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Abstract 

 

The application of superconductors has always fascinated engineers because of their 

ability to provide very small resistive losses. Electric machines developed using 

superconductors provide the advantage of lower volume, and higher efficiency compared 

to conventional machines with similar specifications.  

 

High temperature superconductors (HTS) display the property of superconductivity at 

relatively higher temperatures compared to conventional superconductors. The use of 

HTS in electric machines provides substantial benefits in terms of less energy spent on 

refrigeration. In the field of computational electromagnetics, HTS in low frequency 

devices pose a few unique challenges that demand different approaches from the existing 

techniques applied in normal materials and conventional superconducting materials. This 

dissertation investigates the properties of HTS and then attempts to address various issues 

that arise while modeling and optimizing HTS based devices. 

 

The high degree of non-linearity in HTS presents significant difficulty for a solution to 

converge. This thesis models the behavior of HTS based low frequency examples, and 

suggests an approach that improves the convergence and reduces the computation time. 

In this effort, the successive substitution method and the Aitken approximation were used 

to develop the proposed algorithm. 

 

Subsequently, a multiphysics model of HTS based current leads was developed. To 

analyze the magnetic field problem, a 2D technique was considered, and the analysis of 

thermal behavior used a 3D approach. This study helped in determining the approach to 

solve both types of field problems associated with current leads and coupling the two sets 

of problems. 

 

Computational approaches to solve HTS based problems are still in their infancy and 

there is a shortage of data in this field. In order to generate more data, which could then 

be used in optimization or modeling of HTS devices, this work examined statistical 



 iii 

methods that could be applied in such scenarios. In this thesis, aspects such as sampling 

methods of search space and methods to construct surrogates were researched; the use of 

Latin hypercube sampling (LHS) and Generalized Regression Neural Network (GRNN) 

are proposed. 

 

This dissertation ultimately considers a real world example of HTS current leads to 

address some of the challenges associated with them, specifically the reduction of heat 

leakage, the material used and the AC loss. To achieve these three goals, multi-objective 

optimization was considered and Differential Evolution (DE), a stochastic based 

technique was used to achieve the optimization goals. This facet of the thesis establishes 

the viability of stochastic methods to optimize systems with multiple goals to satisfy and 

having HTS a highly non-linear material in them, along with the possible objective 

functions and constraint relations. 
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Résumé 

L'application des supraconducteurs a toujours fasciné les ingénieurs en raison de leur 

capacité de fournir de très petites pertes résistives. Les Machines électriques développées 

en utilisant les supraconducteurs offrent l'avantage de réduire le volume et une plus 

grande efficacité par rapport aux machines traditionnelles avec des spécifications 

similaires. 

 

Les supraconducteurs à haute température (HTS) font prevue de propriété de 

supraconductivité à des températures plus élevées compares aux supraconducteurs 

conventionnels.  L'utilisation de HTS dans les machines électriques offre des avantages 

substantiels en termes de réduction d'énergie dépensée sur la réfrigération. Dans le 

domaine du calcul de propogation electromagnétique du champ, HTS en appareils de 

basse fréquence posent quelques défis uniques qui demandent différentes approches dès 

techniques autre que celles existantes appliquées dans des conditions normales aux 

matériaux classiques. Cette thèse est consacrée à l'etude des propriétés de HTS et tente 

ensuite de traiter de diverses questions relier à la modélisation et l'optimisation 

d’appareils de HTS. 

 

Le haut degré de non-linéarités de HTS présente une difficulté significative pour qu une 

solution converge. Cette thèse modèle le comportement d'exemples HTS à basse 

fréquence et suggère une approche qui améliore la convergence et réduit le temps de 

calcul. Dans cet effort, la méthode de substitution successive et l'approximation Aitken 

ont été utilisés pour développer l'algorithme proposé. 

 

Par la suite, un modèle multiphysique de conducteurs HTS a été développé. Pour analyser 

le problème de champ magnétique, une technique 2D a été considérée et l'analyse de 

conduite thermale a utilisé une approche 3D. Cette étude a aidé a déterminer de 

l'approche pour résoudre les deux types de problèmes de champ associés au conducteurs 

et l'couplage HTS. 
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Les approches informatiques pour résoudre des problèmes HTS sont encore dans 

l'enfance et il ya un manque de données dans ce domaine. Afin de générer plus de 

données, qui pourraient ensuite être utilisés dans l'optimisation ou la modélisation de 

dispositifs HTS, ce travail a examiné plusieurs méthodes statistiques qui pourraient être 

appliquées dans de tels scénarios. Dans cette thèse, des methodes de sondage d'espace de 

recherche et les méthodes de construction de substituts ont été explorés; l'utilisation 

d'échantillonnage d'hypercube latin (LHS) et la Régression Généralisée le Réseau 

Neuronal (GRNN) est proposée. 

 

Cette thèse considère finalement un exemple du de  monde réel conducteurs HTS mène 

pour adresser  certains des défis qui leur sont associés; en particulier la réduction de perte 

de chaleur, les matériaux utilisés et les perte CA. Pour atteindre ces trois objectifs, 

l'optimisation multi-objectif a été examiné et l’évolution différentiel (DE), une technique 

stochastique a été utilisée pour atteindre les objectifs d'optimisation. Cette facette de la 

thèse établit la viabilité des méthodes stochastiques pour optimiser les systèmes avec 

plusieurs objectifs à satisfaire et qui contiennent des HTS, de matériaux fortement non 

linéaires, avec possible fonctions objectifs et relations de contrainte. 
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CHAPTER 1 

1 Introduction 

1.1 Motivation and Overview  

 

Electric machines play a significant role in the modern era, whether it is their use in a dishwasher 

or an entity as big as a ship, life without them is unimaginable. The electrical machine design 

community has tried over the years, new designs and approaches to create machines that are 

more efficient, have a high power density, and low noise. In this endeavor the phenomenon of 

superconductivity provided a promising avenue, as materials exhibiting such behavior have zero 

resistive loss for direct current (DC) and very small losses for alternating current (AC). In the 

superconducting state, materials have the potential to allow the passage of high current density; 

this in turn provides the possibilty of constructing machines, which have a lower volume, and 

higher efficiency compared to a conventional machine with similar specifications. 

 

Superconductivity was discovered by Heike Kamerlingh Onnes in the year 1911 [1], [2], [3] and 

till the mid 80’s, the known materials that showed this property were usually metals such as 

Mercury, or compounds of metals, kept at cryogenic temperatures.  The high cost involved in 

maintaining extremely low temperatures, usually close to absolute zero, to sustain the property of 

superconductivity, has been the main reason behind the limited success of this technology in 

electric machines. The quest to find new materials that could act as superconductors at higher 

temperatures led to the discovery of High Temperature Superconductors (HTS) two decades ago. 

 

The name HTS is self explanatory, it is a class of materials that attains the property of 

superconductivity at higher temperatures, compared to the conventional metal based 

superconductors. They could act as superconductors at temperatures as high as 135K, and are 

composite materials, usually compounds of copper oxide and other elements. It is due to this 

advantage of an operational temperature, which is achievable at a low price, that the potential use 

of HTS materials is being explored actively, and they have made significant contributions. More 

recently, HTS based machines have been used to drive the propellers of large ships and their 

application in space exploration is also being investigated [4], [5], [6], [7]. Still their wide scale 
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use remains elusive because of the cost involved in manufacturing such materials, and their 

usage in the design of machines is further complicated by the fact that the materials are brittle in 

nature. In such a scenario, computer based simulations and models could play a crucial role for 

the analysis and design of such machines. This would not only help in reducing cost, but also 

facilitate a wider spread of research activity.     

 

As discussed earlier, the superconducting property of HTS allows a large amount of current to 

flow without any substantial resistance, which in turn could produce high magnetic fields. In the 

construction of electric machines, the use of HTS provides the following advantages: 

 

i. High power density - The HTS field windings achieve higher magnetic field densities 

than those of conventional machines, due to this there is significant reduction in the 

weight and size, and substantial increase in the torque density [4], [8]. 

 

ii. High efficiency – The machines have reduced rotor ohmic, iron, and windage losses due 

to zero resistance. Even when the energy component spent on refrigeration is included for 

efficiency calculations, the gains are in the region of 2% for generators , and as high as 4% 

or more for motors [9], [10]. 

 

iii. Low noise – They have lower sound emissions than conventional machines because of 

the absence of iron teeth . 

 

iv. Low synchronous reactance - HTS air-core (ironless rotor) machines provide greater 

stiffness during transients [4], [8]. 

 

To build computational models of such devices, it is essential that the material properties are 

investigated first and an accurate representation of the material behavior is prepared. The 

crystalline nature of HTS materials, introduces a high degree of non-linearity in their magnetic 

and electrical behavior (refer to Appendix B), and such nonlinearities introduce a major 

challenge in the modeling of HTS materials. There are a number of representations that have 

been used to describe the unique behavior of HTS materials, such as the Bean Critical State 
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(BCS), the E-J, and the Kim models, which involve high order mathematical functions. This, in 

turn, results in numerical instability and also the computation time is considerable. Apart from 

this, temperature too plays a crucial role; a slight variation above the critical value of the material 

could make it lose its superconductivity. 

 

The inherent complications associated with the HTS materials, as described, above get reflected 

when they are used for constructing electric machines. The critical values, here being the current 

and the electric field, are dependent on the temperature and the magnetic field. When conditions 

cause the current, the magnetic field or the electric field to go beyond their critical limits, the 

material begins to behave as a normal conductor, which in turn may result in damage to the 

device. In addition to the physical complexity, computational models for such devices have 

stability issues due to the nonlinearity, and field simulations require considerable time. In brief it 

could be stated that HTS based systems present a multiphysics problem, in which the relation 

between the field and the thermal behavior is further compounded due to the high degree of 

nonlinearity. Under the conditions highlighted so far, the numerical modeling of HTS based 

devices provides a significant scope for contribution and challenges, and it becomes imperative 

to investigate how well computational techniques could be applied in this area. 

1.2 Research contributions and objectives 

 

The originality of this work lies mainly in the use of ideas present in other disciplines such as 

Physics, Applied Mathematics, Statistics, and Optimization in the design of electromagnetic 

devices and when a new material HTS (type Bi-2212) is present. This study considers Bi- 2212, 

an example of the first generation of HTS technology because it has widely been investigated 

over the years. The data and test cases involving Bi-2212 are relatively easy to find in the 

literature compared to the new generation HTS, such as YBCO [1], apart from this, the general 

behavior of conductivity and other material properties are similar in all the classes of HTS and 

the ideas that are suggested in this thesis could be extended to them also. It should be 

emphasized here that the second generation HTS materials provide both performance benefits in 

terms of higher operating magnetic fields and temperatures, and also reduced cost. An attempt 

has been made in this work to develop a simple implementation, which will help in the 
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generalization of the proposed concepts. The following, to the best of the author’s knowledge, 

are the original contributions  that this dissertation incorporates: 

 

i. Development of a methodology that uses an A-V based formulation and FEM to solve a 

magnetic field problem involving HTS. The proposed algorithm applies successive 

substitution and the Aitken method which provides improvement in the convergence of 

field computation. A scenario that comprises HTS and ferromagnetic material is also 

investigated to test the feasibility of the approach when materials having a non-linear 

conductivity and a non-linear permeability are present in the problem environment. 

Derivation and a comparative analysis of derivative free method of successive 

substitution and the  derivative based Newton Raphson method are presented. 

 

ii. Establishes a method that couples, two different problems in HTS based current leads, an 

example of a multiphysics scenario that involves the determination of AC loss on one 

hand and the estimation of the thermal field on the other. A 3D model is used to solve the 

heat equation, and 2D approach to calculate AC loss that incorporates the effects of  

magnetic field and temperature on critical current density. 

 

iii. Proposes possible objective functions and constraints that could be applied to reduce heat 

leakage, the amount of HTS material used, and AC loss, these desirable attributes are 

common to HTS based devices. This work considers the concepts in multi-objective 

optimization (MOO) to address such issues and improve the performance of HTS devices. 

 

iv. Development of statistical based methods to deal with the problem of data scarcity that 

persists in the field of HTS, such approaches could provide immense benefits because the 

material is expensive, and also assist in device modelling and optimization. This work 

investigates sampling techniques that could be used, and suggests the application of the 

Latin Hypercube Sampling (LHS) method. Surrogate methods are reviewed, and the use 

of  Generalized Regression Neural Networks (GRNN) is proposed to generate a crude 

HTS device representation, which is computationally less demanding. Differential 
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Evolution (DE), a stochastic based technique has been used for the first time in the field 

of HTS device optimization and the benefits of DE are highlighted. 

 

This dissertation will first attempt to simulate the behavior (magnetic and thermal) of systems 

containing HTS material, and then try to optimize a simple HTS based device. In these efforts, 

this thesis explores a number of subjects as mentioned earlier and in the process will make the 

contributions highlighted above. The use of HTS to construct low frequency machines presents 

few interesting challenges that are different when compared to electromagnetic devices involving 

conventional materials and conventional superconductors. This work demonstrates the potential 

of computational electromagnetics to deal with them , and it will also describe the methods that 

could be applied in such scenarios.  

1.3 Thesis outline 

 

This dissertation is divided into five chapters. In this chapter, the High Temperature 

Superconducting (HTS) material is introduced by presenting the unique properties of HTS and 

the advantages such materials have over conventional superconductors. The present chapter also 

highlights the benefits the use of HTS provides in the construction of low frequency devices, and 

the difficulties such materials pose in developing computational models. The reasons behind 

exploring the field of computational approaches in HTS are then discussed, they form  the basis 

for this research work, and the thesis contributions are outlined.  

 

In the next chapter, a brief introduction has been included that highlights the  progress made in 

the field of superconductivity, and also the major successes achieved in recent years in the field 

of HTS based engineering. This chapter further goes into the  details of magnetic field, thermal 

field and structural behavior of HTS and discusses the necessary physics involved. The ideas 

mentioned in this chapter form the foundation for the numerical modeling of HTS material which 

is dealt in the following chapter.   

 

In Chapter three, finite element method (FEM) and A-V formulation is used to determine the AC 

loss. To implement temporal discretization FDM was considered. A comparison between the 

mathematical treatment of the successive substitution method and the newton raphson technique 
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in such a scenario involving HTS has been provided. This work proposes an algorithm that 

considers successive substitution methods to construct the solvers for HTS materials, and in 

order to improve the convergence, the use of Aitken method has been suggested. Simulations 

that use the new algorithm to solve HTS problems are executed and the results are validated. 

Apart from this, an example that involves both HTS and ferromagnetic material, iron, is 

examined and the success of the algorithm is verified. This chapter further investigates the 

approach that could be applied to solve a HTS based multiphysics problem. This work provides a 

simple framework that considers 2D to solve the magnetic field problem and uses 3D to estimate 

the thermal behavior and then couples the two problems. The outcome of this approach is tested 

in the subsequent chapter. 

 

Chapter four first describes HTS based current leads and the mechanism behind their operation. 

It then describes the possible actions that could be considered to improve the performance of the 

leads and reduce the cost of manufacturing them, by defining the necessary objective functions 

and constraints. In this work, multi objective optimization is investigated and the manner in 

which it could be applied in the present scenario is examined. This chapter also probes the 

sampling techniques that could be considered in the present optimization process, and identifies 

the Latin hypercube method as a suitable approach. In order to generate computationally less 

expensive models of the HTS lead, the use of  Generalized Regression Neural Network (GRNN) 

is studied and the benefits of this approach are stressed. Subsequently, a stochastic method, 

specifically Differential Evolution (DE), is examined. The advantages are highlighted and then 

integrated into the proposed optimization framework to obtain the desired goals. Finally, this 

chapter presents the optimized lead geometry when the optimization framework is applied to 

HTS current lead problem. 

 

The fifth and the final chapter summarizes and concludes this dissertation work. A few 

suggestions in regards to further possible exploration of this research area have been included. 

This chapter is followed by references and appendices.  
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CHAPTER 2 

2 The High Temperature Superconductor 

 

2.1 Introduction 

 

The age of superconductivity in engineering was ushered in 1954, when the first superconducting 

magnet was designed at the University of Illinois Urbana-Champaign. The next major 

contribution in this field was again from the same university in 1957, when the Nobel Prize 

winning theory of superconductivity was published. This theory introduced the well known 

concept of Cooper pairs, the superconducting carriers described as two electrons with equal or 

opposite spin and momentum [1]. In the year 1962, Brian D Josephson from Cambridge 

University discovered a phenomenon unique to superconductors now known as the Josephson 

effect, which earned him a Nobel Prize. This effect is the tunneling of superconducting current 

through thin insulating layers separating two superconducting electrodes, which creates a phase 

difference between electrons in the two electrodes resulting in a potential difference. The 

Josephson effect forms the basis of the Superconducting quantum interference device popularly 

known as the SQUID. Another engineering marvel that came into existence during the late 60’s 

with notable success in Germany, and Japan was levitation technology in the form of maglev 

vehicles, which uses the Meissner effect of superconductors [3].  

 

The first commercial superconducting wire was manufactured in Westinghouse laboratories 

using niobium and titanium (NbTi) an example of a low temperature superconductor (LTS) in 

1962. The first few topologies of rotating machines that were successfully constructed using 

NbTi in the 70’s included DC homopolar and AC synchronous machines [11]. The earliest 

example of such a device was a 5MW generator for the US Air Force constructed by 

Westinghouse. The dawn of HTS technology could be attributed to Georg Bednorz and Alex K. 

Mueller, the duo while working at IBM Zurich Research Laboratory discovered high temperature 

superconductivity in 1986; the pair was awarded the Nobel Prize in Physics the next year.  A 

joint initiative undertaken by the American Electric Power Research Institute (EPRI) and 

Reliance Electric Corp. led to the successful demonstrations of HTS based synchronous motors 
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in 1993; the two motors developed were of 2HP and 5HP capacity [12]. A conceptual design for 

a 100 MVA HTS based generator was provided by General Electric [13] in 1994 and 

Westinghouse and American Superconductor Corp. (AMSC) further contributed to HTS 

generator designs later. Over the years the use of HTS technology for electric machines has 

evolved and it has grown to an extent where the development of more powerful devices is now 

feasible [14].  

