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Fonds de recherche du Québec – Nature et technologies (FRQNT). Additional fund-

ing was provided to me through grants to my supervisor from NSERC, FRQNT and

the Canada Research Chairs Program.

iii



ABSTRACT

A flexible approach is proposed for risk aggregation. The model consists of a tree

structure, bivariate copulas, and marginal distributions. The construction relies on

a conditional independence assumption whose implications are studied. A procedure

for selecting the tree structure is developed using hierarchical clustering techniques,

along with a distance metric based on Kendall’s tau. Estimation, simulation, and

model validation are also discussed. The approach is illustrated using data from a

Canadian property and casualty insurance company.
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ABRÉGÉ

On propose une approche flexible pour l’agrégation de risques. Le modèle est

constitué d’une arborescence, de copules bivariées et de lois marginales. La construc-

tion s’appuie sur un postulat d’indépendance conditionnelle dont les ramifications

sont étudiées. On montre comment choisir l’arborescence au moyen de techniques de

classification et d’une métrique définie à partir du tau de Kendall. L’estimation, la

simulation et l’adéquation du modèle sont aussi abordées. L’approche est illustrée à

l’aide de données d’une compagnie canadienne en assurance IARD.

v



PREFACE AND AUTHOR CONTRIBUTIONS

This project started when I drew Professor Christian Genest’s attention to the

work of Arbenz, Hummel & Mainik (2012). In their paper, the authors explain

a simulation algorithm for a copula-based hierarchical aggregation model used in

the life insurance industry (although without much theoretical foundations). I was

thrilled by the idea of giving strong arguments in favor of the relevance of that simple

and practical model.

The work on this thesis was first theoretical. To understand the implications of

the conditional independence assumption, Professor Genest suggested that I prepare

some simple examples on the propagation of the dependence in the structure. I per-

formed this task and then derived the joint density of the individual risks. Professor

Genest and I investigated a way to build the tree structure, and he pointed out the

usefulness of hierarchical clustering theory. After some work, I was able to prove

that the distance based on Kendall’s tau fulfills the triangle inequality. However, my

proof was laborious and was greatly simplified with the help of my supervisor. Once

the theoretical framework for the model was ready, I programmed the procedure in

R. I tested it on simulated data from the Clayton–Liouville distribution, following
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Québec risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3–8 Results of test of extremeness with finite sample variance. . . . . . . 64

3–9 p-values for Kendall and Spearman tests of independence on the
Ontario risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3–10 Estimated risk measures with κ = 0.99 and corresponding capital
allocations for the month of July 2012. . . . . . . . . . . . . . . . . 70

A–1 Results of goodness-of-fit tests for C{3,4}. . . . . . . . . . . . . . . . . 74

A–2 Results of goodness-of-fit tests for C{1,2}. . . . . . . . . . . . . . . . . 74

A–3 Results of goodness-of-fit tests for C{1,...,4}. . . . . . . . . . . . . . . . 75

A–4 Results of goodness-of-fit tests for C{5,6}a. . . . . . . . . . . . . . . . . 75

A–5 Results of goodness-of-fit tests for C{7,8}. . . . . . . . . . . . . . . . . 75

xi



LIST OF FIGURES
Figure page

2–1 Illustration of a tree structure involving three variables. . . . . . . . . 8

2–2 Difference between the upper and lower bounds for corr(X1, X3) in
Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2–3 Illustration of the tree structure for Example 2. . . . . . . . . . . . . 12

2–4 Correlation between two parents of degree k as a function of ρ, for
symmetric tree structures considered in Example 2. . . . . . . . . . 13

2–5 Dendrogram for Example 5 with correlation matrix R1 (left) and R2

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2–6 Dendrogram for the sample from the Clayton–Liouville distribution. . 20

2–7 Rank plots for the observed pairs of variables (top row) and simulated
samples from the selected copula (bottom row) at each aggregation
step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2–8 Interpolation of the log pseudo-likelihood �(α1, α2, θ̂) as a function of
α1, α2 ∈ {1, . . . , 10} for the survival copula of (X1, X2). . . . . . . . 22

2–9 Graphs of pairs of random variables that were not explicitly modelled. 29

2–10 Time series data for LR5. . . . . . . . . . . . . . . . . . . . . . . . . 32

2–11 Hierarchical structures for Q1X1, . . . , Q8X8 before (left panel) and
after (right panel) the legal reform of September 2010. . . . . . . . 35

2–12 TVaR-based allocations, expressed in percentage of TVaR0.95, before
(left) and after (right) the reform under the proposed models (top
row) and independence between the risks (bottom row). . . . . . . 41

3–1 Scatterplots of the loss ratios for Risks 1 (left) and 2 (right) in terms
of the month. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xii



3–2 Time series and deterministic component for Risks 1 (top) and 2
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3–3 Histograms of Risks 1 (left) and 2 (right) and fitted skewed t(5)
densities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3–4 Quantile-quantile plots for Risks 1 (left) and 2 (right) and fitted
skewed t(5) densities. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3–5 Time series for Risks 3 (top) and 4 (bottom). . . . . . . . . . . . . . 52

3–6 Quantile-quantile plots for Risk 3 using skewed t(8) (left) and lognor-
mal (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3–7 Histogram of Risk 4 and fitted densities. . . . . . . . . . . . . . . . . 54

3–8 Quantile-quantile plots for Risk 4 using skewed t(16) (left) and
lognormal (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3–9 Time series for Risks 5 (top) and 7 (bottom). . . . . . . . . . . . . . 55

3–10 Studentized residuals (left) and quantile-quantile plot (right) for the
regression on log(LR5,t). . . . . . . . . . . . . . . . . . . . . . . . 56

3–11 Quantile-quantile plots for Risk 7 before the reform using lognormal
(left) and gamma (right). . . . . . . . . . . . . . . . . . . . . . . . 57

3–12 Time series for Risks 6 (top) and 8 (bottom). . . . . . . . . . . . . . 58

3–13 Quantile-quantile plots for Risks 6 (left) and 8 (right) using gamma
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3–14 Hierarchical structures for Q1X1, . . . , Q8X8 before (left panel) and
after (right panel) the legal reform of September 2010. . . . . . . . 62

3–15 Pairs of ranks for X3 and X4 (left), and 102 simulated observations
from a Galambos copula with τ = 0.68 (right). . . . . . . . . . . . 64

3–16 Pairs of ranks for X1 and X2 (left), and 102 simulated observations
from a t8 with τ = 0.54 (right). . . . . . . . . . . . . . . . . . . . . 65

3–17 Pairs of ranks for Q1X1 + Q2X2 and Q3X3 + Q4X4 (left), and 102
simulated observations from a tev10 with τ = 0.39 (right). . . . . . 66

xiii



3–18 Pairs of ranks for X7 and X8 before the reform (left), and 80 simulated
observations from a t10 with τ = 0.26 (right). . . . . . . . . . . . . 67

3–19 Pairs of ranks for observed (X1, X3) (left), and 102 simulated obser-
vations of (X1, X3) (right). . . . . . . . . . . . . . . . . . . . . . . 68

3–20 Pairs of ranks for observed (X2, X4) (left), and 102 simulated obser-
vations of (X2, X4) (right). . . . . . . . . . . . . . . . . . . . . . . 69

xiv



CHAPTER 1
Introduction

The first life insurance company, a mutual organization named Equitable Life

Assurance Society, was founded in 1762 in London, England. Its success, mainly

due to the sound practices established by the mathematician and actuary James

Dodson, aroused the interest of investors in the life insurance industry. According

to [8], as many as 149 life insurance companies were formed between 1844 and 1853

in Great Britain, but only 59 were still active at the end of this same period. The

shocking number of failures outlined the need for legislation: the long-term nature of

insurance is incompatible with immediate distribution of profits to investors without

proper reserving. Hence, the development of mortality tables and the valuation of

life insurance and annuities were the main interest of actuaries in the 18th century,

and these problems were studied by Condorcet, De Moivre and Laplace to name a

few (see, e.g., [41] for an historical account on their contributions).

Capital requirements are designed to protect policyholders; the intent of the

legislation is to ensure that the insurer holds enough assets to support policy liabil-

ities and to withstand unexpected adverse experience in the environment. However,

the classical actuarial models are usually based on the assumption that the risks

are independent. This assumption is clearly inappropriate to reflect the impact of

environmental shocks. For example, many risks in a given geographical area would
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typically be affected by a natural (or man-made) catastrophe. At a more granu-

lar level, the lifetimes of a husband and his wife are dependent in many ways, e.g.,

through the broken heart syndrome, or due to an increased likelihood of a com-

mon car accident. There is thus a need for actuarial models that can account for

dependence.

Bivariate extensions of univariate models, such as the exponential or Pareto dis-

tributions, were used early on to consider dependence between two risks. A complete

review is available in [32], where the authors also present common shocks models,

such as the Marshall–Olkin bivariate exponential distribution. Common shock mod-

els are used in life insurance to account for the probability of simultaneous death on

joint last-to-die policies. Dependence can also be introduced via a common mixture,

used to represent, e.g., environmental or socio-economic conditions (see, e.g., [36] and

[37]). In most of these models, however, the margins are of the same family and their

parameters define the degree of dependence between the risks. Copula models (see,

e.g., [39] or [21]) provide a simple way to remove these constraints and to model the

joint behaviour separately from the marginals. In actuarial science, the use of copu-

las was illustrated in [15] as a way to model the joint survival of lives and the joint

distribution of claims and allocated expenses. This seminal paper led to many other

applications in the field. As noted in [19], copulas are now used extensively for risk

management and risk measurement (see, e.g., [36] and [37]). Stochastic bounds on

functions of dependent risks help to identify the worst case scenario for the insurer;

a survey of the research on this topic is available in [11].
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Risk aggregation is central in insurance: pooling the individual risks allows a

more accurate prediction of the claim amounts. If claims are dependent, their ag-

gregation is not as simple as in the independent case; the Fast Fourier Transform

cannot be used and the Central Limit Theorem does not hold. Although determin-

istic aggregation methods for dependent risks were developed recently (see [36] for a

survey), Monte Carlo simulations are frequently used to this end. Once the overall

exposure to risk is determined, an amount of capital required to support the portfolio

of risks can be calculated using risk measures such as VaR or TVaR (see, e.g., [3]

for a discussion of coherent risk measures). On the other side, it is useful for risk

management and strategic planning to understand the share of the risk associated to

each sub-portfolio, i.e., to allocate capital to each individual risk. Capital allocation

requires the knowledge of the joint distribution of the risks. Capital allocations for

dependent risks were studied in [4], [12], and [17], for example.

This thesis was motivated by a risk aggregation and capital allocation problem

for eight portfolios of automobile and home insurance of a large Canadian insurance

company. As the relations between the risks are complex, they cannot be mod-

elled with commonly used multivariate dependence structures such as Archimedean,

elliptical or extreme-value copula families. Vine copula constructions or nested

Archimedean copulas could be considered, but the inference is complex and the

models are not easily interpretable. In Chapter 2, a flexible copula-based approach

for modelling risk vectors is presented. The idea is to aggregate risks successively,

two at a time. The approach is thus particularly well suited to aggregate claim mod-

elling, but it could also be applied in other cases where the overall exposure is of
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interest. Under a specific assumption of conditional independence, the joint density

of the risks is uniquely determined by the model, which allows capital allocation.

Chapter 2 is a manuscript that was submitted for publication; it was written in

collaboration with Dr. Christian Genest.

Chapter 3 presents a summary of the data analysis that was performed for

the application of the model to the insurance portfolios. A thorough analysis was

necessary to fit marginal distributions and to model appropriately the dependence

structure. Details are omitted for conciseness.



CHAPTER 2
Copula-Based Risk Aggregation Model

2.1 Introduction

It is now widely recognized that accounting for dependence between individual

risks is crucial for overall exposure assessment. For example, an insurance company’s

total claim payment in a given year arises from different lines of business, regions or

subsidiaries. To ensure the payment of all future claims arising from the aggregate

portfolio, the company must determine an adequate level of capital. This amount is

of critical importance for the company’s solvency and profitability. Given that risks

often share common environmental and socioeconomic conditions, they are generally

dependent. It is thus in a company’s interest to build a multivariate risk model

tailored to its exposure. In fact, it is not only advisable, but also encouraged by the

recent regulatory frameworks such as Basel II, Solvency II or the Guideline E-19 of

the Office of the Superintendent of Financial Institutions in Canada.

Copulas provide a flexible tool for modelling the dependence between random

variables. They are now used extensively, both in statistics and in substantive fields;

see, e.g., [9], [11] and [37] for applications in quantitative finance, actuarial science

and risk management, respectively. For problems involving large numbers of vari-

ables, Archimedean and elliptical copulas ([21]), vine copula constructions ([33]) and

hierarchical copula models ([35]) are currently the most popular options. However,

5
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their use is often limited, either because they provide a restrictive range of depen-

dence structures, or because they involve complex inference procedures.

