I* B National Library
of Canada

Acquisitions and

Bibliotheque nalionale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wallington Street

K1A ON4 1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

adi

395, rve Wellinglon
Oltawa, Ontario gnawa (Oniaric)

Your e Votre réddeencn

Ow bl Notre dldeence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$’il manque des pages, veuillez
communiquer avec [l'université
qui a conféré le grade.

La qualité dimpression de
certaines pages peut laisser a .
désirer, surtout si les pages
originales ont éte
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

PERSONAL “PROGRESS FUNCTIONS” IN THE
. SOFTWARE PROCESS

by
Khalid Sherdil

School of Computer Science
McGill University, Montreal, CANADA

November 1994

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF
SCIENCE

Copyright 1994 by Khalid Sherdil

National Library

Biblioth
of Canada

i+l

Acquisitions and
Bibliographic Services Branch

395 Wellinglon Streat
Ottawa, Ontaro
K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05628-7

Canadd

ue nationale

du Canada

395, nue Wellinglon
Ottawa (Ontaric)
K1AGN4

Direction des acquisitions et
des services biblicgraphiques

Your hle Voire idrence

Our blg Noire rdtdrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Abstract

Individuals can expect continuous improvement in productivity as a
consequence of (i) a growing stock of knowledge and experience gained by
repeatedly doing the same task (first-order learning) or (i} due to
technological and training programs injected by the organization (second-
order learning). Organizations have used this type of progress behavior in
making managerial decisions regarding cost estimating and budgeting,
production and labor scheduling, product pricing, etc. This progress was
studied in productivity, product-quality and personal skills, in an experiment
involving a sample of 12 subjects, who completed one project every week for
ten weeks. Second-order training was provided to the subjects through the
Personal Software Process, PSP, of Humphrey. A within-subject repeated
measure time-series quasi-experimental design was used along with a
modified G/Q/M method. It was found that on average, progress takes place
at a rate of 20%, with the second-order training adding up to 13% more
improvement in addition to the first-order learning. Detailed statistical
methods were used to produce linear and log-linear models of high
correlations, involving four variables: productivity, defect-rate, complexity
and cumulative output. The motivation of the subjects did not change
significantly during the experiment. It was also found that the McCabe’s and
Halstead’s complexity metrics had a correlation of 0.80 amongst each other.
However, no relationship could be found between the personal capabilities of
the individuals and the progress rate.

Sherdil

, , Page 2 (FF)
Résumeé

Les gens peuvent s’attendre a une amélioration continue de leur productivité due i
(i) I’accumulation de connaissances et d’expérience acquise en répétant les mémes
tAches (apprentissage de premier ordre) ou (ii) due & des programmes technolo-
giques et d’entrainement introduits par les entreprises (apprentissage de second
ordre). Les organisations ont déja utilisé ce type de comportement du progrés dans
leurs décisions concernant }’estimation des coiits et du budget, la planification de la
production et du travail, la tarification des produits, etc. Le progrés en productivité,
qualité de produits, et habileté personnelle a été étudié dans une expérience impli-
quant un échantillon de 12 personnes qui ont complété un projet par semaine pen-
dant dix semaines. Un entrainement de second ordre leur a été donné i travers le
“Personal Software Process”, PSP, de Humphrey. Un plan quasi-expérimental avec
mesures répétées i I’intérieur du groupe de sujets a été utilisé avec une méthode
G/Q/M modifiée. Nous avons découvert que en moyenne, le progrés du & I’appren-
tissage de premier ordre était de 20%, et que I’entrainement de second ordre amélio-
rait ce pourcentage de 13%. Des méthodes statistiques détaillées ont été utilisées
pour produire des modeles linéaires et log-lin€aires de haute corrélation utilisant
quatre variables: productivité, taux d’erreur, complexité, et temps. La motivation
des sujets n’a pas changé de fagon significative durant I’expérience. Nous avons
aussi découvert que les mesures de complexité de McCabe et Halstead avait une
corrélation de 0.80 entre eux. Par contre, aucune relation n’a pu étre faite entre les
capacités personnelles des individus et leur taux de progres,

Acknowledgments

I will like to thank Professor Nazim H. Madhavji, my supervisor, for his
support and supervision in the process of carrying out this research.

I am also thankful to Khaled El Emam, for his help through out my Masters
program, His comments and suggestions have helped me a lot in designing
and executing this experimental work.

I am thankful to my parents and family for their moral support. I would also
like to thank my research group in particular, and the McGill University in
general, for providing an excellent environment to study.

Sherdil

List of Figures

Figure 1:

Figure 2:

Figure 3:

Figure 4:

5

6:

Figure 7:

Figure 8:

9:

10:
11:
12;
13:
14:
15:
16:
17:
18:
19:
20:
21:
Figure 22:
23:
24:
25:
26:
27:
28:
29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

The Learning Curve
The Log-Linear Curve
The Plateau Model
The Stanford-B Model
The Main Model (on previous page)
Three types of progress functions
Productivity Progress Function
Personal Skills Progress Functions
Product Quality Progress Function
Model for second order learning
Management Motivation in Second Order Learning
Engineering Technology & Training in 2nd Order Learning
First Order Learning
The Development Activity Complexity
Graph of Cum. Out. vs. Time
Graph of Productivity vs. Cum. Out.
Graph of Size Estimation Error vs. Cum. Out.
Graph of Time Estimation Error vs. Cum. Out.
Graph of Productivity Estimation Error vs. Cum. Out.
Graph of Def-Rate vs. Cum. Out.
Graph of Def-Rem. Rate vs. Cum. Out.
Sample graph showing significance of decrease
Graph of Complexities vs. Project No.
Graph of the two complexities against each other
Graph of the Total and New Complexities vs. Project No.
Model for Productivity
Adding the third variable to Productivity model
Forward Selection in the Productivity Model
Forward Selection in the Defect Rate Model
The 4-Variable Model
Reused Code vs. Project No.
Sample graph showing interpolation
Graph of the two indices against each other

gi;erdil

10
15
16
16
25
27
28
30
31
33
34
35
39
41
78
79
80
81
82
83
54
87
89
920
91
923
94
95
97
99
100
103
108

Figure 34: A typical graph of the subjective metrics 109

—— —— — — — ——— — f—

Sherdil

List of Tables

Table 1: Problem Definition 25
Table 2: Parts of model and the section numbers 26
Table 3: Goals, Constructs and Metrics 49
Table 4: Ohbjective Metrics 53
Table 5: Subjective Metrics 55
Table 6: Terminology 58
Table 7: Statistics on the Subjects 69
Table 8: Statistics on Projects 69
Table 9: Statistics on Environment 70
Table 10: Sequencing of Sections in Chapter 6 77
Table 11: Goals 1, 2 and 3 77
Table 12: The correlations and significance levels of the linear learning

curves 85
Table 13: The correlations, significance levels and the learning rates of the
log-linear learning curves 86
Table 14: Significance levels of the differences 88
Table 15: Means before and after the injection of technology 102
Table 16: Percentage decrease due to technology injection, compared to

expected values from first-order pre-injection learning only 103
Table 17: Details of Personal Capability Index 105
Table 18: Capability Index vs., Learning Index 106
Table 19: Statistics on the subjective measures 110

Sherdil

List of Boxes

Box 1: Constructs, Relations and Hypothesis

Box 2: Discovery, Demonstration, Refutation and Replication

Box 3: Validitys and other related concepts

Box 4: Random Sampling, Random Assignment & Matching

Box 5: Pre-Experimental Designs

Box 6: True Randomized Experimental Designs

Box 7: Concerns and Validity Threats to the Design

Box 8: Concerns and Validity Threats, from our design’s perspective
Box 9: Assumptions in Data Analysis

44
45
46
57
59
60
62
66
76

Sherdil

Contents

Abstract

Acknowledgments

List of Figures

List of Tables

List of Boxes

Contents

1.0 Introduction

2.0 Related Work

2,1 History of Progress Functions

2.2 Mathematical Models of Progress Functions
2.3 Parameter Estimation

2.4 Labor vs. Organizational Learning

2.5 Management Motivation

3.0 The Personal Software Process
4.0 Problem Definition and Our Model

4,1 Model for measuring Improvement
4.1.1 Productivity Progress Funclions
4.1.2 Personal Skills Progress Functions
4.1.3 Quality Progress Functions

4.2 Model for Analyzing Second-Order Learning

4.2.1 Management Motivation
4.2.2 Engineering Training and Technology

4.3 Model for Analyzing First-Order Learning

4.4 Model for Analyzing the Development Activity Complexity

5.0 Research Method

5.1 Concepts, Terminology and Definitions
5.2 Measurement Instrument

5.3 Experiment Design

5.3.1 Terminology of Experiment Designs
5.3.2 Threats to Validity
5.3.3 Our Choice of Design
5.3.4 Implementation of our Design

5.4 Data Collection

6.0 Data Evaluation and Analysis
6.1 The Six Learning curves

6.2 Complexity Analysis

6.3 The 4-Variable Model

Sherdil

w N

N s

31

6.3.1 Productivity 93

6.3.2 Defect-Rate 96
6.4 Enginecring Training in 2nd Order-Learning 99
6.5 Analysis of First Order Learning 104
6.6 Management Motivation in Second Order Learning 109
7.0 Discussion and Comparison with Related Work 111
8.0 Conclusion and Future Work 115
APPENDIX A _ 118
APPENDIX B ‘ 119
APPENDIX C 120
APPENDIX D 121
APPENDIX E 122
APPENDIX F 123
APPENDIX G 124
APPENDIX H 125
APPENDIX J 126
APPENDIX K 127
APPENDIX L 128
VITA 129
BIBLIOGRAPHY 130

Sherdil

10

1.0 Introduction

An individual person can expect continuous improvement in productivity as a
consequence of a growing stock of knowledge and experience gained by repeatedly
doing the same task [5]. Organizations have used this type of progress behavior in
making managerial decisions regarding cost estimating and budgeting, production
and labor scheduling, product pricing, etc. [4][29]. While considerable research on
this topic has been done in industrial and manufacturing sectors [60], we found
little such emphasis in the software process field, which is one of the most
emerging and widely used ‘Industry’ of the present times. Furthermore, such
research has remained almost exclusively focused on outcomes, such as units of
items produced, rather than processes [1], although it is the industrial processes
which determine the nature of the product.

Our objective in this research was to study the progress functions for an
individual in the domain of software process. A progress function is a
mathematical form for representing the improvement in performance, typically
for some production activity. In simple terms, the progress function represents the
percentage decline in cost or labor requirement as the cumulative output increases
by one unit [29][35], as shown in Figure 1.

Figure 1: The Learning Curve

Cost or
Direct Labor
Hours per
Unit

Cumulative Unit Number

Sherdil

11

Progress functions differ from the widely used term learning curves because the
former also incorporate a second-order learning mechanism [24]. Whereas the
first-order learning (also referred as autonomous or labor learning) is the
improvement due to the experience which a person gains by repeatedly doing the
same task, the second-order learning (also known as induced or organizational
learning) is due to technological and training programs injected by the
organization [2][42]. Although the distinction between these two is often blurred
[42], we have analyzed them separately in our work. Such a distinction is useful for
making managerial decisions regarding initiating formal training programs and
making engineering technology changes [2].

In order to study these progress functions, we have carried out an experimental
study. An integral part of this experiment is the personal software process, PSP,
designed by Humphrey [30]. In this experiment, we deployed 12 software
developers working on 10 short programming projects at a rate of one project per
week. These projects used the C++ programming language, which none of the
subjects was familiar with, and had to learn it during the course of the experiment.
For each project, they kept precise track of even the minutest measurements, such
as the details of every defect found, every line of code {(new, reused, modified),
time spent on each development phase, etc. For consistency, all software
developers used the same standards throughout the experiment, such as the same
coding standards, the same personal process, the same data collection techniques,
etc. The subjects underwent an intensive training program through which they
were taught various software engineering techniques, which provided them a
second-order organizational learning medium. This training program introduced
one new concept every week, such as the statistical methods for estimating size,
code reviews, design reviews, etc.

Using the data gathered, besides measuring their rate of progress, we attempted to
analyze the contributions of the first and second order learnings. This involved,
amongst other things, an evaluation of the subjects size-estimation abilities, the
advantages of reusing code, and the benefits of using code-reviews. Our study also
incorporates various subjective measures, such as the managerial motivation
provided to the subjects, the degree of the subjects' personal capabilities, their
programming experience, etc. This includes an analysis of how the first-order
learning is related to the personal capabilities of the subjects.

Finally, one of the most important aspects of our work emerged from the results of
the study of the programmer-productivity and defect-quality learning curves. We
found that besides being dependent upon time or cumulative output, the two
above mentioned variables also depend upon the complexity of the programming

—

Sherdil

12

task as well as upon each other. This lead to an analysis of a model involving the
following four variables, using detailed statistical techniques:

* Programmer Productivity
o Defect Quality
e Cumulative Qutput (or Time)

o Complexity

For measuring complexity, we used the two most popular metrics, namely
McCabe's and Halstead's. We also carried out a comparative analysis of these two
metrics.

In order to carry out scientifically valid work, we followed Basili's Goal Question
Metric (G/Q/M) paradigm [9] for defining our objectives. This measurement
paradigm describes how to define the objectives and formalize metrics
corresponding to them. However, we made some modifications to this method in
order to incorporate some extra precautions against threats to the validity of our
experiment.

Any acceptable study needs a scientifically valid experimental design. Our design
is a hybrid of the time-series quasi-experimental design and the repeated-measure
within-subject design. The details of such experiment designs are described in the
body of the thesis.

Our work has several original aspects to it which have not been dealt with before,
particularly in software engineering. As mentioned earlier, while considerable
research on this topic has been carried out in industrial and manufacturing sectors,
little emphasis has been paid in the software process field. Due to the very nature
of the software process field, we had to take into consideration several variables
which are not needed in the manufacturing field. For example, nearly all the
learning curve studies have been carried out with the assumption that the nature
and complexity of the task stays constant. However, in software development,
such an assumption would be unreasonable since the programming projects
generally vary in the level of difficulty. Therefore, we had to treat the Complexity
of the work done as a variable in addition to the cumulative output. Furthermore,
our work is different from most of the past studies because besides measuring the
progress in productivity, it involves measuring the progress in product quality,
something not considered in other studies. Similarly, most of the studies on
progress functions use a count of tangible objects to measure the rate of progress.
Our work not only looks at this productivity-oriented aspect of progress but also at

Sherdil

13

the progress in the personal skills of the individual.

Our study results are as follows:

Learning took place in all the three fields, productivity, quality and skills. The
average learning rate was about 20%.

The second order training and technology helps by up to 13% more in progress,
as compared to the first order learning.

Both, the linear and the log-linear models can be used to describe the learning
curve. However, the quadratic model does not significantly increase our
understanding of the progress as compared to the linear model.

No relationship can be deduced from our data between the personal capabilities
of the subjects and their progress.

The motivation of the subjects did not change significantly through the course
of the experiment

The Halstead’s and the McCabe’s complexity metrics have a high correlation
amongst each other

In the 4-variable model, it was found that as the cumulative output increases,
the productivity increases while the defect-rate decreases. The latter two
variables were found to be inversely proportional to each other.

It was found that as complexity increases, the productivity decreases. However,
no relationship could be deduced from our data between the complexity and
the defect-rate

Section 2 discusses related work on the subject of learning curves. Section 3 gives
the details of PSP. Section 4 states our objectives and describes our experiment
model. A description of the research method including experiment design is given
in section 5 while in-depth data analysis is done in section 6. Finally, comparison
with related work and the conclusion are in sections 7 and 8, respectively.

Sherdil

14

2.0 Related Work

This section presents some background work which is related to our study. It
describes how the learning curves evolved and how they are being used. This
section also gives an introductory mathematical description of the theory behind
the progress functions.

2.1 History of Progress Functions

The history of the learning curves can be traced back to the early twentieth century.
In the late nineteenth century, industrial expansion in the USA was accompanied
by growing efforts to control management processes using empirical methods [24].
At that time, there were two prevailing theories: economic and managerial. The
economic theory paid more attention to the equipment and other capital goods for
achieving a greater firm productivity. The managerial theory also focused on static
cost functions that were insensitive to time and experience. The progress function
was thus a major discovery because it suggested that the efficiency of industrial
process was dynamic and changing. [24]

Between 1900 and 1930, the use of progress functions was applied to the domain of
aircraft manufacturing while during the second world war, it was applied to the
domain of ship-building [46][24]. Contractors searched for ways to predict cost and
time requirements for construction of ships and aircraft to conduct the war [60].
Hence, the importance of progress functions grew and by now they have been
applied to nearly all the economic and managerial fields, and there exists over 60-
years of literature on this topic. These fields include electronics, machine tools,
paper-making, steel, apparel, automobiles and others [24]. However, little
emphasis has been paid to this topic in the software process field.

T. P. Wright, an engineer and an administrator, was the first to report the
phenomenon of the learning curves in 1936 [24][60]. He observed that as the
quantity of units manufactured doubles, the direct labor time taken to produce
each unit decreases at a uniform rate depending on the manufacturing process
being observed. Subsequent studies often substituted direct cost or cumulative
output for direct labor time [29].

Sherdil

15

2.2 Mathematical Models of Progress Functions
Wright used a log-linear mode], i.e., when the direct cost (or labor), Y, is plotted

against the cumulative output, X, on logarithmic scales, it gives a straight line, as
shown in figure 2.

Figure 2: The Log-Linear Curve

1000
Cost or
Direct Labor 100
Hours per
Unit 10

1

1 10 100 1000
Cumulative Unit Number

However, this model is not suitable for all the situations, and several firms and
researchers use different models, such as the plateau model (see Figure 3) or the
Stanford-B model (see Figure 4) [60].

Sherdil

16

Figure 3: The Plateau Model

1000
Cost or
Direct Labor 100
Hours per
Unit 10
1
1 10 100 1000
Cumulative Unit Number
Figure 4: The Stanford-B Model
1000
Cost or
Direct Labor 100
Hours per
Unit 10
1

1 10 100 1000
Cumulative Unit Number

The former plateaus down, implying that there is an upper ceiling as to how
much a person can improve, while the latter shows that initially the learning rate
might be a bit slow. A linear model can be expressed in the form

Sherdil

17

ysax+b

We can also apply a quadratic model to the learning curve for more accuracy. The
equation for a quadratic model

y=gx’ +bx+c

Most studies use the non-linear model,

y= ax-—h

By simply changing the notation, a = K and n = -b, we can write this equation as
y=Kx"

where K is the input cost for the first unit.

The progress ratio, p, is defined by

p=1-2"

A good measure of the learning is the percentage improvement, L, which is given

by

L=2"x100

2.3 Parameter Estimation

In order to mathematically describe the above equations, we need the exact values
of the constant parameters, such as p and n (given above). Several studies have
been carried out to estimate these parameters. The most common value reported
in literature for the progress ratio, p, is around 0.20 {or an 80% learning curve
percentage, L) [29][60], but there is a huge variance in these results [24]. Besides
finding these parameters, another important aspect is to analyze the degree to
which any data fits these models, as done by Hirsch [29]. The well known pearsons’
correlation coefficient, R, can be used for this purpose. The absolute value of R
represents the degree of fit on a scale of 0 to 1. Whereas it is easy to find R in linear
equations, it can be cumbersome to do so for the equations of the form

y=Kx'

Sherdil

18

However, a simple transformation of this equation can be made by taking the
logarithms of both the sides, which gives us a linear equation, as shown below.

logy = log Kx"
logy = logK +log x"

Let

logy=Y
logx=X
logK =¢

where ¢ is a constant, then
Y=c+nX

where the slope of a plot of Y against X is n. We thus need to analyze how well the
data fits this equation.

2.4 Labor vs. Organizational Learning

The improvement due to on-the-job, first order, learning is termed as labor
learning. Determinants of this might include the person's general experience,
specific experience on jobs of a given type, education, gender, age, etc. [42]. We can
group all these factors under the category personal capabilities and study whether
or not there is any relationship between the personal capabilities and the progress
in performance. However, besides labor learning, there can be other types of
learning also. According to Arrow [5],

“... learning takes place only as a by-product of ordinary production. In fact,
society has created institutions, education and research, whose purpose is to
enable learning to take place more rapidly.”

Here, Arrow is referring to the second-order learning, and says that even field
theorists like Gestalt who stress the role of insight in the solution of problems
have to assign a significant role to previous experiences. In 1965, Levy {42]
proposed that to improve the planning process, the learning behavior of the firm
(besides that of the individuals) also needs to be understood. Earlier, in 1952,

Sherdil

19

Hirsch [29] had found that about 87% of the changes in direct labor requirements
were associated with the changes in technical knowledge, which is a form of
Organizational Learning. More recently, in 1991, Adler and Clark [2] formed a
Learning Process Model, in which the Organizational Learning is further
attributed to (i) engineering/technology changes and (ii) to the labor training. A
third factor which contributes to organizational learning is management
motivation, which is discussed next.

2.5 Management Motivation

Motivation and incentives are more important in labor-intensive manufacturing
than in machine-intensive manufacturing [6C]. It is found that in the latter, the
phenomenon of ‘plateauing’ is much more likely to occur [7]. Several researchers
have worked on the effect of incentives and wages on performance, and have
found that an incentive during learning period leads to laborers learning faster
[58]. Considering its importance, no study on progress functions can be complete if
the management aspect is ignored.