  

Certain materials behave as superconductors when the temperature, magnetic field and current 

density are below specific critical values; Fig 2.1 provides the critical surface in 3-dimensional 

space involving the three. Under such a state, substances exhibit zero resistance and the 

Meisnner effect. It should be highlighted here that in the Meisnner effect the magnetic flux is 

always expelled and the field is zero inside the superconductor, whereas when a conductor is 

cooled to a very low temperature below the critical value, the field always remains fixed and it 

could have either zero or a nonzero value. To elaborate the second scenario further, when the 

temperature of a conductor drops to a value less than the critical temperature and then a magnetic 

field is applied, the flux does not enter the specimen and is excluded from its interior. On the 

other hand, if a magnetic field is applied prior to the cooling of a conductor, and subsequently 

the specimen is subjected to a temperature less than the critical value and then the external 

magnetic field is removed, the flux inside the sample remains unchanged.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig 2.1. The superconducting region resides inside the three critical values and the normal state remains outside. 

 

Fig 2.1 The superconducting region resides inside the three critical values and the normal state remains outside. 
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Superconductors are classified into two categories: i) type I, also known as soft superconductors, 

have a lower critical field and critical current density values, due to which they have limited 

practical application; and ii) type II, also referred to as hard superconductors. The distinguishing 

characteristic of such materials when compared to type I is that the latter always excludes an 

applied field and behaves as a perfect diamagnetic when the field is less than the critical 

magnetic field Hc. The flux penetration occurs only when the field exceeds Hc and the specimen 

starts exhibiting the properties of a normal conductor. In type II superconductors the applied 

field is completely excluded as observed in type I till a lower critical magnetic field Hc1, beyond 

this the flux begins to penetrate as the field is increased till it reaches an upper critical magnetic 

field Hc2, when the applied field is greater than Hc2 the sample acts as a normal conductor [3], 

[15]. Type II superconductors exhibit a mixed state. In such a state, there is a partial flux 

penetration and presence of normal regions in the material, however superconductivity is not lost, 

but the specimens no longer display the Meisnner effect, the following figure further illustrates 

these phenomena. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are few exceptions to the following classification; pure metals tend to behave as type I 

superconductors at temperatures close to the critical value and in certain instances may require 

the application of high pressure to transform the metals to superconductors. Alloys, certain 

 
 

Fig 2. 2. The behavior of type I and type II superconductors below the critical temperature as the field is varied. The critical 

magnetic field is temperature dependent, and the value changes as the temperature alters, at Tc the critical field is zero. 

 

 

Fig 2.2 The behavior of type I and type II superconductors below the critical temperature as the field is varied. The critical 

magnetic field is temperature dependent, and the value changes as the temperature alters, at Tc the critical field is zero. 
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oxides and even few metals such as Niobium, Vanadium and Technetium behave as type II 

superconductors; the HTS also fall into this category. In order to model and design 

superconducting machines, knowledge of both the thermophysical and electromechanical 

properties of the material are necessary. The following sections will further provide an insight 

into the magnetic field behavior and the thermal behavior of HTS, and the mechanical properties 

to a lesser extent.  

2.2 Field properties 

 

In order to appreciate completely the behavior of type II superconductors, or in the present 

scenario, HTS, classical physics has a limited scope and aspects of quantum mechanics should be 

considered. This section discusses the subject at a fundamental level, and the treatment will help 

in understanding the general behavior of such superconductors. In order to retain simplicity, the 

inclusion of every detail involving quantum mechanics that explains such behaviors precisely has 

been avoided, and it is also beyond the scope of this dissertation.  

 

A magnetic field penetrates into a superconductor to a very small extent and the field falls off 

exponentially over a mean distance known as the penetration depth (  ), typical values are less 

than 0.05 μm.    is estimated using electron mass and electron charge. At a macroscopic level, 

such values could be neglected and it is safe to assume complete exclusion of magnetic field, but 

on a scale of    such an approach is not applicable. In the development of an understanding of 

superconductivity, Ginsburg and Landau introduced the concept of coherence length, usually 

denoted by ξ [3], [15], which is a measure of the distance a pair of electrons should have that 

ensures interaction between the two. The coexistence of superconductivity and magnetism is 

dependent on the relationship between    and ξ. In order to categorize superconductors, a 

parameter known as the Ginsburg–Landau ratio and defined as    
  

 
 is used [3], [15]. In type I 

superconductors such as pure metals, ξ exceeds 0.3 μm and      whereas in type II specimens, 

ξ is much smaller because the mean free path, a measure of the average distance between 

collisions experienced by electrons, is reduced and    . To be precise the switch between type 

I and type II occurs at         . An interesting fact to note here is that by altering the electron 

mean free path the superconducting properties of a material could be changed; such an approach 
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has been exploited in engineering applications by introducing lattice defects. To understand the 

mixed state prevalent in HTS, the thermodynamic principle involving minimization of the free 

energy at equilibrium is considered. Surface energy is present whenever there exist two phases of 

a material, in the present scenario the normal and the superconducting state. When ξ is small, as 

in HTS, the surface energy is negative, and the formation of coexisting normal and 

superconducting regions is favored because the total free energy is reduced. A negative surface 

energy favors many borders between the two regions to attain an equilibrium configuration. 

Therefore, in HTS when the applied field exceeds the first thermodynamic critical field Hc1 small 

regions of normal state in the shape of flux tubes as shown below known as fluxons are formed. 

The excess field lines are localized in such pockets of the normal sections with induced 

circulating currents that preserve the superconducting regions outside such cylindrical cores. The 

fluxons arrange themselves into a regular pattern known as the Abrikosov lattice [16], since the 

fluxons are maintained by circular currents they are also known as flux vortices. The number of 

such vortices depends on the amount of flux that passes through the material. The theoretical 

foundation for such quantized flux lines, beginning at a field Hc1 and the complete penetration at 

a much higher field Hc2 was laid by Abrikosov in 1957. In 1962, Bean introduced the first 

macroscopic model based upon experimental results, known as the Bean's Critical State model 

(for more refer to Appendix B), and this model also assisted in predicting the hysteresis behavior 

of such materials [17]. 

 

  

 

 

 

 

 

 

 

 

Whenever a transport current with a density of J flows through a type II superconducting 

material, it exerts a Lorentz force (  ) given by       
 
, where  

 
 is the flux quantum. The 

 
Fig 2.3. The presence of flux vortices in the mixed state of HTS materials, with currents encircling the cylindrical 

regions. 

 

 

Fig 2.3. The presence of flux vortices in the mixed state of HTS materials, with currents encircling the cylindrical. 

regions. 
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Lorentz force tends to make the flux vortices move sideways and such a movement is referred to 

as flux flow. Flux vortices moving with a velocity    generate a macroscopic electric field 

         giving rise to energy dissipation, where B =    
 
 with n the density of vortices. It is 

evident, if the vortices moved then there would be resistance to the flow of current; however the 

sideways motions are stopped by grain boundaries and impurities. This impediment to the 

motion of vortices is known as flux pinning. As long as    is less than the pinning force no 

dissipation occurs. In HTS, some amount of flux motion persists, which is attributed to thermal 

activation, this motion is slower in nature and is referred to as flux creep [18]. HTS based 

machines are designed to operate in the flux creep regime, and they avoid the flux flow state as 

the latter results in heat generation. 

2.3 Thermal properties  

  

The generation of heat in HTS can result in a significant temperature increase, which could 

create localized regions inside the superconductor that are above the critical temperature and 

display resistance. Such normal sections become an additional source of heat and an uncontrolled 

growth of normal regions could lead to quench in the worst case. Apart from the scenario of 

quench, heat generation in HTS based devices burdens refrigeration systems and could affect 

efficiency. Therefore a study of the thermal behavior of HTS becomes necessary, and properties 

such as specific heat and thermal conductivity are discussed in this section. The present 

discussion will not provide a mathematical treatment of the subject, and it will only focus on the 

fundamental points useful to this topic. 

 

Thermal conductivity is a transport parameter that provides an estimate of the efficiency a 

material has in carrying heat. Specific heat is a static parameter that presents the information 

about the internal energy of a material. The temperature of a material is altered whenever heat is 

taken away or added to it, and when the thermal energy is supplied to a substance, the energy is 

absorbed either by the crystal lattice known as phonons, or conduction electrons, or both. 

Specific heat ( ) is the partial derivative of internal energy U with respect to temperature, with 

the volume or the pressure maintained at a constant value (in solids the effects of the two are 
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indistinguishable),   
  

  
  having the units J/mol-k. The specific heat of superconductors in the 

normal state and also of metals at low temperatures is given by  

 

                                                                                                                            (2.1)      

 

where    is the electronic contribution,      represents the lattice or phonon contribution, and   is 

the Sommerfeld constant.   provides an experimental estimate of the density of states at the 

Fermi level [15], [19], [20], [21], and coefficient   is obtained by considering the experimental 

data, any standard solid state physics text will provide the method to determine these values. To 

define the relation (2.1), the temperature is usually assumed as T < 0.1θD, where θD is the Debye 

temperature [19], the latter is the highest temperature that can be achieved due to a single normal 

vibration of a crystal. A linear dependency of    on T ensures that at extremely low temperatures, 

    has a higher value in comparison to the falling     . At room temperatures, the opposite 

happens,    is insignificant when compared to     , and equation (2.1) provides a good estimate 

of specific heat for such materials. Some of the characteristics that are unique to superconductors 

are: 

i. At T = Tc there is a sharp jump or discontinuity in c. 

ii. The specific heat value increases in the superconducting state near Tc. 

iii. At the lowest temperatures, the specific heat varies exponentially with respect to 

temperature, the behavior as described by the power law defined in (2.1) is not displayed. 

 

All the above changes arise due to conduction electrons; the contribution due to phonons is 

negligible at Tc or below it. In HTS, the      plays a major role in determining the specific heat 

and it also fluctuates in the neighborhood of Tc, an effect which is not prevalent in conventional 

superconductors. Such fluctuations are neglected while modeling HTS; apart from these unique 

behaviors, HTS do not display discontinuities in the values of c at Tc. 

 

The thermal gradient  T (temperature difference between two separate points) imposed across a 

sample results in the rate of flow of heat Q across a unit cross-section perpendicular to the 

direction of heat flow, the relation between  T and Q is defined using the thermal conductivity k. 

As in the scenario of specific heat, k has two components, the contributions from phonons 
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     and from conduction electrons     [19].      is present in all solids, whereas   varies and is 

dependent on the type of material, for instance in insulators    is zero. In conventional 

superconductors the contribution from       above Tc is very small and the transportation of heat 

is due to   . As metals become impure the contribution from      increases as is evident in the 

case of HTS, which are compounds of metals. The total thermal conductivity, even in the best 

crystals of HTS, is predominantly due to     . When the temperature falls below Tc, k drops 

sharply in conventional superconductors and in certain instances the decrease in the magnitude 

could be four times the value present in the normal state.  In HTS the behavior of k is 

substantially different below Tc, the value first increases and peaks at 
  

 
 and then there is a rapid 

decrease. k is less dependent on temperature in the normal state for HTS and has low values. 

2.4 Mechanical properties 

 

This section will provide a brief overview of the structural properties of HTS, and the relevant 

concepts that are used to understand such aspects. Since this work does not deal with the 

mechanical properties, the discussion will not go into great detail. The inclusion was considered 

necessary in order to have a complete treatment of the subject matter, i.e., the use of HTS in the 

design of electromagnetic devices.  

 

In many practical applications, it is significant for the conductors be able to sustain appreciable 

stress. For use in motors and generators, the HTS are first turned into wires, and are then wound 

in the form of coils. During the operation such coils are subjected to large rotational forces and 

variation in the working temperatures. Under such circumstances, some of the desirable features 

include a ductile and a flexible material, and the materials should also have considerable fatigue 

strength and the ability to provide a consistent behavior over long durations. Stress and strain are 

the fundamental parameters that define the structural behavior of any material. Stress is the force 

per unit area applied to a material, whereas strain is the resulting deformation. When the amount 

of stress is small, the deformation is elastic in nature, and materials return to the initial shape 

when the stress is reduced or removed. When the stress is too large, the change in the shape of 

the material is irreversible, and such a change in form is known as plastic deformation. If a stress 

vs. strain plot is considered for any material, then there exists a point in the curve known as the 
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yield point where there is a sharp bend. Any stress or strain beyond the yield point results in the 

material breaking. The stress that causes such a break is known as the tensile strength, and when 

a break occurs due to the strain, it is known as fracture elongation [19].  Fatigue quantifies the 

response of a material to time varying stress or strain, provided the stress does not exceed the 

tensile strength. A fracture occurs when tiny cracks begin to grow in the material, such cracks 

propagate and when they exceed a certain critical length, the material breaks. In metals there is 

always a presence of a distinct plastic state prior to the occurrence of material failure. Such a 

behavior does not exist is HTS, they exhibit elasticity right up to the point where they break, and 

it is due to this they are brittle in nature. HTS also demonstrate little ductility. Such issues in 

terms of material strength and limitations with HTS have been a major hurdle in using their full 

potential in the field of machine design.  The study of the mechanical properties of HTS could 

further help in the development of their engineering applications; this area still lacks a detailed 

investigation. Apart from this, the effects of temperature and magnetic field on structural 

behavior have not been adequately researched. 

2.5 Summary 

 

This chapter presented the developments made in the field of superconductors over the years, 

and it also highlighted some of the advances achieved in low frequency electromagnetic devices 

involving superconductivity. A discussion on theoretical aspects associated with the magnetic 

field and thermal properties was included that provided a detailed treatment of the subject. 

Properties such as flux flow and flux creep that are peculiar to HTS were discussed. The next 

chapter will deal with the subject of numerically solving problems associated with HTS. A 

greater emphasis would be laid in using FEM to deal with such problems and how to improve 

their convergence. The discussions will also introduce a technique to couple magnetic field and 

thermal field problems in such scenarios. 
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CHAPTER 3 

3 Field modeling involving HTS  

3.1 Introduction 

 

The previous chapter highlighted the properties of HTS materials with an emphasis on the type II 

superconductors. The following sections will describe the mathematical relations involved, and 

provide the derivations necessary to design computational models for estimating the magnetic 

and the thermal fields associated with HTS based devices. This will also provide an insight into 

the possible coupling mechanism of the magnetic and thermal field problems involved in such 

examples. There exists abundant resources in the scientific literature that describe various 

approaches for modeling conventional materials [22], [23], [24]. Such ideas could be extended to 

HTS, but not all methods are applicable because of the differences that exist between the two, 

which pose a different set of challenges. The distinguishing factors could be summarized as i) 

HTS materials have a non-linear conductivity and linear permeability, whereas the conventional 

materials have their behavior reversed; ii) properties such as the critical values of magnetic field 

and current density vary rapidly with temperature in HTS; iii) the non-linearity in conductivity is 

extreme for HTS, as demonstrated by the exponential term in the power law [25]. Apart from this, 

HTS materials display phenomena such as granularity, flux creep, and flux flow, which further 

complicate determining their behavior precisely. 

 

There are a number of numerical techniques available for the analysis of electromagnetic field 

problem. These include the finite difference method (FDM) [26], method of moments (MOM) 

[27], finite element method (FEM), and the meshless methods (MM) [28], [29] that could be 

considered in a HTS scenario. Each method has its own advantages and shortcomings, for 

instance FDM is easy to understand, and implement, whereas, it is not suitable for a field with a 

rapidly changing gradient, or for problems with curved boundaries. FEM is the most developed 

and widely used approach in computational software packages for low frequency applications; it 

is well suited to problems with complicated geometries and a complex distribution of media, but 

the mesh generation process involved is computationally expensive. In recent years the use of  

FEM in 3D HTS simulations involving different formulations has been investigated by the EPEC 
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superconductivity group at the University of Cambridge, this work highlighted the associated 

benefits and shortcomings [30]. The meshing could be avoided in MMs, but this numerical 

procedure in electromagnetics is still at a nascent stage, and there is considerable research work 

going on in this area. MOM uses the integral form and is suitable for open regions, as it could 

easily manage the truncation issue in such instances; the method is usually applied to scattering 

problems.  

 

This work considers the domain method FEM, which first involves discretization of the whole 

domain by regular elements. Subsequently, the weighted residual approach or a variational 

principle is used to derive algebraic equations for the partial differential equations (PDE) 

corresponding to a specific problem. The discussions below will provide details for solving 2D 

magnetic field problems, and 3D thermal field problems using FEM and the weighted residual 

method.  

 

3.2 Magnetic field modeling 

 

The electromagnetic phenomena associated with HTS materials are explained by Maxwell’s 

equations. In order to model the field behavior of a HTS device carrying AC current, a popular 

technique involves estimation of the AC losses. The solution to this kind of problem requires 

solving either the self-field loss due to the AC transport current, or the magnetization loss 

produced by an alternating external field [31], [32], [33]. The hysteresis component is dominant 

in the superconducting state, and both kinds of AC losses, i.e., the magnetization and the self-

field loss could be attributed to it. In magnetization loss, the currents are induced at the surface 

similar to the skin effects found in normal conductors that could be determined using Faraday’s 

law, and there is partial flux penetration. Unlike normal conductors, HTS have infinite 

conductivity, which results in screening currents even at zero frequency. The induced current in 

HTS is equivalent to the critical current density Jc, which is dependent on the magnetic field and 

it decreases as the latter increases, on the other hand, in normal skin effect the induced current 

density is proportional to the field amplitude provided the frequency is constant. When the 

applied field is reversed, the presence of the pinning property and altered current density 

prevents the flux from tracing the same path resulting in the hysteresis phenomenon. The flow of 
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energy in an isolated HTS sample experiencing such an effect could be obtained using the 

Poynting vector P as shown below.     

                                                                P = E × H   (W)                                                         (3.1) 

where E is the electric field and H is the magnetic field intensity. With V as the volume enclosed 

by a closed surface S, and Q representing the total energy in V, the rate of energy loss is 

 

                                                
  

  
               

 
                                                      (3.2) 

 

the above equation is obtained using the divergence theorem. The     is replaced by E and H in 

equation (3.3). Subsequently, the vector identities and Maxwell’s equations are considered (for 

more refer to Appendix A), resulting in the following relations for a magneto-quasistatic state 

 

                                                                                                                                   (3.3)                                                                                           

                                                                                                                         (3.4) 

                                                                              
  

  
        

  

  
                                  (3.5) 

 

considering integrals on both sides, and neglecting the displacement current term, the loss per 

cycle is given by  

                                                          
  

  
 

 
                

 
  (J)                           (3.6) 

 

where M is the magnetization due to the bounded currents furnished by the constitutive rule B = 

μ0 (H + M). 

