their
thinking about distance away from the CBR and the direction of the motion.

The graphical representation had different benefits: the majority of the students
chose the graphical representation when discussing and analyzing slope as rate of change.
The third activity of Teaching Sequence 2 showed that these multiple linked
representations of the same motion (i.e. graphical and horizontal simulated
representations) allowed the students to improve their learning about the functional
relationship involved in motion and about rate of change. Therefore, while analyzing the
motion using two linked representations, the students could focus on different aspects of
the functional relationship depending on the representation they were focusing on. This
allowed the students to quickly refine their thinking, especially when they were learning
about rate of change. By the end of the fourth activity in Teaching Sequence 2, the
majority of the students were able to display a good understanding of slope as rate of
change by being able to communicate clearly about the concept when describing their
motions to other teams, so that they could reproduce the graphical representation.

Teaching Sequence 3 also confirmed that students had a good understanding of slope as
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rate of change when 19 out of 23 students were able to represent slope (positive, negative
and zero) appropriately with different rates of change and in the contexts of different
situations of motion.

The direct experience resulting from deeper engagement with the mathematical
objects — functions, allowed the students to link them to the representations that they had
built. This became very evident in the third activity of Teaching Sequence 2 when the
students began referring to their representations as “my dot”, “my graph”, or “that’s me”.
As described in the cognitive dimension of the preliminary analysis, this personal

investment in the building of knowledge is an important indicator of understanding.

Hypothesis 4: Aggregated mathematical constructions challenge students to coordinate
multiple representations and deepen their understanding of functional relationships.

The final activity of Teaching Sequence 2 confirmed that students who can
successfully relate their personal creation on the handheld device to the more refined
version of the graphical representation offered by the computer version of MathWorlds in
the public display, had a deeper understanding of functions as a relationship between
dependent and independent variables and slope as rate of change. The development of
understanding by the students in this activity appeared to emerge as the students
constructed relationships, extended and applied mathematical knowledge, reflected about
experiences, articulated what they knew, and made mathematical knowledge their own.
This was also observed by the descriptions that they gave of the functional relationships
being represented by the graphical representations. The challenge of coordinating the

two representational systems also helped the students to deepen their understanding of
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function as a relationship between distance and time in problems of motion. Most
students were able to successfully coordinate their mathematical objects in Connected
MathWorlds in the shared space that was projected to the class using the data projector,
and MathWorlds in the personal space on their graphing calculators. Because of
differences such as size of screen, representation of the axes and intervals, resolution, and
color, and the fact that several of the graphs looked very similar, students needed a way
to relate their personal constructions to the larger collection of objects that appears on the
“big screen” when their work was aggregated with that of their peers. Figure 17 from the
third activity of Teaching Sequence 2 showed an aggregated view of all of the groups’
constructions. The students identified certain aspects of their mathematical objects on
their graphing calculators and looked for them in the public display. This internal
process required the students to reflect on and apply their knowledge of the functional
relationship involved in problems of motion.

Teaching Sequence 3 showed that the students were able to successfully transfer
what they had learned about problems of motion involving the motion detector to
problems involving motion in a different context. Also, the students’ responses
communicated a good understanding of slope as rate of change, a marked improvement
over their understanding at the beginning of the experiment.

Finally, it was clear from the observations of the student interactions and
participation during this activity that they really enjoyed learning about the functional
relationship involved in motion in this way compared with the day of filming that

preceded the implementation of this research design.
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5.1 Limitations

In order to investigate the validity of my research hypotheses in a diverse rural
high school setting, it was necessary to deal with the dynamics of a regular classroom.
Therefore, in addition to implementing the experiment, the teacher needed to spend a lot
of time managing the students’ behaviors. The size of the classroom was another
limitation. Ifthe experiment could have been conducted in a much larger forum, the
design could have included a station for each group so that each group would have had
their CBR set ups. Doing so would have involved more of the students in the physical
creation of the motion and associated explorations. Also, there were at least two students
who required individual intervention and were in fact receiving individual interventions
by the school district on a regular basis. The design of this experiment did not
accommodate these needs.

It may be thought that a limitation of the experiment was that understanding was
not assessed by formal testing, either before or after the instruction. However, the
richness of the students’ language and their ability to apply their knowledge to the new
problems presented in Teaching Sequence 3 was clear evidence of their learning and of
their understanding of the concept of function, so this evidence validated the a priori
analysis of the teaching sequence. Since a goal of the study was to apply didactic
engineering to a teaching sequence, it was designed according to the sequence a priori
analysis — experimentation — a posteriori analysis. This parallels the classic quasi-
experimental sequence of pre-test — intervention — post-test, so it meets the conditions

of Messick’s “Consequences as Validity Evidence.” (Messick, 1995).
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Because the effectiveness of this experiment was controlled by didactic
engineering and therefore mediated by research-based teaching practices and the control
of the variables, the scaling up of innovative-based mathematics to a wide variety of
teachers and students and classroom settings is a concern. There are also concerns that
only teachers who are comfortable with technology, interested in mathematics education
research, and with a high level of support and guidance would be able to implement such
innovations. It has already been observed that the teacher did not always follow
instructions, which may have affected the outcome, but this factor is inevitable in the
naturalistic setting of the real classroom and did not seem to influence the students
unduly, and indeed, the teacher is a necessary component of the didactic milieu.

Additional limitations included the fact that the only variables used were time and
distance functions, the activities addressed mostly piecewise linear functions, and that

specific technology tools were used.

5.2 Practical contributions

Through didactic engineering of teaching sequences, students may construct,
manipulate, and analyze graphical representations to important effect even in the absence
of a shift to a learner-centered constructivist pedagogy by the teacher. Carefully designed
sequences that take advantage of the affordances of specific representational technologies
may increase the students’ opportunities to learn.

