
1+1 National Library
01 Canada

Bibliothèque nalionale
du Canada

Acquisilions and Direclion des acquisilions et
Bibltographic services Branch des services bibliographiques

395 WeHinglon Street 395, rue Wellinglon
Onewa, Onlario Onawa (Onlario)
K1AON4 K1AON4

NOTICE AVIS

.i

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C·30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inféril:!ure.

La reproduction, même partielle,
de cette m!croforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C·30, et
ses amendements subséquents.

•
PERSONAL "PROGRESS FUNCTIONS" IN THE

. SOFTWARE PROCESS

by
Khalid Sherdil

School of Computer Science
McGiII University, Montreal, CANADA

Novemberl994

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE

Copyright 1994 by Khalld Sherdll

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services Branch
395 Wellinglcn Sireet
Ottewe. Ontefio
K1A0N4

BibliothèQue nationale
du Canada

Direction des acquisitions et
des services bibliographiqlles
395, rue Wellington
Onewa (OntarIO)
K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LmRARY OF CANADA TO
REPRODUCE, LOAN, DISTRmUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAlNS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05628-7

Canad~

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BmLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRmUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

2

• Abstract

Individuals can expect continuous improvement in productivity as a
consequence of (i) a growing stock of knowledge and experience gained by
repeatedly doing the same task (first-order learning) or (ii) due to
technological and training programs injected by the organization (second­
order learning). Organizations have used this type of progress behavior in
making managerial decisions regarding cost estimating and budgeting,
production and labor schedu!ing, l'roduct pricing, etc. This progress was
studicd in productivity, product-qua!ity and personal skills, in an experiment
involving a sampie of 12 subjects, who completed one project every week for
ten weeks. Second-order training was provided to the subjects through the
Personal Software Process, PSP, of Humphrey. A within-subject repeated
measure time-series quasi-experimental design was used along with a
modified G/Q/M method. It was found that on average, progress takes place
at a rate of 20%, with the second-order training adding up to 13% more
improvement in addition to the first-order learning. Detailed statistical
methods were used to produce !inear and log-linear models of high
correlations, involving four variables: productivity, defect-rate, complexity
and cumulative output. The motivation of the subjects did not change
significantly during the experiment. It was also found that the McCabe's and
Halstead's complexity metrics had a correlation of 0.80 amongst each other.
However, no relationship could be found between the personal capabilities of
the individuals and the progress rate.

___0 _

Sherdil

Pug~ 2 (F)

• Résumé

Les gens peuvent s'attendre à une amélioration continue de leur productivité due ù
(i) l'accumulation de connaissances et d'expérience acquise en répétunt les mêmes
tâches (apprentissage de premier ordre) ou (ii) due à des prognullmes technolo­
giques et d'entraînement introduits par les entreprises (apprentissuge de second
ordre). Les organisations ont déjà utilisé ce type de comportement du progrès duns
leurs décisions concernant l'estimation des coûts et du budget, lu plunificution de lu
production et du travail, la tarification des produits, etc. Le progrès en productivité.
qualité de produits, et habileté personnelle u été étudié duns une expérience impli­
quant un échantillon de 12 personnes qui ont complété un projet pur semuine pen­
dant dix semaines. Un entraînement de second ordre leur u été donné li tmvers le
"Personal Software Process", PSP, de Humphrey. Un plun qU~lsi-expérimentul uvee
mesures répétées à l'intérieur du groupe de sujets ~ été utilisé uvec une méthode
G/Q/M modifiée. Nous avons découvert que en moyenne, le progrès du ù l'uppren­
tissage de premier ordre était de 20%, et que l'entraînement de second ordre U111élio­
rait ce pourcentage de 13%. Des méthodes statistiques détaillées ont été utilisées
pour produire des modèles linéaires et log-linéaires de haute corrélution utilisunt
quatre variables: productivité, taux d'erreur, complexité, et temps. La motivution
des sujets n'a pas changé de façon significative durant l'expérience. Nous avons
aussi découvert que les mesures de complexité de McCabe et Halstead avait une
corrélation de 0.80 entre eux. Par contre, aucune relation n'a pu être faite entre les
capacités personnelles des individus et leur taux de progrès.

•

3

• Acknowledgments

1 will like to thank Professor Nazim H. Madhavji, my supervisor, for his
support and supervision in the process of carrying out this research.

1 am also thankful to Khaled El Emam, for his help through out my Masters
program. His comments and suggestions have helped me a lot in designing
and executing this experimental work.

1 am thankful to my parents and family for their moral support. 1 would aise
like to thank my research group in particular, and the McGill University in
generaI, for providing an excellent environment to study.

•
Sh~;dlï---

• List of Figures

4

Figure 1:
Figure 2:

Figure 3:
Figure 4:
Figure 5:

Figure 6:
Figure 7:

Figure 8:
Figure 9:
Figure 10:

Figure 11:
Figure 12:

Figure 13:

Figure 14:
Figure 15:

Figure 16:

Figure 17:
Figure 18:

Figure 19:
Figure 20:

Figure 21:

Figure 22:

Fi/:ure 23:
Figure 24:

Figure 25:

Figure 26:
Figure 27:

Figure 28:

Figure 29:

Figure 30:
Figure 31:

Figure 32:

Figure 33:•
Sherdll

The Learning Curve
The Log-Linear Curve
The Plateau Model
The Stanford.B Model

The Main Model (on previous page)
Three types of progress functions

Productivity Progress Function
Personal Skills Progress FrIRctions

Product Quality Progress Function
Model for second order learning

Management Motil'ation in Second Order Learning
Engineering Technology & Training in 2nd Order Learnillg

First Order Learning

The Development Activity Complexity
Graph of Cum. Out. vs. Time

Graph of Productivity vs. Cum. Out.
Graph of Size Estimation Error vs. Cum. Out.

Graph of Time Estimation Error vs. Cum. Out.

Graph of Productivity Estimation Error vs. Cum. Out.
Graph of Def-Rate vs. Cum. Out.

Graph of Def-Rem. Rate vs. Cum. Out.
Sample graph showing significance of decrease

Graph of Complexities vs. Project No.

Graph of tl,e two complexities against each other
Graph of the Total and New Complexities vs. Project No.

Model for Productivity
Adding the third variable to Productivity model

Forward Selection in the Productivity Model

Forward Selection in the Defect Rate Model
The 4-Variable Model

Reused Code vs. Project No.

Sample graph showing interpolation

Graph of the two indices against each other

10
15

16
16

25

27

28
30
31

33
34

35

39

41

78
79

80

81

82
83

84

87

89
90
91

93

94

95

97

99

100

103

108

•

•

Figure 34: A typical graph of the subjective metrics

5

109

Sh;;dïï---

6

• List of Tables

Table 1: Problem Definition 25

Table 2: Parts of model and tlle section 1IIimbers 26

Table 3: Goals, Constructs and Metrics 49

Table 4: Objective Metrics 53

Table 5: Subjective Metrics 55

Table 6: Terminology 58

Table 7: Statistics on tlle Subjects 69

Table 8: Statistics on Projects 69

Table 9: Statistics on Environment 70

Table 10: Sequencing of Sections in Cllapter 6 77

Table 11: Goals l, 2 and 3 77

Table 12: Tlle correlations and significance levels of tlle linear leartling
curves 85
Table 13: The correlations, significance levels and tlle learning rates of t/le
log-linear learning curves 86

Table 14: Significance levels of tlle differences 88

Table 15: Means before and after the injection of tec/Illology 102

Table 16: Percentage decrease due to tecllnology injection, compared to
expected values from first-order pre-injection learning only 103

Table 17: Details of Personal Capability Index 105
Table 18: Capability Index vs. Learning Index 106

Table 19: Statistics on tlle subjective measures 110

•
--
Sherdll

7

• List of Boxes

•

Box 1:
Box 2:
Box 3:

Box 4:
Box 5:
Box 6:

Box 7:
Box 8:
Box 9:

Constructs, Relations and Hypothesis
Discovery, Demonstration, Refutation and Replication
Validitys and other related concepts
Random Sampling, Random Assignment & Matching

Pre-Experimental Designs
True Randomized Experimental Designs
Concerns and Validity Threats to the Design
Concerns and Validity Threats, from our design's perspective

Assumptions in Data Analysis

44
45
46
57
59
60

62

66
76

Sh;;dïï---

• Contents

8

•

Abstract
Acknowledgments
List of Figures

List of Tables
List of Boxes

Contents
1.0 Introduction
2.0 Related Work
2.1 History of Progress Functions

2.2 Mathematieal Models of Progress Funetions

2.3 Parameter Estimation

2.4 Labor vs. Organizational Learning

2.5 Management Motivation

3.0 The Personal Software Process

4.0 Problem Definition and Our Model
4.1 Model for measuring Improvtment

4.1.1 Productivity Progress Funclions
4.1.2 Personal Skills Progress Funclions
4.1.3 Quality Progress Functions

4.2 Model for Analyzing Second·Order Learning
4.2.1 Management Motivation
4.2.2 Engineering Tmining and Technology

4.3 Model for Analyzing First·Order Learning

4.4 Model for Analyzing the Development Activity Complexity

5.0 Research Method
5.1 Concepts, Terminology and Definitions

5.2 Measurement Instrument

5.3 Experiment Design

5.3.1 Terminology of Experiment Designs
5.3.2 Threats to Validity
5.3.3 Our Choice of Design
5.3.4 Implementation of our Design

5.4 Data Collection

6.0 Data Evaluation and Analysis
6.1 The Six Learning curves

6.2 Complexity Analysis

6.3 The 4·Varlable Model

Sherdil

2

3

4

6

7

8

10

14
14

15

17

18

19

20
23
27
28
3D
31

33
34
35

39
41

43
43

47
57
57
62
63
68
71

75
77

89
92

•

•

6.3.1 ProdUClivity
6.3.2 Dcfcct·Rutc

6.4 Engineering Training ln 2nd Order.Learnlng

6.5 Analysls of Flrst Order Learnlng

6.6 Management Motivation ln Second Order Learnlng

7.0 Discussion and Comparison with Related Work

8.0 Conclusion and Future Work

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX J
APPENDIX K

APPENDIX L

VITA

BIBLIOGRAPHY

9

93
96
99

104
109
III

115

118

119

120

121
122

123
124

125
126
127

128

129

130

--
Sherdll

ID

1.0 Introduction

An individual person can expect continuous improvement in productivity as n
consequence of a growing stock of knowledge and experience gained by repeatedly
doing the same task [5]. Organizations have used this type of progress behavior in
making managerial decisions regarding cost estimating and budgeting, production
and labor scheduling, product pricing, etc. [4][29]. While considerable research on
this topie has been done in industrial and manufacturing sectors [60], we found
Uttle such emphasis in the software process field, which is one of the most
emerging and widely used 'Industry' of the present times. Furthermore, such
research has remained almost exclusively foeused on outeomes, such as units of
items produeed, rather than processes [1], although it is the industrial processes
which determine the nature of the product.

Our objective in this research was to study the progress ftmctions for an
individual in the domain of software process. A progress function is a
mathematical form for representing the improvement in performance, typically
for sorne production activity. In simple terms, the progress function represents the
percentage decline in cost or labor requirement as the cumulative output increases
by one unit [29][35], as shown in Figure 1.

Figure 1: The Leaming Curve

Costor
Direct Labor
Hours per
Unit

Cumulative Unit Number

Sherdil

•

•

11

Progress functions differ from the widely used term learning curves because the
former also incorporate a second-order leaming mechanism [24]. Whereas the
jirst-order leaming (also referred as autonomous or labor leaming) is the
improvement due to the Experience which a person gains by repeatedly doing the
same task, the second-order leaming (also known as induced or organizational
learning) is due to technological and training programs injected by the
organization [2][42]. Although the distinction between these two is often blurred
[42], we have analyzed them separately in our work. Such a distinction is useful for
making managerial decisions regarding initiating formai training programs and
making engineering technology changes [2].

In order to study these progress functions, we have carried out an experimental
study. An integral part of this experiment is the personal software process, PSP,
designed by Humphrey [30]. In this experiment, we deployed 12 software
developers working on 10 short programming projects at a rate of one project per
week. These projects used the C++ programming language, which none of the
subjects was familiar with, and had to leam it during the course of the experiment.
For each project, they kept precise track of Even the minutest measurements, such
as the details of every defect found, every line of code (new, reused, modified),
time spent on each development phase, etc. For consistency, ail software
developers used the same standards throughout the experiment, such as the same
coding standards, the same personal process, the same data collection techniques,
etc. The subjects underwent an intensive training program through which they
were taught various software engineering techniques, which provided them a
second-order organizationalleaming medium. This training program introduced
one new concept every week, such as the statistical methods for estimating size,
code reviews, design reviews, etc.

Using the data gathered, besides measuring their rate of progress, we attempted to
analyze the contributions of the first and second order leamings. This involved,
amongst other things, an evaluation of the subjects size-estimation abilities, the
advantages of reusing code, and the benefits of using code-reviews. Our study also
incorporates various subjective measures, such as the managerial motivation
provided to the subjects, the degree of the subjects' personal capabilities, their
programming Experience, etc. This includes an analysis of how the fust-order
learning is related to the personal capabilities of the subjects.

Finally, one of the most important aspects of our work emerged from the results of
the study of the programmer-productivity and defect-quality leaming curves. We
found that besides being dependent upon time or cumulative output, the two
above mentioned variables also depend upon the complexity of the programming

--
Sherdll

•

•

12

task as weil as upon each other. This lead to an analysis of a model involving the
following four variables, using detailed statistical techniques:

• Programmer Productivity

• Defect Quality

• Cumulative Output (or Time)

• Complexity

For measuring complexity, we used the two most popular metrics, namely
McCabe's and Halstead's. We also carried out a comparative analysis of these two
metrics.

In order to carry out scientifically valid work, we followed Basili's Goal Question
Metric (G/Q/M) paradigm [9] for defining our objectives. This measurement
paradigm describes how to define the objectives and formalize metrics
corresponding to them. However, we made sorne modifications to this method in
order to incorporate sorne extra precautions against threats to the validity of our
experiment.

Any acceptable study needs a scientifically valid experimental design. Our design
is a hybrid of the time-series quasi-experimental design and the repeated-measure
within-subject design. The details of such experiment designs are described in the
body of the thesis.

Our work has several original aspects to it which have not been dealt with before,
particularly in software engineering. As mentioned earlier, while considerable
research on this topic has been carried out in industrial and manufacturing sectors,
little emphasis has been paid in the software process field. Due to the very nature
of the software process field, we had to take into consideration several variables
which are not needed in the manufacturing field. For example, nearly ail the
leaming curve studies have been carried out with the assumption that the nature
and complexity of the task stays constant. However, in software development,
such an assumption would be unreasonable since the programming projects
generally vary in the level of difficulty. Therefore, we had to treat the Complexity
of the work done as a variable in addition to the cumulative output. Furthermore,
our work is different from most of the past studies because besides measuring the
progress in productivity, it involves measuring the progress in product quality,
something not considered in other studies. Similarly, most of the studies on
progress functions use a count of tangible objects to measure the rate of progress.
Our work not only looks at this productivity-oriented aspect of progress but also at

Sherdll

•

•

13

the progress in the personal skills of the individua!.

Our study results are as follows:

• Learning took place in ail the three fields, productivity, quality and skills. The
average learning rate was about 20%.

• The second order training and technology helps by up to 13% more in progress,
as compared to the first order learning.

• Both, the linear and the log-linear models can be used to describe the leaming
curve. However, the quadratic model does not significantly increase our
understanding of the progress as compared to the linear mode!.

• No relationship can be deduced from our data between the personal capabilities
of the subjects and their progress.

• The motivation of the subjects did not change significantly through the course
of the experiment

• The Halstead's and the McCabe's complexity metrics have a high correlation
amongst each other

• In the 4-variable model, it was found that as the cumulative output increases,
the productivity increases while the defect-rate decreases. The latter two
variables were found to be inversely proportional to each other.

• It was found that as complexity increases, the productivity decreases. However,
no relationship could be deduced from our data between the complexity and
the defect-rate

Section 2 discusses related work on the subject of leaming curves. Section 3 gives
the details of PSP. Section 4 states our objectives and describes our experiment
mode!. A description of the research method including experiment design is given
in section 5 while in-depth data analysis is done in section 6. Finally, comparison
with related work and the conclusion are in sections 7 and 8, respectively.

Sherdil

14

• 2.0 Related Work

This section presents sorne background work whieh is related to our study. ft
describes how the learning curves evolved and how they are being used. This
section also gives an introductory mathematieal description of the theory behind
the progress functions.

2.1 History of Progress Functions

The history of the leaming curves can be traced back to the early twentieth century.
In the late nineteenth century, industrial expansion in the USA was accompanicd
by growing efforts to control management processes using empirieal methods [24).
At that time, there were two prevailing theories: economie and managerial. The
economie theory paid more attention to the equipment and other capital goods for
achieving a greater firm productivity. The managerial theory also focused on statie
cost functions that were insensitive to time and experience. The progress function
was thus a major discovery because it suggested that the efficiency of industrial
process was dynamie and changing. [24)

Between 1900 and 1930, the use of progress functions was applied to the domain of
aircraft manufacturing while during the second world war, it was applied to the
domain of ship-building [46][24). Contractors searched for ways to prediet cost and
time requirements for construction of ships and aircraft to conduct the war [60).
Hence, the importance of progress functions grew and by now they have been
applied to nearly aIl the economie and managerial fields, and there exists over 60­
years of literature on this topie. These fields include electronies, machine tools,
paper-making, steel, apparel, automobiles and others [24). However, Iittle
emphasis has been paid to this topie in the software process field.

T. P. Wright, an engineer and an administrator, was the first to report the
phenomenon of the leaming curves in 1936 [24][60). He observed that as the
quantity of units manufactured doubles, the direct labor time taken to produce
each unit decreases at a uniform rate depending on the manufacturing process
being observed. Subsequent studies often substituted direct cost or cumulative
output for direct labor time (29).

•
Sherdll

15

2.2 Mathematical Models of Progress Functions

Wright used a log-Unear model, i.e., when the direct cost (or labor), Y, is plotted
against the cumulative output, X, on logarithmic scales, it gives a straight Une, as
shown in figure 2.

Figure 2: The Log-Linear Curve

Costor
Direct Labor
Hours per
Unit

1000

100

10

1

1 10 100 1000

•

Cumulative Unit Number

However, this model is not suitable for aIl the situations, and several firms and
researchers use different models, suéh as the plateau model (see Figure 3) or the
Stanford-B model (see Figure 4) [60].

Sherdll

16

Figure 3: The Plateau Madel

Castor
Direct Labor
Hours per
Unit

1000

100

10

1

1 10 100 1000

Castor
Direct Labor
Hours per
Unit

1000

100

10

1

Cumulative Unit Number

Figure 4: The Stanford-B Model

1 10 100 1000

•
Cumulative Unit Number

The former plateaus down, implying that there is an upper ceiling as ta how
much a persan can improve, while the latter shows that initially the learning rate
might be a bit slow. A linear model can be expressed in the form

Sherdll

•
17

y=ax+b

We can also apply a quadratic model to the learning curve for more accuracy. The
equation for a quadratic model

y = $X
2 +bx+c

Most studies use the non-Iinear model,

y= ax-"

By simply changing the notation, a = K and n = ob, we can write this equation as

y= Kx"

where K is the input cost for the first unit.

The progress ratio, p, is defined by

p= 1-2/1

A good measure of the leaming is the percentage improvement, L, which is given
by

L=2"xlOO

2.3 Parameter Estimation

In order to mathematically describe the above equations, we need the exact values
of the constant parameters, such as p and n (given above). Several studies have
been carried out to estimate these parameters. The most common value reported
in Iiterature for the progress ratio, p, is around 0.20 (or an 80% learning curve
percentage, L) [29][60], but there is a huge variance in these results [24]. Besides
finding these parameters, another important aspect is to analyze the degree to
which any data fits these models, as done by Hirsch [29]. The well known pearsons'
correlation coefficient, R, can be used for this purpose. The absolute value of R
represents the degree of fit on a scale of 0 to 1. Whereas it is easy to find R in linear
equations, it can be cumbersome to do 50 for the equations of the form

• y=Kx"

Sherdll

•
lB

However, a simple transformation of this equation can be made by taking the
logarithms of both the sides, which gives us a linear equation, as shown below.

logy =logKx"

log y = logK+logx"

Let

logy = y

logx = X
logK =c

where c is a constant, then

Y=c+nX

where the slope of a plot of Y against X is n. We thus need to analyze how weB the
data fits this equation.

2.4 Labor vs. Organizational Learning

The improvement due to on-the-job, first order, leaming is termed as labor
learning. Determinants of this might inc1ude the person's general experience,
specifie experience on jobs of a given type, education, gender, age, etc. [42]. We can
group all these factors under the category personal capabilities and study whether
or not there is any relationship between the personal capabilities and the progress
in performance. However, besides labor leaming, there can be other types of
leaming also. According to Arrow [5],

"... learning takes place only as a by-product of ordinary production. In fact,
society has created institutions, education and research, whose purpose is t0

enable learning to take place more rapidly."

Here, Arrow is referring to the second-order leaming, and says that even field
theorists like Gestalt who stress the role of insight in the solution of problems
have to assign a significant role to previous experiences. In 1965, Levy [42]
proposed that to improve the planning process, the leaming behavior of the firm

• (besides that of the individuals) also needs to be understood. Earlier, in 1952,

Sherdll

•

•

19

Hirsch (29) had found that about 87% of the changes in direct labor requirements
were associated with the changes in technical knowledge, which is a form of
Organizational Leaming. More recently, in 1991, Adler and Clark (2) formed a
Learning Process Model, in which the Organizational Leaming is further
attributed to (i) engineering/technology changes and (ii) to the labor training. A
third factor which contributes to organizational leaming is management
motivation, which is discussed next.

2.5 Management Motivation

Motivation and incentives are more important in labor-intensive manufacturing
than in machine-intensive manufacturing (60). It is found that in the latter, the
phenomenon of 'plateauing' is much more lik\~ly to occur (7). Several researchers
have worked on the effect of incentives and wages on performance, and have
found that an incentive during leaming period leads to laborers learning faster
[58). Considering its importance, no study on progress functions can be complete if
the management aspect is ignored.

Sherdll

20

• 3.0 The Persona) Software Process

An integral part of our experiment is the personal software process, PSP, designed
by Humphrey of Software Engineering Institute [3D). This process provides an
individual with an in depth second order learning program. The principles of the
personal software process are to help the individuals to [3D):

• know their own performance: to measure their work, to recognize what works
best, and to learn how to repeat it and improve upon iti

• understand variation: what is repeatable and what they can learn from the
occasional extremesi

• incorporate these lessons in a growing body of documented personal practices.

In this experiment we had deployed 12 software developers working on 10 short
programming projects at a rate of one project per week. These projects were in
C++, a language which they an were not familiar with and which they had to learn
with the passage of time. For each project, they kept precise track of even the
minutest measurements, such as:

• Every Line of Code, LOC, (new, reused or modified)

• Every Defect found (from 190 different defect types)

• Phase of Injection and Removal of Defects (from 8 development phases)

• Time spent on fixing each defect

• Time spent on each activity and phase of the project

• Estimated and actual values of project size and rime

The above measurements seem to be ample for individual progress rate studies for
each subject. However, for making comparisons amongst the subjects, we needed
sorne consistency in their measures. Therefore, an the software developers had to
use the same standards throughout the course of the experiment, such as the
same:

•
• System Environment

• Physical Environment

• Programming Language

• Defect Type Standards

Sherdil

•

•

21

• Logical LOC Coding Standards

• Physical LOC Coding Standards

• Data Collection Techniques

• Data Base Package

• Personal Process

As required by PSP, complete details regarding the background of each subject were
taken from them. For this purpose, our measurement instrument included a 6
page form, given in Appendix A. Later the subjects had to appear in a 30 minute
interview to verify and validate their personal data. This data included:

• Level of Education

• Type of Education (Majors, Minors)

• Total Job Experience (Full-time and Part-time)

• Total Programming Experience

• Languages used (total LOC and months for each)

• Database related packages used

• Spreadsheet and Graphing packages used

• Statistical Toois used

• Experience with Software Process Engineering related tools and courses

• abject Oriented Design experience

• Design methods and Formai methods used

The subjects were given an intensive training program through which they were
taught various software engineering techniques, hence providing them a second­
order organizational training. This training program introduced one new concept
every week, which helped them in improving their software development
process. These concepts included:

• Measuring and Tracking the project

• Software Project Planning

• Statistical Methods for Estimating Size and Time

• Schedule and Resource Planning

• Code Reviews & Defect Prevention Strategies

--~-----------Sherdll

•

•

22

• Structured Design Methods

• Cyclic Personal Process

Durhi.g this program, the subjects attended three hours of interactive lectures
every week with an opportunity to discuss, amongst other things, the
measurement techniques and goals. These techniques form a part ot the
measurement instrument, which is described in the next section.

Sherdll

23

• 4.0 Problem Definition and Our Model

An experiment process provides a basis for the needed advancement in knowledge
and understanding [15). We build models of the software process, test the
hypotheses about these models through experimentation, and then use this
information to refine old hypotheses or develop new ones [15). AIso, for research
results to be meaningful, software measurement must be weil grounded in theory
and empirical results must be obtained through weil designed experimental work
[6).

Figure 5 represents our model, which is an extension of the models developed by
Levy in 1965 [42) and Adler and Clark in 1991 [2). It shows that any continuous
development activity takes place concurrently with first-order and second-order
learning, which may lead to improvement. We have developed instruments
through which we attempt to measure and test our hypotheses for this mode!. As
is often the case, our instrument may not be perfect, since it is difficult to draw a
distinction between the two types of learning. However, what we hope is that our
results would help us to refine our model further as more and more replications
of our work are carried out. This is analogous to Basili's qllality improvement
paradigm, QIP. This approach of iterations of hypothesizing and testing takes
special importance in the adolescent field of software engineering because we need
to improve significantly our knowledge of how software is developed and the
effect of various technologies on it [15).