 

The presence of granularity in HTS results in two kinds of critical current density: the intra 

current Jcintra that acts within the boundary of the grains and the inter current, Jcinter, which flows 

across the boundaries. In modeling HTS based devices, it is the Jcinter that should be considered, 

because this component flows through the entire bulk sample creating the screening phenomena 

when a field is applied. Moreover, in the design of electrical machines, finer samples are 

desirable where the minute granules exist more as large grain segments, and in such specimens 

the Jcinter plays a dominant role [33]. This work considers the inter current in all the formulations 

and is denoted by Jc.  In equation (3.6), the first term in the right hand side is a resultant of the 
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bounded current, and is not considered for modeling the field behavior; the second term is due to 

the free current. 

 

In self-field loss, the passage of the AC transport current generates a magnetic field around the 

HTS. The field partially penetrates the superconductor and the screening currents are generated. 

The cyclic nature of the signal gives rise to hysteresis loss as described above.  In both the losses 

i.e., the magnetization and the self-field loss, the dissipative energy involved is attributed to the 

screening currents, which are used for moving the flux lines and depinning them. Such a form of 

energy is converted to heat which is undesirable, and could even damage HTS based machines. 

The following figure depicts the screening current in the white region due to the presence of a 

varying field; the dark section signifies a region without any field inside. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1 The A-V formulation for AC loss determination 

 

As highlighted earlier, the ideas used for determining the behavior of conventional materials 

could be extended to model superconductors, and this section describes one such approach 

namely the A-V form. The A-V represents the magnetic vector potential and the electric scalar 

potential respectively, and is used to estimate the eddy current behavior or the diffusion 

phenomena. The other procedure to model the eddy currents is the electric vector-magnetic 

scalar potential method, popularly represented as the T-Ω form [34]. There are a number of 

factors that determine the technique to be considered for a given problem. The computation time 

tends to increase as the number of variables to solve rises. It is also observed that if the 

 

Fig 3.1. The screening currents on the edges of a cutaway HTS sample due to an applied field. 

 

  

  

 

 

Fig 3.1.The screening currents on the edges of a cutaway HTS sample due to an applied field. 

 

Fig 3.1.The screening currents on the edges of a cutaway HTS sample due to an applied field. 

 

Fig 3.1 The screening currents on the edges of a cutaway HTS sample due to an applied field. 



 20 

derivatives are not smooth, the solution oscillates and may never converge. Apart from this, the 

conditionality of the associated matrices, the number of times to differentiate in order to obtain a 

value and the ease of writing a computer program are the other essential considerations. 

 

When the geometrical dimension is smaller than the wavelength   (dimension     = c/f), where 

c is the speed of light and f is the frequency of the applied signal, low frequency approximations 

are utilized. To calculate eddy currents such approximations are considered, where the 

displacement current is ignored and ε0 is set to 0. In order to implement equations based on this 

idea, the magnetic vector potential A was used, the curl of which delivers the magnetic field B =  

   , and it provides the additional benefit that the condition        is automatically 

satisfied. In addition to this, to simplify many practical problems, the scenarios are solved in 2D, 

which allows A to be scalar with only one component, and in such a case it is sufficient to solve 

for the single component [35], [36]. 

 

The associated diffusion equation in terms of A using the A-V form to determine the self-field 

loss in a HTS sample having an infinite length along the z-axis is given by 

  

                                            
 

  
                 

       

  
   

  

  
                                           (3.7) 

 

where μ0 is the permeability of free space, σz is the conductivity of the HTS, and V represents the 

scalar potential. It is assumed that the current flows along the z-axis, and the above equation is 

obtained using Ampere’s law and the relation B =     (for further details, refer to Appendix A) 

with      
      

  
     . The 2D form of equation (3.7) is represented in the following manner: 

 

                                               
 

  
 
       

     
       

        
       

  
   

  

  
                                        (3.8) 

 

 

 

 

 
 

Fig 3.2. A triangular element, the As signify the nodes that are considered for assembling the matrices.  

 

 

Fig 3.2 A triangular element, the As signify the nodes that are considered for assembling the matrices. 
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To numerically solve the 2D electromagnetic problem using FEM, a spatial discretization 

involving triangular elements as shown in Fig 3.2 was used. In order to obtain the element form 

of equation (3.8) and the residual formulation, the Galerkin method was used (for more refer to 

Appendix C), which resulted in the following expression 
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     σ 
        

                     (3.9) 

             

where Rz is the residual matrix and E = - V was assumed to be uniform over the HTS domain, 

the coefficient matrices associated with each element are presented below 
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                                        = 
  

 
  when (i = j), or  

  

  
  when (i≠j)                              (3.12) 

 

                                    = 
  

 
                                                                                      (3.13) 

 

 

N in the above equations signifies the first order shape functions, the subscripts i, j, k denote the 

nodes, and ∆
e
 is the area of the triangular element. Equation (3.11) provides the difference 

between the coordinate values of the nodes in an element. The temporal discretization was 

achieved using the FDM, and a backward time difference was applied 

 

                       
               

      
  

 

  
             

         
       

                      (3.14) 

 

in the above relation n and ∆t are the time step number and time step size respectively; it is 

assumed 
      

 

  
  

 

  
         

         
   and σz remained constant inside each element. In self-

field loss determination, the variable      is unknown and is calculated using the transport 

current as described below  
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where I(t) is the instantaneous value of current and S denotes the area of HTS. The above 

equation leads to the following relation after rearranging the terms 

 

                                                             
           

         

  
                                          (3.16) 

 

                                                         
       

          
 

 

    
   

   
 

  
                              (3.17)                            

 

as performed earlier, temporal discretization using FDM and a backward time difference was 

applied to (3.17) 

                                              
       

      
   
     

 

  
         

         
   

    
                (3.18)          

 

Nhts above is the number of finite elements in the HTS domain, the unknown variable     in 

(3.14) is substituted by         

                                                              
    

 

    
         

         
    

    

   
       

                 (3.19) 

 

The non-linearity in the residual formulation (3.14) arises due to the conductivity term σz that 

necessitates the use of an iterative approach, σz is dependent on the current density and the 

electric field as shown below, and was determined using the constitutive E-J power law (for 

more refer Appendix B) 

                                                                       
   

 

 
  
  

 
 

  
 
  

 
    

                                               (3.20)            

 

where Ec is known as the critical electric field, a test criterion, and is usually assigned a value of 

1 V/cm, and E is the average value of the electric field in an element. To maintain the 

superconducting state, current densities should be lower than the critical current density Jc. The 

latter is determined from DC measurements with the electric field set to Ec, α is dependent on the 

pinning energy, and typically the value is in the range 10 to 20 [37]. Depending on the problem 

under consideration, the effects of the magnetic field B on Jc should be included in calculating σz 

as described in Chapter 2 and in Appendix B. There could be numerical instability at times, 

because the calculated conductivity values can be very large, to avoid such a scenario; a small 

value of resistivity ρ0 = 10
-15
Ω /m, as suggested in [38], is introduced to prevent divide by zero 
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cases. The subsequent discussions provide an insight into the mathematical approach to 

modeling a scenario in the presence of a varying external field, the procedure involved is similar 

to the analysis presented so far. 

 

To estimate the magnetization loss using the A-V form, the following expression is considered  

 

                                            
 

  
                

       

  
                                                    (3.21) 

 

the parameters μ0 and σz are the permeability of free space, and the conductivity of the HTS 

respectively, Jz is the current density that creates the alternating field and is along the length of 

the component in the z-axis.  

                                              
 

  
 
       

     
       

        
       

  
                                                (3.22)      

 

On using spatial discretization and the Galerkin method (for further details refer to Appendix C), 

the residual equation in matrix form for an individual element is given by 
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                           (3.23) 

 

a first order function was considered as the interpolation function, and the coefficient matrices 

presented above are derived in similar manner to that performed previously for the self-field loss 

scenario, the geometric constants are identical in both the instances, which allows this flexibility. 

The temporal discretization provides the following equation 

 

                             
               

      
  

 

  
             

         
                           (3.24) 

 

In order to accomplish clarity, the structures of the stiffness and the source matrices involved in 

the residual equation above are shown below. 
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                                                         (3.26) 

 

 

                                                                           
   

 
 
 
 
 
                                                        (3.27)  

 

The elemental matrices are coefficients of the unknown variables, they are assembled to form the 

global matrix SS, the vectors associated with the known terms are moved to the right hand side, 

resulting in the vector U, which subsequently provides the following standard form of linear 

system 

                                                                                                                                         (3.28) 

 

where A is the vector potential to be calculated. The discussions so far presented the treatment 

for 2D Cartesian coordinates using the FEM and the Galerkin method; there are other important 

geometrical scenarios such as 3D problems and axisymmetric cases, where the fundamental 

approach remains the same, except with some variations, the reference texts [35], [36] provide an 

insight to deal with such examples using FEM. 

 

A simple technique to solve the equation (3.28) iteratively is the successive substitution method 

(SSM) also known as the fixed-point iteration [39], [40] that attempts to obtain the solution using 

linear estimates of the non-linear E-J relation. It involves an initial approximation of A for all the 

nodes, E is then computed for individual elements using the following differential technique, and 

the relations are considered according to the problem under consideration 
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                                  (3.30) 

 

the conductivity    
  is evaluated using (3.20) and it is then used to calculate the contribution to 

the coefficient matrices. The global matrix SS and the source vector U are assembled as 

described earlier and the necessary boundary conditions are imposed. Equation (3.28) is solved 
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and the new value of A is determined, the iterative procedure is terminated if the following error 

criterion is satisfied, else it is repeated using the values of A from the previous iteration 

 

                                                   
  

                   
                            (3.31) 

 

the M above signifies the total number of nodes used in the analysis. The SSM converges in most 

scenarios, but it has a linear convergence rate as a result of which the procedure is slow. This 

thesis work uses the substitution method with some modifications in the general iterative 

algorithm discussed above to solve problems involving HTS, the next section will present the 

mathematical details of the procedure implemented.  

 

A discussion on the use of an alternative iterative approach known as the Newton Raphson (NR) 

method, which is a special case of the more general SSM has been included here to provide a 

complete treatment of the subject. This research work does not investigate in detail the use of NR 

in such scenarios, but it would highlight the procedure to implement it in HTS problems. The 

quadratic convergence is the main advantage NR has over the successive technique, but it has 

continuity constraints on functions that are difficult to satisfy at times. In addition to this, an 

appropriate initial guess is necessary for the solution to converge. The magnetization loss 

example has been used here to explain the mathematical formulation when NR is involved, 

considering the residual equation (3.24), the partial derivative with respect to the unknown 

variable Az is  

   

                   
   

 

          
         

  
 

  
        

 

  
                       

     
   

 

   
               (3.32) 

 

with i and j = 1, 2, 3, and the conductivity derivative above is determined using equation (3.20) 

in the following manner 

 

               
   

 

       
     

      
   

     
   

       
  

 

   
 
  

 

 
    

 

  
    

 

 
  

 

   
 
 

 

 
  

  

       
             (3.33) 

 

 

the first term inside the square bracket has a derivative associated with Jc, this occurs due to B. 

Such a treatment is problem dependent as the variation in Jc due to B is small below a limiting 
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value B0, and the effect on Jc could be neglected. The procedure to obtain the current density and 

the electric field derivatives is presented below 
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to determine the electric field derivative, equation (3.30) was considered  

 

                                                     
  

       
   

 

 

 

  
                                                                   (3.40) 

 

The matrix system to solve a NR based iterative technique is comprised of the Jacobian  
    

   
   

assembled by using (3.33), the unknown vector      , and     the residual in the right hand side  

 

                                                                 
    

   
                                                                                   (3.41) 

 

R is derived from the matrix product of the global matrix (SS) and the magnetic vector potential 

(Az), the latter is obtained from the previous iteration i.e.,        . The value of      is updated 

by adding it to        after every iteration, and the NR gets terminated using the condition 

defined in (3.31). The discussions above reflect the challenges associated with the NR method 

formulation; reference [41] provides some good insight into the behavior of NR in a HTS 

environment using a commercial package. The paper does not include an in-depth mathematical 
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treatment and the FEM details as presented here, but it shows some success using a relaxation 

factor, and comes with a caveat concerning the convergence issues, and the limited ability to 

extend it to a wider set of problems due to the onset of instabilities.   

  

3.2.2 Algorithm to improve the convergence of a field solution 

 

The convergence rate criterion can be used to classify iterative methods [42], [43], in the 

following manner 

 

DEFINITION: Consider a sequence           | an element x
*
, satisfies the condition         

 

i. A sequence converges quadratically, if xn → x
*
 and there is C > 0 |            

            , for all n sufficiently large. 

 

ii. A sequence converges superlinearly with order β, where β > 1, if xn → x
*
 and there is C > 

0 |                      β, for all n sufficiently large. 

 

iii. A sequence converges linearly, if xn → x
*
 |                        where K   (0, 

1), for all n sufficiently large. 

 

It is a desirable characteristic to have a faster convergence rate in an iterative procedure. The 

discussions presented so far, would always favour the use of the NR technique or a superlinearly 

convergent method.  This reasoning is viable in a scenario where the cost of a single iterate is the 

same for a quadratic or a superlinear converging sequence when compared to a linearly 

convergent case. However, in many practical electromagnetic problems the cost per iterate in a 

quadratic system is so high due to oscillations introduced by instabilities, that the use of a slower 

method is justified. The design of algorithms to solve non-linear electromagnetic problems 

involves the use of approximation at various stages to simplify the process, such as the use of 

spatial or time discretization and polynomials that attempt to estimate the continuous nature of a 

field, or the use of linear approximates to calculate a non-linear relation. The accuracy of any 

algorithm is dependent on the outcome of such approximations, and the error gets introduced 
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into the method due to discretization and rounding, the latter is dependent on the machine 

precision. It is one of the reasons that causes the cost per iterate to increase. The other aspect that 

affects the computation cost is inherent in nature, and is dependent on the sensitivity of the 

problem under consideration towards perturbations. Since algorithms of this nature involve 

matrix computation, the condition number κ as defined below provides the sensitivity measure 

[44], which in turn determines the stability of the process. It should be emphasized here that the 

stability of an algorithm does not guarantee accuracy of the solution.  

                   

                                                                                                                               (3.42) 

 

where A represents a matrix and     is a p-norm. In the present scenario, if the NR method is 

considered, the Jacobian in the formulation will include the conductivity derivative; refer to 

equation (3.33), in an event when the field E is close to zero, or has a very small magnitude, then 

σz ≈ 
 

      (equation (3.20)), and the conductivity derivative with the term   
  will have a value 

≈ 
 

      
 

 , such large derivatives affect the conditionality and the latter could get as high as     

to     at times. The analysis so far, presented one case when the stability deteriorates, at this 

juncture, it can be argued that scaling, or some form of relaxation factor could improve the 

outcome, but it is not always practicable and it is extremely difficult to generalize. To avoid the 

complexity in the formulation associated with the NR method and the possible convergence 

issues highlighted above, the proposed algorithm uses the fixed-point technique. The 

fundamental approach to solve a non-linear function f (.) numerically, involves finding a value x 

from the set of sequence X, such that the following condition is satisfied  

 

                                                           f(x) = 0                                                                           (3.43) 

 

where f(X)    , for all elements of X, and X    . The value x above is known as the root, and in 

the problems that are being considered here, the following form of equation system is used 

 

                                                           (  ,   ,   ...,     ) = 0 

                                                                                                                                                  (3.44) 

                                                           (  ,   ,   ...,     ) = 0 
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The fixed-point iterations use a mapping of X into itself, i.e. M│X → X, and a fixed point of M 

is a x   X  that results in Mx = x. The term fixed-point signifies the repeated application of the 

same mapping function on the values, a more rigorous mathematical treatment of the approach 

has been provided in the Appendix D.  To improve the convergence and gain computation speed, 

a technique introduced by Alexander Aitken known as the Aitken method was used [45]. 

According to this method, in a converging sequence Sn → S, estimation could be applied using 

the following relation, as n → ∞,    

                                                                          

    
                                                          (3.45)                  

 

such that Tn above converges to S faster than Sn, where             and          

           The Aitken approximation above assumes that the sequence converges linearly to 

the true value [45], [46], [47].The Aitken approach helps in predicting the next root without 

solving the entire problem, it suggests that as the approximate values of the root approach the 

true value, the ratios of the errors e.g., ϵ2/ϵ1, ϵ3/ϵ2 gradually become constant, when such a 

condition occurs, the errors could be rearranged as ϵ2
2
 ≈ ϵ1 ϵ3, which yields the relation provided 

in (3.45) (for further details refer to Appendix D), assuming the terms in S now represent the 

roots for the non-linear equation, and ϵ here is the difference between the approximate root and 

the true solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1    FOR (t = 0, totalTime, StepSize) 

2             error = 1 

3             AitkenCount = 0 

4             errorAtk = 1 

5            WHILE (error > toleranceOne) 

6                         IF (error < toleranceTwo) THEN 

7                               AitkenCount = AitkenCount + 1 

8                              IF (AitkenCount > 3) THEN  

9                                    Calculate: Aiken Approximation (  
      )   

10                                   Calculate: Approximation Error   (errorAtk) 

11                                   AitkenCount = 0     

12                                IF (errorAtk < error) THEN 

13                                  Update:  Value of vector potential (A) with   
       

14                                   Update:   error with errorAtk 

15                                   errorAtk = 1 

15                                   GO TO: step 5  

16                       Assemble System Matrices 

17                       Calculate and Update: Value of vector potential (A) 

18                       Calculate and Update: Approximation Error (error)    

19          END WHILE 

20   END FOR 

 
Fig 3.3. The Pseudo code for the Algorithm. 
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The suggested algorithm has been shown in Fig 3.3; a step size in time is defined first, denoted 

by the term StepSize, in order to iterate through the entire interval, totalTime. The SSM is 

initiated in line 5 first with a predefined tolerance value of 1.0E-05 represented as toleranceOne. 

The algorithm has a second check based on the error estimates of the solution in line 6, which 

decides whether to apply the extrapolation. Using trial and error, the optimal values of 

toleranceTwo for the problems discussed here was determined to be in between 4.0E-03 and 

9.0E-04, inclusive of the two limits. The approximation to the solution is estimated after every 

third iteration inside the SSM loop, and this is achieved by using the counter AitkenCount. 

Subsequently, error estimation is performed, and then it is verified whether there is an 

improvement in the result, as shown in the lines 10 and 12 respectively. In the event of an 

improvement, the approximation and the error estimation are considered, and the algorithm 

moves to line 5, or else both the values are discarded, and the system solves the matrix equation 

again as shown in the lines 16-18. The next section presents the results that were obtained using 

the algorithm introduced. 