Although historically, early notions of function were expressed in graphical forms
representing a dependence between two quantities involved in motions, work done in the

early 1900s to explore the concept attempted to downplay the idea of motion. It should
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not be surprising therefore, that the modern definition of function has abandoned the
metaphor of motion. Helping students come to understand important mathematical
concepts such as functions might be more effective if the concept were presented to them
in contexts similar to the ones that housed real problems that early mathematicians
debated while developing the concept. If important contributions to the concept of
function and the notion of dependent and independent variables from leading
mathematicians and scientists appear to have been contextualized in problems of motion,
then students should be put in similar situation early on to help them develop a solid
foundation for understanding functional relationships. This is a pattern of proven success
that should be repeated.

Learning about functions by studying their multiple linked representations is very
powerful because it makes the links between multiple representations more dynamic and
therefore, more visible to the students. Whereas direct manipulation of conjecturing
software has revolutionized the teaching and learning of geometry over the last ten years,
these same ideas now have the opportunity to revolutionize the teaching and learning of
functions. Teachers can use a variety of educational software products to help students
learn about functions, as suggested in this experiment. Ubiquitous devices such as the
graphing calculator greatly increase access to the functionality and capabilities that was
once only provided by powerful mathematics software for computers (Berson & Balyta,
2004). The most appropriate technology will be the technology that can provide all
students with meaningful and contextual interpretations of representations in a problem-
based approach, and handheld graphing calculators are inexpensive enough and powerful

enough to satisfy these criteria.
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Taking advantage of the students’ personal connection with their individual
constructions in an aggregated and publicly displayed set of student constructions
appeared to have helped the students develop important coordination skills that deepened
their understanding of functional relationships involved in motion. As classrooms
become more technologically advanced, the potential will exist to aggregate student work

in this anonymous and powerful way.

5.3 Theoretical contributions

It appears that this experiment was the first doctoral dissertation in North America
based on the Theory of Didactic Situations and didactic engineering. The Theory of
Didactic Situations formed the theory base for the experiment, and the experiment
showed that applying the process of didactic engineering in these new learning
environments could result in improved student learning of functions, and increase active
participation and interest. It is hoped that the success of the experiment might stimulate

other teachers and other researchers to employ the methodology.

5.4 Recommendations for future research

Much of the preliminary analysis and the a priori analysis driving this research
over the last several years has contributed to the new product development plans of a
major educational technology company which will continue to research the effectiveness
of its products on the teaching and learning of functions and other important
mathematical concepts. It is recommended that future researchers and teachers take

advantage of the multiple linked representations within such new integrated learning
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environments to determine if they are successful in deepening student understanding of
functions. For example, the ability to view one function through several linked
representations should deepen student understand of functions, both as a process and as
an object. Therefore one important question to explore in the future is whether or not the
appropriate and effective use of multiple linked representations could help students
through the progression from the process to the object conception of functions as
described in Chapter 2. Specifically, it would be valuable to learn if it helps students
reach the reification stage where an ontological shift occurs when the student converts the
condensed knowledge into an object in its own right (Sfard, 1992). It would also be
interesting to learn how students could go through this progression.

Other questions related more directly to this experiment that can be addressed in
the future such as long term effects of the sequences and the use of this particular
technology on avoiding some of the well known obstacles to understanding functions.

Another recommendation was derived from the preliminary analysis. Given the
pattern throughout the history of curriculum reform efforts resulting in misrepresentation
or partial implementation of curriculum recommendations, textbooks continue to
influence classroom teaching and learning dramatically. Because publishers rely on
extensive feedback from teachers, it would be important for mathematics researchers to
mobilize, align themselves, and become more effective in reaching the masses. This also
implies the necessity of work done with teachers to influence their conceptions of
teaching and learning. In addition to recommendatiohs already made in the preliminary
analysis, researchers in mathematics education might spend less time debating points on

which they disagree, and more time making explicit recommendations on the issues on
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which they agree, like the introduction of the function concept. A large-scale quantitative
collaborative research project led by several leading researchers in the field resulting in
major adoptions of curriculum and pedagogical recommendations around the teaching
and learning of functions should influence publishers to change the way the concept of
function is introduced in their textbooks, thereby changing how the concept is taught in

the majority of North American classrooms.
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Group Name:

Lesson 1: Exploring Physical Motion
Activity 1: Getting Started

Instructions for the students:

In the space provided below, write down your observations regarding what you think is
happening. Following the demonstration, the teacher will ask you to share your
observations and explain the relationship between the CBR motion detector and the
graph.

Write your observations below.
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Lesson 1: Exploring Physical Motion
Group Name:

Activity 2: Matching Motions
Walk a physical motion so that A matches B’s motion as closely as possible.

Instructions for the students:
Describe how someone would walk a physical motion so that A matches B’s motion as
closely as possible.

In the space provided below, write down a description of a physical motion for A. (One
description per group is sufficient.)

Write your description below.
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Lesson 1: Exploring Physical Motion
Group Name:

Activity 3: Catch Up Motions
Walk a physical motion so that A starts off slower than B, but catches up to B at the
end of the motion, at 6 seconds.

Instructions for the students:
Describe how someone would walk a physical motion so that A starts off slower than B,
but catches up to B at the end of the motion, at 6 seconds.

In the space provided below, write down a description of a physical motion for A. (One
description per group is sufficient.)

Write your description below.
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Lesson 1: Exploring Physical Motion
Group Name:

Activity 4: The Challenge!

Groups will challenge each other to create graphs of interesting motions.

Instructions for the students:
Create a graph for a physical motion that you feel would be difficult for other teams to
reproduce. However, make sure that it is possible to reproduce it.

In the space provided below, draw a detailed sketch of the graph and provide a story for
the physical motion needed to create it. (One graph and description per group is
sufficient.)

Sketch of the graph:

Story for the physical motion:
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Lesson 2: Modeling and Piecewise Defined Functions
Group Name:

Activity 1: Getting Started

Instructions for the students:

This activity is designed to familiarize you with a new piece of software. It is very
important to understand how this software works to be able to complete the other
activities.
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Activity 2: Creating Exciting Sack Races

Lesson 2: Modeling and Piecewise Defined Functions
Group Name:

Instructions for the students:
e Open menu item 1, “Piecewise Animations” from the Lesson 2 “L2: WarmUp” in the
MathWorlds application.

e Run the animation by pressing the

SoftKey and reflect and discuss what is

going on in your group.

o Reflect, discuss, and answer the following questions:

Which graph goes with which object?