•
Sherdll

24
e

24

----.......... Occurs Concurrently

----------..... Consists of

------i...... in

,,,,,,,
" Legend

11/

Figure 5: Progress
Functions in the Software
Process

___________________________________~ Sberd il

•

•

25

Figure 5: The Main Model (on previous page)
We can now state our problem definition as. we go through our model in figure 5.
This figure shows that concurrent to any development activity are the two types of
leamings: first order and second order. The latter can be attributed to two factors:
management motivation and the engineering technology and training. These
leamings lead to improvement, which can be in productivity, personal skills or
the product quality. Table 1 below describes how each item in figure 5 corresponds
to a problem, which we intend to tackle.

Table 1: Problem Definition
- - - - - + - -- - -- -- - -..,

1 ' 1\ ~',\.II :~l \d~ '1- ~ ;1 \~ • '1 1'.1 _ .1 ,_ • (~ l 1\

1. - -
Development Activity Does the complexity of the development activity

task affect the rate of learning?

First Order Learning Is the first order learning related to the personal
capabilities and/or experience of the individual?

Second Order Leaming Does the second order leaming help significantly
more than the first order leaming?

Management Does the management motivation affect the rate
of leaming?

Engineering Technology and Do the individuals perform better due to the
Training injection of technology and due to training?

Improvement Which model (linear, quadratic or logarithmic)
best describes the learning curve?

Productivity What is the progress ratio in the improvement in
productivity?

Personal Skills What is the progress ratio in the improvement in
the personal skills of the individuals?

Product Quality What is the progress ratio in the improvement in
the quality of the product? How are the
productivity and the product quality related to
each other? Do these two variables depend on the
complexity of the development task?

Sherdll

•

•

26

To solve each problem, we need a measurement instrument. We will now
describe our model in depth, whieh is used in solving the above problems. This
would require more specifie details of the problem also. Our sections are
sequenced as follows (where parenthesis refer to the box shapes in the main model
in figure 5):

• 4.1 Improvement (black box)

• 4.2 Second order leaming (brown box)

• 4.3 First order learning (brown box)

• 4.4 Development activity complexity (black circle)

Table 2 below shows the ordering of these sections as we describe the
corresponding parts of the mode\.

Table 2: Parts of model and the section numbers
i.~;'-;-' \~I'~:;ll=.~-I~I__ \~~J~l~\:-':':-I--- -- - -- - - - - - - - - - - - -- 1, - - ,

.1_ 1 Ill, l",

- - - - -- - - -- - -- -

"
- -

Development Activity Complexity 4.4

First Order Leaming and its relationship with personal capabilities 4.3

Second Order Leaming 4.2

Management Motivation 4.2.1

Engineering Training and Technology 4.2.2

Improvement 4.1

Progress in Productivity 4.1.1

Progress in Personal Skills 4.1.2

Progress in Product-Quality 4.1.3

Comparing the second order leaming with the first order leaming 4.2.2

Relationship between Productivity, Quality, Complexity and 4.4
Cumulative Output (4 variable model)

Sherdil

•

•

271

4.1 Model for measuring Improvement

Figure 6: Three types of progress functions

Engineering measurements can be generally characterized as either process or
product related. [52] We have emphasized on both these types by studying three
different progress functions, represented by circles in figure 6: (i) progress in
productivity, (H) progress in personal skills and (iii) improvement in product­
quality. Whereas the product-quality represents the nature of the product
produced, the personal-skills represent an inherent part of the personal process
used by the software developers, and the productivity represents the rate of
development of the product. These three types are now discussed in detail in the
following three sections.

--
Sherdll

•

•

28

4.1.1 Productivity Progress Functions

Figure 7: Produclivity Progress Function

Productivity can generaUy be defined as completing an activity as expeditiously as
possible, and has economic connotation of goods and services produced per unit of
labor or expense [33]. The programming speed can be measured in output
produced per unit labor time. Whereas the latter can be easily measured in
programmer-hours or programmer-months, problem arises in measuring the
output produced. The simplest and perhaps the most commonly used product
metric is the lines of code, LOC, and according to Basili, it should be regarded as a
baseline metric to which aU other metrics should be compared [29].

But a fundamental problem is that of knowing exactly what is meant by the phrase
"lines of code." The unit lines of code per programmer-month is found to
consistently penalize high-levellanguages, since they can encode any logic in
much fewer statements than a low-Ievellanguage would. Hence it is difficult to
compare productivity between programs of different languages [33]. In our case we
solved this problem by imposing aU the subjects to use the same programming
language. However, even within the same language, there can be a variety of
measures associated with the generic concept of lines of code [12]. For example, for
measuring effort, comments should be counted in the source code, but for
approximating functionality, the executable statements (and data dedarations) may
probably be a better measure [12]. According to T. C. Jones [33], this problem is not
serious provided it is recognized. The key is to state the counting rules explicitly,
and then to adhere to those standards.

--
SherdlJ

•

•

29

For programmer-productivity, we chose the metric logical LOC per hOllr. A logical
LOC is more accurate than a physical LOC since it uses the number of tokens as a
micromeasure of the number of units of information. Logicallines are invariant
to editing changes, uniquely definable and correlate better with development effort
[30]. These tokens may be operators, operands or any other item, provided they are
explicitly stated in the coding standards and then devotedly followed.

Appendix B shows the logical LOC counting standards which were used by all the
subjects. One attribute of a good measuring standard is that it should be
automatically countable. Physical LOC have an advantage over logical LOC because
it is easy to develop their automatic counters [30]. We overcame this difficulty by
defining physical LOC coding standards in such a way that each physical LOC
contained one and only one logical token. These physical LOC coding standards are
given in Appendix C. The subjects then developed their own physical LOC
counters, which indirectly measured the logical LOC. In this way not only did we
get accurate data automatically, but also managed keep consistency amongst all the
subjects so that they could be compared amongst each other.

Finally, another important point to consider is the number of Reused and
Modified LOC. Often experimenters inc1ude the number of Reused LOC in the
productivity measurements as in [26]. Often the programs consist of over 50% [13]
of reused code (it was 54% in our case). Obviously reused code requires much less
effort, one fifth of a new LOC by one estimate. According to T. A. Standish [54],
modified lines should count as 1/2 reused and 1/2 new. In our case, we have
averaged out by not counting the reused code, and giving full weight to modified
code. As mentioned before, it is not important whatever standards we pick, as long
as we are consistent. Hence we get,

P P d •• _JI<...:.0:..;,o:::.if...:JI<.:..:e:..:.w:....o.:..:r_M=.:.od.:..:ifi~·,.:..:ed::....=Lo..:"lg:!,;i.:..:ca::,:I.:L;.:O:..:..Crogrammer ro uctlVlty =-
Programmer Hour

Sherdll

•

:0

4.1.2 Personal Skills Progress Functions

Figure 8: Personal Skills Progress Functions

Size Estimation
Abilitics

!E-----. Time E.\itimntion
Abilities

Productivity
Estimation Abilitics

Most of the studies on progress funetions use a eount of tangible objects to
measure the rate of progresse Our work not only investigates produetivity-oriented
aspect of progress but also investigates progress in the personal skills of the
individual developer. We have used the estimation ability of a person to model
the skiils. This estimation ean be of size of the programming task, time required to
complete the task, or even of the subjeets produetivity, as shown in figure 8.

Our metrics for measuring the progress in estimation are the Size Estimation
Error, the Time Estimation Error and the Productivity Estimation Error. Before
each projeet, the subjeets estimate the size of the job (in logical LOC) and the
expeeted time required ta aecomplish it. Using these two metrics, or otherwise,
they also make an estimate of their produetivity. Aiter eompleting the project the
aetual values of size, time and produetivity are used to find the percentage error.
Henee,

S· E' . E IEstimated LOC - Actual LOC1 100Ize stlmatlOn rror = x
Actual LOC

.,.. E' . E 1Estimated Time - Actual Timel 100
J lme stimatlon rror = x

Actual Time

d
.. E' . E 1Estimated Productivity - Actual Productivityl 100

Pr0 uctlVlty stlmatlon rror = x
Actual Productivity

Humphrey [31] has shown that at the organizationallevel, the pereentage error in
size estimation for a group of mM employees decreased with the passage of

Sherdll

•

•

31

projects. One goal of our experiment is to determine whether or not the same
phenomenon occurs at the personal level.

The subjects were given second-order training to improve their size estimation
ability. This is described in detail in section 4.2.2.

4.1.3 Quality Progress Functions

Figure 9: Product Quality Progress Function

One major difference between our work and most of the past studies is that our
work involves measuring the progress in quality, besides measuring the
productivity progress. In measuring progress, we use cumulative output as a
variable which affects the progress. Hence the progress in productivity or quality
varies as the cumulative output varies. However, productivity and quality are
mutually dependent on each other as weIl, besides being dependent on
cumulative output. At the organizationallevel, Deming [59][61] has shown that
improved productivity is a direct result of improving quality, while Putnam [45]
has empirically shown that the defects decline rapidly as the productivity
improves. At the personallevel, Humphrey [30] has observed that improvements
in product quality do not seem to reduce productivity. According to Remus and
Ziller [47]:

"... tlze quality of tlze software development process is continuously
improving. Programmers are becoming more proficient at applying defect
removal techniques. Therefore, it is desirable to be able to predict quality 0 n
tlze basis of measurements made on the software as it is being developed."

Sherdll

•

•

32

Since in measuring the progress in productivity or quality, it is not sufficient to
just consider the cumulative output, we used a model involving al1 the three
attributes.

The term qllality has many attributes, and so any attempt to define it should be
based on the principle of meeting the users' needs [30]. Defeci raies (during product
development [33]), defect removal efficiency, and the l/lImber of defects
discovered after the prodllct is shipped [47], are often cited in the Iiterature as
reasonable starting points [36]. However, the latter is inappropriate for our study as
the developed programs do not undergo extensive usage. Thus, in our study we
used defect rates and the defect removal efficiency.

The defect rate was normalized to defects per hundred LOC. We fol1owed the
suggestion of T. C. Jones [33] and lumped together all the defects, regardless of
source of origin, and counted them as a single variable, defects. Appendix H shows
the defect types standard used in our experiment. Similarly, the defect removal
efficiency of all the phases was also combined. Here also, the reused code was not
used since it was assumed that it does not contain defects. If on the contrary it did,
then naturally the programmer had to fix that code, hence making it 'modified'
instead of reused. Hence our metrics were as follows:

Defect Quality (Defects / lOOLOC) = No. of Defects Found x 100
Total New & Modijied LOC

No. of Defecls Found
Defect Removal Rate (Defects Removed / hour) = 1 d

Tata Time taken la fin & [IX lire defecls

The subjects were given second-order training to use code reviews in
order to improve quality. This is described in detail in section 4.2.2.

--
Sherdil

•
33

4.2 Model for Analyzing Second-Order Learning

Figure 10: Madel for second arder leaming

,,,
,l',,,.'

,,,
'\,,,,

'Il

•

Figure 10 shows that the second-order learning can be divided into two categories:
(i) the motivation and incentives given by the management, (H) the technology
changes and training provided by the engineering department. In addition, there
can be second order leaming from other sources of knowledge also, such as that
from the customer for whom the software product is developed, but in our case
such sources do not apply. Renee given below is the measurement instrument
used to analyze the first two categories only.

Sherdll

•

•

34

4.2.1 Management Motivation

Figure 11: Management Motivation in Second Order Learning

,,,,,,,,
*'

Zultner [61) has interpreted the fourteen points of Deming's approach to adapt
them to MIS management. Amongst other things, these deal with the motivation
and enthusiasm aspects of the labor force. Enthusiasm can be contagious, and
people tend to perform better in an optimistic environment than in the "won't
work" environment [31)[32). As mentioned before, incentives and wages on
performance during leaming period lead to developers learning faster [58].
Therefore, we decided to design an instrument to keep track of the programmers
Motivation, Interest and Satisfaction.

The instrument comprises of a survey form which each subject fills after each
project. The survey form is attached in Appendix C. The survey asks the subjects to
rate the following metrics:

• Motivation: defined as the desire or incentive given to subjects by the
management.

• Interest: defined as the 'willing attention' the subjects took in the projects.

• Satisfaction: defined as the pleasure the subjects receive upon fulfillment of a
project.

• Usefulness: the extent to which the subjects leamt from the project

Sherdll

35

The above metrics are subjective. These were quantified on a scale of -5 ta zero ta
+5 (11 categories), and also labeled, such as from 'Completely Unmotivated' ta
'Neutral' to 'Extremely Motivated.' Furthermore, the subjects were asked ta give
their responses separately for the coding project and for the data collection process.
Finally, during the personal interviews through the course of the experiment, the
students were given clarifications on any ambiguities they had regarding this
measurement instrument. Due to these above mentioned steps, we are quite
confident that our subjective data quite accurately depicts how the programmers
felt at each stage of the experiment.

4.2.2 Engineering Training and Technology

Figure 12: Engineering Technology & Training in 2nd Order Leaming

Size Estimation
Techniques

Code Reviews

RusedCode

•
As described above, the software developers get second-arder leaming from the
training given ta them through the personal software process program. Two key
aspects of this training program are the Size Estimation method and the Code

--
Sherdil

•

•

36

Reviews (see figure 12). The third aspect, reused code, is of lesser significance in
our work, and is discussed later.

These training mechanisms are injected after the 3rd and the 6th projects
respectively, out of the total of nine programming projects and one non­
programming one. A comparison of student data before the injection of these
technologies and after their injection can give an idea of their benefits. Whercas
before the injection, the subjects' improvement can be attributed solely to first­
order learning, after the injection it is affected by both types of learnings. Based on
the data before the technology injection, we can estimate the improvemcnt trend,
Le., we can find the equation of the learning curve before technology injection and
extend it forward to predict what the improvement should be in future if only
first-order learning continues. We can compare these predictions later with the
actual data after the technology injection, which inc1udes the second order
learning also. Hence any increase in learning beyond our predicted values could
then be attributed to the second-order learning factor. Of course such estimates
have several uncertainties involved, and our confidence in them cannot be
hundred percent. Such a confidence depends on the number of subjects, the
number of measurements taken, the experimental design, etc. These issues are
discussed in the experimental design (section 5) and in data analysis (section 6).

Given below is a description of the two training methods. Also described below is
the concept of Reused Code, which, if done formally (using libraries or otherwise)
as in our case, is also a second-order engineering technology mechanism which
helps the programmers beyond the autonomous learning.

SIZE ESTIMATION

Various methods exist in the literature for estimating the cost, size and time of a
programming task, e.g., Boehm's COCOMO [16). However, such models seem to
work in certain environments, but not in others [12), and it b hard to tailor them
to the characteristics of different environments of the individuais.

At the PSP level, we need an estimation procedure which can utilize the
conceptual design at the very early (planning) stage of the project to produce an
estimate. One such method is Albrecht's Function Points [3). Hov; ,;·,cr, such
methods have a low reliability [36) and are principally used for estimates in
commercial data processing [30), instead of small individual projects. Therefore,
we used a PROxy-Based Estimating (PROBE) method, designed by Humphrey [30),
in which each individual uses his or her own past data to produce a size estimate

--
Sherdil

•

•

371

for each Object in the conceptual design. These Object sizes are then mapped to get
the total program size, using the database of previous programs. Hence this
method Js customized for their needs of the subjects. Appendix G shows the
template used by :;ubjects for estimating size.

COPE REYJEWS

Literature is full of advantages gained by carrying out code reviews. According to
Fagan [26], there is evidence that early experience gained from inspections causes
programmers to reduce the defects in the later phases. Moreover, reports from
industry [50) al ,e that code inspections can be up to 20 times more efficient than
testing. In an experiment involving professional programmers, Code Reading
detected more software faults than did functional or structural testing [13).

As a part of PSP, Humphrey has also emphasized code-reviews or inspections,
hence providing software developers with 2nd order training. Special emphasis is
paid to those defects which have been occurring most frequently in the pasto For
this purpose, the subjects analyze their past data and prepare Pareto charts of the
most frequently occurring defects. A checklist of these defects is then made, which
aids in the code review process (see sample check list in Appendix G).

In order to prepare Pareto charts, detailed past data of defect types is a prerequisite.
Therefore, besides measuring the phases of injection and removal of defects and
the time taken to fix each defect, the subjects were also required to categorize the
defects using a defect types standard, which contained over 190 different defect
types. These defect types, though not exhaustive, were more than adequate to give
a good insight into the nature of the defect. Subjects were also required to give a
one to two line explanation for each defect. The list of defect types was prepared by
the author based on his personal experience, Ripley's analysis of syntax errors [48],
C-Ianguage library's inc1ude file ermo.h, Leblanc and Fischer's case study of run­
time errors in Pascal programs [41), Humphrey's defect type standard [30], and
Turbo Pascal's Error Message Codes [40).

Defect analysis is important for defect prevention. Although a qualitative causal
analysis can provide feedback on each individual defect, it is akin to studying the
ocean floor with a microscope [18]. The other alternative is to use a quantitative
analysis, using statistical defect models or software reliability growth [18]. These
methods collect precise defect data from a large number of projects, and then use
using techniques such as defect control charts or pareto charts, to decrease the
number of defects in the future projects. And this is precisely what our subjects

Sherdll

•

•

3B

did in this second-order training. Note that the main theme behind these themes
is to first measure and then to improve the quality. As Walrad and Moss [59) put
it, "QI/ality experts are certaill tllat meaSl/remellt is esselltial to improvillg quality.
III ot1ler words, meaSl/remellt drives ql/ality." Apart from using this data in Code
Reviews, we did not have any objective on our part to analyze it by phase or type
(see future research considerations, section 7.0).

REUSEPCOOE

The concept of Reusing Code, if done formally using libraries or otherwise, can be
considered as a second-order learning mechanism. However, unlike in the above
two cases (Size Estimation training after project 3 and Code Reviews after project
6), in case of Reuse we cannot study the effects of injecting a technology because it
starts immediately after the first project. Moreover, not ail the subjects are required
to Reuse the code, and they do so depending on their specifie needs. Hence
although we can study what percentage of the code was reused, we cannot deduce
how much leaming or improvement took place due to the Reuse factor alone.
However, by quantitatively studying the amount of Reused code, we can obtain a
qualitative impression of its importance, and hence indirectly about the
importance of the second-order technology and training.

There has been an on-going debate in the last few years regarding the merits of
software reuse (8). Software engineers have discussed whether reuse provides any
major insight into the development process or if it is just another development
technique, whieh may be helpful in sorne contexts and inappropriate in many
others. According to Bames and Bollinger (8), reuse is a fundamental paradigm of
development and until it is better understood, significant reductions in the cost of
building large systems will not be possible. Jones (34) speculates that by the year
2000, the percentage of new applications may be only 10-15 percent, and hence
software-reuse would be one of the primary factors in the development process.
Pue to its importance, software reuse is healthy in the form of teaching and
application of reusable software abstractions, and the data structure and algorithm
books are full of them [54).

In PSP, since several of the projects assigned to the subjects are related to each
other, reuse plays an important role in our experiment. Thus in order to study the
effects of, we would be studying the percentage reuse in each project as weil as the
overall cumulative reuse through the course of the experiment.

--
Sherdll

•

•

39

4.3 Model for Analyzing First-Order Learning

Figure 13: First Order Leaming

ln the previous section (4.2), we discussed ways to study how much second order
learning can contribute in addition to the first order learning. In this section we
analyze sorne internaI attributes of the first-order learning.

Determinants of first-order learning might include the person's general
experience, specifie experience on jobs of a given type, education, sex, age, etc. [42).
We can group aIl these factors under the category of personal capabilities and study
whether or not there is any relationship between the personal capabilities and the
progress in performance. For this purpose, we can plot a graph of progress (in
productivity, personal skills and quality) on Y-axis against a capability-index of the
12 software developers. The progress of the subjects can be the mean of the
following five progress ratios, p:

• p in Size Estimation Abilities

• p in Time Estimation Abilities

• p in Productivity Estimation Abilities - p in Programmer-Productivity

• p in Defect-Quality

The first three ratios are for subjects' Estimation Abilities while the latter two are
for subjects' performance. The main problem now is to assign the capability-index
to the subjects. We have decided to use two main factors in calculating this index:

--
Sherdll

•

•

40

(i) Subjects Past Software Development Experience and Education.

Various factors can be inc1uded in the analysis of past experience as listed below.
The values for these factors were provided by the subjects themselves, based on
their own estimates. A six page questionnaire was used as the primary instrument
to gather this data (see Appendix A). These factors inc1ude:

• Total number of languages programmed in

• Total experience in programming

• Educational excellence level and degrees obtained

• Total full time and part time job experience

• Experience with software packages

• Experience in abject Oriented Design and Software Engineering

(ii) Subjects performance in the 10 projects

The metrics used here are based on the absolute performance of the subjects
during this experiment. Recall that it would have been difficult to compare the
performance of the subjects had we not defined our coding and defect standards.
The metrics used in this case inc1ude:

• Productivity in LOC/hour

• Defects / KLOC

• Defect Removal Rate in Defects Removed/hour

• Grade given to the subjects in the PSP course

In the section on data analysis (section 6.5), we describe in detail how the Capability
Index was calculated from the above factors.

Sherdil

•

•

41

4.4 Model for Analyzing the Development Activity
Complexity

Figure 14: The Development Activity Complexity

Nearly ail the leaming curve studies have been carried out with the assumption
that the nature and complexity of the production or development activity stays
constant. However, in the field of software development, such an assumption
would be unreasonable. Intuitively, the more difficult a task is, the lower the
productivity. Card and Agresti [48] have done empirical work on Design
Complexity and shown that it has a strong correlation (R = 0.83) with error-rate (in
errors per KLOC) but no correlation (R =-0.49) with productivity (in LOC per
hour). If our learning curves suggest an improvement, it can be because of
decreasing complexity. Therefore, we had to treat the complexity of the work clone
as an independent variable. It is an independent variable since we did not control
it in this experiment. But complexity is a very general term and may many
different terms, so we need some standard measures for quantifying it.

In the field of software, several measures of software complexity have been used.
The two metries which we chose need no introduction[14]: McCabe's cyclometic
complexity [43] and Halstead's software science effort [19]. Software Science has
several other metries also, such as the software science length, but in our case we
are more concemed with the complexity rather than the length of the program
(though it is true that for maintenance purposes, length adds up to complexity). In
order to accurately and efficiently carry out measurements using these two metries,
we used a tool, PC-Metrie, developed by SET Laboratories, Inc. [44]. This tool has
been referenced in other research work also, for example, in [27]. Appendix J
shows sample complexity results generated by this tool.

Sherdll

•

•

42

According to Curtis, et al. [20], there is no exact mathematical relationship between
the McCabe's and Halstead's metrics, but one should not be surprised if a
significant correlation between them occurs. We have availed of this opportunity
of having gathered a large amount of accurate data to perform a comparative
analysis of the two metrics, besides using them for our learning curve studies.
This comparative study is important to our work because if the two metrics are
giving completely differing values of complexity, then it would decrease our
confidence in how accurately we have quantified this variable.

Generally, complexity is thought to give us an understanding to such software
characteristics as maintainability and reliability [52]. However, our concern here is
not these post production issues, but the effort required during the production of
the product, because it is this effort which we are measuring in our progress
studies of productivity. According to Curtis, et al. [20], there is empirical evidence
that software complexity metrics were related to the difficulty programmers
experienced in understanding and modifying software. Others such as Sunohara,
et al. [57] also share similar views. Basili [14] defines effort here as the number of
man-hours spent from the beginning of functional design to the end of acceptance
testing, which agrees with our definition. However, he points out that how wel1
the various metrics really measure or predict effort or quality is still an issue in
need of confirmation since none of these two metrics seem to manifest a
satisfactory explanation of effort or quality of the program. But he does believe
that if the programs are developed by individuals (as in our experiment), the
metrics' correlations with actual effort seem to be strongest.

Curtis, et al. [22], feel that one potential use of complexity metrics is to get feedback
during the development of the program. During our experiment, we found that
more complex the problem we gave (according to our estimates), more complex
was the solution which the programmers developed (based on two different
quantitative metrics desC'ribed below). Hence our assumption here is that the
complexity ref1ects the effort required to do a program, and hence affects the
productivity of the programmer.

--
Sherdll

43

• 5.0 Research Method

Having defined the problem along with the general approach we are taking to
tackle it, we now describe our measurement instrument and the experiment
design. The term research method refers to the entire study, in which we carry
out the following activities:

• Defining the Objectives

• Setting the metrics

• Validating our Goals and Metrics

• Designing the experiment for the subjects

• Conducting the experiment

• Collecting data and validating it

• Analyzing the data

The term experiment design applies only to the part "Designing the experiment
for the subjects" listed above. After describing the measurement instrument
(section 5.2) and the experiment design (section 5.3), we give details of our data
collection process (section 5.4). But first (in section 5.1), we give a brief background
of sorne research concepts, terminologies and definitions, which will extensively
be used in the remaining portions of our work.

In this chapter, often we describe standard concepts, terms and definitions from
the past literature. These descriptions are a prerequisite to what follow after them.
However, sorne readers might already be familiar with these details. Therefore,
these descriptions are given in boxes, and may be skipped if needed.

5.1 Concepts, Terminology and Definitions

•

The field of software measurement has been criticized for poor empirical methods
and for a lack of theoretical foundations [6]. Useful measures can be developed
under a well-grounded measurement theory framework. It is thus important that
empirical work in software engineering help strengthen the framework by
explicitly defining concepts, terminology and definitions used in the empirical
work. This is the purpose of this section with reference to our work.

Sherdll

•

•

44

A theory behind an experiment can have at least three features [38): Constructs,
Relations and Hypotheses. These are given in Box 1.

There can be four different purposes of any research which examines these
hypotheses [38). These are discovery, demonstration, refl/tation or replication.
Descriptions of each are given in Box 2. These will be discussed in context, as we
analyze the data.

