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ABSTRACT

Linear mixed-effects (LME) models are frequently used for modeling longitudinal data.

One complicating factor in the analysis of such data is that samples are sometimes obtained

from a population with significant underlying heterogeneity, which would be hard to capture

by a single LME model. Such problems may be addressed by a finite mixture of linear mixed-

effects (FMLME) models, which segments the population into subpopulations and models

each subpopulation by a distinct LME model. Often in the initial stage of a study, a large

number of predictors are introduced. However, their associations to the response variable

vary from one component to another of the FMLME model. To enhance predictability and

to obtain a parsimonious model, it is of great practical interest to identify the important

effects, both fixed and random, in the model. Traditional variable selection techniques such

as stepwise deletion and subset selection are computationally expensive even with modest

numbers of covariates and components in the mixture model. In this thesis, we introduce

a penalized likelihood approach and propose a nested EM algorithm for efficient numerical

computations. The estimators are shown to possess consistency and sparsity properties

and asymptotic normality. We illustrate the performance of the proposed method through

simulations and a real data example.
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ABRÉGÉ

Les modèles linéaires mixtes (LME) sont fréquemment employés pour la modélisation

des données longitudinales. Un facteur qui complique l’analyse de ce genre de données est que

les échantillons sont parfois obtenus à partir d’une population d’importante hétérogénéité

sous-jacente, qui serait difficile à capter par un seul LME. De tels problèmes peuvent être

surmontés par un mélange fini de modèles linéaires mixtes (FMLME), qui segmente la pop-

ulation en sous-populations et modélise chacune de ces dernières par un LME distinct. Sou-

vent, un grand nombre de variables explicatives sont introduites dans la phase initiale d’une

étude. Cependant, leurs associations à la variable réponse varient d’un composant à l’autre

du modèle FMLME. Afin d’améliorer la prévisibilité et de recueillir un modèle parcimonieux,

il est d’un grand intérêt pratique d’identifier les effets importants, tant fixes qu’aléatoires,

dans le modèle. Les techniques conventionnelles de sélection de variables telles que la sup-

pression progressive et la sélection de sous-ensembles sont informatiquement chères, même

lorsque le nombre de composants et de covariables est relativement modeste. La présente

thèse introduit une approche basée sur la vraisemblance pénalisée et propose un algorithme

EM imbriqué qui est computationnellement efficace. On démontre aussi que les estimateurs

possèdent des propriétés telles que la cohérence, la parcimonie et la normalité asympto-

tique. On illustre la performance de la méthode proposée au moyen de simulations et d’une

application sur un vrai jeu de données.
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CHAPTER 1
Introduction

1.1 Motivation

In longitudinal studies, data are usually collected on each subject at multiple time points

in order to explore the changes of certain characteristics over time. As such, measurements

taken on the same unit are generally correlated. Ignoring this correlation could lead to

erroneous inference. The class of linear mixed-effects (LME) models (Laird & Ware, 1982)

constitutes a powerful tool to analyze correlated data. The fixed effects of these models serve

to specify the means of the observations, whereas the subject-specific random effects define

the covariance structure of the observations corresponding to each individual.

In practice, data are sometimes collected from a population with significant underlying

heterogeneity, i.e. each subject could belong to one of several inherent subpopulations. While

LME models successfully reflect the correlation engendered from repeated measurements,

they may not be able to account for the heterogeneity in the outcomes.

As a motivating example, we consider the data set on 378 patients enrolled in the

Canadian Scleroderma Research Group registry with baseline visits between 2003 and 2010.

Systemic sclerosis is a connective tissue disease which could cause hardening of skin, digi-

tal ulcers, Raynaud’s phenomenon, shortness of breath, gastrointestinal complications and

musculoskeletal problems (Wigley & Hummers, 2006). The study in question aims to iden-

tify the clinical features of systemic sclerosis (SSc) that best relate to the patients’ health

status and quality of life. The outcome of interest is measured by the Health Assessment

Questionnaire-Disability Index (HAQ), which is calculated from a self-reported questionnaire

and has been validated as an accurate measure of disability in SSc (Bruce & Fries, 2003). At
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each yearly clinical visit, patients complete a HAQ, which provides us with repeated mea-

surements on each patient and therefore induces within-subject correlation. Schnitzer et al.

(2011) employed an LME model to estimate the decline in HAQ over time, and concluded

that the deterioration in health of individual patients might be quite heterogeneous since the

standard deviation of the slopes was five times as large as the magnitude of the mean slope

for the time variable. Given this substantial heterogeneity, it is of interest as to whether

there was simply random variation in the decline of patients’ health status, or whether we

could detect a group of patients whose health status severely declined and another group

whose health status only declined moderately.

A natural solution to account for both within-subject correlation and between-subject

heterogeneity is to employ a finite mixture of linear mixed-effects (FMLME) models, where

each component of the mixture is an LME model in itself and models one subgroup of the

population. Even though such models have attracted growing attention in recent years and

have been employed in many applications, the problem of variable selection in these models

has received little attention.

In the initial stage of a study, a large set of covariates is usually of interest. To enhance

predictability and give a parsimonious FMLME model, it is crucial to pinpoint the significant

effects, both fixed and random, associated with the response variable. The omission of

important fixed effects would lead to modeling bias. On the other hand, the significance

of each covariate may differ from one mixture component to another, and one is prone to

overfit the data by including the superfluous predictors. Care is also needed when deciding

which random effects are necessary for each component. Lange and Laird (1989) and Littell,

Pendergast, and Natarajan (2000) demonstrated that misspecification of covariance structure

could cause substantial bias in the estimated variance of the fixed effects. Crowder (1995) also

showed via examples that the use of incorrect covariance matrix could create inconsistency

in parameter estimation.

2



Classical methods of variable selection include stepwise deletion and subset selection,

coupled with a model selection criterion such as the Akaike Information Criterion or AIC

(Akaike, 1972), the Bayes Information Criterion or BIC (Schwarz, 1978), and the Generalized

Information Criterion or GIC (Nishii, 1984). However, these all-subset selection procedures

are computationally intensive even for FMLME models with modest numbers of components

and predictors. For example, the number of potential two-component FMLME submodels

to be examined by these criteria is over 1012 for the SSc data.

The advent of more efficient techniques, such as the Least Absolute Shrinkage and Selec-

tion Operator (LASSO) by Tibshirani (1996) and the Smoothly Clipped Absolute Deviation

(SCAD) by Fan and Li (2001), opens new avenues to tackle the variable selection problem.

Unlike traditional methods, LASSO and SCAD achieve variable selection by estimating the

effect of the non-significant covariates in the model to be exactly zero. Such methods unify

parameter estimation and variable selection in one single step, and hence greatly reduce the

computational burden. Khalili and Chen (2007) proposed a new regularization method for

variable selection in finite mixture of regression models without random effects, and demon-

strated that their method was at least as good as BIC at selecting correct models. Motivated

by the success of these new regularization techniques, in this thesis, we propose a penalized

likelihood approach to simultaneously identify the important fixed and random effects in an

FMLME model. We also develop an efficient nested EM algorithm for numerical compu-

tations where all parameter updates in the inner M-step are of closed form, and present a

procedure for tuning parameter selection. In addition, the parameter estimates are shown to

possess nice asymptotic properties such as consistency, sparsity and asymptotic normality. A

simulation study and the systemic sclerosis data are used to illustrate the proposed method.

The rest of the thesis is organized as follows. In the remainder of this chapter, we

provide a brief review of the following key concepts involved in the methodology that we will

introduce later on: linear mixed-effects models, finite mixture models, EM algorithm, and
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model selection. In Chapter 2, we define FMLME models formally. Chapter 3 provides a

review of existing feature selection methods in models with random effects, and proposes a

penalized likelihood approach to simultaneously select fixed and random effects in FMLME

models. In Chapter 4, we present our numerical algorithm and a data adaptive method for

choosing tuning parameters. Chapter 5 discusses the large-sample properties of the penalized

maximum likelihood estimators. Chapter 6 presents a simulation study to investigate the

finite sample performance of our method. In Chapter 7, we apply the proposed method to

the systemic sclerosis data set. Chapter 8 contains conclusions and suggestions for future

research.

1.2 Linear mixed-effects models

We begin by introducing the class of linear mixed-effects (LME) models, which are

frequently employed to model longitudinal data. Suppose we have a set of observations on

m subjects, with ni repeated measurements yi = (yi1, . . . , yini
)′ on the ith subject. Let

Yi denote the random vector corresponding to yi. The LME model is characterized by a

combination of

• ni × p fixed effects design matrix Xi = (xi1, . . . ,xini
)′, with xij = (xij1, . . . , xijp)

′

• ni × q random effects design matrix Zi = (zi1, . . . , zini
)′, with zij = (zij1, . . . , zijq)

′

• p× 1 vector of population-specific fixed effects β (i.e. the same for all subjects)

• q × 1 vector of subject-specific random effects αi

• ni × 1 vector of errors εi

The vector representation of the LME model is given by

Yi = Xiβ +Ziαi + εi

αi ∼ N (0, σ2Ψ)

εi ∼ N (0, σ2Ini)

α1, . . . ,αm, ε1, . . . , εm independent

. (1.1)
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From (1.1), it is easy to see that E [Yi|Xi,Zi] = Xiβ and Var [Yi|Xi,Zi] = σ2(ZiΨZ ′
i+Ini

).

It is precisely by modeling the covariance matrix σ2(ZiΨZ ′
i + Ini

) that we account for the

correlation between observations from the same subject. We also notice that Cov [Yi,Yj] = 0

if i ̸= j, which implies that observations are independent between different subjects.

In order to carry out likelihood-based inference about the unknown parameters (β,Ψ, σ2),

we find the marginal density function of Yi by integrating out the random effects αi, namely,

f(yi;β,Ψ, σ
2) =

∫
f(yi|αi;β,Ψ, σ

2)f(αi;β,Ψ, σ
2) dαi.

Note that both density functions inside the integral are multivariate normal. Since the

convolution of normal densities is normal, the marginal density function of Yi is given by

the multivariate normal

f(yi;β,Ψ, σ
2) = N

(
yi;Xiβ, σ

2(ZiΨZ ′
i + Ini

)
)
. (1.2)

The log-likelihood formed from repeated measurements on m subjects is thus given by

lm(β,Ψ, σ
2) =

m∑
i=1

{
−1

2
log
∣∣σ2(ZiΨZ ′

i + Ini
)
∣∣− 1

2σ2
(yi −Xiβ)

′(ZiΨZ ′
i + Ini

)−1(yi −Xiβ)

}
.

One can then proceed to find the maximum likelihood (ML) estimates of (β,Ψ, σ2) by

maximizing lm with respect to these parameters. The ML estimators have a number of

desirable properties, most notably consistency and asymptotic normality. However, one

drawback of the ML estimators is that they tend to slightly underestimate the variance

components. This problem can be corrected for by using the following restricted maximum

likelihood (REML) derived by Harville (1974)

rlm(β,Ψ, σ
2) =

m∑
i=1

{
−1

2
log

∣∣∣∣ 1σ2
X ′

i(ZiΨZ ′
i + Ini

)−1Xi

∣∣∣∣}+ lm(β,Ψ, σ
2).

Despite the advantage of REML estimators, we elect to use the ML estimators in the method-

ology we develop later on, since the extra term in rlm(β,Ψ, σ
2) would present a significant
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obstacle in the estimation procedure. This complication outweighs the benefit of using REML

estimators, because the difference between ML and REML estimates is immaterial when the

sample size is large, where a rule of thumb for “large” is m > 30, as suggested by Snijders

and Bosker (2003). Furthermore, in the context of LME models, Gurka (2006) presented

an extensive simulation study on model selection using criteria such as AIC and BIC, and

demonstrated that the performance of ML and REML estimators are quite similar.

Popular numerical algorithms for maximizing lm(β,Ψ, σ
2) and rlm(β,Ψ, σ

2) include

Newton-Raphson method and the expectation-maximization (EM) algorithm of Dempster,

Laird, and Rubin (1977). In the context of LME models, Lindstrom and Bates (1988) gave a

thorough description of the Newton-Raphson algorithm along with the necessary derivatives,

and Laird, Lange, and Stram (1987) provided a detailed computational procedure using the

EM algorithm.

For a comprehensive treatment of the theory behind LME models and their applications,

one could turn to the book by Verbeke and Molenberghs (2009).

1.3 Finite mixture models

The LME model (1.1) assumes that given the covariate values, the same mean expression

and variance structure apply to all subjects from the population of interest. In practice,

however, data may be collected from a population with substantial underlying heterogeneity.

Namely, the overall population could comprise several inherent subpopulations. Therefore,

one universal model would be insufficient to describe the random behavior of observations

from this kind of population. Such problems may be tackled by employing finite mixture

models, which have been extensively studied in the literature. See, for example, McLachlan

and Peel (2000).

For simplicity, we assume in this section that the finite mixture model density function

does not depend on any covariates. Consider a population composed of K subpopulations.
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Suppose we have observed data (y′
1, . . . ,y

′
m)

′ from m subjects, and it is unknown which sub-

population each yi belongs to. The corresponding K-component parametric finite mixture

model states that the density function of each yi is given by the following convex combination

of K probability density functions

f(yi;Φ) =
K∑
k=1

πkfk(yi;ϕk), where
K∑
k=1

πk = 1. (1.3)

In (1.3), the mixing proportions πk’s represent the contribution of each component-wise den-

sity fk(yi;ϕk) to the overall density f(yi;Φ), and Φ = (π1, . . . , πK−1,ϕ
′
1, . . . ,ϕ

′
K)

′ contains

all the unknown parameters in the mixture model. Also, the conditional distribution function

of Yi given membership of the k-th subpopulation is fk(yi;ϕk).

The log-likelihood formed from the entire observational vector (y′
1, . . . ,y

′
m)

′ is given by

logL(Φ) =
m∑
i=1

log f(yi;Φ)

=
m∑
i=1

log
K∑
k=1

πkfk(yi;ϕk). (1.4)

The ML estimate of Φ can then be found by maximizing log-likelihood (1.4).

In some applications, one may be able to find the ML estimates of the parameters of

interest by solving the score function directly. However, this is not the case for finite mixture

models. The log-likelihood (1.4) involves the log of a sum, which makes the derivative

computationally intractable. The EM algorithm provides a much more convenient method

for finding ML estimates of parameters in finite mixture models, and will be recapitulated

next.

1.4 EM algorithm

When maximizing the log-likelihood of a statistical model, classical optimization meth-

ods such as Newton-Raphson, Quasi-Newton and conjugate gradient usually work with the
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incomplete-data log-likelihood, namely the log-likelihood formed from the observed data

only. The EM algorithm, on the other hand, is an iterative method that maximizes the

likelihood by working with the complete-data likelihood, which involves both observed and

unobserved data.

In brief, each iteration of the EM algorithm consists of an E-step which computes the

conditional expectation of the log-likelihood given the current parameter estimates, and

an M-step which updates the parameters by maximizing this expected log-likelihood. We

alternate between the E- and M-steps until convergence is reached. The theory of EM

algorithm guarantees that the observed likelihood is increased at each iteration (see Wu,

1983). Therefore the parameter estimates must converge to a stationary point, provided

that the likelihood is bounded.