How are the motions of A and B different?

How long does A travel — in time and in distance?

How long does B travel — in time and in distance?

e Reflect upon, discuss, sketch, and create a graph for a motion that would satisfy the
following criteria:

o

@]
o
@]

o)

Due to the wild burst of speed, B falls down for 2 seconds!

In the confusion of falling down, B gets up and goes in the wrong direction.
The race must end in an exciting tie!

Every team member needs to have a graph for a motion that satisfies the
above criteria.

Be ready to explain your motion and have your animation assessed by another
team.
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This activity o

You switch to Function Edit Mode to make changes to your function. Notice that the
SoftKey labels change when you switch modes.

You’ll use the blue Cursor Keys and HotSpots, shown above, to edit your graph.

In the space provided below, draw a detailed sketch of the graph and provide a story for
the physical motion needed to create it. (One graph and story per group is sufficient.)

Sketch of the graph:

Story for the physical motion:
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Lesson 2: Modeling and Piecewise Defined Functions
Group Name:
Activity 3: Find Your Exciting Sack Race

Instructions for the students:
e The teacher will collect your Sack-Races. It is important to listen to his instructions.
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Lesson 2: Modeling and Piecewise Defined Functions
Group Name:

Activity 4: Mathematical Performances — Exciting Races

Instructions for the students:

¢ In your groups, create an exciting sack race story-script for your own race with A
which ends in tie, and create a Position vs Time Graph for B that makes your race
happen.

In the space provided below, write down a story for an exciting sack rack story-
script for B. (One description per group is sufficient.)

Write your story below.
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Creating a Position vs Time Graph to model your exciting sack race.

¢ You’ll open MthWrlds from the APPS menu and choose the 1* of 2 activities — “Sack
Races.”

Choose MthWrlds | Press Enter Key Select this item Select this item Select this item

This activity opens in Animation Mode.

You switch to Function Edit Mode to make changes to your function. Notice that the
SoftKey labels change when you switch modes.

You’ll use the blue Cursor Keys and HotSpots, shown above, to edit your graph.

1. Press the MODE or DEL Key to switch to Function Edit Mode.
Make an exciting Position graph for B by adding and adjusting segments on B’s
Position graph.
Scaling: Note that the scale of the “world” is now 1 m, so A travels 20 m in 10
sec. The vertical scale of the Position graph is no longer 1, but 2 m.
Because the vertical scaling is now 2 m, there are times when you ADD a new
segment that is 1 sec wide your new segment will look horizontal. However,
when you stretch it to the right to 2 sec in width, you see that it slopes upward by
1 tic mark, which stands for 2m. Hence to make it flat, you need to drag it down
by one tic mark.

2. Be careful not to extend your segments too far or add so many segments that your
graph extends far off the screen. If this happens, then you will be adding, deletlng
or adjusting segments that are out of sight and it will seem like nothing is
happening! You might then need to delete segments (using the DEL SoftKey,
NOT the DEL hardkey) till you get back to something you can see! At least for
now, try to keep most of your graph and motion on the screen.
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You can adjust segments to the left of the last one by moving the Hotspot from
segment to segment—use the two left-most SoftKeys that look like arrows, which
move the HotSpot left or right.

When you think you have the Position-graph you want, return to Animation Mode
to try out your race. To re-adjust it, go back to Function Edit Mode.

As you are testing and finalizing your race, write your script in the form of a list
of descriptions, one for each segment of your graph. Draw your graph on paper to
accompany your written story. It may be helpful to label your list using letters A,
B, C, etc.

Sketch of the graph:

Bring your exciting sack race story-script to one of the other groups so that they
could create a Position vs Time Graph to match it.

Create a Position vs Time Graph for the exciting sack race story-script that was
delivered to you from another group. (Everyone in the group should create this
Position vs Time Graph.)

Sketch of the graph:
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8. When you have the motion and function you want Pause MathWorlds so your
teacher can collect this function.

PAUSING MATHWORLDS TO
HAVE YOUR FUNCTION COLLECTED

Make sure that your calculator is connected to a Hub WITH
the black wire firmly plugged in at each end.

Pressing the 2"? Key followed by the STO Key takes you this screen where you enter
your identifier:

Now use the ALPHA Keys to enter your name, or your Group Number-Count-Off
{ Number (like 0304 for Group Number 3, Count-Off Number 4) followed by your
name, as directed by your teacher.

Using the ALPHA Keys to enter letters is easier if you press 2" Key followed by the
ALPHA Key. This keeps the ALPHA Keys active till you press the ALPHA Key again.

When you have entered your identifier press the ENTER Key. You’ll see this screen:

Press the ENTER Key to Pause MathWorlds. The calculator will return to its Home
Screen, ready for your teacher to collect your function.

KEEP THE FOLLOWING IN MIND

1. DO NOT RUN MATHWORLDS WHILE YOUR FUNCTION IS BEING
COLLECTED. MathWorlds prevents network communication when it is
running!

2. DO NOT EXIT MATHWORLDS. Exiting, rather than Pausing, will cause
MathWorlds to delete the data it needs to Resume processing your
work. If you Exit MathWorlds you will start at the Main Menu and you’ll
have to open the activity again.

3. Leave the calculator in Pause, at least until you see the word
SUCCESS appear on the display.
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Lesson 3: Summarizing Individual and Group Understanding

NAME:
Activity 1: Distance vs. Time Graphs

Instructions for the students:

Circle the Distance vs. Time Graph That Goes with This Motion (If there’s more than
one, circle them all.)

Henri walks away from the zero-mark, stops for awhile, and then returns to his starting
point.