--
Sherdll

•

•

45

The development of a theory underlying an experiment (constructs, relations and
hypothesisl, might lead to the development of an instrument for measurement.
An instrument must have severaI characteristics, most of which are validation
criteria[45] [49] [38]. These inc1ude, amongst other ones, the content validity, the
construct validity, the internaI validity and the externaI validity. Other
characteristics include interpretability, reliability, effectiveness, statisticaI
conclusion validity and precision. Software engineering literature has details on
these issues. However, they are listed again in Box 3, with brief exampIes on how
they are pertinent in our case.

Shcrdll

•

•

46

--
Sherdll

•

•

41

There are various models which incorporate the above mentioned factors into an
overall experimental strategy. A discussion of such models and our choice of a
particular model is discussed below.

5.2 Measurement Instrument

There are a number of approaches for defining software engineering metrics. We
have used a derivative of one of the most prominent ones amongst them, Basili's
Goal/Question/Metric paradigm, G/Q/M [7]. This derivative method incorporates
sorne improvement suggestions, especially more validation tests [25]. One
important aspect of G/Q/M is to define ail your goals and metrics in advance and
then follow them strictly, instead of getting data first and then observing the
trends and patterns found in it to identify 'interesting' goals.

We were c1ear in specifying our goals, as evidenced by the goals published in a
workshop position paper [53] at the start of our experiment, submitted prior to the
data collection stage. Below we describe the steps which we followed in our
derivative of G/Q/M method:

Sherdll

•

•

48

• Step 1. Identify a set of goals based upon your needs

• Step 2. Define the Constructs which quantify these goals

• Step 3. Develop the metrics which provide the data for the constructs

• Step 4. Validate the goals, constructs and metrics.

• Step 5. Define and execute a mechanism for col1ecting and validating data

• Step 6. Analyze the data col1ected to study the goals

A detailed explanation of these steps follows.

Step 1. Identify a set of goals based "pan your needs [9)

A Goal is considered to be at the conceptuallevel [11]. It is defined for an abject
(Products, Processes, Resources, etc.), from various point,> of view, relative to a
particular environment. Listed below is our set of goals. The section number for
corresponding measurement instruments is listed next to each goal.

• G1: Identify the Progress in Productivity (4.1.1)

• G2: Identify the Progress in Personal Skills (4.1.2)

• G3: Identify the Progress in Product-Quality (4.1.3)

• G4: Analyze the second-order leaming through management motivation (4.2.1)

• G5: Analyze the second-order leaming through training and technology (4.2.2)

• G6: Analyze the first-order learning (4.3)

• G7: Study the effects of change in Production Activity Complexity (4.4)

As mentioned in the problem definition, productivity (G1) and quality (G3) are not
only related to the cumulative output but also to each other. We had original1y
planned to study the relationship between these three variables. Hence this was a
sub-objective, since it is used in explaining other main objectives. During the
course of the experiment we found that complexity (G7) also affects the
productivity and quality. This meant that we now had a four-variable model,
studying which could be a completely new objective. Hence before performing data
analysis, we amalgamated our sub-objective with G7 to get a new definition of G7:

• G7: Analyze the 4-Variable Model of Productivity, Quality, Complexity and
Cumulative Output.

Sherdil

•

•

49

Step 2. PeOne the CQnstrycts which qyantify these gQals

This is the mQst difficult step since it Qften requires the interpretatiQn Qf fuzzy
terms like quality Qr prQductivity within the CQntext Qf the develQpment
envirQnment [9]. SQmetimes the CQnstructs dQ nQt fully satisfy the entire gQal. In
that case the missing aspects can be nQted SQ that later interpretatiQns Qf the results
can be qualified apprQpriately. Table 3 lists the CQnstructs fQr each gQal.

Step 3. DevelQP the metrics which provide the data fQr the CQnstructs

The gQals/cQnstructs are now formalized by making them quantifiable and the
actual data needed for them is identified [9]. These data metrics can be considered
as the variables needed to explicate our theoretical interests.

Table 3 lists the metrics along with their units, for each goal and construct. Note
that most of the metrics are measured against cumulative output (or time), which
in Qur case is represented by cumulative number of LOC. Since this metric is used
extensively in our work, we will not repeatedly mention it in Table 3. Given below
is Table 3, in which symbol G represents Goal, C Construct, and M is for metric.

Table 3: Goals, Constructs and Metrics
[--, - - 1 1; '. ,~l~'._\ 1'1 ;l'-~;- - - ~- ---1: ~J-\:J ~ Il:' ~- - ----,.- -----ii.'~JI,. ;~._~ .-- -,- - ~ ,-'1' - Il' Ij.. Il _ --- -- - ~

Jt__ ~ __: -_ _'.______ .J~ ___ ~___________ .--lL____ 0 ____________----.J

G1: Progress in Cl: Programmer Ml: Programmer LOC/hour
Productivity Productivity Productivity

G2: Progress in C2a: Project-Size M2a: Percentage %
Personal Skills Estimation Size Estimation

Abilities Error

C2b: Project-Time M2b: Percentage %
Esitmation Time Estimation
Abilities Error

C2c: Personal- M2c: Percentage %
Productivity Personal-
Estimation Error Productivity

Estimation Error

G3: Progress in C3: Defect-Quality M3(i): Defect Rate Defects/KLOC
Product Quality

Sherdil

•

•

50

M3(ii): Defect Defects
Removal Rate Removed/hr

G4: Analysis of C4a: Motivation M4a: Subject's Scale of -S to 0 to +S
Management appraisal of
Motivation in 2nd Motivation
Order Leaming

C4b: Interest M4b: Subject's Scale of -S to 0 to +S
appraisal of Interest

C4c: Satisfaction M4c: Subject's Scale of -S to 0 to +S
appraisal of
Satisfaction

C4d: Usefulness M4d: Subject's Scale of -S to 0 to +S
appraisal of
Usefulness

GS: Analysis of CSa: Improvement MSa: Percentage IX,
Technology in 2nd in Size Estimation Decrease in Size
Order Leaming Abilities Estimation Error

CSb: Improvement MSb: Percentage 0;',

in Quality Decrease in Defect-
Rate

G6: First Order C6a: Progress Rate M6a(i): Progress Ratio
Learning: Ratio, p in Size
Relationship Estimation
between Personal
Capabilities and
Progress Rate

M6a(ii): Progress Ratio
Ratio, p in Time
Estimation

M6a(iii): Progress Ratio
Ratio, p in
Productivity
Estimation

M6a(iv): Progress Ratio
Ratio, p, in Prog-
Productivity

--
Sherdll

•

•

51

M6a(v): Progress Ratio
Ratio, p in Defect-
Quality

C6b: Subjects' M6b(i): No. of Number
Experience and Languages
Education programmed in

M6b(ii): Total Months
Experience in
Programming

M6b(iii): Data mapped to a
Educational Quantitative scale
Excellence Level,
Degrees obtained

M6b(iv): Total Full- Months
time and Part-time
Job Experience

M6b(v): Experience Months/package
with Software
Packages

M6b(vi): Experience Number of Courses
withOODand taken or related
Software Tools used
Engineering
Courses

C6c: Subjects' M6c(i): Average LOC/hr
Performance (in Productivity
the 10 projects)

M6c(ii): Average Defects/KLOC
Defect Rate

M6c(iii): Average Defects-
Defect-Removal Removed/hr
Rate

M6c(iv): Grade Course G.P.A
obtained in the PSP
course

Sherdll

•

•

52

G7: Analyze the C7a: Programmer- M7a: Programmer- LOC/hr
Four-Variable Productivity Productivity
Model

C7b: Defect-Quality M7b: Defect-Rate Defects/KLOC

C7c: Complexity of M7c(i): McCabe's Cyclomatic
Code Cyclomatic Complexity

Complexity

M7c(ii): Halstead's Number
Software Science
Effort

C7d: Cumulative M7d: Total LOC
Code Output Cumulative Logical

Cpde

Sœp 4. Yalidate the goals. CQnstructs and metrics.

In section 5.1, we had given details of various validation criteria. In our
experiment, validation has been given a foremost priority. There is a generallack
of understanding of the meaning of validation of software measures [6) and
unfortunately, software measurement research is often suspect because of a Jack of
rigor and unjustified daims. According to Straub, et al., instrument validation has
been inadequately addressed in MIS research [56):

"Because of rapid changes in technology, often the research issues are !Iandled
with dispatch. Lack of validated measures in confirmatory research mises the
specter that no single finding in the study can be trusted. ln many cases t!lis
uncertainty will prove ta be inaccurate, but, in t!le absence of meas uremen t
validation, it lingers."

We were cautious in our choice of selecting metrics. Most of the metrics were
objective, while the subjective ones were carefully quantified. Wherever
appropriate, we selected those metrics which have been used on numerous
occasions in the previous studies. Nevertheless, in order to formaUy validate our
goals, constructs and metrics, we contacted seven experts in the field of software
measurements, and asked them to fill out a fifteen page validation form (see
Appendix D). This form gave details of the metrics, and asked the experts to check

Sherdll

•

53

for, amongst other things, content validity. This survey was followed by detailed
interviews with these experts wherever a divergence in views was found. Such a
method of validating metrics is sometimes also referred as Face Validity [38], in
which a group of judges evaluate the measuring technique and suggest their
opinions. Face Validity is a subjective process, but we can calculate a validity figure
by computing the amount of agreement among judges. However, in our case there
was little divergence, and that too mostly amongst subjective metrics. Most of the
experts had no objections on the objective metrics since these have been used
extensively in past research works. From the previous table, which gave a listing
of ail the metrics, we list only the objective ones below (Table 4).

Ml M7a M6c(i) Programmer-Productivity LOC/hr

M2a M4a Percentage Size Estimation %
Error

M2b Percentage Time %
Estimation Error

M2c Percentage Productivity %
Estimation Error

M3a M7b M6c(ii) Defect Rate Defects/KLOC

M3b M6c(iii) Defect-Removal Rate Defects-Removed/hr

M5b Percentage decrease in %
Defect Rate

M6a(i)-(iv) Progress Ratio, p Ratio

M7c(i) McCabe's Cyclomatic Cyclomatic Complexity
Complexity

M7c(ii) Halstead's Software Number
Science Effort

M7d Total Cumulative Logical LOC
LOC

The metrics such as LOC/hr, Defects/KLOC, Defects Removed/hr, McCabe's
Cyclomatic Complexity and Halstead's Software Science Effort need no

Sherdil

•

•

54

introduction in software engineering research. A description of their past usage,
their drawbacks and why they have been chosen rather than other metrics is given
in chapter 4. Furthermore, following Jones' suggestions [33], we have consistently
defined every metric, and have then resolutely followed the definitions.
Therefore, for example, by defining Productivity to be Programmer-Productivity,
we imply that by this metric we measure productivity of a programmer and
nothing else. AIso, the relation between the constructs and the variables is
straightforward, e.g., LOC/hr represents Programmer-Productivity directly. Doubts
might arise in case of construct-goal relationship though. For example, does defect
quality really reflect quality. As mentioned earlier, we selected those construds and
metrics which have been used in previous studies repeatedly. Hence we are
confident that in our case the variables have high effectiveness and the construct
and content validitys are strong.

We were very concerned initially about the internai validity. Our original model
was to study the constructs/variables against cumulative output alone. However,
when we began considering unhypothesized variables, we had to take into account
the motivation and incentives. Our search for greater internai validity lead us to
develop even 4-variable models (along with several other variables which were
held constant or static). After incorporating ail these variables, we believe our
model has a strong internai validity.

External validity has always been a critical issue for laboratory studies. In our case
this problem holds, and even though we had some subjects with extensive
experience in industry, great concern should be taken in generalizing our results to
be applicable in general industrial software environments.

Our instrument is reliable. In our case there was no need to carry out Test-Retest
correlation or Split-Half correlation [38] to check for reliability. This is because the
nature of our experiment was, in essence, to take the same measurements week
after week at least nine times. Consistency amongst our results during ail the nine
rounds, by itself, is a proof of high reliability.

The metric Progress Ratio, p, is a derived metric, i.e., it is calculated from other
basic metrics. This metric has been used in most of the learning curve studies, and
hence was selected by us so that the results could be compared. The metrics for
calculating estimation errors are also only a simple calculation based on other basic
metrics. Finally, the metric Cumulative Output has been used instead of Time,
because of its past usage in learning curve studies. In fact, we prefer it over time
because the output produced per unit time is not constant, and hence the
experienced gain per unit time varies.

Sherdll

55

Now we discuss the subjective metrics hom Table 3, listed again in Table 5. Note
that we have a large number of subjective metrics because it was our goal to have
high content validity. These subjective metrics are completely independent of
most of the other variables in our work, and have been studied to show that they
are static and stay constant. Hence any objections to the use of these metrics should
not offset the overall results obtained irom our work.

•

M4b

M4c

M4d

M6b(i)

M6b(ii)

M6b(iii)

M6b(iv)

M6b(v)

M6b(vi)

M6b(vii)

Sherdll

Subject's appraisal of
Motivation

Subject's appraisal of
Interest

Subject's appraisal of
Satisfaction

Subject's appraisal of
Usefulness

Number of Languages
Programmed in

Total Experience in
Programming

Educational Excellence
Level, Degrees obtained,
Majors and Minors

Total Full-Ume and Part­
time Job Experience

Experience with Software
Packages

Experience with Object
Oriented Design and
Software Engineering
Courses

Grade obtained in the PSP
course

Scale of -5 to 0 to +5

Scale of -5 to 0 to +5

Scale of -5 to 0 to +5

Scale of -5 to 0 to +5

Number

Months

Data mapped to a
Quantitative scale

Months

Months/package

Number of Courses taken
or related Tools used

Course G.P.A

•

•

56

Sorne of these metrics might seem objective, e.g., number of languages
programmed in, total job experience, grade obtained, etc. However, they are not
objective because we had to design our own scales in order to calculate a Personal
Capability Index from them.

An import~nt feature of all these metrics is that they have been quantified,
although they could have been left qualitative. Appendix E shows the instrument
for measuring motivation (metrics labeled M4). It's check boxes are labeled with
both qualitative tities and quantitative figures. A prominent feature in this
instrument is the unusually large scale used (-5 to 0 to +5). This was designed to
improve the precision and the sensitivity. In particular, the negative range is
aimed at facilitating greater interpretability of pessimistic feedback from the
subjects.

Metrics labeled M6 are used for two constructs: (i) subjects' experience and
education and (ii) subjects' performance in the 10 projects. Data for these metrics
was collected at the beginning of the experiment using a six page questionnaire
(see Appendix A). This questionnaire was designed and validated (by face
validation) by the software engineering group at McGill university. However, it
inc1udes a section designed and validated by Humphrey and his colleagues for
their own research purposes. The data was then transformed in such a way so that
the Personal Capability Index could be calculated. This transformation mapping
was designed by the author such that the precision, sensitivity and interpretability
were duly considered.

This questionnaire was the only instrument which was used at the beginning of
the experiment (and was used only once). Therefore the question of reliability
arises here. For this purpose, during the third and fourth projects, all the subjects
were interviewed individually. During these 30 minute interviews, they were re­
asked all those questions where ambiguous, i1logical or doubtful answers were
initially given. Due to contradictions in the subjects responses, sorne of the metrics
had to be dropped. For example, the students were asked before the experiment to
estimate the total number of LOC they have programmed. At that time, sorne
subjects had no prior experience with measurements, and sorne gave answers such
as 209,000 LOC in six years. At the time of the interview, however, they had
measured sorne of their work and admitted that those values were exaggerated.
Hence in order to maintain reliability, such metrics were removed from the study.

Sherdll

•

•

571

Step 5 pefine and execute a mechanism for cQ!lecting and vaUdating data

Data cQllectiQn is a CQre part Qf any empirical study. We paid particular attentiQn tQ
cQllecting valid data. We will discuss this in detail in SectiQn 5.4.

Step 6 Analyze the data CQ!lected tQ study the gQals

We gave prime impQrtance tQ statistical cQnclusion validity. Various statistical
techniques were used, and tests for significances were conducted. Complete details
Qf data analysis are given in Section 6.

5.3 Experiment Design

Scientists need viable form with which to express scientific aims. Without
significant content, established theory and strong hypotheses, the design of
research lacks a strong foundation. And without form and structure adequately
conceived and created for the research purpose, little of value can be accomplished
[56]. In our work, we paid particular attention to such issues despite the numerous
budgetary and time constraints we were facing.

5.3.1 Terminology of Experiment Designs

There are various different experiment designs, and in order to understand them
it is necessary to give the definitions of random sampling, random assignment
and matc1ling [38] [37] [49]. Tbese three methods are used in selecting and
assigning subjects from li general population into experimental groups. Readers
familiar with experimental design techniques, especially those in social relations
and clinical studies would be familiar with these terms and hence may skip Box 4.

--
Sherdll

58

Box 4: Random Sampling, Random Assignment &: Matching

... 8UO'-

Now we will explain sorne terminology which we will be using (sec Table 6).
These notations have several variations in the literature, and hence should be
properly understood in order to follow our experimental design.

G

o

x

-x

Group of subjects, randomly selected from a population. When
referring to more than one group, we imply that the two or more
groups have been randomly assigned from the subjects who have
been randomly selected from the population.

Observation (e.g., the ael of taking data), a dependent variable, an
effect

Treatment (e.g., induction of technology), an independent
variable, a cause

Treatment X was not given to the group

•

These notations will now be used in describing the experimental designs. These
designs can be divided into three categories: (i) Pre-experimental, termed 'pre'
sinee these designs do not satisfy the criteria of being fully and (H) Truc
Randomized experimental, which are the most vaUd scientific designs but costly to
implement since they need large sample sizes and (Hi) Quasi-experimentaJ, a
hybrid between the above two, which can be scientifically vaUd but not fully truc
experimental.

Sherdil

•

•

59

(i) Pre-Experimental Designs

In these designs (see Box 5), there is a total absence of control, and hence they are of
minimal value in establishing causality [49]. The two types in this category are the
One-Shot Case Study and the One-Group Pretest-Posttest Design. These are the
most basic designs and readers familiar with them may skip Box 5.

(H) True Randomized J:xperimental Designs

Randomized true experimental designs involve more than one group of
randomly assigned subjects. The five types which we selected for this category (sec
Box 6) are the Control-Group Comparison, Pretest-Posttest Control Group,
Solomon, Factorial and Within Subjects/Repeated Measures designs. These
designs have often been followed in Iiterature and hence readers familiar with
them may skip Box 6.

Sherdll

•

•

Box 6: True Randomized Experimental Designs

---~

Sherdll

60

•

•

61

(Hi) Quasi-Experimental Designs

There is a vast difference between the pre-experimental design and the
randomized (and/or true) experimental designs. Whereas the former cannot be
considered scientifically valid, the latter are usually tedious and expensive, often
requiring a large sample size. A compromise between the two can be achieved by
modifying the pre-experimental design with some forethought and planning, into
a scientifically usable quasi-experimental design. An example of this type of is the
time-series design.

The time-series is an extension of the one-group pretest-posttest design (01 X 02).
Instead of one observation, it uses several observations before and after the
treatment. Hence,

OO ... OXOO ... O

One difficulty with these longitudinal (or time series) designs is that learning
occurs over time and hence time itse1f is a variable in a sense. However, this is not
a problem in our case because 'time' is exactly the variable which we are studying.

Sometimes the treatment occurs only once, but its effects continue afterwards also.
Or, sometimes the treatment is injected in the middle of the experiment, and then
continuously fed in. In that case we get:

OO ••• OXOXOXOXO

Sherdll

•

•

62

Sometimes the time series design is used with a control group. If the two groups
are randomly assigned, then it is a full experimental design (instead of being a
quasi one).

Gl OO OXOOO

G2 OO O-XOOO

Note that this is different than the within subject design, where there are multiple
treatments in differing orders.

5.3.2 Threats ta Validity

This section describes some of the objections which are raised on the above
mentioned designs (see box 7) [38]. These also include the threats to the validity of
the experiment such as maturation, history, instrumcntation, II/ortality, selection
and testing. Other concerns include the evaluation apprc/lension, the dCII/and
characteristics and the Hawthorne effect. Some of the readers might already be
familiar with these threats, and hence may skip box 7 without losing any
information about our experimental design.

Sherdil

•

•

63

5.3.3 Our Choice of Design

ln this section we describe the rationale for our choice of a particular research
design, why we rejected various other design alternatives, and what objections
may be raised on our design.

As discussed above, the pre-experimental designs are not sufficient for a scientific
study. Therefore we rejected them. One important requirement of a design is to
have a control group, so that one group receives the treatment while the other one
does not. However, we are in an extremely unique position because one of our
main research goals is to study the first-order learning for which the only
treatment needed by the subjects is time. Hence, even if we have a control group,
which receives no treatment from us, it would have differences in the pre and
post tests just because of the elapsed time and the subjects would have learned
more due to autonomous learning. Because of this unusual variable which we are
studying, it is difficult to apply a control group, and hence a true experimental
design.

Shcrdll

•

•

64

However, we could have used a control group to monitor the second-order
treatment, which is the training given to the subjects. One group could have been
given the training while the control group could have carried out without
training. Such a design would have been a true experimental one, and we would
have preferred to use it, but could not because we had the limited choice of those
subjects who took the PSP course. Thus we could not have a control group.
Furthermore, such true experimental designs would have needed a large sample
of subjects, at least enough for two large groups. The closest we could get to using a
true experimental design was to use a within-subject design, because in it the
control group is needed only to vary the order of the treatments, instead of varying
the types of treatments. Since our design resembled the true repeated-measure
within-subject design, most of the features of any true experimental design were
incorporated in our work. These include:

• pre-test and post-test observations

• repeated within-subject measures over long periods

• random selection of subjects from a population of graduate computer science
students

In fact, our design at least is equal to a Time-Series Quasi-experimental design, and
at most is equal to a Repeated-Measure Within-Subject True experimental design.
As mentioned before, a repeated-measure design has the pattern:

OXI0X20

According to Sheil [59]:

"The high degree of variability among programmers of similar background
makes simple experimental designs (in which different participants are used
for each condition) prone to negative conclusions, as sligllt systematic
differences between conditions tend to be waslled out by large witllin­
condition variation. One of the standard techniques for controlling this is tlle
use of 'repeated-measures' designs, in which eacll participant is observed in
more than one condition."

However, the experimenter has to use two groups to make sure that the effects of
the first treatment have vanished before the start of the second treatment. Hence
weget:

--
Sherdll

• Gl

G2

OXI0X20

0X20XIO

6.5

•

Iiowever, in our design the two second-order treatments which we chose to study
are independent or mutually exclusive. These two treatments are:

• Xl =Size Estimation Training

• X2 = Code Reviews for Defect Removal Training

Obviously, the above two treatments do not effect each other in any way. Hence we
do not need two separate groups, and our design can be reduced to:

OXI0X20

Another reason why we did not make two groups out of our sample was that we
knew about the background (experience and performance) of ail the students in
detail. Hence it would not be justified if we had made two groups (which would
not have been equivalent or matched) and then pretended that they were
equivalent on the grounds that we had used random assignment. Although
scientifically such a random assignment cannot be questioned, but we would not
have been satisfied with such a design knowing that the two groups are not
matched.

A positive aspect of our design is that there is not one but three observations
before and after each treatment, hence providing more reliability. Hence in our
case:

000XI000X2000

where each observation is taken at a one week interval. This can he written as:

01 02 03 Xl 0405 06 X2 07 OS 09

The reason why there are three observations in between treatments is that one of
the treatments which we are studying is 'time.' In other words, since we are
studying the first-order leaming, we are taking measurements with the passage of
time and hence time itself is a treatment, or an independent variable. Of course,
simultaneously we give second-order treatments also, which are Xl (size
estimation techniques) and X2 (code review procedure). Since these two are

--
Shcrdil

•

•

66

independent or mutually exclusive (i.e., post-treatment effects of one do not
influence the other), we can break up our above design model into:

000X1000000

000000X2000

And these are actually two separate Time-Series Quasi-experimental designs. As
mentioned before, if used with caution, Quasi-experimental designs can be used in
valid scientific studies. In our case, we not only have such a design but also have
several added features which make it resemble a true within-subject design.

We will now discuss step by step the threats to validity (discussed in section 5.3.2)
and see how seriously they effect our experiment, if at ail (see Box 8).

Box 8: Concems and Validity Threats, from our design's perspective

Sherdll

•

•

671

--
Sherdll

•
68

To summarize the above discussion, nearly all the major threats to validity have
been removed or reduced. Although there are some threats which still exist, we
can be quite confident that our design is strong and vaUd. Now we explain the
details of the implementation of our design.

5.3.4 Implementation of our Design

The experiment was done on the students who had enrolled in a course entitled
-Personal Software Process.' This course was designed by Humphrey of the SEI and
taught at McGill University by Madhavji. Below we now the background of the
subjects, the training lectures and projects, and the environment.

SUBIECTS

Twelve full time graduate students had enrolled in the course. With the exception
of one subject, all had either a bachelors degree in computer science or were
enrolled in the masters degree in computer science. That one exception, though
not a computer science major, had two years of programming experience of over
20,000 LOC in five different languages and had taken prior computer science
courses. He~:ce, none of the twelve subjects was new to the field of computer
science. Since ail the students had enrolled in the course based on their personal
choices, the experimenters had no influence in their selection process. Hence the
subjects represent a random selection from the population of graduate computer
science students. Exactly half of the students had prior full-time as well as part­
time job experience, while the other half had no job experience at ail.

None of the subjects had any experience in C++, the programming language used
in the course. Hence, ail the subjects were at the same starting point in the
learning curve. However, this was not their only common denominator. They all
were similar in the sense that they aU had extensive experience with C and with

• other programming languages. The statistics are given in Table 7:

--
SherdiI

69

Number of Males

Number of Females

Mean experience with C++ Language

Median experience with C++ Language

Mean experience with C Language

Median experience with C Language

Mean total programming experience

Median total programming experience

Number with full~time and part-time job experience

Number with no job experience

TRAINING LECTURES AND PROjECTS

10

2

o months

o months

28 months

24 months

6.5 years

6.0 years

6

6

Every week two lectures, each of duratian one and a half hours, were given to the
subjects in which they were taught ways ta improve their personal process. After
each set of lectures, the students were assigned a programming project, which
utilized the techniques taught to them, 50 that the students actually implement
those methods, and hence learn them. There were a total of ten projects, one per
week, of which nine were programming ones while one was only on analyzing
the data. Table 8 some statistics collected on the average size of each project and the
average time spent on them:

•

Average Total 5ize of a program (inc1uding Reused Code)

Average Time spent on a project

Average Reused Code per program

Average New and Changed Code per program

Average Defects recorded per program

Sherdll

201 LOC

4 hours 27 min.