We now describe in more detail the EM algorithm in the context of finite mixture models,

since this will form part of the nested EM algorithm that we develop later on. Suppose we

have an observed data vector (y′
1, . . . ,y

′
m)

′, then the corresponding unobserved data would

be the associated component label vectors t1, . . . , tm, where each ti is aK-dimensional vector

whose k-th entry, tik, is equal to 1 if yi arose from the k-th component of the mixture or 0

otherwise. The complete-data log-likelihood for Φ is given by

lc(Φ) =
K∑
k=1

m∑
i=1

tik{log πk + log fk(yi;ϕk)}. (1.5)

Let ν index the EM iterations.

In the E-step:

we compute the conditional expectation of the complete-data log-likelihood, which is given

by

Q(Φ;Φ(ν)) =

{
K∑
k=1

m∑
i=1

τ
(ν)
ik log πk

}
+

{
K∑
k=1

m∑
i=1

τ
(ν)
ik log fk(yi;ϕk)

}
, (1.6)
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where τ
(ν)
ij is the posterior probability that observation yi belongs to the j-th component

given the current parameter estimates, namely

τ
(ν)
ij =

π
(ν)
j fj(yi;ϕ

(ν)
j )∑K

k=1 π
(ν)
k fk(yi;ϕ

(ν)
k )

.

This concludes the E-step.

In the M-step:

we maximize equation (1.6) with respect to Φ. It could be shown that the updates of πk’s

are given in closed form by

π
(ν+1)
k =

m∑
i=1

τ
(ν)
ik /m, (k = 1, . . . , K). (1.7)

To update the ϕk’s, we have to solve the system of K equations

K∑
k=1

m∑
i=1

τ
(ν)
ik

∂

∂ϕk

log fk(yi;ϕk) = 0, (k = 1, . . . , K).

This concludes the M-step.

For a more detailed derivation of the above results, one could consult the book by

McLachlan and Krishnan (1997) and references therein.

Note that the EM algorithm can also be used to perform parameter estimation in the

LME model (1.1). In this case, the unobserved data would be the random effects αi’s. We

shall also use this idea later on in our nested EM algorithm.

1.5 Variable selection in regression models

It is often of interest to identify the most important variables in statistical modeling. In

the context of regression analysis, this is termed variable selection or feature selection. It is

desirable to produce parsimonious models, because they usually offer greater interpretability

than models with high complexity. Furthermore, parsimonious models also possess enhanced

predictive power. It is a well known fact that one can increase the likelihood and reduce the

9



prediction bias by including more explanatory variables in the model, but this would also

make the prediction variance larger (see, for example, Seber & Lee, 2003).

Many researchers in the past have investigated model selection techniques in linear

regression and generalized linear models, so as to find the right balance in the bias-variance

tradeoff. Notable classical methods include the AIC and BIC. Given the regression parameter

estimates β̂ of a particular model, these two criteria are given by

AIC = −2l(β̂) + 2 · df (1.8)

and BIC = −2l(β̂) + log(N) · df, (1.9)

where l(β̂) is the estimated log-likelihood, and the degree of freedom df is the number of

elements in β. In both criteria, the first term measures the model goodness, whereas the

second term consists of a penalty on model complexity.

In order to choose an optimal model, one would need to compute the AIC or BIC for all

possible sub-models, which could be computationally taxing. For example, if p potentially

significant regressors were available, the number of candidate models to be examined by AIC

or BIC would be 2p.

An alternative to subset selection methods is to use regularization techniques such as

LASSO (Tibshirani, 1996), SCAD (Fan & Li, 2001), and Adaptive LASSO (Zou, 2006). Un-

like AIC and BIC which apply penalties on the number of parameters, these new techniques

apply penalties on the parameters themselves, and estimate the effect of the non-significant

covariates to be exactly zero. Parameter estimation and variable selection are thus achieved

simultaneously, which significantly reduces the computational cost. This motivated us to

employ these techniques in our applications which will be presented in later chapters. We

now define these penalty functions formally. Let λ denote the tuning parameter. For a given

generic parameter β in the model, the three penalty functions are given by

10



(a) LASSO penalty:

p(β) = λ · |β|.

(b) Adaptive LASSO penalty:

p(β) = λ · w|β|,

for some adaptive weight w.

(c) SCAD penalty:

p′(β) = λmk

{
1(|β| ≤ λmk) +

(aλmk − |β|)+
(a− 1)λmk

1(|β| > λmk)

}
, for some a > 2.

For the SCAD penalty, although the pair (λ, a) could be chosen over a two-dimensional

grid using criteria such as cross-validation, this procedure may be computationally intensive.

Fan and Li (2001) showed using a Bayes risks argument that a = 3.7 is a good choice for

various variable selection problems in practice.

All these three penalty functions are equal to zero at β = 0, and non-differentiable at

the origin. It is precisely this feature that allows them to reduce small estimated coefficients

to zero and achieve sparsity (consistent variable selection). Despite sharing these common

features, these penalties do behave slightly differently. For example, the LASSO penalty

tends to shrink all effects by similar amounts. In this regard, the Adaptive LASSO penalty

could be considered as a refinement of the LASSO penalty, since by introducing the adaptive

weights w, it can apply a heavy shrinkage to the zero parameters and leave the significant

parameters relatively unpenalized, which leads to improved parameter estimation and selec-

tion properties. In particular, Zou (2006) showed that if the adaptive weight w is chosen to

be the inverse of a consistent estimator of β, then root-n consistency and sparsity can be

simultaneously achieved for suitable choices of tuning parameter. In this thesis, we will use

the inverse of the ML estimates as the adaptive weights.
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CHAPTER 2
Finite mixture of linear mixed-effects (FMLME) models

In the previous chapter, we discussed that LME models are designed to take into con-

sideration the correlation in repeated measurements, and that finite mixture models can

successfully account for the heterogeneity in the observations. Therefore, when confronted

with data with both correlation and substantial underlying heterogeneity, it seems natural

to combine these two modeling ideas by creating a finite mixture of linear mixed-effects

(FMLME) models, which segments the overall population into several subpopulations, and

each of these subpopulations would call for its own LME modeling between the response and

explanatory variables. We shall now formally define FMLME models.

2.1 Model specification

Suppose we have m subjects, with ni, i = 1, . . . ,m, measurements from each subject.

Let yi = (yi1, yi2, . . . , yini
)′ denote the ni × 1 response vector for subject i, and Yi the

corresponding random vector. Let N =
∑m

i=1 ni be the total number of observations. Let

Xi be the corresponding ni × p design matrix of fixed effects, and Zi the ni × q design

matrix of random effects. We assume that observations from different individuals, namely

the (yi,Xi,Zi)’s, are independent.

Definition 1. In a heterogenous population consisting of K subpopulations, we say that

(yi,Xi,Zi) follows a finite mixture of linear mixed-effects models of order K if the marginal

density function of Yi, given Xi and Zi, has the form

f(yi;Xi,Zi,Φ) =
K∑
k=1

πkN
(
yi;Xiβk, σ

2
k(ZiΨkZ

′
i + Ini

)
)
, (2.1)
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where Φ contains all the parameters in the mixture density, N (.;µ,Σ) denotes the multi-

variate normal distribution with mean vector µ and variance-covariance matrix Σ, πk > 0

for all k = 1, . . . , K, and
∑K

k=1 πk = 1.

In the special case of K = 1, we obtain the marginal distribution (1.2) of Yi in the

usual LME model. When K > 1, the parameters βk, Ψk and σ2
k are assumed to be different

from one component to another, therefore each mixture component has a distinct mean and

variance.

FMLME models have attracted considerable attention in recent years. Verbeke and

Lesaffre (1996) investigated the impact of normality assumptions for the random effects on

their estimates in the LME model when the random effects are actually distributed according

to a mixture of normal densities. Yau, Lee, and Ng (2003) applied a mixture of two LME

models to analyze neonatal hospital length of stay, where the two components correspond to

the short-stay and the long-stay patients, respectively. Celeux, Martin, and Lavergne (2005)

and Ng et al. (2006) utilized mixture of LME models to perform clustering of correlated

gene expression profiles. Scharl, Grün, and Leisch (2010) evaluated the differences between

mixtures of regression models with and without random effects. Martella et al. (2011)

performed classification of sibling pairs using finite mixture models with random effects.

Given the finite mixture structure of FMLME models, any meaningful analysis should

be predicated on the assumption that the model is identifiable.

Definition 2. Consider a finite mixture of linear mixed-effects model of the form (2.1). For

given design matrices (X1,X2, . . . ,Xm) and (Z1,Z2, . . . ,Zm), the finite mixture of linear

mixed-effects model is said to be identifiable if for any two parameter vectors Φ and Φ∗,

K∑
k=1

πkN
(
yi;Xiβk, σ

2
k(ZiΨkZ

′
i + Ini

)
)
=

K∗∑
k=1

π∗
kN
(
yi;Xiβ

∗
k, σ

2
k
∗
(ZiΨ

∗
kZ

′
i + Ini

)
)

for each i = 1, . . . ,m and all possible values of yi, implies that K = K∗ and Φ = Φ∗ up to

a permutation.
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The identifiability of finite mixtures of regression models depends on the following three

factors: the component-wise density, the number of components K, and the design matrices.

For finite mixtures of linear regression models with fixed designs, Hennig (2000) demon-

strated that a sufficient condition for identifiability is that the number of components K is

less than the minimum number of (hx − 1)-dimensional hyperplanes formed by the design

points, where hx is the number of predictors in X excluding the intercept. Let Υ be the

matrix formed by the distinct columns of the following matrix

X1,Z1

X2,Z2

...

Xm,Zm


.

Then in our context, Hennig’s condition translates to the restriction that K must be smaller

than the number of (hΥ − 1)-dimensional hyperplanes covered by the rows of Υ. In the

special case where the Zi’s are a subset of the Xi’s, this condition becomes a condition on

the design points of the Xi’s only. Heuristically, this condition means that if the design

points exhibit too little variability from one subject to another, for example when all the

variables are categorical indicators, then identifiability problems could ensue. In the subse-

quent theoretical exposition, we assume that the FMLME model in question is identifiable.

In the simulation study and real data example, our model can be verified to be identifiable.

The next chapters are devoted to simultaneous fixed and random effects selection in

FMLME models, which is the main topic of this thesis.
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CHAPTER 3
Simultaneous fixed and random effects selection in FMLME models

Variable selection in models with random effects has gathered considerable attention

in the past. One major difficulty in such problems is precisely the selection of random

effects. Traditionally, this is done by performing hypothesis tests (Wald test or likelihood

ratio test) on nested models with different covariance structures. However, these tests suffer

from the fact that the null hypotheses of interest are on the boundary of the parameter

space, which violates the regularity conditions and thus renders the asymptotic results of

these tests unapplicable (Verbeke & Molenberghs, 2009). This provided an impetus for

researchers to investigate alternative methods to perform variable selection in such models.

Chen and Dunson (2003) proposed a Bayesian approach to select the random effects in an

LME model by assuming the fixed effects component of the model is known. Pu and Niu

(2006) employed an extended GIC criterion to select first the fixed effects by keeping all

the random effects in the model, and then select the random effects by keeping the chosen

fixed effects from the previous step. Recently, Bondell, Krishna, and Ghosh (2010) proposed

to simultaneously select fixed and random components in an LME model via penalized

likelihood, and demonstrated that simultaneous selection provides better performance than

choosing the fixed and random components sequentially. Ibrahim et al. (2011) also proposed a

penalized likelihood approach to simultaneously select fixed and random effects in generalized

linear mixed models. Their estimation procedure, however, involves Markov chain Monte

Carlo simulation, which could be time consuming.

Motivated by the work of Chen and Dunson (2003) and Bondell et al. (2010), we pro-

pose a new method for joint selection of fixed and random effects in FMLME models. By
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applying the modified Cholesky decomposition proposed by these authors, we can factor-

ize the covariance matrix of the random effects from the k-th component of the FMLME

model (2.1) as Ψk = DkΓkΓ
′
kDk, where Dk = diag(dk1, dk2, . . . , dkq) is a diagonal matrix,

and Γk is a q×q lower triangular matrix with 1’s on the diagonal. Given this decomposition,

conditioning on membership of the k-th mixture component, the response vector of the i-th

subject is governed by the component-wise LME model

Yi = Xiβk +ZiDkΓkbki + εki,

where bki = (bki1 , . . . , bkiq)
′ is the new q×1 random effect vector with distributionN (0, σ2

kIq),

and εki is an ni × 1 error vector with distribution N (0, σ2
kIni

). The advantage of this

decomposition is that, if dkl is estimated to be 0, then the l-th row and column of the resulting

covariance matrix Ψk are 0, which facilitates the selection of random effects. Furthermore,

there is no hypothesis testing involved in this selection procedure, so we effectively circumvent

the complications discussed at the beginning of this chapter. Note that the parameters in

Dk and Γk are functionally related, in that once dkl is identified to be 0, all the parameters

in the l-th row of Γk have to be set to 0. This ensures the identifiability of the parameters

in Γk in the estimation process.

Applying the above variance decomposition to each component of the FMLME model,

we can reformulate the mixture density (2.1) as

f(yi;Xi,Zi,Φ) =
K∑
k=1

πkN
(
yi;Xiβk, σ

2
k(ZiDkΓkΓ

′
kDkZ

′
i + Ini

)
)

=
K∑
k=1

πkfk(yi;Xi,Zi,ϕk), (3.1)

where Φ = (π1, . . . , πK−1,β
′
1, . . . ,β

′
K ,d

′
1, . . . ,d

′
K ,γ

′
1, . . . ,γ

′
K , σ

2
1, . . . , σ

2
K)

′ denotes the vector

of all unknown parameters for the mixture density f , and ϕk = (β′
k,d

′
k,γ

′
k, σ

2
k)

′ denotes

the vector of parameters for the k-th component density of the mixture, fk. In the k-th
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component variance, Dk = diag(d′
k) = diag(dk1, . . . , dkq), and Γk is a q × q lower triangular

matrix whose off-diagonal elements are given by the vector γk.

Let (y1,X1,Z1), (y2,X2,Z2), . . . , (ym,Xm,Zm) be a random sample of observations

governed by the FMLME model (3.1). The log-likelihood for Φ formed from the observed

sample is given by

lm(Φ) =
m∑
i=1

log{
K∑
k=1

πkfk(yi;Xi,Zi,ϕk)}. (3.2)

To perform fixed and random effects selection, we aim to maximize the following penal-

ized log-likelihood function

plm(Φ) = lm(Φ)− pm(Φ), (3.3)

with the penalty

pm(Φ) =
K∑
k=1

πk ·m

(
p∑

j=1

pmk(βkj) +

q∑
j=1

pmk(dkj)

)
, (3.4)

where the pmk(θ) are non-negative and non-decreasing functions in |θ|. By maximizing the

log-likelihood with a penalty on the βkj’s and dkj’s, the coefficient of some fixed effects and

the variance of some random effects would be estimated to be zero. Simultaneous exclusion

of these effects from the model is then achieved. The penalties imposed on the parameters

from the k-th mixture component are chosen to be proportional to πk ·m, the virtual sample

size of the k-th subpopulation.