@ 4

(b) A DISTANCE
DISTANCE
IME ;IME
© d
4 DISTANCE A DISTANCE
TIME TIVE
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Lesson 3: Summarizing Individual and Group Understanding

Activity 2: Santa’s Having a Bad Day.
NAME:

Instructions for the students:

Things are tough up at the North Pole. No snow, the reindeer broke out of their pen.
Elves quit.

Santa made a 7-part trip as described below in A to G.

On the Distance vs. Time axis system below, graph his trip using segments. Label the
segments with the letters A to G so we can see which part of your graph goes with which
part of his trip.

Santa heads off on foot walking slowly with his heavy bag.

After awhile, he decides to drop the bag and rush back to his starting point to
get his wagon-bike.

He jumps on the bike & heads out at a fast pace to pick up his bag.

He stops for 1 second to toss the bag in the wagon.

He then continues at his same fast pace till his front tire blows out.

He stops for one second to jump off the bike and grab the bag.

Finally, he heads off at his same slow walking pace again for the rest of his
journey.

omEmYn W

A DISTANCE

TIME
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Lesson 3: Summarizing Individual and Group Understanding

Activity 3: Comparing Bikers A and B
NAME:

Instructions for the students:

Below are graphs of two bikers who start a trip at the same time. A has the dotted graph
and B has the solid graph. Use these graphs to answer the questions below. Time is in
minutes and distance is in km from the starting line, which is at zero km.

1. Where does A start?

2. When does A finish his trip?

3. Where does B finish his trip?

4. Which biker travels faster? Explain your answer:

5. Which biker has traveled farther at 5 minutes? ____ Explain your answer:

6. Who is ahead at 5 minutes?

7. Is there a time when the 2 bikers are the same dist. from the starting line? Y N
a. If your answer to #6 is Yes, what is that time?
b. If your answer to #6 is Yes, what is the distance?

8. Which biker traveled the greater distance over its entire trip?

_4 DISTANCE (Kilometers)
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Appendix 2 — Teachers’ guide
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Lesson 1: Exploring Physical Motion

Activity 1: Getting Started

Instructions for the teacher:

o The teacher will open MthWrlds from the APPS menu and then choose Lessons 3,
the CBR Lesson, which has one section. Then choose the 1* activity — “CBR
Motions™.

e Ask for one student volunteer and have that student move freely in front of the
CBR. Ask all other students to observe what is happening. Repeat this with 2 or 3
(or even more, it depends on how this part goes on) other volunteer students.

e Make sure that all of the students are ready to make observations and conjectures
about what the graph corresponds to.

e The teacher will ask questions in order to see what are the students’ observations
and conjectures about what is happening. The teacher must be as neutral as
possible regarding the students suggestions. He may reformulate students
observations, but must not give his opinion about their correctness.

e The teacher should make a short summary about what the students had observed
(it may be a review of the various students’ conjectures for example).

Instructions for the students:

In the space provided below, write down your observations regarding what you think is
happening. Following the demonstration, the teacher will ask you to share your
observations and explain the relationship between the CBR motion detector and the
graph.

Write your observations below.
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Lesson 1: Exploring Physical Motion

Activity 2: Matching Motions
Walk a physical motion so that A matches B’s motion as closely as possible.

Instructions for the teacher:

Have the students get into groups (4 or 5).

Ask the students to reflect and discuss in their groups regarding how someone
would have to move in front of the CBR in order to match B’s motion.

Have them document the motion in their workbooks.

Ask for one volunteer student to create a motion.

Have the spokesperson from a different group read their directions to the
volunteer student who will walk their motion. (Please make sure that the
volunteering students understand that they must try and follow the instructions as
closely as possible.)

Repeat so that all groups have an opportunity to give their directions.

Let the students validate the description and the correspondence between the
obtained graph and B’s motion graph (situation of validation — the teacher should
organize a discussion about the correctness of students’ descriptions; the students
are asked to say whether the reproduced graph is close to B’s motion graph, and if
not, say what was wrong: the instructions coming from the description or the
student who was moving in front of CBR hadn’t follow the instructions correctly).
Ask the students in the class to describe how the differences between A’s
Position graph and B’s Position graph match specific differences in their
motions.

Instructions for the students:

Describe how someone would walk a physical motion so that A matches B’s motion as
closely as possible. One student from another group will move in front of CBR following
your description and he should reproduce a graph matching B’s motion as closely as
possible (you can of course modify the formulation of the task, but it is important to add
this to motivate the students to do a good work).

In the space provided below, write down a description of a physical motion for A. (One
description per group is required.

Write your description below.
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Lesson 1: Exploring Physical Motion

Activity 3: Catch Up Motions
Walk a physical motion so that A starts off slower than B, but catches up to B at the
end of the motion, at 6 seconds.

Instructions for the teacher:

Keep the students in their groups.

Ask the students to reflect and discuss in their groups regarding how someone
would have to move in front of the CBR in order to walk a physical motion so
that A starts off slower than B, but catches up to B at the end of the motion,
at 6 seconds.

Have them document the motion in their workbooks.

Ask for one volunteer student to create a motion.

Have the spokesperson from a different group read their directions to the
volunteer student who will walk their motion. (Please make sure that the
volunteering students understand that they must try and follow the instructions as
closely as possible.)

Repeat so that all groups have an opportunity to give their directions.

Ask the students in the class to describe how the differences between A’s
Position graph and B’s Position graph match specific differences in their
motions. (It is important that the teacher only intervenes to draw the students
attention to possible inconsistencies, and to encourage more precision in the
discussion around the concepts.)

Instructions for the students:
Describe how someone would walk a physical motion so that A starts off slower than B,
but catches up to B at the end of the motion, at 6 seconds.

In the space provided below, write down a description of a physical motion for A. (One

description per group is required.)

Write your description below.
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Lesson 1: Exploring Physical Motion

Activity 4: The Challenge!
Groups will challenge each other to create graphs of interesting motions.

Instructions for the teacher:

Keep the students in their groups (an even number of groups would be better here,
so that you can have pairs of groups challenging each other).