 

3.2.3 Simulations and Results 

 

The AC loss simulation for HTS based devices requires a prior knowledge of the critical current 

density Jc, reference [48] provides the measured values of Jc under different external field 

conditions. To ascertain the magnitude of Jc, and gain an insight into its behavior, the critical 

current Ic flowing inside the HTS specimen is calculated. This task is achieved by considering 

DC or static conditions, where the electric field is set to the critical field value of 1μV/cm as 

defined in equation (3.20). The formulation for DC conditions involves the relations given by 

(3.7) and (3.15) without the time derivative terms as shown below. 

 

                                                  
 

  
                                                                      (3.46) 

  

                                                                                                                                               (3.47) 

 

The critical current density is subsequently obtained by dividing the critical current    by the 

cross section area S in the following manner 
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                                                                            (3.48) 

 

The discussions involving the DC scenario describe a method that delivers an initial estimate of 

Jc and provide a simple approach to model it. As mentioned earlier, the previous chapter and the 

Appendix B present the procedure to determine the behavior of Jc under AC conditions. 

 

The proposed algorithm was verified using a HTS rod and an open core transformer arrangement 

that depicted the self field loss and the magnetization loss scenarios respectively. In the first 

experiment, a 4   4 mm square HTS rod was considered for the simulation. To apply the 

boundary conditions properly, the peripheries of the problem domain were set far from the rod, 

and the formulation presented in (3.7) was used to obtain the solution. The geometrical 

symmetry provided the advantage of reducing problem size, and only ¼ of the geometry was 

analyzed, this in turn decreased the computational efforts. The Dirichlet boundary conditions 

were applied on the right and the top boundary edges, and the Neumann boundary conditions 

were used at the bottom and the left edges. The problem domain was discretized using 9539 

elements; Fig 3.4 below highlights a magnified view that shows the high density of elements 

used in the HTS region for better accuracy. The simulation was executed using an alternating 

current defined as I = IA sin (ωt), where IA was set to a value of 0.7 to 0.8 times the critical 

current density of 1.0   10
7
 A/m

2
. The latter should be multiplied by the area, and then 

considered in the formulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3.4.The magnified view of the discretization present in the HTS region, the dimensions are in meters. 
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The field distribution over the entire problem domain taken at one instant of time (t = 0.01s) is 

presented in Fig 3.5. The time step was 5.0E-04 s, and the frequency for the AC signal was 50Hz. 

 

 

 

 

 

 

 

 

Table 3.1 below shows the variation in the conductivity across the cross-section of the HTS 

specimen, with the Y-coordinates equal to 1.15E-03 m. This highlights the existence of non- 

linearity even within the confines of small spatial changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3.5. The plot showing the magnetic field distribution over the entire problem domain, dimension is in millimeters. 

 

Table  3.1  Conductivity across the cross section of HTS sample 

 
 X-coordinate(m)           0                     5.0E-04        1.0E-03          1.50E-03         2.0E-03 

 

 Conductivity(S/m)        3.43E+13       3.24E+13     6.84E+12       8.68E+10        8.47E+10 

 
Fig 3.6. The convergence plot comparing the algorithm, and the SSM. 
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The above figure depicts the improvement in convergence over the SSM method.  In the next 

endeavor, the open core transformer configuration comprising of iron, copper and HTS 

components as shown below was considered. 

 

 

 

 

 

 

 

 

 

 

In this experiment, the HTS carried a fixed DC current density of 4.6 A/mm
2
. To consider the 

effects of iron on the magnetic field computation, the formulation included the non-linear 

permeability of iron in the stiffness matrix. The copper component carried an AC current with an 

average density of 1A/mm
2
, and a frequency of 50Hz. In order to solve the problem, the region 

was discretized using 11675 elements as shown in Fig 3.8. The time step size considered here 

was 5.0E-04 s. The boundary conditions were the same as those presented in the self field loss 

example. It is interesting to note here that the iron component had a non-linear permeability and 

constant conductivity, whereas the HTS unit had a constant permeability and a non-linear 

conductivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3.7. The experimental set up showing the ¼ section used for the field analysis (not to scale). 

 

 
Fig 3.8. The magnified view of the discretization present, dimension is in meters. 
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The procedure was successful in solving the described problem, and the following figure 

represents the magnetic field intensity across the HTS sample compared to the experimental 

values. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Thermal modeling  

 

In order to model the thermal behavior of a system, the transfer modes i.e., conduction, 

convection and radiation are investigated. Conduction is the transfer of thermal energy through 

matter because of a temperature gradient and does not involve motion of the material. In 

convection mode, the energy is transported by material motion. Radiation has two distinguishing 

characteristics when compared to conduction and convection i) no medium is required for heat 

transfer ii) unlike the first two methods where transfer of energy is proportional to the 

temperature difference between two locations, in radiation, the transfer is proportional to 

difference of the two temperatures each raised to the fourth power. This section discusses the use 

of FEM to solve heat transfer scenarios. It will be evident later in the discussions that the nature 

of the partial differential equation (PDE), which describes a thermal problem involving 

conduction is similar to the diffusion relation defined in equation (3.21). As performed earlier to 

model the AC losses, the approach here too will involve extending the ideas used for 

conventional materials to HTS. In such scenarios, the PDE that defines the governing relation 

 
Fig 3.9. Comparison between the experimental result [49] and the simulation result. 
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involving the conduction phenomenon is given by Fourier`s law [50], [51] shown below in 

Cartesian coordinates 

                                                                
  

  
                                                                    (3.49) 

 

                                                                
  

  
                                                                    (3.50) 

 

                                                                
  

  
                                                                    (3.51) 

 

 

where q depicts the rate of heat flow per unit area, k is the thermal conductivity and depending 

on the problem may be a function of the temperature denoted by T above. The negative sign 

signifies that the thermal energy transfers from a warmer to a colder region. In vector form the 

above relation using the gradient is defined as 

 

                                                                                                                                      (3.52) 

 

The following thermal energy equation is derived using the first law of thermodynamics and 

Fourier`s law  

 

                                                        
  

  
                                                               (3.53) 

 

Q in (3.53) is the thermal source, a contribution due to the heat loss arising from Joule`s effect or 

hysteresis, or mechanical friction depending on the case investigated.   in the energy expression 

is the mass density; c denotes the specific heat and the time is represented by t. The above 

equation is non-linear if the specific heat or the thermal conductivity or both are dependent on 

temperature. In the field computation, the boundary conditions are required to ensure a well 

posed problem with a unique solution. The typical boundary conditions used to solve thermal 

problems can be classified in the following manner: 

 

i. Prescribed Temperature - This is an example of Dirichlet condition or boundary condition 

of the first kind, where the temperature is specified as a constant, or a function of one or 

more variables at the boundaries. 
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ii. Prescribed Heat Flow - In this form, the boundary condition is the rate of heat flow across 

a boundary specified as a constant or a function of one or more variables at the 

boundaries. This case is an example of Neumann boundary condition or boundary 

condition of the second kind, defined as 

 

                                            
  

  
                                                                            (3.54)      

 

n above is normal to the boundary, the significance of the remaining parameter and 

variables has been described earlier, refer to equations 3.49-3.51.                                               

            

iii. Convective Heat Exchange - It involves scenarios where the flow of heat is proportional 

to the difference between the surface temperature    of a body and the convective 

temperature or the ambient temperature    of an adjacent fluid across the boundary. The 

form is defined in the following manner 

 

                                            
  

  
                                                                    (3.55)  

 

h in (3.55) is the heat transfer coefficient.                                                                                                                                                  

 

iv. Radiation Heat Exchange - This condition considers the rate of flow across the boundary 

in terms of the difference in energy emitted from the surface of a body at a temperature 

   , and the energy absorbed by it due to the incident thermal energy, emitted or reflected 

from other bodies at a temperature     present in the problem domain under investigation.  

                                             

                                                        
  

  
       

     
                                                        (3.56)              

          

  where the terms   and   are the Stefan-Boltzmann constant and the surface emissivity 

respectively.  

 

To solve problems of such a nature numerically using FEM, the first step involves spatial 

discretization, as performed in the magnetic field problems presented earlier. The following 

discussions derive the 2D element formulation for heat conduction involving convective 

exchanges. 
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Consider a single element for simplicity as presented in Fig 3.10, where the boundary conditions 

are applied to the face. The derivation involves the use of the thermal energy equation (3.53), the 

convection component and the application of the Galerkin method (for more refer to Appendix 

C), resulting in the matrix expression shown below   

 

                      
         

        
 

  
        

       
          

 
         

         
             (3.57) 

 

where        
  is the residual vector associated with a single element. A first order function, N, 

was considered as the interpolation function in the above expression, the coefficient matrices are 

defined in the following manner 

                                                                              
 

                                               (3.58) 

 

C is known as the capacitance matrix, S represents the surface integral. In the present case tk is 

the element thickness and dA is the differential area. N is given by 

 

                                                               
            

  
                                

 

                                                   

 

                                 is the area of triangle                                                                           (3.59) 

 

 

                                                                         
 

                  
 

                 (3.60) 

 

the first integral in the right hand side is the conduction matrix (  ) and the second integral is the  

 
Fig 3.10. Heat transfer element inside a problem domain, involving surface heating and convection. 
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surface convection matrix (  ), h in the latter is the convection heat transfer coefficient. B in 

(3.60) is the derivative matrix and D is the thermal conductivity matrix. 

 

                                                               
 

  
 
  

  

       
  

  

  
                                                 

 

 

                                                          
   

  
  

  

  
   

   

  
 

  

  
                                                        (3.61)                              

 

                
   
   

    is the thermal conductivity and in 2D there are two entries           (3.62)          

 

                    are the heat generation vector, the surface heating vector and the surface 

convection vector respectively. 
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In order to solve the transient thermal problem, the temporal discretization is achieved using 

FDM, and one such approach is the backward time difference method shown below 
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where n and ∆t are the time step number and time step size respectively. The following equations 

provide the matrix structure of the coefficients defined above 
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In a scenario where the edge of a triangle coincides with a boundary that has a heat transfer 

surface, an additional conductance matrix, surface heating vector, and surface convection vector 

are evaluated in the following manner. 
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in the above relations, L is the length of the edge, and the product tk L represents the surface of 

an edge, the reduction in the size of matrix and vectors occurs because only two nodes are 

considered. The analysis presented above did not consider the effects due to radiation, which 

requires use of the relation in (3.56), for more on this subject, and also on the treatment of 3D 

and axisymmetric scenarios refer to [50], [51]. This work used the ThermNet tool from Infolytica 

to model the thermal behavior and the radiation effects were not considered in the simulation. 

The next chapter considers a simple HTS device that will demonstrate the use of ThermNet and 

the thermal aspects of HTS.   

 

The nature of the PDE to solve thermal problems given by the energy equation (3.53) is 

applicable to HTS cases. The general physics for low-frequency applications involving HTS and 

that of conventional materials is similar to an extent. These common aspects allow the extension 

of FEM ideas used for conventional materials to HTS based systems. The outcomes of the 
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energy equation are dissimilar because of the parameters involved, the specific heat   and the 

thermal conductivity  , which are different for both materials. At the micro level, as highlighted 

in the previous chapter   is comprised of two components i) specific heat due to the conduction 

of electrons   , and ii) specific heat due to the lattice vibrations     . The term due to the flow of 

electrons is appreciable at low temperatures, whereas the contributions from the lattice behavior 

dominate at room temperatures. A dramatic change in    occurs at superconducting transition 

phase, which is not prevalent in     . In metals and conventional superconductors, the   presents 

a linear behavior corresponding to a change in temperature, whereas in HTS the relationship is of 

higher orders, usually second order or more. Similarly, the conductivity   has two components i) 

conductivity due to moving electrons or free carriers   , and ii)      because of the lattice 

vibrations. In metals and conventional superconductors, there is a substantial contribution from 

free carriers to thermal conductivity such that   ≈   , whereas in HTS the      component plays a 

dominant role. The cumulative effects of such properties are reflected at the macro level, but an 

in depth analysis of these phenomena is beyond the scope of this work, for further details refer to  

[19]. 

3.4 Coupling different field problems  

 

To model electric machines precisely, it is imperative to consider and incorporate the effects of 

the electromagnetic field, the thermal field, and mechanical strain, the latter a consequence of 

deformation. The dependencies of one such field or strain on the remaining two and vice-versa 

complicate the analysis procedure. This work investigates the interactions that exist between the 

electromagnetic and thermal fields in HTS materials; it will not study the effects due to strains. 

In general, such problems involving the study of different fields and their interactions are known 

as coupled problems. The numerical approaches to solve examples of this nature are classified 

into two categories: i) strongly coupled and ii) weakly coupled. In strongly coupled systems, the 

equations to model the effects are solved simultaneously, and are handled at the matrix level [52], 

[53]. This is achieved by including the coupling relations in the coefficient matrices. In weak 

coupling approaches, the problem is segregated into electromagnetic and thermal models, and 

solved in successive steps [54], [55]. Such methods provide the flexibility of using different 

solvers and time steps for the associated electromagnetic and thermal problems. The coupling is 

attained by first updating, and then transferring the dependent data to the problems defined and 
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subsequently solving them. The thermal field changes at a slower rate when compared to the 

electromagnetic field in low frequency examples, the large difference in the time scale or the 

time constant plays a crucial role in deciding the computational approach. The ratio between the 

largest and smallest time constant is known as the stiffness ratio, a parameter that determines the 

use of a particular coupling technique, the ratio could be as high as 10
5 

to10
7
 in the present 

scenarios. Weakly coupled methods are preferred for problems with high stiffness ratios, 

involving the use of time-harmonic and time-transient approaches for the electromagnetic and 

thermal systems respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure above highlights the flow associated with the coupling method used in this work. The 

first step involves electromagnetic analysis that estimates the magnetic vector potential using the 

relations defined in (3.7) or (3.21) depending on the scenario under investigation, and specifying 

the boundary conditions. A decision block was included to avoid frequent calls to the thermal 

solver in order to save computation time; it could be viewed as an introduction of delay to the 

thermal call attained by skipping few time steps. The use of such a delay function is problem 

dependent, and it may not be applicable in certain complex scenarios, for instance when the HTS 

 
Fig 3.11. Flow diagram of the coupled problem. 
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operates close to the quench region. If at any instance the thermal calculation is necessary, the 

AC loss values are estimated as discussed earlier involving numerical integration for every 

element. The thermal analysis is then executed using the formulation in (3.53) and applying the 

boundary conditions, and the new temperature distribution is determined. The values of the 

parameters to solve the thermal problem (equation 3.53) are available online in the National 

Institute of Standards and Technology (NIST) database, and in [58]. Subsequently, the time is 

incremented and the temperature distribution is fed back to electromagnetic analysis block, 

where the conductivity values are calculated and the cycle is repeated. 

 

The ideas discussed in this section could be extended further to include structural analysis in the 

coupled problem described above. In order to implement such a scenario, a structural solver is 

required that would estimate the deformation arising due to the variation in temperature and 

electromagnetic force. The structural solver would calculate the deformation in a HTS based 

device and then feed the corresponding strain distribution to the magnetic solver. Strain affects 

the shape and material properties that results in the variation of magnetic field and this 

necessitates the use of magnetic solver. The field distribution and the heat loss are reestimated by 

the magnetic solver, and a similar cycle as presented in Fig 3.11 is followed subsequently.  

3.5 Summary 

 

This chapter discussed the possible numerical methods that could be used to solve 

electromagnetic field problems in HTS materials. The use of FEM to solve such examples was 

analyzed, and an algorithm based on the Aitken approach was introduced to improve their 

convergence. The simulations pertaining to the new technique were presented, and its 

effectiveness was verified. This part of the dissertation also included the FEM treatment for 

thermal field problems involving HTS, and an approach to couple the magnetic field and the 

thermal field scenarios in them was provided. The next chapter will present a procedure to 

optimize HTS based current leads, which involves the use of a stochastic method and the 

application of ideas from the discipline of multi-objective optimization (MOO).  
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CHAPTER 4 

4 Design process and Optimization involving HTS 

 

4.1 Introduction 

 

This part of the dissertation will discuss and present the techniques involved in the computer 

based design and optimizion of a simple electromagnetic device involving HTS, and in the 

process will highlight the challenges involved. In chapter 2, the theoretical aspects associated 

with the thermal and magnetic field behavior of HTS were presented. The techniques to solve 

numerically, the two types of field problems in HTS using FEM were examined in chapter 3. In 

order to fully appreciate the intricacies involved, and to address the challenges unique to the 

design of computational models for such materials, a HTS based current lead is considered for 

the study. The investigations in this chapter will provide insights to deal with the challenges 

unique to HTS based devices. Furthermore, the concepts from the field of multi-objective 

optimization are investigated, and their feasibility to obtain an optimal design for HTS leads are 

explored. In order to implement MOO in such scenarios, Differential Evolution (DE), a 

stochastic based approach is used. 

 

The following sections will first describe HTS current leads and then underline the desired 

characteristics of such leads. To achieve the goal of obtaining an optimal model through 

simulations, a few samples from the search space are gathered first, as it is infeasible to test 

every point in the space for optimization. One of the sections reviews certain statistical 

techniques and verifies their scope in the scenarios under consideration. Subsequently the 

chapter examines and demonstrates the possible objective functions and constraints that could be 

considered to apply the multi-objective optimization method. It should be highlighted here that 

the study involves a multiphysics scenario which takes into account the magnetic field and 

thermal behavior associated with HTS current leads in operation. The discussions will provide 

the necessary theoretical aspects associated with the optimization process, and they will also 

include an insight into DE and highlight the benefits the latter carries.    
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4.2 HTS based current leads 

 

The electrical connection between two components maintained at different temperatures is 

achieved using current leads [56], [57]. HTS based leads play a crucial role to deliver power 

from current carrying copper components maintained at room temperature to superconducting 

magnets made from NbTi that operate at liquid helium temperature (4.2 K). As highlighted 

earlier, HTS materials have no Joule heating and very low thermal conductivity compared to 

metals. Such properties help in reducing heat transfers to the cold regions, which provides a 

substantial benefit, as they reduce refrigeration requirements. When compared to low-

temperature superconductors (LTS), HTS have a much wider transition region between 

superconducting and normal states; hence they provide more flexibility in terms of operation. 

Since HTS leads carry a high current, any variation in temperature, magnetic field or current 

density beyond their respective critical values could introduce resistance in the leads, and may 

cause burnout by Joule heating [57], [58]. 