This chapter considers an alternative modelling strategy, previously investigated

in [2], which can accommodate a large spectrum of dependence structures while rely-

ing entirely on well established, rank-based inference procedures for bivariate copulas.

This iterative approach, which is simple to implement even in high-dimensional con-

texts, leads to an easily interpretable model when risk aggregation is of interest. To

be specific, suppose that X1, . . . , Xd are random variables whose partial sums are

meaningful. Think for example of future claim amounts from different portfolios in

property and casualty insurance. In such an application, the partial sum

SA =
∑
i∈A

Xi

is interpretable and observable for any subset A ⊆ D = {1, . . . , d}. A model for

the vector XD = (X1, . . . , Xd) can then be constructed iteratively as follows. First,

select the two risks Xi, Xj that are most dependent (in some sense) and combine

them through a bivariate copula model. Then, replace the individual risks Xi and

Xj by their sum S{i,j} and treat the latter as a new, combined risk. This leaves one

with d − 1 risks, on which the procedure can be repeated. Proceed iteratively until

all the risks have been aggregated in a single sum.

This procedure, which involves d ≥ 2 marginal distributions F1, . . . , Fd and d−1

bivariate copulas, leads to a unique model for XD under a conditional independence

assumption formulated by [2]. This assumption and its implications are discussed in

Section 2.2. As shown in Section 2.3, a notion of distance based on Kendall’s tau can
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be used in conjunction with classical hierarchical clustering techniques to determine

the order in which risks are aggregated. The resulting model is then easy to construct,

as illustrated in Section 2.4. Simulation from the model can be performed using an

algorithm of the Iman–Conover type detailed in [2]. This procedure is described

in Section 2.5, where the good performance of the proposed modelling strategy is

illustrated on simulated data. Finally, Section 2.6 presents a real-life modelling

exercise aimed at allocating capital between eight portfolios representing car and

property coverages for different subsidiaries of a large Canadian insurance company.

2.2 Multivariate hierarchical copula-based model

LetX1, . . . , Xd be d ≥ 2 random variables with cumulative distribution functions

(cdf) F1, . . . , Fd, respectively. For each A ⊆ D = {1, . . . , d}, let FA denote the cdf of

the vector XA = (Xi, i ∈ A). Let also FA be the cdf of the sum SA of all components

in XA.

The hierarchical copula-based models considered here are derived from tree

structures in which each node links exactly two random variables of the form SA, SB

with A,B ⊂ D and A∩B = ∅; recall that if A = {i} for some i ∈ D, then SA = Xi.

A simple example of such a structure involving d = 3 variables is depicted in Fig-

ure 2–1. In this specific case, a joint model for the pair (X1, X2) would first be

constructed using marginal distributions F1 and F2, and copula C{1,2}. This deter-

mines the distribution F{1,2} of S{1,2} = X1 +X2 implicitly. Next, a joint model for

the pair (S{1,2}, X3) would be built by combining F{1,2} with F3 using bivariate copula

C{1,2,3}. This sequential aggregation procedure can be abbreviated symbolically as

(X1 +X2) +X3.
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Figure 2–1: Illustration of a tree structure involving three variables.

This procedure has several advantages from a dependence modelling perspective.

First, the model involves only bivariate copulas, as opposed to distribution functions

in higher dimensions. Second, each of the d− 1 copulas in the model can be chosen

freely, thereby providing great flexibility. Third, classical rank-based procedures

([21]) can be used for inference purposes, as all pairs modelled are directly observable.

As already noted by [2], the joint cdf of X1, . . . , Xd cannot be determined

uniquely from their marginal distributions and d− 1 bivariate copulas, unless d = 2

or additional assumptions are made. This is illustrated below in a simple case.

Example 1 Consider the aggregation tree in Figure 2–1, and assume that Xi ∼
N (0, 1), for i = 1, 2, 3. Further assume that C{1,2} and C{1,2,3} are Gaussian copulas

with parameters ρ1 and ρ2, respectively. If cov(X1, X3) = a, then

cov(X2, X3) = cov(X1 +X2, X3)− cov(X1, X3) = ρ2
√
2(1 + ρ1)− a

because var(X1 +X2) = 2(1 + ρ1). As cov(X2, X3) = corr(X2, X3), one finds

max{ρ2
√

2(1 + ρ1)− 1,−1} ≤ a ≤ min{ρ2
√
2(1 + ρ1) + 1, 1}.
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Figure 2–2: Difference between the upper and lower bounds for corr(X1, X3) in
Example 1.

Figure 2–2 shows the difference between these bounds in terms of ρ1 and ρ2. Thus,

even if the copulas of the pairs (X1, X3) and (X2, X3) are assumed to be Gaussian,

they are not entirely determined.

An additional assumption which makes the joint distribution unique is proposed

by [2]. In order to state this assumption, let N1, . . . , Nd−1 denote the branching nodes

corresponding to the aggregation steps 1, . . . , d − 1, respectively. (When the order

in which the aggregation takes place is not entirely obvious from the tree structure,

any convention can be used to make the numbering unique; this has no implication

in what follows.) For each i ∈ {1, . . . , d− 1}, let SAi
be the sum computed at node

Ni and set Āi = D \ Ai.

Conditional Independence Assumption: For each i ∈ {1, . . . , d−2}, the random
vectors XAi

and XĀi
are conditionally independent given SAi

.

For the structure displayed in Figure 2–1, for example, one would have A1 = {1, 2}
and A2 = {1, 2, 3}. The above assumption then states that X3 is independent of
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(X1, X2) given S{1,2}. Thus, once X1 +X2 is known, no information concerning the

components of the sum affects the distribution of X3.

Under this assumption, the joint distribution of XD can be computed from

the marginal distributions F1, . . . , Fd and the copulas of the branching nodes. The

following proposition gives an explicit (and original) expression for its density under

the additional condition that all distributions involved are absolutely continuous. In

what follows, Ai,1 and Ai,2 form the unique partition of Ai such that SAi,1
and SAi,2

are being modelled at node Ni.

Proposition 1 Given a tree structure characterized by the sets A1, . . . , Ad−1, the

joint density function of the vector XD (assuming it exists) is given, for all x1, . . . , xd ∈
R, by

fD (x1, . . . , xd) =
d−1∏
i=1

cAi

⎧⎨⎩FAi,1

⎛⎝ ∑
j∈Ai,1

xj

⎞⎠ , FAi,2

⎛⎝ ∑
j∈Ai,2

xj

⎞⎠⎫⎬⎭
d∏

i=1

fi (xi)

in terms of the marginal densities f1, . . . , fd of X1, . . . , Xd and the copula densities

cAi
linking SAi,1

and SAi,2
at node Ni.

A proof of this result is given in the Appendix. Assuming, for example, that

X1, . . . , Xd are Normally distributed and that the d − 1 bivariate copulas in the

tree structure are Gaussian, the formula in Proposition 1 reduces to a multivariate

Normal density. This can be shown either directly through cumbersome calculations

or deduced from Proposition 2.8 in [2], where a recursive formula is given for the

covariance matrix of XD.

Example 1 (continued). Under the conditional independence assumption, the

joint density of the vector (X1, X2, X3) is trivariate Normal with mean vector 0 and
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covariance matrix

Σ =

⎛⎜⎜⎜⎜⎝
1 ρ1 a

ρ1 1 a

a a 1

⎞⎟⎟⎟⎟⎠ ,

where a = ρ2
√
(1 + ρ1)/2 ∈ [−1, 1]. Note that a = 0 when ρ2 = 0, as might be

expected under the conditional independence assumption. Further note that a = 0

when ρ1 = −1, because it is not possible for X3 to have the same correlation with

two counter-monotonic risks, except if this correlation is 0.

In the above example, one has cov(X1, X3) = cov(X2, X3). This is a consequence

of the conditional independence assumption which holds true in greater generality.

Given any tree structure involving d ≥ 2 individual risks, one has

cov(Xi, Xj) = cov(Xi, Xk)

whenever Xj and Xk are identically distributed random variables such that A� =

{j, k} for some � ∈ {1, . . . , d − 1}. Thus, this assumption imposes constraints on

the correlation structures that can be modelled with the proposed approach. For ex-

ample, the conditional independence assumption, coupled with the requirement that

only bivariate copulas are used, makes it impossible to model identically distributed

risks with an autocorrelation matrix of order 1.

The following examples shed additional light into the propagation of dependence

in a tree structure. For simplicity, Gaussian copulas and identically distributed risks

are considered, although this is not required in the general setting.
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Figure 2–3: Illustration of the tree structure for Example 2.

Example 2 Consider a perfectly symmetric tree structure involving 2� identically

distributed risks, as illustrated in Figure 2–3 in the case � = 4. Suppose further that

for each i ∈ {1, . . . , d−1}, the copula CAi
is such that corr(SAi,1

, SAi,2
) = ρ ∈ (−1, 1).

In graph theoretical terms, pairs such as (X1, X2), (X3, X4) or (X15, X16) are said

to be parents of degree 1. Similarly, pairs such as (X1, X3) or (X6, X8) are called

parents of degree 2, and so on. Simple calculations show that, under the conditional

independence assumption, the correlation between parents of degree k ∈ {1, . . . , �} is

given by

ρ

(
1 + ρ

2

)k−1

.

Note that for fixed ρ, this is a monotone function of k, which is decreasing if ρ > 0

and increasing if ρ < 0. In the limit, the correlation between parents of degree k

tends to 0 as k → ∞. This is shown on Figure 2–4.

The next example considers a related problem for the same tree structure.

Example 3 Consider the same symmetric tree structure as in Example 2. Suppose

that X1, . . . , X2� are identically distributed and that it is desired to model them in
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Figure 2–4: Correlation between two parents of degree k as a function of ρ, for
symmetric tree structures considered in Example 2.

such a way that corr(Xi, Xj) = ρ for all distinct i, j ∈ {1, . . . , 2�}. As is well-known,
this can only be done if ρ ≥ 1/(1 − 2�). If the conditional independence property

must hold, all the copulas linking individual risks that are parents of degree 1 must

induce correlation ρ. Similarly, all copulas linking two sums of two risks must induce

correlation 2ρ/(1+ρ). More generally, all copulas linking two sums of 2k−1 risks each

is kρ/{1 + (k − 1)ρ}, where k ∈ {1, . . . , �}. Thus if ρ > 0, the correlation increases

with the number k of terms in each sum.

While this conclusion is consistent with Example 2, it is important to realize

that the tree structure plays a key role in defining the model and interpreting its

parameters. This is illustrated below.

Example 4 Consider the same problem as in Example 3, but assume that the struc-

ture is now such that variables S{1,...,k} and Xk+1 are aggregated at step k. It can
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then be seen that the copula at aggregation step k must be such that

corr(S1,...,k, Xk+1) =
kρ√

k + 2
(
k
2

)
ρ
,

which converges to
√
ρ as k → ∞.

2.3 Building the hierarchical structure

The main advantage of the proposed model is that, given a tree structure, the

selection, estimation, and validation of marginal distributions and copulas can be

made using standard inferential techniques. At node Nk, the choice of the bivariate

copula family linking variables SAk,1
and SAk,2

can be guided by a rank plot of the ob-

served pairs of sums (SAk,1
, SAk,2

). Rank-based techniques can be used for parameter

estimation and goodness-of-fit techniques; see, e.g., [18] or [21] for details. However,

the model depends critically on the manner in which the risks are aggregated.

If X1, . . . , Xd are d ≥ 2 risks, the number Md of ways in which these risks and

their partial sums can be aggregated two at a time may be found recursively by

setting M1 = 1 and, for k ∈ {2, . . . , d},

Mk =
1

2

k−1∑
i=1

(
d

i

)
MiMk−i.

As shown in Table 2–1, Md grows rapidly. Therefore, a systematic investigation of all

possible tree structures is infeasible. In certain applications, a meaningful structure

could perhaps be based on subjective arguments. In insurance, for example, one

might consider location or line of business as a criterion for risk aggregation. When

the number of risks is large, however, this would still leave the modeler with a large

number of options. Therefore, a systematic method for building the tree is needed.
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Table 2–1: Number of tree structures for aggregating d variables and partial sums
thereof, two at a time.

d 3 4 5 6 7 8 9 10
Md 3 15 105 945 10,395 135,135 2,027,025 34,459,425

In the absence of prior information about an adequate tree structure for depen-

dence modelling, classical hierarchical clustering techniques can be adapted to help

a user sieve through the large number of possibilities. These exploratory techniques,

which are frequently used in data mining, provide a systematic way of aggregating

risks (or sums thereof) two at a time based on an appropriate measure of distance

between these elements; see, e.g., [26] and [31] for details on classical clustering

analysis.