Sherdil

20

3.0 The Personal Software Process

An integral part of our experiment is the personal software process, PSP, designed
by Humphrey of Software Engineering Institute [30]. This process provides an
individual with an in depth second order learning program. The principles of the
personal software process are to help the individuals to [30]:

¢ know their own performance: to measure their work, to recognize what works
best, and to learn how to repeat it and improve upon it;

» understand variation: what is repeatable and what they can learn from the
occasional extremes;

 incorporate these lessons in a growing body of documented personal practices.
In this experiment we had deployed 12 software developers working on 10 short
programming projects at a rate of one project per week. These projects were in
C++, a language which they all were not familiar with and which they had to learn

with the passage of time. For each project, they kept precise track of even the
minutest measurements, such as:

» Every Line of Code, LOC, (new, reused or modified)

o Every Defect found (from 190 different defect types)

o Phase of Injection and Removal of Defects (from 8 development phases)
¢ Time spent on fixing each defect

¢ Time spent on each activity and phase of the project

+ Estimated and actual values of project size and time

The above measurements seem to be ample for individual progress rate studies for
each subject. However, for making comparisons amongst the subjects, we needed
some consistency in their measures. Therefore, all the software developers had to
use the same standards throughout the course of the experiment, such as the
same:

¢ System Environment
e Physical Environment
¢ Programming Language

¢ Defect Type Standards

gﬁerdil

21

¢ Logical LOC Coding Standards

¢ Physical LOC Coding Standards

¢ Data Collection Techniques

¢ Data Base Package

» Personal Process

As required by PSP, complete details regarding the background of each subject were
taken from them. For this purpose, our measurement instrument included a 6

page form, given in Appendix A. Later the subjects had to appear in a 30 minute
interview to verify and validate their personal data. This data included:

o Level of Education

¢ Type of Education (Majors, Minors)

e Total Job Experience (Full-time and Part-time)

¢ Total Programming Experience

¢ Languages used (total LOC and months for each)

¢ Database related packages used

o Spreadsheet and Graphing packages used

» Statistical Tools used

s Experience with Software Process Engineering related tools and courses
e Object Oriented Design experience

¢ Design methods and Formal methods used

The subjects were given an intensive training program through which they were
taught various software engineering techniques, hence providing them a second-
order organizational training. This training program introduced one new concept
every week, which helped them in improving their software development
process. These concepts included:

o Measuring and Tracking the project

s Software Project Planning

¢ Statistical Methods for Estimating Size and Time
e Schedule and Resource Planning

o Code Reviews & Defect Prevention Strategies

Sherdil

22

. e Structured Design Methods

¢ Cyclic Personal Process

During this program, the subjects attended three hours of interactive lectures
every week with an opportunity to discuss, amongst other things, the
measurement techniques and goals. These techniques form a part of the
measurement instrument, which is described in the next section.

Sherdil__

23

4.0 Problem Definition and Our Model

An experiment process provides a basis for the needed advancement in knowledge
and understanding [15]. We build models of the software process, test the
hypotheses about these models through experimentation, and then use this
information to refine old hypotheses or develop new ones [15]. Also, for research
results to be meaningful, software measurement must be well grounded in theory
and empirical results must be obtained through well designed experimental work

(6].

Figure 5 represents our model, which is an extension of the models developed by
Levy in 1965 [42] and Adler and Clark in 1991 [2]. It shows that any continuous
development activity takes place concurrently with first-order and second-order
learning, which may lead to improvement. We have developed instruments
through which we attempt to measure and test our hypotheses for this model. As
is often the case, our instrument may not be perfect, since it is difficult to draw a
distinction between the two types of learning. However, what we hope is that our
results would help us to refine our model further as more and more replications
of our work are carried out. This is analogous to Basili’s quality improvement
paradigm, QIP. This approach of iterations of hypothesizing and testing takes
special importance in the adolescent field of software engineering because we need
to improve significantly our knowledge of how software is developed and the
effect of various technologies on it [15].

Sherdil

24 24

Figure 5: Progress
Functions in the Software
Process

[oipros ement

Legend
e Occuirs Concurrently
---------- - Consists of

—» in

Sherdil

P e
'_'.‘r‘ Tk ‘.‘ .
B

23

Figure 5: The Main Model {on previous page)
We can now state our problem definition as. we go through our model in figure 5.
This figure shows that concurrent to any development activity are the two types of
learnings: first order and second order. The latter can be attributed to two factors:
management motivation and the engineering technology and training. These
learnings lead to improvement, which can be in productivity, personal skills or
the product quality. Table 1 below describes how each item in figure 5 corresponds
to a problem, which we intend to tackle.

Vel -
Lt I
AR

eo tivi |

Table 1: Problem Definition

| Does the complexity of the development activity |

'w:‘.Il]n.ii‘.:;l.,—.f}—I::L{L.E<:lng.

task affect the rate of learning?

First Order Learning

Is the first order learning related to the personal
capabilities and/or experience of the individual?

Second Order Learning

Does the second order learning help significantly
more than the first order learning?

Management

Does the management motivation affect the rate
of learning?

Engineering Technology and
Training

Do the individuals perform better due to the
injection of technology and due to training?

Improvement Which model (linear, quadratic or logarithmic)
best describes the learning curve?
Productivity What is the progress ratio in the improvement in

productivity?

Personal Skills

What is the progress ratio in the improvement in
the personal skills of the individuals?

Product Quality

What is the progress ratio in the improvement in
the quality of the product? How are the
productivity and the product quality related to
each other? Do these two variables depend on the
complexity of the development task?

Sherdil

26

To solve each problem, we need a measurement instrument. We will now
describe our model in depth, which is used in solving the above problems. This
would require more specific details of the problem also. Qur sections are
sequenced as follows (where parenthesis refer to the box shapes in the main model

in figure 5):

o 41 Improvement (black box)

e 4.2 Second order learning (brown box)

e 4.3 First order learning (brown box)

¢ 4.4 Development activity complexity (black circle)

Table 2 below shows the ordering of these sections as we describe the
corresponding parts of the model.

Table 2: Parts of model and the section numbers

First Order Learning and its relationship with personal capabilities | 4.3
Second Order Learning 4.2
Management Motivation 4.2.1
Engineering Training and Technology 422
Improvement 4.1
Progress in Productivity 4.1.1
Progress in Personal Skills 41.2
Progress in Product-Quality 4.1.3

Comparing the second order learning with the first order learning | 4.2.2

Relationship between Productivity, Quality, Complexity and 4.4
Cumulative Qutput (4 variable model)

Sherdil

27

. 4.1 Model for measuring Improvement

Figure 6: Three types of progress functions

hprovement

Product

Quality

Engineerirg measurements can be generally characterized as either process or
product related. [52] We have emphasized on both these types by studying three
different progress functions, represented by circles in figure 6: (i) progress in
productivity, (ii) progress in personal skills and (iii) improvement in product-
quality. Whereas the product-quality represents the nature of the product
produced, the personal-skills represent an inherent part of the personal process
used by the software developers, and the productivity represents the rate of

development of the product. These three types are now discussed in detail in the
following three sections.

Sherdil

28

4.1.1 Productivity Progress Functions

Figure 7: Productivity Progress Function

Productivity can generally be defined as completing an activity as expeditiously as
possible, and has economic connotation of goods and services produced per unit of
labor or expense [33]. The programming speed can be measured in output
produced per unit labor time. Whereas the latter can be easily measured in
programmer-hours or programmer-months, problem arises in measuring the
output produced. The simplest and perhaps the most commonly used product
metric is the lines of code, LOC, and according to Basili, it should be regarded as a
baseline metric to which all other metrics should be compared [29].

But a fundamental problem is that of knowing exactly what is meant by the phrase
"lines of code." The unit lines of code per programmer-month is found to
consistently penalize high-level languages, since they can encode any logic in
much fewer statements than a low-level language would. Hence it is difficult to
compare productivity between programs of different languages [33}. In our case we
solved this problem by imposing all the subjects to use the same programming
language. However, even within the same language, there can be a variety of
measures associated with the generic concept of lines of code [12]. For example, for
measuring effort, comments should be counted in the source code, but for
approximating functionality, the executable statements (and data declarations) may
probably be a better measure {12]. According to T. C. Jones [33], this problem is not
serious provided it is recognized. The key is to state the counting rules explicitly,
and then to adhere to those standards.

Sherdil

29

For programmer-productivity, we chose the metric logical LOC per hour. A logical
LOC is more accurate than a physical LOC since it uses the number of tokens as a
micromeasure of the number of units of information. Logical lines are invariant
to editing changes, uniquely definable and correlate better with development effort
[30]. These tokens may be operators, operands or any other item, provided they are
explicitly stated in the coding standards and then devotedly followed.

Appendix B shows the logical LOC counting standards which were used by all the
subjects. One attribute of a good measuring standard is that it should be
automatically countable. Physical LOC have an advantage over logical LOC because
it is easy to develop their automatic counters [30]. We overcame this difficuity by
defining physical LOC coding standards in such a way that each physical LOC
contained one and only one logical token. These physical LOC coding standards are
given in Appendix C. The subjects then developed their own physical LOC
counters, which indirectly measured the logical LOC. In this way not only did we
get accurate data automatically, but also managed keep consistency amongst all the
subjects so that they could be compared amongst each other.

Finally, another important point to consider is the number of Reused and
Modified LOC. Often experimenters include the number of Reused LOC in the
productivity measurements as in [26]. Often the programs consist of over 50% [13]
of reused code (it was 54% in our case). Obviously reused code requires much less
effort, one fifth of a new LOC by one estimate. According to T. A. Standish [54],
modified lines should count as 1/2 reused and 1/2 new. In our case, we have
averaged out by not counting the reused code, and giving full weight to modified
code. As mentioned before, it is not important whatever standards we pick, as long
as we are consistent. Hence we get,

No. of New or Modified Logical LOC
Programmer Hour

Programmer Productivity =

4.1.2 Personal Skills Progress Functions

Figure 8: Personal Skills Progress Functions

Siz_e'Estimution
Abilitics

~ haprovenen - Personal

h » [Time Estimation
Skills Abilities

Productivity
Estimation Abilitics

Most of the studies on progress functions use a count of tangible objects to
measure the rate of progress. Our work not only investigates productivity-oriented
aspect of progress but also investigates progress in the personal skills of the
individual developer. We have used the estimation ability of a person to model
the skills. This estimation can be of size of the programming task, time required to
complete the task, or even of the subjects productivity, as shown in figure 8.

Our metrics for measuring the progress in estimation are the Size Estimation
Error, the Time Estimation Error and the Productivity Estimation Error. Before
each project, the subjects estimate the size of the job (in logical LOC) and the
expected time required to accomplish it. Using these two metrics, or otherwise,
they also make an estimate of their productivity. After completing the project the
actual values of size, time and productivity are used to find the percentage error.
Hence,

|Estimated LOC ~ Actual LOC| 1
Actual LOC

Size Estimation Error =

00

Estimated Time — Actual Time
Time Estimation Error = | I %1

00
Actual Time

|Estimated Pr oductivity — Actual Productivity| 1

Productivity Estimation Error =
v Actual Productivity

00

Humphrey [31] has shown that at the organizational level, the percentage error in
size estimation for a group of IBM employees decreased with the passage of

Sherdil

31

projects. One goal of our experiment is to determine whether or not the same
phenomenon occurs at the personal level.

The subjects were given second-order training to improve their size estimation
ability. This is described in detail in section 4.2.2.

4.1.3 Quality Progress Functions

Figure 9: Product Quality Progress Function

Product
Quality

One major difference between our work and most of the past studies is that our
work involves measuring the progress in quality, besides measuring the
productivity progress. In measuring progress, we use cumulative output as a
variable which affects the progress. Hence the progress in productivity or quality
varies as the cumulative output varies. However, productivity and quality are
mutually dependent on each other as well, besides being dependent on
cumulative output. At the organizational level, Deming [59][61] has shown that
improved productivity is a direct result of improving quality, while Putnam [45]
has empirically shown that the defects decline rapidly as the productivity
improves. At the personal level, Humphrey [30] has observed that improvements
in product quality do not seem to reduce productivity. According to Remus and
Ziller {47]:

“.. the quality of the software development process is continuously
improving. Programmers are becoming more proficient at applying defect
removal techniques. Therefore, it is desirable to be able to predict quality on
the basis of measurements made on the software as it is being developed.”

Sherdil

32

Since in measuring the progress in productivity or quality, it is not sufficient to
just consider the cumulative output, we used a model involving all the three
attributes.

The term quality has many attributes, and so any attempt to define it should be
based on the principle of meeting the users' needs [30]. Defect rates (during product
development [33]), defect removal efficiency, and the number of defects

discovered after the product is shipped [47), are often cited in the literature as
reasonable starting points [36]. However, the latter is inappropriate for our study as
the developed programs do not undergo extensive usage. Thus, in our study we
used defect rates and the defect removal efficiency.

The defect rate was normalized to defects per hundred LOC. We followed the
suggestion of T. C. Jones [33] and lumped together all the defects, regardless of
source of origin, and counted them as a single variable, defects. Appendix H shows
the defect types standard used in our experiment. Similarly, the defect removal
efficiency of all the phases was also combined. Here also, the reused code was not
used since it was assumed that it does not contain defects. If on the contrary it did,
then naturally the programmer had to fix that code, hence making it *‘modified’
instead of reused. Hence our metrics were as follows:

No. of Defects Found

Defect Quality (Defects / 100LOC) = Total New & Modified LOC

X 100

No. of Defects Found

Defect Re moval Rate (Defects Removed | hour) = Toral Time taken 1o find & Jix fhe defeets

The subjects were given second-order training to use code reviews in
order to improve quality. This is described in detail in section 4.2.2.

Sherdil

33

4.2 Model for Analyzing Second-Order Learning

Figure 10: Model for second order learning

Engineering
Technology
& Training

Management

Figure 10 shows that the second-order learning can be divided into two categories:
(i) the motivation and incentives given by the management, (ii) the technology
changes and training provided by the engineering department. In addition, there
can be second order learning from other sources of knowledge also, such as that
from the customer for whom the software product is developed, but in our case
such sources do not apply. Hence given below is the measurement instrument
used to analyze the first two categories only.

Sherdil

4.2.1 Management Motivation

Figure 11: Management Motivation in Second Order Learning

Management

Zultner [61] has interpreted the fourteen points of Deming's approach to adapt
them to MIS management. Amongst other things, these deal with the motivation
and enthusiasm aspects of the labor force. Enthusiasm can be contagious, and
people tend to perform better in an optimistic environment than in the "won't
work" environment [31][32]. As mentioned before, incentives and wages on
performance during learning pericd lead to developers learning faster [58].
Therefore, we decided to design an instrument to keep track of the programmers
Motivation, Interest and Satisfaction.

The instrument comprises of a survey form which each subject fills after each
project. The survey form is attached in Appendix C. The survey asks the subjects to
rate the following metrics:

o Motivation: defined as the desire or incentive given to subjects by the
management.

o Interest: defined as the *willing attention' the subjects took in the projects.

o Satisfaction: defined as the pleasure the subjects receive upon fulfillment of a
project.

¢ Usefulness: the extent to which the subjects learnt from the project

Sherdil

35

The above metrics are subjective. These were quantified on a scale of -5 to zero to
+5 (11 categories), and also labeled, such as from *Completely Unmotivated' to
*Neutral' to *Extremely Motivated.' Furthermore, the subjects were asked to give
their responses separately for the coding project and for the data collection process.
Finally, during the personal interviews through the course of the experiment, the
students were given clarifications on any ambiguities they had regarding this
measurement instrument. Due to these above mentioned steps, we are quite
confident that our subjective data quite accurately depicts how the programmers
felt at each stage of the experiment.

4.2.2 Engineering Training and Technology

Figure 12: Engineering Technology & Training in 2nd Order Learning

Engineering
Technology
& Training

Size Estimation Rused Code
Techniques

v

Code Reviews

As described above, the software developers get second-order learning from the
training given to them through the personal software process program. Two key
aspects of this training program are the Size Estimation method and the Code

Sherdil

jé

Reviews (see figure 12). The third aspect, reused code, is of lesser significance in
our work, and is discussed later.

These training mechanisms are injected after the 3rd and the 6th projects
respectively, out of the total of nine programming projects and one non-
programming one. A comparison of student data before the injection of these
technologies and after their injection can give an idea of their benefits. Whereas
before the injection, the subjects’ improvement can be attributed solely to first-
order learning, after the injection it is affected by both types of learnings. Based on
the data before the technology injection, we can estimate the improvement trend,
i.e., we can find the equation of the learning curve before technology injection and
extend it forward to predict what the improvement should be in future if only
first-order learning continues. We can compare these predictions later with the
actual data after the technology injection, which includes the second order
learning also. Hence any increase in learning beyond our predicted values could
then be attributed to the second-order learning factor. Of course such estimates
have several uncertainties involved, and our confidence in them cannot be
hundred percent. Such a confidence depends on the number of subjects, the
number of measurements taken, the experimental design, etc. These issues are
discussed in the experimental design (section 5) and in data analysis (section 6).

Given below is a description of the two training methods. Also described below is
the concept of Reused Code, which, if done formally (using libraries or otherwise)
as in our case, is also a second-order engineering technology mechanism which
helps the programmers beyond the autonomous learning.

IZE E TI

Various methods exist in the literature for estimating the cost, size and time of a
programming task, e.g., Boehm's COCOMO [16). However, such models seem to

work in certain environments, but not in others [12], and it is hard to tailor them
to the characteristics of different environments of the individuals.

At the PSP level, we need an estimation procedure which can utilize the
conceptual design at the very early (planning) stage of the project to produce an
estimate. One such method is Albrecht's Function Points [3]. How::ver, such
methods have a low reliability [36] and are principally used for estimates in
commercial data processing [30], instead of small individual projects. Therefore,
we used a PROxy-Based Estimating (PROBE) method, designed by Humphrey [30],
in which each individual uses his or her own past data to produce a size estimate

Sherdil

37

for each Object in the conceptual design. These Object sizes are then mapped to get
the total program size, using the database of previous programs. Hence this
method is customized for their needs of the subjects. Appendix G shows the
template used by subjects for estimating size.

CODE REVIEWS

Literature is full of advantages gained by carrying out code reviews. According to
Fagan [26), there is evidence that early experience gained from inspections causes
programmers to reduce the defects in the later phases. Moreover, reports from
industry [50] ag .e that code inspections can be up to 20 times more efficient than
testing. In an experiment involving professional programmers, Code Reading
detected more software faults than did functional or structural testing [13].

As a part of PSP, Humphrey has also emphasized code-reviews or inspections,
hence providing software developers with 2nd order training. Special emphasis is
paid to those defects which have been occurring most frequently in the past. For
this purpose, the subjects analyze their past data and prepare Pareto charts of the
most frequently occurring defects. A checklist of these defects is then made, which
aids in the code review process (see sample check list in Appendix G).

In order to prepare Pareto charts, detailed past data of defect types is a prerequisite.
Therefore, besides measuring the phases of injection and removal of defects and
the time taken to fix each defect, the subjects were also required to categorize the
defects using a defect types standard, which contained over 190 different defect
types. These defect types, though not exhaustive, were more than adequate to give
a good insight into the nature of the defect. Subjects were also required to give a
one to two line explanation for each defect. The list of defect types was prepared by
the author based on his personal experience, Ripley's analysis of syntax errors [48],
C-language library’s include file errno.h, Leblanc and Fischer's case study of run-
time errors in Pascal programs [41], Humphrey's defect type standard [30], and
Turbo Pascal's Error Message Codes [40].

Defect analysis is important for defect prevention. Although a qualitative causal
analysis can provide feedback on each individual defect, it is akin to studying the
ocean floor with a microscope [18]. The other alternative is to use a quantitative
analysis, using statistical defect models or software reliability growth [18]. These
methods collect precise defect data from a large number of projects, and then use
using techniques such as defect control charts or pareto charts, to decrease the
number of defects in the future projects. And this is precisely what our subjects

Sherdil

38

did in this second-order training. Note that the main theme behind these themes
is to first measure and then to improve the quality. As Walrad and Moss [59] put

it, “Quality experts are certain that measurement is essential to improving quality.
In other words, measurement drives quality.” Apart from using this data in Code
Reviews, we did not have any objective on our part to analyze it by phase or type

(see future research considerations, section 7.0).

REUSED CODE

The concept of Reusing Code, if done formally using libraries or otherwise, can be
considered as a second-order learning mechanism. However, unlike in the above
two cases (Size Estimation training after project 3 and Code Reviews after project
6), in case of Reuse we cannot study the effects of injecting a technology because it
starts immediately after the first project. Moreover, not all the subjects are required
to Reuse the code, and they do so depending on their specific needs. Hence
although we can study what percentage of the code was reused, we cannot deduce
how much learning or improvement took place due to the Reuse factor alone.
However, by quantitatively studying the amount of Reused code, we can obtain a
qualitative impression of its importance, and hence indirectly about the
importance of the second-order technology and training,.

There has been an on-going debate in the last few years regarding the merits of
software reuse [8]. Software engineers have discussed whether reuse provides any
major insight into the development process or if it is just another development
technique, which may be helpful in some contexts and inappropriate in many
others. According to Barnes and Bollinger [8], reuse is a fundamental paradigm of
development and until it is better understood, significant reductions in the cost of
building large systems will not be possible. Jones [34] speculates that by the year
2000, the percentage of new applications may be only 10-15 percent, and hence
software-reuse would be one of the primary factors in the development process.
Due to its importance, software reuse is healthy in the form of teaching and
application of reusable software abstractions, and the data structure and algorithm
books are full of them [54].