Ask the students to reflect and discuss in their groups on potential graphs that may
be difficult to recreate while walking in front of the CBR (eg. the first letter of
some names).

Have each group decide on one graph to be used in the challenge. Have them
sketch this graph in their workbooks. Remind them that it must be possible to
reproduce.

Ask one group to challenge another group.

The challenged group must have one member get ready to walk a motion.

Have one spokesperson from challenging group read their directions to the
volunteer student who will walk their motion. (Please make sure that the
volunteering students understand that they must try and follow the instructions as
closely as possible. Also, remind the students that no one else should be talking.
(easier said then done®)

Repeat so that all groups have an opportunity to give their directions.

Ask the students in the class to describe how the differences between A’s
Position graph and B’s Position graph match specific differences in their
motions. (It is important that the teacher only intervenes to draw the students
attention to possible inconsistencies, and to encourage more precision in the
discussion around the concepts.)

Ask students to volunteer to re-create the first letter of their names.

Instructions for the students:
Create a graph for a physical motion that you feel would be difficult for other teams to
reproduce. However, make sure that it is possible to reproduce it.

In the space provided below, draw a detailed sketch of the graph and a description of the
physical motion needed to create it. (One graph and description per group is sufficient.)

Sketch of the graph: Description of the physical motion:
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Lesson 2: Modeling and Piecewise Defined Functions

Activity 1: Getting Started

Instructions for the teacher:
The teacher will open menu item 1, “Piecewise Animations” from the Lesson 2 “L2:
WarmUp” in the MathWorlds application.

The teacher will simply run the animation by pressing the

the students to explain what is going on.

o The goal is to get them to recognize that B’s motion relates closely to the
graph, and that, as the discussion proceeds, they should come to see it as a
Position vs. Time graph for B’s motion. The teacher will want to have the
student bring up, via questions, discussion and by highlighting some
formulations, that the vertical axis measures the position of B while the
horizontal axis gives its time.

Following a discussion regarding B’s motion, the teacher will establish a common
framework and language, informing the students to treat the object on the lower
part of the screen as B, which can be thought of as a person moving, and where
the tic marks measure meters.

Ask:

o When is B going the fastest?

o When is B going the slowest?

o When does B seem to change its speed?

The teacher can also step through the animation to slow things down a bit, giving
the students an opportunity to examine the motions and graphs more closely and
to help them create a common language and agree on some common meanings.
Using the STEP SoftKey. Reset the animation and then press the Step SoftKey.
Notice that this first press of the Step SoftKey places the time cursor on top of the
vertical axis (our motions begin at time equal to 0 seconds) making the vertical
axis appear dashed. Each subsequent press advances the animation one Step-
Time value, which is controlled by the right-most SoftKey. When the teacher

reaches the end of the animation, they could press the reset, , SoftKey to
put the animation back to the beginning.

The Step-Time is set to 1.0 now but can be changed by pressing the right-most
Softkey (it cycles through 1.0, 0.5, 0.25, and 2.0.) It is recommended that the
teacher leave the Step-Time at 1.0.

With each press of the Step SoftKey, the teacher should ask students: How far
does B move?

Dropping MARKS. After a couple of runs and discussion of the questions, it will
be helpful to have B “leave Marks.” Marks are dropped by objects at regular time
intervals, again controlled by the right-most Step-Time SoftKey, as they move.

The teacher will press the 4™ SofiKey, labeled WIHIM which changes it to

indicating that Marking is ON. This indicates that marks are dropped at
the Step-Time shown in the rightmost SoftKey —when the animation is running or
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during Stepping. Now, when B moves, it will leave Marks at each 1.0-second

time interval during the trip so students can see more clearly how far B travels in
each second. Students should note how the distance between the Marks changes

B ch d

i tits
The teacher will ask students the following questions:

o How far apart are the Marks in the 1°* part of the trip? How far
apart are they in the 2md part of the trip? How far apart are they in
the 3" part of the trip?

o Exactly how fast is B moving during each part of the trip?

o Which part of the graph is the steepest and which part is the least
steep?

e The teacher will then have the students debate and validate all of the answers.

Instructions for the students:
This activity is designed to familiarize you with a new piece of software. It is very
important to understand how this software works to be able to complete the other

activities.
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Lesson 2: Modeling and Piecewise Defined Functions

Activity 2: Creating Exciting Sack Races

Instructions for the teacher:

Keep the students in their groups.
The students and teacher will open menu item 1, “Piecewise Animations” from the
Lesson 2 “L2: WarmUp” in the MathWorlds application.

The teacher will simply run the animation by pressing the SoftKey and ask
the students to reflect and discuss what is going on in their groups. The students

L SoftKey

should also be encouraged to explore the animation by pressing the

on their own handheld.

e Ask the students to reflect, discuss, and document a group response to the
following questions:

o Which graph goes with which object?

o How are the motions of A and B different?

o How long does A travel — in time and in distance?
o How long does B travel — in time and in distance?

e The teacher will then ask the students to exchange and compare observations
regarding how the motions of A and B different? (For example, we want them
to note how B’s graph is shorter and B’s duration is shorter.)

e The same remark as the previous one regarding the debate and validation of the
students’ answers.

o The teacher will then explain that they now want to make a motion for B by
extending B’s Position vs. Time graph so that B enacts an exciting Sack Race
with A which ends in a tie.

o In the context of the situation (from a race point of view), the teacher will
ask the students: From the Race point of view, what is happening early in
the race? (B is starting slowly, falling behind A.)
e Ask the students to reflect, discuss, sketch, and create a graph for a motion that
would satisfy the following criteria:
o Due to the wild burst of speed, B falls down for 2 seconds!
o Inthe confusion of falling down, B gets up and goes in the wrong
direction.
o The race must end in an exciting tie!

e All students in a group should have a graph for the motion that satisfies the above
criteria.

e A representative from each group must take their animations to another group to
validate that it meets the race criteria.

e The teacher will then ask the students to exchange and compare observations
regarding how the motions were similar and how they were different.