Consider two arbitrary risks X and Y and a measure of distance D(X, Y ) be-

tween them. Given a collection X1, . . . , Xd of risks, the principle of hierarchical

clustering is to identify the two risks for which D is minimal and to combine them

into a group. The procedure is then repeated iteratively. In general, this requires

defining a notion of distance between two clusters but this is not necessary here,

because the risks are summed as one moves up the hierarchy. The elements being

compared at each step of the procedure are then all of the same nature. The resulting

tree structure, called a dendrogram, may depend on the choice of D.

In the present context, it is natural to measure the proximity between risks by

their absolute degree of dependence. The same idea occurs in vine copula model

selection, where [10] and [14] proposed to start by modelling pairs exhibiting the

largest degree of association. This makes sense because in a bottom-up approach,
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decisions taken early on affect the subsequent modelling stages. It is thus crucial to

get strong dependencies right from the start.

Clustering works best when D is a (pseudo) metric, i.e., if for all X, Y and Z,

D(X,X) = 0, D(X, Y ) = D(Y,X) and D(X, Y ) ≤ D(X,Z) + D(Z, Y ). From the

work of [45], these conditions hold when

D(X, Y ) =
√
1− r2(X, Y ) or D(X, Y ) =

√
1− ρ2(X, Y ),

where r(X, Y ) and ρ(X, Y ) denote Pearson’s correlation and Spearman’s rank cor-

relation between X and Y , respectively. Another option would be to define a metric

based on Kendall’s tau. Although τ itself has been used as a similarity measure for

hierarchical clustering (see, e.g., [24] and [30]), it has apparently never been shown

that
√

1− τ 2(X, Y ) is indeed a metric. This result is formally stated below and

proved in the Appendix.

Proposition 2 The map D(X, Y ) =
√

1− τ 2(X, Y ) defines a (pseudo) metric.

The following example illustrates the application of the hierarchical clustering

algorithm in a classical case.

Example 5 Consider a random sample of size n = 10,000 from the multivariate

Normal random vector (X1, X2, X3, X4) with mean 0 and covariance matrix

R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.2 0.2

0.5 1 0.2 0.2

0.2 0.2 1 0.3

0.2 0.2 0.3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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Figure 2–5: Dendrogram for Example 5 with correlation matrix R1 (left) and R2

(right).

so that corr(X1+X2, X3+X4) ≈ 0.286. This multivariate model can be expressed as a

hierarchical structure of the form (X1+X2)+(X3+X4), with standard Normal mar-

gins and Gaussian copulas at each node. In addition, the conditional independence

assumption is satisfied.

An application of the hierarchical clustering algorithm based on the Kendall tau

metric is shown in the left panel of Figure 2–5. As can be seen, the dependence

structure of the multivariate distribution is reproduced faithfully. As the correlation

between X1 and X2 is the largest, they are aggregated first; X3 and X4 are aggregated

at step 2, and the two clusters S{1,2} and S{3,4} are summed at step 3. The scale

displayed on the graph represents the empirical distance
√

1− τ 2(X, Y ) at which X

and Y are aggregated. It matches very closely the theoretical value of D(X, Y ) which

can be computed using the relation τ(X, Y ) = 2 arcsin{r(X, Y )}/π valid for bivariate

Normal pairs (X, Y ). Dendrograms based on the Pearson and Spearman metrics (not

shown) are identical except for the scale.
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Now suppose that the correlation matrix is

R2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.6 0.6

0.5 1 0.6 0.6

0.6 0.6 1 0.3

0.6 0.6 0.3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

so that corr(X1+X2, X3+X4) ≈ 0.859. The corresponding dendrogram derived from

the hierarchical clustering algorithm based on the Kendall tau metric is shown in the

right panel of Figure 2–5. In this particular sample, the largest observed value of

Kendall’s tau is τn(X2, X4), and hence X2 and X4 are aggregated first. In the second

step, X1 is aggregated with X2 +X4. The curious shape of the tree reflects the fact

that τn(X2 +X4, X1) > τn(X2, X4). Finally, X3 is aggregated with X1 +X2 +X4 in

the last step.

In the second example, therefore, the decision to aggregate the risks in decreasing

order of dependence has failed to reproduce the underlying hierarchical structure,

even though the latter satisfied the conditional independence assumption. Whether

the association is measured using Kendall’s tau, Spearman’s rho or even Pearson’s

correlation does not affect this conclusion. The need for model validation techniques

is thus obvious; this will be addressed in Section 2.5.

2.4 Other aspects of modelling

Once a tree structure has been chosen, the construction of the hierarchical model

involves the selection of a copula at each node, in addition to distributions for the

individual risks. Both steps can be carried out in a straightforward manner with
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classical inference techniques. In this section, a stylized example is used to show how

rank-based methods can help to guide the choice of copula families.

A random vector X = (X1, . . . , Xd) is said to have a Liouville distribution if it

can be expressed in the form X = RD in terms of a non-negative random variable R

which is independent of a d-variate random vector D having a Dirichlet distribution

with parameter (α1, . . . , αd) ∈ Nd on the unit simplex

S = {(s1, . . . , sd) ∈ [0, 1]d : s1 + · · ·+ sd = 1}.

As mentioned by [38], if X has a Liouville distribution, then so does any subset of

its components. Furthermore, any vector consisting of sums of distinct components

of X is also of the Liouville type.

In particular, set α = α1 + · · · + αd ≥ 2 and let F denote the distribution

function of R. The underlying copula of the vector X is then said to be of the

Clayton–Liouville type if the Williamson α-transform of F is given, for all t ≥ 0, by

ψ(t) = {max(0, 1 + θt)}−1/θ for some θ ≥ −1/(α− 1). This terminology, introduced

by [38], is motivated by the fact that ψ is the generator of a Clayton Archimedean

copula with parameter θ.

A sample of size 1000 from the Clayton–Liouville distribution with parameters

α = (4, 3, 2, 1) and θ = 3 was generated using the algorithm provided by [38].1 An

1 Thanks to Dr. Johanna Nešlehová for providing me with R programs for gener-
ating data from the Clayton–Liouville copula
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application of the clustering procedure based on Kendall’s tau led to the tree struc-

ture depicted in Figure 2–6. In order to select copulas C{1,2}, C{1,2,3} and C{1,2,3,4},

rank plots of the pairs (X1, X2), (X1 +X2, X3) and (X1 +X2 +X3, X4) were drawn.

These graphs are displayed in the top row of Figure 2–7. Visual inspection of these

plots reveals strong upper tail dependence, as well as a moderate degree of lower

tail dependence, at least for the pairs (X1, X2) and (X1 + X2, X3). In addition,

the rank-based test of [22] reveals significant asymmetry in the copula of the pair

(X1 +X2 +X3, X4) (p � .001).

For these reasons, common choices of bivariate Archimedean, elliptical, and

extreme-value copulas are ruled out. However, the Clayton–Liouville survival copula

family does look like a reasonable option in all cases. In fact, the theoretical survival

copula of each of the three pairs is indeed from the Clayton–Liouville family with

parameters as specified in Table 2–2. In practice, of course, the user would not know

this and might consider other modelling options.

4
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Figure 2–6: Dendrogram for the sample from the Clayton–Liouville distribution.
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Figure 2–7: Rank plots for the observed pairs of variables (top row) and simulated
samples from the selected copula (bottom row) at each aggregation step.

Suppose that a Clayton–Liouville survival copula indexed by parameters (α1, α2) ∈
N2 and θ > 0 is fitted to each of the three pairs. Expressions for this copula density

and Kendall’s tau are given in [38]. For each pair, a rank-based estimate θ̂ = θ̂(α1, α2)

of θ is obtained by inverting Kendall’s tau for fixed values of α1, α2 over a suit-

ably large grid. The pseudo-likelihood is then computed at each combinations of

(α1, α2, θ̂), and the vector of parameters that maximize this pseudo-likelihood is se-

lected.2

2 The idea of quickly estimating θ by inverting Kendall’s tau was from Léo Belzile,
who kindly shared his findings and his R code with me.
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Table 2–2: Theoretical and estimated parameter values for three Clayton–Liouville
copulas.

α1 α2 θ α̂1 α̂2 θ̂ Bootstrap 95% C.I. on θ
C12 4 3 3 6 5 2.32 (1.61, 3.36)
C123 7 2 3 10 3 2.22 (1.53, 3.21)
C1234 9 1 3 6 1 3.15 (2.12, 4.50)

The resulting estimates are given in Table 2–2 along with a 95% bootstrap

confidence interval for θ = θ(α̂1, α̂2) based on 10,000 replications. The estimates are

close to their theoretical values, especially considering that α1 and α2 are integer-

valued. The discrepancies result in part from the fact that the pseudo-likelihood is

quite flat, as illustrated in Figure 2–8 for the first aggregation step. As a corollary,

two distributions with slightly different parameters are almost identical. This is

illustrated in Figure 2–7, where rank plots of the three pairs of variables (top row)

are compared with scatter plots of random samples of the same size from the fitted

survival copulas.

2 4 6 8 10

2
4

6
8

10

1120

1140

1160

1180

1200

1220

Figure 2–8: Interpolation of the log pseudo-likelihood �(α1, α2, θ̂) as a function of
α1, α2 ∈ {1, . . . , 10} for the survival copula of (X1, X2).
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At this stage, the components of the hierarchical model appear to be valid. How-

ever, the question remains as to whether the overall structure faithfully represents

the joint distribution of the risks X1, . . . , X4. This validation issue is addressed next.

2.5 Simulation and validation

Although the approach described above leads to appropriate choices of copulas

for the pairs that are modelled explicitly, there is no guarantee that the multivariate

distribution induced by the construction provides an adequate fit overall. This is

because there is no provision in this iterative procedure for checking the conditional

independence assumption, which is critical to the validity of the model.

An intuitive way in which this assumption can be validated consists of checking

the extent to which the model mimics the distribution of pairs that were not consid-

ered explicitly. To this end, one must first know how to simulate observations from

the hierarchical model. The following procedure, inspired by the work of [29], can

be used to this end.

Algorithm 1 To generate a sample of size n ≥ 2 from a hierarchical copula model

with tree structure A1, . . . , Ad−1, copulas CA1 , . . . , CAd−1
and marginal distributions

F1, . . . , Fd, choose an integer m � n and proceed as follows:

1. For each i ∈ {1, . . . , d}, generate a sample of size m from distribution Fi and

denote by X = (xik) the d×m matrix whose ith row is the sample from Fi.

2. For each j ∈ {1, . . . , d− 1},
a) Generate a random sample of size m from copula CAj

and label the result-

ing pairs (Uj1, Vj1), . . . , (Ujm, Vjm) in such a way that Uj1 < · · · < Ujm.
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b) Denote by πCAj
the permutation defined, for each k ∈ {1, . . . ,m}, by

setting πCAj
(k) = p if and only if Vjp has rank k among Vj1, . . . , Vjm.

c) For � = 1, 2, let πSAj,�
be the permutation of the vector (1, . . . ,m) induced

by the reordering of SAj,�
in ascending order. Formally, πSAj,�

is the per-

mutation defined, for each p ∈ {1, . . . ,m}, by setting πSAj,�
(p) = k if and

only if SAj,�,p has rank k among SAj,�,1, . . . , SAj,�,m.

3. For any j ∈ {1, . . . , d−1} and � = 1, 2, let πSAj,�
(X) and πCAj

(X) be the d×m

matrices whose (i, k)th entry is given, respectively, by

[πSAj,�
(X)]ik =

⎧⎪⎨⎪⎩ xiπSAj,�
(k) if i ∈ Aj,�,

xik if i /∈ Aj,�,

and

[πCAj
(X)]ik =

⎧⎪⎨⎪⎩ xiπCAj
(k) if i ∈ Aj,2,

xik if i /∈ Aj,2.

4. Set X0 = X and for each j ∈ {1, . . . , d− 1}, compute iteratively

Xj = πCAj
◦ πSAj,2

◦ πSAj,1
(Xj−1).

The required sample is any randomly selected collection of n columns from the d×m

matrix Xd−1.

To understand heuristically why this procedure works, consider the bivariate

case. Let C be the unique copula linking continuous random variables X and Y

with marginal distributions F and G, respectively. Let Fm and Gm denote empiri-

cal counterparts of F and G based on random samples X1, . . . , Xm and Y1, . . . , Ym,

respectively. Further assume that (U1, V1), . . . , (Um, Vm) is a random sample from C
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and let (Û1, V̂1), . . . , (Ûm, V̂m) be the corresponding pairs of standardized ranks which

form the support of the empirical copula Cm. The sample of size m generated by

Algorithm 1 then consists of the pairs defined, for each i ∈ {1, . . . ,m}, by

(X̂i, Ŷi) = {F−1
m (Ûi), G

−1
m (V̂i)}.