 

A popular method for manufacturing HTS leads is the Melt Casting Process (MCP). In MCP, 

bulk parts in the desired shapes and sizes suitable for electrical engineering applications can be 

developed, and it avoids, to an extent, the issues that arise due to brittleness in HTS. The process 

involves the use of melt casting into different shapes and subsequently annealing them, the 

technique is convenient compared to conventional ceramic shaping approaches for constructing 

complex geometries [48]. For instance, to fabricate tubes or hollow cylinders as shown in Fig 4.1, 

the melt is poured into a rotating cylindrical steel mould and gets evenly distributed inside due to 

centrifugal force. To avoid cracks or any form of fracture in the cylindrical lead, the speed of 

rotation is varied during the period when the material solidifies. The solidified melt after casting 

 

 

 

 

 

 

                    
(a)                                                                                         (b) 

Fig 4.1. (a) A HTS current lead geometry. (b) Schematic representation of gas cooled HTS and Copper current leads arrangement. 
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and annealing is machined by methods such as sawing, drilling, mill cutting etc. In the system 

described in Fig 4.1(b), the bottom of the lead comprising the HTS section is usually immersed 

in liquid helium (He) and the top of the lead is kept at a higher ambient temperature. The thermal 

exchanger is maintained at an intermediate temperature, and it assists in reducing the total 

consumption of electric energy by removing heat at a higher temperature. The lead 

configurations are classified in terms of the cooling approach used as: conduction cooled, and 

vapor or gas cooled. Conduction cooled leads are simple to construct but heat leaks are higher in 

them, whereas vapor or gas cooled systems provide better heat leakage reduction. Cryogens such 

as liquid nitrogen (N) are used at the warmer end. This work considers a conduction cooled HTS 

lead for the optimization process, and the method was applied only to the HTS section. To 

simulate the behavior of a HTS lead, it was assumed that the lower end of the lead was in close 

vicinity to liquid helium maintained at 4.2 K, and the upper segment was kept at 77K using 

liquid nitrogen. 

  

The use of HTS materials for current leads was conceived because they provided a scope to 

spend less energy in refrigeration when compared to LTS based leads. LTS can operate only at 

temperatures close to 4K or less, whereas HTS have the potential to work at temperatures as high 

as 135 K, and this aspect is the main reason behind energy saving. HTS leads still operate under 

considerable low temperature conditions when compared to conventional materials as evident 

from the discussions so far, and it is always desirable under such settings to reduce the heat 

leakage and the AC loss. A simple method to reduce the heat leakage involves varying the cross-

section along the length, as heat leakage is directly proportional to the cross-section area. The 

hypothesis lies in the fact that heat leakage could be minimized by reducing the cross-section 

area at the cold end and the regions close to it [59]. Section 4.4 will also highlight the influence 

of geometrical factors (cross-section area) on AC loss. HTS are expensive materials, and it is 

always desirable to reduce the production cost of the leads by minimizing the use of 

superconducting materials. The reduction of heat leakage, AC loss and the use of materials are 

the objectives that the optimization method attempts to achieve. 

4.3 Sampling plan and Surrogate technique  

Optimization methods involve the execution of computer programs that usually use a vector of  
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design variables as inputs and deliver a vector of responses. Over the years there have been 

significant advances in computational capabilities, but in certain cases, computer codes using 

FEM for the analysis of electromagnetic examples can consume a considerable amount of time to 

reach even a single solution. The optimization of a current lead in this scenario requires FEM 

simulation and multiphysics problem solving. Under such circumstances, it is prudent to assume 

that the optimization process will be a computationally intensive task. Many times engineers 

employ trial and error techniques, where a limited set of inputs and responses are considered to 

design devices. Though such an approach could reduce the computational cost, it may fail to 

capture a functional relationship between the inputs and the outputs. Trial and error methods 

without any guidance lack the ability to provide or predict those input values that generate 

optimal solutions. In such an event, the subject of statistics comes to the rescue, and it overcomes 

these difficulties by constructing an approximation of the input-output behavior which is not 

only efficient to execute but also provides an insight into the input-output relationship. The 

representation of physical systems, that captures the input-output response first mathematically 

and then the implementation in the form of computer codes is known as Surrogate modeling [56]. 

The following discussions will provide the mathematical relation first, representing the Surrogate 

approach and then highlight the challenges involved. 

 

DEFINITION: Considering an unknown multivariate function f that denotes the performance 

behavior of a process or a system and defined as f: D →Ω
 
│    , with the function values 

being                           Ω
     distinct sample points                  . The 

Surrogate technique constructs an approximate function    from an approximation space   

│       Ω
    , and    closely emulates the behavior of f measured by some criterion ε. 

  

A close observation of the above definition reveals that Surrogate modeling is a form of 

regression. The concept of regression originates from the field of statistics, where the technique 

is used to generate a good estimate of data sets, consisting of dependent variables (y) in response 

to a set of independent variables (x). It involves using some form of mapping applied to the pair 

of (x) and the respective outputs (y) that delivers a model with a potential to predict the 

dependent variables. To develop such models, and improve their accuracy further a closeness 

measure is introduced into the procedure through some error term such as the Euclidean distance. 
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The experimenter determines the values of x and it is usually assumed they are free of errors, 

whereas the magnitudes of y may have an error in them, hence the purpose of error measurement. 

In Surrogate methods the sampled points used as inputs could be viewed as the independent 

variables (x).  

 

In order to implement Surrogate techniques, the first step involves the identification of design 

variables or inputs that have a significant impact on f. The idea is to find the shortest design 

variable vector that could capture most of the behavior of a system or a process, and it is 

accomplished by varying the values of the individual design elements or parameters within their 

specific range [61]. At this stage, the ranges of the various design variables are also established. 

The next step is selecting a number of vectors N, that are adequate to represent the design space 

as thoroughly as possible. N is usually small, and the number is constrained by the computational 

cost associated with finding the sample points. It is reasonable to assume that the use of a higher 

number of design variables in a problem would require more locations to measure the objective 

function for constructing a predictor with good accuracy. Considering a certain level of accuracy 

is attained by sampling a one-dimensional space in m locations, to obtain similar sample density 

in a d-dimensional space,    observations are necessary. Scenarios as described for higher 

dimensional spaces often cause the issue of the curse of dimensionality. For instance, assume in 

an electromagnetic problem the analysis and design process requires one hour of computation 

time for a single design that manipulates only one input parameter. Let there be a constraint in 

the computational budget of around five hours, and five simulations provide a fairly accurate 

predictor. In order to further refine the generated model additional variables could be considered, 

and as the numbers increase from the present case of one to say six parameters with the sample 

density remaining same, the computation requirement jumps to     executions, which is a 3000 

fold increase or is equivalent to 125 days.  

  

It could be concluded from the above discussions that evaluation of the objective function for 

every possible combination of all the design variables is an expensive proposition. Besides the 

assessments associated with an objective function, the number of design variables also 

contributes significantly to the number of experiments. An answer to the issues highlighted lies 

in seeking variables that have less or no effect on the objective function, so that such variables 
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could be left out of the design investigation. There is no standard set of guidelines which clearly 

specifies the amount of time that should be utilized in selection of variables; the application of 

any form of screening or sensitivity analysis is problem dependent. Some engineering intuition 

could play an important role, for instance, if a significant number of variables do not contribute 

much then the use of screening could increase the model accuracy. If on the other hand, all the 

variables play an active role, the application of screening will not offer any substantial benefits. 

The following section will provide an insight into the sampling methods, with a special emphasis 

on the procedure that has been considered in the present work. 

 

4.3.1 Design of sampling plans for computer experiments 

 

Computational models involve empirical investigation known as computational experiment; the 

procedure executes a computer program at different values of inputs to obtain the responses and 

analyses are performed on the results. Physical experiments and computational experiments are 

similar concepts, both of them have human and systematic errors, the aspect that differentiates 

them is the latter do not have a random error component, hence computational experiments are 

deterministic in nature [60]. As highlighted earlier, runs of computer codes are time consuming 

hence the initial process of identifying inputs that have the potential to influence results 

significantly. The inputs that are selected for the experiment constitute the experimental design, 

and the region corresponding to such inputs over which the response of the model is investigated 

is known as the experimental region. Many researchers suggest the use of space filling plans for 

computer experiment designs, when the accuracy of the predictor is of primary interest [61]. The 

basis for such a recommendation arises because predictors are usually interpolators, and the error 

in prediction for any input is dependent on the location of the design point. For instance, in 

designs that are not space filling, there could be scenarios where the points concentrate on the 

boundary of experimental design space, and this could lead to poor outcomes in regions that have 

sparse points. There are various approaches to ensure the design points are spread evenly 

throughout the region. The selection of points could be based on certain sampling algorithms 

such as stratified structures, or based on measures of distance between the points quantifying the 

extent of an even spread; another alternative method could use the measure of uniform point 

distribution throughout the region as the basis for selection. This work considers a space filling 
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plan based on sampling techniques, and the following discussions describe the methods that use 

a similar idea: 

 

i. Full factorial (FF) sampling - This procedure attempts to sample points in a uniform 

manner by using rectangular (square) grids. In a FF design, the number of design points 

is defined by the product of the number of levels (predefined values) for each factor 

(design variables) [62].To elaborate further, assume there are 2 levels and m variables, 

then FF will generate    sample points. The major drawbacks include an exponential 

increase in the size of experiments as the number of factors rise, which could lead to a 

substantial increase in the number of experiments; apart from this at times in high 

dimensions, the FF method, fails to ensure space filling in the design space.          

 

ii. Hammersley sequence sampling - In this approach, representations of a decimal number 

in the inverse radix form (a unique fraction between 0 and 1) are used to generate the 

sequence for sample selection [63]. The values of the radix (represented by n with 

subscripts below) are chosen as the first (p-1) prime numbers, where p is the number of 

dimensions. To fully appreciate the concepts behind the Hammersley sequence, consider 

an integer n that could be represented in the following form:  

                                                    
       

         
                               (4.1) 

 

where k = [    n], the square bracket signifies that only the integer value is considered, 

and R denotes a prime integer. The above definition in (4.1) could be applied to any 

integer. A fractional value is obtained by reversing the order of the digits about the 

decimal point resulting in the relation shown below                               

                                                       
        

          
                                  (4.2) 

           

           The Hammersley sequence for N points in a m-dimensional cubic space is given by 

                                            
 

 
    

       
           

      ;    n = 1, 2,   , N        (4.3) 

 

iii. Latin hypercube sampling (LHS) - A 2D example, in the form of Latin square is 

considered initially for simplicity to explain the fundamentals behind LHS. In a Latin 
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square scenario when p design points are required, a      grid is constructed first, and 

each cell is then populated by selecting values from the interval 1,2,..., p, the arrangement 

is performed in a manner that ensures an integer appears only once in each row and in 

each column of the grid, these integers could be viewed as sample point representations. 

This concept in 2D when extended to higher dimensions forms the basis for the LHS 

method. In LHS, the design space is split into hypercubes of equal dimensions, and such 

hypercubes could be viewed as boxes. The points (integers in the Latin square case) are 

arranged in the boxes, each box carrying only one point. To guarantee that the property of 

unique cells in each row and column is retained in the LHS, the strategy to fill the boxes 

assumes that the paths running parallel to any of the axes should always encounter a 

filled box only once. LHS is popular because it is simple to generate, and it could be 

easily tailored to provide a uniform spread even with few points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 4.2. (a) Full factorial sampling method using 8 points, providing 3D, side and top views. (b) Hammersley sampling method using the 

same number of 8 points with the 3D, side and top view plots. (c) Latin hypercube method using 8 points presenting the 3D, side and top 

views . 
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In Fig 4.2 eight sampling points were generated in a cubic space using FF, Hammersley, and 

LHS procedures respectively. It is evident from the above plots that in the FF method, when the 

points are projected onto the axes, they will overlap which is undesirable. The remaining two 

methods ensure the uniformity in projections. As highlighted earlier, in the LHS scenario, all the 

eight points are visible from six faces of the cube, with each row and each column carrying only 

one point. It can be argued here, that there is no significant difference in the distribution between 

the results from LHS and Hammersley methods. The use of a particular procedure in a given 

scenario could be subjective, theoretically the Hammersley sequence is able to maintain 

uniformity in all dimensions, but it is complicated to implement at times. A few other sequences 

that are frequently used for space-filling strategies include Sobol, Halton, and Faure sequences 

[61], [63]. This work used the LHS procedure, and the following section describes the use of 

such samples to create a surrogate model of the HTS current lead. 

 

4.3.2 Surrogate methods 

 

After deciding on the approach of experiment design and performing the necessary simulations, 

the next phase in the optimization process attempts to collect information from the input-output 

pair to construct an approximate function    that closely replicates the actual behavior f. The 

concept involves searching the entire search space for a suitable    , and if the approach is a mere 

trial and error, this could take infinite time. In many real world problems, the outcomes    from a 

rudimentary technique as described earlier, could be difficult to generalize, and may not be ideal 

in predicting responses at new points. The following discussions present the methods that 

attempt to estimate a meaningful    efficiently for problems under consideration. To gain a better 

understanding of  Surrogate techniques, a simple approach that uses polynomials, as applied in 

the well known Response Surfaces (RS) is explained first [64], then the Generalized Regression 

Neural Network (GRNN),  a  procedure used in this study, is considered [65]. 

 

Assume a response y due to the influence of a vector X. The independent vector comprises of 

terms             where m denotes the dimension of the design vector. The relationship 

between the two is defined by 

                                                                                                                                       (4.4)       
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where ϵ represents a random error. As highlighted earlier in a real world scenario, the response 

     at every point in the design space is unknown, and this necessitates the use of 

approximation techniques. A popular method to estimate      is by using low-order polynomials 

as shown in the following relation. 

                                                                     
 
                                                         (4.5) 

 

in the above equation, β denotes the coefficients, and the order of the polynomial is one. In the 

case of a second order polynomial, the approximation relation is defined as 

 

                                                                    
 
              

 
       

 
                      (4.6) 

 

the values of β in the above equations are determined by regression analysis (refer to Appendix 

E). The difference in values fitted by the polynomial relation and the observed data provides a 

measure of the error. There are a number of ways to reduce the error magnitude, one such 

method that is widely used in regression techniques and also considered in this work is the least 

square minimization method as defined below.  

                                                                                    
  

                                           (4.7) 

 

where n is the number of observed data points. In the above relation, it is assumed that ϵ in (4.4) 

is a small constant value around each point, and the random error factor was neglected. The cross 

validation method is another popular approach to estimate the parameters of the polynomials 

[60], but the procedure could be more challenging from an implementation perspective using 

computer codes. Interpolations often have the issue of overfitting, which occurs when 

interpolates oscillate in an attempt to fit all the data points. This situation arises due to the 

relation (4.7), as the regression process tries to reduce the error value. In order to avoid this 

problem, a simple approach involves introduction of a penalty factor, when the value of βi is 

large, to the above equation as shown below.  

                                                                         
 
   

                                           (4.8) 

 

where the value of   is determined based on the situation. There exist numerous model fitting 

techniques, apart from the RS method described above, which could be applied in the present 
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scenario. A good taxonomy exists in [60] that provides a few suggestions for model 

approximation approaches, and tries to relate the experiment design, choice of model, the 

number of dimensions (variables) and sample points. The main challenges involved while using 

computers for constructing surrogates of electromagnetic devices include i) the use of a few 

design points to sample the search space, and identify such points efficiently, ii) the entire 

landscape of the search space should be well covered by the sample points, a uniform 

distribution in the initial stages of design is beneficial, iii) improving the accuracy of surrogate 

models by incorporating advanced approximation functions that are adequate to capture the 

essential details of the design space, they should be effective in dealing not only with linear 

behaviors, but also the non-linear nature present in some systems, and iv) the ease of 

implementation. As highlighted earlier, there is a large pool of approximation techniques 

available for constructing surrogates, such as response surfaces, neural networks (NN), kriging, 

and many more [64]. At this juncture, a relevant question that arises is to identify the approach 

best suitable for a given problem. In the scientific literature, there are numerous works that 

describe the application of such methods to deal with a variety of problems, but comparative 

studies of these procedures are scarce. However, there exist few investigations that do compare 

them in engineering design problems, though many of them do not involve electromagnetics. 

Such examples provide some good insights into the behavior of these methods under different 

conditions. Some of the well known documented works include, the comparison between kriging 

and response surface as performed in [66], NNs and RSs have been studied in [67], and [68] 

provides a comparison among response surface, radial basis functions (RBF), kriging, and 

adaptive regression splines.  

 

The Response Surface is a simple method, and if the scenario involves small dimensions and is 

devoid of high degree of non-linearities, the computational expense could be reduced. To model 

surfaces with significant non-linearities, higher order polynomials are recommended. However, 

to estimate all the coefficients in the polynomial equation having a higher order, more sample 

points are required because of the increase in the number of coefficients. Apart from this, 

instabilities may also arise. Kriging incorporates a polynomial model plus a stochastic term; the 

latter is a spatial correlation function usually Gaussian in nature with zero mean and non-zero 

covariance (refer to Appendix E), which relates any two sampled points. The polynomial 
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function provides a global perspective of the design space, whereas the stochastic process 

attempts to include local information in the kriging model. Kriging is a very flexible approach as 

it can provide an exact interpolation of the data or a very smooth curve depending on the type of 

correlation function used, and there is a wide range of functions to select from. Another 

attractive feature of kriging is its ability to perform a screening operation on data and determine 

the important factors, which assists in generating the predictor (model). The process to construct 

a kriging model can be computationally intensive, which is a major drawback of this technique, 

in addition to this, when the sample points are close to one another, the correlation matrix (refer 

to Appendix E) can become singular. Kriging also has the ability to deal with non-linear 

scenarios but it is complex when compared to neural networks for adaptation, apart from this, 

kriging is ideal when the number of factors (variables) is less (less than 50) [64], whereas a 

neural network provides the flexibility of dealing with many variables (10,000 or more) [60], 

[64]. Neural networks outperform response surfaces in modeling highly non-linear behavior, 

whereas the latter consumes less computational time. References [69], [70], [71] describe the use 

of such approaches when conventional materials are present in electromagnetic devices. In an 

ideal scenario, the methods to construct surrogates should not be computationally expensive and 

adequate to capture all the essential behavior of the model. The presence of HTS stretches the 

limits of these requirements, and the issue of limited available data further aggravates the 

situation. The theoretical aspects discussed so far with the associated limitations, and the ability 

of a specific approach to generalize easily were the main reasons behind selecting a neural 

network as a surrogate in the proposed optimization framework of HTS leads. The following 

discussions will provide some insights into the neural network technique used in this work. 

