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ABSTRACT

This dissertation comprises three essays. In the �rst essay, we provide results for

the valuation of European style contingent claims for a large class of speci�cations of

the underlying asset returns. Our valuation results obtain in a discrete time, an in�nite

state-space setup using the no-arbitrage principle. Our approach allows for general forms

of heteroskedasticity in returns. It also allows for conditional non-normal return inno-

vations, which is critically important because heteroskedasticity alone does not su¢ ce

to capture the option smirk. The resulting risk-neutral return dynamics are from the

same family of distributions as the physical return dynamics. Our framework nests the

valuation results obtained by Duan (1995), and Heston and Nandi (2000) by allowing for

a time-varying price of risk and non-normal innovations.

In the second essay, we develop a methodology to study the linkages between equity

and corporate bond risk premia and apply it to a large panel of corporate bond transaction

data. We �nd that a signi�cant part of the time variation in bond default risk premia

can be explained by equity-implied bond risk premium estimates. We compute these

estimates using a recent structural credit risk model. In addition, we show by means

of linear regressions that augmenting the set of variables predicted by typical structural

models with equity-implied bond default risk premia signi�cantly increases explanatory

power. This, in turn, suggests that time-varying risk premia are a desirable feature for

future structural models.

In the third essay, we �rst document empirically that embedded put option values are

related to proxies for term structure risk, default risk and illiquidity. In a second step,

we develop a valuation model that simultaneously captures default and interest rate risk.

We use this model to disentangle the reduction in yield spread enjoyed by putable bonds

that can be attributed to each risk. Perhaps surprisingly, the most important reduction

is due to mitigated default or spread risk, followed by term structure risk. The reduction

in the non-default component is present but rather small.
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RÉSUMÉ

Cette thèse comprend trois essais. Dans le premier essai nous avons développé des

résultats pour l�évaluation des actifs contingents de type Européen pour une vaste classe

de spéci�cation du rendement de l�actif sous-adjacent. Notre méthode est obtenue dans

une économie à temps discret et espace in�ni en utilisant seulement la condition de non

arbitrage dans le marché. Notre approche permet une forme générale d�heteroskedasticité

pour les rendements. Les résultats pour les cas d�homoskedasticité sont retrouvés comme

des cas spéciaux. Notre approche permet d�accommoder les cas où l�innovation dans

la dynamique du rendement est conditionnellement non normale. Cette �exibilité est

extrêmement importante car l�heteroskedasticité seulement n�est pas su¢ sant pour cap-

turer le phénomène du "smirk" dans les prix des options. Nos résultats emboîtent ceux

obtenue dans Duan (1995) et Heston et Nandi (2000).

Dans le deuxième essai nous avons développé une méthodologie pour étudier le lien

entre la prime de risque dans les obligations corporatives et celle de l�actif risqué de la

�rme. Nous avons appliqué notre méthode sur une large base de données des transactions

des obligations corporatives. Nous avons trouvé qu�une importante partie de la variation

temporelle du risque de défaut dans ces obligations peut être expliquer par des estimées

de la prime de risque du défaut reconstruite à partir de l�actif risqué de la �rme seulement.

En plus, nous avons démontré à l�aide des régressions linéaires qu�augmentant la série

des variables prédites par le modèle structurel par notre estimé de la prime du risque de

défaut ajoute une explication signi�cative.

Dans le troisième essai nous avons montré empiriquement que la valeur des obligations

corporatives du type" puttable" est reliée aux risques de défaut, de liquidité et celui dû

aux taux �intérêts. Dans la deuxième étape de ce projet nous avons développé un modèle

d�évaluation qui capture simultanément ces risques. Nous avons documenté que la plus

grande réduction est dûe à l�assurance que procure ce type d�instrument contre le défaut,

suivi par la structure des taux. La réduction dûe aux autres types de risques dont la

liquidité est présente mais négligeable.
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The contingent claims literature starts with the seminal work of Black & Scholes (1973)

and Merton (1974). Their original work has been extended in several ways later in both

the option pricing and the credit risk literatures.

In the option pricing area, most of the literature on contingent claims and most of

the applications of the Risk Neutral Valuation Relationship (RNVR) have been cast

in continuous time. While the continuous-time approach o¤ers many advantages, the

valuation of contingent claims in discrete time is also of substantial interest. For example,

when hedging option positions, rebalancing decisions must be made in discrete time. In

the case of American and exotic options, early exercise decisions must be made in discrete

time as well. Moreover, as only discrete observations are available for empirical study,

discrete time models are often more econometrically tractable.

In the discrete-time option valuation, characterizing conditions on preferences are

needed to obtain risk-neutral valuation. For example, Brennan (1979) characterizes the

bivariate distribution of returns on aggregate wealth and the underlying asset under

which a risk-neutral valuation relationship obtains in the homoskedastic case. Duan

(1995) extends this framework to the case of heteroskedasticity of the underlying asset

return. Amin and Ng (1993) also study the heteroskedastic case. Although they for-

mulate the problem in terms of the economy�s stochastic discount factor, they begin by

making an assumption on the bivariate distribution of the stochastic discount factor and

the underlying return process. There is also a growing literature that values options for

discrete-time return dynamics with non-normal innovations. A number of other papers

obtain risk-neutral valuation relationships either under the maintained assumption of

non-normal innovations, or under the maintained assumption of heteroskedasticity, or

both. Madan and Seneta (1990) use the symmetric and i.i.d. variance gamma distri-

bution, Heston (1993b) presents results for the gamma distribution and Heston (2004)

analyzes a number of in�nitely divisible distributions. Camara (2003) uses a transformed

normal innovation and Duan (1999) uses a heteroskedastic model with a transformed

normal innovation. Christo¤ersen, Heston and Jacobs (2006) analyze a heteroskedastic
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return process with inverse Gaussian innovations.

In the credit risk literature, tremendous work has been done at extending the under-

lying assumptions of Merton (1974). Among others, Black &Cox (1976) allow for default

before debt maturity. Leland (1994) endogenizes default barrier and derives an analytical

solution with perpetual debt. Leland & Toft (1996) extends the Leland model to allow for

nonperpetual debt. Anderson &Sundaresan (1996), Mella-Barral & Peraudin (1997) and

Fan & Sundaresan (2000) investigate the implications of strategic default. François &

Morellec (2004) and Broadie et al (2006) examine the impact of default procedures, and

Morellec (2004) gauges the manager-shareholders con�icts through managers�incentives

for over-investment.

This thesis spans two closely interrelated areas: credit risk and derivatives modeling.

In the �rst theme, we derive valuation results for contingent claims in a discrete-time

in�nite state setup. The valuation argument applies to a large class of conditionally

normal and non-normal stock returns with �exible time-varying mean and volatility, as

well as a potentially time-varying price of risk. Within my second research theme I

develop methodologies to disentangle the default risk premium contained in the credit

spread, analyze its time series and cross sectional dimensions, and shed light on the

degree of integration between the equity and corporate bond markets. Bringing these

ideas to the analysis of the puttable bonds constitutes the third essay of this thesis.

In the �rst essay we focus on providing valuation results for contingent claims in

discrete-time in�nite state space setup ( ex GARCH). The valuation argument applies

to a large class of conditionally normal and nonnormal stock returns with �exible time-

varying mean and volatility, as well as to a potentially time-varying price of risk. The

setup generalizes the result in Duan(1995) to the extent that we do not restrict the

returns to be conditionally normal, nor do we restrict the price of risk to be constant.

The results apply to some of the most widely used discrete-time processes in �nance,

such as GARCH processes. We are able to provide more general valuation results than

the existing literature. In our opinion, the analysis in Brennan (1979) and Duan (1995)
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addresses two important questions simultaneously: First, a mostly technical question

that characterizes the risk-neutral dynamic and the valuation of options; second, one

of a more economic nature that characterizes the equilibrium underlying the valuation

procedure. The existing discrete-time literature for the most part has viewed these two

questions as inextricably linked, and has therefore largely limited itself to (log)normal

return processes as well as a few special non-normal cases. We argue that it is possible and

desirable to treat these questions one at a time, and we provide some general results on

the valuation of options under conditionally non-normal asset returns without resorting

to equilibrium techniques.The same separation of questions occurs in the literature on

option valuation using continuous time stochastic volatility models, such as, for instance,

in Heston�s (1993a) model. For any assumption on the price of volatility risk in Heston,

we can �nd the risk neutral dynamic and the price of contingent claims. Although the

question of which utility function supports this price of risk is an interesting one in its

own right, it can be treated separately. We also show how the normal model and the

available conditional nonnormal models are special cases of our setup.

To demonstrate the empirical relevance of this approach, we provide an empirical

analysis of a heteroskedastic return dynamic with a standardized skewed variance gamma

distribution, which is constructed as the mixture of two gamma variables. In the result-

ing dynamic, conditional skewness and kurtosis are directly governed by two distinct

parameters. We estimate the model on return data using quasi-maximum likelihood,

and compare its performance with that of the heteroskedastic conditional normal model

which is standard in the literature. Diagnostics clearly indicate that the conditionally

nonnormal model outperforms the conditionally normal model, and an analysis of the

option smirk demonstrates that the former provides substantially more �exibility to value

options.

The second essay focuses on the default risk premia in corporate bond markets. In-

vestors in credit markets need a framework to assess whether a given defaultable security

is fairly priced. The spread itself may not be an adequate metric to respond to this
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question. The investor needs to know if the spread contains (i) acceptable compensation

for expected default losses, and (ii) a su¢ cient risk premium to induce participation. We

develop two methodologies capable of disentangling risk premia and expected losses, and

we measure default risk premia in a large panel of US corporate bond data spanning a

10-year period. Like previous work, we �nd that the risk premium is highly time varying.

We also document similar time-series behavior to that in Berndt et al (2005), Berndt et

al (2006), and Saita(2006). We �nd that the expected loss and default premium com-

ponents behave di¤erently over time. The risk premium is at its most important for

high-grade debt, whereas the expected loss component increases monotonically with the

default probability. We show that the time-series variation of the risk premium is closely

related to the overall market volatility, whereas the expected loss component appears

more closely related to the average total volatility across �rms. This result is contrasted

with the �nding in Campbell et al (2002). The risk premia which we measured are trans-

lations of risk premia as measured in equity markets. As such, they do not capture risk

premia that may be speci�c to �xed income markets. Given the burgeoning debate over

the choice of risk-free curve, we test the sensitivities of our results with respect to di¤erent

proxies for the risk-free rate. Also, in an attempt to understand whether time-varying

risk premia may partly account for the documented failure of structural models to ex-

plain credit spreads behavior, we carry out a regression analysis on credit spreads in line

with recent studies by, among others, Collin-Du¤resne et al (2001), Campbell & Taksler

(2002), and Cremers et al (2004). We take as a benchmark a regression motivated by

the key drivers implied by structural models. Our results suggest that augmenting the

regressions by our measures of equity-implied risk premia improves explanatory power

for both levels, and changes in bond credit spreads considerably.

In the third essay, we investigate the puttable bonds. We shed light on which risks

are insured against by embedded puts, and to what extent. The most important drivers

of corporate bond prices are likely to be interest rate risk, default risk, and illiquidity.

Intuitively, the option to return the bond to the issuers would provide insurance against
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all three. Using a sample of putable bond and comparable regular bond transactions,

we �nd that the put option feature does signi�cantly hedge against all three risks. The

reduction in corporate bond yield spread due to the presence of a put represents, on

average, just over 40% of the yield spread. By means of regression analysis, we show

that the put option value (as measured by the spread reduction) is related to proxies for

default, interest rate, and marketability risk. To further understand the composition of

the put option feature, we develop a bivariate lattice model that simultaneously captures

correlated credit and term structure risks. The model is then applied to price regular

and putable bonds to decompose the risk components contained in the put options. We

�nd that the dominant source of spread reduction is attributable to default risk - an

average of 60% of the reduction. But, we �nd that when default is imminent and the

�rm may not be able to honor the option, the put option value is signi�cantly reduced.

Perhaps surprisingly, only a small fraction (7%) of the spread reduction by put option

is due to other nondefault factors including illiquidity. Put options are less valuable for

bonds issued by larger �rms which enjoy better marketability. The values of put options

increase as market liquidity drops. Finally, we �nd that put options are more likely to

be exercised when interest rates are high, which, in turn, increases their values.

16



Chapter 2

Option Valuation with Conditional

Heteroskedasticity and

Non-Normality
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2.1 Introduction

A contingent claim is a security whose payo¤ depends upon the value of another un-

derlying security. A valuation relationship is an expression that relates the value of the

contingent claim to the value of the underlying security and other variables. The most

popular approach for valuing contingent claims is the use of a Risk Neutral Valuation

Relationship (RNVR).

Most of the literature on contingent claims and most of the applications of the RNVR

have been cast in continuous time. While the continuous-time approach o¤ers many ad-

vantages, the valuation of contingent claims in discrete-time is also of substantial interest.

For example, when hedging option positions, rebalancing decisions must be made in dis-

crete time. In the case of American and exotic options, early exercise decisions must be

made in discrete-time as well. Moreover, as only discrete observations are available for

empirical study, discrete-time models are often more econometrically tractable.

As a result, most of the stylized facts characterizing the underlying securities have

been studied in discrete time models. One very important feature of returns is condi-

tional heteroskedasticity, which can be addressed in the GARCH framework of Engle

(1982) and Bollerslev (1986).1 Presumably, because of this evidence, most of the recent

empirical work on discrete time option valuation has also focused on GARCH processes.2

The GARCH model amounts to an in�nite state space setup, with the innovations for

underlying asset returns described by continuous distributions. In this case, the market

is incomplete, and it is generally not possible to construct a portfolio containing the con-

tingent claim and the underlying asset in some proportions so that the resulting portfolio

becomes riskless.3

1See, for example, French, Schwert and Stambaugh (1987) and Schwert (1989) for early studies on
stock returns. The literature is far too voluminous to cite all relevant papers here. See Bollerslev, Chou
and Kroner (1992) and Diebold and Lopez (1995) for reviews on GARCH modeling.

2See Bollerslev and Mikkelsen (1996), Satchell and Timmermann (1996), Garcia and Renault (1998),
Heston and Nandi (2000), Christo¤ersen and Jacobs (2004), and Christo¤ersen, Heston and Jacobs
(2006) for applications to option valuation.

3In a discrete-time �nite state space setting, Harrison and Pliska (1981) provide the mathematical
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To obtain a RNVR, the GARCH option valuation literature builds on the approach

of Rubinstein (1976) and Brennan (1979), who demonstrate how to obtain RNVRs for

lognormal and normal returns in the case of constant mean return and volatility, by

specifying a representative agent economy.4 The resulting �rst-order condition yields an

Euler equation that can be used to price any asset. For a given dynamic of the underlying

security, speci�c assumptions have to be made on preferences in order to obtain a risk-

neutralization result. For lognormal stock returns and a conditionally heteroskedastic

(GARCH) volatility dynamic, the standard result is the one in Duan (1995). Duan�s

result relies on the existence of a representative agent with constant relative risk aversion

or constant absolute risk aversion.

However, because it is di¢ cult to characterize the general equilibrium setup under-

lying a RNVR, very few valuation results are currently available for heteroskedastic

processes with non-normal innovations.5 In this paper, we argue that it is possible to

investigate option valuation for a large class of conditionally non-normal heteroskedastic

processes, provided that the conditional moment generating function exists. It is also

possible to accommodate a large class of time-varying risk premia. Our framework di¤ers

from the approach in Brennan (1979) and Duan (1995), and is more intimately related to

the approach adopted in continuous-time option valuation: we only use the no-arbitrage

assumption and some technical conditions on the investment strategies to show the exis-

tence of an RNVR. We demonstrate the existence of an EMM and characterize it, without

�rst making an explicit assumption on the utility function of a representative agent. We

then show that the price of the contingent claim de�ned as the expected value of the

discounted payo¤ at maturity is a no-arbitrage price and characterize the risk-neutral

framework to obtain the existence of the risk neutral probability measure, to demonstrate uniqueness in
the case of complete markets, and to get a RNVR for any contingent claim.

4Camara (2003) uses this approach to obtain valuation results for transformed normal dynamics of
returns and state variables. See also Schroder (2004). Perrakis (1986), Perrakis and Ryan (1984) and
Ritchken and Kuo (1988) provide alternative discrete time approaches.

5Duan, Ritchken and Sun (2005) analyze a heteroskedastic model with Poisson-normal innovations
and Duan (1999) analyzes a conditionally fat-tailed heteroskedastic model. Christo¤ersen, Heston and
Jacobs (2006) use a heteroskedastic return dynamic with inverse Gaussian innovations.
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dynamic.

Why are we able to provide more general valuation results than the existing liter-

ature. In our opinion, the analysis in Brennan (1979) and Duan (1995) addresses two

important questions simultaneously: First, a mostly technical question that characterizes

the risk-neutral dynamic and the valuation of options; second, a more economic one that

characterizes the equilibrium underlying the valuation procedure. The existing discrete-

time literature for the most part has viewed these two questions as inextricably linked,

and has therefore largely limited itself to (log)normal return processes as well as a few

special non-normal cases. We argue that it is possible and desirable to treat these ques-

tions one at a time, and we provide some general results on the valuation of options under

conditionally non-normal asset returns without resorting to equilibrium techniques. We

also show how the normal model and the available conditional non-normal models are

special cases of our setup.

The same separation of questions occurs in the literature on option valuation using

continuous-time stochastic volatility models, such as, for instance, in Heston�s (1993a)

model.6 For any assumption on the price of volatility risk in Heston, we can �nd the

risk-neutral dynamic and the price of contingent claims. The question of which utility

function supports this price of risk is an interesting one in its own right, but it can

be treated separately. See, for instance, Heston (1993a) and Bates (1996, 2000) for a

discussion.

The paper proceeds as follows. In Section 2, we de�ne the class of conditional stock

return processes we can accommodate, and derive an appropriate class of EMMs which in

turn is used to derive a no-arbitrage option price. Section 3 characterizes the risk-neutral

dynamics, and Section 4 discusses several return dynamics that can be analyzed using

our approach. In Section 5, an empirical illustration demonstrates the importance of

6Interestingly, GARCH models can sometimes be viewed as discrete-time approximations to under-
lying continuous time di¤usions. See, for example, Nelson and Foster (1994), Foster and Nelson (1996),
Nelson (1996) and Ritchken and Trevor (1999). Corradi (2000) points out that such limiting results
must be interpreted with caution.
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allowing for volatility dynamics as well as conditional non-normality in option valuation

models. Section 6 discusses related research, and Section 7 concludes.

2.2 Theoretical results

We de�ne the probability space (
;F; P ) to describe the physical distribution of the

states of nature. The �nancial market consists of a zero-coupon, risk-free bond index

and a stock. The dynamics of the bond are described by the process fBtgTt=1 normalized

to B0 = 1 and the dynamics of the stock price by fStgTt=1. The information structure is

given by the �ltration F = fFtj t = 1; :::; Tg generated by the stock and the bond process.

2.2.1 The stock price process

The underlying stock price process is assumed to follow the conditional distribution D

under the physical measure P . We write

Rt � ln
�

St
St�1

�
= �t � 
t + "t "tjFt�1 � D(0; �2t ); (2.1)

where St is the stock price at time t, and �2t is the conditional variance of the log return

in period t. The mean correction factor, 
t, is de�ned from

exp (
t) � Et�1 [exp ("t)]

and it serves to ensure that the conditional expected gross rate of return, Et�1 [St=St�1],

is equal to exp(�t). More explicitly,

Et�1 [St=St�1] = Et�1 [exp (�t � 
t + "t)] = exp(�t)

() exp(
t) = Et�1 [exp ("t)]

Note that our speci�cation (2.1) does not restrict the risk premium in any way nor
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does it assume conditional normality.

We follow most of the existing discrete-time empirical �nance literature by focusing

on conditional means �t and conditional variances �
2
t that are Ft�1 measurable. We do

not constrain the interest rate rt to be constant. It is instead assumed to be an element

of Ft�1 as well. Our framework is able to accommodate the class of ARCH and GARCH

processes proposed by Engle (1982) and Bollerslev (1986) and used for option valuation

by Amin and Ng (1993), Duan (1995, 1999), and Heston and Nandi (2000).7

In the following, we show that we can �nd an EMM by de�ning a probability measure

that makes the discounted security process a martingale. We derive more general results

on option valuation for heteroskedastic processes compared to the available literature,

because we focus on the narrow question of option valuation while ignoring the economic

question regarding the preferences of the representative agent that support this valuation

argument in equilibrium.

We use a no-arbitrage argument that is similar to the one used in the continuous-time

literature. We �rst prove the existence of an EMM. Subsequently, we demonstrate the

existence of a RNVR by demonstrating that the price of the contingent claim, de�ned

as the expected value of the discounted payo¤ at maturity, is a no-arbitrage price under

this EMM.8 The proof uses an argument similar to the one used in the continuous-time

literature, but is arguably more straightforward as it avoids the technical issues involved

in the analysis of local and super martingales.

7Our results will also hold for di¤erent types of GARCH speci�cations, such as the EGARCH model of
Nelson (1991) or the speci�cation of Glosten, Jagannathan and Runkle (1993). For our results to apply,
all that matters is that the volatility process is predetermined. While our framework can accommodate
a wide range of interesting processes, it must be noted that it is not able to handle potentially interesting
processes such as discrete-time stochastic volatility models. See Ghysels, Harvey and Renault (1995) for
a review of these models.

8Duan (1995) refers to RNVR as Local RNVR in the case of GARCH. The reason for the distinction
is that the conditional volatility is identical under the two measures only one period ahead. In the
remainder of the paper we will drop this distinction for ease of exposition. We emphasize that the result
that the conditional volatility di¤ers between the two measures for more than one period ahead is to be
expected as volatility is random in this case. This feature is very similar to the continuous time case,
which has random volatility for any horizon.
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2.2.2 Specifying an equivalent martingale measure

The objective in this section is to �nd a measure equivalent to the physical measure P

that makes the price of the stock discounted by the riskless asset a martingale. An EMM

is de�ned as long as the Radon-Nikodym derivative is de�ned. We start by specifying

a candidate Radon-Nikodym derivative of a probability measure. We then show that

this Radon-Nikodym derivative de�nes an EMM that makes the discounted stock price

process a martingale. This result in turn allows us to obtain the distribution of the stock

return under this EMM.

For a given sequence of a random variable, �t, we de�ne the following candidate

Radon-Nikodym derivative

dQ

dP

����Ft = exp
 
�

tX
i=1

(�i"i +	i (�i))

!
(2.2)

where 	t (u) is de�ned as the natural logarithm of the moment generating function

Et�1 [exp(�u"t)] � exp (	t (u))

Note that we can think of the mean correction factor in (2.1) as 
t = 	t (�1). Note also

that in the normal case we have 	t (u) = 1
2
�2tu

2.

We can now show the following lemma

Lemma 1 dQ
dP

��Ft is a Radon-Nikodym derivative

Proof. We need to show that dQ
dP

��Ft > 0 which is immediate. We also need to show
that EP0

�
dQ
dP

��Ft� = 1: We have
EP0

�
dQ

dP

����Ft� = EP0

"
exp

 
�

tX
i=1

(�i"i +	i (�i))

!#
:
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Using the law of iterative expectations we can write

EP0

�
dQ

dP

����Ft� = EP0

"
EP1 :::E

P
t�1 exp

 
�

tX
i=1

(�i"i +	i (�i))

!#

= EP0

"
EP1 :::E

P
t�2 exp

 
�

t�1X
i=1

�i"i �
tX
i=1

	i (�i)

!
EPt�1 exp (��t"t)

#

= EP0

"
EP1 :::E

P
t�2 exp

 
�

t�1X
i=1

�i"i+1 �
tX
i=1

	i (�i)

!
exp (	t (�t))

#

= EP0

"
EP1 :::E

P
t�2 exp

 
�

t�1X
i=1

�i"i �
t�1X
i=1

	i (�i)

!#

Iteratively, using this result we get

EP0

�
dQ

dP

����Ft� = EP0 [exp (��1"1 �	1 (�1))]

= exp (�	1 (�1)) exp (	1 (�1))

= 1

and the lemma obtains.

We are now ready to show that we can specify an EMM using this Radon-Nikodym

derivative.

Proposition 2 The probability measure Q de�ned by the Radon-Nikodym derivative in

(2.2) is an EMM if and only if

	t (�t � 1)�	t (�t)� 
t + �t�
2
t = 0

where �t =
�t � rt
�2t

.

Proof. We need EQ
�
St
Bt

����Ft�1� = St�1
Bt�1

or equivalently EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = 1.
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We have

EQ
�
St
St�1

=
Bt
Bt�1

����Ft�1� = EP

" 
dQ
dP

��Ft
dQ
dP

��Ft�1
!

St
St�1

=
Bt
Bt�1

�����Ft�1
#

= EP

" 
dQ
dP

��Ft
dQ
dP

��Ft�1
!

St
St�1

exp(�rt)
�����Ft�1

#
= EP [exp (��t"t �	t (�t)) exp(�t � 
t + "t) exp(�rt)jFt�1]

= exp (�	t (�t) + �t � rt � 
t)E
P [exp ((1� �t) "t) jFt�1]

= exp (�	t (�t) + �t � rt � 
t +	t (�t � 1))

= exp(	t (�t � 1)�	t (�t)�	t (�1) + �t�2t )

Thus Q is a probability measure that makes the stock discounted by a riskless asset a

martingale if and only if

	t (�t � 1)�	t (�t)�	t (�1) + �t�2t = 0 (2.3)

This result implies that we can construct an EMM by choosing the sequence, �t, to make

(2.3) hold.

2.2.3 The valuation of European style contingent claims

We have demonstrated that in a general return model with time-varying conditional

mean and volatility and non-normal shocks, there exists an EMM Q that makes the

stock discounted by the riskless asset a martingale.