It is intuitively plausible that for large m, the pairs (X̂1, Ŷ1), . . . , (X̂m, Ŷm) would

resemble a sample from the joint distribution H = C(F,G) because F−1
m , G−1

m , and

Cm are consistent estimators of F−1, G−1, and C, respectively; see, e.g., Chapter

21 in [44] and [43]. For a more formal (but partial) argument, see the proof of

Theorem 3.4 [2] and the surrounding discussion. It goes without saying that if

(X̂1, Ŷ1), . . . , (X̂m, Ŷm) is a sample from the model, then so is any randomly selected

subset of size n thereof.

Algorithm 1 is very quick and easy to implement regardless of the complexity

of the tree structure. The following example illustrates this procedure in the simple

but unrealistic case where, for pedagogical purposes, m = n = 4.

Example 6 Consider the symmetric structure (X1+X2)+ (X3+X4). Assume that

the ordered observations from the marginals are given by

X0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4

10 20 30 40

100 200 300 400

1000 2000 3000 4000

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Further assume that the observed pairs of ranks from the copulas are as follows:

C{1,2} : (1, 4), (2, 2), (3, 1), (4, 3),

C{3,4} : (1, 2), (2, 1), (3, 4), (4, 3),

C{1,2,3,4} : (1, 3), (2, 4), (3, 2), (4, 1).

At Step 1, πS{1}(i) = πS{2}(i) = i for i ∈ {1, . . . , 4} because the observations are

already ordered. Also, πC{1,2} permutes (1, 2, 3, 4) into (3, 2, 4, 1). Hence

X1 = πC{1,2}(X0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4

40 20 10 30

100 200 300 400

1000 2000 3000 4000

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and S{1,2} = (41, 22, 13, 34). At Step 2, πS{3}(i) = πS{4}(i) = i for i ∈ {1, . . . , 4},
again because the observations are ordered. Furthermore, πC{3,4} permutes (1, 2, 3, 4)

into (2, 1, 4, 3). Hence

X2 = πC{3,4}(X1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4

40 20 10 30

100 200 300 400

2000 1000 4000 3000

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and S{3,4} = (2100, 1200, 4300, 3400). At Step 3, πS{1,2} permutes (1, 2, 3, 4) into

(4, 2, 1, 3) and πS{3,4} permutes (1, 2, 3, 4) into (2, 1, 4, 3). Finally, πC{1,2,3,4} permutes
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(1, 2, 3, 4) into (4, 3, 1, 2). Thus,

X3 = πC{1,2,3,4} ◦ πS{3,4} ◦ πS{1,2}(X2)

= πC{1,2,3,4}

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 2 4 1

10 20 30 40

200 100 400 300

1000 2000 3000 4000

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 2 4 1

10 20 30 40

400 300 100 200

3000 4000 2000 1000

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

A simple way in which Algorithm 1 can be used to test the validity of a given

hierarchical model is as follows:

Algorithm 2 For some large integer m, carry out the following steps:

1. Generate a sample of size m from the proposed model using Algorithm 1.

2. Compute the empirical copula C∗
m associated with this sample.

3. Determine how close C∗
m is to the empirical copula Cn of the original sample

by computing the rank-based Cramér–von Mises statistic

Tm,n =
mn

m+ n

∫∫
[0,1]d

{C∗
m(u1, . . . , ud)− Cn(u1, . . . , ud)}2du1 · · · dud.

Assuming that Algorithm 1 is valid in full generality, then for large enough m,

C∗
m is a consistent estimator of the copula C∗ induced by the model. Furthermore,

Cn is known to be a consistent estimator of the true underlying copula C of the

risk vector. Therefore, large values of Tm,n should lead to the rejection of the null

hypothesis H0 : C∗ = C. The limiting null distribution of the statistic Tm,n is

given by [42], who also show how to find an approximate p-value for the test using

the Multiplier Central Limit Theorem. Their procedure is coded in the R package
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TwoCop. For the artificial data in Section 2.4, for example, one finds Tn,n = 0.006

and the corresponding p-value is 80%, which comforts the choice of model.

As an additional reality check, rank plots of pairs (Xi, Xj) that were not mod-

elled explicitly can be compared visually to the corresponding graphs for model-

generated data. This is illustrated in Figure 2–9, where rank plots of three selected

pairs for the data in Section 2.4 (top row) are compared with scatter plots of random

samples of the same size generated from the fitted model (bottom row). The simi-

larity between the two samples is striking. Had the statistic Tm,n led to the rejection

of H0, Algorithm 2 could have been used iteratively on sub-vectors to identify the

problematic spots. In so doing, however, one would need to adjust the p-values to

account for multiple testing. This issue will be addressed in future work, along with

the validity of Algorithm 1 in its most general setting and the development of a

formal test of the conditional independence assumption.

2.6 Application to insurance portfolio modelling

This work was originally motivated by a capital allocation problem for a portfo-

lio of insurance risks held by a large Canadian insurance company. The data available

consist of 102 monthly earned premiums and incurred claim amounts for eight differ-

ent risks from January 2004 to June 2012, inclusively. Monthly claim development

is known up to August 2013.

Table 2–3 gives a summary description of the risks. Home insurance in Québec

covers fire, theft and other property damage. Québec auto insurance mainly covers

loss caused by car damage, as well as property damage to third party. All Ontario

portfolios pertain to automobile insurance coverages. Third Party Liability (TPL)
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Figure 2–9: Graphs of pairs of random variables that were not explicitly modelled.

covers financial loss due to body injuries caused to others. Accident Benefits (AB)

cover the insured’s own body injuries up to a specified maximum; the remaining

amount falls under the TPL coverage of the responsible party.

In order to exclude the effect of business growth and inflation, loss ratios can be

used in modelling purposes provided that pricing is consistent over the study period.

The loss ratio for risk i in month t, denoted LRi,t, is defined as the ultimate claim

amount for accident month t divided by the earned premiums for this month. The

development of the claim amounts to ultimate was done using the standard Chain

Ladder Method; see, e.g., [34].
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Table 2–3: Summary description of eight risks for a Canadian insurance company.

Risk Subsidiary Province Coverage
1 A Québec Automobile Insurance
2 B Québec Automobile Insurance
3 A Québec Home Insurance
4 B Québec Home Insurance
5 C Ontario Accident Benefits
6 C Ontario Third Party Liability
7 D Ontario Accident Benefits
8 D Ontario Third Party Liability

2.6.1 Choice of marginal distributions for the risks

The model construction first involves fitting univariate distributions to the in-

dividual risks. To this end, standard tests of randomness were first applied to all

series. Risks 3, 4, 6, and 8 exhibit no trend, seasonality or serial dependence, as

confirmed by Ljung–Box tests whose p-values are reported in Table 2–4. Skewed

t distributions with negligible mass (< 10−8) on (−∞, 0) were used to model both

Risks 3 and 4; Gamma distributions led to a better fit for Risks 6 and 8. Table 2–5

provides estimates based on the parametrization of these distributions given by [37].

Table 2–4: Results of the Ljung–Box test for randomness for Risks 1–8.

Series Statistic p-value
Y1 17.571 6.3%
Y2 65.921 < .01%
LR3 13.327 20.6%
LR4 17.445 6.5%
Y5 17.267 6.9%
LR6 11.886 29.3%
Y7 10.855 36.9%
LR8 12.456 25.6%
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Table 2–5: Selected marginal models for Risks 1–8.

Risk Trend or Time Distribution
Seasonality Series

LR1 Seasonality White Noise t5(μ̂ = 0.584, σ̂ = 0.060, γ̂ = 0.034)
LR2 Seasonality ARMA(1, 1) t5(μ̂ = −0.031, σ̂ = 0.048, γ̂ = 0.030)

0.935, 0.780

LR3 None White Noise t8(μ̂ = 0.101, σ̂ = 0.002, γ̂ = 0.589)
LR4 None White Noise t16(μ̂ = 0.046, σ̂ = 0.029, γ̂ = 0.555)

LR∗
5b Trend White Noise ln(LR5,t) = −0.936 + 0.012t+ Y5,t,

Y5,t ∼ N (0, 0.3892)
LR5a None White Noise LN (μ̂ = −0.782, σ̂ = 0.389)

LR6 None White Noise G(α̂ = 3.41, β̂ = 4.67)

LR7b None White Noise LN (μ̂ = −0.309, σ̂ = 0.319)
LR7a None White Noise LN (μ̂ = −1.070, σ̂ = 0.319)

LR8 None White Noise G(α̂ = 7.86, β̂ = 12.96)
∗The indices b and a refer to the series before and after the change point, respectively.

Models for Risks 1, 2, 5, and 7 are more complex. The first two exhibit signifi-

cant seasonality, as might be expected given the large weather variations that affect

Québec winter road conditions. It was thus assumed that, for � = 1, 2,

LR�,t = s�,t + Y�,t,

where s�,t = s�,t+12 is a seasonal component with s�,1 + · · ·+ s�,12 = 0. The seasonal

component estimates shown in Table 2–6 were derived using classical methods ([7]).

In computing them, the large loss ratio observed in June 2008 caused by the hail

storm of June 10th was treated as an outlier.
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Table 2–6: Seasonal components for Québec automobile insurance coverages.

t 1 2 3 4 5 6
ŝ1,t 0.148 0.068 0.013 −0.100 −0.079 −0.042
ŝ2,t 0.117 0.049 0.003 −0.089 −0.083 −0.046

t 7 8 9 10 11 12
ŝ1,t −0.065 −0.039 −0.084 −0.030 0.031 0.180
ŝ2,t −0.039 −0.019 −0.068 −0.009 0.033 0.151

An application of the Ljung–Box test to Y1 suggests (Table 2–4) that upon

deseasonalization, Risk 1 reduces to white noise; a skewed t distribution provided

an excellent fit (Table 2–5). However, serial correlation is present in Y2. This serial

dependence can be accounted for by an ARMA(1, 1) model whose residuals can also

be modelled using a skewed t distribution. The parameter estimates of the ARMA

model given in Table 2–5 are those that maximize the Gaussian likelihood; see [6,

pp. 248–249] for a justification.
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Figure 2–10: Time series data for LR5.
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The time series for Risks 5 and 7 are affected by a structural change point.

The AB coverages in Ontario went through a period of high inflation in 2009–10, as

reflected by the increasing trend in LR5 depicted in Figure 2–10. This led to a reform

of the Ontario Insurance Act effective September 1, 2010. Detailed information on

the changes are available on the website of the Financial Services Commission of

Ontario ([16]). This reform did not affect TPL coverages either directly or indirectly,

as data inspection confirms. Prior to the reform, a discernible trend in Risk 5 can

be modelled adequately by setting

ln(LR5,t) = −0.936 + 0.012 t+ Y5,t,

where Y5,t ∼ N (0, 0.3942). The overall fit of the model is good (R2 = 0.32) and the

parameter estimates reported in Table 2–5 are highly significant. After the reform,

the time series is a white noise to which a lognormal distribution provides an excellent

fit; its variance appears to be the same as that of Y5,1, . . . , Y5,80 (F = 1.66, p = 9.44%),

and hence a pooled variance estimate can be used, viz. σ̂2
p = 0.79 σ̂2

1+0.21 σ̂2
2 = 0.389.

Finally, adequate models for Risk 7 before (b) and after (a) the reform are given by

LR7b ∼ LN (−0.309, 0.313), LR7a ∼ LN (−1.070, 0.342),

respectively. The centered samples, denoted Y7, can be assumed to have the same

variance (F = 0.837, p = 72.11%) and the pooled variance estimate is 0.319.

2.6.2 Model construction

Of greatest interest to the insurance company is a predictive model for the total

claim amount St associated with the entire portfolio at time t. This quantity, which
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Table 2–7: Proportions of premiums, multiplied by 1000.

i 1 2 3 4 5 6 7 8
Qi 100 250 90 230 70 65 90 105

is typically expressed in dollars per $1000 premium, is given by

St =
8∑

i=1

Qi,tLRi,t,

where, for i ∈ {1, . . . , 8}, Qi,t/1000 is the proportion of premiums for sub-portfolio i

at time t. It was assumed that the portfolio distribution is stable over time, i.e., for

all t ∈ N, Qi,t ≡ Qi, with Q1, . . . , Q8 as given in Table 2–7.

Given the choice of marginals for the risks, a model for St can be written as

St = Q1ŝ1,t +Q2(0.551 + ŝ2,t + 0.935Y2,t−1 − 0.779X2,t−1) +
8∑

i=1

QiXi,

where X1 = Y1, X2 is the innovation of the ARMA(1, 1) model on Y2, and Xi =

LRi for i ∈ {3, . . . , 8}. In order to account for the possible dependence between

Q1X1, . . . , Q8X8, a copula-based hierarchical approach was used. Considering the

effect on the marginals of the legislative reform of September 1, 2010, it was deemed

preferable to construct separate dendrograms for the data before and after that date.