In the present thesis, we will consider the LASSO, Adaptive LASSO and SCAD penalties

introduced in Section 1.5 of Chapter 1. Let λmk denote the tuning parameter. The subscript

m emphasizes that the tuning parameter is dependent on the sample size, and the subscript

k indicates that each mixture component has a different tuning parameter. In the context

of FMLME models, these three penalty functions are defined as follows,

(a) LASSO penalty:

pmk(θ) = λmk|θ|.

17



(b) Adaptive LASSO penalty:

pmk(θ) = λmk · w|θ|,

where we choose the adaptive weights w to be the inverse of ML estimates.

(c) SCAD penalty:

p′mk(θ) = λmk

{
1(|θ| ≤ λmk) +

(aλmk − |θ|)+
(a− 1)λmk

1(|θ| > λmk)

}
, for some a > 2,

where we follow Fan and Li (2001) and use a = 3.7 for our applications.

For more discussions on these three penalty functions, we refer the reader to Section 1.5 of

Chapter 1.

In the next chapter, we present an efficient numerical algorithm to perform the maxi-

mization of the penalized log-likelihood (3.3).

18



CHAPTER 4
Numerical algorithm for variable selection and estimation

The EM algorithm introduced in Section 1.4 has been a popular method for parameter

estimation in the context of finite mixtures, when the number of components K is given. We

propose a nested EM algorithm to maximize the penalized log-likelihood (3.3). Concisely,

the outer E-step is due to the mixture structure, and computes the posterior probability

of each observation belonging to one component of the mixture. The outer M-step is an

EM algorithm in itself (inner EM), which maximizes the conditional expectation of the log-

likelihood for each component-wise LME model. We now describe our nested EM algorithm

in more detail.

Outer E-step:

In order to apply the EM algorithm, we first need to formulate our problem as an

incomplete-data problem: consider {(yi,Xi,Zi) : i = 1, . . . ,m} as the observed data and

their associated component-label vectors t1, . . . , tm as unobserved data, where each ti is a

K-dimensional vector whose k-th entry, tik, is equal to 1 if (yi,Xi,Zi) arose from the k-th

component of the mixture or 0 otherwise. The penalized complete-data log-likelihood for Φ

is given by

plc(Φ) =
K∑
k=1

m∑
i=1

tik{log πk + log fk(yi;Xi,Zi,ϕk)} − pm(Φ). (4.1)

Upon taking the conditional expectation of (4.1), we obtain the objective function for

the outer M-step,

Q(Φ;Φ(ν)) =

{
K∑
k=1

m∑
i=1

τ
(ν)
ik log πk

}
+

{
K∑
k=1

m∑
i=1

τ
(ν)
ik log fk(yi;Xi,Zi,ϕk)− pm(Φ)

}
, (4.2)
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where ν indexes the outer EM iterations, and τ
(ν)
ij is given by

τ
(ν)
ij =

π
(ν)
j fj

(
yi;Xi,Zi,ϕ

(ν)
j

)
∑K

k=1 π
(ν)
k fk

(
yi;Xi,Zi,ϕ

(ν)
k

) .

Outer M-step:

The M-step of the outer EM algorithm consists of updating current parameter estimates

by maximizing the objective function (4.2) with respect to Φ. In the classical EM algorithm

presented in Section 1.4, the mixing proportions are updated by

π
(ν+1)
k =

m∑
i=1

τ
(ν)
ik /m, (k = 1, . . . , K). (4.3)

Note that this only maximizes the leading term in (4.2). Maximizing (4.2) itself with respect

to πk would be more complex. For simplicity, we update πk according to (4.3), which worked

well in our simulations. One justification for this is that we could simply replace the πk

involved in pm(Φ) by its estimate from the previous iteration, namely π
(ν)
k , therefore the

entire second term in (4.2) could be regarded as a constant when taking derivative with

respect to πk.

To update the other parameters in Φ, namely {ϕk : k = 1, . . . K}, we need to maximize

the second term in (4.2), viz.

argmax
Φ

K∑
k=1

m∑
i=1

τ
(ν)
ik log fk(yi;Xi,Zi,ϕk)− pm(Φ). (4.4)

However, since the parameters ϕk are mathematically independent from one component to

another, this is equivalent to the component-wise maximization

ϕ
(ν+1)
k = argmax

ϕk

m∑
i=1

τ
(ν)
ik log fk(yi;Xi,Zi,ϕk)− pmk(ϕk), (k = 1, . . . , K), (4.5)
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where pmk(ϕk) = π
(ν+1)
k ·m

{∑p
j=1 pmk(βkj) +

∑q
j=1 pmk(dkj)

}
. Again, we use an EM algo-

rithm to carry out the maximization of (4.5). This is the “inner EM”, which we describe

next.

Complete likelihood for Inner EM:

Suppose we are performing maximization for the k-th component. We first translate this

into an incomplete-data problem by treating the random effects bk = (b′k1, . . . , b
′
km)

′
mq×1 as

unobserved, where the subscript k indicates the component. This notation is necessary since

for each of the mixture components, the random effects bk are assumed to have a different

distribution.

For simplicity of notation, in the following exposition, we do not annotate explicitly the

dependence of the various conditional distribution functions on the design matrices Xi and

Zi, which are understood to be given and fixed.

We next find the complete-data likelihood for the i-th subject Lc
k(ϕk|yi, bki),

Lc
k(ϕk|yi, bki) = f(yi|bki,ϕk) · f(bki|ϕk)

=
1

(2πσ2
k)

ni/2
exp

(
− 1

2σ2
k

(yi −Xiβk −ZiDkΓkbki)
′Ini(yi −Xiβk −ZiDkΓkbki)

)
× 1

(2πσ2
k)

q/2
exp

(
− 1

2σ2
k

b′kiIqbki

)
=

1

(2πσ2
k)

ni+q

2

exp

(
− 1

2σ2
k

||yi −Xiβk −ZiDkΓkbki||2 −
1

2σ2
k

b′kibki

)
. (4.6)

Therefore, the complete-data log-likelihood for the i-th subject is found to be

lck(ϕk|yi, bki) = −ni + q

2
log σ2

k −
1

2σ2
k

(
||yi −Xiβk −ZiDkΓkbki||2 + b′kibki

)
.

Given the above complete-data log-likelihood for a single subject, by incorporating the

weights τ
(ν)
ik and adding the penalty, then summing over i, we obtain the penalized complete-

data log-likelihood for the k-th component,

plck(ϕk) =
m∑
i=1

τ
(ν)
ik lck(ϕk|yi, bki)− pmk(ϕk). (4.7)
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Equation (4.7) is similar to equation (4.5), except we replaced the observed-data log-likelihood

by the corresponding complete-data log-likelihood. Instead of directly maximizing (4.5), we

iterate between finding the conditional expectation of bk and maximizing the conditional

expectation of (4.7) until convergence. The theory of EM algorithm guarantees that at least

a local maximum of (4.5) would be found in this fashion. Expanding equation (4.7), we get

plck(ϕk) =
m∑
i=1

{
−τ (ν)ik

ni + q

2
log σ2

k −
τ
(ν)
ik

2σ2
k

(
||yi −Xiβk −ZiDkΓkbki||2 + b′kibki

)}

− πk ·m

(
p∑

j=1

pmk(βkj) +

q∑
j=1

pmk(dkj)

)
. (4.8)

Dropping out the terms that do not involve either βk or dk in (4.8), this is then equivalent

to minimizing the conditional expectation of

m∑
i=1

τ
(ν)
ik ||yi −Xiβk −ZiDkΓkbki||2 + 2σ2

k · πk ·m

(
p∑

j=1

pmk(βkj) +

q∑
j=1

pmk(dkj)

)

=
m∑
i=1

∣∣∣∣∣∣∣∣√τ
(ν)
ik yi −

√
τ
(ν)
ik Xiβk −

√
τ
(ν)
ik ZiDkΓkbki

∣∣∣∣∣∣∣∣2 + 2σ2
k · pmk(ϕk)

=
m∑
i=1

∣∣∣∣∣∣∣∣√τ
(ν)
ik Ini

yi −
√
τ
(ν)
ik Ini

Xiβk −
√
τ
(ν)
ik Ini

ZiDkΓkbki

∣∣∣∣∣∣∣∣2 + 2σ2
k · pmk(ϕk)

=

∣∣∣∣∣∣∣∣√τ
(ν)
k y −

√
τ
(ν)
k Xβk −

√
τ
(ν)
k ZD̃kΓ̃kbk

∣∣∣∣∣∣∣∣2 + 2σ2
k · pmk(ϕk), (4.9)

where y = (y′
1, . . . ,y

′
m)

′, X = (X ′
1, . . . ,X

′
m)

′. Z represents the block diagonal matrix of

Zi, and D̃k = Im ⊗Dk and Γ̃k = Im ⊗ Γk, where ⊗ denotes the Kronecker product.

√
τ
(ν)
k

represents the following diagonal matrix

√
τ
(ν)
k =



√
τ
(ν)
1k In1 0 . . . 0

0

√
τ
(ν)
2k In2 . . . 0

...
...

. . .
...

0 0 . . .

√
τ
(ν)
mkInm


.
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If we define the transformed data in expression (4.9) as y(k) =

√
τ
(ν)
k y, X(k) =

√
τ
(ν)
k X,

and Z(k) =

√
τ
(ν)
k Z, then it is as if we had a set of LME data (y(k),X(k),Z(k)). The subscript

k emphasizes the fact that for each mixture component, we have a different set of transformed

data due to the weights

√
τ
(ν)
k . Equation (4.9) can thus be rewritten as∣∣∣∣∣∣y(k) −X(k)βk −Z(k)D̃kΓ̃kbk

∣∣∣∣∣∣2 + 2σ2
k · pmk(ϕk), (4.10)

of which we want to minimize the conditional expectation. Let ω index the inner EM

iterations. Then, at iteration ω + 1, our objective function is

Q(ϕk|ϕ(ω)
k ) = E

bk|y,ϕ
(ω)
k

{∣∣∣∣∣∣y(k) −X(k)βk −Z(k)D̃kΓ̃kbk

∣∣∣∣∣∣2}+ 2σ2
k · pmk(ϕk). (4.11)

Inner E-step:

In the E-step, we find the conditional distribution of bk given ϕ
(ω)
k and y. The joint

density of bki and yi for a single subject i was found in (4.6). Using the fact that both the

observations and the random effects are independent between subjects, the joint density of

bk and y given current estimates ϕ
(ω)
k is

f(y, bk|ϕ
(ω)
k ) =

m∏
i=1

1

(2πσ
2(ω)
k )

ni+q

2

exp

(
− 1

2σ
2(ω)
k

||yi −Xiβ
(ω)
k −ZiD

(ω)
k Γ

(ω)
k bki||2 −

1

2σ
2(ω)
k

b′kibki

)

=
1

(2πσ
2(ω)
k )

N+mq
2

exp

(
− 1

2σ
2(ω)
k

||y −Xβ
(ω)
k −ZD̃

(ω)
k Γ̃

(ω)
k bk||2 −

1

2σ
2(ω)
k

b′kbk

)
.

Therefore, the full conditional distribution of bk, given ϕ
(ω)
k and y, is given by

f(bk|y,ϕ(ω)
k ) ∝ exp

{
− 1

2σ
2(ω)
k

(
||y −Xβ

(ω)
k −ZD̃

(ω)
k Γ̃

(ω)
k bk||2 + b′kbk

)}

= exp

{
− 1

2σ
2(ω)
k

[
(y −Xβ

(ω)
k )′(y −Xβ

(ω)
k )− 2(y −Xβ

(ω)
k )′ZD̃

(ω)
k Γ̃

(ω)
k bk

+ b′kΓ̃
′(ω)
k D̃

(ω)
k Z ′ZD̃

(ω)
k Γ̃

(ω)
k bk + b′kbk

]}
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∝ exp

{
− 1

2σ
2(ω)
k

[
b′k

(
Γ̃

′(ω)
k D̃

(ω)
k Z ′ZD̃

(ω)
k Γ̃

(ω)
k + Imq

)
bk

− 2
(
(ZD̃

(ω)
k Γ̃

(ω)
k )′(y −Xβ

(ω)
k )
)′
bk

]}
. (4.12)

After completing the square inside the exponential, (4.12) can be recognized as the kernel

of a multivariate normal distribution. In the end, we find that bk|y,ϕ(ω)
k ∼ N (b̂

(ω)
k ,U

(ω)
k ),

where the mean and variance are given by

b̂
(ω)
k = (Γ̃

′(ω)
k D̃

(ω)
k Z ′ZD̃

(ω)
k Γ̃

(ω)
k + Imq)

−1(ZD̃
(ω)
k Γ̃

(ω)
k )′(y −Xβ

(ω)
k )

and U
(ω)
k = σ

2(ω)
k (Γ̃

′(ω)
k D̃

(ω)
k Z ′ZD̃

(ω)
k Γ̃

(ω)
k + Imq)

−1, (4.13)

respectively. This completes the inner E-step.

Inner M-step:

In the inner M-step, we minimize our objective function (4.11) with respect to the

parameters ϕk = (β′
k,d

′
k,γ

′
k, σ

2
k)

′. This optimization is done by iterating between (β′
k,d

′
k)

′,

γk, and σ
2
k as follows.

First, we update (β′
k,d

′
k)

′. Bondell et al. (2010) showed that, omitting terms that do

not involve ϕk, expression (4.10) can be rewritten asβk

dk


′  X ′

(k)X(k) X ′
(k)Z(k)Diag(Γ̃kbk)(1m ⊗ Iq)

(1m ⊗ Iq)
′Diag(Γ̃kbk)Z

′
(k)X(k) (1m ⊗ Iq)

′
(
Z ′

(k)Z(k) • Γ̃kbkb
′
kΓ̃

′
k

)
(1m ⊗ Iq)


βk

dk


− 2y′

(k)

[
X(k) Z(k)Diag(Γ̃kbk)(1m ⊗ Iq)

]βk

dk

+ 2σ2
k · pmk(ϕk), (4.14)

where • represents the Hadamard product, and ⊗ the Kronecker product. After taking the

conditional expectation of (4.14), and fixing Γk and σ2
k at their current estimates, we obtain
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our penalized quadratic objective function for (β′
k,d

′
k)

′ as

Q(βk,dk|ϕ
(ω)
k ) =βk

dk


′  X ′

(k)X(k) X ′
(k)Z(k)Diag(Γ̃

(ω)
k b̂

(ω)
k )(1m ⊗ Iq)

(1m ⊗ Iq)
′Diag(Γ̃

(ω)
k b̂

(ω)
k )Z ′

(k)X(k) (1m ⊗ Iq)
′
(
Z ′

(k)Z(k) • Γ̃
(ω)
k Ĝ

(ω)
k Γ̃

(ω)′

k

)
(1m ⊗ Iq)


βk

dk


− 2y′

(k)

[
X(k) Z(k)Diag(Γ̃

(ω)
k b̂

(ω)
k )(1m ⊗ Iq)

]βk

dk

+ 2σ
2(ω)
k · pmk(ϕk)

=

βk

dk


′

M (ω)

βk

dk

− 2y′
(k)L

(ω)

βk

dk

+ 2σ
2(ω)
k · pmk(ϕk), (4.15)

where we simply replaced bk and bkb
′
k in equation (4.14) by their conditional expectations,

b̂
(ω)
k and E (bkb

′
k) = Ĝ

(ω)
k = U (ω) + b̂

(ω)
k b̂

(ω)′

k , respectively.