81 LOC

120 LOC

10.3

•

•

70

The students were told repeatedly and explicitly that although a minimum criteria
is to complete the project, they would not be graded on the project, but on how
complete their data is. Similarly, they were reminded that they would not be
graded on how good their productivity, defect quality, etc. are, but how weil they
record the metrics related to them, e.g., LOC, number of defects, etc. (See next
section, 5.4, for details on data collection)

ENVIRONMENT

In experiments requiring only one project and a couple of observations, it is easy to
make it mandatory for ail the subjects to use the same environment, e.g., the same
computer laboratory. However, for a ten week long experiment, sorne flexibility
has to be given to the subjects. We provided the subjects with latest computers,
compilers, environmental conditions, etc., but still a couple of subjects preferred to
work at home on their Personal Computers. The remaining ten of the twelve
students used the same machine and the same compiler, though three of them
used a different computer lab (a different room) to telnet to that machine. The
statistics on environment are given in Table 9 below:

Table 9: Statistics on Environment
[- . ~ ~

-~ -.. ~~ . . ~ ,.
: I.~' ""\1_ ...
~. ~ - - -- ~- . - - . . - . . .

Subjects using standard machine and (Gnu) compiler la

Subjects using personal computers and Borland compiler 2

Subjects using standard machine from the standard :aboratory 7

Subjects using standard machine from different laboratories 3

The difference in the laboratories has negligible effects on our results, since each
laboratory provides the students with ample work area, adequate desks, proper air
conditioning, etc. However, the two subjects who used computers from home,
with different compilers were certainly using a different environment.

--
Sherdil

•

•

71

Unfortunately, there is no reasonable way for us to account for these variations.
Curtis and Vosburgh, et al. [21], found that the programming environment
(characterized by the development computer) explained for less than 24% of the
variation found in the productivity of the programmers. In our case, 10 of the 12
subjects have similar environments, and hence any variation caused due to the
other two programmers would not be very significant (roughly 2/10 of 24%).

5.4 Data Collection

Basili [10] has described a goal-directed method for data collection and one of the
most important aspects of it is to validate the data. Most of the data collection
forms which we used in this experiment were initially validated and designed by
Humphrey and his colleagues, and later by the software engineering group at
McGiIl University, which made some changes and enhancements during the
validation process. We found that Humphrey's data collection techniques were in
complete harmony with Basili's goal-directed method. However, in addition, from
our research perspective, we had to develop some extra measurement instruments
as weil.

There are various different data collection techniques, of which we used the
following (see Appendix F for sample forms):

• Logs
• Forms

• Templates

• Spreadsheets

• Databases

• Summary Reports

• Automatic LOC Counters

• Automatic Complexity Analyzers

It is beneficial to include the data-suppliers in the data-collection design process
and to interview them [10]. Our validation process included weekly data reviews,
consistency checks, repeated instructions to the data-suppliers and detailed
interviews. The subjects were also asked to analyze their data themselves on
spreadsheets so that they can gain insight on how the data is being used. For this
purpose, they were asked to use G/Q/M to identify some of their own goals and

Sherdll

•

•

72

then to analyze those goals for which the data was available. At no point did we
mention our own goals to them. Following are the steps we took for our data
collection process:

1. We devised an initial questionnaire for subjects background. It consisted
of a 6 page forro, of which two pages were prepared by Humphrey. The other
four pages were prepared and validated by the software engineering group at
McGill University.

2. Every week the subjects were given a project, along with detailed
instructions on how to complete il. These projeets were Silch, that they
helped the subjects in following the PSP. e.g., developing LOC counters for
measuring their program sizes, developing software packages to help them
in size estimation, etc. In order to remove ambiguities, the subjeets were
given a description of the requirements in the class lecture. Further
clarifications, if needed, were given by eleetronic mail to ail the subjects,
who checked the mail regularly. Individual help was also offered to any
subject, if desired, based on an open door policy. Such help was frequently
sought. Peer help was allowed during the projects also.

3. The subjects were required to colleet detailed and aceurate data. They
were told explicitly that the main criteria for grading them was the quality of
the data they collected. This data collection required the filing up of severa1
logs, forms, templates, reports, etc., and can be divided into three stages:

• Planning Stage: In this stage the subjects make their estimates of the
program size, time, productivity, number of defects, etc.

• Concurrent Data Collection: This is the stage when the subjects
continuously gather data as they design, code and test their program. An
important measurement in this case is that of the time spent on each
phase and activity. All the students used either a stopwatch or the clock
displayed on the computer screen. During this stage the subjects also
noted down the details of the defects.

• Post-Mortem: Here the subjects eompleted the summary reports and
carried out the other immediate analysis of the data.

4. Subjects data was then checked for consistency and validity. The nature of
the data is such that if not collected properiy at one place, its effects show up
at other places also. For example, a wrong value of time in the time-record

--
Sherdll

•

•

73

log would effcct the productivity calculations as wel1 as the total time
figures in the project plan summary. Hence consistency checks were made
to make sure that the data in various forms matched with each other.
Logical validity tests were also carried out to check that the values of some
common variable were rational, i.e., a value of productivity equal to 200
LOC/hr, though not impossible, would be highly questionable. Similarly,
the students counts of the LOC were rechecked in several random cases by
using other automatic counters. Data values given by subjects on the hard
copies were compared with those provided by them in the databases, and
those in turn were compared with their data analysis reports. Even the basic
addition and division tasks carried out by the students were randomly
sampled and checked. In brief, al1 sorts of checks were made to make sure
that no student lagged behind in data quality.

5. A weekly feed-back report was then given to each subject. The subjects
were informed of any errors they have been making. They were given
comments on how well they are following the coding standards. This
feedback included separate sections for the program and for the data.
Whenever necessary, these reports were followed by verbal advice to some
particular subjects. In some cases, especially during the beginning of the
experiment, the subjects were asked to correct those calculations where the
data had been wrongly interpreted. Of course the fundamental data entries
were never changed once they were recorded. It was in these feed-back
reports that the subjects were assigned grades as weIl. Overal1, these feedback
reports made sure that the data is not deficient in correctness, consistency or
completeness.

6. Between the third and fourth project, aIl the subjects were interviewed.
Basili [la] stresses on the importance of interviews and says that the lag
between the filling of the forms and the interviews should be kept
minimum. Each interview was at least 30 minutes long and detailed
minutes' were recorded. Here the subjects were asked details of any
assumptioils they have been making in their data col1ection process. Since
people differ in interpreting the directions given to them, it was tried to
understand what approach each subject was pursuing in comprehending
directions given by us. We found that these interviews added to our
knowledge and were extremely useful in removing the threats to validity.
In addition, they were useful to the subjects also since each subject was
given extra time to ask any questions about the data collection process, and
most of them ended up clearing several ambiguities.

Sherdll

•

•

74

7. During the second haIf of the experiments (projects 6 through 10), the
subjects had enough data points from the first half (projects 1 through 5),
and hence were asked to carry out analysis of the data. Usually this was done
by appending an analysis problem with the project. However, project 8 was
completely devoted to the analysis, and the subjects were asked to use CI
Q/M to identify their own goals and then to analyze them using their data.
The primary objective of such analysis waS for the subjects to study their
improvement process. However, a secondary objective was for the students
to better understand their data. We believe that this led to even more
reliable data from the students.

From the above descriptions, we note that under the constraints of time and
budget, we have attempted to ensure that our data is as consistent, complete and
correct as it can get.

--
Sherdll

75

• 6.0 Data Evaluation and Analysis

This section presents a detailed analysis of the coUected data. Once again, we stress
the validity of this data. For any significant analysis, the statistical validity has to be
carefully checked, and that is why we put in a great deal of effort in carrying out
various statistical tests.

Our experiment generated a large volume of data. For example, one of the data
bases used by us had over 1000 rows and 40 columns and consumed over half a
megabyte of memory, and there were over 5 such related data bases (see Appendix
K for a sample section from spreadsheet). Sophisticated spreadsheet and statistical
packages had to be used for analyzing this data, and advanced charting packages
were needed to plot the graphs. The primary structure of our data was as foUows:

• Each of the 12 students (Xl, X2, ... X12) contributed to ONE project data point (Y)

• There were 9 (YI, Y2, ... Y9) such projects (hence a total of 9 x 12 = IDS data points)

• Such sets of IDS data points were taken for about 75 different variables such as
the defect rate, productivity, etc. (see Appendix K for a listing of some of these
variables)

For such huge data, there are various assumptions which we need for carrying out
the statistical tests. It is difficult to prove aU these assumptions to be correct,
however, most of them can be explained satisfactorily. Some of the main
assumptions are listed and justified in Box 9 [39]. These are the existence,
independence and norma/ity assumptions. Readers already familiar with them
or interested in just the data results may skip Box 9.

•
Sherdil

76

•

We will now consider ail our goals (G1 through G7) separately. These goals (from
section 5.2) are relisted here for convenience.

• G1: Identify the Progress in Productivity (4.1.1)

• G2: Identify the Progress in Personal Skills (4.1.2)

• G3: Identify the Progress in Product-Quality (4.1.3)

• G4: Analyze the second-order leaming through management motivation (4.2.1)

• G5: Analyze the second-order learning through training and technology (4.2.2)

• G6: Analyze the first-order leaming (4.3)

• • G7: Analyze the 4-Variable Model (4.1.3 and 4.4)

--
Sherdil

771

Table 10 lists the sequendng of the sections along with the goals studie~ in them.

The Six Leaming Curves G1 G2 G3 6.1

Complexity Analysis Leads to G7 6.2

4-Variable Model G7 6.3

Second Order Leaming: Engineering Technology G5 6.4

Second Order Learning: Management Motivation G4 6.6

First Order Learning G6 6.5

6.1 The Six Learning curves

This section deals with the first three goals, Gl, G2 and G3. Table Il gives the six
learning curves studied, corresponding to each goal.

Table 11: Goals 1, 2 and 3
:

. -
,. .. - "

..
,

Gl Progress in Productivity Productivity Le
..

G2 Progress in Personal Skills Size Estimation Ability LC

Time Estimation Ability Le

Productivity Estimation Ability LC

G3 Progress in Product Quality Defect Rate Le

Defect-Removal Rate LC

We decided to fit both the linear and the quadratic models, to investigate whether
there was any significant advantage of using a quadratic one over the simple linear
one. However, in the past literature, the progress ratio, p, calculations have been

• done on log-linear curves. Moreover, the log-linear equations are intuitively

Sh;;dïï---

•
78

easier to comprehend. Hence ail the fo11owing three models were studied:

1. Linear

2. Quadratic

3. Log-Linear

As described earlier, for X-axis, we used Cumulative Output instead of Time. The
Cumulative Output at sorne project N is the sum of ail the Iines of code from
projects 1 through N. Our results would not have been much different even if we
had used Time as the variable, since there is a correlation of greater than 0.99
between the two variables (at 0.001 significance level). This significance level
represents the probability of the points lying on the straight line by chance only.
Figure 15 shows a plot of Cumulative Output against Time.

Figure 15: Graph of eum. Out. vs. Time

Cumulative Output vs Tlme

R a 0.99

108842

v
~

1/
;/

v
/

7
"

,/

800

o
o

200

1000

~

~o 800

~
'5 400
E
5

1200

Timo (ProJo.t No. or Wook No.)

•
Figures 16 to 21 show the linear models of the six leaming curves. The log-Iinear
and the linear equations of the corresponding curves are also Iisted below them.
The correlation coefficient, R [55], the significance level, and the progress ratio, are
also Iisted along with each linear graph. As done in past Iiterature, the progress
ratio has been calculated from the equation of the log-Iinear graph only since there

Sherdil

•
79

is no theoretical method of calculating it from the linear graph. The equation for
the calculation of this progress ratio, p, is given in chapter 2.

Figure 16: Graph of Productivity vs. Cum. Out.

Productlvlty Learnlng Curve

50

45

~
~..,

40-"0
::!.

!: 35

~
Ü
~ 30'"0~

Do

25

•

~
V ••

...-

,/
,/ •

•
• V
,/

•

R = 0.65

20
o 200 400 600 800 1000 1200

•

CumuloUvo Output (LOC)

O.iS

Productivity = 15.33 Cumulative Output

Productivity =30.56 +0.0130 Cumulative Output

The top equation is the log-linear one, while the bottom one is the linear equation.

Linear Graph: R = 0.65 (0.05 level)

Log-Linear Graph: R = 0.63 (0.05 level)

Progress Ratio, p = 11%

--
Sherdil

• Figure 17: Graph of Size Estimation Error vs. Cum. Out.

Size Estimation Learnlng Curve

80

..
~.

~ ..

.""
..~

'" ~ ..

50

45

! 40

~

0 35~
~

W

c 30.2
";j

.5 25";j
w.. 20.!!
Ul

15

10
o 200 400 BOO BOO

R • 0.B5

1000 1200

•
Sherdil

Cumulative Output (LOC)

496.94
Size Estimation Error

Cumulative OutputO.SI

Size Estimation Error = 40.278 - 0.0266 Cumulative Output

Linear Graph: R =0.85 (0.0025 level)

Log-Linear Graph: R = J.83 (0.0025 level)

Progress Ratio, p = 30%

•
81

Figure 18: Graph of Time Estimation Error vs. Cum. Out.

Tlme Estimation AblIIties Learnlng Curve

•
~

'-..... • •
~

r----.....
...............
~•

•

40

35

!
M 300
M
M
W

c
25.2

10
E
;
w 20
G
E
;:

15

10
o 200 400 600 600

R = 0.70

1000 1200

•

Cumulative OUlpul (LOC)

.,.. E' . E 87.98II/ne st/matlOn rror = 023
Cumulative Output .

Time Estimation Error =29.75 - 0.0126 Cumulative Output

Linear Graph: R =0.70 (0.025 level)

Log-Linear Graph: R = 0.58 (0.05 level)

Progress Ratio, p = 15%

---~------------Sherdll

• Figure 19: Graph of Productivity Estimation Error vs. Cum. Out.

Productlvlty Estimation Ablllties Learnlng Curve

82

"-
~

'"'" ~
......

~

'" '" •

100

90
~-- BD
0-W

70c
0
;;

BDE
;;
w

50

'"-
~ 40u

"'00- 300.

20
200 400 BOO BOO 1000

R • 0.9S

1200

•
Sherdll

CumuleUve Output (LOC)

P d .. E' . E 226360.16
r 0 uctlVlty st/matlOn rror = . l'"

CumulatIve Output ..

Productivity Estimation Error =112.92 - 0.0839 Cumulative Oll/put

Linear Graph: R = 0.95 (0.001 level)

Log-Linear Graph: R =0.92 (0.001 level)

Progress Ratio, p = 60%

Figure 20: Graph of Def-Rate vs. eum. Out•

Oefect-Rate Learnlng Curve

~
......

~
........

i'.. .

""-.""
~
~.

•
160

140

Û 120
0......e. 100

m
';j 60
'!'
ü
m- 60m

C>

40

20
o 200 400 600 600

R • 0.96

1000 1200

83

•

•
Sherdil

CumulaUva OulpUI (LOC)

3650.90Defect RaIe = -_....:..:::...:::::...:::--::-::.,.
Cumulative Output D

•
M

Defect Rate = 156.74 - 0.1162 Cumulative Output

Linear Graph: R = 0.96 (0.000025 level)

Log-Linear Graph: R = 0.85 (0.0025 level)

Progress Ratio, p = 36%

84

Figure 21: Graph of Def-Rem. Rate vs. Cum. Out.

Defect-Removal Rate Learnlng Curve

•
./

/ •

/
V· •

./
v"'.

•
40

'::" 35.c
E
"'!'
'; 30e.
!
" 25li:

;;
>
0 20E

"li:.:.
"" 15';
Q

10
o 200 400 600 800 1000 1200

0.93

•

Cumul.Uve Output (LOC)

O.4K

Defect Removal Rate =0.9679 Cumulative Output

Defect Removal Rate =6.75+0.0214 Cumulative Output

Linear Graph: R = 0.93 (0.00025 level)

Log-Linear Graph: R =0.91 (0.00025 level)

Progress Ratio, p =40%

The above results are summarized below in Table 12, which shows the Pearsons
correlation coefficient, R, and the significance level for each of the six linear
learning curves. Table 13 shows the corresponding values for the log-linear
curves.

Sherdil

85

nificance levels of the Iinear leaming curves

Productivity LC

Size Estimation Ability Le
Time Estimation Ability LC

Productivity Estimation Ability Le

Defect Ra te LC

Defect-Removal Rate LC

0.65

0.85

0.70

0.95

0.96

0.93

0.05

0.0025

0.025

0.001

0.000025

0.00025

The best quadratic fit was also found and the equation of the quadratic curve and
the new value of R were determined. An analysis of variance was done with
ANOVA tables and F tests. It was found that in none of the six cases, the new
value was significantly better than (at the 0.20 level) the linear curve fit. Hence, for
simplicity, only the linear model can be used.

Table 12 shows that the values of R for the Productivity Estimation Ability LC, the
Defect Removal Rate LC, and the Defect Rate learning curve are aIl very high
(over 0.9). Since these results have high significances also (of at least 0.000025
level), we can safely conclude that there is a strong linear relationship between
these variables and the cumulative output. Only the productivity learning eurve
has a low value of R (0.65, at 0.05 significance level). This is due to the faet that the
productivity does not depend on cumulative output alone, but also on the Defeet
rate as weil as the complexity. Henee in the next section (6.2), we discuss the
complexity and then in section 6.3, we develop a larger model which incorporates
these other variables as weil.

For plotting the log-normal graphs, the logarithmic values of the Y and X axis
were plotted against each other on linear seales. In our case, the log-normal graphs
for the six learning curves resembled the linear graphs. Hence these graphs have
not been printed, but their equations have been listed under each of the figures 16
through 21. For convenience, the values of the correlation coefficient, R, and the
significance levels for the log-linear models are listed below in Table 13. The
learning rate, which is calculated only from the log-linear model, is also given in
Table 13.

--
Shcrdil

•

86

Table 13: The correlations, significance levels and the learning rates of the log­
linear learnin curves

Productivity Le 0.63 0.05 11%1

Size Estimation Ability LC 0.83 0.0025 30%

Time Estimation Ability LC 0.58 0.05 15%

Productivity Estimation LC 0.92 0.001 60 l XI

Defect Rate LC 0.85 0.0025 361}h

Defect-Removal Rate LC 0.91 0.00025 40%

Table 12 and 13 show that the values of R in log-linear curves are slightly less than
those of their corresponding linear curves. This difference is most visible in the
Time Estimation Learning curve, where the drop in R is quite substantial. The
lowest learning rate obtained (11% in the productivity Iearning curve) is not
accurate since we have mentioned before aiso that the productivity depends on
other variables as weIl. The other leaming rates range from 15% to 60°!c" with a
mean of 36.2% and a median of 36%.

The sketches of the learning curves visually, and their progress rates
quantitatively, give us an intuitive idea of how fast the Iearning was and how
quickly the cost per unit output decreased. However, one can always argue that
perhaps this increase in performance (or decrease in cost per unit) in the Iearning
curves is occurring by chance only. Hence we decided to carry out tests for
comparing the differences in the data points.

Recall that each data point is a mean of 12 other points, and hence we are in effect
comparing several means to see if they have decreased significantly or not, relative
to the variation within each mean. For this purpose, at-test can be used to
compare two means, while an F-test can be used to compare multiple means.
Figure 22 gives an example of three fictitious sets of data points (representing
leaming curves), aIl with high correlations and significances. Each data point is a
mean of 12 data points. The length of the error bars shown on each data point
represent the variance of these 12 points. The significance of the differences in
means depends on two things: (a) the slope of the line and (b) the length of the
error bars.

--
Sherdil

•
871

Graph 1 and Graph 2 have approximately the samE' decrease (slope), and hence are
paralle!. However, the variance of the 12 data points (shown by the length of the
bars) is much greater in Graph 1 than in Graph 2. Hence the difference in the
points may not be as significant in Graph 1 as in Graph 2. Note that the variance
in the points in Graph 3 is the highest of aIl the three graphs, implying that the
significance should be less. However, since the decrease in the values of these
points (or the slope of the line) is very high (steep), the difference in the points in
Graph 3 may be more significant than the other two graphs.

Figure 22: Sample graph showing significance of decrease

120
Slgnlflcance of Oecrease

100..
a.
l! SO
Cl

60

40

20
each polnl la a m an of 12 dala pointa

• Graph 1
• Graph 2

• Graph3

106642
O+---.-..,----...----,--.----r-T"""--,-",,""--,

o

X V.rl.bl.

•

The results of these F-tests are given in Table 14 (Le., the significance levels of the
differences between the points), on five of the six leaming curves. These
significances represent the probabilities that the increase in improvement (or the
decrease in the cost per unit) could have occurred by chance only. These should
not be confused with the significance values in Tables 12 and 13, which represent
the probability of the points lying on the straight line by chance only. The Defect
Removal Rate leaming curve was not used since several of its individual data
points (Le., one of the 12 students x 9 projects = 108 data points) had zero or one
defect only, which lead to unreliable results.

Sherdll

88

Table 14: Si nificance levels of the differences

Productivity LC

5ize Estimation Ability LC

Time Estimation Ability Le
Productivity Estimation LC

Defed Rate LC

not significant at 0.2 level

0.005

0.1

not significant at 0.2 level

0.001

•

The differences in the means of the 5ize Estimation Ability and the Time
Estimation ability were significant at very high levels. The differenccs in
productivity learning curve were not significant (even at 0.2 level), as expected,
since as mentioned before, it does not depend on the cumulative output alone but
also on complexity. However, what concemed us was that the differences in the
Time and Productivity Estimation abilities were not significant either. While the
former was still significant at O.llevel, the latter was not significant even at 0.2
level (see Table 14 above). Yet when we look at the learning curve of productivity
estimation ability (figure 9), we find the highest value of learning obtained (60%)
and a correlation of 0.95 (at 0.0005 level). 50 why is there a contradiction?

The answer lies in the fact that the tests for comparing the differences in the
means look at the variance within each mean also (Le., variance between the 12
points whose mean is taken). In case of productivity, several subjects initially had
no clue as to what their productivity was. As a result some of their estimates were
as high as 481% away from the aetual values. In one case the mean error of aIl the
12 subjects was as high as 87%. Therefore, due to this high within group variance,
the effect of the differences in the means seemed to be not significant, although
our leaming index, slope and correlation show that it is quite high.

Of aIl the six leaming eurves, the poorest correlation has been found in the
Productivity leaming curve because productivity depends on defect quality as weil
as on the complexity. However, complexity is not something which can be
measured easily. The next section (6.2) discusses an analysis of complexity, which
will then be incorporated in our model in section 6.3.

Sherdil

•
89

6.2 Complexity Analysis

As described in section 4, the two most popular complexity metrics are the
Software Science of Halstead and the Cyclomatic Complexity of McCabe. We
wanted to select the metric which most closely resembled the solution complexity
of the projects. For this purpose we decided to first carry out a complexity analysis
of both the metrics on ail the projects.

There are various software science metrics, such as length, volume, etc., of which
effort cornes closest to our requirements. Unfortunately, the scales (order of
magnitude) of the effort metric are quite different from those for cyclomatic
complexity's scales. Whereas the average value of latter was found to lie between 5
to 50 in our projects, the former ran from SO,OOO to 1500,000 (see Appendix J for
sampie complexity results from PC-Metric tool). Hence, for comparison purposes,
we decided to plot the two on normalized scales, using a double-scaled graph as
shown in Figure 2S:

Figure 23: Graph of Complexities vs. Project No.

CycloComplex
EHort

o

•

­~o--w
750000

250000

500000

1000000

1750000

1250000

1500000

ProJoet Humber

o
2 3 4 5 S 7 8 9 10

\ V1\1~

/ \ YPoln Ilfer nee

,,/
o

o

50

45

40

>C 35..
ëi.
E 30
0
u.. 25
-;
E 20
0
Ü

'" 15u

10

5

Comparlson of Cyclomatlc Complexlty and Software Science Effort

2000000

•
Sberdll

•
90

This graph gives an excellent visual idea of how weil the two complexity metrics
correlate. The only significant difference between the two metrics lies in project 7.
Figure 24 shows a plot of the two metrics against each other, with a correlation
coefficient of 0.80 (at 0.005 significance level).

Figure 24: Graph of the two complexities against each olher

Effort vs Cyclomatlc Complaxlty

R a O.BO

/
/

• V•
V •

• /

:/
V

/
/

/ • ••

2000000

1750000

1500000

1250000

~- 10000000--w
750000

500000

250000

o
o 5 10 15 20 25 30 35 40 45 50

CyclomaUc Compl••

At the end of the experiment, these graphs were shown to sorne of the subjects at
random. These subjects further consolidated our belief that the complexity of the
solution was quite c10sely depicted by these two metrics. For example, ail the
subjects asked said that project 3 was the most difficult one, and that project 5 was a
lot simpler than its predecessors (projects 3 and 4). Hence, the opinion of the
subjects coincided with both the complexity metrics (after only the %New code was
considered, see next paragraph). This vastly increased our confidence in trusting
the two metrics. However, we had to use only one metric for our analysis, and so it
was decided to use the Cyc10matic Complexity because ils scale is more convenient
to comprehend due to smaller numbers.