206



Instructions for the students:
e Open menu item 1, “Piecewise Animations” from the Lesson 2 “L2: WarmUp” in the
MathWorlds application.

e Run the animation by pressing the |
going on in your group.

SoftKey and reflect and discuss what is

o Reflect, discuss, and answer the following questions:

Which graph goes with which object?

How are the motions of A and B different?

How long does A travel — in time and in distance?

How long does B travel — in time and in distance?

e Reflect upon, discuss, sketch, and create a graph for a motion that would satisfy the
following criteria:

o Due to the wild burst of speed, B falls down for 2 seconds!

o In the confusion of falling down, B gets up and goes in the wrong direction.

o The race must end in an exciting tie!

o Every team member needs to have a graph for a motion that satisfies the
above criteria.
Be ready to explain your motion and have your animation assessed by another
team.

)
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You switch to Function Edit Mode to make changes to your function. Notice that the
SoftKey labels change when you switch modes.

You’ll use the blue Cursor Keys and HotSpots, shown above, to edit your graph.

In the space provided below, draw a sketch a detailed sketch of the graph and provide a
story for the physical motion needed to create it. (One graph and story per group is
sufficient.)

Sketch of the graph:

Story for the physical motion:
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Lesson 2: Modeling and Piecewise Defined Functions

Activity 3: Find Your Exciting Sack Race

Instructions for the teacher:

e Students remain in their groups

e Collect the students’ Sack-Race functions —their B functions, which they have just
created in Activity 2.

¢ Display and animate them on the screen.

¢ In order for the collection to be successful, the following instructions must be
followed.

1. Make sure that each calculator is connected to a Hub with the black wire firmly
plugged in at each end.

2. First tell the students to press the 2"® Key followed by the STO Key. This takes
them to a screen that looks like this:

3. Student should use the DEL Key to erase what appears in the input field and then
use the ALPHA Keys to input a short version of their name, or their initials. This
identifier will appear as the name of the student’s function in Java MathWorlds.

This student’s B function will appear as “MY NAME_B”, where the “B” is used to
differentiate from the “A” function which may be collected in other activities.

4. When the Students have entered their names they must press the ENTER Key.
They will see this screen:
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Press the ENTER Key a second time to Pause MathWorlds. Now the teacher can Collect
your B-function!

5. Now, from the Connect Menu in Java MathWorlds, the teacher will select Collect,
and specify that they are collecting B only.

The teacher will be able to identify how many functions have been collected by looking
at the Transfer window during the transfer. Also, you can ask students to identify
themselves if “SUCCESS” does not appear on their screen.

% Transterrin |

9411F586785C U

234145346813
032276241087 Do
047654348277 D
252230675581 Dor
013450683312
04154FG1SB12
G401F43 76054

None of the collected functions or actors (in the Dots World) will be displayed until you
decide to display them.

6. Showing All the Students’ Dots — Viewing the Slow B’s and Fast B’s. The
teacher will show “All” in the View Matrix World (Graph) column to show all of the
students’ dots. The goal here is to introduce students to the process of relating their
personal constructions to the larger collection of objects that appears on the “big screen”
when their work is aggregated with that of their peers. This process requires them to
think through exactly the kinds of issues that are at the heart of the mathematics we want
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them to learn. Hence, before clicking Apply, the teacher will ask the students:

Where will all the Slow B’s appear, and where will all the Fast B’s appear? It is
important that the teacher instill the habit of getting a prediction from the students before
any display action. Here the fast B’s all appear to the left of 0 and the slow ones to the
right, with those sharing the same initial position “stacked vertically.” (Note that it is
expected that the teacher will refer to the “students” and their “dots” interchangeably. It
is expected that the students will be the ones to start using this terminology when
identifying themselves with “their dot.” This is a desired behavior because it links the
student psychologically to the mathematical object that they have built.)

7. Anonymity and “Finding Yourself”: before asking the next question, the teacher
will “hide” the identity of the functions and their “owners.” Provision has been made to
preserve student anonymity — the teacher will click the box in the lower left corner of the
screen where identifiers appear. Then no names will appear either here or when we hover
over a dot or graph. The teacher will then ask:

Where are you? Can you find yourself?

If there is a position with a single dot, then a single student should be able to identify
himself/herself. It can be confirmed by selecting it (by clicking on it) and then checking
the box in the lower-left corner of the screen, where that student’s identifier will appear.

2 UMW Model Sark Rare Collertion.mw

It is usually fun to run the animation with all the dots showing. But the detailed analysis
is best done with a smaller set of dots, which follows.

8. Preparing for the Graph-Motion Connection Investigation — Student Identifiers
and Colors.

The teacher will need to look at their graphs to see if they can connect their respective
graphs to their dot. This is important because it is likely to be the case that for most
positions from -2 to +3 there will be more than one dot at that position.

9. Using the View Matrix to Narrow the Focus to a Few Students and Their Graphs.
The teacher will now open the View Matrix again so that they can hide all but the
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relevant dots, plus A, and then show only the graphs of the chosen set of dots.

10.  Relating Graphs to Motions: Here the idea is to get the students whose graphs are
NOT now displayed to determine which graph goes with which dot. (Their owners
presumably already know.) The teacher will tell the students:

I will run the animation and your job is to figure out which graph goes with which
dot.

Now run the animation. Depending on how different the motions and graphs are, the
teacher may need to Step through the motions — use a Step-Time of 1 second (which you
can set by opening the bottom part of the Controls Window). This is an important
learning opportunity to examine subtle differences in the graphs and how they are
reflected in differences in the motions, so the teacher should repeat the Stepping and
encourage discussion till a consensus has developed.

11.  Relating Graphs to Motions For More Sets. The teacher will repeat the above
process for another set of dots with the same initial position:

(1) Show all the dots, (2) pick a set, (3) make their colors the same, (4) display the dots
and position graphs for that set, (5) run or step the animations as needed until the non-
owners of the set have formed a consensus.