 

 

 

 

 

 

 

 

 

 
Fig 4.3. The architecture of a generalized regression neural network. 

 

. 
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In general, a neural network can be defined as a massive network of neurons (processing units) that 

processes signals separately and simultaneously as a parallel distributed processing system. Such 

networks can learn from examples and make the knowledge available for use [72]. Neural 

networks, in terms of the architecture, can broadly be classified into feedforward neural networks 

(FNNs), recurrent neural networks (RNNs), and their combinations. The generalized regression 

neural network (GRNN) was proposed by Donald F. Specht, and has a FNN architecture which 

usually has three layers of nodes (neurons), namely the input layer, the hidden layer and the 

output layer node [65], [73]. The GRNN has a minor variation because there is an additional 

layer of summation nodes between the hidden and the output layers as shown in Fig. 4.3 . The 

input neurons merely provide scaled values of the input variables to the nodes of the hidden layer. 

There are two sets of neurons in the hidden layer, one that computes the numerator term and the 

other calculates the denominator of the probability density function described below. In the 

summation layer, the numerator terms of the hidden layer are added by multiplying them with 

the target value, whereas addition is only performed on the values present in the denominator. 

The output layer predicts the targeted value by simply dividing the accumulated numerator with 

the denominator obtained from the summation layer. 

       

DEFINITION: A dataset D = (X, Y) │X = {         } and Y = {         } generated by n 

sample points of the unknown function f: X   → Y  . X and Y represent the set of 

independent random variables and the set of outcomes respectively; d denotes the dimension of 

the sample space. The approximation    of f provided is given by  

 

                                                                         
           
 
  

         
 
  

                                          (4.9) 

       

where x is the value of a random variable and y being the corresponding output, the notation E in 

the above relation is the conditional mean of y given x, and p(x,y) is an unknown probability 

density function. A sample of observations comprising X and Y is used to estimate p(x, y), and 

usually the consistent estimators suggested by Parzen [74] are applied and provide the following 

equation.                             
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σ in the above relation is standard deviation and regulates smoothness of the function; using 

equations (4.9) and (4.10) renders  

                                                                 
         

      
 

     
    

     
     

      
 

    

                                              (4.11) 

 

the above form (4.11) defines the neurons present in the output layer of GRNN and is obtained 

by integrating analytically after the two relations are decomposed in terms of x and y. Equation 

(4.11) in statistics is popularly known as Nadaraya–Watson regression estimator [72] and can be 

applied to numerical data.        can be viewed as a weighted average of all of the observed 

values Y, and each observed value is weighted exponentially according to its Euclidean distance 

from   . 

 

A probabilistic approach [75] such as GRNN generally requires fewer samples and less training 

time to learn from the input-output relation compared to the back-propagation (BP) learning 

mechanism, a popular paradigm used in neural network to implement learning, the latter utilizes 

weights to achieve this task [72]. The performance of BP may show improved performance in 

certain scenarios, but it is usually preferred in cases where accuracy is of great significance and 

when a large amount of input-output data is available, which justifies the additional time. The 

two main reasons in determining the use of GRNNs in the present scenario is their ability to 

approximate functions from sparse data and they can be trained rapidly. Besides these, the 

software simulation of a GRNN is easy to implement and use. 

4.4 Multi-objective based optimization  

 

Problems which involve simultaneous optimization of several objective functions that often are 

competing are best dealt by a multiple objective optimization (MOO)  approach, and such 

scenarios are common in the field of electromagnetics. The methodology of MOO in 

computational electromagnetics has garnered great interest among researchers to obtain optimum 

designs of electromagnetic machines, under a given set of constraints. The approach has gained 

success in conventional machine design [76], and is still being actively researched. The MOO 

method involves the concept of non-dominated solutions, to elaborate further the contrary case of 
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a dominated solution is defined first. A solution is dominated if it is worse than another solution 

in at least one objective, while not being better than that solution in any other objective. In 

multiple objective optimization, the aim is to find not a single, but a set of, non-dominated 

solution points also known as the Pareto Set (PS) [76], [77]. There are several computational 

tools to achieve such a target, e.g., Game Theory, Genetic Algorithms (GA) and Evolutionary 

Strategies (ES) [78], etc. The presence of a large volume of published work involving procedures 

based on genetic and evolutionary approaches signifies the success accomplished by these 

methods [76]. In brief, such tools automatically discover the regularities or unique features in the 

problem landscape, and then exploit them in the form of decomposition of the problem through 

the combination of pieces of promising solutions found so far and perturbing the solutions 

slightly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEFINITION: Given a function     Ω          Ω            Ω               ∞  

is called a global minimum iff 

                                                                                                                                (4.12) 

where,    is the global minimum solution(s), f is the objective function, and the set   is the 

feasible region     . 

 
Fig 4.4. f1 and f2 are objective functions. (a) Convex Pareto front. (b) Non-convex Pareto front. (c) Multiple Pareto fronts denoted by 

bold line, line with dots and dash arising due to multi-modal condition present in either one or both objective functions. (d) 

Discontinuous Pareto front. (e) Non-Uniform Pareto front. (f) Deception in the Pareto front, the optimum exists from the bold curve, 

but the nature of search space favors the region from the dotted curve. 
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DEFINITION: In general, a MOO problem minimizes                       subject to 

                     , where   is an n dimensional decision variable vector    

          [76].  

 

DEFINITION: Considering two vectors u and v, the vector             is said to Pareto 

dominate              (denoted by u ≤ v) iff u is less than or equal to v, i.e.,     

                                   . 

 

DEFINITION: A solution   Ω is said to be Pareto optimal with respect to Ω iff there is no 

   Ω for which               
         

    dominates                        .  

 

DEFINITION: For a given MO problem F(x), the Pareto optimal set (  ) is 

  

                                                                                                             (4.13) 

 

DEFINITION: In a MO problem F(x) and Pareto optimal set   , the Pareto front       is given 

by 

                                                                                                       (4.14) 

 

The above definitions provide the fundamental mathematical concepts associated with MOO. In 

general, functions in MOO provide a mathematical description of performance criteria that 

conflict, the optimization attempts to find a solution of all the objective functions having values 

that may be acceptable to the decision maker (DM). In most cases there exist restrictions known 

as constraints that describe the dependencies among decision variables in the example; they arise 

because of the characteristics of the problem under investigation, and are expressed in the form 

of mathematical inequalities or equalities. The number of equality constraints should be less than 

the number of decision variables, else the problem is overconstrained and there are no degrees of 

freedom left for optimizing. The difference in the number of decision variables and the number 

of equality constraints renders the degrees of freedom. The entity DM mentioned earlier is 

usually a person who is an expert in the field with considerable knowledge who introduces the 
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preferences related to the objectives and different solutions in a certain form. A good example 

includes the case when all the objective functions of a problem are combined into a single 

objective function, in such a scenario, the individual objective functions are assigned weights 

decided by the DM before incorporating them into a single function. The purpose of 

computational tools such as evolutionary algorithms is to retain the diversity in the population of 

function and parameter spaces, and to direct the search towards the optimal Pareto region. Some 

of the conditions that prove to be an obstacle in convergence towards the Pareto-optimal are: 

 

i. Multi-modality – Occurs due to the presence of more than one Pareto-optimal front, as 

shown in Fig 4.4 resulting in difficulties in obtaining the optimum solution. 

 

ii. Isolated optimum – In a situation where the search space is flat, finding an optimum point 

becomes difficult because useful information to guide a search method is absent. 

Optimization procedures use features of the search space to determine the next move, and 

if the optimum point is surrounded by a flat region then an exhaustive search is required. 

 

iii. Deception – When there is more than one local optimum solution in the search space, a 

condition may arise when the features of the search space favour any optimum point 

other than the global optimum (refer to Fig 4.4), leading to the problem of convergence 

towards a non-global optimum point. In scenarios where the global optimum is desirable, 

deception could result in a multiple objective optimization procedure missing such an 

optimum point or may result in considerable time to converge. 

 

iv. Convexity or non-convexity – In optimization algorithms, at times there is a tendency to 

find more intermediate solutions than to find individuals near the best solutions resulting 

in a bias towards some section of a Pareto-optimal region. Such an issue is found when 

the global Pareto-optimal front is non-convex and there exist convex local Pareto-optimal 

fronts. 

 

v. Discontinuity – This problem arises when the global Pareto-optimal front exists as a 

collection of discretely spaced sub- regions rather than as an entity in a continuous form. 
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In such a scenario, the optimization procedure has the additional task of approximating 

missing sections of the Pareto-optimal front. 

 

vi. Non-uniformity – The presence of a higher solution density in certain sections of the 

Pareto-optimal front compared to other regions causes the problem of non-uniformity. 

This uneven distribution may result in some bias towards higher density regions and also 

reduce the diversity in solutions. 

 

The above issues may affect any MOO method and are problem dependent. The situations 

discussed until now are prevalent in the present scenario also, where the problem concerns 

solving electromagnetic and thermal fields and the shape of the device, there are numerous 

examples in the scientific literature that have discussed similar scenarios; the difference here 

arises because of the HTS material. 

 

The discourses so far described the multiple objective optimization method, highlighted some of 

the issues associated with it, and briefly discussed the ideas to implement it using evolutionary 

algorithms. There are a few other methods that deviate slightly, and do not explicitly incorporate 

the concept of Pareto optimality in their selection structure. One such method as highlighted 

earlier is the Aggregating Function, in this procedure each objective function is first multiplied 

by a weighted coefficient and then all the resulting values are added as shown below.  

 

                                                                       
 
                                                             (4.15)   

 

where        denotes the  weighted coefficients. A shortcoming of this approach is its inability 

to generate non-convex portions of the Pareto front; this behavior is independent of any 

combination of weight used, and is more prevalent in linear aggregating functions. This failure 

could lead to a scenario where the Pareto front misses a substantial block of possibly good 

optimal solutions. Apart from Aggregating Functions, certain population based techniques such 

as Vector Evaluated Genetic Algorithm (VEGA) has a preference (bias) for the edge regions of 

the Pareto front, and  it may miss optimal solutions that are present in the central section of the 

Pareto front. Such a method is applied for problems, in which a bias is desired in the selection 
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process, for instance, in scenarios where constraints are considered as objectives in formulating 

single objective optimization methods. These aspects associated with multi-objective 

optimization had not been investigated in this work, but there could be some benefits in terms of 

saving computation time. A discussion has been included here to present a thorough treatment of 

the subject matter. 

 

As highlighted earlier, this work optimizes a HTS current lead by reducing heat leakage, AC loss 

and the amount of material used. In order to achieve these goals, objective functions that define 

the relationship between the specific targets such as heat leakage reduction and the parameters 

that could be manipulated to obtain the desired result are identified first. In the present scenario, 

the lead operates in a superconducting state; and the hysteresis component plays a dominant role 

in determining loss. To model the AC loss reduction, the self-field loss in a tubular structure was 

estimated using the following mathematical expression; this approach is based on the ideas first 

suggested by W. T. Norris [79], [80], [81] 

 

                                                
    

 

                           
  

 
    (J/m)           (4.16) 

 

where   is defined as         
  

  
 
 

  and F is described as F = Ip/Ic, the term Ri is the  internal 

radius, the external radius is given by Ro, Ip represents the peak value of operating current, and Ic 

denotes the critical current. In order to reduce the heat leakage and the material used, a linear 

variation in the area along the length was considered, this approach is similar to the ideas 

presented in [59]. A higher order function could also be used here to generate even surfaces, but 

the first order form was employed due to its simplicity, and is defined as 

 

                                                                  
  

  
    

 

 
                                            (4.17)                 

 

in the above relation, A(x) is the area at a distance x from the reference point, in the present 

scenario, reference point could either be the cold end or the warm edge, AH represents the cross-

section at the warm end, AC denotes the area at the cold end, and L is the total length of the lead. 

The volume integral provides estimates for the amount of the material used. The constraint 
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relation applicable in this scenario is introduced in the form of the operating current density J, 

this component should be less than or equal to the critical current density Jc (J ≤ Jc), the latter in 

turn is largely affected by the temperature and to a lesser extent by the magnetic field. The 

dependency of temperature on the critical current density is defined using the following linear 

relationship 

                                                               
  

 

  

  
  
  

                                                                 (4.18) 

 

where Tc is the critical temperature having the value of 89K; T0 is 77K, the temperature of liquid 

Nitrogen, and Jc0 denotes the current density of the example under consideration [82], [83]. As 

mentioned earlier, the magnetic field also influences Jc, and this aspect is incorporated using the 

Kim relation (refer to Appendix B) as shown below 

 

                                                              
   

   
   

  

                                                                   (4.19) 

 

Jc0 in equation (4.19) is the critical current density when the field is zero, experimental data is 

used to determine the value of B0 and it is usually assigned a value in the range of 20-30 mT, the 

region in which Jc falls to half the value of Jc0. The variation in Jc due to B is small below B0, as 

evident from the available data [48], and depending on the problem its effect on Jc could be 

neglected.  

 

In Fig 4.5 below, a comprehensive representation of the optimization procedure applied in this 

study has been presented. The internal radius at four different points along the length of the 

current lead were considered as the parameters for the optimization method. Additional 

parameters could be considered in this investigation, for instance a larger set of internal radii 

comprising more points along the length, or the inclusion of a set of outer radius points as 

additional parameters along with the set of internal radii, but it was avoided to reduce the 

computation cost. The process involves initialization of the parameters first; subsequently calls 

to the magnetic field and thermal solvers are made. It should be pointed out here that to avoid the 

repeated calls to computationally expensive solvers, the surrogate model was considered at this 

juncture to generate solutions, the response surface obtained by using GRNN provided a look-up 
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table for reference. After a solution is obtained, based on the results it is determined whether to 

apply any further optimization or exit the procedure. A Differential Evolution (DE) based 

optimizer has been employed in this study, which then updates the parameters and the process is 

repeated by a call to the solvers again. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next section will provide a detailed discussion on DE concerning the theoretical aspects, the 

benefits it provides and the reason behind its usage. Subsequently, in section (4.6), the approach 

to implement the ideas presented so far will be discussed along with the results. 

 

4.5 Differential evolution 

 

The problem defined above can be optimized using either Deterministic approaches such as the 

Penalty function method, the Lagrangian method and Sequential quadratic programming or 

techniques that consider a different concept known as the Stochastic methods. The two 

procedures have their own advantages and drawbacks, and at times pose a challenge in 

determining the benefits one has over the other for the scenario under consideration. A 

deterministic based algorithm requires computation of the gradient and, in certain scenarios, the 

Hessian of the involved variables. In its favor, the proponents of Deterministic strategies argue 

that if a function is differentiable and convex, the convergence towards the minimum solution is 

 
 

Fig 4.5. The overall view of the optimization approach.The flow diagram shows the interaction among various components 

that include the magnetic and thermal field solvers, a DE based optimizer and a parameter list. 
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faster compared to the Stochastic mechanisms. The expression “faster” signifies that the 

procedure requires fewer function evaluations to reach the optimum solution. Apart from this, 

the mathematical treatment in Deterministic methods is more rigorous and hence it could be 

argued that they are more direct and replicable. In many practical engineering problems, there 

exists little or no prior information about the overall system behavior; in such conditions, it is 

very difficult to predict the response of an objective function. Stochastic methods are well 

equipped to deal with problems of this nature because they are zeroth order techniques, which 

utilize the function values only, and thereby avoid the requirement of continuity of the objective 

function. Apart from this, unlike deterministic algorithms, stochastic approaches are not 

intrinsically single objective and they can overcome local minima; the treatment of constraints is 

also simple and involves replacement of infeasible solutions by new feasible ones without the 

use of penalty functions which are prevalent in some deterministic techniques. One of the major 

issues with Stochastic procedures is the high number of function evaluations associated with 

them, but with the advent of powerful computers this problem has been addressed to an extent, 

and the methods have found extensive use.  

 

 

 

 

 

 

 

 

 

 

 

 

Differential Evolution (Fig.4.6) is a simple to implement evolutionary algorithm (EA) introduced 

by Kenneth Price and Rainer Storn [84]. This procedure is an outcome of their research to 

implement simulated annealing to the Chebyshev polynomial fitting problem, a well known 

function used to test the performance of optimization algorithms. In general all nature-inspired 

 
Fig 4.6.  The Differential Evolution flow diagram . The process is terminated when there is no appreciable change  in  the fitness of the 

population over successive iterations. 
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evolutionary algorithms such as Evolutionary Strategies, Genetic Algorithm , and DE involve the 

concepts of recombination, mutation and survival of the fittest. However, there exist a few 

distinctions, for instance, in ES, the parameters are encoded using floating-point numbers and 

they are manipulated with arithmetic operators, due to this, ES is more suitable as a continuous 

function optimizer. In case of GAs the parameters are often encoded as bit strings and logical 

operators are used to manipulate them. Genetic Algorithms are better suited for combinatorial 

optimization because of the encoding approach, but there are examples where GAs have been 

modified to operate on floating-point number and they function more as ES-type algorithms. 

Some form of probability distribution function is used in most of the procedures highlighted so 

far to determine the next generation, but in DE the offspring are generated by perturbing the 

present generation members with the scaled differences of randomly selected and distinct 

population members. In order to elaborate further, the four fundamental steps associated with DE 

are discussed below 

 

i. Population initialization – The parameters used in the DE algorithm are represented in a 

vector, an approach, similar to the ones used in other forms of evolutionary algorithm. 

The lower and upper bounds for each parameter are specified first, this is performed 

because parameters are a measure of physical quantities that have limited range, which is 

an outcome of  the restrictions that occur naturally or due to design specifications. After 

specifying the bounds, a random number generator is used to assign values to each 

parameter within the bounds of the defined range as shown below 

 

                                                                                                          (4.20) 

 

            where j represents the new random value for each parameter of the vector,( i,0) indicates 

            the generation,            is a function that returns a uniformly distributed random  

            number from within the range [0,1), the subscripts U and L are the upper and lower 

            bounds  respectively, and b denotes the bound value. 

          

ii. Mutation –  In the world of life sciences the term “mutation” implies a sudden change in 

the characteristics  of  a chromosome. This aspect is incorporated in the DE computing 
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paradigm by creating a perturbation with a random element. After the population of size 

Np is initialized, DE mutates and recombines the population to produce a population of 

trial vectors. In order to create vectors for the mutant population (       ), three distinct 

parameter vectors       
  are sampled randomly from the present generation denoted by G. 