In order to obtain closed form solution for (4.15), we adopt a local quadratic approxi-

mation proposed by Fan and Li (2001) and replace pmk(θ) by

pmk(θ0) +
p′m(|θ0|)
2|θ0|

(θ2 − θ20)

in a neighborhood of θ0. Equation (4.15) can thus be locally approximated (except for a

constant term) by

Q(βk,dk|ϕ
(ω)
k ) ≈

βk

dk


′

M (ω)

βk

dk

− 2y′
(k)L

(ω)

βk

dk

+
2σ

2(ω)
k · π(ν+1)

k ·m
2

βk

dk


′

Σm(ϕ
(ω)
k )

βk

dk


=

βk

dk


′ (

M (ω) + σ
2(ω)
k · π(ν+1)

k ·m ·Σm(ϕ
(ω)
k )
)βk

dk

− 2y′
(k)L

(ω)

βk

dk

 , (4.16)

where Σm(ϕ
(ω)
k ) = diag

{
p′m(|β(ω)

k1 |)
|β(ω)

k1 |
, . . . ,

p′m(|β(ω)
kp |)

|β(ω)
kp |

,
p′m(|d(ω)

k1 |)
|d(ω)

k1 |
, . . . ,

p′m(|d(ω)
kq |)

|d(ω)
kq |

}
. Since dkj’s are non-

negative for all j = 1, . . . , q and k = 1, . . . , K, the updated (β′
k,d

′
k) is given by the solution
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to the following constrained quadratic minimizationβk

dk


(ω+1)

= argmax

βk

dk


′ (
M (ω) + σ

2(ω)
k · π(ν+1)

k ·m ·Σm(ϕ
(ω)
k )
)βk

dk

− 2y′
(k)L

(ω)

βk

dk

 ,
subject to dkj ≥ 0 for j = 1, . . . , q. (4.17)

Quadratic programming techniques could be used to solve (4.17). Instead, in our simulations,

we updated (β′
k,d

′
k)

′ with the solution to the derivative function of (4.16), namelyβk

dk


(ω+1)

=
(
M (ω) + σ

2(ω)
k · π(ν+1)

k ·m ·Σm(ϕ
(ω)
k )
)−1

· (L(ω)′y(k)), (4.18)

and set to zero any negative estimate of dkj, since the latter are the square roots of the

diagonal elements of the Cholesky decomposition of the random-effect variance matrix. Such

techniques of projection onto the space of nonnegative definite matrices are common in

estimating the variance components in LME models (Demidenko, 2004). This worked well

in our simulations, as none of the truly nonzero dkj’s was ever estimated to be negative.

Also, when any truly zero dkj had a negative estimate, it was extremely close to zero.

If dkl is 0, then the γ’s in the l-th row of Γk are automatically set to 0. This is necessary

to ensure the identifiability of the γ’s. To update γk, we first rewrite the squared vector norm∣∣∣∣∣∣y(k) −X(k)βk −Z(k)D̃kΓ̃kbk

∣∣∣∣∣∣2 in a quadratic form for γk and then compute its conditional

expectation. Bondell et al. (2010) showed that the objective function for γk is given by

Q(γk|ϕ(ω)
k ) = γ ′

kP
(ω)γ − 2

{(
y(k) −X(k)β

(ω)
k

)′
R(ω) − T (ω)′

}
γk, (4.19)

for some matrices P (ω), T (ω) and R(ω). The minimizer of (4.19) is given by

γ
(ω+1)
k =

(
P (ω)

)− {
R(ω)′

(
y(k) −X(k)β

(ω)
k

)
− T (ω)′

}
, (4.20)

where
(
P (ω)

)−
denotes the Moore-Penrose generalized inverse of P (ω).
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We update σ2
k by directly maximizing equation (4.5) with respect to σ2

k. By solving its

first derivative function, we find that the maximizer is given by

σ2
k =

∑m
i=1 τ

(ν)
ik (yi −Xiβk)

′ (ZiDkΓkΓ
′
kDkZ

′
i + Ini

)−1 (yi −Xiβk)∑m
i=1 τ

(ν)
ik · ni

.

If we factor the weights τ
(ν)
ik into the residuals, then we can rewrite the above equation in

terms of the transformed data (y(k),X(k),Z(k)) as

σ2
k =

(
y(k) −X(k)βk

)′ (
Z(k)D̃kΓ̃kΓ̃

′
kD̃kZ

′
(k) + IN

)−1 (
y(k) −X(k)βk

)
∑m

i=1 τ
(ν)
ik · ni

. (4.21)

Observe that the numerator is a weighted sum of squared residuals, and the denominator is

the estimated virtual sample size of the k-th component.

We assume that the current estimates (β
(ω+1)′

k ,d
(ω+1)′

k ,γ
(ω+1)′

k )′ are the true values for

these parameters, so we replace (β′
k,d

′
k,γ

′
k)

′ in (4.21) by their current estimates to update

σ2
k, i.e.

σ
2(ω+1)
k =

(
y(k) −X(k)β

(ω+1)
k

)′ (
Z(k)D̃

(ω+1)
k Γ̃

(ω+1)
k Γ̃

(ω+1)′

k D̃
(ω+1)
k Z ′

(k) + IN

)−1 (
y(k) −X(k)β

(ω+1)
k

)
∑m

i=1 τ
(ν)
ik · ni

.

Once the parameters (β′
k,d

′
k,γ

′
k, σ

2
k)

′ have converged in the inner EM algorithm, say to the

values (β
(ν+1)′

k ,d
(ν+1)′

k ,γ
(ν+1)′

k , σ
2(ν+1)
k )′, the maximization of equation (4.5) is complete. We

can then update ϕk in the outer EM algorithm by

ϕ
(ν+1)
k =



β
(ν+1)
k

d
(ν+1)
k

γ
(ν+1)
k

σ
2(ν+1)
k


.

We iterate between the outer E-step and M-step until all parameters in Φ have reached

convergence.
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4.1 Choice of tuning parameters

When using the LASSO, Adaptive LASSO or SCAD penalties, the penalty function for

each mixture component k would involve a tuning parameter λmk. The nested EM algorithm

described above applies to a fixed tuning parameter vector λm = (λm1, . . . , λmK). In practice,

we need to choose each λmk from a grid of candidate values.

For an LME model, Bondell et al. (2010) proposed to use the following BIC-type crite-

rion,

BIC(λm) = −2l(ϕ̂) + log(N)× dfλm , (4.22)

where ϕ̂ is the vector of maximum penalized likelihood estimates for all LME parameters,

l denotes the log-likelihood, N is the total sample size, and dfλm is the number of non-zero

coefficients in ϕ̂. We make suitable changes to this BIC criterion to reflect our mixture

structure.

To do this, we first find the ML estimates, Φ̂(ml), for the FMLME model (this is done

using the same nested EM algorithm described before, but without the penalty). We then

calculate the posterior probability of observation yi belonging to the j-th component, namely

τ
(ml)
ij =

π̂
(ml)
j fj(yi; ϕ̂

(ml)
j )∑K

k=1 π̂
(ml)
k fk(yi; ϕ̂

(ml)
k )

, (4.23)

for each subject i and each component j.

Suppose we are choosing the tuning parameter for component k. We define the following

weight matrix,

√
τ
(ml)
k =



√
τ
(ml)
1k In1 0 . . . 0

0

√
τ
(ml)
2k In2 . . . 0

...
...

. . .
...

0 0 . . .

√
τ
(ml)
mk Inm


.
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Analogously to the previous section, we define y
(ml)
(k) =

√
τ
(ml)
k y, X

(ml)
(k) =

√
τ
(ml)
k X, and

Z
(ml)
(k) =

√
τ
(ml)
k Z. We can again consider (y

(ml)
(k) ,X

(ml)
(k) ,Z

(ml)
(k) ) as a set of LME data, and use

the methodology of Bondell et al. (2010) to find the maximum penalized likelihood estimate,

ϕ̂
(mpl)
k , of ϕk.

Let Nk =
∑m

i=1 τ
(ml)
ik · ni be the estimated virtual sample size of the k-th component,

with k = (1, . . . , K). Similar to the BIC-2 of Steele and Raftery (2010), our component-wise

BIC criterion for the FMLME model is then defined as

BICk(λmk) = −2lk(ϕ̂
(mpl)
k ) + log(Nk)× dfλmk

, (k = 1, . . . , K), (4.24)

where lk(ϕ̂
(mpl)
k ) =

∑m
i=1 τ

(ml)
ik log fk(yi; ϕ̂

(mpl)
k ) is the weighted log-likelihood of the k-th com-

ponent. This definition is in line with (4.22) and the modifications take into account the

mixture structure. The tuning parameters λmk are chosen one at a time by minimizing

BICk(λmk).

This concludes our numerical algorithm for fixed and random effects selection and esti-

mation. In the next chapter, we examine the asymptotic properties of our penalized estima-

tors.
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CHAPTER 5
Asymptotic properties

Suppose that the data {(yi,Xi,Zi) : i = 1, . . . ,m} are a random sample from the

FMLME model (3.1). Write Φ = (ϕ1, ϕ2, . . . , ϕT ) so that T is the total number of parameters

in the model. In order to study the asymptotic properties of the proposed methodology,

several regularity conditions have to be imposed on the joint distribution of (yi,Xi,Zi). Let

f(yi,Xi,Zi;Φ) be the joint density function of (yi,Xi,Zi) and Ω be an open parameter

space. We assume the following regularity conditions are satisfied.

Regularity Conditions:

A1 f(yi,Xi,Zi;Φ) is identifiable in Φ up to a permutation of the components of the

mixture.

A2 For each Φ0 ∈ Ω, there existM1i(yi,Xi,Zi), M2i(yi,Xi,Zi) andM3i(yi,Xi,Zi) (pos-

sibly depending on Φ0) such that for Φ in a neighborhood of Φ0,∣∣∣∣∂ log f(yi,Xi,Zi;Φ)

∂ϕj

∣∣∣∣ < M1i(yi,Xi,Zi),∣∣∣∣∂2 log f(yi,Xi,Zi;Φ)

∂ϕj∂ϕl

∣∣∣∣ < M2i(yi,Xi,Zi),∣∣∣∣∂3 log f(yi,Xi,Zi;Φ)

∂ϕj∂ϕl∂ϕn

∣∣∣∣ < M3i(yi,Xi,Zi),

such that EΦ0(M1i(yi,Xi,Zi)) <∞, EΦ0(M2i(yi,Xi,Zi)) <∞ and EΦ0(M3i(yi,Xi,Zi))

<∞.

A3 The Fisher information matrix I(Φ) is finite and positive definite for all Φ ∈ Ω.
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Note that condition A2 is on the joint density function of (yi,Xi,Zi) only, which does not

involve a penalty function, therefore the previously discussed non-differentiability of LASSO

and SCAD functions does not affect the feasibility of this assumption.

Also note that even though the density of FMLME model (3.1) is a finite mixture of

multivariate normal distributions, in this chapter, the asymptotic properties are determined

in greater generality, i.e. the component-wise densities are not necessarily multivariate nor-

mals, but the joint density f(yi,Xi,Zi;Φ) satisfies the conditions A1–A3.

Decompose the parameter Φ = (Φ′
1,Φ

′
2)

′ such that Φ2 contains all zero effects from

all the mixture components, and split the vector of true parameter values accordingly as

Φ0 = (Φ′
10,Φ

′
20)

′. Denote the elements of Φ10 with a superscript such as β10
kj and d10kj. Our

asymptotic results involve the following quantities:

am = max
k,j

{√
m
∣∣pmk(β

10
kj )
∣∣ ,√m ∣∣pmk(d

10
kj)
∣∣} ,

bm = max
k,j

{√
m
∣∣p′mk(β

10
kj )
∣∣ ,√m ∣∣p′mk(d

10
kj)
∣∣} ,

and cm = max
k,j

{√
m
∣∣p′′mk(β

10
kj )
∣∣ ,√m ∣∣p′′mk(d

10
kj)
∣∣} .

Assume that the penalty functions pmk satisfy the following conditions:

P0 For all m and k, pmk(0) = 0 and pmk(.) is symmetric and non-negative. In addition, it

is non-decreasing and twice differentiable on (0,∞) with at most a few exceptions.

P1 As m→ ∞, am = o(1 + bm), cm = o(
√
m).

P2 For Nn = {θ : 0 < θ ≤ m−1/2 logm}, lim
m→∞

inf
θ∈Nn

√
mp′mk(θ) = ∞.

Our penalized likelihood estimator possesses the following asymptotic properties.

Theorem 1. Let Φ = (Φ′
1, 0

′)′, and the observations follow the FMLME model (3.1) satis-

fying regularity conditions A1 – A3, and assume the penalty function pmk satisfies P0 and P1.

Then there exists a local maximizer Φ̂m of the penalized log-likelihood function (3.3) such

that ||Φ̂m −Φ0|| = Op

{
m−1/2(1 + bm)

}
.
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Proof. Let rm = m−1/2(1 + bm). It suffices to show that for any small enough ε > 0, there

exists a constant Mε such that for sufficiently large m,

Pr

{
sup

||u||=Mε

plm(Φ0 + rmu) < plm(Φ0)

}
≥ 1− ε.

So with large probability, there exists a local maximum in {Φ0 + rmu : ||u|| ≤Mε}. This

local maximizer Φ̂m satisfies ||Φ̂m −Φ0|| = Op

{
m−1/2(1 + bm)

}
.

Let

∆m(u) = plm(Φ0 + rmu)− plm(Φ0)

= {lm(Φ0 + rmu)− lm(Φ0)} − {pm(Φ0 + rmu)− pm(Φ0)} .