•
There is one more problem, however, and that is regarding the reused code. The
complexity metrics depend on various factors and one of them is length. 5ince we
are measurirg the complexity of the solution, the reused code adds extra length at

Sherdil

•
91

practically inexpensive solution-cost. Hence a program with 75% reused code (as in
project 6) has a comparatively high solution complexity than it would have if we
consider only the new and modified (25% of the) code. Hence we decidect to
decrease the cyc10matic complexity values with the same fraction as the percentage
reused code, and call it %New Complexity. Although the best thing would have
been to use just the new and changed code and find its complexity separately, we
did not have a precise track of which code was new and which was reused.
Therefore, we just used the fractional method, assuming that in the long run of 9
projects, things would average out. Figure 25 shows the values of %New
Complexity along with the Total Complexity. Note that the %New Complexity of
project 2 is much more than that of projects 6, 7 and 8 although the latter had
higher total complexities. These result are also in accordance with what the
subjects had told us about their views on the solution complexity.

Figure 25: Graph of the Total and New Complexities vs. Project No.

Complexlly end Ils Irectlon 01 %New Cyclomellc Complexlly

• Totai Cyclomatlc Complaxlty
• %Naw CyclomaUc Complaxlly

3 4 5 6 7 6 9

•

ProJo.t Number

Now that we have agreed on using the %New Cyc10matic Complexity, we can go
ahead and plug it into our existing model of productivity and defect-quality, as
they vary with the cumulative output. This 4-variable analysis is done in the
following section.

Sherdil

•

•

92

6.3 The 4·Variable Model

Both, the productivity and the defect rate, should depend upon the cumulative
output, due to the first-order learning process. However, whereas in case of the
defects-cumulative output relationship, we get a value of R as high as 0.96, in the
case of productivity-cumulative output relationship, the value of R is only 0.65. If
complexity is the other variable affecting productivity (and hence keeping the
value of R low), then it should do the same for defect rate. lt is logical to believe
that both the defect rate and the productivity would depend on the complexity.
Higher the complexity, more should be the number of defects injected and less
should be the productivity. But in our case, apparently, the complexity is affecting
only the productivity. In this section, we will study how these four variables are
affecting each other, and hence how they effect the progress rate.

In order to analyze this 4-variable model, we calculated the slzared-variances
between these variables. The amount of agreement between any two measures
tells us the extent to which they are measuring the same thing. This is called the
amount of shared or common variance [381 [391. Shared variance between a
dependent variable A and an independent variable B tells us what percentage of A
can be associated by the causal relationship with the variable B.

Figure 16 shows how the variables are related (NS means not significant). Here
40% of the variation in Productivity can be associated by the cumulative output
factor, while 55% can be explained by the defect-rate. Note that an additional 21% is
due to complexity, making the total variance exceed 100%. This is because defect­
rate and cumulative output are not mutually independent either, and hence there
is an overlap of variances which causes the sum to exceed 100%.

--
Sherdil

93

Figure 26: Model for Productivity
71%

,1

1,

,

1 1%
, NS

1

1
•

21%

\
,

\
~

5% \
NS •

\

\

In Figure 16, Complexity and Cumulative Output are our independent variables.
We will now study the two dependent variables, which are productivity and
defect-rate, and try to develop 3-variable equations (models) comprising of these
four variables. We can also produce 4-variable equations, but with our sample size
of 12 subjects only, their significance would not be appropria te. In fact, even for 3­
variable models, a sampIe size of 12 is not fully adequate, unless very high values
of correlation are found. But in this experiment, due to our constraint of having
only 12 subjects, we don't have any choice but to go ahead with a 3-variable model.
AIso, we will now be using the log-linear models instead of the linear ones as
done in most past studies, because for 3-variables, they give a better representation
of the relationship between the variables.

6.3.1 Productivity

•

We had found in section 6.1 that unlike the other learning curves with high
values of correlations, in case of the productivity learning curve, the correlation
was only 0.63. Hence cumulative output alone is not sufficient to account for the
changes in productivity. In fact, it only has a 40% shared variance with
productivity. This means that sorne third variable should be added to our model
to get a better picture. We had contemplated that the complexity can be that third
variable. However, contemplation alone is not enough, and we neecl appropriate
statistical checks. For this purpose we used the partial correlation coefficient,

Sherdil

•
94

which give the correlation between two variables when a third one has been
control1ed for. 50, partial R~.x,z means that after having controlled for the variable
Z (Le., after having the knowledge of the relationship between Y and Z), by what
percentage are our errors in predicting Y decrease when the variable X is also
added to the model (38) (39).

Figure 27: AddinJ!; the third variable ta Productivity model
)Complexity

."
."

40% Shared ." ."26% Decrease
Variance 1 (in Error

1 ~
~ Cumulative

Productivity Output
.. """ 7.2% Decrease

~ ,in Error,
" Ji

IDefects 1

Figure 27 shows that the productivity and the cumulative output share 40% of the
variance. Now, after controlling this association in productivity caused by the
cumulative output, our errors in predicting the productivity decrease by another
26% if in addition to cumulative output, we also have the knowledge of
complexity. 5imilarly, our errors would decrease by 7.2% if we include the defects­
rate in the model of productivity and cumulative output. Obviously, if we can
only have a 3-variable model (given our small sample size), it would be more
desirable to include complexity instead of the defect-rate. Hence our model
becomes:

P d
.. a Cumulative Outputh

ro uctlVlty =-------''--­
Complexityc

R=0.76

a =21 b =0.16 c =0.15

{Equation I}

•
This equation suggests that more the complexity, less the productivity, and more
the cumulative output, greater the productivity. This is in complete harmony
with our rational expectations. Now the correlation has increased from 0.63 to 0.76.
Adding a fourth variable (defect-rate) would not cause any significant decrease in

Sherdil

55% Shnred
Varinnœ

•

9S

the error, at the expense of increasing the complexity of the equation.
Furthermore, a 4-variable model derived out of only 12 subjects, would l'lot have
high statistical significance. Hence we might assume that this 3-variable equation
is the most optimum one.

However, we are wrong. As it turns out, our initial assumption of starting with ri

productivity-cumulative output relationship, and then subsequently adding other
variables, was not fully correct. We could have got better results had we used the
forward selection method [39].

In this method, we start by selecting variables which are the most important and
continue step by step adding other variables in order of importance. From figure
26, the highest shared variance which productivity has is with defect-rate (55%)
and hence our model should start with a relationship between these two variables
before adding cumulative output or complexity. Figure 28 shows that after
accounting for the defect-rate, there can be a further decrease of 200Al in error in
predicting productivity if we inc1ude the complexity variable in our model also.
However, by including cumulative output to the original two variables, the error
decreases by only 5%.

Figure 28: Forward Selection in the Productivity Model r=--~~....

Cumulative
Output

"".

" '"5% Dcacasc
./ in Error

IProdUCUvit)' 1iIIIIIi--------... Ir':':D~eti=-e-c':'"'ts....,1
. 1- 1...----1 " 20% Dœrcasc

'", in Error

"­ ,

1.3% Dccrca'ic
in Error, NS

--
Sherdil

96

Hence we select complexity as the third variable and get the following model:• P d
.. a

ro uc/lVlly =----:----­
DefBc/ll Complexityc

R =0.81

a = 142 b = 0.22 c = 0.15

{Equation 2}

•

Adding the fourth variable (cumulative output) to this model would further
decrease the error by only 1.3%, which is not significant. Hence we retained to our
three variable model, which implies that higher the complexity or more the
defects, the value of productivity decreases. The correlation coefficient now is 0.81,
which is greater than 0.76, which we obtained in the previous model (equation 1).
Note that the forward selection method always leads to the highest possible value
of correlation.

An interesting point about this model is that it apparently does not include the
cumulative output, and hence our whole purpose of studying the learning curve
(i.e., progress with cumulative output) seems to be understated. However, this is
not true because of the obvious reason that the variable defect rate has a 71%
shared variance with cumulative output. Hence there is a strong relationship of
correlation 0.85 for the model:

a
Defects = ---"'---".

Cumulative Outpul

Substituting this in the equation 2 above gives us the equation 1. Hence though
seemingly different, both the equations are linked to each other in such a way that
they fit in logically and intuitively.

6.3.2 Defect·Rate

One way to find a model for the defect-rate is to simply use equation 2, and express
defects in terms of the other two variables. Hence from,

Productivity = h a {Equation 2}
Defects Complexityc

we can get

Sherdil

97

a
Defects = "J--------­

Pr oductivity Complexityc

or

d
Defects = {Equation 3}

Productivitl Complexityt

However, we know that the most optimum method for finding the highest
correlation is forward selection. Figure 29 shows the application of this method.

Figure 29: Forward Selection in the Defect Rate Model
;f'"o-m-PI:"'"c-Xi:-:"ty--'

,/
",

71 % Sharcd ,...7% Occroll.'iC

Varianœ ~ r,/ in Error

1 ~'""""--------~ CumulativeDefects q- Output
'"- 24% Dccrcasc
'" ",in Error,

"
2.5 % Dccrou.'l c 1
in Error. NS 1

1y

The highest shared variance of defects was with cumulative output (see Figure 26).
After accounting for this 71% shared variance, the largest decrease in errar for
predicting the defect-rate was obtained by adding productivity ta the model. This
error decrease is 24%, which is much more than the 7% obtained by adding
Complexity. Hence we get the following model:

Defects = a {Equation 4}
Cumulative Outputd Pr oductivityt

R=O.90

• a =65300 b =0.45 c = 1.11

Sherdil

•

•

98

Notice that the correlation has increased from 0.85 to 0.90 and also that it is higher
than the correlation of 0.81 in equation 3. Adding complexity to this model further
decreases the error by only 2.5%, which is not significant.

This model shows that as the time passes, the defect-rate decreases. But in addition
to this, it also confirms the relationship which we derived in equation 2, Le.:

from equation 2, Productivity = a h
Defects

from equation 4, Defects = c . . d
Productlvlty

The first relationship is easily explainable. The more defects one injects, the longer
it takes to debug them, and hence the lower the productivity. However, the second
relationship, which actually is the same as the first one but in a different form, is a
bit hard to comprehend intuitively. What it means is that a high defect-quality is
attributed to having a high productivity. A high productivity means that you are
following a better software process, and that in tum means that your defect-rate is
low.

Figure 30 gives a summary of how the four variables are related to each other.

--Sherdll

99

Cumulative
" Output,,,,,,,

"" Relationship was
" not expeclcd,,,

Fi ure 30: The 4-Variable Model
Productivity

... ,,
...

-.,....,.-~-'
Relationship was """
expected '

Complexity

Legend

..41-----... Rclationship FOllnd

-----------. Relationship Not.
Found

We were never expecting a relation between the complexity and the cumulative
output, since the projects were randomly assigned without any knowledge of the
complexity. Rest all the variables are related to each other with the exception of the
defect-complexity relationship. Although we should be expecting that more the
complexity higher the defect rate, we did not obtain any significant causality
between the two. The reason, as mentioned before also, is that wc got a very high
correlation between defects and cumulative output, which dominated the
relationship of defects with other variables.

6.4 Engineering Training in 2nd Order.Learning

•
In this section, our main objective is to find if the second arder learning has
indeed helped the subjects considerably beyond the first arder leaming. As
mentioned earlier, this is difficult ta study and it is even more difficult to prove
results statistically in this case. Nevertheless, we made an attempt ta
mathematically analyze the fractions which each arder of learning contributed. In
section 4.2.2, we had described three factors which can be attributed ta the second

Sherdll

•
100

order learning. These were:

• Reused Code

• Size Estima tion

• Code Reviews

Reusability is an attribute of the second order learning because it is the technieal
training which teaches this concept to the subjects and it is the technology whieh
the subjects use to maintain the libraries for reused code. However, it is diffieult to
differentiate between the two types of learnings using the reused code alone as a
measure. This is because we can never be sure of when the reused technology was
injected in the process. Therefore, we will use the other two constructs (those of
Size Estimation and Code Reviews) to analyze the second order learning, since we
will be formaHy injecting them at specifie points in our process. As far as the
reusability is concerned, aH we will mention is that this phenomenon was used
extensively throughout the experiment. Figure 31 gives, an overview of this.

Figure 31: Reused Code vs. Project No.

70 '"il
:J

BQ Il
a:

~ • %ReusedBQ
c %CumReused

40 :J
E
:J
()

30
'If.

20

10

50

50

r---....
.........-1\. /'

/ " ,
/1 \-c
fi \

pi

100

50

BO

70

'"
BO

Il
Il
:J 50Il
a:
'If. 40

30

20

10

o 0
o 200 400 BOO SOO 1000 1200

% Reueed Code per proJect and % Cumulative Reused code egalnst Cumulative Output

100

•
Cumulellve Output (LOC)

The %Reused Code for a project N is the reused code in project N, as a percentage
of the total code in project N. The %Cumulative Reused code for a project N is the

Sherdll

•

•

101

sum of ail the reused codes for projects 1 through N, as a percentage of the total
cumulative LOC at project N. The final cumulative percentage of rcused code in
the 9 programming projects was 54% (see figure 31, last data point in the
%Cumulative Reused graph). This includes the 0 % reused code during the first
project, where obviously there could have been no reuse. During the last half of
the experÏ1nent (the last four projects), the average of the four points representing
percentage reused code had increased to above 70%. Hence without going into any
mathematical treatment or statistical tests, one can get a fairly good idea of how
important a role the reused code (and hence the second order learning) played
during the course of the nine projects. In any case, in our experiment we pursued
with the other two technologies, Size Estimation and Code Reviews, and not Code
Reuse.

Now we will tum to our experimental design (explained in section 5.3.3).

We had mentioned that if Xl (Size Estimation training) and X2 (Code

Reviews) are independent or mutually exclusive, we can have the following
quasi-experimental time series (with within subject) design:

000XI000000

000000X2000

In case of Size Estimation training (Xl), our design can be represented as:

010203 Xl 04 05 06 07 08 09

Here the observations (01-09) represent the percentage size estimation error. If we
take the mean (Ml) of 01-03, then that is the average size estimation error before
the training was given to the subjects. Similarly, the mean (M2) of 04-09 is the
average error after the treatment. In our case M2 was less than Ml by 21.26% (see
Table 14). A comparison of 'two means' test [49] (using Hables) showed that our
difference between the two means was significant at 0.05 level. This statistically
confirms the fact that subject's performance after the training was much better
than that before the training. A similar analysis on the Code Reviews training (X2)
with the defect-rate as the metric showed that M2 < Ml by 20.79%. However, in
this case the results are significant at only 0.15 level. This is because the variance
within the two groups (01-06 and 07-09) was quite high and hence there is a 15%
chance that our results could have given a high difference between the two group­
means by chance only. Table 15 summarizes these results.

--
Sherdll

•

•

102

Table 15: Means before and after the injection of technology
··j:ri':;"i\.i(·jJ!!:~J :!T~Œ.~:i:· . 1}f.')·JH±.U (i{'lRq:i1tt.~ §-t:.:rlf.(fr~f~T;m .

. ...__ ...~__ . çoj.')'l.cr7'.'((;\~IJ~:. ~~~~Hq"·'':~~l!'~-(~~J~·I}l;J~~.J,qir~
5ize 01-03 04-09 21.26% 0.05
Estimation
Techniques

Code 01-06 07-09 20.79% 0.15
Reviews

Regardless of the significance level of the above two results, the only conclusion,
which we can draw is that the performance of the subjects is better after the
training than it was before the training. Before the training, the subjects were
using only the first-order learning. After the training, the subjects incorporate a
second-order learning mechanism. However, we should not forget that even after
the training, the subjects do continue to undergo first-order learning also, since
such a learning cannot be stopped just by the injection of second-order training.
Therefore, we can say nothing about the effects of second-order learning since it is .
probable that the increased performance after the training might have occurred
due to sorne increase (due to any unforeseen circumstances) in the level of first­
order learning.

To solve our problem in finding the proportion of each type of learning, we
decided to use a different approach. Consider the Code Reviews (X2). Our design
can be represented as:

010203040506 X2 07 OS 09

If we plot only the points 01 through 06, and find the best linear or log-linear fit
through them, then that will be the equation of the learning curve representing
the first order learning alone. This equation would represent the number of
defects in terms of the cumulative output (or time). Based on this equation, we
should be able to predict what the number of defects should be for the cumulative
outputs corresponding to the next three observations (07,08 and 09) after the
training. In other words, we would be extending our learning curve beyond the
cumulative output level of 06 (as shown in figure 32) in order to predict the Y-axis
(defect) values for the X-axis (cumulative output values) for the points 07 through
09.

Sherdil

103

Figure 32: Sample graph showing interpolation

Interpolatrng the pretest data points

2oo0.,.-.r----------------.....

1000
• Pro·lnjocllon

• ProE~poclod

o Postlnloctlon

108642
O+--..,r----.---r---,-"""T"'"-..---,..---T---ll~~

o

ProJect Number or Cumulative Output

These values can then be compared with the actual values obtained for the defect
rates corresponding ta the cumulative outputs for the points 07 through 09.
Whereas the predicted values represent only the first arder learning, the actuûl
points would represent the extra decrease in the defect-rate attributûble solely to
the second order learning aspect. The mean of the three predicted values can then
be compared with the mean of the three actua1values. In our case, the mean for
the actual values was 12.62% less than the mean of the predicted values. Hence the
addition of the second-order learning helped the subjects improve by about 13% in
addition to the improvement they were undertaking due ta the first arder
learning aJone. These results are given in Table 16.

Table 16: Percentage decrease due to technology injection, compared to expected
Unte olated} values from first-order re-in'ection learnin onl

•
Xl = Size Estimation Techniques

X2 =Code Reviews

6.5 %

12.62 %

Sherdil

•

•

104

A similar analysis on the size estimation training yielded the figure of 6.5%
reduction in estimation error due to the second order learning in addition to the
first-order learning. Hence our results are about 6% in one case and about 13% in
another. These differences can be accounted for as follows: for Xl, there were only
three pre-treatment values. Since we are following a logarithmic model, these
values show a very steep decreasing trend. Hence the predictions which we make
about the future points are based on the same sharply decreasing curve. Therefore,
we predict much lower values than normal since our pre-treatment data set is
very small (only 3 points). This is why the actual values seem to be not
significantly lower than our predicted values. However, in case of X2, we had a
pre-treatment set of 6 data points, which gave us a curve which had more or less
settled down after the initial steep fall. This large pre-treatment data set gives us a
better idea of what to predict for future. Hence the predicted values are not lower
than what they normally should be. This is why the actual values show a more
significant decrease than the predicted values.

6.5 Analysis of First Order Learning

Having shown that the second order learning does contribute in addition to the
first order learning, we will now try to analyze the latter to see what factors might
affect it. As mentioned before, determinants of first-order learning might include
the person's general experience, specific experience on jobs of a given type,
education, sex, age, etc. [42]. Our approach is to study if there is any relationship
between the personal capabilities of the subjects and the rate of learning. For this
purpose, we decided to give each subject a capability index, based on (i) Experience
and (ii) Performance. We believe that experience alone is not a sufficient predictor
in judging a person's capability level. A person with a 10 year programming
experience might still be less productive and/or slower in learning than a person
with a 5 year experience. Hence we should also look at the performance factors of
the subjects, such as the absolute (not relative) values of the productivitys of the
subjects. In this way we can study if a person who is more productive or has a
lesser dcfect rate is faster in learning than a person with lower levels of
productivity or defect rate.

Given below shows our scheme of calculating the capability index. By no means
are we stating that this scheme is the most optimum one. Naturally there can be
various other ways of ranking the subjects, with no specifie method being the best
one. However, what we tried was to include a wide variety of factors
encompassing most of the fields of experience and performance. Since the

Sherdll

lOS

capability index is a quantitative number, we had to develop quantitative senles.
Although these scaies have been chosen arbitrarily, we made ail possible attempts
to keep the sensitivity high, and to assign them weights properly. Wc nre quite
confident that given the wide variety of factors considered by us, our mcthod is
good. The summary of our procedure is given in Table 17 white the details are
attached in Appendix L. Note that points given ;n parenthesis reprcsent the
maximum possible points in that category.

Table 17: Details of Personal Capability Index
r===~====

Experience (60) Total Experience in Programming 15

Diversity in Programming Languages la
Level of Education la
Job experience in computer 15
software/hardware related field

Experience with Software Packages 5

Experience in Software Engineering and 5
Object-Oriented Design

Performance (40) Productivity 15

Defects/KLOC la
Defect Removal Rate 5

Grade assigned to the subject in the PSP la
course

Our procedure requires detailed data from each subject about each and every
language the subject has programmed in, each and every software package used,
the time the subject has used these languages and packages, the total job expcrience
and level of education of the subject, etc. This data was obtained directly from the
subjects using a 6 page questionnaire (see Appendix A). For reliability, the subjects
were later interviewed (after 3 weeks) and their responses to the questionnaire
were rechecked. The nature of the questionnaire was such that the subjects were
made to give even the finest details. In one case the subject was returned the

Sherdil

106

questionnaire since insufficient data had been supplied. The first 4 pages were
designed by the software engineering group at McGill University while the last
two were designed by Humphrey at Software Engineering Institute.

The Iearning index, p, for each subject was then plotted against its corresponding
capability index. 5ince there were six leaming curves, we had six leaming indices.
50 we took the mean value of them; however, we had to ignore the learning index
for the defect removal learning curve since there were cases when the subjects had
none or only one defect in the projects, which Iead to unreliable data. 50 the
following five leaming indices were used, which again can be divided into two
categories:

(i) Estimation Skills

• p in 5ize Estimation Abilities

• p in Time Estimation Abilities

• p in Productivity Estimation Abilities

(ii) Performance

• p in programmer productivity

• p in defect-quality

Table 18 shows capability index listed with the Ieaming index.

Index

1 35.6 30.4

2 37.1 37.6

3 37.1 14.4

4 38.3 17.9

5 46.7 31.4

6 47.3 30.5

7 50.4 16.0

• 8 52.1 15.4

--
Sherdil

•

•

107

9 55.6 26.8

10 59.5 10.8

11 62.4 -18.0

12 74.4 12.2[-- -----.- -r -.-~----- ---1' ...---.-- - --]