We now turn our attention to the pricing of European style contingent claims. Exist-

ing papers on the pricing of contingent claims in a discrete-time in�nite state space setup,

such as the literature on GARCH option pricing in Duan (1995), Amin and Ng (1993)

and Heston and Nandi (2000) value such contingent claims by making an assumption

on the bivariate distribution of the stock return and the endowment, or an equivalent

assumption. While this approach, which most often amounts to the characterization of
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the equilibrium that supports the pricing, is an elegant way to deal with the incom-

pleteness that characterizes these markets, we argue that it is not strictly necessary to

characterize the equilibrium. Instead, we adopt an approach which is more prevalent in

the continuous-time literature, and proceed to pricing derivatives using a no-arbitrage

argument alone.

To understand our approach, the analogy with option valuation for the stochastic

volatility model of Heston (1993a) is particularly helpful. In this incomplete markets

setting, an in�nity of no-arbitrage contingent claims prices exist, one for every di¤erent

speci�cation of the price of risk. When one �xes the price of volatility risk, however,

there is a unique no-arbitrage price. For the purpose of option valuation, one can simply

pick a price of volatility risk, and the resulting valuation exercise is purely mechanical.

The question whether a particular price of risk is reasonable is of substantial interest

in its own right, and an analysis of the representative agent utility function that support

a particular price of risk is very valuable. However, this question can be analyzed sepa-

rately from the option valuation problem. For the heteroskedastic discrete-time models

we consider, a similar remark applies. We can value options provided we specify the

price of risk. The link between our approach and the utility-based approach in Brennan

(1979), Rubinstein (1976) and Duan (1995) is that assumptions on the utility function

are implicit in the speci�cation of the risk premium in the return dynamic in our case.9

The representative agent preferences underlying this assumption are of interest, but it is

not necessary to analyze them in order to value options. Of course, we note that the main

di¤erence with the continuous-time stochastic volatility models is that GARCH models

are one-shock models, and that therefore there is only one price of risk.

We have already found an EMM Q. We therefore want to demonstrate that the price

at time t is de�ned as

Ct = EQ
�
CT (ST )

BT
Bt

����Ft� :
9See Bick (1990) and He and Leland (1993) for a discussion of assumptions on the utility function

implicit in the speci�cation of the return dynamic for the market portfolio. We proceed along the lines
of Jacob and Shiryaev (1998), and Shiryaev (1999).
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The proof proceeds in a number of steps and requires de�ning a number of concepts

that are well-known in the literature. Fortunately, even though our methodology closely

follows the continuous-time case, we economize on the number of technical conditions in

the continuous-time setup, such as admissibility, and avoid the concepts of local martin-

gale and super martingale. The reason is that the integration over an in�nite number

of trading times in the continuous-time case is replaced by a �nite sum over the trading

days in discrete time.

De�nitions

1. We denote by �t, �t and  t the units of the stock, the contingent claim and the bond

held at date t. We refer to the Ft predictable processes �t; �t and  t as investment

strategies.

2. The value process

Vt = �tSt + �tCt +  tBt

describes the total dollar amount available for investments at date t.

3. The gain process

Gt =
t�1X
i=0

�i(Si+1 � Si) +
t�1X
i=0

�i(Ci+1 � Ci) +
t�1X
i=0

 i(Bi+1 �Bi):

captures the total �nancial gains between dates 0 and t.

4. We call the process f�t; �t;  tg
T�1
t=0 a self �nancing strategy if and only if Vt = Gt

8t = 1; :::; T:

5. The de�nition of an arbitrage opportunity is standard: we have an arbitrage oppor-

tunity if a self �nancing strategy exists with either V0 < 0; VT � 0 a.s. or V0 � 0;

VT > 0 a.s.
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6. We denote the discounted stock price at time t as SBt = St
Bt
and the discounted

contingent claim as CBt = Ct
Bt
. Similarly, the discounted value process is denoted

V B
t = Vt

Bt
and the discounted gain process GBt =

Gt
Bt
:

Note that for a self �nancing strategy, we have V B
t = GBt because Vt = Gt and Bt > 0:

Furthermore, we can show the following.

Lemma 3 For a self �nancing strategy we have

GBt =
t�1X
i=0

�i(S
B
i+1 � SBi ) +

t�1X
i=0

�i(C
B
i+1 � CBi ) 8t = 1; :::; T

Proof. The proof involves straightforward but somewhat cumbersome algebraic ma-

nipulations of the above de�nitions. See the Appendix for the details.

We know that under the EMM we de�ned, the stock discounted by the risk free asset

is a martingale. We now need to show that the contingent claims prices obtained by

computing the expected value of the �nal payo¤ discounted by the risk free asset also

constitute a martingale under this EMM.

Lemma 4 The stochastic process de�ned by the discounted values of the candidate con-

tingent claims prices is an Ft martingale under the EMM.

Proof. We de�ned our candidate process for the contingent claims price under the

EMM as Ct = EQ
h
CT (ST )
BT

Bt

���Fti : The process for the discounted values of the contingent
claims prices is then de�ned as

CBt �
Ct
Bt
= EQ

�
CT (ST )

BT

����Ft�

We use the fact that the conditional expectation itself is a Q martingale. This in turn

follows from the law of iterated expectations and the European style payo¤ function.
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Taking conditional expectations with respect to Fs on both sides of the above equation

yields

EQ
�
Ct
Bt

����Fs� = EQ
�
EQ
�
CT (ST )

BT

����Ft�����Fs� 8t > s

Now using the law of iterated expectations we get

EQ
�
Ct
Bt

����Fs� = EQ
�
CT (ST )

BT

����Fs� = Cs
Bs
= CBs 8t > s

which gives the desired result.

Lemma 5 Under the EMM de�ned by (2.2), the discounted gain process is a martingale.

Proof. Under the EMM Q, the process
�
SBt
	T
t=1
is a Q martingale. Using a standard

property of martingales the process de�ned as SSBt =
Pt�1

i=0 �i(S
B
i+1 � SBi ) then is a Q

martingale, since the investment strategy �t is included in the information set.
10 Fur-

thermore, from Lemma 3 we get that
�
CBt
	T
t=1

is also a Q martingale. Then using the

fact that �t is an Ft predetermined process and using the same martingale property as

above we get that the process CCBt =
Pt�1

i=0 �i(C
B
i+1�CBi ) is a Q martingale. Then since

from Lemma 2 the discounted gain process
�
GBt
	T
t=1

is the sum of two Q martingales,

SSBt and CC
B
t , it is itself a Q martingale.

At this stage, we have all the ingredients to show the following main result.

Proposition 6 If we have an EMM that makes the discounted price of the stock a mar-

tingale, then de�ning the price of any contingent claim as the expected value of its pay-

o¤, taken under this EMM and discounted at the riskless interest rate constitutes a no-

arbitrage price.

Proof. From Lemma 4 GBt is a Q martingale. Because we are considering self

�nancing strategies we get that V B
t is a martingale. We prove the absence of arbitrage

10Note that because we are working in discrete time there is no need to investigate the integrability
of SSBt .
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by contradiction. If we assume the existence of an arbitrage opportunity, then there

exists a self �nancing strategy with type 1 arbitrage (V0 < 0; VT � 0 a.s.) or type 2

arbitrage (V0 � 0; VT > 0 a.s.). Both cases lead to a clear contradiction. Consider type

1 arbitrage: we start from the existence of a self �nancing strategy with V0 < 0 that ends

up with a positive �nal value. V0 < 0 implies that V B
0 < 0 since the numeraire is always

positive by de�nition. Also since VT � 0 we have V B
T � 0. Taking expectations and using

the fact that V B
t is a Q martingale yields V B

0 = EQ0 [V
B
T ] � 0. This is a contradiction

because we assumed that we start with a negative value V0 < 0: A similar argument

works for type 2 arbitrage. Thus, the Ct from the EMM Q must be a no-arbitrage price.

In summary, we have demonstrated that in a discrete-time in�nite state space setting,

if we have an EMM that makes the underlying asset price a martingale, then the expected

value of the payo¤ of the contingent claim taken under this EMM, discounted at the

riskless asset, is a no-arbitrage price. In Section 2.2, we derived such an EMM. Altogether,

we have therefore demonstrated that for any contingent claim paying a �nal payo¤CT (ST )

the current price Ct can be computed as

Ct = EQ
�
CT (ST )

BT
Bt

����Ft� :
2.3 Characterizing the risk-neutral distribution

The previous section demonstrates how options can be priced using the EMM directly.

However, when pricing options using Monte Carlo simulation, knowing the risk neutral

distribution is valuable. In this section, we derive an important result that shows that for

the class of models we investigate, the risk neutral distribution is from the same family

as the original physical distribution.

We �rst need the following lemma, where we recall that 	t (u), denotes the one-day

log conditional moment generating function of the innovation "t
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Lemma 7

EQt�1 [exp (�u"t)] = exp (	t (�t + u)�	t (�t))

Proof.

EQt�1 [exp (�u"t)] = EP

" 
dQ
dP
jFt

dQ
dP
jFt�1

!
exp(�u"t)jFt�1

#
= EP [exp (��t"t �	t (�t)) exp(�u"t)jFt�1]

= exp (	t (�t + u)�	t (�t))

From this lemma, if we de�ne 	Qt (u) to be the log conditional moment generating

function of "t under the risk neutral probability measure, then we have

	Qt (u) = 	t (�t + u)�	t (�t)

From this we can derive

EQt�1 ["t] =
@ exp

�
	Qt (�u)

�
@u

������
u=0

= �	0t (�t)

which represents the risk premium. De�ne the risk neutral innovation

"�t = "t � EQt�1 ["t]

The risk-neutral log-conditional moment generating function of "�t , labeled 	
Q�
t�1 (u), is

then

	Q�t (u) = �u	0t (�t) + 	
Q
t (u) (2.4)

We are now ready to show the following

Proposition 8 If the physical conditional distribution of "t is an in�nitely divisible dis-

tribution with �nite second moment, then the risk-neutral conditional distribution of "�t

31



is also an in�nitely divisible distribution with �nite second moment.

Proof. See the appendix.

Because of the one-to-one mapping between moment generating functions and dis-

tribution functions, this result can be used to derive speci�c parametric risk-neutral

distributions corresponding to the parametric physical distributions assumed by the re-

searcher.

2.4 Parametric examples

In this section we demonstrate how a number of existing models are nested in our setup.

We also give an example of a model that has not yet been discussed in the literature but

can be handled by our setup.

2.4.1 Conditionally normal returns

In the conditional normal case we have the return dynamics

Rt = �t � 
t + "t "tjFt�1 � N(0; �2t )

where the conditional variance, �2t , can take on any GARCH-type speci�cation.

The normal log MGF is 	t (u) = 1
2
�2tu

2 so that 
t = 	t (�1) = 1
2
�2t and our EMM

condition

	t (�t � 1)�	t (�t)�	t (�1) + �t�2t = 0

from (2.3) is solved by choosing

�t = �t =
�t � rt
�2t
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In this normal case, the probability measure Q de�ned by the Radon-Nikodym derivative

dQ

dP

����Ft = exp
 
�

tX
i=1

(�i"i +	i (�i))

!
= exp

 
�

tX
i=1

�
�i"i +

1

2
�2i�

2
i

�!

is therefore an EMM.

From Section 3 we have the risk neutral conditional log MGF in the general case

	Q�t (u) = �u	0t (�t) + 	t (�t + u)�	t (�t)

Using 	t (u) = 1
2
�2tu

2, we get

	Q�t (u) =
1

2
�2tu

2:

so that in the normal case the risk neutral distribution is also normal. The results in

Section 3 also imply that the risk neutral innovation generally can be written

"�t = "t +	
0
t (�t)

so that in the normal case we have

"�t = "t + vt�
2
t = "t + �t�

2
t = "t + �t � rt

2.4.2 Flexible risk premium speci�cations

One of the advantages of our approach is that we can allow for time-varying risk premia.

Here we discuss some potentially interesting ways to specify the risk premium in the

return process for the underlying asset. In order to demonstrate the link with the avail-

able literature and for computational simplicity, we assume conditional normal returns,

although this assumption is by no means necessary.

The conditional normal models in the Duan (1995) and Heston and Nandi (2000)
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models are special cases of our set-up. In our notation, Duan (1995) assumes

rt = r; and �t = r + ��t

which in our framework corresponds to a Radon-Nikodym derivative of

dQ

dP

����Ft = exp
 
�

tX
i=1

�
"i
�i
�� 1

2
�2
�!

and risk neutral innovations of the form

"�t = "t + ��t:

Heston and Nandi (2000) instead assume

rt = r; and �t = r + ��2t +
1

2
�2t

which in our framework corresponds to a Radon-Nikodym derivative of

dQ

dP

����Ft = exp
 
�

tX
i=1

 �
�+

1

2

�
"i �

1

2

�
�+

1

2

�2
�2i

!!

and risk neutral innovations of the form

"�t = "t + ��2t +
1

2
�2t :

However, many empirically relevant cases are not covered by existing theoretical results.

For example, in the original ARCH-M paper, Engle, Lilien and Robins (1987) �nd the

strongest empirical support for a risk premium speci�cation of the form

�t = rt + � ln (�t) +
1
2
�2t
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which cannot be used for option valuation using the available theory. In our framework

it simply corresponds to a Radon-Nikodym derivative of

dQ

dP

����Ft = exp
 
�

tX
i=1

 
� ln (�i) +

1
2
�2i

�2i
"i �

1

2

�
� ln (�i) +

1
2
�2i

�2i

�2
�2i

!!

and risk neutral innovations

"�t = "t + � ln (�t) +
1
2
�2t

Our approach allows for option valuation under such speci�cations whereas the existing

literature does not.

2.4.3 Conditionally inverse Gaussian returns

Christo¤ersen, Heston and Jacobs (2006) analyze a GARCH model with an inverse

Gaussian innovation, yt � IG(�2t=�
2). We can write their return dynamic as

Rt = r +
�
�+ ��1

�
�2t + "t

where "t is a zero-mean innovation de�ned by

"t = �yt � ��1�2t

and where the conditional return variance, �2t , is of the GARCH form.

From the MGF of an inverse Gaussian variable, we can derive the conditional log

MGF of "t as

	t (u) =

�
u+

1�
p
1 + 2u�

�

�
�2t
�

The EMM condition

	t (�t � 1)�	t (�t)�	t (�1) + �t�2t = 0
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is now solved by the constant

�t = � =
1

2�

"
(2 + ��3)

2

4�2�2
� 1
#
;8t

which in turn implies that the EMM is given by

dQ

dP

����Ft = exp

 
�

tX
i=1

�
�"i +

�
� +

1�
p
1 + 2��

�

�
�2i
�

�!
= exp

�
��t"t � �t�2t

�
where "t = 1

t

Pt
i=1 "i, �

2
t =

1
t

Pt
i=1 �

2
i , and � =

�
�
+ 1�

p
1+2��
�2

.

These expressions can be used to obtain the risk-neutral distribution from Christof-

fersen, Heston and Jacobs (2006) using the results in Section 3. Recall that in general

the risk neutral log MGF is

	Q�t (u) = �u	0t (�) + 	t (� + u)�	t (�)

In the GARCH-IG case we can write

	Q�t (u) =

�
u+

1�
p
1 + 2u��

��

�
��2t
��

where

�� =
�

1 + 2��
and ��2t =

�2t

(1 + 2��)
3=2

This implies that the risk neutral model can be written as

Rt � ln
�

St
St�1

�
= r �	Q�t (�1) + "�t = r +

�
�� + ���1

�
h�t + "�t

where

�� =
1� 2�� �

p
1� 2��

��2
and "�t = ��y�t � ���1��2t
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The risk neutral process thus takes the same form as the physical process which is exactly

what our Proposition 3 in Section 3 shows.

2.4.4 Conditionally Poisson-normal jumps

Another interesting model that can be easily nested in our framework is the heteroskedas-

tic model with Poisson-normal innovations in Duan, Ritchken and Sun (2005).11 For

expositional simplicity, we consider the simplest version of the model. More complex

models, for instance with time-varying Poisson intensities, can also be accommodated.

We can write the underlying asset return as

Rt = �t + "t

The zero-mean innovation "t equals

"t = �t (Jt � ���)

where Jt is a Poisson jump process with Nt jumps each with distribution N (��; �
2) and

jump intensity �. The conditional return variance equals (1 + � (��2 + �
2))�2t ; where �
2
t

is of the GARCH form. The log return mean �t is a function of �2t as well as the jump

and risk premium parameters.

We can derive the conditional log MGF of "t as

	t (u) = ln(Et�1 [exp (�u�t (Jt � ��))])

= u���t +
1

2
u2�2t + �

�
e
(��u�t+1

2 

2u2�2t) � 1

�

The approach taken in Duan et al (2005) corresponds to �xing �t = � and setting

�t = r +	t (�)�	t (� � 1)

11Maheu and McCurdy (2004) consider a di¤erent discrete-time jump model.
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which in turn implies that the EMM is given by

dQ

dP

����Ft = exp
 
��t"t � ���t�t �

1

2
t�2�2t + �t� �

tX
i=1

e
(���i�i+1

2 

2�2i �

2
i )
!

where "t and �2t are the historical averages as above.

We can again show that the risk-neutral distribution of the risk neutral innovation is

from the same family as the physical

	Q�t (u) = lnEQt�1 [exp (�u"�t )]

= u��t�
�
t�t +

1

2
u2�2t + ��t

�
e
(���t u�t+1

2 

2u2�2t) � 1

�

where

��t = � exp

�
����t +

1

2

2�2�2t

�
and ��t = �� 
2�t�

2.4.5 Conditionally skewed variance gamma returns

We now introduce a new model where the conditional skewness, s, and excess kurtosis,

k, are given directly by two parameters in the model.12 Consider the return of the

underlying asset speci�ed as follows

Rt = �t � 
t + "t

= �t � 
t + �tzt; zt
i:i:d� SV G(0; 1; s; k)

The distribution of the shocks, SV G(0; 1; s; k), is a standardized skewed variance gamma

distribution which is constructed as a mixture of two gamma variables.13 The condi-

tional variance, �2t , can take on any GARCH speci�cation. We will provide an empirical

12In Christo¤ersen, Heston and Jacobs (2006), conditional skewness and kurtosis are driven by func-
tions of the same parameter.
13See Madan and Seneta (1990) for an early application of the symmetric and i.i.d. variance gamma

distribution in �nance.
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illustration in the next section using a leading GARCH dynamic.

Let z1 and z2 be independent draws from two gamma distributions

zi;t
i:i:d� �

�
4=� 2i

�
; i = 1; 2

parameterized as

� 1 =
p
2

 
s�

r
2

3
k � s2

!
and � 2 =

p
2

 
s+

r
2

3
k � s2

!

If we construct the SVG random variable from the two gamma variables as

zt =
1

2
p
2
(� 1z1;t + � 2z2;t)�

p
2

�
1

� 1
+
1

� 2

�

then zt will have a mean of zero, a variance of one, a skewness of s, and an excess

kurtosis of k, thus allowing for conditional skewness and kurtosis in the GARCH model

as intended.14

The log moment generating function of "t can be derived from the gamma distribution

MGF as

	t (u) =
p
2
�
��11 + ��12

�
u�t � 4��21 ln

�
1 +

1

2
p
2
� 1u�t

�
� 4��22 ln

�
1 +

1

2
p
2
� 2u�t

�

so that the mean correction variable, 
t, for the return can be found as 
t = 	t(�1).

Using the formula for the risk neutral conditional log MGF

	Q�t (u) = �u	0t (�t) + 	t (�t + u)�	t (�t)

14The special cases where �1 or �2 are zero can be handled easily by drawing from the normal dis-
tribution for the relevant mixing variable z1;t or z2;t. When both �1 and �2 are zero then the normal
distribution obtains for zt.
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we can show that the risk neutral model is

Rt = rf � 
�t + "�t (2.5)

where

	Q�
t
(u) =

p
2
�
��11 ��1;t + ��12 ��2;t

�
u�4��21 ln

�
1 +

1

2
p
2
� 1�

�
1;tu

�
�4��22 ln

�
1 +

1

2
p
2
� 2�

�
2;tu

�

with

��i;t =
�tp

2 + 1
2
� i�t�t

; for i = 1; 2: (2.6)

We see that 	Q�
t
(u) is exactly of the same form as 	t (u), and therefore that 
�t =

	Q�
t
(�1) : This model will be investigated empirically in the next section.

2.5 Empirical illustration

In this section we demonstrate how the greater �exibility and generality allowed for by

our approach can lead to more realistic option valuation models. To do so, we ana-

lyze the GARCH-SVG model in Section 4.5, which allows for conditional skewness and

kurtosis, and which has not yet been analyzed in the literature. We compare its empir-

ical implications with the more standard conditional normal model of Section 4.1. We

compute option prices from both models using parameters estimated from return data,

and subsequently construct option implied volatility smiles. We also compare the two

heteroskedastic models to two benchmark models with independent returns.

2.5.1 Parameter estimates from index returns and stylized facts

We start by illustrating some key stylized facts of daily equity index returns using the

S&P500 as a running example.

Figure 1 shows a normal quantile-quantile plot (QQ plot) of daily S&P500 returns,
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using data from January 2, 1980 through December 30, 2005 for a total of 6,564 obser-

vations. The returns are standardized by the sample mean and standard deviation. The

data quantiles on the vertical axis are plotted against the normal distribution quantiles

on the horizontal axis. The plot reveals the well-known stark deviations from normality

in daily asset returns: actual returns include much more extreme observations than the

normal distribution allows for in a sample of this size. The largest negative return is the

famous 20 standard deviation crash in October 1987, but the normal distribution has

trouble �tting a large number of extremes in both tails of the return distribution. The

actual returns range from -20 to +9 standard deviations but the normal distribution only

ranges from -4 to +4 standard deviations in a sample of this size.

Figure 2 shows the sample autocorrelation function of the squared daily returns for

the sample. The signi�cantly positive correlations at short lags suggest the need for a

dynamic volatility model allowing for clustering in volatility.

Figures 1 and 2 clearly suggest the need for a GARCH model which can capture

potentially both the volatility clustering in Figure 2 and the non-normality in Figure 1.

As a benchmark, we use the conditional normal NGARCH model of Engle and Ng

(1993)

Rt = �t � 
t + �tzt; zt
i:i:d� N(0; 1) (2.7)

where

�t = rt + ��t


t = 1
2
�2t

�2t = �0 + �1�
2
t�1 + �2�

2
t�1 (zt�1 � �3)

2

Notice that the �3 parameter in the GARCH variance speci�cation allows for an

asymmetric variance response to positive versus negative shocks, zt�1. This captures the

so-called leverage e¤ect, which is another important empirical regularity in daily equity

index returns.
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Table 1 reports the maximum likelihood estimates of the GARCH parameters. We

also report parameter estimates for a version of the model where the GARCH dynamics

have been shut down, that is, where �1 = �2 = �3 = 0. Notice the large increase in the

Log-likelihood function from including the GARCH dynamics.

Figure 3 shows the autocorrelation function for the observed squared GARCH shocks,

z2t . If the GARCHmodel has adequately captured the volatility clustering then the shocks

should be independent and in particular the squared shocks should be uncorrelated.

Figure 3 suggests that the GARCH model does a good job of capturing the volatility

dynamics in the daily index returns.

Figure 4 assesses the conditional normality assumption by plotting a QQ plot of zt

against the normal distribution. It is clear from Figure 4 that much of the non-normality

in the raw returns has been removed by the GARCH model. This is particularly true

for the right tail, where the non-normality was least pronounced to begin with. Unfortu-

nately, the left tail of the shock distribution still exhibits strong evidence of non-normality

with negative shocks as large as -10 standard deviations compared with the normal dis-

tribution�s -4.

From Figures 3 and 4, we conclude that while the normal GARCH model appears to

provide adequate dynamics for capturing volatility clustering, the conditional normality

assumption is violated in the data and must be modi�ed in the model.

For the implementation of the GARCH-SVG model, �t and �
2
t are the same as in

the conditional normal model in (2.7). We can calibrate the s and k parameters in the

GARCH-SVG model from Section 4.5 by simply equating them to the sample moments

from the zt sequence from the QMLE estimation of the GARCH model. These sample

moments are reported in Table 1.

Figure 5 shows the QQ plot of the GARCH shocks against the SVG distribution.

Compared with the normal QQ plot in Figure 4, we see that the SVG captures the left

tail of the shock distribution much better than the normal does. Impressively, the SVG

model only has trouble �tting the two most extreme negative shocks, whereas the normal
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distribution misses a whole string of large negative shocks.

2.5.2 Option prices and implied volatilities

Armed with estimated return processes we are ready to assess the option pricing im-

plications of the di¤erent models. From Section 2.3 we have the general option price

relationship which for a European call option with strike price K is

Ct(T;K) = EQt

�
Max(ST �K; 0)

Bt
BT

�

Using the estimated physical process from Section 4 we can now simulate future paths for

ST from the current St and compute the option price as the simulated sample analogue

to this discounted expectation.

We present evidence on the option pricing properties of the various models in Figures

6 and 7. Figure 6 considers an i.i.d. normal and an i.i.d. SVG model where the GARCH

dynamics have been shut down (�1 = �2 = �3 = 0), and s and k have been set to the the

sample skewness and kurtosis from the raw returns which are reported in Table 1. Fig-

ure 7 considers the normal GARCH-Normal and GARCH-SVG models. The parameter

estimates used are again from Table 1.

We �rst compute option prices for various moneyness and maturities and we then

compute implied Black and Scholes (1973) volatilities from the model option prices.

Implied volatilities are plotted against moneyness on the horizontal axis. The three

panels correspond to maturities of 1 day, 1 week, and 1 month respectively.

The i.i.d. SVG model in Figure 6 (solid lines) shows a strong implied volatility

�smile�for the 1-day maturity driven by the large excess kurtosis of 27.33 from Table 1.