By assumption P0, pmk(0) = 0, therefore pm(Φ0) = pm(Φ10). Given that pm(Φ0+ rmu) is a

sum of positive terms, removing terms corresponding to zero components makes it smaller,

hence

∆m(u) ≤ {lm(Φ0 + rmu)− lm(Φ0)} − {pm(Φ10 + rmuI)− pm(Φ10)}

≤ {lm(Φ0 + rmu)− lm(Φ0)}+ |pm(Φ10 + rmuI)− pm(Φ10)| , (5.1)

where uI is the sub-vector of u that corresponds to the non-zero effects. By Taylor’s expan-

sion,

lm(Φ0 + rmu)− lm(Φ0) = rml
′
m(Φ0)

Tu+
1

2
uT (l′′m(Φ0))ur

2
m

=
(1 + bm)√

m
l′m(Φ0)

Tu+
(1 + bm)

2

2m
uT (l′′m(Φ0))u, (5.2)

where we omitted the remainder term, since it vanishes as m → ∞ by regularity condition

A2. For the hessian matrix l′′m(Φ0), we have

1

m
l′′m(Φ0)

p−→ −I(Φ0).
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Therefore,

lm(Φ0 + rmu)− lm(Φ0) =
(1 + bm)√

m
l′m(Φ0)

Tu− (1 + bm)
2

2
uT I(Φ0)u{1 + op(1)}

= (1 + bm)Op(1) ||u|| −
(1 + bm)

2

2
uT I(Φ0)u{1 + op(1)}, (5.3)

since 1√
m
l′m(Φ0) = Op(1) by regularity conditions. Also, by regularity condition A3, I(Φ0)

is positive definite, therefore its smallest eigenvalue ηmin is positive. Furthermore, we have

that uT I(Φ0)u ≥ ηmin ||u||2. Applying this result to (5.3), we have

lm(Φ0 + rmu)− lm(Φ0) ≤ (1 + bm)Op(1) ||u|| −
(1 + bm)

2

2
ηmin ||u||2 {1 + op(1)}. (5.4)

On the other hand, by Taylor’s expansion and the triangular inequality,

|pm(Φ10 + rmuI)− pm(Φ10)|

=p′
m(Φ10)

T rmuI +
r2m
2
uT

I p
′′
m(Φ10)uI{1 + o(1)}

≤rm
∣∣p′

m(Φ10)
TuI

∣∣+ r2m
2

∣∣uT
I p

′′
m(Φ10)uI

∣∣ {1 + o(1)}

≤rm
∣∣∣∣p′

m(Φ10)
T
∣∣∣∣ · ||uI ||+

r2m
2

||diag(p′′
m(Φ10))|| · ||uI ||2 {1 + o(1)}. (5.5)

Let tk be the total number of true non-zero fixed and random effects in the k-th component,

and let t = max{tk, k = 1, . . . , K}. Let β10 and d10 denote respectively the vectors of β10
kj ’s

and d10kj’s from all the components. We notice that for the first term of (5.5),

||p′
m(Φ10)|| = ||p′

m(π1, . . . , πK)||+
∣∣∣∣p′

m(β
10,d10)

∣∣∣∣ . (5.6)

Recall that pm(Φ) =
∑K

k=1 πk ·m
(∑p

j=1 pmk(βkj) +
∑q

j=1 pmk(dkj)
)
, therefore

p′
m(π1, . . . , πK) =


m
(∑p

j=1 pmk(β
10
1j ) +

∑q
j=1 pmk(d

10
1j)
)

...

m
(∑p

j=1 pmk(β
10
Kj) +

∑q
j=1 pmk(d

10
Kj)
)
 .
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Hence,

||p′
m(π1, . . . , πK)|| = m ·

√√√√ K∑
k=1

[
p∑

j=1

pmk(β10
kj ) +

q∑
j=1

pmk(d10kj)

]2
≤ m

√√√√ K∑
k=1

[
tk ·

am√
m

]2

= am
√
m

√√√√ K∑
k=1

t2k ≤ am
√
m

√√√√ K∑
k=1

t2 = am
√
m
√
Kt.

Furthermore,

∣∣∣∣p′
m(β

10,d10)
∣∣∣∣ = ∣∣∣∣∇pm(β

10
11 , . . . , β

10
1p , . . . , β

10
K1, . . . , β

10
Kp, d

10
11, . . . , d

10
1q, . . . , d

10
K1, . . . , d

10
Kq)
∣∣∣∣

= m||π1p′m1(β
10
11), . . . , π1p

′
m1(β

10
1p), . . . , πKp

′
mK(β

10
K1), . . . , πKp

′
mK(β

10
Kp),

π1p
′
m1(d

10
11), . . . , π1p

′
m1(d

10
1q), . . . , πKp

′
mK(d

10
K1), . . . , πKp

′
mK(d

10
Kq)||

≤ m||p′m1(β
10
11), . . . , p

′
m1(β

10
1p), . . . , p

′
mK(β

10
K1), . . . , p

′
mK(β

10
Kp),

p′m1(d
10
11), . . . , p

′
m1(d

10
1q), . . . , p

′
mK(d

10
K1), . . . , p

′
mK(d

10
Kq)||

= m

√√√√ K∑
k=1

p∑
j=1

p′mk(β
10
kj )

2 +
K∑
k=1

q∑
j=1

p′mk(d
10
kj)

2

= m

√√√√ K∑
k=1

(
p∑

j=1

p′mk(β
10
kj )

2 +

q∑
j=1

p′mk(d
10
kj)

2

)

≤ m

√√√√ K∑
k=1

tk ·
(
bm√
m

)2

=
√
mbm

√√√√ K∑
k=1

tk

≤ bm
√
m
√
K · t.

Therefore,

||p′
m(Φ0)|| ≤ am

√
m
√
Kt+ bm

√
m
√
K · t.
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Using (5.5), this leads to

|pm(Φ10 + rmuI)− pm(Φ10)|

≤ rm

(
am

√
m
√
Kt+ bm

√
m
√
K · t

)
||u||+ r2m

2

∣∣∣∣diag(p′′
m(Φ10))

∣∣∣∣ · ||uI ||2 {1 + o(1)}

=
1 + bm√

m

(
am

√
m
√
Kt+ bm

√
m
√
K · t

)
||u||+ 1

2

(1 + bm)2

m

∣∣∣∣diag(p′′
m(Φ10))

∣∣∣∣ · ||uI ||2 {1 + o(1)}

= am(1 + bm)
√
Kt ||u||+ bm(1 + bm)

√
K · t ||u||+ 1

2

(1 + bm)2

m

∣∣∣∣diag(p′′
m(Φ10))

∣∣∣∣ · ||uI ||2 {1 + o(1)}.

(5.7)

Furthermore,

||diag(p′′
m(Φ10))|| = m

√√√√ K∑
k=1

p∑
j=1

p′′mk(β
0
kj)

2π2
k +

K∑
k=1

q∑
j=1

p′′mk(d
0
kj)

2π2
k

≤ m

√√√√ K∑
k=1

(
p∑

j=1

p′mk(β
10
kj )

2 +

q∑
j=1

p′mk(d
10
kj)

2

)

≤ m

√√√√ K∑
k=1

tk ·
(
cm√
m

)2

=
√
mcm

√√√√ K∑
k=1

tk

≤ cm
√
m
√
K · t.

Combining this result with (5.7) gives

|pm(Φ10 + rmuI)− pm(Φ10)| ≤ am(1 + bm)
√
Kt ||u||+ bm(1 + bm)

√
K · t ||u||

+
1

2

(1 + bm)
2

√
m

cm
√
K · t ||u||2 (1 + o(1)). (5.8)

Combining (5.1), (5.4) and (5.8), we have

∆m(u) ≤ (1 + bm)Op(1) ||u|| −
(1 + bm)

2

2
ηmin ||u||2 {1 + op(1)}+ am(1 + bm)

√
Kt ||u||

+ bm(1 + bm)
√
K · t ||u||+ 1

2

(1 + bm)
2

√
m

cm
√
K · t ||u||2 (1 + o(1)).
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Dividing both sides of the above inequality by (1 + bm)
2, we have

∆m(u)

(1 + bm)2
≤ 1

1 + bm
Op(1) ||u|| −

1

2
ηmin ||u||2 {1 + op(1)}

+
am

1 + bm

√
Kt ||u||+ bm

1 + bm

√
K · t ||u||+ 1

2

cm√
m

√
K · t ||u||2 (1 + o(1)).

By condition P1, am = o(1 + bm) and cm = o(
√
m). Applying these conditions to the second

row of the above inequality, we have

∆m(u)

(1 + bm)2
≤ 1

1 + bm
Op(1) ||u|| −

1

2
ηmin ||u||2 {1 + op(1)}+

bm
1 + bm

√
K · t ||u||+ o(1). (5.9)

Using (5.9), we have

Pr

{
sup

||u||=Mε

∆m(u) < 0

}
= Pr

{
sup

||u||=Mε

∆m(u)

(1 + bm)2
< 0

}

≥Pr

{
sup

||u||=Mε

[
1

1 + bm
Op(1) ||u|| −

1

2
ηmin ||u||2 {1 + op(1)}+

bm
1 + bm

√
K · t ||u||+ o(1)

]
< 0

}

=Pr

{
sup

||u||=Mε

[
1

1 + bm
Op(1) ||u||+

bm
1 + bm

√
K · t ||u||+ o(1)

]
<

1

2
ηmin ||u||2 {1 + op(1)}

}

=Pr

{
sup
Mε

[
1

1 + bm
Op(1) +

bm
1 + bm

√
K · t+ o(1)

]
<

1

2
ηminMε{1 + op(1)}

}
=Pr

{
sup
Mε

Op(1) <
1

2
ηminMε{1 + op(1)}

}
≥1− ε, for sufficiently large Mε and m.

Therefore, for any given ε > 0, there exists a sufficiently large Mε such that

lim
m→∞

Pr

{
sup

||u||=Mε

plm(Φ0 + rmu)− plm(Φ0) < 0

}
≥ 1− ε.

This completes the proof.

Theorem 1 states that when bm is O(1), there exists a local maximizer Φ̂m of the

penalized likelihood function (3.3) which has a root-m convergence rate to Φ0. This can
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be achieved by the LASSO, Adaptive LASSO and SCAD penalties with proper choice of

tuning parameters. For example, if we choose λmk = O(m−1/2) for the LASSO and Adaptive

LASSO penalties, and λmk → 0 for the SCAD penalty, then it can be seen that bm = O(1)

for all three penalties, and root-m convergence can therefore be achieved.

Theorem 2 below proves that under mild conditions, the penalized likelihood estimators

possess the sparsity property which enables consistent variable selection, and are asymptot-

ically normally distributed.

Theorem 2. Let the observations follow the FMLME model (3.1) satisfying regularity con-

ditions A1 – A3. Assume that the penalty function pmk satisfies P0, P1 and P2, and that K

is known a priori. We have

(a) For any Φ such that ||Φ−Φ0|| = O(m−1/2), with probability tending to 1,

plm{(Φ1,Φ2)} < plm{(Φ1, 0)}.

(b) For any
√
m-consistent maximum penalized likelihood estimator Φ̂m of Φ,

(i) Sparsity: Pr{Φ̂2 = 0} → 1, as m→ ∞.

(ii) Asymptotic normality:

√
m

[{
I1(Φ10) +

p′′
m(Φ10)

m

}
(Φ̂1 −Φ10) +

p′
m(Φ10)

m

]
d−→ N (0, I1(Φ10)),

where I1(Φ10) is the Fisher information knowing that Φ2 = 0.

Proof. (a). Partition Φ = (Φ1,Φ2) for any Φ in the neighborhood ||Φ−Φ0|| = O(m−1/2).

By the definition of plm(Φ), we have

plm{(Φ1,Φ2)} − plm{(Φ1, 0)}

= [lm{(Φ1,Φ2)} − lm{(Φ1, 0)}]− [pm{(Φ1,Φ2)} − pm{(Φ1, 0)}].
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We now find the order of these two differences. By the mean value theorem,

lm{(Φ1,Φ2)} − lm{(Φ1, 0)} =

[
∂lm{(Φ1, ξ)}

∂Φ2

]T
Φ2, (5.10)

for some ||ξ|| ≤ ||Φ2|| = O(m−1/2). Then,∣∣∣∣∣∣∣∣∂lm{(Φ1, ξ)}
∂Φ2

− ∂lm{(Φ10, 0)}
Φ2

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∂lm{(Φ1, ξ)}
∂Φ2

− ∂lm{(Φ1, 0)}
Φ2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∂lm{(Φ1, 0)}
Φ2

− ∂lm{(Φ10, 0)}
Φ2

∣∣∣∣∣∣∣∣ . (5.11)

But by the mean value theorem,

∂lm{(Φ1, ξ)}
∂Φ2

− ∂lm{(Φ1, 0)}
Φ2

=

[
∂2lm{(Φ1, ζ1)}

∂Φ2
2

]
· ξ, for some ||ζ1|| ≤ ||ξ||,

and
∂lm{(Φ1, 0)}

Φ2

− ∂lm{(Φ10, 0)}
Φ2

=

[
∂2lm{(ζ2, 0)}
∂Φ1Φ2

]
· (Φ1 −Φ0),

where ζ2 = Φ10 + t · (Φ1 −Φ10), for some t ∈ [0, 1].

Applying these results to (5.11) and using regularity condition A2, we have∣∣∣∣∣∣∣∣∂lm{(Φ1, ξ)}
∂Φ2

− ∂lm{(Φ10, 0)}
Φ2

∣∣∣∣∣∣∣∣ ≤
[

m∑
i=1

M2i(yi,Xi,Zi)

]
· ||ξ||

+

[
m∑
i=1

M2i(yi,Xi,Zi)

]
· ||Φ1 −Φ10||

= Op(m) ·
(
||ξ||+ ||Φ1 −Φ10||

)
= Op(m) ·

{
O(m− 1

2 ) +O(m− 1
2 )
}

= Op(m
1
2 ).

By the regularity conditions,
∂lm{(Φ10, 0)}

∂Φ2

= Op(m
1
2 ), therefore

∂lm{(Φ1, ξ)}
∂Φ2

= Op(m
1
2 ).

Using this result on (5.10), we get

lm{(Φ1,Φ2)} − lm{(Φ1, 0)} = Op(
√
m)

K∑
k=1

 p∑
j=tβk

+1

|βkj|+
q∑

j=tdk+1

|dkj|

 ,
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where tβk
and tdk

are the numbers of true non-zero fixed and random effects in component

k, respectively. On the other hand,

pm{(Φ1,Φ2)} − pm{(Φ1, 0)} =
K∑
k=1

 p∑
j=tβk

+1

πk ·m · pmk(βkj) +

q∑
j=tdk+1

πk ·m · pmk(dkj)

 .

Therefore,

plm{(Φ1,Φ2)} − plm{(Φ1, 0)} =
K∑
k=1

[
p∑

j=tβk
+1

{|βkj| ·Op(
√
m)− πk ·m · pmk(βkj)}+

q∑
j=tdk+1

{|dkj| ·Op(
√
m)− πk ·m · pmk(dkj)}

]

=
K∑
k=1

 p∑
j=tβk

+1

Akj +

q∑
j=tdk+1

Bkj

 ,
say. By condition P2, both Akj and Bkj are less than 0 in probability. Therefore,

Pr
[
plm{(Φ1,Φ2)} − plm{(Φ1, 0)} < 0

]
p−→ 1.

This completes the proof of (a).