In PSP, since several of the projects assigned to the subjects are related to each
other, reuse plays an important role in our experiment. Thus in order to study the
effects of, we would be studying the percentage reuse in each project as well as the
overall cumulative reuse through the course of the experiment.

Sherdil

39

. 4.3 Model for Analyzing First-Order Learning

Figure 13: First Order Learning

In the previous section (4.2), we discussed ways to study how much second order
learning can contribute in addition to the first order learning. In this section we
analyze some internal attributes of the first-order learning.

Determinants of first-order learning might include the person's general
experience, specific experience on jobs of a given type, education, sex, age, etc. [42].
We can group all these factors under the category of personal capabilities and study
whether or not there is any relationship between the personal capabilities and the
progress in performance. For this purpose, we can plot a graph of progress (in
productivity, personal skiils and quality) on Y-axis against a capability-index of the
12 software developers. The progress of the subjects can be the mean of the
following five progress ratios, p:

¢ p in Size Estimation Abilities

e p in Time Estimation Abilities

o p in Productivity Estimation Abilities ~ p in Programmer-Productivity

¢ p in Defect-Quality

The first three ratios are for subjects’ Estimation Abilities while the latter two are

for subjects’ performance. The main problem now is to assign the capability-index
to the subjects. We have decided to use two main factors in calculating this index:

Sherdil

40
(i) Subjects Past Software Development Experience and Education,

Various factors can be included in the analysis of past experience as listed below.
The values for these factors were provided by the subjects themselves, based on
their own estimates. A six page questionnaire was used as the primary instrument
to gather this data (sec Appendix A). These factors include:

¢ Total number of languages programmed in

» Total experience in programming

» Educational excellence level and degrees obtained
e Total full time and part time job experience

o Experience with software packages

e Experience in Object Oriented Design and Software Engineering

(ii) Subjects performance in the 10 projects

The metrics used here are based on the absolute performance of the subjects
during this experiment. Recall that it would have been difficult to compare the
performance of the subjects had we not defined our coding and defect standards.
The metrics used in this case include:

¢ Productivity in LOC/hour

» Defects / KLOC

e Defect Removal Rate in Defects Removed/hour
¢ Grade given to the subjects in the PSP course

In the section on data analysis (section 6.5), we describe in detail how the Capability
Index was calculated from the above factors.

Sherdil

41

4.4 Model for Analyzing the Development Activity
. Complexity

Figure 14: The Development Activity Complexity

Nearly all the learning curve studies have been carried out with the assumption
that the nature and complexity of the production or development activity stays
constant. However, in the field of software development, such an assumption
would be unreasonable. Intuitively, the more difficult a task is, the lower the
productivity. Card and Agresti [48] have done empirical work on Design
Complexity and shown that it has a strong correlation (R = 0.83) with error-rate (in
errors per KLOC) but no correlation (R = -0.49) with productivity (in LOC per
hour). If our learning curves suggest an improvement, it can be because of
decreasing complexity. Therefore, we had to treat the complexity of the work done
as an independent variable. It is an independent variable since we did not control
it in this experiment. But complexity is a very general term and may many
different terms, so we need some standard measures for quantifying it.

In the field of software, several measures of software complexity have been used.
The two metrics which we chose need no introduction[14]: McCabe's cyclometic
complexity [43] and Halstead's software science effort [19]. Software Science has
several other metrics also, such as the software science length, but in our case we
are more concerned with the complexity rather than the length of the program
(though it is true that for maintenance purposes, length adds up to complexity). In
order to accurately and efficiently carry out measurements using these two metrics,
we used a tool, PC-Metric, developed by SET Laboratories, Inc. [44]. This tool has
been referenced in other research work also, for example, in [27]. Appendix J
shows sample complexity results generated by this tool.

Sherdil

42

According to Curtis, et al. [20], there is no exact mathematical relationship between
the McCabe's and Halstead's metrics, but one should not be surprised if a
significant correlation between them occurs. We have availed of this opportunity
of having gathered a large amount of accurate data to perform a comparative
analysis of the two metrics, besides using them for our learning curve studies.
This comparative study is important to our work because if the two metrics are
giving completely differing values of complexity, then it would decrease our
confidence in how accurately we have quantified this variable.

Generally, complexity is thought to give us an understanding to such software
characteristics as maintainability and reliability [52]. However, our concern here is
not these post production issues, but the effort required during the production of
the product, because it is this effort which we are measuring in our progress
studies of productivity. According to Curtis, et al. [20], there is empirical evidence
that software complexity metrics were related to the difficulty programmers
experienced in understanding and modifying software. Others such as Sunochara,
et al. [57] also share similar views. Basili [14] defines effort here as the number of
man-hours spent from the beginning of functional design to the end of acceptance
testing, which agrees with our definition. However, he points out that how well
the various metrics really measure or predict effort or quality is still an issue in
need of confirmation since none of these two metrics seem to manifest a
satisfactory explanation of effort or quality of the program. But he does believe
that if the programs are developed by individuals (as in our experiment), the
metrics' correlations with actual effort seem to be strongest.

Curtis, et al. [22], feel that one potential use of complexity metrics is to get feedback
during the development of the program. During our experiment, we found that
more complex the problem we gave (according to our estimates), more complex
was the solution which the programmers developed (based on two different
quantitative metrics described below). Hence our assumption here is that the
complexity reflects the effort required to do a program, and hence affects the
productivity of the programmer.

Sherdil

43

5.0 Research Method

Having defined the problem along with the general approach we are taking to
tackle it, we now describe our measurement instrument and the experiment
design. The term research method refers to the entire study, in which we carry
out the following activities:

o Defining the Objectives

* Setting the metrics

e Validating our Goals and Metrics

¢ Designing the experiment for the subjects
s Conducting the experiment

¢ Collecting data and validating it

¢ Analyzing the data

The term experiment design applies only to the part "Designing the experiment
for the subjects” listed above. After describing the measurement instrument
(section 5.2) and the experiment design (section 5.3), we give details of our data
collection process (section 5.4). But first (in section 5.1), we give a brief background
of some research concepts, terminologies and definitions, which will extensively
be used in the remaining portions of our work.

In this chapter, often we describe standard concepts, terms and definitions from
the past literature. These descriptions are a prerequisite to what follow after them.
However, some readers might already be familiar with these details. Therefore,
these descriptions are given in boxes, and may be skipped if needed.

5.1 Concepts, Terminology and Definitions

The field of software measurement has been criticized for poor empirical methods
and for a lack of theoretical foundations [6]. Useful measures can be developed
under a well-grounded measurement theory framework. It is thus important that
empirical work in software engineering help strengthen the framework by
explicitly defining concepts, terminology and definitions used in the empirical
work. This is the purpose of this section with reference to our work.

Sherdil

44

A theory behind an experiment can have at least three features [38]: Constructs,
Relations and Hypotheses. These are given in Box 1.

There can be four different purposes of any research which examines these
hypotheses [38]. These are discovery, demonstration, refutation or replication.

Descriptions of each are given in Box 2. These will be discussed in context, as we
analyze the data.

Sherdil

45

Box 2: Discovery, Demonstration, Refutation and Replication

g;ga:m Y e e (O
k’ g migh nslble fo p enomeno behav:or. H&ﬂever,ltlﬁs“‘f* “g%s%t
¥ iiean at researcher asgnoideapatiallfaboutdwhaty sAhe Jishecing ot
.; the asgto¥make :'. eoreﬂcal um SEnYdeciding

aout

The development of a theory underlying an experiment (constructs, relations and
hypothesis), might lead to the development of an instrument for measurement.
An instrument must have several characteristics, most of which are validation
criteria[45] [49] [38]. These include, amongst other ones, the content validity, the
construct validity, the internal validity and the external validity. Other
characteristics include interpretability, reliability, effectiveness, statistical
conclusion validity and precision. Software engineering literature has details on
these issues. However, they are listed again in Box 3, with brief examples on how
they are pertinent in our case.

46

Box 3: Validitys and other related concepts
the*score""of gcaléibe

0ULe ;‘. s f'f*n" cjrhanmbﬁ@

LTS RIS extent; {;\jﬁ
*\zfmhﬁ@mmeisg%
ghthefmetricsgshouldstipulately) A/ =”
e 2 ! 2 o leﬁﬁ

Sherdil

i eI
ﬁ@?ﬂ%ﬁgﬁn

.Stisti Tonclus 3156]:!

X dnonstrate “ﬁona pg ’j;@ﬁ_- pla
comparison. esam plelsizerandythetnumberfots
roleinfthisicaseliFo exampe- Ayefonlydones
i Wshowithatiincrease Arest '
F Mtch! confidg.nceweh‘i Sntc

There are various models which incorporate the above mentioned factors into an
overall experimental strategy. A discussion of such models and our choice of a
particular model is discussed below.

5.2 Measurement Instrument

There are a number of approaches for defining software engineering metrics. We
have used a derivative of one of the most prominent ones amongst them, Basili's
Goal/Question/Metric paradigm, G/Q/M [7]. This derivative method incorporates
some improvement suggestions, especially more validation tests [25]. One
important aspect of G/Q/M is to define all your goals and metrics in advance and
then follow them strictly, instead of getting data first and then observing the
trends and patterns found in it to identify “interesting' goals.

We were clear in specifying our goals, as evidenced by the goals published in a
workshop position paper [53] at the start of our experiment, submitted prior to the
data collection stage. Below we describe the steps which we followed in our
derivative of G/Q/M method:

Sherdil

48

o Step 1. Identify a set of goals based upon your needs

e Step 2. Define the Constructs which quantify these goals

e Step 3. Develop the metrics which provide the data for the constructs

e Step 4. Validate the goals, constructs and metrics.

o Step 5. Define and execute a mechanism for collecting and validating data

o Step 6. Analyze the data collected to study the goals

A detailed explanation of these steps follows.
Step 1. Identify a set of goals based upon your needs [9]

A Goal is considered to be at the conceptual level [11]. It is defined for an object
(Products, Processes, Resources, etc.), from various points of view, relative to a
particular environment. Listed below is our set of goals. The section number for
corresponding measurement instruments is listed next to each goal.

o GIl: Identify the Progress in Productivity (4.1.1)

o G2: Identify the Progress in Personal Skills (4.1.2)

¢ G3: Identify the Progress in Product-Quality (4.1.3)

¢ G4: Analyze the second-order learning through management motivation (4.2.1)
» G5: Analyze the second-order learning through training and technology (4.2.2)
o G6: Analyze the first-order learning (4.3)

o G7: Study the effects of change in Production Activity Complexity (4.4)

As mentioned in the problem definition, productivity (G1) and quality (G3) are not
only related to the cumulative output but also to each other. We had originally
planned to study the relationship between these three variables. Hence this was a
sub-objective, since it is used in explaining other main objectives. During the
course of the experiment we found that complexity (G7) also affects the
productivity and quality, This meant that we now had a four-variable model,
studying which could be a completely new objective. Hence before performing data
analysis, we amalgamated our sub-objective with G7 to get a new definition of G7:

s G7: Analyze the 4-Variable Model of Productivity, Quality, Complexity and
Cumulative Output.

Sherdil

49

Step 2. Define the C hici ify o |

This is the most difficult step since it often requires the interpretation of fuzzy
terms like quality or productivity within the context of the development
environment [9]. Sometimes the constructs do not fully satisfy the entire goal. In
that case the missing aspects can be noted so that later interpretations of the results
can be qualified appropriately. Table 3 lists the constructs for each goal.

Step 3. Develop the metrics. whid ide the data for &

The goals/constructs are now formalized by making them quantifiable and the
actual data needed for them is identified [9]. These data metrics can be considered
as the variables needed to explicate our theoretical interests.

Table 3 lists the metrics along with their units, for each goal and construct. Note
that most of the metrics are measured against cumulative output (or time), which
in our case is represented by cumulative number of LOC. Since this metric is used
extensively in our work, we will not repeatedly mention it in Table 3. Given below
is Table 3, in which symbol G represents Goal, C Construct, and M is for metric.

_ Table 3 Goals, Constructs and Metncs

Cl: Pogramr

GlPogress in MI: Progamer L/ hour
Productivity Productivity Productivity
G2: Progress in C2a: Project-Size M2a: Percentage %
Personal Skills Estimation Size Estimation

Abilities Error

C2b: Project-Time | M2b: Percentage %

Esitmation Time Estimation

Abilities Error

C2c¢: Personal- M2c: Percentage %

Productivity Personal-

Estimation Error Productivity

Estimation Error

G3: Progress in C3: Defect-Quality | M3(i): Defect Rate | Defects/KLOC
Product Quality

Sherdil

M3(ii): Defect
Removal Rate

Defects
Removed/hr

G4: Analysis of
Management
Motivation in 2nd
Order Learning

C4a: Motivation

M4a: Subject’s
appraisal of
Motivation

Scaleof -5to 0 to +5

C4b: Interest

M4b: Subject’s
appraisal of Interest

Scale of -5 to 0 to +5

Cdc: Satisfaction

M4c: Subject’s
appraisal of
Satisfaction

Scale of -5 to 0 to +5

C4d: Usefulness

M4d: Subject’s
appraisal of
Usefulness

Scale of -5 to 0 to +5

G5: Analysis of
Technology in 2nd
Order Learning

C5a: Improvement
in Size Estimation
Abilities

Mb5a: Percentage
Decrease in Size
Estimation Error

Yo

C5b: Improvement

in Quality

MS5b: Percentage
Decrease in Defect-
Rate

0,
Lt

G6: First Order
Learning;:
Relationship
between Personal
Capabilities and
Progress Rate

Cé6a: Progress Rate

Méa(i): Progress
Ratio, p in Size
Estimation

Ratio

Méa(ii): Progress
Ratio, p in Time
Estimation

Ratio

Meéa(iii): Progress
Ratio, p in
Productivity
Estimation

Ratio

Méa(iv): Progress
Ratio, p, in Prog-
Productivity

Ratio

Sherdil

31

Mbé6a(v): Progress Ratio
Ratio, p in Defect-
Quality
Céb: Subjects’ Méb(i): No. of Number
Experience and Languages
Education programmed in
Meéb(ii): Total Months
Experience in
Programming
Méb(iii): Data mapped to a
Educational Quantitative scale

Excellence Level,
Degrees obtained

Méb(iv): Total Full-
time and Part-time
Job Experience

Months

M6b(v): Experience
with Software
Packages

Months/package

Méb(vi): Experience

Number of Courses

with OOD and taken or related
Software Tools used
Engineering
Courses
Céc: Subjects’ Méc(i): Average LOC/hr
Performance (in | Productivity
the 10 projects)
Méc(ii): Average Defects /KLOC
Defect Rate
Mé6c(iii): Average | Defects-
Defect-Removal Removed /hr
Rate
Méc(iv): Grade Course G.P.A
obtained in the PSP
course

Sherdil

52

G7: Analyze the C7a: Programmer- | M7a: Programmer- | LOC/hr
Four-Variable Productivity Productivity
Model

C7b: Defect-Quality | M7b: Defect-Rate | Defects/KLOC

C7¢: Complexity of | M7¢(i): McCabe’s | Cyclomatic
Code Cyclomatic Complexity
Complexity

M7c(ii): Halstead’s | Number
Software Science

Effort
C7d: Cumulative | M7d: Total LOC
Code Output Cumulative Logical
Code

In section 5.1, we had given details of various validation criteria. In our
experiment, validation has been given a foremost priority. There is a general lack
of understanding of the meaning of validation of software measures [6] and
unfortunately, software measurement research is often suspect because of a lack of
rigor and unjustified claims. According to Straub, et al., instrument validation has
been inadequately addressed in MIS research [56]:

“Because of rapid changes in technology, often the research issues are handled
with dispatch. Lack of validated measures in confirmatory research raises the
specter that no single finding in the study can be trusted. In many cases this
uncertainty will prove to be inaccurate, but, in the absence of measurement
validation, it lingers.”

We were cautious in our choice of selecting metrics. Most of the metrics were
objective, while the subjective ones were carefully quantified. Wherever
appropriate, we selected those metrics which have been used on numerous
occasions in the previous studies. Nevertheless, in order to formally validate our
goals, constructs and metrics, we contacted seven experts in the field of software
measurements, and asked them to fill out a fifteen page validation form (see
Appendix D). This form gave details of the metrics, and asked the experts to check

Sherdil

53

for, amongst other things, content validity. This survey was followed by detailed
interviews with these experts wherever a divergence in views was found. Such a
method of validating metrics is sometimes also referred as Face Validity [38], in
which a group of judges evaluate the measuring technique and suggest their
opinions. Face Validity is a subjective process, but we can calculate a validity figure
by computing the amount of agreement among judges. However, in our case there
was little divergence, and that too mostly amongst subjective metrics. Most of the
experts had no objections on the objective metrics since these have been used
extensively in past research works. From the previous table, which gave a listing
of all the metrics, we list only the objective ones below (Table 4).

L:gaﬁqmgdupnﬁp;;A

[T ... S L1

M7a Méc(i) Programmer-Productivity | LOC/hr
M2a M4a Percentage Size Estimation | %
Error
M2b Percentage Time %
Estimation Error
M2c Percentage Productivity %
Estimation Error
M3a M7b Mé6c(ii) Defect Rate Defects/KLOC
M3b Meéc(iii) Defect-Removal Rate Defects-Removed /hr
Mb5b Percentage decrease in %
Defect Rate
Méa(i)-(iv) Progress Ratio, p Ratio
M7c(i) McCabe’s Cyclomatic Cyclomatic Complexity
Complexity
M7¢(ii) Halstead’s Software Number
Science Effort
M7d Total Cumnulative Logical | LOC
LOC

The metrics such as LOC/hr, Defects/KLOC, Defects Removed /hr, McCabe's
Cyclomatic Complexity and Halstead's Software Science Effort need no

Sherdil

54

introduction in software engineering research. A description of their past usage,
their drawbacks and why they have been chosen rather than other metrics is given
in chapter 4. Furthermore, following Jones’ suggestions [33], we have consistently
defined every metric, and have then resolutely followed the definitions.
Therefore, for example, by defining Productivity to be Programmer-Productivity,
we imply that by this metric we measure productivity of a programmer and
nothing else. Also, the relation between the constructs and the variables is
straightforward, e.g., LOC/hr represents Programmer-Productivity directly. Doubts
might arise in case of construct-goal relationship though. For example, does defect
quality really reflect quality. As mentioned earlier, we selected those constructs and
metrics which have been used in previous studies repeatedly. Hence we are
confident that in our case the variables have high effectiveness and the construct
and content validitys are strong.

We were very concerned initially about the internal validity. Our original model
was to study the constructs/variables against cumulative output alone. However,
when we began considering unhypothesized variables, we had to take into account
the motivation and incentives. Our search for greater internal validity lead us to
develop even 4-variable models (along with several other variables which were
held constant or static). After incorporating all these variables, we believe our
model has a strong internal validity.

External validity has always been a critical issue for laboratory studies. In our case
this problem holds, and even though we had some subjects with extensive
experience in industry, great concern should be taken in generalizing our results to
be applicable in general industrial software environments.

Our instrument is reliable. In our case there was no need to carry out Test-Retest
correlation or Split-Half correlation [38] to check for reliability. This is because the
nature of our experiment was, in essence, to take the same measurements week
after week at least nine times. Consistency amongst our results during all the nine
rounds, by itself, is a proof of high reliability.

The metric Progress Ratio, p, is a derived metric, i.e., it is calculated from other
basic metrics. This metric has been used in most of the learning curve studies, and
hence was selected by us so that the results could be compared. The metrics for
calculating estimation errors are also only a simple calculation based on other basic
metrics. Finally, the metric Cumulative Output has been used instead of Time,
because of its past usage in learning curve studies. In fact, we prefer it over time
because the output produced per unit time is not constant, and hence the
experienced gain per unit time varies.

Sherdil

53

Now we discuss the subjective metrics from Table 3, listed again in Table 5. Note
that we have a large number of subjective metrics because it was our goal to have
high content validity. These subjective metrics are completely independent of
most of the other variables in our work, and have been studied to show that they
are static and stay constant. Hence any objections to the use of these metrics should
not offset the overall results obtained from our work.

Tabl __ Sb'ec etric]

[RER NI RN B

| ujt’s prasa T
Motivation
M4b Subject’s appraisal of Scale of -5 to 0 to +5
Interest
M4c Subject’s appraisal of Scale of -5 to 0 to +5
Satisfaction
M4d Subject’s appraisal of Scale of -5 to 0 to +5
Usefulness
Méb(i) Number of Languages Number
Programmed in
Mé6b(ii) Total Experience in Months
Programming
Méb(iii) Educational Excellence Data mapped to a
Level, Degrees obtained, Quantitative scale
Majors and Minors
Mé6b(iv) Total Full-time and Part- | Months
time Job Experience
Mé6b(v) Experience with Software | Months/package
Packages
Meé6b{vi) Experience with Object Number of Courses taken
Oriented Design and or related Tools used
Software Engineering
Courses
M6b(vii) Grade obtained in the PSP | Course G.P.A
course

Sherdil

56

Some of these metrics might seem objective, e.g., number of languages
programmed in, total job experience, grade obtained, etc. However, they are not
objective because we had to design our own scales in order to calculate a Personal
Capability Index from them.