Interestingly, as the maturity increases the smile becomes an asymmetric �smirk�driven

by the skewness parameter of -1.21 in Table 1. The i.i.d. normal model in Figure 6

(dashed line) results in a �at implied volatility curve.

The GARCH-SVG model in Figure 7 shows a smirk at the 1 day maturity compared
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with the �at implied volatility for the GARCH-Normal model where the conditional 1

day distribution is normal. The GARCH-Normal model generates a non-trivial volatility

smirk for horizons beyond 1 day where the conditional distribution is no longer normal.

However, the GARCH-SVG model is capable of capturing much more non-normality

than the GARCH-Normal model at all horizons. This is important because the empirical

option valuation literature often �nds that existing models are unable to �t short term

option prices where the implied degree of non-normality is large.15

From this empirical illustration we conclude that it is possible to build relatively

simple models capturing the conditional volatility and non-normality found in index

returns data, and more importantly that such models provide the �exibility needed to

price options.

2.6 Relationship with the existing literature

Our results are intimately related to the theoretical and empirical literature on GARCH

option valuation, which in turn builds on the discrete-time option valuation results of

Brennan (1979) and Rubinstein (1976). The aim of this literature is to obtain a risk-

neutral valuation relationship, but these papers typically obtain such relationship by

characterizing conditions on preferences needed to obtain risk-neutral valuation. For ex-

ample, Brennan (1979) characterizes the bivariate distribution of returns on aggregate

wealth and the underlying asset under which a risk-neutral valuation relationship ob-

tains in the homoskedastic case. Duan (1995) extends this framework to the case of

heteroskedasticity of the underlying asset return. Amin and Ng (1993) also study the

heteroskedastic case. Although they formulate the problem in terms of the economy�s sto-

chastic discount factor, they start by making an assumption on the bivariate distribution

of the stochastic discount factor and the underlying return process.

There is also a growing literature that values options for discrete-time return dynamics

15See Bates (2003) for an excellent discussion of this and other stylized facts in option markets.
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with non-normal innovations. A number of other papers obtain risk-neutral valuation re-

lationships either under the maintained assumption of non-normal innovations, or under

the maintained assumption of heteroskedasticity, or both. Madan and Seneta (1990) use

the symmetric and i.i.d. variance gamma distribution. Heston (1993b) presents results

for the gamma distribution and Heston (2004) analyzes a number of in�nitely divisible

distributions. Camara (2003) uses a transformed normal innovation and Duan (1999)

uses a heteroskedastic model with a transformed normal innovation. Christo¤ersen, He-

ston and Jacobs (2006) analyze a heteroskedastic return process with inverse Gaussian

innovations.

Our paper di¤ers in a subtle but important way from most of the studies that use

heteroskedastic processes, in the sense that we do not attempt to characterize the bivari-

ate distribution of preferences and returns that gives rise to the risk-neutral valuation

relationship. Strictly speaking, the only assumption we make is on the return dynamic.

Establishing the equivalent martingale measure that makes the discounted stock price

process a martingale does not amount to an additional assumption. It is simply a math-

ematical manipulation required to obtain the bene�ts of risk-neutral valuation. All as-

sumptions needed for risk-neutral valuation are given by the speci�cation of the return

dynamic, or, in other words, the assumptions on the equilibrium supporting the valua-

tion problems are implicitly incorporated in the risk premium assumption for the return

dynamic. The speci�cation of the price of risk may be�but does not need to be�explicitly

motivated by a utility-based argument.

To motivate our approach, consider the available literature on option valuation in con-

tinuous time, and in particular option valuation with continuous-time stochastic volatility

models, such as the one in Heston (1993a). It is well-known (see e.g. Karatzas and Shreve

(1998)) that in this case there are di¤erent equivalent martingale measures for di¤erent

speci�cations of the volatility risk premium. However, for a given speci�cation of the

volatility risk premium, we can �nd an EMM and characterize the risk-neutral dynamic

using Girsanov�s theorem. To perform this manipulation, and to value options, there is
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no need to characterize the utility function underlying the volatility risk premium. Char-

acterizing the utility function that generates a particular volatility risk premium is a very

interesting question in its own right, but di¤ers from characterizing the risk-neutral dy-

namic and the option value for a given physical return dynamic.16 The latter is a purely

mathematical exercise. The former provides the economic background behind a particu-

lar choice of volatility premium, and therefore helps us understand whether a particular

choice of functional form for the risk premium, which is often made for convenience, is

also reasonable from an economic perspective.

In the same sense, our paper should be interpreted as providing a set of tools that

can be used to value options for a large class of discrete-time return dynamics that are

characterized by heteroskedasticity and non-normal innovations. Whether this valuation

exercise makes sense from an economic perspective depends on the nature of the assumed

risk premium, and the general equilibrium setup that gives rise to such risk premium.

There are two questions: a mostly technical one that characterizes the risk-neutral dy-

namic and the valuation of options, and a more economic one that characterizes the

equilibrium underlying this valuation procedure. In our opinion, the existing discrete-

time literature for the most part has viewed these two questions as inextricably linked,

and has therefore largely limited itself to (log)normal return processes. We argue that

it is possible and desirable to treat these questions one at a time, and we provide new

results on the question of option valuation with conditionally non-normal returns.

There are many other papers that are in some way related to our contribution. First

and foremost, we emphasize that we do not claim to be the �rst to analyze no-arbitrage

pricing in discrete-time models. There is a rich tradition of discrete-time �nite state

space modeling in discrete time, going back to Harrison and Kreps (1979), Cox, Ross

and Rubinstein (1979) and Cox and Ross (1976). However, the in�nite state space,

conditionally non-normal return dynamics we analyze are arguably the most empirically

16See Bollerslev, Gibbons and Zhou (2005) for a recent treatment.
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relevant descriptions of return data available,17 and the option valuation literature that

uses GARCH processes has hitherto focused on equilibrium arguments. Because of this,

the available valuation results in this literature are quite limited, and our paper shows

that we can obtain additional results by using a simple no-arbitrage approach. Second, it

is likely that our risk neutralizations can equivalently be derived using the speci�cation

of a candidate stochastic discount factor, rather than through our approach which starts

with the speci�cation of a Radon-Nikodym derivative and derives the EMM.18 However,

in most applications that we are aware of, existing work actually starts out by assuming

a bivariate distribution for the stochastic discount factor and the stock return (see for

example Amin and Ng (1993)).19 This assumption clearly goes beyond the existence of

no-arbitrage and is closer in spirit to the general equilibrium setup of Duan (1995) and

Brennan (1979). See Garcia, Ghysels and Renault (2006) for a discussion on how some

of these assumed joint distributions e¤ectively amount to degenerate distributions. Our

approach is also related to the risk-neutral valuation argument used in Heston (1993b,

2004) and Christo¤ersen, Heston and Jacobs (2006), but in our opinion our approach is

more transparent. Duan, Ritchken and Sun (2005) use a risk neutralization for a Poisson-

normal heteroskedastic model that has some similarities with our approach. However,

they do not apply their principle to the investigation of more general return dynamics.

Finally, at an empirical level, combining non-normality with heteroskedasticity at-

tempts to correct the biases associated with the conditionally normal GARCH model.

These biases are similar to those displayed by the Heston (1993) model, which the

continuous-time literature has sought to remedy by adding (potentially correlated) jumps

in returns and volatility. This paper is therefore also related to empirical studies of jump

models. See for example Bakshi, Cao and Chen (1997), Bates (2000), Broadie, Chernov

and Johannes (2006), Carr and Wu (2004), Eraker, Johannes and Polson (2003), Eraker

17The empirical evidence suggesting GARCH type processes is strong. See Bollerslev, Chou and
Kroner (1992) and Diebold and Lopez (1995) for overviews.
18See for example Hansen and Richard (1987) for a characterization of risk neutralization using the

stochastic discount factor.
19See Gourieroux and Montfort (2006) for a notable exception.
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(2004), Huang and Wu (2004) and Pan (2002).

2.7 Conclusion

This paper provides valuation results for contingent claims in a discrete time in�nite state

space setup. Our valuation argument applies to a large class of conditionally normal and

non-normal stock returns with �exible time-varying mean and volatility, as well as a

potentially time-varying price of risk, provided that these moments are predetermined

one period ahead. Our setup generalizes the result in Duan (1995) in the sense that we

do not restrict the returns to be conditionally normal, nor do we restrict the price of

risk to be constant. Our results apply to some of the most widely used discrete time

processes in �nance, such as GARCH processes. For the class of processes we analyze

in this paper, the risk neutral return dynamic is the same as the physical dynamic, but

with a di¤erent parameterization which we characterize.

To demonstrate the empirical relevance of our approach, we provide an empirical

analysis of a heteroskedastic return dynamic with a standardized skewed variance gamma

distribution, which is constructed as the mixture of two gamma variables. In the resulting

dynamic, conditional skewness and kurtosis are directly governed by two distinct para-

meters. We estimated the model on return data using quasi maximum likelihood and

compare its performance with the heteroskedastic conditional normal model which is

standard in the literature. Diagnostics clearly indicate that the conditionally nonnormal

model outperforms the conditionally normal model, and an analysis of the option smirk

demonstrates that this model provides substantially more �exibility to value options.

We leave a couple of important issues unaddressed. First, while we obtain a unique

EMM given the choice of Radon-Nikodym derivative, we cannot exclude that even for

a given speci�cation of the risk premium, there exist other EMMs corresponding to

di¤erent functional forms of the Radon-Nikodym derivative. Second, while we advocate

separating the valuation issue and the general equilibrium setup that supports it, the

48



general equilibrium foundations of our results are of course very important. It may prove

possible to characterize the equilibrium setup that gives rise to the risk neutralization

proposed for some of the processes considered in this paper, such as the empirically

interesting dynamics considered in Section 5. However, this is by no means a trivial

problem, and it is left for future work.
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2.8 Appendix

Proof of Lemma 2. For a self �nancing strategy we have

Gt+1 = Vt+1 = �tSt+1 + �tCt+1 +  tBt+1

= �t+1St+1 + �t+1Ct+1 +  t+1Bt+1

We also have

Gt =

t�1X
i=0

�i(Si+1 � Si) +

t�1X
i=0

�i(Ci+1 � Ci) +

t�1X
i=0

 i(Bi+1 �Bi):

It follows that

Gt+1 �Gt = �t(St+1 � St) + �t(Ct+1 � Ct) +  t(Bt+1 �Bt)

We can trivially also write

GBt+1 �GBt = GBt+1 �GBt +

�
Gt+1
Bt

� Gt+1
Bt

�
| {z }

=0

This implies that

GBt+1 �GBt = (�tSt+1 + �tCt+1 +  tBt+1)

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(�t(St+1 � St) + �t(Ct+1 � Ct) +  t(Bt+1 �Bt)) :
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= �t

�
St+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(St+1 � St)

�
+�t

�
Ct+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(Ct+1 � Ct)

�
+ tBt+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
 t(Bt+1 �Bt)| {z }

=0

Then

GBt+1�GBt = �t

�
St+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(St+1 � St)

�
+�t

�
Ct+1

�
1

Bt+1
� 1

Bt

�
+
1

Bt
(Ct+1 � Ct)

�

= �t(S
B
t+1 � SBt ) + �t(C

B
t+1 � CBt ) +

�
�t
St+1
Bt

� �t
St+1
Bt

�
+

�
�t
Ct+1
Bt

� �t
Ct+1
Bt

�
and therefore

GBt+1 �GBt = �t(S
B
t+1 � SBt ) + �t(C

B
t+1 � CBt ): 8t = 1; :::; T � 1

Because G0 = GB0 = 0 the discounted gain can be written as the sum of past changes

GBt =
t�1X
i=0

(GBi+1 �GBi ) 8t = 1; :::; T:

Therefore the discounted gain can be written

GBt =

t�1X
i=0

�i(S
B
i+1 � SBi ) +

t�1X
i=0

�i(C
B
i+1 � CBi )

and the proof is complete.

Proof of Proposition 3. From Lukacs (1970), page 119, we have the Kolmogorov

canonical representation of the log-moment generating function of an in�nitely divisible

distribution function. This result stipulates that a function 	 is the log-moment gen-

erating function of an in�nitely divisible distribution with �nite second moment if, and
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only if, it can be written in the form

	(u) = �uc+
Z +1

�1

�
e�ux � 1 + ux

� dK (x)
x2

where c is a real constant while K (u) is a nondecreasing and bounded function such that

K (�1) = 0: Applying this theorem gives the following form for 	t (u) ;

	t (u) = �uct�1 +
Z +1

�1

�
e�ux � 1 + ux

� dKt�1 (x)

x2
(2.8)

where ct�1 is a random variable known at t�1; and Kt�1 (x) is a function known at t�1,

which is nondecreasing and bounded so that Kt�1 (�1) = 0: Using relation (2:4) and

the characterisation (2:8) we can write 	Q�t (u) as

	Q�t (u) =

Z +1

�1

�
e�ux � 1 + ux

� dK�
t�1 (x)

x2

where

K�
t�1 (x) =

Z x

�1
e��t�1ydKt�1 (y)

This implies that

K�
t�1 (�1) = 0

K�
t�1 (x) is obviously non-decreasing since Kt�1 (x) is non-decreasing, K�

t�1 (1) < 1,

because Kt�1 (1) < 1, and e��ty is a decreasing function of y which converge to 0:

Recall that �t is the price of risk, which is positive and known at time t� 1.

In conclusion we have constructed a constant c�t�1 (= 0) and a non-decreasing bounded

function K�
t�1 (x) ; with K

�
t�1 (�1) = 0; such that

	Q�t (u) = �uc�t�1 +
Z +1

�1

�
e�ux � 1 + ux

� dK�
t�1 (x)

x2
:

Hence, according to the Kolmogorov canonical representation, the conditional distribu-

tion of "�t is in�nitely divisible.
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Figure 1: Quantile-Quantile Plot of S&P500 Returns Against the Normal Distribution
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Notes to Figure: We take daily returns on the S&P500 from January 2, 1980 to December

30, 2005 and standardize them by the sample mean and sample standard deviation. The

quantiles of the standardized returns are plotted against the quantiles from the standard

normal distribution.
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Figure 2: Autocorrelation Function of Absolute S&P500 Returns
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Notes to Figure: From daily absolute returns on the S&P500 from January 2, 1980 to

December 30, 2005 we compute and plot the sample autocorrelations for lags one through

100 days. The horizontal dashed lines denote 95% Bartlett con�dence intervals around

zero.
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Figure 3: Autocorrelation Function of Absolute GARCH Innovations
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Notes to Figure: From the estimated GARCH model in Table 1 we construct the absolute

standardized sequence of shocks and plot the sample autocorrelations for lags one through

100 days. The horizontal dashed lines denote 95% Bartlett con�dence intervals around

zero.
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Figure 4: Quantile-Quantile Plots of GARCH Innovations Against the Normal

Distribution
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Notes to Figure: From the estimated GARCH models in Table 1 we compute the time

series of dynamically standardized S&P500 returns. The quantiles of these GARCH

innovations are plotted against the quantiles from the standard normal distribution.
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Figure 5: Quantile-Quantile Plots of GARCH Innovations Against the SVG Distribution
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Notes to Figure: From the estimated GARCH models in Table 1 we compute the time

series of dynamically standardized S&P500 returns. The quantiles of these GARCH

innovations are plotted against the quantiles from the skewed variance gamma (SVG)

distribution.

57



Figure 6: Implied Volatility Functions for Normal and SVG Independent Return Models
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Notes to Figure: From the estimated independent return model in Table 1 we compute

call option prices for various moneyness and maturities and we then compute implied

Black-Scholes volatilities from the model option prices. Implied volatility is plotted

against moneyness on the horizontal axis. The three panels correspond to maturities of

1 day, 1 week, and 1 month respectively. The solid lines show the i.i.d SVG model and

the dashed lines the i.i.d. Normal models.
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Figure 7: Implied Volatility Functions for Normal and SVG GARCH Models
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Notes to Figure: From the estimated GARCH model in Table 1 we compute call option

prices for various moneyness and maturities and then we compute implied Black-Scholes

volatilities from the model option prices. The implied volatilities are plotted with mon-

eyness on the horizontal axis. The three panels correspond to maturities of 1 day, 1 week,

and 1 month respectively. The solid lines show the SVG GARCH model and the dashed

lines the Normal GARCH model.
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Table 1: Parameter Estimates and Model Properties

Daily S&P500 Returns. January 2, 1980 - December 30, 2005.

Independent Returns GARCH Returns

Parameters Estimate Standard Error Estimate Standard Error

r 1.370E-04 1.370E-04

� 0.0313 0.0129 0.0312 0.0121

�0 1.111E-04 9.9781E-06 1.516E-06 6.050E-07

�1 0.8916 0.0274

�2 0.0617 0.0154

�3 0.7422 0.0808

Properties Independent Returns GARCH Returns

Log-Likelihood 20,615.00 21,586.28

Volatility Persistence 0 0.9873

Annual Volatility 0.1673 0.1734

Conditional Skewness -1.2105 -0.4127

Conditional Kurtosis 27.3304 3.4935

Notes: We use quasi maximum likelihood to estimate an independent return and a

GARCH return model on daily S&P500 returns from January 2, 1980 to December 30,

2005 for a total of 6,564 observations. We report various properties of the two models

including conditional skewness and excess kurtosis which are later used as parameter

estimates in the SVG models.
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Chapter 3

Time Varying Risk Premia in

Corporate Bond Markets

61



3.1 Introduction

Yield spreads are an imperfect measure of the expected return on a corporate bond. For

asset allocation or performance evaluation purposes, a key input is the risk premium

earned by holding a particular security. However, bond spreads also contain signi�cant

compensation for expected losses - even in the absence of a risk premium. Two �rms

with the same default probability can earn very di¤erent spreads depending on their

systematic risk. Two �rms with the same spread can earn signi�cantly di¤erent risk

premia. This paper studies risk premia extracted from yield spreads.

The equity risk premium has received intense attention in the �nance literature. In

stark contrast, the literature on the risk return characteristics of corporate bonds is only

now emerging.1 One reason is likely the scarcity of corporate bond return data. Another

is that disentangling the risk premium from spreads requires estimates of objective default

probabilities, the measurement of which is in itself a complex task.2 Using a large sample

of US corporate bond transactions over a 10 year period, we measure corporate bond

risk premia. Using a structural model, we �rst estimate actual default probabilities

to compute the expected loss component of spreads. Second, we use this estimate to

disentangle the risk premium component.3

Theoretically, a given �rm�s equity and bond returns should be closely related. Nev-

ertheless, many papers have documented di¢ culties in relating equity factors and bond

returns. Fama and French (1993) �nd that factors that explain the time series and the

cross section of equity returns well are not that succesful in explaining corporate bond

returns. Recent work has produced mixed results on the impact of �nancial distress on

bond and stock returns. Some studies have documented that �rms with higher default

1Notable exceptions, discussed further below, include Elton, Gruber, Agrawal & Mann (2001),
Driessen (2005), Huang & Huang (2002), Berndt, Douglas, Du¢ e, Ferguson & Schranz (2004), Berndt,
Lookman & Obreja (2006), Saita (2006) and Chen, Collin-Dufresne & Goldstein (2006).

2Recent work on estimating default probabilities includes Shumway (2001), Barath & Shumway
(2004), Leland (2004) and Du¢ e et al. (2006).

3There is currently a debate in the literature regarding the choice of appropriate risk free rate. To
address this, we carry out our analysis both using US Treasury and interest rate swap benchmark curves.
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risk have low average stock returns.4 Others have found that �rms with a high likelihood

of default experience high average stock returns.5

Our main contribution is to revisit the link between equity and bond risk premia.

A visual inspection of time series of average equity risk premia and bond risk premia

would likely suggest that they move largely independently of each other. In particular,

between 1997 and 2002 equity premia trended slowly downwards, whereas the much more

volatile bond premia increased irregularly. Our theoretical framework predicts a highly

nonlinear relationship between these premia. This relationship depends on �nancial

leverage, operating risk as well as bond speci�c characteristics. Empirically we �nd that

equity returns are in fact useful in explaining bond risk premia when these are taken into

account. Interestingly, we show that the risk premium, as a function of the likelihood

of distress is non-monotonic. For healthy �rms risk premia will increase in risk, but for

�rms approaching distress, they can in fact decrease. As distress becomes more likely,

uncertainty about the arrival of default decreases and then so do risk premia.

Previous studies have documented surprisingly volatile risk premia in default swap

markets.6 We �nd a very similar time series behavior and degree of time variation,

which is interesting given that our study is based on di¤erent data, a di¤erent �nancial

instrument and a di¤erent methodology.

Another contribution of our work is to document the charateristics of the expected

loss components across �rms and time. Previous work has shown that expected losses

explain about a quarter of corporate bond spread levels.7 Our overall average is of the

same magnitude, however, the relative importance of expected loss component is (i)

highly time varying and (ii) tends to be higher when spreads are high. For example,

we �nd that across our sample of about 400 �rms, it reaches a high of about 70% of

the spread over government bonds in 2000, up from an average near a third the �ve

4See Dichev (1998), Campbell et al. (2008), and Garlappi et al. (2008).
5See Vassalou & Xing (2004).
6See Berndt et al. (2004), Berndt et al. (2006).
7See Elton et al. (2001).
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preceeding years. Ignoring this time variation may lead to signi�cant biases in estimating

risk premium levels in spreads.

Risk premium and expected loss components of bond spreads behave quite di¤erently

from one another. As a proportion of the total spread, risk premia tend to be high in

times of low spreads, whereas expected losses dominate during periods of high defaults.

We are also able to shed light on recent events in credit markets. For example it appears

that the spike in spreads after the LTCM episode in the late summer of 1998 is driven by

increased risk premia rather than expected losses. On the other hand, the expected loss

component is the dominant spread component during 2001, a period of unprecedented

default losses in the US corporate bond markets.

Both spread components are intimately related to measures of volatility. The risk

premium component appears to be closely tied to systematic volatility. The expected loss

component on the other hand is closely tied to total risk. This is intuitive as idiosyncratic

risk matters for default probabilities, while it should not in�uence risk premia. This

allows us to comment on the results of Campbell & Taksler (2003). They document a

period where corporate bond spreads increase in tandem with stock prices, an apparent

contradiction. They attribute this to an increase in idiosyncratic equity volatility. We

�nd support for this conclusion in that in our sample it is the expected loss component of

spreads which increases, driven by an increase in total asset risk. In this period, market

volatility exhibited no clear trend.

Implicitly, our study shows that structural credit risk models are useful tools in trans-

lating equity risk premia into the corporate bond speci�c counterparts. Although this

casts the models in a favorable light, it begs the question why they have been relatively

unsuccessful at explaining changes in corporate bond yield spreads, by relying on the

variables implied by their speci�cation. A candidate explanation that arises from our

work is the strong degree of time variation that our measures of risk premia exhibit. Al-

though structural models provide powerful cross-sectional predictions on the no-arbitrage

relationship between debt and equity, they tend to be silent on both the level and the
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time variation of the risk premium.

In an attempt to understand whether time varying risk premia can be part of the

reason for the documented failure of structural models to explain credit spreads behavior,

we carry out a regression analysis on credit spreads in the spirit of what has recently

been done in the literature.8 We take as a benchmark a regression motivated by the

key drivers implied by structural models. We �nd that augmenting the regressions by

our measures of equity-implied risk premia improves explanatory power considerably, in

particular for high grade bonds.

The paper is organized as follows. The following section reviews the literature and

relates our paper to existing work. Section 3.3 describes our methodology for measuring

bond risk premia in corporate bond markets and compares it to alternative approaches

used in the literature. Section 3.4 explains how we translate equity risk premia into

bond risk premia. In sections 3.5 and 3.5.3 we present our estimation methods and data.

In section 3.6 we discuss our main �ndings, while section 3.6.3 presents our regression

results. In section 3.7 we examine the implications of a structural model for empirical

work on risk premia. Section 3.8 closes our study.

3.2 Related literature

In what follows we will review work related to corporate bond risk premia. The �rst

papers we discuss deal with the link between equity and corporate bond returns for

varying levels of �nancial distress risk. Next, we consider papers that deal more directly

with the risk premium in credit markets.

As mentioned above, Fama and French (1993) �nd that equity return factors have

di¢ culties in explaining corporate bond returns. In theory, however, bond and stock

returns should be closely related. For example, if �nanical distress is imminent, bond

and stock expected returns should both be high. Among others, Dichev (1998) and

8See among others Collin-Dufresne, Goldstein & Martin (2001), Campbell & Taksler (2003), Cremers,
Driessen, Maenhout & Weinbaum (2004).
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Campbell et al. (2008) have documented that stock returns for �rms with high degrees

of distress risk are surprisingly low. Garlappi et al. (2008) provide a justi�cation for this

�nding based on the relative bargaining strenghts of the parties in �nancial distress. On

the other hand some studies have have shown a common variation in the time-series of

returns to portfolios of stocks and corporate bonds (see for example Keim & Stambaugh

(1986) and Ferson & Harvey (1991)).

Elton, Gruber, Agrawal & Mann (2001) show that in addition to compensation for

expected losses, corporate bond yield spreads appear to contain compensation for tax

e¤ects and that there is a non-trivial residual component, related to the Fama-French

factors and thus interpreted as a risk premium. Our study di¤ers from theirs in that we

consider �rm speci�c data, study the time series of both expected losses and risk premia;

and most importantly we rely on a model which provides an exact non-linear relationship

between risk premia in equity markets and those in bond speci�c yield spreads.

An interesting related paper by Huang & Huang (2002) measures how much of ob-

served credit spreads over the Treasury curve can be explained by structural models.

Their analytical approach allows for time varying risk premia but their study does not

focus on measuring risk premium components in bond spreads. They �nd that it is dif-

�cult to reconcile observed and model spreads. Interestingly, Leland (2004) �nds that a

selection of structural models, faced with di¢ culty in explaining corporate bond prices,

are in fact quite successful at predicting default probabilities consistent with historical

levels.