12.  Dealing with Student Errors. While relating students to their functions, and
especially their motions to their graphs, is a powerful way of getting students engaged
mathematically, it is also a place where your experience as a teacher and your knowledge
of your students directly come into play. You know who is likely to err, who is likely to
be embarrassed, who enjoys attention, and so on. You can also quickly review the student
function graphs before making them public and not choose to display those that you feel
would either be unproductive to examine or embarrassing to their creators. The
technology amplifies the impacts of your pedagogical decisions.

If it is a group production, it will perhaps be easier to deal with errors. There are usually
not such psychological effects in groups. The students must be involved in the validation
of the answers.

13.  Resuming and Exiting the Application: When this activity is complete, the teacher
should have the students resume the application if they haven’t already, and then EXIT
the application as described above (2"-QUIT followed by EXIT). Otherwise the next
time MathWorlds is selected in the APPS menu, MathWorlds will open to the prior state
rather than to the menus, requiring a 2"*-QUIT to get to the menus.

Students should now be ready for the next set of activities.

Instructions for the students:
e The teacher will collect your Sack-Races. It is important to listen to his instructions.
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Lesson 2: Modeling and Piecewise Defined Functions

Activity 4: Mathematical Performances — Exciting Races

Instructions for the teacher:

e Collect the students’ Sack-Race functions —their B functions, which they have created
using another group’s story-script.

¢ Display and animate them on the screen.

e In order for the collection to be successful, the following instructions must be

followed.
1. Make sure that each calculator is connected to a Hub with the black wire firmly
plugged in at each end.

2. First tell the students to press the 2" Key followed by the STO Key. This takes
them to a screen that looks like this:

(This is where tey enter their names so you can identify their function later. Names
must be unique!)

3. Student should use the DEL Key to erase what appears in the input field and then
use the ALPHA Keys to input a short version of their name, or their initials. This
identifier will appear as the name of the student’s function in Java MathWorlds.

This student’s B function will appear as “MY NAME _B”, where the “B” is used to
differentiate from the “A” function which may be collected in other activities.

(As usual, using the ALPHA Keys is easier if you press 2nd Key followed by the ALPHA
Key, which keeps the ALPHA Keys active till you press the ALPHA Key again.)
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Press the ENTER Key a second time to Pause MathWorlds. Now the teacher can Collect
your B-function!

(MathWorlds will put their function data into List 1 where it can be collected using Java
MathWorlds. Their function data is stored in List 1 in active RAM, whereas the state of
the calculator is archived as a list, SS0, that is reactivated when the students return to
MathWorlds by choosing it from the APPS Menu.)

5. Now, from the Connect Menu in Java MathWorlds, select Collect, and specify
that you are collecting B only.

en the teacher presses the Collect button, MathWorlds will collect the B function from
each student whose TI-83 Plus is connected with a black wire to a hub and is not running
MathWorlds. The teacher will be able to identify how many functions have been
collected by looking at the Transfer window during the transfer.

There are likely to be widely varying functions of many shapes and here the teacher will
need to use judgment regarding whose to show first, whose to ignore, etc. The teacher’s
choice will be informed both by the class dynamics, questioning of the students regarding
what they did and wrote, looking at their calculator screens, etc. (Depending on the
teacher’s and the students’ style, there could be some wild stories!) However, the teacher
will also want to take a quick look using the View Matrix of the students’ Position
functions. Hence:

6. (Privately) Viewing All the Students’ Position Graphs. The teacher will first view
all of the students’ Position graphs (privately) before making a choice regarding whose to
display and run.

7. The teacher will then ask the student to read the story as they run the animation.
The student will read it in advance, run the animation, and finally Step through the
animation as the story is repeated because the animation is usually too quick to parallel
the story.

Again, the students must be involved in the discussion of the correctness of the
productions.

8. Looking at the Motion, Story and Graph More Closely, and Doing More
Performances. Depending on the story and the graph, the teacher may be able to glean a
lot of learning by analyzing things more closely once the performance aspect has
occurred.

214



Using the Collected Functions to Support More Learning

Beyond the performance opportunity, typically there are many opportunities to pursue
important mathematical ideas across the collected functions and stories, including:

. Steeper Means Faster

Horizontal Means Stopped

Negative Slope Means Backward Motion

Simultaneity (when do A and B’s graphs cross?)

The Difference Between Parallel Graphs and Coincident Graphs

There are also opportunities to examine issues of how realistic are the models? For
example, consider continuity of change. Could any physical object move the way the
animations do? (It’s an interesting contrast where objects with stable mass never move
with discontinuous velocity, but other, say money quantities, almost always have
discontinuous rate-changes.) The CBR activities in Lesson 1 provide direct contact with
these issues as students (among many other activities) attempt approximations of
“corners.”

9. Relating Graphs to Stories: After running and discussing a few story-graph pairs,
an interesting twist is to turn off the identifiers (making the graphs anonymous) and pick
a small set of graphs and dots to display, say 3-4. The teacher will then ask one student,
whose work is displayed, to read their story and ask the class to figure out which graph
and dot goes with the story. The resulting discussions will help the students in deepening
their graph interpretation skills while simultaneously giving additional students the floor,
especially those with graphs and stories that might not be very original or distinct.

The teacher will say: I will run the animation and your job is to figure out which
graph and dot goes with the story.

Given that the animations were created from story-scripts that were given to the students
by other groups, ask if there are any differences between the original graphs that
accompanied the original story-scripts.

Feel free to repeat the animation or stepping and encourage discussion till a well-
reasoned consensus has developed regarding the fit.

Instructions for the students:

e In your groups, create an exciting sack rack story-script for your own race with A
which ends in tie, and create a Position vs Time Graph for B that makes your race
happen.

Write your description below.
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Creating a Position vs Time Graph to model your exciting sack race.

e You’ll open MathWorlds from the APPS menu and choose the 1% of 2 activities —
“Sack Races.”

Choose MthWrids | Press Enter Key Select this item Select this item Select this item

This activity opens in Animation Mode.

You switch to Function Edit Mode to make changes to your function. Notice that the
SoftKey labels change when you switch modes.