An importrnt feature of all these metrics is that they have been quantified,
although they could have been left qualitative. Appendix E shows the instrument
for measuring motivation (metrics labeled M4). It's check boxes are labeled with
both qualitative titles and quantitative figures. A prominent feature in this
instrument is the unusually large scale used (-5 to 0 to +5). This was designed to
improve the precision and the sensitivity. In particular, the negative range is
aimed at facilitating greater interpretability of pessimistic feedback from the
subjects.

Metrics labeled M6 are used for two constructs: (i) subjects’ experience and
education and (ii) subjects' performance in the 10 projects. Data for these metrics
was collected at the beginning of the experiment using a six page questionnaire
(see Appendix A). This questionnaire was designed and validated (by face
validation) by the software engineering group at McGill university. However, it
includes a section designed and validated by Humphrey and his colleagues for
their own research purposes. The data was then transformed in such a way so that
the Personal Capability Index could be calculated. This transformation mapping
was designed by the author such that the precision, sensitivity and interpretability
were duly considered.

This questionnaire was the only instrument which was used at the beginning of
the experiment (and was used only once). Therefore the question of reliability
arises here. For this purpose, during the third and fourth projects, all the subjects
were interviewed individually. During these 30 minute interviews, they were re-
asked all those questions where ambiguous, illogical or doubtful answers were
initially given. Due to contradictions in the subjects responses, some of the metrics
had to be dropped. For example, the students were asked before the experiment to
estimate the total number of LOC they have programmed. At that time, some
subjects had no prior experience with measurements, and some gave answers such
as 209,000 LOC in six years. At the time of the interview, however, they had
measured some of their work and admitted that those values were exaggerated.
Hence in order to maintain reliability, such metrics were removed from the study.

Sherdil

57

Data collection is a core part of any empirical study. We paid particular attention to
collecting valid data. We will discuss this in detail in Section 5.4.

Step 6 Analyze the data collected to study the goals

We gave prime importance to statistical conclusion validity, Various statistical
techniques were used, and tests for significances were conducted. Complete details
of data analysis are given in Section 6.

5.3 Experiment Design

Scientists need viable form with which to express scientific aims. Without
significant content, established theory and strong hypotheses, the design of
research lacks a strong foundation. And without form and structure adequately
conceived and created for the research purpose, little of value can be accomplished
[56]. In our work, we paid particular attention to such issues despite the numerous
budgetary and time constraints we were facing.

5.3.1 Terminology of Experiment Designs

There are various different experiment designs, and in order to understand them
it is necessary to give the definitions of random sampling, random assignment
and matching [38] [37] [49]. These three methods are used in selecting and
assigning subjects from a general population into experimental groups. Readers
familiar with experimental design techniques, especially those in social relations
and clinical studies would be familiar with these terms and hence may skip Box 4.

Sherdil

58

Box 4: Random Sampling, Random Assignment & Matching

Aiatn :};;‘ 5 “‘ " i't. '-""
»‘mc!\'*r mg“ Assignment o vRandomization. ' roced used aﬁsan‘\xple
b)ectszhas been ‘Selecicdland expose tma treatmen‘%lt&i?’fi‘?"fa‘ﬁ' way,

LLTNT AN

’”"‘?&ﬁl‘:jeché’*to twowore gro thatxthe :groupsido not cliffe bef ore
Ebe “"*In en

;case W _ﬂ_ ;th th g;ou swouldb

“hateatwoech “?‘alﬁ”t{g'if& _
v ¢ Q&fda A %1 ff; ’”-
whél"% G AT A HOR SR

Now we will explain some terminology which we will be using (see Table 6).
These notations have several variations in the literature, and hence should be
properly understood in order to follow our experimental design.

Table 6 Tenmnolo 2}

.lulqlir'h;u

G Group of sub]ects, randomly selected from a popu!atlon When
referring to more than one group, we imply that the two or more
groups have been randomly assigned from the subjects who have
been randomly selected from the population.

O Observation (e.g., the act of taking data), a dependent variable, an
effect
X Treatment (e.g., induction of technology), an independent

variable, a cause

~X Treatment X was not given to the group

These notations will now be used in describing the experimental designs. These
designs can be divided into three categories: (i) Pre-experimental, termed “pre’
since these designs do not satisfy the criteria of being fully and (ii) True
Randomized experimental, which are the most valid scientific designs but costly to
implement since they need large sample sizes and (iii) Quasi-experimental, a

. hybrid between the above two, which can be scientifically valid but not fully true
experimental.

Sherdil

59

(i) Pre-Experimental Designs

In these designs (see Box 5), there is a total absence of control, and hence they are of
minimal value in establishing causality [49]. The two types in this category are the
One-Shot Case Study and the One-Group Pretest-Posttest Design. These are the
most basic designs and readers familiar with them may skip Box 5.

Box 5: Pre-Experimental Designs

(ii) True Randomized Lxperimental Designs

Randomized true experimental designs involve more than one group of
randomly assigned subjects. The five types which we selected for this category (see
Box 6) are the Control-Group Comparison, Pretest-Posttest Control Group,
Solomon, Factorial and Within Subjects/Repeated Measures designs. These
designs have often been followed in literature and hence readers familiar with
them may skip Box 6.

Sherdil

60

Box 6: True Randomized Experimental Designs

: d«“ -@—‘fff - 5 2 Sitthermorefeach]
@@m@*ﬁ‘@« REHe ('___4 1 di“ 2% _1_1 i(i‘.(it.:i!

0
4

Sherdil

TS BTV BT
A RN Sl
SRS

(iif) Quasi-Experimental Designs

There is a vast difference between the pre-experimental design and the
randomized (and/or true) experimental designs. Whereas the former cannot be
considered scientifically valid, the latter are usually tedious and expensive, often
requiring a large sample size. A compromise between the two can be achieved by
modifying the pre-experimental design with some forethought and planning, into
a scientifically usable quasi-experimental design. An example of this type of is the
time-series design.

The time-series is an extension of the one-group pretest-posttest design (O1 X O2).
Instead of one observation, it uses several observations before and after the
treatment. Hence,

00..0X00..0

One difficulty with these longitudinal (or time series) designs is that learning
occurs over time and hence time itself is a variable in a sense. However, this is not
a problem in our case because “time' is exactly the variable which we are studying.

Sometimes the treatment occurs only once, but its effects continue afterwards also.
Or, sometimes the treatment is injected in the middle of the experiment, and then
continuously fed in. In that case we get:

00..0X0X0X0X0

Sherdil

62

Sometimes the time series design is used with a control group. If the two groups

are randomly assigned, then it is a full experimental design (instead of being a
quasi one).

Gl 00..0X000
G2 00..0~X000

Note that this is different than the within subject design, where there are multiple
treatments in differing orders.

5.3.2 Threats to Validity

This section describes some of the objections which are raised on the above
mentioned designs (see box 7) [38]. These also include the threats to the validity of
the experiment such as maturation, history, instrumentation, mortality, selection
and testing. Other concerns include the evaluation apprehension, the demand
characteristics and the Hawthorne effect. Some of the readers might already be
familiar with these threats, and hence may skip box 7 without losing any
information about our experimental design.

Box 7: Concerns and Valldlty Threats to the Deslgn

Sherdil

63

§ ‘ a " i X Y 8t
ng o t" bo t”his/ h’ “gé"x'h“emelyﬁ i

g 1] LA T IV TN <
lowﬁd |:luzmgftheanext’:e bserxga_ or)
M-’wuf“% .m) o i e

falsettingHtoldiscove IYpOS
"gaéially déiwiﬁblé' responses
mAlariee s Kowrigas
ingtheir sults"&“m‘sf ?or;‘off hata
kS .‘f _ﬂi.) AT

Lnd%;}kChalrélzi;sieristica'3}"“4Sc)"xf?":‘é ok expe y
“'nally glvﬁi@eisub]ects hinfsy aou how the gare; sug osed itok
ters do knowwhat ihi; ts their sub ects mlght

1 " iy ¥
Hkawthorne Effect [35] It
R T TAeL] «.? A.r-l R el
roducti Ny
KL.‘_.ﬂ f‘ﬁ_’g“ﬁl"{. :\" i .. = A ‘, , \

5.3.3 Our Choice of Design

In this section we describe the rationale for our choice of a particular research
design, why we rejected various other design alternatives, and what objections
may be raised on our design.

As discussed above, the pre-experimental designs are not sufficient for a scientific
study. Therefore we rejected them. One important requirement of a design is to
have a control group, so that one group receives the treatment while the other one
does not. However, we are in an extremely unique position because one of our
main research goals is to study the first-order learning for which the only
treatment needed by the subjects is time. Hence, even if we have a control group,
which receives no treatment from us, it would have differences in the pre and
post tests just because of the elapsed time and the subjects would have learned
more due to autonomous learning. Because of this unusual variable which we are
studying, it is difficult to apply a control group, and hence a true experimental
design.

64

However, we could have used a control group to monitor the second-order
treatment, which is the training given to the subjects. One group could have been
given the training while the control group could have carried out without
training. Such a design would have been a true experimental one, and we would
have preferred to use it, but could not because we had the limited choice of those
subjects who took the PSP course. Thus we could not have a control group.
Furthermore, such true experimental designs would have needed a large sample
of subjects, at least enough for two large groups. The closest we could get to using a
true experimental design was to use a within-subject design, because in it the
control group is needed only to vary the order of the treatments, instead of varying
the types of treatments. Since our design resembled the true repeated-measure
within-subject design, most of the features of any true experimental design were
incorporated in our work. These include:

e pre-test and post-test observations
¢ repeated within-subject measures over long periods

¢ random selection of subjects from a population of graduate computer science
students

In fact, our design at least is equal to a Time-Series Quasi-experimental design, and
at most is equal to a Repeated-Measure Within-Subject True experimental design.
As mentioned before, a repeated-measure design has the pattern:

0Xx10Xx20
According to Sheil [59]:

"The high degree of variability among programmers of similar background
makes simple experimental designs (in which different participants are used
for each condition) prone lo negative conclusions, as slight systematic
differences between conditions tend to be washed out by large within-
condition variation. One of the standard techniques for controlling this is the
use of “repeated-measures’ designs, in which each participant is observed in
more than one condition.”

However, the experimenter has to use two groups to make sure that the effects of
the first treatment have vanished before the start of the second treatment. Hence
we get:

Sherdil

63

G1 0X10Xx20
G2 0X20X10

However, in our design the two second-order treatments which we chose to study
are independent or mutually exclusive. These two treatments are:

e X1 = Size Estimation Training

* X2 = Code Reviews for Defect Removal Training

Obviously, the above two treatments do not effect each other in any way. Hence we
do not need two separate groups, and our design can be reduced to:

0X10X20

Another reason why we did not make two groups out of our sample was that we
knew about the background {(experience and performance) of all the students in
detail. Hence it would not be justified if we had made two groups (which would
not have been equivalent or matched) and then pretended that they were
equivalent on the grounds that we had used random assignment. Although
scientifically such a random assigmment cannot be questioned, but we would not
have been satisfied with such a design knowing that the two groups are not
matched.

A positive aspect of our design is that there is not one but three observations
before and after each treatment, hence providing more reliability. Hence in our
case:

000X1000X2000
where each observation is taken at a one week interval. This can he written as:
01 02 03 X1 0405 06 X2 O7 08 09

The reason why there are three observations in between treatments is that one of
the treatments which we are studying is “time.' In other words, since we are
studying the first-order learning, we are taking measurements with the passage of
time and hence time itself is a treatment, or an independent variable. Of course,
simultaneously we give second-order treatments also, which are X1 (size
estimation techniques) and X2 (code review procedure). Since these two are

Sherdil

66

independent or mutually exclusive (i.e., post-treatment effects of one do not
influence the other), we can break up our above design model into:

0O000X1000000O0
0O00000X2000

And these are actually two separate Time-Series Quasi-experimental designs, As
mentioned before, if used with caution, Quasi-experimental designs can be used in
valid scientific studies. In our case, we not only have such a design but also have
several added features which make it resemble a true within-subject design.

We will now discuss step by step the threats to validity (discussed in section 5.3.2)
and see how seriously they effect our experiment, if at all (see Box 8).

Box 8: Concerns and Validity Threats, from our design’s perspective

e o bt
fnﬁze&:m %:

. : r"ﬁ"‘ﬂ. S o - ..
m

Sherdil

67

érfsciencasstiiden e asincesthevi comgthegcloses oYireal=Worldzs ortware
Mmers ias;comp;ared 0 ndergra ligtestudentsiorto
s micime S] il aduaﬁ;’ﬁ‘}&gn - “

e -\mm@wm@m {3&1.}_@3@3
10! uw{fﬁ{-‘c g'i!! wﬂljj]_'h__ hd ali
thaftheid: ‘1"‘%@“@&7{&@@@4@@@

Sherdil

gas
n H

“‘5‘ d

¢ s
smo aluest gri'elahve oY ach othery erdand
nis effectconhnues throughfeverﬁobservation, i¢ shoulealan
a‘\":fm" T e I T o B L R A N

To summarize the above discussion, nearly all the major threats to validity have
been removed or reduced. Although there are some threats which still exist, we
can be quite confident that our design is strong and valid. Now we explain the
details of the implementation of our design.

5.3.4 Implementation of our Design

The experiment was done on the students who had enrolled in a course entitled
*Personal Software Process.' This course was designed by Humphrey of the SEI and
taught at McGill University by Madhavji. Below we now the background of the
subjects, the training lectures and projects, and the environment.

SUBJECTS

Twelve full time graduate students had enrolled in the course. With the exception
of one subject, all had either a bachelors degree in computer science or were
enrolled in the masters degree in computer science. That one exception, though
not a computer science major, had two years of programming experience of over
20,000 LOC in five different languages and had taken prior computer science
courses. Hence, none of the twelve subjects was new to the field of computer
science. Since all the students had enrolled in the course based on their personal
choices, the experimenters had no influence in their selection process. Hence the
subjects represent a random selection from the population of graduate computer
science students. Exactly half of the students had prior full-time as well as part-
time job experience, while the other half had no job experience at all.

None of the subjects had any experience in C++, the programming language used
in the course. Hence, all the subjects were at the same starting point in the
learning curve. However, this was not their only common denominator. They all
were similar in the sense that they all had extensive experience with C and with
other programming languages. The statistics are given in Table 7

Sherdil

PR

| uber f Mal

69

Table 7: Sttistics on e Subjects

Number of Females 2

Mean experience with C++ Language 0 months
Median experience with C++ Language 0 months
Mean experience with C Language 28 months
Median experience with C Language 24 months
Mean total programming experience 6.5 years
Median total programming experience 6.0 years
Number with full-time and part-time job experience 6

Number with no job experience 6

TRAINING LECTURES AND PROJECTS

Every week two lectures, each of duration one and a half hours, were given to the
subjects in which they were taught ways to improve their personal process. After
each set of lectures, the students were assigned a programming project, which
utilized the techniques taught to them, so that the students actually implement
those methods, and hence learn them. There were a total of ten projects, one per
week, of which nine were programming ones while one was only on analyzing
the data. Table 8 some statistics collected on the average size of each project and the

average time spent on them:

‘ Table 8: Statistics on ro'ets

Avrae Total Size of aproam (incldg Reused Code)

201 LOC
Average Time spent on a project 4 hours 27 min.
Average Reused Code per program 81LOC
Average New and Changed Code per program 120 LOC
Average Defects recorded per program 10.3

Sherdil

70

The students were told repeatedly and explicitly that although a minimum criteria
is to complete the project, they would not be graded on the project, but on how
complete their data is. Similarly, they were reminded that they would not be
graded on how good their productivity, defect quality, etc. are, but how well they
record the metrics related to them, e.g., LOC, number of defects, etc. (See next
section, 5.4, for details on data collection)

ENVIRONMENT

In experiments requiring only one project and a couple of observations, it is easy to
make it mandatory for all the subjects to use the same environment, e.g., the same
computer laboratory. However, for a ten week long experiment, some flexibility
has to be given to the subjects. We provided the subjects with latest computers,
compilers, environmental conditions, etc., but still a couple of subjects preferred to
work at home on their Personal Computers. The remaining ten of the twelve
students used the same machine and the same compiler, though three of them
used a different computer lab (a different room) to telnet to that machine. The
statistics on environment are given in Table 9 below:

_Tab

e 9: Statistics on Environment

b

]

i -
1

L

Subjects using personal computers and Borland compiler

Subjects using standard machine from the standard laboratory

Subjects using standard machine from different laboratories

The difference in the laboratories has negligible effects on our results, since each
laboratory provides the students with ample work area, adequate desks, proper air
conditioning, etc. However, the two subjects who used computers from home,
with different compilers were certainly using a different environment.

Sherdil

71

Unfortunately, there is no reasonable way for us to account for these variations.
Curtis and Vosburgh, et al. [21], found that the programming environment
{characterized by the development computer) explained for less than 24% of the
variation found in the productivity of the programmers. In our case, 10 of the 12
subjects have similar environments, and hence any variation caused due to the
other two programmers would not be very significant (roughly 2/10 of 24%).

5.4 Data Collection

Basili [10] has described a goal-directed method for data collection and one of the
most important aspects of it is to validate the data. Most of the data collection
forms which we used in this experiment were initially validated and designed by
Humphrey and his colleagues, and later by the software engineering group at
McGill University, which made some changes and enhancements during the
validation process. We found that Humphrey's data collection techniques were in
complete harmony with Basili’s goal-directed method. However, in addition, from
our research perspective, we had to develop some extra measurement instruments
as well.

There are various different data collection techniques, of which we used the
following (see Appendix F for sample forms):

. Logs

e Forms

o Templates

¢ Spreadsheets

o Databases

* Summary Reports

o Automatic LOC Counters

e Automatic Complexity Analyzers

It is beneficial to include the data-suppliers in the data-collection design process
and to interview them [10]. Our validation process included weekly data reviews,
consistency checks, repeated instructions to the data-suppliers and detailed
interviews. The subjects were also asked to analyze their data themselves on
spreadsheets so that they can gain insight on how the data is being used. For this
purpose, they were asked to use G/Q/M to identify some of their own goals and

Sherdil

72

then to analyze those goals for which the data was available. At no point did we

mention our own goals to them. Following are the steps we took for our data
collection process:

1. We devised an initial questionnaire for subjects background. It consisted
of a 6 page form, of which two pages were prepared by Humphrey. The other

four pages were prepared and validated by the software engineering group at
McGill University.

2. Every week the subjects were given a project, along with detailed
instructions on how to complete it. These projects were such, that they
helped the subjects in following the PSP. e.g., developing LOC counters for
measuring their program sizes, developing software packages to help them
in size estimation, etc. In order to remove ambiguities, the subjects were
given a description of the requirements in the class lecture. Further
clarifications, if needed, were given by electronic mail to all the subjects,
who checked the mail regularly. Individual help was also offered to any
subject, if desired, based on an open door policy. Such help was frequently
sought. Peer help was allowed during the projects also.

3. The subjects were required to collect detailed and accurate data. They
were told explicitly that the main criteria for grading them was the quality of
the data they collected. This data collection required the filing up of several
logs, forms, templates, reports, etc., and can be divided into three stages:

e Planning Stage: In this stage the subjects make their estimates of the
program size, time, productivity, number of defects, etc.

o Concurrent Data Collection: This is the stage when the subjects
continuously gather data as they design, code and test their program. An
important measurement in this case is that of the time spent on each
phase and activity. All the students used either a stopwatch or the clock
displayed on the computer screen. During this stage the subjects also
noted down the details of the defects.

e Post-Mortem: Here the subjects completed the summary reports and
carried out the other immediate analysis of the data.

4. Subjects data was then checked for consistency and validity. The nature of
the data is such that if not collected properly at one place, its effects show up
at other places also. For example, a wrong value of time in the time-record

Sherdil

73

log would effect the productivity calculations as well as the total time
figures in the project plan summary. Hence consistency checks were made
to make sure that the data in various forms matched with each other.
Logical validity tests were also carried out to check that the values of some
common variable were rational, i.e., a value of productivity equal to 200
LOC/hr, though not impossible, would be highly questionable. Similarly,
the students counts of the LOC were rechecked in several random cases by
using other automatic counters. Data values given by subjects on the hard
copies were compared with those provided by them in the databases, and
those in turn were compared with their data analysis reports. Even the basic
addition and division tasks carried out by the students were randomly
sampled and checked. In brief, all sorts of checks were made to make sure
that no student lagged behind in data quality.

5. A weekly feed-back report was then given to each subject. The subjects
were informed of any errors they have been making. They were given
comments on how well they are following the coding standards. This
feedback included separate sections for the program and for the data.
Whenever necessary, these reports were followed by verbal advice to some
particular subjects. In some cases, especially during the beginning of the
experiment, the subjects were asked to correct those calculations where the
data had been wrongly interpreted. Of course the fundamental data entries
were never changed once they were recorded. It was in these feed-back
reports that the subjects were assigned grades as well. Overall, these feedback
reports made sure that the data is not deficient in correctness, consistency or
completeness.