Chen, Collin-Dufresne & Goldstein (2005) consider whether existing asset pricing

models that have proven successful in explaining equity returns can, if reasonably cal-

ibrated, explain the levels and volatilities of credit spreads. They have some success

with models that exhibit time varying risk premia, in particular if the default boundaries

are permitted to be countercyclical. Perhaps the main conclusion of their paper is the

necessity of time varying risk premia to explain credit spreads. Our study clearly illus-

trates the dramatic time variation of these premia in the marketplace and documents the
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explanatory power of equity-implied risk premium estimates for bond market spreads.

Using a reduced form credit risk model, Driessen (2005) decomposes corporate bond

yield spreads into tax, liquidity, interest rate risk and risk premium components. He

�nds that the ratio of risk neutral to objective default intensities is greater than one,

suggesting that default event risk is priced. He obtains cross-sectional estimates of spread

components and risk premia but does not explore the time series variation of risk premia

nor does he explore the link with equity markets.

In a closely related paper, Berndt, Douglas, Du¢ e, Ferguson & Schranz (2004)

(BDDFS) use expected default frequencies from Moody�s KMV together with default

swap prices to extract historical and risk neutral default intensities respectively. The ra-

tio of these is interpreted as a measure of the risk premium observed in the marketplace.

They document substantial time series variation in premia with a peak in the third quar-

ter of 2002 and a subsequent dramatic drop. They show that their measure of the risk

premium is strongly dependent on general stock market volatility after controlling for

idiosyncratic equity volatility. They also �nd that their measure is increasing in credit

quality. We document a similar behavior of the ratios of our risk neutral to objective

default probabilities in our longer corporate bond sample, and show that this is in fact a

prediction of the Leland & Toft (1996) structural credit risk model.

Berndt et al. (2006) (BLO) extract a factor representing the part of default swap

returns, implied by a reduced form credit risk model, that does not relate to interest

rate risk, expected default losses and the Fama-French factors. They �nd that this factor

is priced in the corporate bond market but that they cannot establish with the same

con�dence that it is a factor for equity returns.

Saita (2006) studies the risk and return pro�les of corporate bond portfolios using

estimates of objective default probabilities obtained using a novel methodology.9 He �nds

strikingly high levels of expected excess returns that appear di¢ cult to explain given the

measured risks. For example, bond portfolio Sharpe ratios can be multiple times higher

9See Du¢ e et al. (2006).
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than the corresponding measure for the S&P 500 index.

In summary, although many studies have attempted to relate pricing in corporate

credit and equity markets, the precise link between risk premia in the two markets is not

yet well understood.

3.3 Measuring risk premia with corporate bond data

In equity markets, expected returns are most often proxied by average historical returns.

Measuring expected returns and risk premia in corporate bond markets is a more daunting

task due to the absence of long historical time series of regularly spaced data. Perhaps

as a result, researchers tend to focus on bond yield spreads instead. This leaves us with

another complication which is that the yield spread is an imperfect measure of the risk

premium - it requires an adjustment as we shall explain in detail below.

Some recent related empirical work on risk premia in credit markets have relied on

reduced from models. To permit a comparison of those results with ours, we brie�y

outline, in an appendix, the key theoretical results on risk premia in that literature. Our

objective is also to estimate risk premia, but we rely on a contingent claims approach. In

a �rst step, we seek to understand if this approach, based on using information on �rm

speci�c equities and bond speci�c contractual details, is able to explain the behavior of

the risk premium reported by Berndt et al. (2004), Saita (2006) and Berndt et al. (2006).

To study the corporate bond risk premium, two di¤erent approaches avail themselves.

First, one can measure the expected excess return directly and second, one can compute

the part of the bond spread that represents a risk premium. The second approach has

the advantage of also allowing us to learn about the expected loss component in the

promised yield which has been central in many recent studies.10

10See for example Elton et al. (2001).
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3.3.1 Excess returns

In order to compute the return on a corporate discount bond that matures at time T ,

we would need to solve

RB (t; T )� r(t; T ) =
EPt

h
B(vT ;T )
B(vt;T )

� 1
i

T � t
� r(t; T )

where RB (t; T ) is the expected return and r(t; T ) is the risk free rate with maturity T � t

.

However, when computing risk premia for holding coupon bearing bonds until ma-

turity, we need to account for coupons as well as the rate at which these coupons are

reinvested. There is no received solution to this problem, perhaps because most work on

corporate bonds has focused on yield spreads instead of returns.

We follow the methodology of Driessen & DeJong (2005) to estimate bond market

implied risk premia. They show that

RB (t; T ) = [Pt (� < T ) (1� l) + (1� Pt(� < T ))](1 + y(t; T ))T � 1 (3.1)

where RB (t; T ) is the expected return on a corporate discount bond that matures at

time T; � is the default time, l is the proportional loss given default, r(t; T ) the relevant

benchmark risk free rate and y (t; T ) the corporate bond yield-to-maturity. The objective

probability of a default prior to maturity is denoted Pt (� < T ), where � represents the

default time.

This expression is valid for discount bonds for which default losses are incurred at

maturity. Maintaining the default timing assumption, this expression still holds for

coupon bonds if we are willing to assume that coupons are reinvested at the initial

yield.11 The approach is also valid if we assume that coupons are reinvested at today�s

11An analoguous assumption is made when using yield-to-maturity as a measure of promised return
in the government bond market.
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prevailing forward rates. Similar procedures for calculating expected corporate bond

returns have been applied by Elton et al. (2001) and Campello et al. (2006).12

To estimate Pt(� < T ), we rely on the Leland & Toft (1996) (LT) model together

with historical estimates of �rm speci�c asset value risk premia.13 Using aggregate data,

Leland (2004) studies the ability of the LT model to predict default probabilities. He

�nds that the model is able to �t historical default experience for A, Baa and B rated debt

reasonably well for horizons of 5 years and longer. The model underestimates shorter

term default probabilities.

Recent work by Berndt et al. (2004) and Berndt et al. (2006) on risk premia relies

on Moody�s KMV expected one-year default frequencies.14 These are based on using a

structural credit risk model to compute a �rm�s distance to default. This metric is then

mapped into historical probabilities using an extensive database of default experience.

Conceptually, this approach is very similar to our method of using the LT model to

predict default probabilities.15 The key di¤erence is that KMV only use the model to

rank companies according to default riskiness, whereas we combine the model with �rm

risk premium estimates to arrive at default probabilities.

3.3.2 Yield spread components

An example

There is an important distinction between a bond risk premium and yield spread. Con-

sider, for simplicity, a unit zero discount bond with zero recovery in default issued by a

�rm that can only default at time T . The value of that bond is B (t) = e�r(t;T )TEQt [I�>T ],

12Campello et al. (2006) use an Ito�s lemma approximation to compute the expected return from the
duration and the convexities of bonds.
13Details of their estimation are provided below. The closed form solution for the default probablity

is provided in the appendix.
14Saita (2006) uses a di¤erent approach, based on Du¢ e et al. (2006), where default probabilities are

allowed to depend on both �rm speci�c and macro-economic variables. One of the �rm speci�c variables
is distance-to-default.
15See Leland (2004) for an interesting discussion of the two approaches.
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or e�r(t;T )TQt (� > T ), the present value of the risk adjusted survival probability.

Assume for the time being that default is not a priced risk. Then there will be no dis-

tinction between historical and risk neutral survival probabilities. Suppose Pt (� > T ) =

Qt (� > T ) = 80%, where Pt denotes the objective survival probability. Assume further

that r(t; T ) = 10%; T = 10. Then the price of the bond is B = e�0:10�100:8 = 0:2943

and its continuously compounded yield is 12:23%. Thus the bond pays a spread of 223

basis points, while there is no risk premium.

In other words, the presence of a positive yield spread by no means implies that there

is a risk premium for default, merely an actuarially fair compensation for expected losses

�in this case the present value of expected default losses is EL = e�0:1�100:2 = 0:073576.

Now consider an economy where default is a priced risk, implying that Pt (� > T ) >

Qt (� > T ) : Assume the same parameters as above except that Qt (� > T ) = 70% <

Pt (� > T ) = 80%. Now the bond price is lower at B = e�0:10�100:7 = 0:25752 and

accordingly, the yield spread has increased by 134 to 357 basis points. This increase

(denoted �) re�ects the risk premium for bearing default risk.

Another way of expressing this is that the value of a bond can be written as either

(i) the present value (at the risk adjusted rate) of the expected payment at maturity or

(ii) the present value of the full face value discounted at the risk free rate augmented by

a spread s. This spread contains both a component 
 which adjusts for expected losses

(in this example 223 basis points) and a risk premium part � (134 basis points):

e�(r(t;T )+�)TE [B (vT )] = e�(r(t;T )+s)T100

with s = 
 + �

Note that the � component corresponds to the excess return RB (t; T )� r(t; T ) dicussed

above.
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Disentangling yield components in practice

In what follows we describe our methodology for measuring risk premia in yield spreads, �.

The most common application of a structural model such as the Leland & Toft model is to

use balance sheet information, together with estimates of asset value and volatility to infer

term structures of risk neutral default probabilities, fQt (� < s) ; s 2 (t;1)g. However,

like Leland (2004), we use the model together with estimates of asset value risk premia

to provide term structures of objective default probabilities, fPt (� < s) ; s 2 (t;1)g :

In order to disentangle the risk premium component from market bond spreads, we

use these objective probabilities. Given knowledge of fPt (� < s) ; s 2 (t;1)g, we obtain

an estimate of the price that would prevail in a market without risk premia:

Bt;T =
NX
i=1

di � ci � (1� Pt (� < si)) + dN � p � (1� Pt (� < T )) (3.2)

+R � p �
Z T

t

ds � dPt (s) ;

where di are risk free discount factors; p the face value, ci denote promised coupon

payments and R represents the recovery rate in default.

In such a market the yield spread would only compensate for average losses. We

call this spread the expected loss spread (c.f. the 
 component above). The di¤erence

between the actual yield spread and the lower spread obtained using the price in (3.2) is

our estimate of the risk premium components of corporate bond spreads.

In the next section we discuss our method for estimating bond risk premia without

bond price data, using only equity and balance sheet data.
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3.4 Estimating corporate bond risk premia with eq-

uity data

Since stocks and bonds are contingent claims on a �rm�s assets, it is natural to expect a

large proportion of risk premia observed in the bond market to be explained by premia

inferred from the equity market.

As noted above, common factors shown to explain equity returns have met with

limited success in explaining corporate bond returns.16 However bond returns cannot

be viewed as linear functions of stock returns. They will depend on the issuing �rm�s

characteristics such as leverage and business risk while also incorporating information

about bond speci�c contractual features. In the remainder of this section we will delineate

our methodology for extracting equity-implied bond speci�c risk premia, while providing

a brief explanation of the model we use in the process.

To estimate excess returns and bond spread components, we need a model that give

us the price of the equity and the bond as well as the sensitivity of the equity and the

bond with respect to the value of the asset at any time t. We will base our discussion

on the LT model, although this is not crucial to the implications. Leland & Toft (1996)

assume that the value of a �rm�s assets evolves as a geometric Brownian motion:

dvt = (�v � �) vtdt+ �vtdWt

where � is the payout ratio, � is the volatility of the asset value return and Wt is a

Brownian motion.

Default is triggered by the shareholders�endogenous decision to stop servicing debt.

The value of the �rm di¤ers from the value of the assets by the values of the tax shield

and the expected bankruptcy costs. Coupon payments are tax deductible at a rate � and

16For example, Fama & French (1993) show that common factors in the equity market have some
explanatory power for the bond market but mainly when augmenting the set of equity factors with bond
market factors (term structure and default premium).
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the realized costs of �nancial distress amount to a fraction � of the value of the assets

in default (i.e. L). The �rm continuously issues debt of maturity M , while retiring

older vintages. Hence, at any given time, the �rm has many overlapping debt contracts

outstanding. The LT framework allows closed form solutions for the value of the �rm�s

equity and liabilities.17 In addition, it allows us to derive straightforward closed form

solutions for a bond�s price as well as its sensitivity to changes in the asset value. These

will prove useful in the next step as we turn to computing excess returns.

3.4.1 Equity-implied bond excess returns

Following Campello et al. (2006), we use the Euler equation together with Ito�s lemma

and explicitly link the risk premia for stocks and bonds. The key to this approach is that

it allows estimates of instantaneous expected equity return RS (t) to be translated into

bond speci�c instantaneous expected return RB (t). Note that this relation requires only

the existence of a state price density and that the mean rate and the volatility of the

asset return are functions of time and the value of the asset itself only. More precisely

(RB (t)� r) = �B=S � (RS (t)� r); (3.3)

where �B=S =

 
@B(vt;t)
@vt

@S(vt;t)
@vt

S (vt; t)

B (vt; t)

!
;

RS (t) dt = Et

�
dS (vt; t)

S (vt; t)

�
and

RB (t) dt = Et

�
dB (vt; t)

B (vt; t)

�

where S and B denote stock and bond prices respectively. We use the Leland & Toft

(1996) model for the senstitivies @B(vt;t)
@vt

and @S(vt;t)
@vt

and the term structure of risk-adjusted

17The relevant expressions are reproduced in the appendix.
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default probabilities used in pricing the bond.

The key determinants of the bond risk premium in (3.3) are (i) the premium in the

equity market, (ii) the characteristics of the �rm and (iii) the contractual features of the

bond.

For example, two bonds issued by the same �rm may have di¤erent expected excess

returns simply due to di¤erences in maturity and cash �ow structure. Identical bonds

issued by two di¤erent �rms with the same objective default probability (as measured

by the credit rating) may be di¤erent depending on the degree of systematic risk at the

�rm level (e.g as measured by beta). To date most empirical work has ignored bond

characteristics and intra rating category di¤erences in systematic risk.

We now turn to our second risk premium metric: the part of a bond�s yield spread

that compensates for systematic risk.

3.4.2 Equity-implied yield spread components

We have already discussed how to compute the bond price that would result in a market

without systematic risk. In a market with risk premia on the other hand the bond price

is given by

Bt =
NX
i=1

di � ci � (1�Qt (� < si)) + dN � p � (1�Qt (� < T )) (3.4)

+R � p �
Z T

t

ds � dQt (s) ,

where di are risk free discount factors; p the face value, ci promised coupon payments

and R the recovery rate, respectively. Risk adjusted probabilities are denoted Q (�).

The di¤erence between the model yield spread obtained using the price in (3.4) and

the lower spread obtained using the price in (3.2) de�nes our equity implied measure of

the risk premium component of a corporate bond spread.

We now turn to the empirical implementation of our framework.
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3.5 Empirical implementation

In this section we will describe our estimation methodology for equity-implied and bond

market measured risk premia.

Since we do not observe government bond yields or swap rates for all relevant matu-

rities, we estimate the term structure of default free zero coupon interest rates using the

extended Nelson & Siegel form due to Svensson (1995):

r(t; T ) = �1;t + �2;t
1� e��3;t(T�t)

�3;t(T � t)
+ �4;te

��3;t(T�t) + �5;t
1� e��6;t(T�t)

�6;t(T � t)

Each day from 1990 to 2004 we estimate the parameters �1;t; �2;t; �3;t; �4;t; �5;t; �6;t by

minimizing the sum of squared bond pricing errors for constant maturity treasury yields

and interest rate swap yields.18

3.5.1 Estimating structural credit risk models

From equation (3.3), it is clear that to estimate equity implied bond risk premia, we re-

quire estimates of equity risk premia as well as the price of the bonds and the sensitivities

of the bond and the equity with respect to the asset value. This is equally valid when

disentangling risk premia from bond yield spreads.

Bond prices and sensitivities

In addition to benchmark term structures, the following inputs are needed to price bonds,

and to compute the sensitivity of the stock and the bond with respect to the value of the

assets

� the bond�s principal amount, p, the coupons c , maturity T and the coupon dates,

ti;

18For robustness, alternative term structure speci�cations have been used - including cubic splines
with smoothness conditions ruling out negative forward rates. The speci�cation has negligible results
for our study.
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� the recovery rate of the bond,  ;

� the total nominal amount of debt, N , coupon C and maturity M

� the costs of �nancial distress, �

� the tax rate, �

� the rate, �, at which earnings are generated by the assets, and �nally

� the current value, v; and volatility of assets, �

The bond�s principal amount, p, the coupons c , maturity T and the coupon dates

are readily observable. The recovery rate of the bond in �nancial distress is not. We set

it equal to 40%, roughly consistent with average defaulted debt recovery rate estimates

for US industrial entities between 1985-2003.

The nominal amount of debt is measured by the total liabilities as reported in COM-

PUSTAT. Since book values are only available at the quarterly level, we linearly interpo-

late in order to obtain daily �gures. For simplicity, we assume that the average coupon

paid out to all the �rm�s debt holders equals the risk-free rate: c = r � N .19 We set

the maturity of newly issued debt equal to 6.76 years, consistent with empirical evidence

reported in Stohs & Mauer (1994).

Finally, we assume that 15% of the �rm�s assets are lost in �nancial distress before

being paid out to debtholders and �x the tax rate at 20%.The choice of 15% distress costs

lies within the range estimated by Andrade & Kaplan (1998). The choice of 20% for the

e¤ective tax rate is consistent with the previous literature (see e.g. Leland (1998)) and is

intentionally lower than the corporate tax rate to re�ect personal tax bene�ts to equity

returns, thus reducing the tax advantage of debt.

The payout rate � is an important parameter. We compute � as the weighted average

of net of tax interest expenses (relative to total liabilities (TL)) and the equity dividend

19This assumption is made for convenience. We checked this assumption by considering randomly
selected �rms�actual interest expense ratios. We found that our approximation performs well.

77



yield (DY ):

� =
IE

TL
� lev � (1� TR) +DY � (1� lev) (3.5)

where

lev =
TL

TL+MC

where MC denotes the �rm�s equity market capitalization and TR is the e¤ective tax

rate. The average net debt payout rate in our sample is 2:9%:20

We then require estimates of asset value and volatility. The methodology utilized

was �rst proposed by Duan (1994). The maximum likelihood estimation relies on a time

series of stock prices, Eobs =
�
Eobsi : i = 1:::n

	
. If we let w

�
Eobsi ; ti;�

�
� E�1

�
Eobsi ; ti;�

�
be the inverse of the equity function, the likelihood function for equity can be expressed

as

LE
�
Eobs;�; �

�
= Lln v

�
lnw

�
Eobsi ; ti;�; �

�
: i = 2:::n;�

�
(3.6)

�
nX
i=2

ln vi
@ E (vi; ti;�)

@ vi

����
vi=w(Eobsi ;ti;�)

Lln v is the standard likelihood function for a normally distributed variable, the log of

the asset value, and @ Ei
@vi

is the �delta�of the equity formula. An estimate of the asset

values is computed using the inverse equity function: vt = w
�
Eobsn ; tn; b��. Once we have

obtained the pair (bvt; b�) it is straightforward to compute equity and debt values as well
as sensitivities. See appendix.

20An alternative method for estimating the cash �ow rate is to use bond coupons as a proxy for the
�rm�s proportional interest expenses. Our estimates of the cash �ow rate will be lower than if we had
used this approach. First, coupons are pre-tax and second corporate bonds are long term instruments.
While the bond coupon may proxy well for the interest expense on long term liabilities, we �nd that
in our sample it overestimates the interest expenses paid on short term debt. Our average net of tax
interest expense ratio is about 3% which is just less than half the average bond coupon of 7.2% in our
sample.
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3.5.2 Estimating default probabilities

Above, we describe our methodology for extracting observed risk premia. To apply equa-

tion (3.1), we need to estimate bond spreads, loss rates and have a proxy for the default

probabilities for di¤erent horizons. This is also necessary for disaggregating spreads into

risk premia and expected losses.

We set the loss rate l equals to 60%, roughly consistent with average defaulted debt

recovery rate estimates for US entities between 1985-2003. Like much of previous work,

our paper is limited by not considering stochastic recovery rates.

Previous studies on the default risk premium Berndt et al. (2004), Saita (2006) and

Berndt et al. (2006) used Expected Default frequencies (EDFs) provided by Moody�s

KMV as their estimate of the historical default probabilities. In this paper, we esti-

mate company speci�c default probabilities using the Leland & Toft (1996) model. This

methodology yields estimates conceptually similar to EDFs.

The default probabilities Pt (� > Ti) are provided in closed form in the appendix. The

only parameter that still needs to be estimated at this point is the expected return of

the asset value under the objective measure denoted �v:

Previous studies such as Leland (2004) and Huang & Huang (2002) have used the

CAPM beta of the �rm multiplied with an average market risk premium �gure to provide

an estimate of the expected asset return. In contrast, we use the same methodology that

we applied above to link the bond risk premium and the equity risk premium. Equity is

a contingent claim on the asset value and we can write

�v � r = (Rv (t)� r) = �E � (RE (t)� r)

where �E =

 
@E(vt;t)
@vt

v

E (vt; t)

!�1

where @E(vt;t)
@vt

is computed using the LT model and (RE (t) � r) is the estimated equity

risk premium. Equity risk premia are constructed using average realized returns. For

every transaction in our bond data, we check if 1200 daily returns prior to the transaction
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date are available. Otherwise a bond is dropped.

3.5.3 Data

We use the following data for our estimation: �rm market equity values, balance sheet

information, and term structures of swap rates. Daily equity values are obtained from

CRSP. Quarterly �rm balance sheet data are taken from COMPUSTAT. Since balance

sheet information is only available at quarterly level, we transform it into daily data

through linear interpolation. Swap rates are acquired from DataStream. We take the US

constant maturity Treasury rates from the Federal Reserve Board data archive.

Our bond transaction data are sourced from the National Association of Insurance

Commissioners (NAIC). Bond issue- and issuer-related descriptive data are obtained from

the Fixed Investment Securities Database (FISD). The majority of transactions in the

NAIC database take place between 1994 and 2004. Cleaning of the raw NAIC database

was carried out in four steps.

1. Bond transactions with counterpart names other than clearly recognizable �nancial

institutions were removed. Transactions without a clearly de�ned counterparty

were deemed unreliable.

2. We restricted our sample to �xed coupon rate USD denominated bonds with is-

suers in the industrial sector. Furthermore, we eliminated bond issues with option

features, such as callables, putables, and convertibles. Asset-backed issues, bonds

with sinking funds or credit enhancements were also removed to ensure bond prices

in the sample truly re�ect the underlying credit quality of issuers.

3. We eliminated bonds issued by Municipal, provincial,and any special agencies to

ensure that the bond prices in the sample are cleaned from any special tax treatment

inherent the issuer type.

4. The last step involves selecting those bonds for which we have their issuers�com-

plete and reliable market capitalizations as well as accounting information about
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liabilities. Then we eliminated those bonds for which there is less than 1200 pre-

vious daily equity returns available, for the purpose of computing the equity risk

premia at that transaction date.

3.6 Empirical results

We begin, in Table 1, by describing, on an aggregate basis, the inputs to our estimation

(panel A) and the intermediate �rm speci�c outputs (panel B). The data covers a wide

variety of �rms and bonds. Firm sizes vary between just over 130 million dollars to just

less than half a trillion. Leverage ratios range from naught to almost 100%. The bonds

vary widely in maturity (between a few months and 100 years), in yield spreads (1 to

1050 basis points relative to the Treasury curve) and credit rating (AAA to defaulted).

Our MLE estimation yields estimates of �rm asset values of on average 49 billion dollars,

asset volatilities of 20% on average. Our estimates of asset volatility are consistent with

previous work by Schaefer & Strebulaev (2004). Figure 1 plots their estimates and ours

by rating categories. Our across sample average is somewhat lower but the pattern across

rating categories is strikingly similar with the exception of the lowest category.21

21We only have about 130 transactions, most of which relate to one �rm in our CCC category, whereas
they have more than 1600. This suggests that the noticeable di¤erence between our estimates in this
particular category may be outlier driven.
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Table 1: Summary statistics

Panel A. Summary statistics of �rm speci�c variables.

N Mean Std. Dev. Min Max

Firm size (USD billion) 34,414 51,610 78.88 0.13 471.35

Leverage (%) 34,414 45.48 20.28 1.31 96.83

# of transactions / �rm 34,414 216 285 1 1947

Bond maturity (T ) 34,414 11.80 9.77 0.01 100

Bond yield spread (bps) 34,414 146 131 1 1055

S&P rating 34,414 8.3 4.4 1 27

Historical equity volatility (%) 34,414 22.26 6.31 9.94 45.74

Firm equity � 34,414 0.86 0.24 -0.12 1.92

Panel B. Summary statistics of estimated �rm speci�c characteristics
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N Mean Std. Dev. Min Max

Model yield spread 97 151 0 1077

asset value (vt) (USD million) 48,815 74,552 119.72 442,031

Asset volatility (�) (%) 20.24 10.45 2.19 89.93

Default threshold (L) 16,163 36,209 0.69 391,350

Before moving to our estimates of risk premia in corporate bond markets, we present

intermediate results on our estimation of objective default probabilities. For our risk pre-

mium estimates to be quantitatively reasonable, the employed default probabilities need

to be as well. Note that most work prior to Berndt et al. (2004) rely on historical rating

based default probabilities.For example Elton et al. (2001) use a constant rating transi-

tion matrix for a ten year period and across all �rms within a rating category. Recent

work by Campello et al. (2006) relies on time varying rating based default probabilities.

Our approach permits us to capture simultaneously the variation in default probabilities

across time and across �rms within rating categories.

To begin, we benchmark our estimates of default probabilities across horizons and

rating categories. Figure 2 plots our estimates together with historical averages provided

by Moody�s cumulative default rates for the period 1920-2004. Given that the sample

periods are very di¤erent, it is not clear what to expect. It is interesting to note that

for the largest rating category in our sample, BBB, our average estimates across the 20

di¤erent years are quite similar to historical averages.