These dendrograms are displayed in Figure 2–11, where one can clearly see increased

dependence within the AB and TPL coverages for the two Ontarian subsidiaries after

the reform. The dependence between the Québec risks is unaffected by this reform

and generally higher than between Ontario risks.
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Figure 2–11: Hierarchical structures for Q1X1, . . . , Q8X8 before (left panel) and after
(right panel) the legal reform of September 2010.

2.6.3 Choice of copulas

Based on Figure 2–11, it was resolved to fit nine different copulas, i.e.,

a) copulas C{3,4}, C{1,2} and C{1,2,3,4} pertaining to Québec risks, which can be

estimated using the entire sample;

b) copulas C{7,8}b,a and C{5,6}b,a for the Ontario risks, where the indices b and a

refer to before and after the legal reform.

c) the product copula for the last two aggregation steps, as independence between

Québec and Ontario risks cannot be rejected at any reasonable level.

In order to guide the choice of families for steps a) and b), tests of independence,

symmetry, and extremeness were carried out; see [18], [25], and [22] for descriptions

of various rank-based procedures that can be used to this end. Based on rank plots

and the results of these tests, parametric families of bivariate copulas were selected

and fitted by maximum pseudo-likelihood ([20]). The final choices are summarized
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in Table 2–8. Details are provided in Chapter 3 of this thesis. It is hard to dis-

tinguish between copula families based on the after-reform sample, which has only

22 observations; for this reason, the same copula families were used for C{7,8}b and

C{7,8}a, as well as for C{5,6}b and C{5,6}a.

As a final validation step, random samples of sizes 80 and 22 were generated

using Algorithm 1 for the overall models before and after the reform. These samples

were then compared to the original data with the test statistic of [42]. The null

hypothesis that the two samples are coming from the same copula cannot be rejected

in either case (p = 0.51 and 0.69, respectively).

2.6.4 Risk measures and capital allocation

The model described above is useful for risk measurement and capital allocation.

Insurance companies often use the Value-at-Risk (VaR) or the Tail Value-at-Risk

(TVaR) for this purpose; both of them are defined in terms of a risk tolerance

level κ ∈ (0, 1). Consistent estimates of these quantities can be derived easily from

n independent copies (X11, . . . , Xd1), . . . , (X1n, . . . , Xdn) of (X1, . . . , Xd) generated

Table 2–8: Copula family and parameter estimates for each aggregation step.

Step Copula Parameter Standard Deviation
C{3,4} Galambos 2.429 0.353
C{1,2} t8 0.755 0.058
C{1,2,3,4} tev10 0.783 0.072
C{7,8}b t10 0.390 0.108
C{7,8}a t10 0.637 0.140
C{5,6}b Product
C{5,6}a Gaussian 0.700 0.171
C{1,2,3,4,7,8} Product
C{1,...,8} Product
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from the model. Denote by S1, . . . , Sn the simulated values of S = X1 + · · · + Xd

and let Fn be their empirical distribution function. Then

V̂aRκ(S) = inf{s ∈ R|Fn(s) ≥ κ} = sκ

and

T̂VaRκ(S) =
1

1− κ

[
1

n

n∑
j=1

Sj1(Sj > sκ) + sκ{Fn(sκ)− κ}
]
.

In order to assess the company’s exposure to risk for the period extending from

September 2010 to June 2012, it suffices to generate a large random sample from the

model using Algorithm 1, assuming that for all i ∈ {1, . . . , 8}, Qi dollars in monthly

premiums are invested in risk i. One can then compute various risk measures using

the sum of claims over that period. Such estimates are given in Table 2–9 at level

κ = 0.95 for two different random samples of size 10,000 from the model. In Scenario

I, the data were generated from the model as it stood just before the reform of

September 2010. In Scenario II, the model fitted to data after the reform was used.

In this fashion, it is possible to appreciate the effect of the introduction of limits on

AB claims in Ontario in September 2010.

From Table 2–9, one can see that before the reform, the projected average claim

amount for Risk 5 would have been $1881 over the 22-month period. This is in excess

of the total premiums earned for that risk over the same period, i.e., 22×$70 = $1540.

This would have been unsustainable. The need for a reform is even more obvious

when the VaR or TVaR for that risk are taken into account.

The impact of the reform on the marginal risks for AB coverages can be assessed

by comparing the VaR and TVaR for Risks 5 and 7 in Scenarios I and II. The drop
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in the VaR and TVaR of the entire portfolio is approximately $2000; this represents

about 10% of the $22,000 premium collected over that period.

Under Scenario II, T̂VaR0.95(S) = $13,946 would represent the company’s eco-

nomic capital for the entire portfolio. This amount is smaller than the sum of the

TVaR of the individual components, which totals $14,857. This illustrates the bene-

fit of diversification. By comparison, the TVaR0.95 can be estimated by simulation at

$13,504 when the risks are assumed to be mutually independent. This unwarranted

assumption would lead to an underestimation of the risk exposure.

The proposed model can also be used for capital allocation purposes, i.e., to

determine the share of the total risk that relates to each of the components. The

TVaR is typically used to this end. For each i ∈ {1, . . . , d}, the TVaR-based capital

Table 2–9: Estimated risk measures with κ = 0.95 and corresponding capital alloca-
tions for the period from September 2010 to June 2012 using the model prior to (I)
and after (II) the reform.

Risk
1 2 3 4 5 6 7 8 Total

Q×LR 1376 2937 1141 2696 749 875 718 1203 11,694
Mean 1371 2911 1368 3038 1881 1042 1528 1401 14,541
St. Dev. 35 156 193 246 164 121 107 107 583

I VaR 1429 3179 1683 3465 2162 1247 1711 1581 15,545
TVaR 1456 3296 1847 3603 2245 1302 1760 1628 15,903
ATVaR 1416 3153 1769 3512 1951 1081 1571 1450
Mean 1371 2910 1367 3041 760 1046 714 1400 12,609
St. Dev. 39 163 173 248 66 122 50 106 561

II VaR 1430 3176 1676 3484 874 1254 799 1577 13,586
TVaR 1459 3315 1802 3613 908 1313 823 1624 13,946
ATVaR 1419 3175 1736 3531 792 1113 735 1446
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allocation for risk Xi is defined by

TVaRκ(Xi;S) =
E[Xi1{S > VaRκ(S)}] + βκ E[Xi1{S = VaRκ(S)}]

1− κ
,

where

βκ =
FS{VaRκ(S)} − κ

Pr{S = VaRκ(S)}
if Pr{S = VaRκ(S)} > 0 and 0 otherwise. It can be estimated consistently by

T̂VaRκ(Xi;S) =
1

(1− κ)n

{
n∑

j=1

Xij1(Sj > sκ)

+
Fn(sκ)− κ∑n

�=1 1(S� = sκ)/n

n∑
j=1

Xij1(Sj = sκ)

}
.

Table 2–9 reports estimates of this quantity based on the same random samples

of size 10,000 from the selected models under Scenarios I and II. Given that the risks

are not comonotonic, the TVaR-based allocations are smaller than the TVaR of the

individual risks, illustrating diversification benefits. While the reform did not affect

capital allocations for Québec, as expected, it had a large impact in Ontario. In

addition, note the small increase in the allocation to Risk 6, caused by its stronger

dependence with Risk 5 after the reform.

Figure 2–12 displays TVaR-based allocations for September 2010, expressed in

percentage of the TVaR, before and after the reform under the proposed models (top

row) and under independence (bottom row). The difference in the top charts shows

the combined effect of the change in marginals and dependence before and after the

reform. The difference in the bottom charts isolates the effect of the margins. After

the reform, the Ontario risks represent a smaller portion of the overall capital, but
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the share of Risk 6 is increased. The smaller share of capital allocated to Risk 3 under

independence reflects its strong dependence with Risk 4 and the large exposure to

the latter.

2.7 Discussion

In this chapter, a strategy for modelling high-dimensional data is proposed; it is

based on successive aggregation of pairs of dependent random variables. The model

can be compared in essence to vine copula constructions, as it is defined with a

tree structure, marginal distributions, and bivariate copulas. However, inference is

simpler in the proposed approach, as all partial sums of variables are observable.

This modelling technique is particularly well-suited for actuarial applications, where

risk aggregation, and thus partial sums, is a primary concern. The proposed model

provided a good fit to real data from a Canadian insurance company, and simulation

was used to gain insight on risk exposure and capital allocations.

As for any model, the validity of the construction relies on assumptions. Vine

copula models assume a “simplifying assumption,” which has been the object of some

debate; see, e.g., [27] and [1]. Here, the main caveat is a conditional independence

assumption described in Section 2.2. This constraint on the dependence structure

makes sense intuitively and can be checked heuristically. However, a formal validation

procedure remains to be found. Also, Algorithm 1 for simulating from the resulting

model is partially, but not entirely, motivated by [2]. These issues will be addressed

in future work.
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Figure 2–12: TVaR-based allocations, expressed in percentage of TVaR0.95, before
(left) and after (right) the reform under the proposed models (top row) and inde-
pendence between the risks (bottom row).
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Appendix

Proof of Proposition 1. The formula is established by induction on the number

of risks. In the case d = 2, it simply states that the joint density of (Xi, Xj) is

fA1 (xi, xj) = cA1 {Fi (xi) , Fj (xj)} fi (xi) fj (xj) ,

with A1 = {i, j}, which is trivially true.

Next, assume that the formula holds for any tree structure linking at least 2 and

at most d ≥ 2 individual variables in such a way that the conditional independence

assumption holds. Consider a structure with d + 1 variables which satisfies the

conditional independence assumption, and let SAd,1
and SAd,2

be the two sums that

are aggregated at the last node, Nd. Letting s =
∑

i∈Ad,1
xi, one can then express

the joint density of (X1, . . . , Xd+1) as

f{1,...,d+1}(x1, . . . , xd+1)

= fAd,1
(xAd,1

|SAd,1
= s)fAd,2

(xAd,2
|SAd,1

= s)fAd,1
(s), (2.1)

where the conditional independence assumption has been used. Let K be the set

of indices representing the aggregation steps leading to SAd,1
. By the induction

hypothesis,

fAd,1
(xAd,1

|SAd,1
= s)fAd,1

(s)

=
∏
i∈K

cAi

⎧⎨⎩FAi,1

⎛⎝ ∑
j∈Ai,1

xj

⎞⎠ , FAi,2

⎛⎝ ∑
j∈Ai,2

xj

⎞⎠⎫⎬⎭ ∏
i∈Ad,1

fi (xi) . (2.2)
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Two cases must be distinguished according as Ad,2 is a singleton or not. If Ad,2 = {k},
then, by construction,

fAd,2
(xk|SAd,1

= s) = cAd
{FAd,1

(s), Fk(xk)}fk(xk). (2.3)

Upon substitution of (2.2) and (2.3) into (2.1), one gets the desired result, in view

of the fact that Ad,1 = {1, . . . , d+ 1} \ {k} and K = {1, . . . , d− 1}.
If Ad,2 has more than one element and t =

∑
i∈Ad,2

xi, then

fAd,2
(xAd,2

|SAd,1
= s) = fAd,2

(xAd,2
|SAd,1

= s, SAd,2
= t)fAd,2

(t|SAd,1
= s)

= fAd,2
(xAd,2

|SAd,2
= t)fAd,2

(t|SAd,1
= s),

where the conditional independence assumption was used once more. By construc-

tion, one has

fAd,2
(xAd,2

|SAd,1
= s) = fAd,2

(xAd,2
)cAd

{FAd,1
(s), FAd,2

(t)}.

Now if L = {1, . . . , d− 1} \K, the induction hypothesis yields

fAd,2
(xAd,2

) =
∏
i∈L

cAi

⎧⎨⎩FAi,1

⎛⎝ ∑
j∈Ai,1

xj

⎞⎠ , FAi,2

⎛⎝ ∑
j∈Ai,2

xj

⎞⎠⎫⎬⎭ ∏
i∈Ad,2

fi (xi) .

To conclude, it suffices to replace this expression and identity (2.2) into (2.1). �

Proof of Proposition 2. Clearly, D(X,X) = 0 and D(X, Y ) = D(Y,X) for

all choices of X and Y . To establish the triangle inequality, first write

D(X, Y ) = f{T (X, Y )} = 2
√
T (X, Y ){1− T (X, Y )},
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in terms of the probability T (X, Y ) that X and Y are discordant. Given variables

X, Y , Z with a = T (X, Y ), b = T (X,Z) and c = T (Z, Y ), one must show that

f(a) ≤ f(b) + f(c). (2.4)

As T is a pseudo metric ([13]), one has a ≤ b + c. Furthermore, it can be assumed

without loss of generality that b, c ≤ 1/2. This is because if b ≤ 1/2 and c > 1/2,

say, then (2.4) holds if and only if f(a′) ≤ f(b′) + f(c′), where a′ = T (X,−Y ),

b′ = T (X,Z) and c′ = T (Z,−Y ), with a′ ≤ b′+ c′, b′ = b ≤ 1/2 and c′ = 1− c ≤ 1/2.