~~>,~_.~~ .0 ~ ________ t ~-~:)_~jl_~ _____ .w. ____ Jl :~~~"'~~' __~ __cr'- ------·-1-- -- - 'C' --.. ---].. :, \ -, ," '1 , " ,1,

~~~~________1_11J(..~___ •____JL_~l_~II~)~_~_____ ---.:.._

The capability index ranged from 35.6 to 74.4 with a mean of 49.71 and a standard
deviation of 11.44. The mean of roughly 50 is exactly the mid-point of our total
range of 0-100, and hence boosts our confidence in the scheme used by us. The
average leaming index is 18.79% with a standard deviation of 13.99. However,
observe that there is an outlier with p = -18.0, which represents negative learning
(or forgetting). Actually, this subject had a p =18.8 in the Performance category, but
unfortunately had a p =-42.5 in the estimation category. Probably something had
gone wrong with the subject, which lead to poorer estimates. According to Sheil
[51],

"One of the more striking symptoms of high individual variability is tllat 0 Il e
occasionally finds a small number of participants whose scores on som e
measure are far outside the range for the group to which they belong. T/zeir
presence not only invalidates the common statistical techniqlles, bllt it can
both mask real differences (by increasing the variance) and create illllsory
ones. A/though non-parametric statistics and/or data recoding can be IIsed t0

avoid the technical problems, it is far preferable simply to discard olltliers
before the analysis. The reason for this is that very extreme observations
strongly suggest that the individllal is not typical of those to whom the resll/ts
are to be generalized. For example, such an individllal might be doing
something quite different from the other participants, possibly as a resu/t of
having misunderstood the instructions. (The c!assic example is the
participant who falls asleep during a reaction time experiment.J"

After discarding this outlier, our average leaming index was 22.13% with a
standard deviation of 8.91. Note that this is very close to the value of 20% as
reported in various past research results [29][60]. The breakup of the two categories
of the leaming index shows that the average learning index in the estimation
category was only 12.23% while that in the performance categories was as high as
28.60%. Hence obviously, for our subjects, estimation was a more difficult task to

------------------------------------------------------
Sherdll



•
lOB

improve in as compared to improving their performance in productivity and
defect-quality.

Figure 33 shows a graph of the leaming index against the cap~bility index. No
statistically significant or conclusive relationship was obtained.

Figure 33: Graph of the two indices against each other

Learnlng Index vs Capablllty Index

40-r------------------,
a

a
30 a a

M•'" a.s
III.s
c:
~•.3 20

a

aa
a

a

10
a

30 40 SO 60 70 60

Capablllly Index

We tried to study the causality amongst the individual categories also, i.e., between
the two learning categories (estimation and performance) and the two capabilities
categories (experience and performance). However, again we could not find any
conclusive evidence of any relationship between the categories.

Nevertheless, we did discover a phenomenon in our experiment, which is quite
expected. We found that those subjects whose performance level is already quite
high, learn less than those whose base performance level is low. For example, it is
easy for a subject to increase the productivity from 30 LOC/hr to 60 LOC/hr (100%
increase) as compared to a subject who has to increase from 60 LOC/hr to 120
LOC/hr. The latter may increase from 60 LOC/hr to 90 LOC/hr, but that would be
only a 50% increase. Such a phenomenon was quite obvious and expected, and we

• are merely confirming its existence. However, besides that, we did not find any

------------------------------------------------------
Sherdll



•
109

other relationships or causalities. Of course, we are not implying that no other
relationships exist; we are only stating that more work with larger sample sizes is
needed to make improved predictions about any such relationships.

6.6 Management Motivation in Second Order Learnir.g

In section 4.2.1, we had given the detaiIs of the survey instrument used in
measuring the (a) motivation, (b) interest, (c) satisfaction of the subjects after
every project as weIl as (d) the degree to which they found the projects to be
useful. These were quantified on a scale of -5 to 0 to +5. The subjects
responded separately for the programming aspect and for the data collection
aspect for these four variables. Hence there were a total of eight variables.

Ali these variables were then plotted on a discrete scale of 1 through 9
(representing the nine projects). Figure 34 shows a typical plot of how aIl the
eight plots looked like.

Figure 34: A typical graph of the subjective metrics

Motivation ln Data Collection vs Project Number

5

4

c 3
0
::
u 2.!
Ci
U

la
1ii 0Cl

.5 ·1
c
0

i ·2
~
0 -3::E

-4

..
.. &. .. ....

R = 0.85

Neutrel

·5
o 2 4 8 8 10

•
Proflct Number

------------------------------------------------------Sherdil



110

These eight plots had a mean value for slope of -0.15 and a mean value for
correlation coefficient of 0.79. For an eight variables, on the scale of -5 ta 0 ta
+5 (completely unmotivated ta neutral ta extremely motivated), the average
value obtained was 1.8 (where 1.0 =slightly motivated and 2.0 =quite
motivated). Table 19 below gives details of these statistics:

Table 19: Statistics on the sub'ective measures

Correlation Coefficient, R

Slope

Values for a11 the 8 variables

0.79

-0.15

1.8

0.055

0.031

0.15

•

The low values of standard deviations show that the variance in the data was
not high. The correlation coefficients are quite high (on average, 0.79) with a
high significances (at least at 0.05Ievel). However, in this case we are not
interested in how weIl the data lies on a straight line, but rather, on whether
or not the data is increasing or decreasing. Reca11 that our objective is ta find
if the motivation and the other attributes increased or decreased during the
course of the experiment.

For this purpose we carried out a comparison of means test (since each of the
nine points is a mean of the 12 data points for the students). It was found that
none of the eight variables showed any significant change, even at 0.20 level.
In other words, the probability that the slight decrease which we obtained in
a11 the variables could have oceurred by chance alone is more than lin S,
which cannot be eonsidered significant at aU. Hence, for all practical purp')ses,
we ean daim that the variables stayed constant. This implies that in doing
data analysis on other variables (sueh as defect rate, productivity, etc.), we can
be confident that these other variables are not dependent upon these
subjective variables (e.g., motivation).

------------------------------------------------------
Sherdil



III

• 7.0 Discussion and Comparison with
Related Work

Section 5 discussed the four types of research purposes: discovery,
demonstration, refutation and replication. Discovery means finding
something new out, which was not known before. Demonstration means to
verify that sorne hypothesis or theory is correct. Demonstration is sometimes
more accurate than Discovery since in it more validation is carried out, as
compared to Discovery which might take place without formaI prior goals. A
first-time demonstration (i.e., when a theory has not been empirically
verified before) can be as important as the Discovery. Usually replication is
not that important since although it increases our confidence in sorne
hypotheses, it does not tell us something new.

Our work is a good example of Discovery and first-time Demonstration. In
case of sorne parts of our work, past data exists from other studies (though in
differing environments and sometimes for different objectives). Hence there
is a flavor of external-replication also in our work. Note that an ideal
replication involves carrying out the experiment with the same experimental
design, preferably under the same environment as in our case. In this section
we discuss the significance of our results and compare them with other
related work.

•

The prime objective of our work was to study the learning curve, although it
turned out that we carried out various other tasks of importance. Our results
of the progress functions are a replication of the past work done in numerous
other fields of industry, manufacturing and management in the sense that we
have shown that learning indeed does occur. However, in the field of
software engineering, our work is one of the first detailed empirical studies of
its kind. Hence here we have shown that our hypothesis that learning occurs
in this field also is correct. This is a first-time Demonstration. We also
obtained sorne concrete insight into how much of what type of learning
occurs (first order or second order). This is more close to discovery since in
the field of software engineering, no detailed hypotheses about these have
been developed.

Our work is comprehensive since we used three different models: linear,
quadratic and log-linear, and produced detailed quantitative results. The most
important feature in the learning curve is the progress ratio, p. Past work

Sherdil



•

•

112

(29)[60] has shown that a 20% value of learning rate or progress ratio is most
often cited. Our average value of the learning index for the 12 subjects was
22.13% (section 6.5), which is close to the past results. However, we also
showed that there are cases where the learning rate can be much higher. The
value of the progress ratio for the learning curves ranged from 15% to 60%,
with a mean and a median of 36% (section 6.1). These results suggest that in
the field of software, much higher rates of learning are possible as compared
to other manufacturing fields such as the aircraft construction, etc. More such
studies would help in generalizing this aspect. This increases the importance
of incorporating progress functions in managerial decision making in the
software field.

There are several aspects related to learning which, although we studied, did
not yield any thing conclusive. The analysis of first order learning is a good
example. We found that in our case the personal capabilities of an individual,
which were further refined into experience and performance, do not have
any relationship with how fast a person learns or how weIl a person performs
(section 6.5). However, we could not refute this hypothesis either. In other
words, we cannot prove that these variables have no relationship. It just so
happened that in our case there was none; other studies might give perfectly
valid results showing that in their case sorne form of relationship does exist.
One important aspect, however, of this study was the detailed procedure used
in caIculating the capability index, using 10 different criteria. Past examples of
such detailed techniques in the field of software engineering are not known
to us.

Our study showed that the subjective measures related to motivation, stayed
constant throughout the experiment (section 6.6). Here also, we cannot
hypothesize that these variables will always remain constant. However, we
stress on the need for measuring them in such studies, since if they are not
constant then they have the potential to affect the results. We would also like
to point out the difference between the data analysis based on personal
discretion and the statistical data analysis. AlI the subjective measures clearly
indicate that they are slightly decreasing as the experiment proceeds.
However, statistically speaking, this decrease is not significant and hence they
must be considered as not decreasing, or constant. In such cases we have to
opt for statistical resu1ts, since the personal discretion might be rational, but it
can never be proven. On the other hand, statistical methods have been in use
for many years, and are known to provide accurate deductions from the data.

Sherdll



•

•

113

Our second main objective was to compare first order and second order
learning. It is difficult to measure which one helps more in the overall
learning process. Gone are the days of Gestalt who used to stress on the first
order learning, such as experience and insight. Researchers such as Arrow [5],
Levy [42], Adler [2], Clark [2], Hirsch [29], etc. have hypothesized that second
order learning is equally or more important. However, there are only a few
studies which give empirical evidence to this, such as [29]. Furthermore,
several such studies are on past data only, such as the ship-building during
the second world war [46][24], and ignore any form of experimental design.
We believe that it is important for researchers to gather data themselves
instead of relying on past logs from manufacturing firms, because it is
improper to impose an experimental design on work that has already been
done. In this sense it can be considered that our work has advanced the
knowledge in the field of software.

Our results showed that the second order learning helps the individuals to
learn up to 13% more than the first order learning alone (section 6.4). We are
not s?tisfied with these results because we believe that the actual number can
be much higher. This low value has been obtained because we had no control
groups. If we had one randomly assigned group with engineering technology
and training and the other one without it, then the results obtained would
have shown higher differences. However note that even the value of 13% is
not low. In large organizations with huge budgets, this percentage can save
millions of dollars, even after accounting for the cost of injecting the
technology and providing the training. However, detailed studies are needed
for confirming these facts.

Finally, our third main objective was the analysis of the 4-variable mode\. For
this purpose we had to carry out a comparative complexity analysis of the
Halstead's and McCabe's complexity metrics. Note that there are numerous
papers written on these two metrics, and several of them have tried to
compare the two [20] [14]. Our comparison consists of a large sample size of
108 programs, and gives a correlation of 0.80 (section 6.2) between the two (at
0.005 level). This result alone can be published as a study.

It is difficult to describe the results of our 4-variable mode\. On one hand it
can be termed as a discovery, since we originally had the three variable model
in mind, and ended up discovering that complexity was a fourth variable
also. But on the other hand, ail the results are so much in harmony with
intuition that they are merely a demonstration of what we were expecting.
For example, the hypothesis tha't more the complexity less the productivity is

Sherdll



•

•

114

not a discovery but a demonstration of what we had a belief in due to rational
thinking. In sorne cases, past work has also been done on various separate
parts of our 4-variable mode!. For example, Putnam [45] and Humphrey [3D]
have given figures showing that increased productivity is due to increased
product-quality. Hence our work is sort of a replication of previous studies,
though in a different environment.

An interesting aspect about our work is that there are complp.tely unexpected
results or unusual deductions. For example, we showeJ that the leaming
does occur, that the second order learning is useful in addition to first order
learning, and that the productivity, defects and complexity are related just the
way one should expect them to be related. 50 then what is important about
our results? The answer to this is that although most of these hypotheses had
been thought to be true intuitively or 10gica11y, they had not been verified
before, especia11y in the field of software engineering. Furthermore, our work
involves a true scientific study and hence its results can be considered to be
valid and reliable. Fina11y, we believe that our study has focused on nearly a11
the aspects of the learning curve model, and hence provides completeness in
work. Nevertheless, there are still various other points which need further
study. These are discussed in the next section.

Sherdll



11.5

• 8.0 Conclusion and Future Work

In this work, our objective was to study the progress functïons for
individuals, who can expect continuous improvement in productivity as a
consequence of (i) a growing stock of knowledge and experience gained by
repeatedly doing the same task (first-order leaming) or (H) due to
technological and training programs injected by the organization (second­
order leaming). Progress functions are important since they are used in
industry for making managerial decisions regarding cost estimating and
budgeting, production and labor scheduling, product pricing, etc. (4)[29] While
considerable research on this topic has been done in industrial and
manufacturing sectors [60], we found Iittle emphasis in the software process
field.

It is important that software firms begin paying more attention to the progress
functions in making managerial decisions. According to Dr. Hashim, assistant
professor of software engineering in Malaysia, this trend is being followed
increasingly in Asia, although only a little has been published on it. In fact,
the promotions of the employees in various software firms depend on if they
have followed the learning curve properly or not.

Our results confirm that a 20% leaming is normal. The PSP course is
currently being taught at McGill University again, and one goal of our
research group is to replicate our experiment to get a better confidence on this
figure. We strongly encourage other researchers to carry out external
replication as well, especially in the industrial environment. Giving the
industry a verified figure would be doing a service to it. Such research resu1ts
can then be used for making delivery schedules, estimating the product­
quality and cost, as weil as on keeping track of how well the personal
capabilities of the employees are, e.g., in estimating the size of the projects.

•

We feel that more work is needed in differentiating the first order and the
second order leamings. As mentioned in the data analysis, we feel that the
13% figure we calculated regarding the contribution of second order leaming
beyond the first order is underestimated. A verified figure would allow the
managerial personal to initiate training programs, purchase new technology
and stress more on organizational attempt to induce learning amongst the
employees. No management would do this unless they are certain that the
percentage increase in improvement is significant. Hence a cost-benefit study

Sherdll



•

•

116

is also needed in this field. We would recommend that a controlled
experiment should be designed in order to carry out this task.

Another interesting aspect of our work has been the 4-variable model.
Although in the past various studies have been carried out on static models
involving productivity, defect-quality and complexity, not much work has
been carried out on the dynamie models involving time or cumulative
output. In our work, we have produced equations on the relationships
between these models. Of course the parameters of these equations would
differ from environment to environment. Hence further replications are
needed to gain a better confidence on these values. Furthermore, in our case
the subjective variables such as the motivation turned out to be constant.
This might not be the case in other studies. Hence more attention should be
paid to these subjective variables also, and see if they have an effect on the 4­
variable modeI.

There are various topies whieh we referred to in our work only briefly but
whieh can be studied in more detail. Although we carried out a detailed
complexity analysis, controlling or varying the complexity was never our
objective. Work can be done on controlling the complexity and then
observing how it effects the other two variables, productivity and defect­
quality. Similarly, the latter variable has only been studied in the context of
its relationship with the other variables. However, given the detailed data
available to liS consisting of each and every defect from a range of 190 defect
types, can be used to carry out a more thorough study with prime focus on
defects alone. Such work might include studying the defects by the phase they
are injected in.

One of the secondary objectives of our work was to study the personal
capabilities of the subjects. Our method of assigning a capability index, though
very detailed, is highly subjective. More work is needed on developing a
procedure whieh is more acceptable in the software engineering community,
so that the results can be consistently compared with other works. We had the
limitation of a small sample size. If possible, studies should be carried out
involving a much larger number of subjects. Any relationships between the
learning index and the capability index might then be more obvious.

Although the PSP has been around in the software engineering field for a
while, relatively less attention has been paid to it. Business firms are usually
busy on improving their organizational processes because they feel that they
have a higher cost-benefit ratio. Data is needed to convince them that the PSP

------------------------------------------------------Sherdll



•

•

117

is also usefu\. Controlled studies are needed on the PSP itself, to see how
much it helps the individuals.

Our research model covered a wide variety of topics from the field of software
engineering. We are very satisfied with the effort we put in the design and
execution of our experiment and also in the analysis of the data. As a result,
we are more than happy with our results as wei\. We believe that our work
can contribute to the software engineering community and would be pleased
if other researchers explore our objectives in further detai\'

------------------------------------------------------
Sherdll



118

• APPENDIX A

The Initial Questionnaire

•
Sh;;dïï-----------------------------------------------



• Student Questionnair
McGIII University Wlnter '94 CS 631

This fonn must be filled 001 by a1l the students. lrrespective of their job e.perience. PlellSe fill this belon: :.00 slllrt
work on Ass H1. und "'Iom il on Thursdoy Jun 20. 1994.

Name
Date

Please list ail Degrees attained (Bachelors or above) _
Please list ail your MajorslMinors _

Total Full-Timejob experience in Computers related field _
Other Part-Time job experience in Computers related field _

Please list ail the languages you have progranuned in for MORE than a semester (e.g.
Prolog, LISP, Scheme, Assembly InteIIMotorolla, Ada, Fortran, Algol, Basic, Pascal.
Object Pascal, C, C++. COBOL. etc) Also indicate the approximate total LOC wrïllen in
these languages. Put an asterisk on your favorite language. (LOC stands for a Physical
Lille in your program source code. not including the blank and comment Unes).

Language Total LOC & Total Months

Please list any other languages in which you have written at least one program. Also
indicate the approximate total LOC written in these languages

Language Total LOC & No. of Programs

•
Total LOC written in any Language
Total years of Programnùng experience _



• Plense list all the Databnse related packages you have used (eg, DBASE IV, RBASE,
ORACLE, SYBASE, SQL, Relix, FOXPRO, WindowBase), and the time you have used
them for:

DBASE Total Tlme

Plense list all the Spreadsheet related packages you have used (eg, MS-Excel, LOTUS 1­
2-3, Quattro, LOTUS IMPROV), and the lime you have used them for:

SpreadSheet TotalTime

Please list all the Stalistical Tools you have used (eg, SAS, SPSS, Systat), and the time
you have used them for:

Statlstlcal Tooi Total Tlme

In the space below, please list any other package, tool,language, etc related to Software
Process Engineering, User Interfaces, Statistics, etc which has not been asked for above.
You may also take this space to describe some Software Process Engineering related
project you might have undertaken at your job or nt sorne undergraduate course:

•



• SELF APPRAISAL

Please list the ONE (or at most two) principallanguage(s) you have been using recently
(or have used the most) for programming: _

For the above menlioned Principallanguage(s), and also for C1C++. plense rend the
definitions given below and then answer the questions:

Total Output: This is defined as the total LOC you have wrillen in a programming
language.

Based on YOllr prior experienee. estimate your Total Output in LOC you hal'e \l'ritell.

Principal _________ C1C++ _

Programmar-Produetlvlty: This is defined as the number of LOC you develop per unit
oftime.

Based on your prior experienee. please estimated your produetivity in LOC per hOllr.

Principal ________ C1C++ _

Dcfeet-Quallty: This is the number of Defects or Errors which a programmer makes per
100 LOC. Please look at the Defeet Types Standard for a listing of all the types of errors.

Based on your prior experienee. please estimate your Defeet-Quality in No. of
Defeets per 100 LOC.

Principal ________ C1C++ _

Reusability Rate (New LOC Only): Sometimes you directly copy/paste LOC from your
own previously wrillen programs (without modifying those !ines) to save lime and effort.
Reusability can then be defined as the No. of Reused LOC per every 100 LOC you write.

Based on your prior experienee. please estimate your Reusability Rate (New LOC
Only) in No. ofReused LOC per every 100 LOC programmed.

•
Principal ________ C1C++ _



•
Reusablllty Rate (New & Modified LOC): SomeÛIDes one has to s!ightly modify the
Reused !ines, which are copied/pasted from ones own previous programs.

Ifwe add these modijied lines also to your answer above. what will be your
Reusability Rate in Reused/Modijied LOC per 100 LOC.

Principal ________ C/C++ _

DeCect·Removal Efficlency: Tlûs is defmed as the number of defects you find and
remove per hour ofdebugging (finding and fixing) ÛIDe.

Based on your prior experience, what do you t1ûnk is your Defect-Removal
Efficiency in No. of Defects (traced & fIXed) per hour.

Principal ________ C/C++ _

Time Estimation Error: Before one starts to code, one has a roughlprecise estimate of
how long it would take to finish the program. Often t1ûs estimate is wrong and the actual
time is different, say 10% more or less than the estimated ûme. This Percentage Time
Estimation Error can be calculated by taking the difference in the Actual and Estimated
Times, and converting it to a percent.

Base on your prior experience. what % error do you think is there in your Time
Estimation.

Principal ________ C/C++ _

Size Estimation Error: Similarly. programmers usually have a roughlprecise estimate
of how long their program is going to be, in LOC. The difference in the actual program
size as compared to the planned program size gives the % error for size estimation.

Based on yourprior experience. what do you think is your %size estimation error.

Principal ________ C/C++ _

In the space below, please describe what experience (Total LOC and Time) you have in