Table 2 provides a more detailed overview of the relationship between our estimated

default probabilities and historical averages per rating category and horizon.
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Mod Actual Mod Actual Mod Actual Mod Actual Mod Actual

AA AA A A BBB BBB BB BB B B

1 0.00% 0.06% 0.12% 0.08% 0.42% 0.31% 0.32% 1.39% 1.08% 4.56%

2 0.00% 0.19% 0.34% 0.25% 1.29% 0.93% 1.63% 3.36% 3.96% 9.97%

3 0.02% 0.32% 0.71% 0.54% 2.32% 1.69% 3.34% 5.48% 7.06% 15.24%

4 0.07% 0.49% 1.21% 0.87% 3.41% 2.55% 5.11% 7.71% 9.93% 19.85%

5 0.14% 0.78% 1.76% 1.22% 4.50% 3.40% 6.80% 9.93% 12.48% 23.80%

6 0.23% 1.11% 2.34% 1.58% 5.54% 4.28% 8.38% 12.01% 14.74% 27.13%

7 0.34% 1.48% 2.93% 1.98% 6.53% 5.12% 9.83% 13.84% 16.74% 30.16%

8 0.45% 1.85% 3.51% 2.34% 7.45% 5.95% 11.16% 15.65% 18.51% 32.62%

9 0.57% 2.20% 4.07% 2.76% 8.32% 6.83% 12.37% 17.25% 20.08% 34.74%

10 0.70% 2.57% 4.61% 3.22% 9.12% 7.63% 13.48% 19.00% 21.49% 36.51%

11 0.83% 3.01% 5.13% 3.71% 9.87% 8.42% 14.50% 20.60% 22.77% 38.24%

12 0.95% 3.50% 5.63% 4.21% 10.56% 9.22% 15.43% 22.16% 23.92% 39.80%

13 1.07% 3.98% 6.10% 4.65% 11.21% 10.00% 16.29% 23.72% 24.96% 41.23%

14 1.19% 4.48% 6.55% 5.09% 11.82% 10.70% 17.08% 25.10% 25.92% 42.67%

15 1.31% 4.87% 6.97% 5.56% 12.38% 11.32% 17.82% 26.31% 26.80% 43.92%

16 1.42% 5.13% 7.38% 6.02% 12.92% 11.91% 18.50% 27.44% 27.60% 45.21%

17 1.53% 5.35% 7.76% 6.30% 13.41% 12.51% 19.14% 28.59% 28.35% 46.15%

18 1.64% 5.57% 8.13% 6.60% 13.88% 13.04% 19.73% 29.70% 29.04% 46.89%

19 1.74% 5.87% 8.47% 6.89% 14.32% 13.49% 20.28% 30.58% 29.69% 47.52%

20 1.84% 6.09% 8.80% 7.19% 14.74% 13.95% 20.80% 31.48% 30.29% 47.79%

Table 2. Historical and model predicted default probabilities by rating categories and

horizon. The historical probabilities represent Moody�s cumulative default rates for

1920- 2004.
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Some previous work has relied on KMV expected default frequencies (EDFs) as mea-

sures of objective default probabilities. As noted above, KMV use a structural model to

estimate �rm speci�c default metrics which are mapped into default probabilities using

historical default experience. Given the relative similarity of historical default experi-

ence as reported by Moody�s and our estimates of default probabilities we don�t expect

a systematic bias to be induced by our methodology relative to using EDFs. Hence we

expect that our results can be related to those reported in BLO and BDDFS. In what

follows, we turn to a discussion of our estimated risk premium metrics.

3.6.1 Risk premia measured in bond markets

In table 3 we report the two measures of bond risk premia discussed above: the expected

excess return and the risk premium component of bond yield spreads.

Consider �rst our measure of risk premia based on equation (3.1). Figure 3 plots

the time series of average excess return imputed from bond market spreads using the

methodology in section 3.3.

Table 3: Market measured bond risk premium metrics

N Mean Std. Dev. Min Max

Bond Excess return E [RB (t)� r]

measured in bond markets (bps)
34414 77 110 -821 950

Spread RP component

measured in bond markets
34414 91 123 -822 1219
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Figure 3: Monthly average bond market measured excess returns 1994-2004. For each

bond the excess return is computed using equation (3.1).
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Figure 4: Monthly average excess returns for the sample period in Berndt et al. (2004).

Clearly this measure of the bond risk premium is highly time varying. There is a

peak after the LTCM crisis in late 1998 followed by a sharp drop until early 2000. After

late 2000, the overall level seems to have shifted up to a higher level of about 100 basis

points, then decreasing until the end of the sample.

BDDFS study the period 2001-2004. For ease of comparison, Figure 4 shows the same

risk premium metric as Figure 3 for the same sample period. They document a peak in

the third quarter of 2002 with a steady drop until the end of 2003, in particular for the

broadcasting industry. We �nd the same pattern, although for the whole of our sample:

the risk premium peaks at 140 basis points decreasing to levels of about 50 basis points

by the end of that year. The observed similarity in patterns is all the more striking

when one considers that we are using a dataset with a di¤erent cross section of �rms,

a di¤erent �nancial instrument (bonds rather than credit swaps) and employ a di¤erent

methodology. We interpret this as an implicit robustness test of our default probability

estimates, which we argued above should be similar to the EDFs used by BDDFS.
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We are also able to identify two earlier peaks in risk premia: one after the LTCM

period in 1998 and another lesser in mid 2001. The post LTCM peak is followed by a

drop in premia of the same magnitude as the 2002 episode. All three peaks appear to be

short-lived, lasting no longer than 2-3 months.

Next we turn to a decomposition of bond yield spreads. We separate the risk premium

component from the total spread. This will provide a robustness check on our results and

express them in an easily interpretable unit. Another important motivation is that this

allows us to analyze the impact of expected losses on bond yield spreads. As we shall see

the two components behave quite di¤erently.
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Figure 5. Overview of estimated market spread components. Panel A plots the monthly
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average market spread relative to the CMT curve for our full sample. Panels B and C

plots the expected loss and risk premium components respectively. Panel D plots the

ratio of the two components to the total spread.

Panel A of �gure 5 plots the average monthly market bond spread in our sample.

Spreads were stable during the �rst part of our sample, whereas the post LTCM period

is marked by a dramatic increase in spread levels and volatility. Considering the expected

loss spreads in panel B, we �nd that these peak quite a bit later - towards the beginning

of 2000. Panel C reports the risk premium component of the spreads in panel A. The risk

premium component does not simply mirror the behavior of the spread. For example it

appears that the spike in spreads at the end of 1998 is driven by increased risk premia

rather than expected losses. Post LTCM, risk premia decline to reach a low of just less

than 50 basis points in early 2000, whereas the expected loss component on the other

hand is reaching a high plateau which persists during 2001.

It is interesting and reassuring to note that the spread risk premium component in

panel C behaves similarly to the measured excess return in �gure 3. A striking way of

depicting the relative importance of risk premia and expected losses is provided in panel

D. It plots the respective percentage of the total spread explained by risk premia and

expected losses. In the earlier part of the sample, the dominant component of the spread

is the risk premium. Its importance trends downwards until the beginning of 2000 when

it begins to recover and eventually reach a level of about 75% towards the end of the

sample. The period when the expected loss component is the most important coincides

with a period of unprecedented default losses in the US corporate bond markets.

In summary, we have measured risk premia in corporate bond markets. Our results

are consistent with previous �ndings based on reduced form models in credit derivative

markets for those subperiods when our samples overlap. So far we have used a structural

model to estimate default probabilities. We now wish to see if a structural model taken

together with estimates of risk premia in equity markets can explain the observed risk

premia in credit markets.
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3.6.2 Risk premia inferred from equity markets

We now discuss the results for our bond risk premia estimated from equity risk premia.

In brief, bond risk premia can be thought of as a non-linear translation of equity risk

premia. In a general contingent claims model of a �rm�s security prices, we can derive

a relationship between risk premia on bonds, stocks and �rm values (see equation (3.3)

above). To operationalize this relationship we rely on the Leland & Toft (1996) model

as a link between equity prices, asset value and volatility.

Most work in asset pricing measures excess returns relative to Treasury rates. In �xed

income markets, the choice of benchmark rate is an important and more subtle issue. In

�xed income derivatives markets, practitioners typically rely on interest rate swap rates

to construct a reference curve. In the cash market, corporate bond spreads are also often

measured against this curve. One reason for this is the arbitrage relationship between

credit default swaps and corporate bonds. The argument links the basis point price of

default protection with the spread of a corporate bond over a �oating rate benchmark,

in practice the swap curve.22 Recent work suggests that structural models are able to

predict the level of default protection prices and that of bond spreads over the swap curve,

while underestimating spreads relative to the government curve. 23 For our purposes in

this paper, we need an unbiased model of the bond spread in order to avoid a bias in

the decomposition of spreads into risk premia and expected loss components respectively.

This leads us to rely on the swap curve as the key benchmark, but initially we also report

results for the government benchmark curve for completeness.

As an input, we require an estimate of the risk premium in equity markets, which we

obtain as described above. Table 4 summarizes the inputs as well as key outputs of this

exercise. The average equity risk premium during our sample is 10.3%. This translates

into an implied bond excess return of 80 basis points for the government curve and 63

22For details see e.g. Rajan et al. (2007).
23See Ericsson et al. (2006). Choudhry (2006) provides an interesting discussion of the default swap

basis - the di¤erential pricing of credit risk in bond and credit derivative markets.
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basis points for the swap curve. When yield spreads are measured against the Treasury

curve, 41 basis points of that spread represents compensation for default risk as implied

by the premium in equity markets. When the swap curve is used, the risk premium

spread is 34 basis points. Table 5 provides a summary of our bond market measured risk

premia based on the swap curve.

The equity implied excess returns appear able to capture the excess returns in the

bond market on average, regardless of the benchmark employed. For the spread compo-

nents, the choice of benchmark will be a key determinant of the average levels.

Table 4: Equity implied bond risk premium metrics

N Mean Std. Dev. Min Max

�B=S 0.078 0.071 0 0.283

Equity risk premium (%)

(RS (t)� r)
34414 10.30 2.93 -1.47 23.08

Bond Excess return E [RB (t)� r]

estimated from equity data (CMT)
34414 80 78 -6 486

Spread RP component

estimated from equity data (CMT)
34414 41 49 -89 1158

Bond Excess return E [RB (t)� r]

estimated from equity data (Swap curve)
34414 66 70 -6 473

Spread RP component

estimated from equity data (Swap curve)
34414 34 43 -86 342

Table 5: Market measured bond risk premium metrics (Swap curve)
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N Mean Std. Dev. Min Max

Bond Excess return E [RB (t)� r]

measured in bond markets (bps)
34414 63 115 -788 985

Spread RP component

measured in bond markets
34414 51 121 -760 1031

Figure 6 plots our measured excess returns in bond markets and our equity implied

bond excess returns. Clearly, on average the �t is rather good.24 There are period of

divergence, such as the period 1999-2000 where our model overpredicts the risk premium

and in late 2002 when it underestimates the premium. The latter time period coincides

with the period during which BDDFS document, like us, a sharp increase in the risk

premium. This �gure suggests that across �rms on average, there is a clear relationship

between equity and corporate bond risk premia.
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24Although not reported, a similar pattern is found when the swap curve is used.
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Figure 6: bond market measured and equity implied bond excess returns. Based on

using the CMT curve as risk free benchmark.

Figure 7 plots the average raw equity risk premia that are used as inputs in equation

(3.3) together with the average bond risk premia. It is clear that bond risk premia

are highly non-linear translations of risk premia for the corresponding stocks. Note for

example the period 1998-2003. During this period equity risk premia trended slowly

downwards, while bond risk premia in fact did the opposite in a less regular fashion.

In addition the volatility of the bond risk premium seems more variable than that of

the equity premia. In a structural model, keeping leverage and volatilities constant the

relationship between the two should be positive, just like for spreads - when stock prices

increase bond prices should increase as well. Thus, the explanation must lie in time

variation in either leverage or volatility. We return to a more detailed discussion of this

below, but note that this result is related to �ndings in Campbell & Taksler (2003).

They �nd that during the late nineties, bond spreads increased as stock markets were

performing well, an apparent contradiction.
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Figure 7: Equity and corporate bond risk premia. Equity risk premia are measured

using the Fama & MacBeth (1973) methodology and bond risk premia using equation

(3.1).

In order to provide a more disaggregated view of risk premia, Figure 8 reports a break-

down of risk market and model premia across 8 industries: manufacturing, media, oil and

gas, rail, retail, services, transportation and telephone. The equity implied bond excess

returns track their bond market measured counterparts quite well for those industries

that represent a large fraction of our dataset, in particular manufacturing.
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Figure 8: market and model risk excess return across industries. Monthly averages.

The CMT curve is used as benchmark. Results based on excess returns using the swap

curve as benchmark are, although not reported, very similar.

As discussed above, an alternative way of measuring the risk premium is achieved by

decomposing bond yield spreads into an expected loss component and a risk premium

component. Much of the academic work on bond spreads has relied on Treasury securities

as risk free assets. In contrast, most practitioners will argue that a more informative

measure of yield spreads is obtained when using the swap curve as a benchmark. In
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addition it has recently been shown in the literature on structural models that the oft

documented underprediction appears to be related to the choice of benchmark curve.25

We �nd the same result - when the Leland & Toft model is used to predict bond

yield spreads, it �ts well on average when the swap curve is used and underestimates

when the Treasury curve is used. Figures 9 & 10 clearly illustrate this result. There

is no systematic gap between average market and model spreads relative to the swap

curve. That is not to say that the model cannot at times under or overpredict as it

does interchangeably as of 2000. The spread underestimation as of mid 2001 can at least

partially be explained by recent �ndings in Feldhütter & Lando (2007). They decompose

swap spreads - the di¤erence between �xed rates on interest rate swaps and corresponding

Treasury yields - into three components: a convenience yield for holding Treasuries, a

credit risk component and a swap market speci�c factor. The period of extremes in

spread underprediction in our �ndings coincide with a period when they document an

unusually negative swap factor which yields low swap rates. They provide an explanation

based on hedging activity in the mortgage backed securities market. Thus the observed

spreads in our sample appear higher than they should be, had the swap rate been a better

proxy for the risk free rate.

25See Ericsson et al. (2006).
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Figure 9: Monthly averages of model and market bond spreads relative to the CMT

curve.

Although imperfect, the swap curve appears to be the better choice for our purposes. In

addition to mitigating the in�uence of Treasury market liquidity e¤ects it removes the

need to correct for di¤erential taxation between corporate bonds and treasury bonds.26

We will from now on report only results based on this curve.

26See Elton et al. (2001).
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Figure 11: Monthly averages of model and market bond spreads relative to the swap

curve.

Figure 12 plots the equity implied risk premium in spreads vs. the premium inferred from

bond spreads. The model predicted risk premium component tracks the market measured

quite well to begin with, but under and overestimates in the same way as the spread in

the second part of the sample. For example, if hedging demand in MBS biases spreads

over the swap curve, then this bias will be inherited by the risk premium component.

Note that the e¤ects are mitigated when the excess return measure is used (see Figure

6). At this stage, we conclude that our equity implied risk premia are partially successful

in explaining the time series variation of average risk premia as measured in corporate

bond markets. Nevertheless there appears to be an important unexplained component to

market measured risk premia, unrelated to equity risk premia. This direction is pursued

in interesting work by Berndt et al. (2006) and Saita (2006).
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Figure 12: equity implied and bond market measured risk premium components in basis

points.

It is interesting to observe the time series behavior of spread components over time. A

number of interesting observations can be made from Figure 13, which plots the time

series of the average model risk premium and expected loss component. First the expected

loss component of spreads is more volatile than the risk premium. Second, although most

of the time they appear to move together there are notable exceptions. For example

during 2002, risk premia increased steadily while expected losses moved around without

clear trend. Between 1999 and mid 2002 on the other hand there was no clear trend

in risk premia while expected losses �rst increased to a peak in early 2001 and then

decreased, although irregularly until the end of the period. The expected loss component

is relatively larger in periods of high spreads and defaults (for example in 2001 - a year

with spectacular defaults) and is similar or lower than the risk premium in lower spread
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periods.
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Figure 13: expected losses vs. the risk premium component in bond spreads.

Campbell & Taksler (2003) point out that during the late nineties, bond yield spreads

increased while stock prices were rising. They argue that this puzzling pattern can be

explained by an increase in idiosyncratic volatility over the same period. Our analysis

allows us to make a related observation. Note that during 1999-2001, the increase in

spreads was largely driven by an increase in the average expected loss component. The

risk premium component should depend critically on systematic risk, whereas the ex-

pected loss should derive from a �rm�s total risk. Figure 14 plots the average trailing

250 day S&P500 return volatility and the average asset volatility as proxies for these two

risk sources respectively.
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Figure 14: volatility measures. The solid line represents the average asset volatility

across �rms in our sample. The dashed line draws the 250 day historical volatility on

the S&P 500 index. The latter is intended as a proxy for market volatility, whereas the

asset volatility measures total risk, including idiosyncratic volatility.

Although these two metrics are not directly comparable, one being an average of

asset volatilities and the other an equity volatility, the pattern is suggestive. Between

1999 and 2001, there is no clear trend in the market equity volatility, while average asset

volatilities increased steadily. Absent a trend in �rms�average leverage, this suggests that

idiosyncratic risk increased during this period whereas systematic risk did not.27 This

is consistent with our observed pattern in the expected loss and risk premium spread

components respectively.

27There is no clear trend in leverage during our sample. The average leverage oscillates around 45%
between 1994 and 2004.
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Figure 15. The risk premium in bond spreads vs. S&P 500 volatility as a proxy for

systematic risk.

In fact, plotting risk premia together with the market equity volatility and the ex-

pected loss component with the average asset volatility, it becomes quite clear that risk

premia move closely with systematic volatility whereas the expected loss component is

aligned with a measure of total volatility. In summary, we �nd that the idiosyncratic

equity volatility increase in the late nineties documented by Campbell & Taksler (2003)

is in fact due to an increase in �rm speci�c asset volatility leading to a higher spread as

a result of higher expected losses.
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Figure 16: the expected loss component in bond spreads vs. asset volatility which

measures total risk.

We now turn to a discussion of the determinants of credit spreads, more precisely we

will discuss to what extent our metric for bonds�risk premia can help to explain spread

dynamics empirically.

3.6.3 Explaining credit spreads

We have made extensive use of the contingent claims approach to valuing corporate

securities in our analysis. Although the evidence may be mixed on the ability of structural

models to correctly predict levels of the risk component of bond spreads, there is ample

evidence that they cannot fully explain their time series variation � see for example
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Collin-Dufresne et al. (2001).28

The relative success of our use of structural models in translating equity market risk

premia into bond speci�c risk premia suggests that these models do have merit. However,

the typical such model predicts that levels of bond spreads and equity prices depend

mainly on two unknowns �asset value and volatility. To date however, the models are

almost always silent on risk premia. Studies that have considered risk premia in the

context of structural models do not consider their dynamics (see e.g. Huang & Huang

(2002) and Leland (2004)). With this in mind, we now consider the possibility that using

information about the time series of risk premia can help structural models to explain

the variation in credit spreads.

Developing and implementing a structural model with time varying risk premia lies

well beyond the scope of this paper.29 Instead we follow Collin-Dufresne et al. (2001)

in working with linear regression analysis with a choice of variables motivated by the

theoretical underpinnings of structural models.30

We �rst run the following panel regression

sit = �i + �1LEVi;t + �2EV OLi;t + �3ERETi;t

+�4SLOPEt + �5ri;t + �6RPIit + "it

where "it = �"i;t�1 + �it

where LEV denotes a �rm�s leverage, EV OL and ERET its historical equity volatility

28Many early studies of corporate bond pricing using structural models resulted in yield spread esti-
mates substantially below their market counterparts - see for example Jones et al. (1984), Jones et al.
(1985), Ogden (1987) and Lyden & Saranati (2000). Recent work has produced more mixed evidence
(see e.g. Eom et al. (2004) and Ericsson et al. (2006)) and it has been suggested that the reason for
the underestimation may be the presence of important non-default components (see e.g. Longsta¤ et al.
(2004) and Ericsson & Renault (2000)).
29Interesting work in this direction has been done by Chen et al. (2005).
30Due to the irregular spacing of our data, we chose for simplicity to work with levels of credit spreads.

Clearly a case can be made for working with changes in spreads. However, as we are mainly interested
in the marginal importance of an additional variable rather than the absolute level of explanatory power
we feel that our choice is adequate. Papers in the �eld have varied in their approach. See e.g. Campbell
& Taksler (2003) and Cremers et al. (2004).
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and return respectively, SLOPE is the di¤erence between the 10- and 2-year swap rates,

rit, the swap rate corresponding to the maturity of the particular bond, and RPI is our

equity-implied measure of the spread�s risk premium component. We run the regres-

sion with and without the risk premium metric in order to gauge the marginal gain in

explanatory power by including this variable.

Table 3 reports the results. The �rst two columns relate to the full sample, whereas

the remaining columns provide disaggregated evidence based on �rm leverage quartiles.

The reported R-squares in the benchmark regressions are comparable to those reported

for credit spread level regressions by Campbell & Taksler (2003).31 The pattern across

rating quartiles for the regressions is not dissimilar to what is found by Collin-Dufresne

et al. (2001), although they work with credit spread changes rather than levels.

For the full sample the R-square increases by 5% to about 36% when including our

risk premium variable, a non-trivial increase. The R-square increases for all leverage

quartiles, although by varying degrees. The risk premium variable is more important for

the lowest leverage �rms (an R-square increase by 12%) than for the highest leverage

�rms (and increase by 2%). This suggests that spreads for �rms with lower default risk

have higher proportional risk premia. This is consistent with our �ndings above as well as

with the results of BDDFS. As we shall see below, it is also consistent with the predictions

of a structural model.

3.7 Structural models and risk premia

Our regression results suggest that risk premia are a relatively more important determi-

nant of high grade debt spreads than for lesser quality bonds. Similarly, we have seen

that on average risk premia appear to be more important during periods of low default

rates. In high default periods, the expected loss component is more important. As noted

31It is important to note that the R-squares measure explained variation over and above the �xed
e¤ects. For example, the reported R-square in Table IIa for the �irst regression is about 31%. In
contrast the total R-square for a standard pooled regression is just less than 60%.
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above, Berndt et al. (2004) also �nd that the default premium is higher for high-quality

�rms. Next, we consider comparative statics of the Leland & Toft (1996) model to de-

termine whether this �nding can be explained. The four panels of Figure 16 plot the

following quantities against leverage: (i) total spread, expected loss and risk premia, (ii)

the ratio of risk premium to total spreads, (iii) ratio of risk neutral to objective 5 year

default probabilities and (iv) the di¤erence between risk neutral and objective 5 year

default probabilities.
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Figure 16

The �rst two are relevant to our results on bond spread components whereas the last two

are intended for comparison with the results of the BDDFS study. The �rst panel shows,
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not surprisingly, that the expected loss spread and total spread increase monotonically

in leverage. The risk premium component on the other hand does not. For low levels of

leverage it increases in tandem with the expected loss spread. But for some (high) level

of leverage, it decreases and eventually disappears as the distress becomes more and more

certain. This is intuitive, as when default is certain, debt needs to compensate for the

imminent losses, but there is in fact little risk. The second panel shows that the fraction

of the risk premium in the total spread decreases monotonically as leverage increases.

This is consistent with our regression coe¢ cients on the risk premium being highest in

the lowest leverage quartile and monotonically decreasing as leverage increases.

The third panel illustrates the same e¤ect using a proxy for the risk premium similar

to what BDDFS use in their empirical study. The ratio of risk neutral to objective default

probabilities behaves much like the ratio of the risk premium spread component to the

total yield spread - it decreases monotonically with leverage. This suggests that the

empirical �nding of BDDFS, also found in our study is consistent with the prediction of

a structural model.32 The �nal panel plots the absolute di¤erence between risk neutral

and objective default probabilities - the resulting pattern echoes what can be seen in

the �rst panel: for extremely high and low default probabilities, the di¤erence between

the risk neutral and objective probabilities disappears.33 Again - this is intuitive. Both

probabilities have to converge to zero or one at the extremes.

3.8 Concluding discussion

Investors in credit markets need a framework to assess whether a given defaultable secu-

rity is fairly priced. The spread itself may not be an adequate metric to respond to this

question. The investor needs to know if the spread contains (i) acceptable compensation

32For robustness, we have also established that this result can be generated within the much simpler
Merton (1974) model. It would thus seem that it is not very sensitive to the choice of a particular model
for the computation of the risk premia.
33Berndt et al. (2006) work with the di¤erence in intensities rather than ratios.
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for expected default losses and (ii) a su¢ cient risk premium to induce participation.

With a methodology capable of disentangling risk premia and expected losses, we

measure risk premia in a large panel of US corporate bond data spanning a ten year

period. We �nd, like previous work, that the risk premium is highly time varying. We

also document similar time series patterns as previous work. We �nd that the expected

loss and default components behave di¤erently over time. The risk premium is at its

most important for high grade debt, whereas the expected loss component increases

monotonically with the default probability. We show that the time series variation of the

risk premium is closely related to the overall market volatility whereas the expected loss

component appears more closely related to the average total volatility across �rms.

Perhaps our two most important �ndings are that (i) the time series variation observed

in the risk premium in bond markets can be replicated using equity market measured

risk premia translated to corporate bond risk premia and (ii) that including our risk

premium metric in a linear regression of bond spreads on theoretical determinants of

corporate bond risk premia increases explanatory power, suggesting that time varying

risk premia is a desirable feature of future structural credit risk models.