(b). (i). Let (Φ̂1, 0) be the maximizer of the penalized log-likelihood function plm{(Φ1, 0)}

which is regarded as a function ofΦ1. It suffices to show that in the neighborhood ||Φ−Φ0|| =

O(m−1/2), the difference plm{(Φ1,Φ2)} − plm{(Φ̂1, 0)} < 0 with probability tending to 1 as

m→ ∞. We have that

plm{(Φ1,Φ2)} − plm{(Φ̂1, 0)} = [plm{(Φ1,Φ2)} − plm{(Φ1, 0)}] + [plm{(Φ1, 0)} − plm{(Φ̂1, 0)}]

≤ plm{(Φ1,Φ2)} − plm{(Φ1, 0)}

< 0,

with probability tending to 1 by (a). This completes the proof of (b). (i).
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(b). (ii). Regard plm{(Φ1, 0)} as a function of Φ1. Using the same argument as in

Theorem 1, there exists a
√
m-consistent local maximizer of this function, say Φ̂1, which

satisfies

∂plm(Φ̂m)

∂Φ1

=

{
∂lm(Φ)

∂Φ1

− ∂pm(Φ)

∂Φ1

}
Φ̂m=(Φ̂1,0)

= 0. (5.12)

Since Φ̂1 is a
√
m-consistent estimator, by Taylor’s expansion around the true value, we have

∂lm(Φ)

∂Φ1

∣∣∣∣
Φ̂m=(Φ̂1,0)

=
∂lm(Φ10)

∂Φ1

+

{
∂2lm(Φ10)

∂Φ1∂ΦT
1

+ op(m)

}
(Φ̂1 −Φ10),

∂pm(Φ)

∂Φ1

∣∣∣∣
Φ̂m=(Φ̂1,0)

= p′
m(Φ10) + {p′′

m(Φ10) + op(m)}(Φ̂1 −Φ10).

Substituting into (5.12), we find{
∂lm(Φ10)

∂Φ1

− p′
m(Φ10)

}
+

{
∂2lm(Φ10)

∂Φ1∂ΦT
1

− p′′
m(Φ10) + op(m)

}
(Φ̂1 −Φ10) = 0.

By rearranging the terms and multiplying both sides by 1/
√
m, we get

√
m · − 1

m

{
∂2lm(Φ10)

∂Φ1∂ΦT
1

− p′′
m(Φ10) + op(m)

}
(Φ̂1 −Φ10) =

1√
m

{
∂lm(Φ10)

∂Φ1

− p′
m(Φ10)

}
.

Then, by the regularity conditions,

− 1

m

∂2lm(Φ10)

∂Φ1∂ΦT
1

= I1(Φ10) + op(1),
1√
m

∂lm(Φ10)

∂Φ1

d−→ N (0, I1(Φ10)).

Thus by Slutsky’s theorem,

√
m

[{
I1(Φ10) +

p′′
m(Φ10)

m

}
(Φ̂1 −Φ10) +

p′
m(Φ10)

m

]
d−→ N (0, I1(Φ10)).

For the Adaptive LASSO and SCAD penalties, sparsity could be achieved while main-

taining root-m consistency, for suitable choice of tuning parameters. For example, if we let

λmk = O(m−1/2) for the Adaptive LASSO penalty, and λmk → 0 and
√
mλmk → ∞ for the

SCAD penalty, then root-m consistency and sparsity can be achieved concurrently. This
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is, however, not true for the LASSO penalty. For the latter, bm =
√
mλmk. Therefore, the

root-m consistency requires that
√
mλmk = O(1). On the other hand, the sparsity property

requires assumption P2, which includes the condition
√
mλmk → ∞. These two requirements

cannot be simultaneously satisfied.

The derivatives of pm in part b(ii) of Theorem 2 become negligible for some choices of

the penalty function, thus the result suggests the following variance estimator of Φ̂1:

V̂ar (Φ̂1) =
{
l′′m(Φ̂1)− p′′m(Φ̂1)

}−1

V̂ar
{
l′m(Φ̂1)

}{
l′′m(Φ̂1)− p′′m(Φ̂1)

}−1

.

However, due to the super-efficiency phenomenon associated with model selection, the con-

clusions on asymptotic bias or variance should be used cautiously (Leeb & Pötscher, 2003).

Having derived the asymptotic properties of the penalized estimator, we examine in the

next chapter the finite-sample performance of our method through simulations.
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CHAPTER 6
Simulation study

We perform simulations to investigate the finite sample performance of our method. We

consider the two-component FMLME model

πN
(
Xiβ1, σ

2
1(ZiΨ1Z

′
i + Ini

)
)
+ (1− π)N

(
Xiβ2, σ

2
2(ZiΨ2Z

′
i + Ini

)
)
,

with two different parameter settings. For the first simulations, the parameters are as follows:

– Model 1:

β1 = (2.5, 2, 0, 0, 0, 0, 0, 0, 0) = (β11 , β12 , 0, 0, 0, 0, 0, 0, 0),

β2 = (−1,−1.5, 0, 0, 0, 0, 0, 0, 0) = (β21 , β22 , 0, 0, 0, 0, 0, 0, 0),

b1i = (b1i1 , b1i2 , 0, 0), b2i = (b2i1 , b2i2 , 0, 0), and σ2
1 = 1.5, σ2

2 = 0.5,

where the covariance matrices of the truly significant random effects of the two components

are given by

σ2
1 ·

ψ111 ψ112

ψ112 ψ122

 = σ2
1 ·

 9 4.8

4.8 4

 and σ2
2 ·

ψ211 ψ212

ψ212 ψ222

 = σ2
2 ·

6 2

2 3

 .

– Model 2: we consider the same variance structures as in Model 1, but we changed both

component-wise means. This allows us to investigate the impact of significant random effects

on the estimation and variable selection of insignificant fixed effects. The parameters are as

follows.

β1 = (2.5, 0, 0, 2, 0, 0, 0, 0, 0) = (β11 , 0, 0, β12 , 0, 0, 0, 0, 0),

β2 = (0,−1, 0, 0, 0, 0, 0, 0,−1.5) = (0, β21 , 0, 0, 0, 0, 0, 0, β22),
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b1i = (b1i1 , b1i2 , 0, 0), b2i = (b2i1 , b2i2 , 0, 0),

the covariance matrices of the random effects and errors are the same as in Model 1.

For both models, the design matrices Xi and Zi for each subject are generated separately

from multivariate normal distributions with mean 0 and an AR type variance matrix with

ρij = Corr (xi, xj) = Corr (zi, zj), and are subsequently standardized. The first column of Zi

consists of a column of 1’s.

For each of the above two models, we consider 3 sample sizes: (m = 80, ni = 5),

(m = 120, ni = 5) and (m = 200, ni = 5). For each of these sample sizes, we consider both

balanced mixtures (π1 = 0.5) and unbalanced mixtures (π1 = 0.3). Finally, for each of these

mixing proportion settings, we consider a moderate correlation case with ρij = 0.5|i−j| and

a high correlation case with ρij = 0.75|i−j|. This creates a total of 24 scenarios, which allows

us to examine the method’s performance across a wide scope of situations. The simulation

results, provided at the end of the chapter from page 46 to 55, are based on 200 data sets

for each scenario.

To examine the variable selection performance of the method, we consider the sensitivity

and specificity of selection. The former is defined as the conditional probability that an effect

is selected given that it is truly significant, whereas the latter is the conditional probability

that an effect is removed given that it is truly non-significant. For both criteria, a higher

value indicates better selection performance. It turns out that the empirical sensitivity for

all simulation scenarios is 100%, which means that the important effects are always kept in

the model using our method. The empirical specificity is presented in Tables 6–1 to 6–4. To

examine the estimation accuracy, we report the the empirical mean squared errors (MSE)

of the penalized estimates of non-zero parameters, and the empirical MSE of the Oracle

estimates of non-zero parameters, which are ML estimates of the parameters knowing the

true model in advance (Tables 6–5 to 6–12). Let θ̂i be the estimate of a truly non-zero
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parameter θ based on the i-th data set, then the empirical MSE based on n simulated data

sets is found by

MSEn =
1

n

n∑
i=1

(θ̂i − θ)2,

where n = 200 in all of our simulation scenarios.

From Table 6–1 to Table 6–4, we observe that the Adaptive LASSO is the best of the

three penalties in eliminating the truly zero effects, followed by SCAD, whereas LASSO is the

least effective. We also observe that, for any given correlation ρij in the design matrices and

mixing proportions, the empirical specificity improves as the number of subjects m increases.

For example, it can be seen in Table 6–1 that, when m reaches 200 for the balanced mixture,

the empirical specificity of the Adaptive LASSO penalty is 97.6% for the first component

and 100% for the second component. Then, for any given sample size and correlation ρij,

when π1 decreases, all three penalties perform less satisfactorily in the first component due

to the lower number of observations. For all scenarios, all three penalties perform better

in the second component than the first. This is presumably because the random effects of

the latter have greater variances, which renders variable selection more difficult. Fixing the

mixing proportions, larger correlation ρij also makes the selection harder. Finally, given the

same correlation, mixing proportions and sample size, the three penalties perform similarly

in Model 1 and Model 2.

From Tables 6–5 to 6–12, we observe that the estimates obtained using the Adaptive

LASSO penalty are the closest to the Oracle model in terms of MSE. We also note that

occasionally the Adaptive LASSO estimates have a slightly better MSE than the oracle

estimates, which is most likely due to numerical errors. The LASSO and SCAD penalties

have similar estimation accuracy for the fixed effects, but for the random effect variances,

SCAD performs less satisfactorily than LASSO, especially for ψ11 in the first component.

We also observe that the estimation improves as the number of subjects m increases, which

confirms the consistency property of the estimators. By looking at the performance when
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m = 80, we see that the penalized estimators for the fixed effect parameters β’s achieve a

fairly good estimation accuracy, but the penalized estimators for the variance components

are less reliable. Furthermore, the fixed effects are selected correctly less often when m = 80.

These observations suggest that in applications where the sample size is small, one should

interpret the results with care. Then, it can be seen that MSE’s increase when π1 decreases,

indicating that estimation becomes more difficult in the first component due to the lower

number of observations. For all scenarios, we also observe that MSE’s are much smaller for

the fixed effects than for the variance components. The larger random effect variances of the

first component also seem to result in larger MSE’s. We can also see that fixing the mixing

proportions, larger correlation ρij makes the estimation less accurate. Finally, for the same

correlation, mixing proportions and sample size, estimation is slightly better in Model 1 than

in Model 2, but the difference is not substantial.
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Table 6–1: Empirical specificity of selection based on 200 random samples from Model 1 of sizes
80× 5, 120× 5 and 200× 5, with ρij = 0.5.

m Component Effect Empirical Specificity (in %) Empirical Specificity (in %)

(π1, π2) = (0.3, 0.7) (π1, π2) = (0.5, 0.5)

LASSO ALASSO SCAD LASSO ALASSO SCAD

80 1 Fixed 48.4 73.5 50.0 60.4 84.4 62.6
Random 96.8 100 98.8 98.8 100 98.8

2 Fixed 91.1 99.4 93.6 85.9 96.5 87.5
Random 98.8 100 99.8 99.2 100 100

120 1 Fixed 57.5 81.8 59.2 71.7 92.6 75.3
Random 98.0 100 98.2 98.0 100 99.2

2 Fixed 96.0 99.5 97.1 92.1 98.9 93.1
Random 99.5 100 99.5 99.2 100 100

200 1 Fixed 71.6 91.1 73.1 85.3 97.6 86.7
Random 99.5 100 98.5 99.8 100 99.2

2 Fixed 99.2 99.9 99.2 98.1 100 98.1
Random 99.2 100 99.8 100 100 100

Table 6–2: Empirical specificity of selection based on 200 random samples from Model 1 of sizes
80× 5, 120× 5 and 200× 5, with ρij = 0.75.

m Component Effect Empirical Specificity (in %) Empirical Specificity (in %)

(π1, π2) = (0.3, 0.7) (π1, π2) = (0.5, 0.5)

LASSO ALASSO SCAD LASSO ALASSO SCAD

80 1 Fixed 41.9 65.2 44.5 56.1 79.8 62.8
Random 96.2 100 98.2 97.0 100 97.8

2 Fixed 83.0 98.4 88.1 79.5 96.8 85.1
Random 99.5 100 99.8 98.5 100 99.8

120 1 Fixed 48.9 74.6 51.0 56.1 79.8 62.8
Random 97.0 99.8 97.8 99.2 100 99.2

2 Fixed 92.1 99.6 94.9 88.1 98.4 92.7
Random 100 100 99.5 100 100 99.8

200 1 Fixed 65.9 87.3 68.7 76.4 96.5 86.0
Random 98.0 100 98.0 98.8 100 99.5

2 Fixed 97.7 99.9 98.7 96.5 100 97.4
Random 100 100 100 99.8 100 100

46



Table 6–3: Empirical specificity of selection based on 200 random samples from Model 2 of sizes
80× 5, 120× 5 and 200× 5, with ρij = 0.5.

m Component Effect Empirical Specificity (in %) Empirical Specificity (in %)

(π1, π2) = (0.3, 0.7) (π1, π2) = (0.5, 0.5)

LASSO ALASSO SCAD LASSO ALASSO SCAD

80 1 Fixed 48.8 72.6 52.2 57.2 83.6 63.9
Random 97.5 100 99.0 99.2 99.8 99.2

2 Fixed 89.5 98.3 91.9 84.0 98.0 85.9
Random 98.0 100 100 99.5 100 100

120 1 Fixed 60.3 81.2 61.4 72.6 92.1 76.9
Random 99.0 100 99.8 99.0 100 99.2

2 Fixed 96.6 99.6 97.9 90.1 99.1 92.0
Random 98.8 100 100 98.8 100 99.8

200 1 Fixed 72.1 91.1 72.6 84.4 96.7 88.1
Random 99.5 100 99.2 99.8 100 99.8

2 Fixed 99.1 99.9 99.1 97.6 99.6 98.5
Random 99.0 100 99.8 99.5 100 100

Table 6–4: Empirical specificity of selection based on 200 random samples from Model 2 of sizes
80× 5, 120× 5 and 200× 5, with ρij = 0.75.

m Component Effect Empirical Specificity (in %) Empirical Specificity (in %)

(π1, π2) = (0.3, 0.7) (π1, π2) = (0.5, 0.5)

LASSO ALASSO SCAD LASSO ALASSO SCAD

80 1 Fixed 44.7 68.2 46.5 51.2 80.1 61.4
Random 96.2 100 97.8 98.2 100 99.2

2 Fixed 83.2 98.4 91.5 77.1 95.9 84.8
Random 99.0 100 99.5 99.0 100 100

120 1 Fixed 48.3 76.2 55.0 67.4 90.6 78.6
Random 98.8 100 98.5 99.2 100 99.8

2 Fixed 90.6 99.5 94.1 85.7 98.3 89.7
Random 100 100 100 99.8 100 100

200 1 Fixed 64.7 89.1 69.7 78.2 95.7 85.4
Random 99.0 100 99.2 99.5 100 99.8

2 Fixed 96.4 99.9 98.4 94.1 99.6 97.1
Random 99.8 100 100 100 100 100
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Table 6–5: Empirical MSE of parameter estimates based on 200 random samples of sizes 80 × 5,
120× 5 and 200× 5 from Model 1, with ρij = 0.5, and (π1, π2) = (0.5, 0.5).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.017 0.017 5.063 1.811 1.216 0.042 0.004
ALASSO 0.016 0.015 5.713 2.017 1.193 0.035 0.004
SCAD 0.017 0.017 9.342 3.143 2.028 0.053 0.004