6. Between the third and fourth project, all the subjects were interviewed.
Basili [10] stresses on the importance of interviews and says that the lag
between the filling of the forms and the interviews should be kept
minimum. Each interview was at least 30 minutes long and detailed
minutes were recorded. Here the subjects were asked details of any
assumptiois they have been making in their data collection process. Since
people differ in interpreting the directions given to them, it was tried to
understand what approach each subject was pursuing in comprehending
directions given by us. We found that these interviews added to our
knowledge and were extremely useful in removing the threats to validity.
In addition, they were useful to the subjects also since each subject was
given extra time to ask any questions about the data collection process, and
most of them ended up clearing several ambiguities.

Sherdil

74

7. During the second half of the experiments (projects 6 through 10), the
subjects had enough data points from the first half (projects 1 through 5),
and hence were asked to carry out analysis of the data. Usually this was done
by appending an analysis problem with the project. However, project 8 was
completely devoted to the analysis, and the subjects were asked to use G/
Q/M to identify their own goals and then to analyze them using their data.
The primary objective of such analysis was for the subjects to study their
improvement process. However, a secondary objective was for the students
to better understand their data. We believe that this led to even more
reliable data from the students.

From the above descriptions, we note that under the constraints of time and

budget, we have attempted to ensure that our data is as consistent, complete and
correct as it can get.

Sherdil

73

6.0 Data Evaluation and Analysis

This section presents a detailed analysis of the collected data. Once again, we stress
the validity of this data. For any significant analysis, the statistical validity has to be
carefully checked, and that is why we put in a great deal of effort in carrying out
various statistical tests.

Our experiment generated a large volume of data. For example, one of the data
bases used by us had over 1000 rows and 40 columns and consumed over half a
megabyte of memory, and there were over 5 such related data bases (see Appendix
K for a sample section from spreadsheet). Sophisticated spreadsheet and statistical
packages had to be used for analyzing this data, and advanced charting packages
were needed to plot the graphs. The primary structure of our data was as follows:

o Each of the 12 students (X1, X2, ... X12) contributed to ONE project data point (Y)
* There were 9 (Y1, Y2, ... Ys) such projects (hence a total of 9 x 12 = 108 data points}

o Such sets of 108 data points were taken for about 75 different variables such as
the defect rate, productivity, etc. {see Appendix K for a listing of some of these
variables)

For such huge data, there are various assumptions which we need for carrying out
the statistical tests. It is difficult to prove all these assumptions to be correct,
however, most of them can be explained satisfactorily. Some of the main
assumptions are listed and justified in Box 9 [39]. These are the existence,
independence and normality assumptions. Readers already familiar with them
or interested in just the data results may skip Box 9.

Sherdil

76

Box 9: Assumptions in Data Analysis
%"waiste”h“é‘é':' f prob ty’@ismbutiog}@fﬁtlf ‘ﬁdﬁeé’fofx@e“-ran
; s#as

i !I.d': me ya Nﬁ v anceﬁlh Sflt Ca
e e ha ﬁnil:e.walues. g**ﬂ

doifiyyariable;aY;

i 'ﬁfi‘f\}i}’ b‘{;ohs]‘:;z%ﬁ“

_',

“gi“i g
yJ ié;;l; ‘aht ,M 4 og%ifqﬁlqj:d%
entiof from

. ﬁﬂ?‘g‘@;?‘:t e 2: \J»“‘ﬁ
R th;‘,:w
! j{ﬂ ‘!‘;’Vﬂl'iablez;(5‘1 §¥hit rmall /

il lad gt

jione €810 productivitys?‘obféfii'i@d
£Oj ect Ashotildtbelnoriially distributéd; e

5,' %have Vi E:bgl't,gfoduc Hvitysiisome iriightuhavémilery
tY

FTOSTY Wo d re’é’ﬁroduc itysieom e"‘%here elost
2} ormingaGaussian‘ ST *&"“5?;& iy -‘n ﬂ’“..- :

B
.z!:"« ;
i

ik
sincebour? saq;pl%ize_g\is

_ arm 9DEo en’ﬁhﬂly
dichoton‘}c;gh:ﬁﬁablea &"&f’aa‘uql§re1 a ngsgften

1'; yjectsipenfactorias iniour msggvml2 sub mJecta

o j‘,mm @ﬁi Ydatamvaltesy jarefnormallyzdis !buted.

OF} alityis as@hi-sq areditestfirec ﬁw §1east Zoxdata
..; 4 ." omall 4 b

beeaus

*'.‘f_, ﬁh’é degree’ofgn: ityA[3C
neHingYcloseqto) ommal;}’gfr‘inot bukith a
1877 ‘of 0 vanables*is such“thatﬁ tiis

-". For; exam%_e; gi.ds just noﬁ%atié“ﬁ’&l
entsiwithy prd \ aluesthanthe

7 roduc%ty values. Jencerwe
V] fearryZonittoursstatistical
carriedou mosto thejrésearch

it ey et

evaluated\this}

NOHProve;

L

We will now consider all our goals (G1 through G7) separately. These goals (from
section 5.2) are relisted here for convenience.

¢ G1: Identify the Progress in Productivity (4.1.1)

¢ G2: Identify the Progress in Personal Skills (4.1.2)

¢ G3: Identify the Progress in Product-Quality (4.1.3)

e G4: Analyze the second-order learning through management motivation (4.2.1)
¢ G5: Analyze the second-order learning through training and technology (4.2.2)
o G6: Analyze the first-order learning (4.3)

¢ G7: Analyze the 4-Variable Model (4.1.3 and 4.4)

Sherdil

77

Table 10 lists the sequencing of the sections along with the goals studied in them.

Table 10: Sequencing of Sections int Cha

ter ‘

i g, ot

! !

The Six Lmin Curves

Complexity Analysis Leads to G7 6.2
4-Variable Model G7 6.3
Second Order Learning: Engineering Technology | G5 6.4
Second Order Learning: Management Motivation | G4 6.6
First Order Learning Gé6 6.5

6.1 The Six Learning curves

This section deals with the first three goals, G1, G2 and G3. Table 11 gives the six
learning curves studied, corresponding to each goal.

Table 11: Goals 1,2 and 3

Pogr in Prductivi] roucvi IC

G2 Progress in Personal Skills Size Estimation Ability LC
Time Estimation Ability LC
Productivity Estimation Ability LC
G3 Progress in Product Quality Defect Rate LC
Defect-Removal Rate LC

We decided to fit both the linear and the quadratic models, to investigate whether

there was any significant advantage of using a quadratic one over the simple linear

one. However, in the past literature, the progress ratio, p, calculations have been
. done on log-linear curves. Moreover, the log-linear equations are intuitively

Sherdil

78

easier to comprehend. Hence all the following three models were studied:

1. Linear
2. Quadratic
3. Log-Linear

As described earlier, for X-axis, we used Cumulative Qutput instead of Time. The
Cumulative Output at some project N is the sum of all the lines of code from
projects 1 through N. Our results would not have been much different even if we
had used Time as the variable, since there is a correlation of greater than 0.99
between the two variables (at 0.001 significance level). This significance level
represents the probability of the points lying on the straight line by chance only.
Figure 15 shows a plot of Cumulative Output against Time.

Figure 15: Graph of Cum. Out. vs. Time

Cumulative Output vs Time

1200 y

1000
S
] 800 R = 0.9
‘i .
3 e + v
2
-
5 400
E
-3
o

200 //T

0 L) L Li L L]
0 2 4 8 8 10

Time (Project No. or Week No.)

Figures 16 to 21 show the linear models of the six learning curves. The log-linear
and the linear equations of the corresponding curves are also listed below them.
The correlation coefficient, R [55], the significance level, and the progress ratio, are
also listed along with each linear graph. As done in past literature, the progress
ratio has been calculated from the equation of the log-linear graph only since there

Sherdil

79

is no theoretical method of calculating it from the linear graph. The equation for
. the calculation of this progress ratio, p, is given in chapter 2.

Figure 16: Graph of Productivity vs. Cum. Out.

Productivity Learning Curve

50 3

45]
L~ e
/ ¢
£ =
= 40
g / .
d / ® R = 0.85
-
35 —
Fond
3 —
g
30
s K|
a
25
20 L L] Ll ¥ k) L
0 200 400 600 800 1000 1200

Cumulative Output {LOC)
0.15
Productivity = 15.33 Cumulative Output
Productivity = 30.56 + 0.0130 Cumulative Output
The top equation is the log-linear one, while the bottom one is the linear equation.
Linear Graph: R = 0.65 (0.05 level)
Log-Linear Graph: R = 0.63 (0.05 level)

Progress Ratio, p = 11%

gierdi_l

30

Figure 17: Graph of Size Estimation Error vs. Cum. Out,

Size Estimation Learning Curve

50

45 - >
- R 0.85
2 35
w ! .
8 30
g
E o
E 25 -
w \
k5 20 - <
0 \

15 P O

b \
10 r Y v ' Yo v
0 200 400 800 800 1000 1200

Cumulative OQutput (LOC)

496.94
Cumulative Output
Size Estimation Error = 40.278 — 0.0266 Cumulative Qutput

Size Estimation Error =

0.5)

Linear Graph: R = 0.85 (0.0025 level)
Log-Linear Graph: R = 0.83 (0.0025 level)

Progress Ratio, p = 30%

Sherdil

Time Estimation Error (%)

40

81

Figure 18: Graph of Time Estimation Error vs. Cum. Out.

Time Estimation Abilities Learning Curve

35

30 R = 0.70

.

20 \.\
' . .\

25

15

10 v T T T — T
0 200 400 g00 BOG 1000 1200

Cumulative Output (LOC)

. . 87.98
Time Estimation Error = - =
Cumulative Output™

Time Estimation Error = 29,75 - 0.0126 Cumulative Quiput

Linear Graph: R = 0.70 (0.025 level)
Log-Linear Graph: R = 0.58 (0.05 level)

Progress Ratio, p = 15%

Sherdil

82

Figure 19: Graph of Productivity Estimation Error vs, Cum. Out.
Productivity Estimation Abilities Learning Curve
100

o I
RN
\ R = 0.95

i N

. AN
40 \
. AN

"

200 400 600 800 1000 1200

Productivity Estimation Error (%)

Cumulative Qutput (LOC)

226360.16
Cumulative Output'™
Pr oductivity Estimation Error =112.92 - 0.0839 Cumulative Qwput

Productivity Estimation Error =

Linear Graph: R = 0.95 (0.001 level)
Log-Linear Graph: R = 0.92 (0.001 level)

Progress Ratio, p = 60%

——— o S — T S—— —— — o S— ——— S — — S et S S S} Sy A S ey S S S S et S S Y Yo S S T —— T P S s S —

Sherdil

83

Figure 20: Graph of Def-Rate vs. Cum, Qut.

Defect-Rate Learning Curve

1680

140 \'—\.
N

-~ 120
§ \q R = 0.96
"4
a8 100 \\A
-]
3 g0 \\
- ®
2
5 80 P
[~]
)
40
[} []
20 . r r r ' '
0 200 400 600 800 1000 1200

Cumulative Output (LOC)

3650.90
Cumulative OQutput*®
Defect Rate = 156.74 — 0.1162 Cumulative Qutput

Defect Rate =

Linear Graph: R = 0.96 (0.000025 level)
Log-Linear Graph: R = 0.85 (0.0025 level)

Progress Ratio, p = 36%

Sherdil

84

Figure 21: Graph of Def-Rem. Rate vs. Cum. Oult.

Defect-Removal Rate Learning Curve

40
E a5 -
E
-]
: ' '/
] 30 7— 0.62
2
a 25
‘s
>
g 20 s
-]
¢ /-
15 &
[]
o

/ 1
10 a Z y— Y Y r Y
0 200 400 600 800 1000 1200

Cumulative Output (LOC)

(h43

Defect Removal Rate = 0,9679 Cumulative Output
Defect Removal Rate = 6.75+0.0214 Cumulative Output
Linear Graph: R = 0.93 (0.00025 level)
Log-Linear Graph: R = 0.91 (0.00025 level)

Progress Ratio, p = 40%

The above results are summarized below in Table 12, which shows the Pearsons
correlation coefficient, R, and the significance level for each of the six linear
learning curves. Table 13 shows the corresponding values for the log-linear
curves.

Sherdil_

83

. Table 12 Thecorrelatxonnds:mflcance evels of the mear leammg curves

p'naws ﬁwmmgw‘- Ik

Prod uctxl rc

Size Estimation Ability LC 0.85 0.0025

Time Estimation Ability LC 0.70 0.025

Productivity Estimation Ability LC 0.95 0.001

Defect Rate LC 0.96 0.000025
Defect-Removal Rate LC 0.93 0.00025

The best quadratic fit was also found and the equation of the quadratic curve and
the new value of R were determined. An analysis of variance was done with
ANOVA tables and F tests. It was found that in none of the six cases, the new
value was significantly better than (at the 0.20 level) the linear curve fit. Hence, for
simplicity, only the linear model can be used.

Table 12 shows that the values of R for the Productivity Estimation Ability LC, the
Defect Removal Rate LC, and the Defect Rate learning curve are all very high
(over 0.9). Since these results have high significances also (of at least 0.000025
level), we can safely conclude that there is a strong linear relationship between
these variables and the cumulative output. Only the productivity learning curve
has a low value of R (0.65, at 0.05 significance level). This is due to the fact that the
productivity does not depend on cumulative output alone, but also on the Defect
rate as well as the complexity. Hence in the next section (6.2), we discuss the
complexity and then in section 6.3, we develop a larger model which incorporates
these other variables as well.

For plotting the log-normal graphs, the logarithmic values of the Y and X axis
were plotted against each other on linear scales. In our case, the log-normal graphs
for the six learning curves resembled the linear graphs. Hence these graphs have
not been printed, but their equations have been listed under each of the figures 16
through 21. For convenience, the values of the correlation coefficient, R, and the
significance levels for the log-linear models are listed below in Table 13. The
learning rate, which is calculated only from the log-linear model, is also given in
Table 13.

Sherdil

86

Table 13: The correlations, significance levels and the learning rates of the log-
. linear learning curves

N I A
[‘Hi" Hidugiie fiy Wi "\l""_‘l, !."(‘L

e R e T

Productivity LC I P e L S , D

Size Estimation Ability LC | 0.83 0.0025 30%
Time Estimation Ability LC | 0.58 0.05 15%
Productivity Estimation LC | 0.92 0.001 60%
Defect Rate LC , 0.85 0.0025 36%
Defect-Removal Rate LC 0.91 0.00025 40%

Table 12 and 13 show that the values of R in log-linear curves are slightly less than
those of their corresponding linear curves. This difference is most visible in the
Time Estimation Learning curve, where the drop in R is quite substantial. The
lowest learning rate obtained (11% in the productivity learning curve) is not
accurate since we have mentioned before also that the productivity depends on
other variables as well. The other learning rates range from 15% to 60%, with a
mean of 36.2% and a median of 36%.

The sketches of the learning curves visually, and their progress rates
quantitatively, give us an intuitive idea of how fast the learning was and how
quickly the cost per unit output decreased. However, one can always argue that
perhaps this increase in performance (or decrease in cost per unit) in the learning
curves is occurring by chance only. Hence we decided to carry out tests for
comparing the differences in the data points.

Recall that each data point is a mean of 12 other points, and hence we are in effect
comparing several means to see if they have decreased significantly or not, relative
to the variation within each mean. For this purpose, a t-test can be used to
compate two means, while an F-test can be used to compare multiple means.
Figure 22 gives an example of three fictitious sets of data points (representing
learning curves), all with high correlations and significances. Each data point is a
mean of 12 data points. The length of the error bars shown on each data point
represent the variance of these 12 points. The significance of the differences in
means depends on two things: (a) the slope of the line and (b) the length of the
error bars.

Sherdil

87

Graph 1 and Graph 2 have approximately the same decrease (slope), and hence are
parallel. However, the variance of the 12 data points (shown by the length of the
bars) is much greater in Graph 1 than in Graph 2. Hence the difference in the
points may not be as significant in Graph 1 as in Graph 2. Note that the variance
in the points in Graph 3 is the highest of all the three graphs, implying that the
significance should be less. However, since the decrease in the values of these
points (or the slope of the line) is very high (steep), the difference in the points in
Graph 3 may be more significant than the other two graphs.

Figure 22: Sample graph showing significance of decrease

120 Significance of Decrease

40 o
Bars repraseni iha varlance In the 12 poinis

100 -
™
i
a 80 4
o
:. ® QGraph1
& 60 + a Graph2
o ® QGraph3
=
a.
g2
L

20 -+
Each point Is a méan of 12 data points

X Variable

The results of these F-tests are given in Table 14 (i.e., the significance levels of the
differences between the points), on five of the six learning curves. These
significances represent the probabilities that the increase in improvement (or the
decrease in the cost per unit) could have occurred by chance only. These should
not be confused with the significance values in Tables 12 and 13, which represent
the probability of the points lying on the straight line by chance only. The Defect
Removal Rate learning curve was not used since several of its individual data
points (i.e., one of the 12 students x 9 projects = 108 data points) had zero or one
defect only, which lead to unreliable results.

Sherdil

88

Table 14: Sig

l“'\;/:hu..ii' N PRI PFNN

Productivity LC

nificance levels of the differences

it {,';|:C‘;'(::‘:||.‘i' e
H - N

sgniict at 0.2 level
Size Estimation Ability L.C 0.005
Time Estimation Ability LC 0.1
Productivity Estimation L.C not significant at 0.2 level
Defect Rate LC 0.001

The differences in the means of the Size Estimation Ability and the Time
Estimation ability were significant at very high levels. The differences in
productivity learning curve were not significant (even at 0.2 level), as expected,
since as mentioned before, it does not depend on the cumulative output alone but
also on complexity. However, what concerned us was that the differences in the
Time and Productivity Estimation abilities were not significant either. While the
former was still significant at 0.1 level, the latter was not significant even at 0.2
level (see Table 14 above). Yet when we look at the learning curve of productivity
estimation ability (figure 9), we find the highest value of learning obtained (60%)
and a correlation of 0.95 (at 0.0005 level). So why is there a contradiction?

The answer lies in the fact that the tests for comparing the differences in the
means look at the variance within each mean also (i.e., variance between the 12
points whose mean is taken). In case of productivity, several subjects initially had
no clue as to what their productivity was. As a result some of their estimates were
as high as 481% away from the actual values. In one case the mean error of all the
12 subjects was as high as 87%. Therefore, due to this high within group variance,
the effect of the differences in the means seemed to be not significant, although
our learning index, slope and correlation show that it is quite high.

Of all the six learning curves, the poorest correlation has been found in the
Productivity learning curve because productivity depends on defect quality as well
as on the complexity. However, complexity is not something which can be
measured easily. The next section (6.2) discusses an analysis of complexity, which
will then be incorporated in our model in section 6.3.

Sherdil

89

6.2 Complexity Analysis

As described in section 4, the two most popular complexity metrics are the
Software Science of Halstead and the Cyclomatic Complexity of McCabe. We
wanted to select the metric which most closely resembled the solution complexity
of the projects. For this purpose we decided to first carry out a complexity analysis
of both the metrics on all the projects.

There are various software science metrics, such as length, volume, etc., of which
effort comes closest to our requirements. Unfortunately, the scales (order of
magnitude) of the effort metric are quite different from those for cyclomatic
complexity's scales. Whereas the average value of latter was found to lie between 5
to 50 in our projects, the former ran from 30,000 to 1500,000 (see Appendix J for
sample complexity results from PC-Metric tool). Hence, for comparison purposes,
we decided to plot the two on normalized scales, using a double-scaled graph as
shown in Figure 23. ,

Figure 23: Graph of Complexities vs. Project No.

Comparison of Cyclomatic Complexity and Software Science Effort
50 2000000

45 7 L 1750000

40 - -
= 1500000

35 - [

20 - - 1250000

25 + = 1000000

Effort

20 4

Cyclomatic Complex

- 750000
15 -

- 500000

10

PolnT of Dittargnce | 260000

0 —t ' 0 ——8— (CycloComplex
0 1 2 3 4 5 6 7T 8 98 10 i Elfort

Projact Number

Sherdil

90

This graph gives an excellent visual idea of how well the two complexity metrics
correlate. The only significant difference between the two metrics lies in project 7.
Figure 24 shows a plot of the two metrics against each other, with a correlation
coefficient of 0.80 (at 0.005 significance level).

Figure 24: Graph of the two complexities against each other

Effort vs Cyclomatic Complexity

2000000

1750000 /

1500000 ‘/
. /
R = 0.80

1260000

1000000

.
.
*
p
750000 /
.

Effort

500000 L

250000 v
/ :
0

0 § 10 15 20 25 30 35 40 45 50

Cyclomatic Complex

At the end of the experiment, these graphs were shown to some of the subjects at
random. These subjects further consolidated our belief that the complexity of the
solution was quite closely depicted by these two metrics. For example, all the
subjects asked said that project 3 was the most difficult one, and that project 5 was a
lot simpler than its predecessors (projects 3 and 4). Hence, the opinion of the
subjects coincided with both the complexity metrics (after only the %New code was
considered, see next paragraph). This vastly increased our confidence in trusting
the two metrics. However, we had to use only one metric for our analysis, and so it
was decided to use the Cyclomatic Complexity because its scale is more convenient
to comprehend due to smaller numbers.