The risk premium we have measured is a translation of risk premia measured in equity

markets. As such it does not capture risk premia that may be speci�c to �xed income

markets. We have already discussed the sensitivity of our results to a swap market

speci�c factor. Another example of market speci�c risks that in�uence prices has been

documented by Newman & Rierson (2004), who show that issuance activity may play

a role in the pricing for seasoned securities in particular market segments. Recent work

by Berndt et al. (2006) suggests the presence of a credit market speci�c risk factor. In

addition, recent work documents the commonality of illiquidity risk within and across

markets. The unexplained part of our market risk premia may well contain information

about some or all of these additional risk premia.
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3.9 Appendices

3.9.1 Default risk premia in reduced form models

The default intensity �P of a �rm is the instantaneous mean arrival rate of the �rst

event of a non explosive counting process N . Conditional on survival to time t and all

additional available information, the probability of default in a short time between t and

t+� is approximately �P�. In a Cox process framework, the probability of survival of

an obligor for some time h, conditional on survival up to time t is

Pt(� > t+ h) = EPt

�
exp

�
�
Z t+h

t

�psds

��
; (3.7)

with EPt denoting the expectation operator conditional on the information available up

to time t.

In the absence of arbitrage and market frictions, there exists a risk neutral probabil-

ity measure.34 In reduced form models, it is the change from historical to risk-neutral

default intensities that de�nes the risk premium. Information about risk-neutral default

intensities can be extracted from market prices of corporate bonds or credit derivatives.

The historical default probabilities need to be inferred from a di¤erent source such as his-

torical default frequencies conditional on rating categories or alternative measures such

as Moody�s KMV expected default frequencies (EDFs).35

In order to describe the concept of risk premia in reduced form credit risk models, we

will borrow from a discussion in Lando (2003), who provides an illustrative setting where

under the historical probability measure P , we can write the dynamics of the default

intensity as follows (assuming deterministic interest rates):

d�t = 
(��� �t)dt+ ��
p
�tdWt; (3.8)

34See Harrison & Kreps (1979) and Delbaen & Schachermayer (1994) for technical conditions.
35See e.g. Berndt et al. (2004) and Driessen (2005). .
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where W is a Brownian motion under P , 
 is the speed of mean reversion, �� the long

run mean and �� is the volatility of the intensity process. Under an equivalent measure

Q :

d�t = (
��� (��  �)�t)dt+ ��
p
�td ~Wt; (3.9)

where ~W is a Brownian motion under Q:

The parameter  � is the price of risk for a unit change in the intensity. Note that

the stopping time of default that has an intensity process � with a process de�ned in

(3.8) under the probability measure P is no longer a stopping time under Q with intensity

dynamics de�ned in (3.9). It is however a stopping time with intensity process �Qt = �t�t,

where �t is assumed constant for simplicity.
36

Now, consider a h maturity zero coupon bond with zero recovery. Its price at time t

is

Bt;h = EQt

�
exp

�
�
Z t+h

t

(rs + �Qs )ds

��
; (3.10)

where rs is the short term risk free rate. An application of Ito�s lemma permits us to

write the instantaneous expected excess return for the bond as

RB (t)� rt = F��� ��t + (�� 1)�t1fNt=0g; (3.11)

where RB (t) is the drift rate of the corporate bond under P and F� is the loading for

intensity risk. The excess return on the bond thus consists of two distinct components.

First, there is a positive contribution from the risk of a jump to default itself �if � 6=

1. Second, the bond is subject to price volatility due to �uctuations in the default

intensity, contributing to the risk premium whenever  � is nonzero: The �rst type of

risk is commonly referred to as default event risk, whereas the second can intuitively be

thought of as spread risk.

36See Lando (2003) for details.
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Jarrow et al. (2005) show that under certain conditions, asymptotically, � ! 1,

implying that default event risk should not be priced. Driessen (2005) shows empirically

that � exceeds 1. This is supported by Berndt et al. (2004) who estimate the risk premium

as the ratio between historical and risk neutral default intensities, which corresponds to

� in equation (3.11). They obtain �p by calibrating Moody�s KMV Expected default

frequencies to fPt (� < s) ; s 2 (t;1)g in equation (3.7); and use market prices for default

swaps to recover �Q from equation (3.10). Berndt et al. (2006) investigate the source

for common variation in the portion of returns on default swaps that is not explained

by changes in risk-free rates or expected default losses. Their estimate for risk premia

corresponds to (�� 1)�t1fNt=0g in equation (3.11).

Appendix: The Leland & Toft Model

The value of the �rm is the same as in Leland (1994). The value of debt is given by

D(vt) =
C

r
+

�
N � C

r

��
1� e�rM

rM
� I(vt)

�
+

�
(1� �)L� C

r

�
J(vt)

The bankruptcy barrier

L =
C
r

�
A
rM
�B

�
� AP

rM
� �Cx

r

1 + �x� (1� �)B

where

A = 2ye�rM�
h
y�
p
M
i
� 2z�

h
z�
p
M
i

� 2
�
p
M
n
h
z�
p
M
i
+ 2e�r�

�
p
M
n
h
y�
p
M
i
+ (z � y)

B = �
�
2z +

2

z�2M

�
�
h
z�
p
M
i
� 2

�
p
M
n
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and n[�] denotes the standard normal density function.

The components of the debt formulae are

I(v) =
1

r�

�
i (v)� e�r�j(v)

�
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q1 =
�b� z�2M
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�b+ z�2M

�
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M

h1 =
�b� y�2M

�
p
M

h2 =
�b+ y�2M
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and

y =
r � � � 0:5�2

�2

z =

p
y2�4 + 2r�2

�2

x = y + z

b = ln
� v
L

�

3.9.2 Bond pricing

Next we need a pricing formula for the corporate bond obligation . To this end, we

apply a bond pricing model that takes discrete coupons, nominal repayment and default
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recovery into account.37 To express the value of the bond we make use of two building

blocks, a binary option H (vt; t;S) and a dollar-in-default claim G (vt; t;S). The former

pays o¤ $1 at maturity S if the �rm has not defaulted before that, the latter pays o¤ $1

upon default should this occur before S; the value of both depend upon the �rms asset

value vt and current time t. The formulae for the binary option and the dollar-in-default

claim are, for a given default barrier L.

Proposition 9 A straight coupon bond. The value of a coupon bond with M coupons

c paid out at times fti : i = 1::Mg is

B (vt; t) =
M�1X
i=1

c �H (vt; t; ti)

+ (c+ p) �H (vt; t;T )

+R � p �G (vt; t;T )

The formulae for H and G are given in the appendix.

The value of the bond is equal to the value of the coupons (c), the value of the

nominal repayment (P ) plus the value of the recovery in a default (Rp). Each payment

is weighted with a claim capturing the value of receiving $1 at the respective date.

Note that the above formula for the reference bond is not directly related to the debt

structure of the �rm. Speci�cally, coupon payments to the bond are una¤ected by the

debt redemption schedule elaborated in the Leland & Toft model. The choice of model

a¤ects the bond formula solely via the default barrier L.

37This bond pricing model was used in Ericsson & Reneby (2004) and was shown to compare well to
reduced form bond pricing models.
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3.9.3 Building blocks for bond valuation

First, de�ne default as the time (�) the asset value hits the default boundary from above,

ln v�
VB;�

� 0. Then de�ne G (v; t) as the value of a claim paying o¤ $1 in default:

G (vt; t) � EB
�
e�r(��t) � 1

�
We let EB denote expectations under the standard pricing measure. The value of G is

given by

G (vt; t) =

�
vt
VB;t

���
with the constant given by

� =

q
(hB)2 + 2r + hB

�

and

hB =
r � � � 0:5�2

�

De�ne the dollar-in-default with maturity G (vt; t;T ) as the value of a claim paying o¤

$1 in default if it occurs before T

G (vt; t;T ) � EB
�
e�r(��t) � 1 �

�
1� I��T

��
and de�ne the binary option H (vt; t;T ) as the value of a claim paying o¤ $1 at T if

default has not occurred before that date

H (vt; t;T ) � EB
�
e�r(T�t) � 1 � I��T

�
I��T is the indicator function for the survival event, i.e. the event that the asset value

(vT ) has not hit the barrier prior to maturity (� � T ). The price formulae for the last

two building blocks are given below. They contain a term that expresses the probabilities

(under di¤erent measures) of the survival event �or, the survival probability. To clarify
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this common structure, we �rst state those probabilities in the following lemma.38

Lemma 10 The probabilities of the event (� � T ) (the �survival event�) at t under the

probability measures Qm : m = fB;G; objg are

Qm (� � T ) = �

�
km
�
vt
VB;t

��
�
�
vt
VB;t

�� 2
�
hm

�

�
km
�
VB;t
vt

��

where

km (x) =
lnx

�
p
T � t

+ hm
p
T � t

hG = hB � � � � = �
q
(hB)2 + 2r

hobj =

� (k) denotes the cumulative standard normal distribution function with 2ration limit k.

The probability measureQG is the measure havingG (vt; t) as numeraire (the Girsanov

kernel for going to this measure from the standard pricing measure is � � �). Using this

lemma we obtain the pricing formulae for the building blocks in a convenient form. The

price of a down-and-out binary option is

H (vt; t;T ) = e�r(T�t) �QB (� � T )

The price of a dollar-in-default claim with maturity T is

G (vt; t;T ) = G (vt; t) �
�
1�QG (� � T )

�
To understand this second formula, note that the value of receiving a dollar if default

occurs prior to T must be equal to receiving a dollar-in-default claim with in�nite ma-

38The probabilities are previously known, as is the formula the down-and-out binary option in Lemma
3.9.3 (see for example Björk (1998)).
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turity, less a claim where you receive a dollar in default conditional on it not occurring

prior to T :

G (vt; t;T ) = G (vt; t)� e�r(T�t)EB
�
G (vT ; T ) � I��T

�
Using a change of probability measure, we can separate the variables within the expec-

tation brackets (see e.g. Geman et al. (1995)).

G (vt; t;T ) = G (vt; t)� e�r(T�t)EB [G (vT ; T )] � EG
�
I��T

�
= G (vt; t) �

�
1�QG (� � T )

�

3.9.4 Objective default probabilities

Pt (� > Ti) = N(dPTi(
vt
L
))� (vt

L
)�2

�v�0:5�2

�2 N(dPTi(
L

vt
))

with dPTi(
vt
L
) =

ln(vt
L
) + (�v � 0:5�2) (Ti � t)

�
p
Ti � t

and dBTi(
L

vt
) =

ln( L
vt
) + (�v � 0:5�2) (Ti � t)

�
p
Ti � t

�v = the realized mean of the time series of v(t)

116



Don�t forget to insert the table!!!
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Chapter 4

What Risks Do Corporate Bond Put

Features Insure Against?
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4.1 Introduction

Corporate bond prices are in�uenced by a number of risk factors, the most important of

which are likely interest rate risk, default risk, and illiquidity.1 Putable bonds give their

owners the right to sell, or put, their bond to the issuer prior to the bond�s maturity

date. This embedded option appears designed to provide insurance against any or all of

these risks. Understanding the relative contribution of the distinct risks to put values

may help shed further light on the components of corporate bond yields. Furthermore,

while callable and convertible bonds have well-understood embedded option features,2

this paper constitutes, to the best of our knowledge, the �rst empirical study of putable

bond valuation.3

We study a matched sample of more than a thousand pairs of putable and non-putable

bond transactions. We �rst perform a linear regression analysis on the relationship

between putable and regular bond yield spreads and default, non-default and interest

rate proxies suggested by theory and previous empirical work.4 Across all bonds, we �nd

that the estimated coe¢ cients of the three classes of proxies are not only consistent with

our expectations, but also statistically and economically signi�cant. In addition, we �nd

that putable bond spreads are economically less sensitive to those proxies. This con�rms

that put options embedded in corporate bonds help to reduce bondholders�exposures

to those risks. In a second step, we split the yield reduction due to the put option

into separate components for each of the risk reductions. To do this we develop and

implement a novel valuation methodology, which can be used for all types of corporate

bonds with embedded options. We �nd that the most important reduction in yield is

1See Huang & Huang (2002), Elton et al. (2001), Driessen & DeJong (2005) and Longsta¤ et al.
(2004).

2A non-exhaustive list of work on callable and convertible bonds would include Brennan (1979), Bren-
nan & Schwartz (1977), Brennan & Schwartz (1980), Ingersoll (1977), Longsta¤ (1992) and McConnell
& Schwartz (1986).

3One recent paper, David (2001), deals with the strategic values of poison put bonds. Poison put
bonds are excluded from our sample.

4See Collin-Dufresne et al. (2001), Campbell & Taksler (2003), and Ericsson et al. (2004).
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due to a decreased exposure to default risk, followed by term structure risk and last by

non-default risks such as illiquidity.

In the �rst part of the paper, we attempt to identify the risks that embedded put

options insure against. Intuitively, a putable bond is simply a regular bond with a put

option attached. The price of a putable bond can therefore be split into the price of an

otherwise identical regular bond and the price of the put. We measure the market value

of the put option with the di¤erence in yield spreads between the regular and putable

bonds for the same issuer. The reduction in corporate bond yield spread due to the

presence of a put is, on average, just over 40% of the yield spread. We show that the

value of a put option is positively and signi�cantly correlated to credit proxies, including

�rm leverage, equity volatility, and Moody�s default premium. This suggests that their

value increases as default become more likely. In addition, analysis on illiquidity proxies

shows that a put option is less valuable for the bonds issued by relatively large �rms. A

larger �rm is likely to enjoy the attention of a larger number of investors and to enjoy

better marketability of its securities. Furthermore, the value of a put option increases

when market liquidity, as measured by the Pastor-Stambaugh Index, deteriorates. The

risk-free rate shows a strong and positive correlation. This con�rms the intuition that

the puts are more likely to be exercised when interest rates are high, which, in turn,

increases their value.

The market value of the put is also signi�cantly in�uenced by contractual features.

Our results indicate that the value of a put increases as the time to the earliest exercise

date decreases. Moreover, its value increases with the remaining life of the put. Not

surprisingly, a put option is more valuable the lower the bond price. A putable bond

with more frequent put dates is more valuable.

In the second part of the paper, given that we have established that put values

are related to the conjectured risks, we proceed to measure the proportion of the put

option value that can be attributed to insurance against the di¤erent risks. To do this,

we require a model that prices putable bonds. We develop a bivariate lattice model
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that simultaneously captures correlated default and interest rate risk. Our model is

closely related to Das & Sundaram (2007). Theirs is also an integrated model for pricing

securities subject to equity, default and interest rate risk. Their approach is based on

observed equity prices, term structure and credit default swap prices. The latter are

necessary for extracting the default intensity. In our model, we follow a di¤erent approach

where the key sources of uncertainty are the value of a �rm�s assets and term structure

�uctuations. We draw on recent developments in the literature on structural credit risk

models. Implementing the model involves, in a �rst step, the estimation of asset values,

volatilities, and the historical correlation between asset values and interest rates. In a

second step, we construct a recombining lattice Heath et al. (1992) (HJM) term structure

model. Our method o¤ers a fast and accurate approach for valuing corporate bonds with

embedded options. The model is �exible enough to be useful also for bonds with most

other types of embedded options. Perhaps the key di¤erence between our model and that

proposed by Das & Sundaram (2007) is that ours does not require a market observed

credit spread yield curve for the issuer, as implied by e.g. default swaps as in Das &

Sundaram (2007). Instead the term structure of risk-adjusted default probabilities is

inferred from equity and balance sheet data.

Applying the model to price regular and putable bonds, we illustrate that most of

the reduction in the putable bond spread (about 60%) is due to a decrease in the default

component of the spread. A third of the reduction is due to mitigated term structure

risk. The smallest fraction (7%) represents a reduction in the illiquidity component of

the bond spread.

The remainder of this paper is structured as follows. Section 2 introduces the theo-

retical frameworks, and data and regression analyses on put options. Section 3 describes

the bivariate lattice model. In Section 4, the value of put options as insurance against

various risk factors is decomposed. Finally, Section 5 concludes.
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4.2 Analytical Framework

In this section, we study the relationship between putable bond yields and variables

predicted to be the main determinants by theory. This literature starts with the seminal

work of Black & Scholes (1973b) and Merton (1974). Although their basic model has

since been extended in various ways,5 structural models share a number of common

determinants of default risk. Leverage is a key factor - all else equal, a �rm with higher

leverage has a higher likelihood of default. The underlying asset return volatility is

another critical determinant of the default probability. Moreover, structural models

predict that risk-free interest rates negatively in�uence the yield spread.6 Under the

risk-neutral measure, high interest rates lead the �rm�s underlying asset value to grow at

a higher rate, reducing the probability of �nancial distress.

The value of a putable bond should be subject to the same risks, unless the option

were to provide full insurance against them. Accordingly, the yield spread of the putable

bond as well as the market value of the put option should be determined by the leverage

ratio of the underlying �rm, the volatility of the �rm asset return, the riskless spot rates,

and the maturity of the individual bond. We denote the leverage of the �rm i at time t

as LEVi;t , the equity volatility as �i;t; and the bond maturity as MATi;t. We de�ne the

risk-free rate variable to be the 5-year swap yield, denoted by r5t .

Empirical research shows that in practice, corporate bond yield spreads contain com-

pensation for non-default risks as well as risk premia which may be di¢ cult to identify

without aggregate macro variables.7 For this reason, we will not limit our analysis to the

5Among others, Black & Cox (1976) allows for default before debt maturity. Leland (1994) endo-
genizes default barrier and derives an analytical solution with perpetual debt. Leland & Toft (1996)
extends the Leland model to allow for nonperpetual debt. Anderson & Sundaresan (1996), Mella-Barral
& Perraudin (1997), and Fan & Sundaresan (2000) investigate the implications of strategic default. Le-
land (1998) and Ericsson (2000) study the e¤ects of asset substitution and hedging policies. François
& Morellec (2004) and Broadie et al. (2006) examine the impact of default procedures, and Morellec
(2004) gauges the in�uence of manager-shareholders con�icts through investment.

6Studies that explicitly model stochastic riskfree interest rate show the same result. Those includes
Longsta¤ & Schwartz (1995) and Collin-Dufresne & Goldstein (2001).

7See e.g. Newman & Rierson (2004) and Longsta¤ et al. (2004) on non-default risks and Berndt et al.
(2004) and Berndt et al. (2006) on the topic of default risk premia.
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traditional theoretically motivated regressors. We augment our set of variables by the

return of the S&P 500, denoted by S&Pt; used in Collin-Dufresne et al. (2001) to proxy

for the overall state of the economy. Moody�s default premium is denoted byMDPt; and

is meant to capture the default risk premium in the corporate bond market. The S&P

ratings of the underling �rms are denoted by SPRi;t; we expect they may contain incre-

mental accounting information and proxy for clientele e¤ects.8 Following Collin-Dufresne

et al. (2001), we use the option-implied volatility based on the S&P 100 Index options

denoted by V IXt.

With respect to the empirical liquidity proxies, we include the bond age - denoted

by AGEi;t. Older Bonds are expected to be less liquid - much like seasoned issues in

Treasury bond markets. Another liquidity factor we use is the �rm size denoted by

SIZEi;t. We expect larger �rms to attract a greater number of investors and to enjoy

better marketability of their securities. Furthermore, we use the Pastor & Stambaugh

Index, denoted by PSIt; as a general measure of market liquidity, mindful that this

measure captures liquidity in the equity market and may not be an ideal proxy for

the corporate bond market. Nevertheless Driessen & DeJong (2005) �nd evidence that

bond spreads increase when equity market liquidity decreases. We include coupon rates,

CPNi, which may proxy for potential tax, duration or investor preference e¤ects (see

e.g. Longsta¤ et al. (2004)).

The above discussed theory and empirical studies therefore suggest the following

regression equations (where PS and RS respectively denote putable and regular bond

spreads)

PSi;t; = �i + �psi;1LEVi;t + �psi;2�i;t + �psi;3MATi;t + �psi;4r
5
t + �psi;5S&Pt + �psi;6MDPt (4.1)

+�psi;7SPRi;t + �psi;8V IXt + �psi;9AGEi;t + �psi;10SIZEi;t + �psi;11PSIt + �psi;12CPNi + "i;t;

8Many investors are constrained to hold only bonds above certain rating categories.
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RSi;t; = �i + �RSi;1 LEVi;t + �RSi;2 �i;t + �RSi;3MATi;t + �RSi;4 r
5
t + �RSi;5 S&Pt + �RSi;6MDPt (4.2)

+�RSi;7 SPRi;t + �RSi;8 V IXt + �RSi;9 AGEi;t + �RSi;10SIZEi;t + �RSi;11PSIt + �RSi;12CPNi + "i;t:

Regarding the analysis of the put option value as measured by the spread reduction in

the putable spreads, we regress the put option value, PVi;t; on some variables described

above. We discard the bond-speci�c factors such as maturity, age and coupon rates

because the putable and the regular bonds do not share the same features in general.9

The following regression ensues:

PVi;t; = �i + �pvi;1LEVi;t + �pvi;2�i;t + �pvi;3r
5
t + �pvi;4S&Pt + �pvi;5MDPt (4.3)

+�pvi;6V IXt + �pvi;7SIZEi;t + �pvi;8PSIt + "i;t:

Table 1 summarizes our expectations regarding the relationship between the regressors

and the three dependent variables. The �rst four regressors are simply key variables

implied by most structural models of credit risk. As default risk increases via the leverage

and volatility channels, bond spreads should increase. If the embedded put mitigates

default risk, the e¤ect should be less pronounced for putable bonds.10 The bond maturity

is ambiguous. Depending on the degree of distress risk, structural models may predict

either increasing, decreasing or hump shaped term structures of credit spreads.

The interest rate plays a more subtle role. Merton (1974) would predict that an

9We, however, include the bond characteristic variables for both regulars and putables as independent
variables in unreported robustness check regressions.
10From the theoretical point of view, massive put exercise might accelerate an issuer�s default, espe-

cially when the issuer is of low credit quality. See David (2001) and Cremers et al. (1993).
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increased interest rate yields lower spreads as the risk adjusted drift of the asset value

increases in the rate. In other words the risk adjusted default probability is decreasing

in the risk free rate.

When we introduce embedded puts, the impact of the interest rate becomes more

complex. Consider a �oating rate corporate putable bond. For such a bond the interest

rate hedge provided by the put is relatively unimportant. If the interest rate increases,

the straight bond spread should decrease; while for the putable, the default insurance

value decreases, o¤setting some or all of the spread reduction.11 So for a �oating rate

corporate, we would expect the interest rate coe¢ cient to be negative for a putable and

non-putable alike, while larger in absolute value for the latter. However, the bonds in our

sample are �xed rate bonds. For such bonds, both the interest rate and default hedge

components will matter. To understand the impact of the term structure insurance in

isolation, consider �xed rate non-defaultable putable and non-putable bonds respectively.

When the interest rate increases, the put becomes more valuable and renders the spread of

the putable over the benchmark non-putable more negative. We thus have two o¤setting

e¤ects. Overall, we expect the sign of the interest rate to be negative, but cannot predict

in which way the embedded put in�uences the overall relationship.

The rating should increase the spreads and the value of the put, either if it measures

default risk or is interpreted as a proxy for participation. If fewer investors are able

to hold speculative grade bonds then the price of a bond may decrease in value due to

decreased demand as the credit quality deteriorates. The predictions regarding MDP ,

SPR and V IX are similar to that for LEV and �.

11Consider the stylized case of a �oating rate corporate putable bond where the benchmark �oating
rate is reset continuously. If this bond were also continuously putable at par, then an increase in the
interest rate would have no e¤ect. In the case of less frequent reset and put dates this neutrality would
of course break down.
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Table 1: Expected Signs in Linear Regressions

Mnemonic
Putable bond

spread

Regular bond

spread

Put option

value

(4.1) (4.2) (4.3)

Leverage ratio LEV > 0 >> 0 >> 0

Equity volatility � > 0 >> 0 >> 0

Bond maturity MAT 7 0 7 0 7 0

5-year swap rate r5 < 0 << 0 7 0

S&P numerical rating S&P > 0 >> 0 >> 0

Moody�s Baa index

spread - Aaa index
MDP > 0 >> 0 >> 0

S&P500 return SPR < 0 < 0 < 0

CBOE implied

volatility index
V IX > 0 >> 0 >> 0

Bond age in years AGE > 0 >> 0 >> 0

Firm size SIZE < 0 << 0 << 0

Pastor Stambaugh

equity market

liquidity index

PSI < 0 << 0 << 0

Bond coupon CPN 7 0 7 0 7 0

We think of a bond�s age as a proxy for its liquidity in a way akin to the on- and

o¤-the-run labels used in Treasury bond markets. An older bond will be less liquid and

thus promise a higher yield spread. If an embedded put insures against illiquidity, we

would expect the relationship to be positive and economically less signi�cant for putable

bonds. Firm size should in�uence bond spread analogously - a larger �rm will garner more

126



investor attention, have more liquid bonds with lower spreads, all else equal. Aggregate

market liquidity, as measured by PSI, should decrease spreads and be more in�uential

for non-putable bonds.

The coupon rate has sometimes been argued to proxy for tax e¤ects in corporate bond

markets. Corporate bonds are more heavily taxed at the investor level than Treasury

bonds. As a result, a higher coupon corporate would have to compensate investors with

a higher spread. If that is the case the coupon should carry a positive sign when included

as a regressor. However, other interpretations are quite possible and the empirical results

to date are mixed. As a result, we do not have any strong expectations regarding regular

bonds. For putable bonds there is a more direct e¤ect at play. All else equal, the higher

the coupon of a bond, the less likely it is that a bond can be pro�tably put back to

the issuer. Thus a higher coupon should correspond to a higher spread for putables.

Although the overall e¤ect remains ambiguous given a lack of clear expectation for non-

putables, we expect a more positive (less negative) relationship between coupons and

spreads on putable bonds relative to their non-putable counterparts.

4.3 Data

Swap rates are acquired from DataStream. Term structures of swap rates are constructed

using polynomial splines, and then bootstrapped to obtain the term structures of zero

swap rates. We use the 5-year maturity for regression purposes, and check the robustness

of our maturity choice using longer maturities. For robustness, we also consider the US

constant maturity Treasury rates as alternative regressors and as benchmark rates.