Similarly if b > 1/2 and c ≤ 1/2, simply replace X by −X, while if b, c > 1/2, use

−Z instead of Z.

Now suppose b ≤ c without loss of generality. If a ≤ c, then f(a) ≤ f(c) ≤
f(b)+f(c) because f is increasing on [0, 1/2]. The same argument applies if 1−a ≤ c,

because f(a) = f(1 − a). Finally, suppose a > c and 1 − a > c. Two cases must

be considered. If b + c ≤ 1/2, then f(a) ≤ f(b + c) ≤ f(b) + f(c) because f(0) = 0

and f is concave increasing on [0, 1/2], which implies that it is subadditive on this

interval. If, however, b+ c > 1/2, then there exists δ > 0 such that s+ t− δ = 1/2,

and hence, from the properties of f ,

f(a) ≤ f(1/2) ≤ f(s) + f(t− δ) ≤ f(s) + f(t).

This completes the argument. �



CHAPTER 3
Data Analysis and Model Fitting

This chapter contains additional details concerning the data analysis that led to

the choice of a copula-based risk aggregation model for the insurance portfolio data

presented in Section 2.6. The data available consist of claim amounts and associated

earned premiums for the eight portfolios described in Table 2–3.

Claims data were provided in the form of monthly cumulative claim payment

development triangles. Data were available for accident months from January 2004

to June 2012, and claim development data were given as of August 2013. As some

of the latest months were recent, the classical Chain Ladder factors (see, e.g., [34])

were used to project the claims to their ultimate values. This is quite straightforward

and sensitive to confidentiality, so the development factors for the eight risks are not

reported here.

The earned premium for month t represents the portion of the premium paid to

the insurer that is allocated to month t, regardless of the actual payment frequency.1

1 For example, if a policy has an annual premium of $120 paid in January, the earned
premium in January is only $10 even if $120 is entered in the company’s book. In February,
the policyholder doesn’t pay a new premium, but the earned premium for that month is
again 10$, and so on.

45
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Assuming that pricing is consistent over the entire period, the earned premium is a

measure of the volume of the portfolio, which is directly related to the claim amount.

The purpose of this application is to build an appropriate model for the total

claim payment arising from the eight portfolios, in order to determine risk measures

and capital allocations. However, the claim payments for different months are not

directly comparable, because of the upward trend induced by inflation and business

growth. In fact, material increase in volume is visible in the data; for example, the

ratio of earned premiums for Subsidiary C in January 2012 to those in January 2004

is 263%. Thus, the fluctuation in volume has to be taken into account. This can be

accomplished by modelling the loss ratio, defined as the ultimate claim paid over the

earned premium, rather than by modelling the claim amounts. In this fashion, the

effect of inflation is also eliminated.

The loss ratios are analyzed for trend, seasonality and autocorrelation as detailed

in Section 3.1. It is necessary to extract these marginal effects before fitting the mul-

tivariate copula model. Once the behaviour of the individual risks is determined, the

tree structure for the hierarchical dependence model is selected in Section 3.2 and

the choices of copulas are explained. The proposed risk aggregation model seems ad-

equate for this portfolio, as can be seen in Section 3.3. Finally, conclusions obtained

with the fitted model are outlined, along with further comments in Section 3.4.

3.1 Univariate analysis

For each risk, the loss-ratio time series is reviewed for trend, seasonality or

structural change point. Autocorrelation and mean reversion are taken into account

if significant. Then, a parametric distribution is chosen, and the parameters are
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fitted using maximum likelihood estimation. The distributions considered for each

risk included the Gamma, Pareto, Lognormal and truncated Normal distributions.

In most cases, the fat tail of the loss ratio distribution is hard to capture accurately,

so generalized hyperbolic distributions, described in [37], were also considered as

an option. Using the parametrization in [5], Y follows a generalized hyperbolic

distribution if there exist μ, γ ∈ R and σ > 0 such that

Y
d
= μ+Wγ +

√
WσZ,

where Z ∼ N (0, 1), W ∼ Generalized Inverse Gaussian(λ, χ, ψ), and
d
= denotes

equality in distribution. The parameters may be estimated with the R package

ghyp, where for simplicity and identifiability, one sets E(W ) = 1 and α =
√
χψ.

A special case of this distribution is the skewed t(ν) distribution, obtained when

W ∼ Inverse Gamma{ν/2, (ν − 2)/2}. These distributions are defined on R, so care

was taken to verify that there was essentially no weight on (−∞, 0). In the following

subsections, the univariate analysis is performed on each type of coverage.

3.1.1 Québec automobile insurance coverages

Loss ratios for Risks 1 and 2, Québec automobile insurance coverages, exhibit

large seasonality. As displayed in Figure 3–1, larger loss ratios are incurred in the

winter, and there is a small increase in the incidence during summer vacation time.

The loss ratios are thus decomposed into a random component and a deterministic

monthly seasonality, denoted s�,t for � = 1, 2 and such that s�,t = s�,t+12. The seasonal

components, shown in Table 2–6, are estimated by setting ŝ�,k = w�,k −
∑12

j=1 w�,j for

k = 1, . . . , 12 and � = 1, 2, where w�,k is the average of the centered loss ratios for
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Figure 3–1: Scatterplots of the loss ratios for Risks 1 (left) and 2 (right) in terms of
the month.

month k over all the years in the study period (see, e.g., [7] for details). In computing

w�,6, for � = 1, 2, the outlier data points for June 2008 are removed. These large

loss ratios are due to the hail storm that affected many regions of Québec, and this

storm is listed as a catastrophic event by the Insurance Bureau of Canada in [28].

No trend was discernible in the time series for Risks 1 and 2, and one can see in

Figure 3–2 that the deterministic component, representing a constant mean plus the

seasonality, explains most of the seasonal variations in the data.

Once the seasonality is removed from Risk 1, X1,t = LR1,t−ŝ1,t is a White Noise,

as supported by the Ljung–Box test with 10 degrees of freedom (p-value of 6.3%).

However, in order to account for mean reversion and significant autocorrelation of

first order in Risk 2, LR2 is modelled as LR2,t = m̂2+ ŝ2,t+Y2,t, where m̂2 = 0.5508,

ŝ2,t = ŝ2,t+12, and

Y2,t − 0.9346Y2,t−1 = X2,t − 0.7793X2,t−1,
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Figure 3–2: Time series and deterministic component for Risks 1 (top) and 2 (bot-
tom).

where X2,t is a White Noise. This ARMA(1, 1) model was selected using the Akaike

Information Criterion (AIC); it has the lowest AIC at −280.2, compared with −276.2

for ARMA(2, 1) and −275.7 for AR(3). Note that the Gaussian likelihood is used

even though the innovations are not Gaussian, but this is adequate for model selection

purposes as explained in [6].

It remains to choose marginal distributions forX1 andX2. The best fit for Risk 2

is provided by the skewed t distribution, with 5 degrees of freedom, μ̂ = −0.0310, σ̂ =

0.0483 and γ̂ = 0.0303. The AIC for that model is the lowest, at −315.7, and is

followed by the more complex generalized hyperbolic distribution (AIC of −311.7).
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Figure 3–3: Histograms of Risks 1 (left) and 2 (right) and fitted skewed t(5) densities.

The AIC obtained for the other distributions were above −297. The histogram of

X2 is similar to the fitted skewed t density, as shown in the right panel of Figure 3–

3. The probability of generating a negative loss ratio (once the seasonal and mean

components are added) is equal to 7.2×10−12, which is negligible. Summary statistics

are shown in Table 3–1 and are comparable with their empirical counterpart. The

quantile-quantile plot shown in the right panel of Figure 3–4 outlines the presence

of the catastrophic loss ratio in June 2008. This data point is not so influential in

the parameter estimation; the main impact of the removal of this observation is to

decrease the estimate of the skewness parameter γ by 0.01.

Table 3–1: Summary statistics for Risks 1 and 2.

Risk Distribution Mean St. Dev. Median 95th Quantile 99th Quantile
X1 Empirical 0.6214 0.0890 0.6105 0.7403 1.2374

Skewed t 0.6187 0.0768 0.6098 0.7337 0.8533
X2 Empirical −0.0008 0.0597 −0.0070 0.0940 0.3425

Skewed t −0.0006 0.0689 −0.0087 0.0952 0.2019
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Figure 3–4: Quantile-quantile plots for Risks 1 (left) and 2 (right) and fitted skewed
t(5) densities.

Extreme observations for Risk 1 restrict the options available to the heavy-

tailed distributions. Once again, the skewed t(5) distribution provided the best fit,

although the heaviness of the right tail is not entirely captured by this model, which

is illustrated in the left panel of Figure 3–4. The probability of generating a negative

loss ratio is immaterial (2.5 × 10−9). The histogram of Risk 1 is compared with

the fitted density in Figure 3–3; the result is satisfying. The AIC for Skewed t(5)

is −267.6, compared with −265.1 for the generalized hyperbolic distribution. The

other distributions led to very poor fit and an AIC higher than −230. It is interesting

to note that even though the quantile-quantile plot is not perfectly aligned, there is a

0.08% probability of generating a loss ratio as high as the one observed in June 2008.

In the options considered, no other model with finite variance could generate such

a large observation while providing a reasonable fit to the bulk of the distribution.

Finally, the outlier observation is not so influential on the overall estimation.
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Figure 3–5: Time series for Risks 3 (top) and 4 (bottom).

3.1.2 Québec home insurance coverages

Risks 3 and 4 are home insurance coverages in Québec. These risks are simpler

to model than the automobile insurance in the same province. No seasonality or

trend is detected, even when the outlier data points for April and June 2008 are

removed.2 Both of these time series are White Noise according to the Ljung–Box

test (see Table 2–4), which can be visually assessed by looking at Figure 3–5.

For Risk 3, the lowest AIC, 18.6, is obtained for the skewed t distribution with 9

degrees of freedom. However, in that case, the skewness is too large so it is impossible

2 Large amounts of snow in the winter of 2008 caused damage to pools and structures,
which were reported mainly in April. Many claims were incurred due to the June 2008 hail
storm.
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Figure 3–6: Quantile-quantile plots for Risk 3 using skewed t(8) (left) and lognormal
(right).

to evaluate the quantiles reliably by simulation, and there is no closed form expression

for the cumulative distribution function. Thus, it is more useful to select a skewed

t(8), with AIC = 18.8, because the quantiles can be evaluated and the difference in

the AIC and the fit is immaterial. The lognormal distribution yielded an AIC of 22.0,

but the probability in the right tail is clearly underestimated, as shown in Figure 3–6.

The skewed t(8) is preferred, even if the high quantiles are slightly overestimated (as

can be visually assessed in the left panel of Figure 3–6).

In Table 3–2, some summary statistics of the distribution of X3 are compared

with their empirical versions. The standard deviation of the fitted model is larger

than its empirical counterpart due to the heavy tail. It is preferable to overestimate

Table 3–2: Summary statistics for Risks 3 and 4.

Risk Distribution Mean St. Dev. Median 95th Quantile 99th Quantile
X3 Empirical 0.6774 0.3328 0.5958 1.46 2.04

Skewed t(8) 0.6904 0.4168 0.5825 1.40 2.25
X4 Empirical 0.5993 0.2188 0.5429 1.11 1.46

Skewed t(16) 0.6008 0.2286 0.5526 1.03 1.39
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Figure 3–7: Histogram of Risk 4 and fitted densities.

the high quantile than to underestimate them (by using the lognormal distribution,

for example), as it leads to a more conservative assessment of the risk related to the

insurance portfolio. Finally, there is virtually no weight below zero for this skewed

t(8) distribution, and the parameters estimated are given in Table 2–5.

For Risk 4, the skewed t(16), with AIC = −44.8 and the lognormal distribution,

with AIC = −44.9, are considered. Both densities seem to provide a good fit to

the histogram of LR4 in Figure 3–7. However, the skewed t distribution provides a

better fit in the right tail, as illustrated in the quantile-quantile plot in Figure 3–8.
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Figure 3–8: Quantile-quantile plots for Risk 4 using skewed t(16) (left) and lognormal
(right).
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Thus, the latter option is selected, in line with the treatment of Risk 3. Summary

statistics in Table 3–2 show that the median, first, and second moments are close to

their empirical values.