Subsequently, the difference of any two of these three vectors is scaled by a scalar 

number F and added to the third as presented in the following relation 

 

                                                                                                                                     (4.21) 

          

            typical values of the  scalar F is in the interval of [0.5, 1], the subscript v denotes distinct 

            base vectors, and the indices r are selected from the range [1, NP], and are mutually  

            different.       

 

iii. Crossover – The procedure of mutation is complemented by the technique of crossover, 

also known as discrete recombination, the purpose of this method is to gain diversity in 

the population and create trial vectors          . A user defined criterion known as crossover 

rate (Cr) that typically lies in the range of [0,1], is used to determine the source that 

contributes to the creation of a trial vector as described below 

 

                                                              
                                       

                                                           
                   (4.22)               

 

in the above relations Cr is compared to the output of a random number generator and if 

the value of the latter is less or equal, then the mutant vector is considered, else the parent 

vector also known as the target vector is selected. 

 

iv. Selection – This method is used to maintain the population size constant, over subsequent 

generations. Selection helps in determining whether the target or the trial vector is 

considered as a member for the next generation (G+1). This is achieved by comparing the 

values of the objective function      obtained by considering the trial vector and the 
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target vector. If the yield of the trial is less than the target, the former replaces the 

corresponding target vector in the next generation; otherwise the target is retained in the 

population as represented in the following mathematical relation. 

 

                                                                 
                                         

                                              

                        (4.23)  

     

From the discussions so far it could be summarized that DE is less mathematically complicated 

than the deterministic methods, and the former includes randomness in the search space; the 

latter aspect is beneficial in obtaining the global minimum and performing a more thorough 

investigation of the design space. Apart from this, a notable property of Differential Evolution is 

that the parameters Cr and F highlighted above require a lesser amount of fine tuning than is 

necessary in many other EAs. 

4.6 Simulations and Results 

 

 

 

 

 

 

 

 

 

 

 

 

A set of experimental data from a non-optimized HTS lead as provided in [56] (shown in the 

above figure 4.7) was considered for the initial parameters and conditions, in order to evaluate 

the ideas discussed and presented so far. The outer radius was fixed to a constant magnitude of 

10mm, the initial internal radius along the entire length was set to 5mm. The lead model was 

specified a length of 100mm; the temperature at the warm end (x=100mm) was set to 77K and 

the cold end (x=0) at 4.2K. The critical current of the sample at 77K was 1680 A, and the 

operating current was set to 0.7-0.9 times the initial critical value with a frequency of 50Hz. In 

the optimization procedure, all subsequent samples carried the same boundary conditions, outer 

 
Fig 4.7.  The non-optimized lead, with internal and outer  radii of 5mm and 10mm respectively, and a length of 100mm. 

 

 



 68 

radius and length. The variation in the internal radius was enforced along the length at four 

different locations (x = 0mm, 50mm, 75mm and 100mm), and acted as the four parameters for 

the optimization method. To generate more sample points in the search space the evenly 

distributing and space filling scheme of the Latin hypercube as described earlier in this chapter 

was used. This design approach was used to generate 50 sample points, and with a view to 

approximate the response surface and estimate its behavior, an interpolation method using the 

Generalized Regression Neural Network was  implemented by applying the newgrnn MATLAB 

routine. The parameters F and Cr associated with Differential Evolution (refer to section 4.5) 

were assigned a value of  0.8 and 0.7 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following discussions provide results obtained by applying the ideas presented in this 

chapter. The sample points for the four parameters as shown in Fig. 4.8  were generated using 

latin hypercube sampling and were in the range of 5mm – 9.8mm. Limits for the inner radii were 

specified to investigate the viable search space. For instance, if they reduce beyond 5mm, it will 

cause an increase in the cross section area and also the volume, which is not what this approach 

attempts to achieve and the reference [56] used for the initial estimates does not provide any data 

for leads having an internal radius less than 5mm. The upper limit was set to 9.8mm because if 

an inner radius is equal to the outer radius, then it will cause a divide by zero error (refer to 

equation 4.16).   

 
Fig 4.8. The distribution of  50 data points  using the LHS technique. A 3D representation  to visualize the samples conveniently , in the 

above plots only three parameters are considered at a time. 
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Using the set of 50 sample points each carrying four parameters the developed magnetic field 

solver and the ThermNet solver were used to perform the steady state and transient field analysis, 

respectively, and the corresponding values of cross-section area, AC loss and volume were 

stored. Only ¼ of the geometry was analyzed because of the symmetry involved, thereby 

reducing the computational cost. Subsequently, to develop the Generalized Regression Neural 

Network based surrogate model the MATLAB routine newgrnn (for more refer to the 

MathWorks Documentation Center available online) was used and in order to train it, the set of 

50 parameters acted as the input and the respective values of cross-section area, AC loss and 

volume were used as the output. Thereafter the optimization process using the stochastic method 

as shown in Fig. 4.5 was carried out. There were 1248 function calls for the Pareto set, and 

following the estimation of solution set, the next task involved determining a feasible solution 

and in this process, the role of the decision maker as highlighted earlier comes into play. There 

exist numerous methods to implement a selection procedure of this nature [85], and in this work 

the following criteria were used for this stage. 

 

i. Consider the solutions that have the lowest 15%  values for AC loss. 

ii. Lead volumes greater than 1.77E+04 mm
3
 (approximately 75% of the non-optimized lead) 

were excluded from the selection list. 

iii. Among the remaining solutions, the one that had the smallest cross-section area at the 

cold end was chosen. 

 

The above criteria are alterable and are dependent on the approach a decision maker considers. 

 

 

 

 

 

 

 

 

 

 
Fig 4.9. The quarter section of an optimized HTS lead. 
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In Fig.4.9 above the structure of an optimized HTS current lead is presented and the following 

table 4.1 provides the optimum values obtained through the approach presented in this work, as 

evident the extent of variation in the radius had less impact on the AC loss. The figure in 4.10 

below describes the temperature distribution along the length of the lead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 Summary 

 

The HTS based current lead was used as an example to investigate the techniques that could be 

applied to optimize a simple electromagnetic device constructed from HTS, this study also 

includes the influence of the thermal behavior of HTS in such a process. This part of the 

dissertation describes HTS current leads, the conditions in which they operate and highlights the 

scope for improving the performance and cost saving. To achieve the necessary goals, a 

discussion on sampling techniques, an area often neglected was presented and the use of LHS 

was suggested. A GRNN based surrogate technique was recommended to generate an 

inexpensive computational model which considered both the magnetic field and thermal field 

effects.  

 

  Table  4.1 Best solution from the Pareto set. 

 

 
Fig 4.10. The temperature distribution from a section of the HTS lead. 
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Subsequently, the fundamentals of multi-objective optimization were analyzed and the concepts 

involving the Pareto optimal front were used. Differential Evolution, a stochastic based 

optimization method, involving MOO-DE approach was applied to achieve the goals, and the 

benefits of such an approach were emphasized. In the field of stochastic algorithms there exist 

the well known “No Free Lunch Theorem”, which states that for an algorithm, any enhancement 

in the performance over one class of problems is offset by performance over another class. 

Similar to the issue in the area of applied electromagnetics, in HTS based devices too, it still 

remains an open question as to which algorithm is best suited for a given class of problem. This 

thesis does not attempt to compare DE and other evolutionary based strategies in the scenarios 

involving HTS. The main reason behind its preference in the present case is the ease of 

implementation provided by Differential Evolution. This chapter concludes by presenting the 

simulation results based on the ideas discussed.  
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CHAPTER 5 

5 Conclusion and future work 

 

 

Electric machines are complex devices that are difficult to design. Many times engineers use 

knowledge and experience to design and construct motors, generators and actuators, but it is a 

known fact that such an approach involves considerable time. In such a scenario, the use of 

computers and techniques adapted to draw the advantages from computational methods provide 

immense benefits in the form of time savings, better solutions and reduced wastage in the design 

process. This project investigated a scenario when a new material, in the present case HTS, is 

used to construct electromagnetic devices. The use of new materials in any system introduces 

some unique characteristics and changes in the overall behavior of the system, the same occurs 

when HTS is used in the design of electric machines. This thesis first highlighted the properties 

of HTS, and then mentioned the benefits and drawbacks associated with its use. From a 

computational perspective, HTS poses its own set of challenges and this work demonstrated the 

manner in which the area of computational electromagnetics addresses them. The flow of this 

research provided an interesting insight into how different problems associated with HTS based 

low frequency devices are dealt from the microscopic level to the macroscopic scale in the entire 

design cycle. 

 

The research goals were stated in chapter one and could be summarized as: 

 

i. Define an approach to deal with the convergence issues that exist in solving magnetic 

field problem in HTS, and to find a scope for improvement in convergence. 

 

ii. Find a scheme to solve the muliphysics problem associated with HTS based current leads, 

that attempts to determine the solutions to two different problems, particularly magnetic 

and thermal field problems using 2D and 3D models respectively, and then couple the 

two.    

 

iii. Design a technique to deal with the issues common to HTS based devices specifically the 

reduction of heat leakage, AC loss and the material used. In this effort, investigate the 
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MOO method and its use in this scenario, and identify the possible objective functions 

and constraints. 

 

iv. Probe statistical based methods to determine the manner in which they could be applied 

to generate data of HTS devices, and address the problem of data scarcity. In addition, 

assist the optimization process by investigating and using computationally less expensive 

surrogate methods, and suggest a feasible method. Finally, recommend a method that is 

simple to implement and efficiently executes the MOO problem defined earlier for HTS 

leads.   

 

In order to achieve the goals highlighted above, numerical methods to solve 2D magnetic field 

problems involving HTS were discussed in chapter three. The A-V form was considered to solve 

the diffusion equation involved. FEM was used for the spatial discretization and the  temporal 

discretization was achieved using FDM, a backward time difference method was utilized to 

compute the time steps. An algorithm based on the Aitken method was proposed to improve the 

convergence in such problems. The approach was verified in a self field scenario that involved a 

HTS sample carrying transport current. An external field simulation was implemented using a 

case that consisted of a HTS sample and a ferromagnetic iron specimen, the results from the 

recommended method were verified. Afterwards, the numerical formulation to solve the heat 

equation were discussed, FEM was used again, but now it involved 3D treatment of the problem. 

To solve the thermal problem, the ThermNet package from Infolytica was used. Subsequently, 

the techniques to couple thermal and magnetic field problems were discussed and an approach 

based on weak coupling was recommended.  

 

In chapter four, the properties and the working of HTS current leads were discussed. To improve 

their performance and reduce costs, an optimization approach based on MOO was recommended. 

The possible objective functions and constraints in the MOO process were defined. This thesis 

further explored various statiscal based methods with aim to provide good sampling data points 

for the optimization process and an efficient implementation, the study suggested the use of the 

LHS procedure. This work, then examined possible surrogate methods that could be used to 

develop a less computationally expensive model of a HTS lead, the use of GRNN was proposed 

and it was implemented by using the newgrnn MATLAB routine. DE, a stochastic method was 
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considered to achieve the optimization goals and the reasons behind its use were highlighted. 

Finally, simulation results from the proposed optimization framework were presented.  

 

5.1 Recommendation for Future Work 

 

There are many areas of research relating to this dissertation that were not explored due to time 

constraints. Some of the major thrust areas that hold considerable potential for contributions in 

the future are: 

 

i. The application of the finite element method (FEM) to solve magnetic field problems 

involving high temperature superconductors (HTS) requires the use of a high density of 

elements. As stressed in this work on numerous occasions, HTS materials are highly 

nonlinear and this requires the use of high element densities to determine their field 

behavior accurately. The non-linearity causes slow convergence and thereby increases the 

computation cost, the latter aspect is aggravated further due to the computationally 

expensive process of mesh generation. In order to avoid this problem the use of a 

meshless methods (MM) in the calculation of the magnetic field could be investigated as 

this would skip the expensive mesh generation process.  

 

ii. In order to develop accurate computational models of complex systems such as motors 

and generators, it is imperative to investigate three-dimensional magnetic field 

calculations involving HTS. The conventional approaches are based on magnetic field 

estimation for scenarios having a small air gap, HTS based machines have larger air gaps 

and the existing methods may lack accuracy. Moreover, large flux densities at the end 

parts of coils further necessitate the use of 3D methods. 

 

iii. Development of a unified computational model that not only has the ability to replicate 

the behavior of a HTS based system in the superconducting state, but also has the 

capability to reproduce near quench state behavior. In this regard the flux movement 

phenomenon should be included in the formulation.  

 



 75 

iv. The multiphysics scenario presented in this work involved only the study of the magnetic 

field and the thermal behavior. This could further be extended to include the structural 

behavior of systems that are made of HTS, one of the major hurdles that lies in this aspect 

is the lack of data concerning the mechanical properties of HTS. 

 

v. Evolutionary algorithms require extensive exploration of the search space to deliver a 

near optimum solution. Individuals of a population-based method move towards 

improvement through a randomness controlled by a set of possible guidelines. For 

instance, in the present scenario, DE explores new regions of the search space by 

combining and mutating repeatedly using promising solutions. Such manipulations of the 

building blocks (partial solutions of a problem) either break the building blocks 

frequently or do not mix them effectively. The performance of the algorithm degrades 

further when the building blocks are spread across a large problem space. An alternative 

approach that could make such algorithms faster is by generating new solutions through 

the extraction of information from the entire set of  promising solutions. The method can 

then devise mechanisms to learn the structure of the problem on fly and use such 

information to guide the exploration of the search space through proper mixing of 

building blocks. In this regard, probabilistic modeling of solutions such as Bayesian 

procedures hold a lot of promise. The optimization techniques for HTS based devices 

which are computationally intensive could substantially benefit from such an idea. 
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Appendix 

Appendix A 

 

A discussion on the fundamental equations involved in electromagnetics has been presented here. 

The Maxwell’s Equations and its various forms are described briefly to highlight their 

significance in different kinds of electromagnetic problems. Both sets of equations i.e., the 

integral and the differential forms have been included. 

 

Faraday’s Law – It couples the electric and magnetic fields, and forms the working principles of 

many electromagnetic devices such as transformers, generators etc. In brief, it could be stated 

that a changing magnetic field produces an induced voltage and is defined by the following 

equations. 

                                                                  
  

  
                                                                    (1) 

 

                                                                   
  

  
                                                                    (2) 

 

where 
  

  
 and 

  

  
 are the change in the magnetic field and magnetic flux respectively with respect 

to time and E is the electric field generated. The integral in equation (2) is a closed contour 

integral over the path l. 

  

Ampere’s Law - It describes the relationship between the magnetic field intensity and the 

current that generates it. The two are related in the following manner.   

 

                                                                   
  

  
                                                                           (3) 

 

                                                                          
  

  
                                                                  (4) 

 

H in the above two equations is the magnetic field intensity, J is the current density, and D is the 

displacement current density. When there is no source J will not exist. In equation (4) the left 

hand side is a closed contour integral and the right hand side is an integral over the closed 
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surface s. The term D was introduced by Maxwell to guarantee charge conservation, and allows 

an interpretation that is converse of the Faraday’s Law, implying a changing electric field can 

produce a magnetic field. 

 

Gauss’s Law (for E) – It states that the electric flux through a closed surface is proportional to 

the enclosed charge, or in other words  

                                                                                                                                             (5) 

 

                                                                                                                                           (6) 

 

the integration in equation (6) is an integral over the closed surface s,    is the charge density 

distributed over the volume, Q is the total charge enclosed by surface s. It should be emphasized 

here that any charge outside the surface does not contribute to the flux through the surface. In 

source free region space,    and Q are assigned zero. 

 

Gauss’s Law (for B) – It defines that the total magnetic flux through a closed surface is zero, 

and this relation is represented as 

                                                                                                                                              (7) 

 

                                                                                                                                           (8) 

 

similar to equation (6), the equation in (8) is also a closed surface integral over s. This law 

signifies that there are no monopoles in magnetism. 

 

The above four laws constitute the Maxwell’s equations, but to apply them at the macroscopic 

levels there are three constitutive relations required, which take into account the properties of the 

medium, the first connects the magnetic field B and the magnetic field intensity H, the second 

relates the displacement current density D with the electric field E, and the remaining provides 

the relationship between the current density J and the electric field E  as shown in equations (9) , 

(10) and (11) respectively. 

 

                                                                                                                                              (9) 

 

                                                                                                                                             (10) 
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                                                                                                                                              (11) 

 

μ in (9) represents the permeability of the medium, ε in(10) is the permittivity and σ in (11) is the 

conductivity of the medium. 

 

To appreciate the above discussions so far and also to help in understanding the chapters 

presented, the following paragraphs digress slightly to provide certain aspects of vector calculus. 

The operators involved in such a mathematical approach, their importance and the manner they 

work on a scalar function U and a vector function A. In many areas of engineering as in the case 

of electromagnetics, the problems are defined through partial differential equations (PDEs), 

without deviating further; the emphasis here will be to highlight the differential techniques. 

There are three types of operators involved, namely, the gradient ( ) which works on a scalar 

function, the divergence ( .), and the curl (     the latter two relate to vector functions. 

 

Gradient – It provides the maximum spatial rate of change of a scalar function both in terms of 

the magnitude and direction. 

                                                                
  

  
    

  

  
   

  

  
                                            (12) 

 

The gradient points in the direction of maximum change in scalar function as mentioned above, 

and it provides a vector function. It is always normal to a constant value surface. 

 

Divergence – It is defined as the net flow of the flux of vector A out of a small volume through 

the surface enclosing the volume, or in other words it is a scalar field that describes the strength 

of local sources or sinks. The divergence in cartesian coordinates is given by 

                                                              
      

  
  

    

  
   

    

  
                                                (13) 

 

Curl - It renders a vector field that that describes the local rate of rotation of the vector A over a 

small area and acts in a direction normal to the area. It is represented as  

 

                                              
   

  
  

   

  
      

   

  
  

   

  
      

   

  
  

   

  
                   (14) 
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The magnitude of the curl provides the maximum rotation of the vector per unit area at a point. 

 

Till now the physical interpretations along with the formulation involved in the differential form 

of vector calculus were stressed, subsequent details will throw more light into the possible 

combinations of the operators and the vector identities. Such relations help in the study of 

electromagnetics and in understanding of the scenarios involved with them. 