Our bond transaction data are sourced from the National Association of Insurance

Commissioners (NAIC). Bond issue- and issuer-related descriptive data are obtained from

the Fixed Investment Securities Database (FISD). The majority of transactions in the

NAIC database take place between 1995 and 2004.

We implement rigorous �lters to improve the reliability of the bond transaction data.
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Bond transactions without recognizable counterparty names are removed. We restrict

our sample to �xed coupon USD denominated bonds with issuers in the industrial sector.

Furthermore, we eliminate bond issues with option features other than putables, such as

callables and convertibles. Asset-backed issues, and bonds with sinking funds or credit

enhancements were also removed to ensure bond prices in the sample truly re�ect the

underlying credit quality of issuers. The third step involves selecting bonds for which we

have issuers�complete and reliable equity data as well as accounting information.

In total, 57 �rms have transactions for both putable and regular bonds in the NAIC

data. We then take an intersection of the putable and regular bond data. Requiring

the time between the putable and regular bond transactions to be at most three days in

either direction, we are left with 1; 039 pairs from 45 distinct entities.

Table 2 reports the descriptive statistics of issuing companies, putable bonds, and

regular bonds. We see that �rm sizes vary from 1:6 to 469 billion with an average of

52 billion dollars. Bond issuers�S&P credit ratings range between AA and CCC, with

a majority between BBB+ and BBB. The average regular bond issue size is 324 million

dollars. The average regular bond transaction size is approximately 2:65 million dollars.

In comparison, putable bonds have a smaller average transaction size of 0:33 million

dollars, and a smaller average issue size of 270 million dollars. There is no signi�cant

di¤erence in age between the two bond types but putables tend to have a longer maturity.

Table 2, Descriptive Statistics - Firm & Bond Characteristics
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Variable Obs Mean Std. Dev. Min Max

Firm size (billion $�s) 1039 52.49 75.27 1.60 469.067

Equity (billion $�s) 1039 22.58 27.63 0.17 183.40

Nom. debt (billion $�s) 1039 29.91 65.77 0.88 446.61

Leverage 1039 52% 20% 6% 96%

S&P rating 1039 8.63 3.92 1.00 27.00

Regular bond

Trans size (million $�s) 1039 2.65 3.79 0.01 31.60

O¤ering amount (million $�s) 1039 324.33 203.72 1.50 1000.00

Age 1039 4.30 3.38 0.00 16.75

Time to maturity 1039 15.05 14.36 0.52 99.71

Coupon 1039 7.25 1.11 2.25 11.13

Putable bond

Trans size (million $�s) 1039 0.33 0.51 0.00 4.80

O¤ering amount (million $�s) 1039 269.89 132.88 10.00 600.00

Age 1039 5.00 3.57 0.00 17.73

Time to maturity 1039 26.26 10.75 2.28 99.55

Coupon 1039 7.33 0.99 5.55 10.20

To check whether there exists any selection bias for our matched sample of regular and

putable bonds, we compute and compare the statistics of all industry regular bonds and

putable bonds in our sample. With 74,990 and 3,463 transactions for regular and putable

bonds respectively, we �nd: the average transaction sizes for regular (putable) bonds are

2.71 (3.41) million dollars; the average o¤ering amounts are 393.4 (241.8) million dollars;

the average ages are 3.92 (5.06) years; the average times to maturity are 11.18 (26.87)
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years; the average coupon rates are 7.24 (7.33); the average S&P ratings are 8.61 (8.73)

respectively. Our matched sample provides a close representation of the entire sample of

industry regular and putable bonds.

Table 3 provides descriptive statistics for the regressors used in the analysis below.

The leverage of a �rm is de�ned as

Lev =
Book V alue Of Debt

Market V alue Total Equity +Book V alue Of Debt

Equity volatility for each �rm (for every transaction) is computed using a moving

window of 250 daily returns obtained from CRSP.

Table 3: Descriptive Statistics of Regressors in Regression Analysis

Variable Obs Mean Std. Dev. Min Max

Dependent Variables

Moody�s Default Premium 1039 0.86 0.24 0.50 1.48

VIX 1039 23.01% 6.14% 10.66% 44.92%

S&P500 EWRETD12 1039 0.11% 1.18% -3.66% 5.88%

Pastor & Stambaugh index 1039 -0.033 0.068 -0.250 0.162

5-year swap rate 1039 4.93% 1.27% 2.12% 7.82%

The default premium measures the aggregate price of default risk. It is computed as

Moody�s Baa index spreads minus Aaa index spreads, which has a mean of 86 basis points

for the transaction days in our sample. Another default proxy, VIX, an option-implied

volatility index acquired from CBOE, averages 23% and ranges between 11% and 50%.

Daily equally weighted S&P 500 returns average 0:11%. We use the Pastor & Stambaugh

index level from CRSP as a proxy for market liquidity, which has a mean of 0:033 and

volatility of 0:068. The average 5-year swap rate in our sample is 4:93%.13

12S&P500 Equally Weighted Rate of Return Daily.
13Paster & Stambaugh level provides a measure of equity market liquidity. Given the partial integration
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4.4 Regression Analysis

We �t a panel data regression model run as random e¤ects GLS with an AR(1) error

structure. We rely on a methodology developed by Baltagi & Wu (1999) to adjust for

the unbalanced nature of the data panel.

4.4.1 Analysis of Putable and Regular Bond Yield Spreads

Tables 4 and 5 report the results of the regressions for market putable and regular bond

spreads. The independent variables include a set of proxies for credit risk, liquidity risk,

a tax component, and interest rate risk. To proxy credit risk, we use �nancial leverage,

equity return volatility, the S&P rating, Moody�s default premium, and S&P500 returns.

Firm size, bond age, maturity, and the Pastor-Stambaugh index level are used as liquidity

proxies.

between the equity and �xed income markets, the measure should also be able to capture the liquidity
in corporate bond markets. Therefore, as a proxy for market liquidity measures, we choose the closest
(monthly) Pastor & Stambaugh levels to our transaction dates. For details of the index, please see the
original paper of Pastor (2003).
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Table 4, Regression Analysis for Market Putable Bond Spreads

Regressions are run as random e¤ects GLS with an AR(1) error structure, and use a method

developed by Baltagi & Wu (1999) to adjust for the unbalanced nature of the data panel.

Regressor Coef. Std. Err. z P>z [95% Conf. Interval]

Leverage ratio LEV 234.5074 16.1833 14.49 0.0000 202.789 266.226

Equity volatility � 140.7576 23.6786 5.94 0.0000 94.348 187.167

S&P numerical

rating
SPR 0.5331 1.0863 0.49 0.6240 -1.596 2.662

Moody�s Baa index

spread - Aaa index
MDP 2.7253 8.4681 0.32 0.7480 -13.872 19.322

CBOE implied

volatility index
V IX 0.7677 0.2633 2.92 0.0040 0.252 1.284

S&P500 EWRETD SPR 194.3806 112.7540 1.72 0.0850 -26.613 415.374

Bond maturity MAT 0.0000 0.0006 -0.07 0.9430 -0.001 0.001

Bond age in years AGE 0.0004 0.0026 0.13 0.8930 -0.005 0.006

Firm size SIZE -0.0001 0.0001 1.02 0.3060 0.000 0.000

Pastor Stambaugh

equity market

liquidity index

PSI -42.8082 21.0816 -2.03 0.0420 -84.127 -1.489

Bond coupon CPN 35.2034 3.7038 9.5 0.0000 27.944 42.463

5-year swap rate r5 -28.6989 2.0799 -13.8 0.0000 -32.775 -24.622

Adjusted R2 = 0.5533
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For putable bond spreads, as reported in Table 4, leverage, equity volatility and VIX

are signi�cant at the 5% level. The credit rating, default premium have the expected

signs but are not statistically signi�cant. The S&P500 return is signi�cant at the 10%

level. The positive sign may at �rst appear puzzling at �rst glance. However note

that our sample period covers the same period studied in Campbell & Taksler (2003).

They document that although stocks performed well in the late nineties, bond spreads

increased. They attribute this to an increase in idiosyncratic volatility. Thus the positive

sign need not be inconsistent with a theoretical model such as Merton (1974).

Amongst the illiquidity variables, PSI is signi�cant at the 5% level and carries the

expected sign. Putable bond spreads are positively related to age and negatively to �rm

size and PSI. A higher coupon tends to increase bond spreads, while spreads increase

in maturity on average. In addition, bond spreads are strongly and negatively related to

interest rates, consistent with Du¤ee (1998).

Table 5, Regression Analysis on Market Regular Bond Spreads
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Coef. Std. Err. z P>z [95% Conf. Interval]

Leverage 646.5838 39.0379 16.56 0.000 570.071 723.097

Equity volatility 285.3367 59.1994 4.82 0.000 169.308 401.365

S&P rating 1.5620 2.1283 0.73 0.463 -2.609 5.734

Moody�s def. prem. 50.9624 22.6497 2.25 0.024 6.570 95.355

VIX 0.0176 0.6957 0.03 0.980 -1.346 1.381

S&P500 EWRETD 245.9434 302.5429 0.81 0.416 -347.030 838.917

Bond maturity 0.0028 0.0008 3.34 0.001 0.001 0.004

Bond age 0.0126 0.0044 2.9 0.004 0.004 0.021

Firm size -0.0003 0.0001 -2.89 0.004 -0.001 0.000

P-S index -188.7807 56.5153 -3.34 0.001 -299.549 -78.013

Coupon -1.0154 4.8268 -0.21 0.833 -10.476 8.445

5-year swap rate -7.5403 4.6811 -1.61 0.107 -16.715 1.635

Adjusted R2 = 0.2149

Qualitatively similar results are observed for regular bond spreads. It seems that both

putable and regular corporate bond spreads contain compensation to credit, liquidity and

interest risks. However, the economic signi�cance of the regressors is quite di¤erent for

the two classes of bonds. For example, non-putable bonds are much more sensitive to

changes in leverage and equity volatility. The di¤erence can be thought of as a measure

of the e¤ectiveness of the embedded put against a deterioration in credit quality. The

same pattern can be gleaned from the liquidity proxies. Age increases spreads for regular

bonds more than for putables. As a regressor it is only signi�cant for regular bonds. Firm

size signi�cantly decreases spreads for regular bonds - the same cannot be statistically

veri�ed for putables. The PSI variable decreases spreads and is statistically signi�cant

for both bond types but the coe¢ cient is four times larger for regular bonds. These
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�ndings are consistent with our expectations outlined above. The put option appears to

absorb much of the sensitivity to changes in credit quality as well as deteriorations in

bond-speci�c or marketwide illiquidity.

Consistent with our discussion above, the coe¢ cient on the coupon rate is larger for

putable bonds than for regular bonds. In fact it is negative and insigni�cant for the

latter while is it positive and signi�cant for the putables. Thus in our sample, there

appears to be no support for the tax e¤ect discussed in e.g. Elton et al. (2001). The sign

of the coe¢ cient for the putables likely arises from the e¤ect described above - a high

coupon bond will likely trade further away from the strike price of the put and is thus

less e¤ectively insured than a low coupon bond.

Like previous work, we document a negative relationship between bonds spreads and

the level of the risk free term structure, in our case proxied by the 5 year swap rate. This is

consistent with an increased interest rate decreasing the risk-adjusted default probability

and thus the spread. In addition, we �nd that the e¤ect is four times stronger for putable

bonds and statistically more signi�cant. Recall that when term structure risk is of second

order importance, e.g. for a �oating rate bond, the e¤ect of the embedded put would be

to weaken the negative relationship between the rate and the spread. Thus our �nding

of a stronger negative relationship suggests that a dominant e¤ect at play here is the

increased value of the put as a hedge against interest rate increases.

The regression of putable spreads displays stronger statistical signi�cance (R2 = 55:3%)

compared to the regression of regular spreads does (R2 = 21:5%). Interestingly, putable

spreads show less sensitivity to the risk proxies - the coe¢ cients of putable regression are

generally lower than those of regular regression. Given that a putable bond can be seen

as a regular bond plus put options, this suggests that put options reduce putable bonds�

risk exposure.

In summary, we �nd that both regular and putable bond spreads relate broadly as

expected to all our regressors. We conclude from this that our proxies for the core risk

sources are reasonable and, more importantly, that putable bonds appear to at least
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partially protect their holders against default risk, term structure risk and non-default

risks such as illiquidity.

We now turn to an analysis of a market proxy for the put option value directly.

Further below, we will use a valuation model to quantify the relative importance of each

risk source.

4.4.2 Analysis of Put Option Values

Since there is no direct way of observing the put value, we rely on the di¤erence between

market spreads for the matched regular and putable bonds as a proxy. It is clear that

this measure is contaminated by di¤erences in putable and regular bond characteristics

such as maturity and coupon rates.14

The average di¤erence between regular and putable bond spreads is 49 basis points.

Table 6 reports the results of the regression analysis. Put values are positively and

signi�cantly correlated to leverage, equity volatility and the default premium proxy. The

S&P500 return and the VIX are not signi�cant.

Table 6, Regression Analysis on Put Options (Market)

14For robustness check, we perform regression analysis with the bond characteristic variables included
as independent variables as well. The inclusion of the variables in regression does not change the results
qualitatively. We therefore do not report the results.
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Regressors Coef. Std. Err. z P>z [95% Conf. Interval]

leverage 429.1973 34.3088 12.51 0.000 361.9534 496.4413

equity sigma 135.7978 51.6791 2.63 0.009 34.5085 237.0870

Moody�s def. prem. 42.5883 19.8582 2.14 0.032 3.6670 81.5097

VIX -0.6711 0.6100 -1.1 0.271 -1.8666 0.5245

S&P return 131.5280 265.7805 0.49 0.621 -389.3923 652.4482

�rm size -0.0004 0.0001 -3.98 0.000 -0.0006 -0.0002

P-S index -131.4099 49.5915 -2.65 0.008 -228.6074 -34.2124

5-year swap rate 16.6322 3.8086 4.37 0.000 9.1675 24.0969

Adjusted R2 = 0.2340

The values of put options are negatively correlated to the illiquidity proxies - �rm size

and pslevel. This implies that the put options are less valuable for holders of bonds issued

by relatively larger �rms. Such a �rm is able to attract a larger number of investors and

enjoys better marketability of its securities. Therefore, the put options are less valuable

as insurance against illiquidity. In addition, the values of embedded puts increase as

market liquidity drops as re�ected by the negative and signi�cant impact of the Pastor

& Stambaugh Index. The risk-free rate shows a strong and positive correlation. This

con�rms our intuition that put options are more likely to be exercised when interest rates

are high, which, in turn, increases their values.

It is also interesting to consider tables 4-6 in combination. For example, the default

premium variable is highly signi�cant for regular bonds and insigni�cant for putables. It

is an important determinant of put value. This suggests that the risk associated with this

variable is quite e¤ectively hedged by the option. Consider next the PSI variable: it is

economically much more signi�cant for the regular bond, although it retains explanatory

power for putables (and the option in isolation). Thus, we see that the put is an imperfect

hedge against marketwide liquidity, likely due to limitations in their contractual design,
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which we study next.

We regress put option values on various contractual characteristics of the putable

bonds. We use the following variables: the number of dates to the last scheduled put

date (DLP ), the number of dates to the �rst put date (DFP ), ratio of the number

of outstanding put dates to maturity of the bond (NPM), ratio of the number of the

dates to the �rst put date to maturity (FTM) ; and a dummy variable for in-the-money

(ITM). Due to the limited time variation in the characteristics variables, we also include

controls from the previous regression.

PVi;t; = �i + �pvi;1DLPi;t + �pvi;2DFPi;t + �pvi;3NPMi;t + �pvi;4FTMi;t + �pvi;5ITMi;t

(4.4)

+�pvi;6SPRi;t + �pvi;7MDPt + �pvi;8V IXt + �pvi;9SIZEi;t + �pvi;10PSIt + "i;t:

Table 7 reports the results of the regression analysis. First note that the explanatory

power of the regression is higher by about a third, suggesting that the characteristics

are important determinants of option values. Dates to �rst put, dates to last put, and

in-the-money variables are statistically signi�cant. The value increases the longer the

time between the transaction date the last put date, consistent with the intuition that a

put option value increases in time to expiration. The value of a put option increases as

the earliest put date approaches. Intuitively, the closer an investor is to an exercise date,

the more e¤ective and thus valuable his option. The ratio of numbers of outstanding put

dates to maturity carries a positive coe¢ cient, implying that, by controlling for maturity,

a putable bond with a more frequent put schedule enjoys a relatively higher value. The

result is marginally statistically signi�cant. The deeper in-the-money the put is, the more

valuable it is. The lower the credit rating of the issuer, the more valuable the insurance

provided by the put.
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Table 7, Impact of Put Option Features on the Value of the Option

Regressors Coef. Std. Err. z P>jzj [95% Conf. Interval]

Dates to last put DLP 0.029137 0.004935 5.9 0 0.0194638 0.03881

Dates to �rst put DFP -0.03145 0.008033 -3.91 0 -0.0471929 -0.0157

Number of put/maturity NPM 107001.7 66847.04 1.6 0.109 -24016.11 238019.5

Dates to �rst put/maturity FTM -50.4856 55.10592 -0.92 0.36 -158.4912 57.52003

In-the-money ITM 103.0036 9.635411 10.69 0 84.11859 121.8887

S&P rating SPR 3.95331 0.97625 4.05 0 2.039896 5.866724

Moody�s def. prem. MDP 47.82498 17.57578 2.72 0.007 13.37708 82.27287

VIX V IX -0.33385 0.704944 -0.47 0.636 -1.715518 1.04781

Firm size SIZE -0.00019 6.23E-05 -3.1 0.002 -0.0003151 -7.1E-05

P-S index PSI -116.393 57.73799 -2.02 0.044 -229.557 -3.22829

Adjusted R2 = 0.3022

Figure 1 provides additional evidence that the values of the put options are a¤ected

by issuing �rms�credit quality and market liquidity. We subgroup our market put option

values by issuing �rms�credit ratings and market liquidity conditions. It is noticeable

that put values, proxied as before by the di¤erence in spreads for putable and regular

bonds, increase as �rms�credit ratings deteriorate - to a point. Below a rating of B; they

decrease as default becomes increasingly imminent. This observation again con�rms that

embedded puts do hedge against changes in default risk, but that the provided insurance

is limited given that it is written by the very �rm whose default is insured15. When an

15This stands in contrast to the norm in credit derivative markets where buyer and seller of default
insurance are distinct from the reference entity. In the absence of any other signi�cant counterparty
risk, insurance premia in these markets should be monotinically decreasing in credit quality.
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issuing �rm is near bankruptcy it is unlikely to be able to honour the put.16 In addition,

we observe that the values of put options generally increase as market liquidity, signaled

by the Pastor-Stambaugh Index, decreases. This is consistent with the regression analysis

that put options become more valuable when liquidity is relatively low.

Figure 1, Market Put Option Values by Credit Rating and Liquidity Index

Figure 1(A) shows regular and putable bond yield spreads, and the values of put options at

di¤erent credit ratings. The purple columns represent regular bond spreads; the blue columns

represent putable bond spreads; the yellow line represents the values of put options, proxied by

the di¤erence in regular spreads and putable spreads17.
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Figure 1(B) shows regular and putable bond yield spreads, and the values of put options

at di¤erent market liquidity levels represented by the Pastor-Stambaugh Index. The purple

16Puts could also derive strategic value if they can be used to trigger default by the issuing �rm. See
David (2001).
17The spread for putable bonds at AAA is negative. This could be due to that swap rates are used as

riskfree benchmark. In an earlier version of the paper, we use Treasury rates as riskfree rates and �nd a
positive spread for AAA putables. Sample bias might explain that the spreads for putables and regulars
at C&Less are lower than those at B. We have few observations in C&Less rating category.

140



columns represent regular bond spreads; the blue columns represent putable bond spreads; the

yellow line represents the values of put options, proxied by the di¤erence in regular spreads and

putable spreads.
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In summary, we �nd that put options embedded in corporate bonds contain insurance

against default risk, illiquidity risk, and interest rate risk. The next logical step of interest

is to quantify the proportion of the insurance against each individual risk. Clearly,

understanding not only which risks one is exposed to but also to what extent is important.

We now proceed to develop a methodology for the valuation of corporate bonds with

embedded features.

4.5 A Valuation Model

In this section, we develop a recombining bivariate lattice model for the joint risk-neutral

process of the asset value and the forward interest rate curve. To price corporate bonds,

we require our model to have two important features: �rst, given the scarcity of corporate

bond data and the inexistence of the market for default swap data during a large part of

our sample period, the implementation should rely only on equity and accounting data
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in the estimation; Secondly, suggested by recent empirical evidence (e.g. Du¤ee (1998))

and the regression analysis results on the relationship between corporate bond spreads

and riskfree rates, the model needs to capture the correlation between interest rates and

default rates - driven by asset values. The lattice is constructed in the following four

steps:

1. Build the interest rate lattice in a HJM setting;

2. Estimate, using maximum likelihood, initial asset values V0, asset return volatilities

�V ; and default barriers Vb using the Leland & Toft (1996) model.18 Estimation of

the correlation between the asset value and the risk-free rate is embedded in the

maximum likelihood estimation;

3. Construct the asset value (default process) lattice using the inputs from the esti-

mation in (2);

4. Combine the two lattices while imposing the recombining conditions.

4.5.1 The Term Structure Model

Our construction of a risk-free rate tree is based on the discrete-time form of the HJM

model (see Heath et al. (1990) and Heath et al. (1992)). The HJM framework uses

forward rates and the term structure of forward rate volatilities as inputs to determine

the evolution of short rates. For any given pair of time-points (t; T ) with 0 � t � T , let

f(t; T ) denote the forward rate on default-free bonds applicable to the period (T; T +h).

In other words, f(t; T ) is the rate as viewed at time t for a default-free loan transaction

over the interval (T; T +h). All interest rates in the model are expressed in continuously

compounded terms. The forward rate curve is assumed to follow the stochastic process

below:

f (t+ h; T ) = f (t; T ) + � (t; T )h+ � (t; T )Xf

p
h; (4.5)

18We have found in previous work that the Leland & Toft model performs well in pricing corporate
bond spreads over the swap curve. See Ericsson et al. (2006) and Elkamhi & Ericsson (2007).
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where Xf is a standard normal variate, � (t; T ) and � (t; T ) are Ft-adapted processes for

all T > t.19 The variable h represents the length of a single period. A recursion relates

the risk-neutral drifts � to the volatilities �. Given the risk-neutral dynamics of forward

rates, the no-arbitrage value of � (t; T ) can be written as:

� (t; s) = � (t; s)T
s�tX
i=1

� (t; t+ ih) ; (4.6)

where � (t; t+ ih) is the volatility of the forward rate between time t and t+ ih. In the

same spirit of Hull & White (1993), our modeling of the interest rate tree takes into

account the whole term structure of forward rate volatilities.

4.5.2 The Asset Value Model

We assume the risk-neutral discrete-time asset value follows:

ln

�
V (t+ h)

V (t)

�
= (r (t)� �)h+ �VXV (t)

p
h; (4.7)

where �V is the asset return volatility. The random variable XV (t) is standard normal.20

Under this speci�cation, a probability measure is chosen such that the one-period

expected return of asset value is set to equal r (t)h; and the variance of return is �2V h.

Since the same numeraire (the money market account) is also used in the valuation of

bonds, we generate a lattice that is arbitrage free in both the bond and asset value

markets.

As asset value evolves in time, default occurs when the asset value hits the default

barrier for the �rst time. The latter is endogenously determined as the ex post optimal

level for the shareholders to relinquish ownership of the �rm. Upon default, corporate

bondholders receive the face value of bonds that they own multiplied by the recovery

rate.

19In the lattice implementation, we let Xf be a Bernouilli random variable with outcomes f�1;+1g.
20In the lattice implementation, we treat XV like Xf , and let it take on values of f�1;+1g.
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4.5.3 The Joint Process

In this �nal step, we combine the two processes for the term structure and the asset

value introduced above in a bivariate lattice. In Figure 2, R and V denote the short

interest rate and asset value (implied from the Leland & Toft (1996) model) at time t

respectively. The superscripts u and d on R, the interest rate dimension, stand for upper

and lower nodes respectively. But the u and d for the asset value, V , dimension represent

the increments.
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Figure 2, A Bivariate Lattice
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In the model section above we take Xf and XV to be normally distributed. The

normality assumption for the forward rates dynamic is a necessary condition to satisfy

the no-arbitrage restriction on the forward rate drift in the continuous time version of

the HJM model. The normality assumption for the asset value is to conserve the same

discrete time in�nite state space version of the Leland & Toft model that we use to infer

the initial asset values and volatilities. In the implementation of the bivariate model, we

set the shocks to be captured by a Bernoulli random variable that takes values in f�1; 1g.

This discrete time �nite state space speci�cation of the asset value and the forward rate

dynamics converges to the usual normal distribution as the time step converges to zero.

We impose two conditions for the construction of the bivariate lattice. The �rst is

that the tree recombines. This condition is imposed for practicality. Second, we set

the conditional probabilities in the joint process in such way that the model implied

correlation between the asset return and the term structure of interest rates equals the

empirical correlation denoted by �. The model contains two correlated sources of risks
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on each node - the term structure risk and the �rm asset value risks. From each node

on the lattice, we observe four departing branches. The corresponding probabilities

depend on the realization of Xf and XV - the shocks to the forward rate and the �rm

value respectively. Please see the appendix for detailed mathematical treatment for

constructing the bivariate lattice.

We construct the bivariate lattice of 500 time steps. This means, for a bond of 10-year

maturity, the length of one time step h is about 1 week (7:3 days = 365� 10=500). For

a bond of shorter maturity, the length of one time step in the valuation bivariate lattice

shortens accordingly. The reverse holds for bonds of longer maturities.