3.1.3 Ontario Accident Benefits coverages

Risks 5 and 7, Accident Benefits (AB) coverages in Ontario, were affected by

a reform of the Ontario Insurance Act effective on September 1, 2010 (month 81 in

the time series data). The mitigating effect of the reform is clearly visible in the

time series for both risks in Figure 3–9, so it is adequate to assume a structural

change point at that date. However, this leaves only 22 data points to estimate the

distribution after the reform. In order to guide the choice of distribution, the same

family of distribution was fitted before and after the reform.
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Figure 3–9: Time series for Risks 5 (top) and 7 (bottom).
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Risk 5 shows an upward trend before the reform, due to a period of high inflation

in the claim amounts. Many options for modelling the trend deterministically were

tested. In the end, it was decided that the simple option of fitting a linear regression

to the logarithm of the loss ratio provided a satisfactory fit. Thus, for t = 1, . . . , 80,

log(LR5,t) = −0.9357 + 0.0116t+ ε5,t,

where ε5,t ∼ N (0, σ̂b = 0.3939). The test of overall significance for this regression

model yielded a p-value of 4.5× 10−8, and the coefficient of determination is 32.04%.

The studentized residuals appear to be Normal and exhibit no clear pattern, as shown

in Figure 3–10.

Therefore, the lognormal distribution was also selected for Risk 5 after the re-

form. It provides an adequate fit to the few data points available. A constant mean

is reasonable in this case, and the maximum likelihood estimates of the parameters

are μ̂a = −0.7821 and σ̂a = 0.3684. As the loss ratios on the log scale are Normally
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Figure 3–10: Studentized residuals (left) and quantile-quantile plot (right) for the
regression on log(LR5,t).
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distributed, an F -test of equality of variance can be used and leads to a statistic of

1.66 with 79 and 21 degrees of freedom. Thus, the p-value is 9.4%, and the test does

not allow the rejection of the null hypothesis that both variances are equal. The

pooled variance estimate σ̂ = 0.3887 is, therefore, the estimated parameter for both

before and after the reform.

Risk 7 is a White Noise and no trend is detected in the time series. Before the

reform, the lognormal (AIC = −5.3) and the gamma (AIC = −5.8) distributions

are the best options. The quantile-quantile plots are compared in Figure 3–11, and

one can see that even though the AIC is lower for the gamma distribution, the right

tail is better represented by the lognormal distribution (shown in the left panel).

Hence, the lognormal distribution is selected to capture the high quantiles, and the

same family is fitted to the data after the reform. Once again, the F -test of equality

of variance is performed and the hypothesis that the variance before and after the

reform are equal cannot be rejected.
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Figure 3–11: Quantile-quantile plots for Risk 7 before the reform using lognormal
(left) and gamma (right).
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3.1.4 Ontario Third Party Liability coverages

The last type of coverage to model marginally is the Third Party Liability (TPL)

insurance, represented by Risks 6 and 8. The reform of the Ontario Insurance Act

did not affect the TPL coverages directly, and the time series data for these risks

displayed in Figure 3–12 do not reflect any major change after September 2010. It

is therefore simple and justifiable to model these risks without assuming a change

point. Both risks are White Noise according to the Ljung–Box test.

The exceptionally large loss ratio in April 2007 for Risk 6 is explained by two

litigation cases that were incurred in that month. The presence of this extreme

observation reflects the volatile nature of the TPL claims, and it is thus important

to take this observation into account. However, it is not easy to find a model that
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Figure 3–12: Time series for Risks 6 (top) and 8 (bottom).
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Table 3–3: Summary statistics for Risks 6 and 8.

Risk Distribution Mean St. Dev. Median 95th Quantile 99th Quantile
X6 Empirical 0.7300 0.4494 0.6592 1.41 3.78

Gamma 0.7299 0.3954 0.6599 1.48 1.95
X8 Empirical 0.6061 0.2080 0.5978 0.99 1.21

Gamma 0.6061 0.2162 0.5806 1.00 1.22

can produce such large observations. The skewed t distribution has the smallest

AIC (80.5), followed by the gamma (82.7). The skewed t distribution is not skewed

enough to remove all the weight on (−∞, 0), so the gamma distribution was preferred,

considering that the model fits were very similar. In Table 3–3, one can see that the

standard deviation of the fitted model is smaller than the empirical one. This is due

to the large influence of the outlier observation on the second empirical moment. The

mean, the median, and the 95th quantile of the fitted distribution match reasonably

their empirical counterparts.

For Risk 8, the gamma distribution has the minimum AIC, −27.9, followed by

the skewed t distribution (AIC = −26.9). However, with the latter, the probability

of having a negative loss ratio is 0.04%, which is inadequate. Thus, the gamma

distribution with α̂ = 7.86 and β̂ = 12.96 is selected. In Table 3–3, it is clear that

the parametric distribution fits very closely the empirical one, as the moments and

the quantiles compared are almost identical. The quantile-quantile plot for Risks 6

and 8 are shown in Figure 3–13 and support the above analysis.
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Figure 3–13: Quantile-quantile plots for Risks 6 (left) and 8 (right) using gamma
distribution.

3.2 Determination of the tree structure and selection of copulas

The second component of the risk aggregation model is the tree structure defin-

ing the order in which the risks are combined. For eight risks, as many as 135,135

different trees could be considered. Although it would be more intuitive to group the

risks related to the same province together, many different possibilities are reason-

able, e.g., grouping first by coverage, or by subsidiary. This illustrates the usefulness

of the clustering method from Section 2.3 along with a dependence-based distance.

A little more notation is needed to describe how the marginal impacts were

removed before modelling the dependence structure. Recall that X1 is the de-

seasonnalized series for Risk 1, i.e., X1,t = LR1,t − ŝ1,t, and X2,t represents the

innovation from the ARMA model on the de-seasonalised loss ratio Y2,t for Risk 2.

Finally, let Xj,t denote the loss ratios LRj,t for j ∈ {3, . . . , 8} and t ∈ {1, . . . , 102}.
The purpose of the approach is to model the total claim amount, so one must trans-

late the loss ratios into claims, by multiplying them by a premium. For an insurance
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Table 3–4: Proportions of premiums, multiplied by 1000.

i 1 2 3 4 5 6 7 8
Qi 100 250 90 230 70 65 90 105

company, future earned premiums are not known exactly due to new business and

lapses, but they are fairly stable over consecutive months, and thus are easy to pre-

dict for the next month. For purposes of determining the structure and projecting

the model, it is assumed that $1,000 of premiums is invested monthly in the portfolio,

in the proportions presented in Table 3–4 (repeated here for convenience). Therefore,

the aggregate claim amounts St can be modelled as

St = Q1ŝ1,t +Q2(0.551 + ŝ2,t + 0.935Y2,t−1 − 0.779X2,t−1) +
8∑

i=1

QiXi,t,

where X1, . . . , X8 are dependent.

As the legal reform affected the marginal behaviours of Risks 5 and 7, the obser-

vations of X1, . . . , X8 are not all identically distributed, due to the different marginal

distributions for Risks 5 and 7 for t ∈ {81, . . . , 102}. In fact, it is inappropriate to

simply use the ranks of these two variables in the estimation, without accounting

for the different marginal distributions before and after the change point. Nor was

it necessary to standardize the two risks, because the reform seems to have affected

the dependence structure between the Ontario coverages as well.

The method presented in Section 2.3, along with the distance based on Kendall’s

tau, can be applied in two stages to the data before the reform (80 data points) and

to the data after the reform (22 data points). The aggregation structures obtained

are shown in Figure 3–14. While the tree structure itself is the same, the dependence
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Figure 3–14: Hierarchical structures for Q1X1, . . . , Q8X8 before (left panel) and after
(right panel) the legal reform of September 2010.

between the Ontario risks is increased after the reform. This is supported by the

values of Kendall’s tau and Spearman’s rho for the two samples, shown in Table 3–5.

Therefore, it is simple and convenient to estimate different copulas for risks (X5, X6)

and (X7, X8) before and after the reform. The Québec risks are not affected by the

change point, so the entire sample is used to determine the appropriate copulas for

(X1, X2), (X3, X4) and (Q1X1 +Q2X2, Q3X3 +Q4X4).

The last two aggregation steps involve the Ontario risks, so the dependence

should also change on September 1, 2010. However, the null hypothesis of indepen-

dence is rejected in neither of the four cases on the basis of the tests of independence

Table 3–5: Association measures for Ontario risks before and after the reform.

Before reform After reform
Risks τ80 ρ80 τ22 ρ22

(X5, X6) 0.070 0.100 0.437 0.602
(X7, X8) 0.247 0.361 0.394 0.545
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Table 3–6: p-values for Kendall and Spearman tests of independence on the last two
aggregation steps.

Before reform After reform
Step Kendall Spearman Kendall Spearman

C{1,...,4,7,8} 0.480 0.410 0.263 0.223
C{1,...,8} 0.666 0.637 0.577 0.528

carried out (see the p-values reported in Table 3–6). Hence, the product copula is

appropriate for C{1,...,4,7,8} and C{1,...,8}, reflecting risk diversification between the two

provinces.

The product copula may not be used for C{3,4}, following the results of the tests

of independence whose p-values are reported in Table 3–7. The choice of copula

family for C{3,4} can be guided by the result of the test of extremeness as described

in [25]. For this test, the null hypothesis is H0 : C{3,4} ∈ C, where C is the class of

extreme-value copulas. Thus, large p-values are desired to support the selection of

an extreme-value copula. The test statistic and p-value computed with the finite-

sample variance were obtained with the function evTestK of the R package copula.

The results are shown in Table 3–8, and in this case, the p-value is 63%, which

indicates that an extreme-value copula is a viable option.

Goodness-of-fit tests based on the Cramér–von Mises statistic Sn, as detailed in

[23], can be used to verify that the chosen copula is reasonable. The null hypothesis

Table 3–7: p-values for Kendall and Spearman tests of independence on the Québec
risks.

Step Kendall Spearman
C{3,4} < 0.01% < 0.01%
C{1,2} < 0.01% < 0.01%
C{1,...,4} 0.33% 0.33%
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Table 3–8: Results of test of extremeness with finite sample variance.

Step Statistic p-value
C{3,4} −0.49 62.7%
C{1,2} 1.79 7.3%
C{1,...,4} 0.05 95.9%
C{5,6}a 4.61 < 0.1%
C{7,8}b 2.05 4.0%
C{7,8}a 1.27 20.4%

of this test is again of the form H0 : C{3,4} ∈ C, for specific choices of parametric

copula families. Goodness-of-fit tests on different copulas were conducted and the

results are shown in the Appendix. The largest p-value (18%) was obtained for

the Galambos copula. Although this is a shaky basis for selecting a copula family,

this specific choice also seems to provide the best fit, based on comparisons of the

scatterplot of the pairs of ranks and simulated observations from different copulas

(shown in Figure 3–15 only for the Galambos copula), and comparisons of pairs
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Figure 3–15: Pairs of ranks for X3 and X4 (left), and 102 simulated observations
from a Galambos copula with τ = 0.68 (right).
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of observed and simulated rankits. Hence, the Galambos copula with τ = 0.68 is

selected for C{3,4}.

The same process is used to select the copula family for C{1,2}. The product

copula is not appropriate (as shown in Table 3–7) and there is no strong evidence in

favour of an extreme-value copula; the p-value of the test of extremeness, reported

in Table 3–8, is only 7.3%. Pairs of ranks are shown in the left panel of Figure 3–

16 and are compared with simulated observations for the t8 copula with parameter

0.755, estimated by maximum pseudo-likelihood. This copula seems to describe

appropriately the dependence between X1 and X2, and also has the maximum p-

value for the goodness-of-fit test performed (refer to Table A–2 in the Appendix).

The last copula for Québec risks links Q1X1 + Q2X2 and Q3X3 + Q4X4. The

hypothesis of independence is rejected at the 1% level (p-value of 0.33% for the

tests of independence based on Kendall’s tau and Spearman’s rho). In fact, there

is evidence of dependence in the extremes, as the p-value for test of extremeness is
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Figure 3–16: Pairs of ranks for X1 and X2 (left), and 102 simulated observations
from a t8 with τ = 0.54 (right).
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Figure 3–17: Pairs of ranks for Q1X1 + Q2X2 and Q3X3 + Q4X4 (left), and 102
simulated observations from a tev10 with τ = 0.39 (right).

95.9%. This is also visible in the upper right corner of the scatterplot of the pairs of

ranks in the left panel of Figure 3–17. The t extreme-value copula with 10 degrees

of freedom and τ = 0.39 is selected for C{1,...,4}, and the goodness-of-fit test for this

copula yielded a p-value of 94.26%.

For the purpose of determining the tree structure and estimating the copulas,

the loss ratios for Risk 5 before the reform are centered to remove the effect of the

upward trend. The copula for Risks 5 and 6 before the reform is then the product

copula; the null hypothesis of independence cannot be rejected, as can be seen from

Table 3–9. However, after the reform, independence is rejected at the 1% level, and

it is necessary to fit a copula to the 22 data points available after the reform. As

shown in Table 3–8, extreme-value copulas are not adequate. In the absence of more

observations, the Gaussian copula was selected, because it led to the highest p-value

(98.45%) for the goodness-of-fit test and it had as a special case the product copula.