There is one more problem, however, and that is regarding the reused code. The
complexity metrics depend on various factors and one of them is length. Since we
are measurirg the complexity of the solution, the reused code adds extra length at

Sherdil

91

practically inexpensive solution-cost. Hence a program with 75% reused code (as in
project 6) has a comparatively high solution complexity than it would have if we
consider only the new and modified (25% of the) code. Hence we decided to
decrease the cyclomatic complexity values with the same fraction as the percentage
reused code, and call it %New Complexity. Although the best thing would have
been to use just the new and changed code and find its complexity separately, we
did not have a precise track of which code was new and which was reused.
Therefore, we just used the fractional method, assuming that in the long run of 9
projects, things would average out. Figure 25 shows the values of %New
Complexity along with the Total Complexity. Note that the %New Complexity of
project 2 is much more than that of projects 6, 7 and 8 although the latter had
higher total complexities. These result are also in accordance with what the
subjects had told us about their views on the solution complexity.

Figure 25: Graph of the Total and New Complexities vs. Project No.

Total Cyclomatic Complexity and Its fraction of %MNew Cyclomatic Complexity

50

45

B ro Cyclomatic Complexity
B %New Cyclomatic Complexity

%New Cyclomatic Complexity

1 2 3 4 5 6 7 -] 8
Project Number

Now that we have agreed on using the %New Cyclomatic Complexity, we can go
ahead and plug it into our existing model of productivity and defect-quality, as
they vary with the cumulative output. This 4-variable analysis is done in the
following section.

Sherdil

92

6.3 The 4-Variable Model

Both, the productivity and the defect rate, should depend upon the cumulative
output, due to the first-order learning process. However, whereas in case of the
defects-cumulative output relationship, we get a value of R as high as 0.96, in the
case of productivity-cumulative output relationship, the value of R is only 0.65. If
complexity is the other variable affecting productivity (and hence keeping the
value of R low), then it should do the same for defect rate. It is logical to believe
that both the defect rate and the productivity would depend on the complexity.
Higher the complexity, more should be the number of defects injected and less
should be the productivity. But in our case, apparently, the complexity is affecting
only the productivity. In this section, we will study how these four variables are
affecting each other, and hence how they effect the progress rate.

In order to analyze this 4-variable model, we calculated the shared-variances
between these variables. The amount of agreement between any two measures
tells us the extent to which they are measuring the same thing. This is called the
amount of shared or common variance [38] [39]. Shared variance between a
dependent variable A and an independent variable B tells us what percentage of A
can be associated by the causal relationship with the variable B.

Figure 16 shows how the variables are related (NS means not significant). Here
40% of the variation in Productivity can be associated by the cumulative output
factor, while 55% can be explained by the defect-rate. Note that an additional 21% is
due to complexity, making the total variance exceed 100%. This is because defect-
rate and cumulative output are not mutually independent either, and hence there
is an overlap of variances which causes the sum to exceed 100%.

Sherdil

93

Figure 26: Model for Productivity

71%
= == % == 4 == s == e == = NCumulative Qutput
q
55% 40% /'
‘
\ ‘
A)
\ Productivity ,/
) y . /
5%\ 21% N
NS \ /
N ’
\ /
N '

Complexity

In Figure 16, Complexity and Cumulative Qutput are our independent variables.
We will now study the two dependent variables, which are productivity and
defect-rate, and try to develop 3-variable equations (models) comprising of these
four variables. We can also produce 4-variable equations, but with our sample size
of 12 subjects only, their significance would not be appropriate. In fact, even for 3-
variable models, a sample size of 12 is not fully adequate, unless very high values
of correlation are found. But in this experiment, due to our constraint of having
only 12 subjects, we don't have any choice but to go ahead with a 3-variable model.
Also, we will now be using the log-linear models instead of the linear ones as
done in most past studies, because for 3-variables, they give a better representation
of the relationship between the variables.

6.3.1 Productivity

We had found in section 6.1 that unlike the other learning curves with high
values of correlations, in case of the productivity learning curve, the correlation
was only 0.63. Hence cumulative output alone is not sufficient to account for the
changes in productivity. In fact, it only has a 40% shared variance with
productivity. This means that some third variable should be added to our model
to get a better picture. We had contemplated that the complexity can be that third
variable. However, contemplation alone is not enough, and we need appropriate
statistical checks. For this purpose we used the partial correlation coefficient,

Sherdil

— o —— S —— ———— Wh— — —— T—— —. s —

94

which give the correlation between two variables when a third one has been
controlled for. So, partial R;x'z means that after having controlled for the variable

Z (i.e., after having the knowledge of the relationship between Y and Z), by what
percentage are our errors in predicting Y decrease when the variable X is also
added to the model [38] [39].

Figure 27: Adding the third variable to Productivity model

’[ComplexityJ
”~
-~
%0% Shared P " 26% Decrease
.an ‘ 1 E
— ariance Cumulative ¥ n Brror
Productivity |t Output
N ~ 7.2% Decrease
in Error
~
~
~

Figure 27 shows that the productivity and the cumulative output share 40% of the
variance. Now, after controlling this association in productivity caused by the
cumulative output, our errors in predicting the productivity decrease by another
26% if in addition to cumulative output, we also have the knowledge of
complexity. Similarly, our errors would decrease by 7.2% if we include the defects-
rate in the model of productivity and cumulative output. Obviously, if we can
only have a 3-variable model {given our small sample size), it would be more
desirable to include complexity instead of the defect-rate. Hence our model
becomes:

a Cumulative Output®

Productivity =
Complexity®

{ Equation 1}

R=0.76
a=21b=0.16¢c=0.15

This equation suggests that more the complexity, less the productivity, and more
the cumulative output, greater the productivity. This is in complete harmony
with our rational expectations. Now the correlation has increased from 0.63 to 0.76.
Adding a fourth variable (defect-rate) would not cause any significant decrease in

Sherdil

95

the error, at the expense of increasing the complexity of the equation.
Furthermore, a 4-variable model derived out of only 12 subjects, would not have
high statistical significance. Hence we might assume that this 3-variable equation
is the most optimum one.

However, we are wrong. As it turns out, our initial assumption of starting with a
productivity-cumulative output relationship, and then subsequently adding other
variables, was not fully correct. We could have got better results had we used the
forward selection method [39].

In this method, we start by selecting variables which are the most important and
continue step by step adding other variables in order of importance. From figure
26, the highest shared variance which productivity has is with defect-rate (55%)
and hence our model should start with a relationship between these two variables
before adding cumulative output or complexity. Figure 28 shows that after
accounting for the defect-rate, there can be a further decrease of 20% in error in
predicting productivity if we include the complexity variable in our model also.
However, by including cumulative output to the original two variables, the error
decreases by only 5%.

Figure 28: Forward Selection in the Productivity Model
-
Variance in Error
~

Cumulative
Output
”
‘ -~
Productivity |q p |[Defects N
‘ 20% Decrease
~

”

55% Sharcd / 5% Decreasc
N in Error
~

Complexity
I

1.3% Decreasc I
in Eiror, NS |

Cumt*ntiv e
Output

Sherdil

26

Hence we select complexity as the third variable and get the following model:

a
Defects” Complexity®

Productivity = {Equation 2}

R=038]
a=142b=022¢=0.15

Adding the fourth variable (cumulative output) to this model would further
decrease the error by only 1.3%, which is not significant. Hence we retained to our
three variable model, which implies that higher the complexity or more the
defects, the value of productivity decreases. The correlation coefficient now is 0.81,
which is greater than 0.76, which we obtained in the previous model (equation 1).
Note that the forward selection method always leads to the highest possible value
of correlation.

An interesting point about this model is that it apparently does not include the
cumulative output, and hence our whole purpose of studying the learning curve
(i.e., progress with cumulative output) seems to be understated. However, this is
not true because of the obvious reason that the variable defect rate has a 71%
shared variance with cumulative output. Hence there is a strong relationship of
correlation 0.85 for the model:

a
Cumulative Output®

Defects =

Substituting this in the equation 2 above gives us the equation 1. Hence though
seemingly different, both the equations are linked to each other in such a way that
they fit in logically and intuitively.

6.3.2 Defect-Rate

One way to find a model for the defect-rate is to simply use equation 2, and express
defects in terms of the other two variables. Hence from,

a
Productivity = Equation 2
w Defects” Complexity® { Bquation 2}

we can get

Sherdil

97

Defects = » — a
Productivity Complexity*
or
d .
Defects = ~ {Equation 3}

Productivity! Complexity

However, we know that the most optimum method for finding the highest
correlation is forward selection. Figure 29 shows the application of this method.

Figure 29: Forward Selection in the Defect Rate Model

déomplcxity
”~

”

7 1% Shared /7% Decreasc

Variance » - in Error

- I |Cumulative
Defecs Output K
:] 24% Decreasc

N \in Error

N
~

Productivity

2.5% Decrease I
in Error, NS |
|

Eomplexfty

The highest shared variance of defects was with cumulative output (see Figure 26).
After accounting for this 71% shared variance, the largest decrease in error for
predicting the defect-rate was obtained by adding productivity to the model. This
error decrease is 24%, which is much more than the 7% obtained by adding
Complexity. Hence we get the following model:

a

Defects =
4 Cumulative Output” Productivity

— {Equation 4}

R=0.90
a=65300b=045c=1.11

Sherdil

o8

Notice that the correlation has increased from 0.85 to 0.90 and also that it is higher
than the correlation of 0.81 in equation 3. Adding complexity to this model further
decreases the error by only 2.5%, which is not significant.

This model shows that as the time passes, the defect-rate decreases. But in addition
to this, it also confirms the relationship which we derived in equation 2, i.e.:

a
from equation 2, Productivity = ~——
9 4 Defects”

c
from equation 4, Defects = ——————
1 Def Producrivity"

The first relationship is easily explainable. The more defects one injects, the longer
it takes to debug them, and hence the lower the productivity. However, the second
relationship, which actually is the same as the first one but in a different form, is a
bit hard to comprehend intuitively. What it means is that a high defect-quality is
attributed to having a high productivity. A high productivity means that you are
following a better software process, and that in turn means that your defect-rate is

low.

Figure 30 gives a summary of how the four variables are related to each other.

Sherdil

929

Figure 30: The 4-Variable Mode!

Productivity
Defects <
Relationship was | < ,* |Relationship was
expected " ,»7 |not expected
\\ J "l
Complexity

Legend
—> Relationship Found

............ Relationship Not
Found

We were never expecting a relation between the complexity and the cumulative
output, since the projects were randomly assigned without any knowledge of the
complexity. Rest all the variables are related to each other with the exception of the
defect-complexity relationship. Although we should be expecting that more the
complexity higher the defect rate, we did not obtain any significant causality
between the two. The reason, as mentioned before also, is that we got a very high
correlation between defects and cumulative output, which dominated the
relationship of defects with other variables.

6.4 Engineering Training in 2nd Order-Learning

In this section, our main objective is to find if the second order learning has
indeed helped the subjects considerably beyond the first order learning. As
mentioned earlier, this is difficult to study and it is even more difficult to prove
results statistically in this case. Nevertheless, we made an attempt to
mathematically analyze the fractions which each order of learning contributed. In
section 4.2.2, we had described three factors which can be attributed to the second

Sherdil—_

100
order learning. These were:

¢ Reused Code
o Size Estimation

e (Code Reviews

Reusability is an attribute of the second order learning because it is the technical
training which teaches this concept to the subjects and it is the technology which
the subjects use to maintain the libraries for reused code. However, it is difficult to
differentiate between the two types of learnings using the reused code alone as a
measure. This is because we can never be sure of when the reused technology was
injected in the process. Therefore, we will use the other two constructs (those of
Size Estimation and Code Reviews) to analyze the second order learning, since we
will be formally injecting them at specific points in our process. As far as the
reusability is concerned, all we will mention is that this phenomenon was used
extensively throughout the experiment. Figure 31 gives an overview of this.

Figure 31: Reused Code vs, Project No.

% Reused Code per project and % Cumulative Reused code against Cumulative Output

100 100
80 %0
80 r\\ 80
70 70 °a
[N, &
. 60 ! 60 2
§ 50 —- - 50 é == %Rousad
«c 3 ——o— %CumReused
a® 40 40 E
J/ :
30 30
// x’\“ *
20 20
10 :5 10
0+ e s ¥
0 200 400 600 800 1000 1200
Cumulative Output (LOC)
. The %Reused Code for a project N is the reused code in project N, as a percentage

of the total code in project N. The %Cumulative Reused code for a project N is the

Sherdil

101

sum of all the reused codes for projects 1 through N, as a percentage of the total
cumulative LOC at project N. The final cumulative percentage of reused code in
the 9 programming projects was 54% (see figure 31, last data point in the
%Cumulative Reused graph). This includes the 0 % reused code during the first
project, where obviously there could have been no reuse. During the last half of
the experiment (the last four projects), the average of the four points representing
percentage reused code had increased to above 70%. Hence without going into any
mathematical treatment or statistical tests, one can get a fairly good idea of how
important a role the reused code (and hence the second order learning) played
during the course of the nine projects. In any case, in our experiment we pursued
with the other two technologies, Size Estimation and Code Reviews, and not Code
Reuse.

Now we will turn to our experimental design (explained in section 5.3.3).
We had mentioned that if X1 (Size Estimation training) and X2 {Code

Reviews) are independent or mutually exclusive, we can have the following
quasi-experimental time series (with within subject) design:

000X1000000

000000X2000

In case of Size Estimation training (X1), our design can be represented as:
0102 03 X104 0506 07 08 09

Here the observations (01-O9) represent the percentage size estimation error. If we
take the mean (M1) of O1-O3, then that is the average size estimation error before
the training was given to the subjects. Similarly, the mean (M2) of ©4-0O9 is the
average error after the treatment. In our case M2 was less than M1 by 21.26% (see
Table 14). A comparison of “two means' test [49] (using t-tables) showed that our
difference between the two means was significant at 0.05 level. This statistically
confirms the fact that subject's performance after the training was much better
than that before the training. A similar analysis on the Code Reviews training (X2)
with the defect-rate as the metric showed that M2 < M1 by 20.79%. However, in
this case the results are significant at only 0.15 level. This is because the variance
within the two groups (01-06 and O7-O9) was quite high and hence there is a 15%
chance that our results could have given a high difference between the two group-
means by chance only. Table 15 summarizes these results.

Sherdil

102

Table 15: Means before and after the injection of technolo

v

Size 01-03 04-09 21.26% 0.05
Estimation

Techniques

Code 01-06 07-09 20.79% 0.15
Reviews

Regardless of the significance level of the above two results, the only conclusion,
which we can draw is that the performance of the subjects is better after the
training than it was before the training. Before the training, the subjects were
using only the first-order learning. After the training, the subjects incorporate a
second-order learning mechanism. However, we should not forget that even after
the training, the subjects do continue to undergo first-order learning also, since
such a learning cannot be stopped just by the injection of second-order training.
Therefore, we can say nothing about the effects of second-order learning since it is -
probable that the increased performance after the training might have occurred
due to some increase (due to any unforeseen circumstances) in the level of first-
order learning.

To solve our problem in finding the proportion of each type of learning, we
decided to use a different approach. Consider the Code Reviews (X2}. Our design
can be represented as:

010203040506 X207 0809

If we plot only the points Ol through 06, and find the best linear or log-linear fit
through them, then that will be the equation of the learning curve representing
the first order learning alone. This equation would represent the number of
defects in terms of the cumulative output (or time). Based on this equation, we
should be able to predict what the number of defects should be for the cumulative
outputs corresponding to the next three observations (O7, O8 and O9) after the
training. In other words, we would be extending our learning curve beyond the
cumulative output level of O6 (as shown in figure 32) in order to predict the Y-axis
(defect) values for the X-axis (cumulative output values) for the points O7 through

Sherdil

103

Figure 32: Sample graph showing interpolation

Interpolating the pretest data points

2000
o
o 100 ® Pro-Injoclion
a 0 B ProExpacted
] © Postinjoction
-
-]
0 A — .
[} 2 4 6 8 10

Project Number or Cumulative OQutput

These values can then be compared with the actual values obtained for the defect
rates corresponding to the cumulative outputs for the points Q7 through O9.
Whereas the predicted values represent only the first order learning, the actual
points would represent the extra decrease in the defect-rate attributable solely to
the second order learning aspect. The mean of the three predicted values can then
be compared with the mean of the three actual values. In our case, the mean for
the actual values was 12.62% less than the mean of the predicted values. Hence the
addition of the second-order learning helped the subjects improve by about 13% in
addition to the improvement they were undertaking due to the first order
learning alone. These results are given in Table 16.

Table 16: Percentage decrease due to technology injection, compared to expected
(interpolated) values from fn‘st-order re-injection learning onl

Xl= Slze Est1mat10n Techmques

X2 = Code Reviews 12.62 %

Sherdil

104

A similar analysis on the size estimation training yielded the figure of 6.5%
reduction in estimation error due to the second order learning in addition to the
first-order learning. Hence our results are about 6% in one case and about 13% in
another. These differences can be accounted for as follows: for X1, there were only
three pre-treatment values. Since we are following a logarithmic model, these
values show a very steep decreasing trend. Hence the predictions which we make
about the future points are based on the same sharply decreasing curve. Therefore,
we predict much lower values than normal since our pre-treatment data set is
very small (only 3 points). This is why the actual values seem to be not
significantly lower than our predicted values. However, in case of X2, we had a
pre-treatment set of 6 data points, which gave us a curve which had more or less
settled down after the initial steep fall. This large pre-treatment data set gives us a
better idea of what to predict for future. Hence the predicted values are not lower
than what they normally should be. This is why the actual values show a more
significant decrease than the predicted values.

6.5 Analysis of First Order Learning

Having shown that the second order learning does contribute in addition to the
first order learning, we will now try to analyze the latter to see what factors might
affect it. As mentioned before, determinants of first-order learning might include
the person's general experience, specific experience on jobs of a given type,
education, sex, age, etc. [42]. Our approach is to study if there is any relationship
between the personal capabilities of the subjects and the rate of learning. For this
purpose, we decided to give each subject a capability index, based on (i) Experience
and (ii) Performance. We believe that experience alone is not a sufficient predictor
in judging a person's capability level. A person with a 10 year programming
experience might still be less productive and/or slower in learning than a person
with a 5 year experience. Hence we should also look at the performance factors of
the subjects, such as the absolute (not relative) values of the productivitys of the
subjects. In this way we can study if a person who is more productive or has a
lesser defect rate is faster in learning than a person with lower levels of
productivity or defect rate.

Given below shows our scheme of calculating the capability index. By no means
are we stating that this scheme is the most optimum one. Naturally there can be
various other ways of ranking the subjects, with no specific method being the best
one. However, what we tried was to include a wide variety of factors
encompassing most of the fields of experience and performance. Since the

Sherdil

105

capability index is a quantitative number, we had to develop quantitative scales.
Although these scales have been chosen arbitrarily, we made all possible attempts
to keep the sensitivity high, and to assign them weights properly. We are quite
confident that given the wide variety of factors considered by us, our method is
good. The summary of our procedure is given in Table 17 while the details are
attached in Appendix L. Note that points given in parenthesis represent the
maximum possible points in that category.

Table 17 Detalls of Personal Capabxhty Index

Expenence (60) Total Experlence in Pgrammmg T 15 |
Diversity in Programming Languages 10
Level of Education 10
Job experience in computer 15

software/hardware related field

Experience with Software Packages 5

Experience in Software Engineering and {5
Object-Oriented Design

Performance (40) | Productivity 15
Defects/KLOC 10
Defect Removal Rate 5

Grade assigned to the subject in the PSP | 10
course

Our procedure requires detailed data from each subject about each and every
language the subject has programmed in, each and every software package used,
the time the subject has used these languages and packages, the total job experience
and level of education of the subject, etc. This data was obtained directly from the
subjects using a 6 page questionnaire (see Appendix A). For reliability, the subjects
were later interviewed (after 3 weeks) and their responses to the questionnaire
were rechecked. The nature of the questionnaire was such that the subjects were
made to give even the finest details. In one case the subject was returned the

. — i ——— ——————— oy ——— G} t—

Sherdil

106

questionnaire since insufficient data had been supplied. The first 4 pages were
designed by the software engineering group at McGill University while the last
two were designed by Humphrey at Software Engineering Institute.

The learning index, p, for each subject was then plotted against its corresponding
capability index. Since there were six learning curves, we had six learning indices.
So we took the mean value of them; however, we had to ignore the learning index
for the defect removal learning curve since there were cases when the subjects had
none or only one defect in the projects, which lead to unreliable data. So the
following five learning indices were used, which again can be divided into two
categories:

(i) Estimation Skills

¢ p in Size Estimation Abilities
e p in Time Estimation Abilities

¢ p in Productivity Estimation Abilities
(ii) Performance

e p in programmer productivity

e p in defect-quality

Table 18 shows capability index listed with the learning index.