ORACLE 0.016 0.014 5.847 2.056 1.190 0.032 0.004

2 LASSO 0.005 0.007 3.026 0.701 0.840 0.004 0.004
ALASSO 0.005 0.006 2.566 0.710 0.755 0.004 0.004
SCAD 0.006 0.007 3.992 1.032 1.141 0.005 0.004

ORACLE 0.005 0.006 3.206 0.888 0.924 0.004 0.004

120 1 LASSO 0.011 0.011 3.092 1.145 0.858 0.024 0.002
ALASSO 0.010 0.009 3.378 1.169 0.723 0.022 0.002
SCAD 0.011 0.010 4.789 1.704 1.134 0.030 0.002

ORACLE 0.010 0.008 3.748 1.309 0.776 0.023 0.002

2 LASSO 0.004 0.004 2.410 0.452 0.591 0.004 0.002
ALASSO 0.004 0.003 1.754 0.424 0.480 0.003 0.002
SCAD 0.004 0.004 2.017 0.514 0.577 0.003 0.002

ORACLE 0.004 0.003 1.778 0.467 0.503 0.003 0.002

200 1 LASSO 0.007 0.009 2.053 0.753 0.533 0.016 0.001
ALASSO 0.007 0.006 2.034 0.753 0.525 0.016 0.001
SCAD 0.007 0.008 2.518 0.913 0.681 0.020 0.001

ORACLE 0.007 0.006 2.089 0.769 0.543 0.016 0.001

2 LASSO 0.002 0.003 2.067 0.344 0.518 0.003 0.001
ALASSO 0.002 0.002 1.125 0.294 0.325 0.002 0.001
SCAD 0.002 0.002 1.132 0.327 0.307 0.002 0.001

ORACLE 0.002 0.002 1.024 0.301 0.275 0.002 0.001

48



Table 6–6: Empirical MSE of parameter estimates based on 200 random samples of sizes 80 × 5,
120× 5 and 200× 5 from Model 1, with ρij = 0.75, and (π1, π2) = (0.5, 0.5).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.029 0.042 5.244 2.203 1.443 0.046 0.003
ALASSO 0.027 0.032 5.368 2.097 1.243 0.034 0.003
SCAD 0.028 0.038 8.289 3.294 2.045 0.053 0.003

ORACLE 0.026 0.022 5.297 2.045 1.227 0.031 0.003

2 LASSO 0.007 0.009 2.817 0.547 0.700 0.004 0.003
ALASSO 0.007 0.007 2.377 0.627 0.698 0.004 0.003
SCAD 0.007 0.009 3.007 0.823 0.966 0.005 0.003

ORACLE 0.007 0.006 2.515 0.740 0.819 0.004 0.003

120 1 LASSO 0.020 0.026 3.858 1.249 0.803 0.031 0.002
ALASSO 0.019 0.023 4.153 1.401 0.863 0.027 0.002
SCAD 0.019 0.025 5.201 1.735 1.116 0.035 0.002

ORACLE 0.018 0.021 4.375 1.512 0.929 0.028 0.002

2 LASSO 0.006 0.009 2.925 0.497 0.674 0.005 0.002
ALASSO 0.006 0.007 2.060 0.451 0.544 0.004 0.002
SCAD 0.006 0.008 2.172 0.498 0.568 0.003 0.002

ORACLE 0.006 0.006 1.970 0.474 0.514 0.003 0.002

200 1 LASSO 0.012 0.016 2.436 0.905 0.579 0.013 0.001
ALASSO 0.012 0.012 2.311 0.844 0.539 0.014 0.001
SCAD 0.011 0.014 2.653 1.034 0.641 0.016 0.001

ORACLE 0.011 0.011 2.412 0.893 0.547 0.014 0.001

2 LASSO 0.003 0.006 2.140 0.325 0.538 0.003 0.001
ALASSO 0.003 0.004 1.068 0.275 0.363 0.002 0.001
SCAD 0.003 0.005 1.212 0.329 0.400 0.002 0.001

ORACLE 0.003 0.003 1.120 0.319 0.384 0.002 0.001
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Table 6–7: Empirical MSE of parameter estimates based on 200 random samples of sizes 80 × 5,
120× 5 and 200× 5 from Model 1, with ρij = 0.5, and (π1, π2) = (0.3, 0.7).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.031 0.039 11.998 4.182 3.022 0.107 0.002
ALASSO 0.029 0.037 14.400 4.568 2.981 0.082 0.002
SCAD 0.030 0.039 25.412 7.778 5.243 0.131 0.002

ORACLE 0.028 0.033 12.565 3.959 2.516 0.067 0.002

2 LASSO 0.004 0.005 1.965 0.551 0.690 0.003 0.002
ALASSO 0.003 0.004 1.562 0.490 0.619 0.003 0.002
SCAD 0.004 0.005 2.689 0.694 0.853 0.004 0.002

ORACLE 0.003 0.004 2.109 0.591 0.721 0.003 0.002

120 1 LASSO 0.017 0.023 7.421 2.918 2.197 0.064 0.002
ALASSO 0.016 0.020 9.360 3.387 2.289 0.057 0.002
SCAD 0.017 0.023 15.187 5.360 3.772 0.081 0.002

ORACLE 0.016 0.017 9.379 3.387 2.291 0.054 0.002

2 LASSO 0.003 0.003 1.698 0.334 0.489 0.003 0.002
ALASSO 0.003 0.003 1.149 0.291 0.376 0.002 0.002
SCAD 0.003 0.003 1.420 0.354 0.459 0.002 0.002

ORACLE 0.003 0.003 1.206 0.323 0.387 0.002 0.002

200 1 LASSO 0.014 0.016 3.293 1.209 0.846 0.030 0.001
ALASSO 0.014 0.013 3.427 1.199 0.781 0.029 0.001
SCAD 0.014 0.015 4.919 1.742 1.113 0.037 0.001

ORACLE 0.013 0.011 3.582 1.258 0.798 0.029 0.001

2 LASSO 0.002 0.002 1.347 0.237 0.354 0.002 0.001
ALASSO 0.002 0.002 0.744 0.191 0.230 0.002 0.001
SCAD 0.002 0.002 0.819 0.211 0.263 0.001 0.001

ORACLE 0.002 0.002 0.778 0.204 0.236 0.001 0.001
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Table 6–8: Empirical MSE of parameter estimates based on 200 random samples of sizes 80 × 5,
120× 5 and 200× 5 from Model 1, with ρij = 0.75, and (π1, π2) = (0.3, 0.7).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.058 0.088 11.353 3.599 2.697 0.092 0.003
ALASSO 0.058 0.077 12.674 3.760 2.289 0.075 0.003
SCAD 0.058 0.086 21.986 6.671 4.640 0.111 0.003

ORACLE 0.053 0.046 11.024 3.268 1.959 0.063 0.003

2 LASSO 0.006 0.010 2.191 0.485 0.721 0.004 0.003
ALASSO 0.007 0.007 1.907 0.496 0.585 0.003 0.003
SCAD 0.006 0.009 2.528 0.633 0.690 0.004 0.003

ORACLE 0.006 0.006 2.217 0.570 0.621 0.003 0.003

120 1 LASSO 0.027 0.043 6.373 2.706 2.023 0.048 0.002
ALASSO 0.025 0.036 6.576 2.744 1.779 0.036 0.002
SCAD 0.027 0.041 10.516 4.046 2.931 0.059 0.002

ORACLE 0.024 0.024 6.469 2.668 1.698 0.033 0.002

2 LASSO 0.004 0.005 1.900 0.367 0.569 0.003 0.002
ALASSO 0.004 0.004 1.100 0.297 0.423 0.002 0.002
SCAD 0.003 0.005 1.344 0.351 0.433 0.002 0.002

ORACLE 0.003 0.004 1.198 0.316 0.403 0.002 0.002

200 1 LASSO 0.020 0.024 3.358 1.134 0.905 0.024 0.001
ALASSO 0.019 0.019 3.646 1.178 0.784 0.023 0.001
SCAD 0.019 0.023 4.770 1.659 1.204 0.030 0.001

ORACLE 0.019 0.015 3.830 1.249 0.801 0.025 0.001

2 LASSO 0.003 0.004 1.679 0.258 0.470 0.003 0.001
ALASSO 0.003 0.003 0.825 0.199 0.251 0.002 0.001
SCAD 0.003 0.003 0.810 0.231 0.260 0.001 0.001

ORACLE 0.003 0.003 0.773 0.222 0.248 0.001 0.001
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Table 6–9: Empirical MSE of parameter estimates based on 200 random samples of sizes 80 × 5,
120× 5 and 200× 5 from Model 2, with ρij = 0.5, and (π1, π2) = (0.5, 0.5).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.020 0.023 5.231 1.920 1.369 0.044 0.003
ALASSO 0.016 0.016 5.754 2.137 1.486 0.047 0.003
SCAD 0.018 0.021 7.873 2.942 2.092 0.051 0.003

ORACLE 0.014 0.012 5.819 2.093 1.482 0.051 0.003

2 LASSO 0.008 0.007 2.833 0.669 0.813 0.005 0.003
ALASSO 0.005 0.006 2.663 0.706 0.818 0.007 0.003
SCAD 0.007 0.006 3.212 0.907 0.937 0.005 0.003

ORACLE 0.004 0.005 2.782 0.770 0.795 0.006 0.003

120 1 LASSO 0.009 0.012 4.247 1.398 0.970 0.030 0.002
ALASSO 0.008 0.010 4.737 1.518 1.003 0.029 0.002
SCAD 0.009 0.011 6.214 1.912 1.289 0.034 0.002

ORACLE 0.008 0.008 4.999 1.590 1.033 0.028 0.002

2 LASSO 0.004 0.004 2.578 0.428 0.683 0.005 0.002
ALASSO 0.003 0.003 1.942 0.409 0.565 0.006 0.002
SCAD 0.004 0.003 2.012 0.473 0.574 0.004 0.002

ORACLE 0.002 0.003 1.837 0.439 0.493 0.004 0.002

200 1 LASSO 0.007 0.008 2.403 0.722 0.497 0.017 0.001
ALASSO 0.006 0.006 2.197 0.681 0.475 0.018 0.001
SCAD 0.006 0.007 2.698 0.905 0.613 0.017 0.001

ORACLE 0.006 0.005 2.257 0.723 0.490 0.016 0.001

2 LASSO 0.003 0.002 2.062 0.339 0.519 0.004 0.001
ALASSO 0.002 0.001 1.192 0.272 0.326 0.003 0.001
SCAD 0.003 0.002 1.195 0.299 0.311 0.002 0.001

ORACLE 0.002 0.001 1.093 0.284 0.290 0.002 0.001
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Table 6–10: Empirical MSE of parameter estimates based on 200 random samples of sizes 80× 5,
120× 5 and 200× 5 from Model 2, with ρij = 0.75, and (π1, π2) = (0.5, 0.5).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.029 0.037 4.654 1.750 1.343 0.039 0.003
ALASSO 0.018 0.025 4.841 1.667 1.143 0.031 0.003
SCAD 0.026 0.034 7.033 2.500 1.874 0.045 0.003

ORACLE 0.012 0.011 4.992 1.717 1.187 0.032 0.003

2 LASSO 0.013 0.009 2.753 0.584 0.743 0.004 0.003
ALASSO 0.006 0.005 2.238 0.593 0.612 0.004 0.003
SCAD 0.010 0.008 2.962 0.799 0.751 0.004 0.003

ORACLE 0.004 0.004 2.383 0.683 0.636 0.004 0.003

120 1 LASSO 0.017 0.030 3.350 1.187 0.854 0.023 0.002
ALASSO 0.012 0.018 3.974 1.418 0.947 0.026 0.002
SCAD 0.014 0.024 4.878 1.686 1.155 0.030 0.002

ORACLE 0.009 0.009 4.127 1.484 1.004 0.026 0.002

2 LASSO 0.008 0.007 2.581 0.475 0.698 0.004 0.002
ALASSO 0.003 0.004 1.804 0.450 0.551 0.003 0.002
SCAD 0.006 0.005 1.926 0.537 0.601 0.003 0.002

ORACLE 0.002 0.003 1.779 0.494 0.536 0.003 0.002

200 1 LASSO 0.012 0.014 2.235 0.720 0.514 0.014 0.001
ALASSO 0.008 0.008 2.060 0.669 0.465 0.015 0.001
SCAD 0.010 0.011 2.336 0.747 0.517 0.016 0.001

ORACLE 0.007 0.006 2.170 0.696 0.466 0.014 0.001

2 LASSO 0.006 0.003 2.406 0.395 0.613 0.004 0.001
ALASSO 0.002 0.002 1.230 0.299 0.407 0.003 0.001
SCAD 0.003 0.002 1.103 0.318 0.365 0.002 0.001

ORACLE 0.002 0.002 1.053 0.298 0.341 0.002 0.001
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Table 6–11: Empirical MSE of parameter estimates based on 200 random samples of sizes 80× 5,
120× 5 and 200× 5 from Model 2, with ρij = 0.5, and (π1, π2) = (0.3, 0.7).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.034 0.042 18.453 5.852 3.574 0.096 0.003
ALASSO 0.027 0.032 15.886 5.122 3.358 0.080 0.003
SCAD 0.032 0.039 22.130 7.235 5.016 0.106 0.003

ORACLE 0.022 0.021 12.905 4.286 2.907 0.082 0.003

2 LASSO 0.005 0.005 2.540 0.500 0.689 0.004 0.003
ALASSO 0.003 0.004 1.827 0.457 0.568 0.004 0.003
SCAD 0.004 0.005 1.989 0.511 0.625 0.003 0.003

ORACLE 0.003 0.004 1.804 0.475 0.551 0.003 0.003

120 1 LASSO 0.018 0.020 6.148 2.021 1.279 0.049 0.002
ALASSO 0.015 0.016 7.165 2.292 1.433 0.053 0.002
SCAD 0.017 0.020 9.540 2.925 1.929 0.061 0.002

ORACLE 0.014 0.012 6.889 2.199 1.383 0.054 0.002

2 LASSO 0.003 0.002 1.494 0.367 0.437 0.003 0.002
ALASSO 0.002 0.001 1.207 0.348 0.409 0.003 0.002
SCAD 0.003 0.002 1.264 0.405 0.401 0.002 0.002

ORACLE 0.002 0.001 1.174 0.371 0.366 0.002 0.002

200 1 LASSO 0.011 0.016 3.649 1.290 0.825 0.025 0.001
ALASSO 0.009 0.012 3.939 1.397 0.850 0.026 0.001
SCAD 0.010 0.016 5.267 1.789 1.156 0.030 0.001