4.5.4 Estimating and implementing the model

We rely on the Leland & Toft (1996) model (see appendix) to estimate initial asset

value V0, asset return volatility �V; and default barrier Vb. The fundamental variable in

the models is the value of the �rm�s assets, which is assumed to evolve as a geometric

Brownian motion under the risk-adjusted measure:

d!t = (r � �)!tdt+ �!tdWt:

The constant risk-free interest rate is denoted r, � is the payout ratio, � is the volatility

of the asset value, andWt is a standard Wiener process under the risk-adjusted measure.

Default is triggered by the shareholders�endogenous decision to stop servicing debt.

Although the exact asset value at which this occurs is determined by several parameters

as well as by the characteristics of the respective models, it is always a constant which

we denote by Vb. In Leland & Toft (1996), the �rm continuously issues debt of maturity

�; therefore, the �rm also continuously redeems debt issued many years previously.

Hence, at any given time, the �rm has many overlapping debt contracts outstanding,

each serviced by a continuous coupon. Coupons to individual debt contracts are designed

such that the total cash �ow to debt holders (the sum of coupons to all debt contracts
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plus nominal repayment) is constant.

We use Maximum Likelihood estimation together with Leland & Toft (1996) to com-

pute the initial asset value V0, default barrier Vb; and the volatility of the asset returns

�V .

The methodology utilized, �rst proposed by Duan (1994) in the context of deposit

insurance, uses price data from one or several derivatives written on the assets to infer

the characteristics of the underlying, unobserved, process. In principle, the �derivative�

can be any of the �rm�s securities but, in practice, only equity is likely to o¤er a precise

and undisrupted price series.

The maximum likelihood estimation relies on a time series of stock prices, Eobs =�
Eobsi : i = 1:::n

	
. A general formulation of the likelihood function using a change of

variables is documented in Duan (1994). If we let w
�
Eobsi ; ti;�

�
� E�1

�
Eobsi ; ti;�

�
be the

inverse of the equity function, the likelihood function for equity can be expressed as

LE
�
Eobs;�

�
= Lln!

�
lnw

�
Eobsi ; ti;�

�
: i = 2:::n;�

�
(4.8)

�
nX
i=2

ln!i
@ E (!i; ti;�)

@ !i

����
!i=w(Eobsi ;ti;�):

Lln! is the standard likelihood function for a normally distributed variable, the log of

the asset value, and @ Ei
@!i

is the �delta�of the equity formula.

The value of the correlation between �rm asset values and the term structure of

interest rate denoted � is estimated using a window of 250-day of implied asset returns

and risk-free rates observed prior to the transaction date t.

On the bivariate lattice, default occurs when asset value V falls below the barrier Vb,

which is estimated using the Leland & Toft (1996) model. The value of Vb is determined

at the transaction time t; and remains the same along the tree. Backward induction

is used to solve for the bond price at t. On every node, if default does not occur, the

value of the bond equals the one-period coupon plus the continuation value of the bond.

Should default occur, the bond is recovered with  of its face value.
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We use the following parameter values to price regular bonds and putable bonds:

� the bond�s principal amount, p, the coupons c , maturity T and the coupon dates,

ti;

� the recovery rate of the bond,  ;

� the total nominal amount of debt, N , coupon C and maturity �

� the costs of �nancial distress, �

� the tax rate, �

� the rate, �, at which earnings are generated by the assets, and �nally

� the current value, v; and volatility of assets, �

The bond�s principal amount, p, the coupons c , maturity T and the coupon dates

are readily observable. The recovery rate of the bond in �nancial distress is not. We set

it equal to 40%, roughly consistent with average defaulted debt recovery rate estimates

for US industrial entities between 1985-2003.

The nominal amount of debt is measured by the total liabilities as reported in COM-

PUSTAT. Since book values are only available at the quarterly level, we linearly interpo-

late in order to obtain daily �gures. For simplicity, we assume that the average coupon

paid out to all the �rm�s debt holders equals the risk-free rate: c = r � N .21 We set

the maturity of newly issued debt equal to 6.76 years, consistent with empirical evidence

reported in Stohs & Mauer (1994).

Finally, we assume that 15% of the �rm�s assets are lost in �nancial distress before

being paid out to debtholders and �x the tax rate at 20%. The choice of 15% distress

costs lies within the range estimated by Andrade & Kaplan (1998). The choice of 20%

for the e¤ective tax rate is consistent with the previous literature (see e.g. Leland (1998))

21This assumption is made for convenience. We checked this assumption by considering randomly
selected �rms�actual interest expense ratios. We found that our approximation performs well.
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and is intentionally lower than the corporate tax rate to re�ect personal tax bene�ts to

equity returns, thus reducing the tax advantage of debt.

The payout rate � is an important parameter. We compute � as the weighted average

of net of tax interest expenses (relative to total liabilities (TL)) and the equity dividend

yield (DY ):

� =
IE

TL
� lev � (1� TR) +DY � (1� lev) (4.9)

where

lev =
TL

TL+MC

where MC denotes the �rm�s equity market capitalization and TR is the e¤ective tax

rate. The average net debt payout rate in our sample is 2.72%:22

We use the following data for our estimation: �rm market equity values, balance

sheet information, and term structures of swap rates. Daily equity values are obtained

from CRSP. Quarterly �rm balance sheet data are taken from COMPUSTAT. Since the

balance sheet information is only available at the quarterly level, we transform them into

daily data through linear interpolation.

4.6 Decomposing Put Option Values

We �rst examine the statistic properties of market putable and regular bond yield spreads

over swap rates (reference risk-free benchmark) with matched maturities. As reported in

Table 8, the average of observed putable bond spreads over swap rates is approximately

50 basis points. The average of observed regular bond spreads over swap rates is approx-

imately 99 basis points. Our model estimates an average putable bond spread of 44 basis

22An alternative method for estimating the cash �ow rate is to use bond coupons as a proxy for the
�rm�s proportional interest expenses. Our estimates of the cash �ow rate will be lower than if we had
used this approach. Corporate bonds are long term instruments. While the bond coupon may proxy well
for the interest expense on long term liabilities, we �nd that in our sample it overestimates the interest
expenses paid on short term debt. Our average net of tax interest expense ratio is about 2.72% which
is just less than half the average bond coupon of 7.3% in our sample.
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points, while the average of model regular bond spreads is 90 basis points. The model

underestimates putable and regular bond spreads by 10 and 6 basis points on average.

The discrepancies could be attributed to the liquidity premia that are not captured by

the model.

Table 8, Bond Spread Summary

This table reports the market regular and putable bond spreads and their model counter-

parts. The hypothetical regular bond spreads are computed by applying the bivariate lattice

model to price putable bonds while shutting down put options. Therefore, the hypothetical

regular bonds share the same features, except for put options, as the putable bonds in the

sample.

Variable Obs Mean Std. Dev. Min Max

Putable market spread (bps) 1039 49.9 78.0 -161.9 476.6

Putable model spread (bps) 1039 44.0 97.9 -151.9 719.3

Regular market spread (bps) 1039 99.1 153.4 -120.1 2318.2

Regular model spread (bps) 1039 89.8 135.5 0.0 1044.6

Hypothetical regular spread (bps) 1039 83.5 106.7 0.0 719.3

Table 9 displays a statistic summary of the parameters estimated by implementing

the LT model, and some independent variables used in our regression analysis. The

average asset value is proximately 49:7 billion dollars, which is 2:8 billon lower compared

to the �rm value reported in Table 1. Asset value can be viewed as unlevered �rm

value, while �rm value re�ects tax bene�ts of debt and potential bankruptcy loss. The

average default barrier is 26:4 billion dollars, and equals 98% of the average nominal

debt amount. The average asset return volatility is 18%. The correlation between �rm
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assets and risk-free interest rates is �2:33% with negative and positive extremes of �37%

and 26%; respectively. The payout rate of assets is 2:7% on average, similar to 2:64% in

Ericsson et al. (2006).

Table 9, Leland & Toft (1996) Estimates

Variable Obs Mean Std. Dev. Min Max

Leland & Toft Estimates

Asset values V (billion $�s) 1039 49.737 71.742 1.537 466.585

Barrier (billion $�s) 1039 26.412 61.108 0.660 421.247

Asset return volatility 1039 17.78% 10.45% 1.00% 79.24%

Correlation between V and r 1039 -2.33% 7.04% -37.25% 25.66%

Payout ratio � 1039 2.72% 1.25% 0.00% 17.03%

We rely on our above model to decompose the values of put options. We compute

the model putable spreads, then we calculate the model spreads of the comparable non

putable bonds. We obtain the model values of the put options by subtracting the model

putable spreads from the model spreads of comparable regular bonds that have the same

features as the putable bonds with no put options attached.

The average di¤erence between regular and putable bond spreads is 49 basis points.

This is our proxy for the value of the market put options; we fully realize that a proportion

of this di¤erence is due to the di¤erence in coupons and maturities. Later in this section,

we will discuss and correct this aspect. Figure 3(I) illustrates the market values of the

putable and the non-putable bonds spreads, and their model counterparties.

Using our model, we compute the value of the put option embedded in a putable

and an otherwise identical non-putable bond. As illustrated in Figure 3(II), the model

spreads of comparable regular bonds and putable bonds are 83 and 44 basis points on
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average. The 39 basis point di¤erence represents the average of the model values of the

put options. Given that our model captures interest rate risk and credit risk, these 39

bps comprise insurance against default risk and interest risk.

We turn our attention to investigating the model value of the put option. In essence,

we wish to quantify what proportion of the 39 bps is due to credit risk insurance, and

what proportion is attributed to interest rate risk. Hence, we compute the spreads

of comparable default-free putable bonds -we reestimate putable bonds while shutting

down the default dimension of the bivariate lattice. The average comparable default-free

putable bond model spread is approximately �14 basis points. To clarify the negative

sign that may seem counter-intuitive, the comparable putable default-free bond yield

should be lower than the benchmark swap rate because of the embedded put. This

implies that, amongst the 39 basis points, 14 basis points are insurance against interest

rate �uctuations, and the remaining 25 basis points comprise insurance against default

risk. This is illustrated in �gure 3(III) .

Figure 3, Decomposition of Put Option Values

This �gure illustrates the steps to decompose the values of put options. (I) reports the

market value of the put options; (II),(III) and (IV) decompose the portions attributable to

insurance against default risk and term structure risk; (V) and (VI) show how to compute the

put value attributable to insurance against non-default and non-term structure risks.
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After decomposing the credit risk and the term structure risk in the model price of the

put option, we direct our attention to the core task of decomposing the market implied

price of the put option. Figure 3(IV ) shows the proportions of interest rate risks and

credit risks contained in the average put values of 49 basis points.

There are 10 basis points left unexplained in the market spreads of the put options

(99bps� 50bps� 39bps) : To understand the remaining 10 basis points, we �rst measure

the proportion due to the property di¤erence between regular bonds and putable bonds.

In order to do so, we compare the spreads between the model regular bonds and the model

comparable regular bonds that have the same coupon rate and time to maturity as the

regular bonds. The average di¤erence is 7 basis points, which captures the di¤erence

in credit risk and interest risk premia due to feature di¤erence. This suggests that the

remaining 3 basis points are attributed to other factors including liquidity enhancement

provided by the put options23. The result is consistent with the di¤erence between the

residual (market �model) spreads of regular bonds, 10 basis points, and putable bonds,

6 basis points.

We �nd that the average value of insurance against risk factors provided by the put

options attached to corporate bonds in term of spread is approximately 42 basis points.

60% of the spreads is insurance against default risk. 33% is insurance against interest

rate risk. 7% is due to other factors including liquidity enhancement.

4.7 Conclusion

The most important drivers of corporate bond prices are likely to be interest rate risk,

default risk, and illiquidity. The option to put back the bond to the issuers provides

insurance against all three. In this article, we shed light on which risks are insured

against by embedded puts, and to what extent.

23The 3 basis points are unlikely due to measurement error, given that it is computed based on the
average value of put options. In addition, in an unreported regression analysis, we relate the residual
values of put options to liquidity proxies and �nd a signi�cant relationship.
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Using a sample of putable bond and comparable regular bond transactions, we �nd

that the put option feature does signi�cantly hedge against all three risks. The reduction

in corporate bond yield spread due to the presence of a put represents, on average, just

over 40% of the yield spread. By means of regression analysis we show that the put option

value (as measured by the spread reduction) is related to proxies for default, interest rate,

and marketability risk.

To further understand the composition of the put option feature, we develop a bi-

variate lattice model that simultaneously captures correlated credit and term structure

risks. The model is then applied to price regular and putable bonds to decompose the

risk components contained in the put options.

We �nd that the dominant source of spread reduction is attributable to default risk -

an average of 60% of the reduction. But, we �nd that when default is imminent and the

�rm may not be able to honor the option, the put option value is signi�cantly reduced.

Perhaps surprisingly, only a small fraction (7%) of the spread reduction due to the put

option attributed to other non-default factors including illiquidity. Given swap spreads

are used, this measure is clean of the liquidity premia contained in Treasury yields. Put

options are less valuable for bonds issued by larger �rms which enjoy better marketability.

The values of put options increase as market liquidity drops. Put options are more likely

to be exercised when interest rates are high, which, in turn, increases their values.

4.8 Appendix

4.8.1 The Leland & Toft Model

We provide a brief introduction of the Leland & Toft model used in our estimation.

The value of debt is given by

D(!t) =
C

r
+

�
N � C

r

��
1� e�r�

r�
� I(!t)

�
+

�
(1� �)L� C

r

�
J(!t):
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The bankruptcy barrier
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and n[�] denotes the standard normal density function.

The components of the debt formulae are

I(!) =
1
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�
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��2a
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and

y =
r � � � 0:5�2

�2

z =

p
y2�4 + 2r�2

�2

x = y + z

b = ln
�!
L

�
:

4.8.2 Constructing the Bivariate Lattice

We propose the following parametrization of the conditional risk neutral probabilities on

each node:

Xf XV RN probability

1 1 1
4
(1 +m1)

1 �1 1
4
(1�m1)

�1 1 1
4
(1 +m2)

�1 �1 1
4
(1�m2)

(4.10)

where m1 and m2 are two distinct parameters, whose values are determined by satisfying

three conditions: a recombining tree, no-arbitrage and a matching of the correlations

between V andR. We �rst look at the conditions for the term structure of the interest rate

tree to be recombining. Then we analyze the no-arbitrage and recombining conditions

for the asset value tree. Lastly, we set the necessary and su¢ cient conditions so that

combining the univariate trees produces an correlation between V and R that matches

the empirical one.

For the Hull and White version of the HJM model to be recombining, two conditions
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need to be satis�ed:

E [Xf ] =
1

4
[(1 +m1) + (1�m1)� (1 +m2)� (1�m2)]

= 0; (4.11)

and

var(Xf ) = E
�
(Xf � E [Xf ])

2� = E
�
(Xf )

2� = 1: (4.12)

It is important to note that the proposed parametrization of the conditional prob-

abilities satis�es the recombining conditions for the forward rate tree for any values of

m1 and m2:The necessary and su¢ cient condition for the other dimension of the bivari-

ate lattice, the V process, to be recombining is that the drift of the asset value process

is normalized to be zero. Then the stochastic process for asset value in equation (4:7)

becomes

ln

�
V (t+ h)

V (t)

�
= �VXV (t)

p
h: (4.13)

This discrete time �nite state process speci�cation converges to a geometric Brownian

motion speci�cation of the asset value. It is in the same spirit as the Cox et al. (1979)

binomial tree model for option pricing. The mean and variance of the random variable

XV in the asset value process are

E [XV ] =
1

4
[(1 +m1) + (1 +m2)� (1�m1)� (1�m2)]

=
m1 +m2

2
; (4.14)

and
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var(XV ) = E
�
(XV � E [XV ])

2�
=

�
1

4
(1 +m1) +

1

4
(1 +m2)

��
1� m1 +m2

2

�2
+

�
1

4
(1�m1) +

1

4
(1�m2)

��
�1� m1 +m2

2

�2
= 1�

�
m1 +m2

2

�2:
(4.15)

At this stage, the above parametrization for the risk neutral probabilities produces

a perfectly recombining interest rate tree. But the �rm asset value shock has non-unit

variance. Therefore, the asset value tree is not recombining unless m1+m2

2
is set to be

zero or at least converges to zero. The values of m1 and m2 at this stage still provide two

degrees of freedom. One is to insure that the discounted asset value, using the money

account as numeraire, is a martingale under the risk-neutral measure Q. The second is

to �t the correlations between asset value and term structure.

The �rst condition to infer m1 and m2 is

E

�
V (t+ h)

V (t)

�
= E

h
exp

�
�VXV (t)

p
h
�i
= exp (rh) ; (4.16)

where XV (t) is a random variable whose mean and variance are de�ned in equations

(4:14) and (4:15) ; respectively.

The other condition that needs to be satis�ed to infer m1 and m2 stems from match-

ing the correlation between the random variables Xf (t) and XV (t) to the empirical

correlation between the asset value and the riskfree rate, �:

Cov [Xf (t) ; XV (t)] =
m1 �m2

2
= �: (4.17)

Solving the two equations leads to:
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m1 =
A+B
2

m2 =
A�B
2
;

(4.18)

where
A = 4 exp(r(t)h)�2(a+b)

a�b

B = 2�;

and where a = exp
�
�V
p
h
�
and b = exp

�
��V

p
h
�
:

Note that m1+m2

2
is di¤erent from zero, which implies that the asset value tree is non

recombining. Given any parametrization of the conditional probabilities on each node,

the asset value shock, XV , would have a variance that is node dependent, when the shock

to the forward rate, Xf , is set to have mean of 0 and variance of 1. As shown in equation

(4:15), the variance of the asset return is node dependent. Using equation (4:16), it

implies

var(ln(
V (t+ h)

V (t)
)) = var

�
�VXV (t)

p
h
�

= �2V h� var (XV (t))

= �2V h

 
1�

�
m1 +m2

2

�2!
: (4.19)

Given that �
V
is assumed to be constant in the model, for the asset value tree to be

recombining in the limit, the necessary and su¢ cient condition is that
�
m1+m2

2

�2
tends

to zero. From equation (4:18), we have

�
m1 +m2

2

�2
=
2 exp (f(tjnode)h)�

�
exp(�s

p
h) + exp(��s

p
h)
�

exp(�s
p
h)� exp(��s

p
h)

:

By structure, no bivariate lattice is perfectly recombining in a framework that interest

rate risk and other sources of risks are modeled simultaneously. However, as the length of

one time step h in the lattice goes to zero, the variance of asset returns tends to converge
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to �2V h, which is node independent.

lim
h!0

�
m1 +m2

2

�2
= lim

h!0

2f(tjnode)h�
�
�s
p
h� �s

p
h
�

�s
p
h+ �s

p
h

= lim
h!0

2f(tjnode)h
2�s
p
h

= lim
h!0

f(tjnode)
p
h

= 0: (4.20)
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4.8.3 Table of Firms

Firm Name N Size Lev Payout Asset &Rf

$billion Rate Correlation

ALBERTSON�S INC 4 16706 39% 0.036 0.031

ALLEGIANCE CORP 9 3634 56% 0.017 -0.039

AMERCO 4 3208 80% 0.033 -0.015

ANADARKO PETROLEUM CORP 10 12012 36% 0.012 0.011

BAXTER INTERNATIONAL INC 5 22024 30% 0.057 0.005

BELLSOUTH TELECOMMUNICATIONS 36 81388 20% 0.026 -0.020

BOEING CO 27 65084 44% 0.017 0.001

BURLINGTON NORTHERN SANTA FE 16 29815 57% 0.020 -0.025

CSX CORP 31 22001 67% 0.029 -0.048

CHAMPION INTERNATIONAL CORP 19 10175 57% 0.026 -0.018

COCA-COLA ENTERPRISES INC 107 29173 66% 0.025 -0.048

CONAGRA FOODS INC 64 23633 47% 0.032 -0.004

CORNING INC 7 24548 28% 0.013 0.006

DOW CHEMICAL 33 50901 48% 0.034 -0.012

EASTMAN CHEMICAL CO 31 7972 52% 0.032 -0.041

EATON CORP 27 11033 47% 0.033 -0.009

FEDERATED DEPT STORES 19 17600 56% 0.022 -0.032

FORD MOTOR CO 8 284411 84% 0.044 -0.044

GENERAL MOTORS CORP 55 314864 88% 0.033 -0.109

GRAND MET PLC -ADR 5 12685 96% 0.045 0.076

HALLIBURTON CO 8 20306 36% 0.019 0.056

HARRIS CORP 3 2950 32% 0.015 -0.024

HERTZ CORP 32 9644 82% 0.038 -0.001

INGERSOLL-RAND CO LTD 14 13215 47% 0.024 -0.039

JOHNSON CONTROLS INC 14 14326 52% 0.018 -0.074

LOWE�S COMPANIES INC 29 38267 20% 0.007 -0.007
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(Continued)

Firm Name N Size Lev Payout Asset & Rf

$billion Rate Correlation

MCI COMMUNICATIONS 7 30983 41% 0.016 -0.065

MCCORMICK COMPANY INC 1 2919 30% 0.026 -0.013

MEAD CORP 6 6056 49% 0.027 -0.032

MERCK CO 11 161317 17% 0.023 -0.005

MOTOROLA INC 77 58797 33% 0.015 -0.012

NOVA CHEMICALS CORP 2 2815 93% 0.035 -0.063

OCCIDENTAL PETROLEUM CORP 29 20648 60% 0.041 -0.004

PENNEY (J C) CO 98 22460 64% 0.033 -0.015

PEP BOYS-MANNY MOE JACK 10 2146 63% 0.032 -0.028

PROCTER GAMBLE CO 49 127167 20% 0.022 -0.010

SYSCO CORP 3 21410 16% 0.012 0.008

TRW INC 3 13504 54% 0.026 -0.032

TENNECO INC 20 12673 45% 0.030 0.051

TEXACO INC 8 39887 42% 0.038 -0.009

UNION CARBIDE CORP 12 10145 46% 0.022 -0.019

WASTE MANAGEMENT INC-OLD 31 27408 48% 0.029 -0.030

WILLAMETTE INDUSTRIES 12 6450 42% 0.032 -0.019

XEROX CORP 43 42132 61% 0.030 -0.027
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Chapter 5

Conclusion and Summary

This thesis contains three essays that explore various topics in �xed income and derivative

Markets. These essays have in common their focus on di¤erent empirical and theoretical

features of contingent claims.

In the �rst essay we provide valuation results for contingent claims in a discrete time

in�nite state space setup. Our valuation argument applies to a large class of conditionally

normal and non-normal stock returns with �exible time-varying mean and volatility, as

well as a potentially time-varying price of risk. Our setup generalizes the result in Duan

(1995). For the class of processes we analyze in this paper, the risk neutral return

dynamic is the same as the physical dynamic, but with a di¤erent parameterization

which we characterize. We postulate that conditional non normality is important for

index return. The heteroskedacity alone is not enough to capture the �smirk�in index

options.

To demonstrate the empirical relevance of our approach, we provide an empirical

analysis of a heteroskedastic return dynamic with a standardized skewed variance gamma

distribution, which is constructed as the mixture of two gamma variables. Diagnostics

clearly indicate that the conditionally nonnormal model outperforms the conditionally

normal model, and an analysis of the option smirk demonstrates that this model provides

substantially more �exibility to value options.
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Unlike the �rst essay that looks exclusively at European style derivatives, the two

other essays focus on corporate bonds. In the �rst one of them we develop a methodology

capable of disentangling risk premia and expected losses components of the yield spread.

We measure default risk premia in a large panel of US corporate bond data spanning a

ten year period. We �nd that the risk premium is highly time varying. We show that the

expected loss and default components behave di¤erently over time. The risk premium is

at its most important for high grade debt, whereas the expected loss component increases

monotonically with the default probability. We show that the time series variation of

the risk premium is closely related to the overall market volatility whereas the expected

loss component appears more closely related to the average total volatility across �rms.

Perhaps our two most important �ndings are that (i) the time series variation observed

in the risk premium in bond markets can be replicated using equity market measured

risk premia translated to corporate bond risk premia and (ii) that including our risk

premium metric in a linear regression of bond spreads on theoretical determinants of

corporate bond risk premia increases explanatory power, suggesting that time varying

risk premia is a desirable feature of future structural credit risk models. The risk premium

we have measured is a translation of risk premia measured in equity markets. As such it

does not capture risk premia that may be speci�c to �xed income markets. We conjecture

that the unexplained part of our market risk premia may well contain information about

illiquidity and other speci�c �xed income factors.

As documented in the second essays, the most important drivers of corporate bond

prices are likely to be interest rate risk, default risk, and illiquidity. Thus, the option to

put back the bond to the issuers should provide insurance against all three. In this third

essay, we shed light on which risks are insured against by embedded puts and to what

extent. Using a sample of puttable bond and comparable regular bond transactions, we

�nd that the put option feature does signi�cantly hedge against all three risks. The

reduction in corporate bond yield spread due to the presence of a put represents, on

average, just over 40% of the yield spread. By means of regression analysis we show
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that the put option value (as measured by the spread reduction) is related to proxies for

default, interest rate, and marketability risk. To further understand the composition of

the put option feature, we develop a bivariate lattice model that simultaneously captures

correlated credit and term structure risks. The model is then applied to price regular

and puttable bonds to decompose the risk components contained in the put options.

We �nd that the dominant source of spread reduction is attributable to default risk �an

average of 60% of the reduction. However, we �nd that when default is imminent and the

�rm may not be able to honor the option, the put option value is signi�cantly reduced.

Perhaps surprisingly, only a small fraction (7%) of the spread reduction by put option is

due to other nondefault factors including illiquidity. This �nding con�rms relatively our

�nding in the second essay concerning the size of the non default component in the credit

spread of corporate bonds. More speci�cally we �nd that put options are less valuable for

bonds issued by larger �rms which enjoy better marketability. The values of put options

increase as market liquidity drops. Finally, we show that put options are more likely to

be exercised when interest rates are high. This explains why the put option increases in

value when interest rates increase.
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