 

                                                                                                                                               (15) 

 

                                                                                                                                            (16) 

 

                                                                                                                                               (17) 

 

                                                                                                                                           (18) 

 

                                                                                                                                        (19) 

 

Considering additional functions a scalar V and a vector B, some of the identities that are useful 

are as follows 

                                                                                                                            (20) 

 

                                                                                                                         (21) 

 

                                                                                                             (22) 

 

                                                                                                                (23) 

 

As mentioned earlier, the relations above are useful in terms of formulating governing equations 

in electromagnetics, for instance if equations (12), (13) and (15) are considered, then on 

substitution and further simplification, the following Laplace operator is obtained i.e., 

 

                                                               
  

     
  

     
  

                                                          (24) 

 

In electromagnetics the Laplace operator is applied to define the widely used Poisson’s and 

Laplace equations. 
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In chapter 3, the formulations for Eddy currents were described. The two main approaches, i.e., 

the A-V formulation and the T-Ω method are widely used to handle problems of such nature. 

Extending the discussions further here to have completeness of the matter, under static 

conditions, the electric scalar potential V and the magnetic scalar potential Ω could be used in 

place of the intensity components namely, the electric field intensity E and the magnetic field 

intensity H. This is possible because when the time derivative component in equation (1) and the 

right hand side of the equation (3) are zero then E becomes curl free, and so does the curl of H 

respectively, providing the following relations: 

 

                                                                                                                                          (25) 

 

                                                                                                                                          (26) 

  

equations (25) and (26) are useful in combination with the vector functions such as the magnetic 

vector potential and the electric vector potential, in addressing general electromagnetic field 

problems. 
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Appendix B 

 

The representations discussed here are generally used to describe the unique behaviors of HTS 

materials. Such models play an important role in ascertaining the instabilities, and also in the 

design of any algorithm that applies to the area of SCs.   

 

There are four approaches that are highlighted here, namely, i) the Bean’s Critical State model or 

simply the BCS model, ii) the E-J model, iii) the Kim model or the Magnetic field dependence 

model,  and iv) the Anderson’s model  [17],[32],[86],[87],[88],[89]. 

 

Fig 1 The E-J characteristics in different scenarios. A thermally activated specimen undergoes three 

transition states i.e., the thermal resistance, the flux creep and the flux flow. A non- thermally activated 

material has only two states namely the pinned flux and the flux flow. Increase in applied magnetic field 

tends to lower the critical current density. 

 

Bean’s critical state (BCS) model – It presents the hypothesis that the current density J in a 

superconductor is either zero, or equal to the critical current density Jc. The current always flows 

with a value equal to the critical current density Jc in the outer portion of a superconductor. In a 

superconductor specimen, the current density is given by 



 92 

 

                                       
                                                       
                                                                   

                 (1) 

 

If the superconducting material exhibits high exponential value, i.e., the n term in the power law 

discussed in the chapters earlier and the following sub section, which signifies very strong 

pinning, then the BCS model is valid. Usually in practical applications, the pinning force is not 

that strong to satisfy the condition present in the BCS. 

 

E-J model – The phenomena of flux creep as shown in Fig 1 is caused by thermal activations 

[90]. The BCS model does not account for this behavior of superconductors and hence fail in 

predicting the response of the material for AC losses. To overcome this limitation J Rhyner [25] 

proposed the E-J power law, and is defined as 

 

                                                                
 

  
   

 

  
 
 

                                                                      (2) 

 

where J is the current density, Jc is the critical current density, E and Ec are the electric field and 

the critical electric field at Jc respectively and n is the exponent term. The value of Ec is usually 

considered as Ec =1x10 
-4

 V/m. The parameter n is dependent on the pinning strength and has the 

limiting case of 1 < n < ∞, when n is equal to 1, it corresponds to a purely resistive material 

satisfying the Ohm’s law, and for very large values such as n ≥ 50 [91], the power law is close to 

the BCS. 

 

Kim model – As discussed earlier, the BCS model states that wherever there is flux there will be 

current and the magnitude will be equal to the constant current density Jc. To incorporate the flux 

creep phenomena and correctly predict the behavior of a superconductor, the power law was 

introduced. Both these procedures lack the ability to include the effects of the magnetic field B. 

To overcome this shortcoming, Kim extended the BCS model to take into account the magnetic 

field dependence [83]. This technique also known as the Kim model or the magnetic field 

dependence model provides the following relationship between the critical current density and 

the magnetic field. 
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                                                                      (3) 

 

Jc0 (T) is the critical current density at zero applied field and at a given temperature, B0 is a 

constant that is determined from experimental data, and is the value of the field when Jc reduces 

to half the value of Jc0 (T). As evident from Fig 1 the critical current density tends to decrease 

with the increase in magnetic field.  

 

Anderson’s model – It is also known as the Anderson–Kim model, and relates the critical 

current density to the pinning strength and the electric field [18] in the following manner 

 

                                                                   
     

  
   

   

    
                                                   (4) 

 

where k is the Boltzmann constant, U0 an energy parameter known as the pinning strength, 

having dependencies on magnetic field and temperature, B is the induced magnetic field, Emin is 

the minimum electric field that defines Jc, d is the hopping distance of the flux quanta, and ω is 

the frequency of a flux hopping occurrence. The present discussion does not delve further into 

the details of this relation and the material behavior at the microscopic levels, for more refer [3].  
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Appendix C 

 

This section discusses the ideas behind the FEM formulation when the method of weighted 

residuals (MWR) is used; it will also present the well known Galerkin method which is a special 

case of MWR. The residual method is used to approximate solutions to linear and non-linear 

PDEs, and helps in formulating the element equations in FEM. Consider the following 

differential governing equation 

                                                                                                                                              (1) 

 

equation (1) is applicable to a domain Ω bounded by the surface Г, and f represents the known 

values. The boundary conditions are specified on Г. In such a scenario to apply the MWR, the 

solution for   is approximated using  . The approximate function    is made to satisfy the 

differential equation (1) along with the boundary conditions. This is achieved by specifying    in 

terms of the functional dependence on all but one independent variable, the latter is left 

unspecified. In order to realize this, a linear combination of basis functions is chosen from a 

linearly independent set in the following manner 

 

                                                                          
 
                                                                (2) 

 

where    is the assumed function, and    is the basis function of the independent variable. 

Usually   are constants or functions of time for steady-state or unsteady problems respectively. 

The summation limit m represents the number of    unknowns. When    is substituted in 

equation (1), the resultant carries an error also known as the residual error (R), i.e,   

 

                                                                                                                                          (3) 

Or, 

                                                                                                                                          (4) 

 

The concept behind MWR is to force the error in equation (4) to zero in some average sense. 

This is accomplished by considering a weighted average of the residual error carrying the 

condition that the weighted average vanishes over Ω. It could be represented as  
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                                                      (5) 

 

where    is the weighting function also known as the test function. The result is a set of m 

algebraic equations for the unknown constants   .  The nature of error distribution in the relation 

(5) is dependent on the weighting function considered, and based on the latter MWR could 

further be classified as: 

 

i. Collocation method. 

ii. Least square method. 

iii. Galerkin method. 

iv. Method of moments. 

 

The present work uses the Galerkin method; and hence the following paragraphs would restrict 

themselves in highlighting the various aspects of this approach, for more on the remaining 

techniques refer [24].  

 

The Galerkin technique is popular because it provides greater generality, apart from this there are 

certain areas in machine analysis where the variational expression cannot be applied. In this 

technique, the weighting function (  ) has the same form as the finite element shape function.  

In terms of FEM, the approximate function as described in (2) could be represented as  

 

                                                                    
 
                                                                      (6) 

 

where n now represents the total number of nodes in the meshes,    is the function value for 

node i, and    is the shape function associated with the node i. To elaborate further, consider the 

equations (4) and (5) again, as mentioned earlier, the shape function is now the weighting 

function, hence the residual error for node i is given by 

 

                                                           
 

                                                               (7) 
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Assuming there is l number of nodes with unknown values, as there could be few nodes among n 

that exist on the boundary with known values, the representation in (7) will furnish a set of l 

equations. The local residual error in each element could be written as  

 

                                                          
    

                                                   (8) 

 

In the above relation triangular elements made from three nodes were considered, hence i has 

numbers from one to three. The approximate function for each element is  

 

                                                                   
  

     
                                                               (9) 
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Appendix D 

 

A detailed mathematical description and the theoretical aspects behind the SSM and the Aitken 

method are discussed in this section. It will provide an in-depth insight, and thereby assist in 

appreciating their use in solving the problems discussed in this work. 

 

DEFINITION: A space S is a metric space if the following conditions are satisfied. Considering 

two elements x, y │ x, y   S. Let d represent the distance between x and y defined as 

 

                                                             d = d(x, y)                                                                         (1) 

 

the satisfaction of all the following properties ensures S is a metric space. 

 

                                                   d(x, y) = d(y, x)                                                                          (2)  

                                                   d(x, y) ≥ 0                                                                                   (3)   

                                                   d(x, y) = 0, iff  y = x                                                                   (4)  

                                                   d(x, y) ≤ d(x, y) + d(x, z) │ z   S                                              (5)   

 

DEFINITION: Assuming a sequence {  }     , {xn} converges to a point x
*
 that could be 

written as              , if for any    , there is an index Z, where Z   I│ 

 

                                                            m ≥ Z                                                                (6) 

 

DEFINITION: A sequence is a Cauchy sequence, if for any ϵ    there is an index Z │ 

 

                                                      ϵ     k ≥ Z and l ≥ Z, k ≠ l                                          (7)  

 

A sequence converges, iff  it is a Cauchy sequence.  

 

DEFINITION: Lipschitz continuity is used to measure change in function values with respect to 

change in the independent variable. A function f of the nature f: D →  , if   and      D, then 
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variation in the input         will have a corresponding change of                in the 

output. f has Lipschitz continuity, if there is a constant L > 0 known as the Lipschitz constant │ 

 

                                                                           ,      D                                (8) 

 

The value of L is dependent on the function f. 

 

DEFINITION:  A mapping M│X → X is known as contraction mapping on X, if there is α     

│0 < α < 1, and    ,     X 

 

                                               d(Mx, My) ≤ αd(x, y)                                                                     (9) 

 

When M is applied to the points x and y, the points get closer if M is contracting in nature, the 

function d() provides the distance between points inside a metric space, α is a Lipschitz constant. 

 

To prove the convergence property of SSM, a closed subset Ω      is considered, and let P be a 

contraction mapping on Ω with Lipschitz constant 0 < α < 1│P(x)   Ω   x   Ω, here Ω is a 

metric space. Considering an iteration of the following nature that depicts the SSM behavior, 

 

                                                                                                                                        (10) 

 

the proof involves the existence of Cauchy sequence that converges linearly in Ω with a factor α, 

and the presence of an unique fixed point x
*
 of P, where x

*
   Ω. The nature of the sequence 

when P is repeatedly applied on    is given by  

 

                                     = P    ,    = P    =       ,...    =                                                   (11) 

 

Using the above equation and the contraction mapping definition the following relation is 

obtained 

 

                                              d(    ,   ) = d(P  , P    )                                                             (12)          

                                                                 ≤ α d(  ,     )   

                                                                 = α d(    ,     )                       
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                                                                 ≤   d(    ,     )     , after applying the mapping P 

                                                                    

                                                                 ≤   d(  ,   ) 

 

from (12), it could be concluded that the sequence {  } is bounded   i ≥ 1, therefore  

 

                                                            
   
                                                            (13) 

                       

                                                        
   
     , from the triangular inequality                      (14)        

 

                                                           
    , as performed in (12)                                   (15) 

 

                                                     
      

     
  , after using geometric series sum                 (16) 

 

                                                     
 

     
  , since 0 < α < 1, and      < 1                     (17) 

 

now assuming   n, k ≥ 0, and considering the summation staring at 1 instead of 0 will provide 

 

                                                                                                                 (18) 

 

                                                                                    
 

                                                                                         
 

                                                                                        
                                                                                        

                                                                                   
                                                                             
                                                             

                      
  

     
  , after using triangular inequality and the geometric series sum    (19) 

 

In the above equation (19), the value in the right hand side of the inequality could be made small 

by considering n very large due to the condition 0 < α < 1 and the value of          being 

fixed. Hence {  } is a Cauchy sequence,          . To prove the uniqueness, the 

triangular inequality and the convergence property described above are applied as shown below 

                                                 

                                                 d(P  ,  ) ≤ d(  ,   
 ) + d(  

  , P  )                                             (20) 
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                                                                ≤ d(  ,   
 ) +   d(    

  ,   )                                         (21)     

 

if k    , and        then  d(  
  , P  ) = 0   P       from (4) as used in the definition of 

metric spaces, hence    is a fixed point as P       .  

 

Assume the existence of another fixed point y, i.e., P      then d(  ,  ) = d(   ,   ) ≤ αd(  , y) 

     = y, from the convergence relation presented in (18) - (19), and the metric space property 

defined in equation (4), consequently     is unique. 

 

The following paragraphs would derive the formulation used in Chapter 3 for the Aitken method. 

  

DEFINITION: Assuming a sequence {  }     , the first backward difference between the 

elements is given by 

 

                                                                                                                                    (22) 

 

 

the subsequent backward differences are obtained by applying the above relation recursively, 

hence for l
th

 step, the difference is  

 

                                                                                                                                     (23) 

 

the second and the third differences are provided below 

 

 

                                                                 =                                                       (24) 

 

                                                              =                                                                   (25) 

 

                                                                 =                                                     (26) 

 

                                                                                                                                (27) 

 

                                                                                                                     (28) 

 

                                                                                                                       (29) 
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for higher order differences, the above approach is repeated. 

 

As mentioned earlier the SSM has a linear convergence, and was defined in chapter 3 (refer 

section 3.2.2) with the converging point    as  

 

                                                 where K   (0, 1), for all n sufficiently large    (30) 

 

in order to simplify the equation form later and derive the Aitken relation, the expression (30) is 

re-written in the following manner with    denoting the converging point, and n having a very 

large value. 

                                                                                                                           (31) 

 

 

                                                 
      

        
                                                                                  (32) 

 

 

                                                        (        )                                                             (33) 

 

  

                                                                                                                             (34) 

 

introducing the term      on both sides  

 

                                                                                                              (35) 

 

 

                                                                                                                      (36) 

 

 

                                               
          

     
, after rearranging the terms in (36)                  (37) 

 

 

equation (22) is used to substitute the difference term that exists in the numerator, and the above 

relation delivers  

 

                                                                      
   

     
                                                          (38)                                        
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on similar lines as that of the relation presented in (31), the same sequence could be written in 

the following manner for all n after a certain point, when the latter is very large 

                                                      

                                                          
        

          
                                                                      (39) 

or           

  

                                                            
         

          
                                                                    (40) 

 

 

using the backward difference relation defined earlier, the following expression is obtained 

 

 

                                                          
   

     
                                                                             (41) 

 

 

the Aitken relation is given by substituting the above equation in (38) and using the relation (24), 

i.e.,  

                                                                
        

           
                                                       (42) 

 

 

                                                              
        

    
                                                          (43) 
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Appendix E 

 

Covariance, correlation and regression are statistical methods that form the basis for many 

surrogate and optimization techniques discussed earlier in chapter 4; this section provides 

mathematical notes that describe these approaches. In regression, the existing data is used to 

define a mathematical relation for prediction of a dependent variable vector or response variable 

Y based on the value of independent variable vector also known as predictor variable X. It is 

used to interpolate between the existing data. The association between two variables (X, Y) is 

measured using correlation, and the procedure quantifies the strength of such a relationship, it 

cannot be used for prediction. The evaluations are performed on only the existing data, and do 

not have the aspect of interpolation as prevalent in regression. Covariance measures the 

correlation between sets of random variables, and correlation could be defined as the ratio of 

covariance to the standard deviations of two variables (X, Y). 

 

For simplicity, assume the dimension of the independent variable X to be one, and the model to 

determine the response as linear, given by 

 

                                                                                                                                    (1)    

 

where ϵ is the error due to any individual value y that does not follow the regression linear model,  

β
 
 and β

 
 are constants known as model regression coefficients. Another assumption considered 

in the above scenario is that the range of observations stays within the acceptable limits for the 

model to be accurate. The representation in terms of the elements is  

 

                                                                                                                         (2)    

 

n in the above equation denotes the number of observations. The linearity in the above model is 

because of the linear relation that exists when the parameters are considered, for instance, 

 

                                                                         
                                                 (3) 
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equation (3) is linear with respect to   , whereas the following definition is not 

 

                                                                        
   

                                                         (4)                   

 

in (3) and (4),   represents the error associated with one response. Assuming there are n 

observations made, the corresponding response and predictor vectors will be                 

and                 respectively, considering the model defined in (2), the unknown 

regression coefficients           are determined in the following manner,  

 

                                                               
  

                    
  

                                (5) 

 

differentiation of the above equation with respect to          , and equating them to zero 

renders 

                                                        
  

   
                   

 
                                       (6) 

 

                                                        
  

   
                   

 
                                       (7) 

 

The least square estimates of           are given by 

  

                                                          
 
  

                
   

           
   

                                                             (8)      

                                     

                                                          
 
        

 
                                                                        (9) 

 

where     
   

 
   

 
 and    

   
 
   

 
 , ultimately the fitted value of Y or the regression model is 

defined as 

                                                               
 
    

 
                                                                   (10) 

 

 

The above approach can be extended to matrix form as shown below, with n observations and 

the X, Y pair. 

 



 105 

 

                                                           

  

  

 
  

                                                                              (11) 

 

                                                           

   

   

  
   

                                                                        (12)      

 

                                                           
  

  
                                                                               (13) 

                                                                        

                                                            
  

 

  
 

                                                                              (14)  

                                                                  

                                                            

  

  

 
  

                                                                              (15) 

 

The matrix representation for the regression model is 

 

                                                                                                                                         (16) 

 

In the present scenario the error relation is given by 

 

                            

                                                                
  

                                   (17) 

 

 

the least square minimization as performed in (6) and (7) for      results in the following matrix 

form of     

                                                                                                                                        (18) 

or, 

                                                                                                                                     (19) 
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in relation(19), it is assumed that     exist. 

 

The covariance between the predictor and response pair (X, Y) is defined as 

 

                                                    
                 

   

   
                                                             (20) 

 

where    and    are defined earlier in the discussion. When            the relationship between 

X and Y is positive, whereas when            the pair has a negative association, the plots 

presented below would throw more light on this behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As highlighted earlier, there exists a relation between covariance and correlation, and this aspect 

has been used to define the latter as shown below. 

 

                                                     
        

    
                                                                        (21)                      

 

 
Fig 1 a) A positive covariance relationship, (b) no covariance, (c) a negative covariance relation, and (d) a non-

linear covariance. 
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where      
           

   

   
  and      

           
   

   
   are the standard deviations. On simplifying 

equation (21) renders 

                                                      
                 

   

            
              

   

                                               (22) 

 

 

 

 

 

 

        