-
2 37.1 37.6
3 37.1 144
4 38.3 179
5 46.7 314
6 47.3 30.5
7 50.4 16.0
8 52.1 154

-S-Eerdil

107

The capability index ranged from 35.6 to 74.4 with a mean of 49.71 and a standard
deviation of 11.44. The mean of roughly 50 is exactly the mid-point of our total
range of 0-100, and hence boosts our confidence in the scheme used by us. The
average learning index is 18.79% with a standard deviation of 13.99. However,
observe that there is an outlier with p = -18.0, which represents negative learning
(or forgetting). Actually, this subject had a p = 18.8 in the Performance category, but
unfortunately had a p = -42.5 in the estimation category. Probably something had

gone wrong with the subject, which lead to poorer estimates, According to Sheil
[51],

“One of the more striking symptoms of high individual variability is that one
occasionally finds a small number of participants whose scores on some
measure are far outside the range for the group to which they belong. Their
presence not only invalidates the common statistical techniques, but it can
both mask real differences (by increasing the variance) and create illusory
ones. Although non-parametric statistics andfor data recoding can be used to
avoid the technical problems, it is far preferable simply to discard outliers
before the analysis. The reason for this is that very extreme observations
strongly suggest that the individual is not typical of those to whom the results
are to be generalized. For example, such an individual might be doing
something quite different from the other participants, possibly as a result of
having misunderstood the instructions. (The classic example is the
participant who falls asleep during a reaction time experiment.)”

After discarding this outlier, our average learring index was 22.13% with a
standard deviation of 8.91. Note that this is very close to the value of 20% as
reported in various past research results [29][60]. The breakup of the two categories
of the learning index shows that the average learning index in the estimation
category was only 12.23% while that in the performance categories was as high as
28.60%. Hence obviously, for our subjects, estimation was a more difficult task to

Sherdil

108

improve in as compared to improving their performance in productivity and
defect-quality.

Figure 33 shows a graph of the learning index against the capability index. No
statistically significant or conclusive relationship was obtained.

Figure 33: Graph of the two indices against each other

Learning Index vs Capabllity Index

40

Learning Index

20 4

10 Y T Y T Y T T T T
30 40 80 60 70 80

Capability Index

We tried to study the causality amongst the individual categories also, i.e., between
the two learning categories (estimation and performance) and the two capabilities
categories (experience and performance). However, again we could not find any
conclusive evidence of any relationship between the categories.

Nevertheless, we did discover a phenomenon in our experiment, which is quite
expected. We found that those subjects whose performance level is already quite
high, learn less than those whose base performance level is low. For example, it is
easy for a subject to increase the productivity from 30 LOC/hr to 60 LOC/hr (100%
increase) as compared to a subject who has to increase from 60 LOC/hr to 120
LOC/hr. The latter may increase from 60 LOC/hr to 90 LOC/hr, but that would be
only a 50% increase. Such a phenomenon was quite obvious and expected, and we
are merely confirming its existence. However, besides that, we did not find any

Sherdil

109

other relationships or causalities. Of course, we are not implying that no other
relationships exist; we are only stating that more work with larger sample sizes is
needed to make improved predictions about any such relationships.

6.6 Management Motivation in Second Order Learning

In section 4.2.1, we had given the details of the survey instrument used in
measuring the (a) motivation, (b) interest, (c) satisfaction of the subjects after
every project as well as (d) the degree to which they found the projects to be
useful. These were quantified on a scale of -5 to 0 to +5. The subjects
responded separately for the programming aspect and for the data collection
aspect for these four variables. Hence there were a total of eight variables.

All these variables were then plotted on a discrete scale of 1 through 9

(representing the nine projects). Figure 34 shows a typical plot of how all the
eight plots looked like.

Figure 34: A typical graph of the subjective metrics

Motivation In Data Collection vs Project Number

5

4 -

3 -
8 2 R = 0.85
-3 24 [
-]
3 e
o { = [
]
a 0 Nautral
E -
=
2
H -2
=
2 o
s 3

-4 -

‘5 T T L) T

0 2 4 6 8 10

Project Number

Sherdil

110

These eight plots had a mean value for slope of -0.15 and a mean value for

. correlation coefficient of 0.79. For all eight variables, on the scale of -5 to 0 to
+5 {(completely unmotivated to neutral to extremely motivated), the average
value obtained was 1.8 (where 1.0 = slightly motivated and 2.0 = quite
motivated). Table 19 below gives details of these statistics:

e Yy
[1 [RRAES

Correlation Coefficient, R
Slope -0.15
Values for all the 8 variables 1.8

The low values of standard deviations show that the variance in the data was
not high. The correlation coefficients are quite high (on average, 0.79) with a
high significances (at least at 0.05 level). However, in this case we are not
interested in how well the data lies on a straight line, but rather, on whether
or not the data is increasing or decreasing. Recall that our objective is to find
if the motivation and the other attributes increased or decreased during the
course of the experiment.

For this purpose we carried out a comparison of means test (since each of the
nine points is a mean of the 12 data points for the students). It was found that
none of the eight variables showed any significant change, even at 0.20 level.
In other words, the probability that the slight decrease which we obtained in
all the variables could have occurred by chance alone is more than 1 in 5,
which cannot be considered significant at all. Hence, for all practical purposes,
we can claim that the variables stayed constant. This implies that in doing
data analysis on other variables (such as defect rate, productivity, etc.), we can
be confident that these other variables are not dependent upon these
subjective variables (e.g., motivation).

Sherdil

I11

7.0 Discussion and Comparison with
Related Work

Section 5 discussed the four types of research purposes: discovery,
demonstration, refutation and replication. Discovery means finding
something new out, which was not known before. Demonstration means to
verify that some hypothesis or theory is correct. Demonstration is sometimes
more accurate than Discovery since in it more validation is carried out, as
compared to Discovery which might take place without formal prior goals. A
first-time demonstration (i.e.,, when a theory has not been empirically
verified before) can be as important as the Discovery. Usually replication is
not that important since although it increases our confidence in some
hypotheses, it does not tell us something new.

Our work is a good example of Discovery and first-time Demonstration. In
case of some parts of our work, past data exists from other studies (though in
differing environments and sometimes for different objectives). Hence there
is a flavor of external-replication also in our work. Note that an ideal
replication involves carrying out the experiment with the same experimental
design, preferably under the same environment as in our case. In this section
we discuss the significance of our results and compare them with other
related work.

The prime objective of our work was to study the learning curve, although it
turned out that we carried out various other tasks of importance. Our results
of the progress functions are a replication of the past work done in numerous
other fields of industry, manufacturing and management in the sense that we
have shown that learning indeed does occur. However, in the field of
software engineering, our work is one of the first detailed empirical studies of
its kind. Hence here we have shown that our hypothesis that learning occurs
in this field also is correct. This is a first-time Demonstration. We also
obtained some concrete insight into how much of what type of learning
occurs (first order or second order). This is more close to discovery since in
the field of software engineering, no detailed hypotheses about these have
been developed.

Our work is comprehensive since we used three different models: linear,
quadratic and log-linear, and produced detailed quantitative results. The most
important feature in the learning curve is the progress ratio, p. Past work

g'h-erdil

112

[29](60] has shown that a 20% value of learning rate or progress ratio is most
often cited. Our average value of the learning index for the 12 subjects was
22.13% (section 6.5), which is close to the past results. However, we also
showed that there are cases where the learning rate can be much higher. The
value of the progress ratio for the learning curves ranged from 15% to 60%,
with a mean and a median of 36% (section 6.1). These results suggest that in
the field of software, much higher rates of learning are possible as compared
to other manufacturing fields such as the aircraft construction, etc. More such
studies would help in generalizing this aspect. This increases the importance
of incorporating progress functions in managerial decision making in the
software field.

There are several aspects related to learning which, although we studied, did
not yield any thing conclusive. The analysis of first order learning is a good
example. We found that in our case the personal capabilities of an individual,
which were further refined into experience and performance, do not have
any relationship with how fast a person learns or how well a person performs
(section 6.5). However, we could not refute this hypothesis either. In other
words, we cannot prove that these variables have no relationship. It just so
happened that in our case there was none; other studies might give perfectly
valid results showing that in their case some form of relationship does exist.
One important aspect, however, of this study was the detailed procedure used
in calculating the capability index, using 10 different criteria. Past examples of
such detailed techniques in the field of software engineering are not known
to us.

Our study showed that the subjective measures related to motivation, stayed
constant throughout the experiment (section 6.6). Here also, we cannot
hypothesize that these variables will always remain constant. However, we
stress on the need for measuring them in such studies, since if they are not
constant then they have the potential to affect the results. We would also like
to point out the difference between the data analysis based on personal
discretion and the statistical data analysis. All the subjective measures clearly
indicate that they are slightly decreasing as the experiment proceeds.
However, statistically speaking, this decrease is not significant and hence they
must be considered as not decreasing, or constant. In such cases we have to
opt for statistical results, since the personal discretion might be rational, but it
can never be proven. On the other hand, statistical methods have been in use
for many years, and are known to provide accurate deductions from the data.

Sherdil

113

Our second main objective was to compare first order and second order
learning. It is difficult to measure which one helps more in the overall
learning process. Gone are the days of Gestalt who used to stress on the first
order learning, such as experience and insight. Researchers such as Arrow [5],
Levy [42], Adler [2], Clark [2], Hirsch [29], etc. have hypothesized that second
order learning is equally or more important. However, there are only a few
studies which give empirical evidence to this, such as [29]. Furthermore,
several such studies are on past data only, such as the ship-building during
the second world war [46][24], and ignore any form of experimental design.
We believe that it is important for researchers to gather data themselves
instead of relying on past logs from manufacturing firms, because it is
improper to impose an experimental design on work that has already been
done. In this sense it can be considered that our work has advanced the
knowledge in the field of software.

Our results showed that the second order learning helps the individuals to
learn up to 13% more than the first order learning alone (section 6.4). We are
not setisfied with these results because we believe that the actual number can
be much higher. This low value has been obtained because we had no control
groups. If we had one randomly assigned group with engineering technology
and training and the other one without it, then the results obtained would
have shown higher differences. However note that even the value of 13% is
not low. In large organizations with huge budgets, this percentage can save
millions of dollars, even after accounting for the cost of injecting the
technology and providing the training. However, detailed studies are needed
for confirming these facts.

Finally, our third main objective was the analysis of the 4-variable model. For
this purpose we had to carry out a comparative complexity analysis of the
Halstead's and McCabe's complexity metrics. Note that there are numerous
papers written on these two metrics, and several of them have tried to
compare the two [20] [14]. Our comparison consists of a large sample size of
108 programs, and gives a correlation of 0.80 (section 6.2) between the two (at
0.005 level). This result alone can be published as a study.

It is difficult to describe the results of our 4-variable model. On one hand it
can be termed as a discovery, since we originally had the three variable model
in mind, and ended up discovering that complexity was a fourth variable
also. But on the other hand, all the results are so much in harmony with
intuition that they are merely a demonstration of what we were expecting.
For example, the hypothesis that more the complexity less the productivity is

Sherdil

114

not a discovery but a demonstration of what we had a belief in due to rational
thinking. In some cases, past work has also been done on various separate
parts of our 4-variable model. For example, Putnam [45] and Humphrey [30]
have given figures showing that increased productivity is due to increased
product-quality. Hence our work is sort of a replication of previous studies,
though in a different environment. '

An interesting aspect about our work is that there are completely unexpected
results or unusual deductions. For example, we showed that the learning
does occur, that the second order learning is useful in addition to first order
learning, and that the productivity, defects and complexity are related just the
way one should expect them to be related. So then what is important about
our results? The answer to this is that although most of these hypotheses had
been thought to be true intuitively or logically, they had not been verified
before, especially in the field of software engineering. Furthermore, our work
involves a true scientific study and hence its results can be considered to be
valid and reliable. Finally, we believe that our study has focused on nearly all
the aspects of the learning curve model, and hence provides completeness in
work. Nevertheless, there are still various other points which need further
study. These are discussed in the next section.

Sherdil

115

8.0 Conclusion and Future Work

In this work, our objective was to study the progress functions for
individuals, who can expect continuous improvement in productivity as a
consequence of (i) a growing stock of knowledge and experience gained by
repeatedly doing the same task (first-order learning) or (ii) due to
technological and training programs injected by the organization (second-
order learning)., Progress functions are important since they are used in
industry for making managerial decisions regarding cost estimating and
budgeting, production and labor scheduling, product pricing, etc. [4][29] While
considerable research on this topic has been done in industrial and

manufacturing sectors [60], we found little emphasis in the software process
field.

It is important that software firms begin paying more attention to the progress
functions in making managerial decisions. According to Dr. Hashim, assistant
professor of software engineering in Malaysia, this trend is being followed
increasingly in Asia, although only a little has been published on it. In fact,
the promotions of the employees in various software firms depend on if they
have followed the learning curve properly or not.

Qur results confirm that a 20% learning is normal. The PSP course is
currently being taught at McGill University again, and one goal of our
research group is to replicate our experiment to get a better confidence on this
figure. We strongly encourage other researchers to carry out external
replication as well, especially in the industrial environment. Giving the
industry a verified figure would be doing a service to it. Such research results
can then be used for making delivery schedules, estimating the product-
quality and cost, as well as on keeping track of how well the personal
capabilities of the employees are, e.g., in estimating the size of the projects.

We feel that more work is needed in differentiating the first order and the
second order learnings. As mentioned in the data analysis, we feel that the
13% figure we calculated regarding the contribution of second order learning
beyond the first order is underestimated. A verified figure would allow the
managerial personal to initiate training programs, purchase new technology
and stress more on organizational attempt to induce learning amongst the
employees. No management would do this unless they are certain that the
percentage increase in improvement is significant. Hence a cost-benefit study

Sherdil

116

is also needed in this field. We would recommend that a controlled
experiment should be designed in order to carry out this task.

Another interesting aspect of our work has been the 4-variable model.
Although in the past various studies have been carried out on static models
involving productivity, defect-quality and complexity, not much work has
been carried out on the dynamic models involving time or cumulative
output. In our work, we have produced equations on the relationships
between these models. Of course the parameters of these equations would
differ from environment to environment. Hence further replications are
needed to gain a better confidence on these values. Furthermore, in our case
the subjective variables such as the motivation turned out to be constant.
This might not be the case in other studies. Hence more attention should be
paid to these subjective variables also, and see if they have an effect on the 4-
variable model.

There are various topics which we referred to in our work only briefly but
which can be studied in more detail. Although we carried out a detailed
complexity analysis, controlling or varying the complexity was never our
objective. Work can be done on controlling the complexity and then
observing how it effects the other two variables, productivity and defect-
quality. Similarly, the latter variable has only been studied in the context of
its relationship with the other variables. However, given the detailed data
available to us consisting of each and every defect from a range of 190 defect
types, can be used to carry out a more thorough study with prime focus on
defects alone. Such work might include studying the defects by the phase they
are injected in.

One of the secondary objectives of our work was to study the personal
capabilities of the subjects. Our method of assigning a capability index, though
very detailed, is highly subjective. More work is needed on developing a
procedure which is more acceptable in the software engineering community,
so that the results can be consistently compared with other works. We had the
limitation of a small sample size. If possible, studies should be carried out
involving a much larger number of subjects. Any relationships between the
learning index and the capability index might then be more obvious.

Although the PSP has been around in the software engineering field for a
while, relatively less attention has been paid to it. Business firms are usually
busy on improving their organizational processes because they feel that they
have a higher cost-benefit ratio. Data is needed to convince them that the PSP

Sherdil

117

is also useful. Controlled studies are needed on the PSP itself, to see how
much it helps the individuals.

Our research model covered a wide variety of topics from the field of software
engineering. We are very satisfied with the effort we put in the design and
execution of our experiment and also in the analysis of the data. As a result,
we are more than happy with our results as well. We believe that our work
can contribute to the software engineering community and would be pleased
if other researchers explore our objectives in further detail.

———n s ot — ——— ot ———— ot T S — S— — T —

Sherdil

118

o APPENDIX A

The Initial Questionnaire

Sherdil

Student Questionnair
McGill University Winter *94 CS 631

This form must be filled out by all the students, imrespective of their job experience. Please fill this before you start
work on Ass # 1, and return it on Thursday Jan 20, 1994,
Name

Date

Please list all Degrees attained (Bachelors or above)
Please list all your Majors/Minors

Total Full-Time job experience in Computers related field
Other Part-Time job experience in Computers related field

Please list all the languages you have programmed in for MORE than a semester (e.g,
Prolog, LISP, Scheme, Assembly Intel/Motorolla, Ada, Fortran, Algol, Basic, Pascal,
Object Pascal, C, C++, COBOL, etc) Also indicate the approximate total LOC written in
these languages. Put an asterisk on your favorite language. (LOC stands for a Physical
Line in your program source code, not including the blank and comment lines).

Language Total LOC & Total Months

Please list any other languages in which you have written at least one program. Also
indicate the approximate total LOC written in these languages

Language Total LOC & No, of Programs

Total LOC written in any Language
Total years of Programming experience

Please list all the Database related packages you have used (eg, DBASE IV, RBASE,
ORACLE, SYBASE, SQL, Relix, FOXPRO, WindowBase), and the time you have used
them for:

DBASE Total Time

Please list all the Spreadsheet related packages you have used (eg, MS-Excel, LOTUS 1-
2-3, Quattro, LOTUS IMPROV), and the time you have used them for:

SpreadSheet Total Time

Please list all the Statistical Tools you have used (eg, SAS, SPSS, Systat), and the time
you have used them for:

Statistical Tool Total Time

In the space below, please list any other package, tool, language, etc related to Software
Process Engineering, User Interfaces, Statistics, etc which has not been asked for above.
You may also take this space to describe some Software Process Engineering related
project you might have undertaken at your job or at some undergraduate course:

SELF APPRAISAL

Please list the ONE (or at most two) principal language(s) you have been using recently
(or have used the most) for programming;

For the above mentioned Principal language(s), and also for C/C++, please read the
definitions given below and then answer the questions:

Total Output: This is defined as the total LOC you have written in a programming
language.
Based on your prior experience, estimate your Total Output in LOC you have writen.

Principal C/Cs++

Programmar-Productivity: This is defined as the number of LOC you develop per unit
of time.

Based on your prior experience, please estimated your productivity in LOC per hour.

Principal C/C++

Defect-Quality: This is the number of Defects or Errors which a programmer makes per
100 LOC. Please look at the Defect Types Standard for a listing of all the types of errors.

Based on your prior experience, please estimate your Defect-Quality in No. of
Defects per 100 LOC.

Principal C/C++

Reusability Rate (New LOC Only): Sometimes you directly copy/paste LOC from your
own previously written programs (without modifying those lIines) to save time and effort.
Reusability can then be defined as the No. of Reused LOC per every 100 LOC you write.

Based on your prior experience, please estimate your Reusability Rate (New LOC
Only) in No. of Reused LOC per every 100 LOC programmed.

Principal C/C++

Reusability Rate (New & Modified LOC): Sometimes one has to slightly modify the
Reused lines, which are copied/pasted from ones own previous prograrms.

If we add these modified lines also to your answer above, what will be your
Reusability Rate in Reused/Modified LOC per 100 LOC.

Principal C/C++

Defect-Removal Efficiency: This is defined as the number of defects you find and
remove per hour of debugging (finding and fixing) time.

Based on your prior experience, what do you think is your Defect-Removal
Efficiency in No. of Defects (traced & fixed) per hour.

Principal C/C+

Time Estimation Error: Before one starts to code, one has a rough/precise estimate of
how long it would take to finish the program. Often this estimate is wrong and the actual
time is different, say 10% more or less than the estimated time. This Percentage Time
Estimation Error can be calculated by taking the difference in the Actual and Estimated
Times, and converting it to a percent,

Base on your prior experience, what % error do you think is there in your Time
Estimation.

Principal C/C++

Size Estimation Error: Similarly, programmers usually have a rough/precise estimate

of how long their program is going to be, in LOC. The difference in the actual program

size as compared to the planned program size gives the % error for size estimation.
Based on your prior experience, what do you think is your % size estimation error.

Principal C/C++

In the space below, please describe what experience (Total LOC and Time) you have in
using C++ (not C alone) and in any other Object Oriented Design experience,

Thank you

Disciplined Software Engineering - Student Questionnaire
NOTE: PLEASE COMPLETE BOTH SIDES

General:
Name Date
Instructor University

Education:
Highest degree attained: Major:
Current field of study:

Have you had courses in?
Statistics
A physical science
Software project management
Formal software methods

s

Software:
Programming Languages you have used:
C C++ Pascal Object Pascal
Other
Language you will use in this course: C+ +

Approximate total LOC waitten in this language:
Approximate total LOC written in any language:
The year you wrote your first program:

Design methods you use:

Do you use formal methods?

List the formal methods you use:

Number of years you have used these methods:

If you would be willing to answer a follow-up questionnaire in the future, please
give a permanent address through which you can be reached:

If you have been employed to write programs, please answer the
following questions;

The Tools and Methods You Use:
Principal language you use:
Approximate total LOC written in this language:
Approximate total LOC written in any language:
Design methods you use:
Formal methods you use:
Years you have used these methods:

Your Personal Process:
Do you make a project plan before development?

Do your plans include size estimates?

Do your plans include defect estimates?
Do your plans include resource estimates?
Do your plans include schedules?

Do you do personal design reviews?

Do you do these reviews before you write the code?
Do you do personal code reviews?

Do you do these reviews before you test?

Do you do these reviews before you compile?

Do you have peer inspections of your code?

Do you do a personal review before the inspection?
Do you compile before the inspection? +
Do you unit test before the inspection?