using C++ (not C alone) and in any other Object Oriented Design experience.

• Thankyou



•
Disciplined Software Engineering - Student Questionnaire

NOTE: PLEASE COMPLETE BOrn SIDES

General:
Name ~':""':'"-~ Date
Instroctor University

Education:
Highest degree altained:
Current field ofstudy:

Have you had courses ln?
Statistics
A physical science
Software project management
Formai software methods

___ Major:

Software:
Programmlng Languages you have used:

C C* Pascal
Other

__ Object Pascal

c++

•

Language you will use ln this course:
Approximate total LOC wrillen in this language: _
Approximate total LOC wrillen ln any language:
The year you wrote your fus! program:
Design methods you use:
Do you use formai methods?
List the formai methods you use:

Number ofyears you have used these methods:

Ifyou would be wiUiug to answer a rollow-up questionnaire iD tbe future, please
glve a permanent address tbrougb whlch you can be reacbed:



•

•

Ifyou have been employed to write programs, please answer the
following questions:

The Tools and Methods Vou Use:
Principal language you use:
Approximate total LOC written in dûs language:
Approximate total LOC written in any language: _
Design methods you use:
Formai methods you use:
Vears you have uscd these methods:

Your Penonal Process:
Do you make a project plan before development?
Do your plans include size estimates?
Do your plans include defect estimates?
Do your plans include resource estimates?
Do your plans include schedules?

Do you do personal design reviews?
Do you do these reviews before you write the code?
Do you do personal code reviews?
Do you do these reviews before you test?
Do you do these reviews before you compile?
Do you have peer inspections ofyour code?
Do you do a personaJ review before the inspection?
Do you compile before the inspection? ••
Do you unit test before the inspection?

Estimated Iines ofcode you develop per hour: .
Approximate defects/KLOC in your first program test:
Approximate % defects you find before first test:
Approximate % defects you find before tirst compile:
Approximate % ofyour development time spent in personaJ reviews:
Approximate % ofyour development time spent in inspections:
Approximate % ofyour development time spent in compile:
Approximate % ofyour development time spent in test:

Iryou are familiar with the CMM, please estimate the overa" process maturity of
your organization, your most recent project, and your personal processes:

Vour organization's approximate overall proçess maturity:
Your project's approxirnate overall process maturity:
The approximate overall maturity ofyour personal process:



• APPENDIX B

Logical LOC Coding Standards

•
Sherdil

119



•

•

Countïng Standards for Logical LOC

1. Blank lines are not counted
2. Comments on separate Unes are not counted
3. No statements or punctuation marks within '(...)' or '[...)' are counted.
4. Count once each occurrence of',' in declarations.
5. Count once each occurrence of the following selected key words and tokens
(exception is For-Loop statement)::.,

[
1
li
#
case
default
do
eIse
for
if
public
switch
while

6. Count all function/method/main/procedure deciarations.

Now, using the above counting standards, we will develop coding standards,
such that each Physical LOC will contain ONE and ONLY ONE Iogical LOC. In
this way, by simply counting the Physical LOC, we would be (indirectly)
counting Logical LOC, hence avoiding the difficult task of writing a Logical LOC
counter•



• APPENDIX C

Physical LOC Coding Standards

•
Sherdll

120



•

•

Coding Standards for Physical LOC
(representing ONE and ONLY ONE Logical LOC for each Physical LOC)

~
1. For declarations, declare only one variable per Une.
2. Ali function/method/main/procedure declarations should normally be
written on one line, except for when they cannot fit in on a single line. The IIO
parameters should be declared within the parenthesis of the calling Function's
header.

MAINBQDY
3. For the main body of the program/functions, eaeh and every line should have
ONE and ONLY ONE of the following key words or tokens (exception is For­
Loop statements and function/main/procedure headers):.,

(
1
li
#
ease
default
do
else
for
if
public
switch
while

COM.MEN.TS & BLANK UNES.
4. There is no restriction on the number of Blank Unes.
5. There is no restriction on the comments which are on separate Unes.
6. For the Program Header, it is recommended that the students follow the C++
Coding Standards given in the handout attached to the Defect Type Standards.
In particular, the following topies should be eonsidered:

Program name and number
Version and release information
Who developed it and when
The function Performed
Any special usage guidance and wamings

7. For the Procedure/Funetion/Method Headers, it is recommended that the
students follow the C++ Coding Standards given in the handout attached to the
Defect Type Standards. In particular, the following topies should be considered:



• Function perfonned
Return format and limits
Any special usage guidance and warnings

8. For inline commenta, the following tapies should be considered:
Purpose and function of complex operations
Purpose of any special parameters and variables
Nature of any special data types
Any other commenta to clarify program operation

Examples of VALID codes:

rear;

#include <stream.h>
#define TRUE 1

elass queue (
int q[lOO);
int front,

lIone and only one # token per Une
lIone and only one # token per !ine
Ilblank !ine
lIone and only one { token per Une
lIonly one deelaration per !ine
lIonly one deelaration per Une
lIonly one deelaration per line
lIone and only one }; token per line
Ilblank line
lIone and only one { token per Une
lonly one deelaration per line
lIonly one deelaration per line
lIone and only one} token per Une
Ilblank line
lIone and only one { token per Une
lIonly one deelaration per line
lIonly one declaration per line
lIonly one deelaration per line
lIonly one Keyword pub!ie per Une
lIonly one deelaration per line
lIonly one deelaration per !ine
lIonly one deelaration per line
lIone and only one }; token per line
Ilblank line
l!Function deelaration takes one line
lIone and only one { token per Une
lIonly one deelaration per line
lIonly one deelaration per line
lIonly one deelaration per line
lIonly one declaration per line
lIonly one declaration per line
lIonly one declaration per line
Ilblank line

templ;
temp2;
temp3,
temp4,
tempS;

statie int x;

void fune1(void)
{
int
int
fioat

public:
void init(void);
void enque(int il;
int dequ(void);
};

union x {
char ch;
int i;
}

typedef struet {
fioat average;
int marks;
char narne[40];
}student;

•



switch(ch)
{
case'!':

check..spellO:

while ( (x > y) && (x > 0) )
{
X=x+y;
y++;
}

(x> y);

rear++;
retum q[rear);
}

{
x=x+y;
y=y-x;
}
while

x = x + y;
relurn(x);
}

}

eIse

lIone and only one; token per line
lIone and only one; token per line
lIone and only one} token per line
Ilblank line
IlMethod declaration takes one line
lIone and only one { token per line
lIonly one Keyword if per line
lIone and only one { token per line
lIone and only one; token per line
lIone and only one ; token per line
lIone and only one} token per line
lIonly one Keyword else per line
lIone and only one { token per line
lIone and only one; token per line
lIone and only one ; token per line
lIone and only one }token per line
lIone and only one }token per line
Ilblank line
IlMain declaration takes one line
lIone and only one { token per line
lIonly one Keyword do per line
lIone and only one { token per line
lIone and only one; token per line
lIone and only one; token per line
lIone and only one} token per line
lIonly one Keyword while per line
lIone and only one; token per line
Ilblank line
lIonly one Keyword while per line
lIone and only one { token per line
lIone and only one; token per line
lIone and only one; token per line
lIone and only one } token per line
Ilblank line

for (count = 1; count < 10; count++) IIfor loop is exception case
{ lIone and only one { token per line
cout« "hello\n"; lIone and only one; token per line
putchar('.'); lIone and only one; token per line
} lIone and only one } token per line

Ilblank Une
lIonly one Keyword 5witch per line
lIone and only one { token per line
lIonly one Keyword case per line
lIone and only one ; token per Une

inl queue::enque(void)
{
if (fronl = rear)

{
cout « "underflow";
relurn 0;
}

(

main (void)
{
do

•

•



• break;
case '2':

x=x+y;
y++;
break;

default:
cout» "Err";

}
}

void
func2 (a, b)
int a;
float b;
{
int local;
local = local +x; a++;
b--;
}

,

lIone and only one; token per Une
lIooly one Keyword case per line
lIone and only one; tokeo per Une
lIone and ooly one ; token per Une
lIone and only one ; token per Une
lIooly one Keyword default per Une
lIooe and only one ; token per Une
lIooe and only one } token per Hne
lIone and only one } token per Une

IlFunction declnraûon takes 4 Unes

IlArgumentslpnrnrneters must be
IIdeclared as func2(int a, float b)

Irrwo ; tokens in one Hne

int
queue

x, y;
aque. bque;

Irrwo declnratlons in one Hne
Irrwo declnrations in one Hne

•

while (x > y) x++:
while (x > y) {

x++;
y--;
}

112 Keywordsltokens. while & ;
112 Keywordsltokens. while & {



121

• APPENDIX D

Validation Form

•
Sh~;dïï-----------------------------------------------



•

•

Validation Form

Name

Status (MSc2, Prof, etc) _

Field of Research _

Experience (Yrs) in Software Engineering _



• Introduction

You have been selected to fil1 out this form because of your professional experience
related to th.: lield of Mensurements in Software Process Engineering. We \\'ould really
appreciale if you can spend 30 minutes of your precious time to answer sorne of the
questions given below. But lirst, please read the following details of the Surl'ey we are
carrying out. You are kindly requested to give suggestions on Validating the Goals­
Questions-Metrics used in this survey.

ObJ,ctive

Our main objective is to study the Personal Software Process. We have a group of about
10 sludents, who would be writing about 10 small programs over a period of One
Semesler. For each program, we would gather data on their performance, such ns the
number of Errors they make, the number of Lines they Code, the period of Time it takes
them to write the programs, etc. These Metrics are labeled MI, M2, M3, .... (a detailed
listing is attached). We plan to use these metrics to answer certain questions,labeled QI,
Q2, .... These Questions are specifically designed to give us information about our
Objectives or Goals, labeled G l, G2, ...... Your task is to raise any objections you find
about these Goals, Questions or Metrics and suggest any improvements. Your Validation
should consist of checking for correctness, consistency and completeness. Plense also
feel free to ndd new Goals, Questions or Metrics in the space provided. In particular, you
should be keeping an eye for objections such ns:

Vnlidity of Goals:

Questions Vnlidity:

Are the Goals important enough?

Do the questions accurately answer the Goals under
consideration?

To facilate in your validation process, given below are sorne items which you might
check for in validating the Metrics and Questions [Validating Instruments in MIS
Research, Straub] [Mensurement: The key to application development quality, Walrad]:

•

Content Vnlidity:

Construct Vnlidity:

Are instrument measures drawn from aIl possible mensures of
the properties under investigation?

Do mensures show stability across methodologies? Are the
data a reflection of true scores of the kind of instrument
chosen?



• Reliability:

Internai Validity:

Statistical Validity:

Efficiency:

Metrics

Do mensures show stability across the units of observation?
Could measurement error be so high as to discredit the
findings?

Are there untested rival hypotheses for the observed effccts?

Do the variables demonstrate relationships not explainable by
chance or sorne other standard of comparison?

Does the metric produce a desired effect with a minimum of
effort, expense, or wnste?

•

Given below is a listing of the 18 metrics used. To keep our task simpler. most ofthese
are Objective metrics, and are aIready being used worldwide for various software related
measurements.

Ml Size Estimation Error

This is the % error with which a student estimates the size of the
program which is to be coded.

( 1Estimated LOC - Actuai LOC Il Actual LOC) x 100

Any Remarks on this Metric. Should we not use tMs metric? Ifnot, tllen wlly not?
SIIould tllis metrie be modified? Ifso. tllen how? SIIould a new Metrie be used instead?
Ifso, please give detai/s. /t might be better tofill in your eommentsfor eaell metrie ofter
YOIl IIave read the Goals and Questions.



•

•

M2 Time Estimation Error

This is the % error with which a student estimates the time required by
him/her to code a program.

( 1Estimated Time - Actunl Time 1 / Actual Time) x 100

M3 Real Defeet Qua\ity

This is the number of defects per KLOC. The total number of coded \ines
includes the Reused Iines also. For detailed work, this metric will be used
separately for ail the possible types of defects (e.g, Syntax Erros. Run Time
Errors. etc).

(No of Defects of Type X / Totnl New & Reused LOC) x 1000

M4 Apparant Defect Qua\ity

This is the number of defects per KLOC. The total number of coded Iines
does not include the Reused \ines. For detailed work, this metric will be used
separately for ail the possible types of defeclS.

(No of Defects of Type X / Totnl New LOC) x 1000



• MS Reused Code

This is the number of LOC which are reused per KLOC.

(No of LOC Reused 1Total LOC) x 1000

M6 Real Programmer Productivlty

This is the number. of LOC which a student codes per programmar-month (of
160 hrs). These include the Reused !ines which are simply copied from
previous work, and are NOT modified:

(No of New & Reused LOC 1Total Time-hrs) x 160

M7 Apparant Programmer Productivity

This is the number of LOC which a student codes per programmar-monlh.
These do not include the Reused !ines.

(No of New LOC 1Total Time-hrs) x 160

•
MS StudentGPA

This is the Cumulative Grade Point Average of the student at McGill
University.



•

•

M9 Students Self.Appralsal of Defect Quality

This is the estimate of what the student thinks is hislher personal defect
quality, in No of Defects per KLOe. This esitmate is taken only once at the
begining of the semester.

MIO Students Self.Appraisal of Programmer Productivity

This is the estimate of what the student thinks is hislher persoanl programmer
productivity, in No of LOe per Programmer-Month. This esitmate is taken
only once at the begining of the semester.

MIl Students Self.Appraisal of Size Estimation Error

This is the estimate of what the student thinks is hislher average error rate
in estimating the size of the programs before they are coded. This esitmate is
taken only once at the begining of the semester.



• MI2 Studcnts ScIC·Appraisal oC Tlmc Estimation Error

This is the estimate of what the student thinks is hislher average error rnte
in estimnting the Time of the progrnm whieh is to be coded. This esitmnte is
tnken only once nt the begining of the semester.

MI3 Students SelC.Appraisal oC Reusabllity

This is the estimnte of whnt the student thinks is hislher level of Reusing the
eode, in No of Reused LOC per KLOC. This esitmnte is tnken only once nt
the begining of the semester.

MI4 Students Interest

This is the level of interest whieh n student tnkes in writing n program, as
judged by the student on a sea!e of [-5 to 0 to +5] standing for [Completely
Disinterested to Neutra! to Very Interested].

•
MIS Studcnts Motivation

This is the level with which a student is motivated to write a
program, as judged by the student on a scnle of [-5 to 0 to +5] standing for
[Complete Lack of Motivation to Neutra! to Very Motivated].



•

•

MI6 Students Satisfaction

This is the level of satisfaction which a student achieves by writing a program,
as judged by the student on a scale of [-5 to 0 to +5) standing for [Annoying
to Neutral to Very Satisfying).

MI7 Defect Removal Efficiency

This is the number of defects rtmoved by the student per hour of time spent in
finding and fixing the defects.

(Total No of Defects Found 1Total Time taken to Find and Fix the Defects)

MI8 Students Sclf·Appraisal of Defcct Removal Efficicncy

This is the estimate of what the student thinks is hislher persoanl Defect
Removal Efficiency. in No of Defects Removed per Hour. This esitmate is
taken only once at the begining of the semester.



•

•

Please List below any otller Metrics which YOIl think might be IIsefill and describe IIOIV

they //lay be IIsed. Ifpossible. give the nllmber ofthe QI/estion(s) the)' //light be I/sed to
answer.

Goals and Qu~stions

Having defined the metries we would be using, we are listing 6 Goals and 13 Questions.
Under eaeh question, the names and numbers of the metries whieh will be used arc also
listed.

Gl Investigate the Learning Curve of the Students in the context
of the Personal Software Process with respect to the Estimation
Ability.

Remarks/Objections/Modifications

Q1 Mow lIoes the sbcllents Clblllt)l to EsltltlClte the Sille of tl,e
ProgrClItI IltIprove wlth tlltle1

[ Ml Size Estimation Error]



• 02 Mow Iloes the shillents e1bUlt)/ to Esltltlelte the Tlltle reqwlrell
to colle the 'Progrelltl IltIprove over the pelsselge of 10
progrelltls1

[M2 Time Estimation Error]

•

03 Is there e1n)/ releitionsl,lp between the Ablllt)/ to Estlltlelte Siae
Mil AblUt)/ to Estlltl'lte Tlltle1

[M 1 Size Estimation Error]
[M2 Time Estimation Error]

G2 Does the Feed·Front from previous programs help the
students?

04 'Does the 'Defect-OI4e1l1t)/ of the stl4llent for el pelrtlcl4lelr t)/pe of
Ilefect >C Increelse belsell on the elOperlence obtellnell froltl the
prevlol4s progrelltls1

[M3 Real Defeet Qunlity]
[M4 Apparent Defeet Qunlity]



• os '00 tlle prevlows progrqltts help the stwdent b)l offerlng code
whlch cqn be rewsed1

[MS Reused Code]

•

G3 Investigate the behavior of Programmer Productivity and
Defect-Quality in the context of Persona) Software Proccss.

OG 'Ooes the stwl!ent get Ittore prol!wctlve ln wrltlng code1

[M6 Real Programmer Productivity]
[M7 Apparent Programmer Productivity]

Or Is there qn)l relqtlonshlp between the Progrqlttltter Prodwctlvlt)l
qnl! the 'Oefect-Owqllt)l1

[M3 Real Defect Quality]
[M4 Apparent Defect Quality]
[M6 Real Programmer Produclivity]
[M7 Apparent Programmer Productivity]



•

•

013 'Does tl,e stl4Aents 'Defect'Relttov'Il Efflclenc)t Incre'lse1

[M 17 Defcet RcmovaI Effieieney]

G4 Study the Contingency of Personal Capability Factors on
Personal Software Process

08 If the stl4Aent Itt'llces '1n)t Ilttprovelttent, then Is lt solel)t Al.le to
the Process, PSP, or AO the Person'll C'Ip'lbUlt)t ~'1ctors of
the stl4Rent sl4ch '1S SIcUls, U'IrAworlc, ElOperlence,
Intelligence, etc '1lso '1ffect lU

NB: This reql/ires a graph ofStl/dentlmprovement vs Ranking ofStl/dents by Personal
Capabiliry level.

S/Ildentlmprovement can bejudgedfrom variousfactors SI/ch as Estimation Abiliry,
Programmer Productiviry, Defect-Ql/aUry. Defect-Removal EjJiciency.

A Ranking ofStl/dents Personal Capabiliry level can be made I/sing the sil/dents GPA or
by using the sil/dents pe/forll/ance dl/ring this semester (Prodl/ctiviry, Ql/aUry,
EjJiciencyJ.

[MI Size Estimation Error]
[M2 Time Estimation Error]
[M3 Real Dereet Quality]
[M6 Real Programmer Produetivity]
[MB Student OPAl
[M17 Dereet Removal Effieieney]



•

GS Are the students generally more optimistic about their
capabilities?

Q9 ~ow 900Â Âo the st14Âents thlnle the)l elre ln Esthtleltlon
Ablllt)l, ProÂ14etlvlt)l, 'DefeeH114elllt)l, 'Defeet'Relttoveli Efflelene)l
elnÂ Re14selblllt)l vers14S how weil the)l elehlelll)l elre1

NB: Before the start ofthe semester, the students will be asked to estimate whatthey
think is their standard ofProductivity, Quality, Efficiency and Estimation Ability. Their
estimates willthen be compared with the actual values obtainedfrom thei,. pelformance
in thejirst IWO programs.

•

[Ml
[M2
[M3
[M4
[M5
[M6
[M7
[M9
[MIO
[MIl
[M12
[M13
[M17
[MIS

Size Estimation EITor]
Time Estimation EITer]
Real Defect QuaIity]
Apparent Defect Quality]
Reused Code]
Real Programmer Productivity]

, Apparent Programmer Preductivity]
Students Self-Appraisal of Defect Quality]
Students Self-Appraisal of Programmer Productivity]
Students Self-Appraisal of Size Estimation EITor]
Students Self-AppraisaI ofTime Estimation EITor]
Students Self-Appraisal of Reusability]
Defect RemovaI Efficiency]
Students Self-Appraisal of Defect Removal Efficiency]



•

•

G6 To study sorne subjective aspects of Hurnan Interest,
Motivation and Satisfaction in the context of Personal Software
Process.

010 'Does the stl4Âents Interest ln wrltlng progrelltls
Increelse or Âecreelse wltll the pelsselge of tlltle1

011 'Does tlle ltIotiveitlon wlth wldch el stl4Âent wrltes progrelltls
Increelse or Âecreelse wlth the pelsselge of tlltle1

012 'Does the seltlsfelctlon whlch el stl4Âent e1cldeves bl' wrltlng
progrelltls Increelse or Âecreelse wlth the pelsselge of tlltle1

[M14 Students Interest]
[M15 Students Motivation]
[M 16 Students Satisfaction]



•

•

Ifyoufeel that we ean study some more Goals, then please mentioll them belolV. If
possible. please also mention the metries whieh ean be used to measure tllOse
Goals/Questions.

Once again. we thank youforftlling out this/orm. Please relurn il 10 Khalid Sherdil in
MC Rm334 or ifyou wanl il to be piekedfrom your office, Ihen please leave a message
at 844-1378,398-7084 or sher@binkley.



122

• APPENDIX E

Motivation Form

•
Sh;;dlï-----------------------------------------------



• Evaluation Form •
ln the questions below, 'Program' means the process of designing, coding and running a program salisfactoraly. The term
'Oata'lmplies the process of collecting PSP Data. Please check the appropriate box. You must answer ail the questions,
though you will NOT be graded on what you answer. 0

Name Assignment #

"Interest" Is defined as the 'wi/ling attention' yeu took in the assignment. How much interest did you take in this assignment?

·5 -4 ·3 -2 ·1 0 +1 +2 +3 +4 +5
Complelely Very oune SlIghlly Neutral SlIltltly Oulte Very Extremely
Dlslnterested Dlslnteresled Dlslnterested Dlslnterested Interested Inleresled Inleresled Interesled

Program

Daia

"Motivation" is defined as the deslre or incentive given to you by the management ln the program. How much motivation, do
you thlnk, were you given in this assignment?

-5 -4 -3 ·2 ·1 0 +1 +2 +3 +4 +5

Completely Very oune Sllghtly Neutral Sllltllly Oulte Very Extremely
Unmollvaled Unmollvaled Unmollvaled Unmollvaled Mollvaled Motlvaled Motlvated Motlvated

Program

Daia

"Satisfaction" is the pleasure you receive upon fulfillment of a task. How much satisfaction did you get from this assignment?
·5 -4 -3 -2 ·1 0 +1 +2 +3 +4 +5

Completely Very Unsalls- Oulte Sllghlly Neutral Sllghlly oune Very Extremely
Unsallslaet. laetory Unsallslaet. Unsallslaet. 5atlslaetory Sallslaetory Sallslaetory Sallslaetory

Program

Data

With respect to how much you leamt, did you find this assignment useful?

·5 -4 -3 ·2 ·1 0 +1 +2 +3 +4 +5

Completely oune Not vary Neutral srlQhtly oune Very Extremely

Useless Useless uselul Uselul Useful Uselul Uselul

Program

Daia



123

• APPENDIX F

Sample Data Forms

•
Sh;;dl.-----------------------------------------------



Defect Recording Log

• Student Date
Instructor Program #
Date No. Type Inl. Rem. Fix Time

1 1 1 1 1 1 1
Description:

Date No. Type Inj. Rem. Fix Timc
1 1 1 1 1 1 1

Description:

Date No. TYpe Inj. Rem. Fix Time
1 1 1 1 1 1 1

Description:

Date No. Type Inj. Rem. Fix Time
1

,
1 1 1 1 1

Description:

Dale No. Type Inj. Rem. Fix Time
1 1 1 1 1 1 1

Description:

Date No. Type Inj. Rem. Fix Time
1 1 1 1 1 1 1

Description:

Dale No. C::J ln!. Rem. Fix Time
1 1 1 1 1 1

Description:

Date No. Type In!. Rem. Fix Time
1 1 1 1 1 1 1

Description:

Date No. Type Inj. Rem. Fix Time

1 1 1 1 1 1 1
Description:

Date No. TYpe Inj. Rem. Fix Time
1 1 1 1 1 1 1

Description:

Date No. Type In!. Rem. Fix Time
1

,
1 1 1 1 1

Description:

•
Disciplined Software Engineering - Assignmenlili



Time Recording Log

• Student _

Date

Program # _

Date Start Stop Interruption Delta Job# Phase Activity Comments
T'me T'me

•



• PSP2 Project Plan Summary

Student Date
Instructor Program #
Methods Language

Summary Plan Actual To Date
LOC/Hour
Planned Time
Actual Time
CPI(Cost-Performance Index)
% Reuse
% New Reuse
Test DefectsIKLOC
Total DefectsIKLOC
Yield

Program Sin (LOC): Plan Actual To Date
Base
+Reused
-Deleted & Mod
+Modified (M)
+Added (A)

Total LOC
Total New&Chgd (A+M)
Total New Reuse

Time in Phase (min.) Old% Plan Adual To Date New %
Planning
Detailed Design
Code
Codereview
Compile
Test
Postmortem
Total

Total DCL (70%)
Total LCL (70%)

(continued)

•
Disciplined Software Engineering· Assignmenl #7



• PSP2 Project Plan Summary (continued)

Student Date
Instructor Program #
Methods Language

Defect5 Injected Plan Actual To Date ~ew%

Planning
Detailed Design
Code
Code review
Compile
Test
Total Development

After Development

Defect5 Removed Plan Actual To Date Jliew%
Planning
Detailed Design
Code
Code review
Compile
Test
Total Development

After Development

Defect Removal Efficiency Plan Actual To Date
Defects/Hour - Code Review
Defects/Hour - Compile
Defects/Hour - Test
DRL(CodeRevue/UT)
DRL(Compile/UT)

•
Disciplincd Software Engineering - Assignmenl #7



• APPENDIX G

Sample PSP Templates

•
Sherdll

124



• Sïze Estimating Template

Student Date
Instructor Program #

aBJECT NAME: TYPEI NUMBER RELATIVE ESTIMATED
OF

NEW OBJECTS: METHODS SIZE LOC

TOTAL (A)
NEW REUSE OBJECTS:

TOTAL(B)
REUSED OBJECTS: BASE:

REUSE BASE(C)
REUSE CHGD(D)

•

E - Estimated New and Changed Object LOC:
F· Regression Factor:
G - Regression Factor:
H· Estimated New and Changed LOC:
1- Estimated Total LOC:
J - Percent Reuse:
K - Percent New Reuse:
L - Confidence Range:
M· Lower Confidence Limit:
N - Upper Confidence Limit:
O, Actual Program LOC:
P - Confidence Percent:

1L-Logic, I-I/O, C-caJcuJation, T-Text, D-Data, S.Sct-up

Disciplincd Softwan: Ensineering • Assignmenl iI4

A+B+D

PI
P2

F+E*G
H+C

IOO(C/I)
IOO*(B1H)

H-L
H+L

R
SIG.NIFICANCE" CY/N..)



•

•

C++ Code Review Guideline and Check List (example)

PROGRAM NAME AND #.
Suggestion Complete a checklist for one program unit before starting the

nelC!.
Review one checklist item comoletelv before doim! the nelC!.

Completeness Ensure that the code covers all the design.
Standards Follow the codinA, naming. and defect reporting standards.
Includes Check that includes are complete
Initialization Check variable and parameter initialization:

- at program initiation
- at start ofevery loop
- at function/orocedure entrv

CaUs Check function cali formats:
- pointers
- parameters
- use of'&'

Names Check name spelling and use:
- consistent
- within declared scope
- structures and classes use '.' reference

Strings Check that all strings are:
- identified by pointers