This is thus consistent with the structure observed before the reform.
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Table 3–9: p-values for Kendall and Spearman tests of independence on the Ontario
risks.

Before reform After reform
Step Kendall Spearman Kendall Spearman
C{5,6} 35.64% 37.80% 0.39% 0.36%
C{7,8} 0.12% 0.11% 0.99% 0.97%

Pairs of ranks of X7 and X8 before the legal reform in Ontario are plotted in the

left panel of Figure 3–18. Copula C{7,8}b is probably not an extreme-value copula, as

the test of extremeness mildly rejects the null hypothesis (p-value of 4%). Simulated

observations from the t10 copula shown in the right panel of Figure 3–18 compares

reasonably with the pseudo-observations of C{7,8}b. This copula also yielded the

highest p-value for the goodness-of-fit test performed, as outlined in Table A–5 in

the Appendix. In fact, this copula family also provides a reasonable fit to the data

after the reform, and it is comforting to use again the t10 copula for C{7,8}a, but the

Kendall tau induced by the copula is increased from 0.26 (before reform) to 0.44

(after reform).
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Figure 3–18: Pairs of ranks for X7 and X8 before the reform (left), and 80 simulated
observations from a t10 with τ = 0.26 (right).
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3.3 Model validation

Algorithm 2 can be used to broadly validate the models before and after the

reform. This is performed using the TwoCop library in R, which only supports tests

when the two sample sizes are equal. p-values before the reform is 51% and after the

reform is 69%. These large p-values indicate the non-rejection of the null hypothesis

that the true sample and the simulated sample are coming from the same distribution.

This is an argument in favour of the adequacy of the model.

Another way to verify indirectly whether the conditional independence hypoth-

esis is fulfilled is to compare plots of observed and simulated pairs that are not

explicitly modelled. Two examples are displayed in Figures 3–19 and 3–20. It is pos-

sible to visually compare the observed ranks (left panel) with simulated data from

the copula-based aggregation model (right). In both cases, there is no reason to

think that the model is inappropriate based on these plots. This technique was used

on other implicitly modelled pairs (not shown) and similar conclusions were drawn.
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Figure 3–19: Pairs of ranks for observed (X1, X3) (left), and 102 simulated observa-
tions of (X1, X3) (right).
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Figure 3–20: Pairs of ranks for observed (X2, X4) (left), and 102 simulated observa-
tions of (X2, X4) (right).

3.4 Further results and conclusions

The model estimated after the reform can be used to project the results for

month of July 2012, assuming $1000 of premiums in the entire portfolio, divided

between the risks using proportions Qi. Table 3–10 presents the estimated risk

measures, computed with the formulas in Section 10.3.5 of [36], based on 10,000

simulations using Algorithm 1. In that table, the Q×LR rows represent the real data

for the months of July and August 2012, in order to assess the predictive power of

the model. However, the claim payments are known only up to August 2013 and are

developed to ultimate using the Chain Ladder factors. This means that the ultimate

loss ratios are uncertain, especially for Risks 6 and 8 because the claim runoff is

longer for the TPL coverage. Despite the uncertainty, the expectations under the

model seems similar to the observed values, except maybe for Risk 6, where the

results might be overestimated. This could be explained by the fact that no change
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Table 3–10: Estimated risk measures with κ = 0.99 and corresponding capital allo-
cations for the month of July 2012.

Risk 1 2 3 4 5 6 7 8 Total
Q 100 250 90 230 70 65 90 105 1000
Q×LR July 2012 67 143 62 125 26 26 33 60 542
Q×LR August 2012 59 131 83 156 31 18 27 57 562
Mean 55 127 62 138 34 47 33 64 561
St. Dev. 7 16 38 53 14 25 11 23 110
VaR 79 179 198 317 79 125 64 129 912
TVaR 95 214 282 382 94 141 74 143 1093
ATVaR 77 176 270 374 38 52 35 71

point was assumed after the reform for TPL for simplicity, but there was slight visual

evidence of a lower mean in the loss ratios in the last months in Figure 3–12.

Summing the individual TVaRs leads to $1425, which represents the TVaR of

the sum of the risks if they were comonotonic. Using the model, a $332 diversification

benefit is gained, which is material as it represents one third of the earned premiums.

The major portion of the risk for this portfolio is allocated to Home Insurance

coverage (Risks 3 and 4). This is partly due to the large premium collected for

Risk 4, hence a bigger exposure, but it is also related to the strong dependence

between these two risks. Interestingly, the TVaR-based capital allocations for both

Home Insurance risks are higher than the earned premiums for these risks, which is

not the case for the other types of coverages. For the insurance company, this means

that growing the Home insurance business line in Québec requires more capital than

focusing on Automobile insurance, for example. Such a multivariate model is thus

a useful tool for strategic planning and capital management. This illustrates why

developing a model tailored to the company’s risks is encouraged under the new
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Own Risk and Solvency Assessment guideline of the Office of the Superintendent of

Financial Institutions in Canada [40].

Capital requirement calculated with this model could be used for insurance risks.

However, other risks have to be taken into account and included in the overall assess-

ment of an insurance company’s exposure. For example, the so-called parameter risk

(risk of mis-estimation of model parameters) was not considered here; the maximum

likelihood parameter estimates were used without margin for adverse deviation.



CHAPTER 4
Conclusion

The copula-based risk aggregation model offers a simple and practical frame-

work to model risk vectors. Such a model for d risks is defined with a tree structure,

d − 1 bivariate copulas and d marginal distributions. Under the conditional inde-

pendence assumption, the joint distribution of the risks is unique. This assumption

introduces constraints on the dependence between risks that are not aggregated to-

gether directly, but it is intuitive and it seems to be reasonable in many cases. In

this thesis, a procedure to determine the tree structure was presented and an algo-

rithm for generating data from the model was adapted from [2]. The entire process

from estimation to model validation was illustrated with simulated data and with an

application to insurance portfolio modelling.

The insurance data in the analysis of Chapter 3 are complex. Nevertheless, the

copula-based aggregation model is flexible enough to lead to valuable conclusions.

The copulas selected are various extreme-value and elliptical copulas inducing differ-

ent degrees of association, meaning that using nested Archimedian copulas would be

inadequate. Parameter estimation is straightforward and does not require a simpli-

fying assumption as in the vine copula approach. The proposed aggregation model

is thus an interesting option, and it is in fact already used in practice.

In the illustration, it was observed that a legislative reform had an impact

on the degree of dependence between the risks. This structural change point was

72
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obvious, but it highlights the fact that the dependence between risks may change over

time, or due to external factors. This trend risk should be monitored by insurance

companies, and it would be interesting to develop tools that could help model changes

in dependence structure over time.

There are multiple future areas of research on the topic. It would be interesting

to either validate Algorithm 1 fully, or to explore other simulation methods exploiting

the joint density obtained in Proposition 2, e.g., the Metropolis–Hastings algorithm.

It would also be useful to implement the test of [42] for unequal sample sizes to

improve the power of the test, until a formal model validation technique is developed.

This could be in the form of a goodness-of-fit test, in which the null hypothesis is that

the model is adequate, or another validation technique to verify that the conditional

independence assumption is fulfilled. Finally, it might also be worthwhile to see how

this model can be applied to micro-level data: individual coverages within a policy

could be modelled using the copula-based risk aggregation approach.
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Table A–1: Results of goodness-of-fit tests for C{3,4}.

Copula Sn Parameter p-value
Gumbel 0.0224 3.13 17.83%
Galambos 0.0221 2.43 18.13%
Hüsler–Reiß 0.0224 3.11 16.93%
Gaussian 0.0319 0.88 2.05%
t4 0.0401 0.86 0.95%
Joe 0.0385 4.26 2.85%
Frank 0.0285 10.61 5.25%
Plackett 0.0447 26.79 0.65%
Clayton survival 0.0449 3.47 2.05%
tev4 0.0239 0.96 11.04%
tev8 0.0222 0.98 13.34%
tev10 0.0220 0.98 17.03%
tev15 0.0219 0.99 16.50%

Table A–2: Results of goodness-of-fit tests for C{1,2}.

Copula Sn Parameter p-value
Gumbel 0.0230 2.117 22.63%
Galambos 0.0227 1.414 26.82%
Hüsler–Reiß 0.0230 1.946 27.52%
Gaussian 0.0188 0.762 42.41%
t4 0.0188 0.733 46.20%
t7 0.0177 0.752 50.00%
t8 0.0177 0.755 51.10%
t9 0.0178 0.756 47.70%
t10 0.0178 0.758 48.00%
t15 0.0181 0.761 44.61%
Joe 0.0665 2.514 0.25%
Frank 0.0366 5.970 3.85%
Clayton 0.0727 1.596 0.55%
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Table A–3: Results of goodness-of-fit tests for C{1,...,4}.

Copula Sn Parameter p-value
Gaussian 0.0185 0.338 65.08%
t4 0.0222 0.298 43.41%
t8 0.0194 0.320 56.09%
t15 0.0188 0.329 60.09%
Frank 0.0226 1.828 40.21%
Plackett 0.0229 2.411 45.80%
tev8 0.0129 0.740 92.96%
tev9 0.0128 0.766 94.26%
tev10 0.0128 0.787 94.26%
tev11 0.0128 0.804 93.26%

Table A–4: Results of goodness-of-fit tests for C{5,6}a.

Copula Sn Parameter p-value
Gaussian 0.0180 0.700 98.45%
t4 0.0286 0.616 68.38%
t10 0.0214 0.669 92.26%
t15 0.0202 0.680 96.15%
Frank 0.0303 4.520 73.08%
Plackett 0.0384 5.945 49.50%
Clayton 0.0287 1.566 60.99%

Table A–5: Results of goodness-of-fit tests for C{7,8}.

C{7,8}b C{7,8}a
Copula Sn Parameter p-value Sn Parameter p-value
Gaussian 0.0124 0.398 96.45% 0.0239 0.640 79.87%
t4 0.0166 0.364 82.47% 0.0252 0.625 81.87%
t10 0.0129 0.390 96.95% 0.0240 0.637 85.26%
t15 0.0125 0.394 96.55% 0.0239 0.638 81.97%
Frank 0.0160 2.359 91.36% 0.0293 4.322 78.47%
Plackett 0.0171 2.990 86.16% 0.0263 7.677 88.26%
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[8] H. Bühlmann. The actuary: The role and limitations of the profession since the

mid-19th century. ASTIN Bulletin, 27:165–172, 1997.

76



77

[9] U. Cherubini, E. Luciano, and W. Vecchiato. Copula Methods in Finance. Wiley,

New York, 2004.

[10] C. Czado, U. Schepsmeier, and A. Min. Maximum likelihood estimation of mixed

C-vines with application to exchange rates. Statistical Modelling, 12:229–255,

2012.

[11] M. Denuit, J. Dhaene, M.J. Goovaerts, and R. Kaas. Actuarial Theory for

Dependent Risks: Measures, Orders and Models. Wiley, New York, 2005.

[12] J. Dhaene, L. Henrard, Z. Landsman, A. Vandendorpe, and S. Vanduffel. Some

results on the CTE-based capital allocation rule. Insurance: Mathematics and

Economics, 42:855–863, 2008.

[13] P. Diaconis and R.L. Graham. Spearman’s footrule as a measure of disarray.

Journal of the Royal Statistical Society, Series B, 39:262–268, 1977.

[14] J. Dißmann, E.C. Brechmann, C. Czado, and D. Kurowicka. Selecting and esti-

mating regular vine copulae and application to financial returns. Computational

Statistics & Data Analysis, 59:52–69, 2013.

[15] E.W. Frees and E.A. Valdez. Understanding relationships using copulas. North

American Actuarial Journal, 2:1–25, 1998.

[16] Financial Services Commission of Ontario. Changes to automobile insurance reg-

ulations, 2010. www.fsco.gov.on.ca/en/auto/autobulletins/2010/Pages/

a-01 10.aspx. Accessed on February 12, 2014.

[17] E. Furman and Z. Landsman. Economic capital allocations for non-negative

portfolios of dependent risks. ASTIN Bulletin, 38:601–619, 2007.



78

[18] C. Genest and A.-C. Favre. Everything you always wanted to know about copula

modeling but were afraid to ask. Journal of Hydrologic Engineering, 12:347–368,

2007.

[19] C. Genest, M. Gendron, and M. Bourdeau-Brien. The advent of copulas in

finance. The European Journal of Finance, 15:609–618, 2009.

[20] C. Genest, K. Ghoudi, and L.-P. Rivest. A semiparametric estimation procedure

of dependence parameters in multivariate families of distributions. Biometrika,

82:543–552, 1995.
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Modèles sur une période. Statistique et probabilités appliquées. Springer, Paris,

2013.

[37] A.J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Con-

cepts, Techniques, and Tools. Princeton University Press, Princeton, NJ, 2005.
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