You’ll use the blue Cursor Keys and HotSpots, shown above, to edit your graph.

1. Press the MODE or DEL Key to switch to Function Edit Mode.
Make an exciting Position graph for B by adding and adjusting segments on B’s
Position graph.
Scaling: Note that the scale of the “world” is now 1 m, so A travels 20 m in 10
sec. The vertical scale of the Position graph is no longer 1, but 2 m.
Because the vertical scaling is now 2 m, there are times when you ADD a new
segment that is 1 sec wide your new segment will look horizontal. However,
when you stretch it to the right to 2 sec in width, you see that it slopes upward by
1 tic mark, which stands for 2m. Hence to make it flat, you need to drag it down
by one tic mark.

2. Be careful not to extend your segments too far or add so many segments that your
graph extends far off the screen. If this happens, then you will be adding, deleting
or adjusting segments that are out of sight and it will seem like nothing is
happening! You might then need to delete segments (using the DEL SoftKey,
NOT the DEL hardkey) till you get back to something you can see! At least for
now, try to keep most of your graph and motion on the screen.
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You can adjust segments to the left of the last one by moving the Hotspot from
segment to segment—use the two left-most SoftKeys that look like arrows, which
move the HotSpot left or right.

When you think you have the Position-graph you want, return to Animation Mode
to try out your race. To re-adjust it, go back to Function Edit Mode.

As you are testing and finalizing your race, write your script in the form of a list
of descriptions, one for each segment of your graph. Draw your graph on paper to
accompany your written story. It may be helpful to label your list using letters A,
B, C, etc.

Sketch of the graph:

Bring your exciting sack race story-script to one of the other groups so that they
could create a Position vs Time Graph to match it.

Create a Position vs Time Graph for the exciting sack race story-script that was
delivered to you from another group. (Everyone in the group should create this
Position vs Time Graph.)

Sketch of the graph:
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8. When you have the motion and function you want Pause MathWorlds so your
teacher can collect this function.

PAUSING MATHWORLDS TO
HAVE YOUR FUNCTION COLLECTED

Make sure that your calculator is connected to a Hub WITH
the black wire firmly plugged in at each end.

Pressing the 2" Key followed by the STO Key takes you this screen where you enter
your identifier:

Now use the ALPHA Keys to enter your name, or your Group Number-Count-Off
Number (like 0304 for Group Number 3, Count-Off Number 4) followed by your
name, as directed by your teacher.

Using the ALPHA Keys to enter letters is easier if you press 2" Key followed by the
ALPHA Key. This keeps the ALPHA Keys active till you press the ALPHA Key again.

When you have entered your identifier press the ENTER Key. You’ll see this screen:

Press the ENTER Key to Pause MathWorlds. The calculator will return to its Home
Screen, ready for your teacher to collect your function.

KEEP THE FOLLOWING IN MIND

1. DO NOT RUN MATHWORLDS WHILE YOUR FUNCTION IS BEING
COLLECTED. MathWorlds prevents network communication when it is
running!

2. DO NOT EXIT MATHWORLDS. Exiting, rather than Pausing, will cause
MathWorlds to delete the data it needs to Resume processing your work. [f
you Exit MathWorlds you will start at the Main Menu and you’ll have to open
the activity again.

3. Leave the calculator in Pause, at least until you see the word
SUCCESS appear on the display.
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Lesson 3: Summarizing Individual and Group Understanding

Activity 1: Distance vs. Time Graphs

Instructions for the teacher:

e Have the students complete this activity.

e Lead a discussion to validate the correct answer and to provide rationale for not
choosing the distracters.

Instructions for the students:
Circle the Distance vs. Time Graph That Goes with This Motion (If there’s more than
one, circle them all.)

Henri walks away from the zero-mark, stops for awhile, and then returns to his starting
point.

(a) A rSTANCE (b) 4 DISTANCE

TIME TIME

© @

4 DISTANCE A DISTANCE

TIME TIME
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Lesson 3: Summarizing Individoal and Group Understanding

Activity 2: Santa’s Having a Bad Day.

Instructions for the teacher:
e Have the students complete this activity.
e Lead a discussion to validate, defend, and/or refine their solutions.

Instructions for the students:
Things are tough up at the North Pole. No snow, the reindeer broke out of their pen.
Elves quit.

Santa made a 7-part trip as described below in A to G.

On the Distance vs. Time axis system below, graph his trip using segments. Label the
segments with the letters A to G so we can see which part of your graph goes with which
part of his trip.

Santa heads off on foot walking slowly with his heavy bag.

After awhile, he decides to drop the bag and rush back to his starting point to get his
wagon-bike.

He jumps on the bike & heads out at a fast pace to pick up his bag.

He stops for 1 second to toss the bag in the wagon.

He then continues at his same fast pace till his front tire blows out.

He stops for one second to jump off the bike and grab the bag.

Finally, he heads off at his same slow walking pace again for the rest of his journey.

oEEOO0 Wy

A DISTANCE

TIME
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Lesson 3: Summarizing Individual and Group Understanding

Activity 3: Comparing Bikers A and B

Instructions for the teacher:
e Have the students complete this activity.
e Lead a discussion to validate, defend, and/or refine their solutions.

Instructions for the students:

Below are graphs of two bikers who start a trip at the same time. A has the dotted graph
and B has the solid graph. Use these graphs to answer the questions below. Time is in
minutes and distance is in km from the starting line, which is at zero km.

1. Where does A start?

2. When does A finish his trip?

3. Where does B finish his trip?

4. Which biker travels faster? Explain your answer:

5. Which biker has traveled farther at 5 minutes? ___ Explain your answer:

6. Who is ahead at 5 minutes?

7. Isthere a time when the 2 bikers are the same dist. from the starting line? Y N
a. If your answer to #6 is Yes, what is that time?
b. If your answer to #6 is Yes, what is the distance?

Which biker traveled the greater distance over its entire trip?

_4 DISTANCE (Kilometers)
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Appendix 3 - Certification of ethical acceptability
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