- terminated in NULL

Pointers Check that pointers are:
- initialized NULL
- ooly deleted after new
- new pointers are always deleted after use
- always used within their defined range

Output Format Check the output format:
• line stepping is proper
• spacing is proper

{} Pairs Ensure that the {) are proper and matched
Logic Verify the proper use of-, -, Il. etc.
Operators Check everv IOllic function for proper ()
Line by Line Check every line ofcode:
Check • instruction syntax

- proper punctuation
File Open and Ensure that ail files are:
Close - properly declared and used

- opened
- closed

Disciplined Software Engineering· Assignmenl1l7



• Student
Instructor
Methods

TEST REPORT TEMPLATE

_______________ Date
_______________ Program #
_______________ Language

•

Test NamelNumber:
Step #1

Test NamelNumber:
Step #1

Test NameINumber:
Step#

Data/ActionlResult

Data/ActionlResult

Data/ActionlResult

Disciplined Software Engineering - Assignment #3



• PROCESS IMPROVEMENT PROPOSAL (PIP) FORM
PIP Number _

Student
Instructor
Methods

PROBLEM:
Number

Date--------------______________ Program # _
______________ Language

Description:

•

PROPOSED IMPROVEMENT:
Priority

Disciplined Software Engineering. Assignmenl1l2

Description



12.5

• APPENDIX H

Defect Types Standard

•
Sh~;dïï-----------------------------------------------



•

•

Defect Types Standard

Documentntlon (lOI)

Incorrect Commenls 110
Wrong Headers 120
Incorrect Coding Standards 130
Olher Documentalion 190

BulldlPackage/Systcm (201)

Wrong Include Files selecled 210
Incompatible Vcrsion of Compiler 230
Using wrong Editor 240
Wrong Module Exportlmpon Imerfnce 250
Other BuildlPacknge/Syslem 290

Design (301)

High Level Aigorithm Design Errors 310
Medium Levcl Aigorithm Design Errors 320
Low Level Aigorithm Design Errors 330
Faully planning in Arguments passing 340
Faully planning in Linking Funclions 350
Errors in Flow Char!/ Structured Char! 360
Control Flow Logic Error 370
Data Flow Logic Error 380
Olher Design 390

Pure Synlllx (401)

Incorrect Spelling 410
Incorrecl Punc!uatÎon 420
Missing Tokens •. ; : () := { } ": 430
Typos 134
Case Sensitivily Errors 440
Other Pure Syntax 490



•

•

Compllolion/RunTlmelSemonlie Errors (501)
Nome Slrnc!llres (5101)

Unknown Identifier 5110
Duplicate Identifier 5120
Variable nOI Declored 5130
Undefined Variable 5140
Constant out of Range 5150
Uninitialized Variables 5160
Involid Compiler Directives 5170
Other Nome Structures 5190

Simple PntO Types (5201)
Type mismotch 5210
Type not defined 5220
ConsllVar confusion 5230
Float/lmeger Confusion 5240
Error in defining Char lype 5250
Confusion in Local/Global Vars 5260
Other Simple Dota Types 5290

Enl!!Dernled POlO Types 530
Boolean T or F Confusion 531
Wrong UserDefined Enumerated Types 532
Other Enumemted 0010 Types 539

0010 Slruc!llres (5401)
Arrays/StrUC/IIres 5410

Initializotion Errors 5411
Amy Moximum Capacity Exceeded 5412
Incompatible Dola Type 5413
NOl declared propctly 5414
OUI of Range Indices 5415
Problems with Hiemrchy of Structs 5416
Other Amys/Struclures 5419

Pointers 5420
Memory Allocation Errors 5421
Uninitialized PointerslNULL values 5422
Wrong Assignment 5423
Wrong use of & 5424
Wrong use of· 5425
Wrong use of -> 5426
Error in Declnrntion 5427
ElTors wilh NewlDispose 5428
Ottier Poinlers 5429



•

•

Files 5430
Invalid File Type 5431
File not found 5432
Path not found 5433
File access denied 5434
Filc not open 5435
File not c10sed 5436
\Vrong File Pointer 5437
Confusion in Binnry/ASCII 5438
Other Files 5439

Streams/Memol)' 5440
Wrong number of bYles 5441
Error in Memory Rend/Write 5442
Incorrect Seek,Rewind operations 5443
Problems with Shnred Memory 5444
Olher Sireams/Memory 5449

Strings 5450
String Lenglh mismmch 5451
Using Char inslend of Siring 5452
String Constant tOo big 5453
String Concalenalion problems 5454
String Comparison problems 5455
String Copy problems 5456
Olher Strings 5459

Classes/Unions (54601)
Invalid Declaralion of Clnsses 54610

Confusion in PubliclPrivate 54611
ErrolS in Creating Insenors 54612
Using wrong Super/Sub Classes 54613
Errors in Prolecling a Class 54614
Inherilance Problems 54615
Olher Class problems 54619

Errors in Declaring Objects 54620
Errors in Messages 54630
Problems with Methods/Funclions 54640

Errors in Using Conslruclors 54641
Err~rs in Using Destructors 54642
Wrong Overloading of Functions 54643
Error in using Friend Funclions 54644
Error in Inline/Macro Funclions 54645
Error in passing Objecls 10 Funclions 54646
Wrong Overloading of ConstruclorslDestruclors 54647
Error in Dynamic Initinlizalions 54648
Other Methods/Funclions 54649



•

•

C++/OOP Errors 54650
Wrong Overloading of Operntors 54651
Errors using C++ KeyWords 54652
Errors using Unions 54653
Wrong use of :: operalor 54654
Errors in using Polymorphism 54655
Other C++/OOP 54659

Other ClasseslUnions 54690
Other Data Structures 5490

COn!roISIOIC!llres (5501)

Sequential (55101)
Assignment 55110

Illegal Assignment 55 III
VarlExpression nOI Type Compatible 55112
Division by Zero 55113
Floating Point Overflow 55114
Range Check Error 55 115
Invalid Numeric Format 55116
Olher Assignment 55119

PrintlScan (551201)
Wrong Arguments 551210
Invalid Format Specified 551220
Incorrect use of & opemlor 551230
Error Reading EOF EOLn 551240
Error in using cout, cin 551250
Other PrintlScan 551290

Expressions/Operations (55130)
Opemnd types don't match operator 55131
Cannot Evaluale Expression 55132
Invalid Floating Point opemtion 55133
Bad Combination of OpCode/Opemnds 55134
Arithmetic Expression Errors 55135
BoolennlRelational Expression Errors 55136
Logic Expression Errors 55137
Wrong Opemtor Precedence 55138
Other Expressions/Opemtions 55139

Other Sequential 55190

Selection (55201)
Wrong Boolean Expression in If-Then 55210
Wrong nesting oflf-Then-Else 55220
Errors in IF·Then statement syntnx 55230



•

•

Errors in SWITCH slatemenl 55240
Errors in BREAKs 55250
Olher Seleetion 55290

Ileralive 5530
Incorreel Enlering Slmus in Loops 5531
Wrong Boolean Expression in Loops 5532
Error in Incremenling Jeep counlers 5533
Errors in DO·Whiie Symax 5534
Errors in While·DO Synlax 5535
Errors in FOR Jeep Syntax 5536
Ineorrecl Jeep terminalion criteria 5537
Other Iterative 5539

Hierarclt/cal (55401)
Recurssion Errors 55410
\Vrong No of argumenls passed 55420
Wrong Type of argumenls passed 55430
Invalid Funclion Reference 55440
Invalid Funclion Declarmion 55450
Incompatible function relurn type 55460
StacklHeap Overnow Error 55470
Olher Hierarchical 55490

Ollter Control SlrllclI/res 5590

Deep Semanljc Errars 560
(these involve modifiealions in multiple
conlrol structures, modules, etc)

Olher Compilal;on/RunT;melSemaDl;c 590

Configuration (601)
OutofMemory 610
Include Files not found 620
Wrong EXlemal Variable 630
Problems in Linking 640
Path for Include Files not found 650
Disk ReadlWrite error 660
Disk Seek Error 670
Problems wilh Processes 680
Olher Connguration 690

Maintenance '-[Above ErrorNo)



•

•

Dictionary of Abbreviations

Phases

1. Requirements und Specificulion (RS)
2. Design (0)
3. Code (C)
4. Code Review (CR)
5. Compile (CP)
6. Test (T)
7. PoslMoJ1em (PM)
8. Muinlenunce (M)

Aclivltlcs

1. Problem Undersmnding (PU)
2. Domuin AnDlysis (DA)
3. Building User Requirements (BR)
4. Requirements Review (RR)
4. Specificutions (S)
5. Specificulions Review (SR)
6. High Level Design [Key Modules) (HO)
7. Low Level Design [Objects, User Inlerfuce) (LD)
8. Pseudocode. FlowChDJ1S (PC)
9. Design Review (DR)
la. Coding (C)
II. Code Review (CR)
12. Slructured WDlk Through (SW)
13. Compiling (CP)
14. Dcbugging (DB)
15. Test Cuse Generntion (TG)
16. Tesling (T)
17. PoslMoJ1em (PM)
18. Muintenunce (M)



• APPENDIX J

Sample Complexity Results

•
Sherdil

126



• 5/3111994
PC·METRIC (C++) Version 4.05
Summnry Complexity Repon for: A:\SID 1.RP2

Soflwnre Science Length (N): 229
E.~limntcd Softwnre Science Length (NA): 276
Softwnre Science Volume (V): 1336
Softwnrc Science Effon (E): 69278

E.~limnted Errors using Softwnrc Science (BA): 0
E.~timl1led Time 10 Develop, in hours (TA): 1

Cyclomlltic Complexity (VOl): 6
Extendcd Cyclomntic Complexity (VG2): 6
Averuge Cyclomlllic Complexily: 0
Average Extended Cyelomntie Complexity: 0
Avernge of Nesting Depth: 1
Avemge of Average Nesting Depth: 0

Lines of Code (LOC):
Physicnl Source Stmts (PSS):
Logicnl Source Stmts (LSS):
Nonexccutnble Stnlements:
Compiler Directives:
Nomher of Comment Lines:
Number of Comment Words:
Number of Blnnk Lines:
Number of Procedurcs/Funetions:

141
114
29
23

5
23
155

27
7

•

5131/1994
PC·METRIC (C++) Version 4.05
Summnry Complcxily Repon for: A:\SID2.RP2
- -..- ----- _ -- _- .

Softwnrc Science Length (N): 684
Eslimntcd Soflwnre Science Length (NA): 402
Softwnrc Science Volume (V): 4274
Soflwnrc Science Effort (E): 282147

Estimnled Errors using SOftW8rc Science (B"): 1
Eslimnted Time 10 Develop, in hours <T"): 4

Cyclomntie ComplexilY (VG1): 27
Exlendcd Cyclomntic Complexity (VG2): 42
Avemge Cyelomlltic Complexity: 5
Avemge Extendcd Cyclomntic Complexity: 8
Average of Nesting Depth: 3
Average of Average Nesting Depth:

Lines of Code (LOC): 243



• Physical Source Sbnts (PSS):
Logical Source Sbnts (LSS):
Nonexecutable Statements:
Compiler Directives:
Number ofComment Lines:
Number of Comment Words:
Number of Blank Lines:
Number ofProcedures/Functions:

215
III
14

4
22
160

28
5

5/31/1994
pc·METRIC (C++) Version 4.05
Sununwy Complexity Report for: A:\STD3.RP2

Software Science Lengtlt (N): 1109
Estimated Software Science Lengtlt (Nil): 546
Software Science Volume (V): 7319
Software Science Effort (E): 895684

Eslimaled Errors using Software Science (BII): 2
Estimated Time to Develop, in hours (Til): 14

Cyclomatic Complexity (VG1): 46
Extended Cyclomatic Complexity (VG2): 64
Avemge Cyclomatic Complexity: 6
Avemge Extended Cyclomatic Complexity: 9
Avemge of Nesting Deptlt: 3
Avemge of Avemge Nesting Deptlt: 2

Lines of Code (LOC):
Physical Source Sbnts (PSS):
Logical Source Sbnts (LSS):
Nonexecutable Stalements:
Compiler Directives:
Number ofComment Lines:
Number of Comment Words:
Number of Blank Lines:
Number ofProcedures/Functions:

366
326
174
29

5
27
208

40
7

5/31/1994
pc·METRIC (C++) Version 4.05
Sununwy Complexity Report for: A:\STD4.RP2

Software Science Lengtlt (N): 954
Estimated Software Scirnce Lengtlt (Nil): 660
Software Science Volume (V): 6506
Software Science Effort (E): 886479

Estimated Errors using Software Science (BII): 2
EstimaJed Time ta Develop, in hours (Til): 14



• 5/30/1994
PC-METRJC (C++) Version 4.05
Complexily Report by Funclion for: A:\C631004.CPP

Page: 1

Funclion FT N Nh V
CCDir Bik Cml CmlWrd SP VL

E VOl V02 Dpth AvgDph PSS LSS Nonex

31 76 136 1961 2 2 o 13 5 0 003

39 74 171 2784 2 2 1 0 13 5 0 o 0 3

5 8 12 23 1 1 0 0 7 1 0 003 8 0

1 1 1 1 1 0 o 4 0 0 001 1 1 0
2 1 1 III 0 0 4 0 0 001 o 1

42 72 184 2548 2 2 1 o 15 6 1 003

63 113 306 5420 2 2 1 1 17 8 1 o 0 3

44 92 204 2605 2 2 1 1 12 4 0 0 o 3

91 140 463 5185 3 3 1 0 23 13 2 0 3

1 1

o 1

006

003

010
110

1 1 0
007

o 17 9 1

1 25 12

1 16 6 1 0 0 3

0400001

o 9 2 0 0 0 4 16

0400001

0400001

o 41 2S 8 0 8 26 77 4

1 1 1 0

3549 2 2 1

1739 3 3 2

1 1 1 0

1 1 1 0

145 1 1 0

1

1

158

1

42

1

1

1

2

2

63 lOI 300

2

36 73

107 112 520 11644 2 2 1

12 28

2

9 10 23 47 1 1 0 0 5 2 0 0 0 0
21111100400001

21111100400001
56 103 266 3621 3 3 2 1 24 11 1

141 169 745 28617 3 3 1

Pgmld::PgmldO
Pgmld::-PgmldO
FllelC>::FllelC>{)
FllelC>::FileC>pen(char)
2945
FllelC>::FileRead(FILE,inl)
Il 2 4
FllelC>::FileRead2(FlLE,int)
13 2 5
File!C>::FileClose(FlLE)
2
FllelC>::-FilelC>{)
MeanSldDisl::MeanSldDisIO
o
MeanSldDisl::CalcMean(inl,inl)
10 2 6
MeanSldDisl::CalcSldDev(inl,int)
927
MeanSldDisl::CalcDisl(inl)
709
MeanSldDisl::DispC>bjSizesDala(inl,i
4 19 1 8
MeanSldDist::-MeanSldDislO
1 0
Slopelnlercepl::SlopelnlerceplO
o
Slopelnlercepl::CalcB 10
03
Slopelnlercepl::CalcB2(inl,inl)
22 6 5
Slopelnlercepl::DispB1B2(inl,inl)
805
Slopelnlercepl::EsITotLC>CO
9 1 4
Slopelnlercept::-SlopelnlerceplO
o
mainO
9

Number of funclions in lIùs file: 21



127

• APPENDIX K

Sample Section from Spread Sheet

•
------------------------------------------------------
Sherdll



•
li i r: a
: :i
::;

,
!I! ~

., ... ·::5· aaaUi a .~ ......
~ ii~! ift

0,. ...... 11:" ar: §i .. IJCJDQoao"·a ·UII 21: .. a
U! AS: § ç". :: "'I!N . :l:!;15. ..

1 i~'
...

=E
...... :1 ...

~
.. .. ........ " .. .. " ."

v •• :_ •• OODËËËO a~ji;; .. • .... 1 ===°:1;; ;==a:;i== aa DoaOOOO "=~! : ~S; H~!l .... ., ........ :: ft" ....... ;:.. " .
1

............
~".,;=::U lU

~ Jfs~..J If5~..J t J

.II
""'1,, Il'','1,

1 1!lil~! jli; 1 JdhH hlhH Ir i

i H 1 . !5 hl nlUhiU ·1 l,j'fi.c IHUJJJ BIHllU IJ lUIIJHJ ! 1 !tIl J• il ~ ~ 0

.. aa=Ha •• o:ii" Iii!'::: ::"1:1 =::";!ae - ........... 0 o. 0 ..
Ih· "' ... .,.,. ........ ... - .. -...· a ...

1;. 1. 1:1;;..... "": .. ; ....
e·::!~ .1:.1:

OOD:::S_ ... " .... ..... j. ,..··1 .. ........ ... -... ,.. .. ... • ·......
~::5 ~ .N "."". 'If ."":""" U!· . ..:
~!::5 ==s:
;!:l;:::t ::......

aao;;;_ •• 0;;:;. .... IfII.

E~~!
."Do"aD" .. .... 0 ......... ... a .... ;. ..... N" .. : .. .... ,.. .. :

!! lI~ç: :!U:::;: ....
==e :::ll.... "

.00 G Il O•• ..,"'"V
~UâË :1--- •• aaDa •• .. aOIlO.D. .... .. ..:1: ::: .... NN ....... .1'lI ""'INDft::_. . .. . ..• ..!U~ Î§:l• l:u: =::c

••• :::0 0.°.: .. _ :r: 1 5ill tQI:: :==-==": ".fil ........ .... .. D...........
i:lhi lItl:lp· ..-... "''''' ....
~.==; .::

ellt_· ..• ........ §iUi ...... 1 :::;o=:=! .. ............ .... .. ..... .. .... i ;- =- ..... ::.. ;,. ..;; ;"'1illPa=: := : .
••• !;!- ••• iIII!I ....

;:gIE~ :;~J:
........ ...~ O""''''Dn 00 0 a... " ......... .. ....... :;

0 Ë &;;5 § . ..
.. =::ill ...

t ....... • ~ :!I;....•• o=~ .... ... :::- ~.::a~ up ...... 08a ..... "''''ft. aD D ·
=~nii g= . N'- ....... : ... -:"':..

1 •....... ··11.. :: l!1l •
••• !!!O .. "'''''''''. :::~;.~ ii;! ......... ....... ~ ....... .. .. ·....

~"::I:
.... ... .. : fil .....

• ; ...
:IiI!"l:ll.... ....". ....

•• OOD •• .. ............ U=H IIp: :::-:=:-: .............. .... a ..... .. ... ... --"-:
" l~s::H ::1-"::

U 1;::; :11... ==~. •••===. =:=:1 ;;:-1 · .... ·0·· .. ............. ... .. "V I·~ :U·
.. • .. _-! ... .........

~ ! : 1=....
~ l: 1: ~=,

••• !!!. .........
~U=I~

p" 1 • ...... a .. "aa.o ••• .... .. .... .. ....... ;; ............
~Ë p p ...

II !s:;:I~:II :II ,
Ag; : ... ~.. . . Iln.

1 J 1 .J Il,· If"lli " Il''''1,1
! I~ i I~hl! 1JIi Jli •

~hi Il "Ii!!1
lU J J IJ li J ~u~h!U nlUnUi 1 J f l Il J~ hl!

1



•
.........ft: .. :

.......
• •• 0 •••

~ ..
iü
1 ..
l! ::
::.:; Il
.,~ ......
1;::;:
.~:..

..
1

....

......

..... .

:::

....

......

.. ....
Ha!!,...
Il ~..........

................. :::=

.00 .. =: •

......... " .......

...........

................

.... ;;;;.

OO ••

..............

li

li
li
li

,I ~ .. J
1" i' hfld!
; Il IJJIUJJ

li

• •

~ OOi :: li
iii Il

oog •

~ i
i

ï.. ~
: :

- ·i .
~:I li li
i': li Il

-E·i ..
~ il ri li
!! Il

e ..
! ..1 li
lii! Il

e"o .....

••• D.O~

., .

..... -:

......

..... .

.... ,,~ ..

•

•

•

•

•

..

".IIt •••

"' •• ,..=

...........

.......



APPENDIX L

Calculations for Personal Capability Index

Shcrdil

128



.' Persona! Capabi!jty Index !Sca!e: 0 to 100)

This index is divided into two categories:

• Experience (60)

• Performance (40)

The details are as follows:

(i) Experience (60)

1. Total Experience in Programming (15)

• 0.1 point/month for each programming language

e.g, Experience with c++ for 2 years and Pascal for 6 montlls wOltld yield 2.4 + 0.6 =
3.0 points

2. Diversity in Programming Languages (lOl

• 1 point/programming language in which subject has over 1 semester of
programming experience

• 0.5 points/programming language in which subject has less than 1 semester of
programming experience

e.g, .111 experience of 2 years of C, 1 year of Pascal and 2 months of Ada wOllld give 1
.,. 1 + 0.5 = 2.5 points

3. Level of EducationClOl

• :3 points for each completed B.S or M.S degree

• : points for each degree which has not been completed yet but the subject is
enrolled in

• : point for each additional Major/Minor besides Computer Science

e.g, J mbject enrolled in the M.S Computer Science program, with a completed B.S
in C::m:plIter Science and a minor in mathematics would get 2 + 3 + 1 = 6 points



4. lob experjence in computer software/hardware related fjeld (15)

• 2 points/year for fuI! time experience

• 1 point/year for part time experience

e.g, 2 years of fI/Il time and 6 months of part time experienee lOOl/ld yield 4 + 0.5 =
4.5 points

5. Experjence wjth Software Packages (5)

• 0.5 poincs for familiarity with each software package related ta Databases,
Spreadsheets, Graphing tools, etc.

e.g, a Sl/bjeet lOith some working experienee of Exeel, Cricket Graph and DBase IV
lOOl/ld get 1.5 points.

6. Experience in Software Engineering and Object-Oriented Design (5)

• 1 point/course in software engineering or OO-Design

• 1 point/tool used related to software engineering or OO-Design

(ii) Perfonnance (40)

7. Productiyity (15)

• 1 point for every 5 LOC/hr value of productivity. This productivity is the
average of the productivities in the 9 projects.

e.g, a sl/bjeet lOith a prodl/etivity of 45 LOC/hr gets 9 points

8. Defects/KLOC (l0)

• 0 points for a defect-rate of 100 defects / KLOC or more

• 1 point for a defect-rate of every 5 defects/KLOC below the 100 / KLOC level

e.g, a defeet-rate of 85 / KLOC means 15 /KLOC below the base level, yielding 3
points. The defect rate is the average of the 9 defect rates for the projeets.



• 9. pefect RernQyal Rate (5)

• 1 pQint fQr each 6 defects rernQved/hQur value.

e.g, a defect removal rate of 15 defects removed per hour gives 2.5 poillts. This rate
is calculated from the averages of the Ilille projects.

10. Grade assigned tQ the subject in the PSP CQurse (l0)

This is the letter grade assigned tQ the subject in the PSP CQurse, transfQrrned tQ a
scale Qf 0 - 10.



129

• VITA

Khalid Sherdil

Education: M.S. in Computer Science (expected Feb. 1995)

McGill University, Montreal, Canada

B.S. in Electrieal/Computer Engineering, 1993

Washington University in St. Louis, MO, USA

B.s. in Computer Science (Honors), 1993

Washington University in St. Louis, MO, USA

BA in Physies, 1991

College of Wooster, OH, USA

Honors/Awards: Tau Beta Pi

Eta Kappa Nu

Golden Key National Scholastic Society

Elliot Honors Student, Washington Univ., '93

Graduated with Distinction, Washington Univ., '93

Academie Achievement Award, Coll. of Wooster

Societies: A.C.M

I.E.E.E

American Physical Society

Sh~;dïl--------------------------------------~--------



130

• BIBLIOGRAPHY

[1] Adler, P. "Shared Learning," Management Science, vol. 36 (Aug. 1990), no 8, pp 938­
957

[2] Adler, P. and Clark, K., "Behind the Learning Curve: A Sketch of the Learning Process,"
Management Science, vol. 37, no 3 (May 1991), pp 267-281

[3] Albrecht, A., Gaffney J. "Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation," IEEE Transactions on Software
Engineering, vol. SE-9, no 6, Nov. 1983, pp 639-648

[4] Argote, L., Beckman, S. and Epple, D. "The Persistence and Transfer of Lellrning in
Industrial Sellings," Management Science, vol. 36, no 2, (Feb. 1992), pp 140-154

[5] Arrow, K. "The Economic Implications of Learning by Doing," Review of Economic
Studies, vol. 29 (April 1962a), pp 166·170

[6] Baker, A., et al.. "A Philosophy for Software Measurement," J. Systems Software, vol. 12
(1990), pp 277-281

[7] Baloff, N. "Extension of the Learning Curve - Sorne Empirical Results," Operations
Research Quarterly, vol. 22, no 4, 1971, pp 329-340

[8] Barnes, Boo BollingerT. "Making Reuse Cost-Effective," IEEE Software, Jan 1991, pp 13­
24

[9] Basili, V. "Quantitative Evaluation of Software Methodology," Technical Report TR­
1519, Dept. of CS, University of Maryland, July 1985

[10] Basili, V. and Weiss, D. "A Methodology for Collecting Valid Software Engineering
Data," IEEE Transactions on Software Engineering, vol. SE-lO, no 6 (Nov. 1984) pp 728­
738

[11] Basili, V., Rombach H., "Goal Question Metric Paradigm," Encyclopedia of Software
Engineering, vol. 2, 1994, John Wiley & Sons, Inc.

[12] Basili, V., Rombach H., "Measurement," Encyclopedia of Software Engineering, 1994,
John Wiley & Sons, Inc.

[13] Basili, V., Selby R. "Comparing the Effectiveness of Software Testing Str,llegies," IEEE
Transactions on Software Engineering, vol. SE-I3, no 12, Dec. 1987, pp 1278·1296

[14] Basili, V., Selby R., Phillips T. "Metric Analysis and Data Validation Across Fortmn
Projects," IEEE Transactions on Software Engineering, vol. SE-9, no 6, Nov. 1983, pp
652-663

[15] Basili, V., Selby, R. and Hutchens, D. "Experimentation in Software Engineering," IEEE
Transactions on Software Engineering, vol. SE-12, no 7 (July 1986), pp 733·743

[16] Boehm, B. "Software Engineering Economics," 1981, Prentice-Hall, Englewood Cliffs, NJ

[17] Card, O., Agresti W. "Measuring Software Design Complexity," The Journal of Systems
and Software, vol. 8, 1988, pp 185-197

Sherdil



•
131

[18] Chillarege, R., et al. "Orthogonal Defect Classification - A Concept for In-Process
Measurcments," IEEE Tmnsactions on Software Engineering, vol. SE·18, no II, Nov.
1992, pp 943-955

[19] Cou11er, N. "Software Science and Cognitive Psychology," IEEE Tmnsactions on
Software Engineering, vol. SE·9, no 2, Mar 1983, pp 166·171

[20] Curtis, B., et al. "Measuring the Psychological Complexity of Software Maintenance
Tasks with the Halstead and McCabe Metrics," IEEE Transactions on Software
Engineering, vol. SE·5, no 2, Mar 1979, pp 96·104

[21] Curtis, B., et al. "Productivity Factors and Programming Environments," Proceedings of
the Seventh International Conference on Software Engineering, Washington DC, IEEE
Computer Society, pp 143-152

[22] Curtis, B., Sheppard S., Milliman P. "Third Time Charrn: Stronger Prediction of
Programmer Performance by Software Complexity Metrics," Proceedings of the 4th
International Conference on Software Engineering, 1979, pp 356-360

[23] Dunham, J., Kruesi, E. "The Measurement Task Area," IEEE Computer, Nov. 1983, pp
47·54

[24] Dutton, J., Thomas, A. and Butler, J. "The History of Progress Functions as a ManageriaI
Technology," Business History Review, vol. 58 (Summer 1984), pp 204·233

[25] Emum, K., Moukheiber, N. and Madhavji, N. "The Empirical Evaluation of the G/QfM,"
Proceedings CASCON 1993, vol. 2, pp 265-289

[26] Fagan, M. "Advances in Software Inspections," IEEE Transactions on Software
Engineering, vol. SE-12, no 7, Jul. 1986, pp 744-751

[27] Gill, G., Kemerer C. "Cyclomatic Complexity Density and Software Maintenance
Productivity," IEEE Transactions on Software Engineering, vol. SE-\7, no 12, Dec. 1991,
pp 1284·1288

'[28] Herbsleb, J., et al., "Benefits of CMM-Based Software Process Improvement: Initial
Resulls," Technical Report, CMU/SEI·94-13, Aug. 1994, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA 15213

[29] Hirsch, W. "Manufacturing Progress Functions," The Review of Economics and Statistics,
vol. 34 (May 1952), pp 143-155

[30] Humphrey, W. "Managing the Software Process," Reading, MA:Addison-Wesley, 1989

[31] Humphrey, W. "A Discipline for Software Engineering," (currently being published)

[32] Irwin, P. H and Laugham, F. W. "The Change Seekers," Harvard Business Review, vol. 35
(Jan·Feb. 1966), pp 81-92

[33] Jones, T. "Measuring programming quality and productivity," IBM Systems Journal,
Vol. 17, No l, 1978, pp 39-63

[34] Jones, T. "Reusability in Programming: A Survey of the Stateofthe Art," IEEE
Transactions on Software Engineering, Vol. SE-IO, No 5, Sept. 84, pp 488-494

[35] Kemerer, C. F. "How the Learning Curve Affects Case Tool Adoption," IEEE Software,
May 1992, pp 23-28

Sherdil



•
132

[36] Kemerer, C., Porter B. "Improving the Reliability of Function Point Mensurcment: An
Empirical Study," IEEE Transactions on Softwnre Engineering, Vol. 18, No Il, Nov. 92.
pp 1011-1024

[37] Kerlinger, F. "Foundntions of Behavioral Research," 3rd cd., 1986. Holt, Rinehnrt 1I1ld
Winston, New York. NY

[38] Kidder, L. "Research Methods in Social Relations," 5th cd., 1986. Hold. Rinehllrt lInd
Winston, NY.

[39] Kleinbaum, D. "Applied Regression Analysis and other Multivariable Methods," 2nd cd..
1988, PWS-Kent Pub. Co.• Boston, MA

[40] Koffman, E. "Turbo Pascal," 3rd ed., Addison-Wesley Publishillg Company, [nc.,
Reading MA, p AP-42

[41] Leblanc, R., Fischer C., "A Case Study of Run-Time Errors in Pascal Programs,"
Software-Practice and Experience, Vol. 12, 1982, pp 825·834

[42] Levy, F. K. "Adaptation in the Production Process," Management Science, vol. Il. no 6,
(April 1965), pp B136·B 154

[43] McCabe, T. "A Complexity Measure." IEEE Transactions on Software Engineering, Vol.
SE-2, No 4. Dec. 76, pp 308·320

[44] PC-Metric, SET Laboratories, P.O. Box 868, Mulino. OR 97042

[45] Putnam. P. and Myers, W. "Mensures for Excellence," Englewood Cliffs, NJ: Yourdon
Press, 1992

[46] Rapping, L. "Learning and World War II Production Functiolls," Review of Economies
and Statistics, vol. 47, 1965, pp 81-86

[47] Remus, H., Zilles, S. "Prediction and Management of Program Quality," Proceedings of
the 4th International Conference on Software Engineering, Munich, Germany, 1979.
p341-350.

[48] Ripley, D., Druseikis F. "A Statistical Analysis of Syntax Errors," Computer Languages,
Vol. 3, 1978, pp 227·240

[49] Rosenthal, R. "Essentials of Behavioral Research: Methods and Data Analysis," 1984,
McGraw-HiII, New York, NY

[50] Russell, G. "Experience with Inspection in Ultra-Scale Developments," IEEE Software.
Jan 91, pp 25-31

[51] Sheil, B "The Psychological Study of Programming," Computing Surveys, vol. 13, no
l, Mar 198[, pp 10\-120

[52] Shepperd, M. "An Evaluation of Software Product Metrics," Information and Software
Technology. Vol. 30. No 3. April 1988. pp 177-188

[53] Sherdil. K.• Madhavji N. "Personal Progress Functions in the Software Process,"
Proceedings of Ninth International Software Process Workshop

[54] Standish, T. "An Essay on Software Reuse," IEEE Transactions on Software
Engineering, Vol. SE·10, No 5, Sept. 84, pp 494-497

Sherdil



•
133

[55] Strait, P. "Probability and Slatistics with Applications," Harcourt Brace Jovanovich, New
York,NY

[56] Straub, D. "Validating Instruments in MIS Research," MIS Quarterly, June 1989

[57] Sunohara, T., et al. "Program Complexity Measure for Software Development
Management," Proceedings of 5th International Conference on Software Engineering,
1981, pp 100-106

[58] Turban, E. "Incentives during Learning - an Application of the Learning Curve Theory
and a Survey of Other Methods," Journal of Industrial Engineering, vol. 19, no 12, 1968,
pp 600-607

[59] Walrad, C. and Moss, E. "Measurement: Key to Applications Development and Quality,"
IBM Systems Journal, vol. 32 (1993), no. 3, pp 445-461

[60] Yelle, L. "The Learning Curve: Historical Review and Comprehensive Survey," Decision
Sciences, vol. 10 (Feb. 1979), pp 302-328

[61] Zultner, R. "The Deming Approach to Software Quality," Quality Progress, v 21, no Il,
pp 58-64

Sherdil