ORACLE 0.008 0.009 4.090 1.452 0.881 0.026 0.001

2 LASSO 0.002 0.002 1.076 0.188 0.326 0.002 0.001
ALASSO 0.001 0.001 0.703 0.159 0.229 0.001 0.001
SCAD 0.002 0.002 0.799 0.186 0.242 0.001 0.001

ORACLE 0.001 0.001 0.702 0.163 0.216 0.001 0.001
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Table 6–12: Empirical MSE of parameter estimates based on 200 random samples of sizes 80× 5,
120× 5 and 200× 5 from Model 2, with ρij = 0.75, and (π1, π2) = (0.3, 0.7).

m Component Penalty MSE of parameter estimates

β1 β2 ψ11 ψ12 ψ22 σ2 π

80 1 LASSO 0.049 0.058 10.156 4.472 3.589 0.082 0.002
ALASSO 0.039 0.051 13.537 5.050 3.490 0.069 0.002
SCAD 0.048 0.065 22.805 8.111 6.151 0.103 0.002

ORACLE 0.026 0.024 13.042 4.669 3.123 0.072 0.002

2 LASSO 0.009 0.006 2.465 0.569 0.625 0.004 0.002
ALASSO 0.004 0.003 2.161 0.543 0.565 0.004 0.002
SCAD 0.006 0.005 2.919 0.671 0.668 0.004 0.002

ORACLE 0.003 0.003 2.554 0.609 0.587 0.004 0.002

120 1 LASSO 0.029 0.038 5.400 1.803 1.379 0.050 0.002
ALASSO 0.022 0.026 6.608 2.018 1.320 0.042 0.002
SCAD 0.028 0.037 9.531 2.787 2.067 0.060 0.002

ORACLE 0.015 0.014 6.738 2.070 1.370 0.041 0.002

2 LASSO 0.005 0.004 2.147 0.355 0.553 0.003 0.002
ALASSO 0.002 0.002 1.475 0.288 0.385 0.002 0.002
SCAD 0.004 0.003 1.604 0.355 0.427 0.002 0.002

ORACLE 0.002 0.002 1.486 0.322 0.363 0.002 0.002

200 1 LASSO 0.019 0.024 3.475 1.171 0.864 0.024 0.001
ALASSO 0.015 0.016 4.054 1.307 0.917 0.025 0.001
SCAD 0.017 0.022 5.634 1.814 1.336 0.030 0.001

ORACLE 0.013 0.009 4.261 1.373 0.912 0.024 0.001

2 LASSO 0.004 0.004 1.767 0.278 0.497 0.004 0.001
ALASSO 0.002 0.002 0.754 0.190 0.243 0.002 0.001
SCAD 0.002 0.002 0.722 0.214 0.230 0.001 0.001

ORACLE 0.001 0.001 0.699 0.202 0.210 0.001 0.001
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CHAPTER 7
Real data analysis

The object of the SSc study conducted by the Canadian Scleroderma Research Group is

to assess disability in SSc patients and its association with various clinical characteristics of

interest. For our analysis, in order to obtain more conclusive assessment on the progression

of disability, only patients with at least for 4 visits and complete baseline demographic

information were included. This yields a total number of 1982 observations from 378 patients.

The outcome is measured using HAQ, which ranges from 0 (no disability) to 3 (severe

disability). The baseline characteristics of interest include age, gender, disease duration,

and baseline HAQ. The time-dependent variables of interest include the severity of skin

hardening, breathing problems, gastrointestinal symptoms, Raynaud’s phenomenon, digital

ulcers, tender joint counts, and visit number. For the precise definitions of these clinical

characteristics, we refer the reader to Schnitzer et al. (2011). We fit a two-component

FMLME model, where the fixed effects include all the above variables plus an intercept. For

the random component, we allow for a random intercept and a possible random slope for all

the time-dependent variables. The responses and all continuous predictors are standardized

in our analysis.

We first find the ML estimates of our two-component FMLME model. The estimated

mixing proportions are (π̂1, π̂2) = (0.56, 0.44), and suggest that we have an almost balanced

mixture. The error variances are estimated to be (σ̂2
1, σ̂

2
2) = (0.035, 0.188). The fact that

σ̂2
2 is five times larger than σ̂2

1 implies that we might have more variability in the second

component. Table 7–1 presents the ML estimates of fixed effects and their standard errors

found using the empirical information matrix, and the random effect standard deviations.
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From Table 7–1, we see that many of the fixed effect parameter estimates are quite large

compared to their standard errors, indicating that these effects are potentially insignificant

and that variable selection is required.

Table 7–1: ML estimates for the two-component FMLME model.

Variable Component 1 (π̂1 = 0.56, σ̂2
1 = 0.035) Component 2 (π̂2 = 0.44, σ̂2

2 = 0.188)

Fixed (Std. Error) Random effect SD Fixed (Std. Error) Random effect SD

Intercept -0.059 (0.018) 0.189 0.132 (0.051) 0.457
Visit 0.007 (0.013) 0.117 0.164 (0.029) 0.226
Male -0.003 (0.047) – -0.228 (0.143) –
Baseline Age -0.003 (0.015) – 0.001 (0.044) –
Baseline Duration 0.001 (0.019) – -0.047 (0.047) –
Baseline HAQ 0.923 (0.017) – 0.583 (0.042) –
Skin Score 0.013 (0.014) 0.030 0.090 (0.030) 0.112
Short Breath 0.029 (0.016) 0.085 0.132 (0.032) 0.148
Gastro -0.001 (0.012) 0.050 0.038 (0.029) 0.098
Raynaud 0.010 (0.012) 0.013 0.138 (0.027) 0.122
Tender Joints 0.006 (0.010) 0.015 0.008 (0.017) 0.035
Ulcers 0.005 (0.011) 0.006 0.004 (0.033) 0.038

We then fit the two-component FMLME model using the LASSO, Adaptive LASSO

and SCAD penalties. The penalized estimates are reported in Tables 7–2, 7–3 and 7–4 re-

spectively. From these tables, we see that the penalized estimates of mixing proportions

and error variances are all very close to their corresponding ML estimates, but the three

penalized models are much more parsimonious than the ML model in Table 7–1. Further-

more, in all three penalized models, the mean structures and variance components in the two

mixture components are quite different, which reiterates the importance of variable selection

in each component of an FMLME model. Comparing Tables 7–2, 7–3 and 7–4, we see that

the Adaptive LASSO and SCAD penalties choose almost the same fixed and random effects,

and produce very similar parameter estimates. On the other hand, we obtain a slightly

more complex model using the LASSO penalty. This is presumably due to the fact that the

LASSO penalty cannot achieve consistency and sparsity simultaneously, and the amount of

penalty applied here is relatively light in order to maintain adequate estimation accuracy.
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It is noteworthy that in all three penalized models, the intercept is negative for com-

ponent 1 and positive for component 2. Since lower HAQ indicates better health status,

patients in the first component are in general healthier than those in the second component.

Furthermore, in all three models, the Visit parameter is deleted from component 1, whereas

in component 2 it is quite significant. This suggests that the patients’ health status does

not decline at all for component 1, but declines very severely in component 2. We also

observe that, for all three models, the estimate for Baseline HAQ is about 1.5 times larger

in component 1 than in component 2. Combined with the parameter estimates for Visit,

this implies that the health status of patients in component 1 is primarily determined by

their baseline status, and it is less so for component 2. Then, a comparison of the parameter

estimates for Skin Score, Shortness of Breath and Raynaud’s Phenomenon between the two

components also suggest that patients from component 2 suffer greater morbidity than those

from component 1. In fact, these three fixed effects are deleted in the Adaptive LASSO

and SCAD models. Finally, in all three penalized models, Tender Joint Counts and Digital

Ulcers are removed from both mixture components.

Table 7–2: LASSO penalized estimates for the two-component FMLME model.

Variable Component 1 (π̂1 = 0.56, σ̂2
1 = 0.037) Component 2 (π̂2 = 0.44, σ̂2

2 = 0.194)

Fixed (Std. Error) Random effect SD Fixed (Std. Error) Random effect SD

Intercept -0.064 (0.017) 0.171 0.122 (0.048) 0.423
Visit – 0.110 0.157 (0.028) 0.217
Male – – -0.093 (0.128) –
Baseline Age – – – –
Baseline Duration – – -0.034 (0.046) –
Baseline HAQ 0.922 (0.016) – 0.567 (0.041) –
Skin Score 0.012 (0.014) 0.029 0.078 (0.030) 0.122
Short Breath 0.026 (0.016) 0.085 0.128 (0.031) 0.139
Gastro – – 0.033 (0.028) 0.097
Raynaud 0.012 (0.011) – 0.133 (0.027) 0.120
Tender Joints – – – –
Ulcers – – – –

For comparison purposes, we also perform variable selection in the one-component LME

model using the method of Bondell et al. (2010) with the Adaptive LASSO penalty, and in
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Table 7–3: Adaptive LASSO penalized estimates for the two-component FMLME model.

Variable Component 1 (π̂1 = 0.55, σ̂2
1 = 0.037) Component 2 (π̂2 = 0.45, σ̂2

2 = 0.193)

Fixed (Std. Error) Random effect SD Fixed (Std. Error) Random effect SD

Intercept -0.075 (0.019) 0.192 0.120 (0.046) 0.461
Visit – 0.120 0.158 (0.029) 0.232
Male – – -0.058 (0.114) –
Baseline Age – – – –
Baseline Duration – – – –
Baseline HAQ 0.940 (0.017) – 0.598 (0.038) –
Skin Score – – 0.071 (0.025) 0.107
Short Breath – 0.073 0.131 (0.025) –
Gastro – – – –
Raynaud – – 0.142 (0.021) –
Tender Joints – – – –
Ulcers – – – –

Table 7–4: SCAD penalized estimates for the two-component FMLME model.

Variable Component 1 (π̂1 = 0.54, σ̂2
1 = 0.035) Component 2 (π̂2 = 0.46, σ̂2

2 = 0.186)

Fixed (Std. Error) Random effect SD Fixed (Std. Error) Random effect SD

Intercept -0.074 (0.020) 0.196 0.097 (0.052) 0.472
Visit – 0.122 0.143 (0.028) 0.231
Male – – – –
Baseline Age – – – –
Baseline Duration – – – –
Baseline HAQ 0.941 (0.017) – 0.630 (0.041) –
Skin Score – – 0.052 (0.027) 0.110
Short Breath – 0.072 0.107 (0.030) 0.127
Gastro – – 0.013 (0.028) 0.095
Raynaud – – 0.126 (0.020) –
Tender Joints – – – –
Ulcers – – – –

the three-component FMLME model using our method with all three penalties. Table 7–5

reports the BIC summary for these models and the two-component FMLME models. From

the table, we see that by going from a single LME model to a two-component finite mixture,

the BIC is drastically improved. In particular, the penalized two-component FMLME model

with Adaptive LASSO penalty improved the BIC by more than 800 units relative to the

penalized LME model. Among the three penalized two-component FMLME models, the

LASSO penalty yields the model with the largest number of non-zero parameters, which

explains why it has the best log-likelihood but the worst BIC. On the other hand, the
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Adaptive LASSO FMLME model has the fewest degrees of freedom, and also the best BIC

of the two-component FMLME models. Finally, we observe that the gain in log-likelihood

is minimal by introducing a third component, and the additional degrees of freedom result

in a larger BIC than the corresponding two-component FMLME model. In fact, the best

three-component FMLME model still exceeds the two-component Adaptive LASSO model

in BIC by 154 units.

On the basis of the above analysis, we conclude that the subjects under study could be

divided into two distinct subgroups. In general, patients in the first subgroup enjoy a better

health status than those in the second subgroup. And a single LME model would not be

able to capture this heterogeneity.

It is worth noting that by including only the participants who had at least four visits,

we are more likely to analyze patients that survive longer and thus have better health. If

participants who had fewer visits were included, the parameter estimates for visit number

and the clinical characteristics would likely increase, but since this data set merely serves to

illustrate the proposed methodology, we do not attempt to correct for the survival bias here.

Table 7–5: BIC comparison between the seven penalized models.

Model Log-likelihood df∗ Total sample size BIC

LME(ALASSO) -1259.41 17 1982 2647.88
Two-component FMLME (LASSO) -812.31 48 1982 1989.02
Two-component FMLME (ALASSO) -825.39 24 1982 1832.98
Two-component FMLME (SCAD) -822.62 33 1982 1895.78
Three-component FMLME (LASSO) -801.08 93 1982 2308.20
Three-component FMLME (ALASSO) -811.59 49 1982 1995.18
Three-component FMLME (SCAD) -799.90 51 1982 1986.98
∗ degree of freedom = number of non-zero parameters
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CHAPTER 8
Conclusions and suggestions for future research

In light of the new regularization techniques such as LASSO, SCAD and Adaptive

LASSO, we introduced a penalized likelihood approach to simultaneously identify important

fixed and random effects in FMLME models, a class of models capable of accounting for both

within-subject correlation and between-subject heterogeneity. Theoretical properties of the

proposed penalized likelihood estimators were established. The new procedure is shown to

consistently select the most parsimonious FMLME model. We devised a computationally

efficient nested EM algorithm to perform fixed and random effects estimation and selection.

Furthermore, we proposed a data adaptive method to select the regularization parameters

and illustrated its use through simulations and a real data example. While traditional best

subset methods are often rendered infeasible by their enormous computational cost in many

practical situations, our method only requires modest computational resources.

However, several statistical issues related to the new method also deserve further con-

sideration. First, it would be of interest to examine the asymptotic behavior of the tuning

parameters chosen by our proposed component-wise BIC criterion. Then, in our method-

ology, we assumed that each component has a different mean and variance. However, in

some applications, there might be prior information indicating that some components may

have the same mean but different variances, or different means but the same variance. In

such cases, we could modify our maximization strategy accordingly, for example by taking

the derivative of (4.4) with respect to the unknown parameters. Another assumption we

made was that the number of components K is known a priori, which may not always hold

in practice, and leads one to investigate the order estimation problem in FMLME models.
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Moreover, our proposed method could be further extended to finite mixtures of generalized

linear mixed-effects models, which would permit modeling of repeated count or categorical

data with substantial heterogeneity. Finally, it would also be of interest to consider the fixed

and random effects selection problem in FMLME models in high-dimensional settings.
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KEY TO ABBREVIATIONS

LME model: linear mixed-effects model

FMLME model: finite mixture of linear mixed-effects model

EM algorithm: expectation-maximization algorithm

SSc: systemic sclerosis

HAQ: Health Assessment Questionnaire-Disability Index

AIC: Akaike Information Criterion

BIC: Bayesian Information Criterion

GIC: Generalized Information Criterion

LASSO: Least Absolute Shrinkage and Selection Operator

SCAD: Smoothly Clipped Absolute Deviation

ML: maximum likelihood

REML: restricted maximum likelihood

AR: autoregressive

MSE: mean squared error
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