Estimated lines of code you develop per hour: |

Approximate defects/KLOC in your first program test:
Approximate % defects you find before first test:

Approximate % defects you find before first compile:

Approximate % of your development time spent in personal reviews:
Approximate % of your development time spent in inspections;
Approximate % of your development time spent in compile:
Approximate % of your development time spent in test:

FHEEEEE TEEEEEETE TELT

If you are familiar with the CMM, please estimate the overall process maturity of
your organization, your most recent project, and your personal processes:

Your organization's approximate overall process maturity:
Your project's approximate overall process maturity:
The approximate overall maturity of your personal process:

119

o APPENDIX B

Logical LOC Coding Standards

Sherdil

Counting Standards for Logical LOC

1. Blank lines are not counted
2. Comments on separate lines are not counted
3. No statements or punctuation marks within ’(...)" or’[...]' are counted.
4. Count once each occurrence of ’,’ in declarations.
5. Count once each occurrence of the following selected key words and tokens
(exception is For-Loop statement)::
!
{
}
);
#
case
default
do
else
for
if
public
switch
while
6. Count all function/method/main/procedure declarations.

Now, using the above counting standards, we will develop coding standards,
such that each Physical LOC will contain ONE and ONLY ONE logical LOC. In
this way, by simply counting the Physical LOC, we would be (indirectly)
counting Logical LOC, hence avoiding the difficult task of writing a Logical LOC
counter.

120

® APPENDIX C

Physical LOC Coding Standards

Sherdil

Coding Standards for Physical LOC
(representing ONE and ONLY ONE Logical LOC for each Physical LOC)

DECLARATIONS

1, For declarations, declare only one variable per line.

2. All function/method/main/procedure declarations should normally be
written on one line, except fur when they cannot fit in on a single line. The I/O
parameters should be declared within the parenthesis of the calling Function’s
header.

MAIN BODY

3. For the main body of the program/functions, each and every line should have
ONE and ONLY ONE of the following key words or tokens (exception is For-
Loop statements and function/main/procedure headers):

{
]

I

#

case
default
do
else
for

if
public
switch
while

COMMENT BLANK LINE
4. There is no restriction on the number of Blank lines.
5. There is no restriction on the comments which are on separate lines.
6. For the Program Header, it is recommended that the students follow the C++
Coding Standards given in the handout attached to the Defect Type Standards.
In particular, the following topics should be considered:

Program name and number

Version and release information

Who developed it and when

The function Performed

Any special usage guidance and warnings
7. For the Procedure/Function/Method Headers, it is recommended that the
students follow the C++ Coding Standards given in the handout attached to the
Defect Type Standards. In particular, the following topics should be considered:

Function performed
Return format and limits

Any special usage guidance and warnings
8. For inline comments, the following topics should be considered:
Purpose and function of complex operations
Purpose of any special parameters and variables
Nature of any special data types
Any other comments to clarify program operation

Examples of VALID codes:

#include <stream.h>
#define TRUE 1

typedef struct {
float average;
int marks;
char name[40];
} student;

union x {
char ch;
int i;

}

class queue {
int q[100];
int front,
rear;
public:
void init(void);
void enque(int i);
int dequ(void);
k

void funcl(void)
{

int templ;

int temp2;

float temp3,

temp4,

temp5;

static int x;

//one and only one # token per line
/fone and only one # token per line
//blank line

/lone and only one { token per line
/fonly one declaration per line
//only one declaration per line
//only one declaration per line
/fone and only one }; token per line
//blank line

//one and only one { token per line
/only one declaration per line
//only one declaration per line
//one and only one } token per line
//blank line

//one and only one { token per line
/lonly one declaration per line
//only one declaration per line
/fonly one declaration per line
//only one Keyword public per line
//only one declaration per line
//only one declaration per line
//only one declaration per line
//one and only one }; token per line
//blank line

//Function declaration takes one line
//one and only one { token per line
//only one declaration per line
//only one declaration per line
//only one declaration per line
//only one declaration per line
//only one declaration per line
//only one declaration per line
//blank line

X=X+Y;
return(x);

}

int queue::enque(void)
{
if (front == rear)
{
cout << "underflow";
return 0;

}
{

rear++;
return q[rear];

}

else

}

main (void)

{

do
{
X =X+Y,
Y=Yy
)
while

x>y

while((x>y) && (x>0))
{

X = X+Y;
yit

}

/lone and only one ; token per line
/fone and only one ; token per line
/lone and only one } token per line
//blank line

//Method declaration takes one line
/fone and only one { token per line
f/only one Keyword if per line
//one and only one { token per line
//one and only one ; token per line
//one and only one ; token per line
//one and only one } token per line
//only one Keyword else per line
//one and only one { token per line
/lone and only one ; token per line
//one and only one ; token per line
//one and only one } token per line
//one and only one } token per line
//blank line

//Main declaration takes one line
//one and only one { token per line
/fonly one Keyword do per line
/fone and only one { token per line
//one and only one ; token per line
/fone and only one ; token per line
/fone and only one } token per line
//only one Keyword while per line
//one and only one ; token per line
/fblank line

/fonly one Keyword while per line
//one and only one { token per line
/fone and only one ; token per line
//one and only one ; token per line
//one and only one } token per line
//blank line

for (count = 1; count < 10; count++) //for loop is exception case

{

cout << "hello\n";
putchar(".');
}

switch(ch)
{
case'l’:
check_spell();

//one and only one { token per line
//one and only one ; token per line
/lone and only one ; token per line
f/one and only one } token per line
//blank line

//only one Keyword switch per line
/lone and only one { token per line
/lonly one Keyword case per line
//one and only one ; token per line

break;

X=X+Y;

cout >> "Brr";

case '2":
y++;
break;

default:

}

}

xamples of
void

func2 (a, b)
int a;
float b;
{

int local;

local = local + x; a++;
b--;
}

int X, Y
queue aque, bque;

while (x > y) X++;
while (x> y) {
X+
Y-
}

//one and only one ; token per line
//only one Keyword case per line
//one and only one ; token per line
//one and only one ; token per line
//one and only one ; token per line
//only one Keyword default per line
//one and only one ; token per line
//one and only one } token per line
/lone and only one } token per line

{/Function declaration takes 4 lines

//Arguments/parameters must be
//declared as func2(int a, float b)

//Two ; tokens in one line

//Two declarations in one line
//Two declarations in one line

/12 Keywords/tokens, while & ;
/12 Keywords/tokens, while & {

APPENDIX D

Validation Form

Sherdil

121

Validation Form

Name

Status (MSc2, Prof, etc)

Field of Research

Experience (Yrs) in Software Engineering

Introduction

You have been selected to fill out this form because of your professional experience
rclated to the field of Measurements in Software Process Engineering. We would really
appreciate if you can spend 30 minutes of your precious time to answer some of the
questions given below. But first, please read the following details of the Survey we are
carrying out. You are kindly requested to give suggestions on Validating the Goals-
Questions-Metrics used in this survey.

Ob; ctive

Our main objective is to study the Personal Software Process. We have a group of about
10 students, who would be writing about 10 small programs over a period of One
Semester. For each program, we would gather data on their performance, such as the
number of Errors they make, the number of Lines they Code, the period of Time it takes
them to write the programs, etc. These Metrics are labeled M1, M2, M3, (a detailed
listing is attached)., We plan to use these metrics to answer certain questions, labeled Q1,
Q2, These Questions are specifically designed to give us information about our
Objectives or Goals, labeled G1, G2, Your task is to raise any objections you find
about these Goals, Questions or Metrics and suggest any improvements. Your Validation
should consist of checking for correctness, consistency and completeness. Please also
feel free to ndd new Goals, Questions or Metrics in the space provided. In particular, you
should be keeping an eye for objections such as:

Validity of Goals: Are the Goals important enough?
Questions Validity: Do the questions accurately answer the Goals under
consideration?

To facilate in your validation process, given below are some items which you might
check for in validating the Metrics and Questions [Validating Instruments in MIS
Research, Straub] [Measurement: The key to application development quality, Walrad]:

Content Validity: Are instrument measures drawn from all possible measures of
the properties under investigation?

Construct Validity: Do measures show stability across methodologies? Are the
data a reflection of true scores of the kind of instrument
chosen?

Reliability: Do measures show stability across the units of observation?
Could measurement error be so high as to discredit the

findings?
Internal Validity: Are there untested rival hypotheses for the observed effects?
Statistical Validity: Do the variables demonstrate relationships not explainable by

chance or some other standard of comparison?

Efficiency: Does the metric produce a desired effect with a minimum of
effort, expense, or waste?

Metrics

Given below is a listing of the 18 metrics used. To keep our task simpler, most of these
are Objective metrics, and are already being used worldwide for various software related
measurements.

M1 Size Estimation Error

This is the % error with which a student estimates the size of the
program which is to be coded.

(| Estimated LOC - Actual LOC I/ Actual LOC) x 100

Any Remarks on this Metric. Should we not use this metric? If not, then why not?
Should this metric be modified? If so, then how? Should a new Metric be used instead?
If so0, please give details. It might be better to fill in your comments for each metric after
you have read the Goals and Questions.

M2

Time Estimation Error

This is the % error with which a student estimates the time required by
him/her to code a program.

(| Estimated Time - Actual Time | / Actual Time) x 100

M3

Real Defect Quality

This is the number of defects per KLOC. The total number of coded lines
includes the Reused lines also. For detailed work, this metric will be used
separately for all the possible types of defects (e.g, Syntax Erros, Run Time
Errors, etc).

(No of Defects of Type X / Total New & Reused LOC) x 1000

M4

Apparant Defect Quality

This is the number of defects per KLOC. The total number of coded lines
does not include the Reused lines. For detailed work, this metric will be used
separately for all the possible types of defects,

(No of Defects of Type X / Total New LOC) x 1000

MS

Reused Code
This is the number of LOC which are reused per KLOC.

(No of LOC Reused / Total LOC) x 1000

M6

Real Programmer Productivity

This is the number of LOC which a student codes per programmar-month (of
160 hrs). These iuclude the Reused lines which are simply copied from
previous work, and are NOT modified:

(No of New & Reused LOC / Total Time-hrs) x 160

M7

Apparant Programmer Productivity

This is the number of LOC which a student codes per programmar-month,
These do not include the Reused lines.

(No of New LOC / Total Time-hrs) x 160

M8

Student GPA

This is the Cumulative Grade Point Average of the student at McGill
University.

M9

Students Self-Appraisal of Defect Quality

This is the estimate of what the student thinks is his/her personal defect
quality, in No of Defects per KLOC. This esitmate is taken only once at the
begining of the semester.

M10

Students Self-Appraisal of Programmer Productivity

This is the estimate of what the student thinks is his/her persoan] programmer
productivity, in No of LOC per Programmer-Month. This esitmate is taken
only once at the begining of the semester.

'Mil

Students Self-Appraisal of Size Estimation Error

This is the estimate of what the student thinks is his/her average error rate
in estimating the size of the programs before they are coded. This esitmate is
taken only once at the begining of the semester.

M12

Students Self-A ppraisal of Time Estimation Error

This is the estimate of what the student thinks is his/her average error rate
in estimating the Time of the program which is to be coded. This esitmate is
taken only once at the begining of the semester,

M13

Students Self-Appraisal of Reusability

This is the estimate of what the student thinks is his/her level of Reusing the
code, in No of Reused LOC per KLOC. This esitmate is taken only once at
the begining of the semester.

M14

Students Interest

This is the level of interest which a student takes in writing a program, as
judged by the student on a scale of [-5 to 0 to +5] standing for [Completely
Disinterested to Neutral to Very Interested].

M15

Students Motivation

This is the level with which a student is motivated to write a
program, as judged by the student on a scale of [-5to O to +5] standing for
[Complete Lack of Motivation to Neutral to Very Motivated].

M16 Students Satisfaction

This is the level of satisfaction which a student achieves by writing a program,
as judged by the student on a scale of [-5 to 0 to +5] standing for [Annoying
to Neutral to Very Satisfying].

M17 Defect Removal Efficiency

This is the number of defects removed by the student per hour of time spent in
finding and fixing the defects.

{Total No of Defects Found / Total Time taken to Find and Fix the Defects)

Mi8 Students Sclf-Appraisal of Defect Removal Efficiency

This is the estimate of what the student thinks is his/her persoan! Defect
Removal Efficiency, in No of Defects Removed per Hour. This esitmate is
taken only once at the begining of the semester.

Please list below any other Metrics which you think might be useful and describe how
they may be used. If possible, give the number of the Question(s) they might be used to
answer.

(Goals and Questions

Having defined the metrics we would be using, we are listing 6 Goals and 13 Questions.
Under each question, the names and numbers of the metrics which will be used are also
listed.

G1 Investigate the Learning Curve of the Students in the context
of the Personal Software Process with respect to the Estimation
Ability.

Remarks/Objections/Modifications

Qi How does the students gbility to Esitmate the Size of the
Program improve with time?

[M1 Size Estimation Error]

Qz How does the students ablility to Esitmate the Time required
to code the Program improve over the passage of 10
programs?

(M2 Time Estimation Error]

Q3 Is there any relationship between the Ability to Estimate Size
and Ability to Estimate Time?
M1 Size Estimation Error]
(M2 Time Estimation Error]

G2 Does the Feed-Front from previous programs help the
students?

Q4 Does the Defect-Quality of the student for a particular type of

defect X Increase based on the experience obtained from the
previous programs?

[M3 Real Defect Quality]
(M4 Apparent Defect Quality]

Qs

Do the previous programs help the student by offering code
which can be reused?

[M5 Reused Code]

G3 Investigate the behavior of Programmer Productivity and
Defect-Quality in the context of Personal Software Process.
Q6 Does the student get more productive in writing code?
[M6 Real Programmer Productivity]
[M7 Apparent Programmer Productivity]
Q¥

Is there any relationship between the Programmer Productivity

and the Defect-Quality?

[M3 Real Defect Quality]
M4 Apparent Defect Quality)
M6 Real Programmer Productivity]

M7 Apparent Programmer Productivity]

Qi3 Does the students Defect-Removal Efficiency increase?

(M17 Defect Removal Efficiency]

G4 Study the Contingency of Personal Capability Factors on
Personal Software Process

Qs If the student makes any improvement, then is it solely due to
the Process, PSP, or do the Personal Capability Factors of
the student such as Skills, ¥ardwork, Experience,
Intelligence, ete also affect it?

NB: This requires a graph of Student Improvement vs Ranking of Students by Personal
Capability level.

Student Improvement can be judged from various factors such as Estimation Ability,
Programmer Productivity, Defect-Quality, Defect-Removal Efficiency.

A Ranking of Students Personal Capability level can be made using the students GPA or
by using the students performance during this semester (Productivity, Quality,
Efficiency).

M1 Size Estimation Error]

(M2 Time Estimation Error]

M3 Real Defect Quality]

[Mé6 Real Programmer Productivity]
[M8 Student GPA]

M17 Defect Removal Efficiency]

G5 Are the students generally more optimistic about their
capabilities?

Q9 How good do the students think they are in Estimation
Ability, Productivity, Defect-Quality, Detect-Removal Efficiency
and Reusablility versus how well they actually are?

NB: Before the start of the semester, the students will be asked to estimate what they
think is their standard of Productivity, Quality, Efficiency and Estimation Ability. Their
estimates will then be compared with the actual values obtained from their performance
in the first two programs.

(M1 Size Estimation Error]

[M2 Time Estimation Error]

(M3 Real Defect Quality]

(M4 Apparent Defect Quality]

[M5 Reused Code]

[M6 Real Programmer Productivity]

M7 - Apparent Programmer Productivity]

M9 Students Self-Appraisal of Defect Quality)

M10 Students Self-Appraisal of Programmer Productivity]
[M11 Students Self-Appraisal of Size Estimation Error)
[M12 Students Self-Appraisal of Time Estimation Error]
[M13 Students Self-Appraisal of Reusability]

[M17 Defect Removal Efficiency]

[M18 Students Self-Appraisal of Defect Removal Efficiency]

G6

To study some subjective aspects of Human Interest,
Motivation and Satisfaction in the context of Personal Software
Process.

Q10

Qi1

Q12

Does the students interest in writing programs
increase or decrease with the passage of time?

Does the motivation with which a student writes programs
increase or decrease with the passage of time?

Does the satisfaction which a student achieves by writing
programs increase or decrease with the passage of time?

[M14 Students Interest]
[M15 Students Motivation]
[(M16 Students Satisfaction]

If you feel that we can study some more Goals, then please mention them below. If
possible, please also mention the metrics which can be used to measure those
Goals/Questions.

Once again, we thank you for filling out this form. Please return it to Khalid Sherdil in
. MC Rm 334 or if you want it to be picked from your office, then please leave a message
at 844-1378, 398-7084 or sher@binkley.

122

® APPENDIX E

Motivation Form

Sherdil

Evaluation Form

In the questions below, 'Program’ means the process of designing, coding and running a program satisfactoraly. The term
"Data’ implies the process of collecting PSP Data. Please check the appropriate box. You must answer all the questions,
though you will NOT be graded on what you answer.

Name

Assignment # D

"Interest” is defined as the "willing attention’ you took in the assignment. How much interest did you take in this assignment?

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
Completely |Very Quite Slightly Neutral Slightly Quite Very Exiremely
Disinterested | Disinterested Disinterested “Disfnleresled Interested | Interested Interested | Interested
Program
Data

*Motivation® is defined as the desire or incentive given to you by the management in the program. How much motivation, do
you think, were you given in this assignment?

-5 -4 -3 -2 -1 o +1 +2 +3 + +5
Completely {Very Quite Stightly Neutral Slightly Quite Very Extremely
Unmotivated {Unmotivated Unmotivaled {Unmolivated Motivated | Molivated Motivated | Motivated
Program
Data

“Satisfaction® is the pleasure you receive upon fulfiliment of a task. How much satisfaction did you

get from this assignment?

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
Completely |Very Unsatis- Quite Slightly Neutral Slightly Quite Very Extremely
Unsatisfact. }factory Unsatisfact. |Unsatisfact. Satisfactory | Satisfactory Salisfactory | Satisfactory
Program
Data
With respect to how much you leamnt, did you find this assignment useful?
-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5
Completely Quite Not very Neutral Slightly Quite Very Extremely
Useless Useless useful Useful Uselul Useful Usetul

Program

Data

123

o APPENDIX F

Sample Data Forms

Sherdil

Defect Recording Log

. Student Date
Instructor Program #
Date No. Type Inj. Rem. Fix Time
{ [] 1 I L | | 11

Description:

Date No. Tvpe Ini. Rem, Fix Time
| 11 |1 | | | b

Description:

Date No. Type Inj. Rem. Fix Time
{ |)} L | L 1 L 1|

Description:

Date No. Tvpe Inj. Rem. Fix Time
L 4 L 1 L | | L b

Description:

Date No. Type Inj. Rem. Fix Time
L 41 | L]] |

Description:

Date No. Type Inj. Rem. Fix Time
l | | i L 1 I | L

Description;

Date No. Type Inj. Rem. Fix Time
I || | L | [| | |

Description:

Date No. Inj. Rem. Fix Time
{ [| | L I |]

Description:

Date No, Type Ini. Rem. Fix Time
I 1 L | L J I L A4

Description:

Date - No. Type Ini. Rem. Fix Time
{ 1 L b) L | 1 L

Description:

Date No., Type Ini. Rem. Fix Time
[1 L | L | | | C J 1 |

Description:

Disciplined Software Engineering - Assignment #)

Time Recording Log Date
@ Student Program #
Date | Start Stop | Interruption Delta | Job# |Phase |Activity | Comments
Time

Time

PSP2 Project Plan Summary

Student

Date

Instructor

Program #

Methods

Language

Summary
LOC/Hour

Plan

Actual To Date

Planned Time

Actual Time
CPI(Cost-Performance Index)
% Reuse

% New Reuse

Test Defects/KLOC

Total Defects/KLOC

Yield

Program Size (LOC):
Base

Plan

Actual To Date

+Reused

-Deleted & Mod

+Modified (M)

+Added (A)

Total LOC

Total New&Chgd (A+M)

Total New Reuse

Time in Phase (min.) Old %

Planning

Plan

Actual To Date New %

Detailed Design

Code

Code review

Compile

Test

Postmortem

Total

Total UCL (70%)
Total LCL (70%)

(continued)

Disciplined Software Engineering - Assignment #7

PSP2 Project Plan Summary (continued)

Student

Date

Instructor

Program #

Methods

Language

Defects Injected Plan

Planning

Actual To Date New %

Detailed Design

Code

Code review

Compile

Test

Total Development

After Development

Defects Removed Plan

Planning

Actual To Date New %

Detailed Design

Code

Code review

Compile

Test

Total Development

After Development

Defect Removal Efficiency Plan
Defects/Hour - Code Review

Actual To Date

Defects/Hour - Compile

Defects/Hour - Test

DRL(CodeRevue/UT)

DRL(Compile/UT)

Disciplined Software Engineering - Assignment #7

124

@ APPENDIX G

Sample PSP Templates

Sherdil

Size Estimating Template

Student Date
Instructor Program #
OBJECT NAME: TYPE! NUMBER RELATIVE ESTIMATED
OF
NEW OBJECTS: METHODS SIZE
TOTAL (A)
NEW REUSE OBJECTS:
TOTAL (B)
REUSED OBJECTS: BASE:
REUSE BASE(C)
REUSE CHGD(D)
E - Estimated New and Changed Object LOC: A+B+D
F - Regression Factor: B
G - Regression Factor: B
H - Estimated New and Changed LOC: F+E*G
I1- Estimated Total LOC: H+C
J - Percent Reuse: 100(C/T)
K - Percent New Reuse: 100*(B/H)
L - Confidence Range:
M - Lower Confidence Limit: H-L
N - Upper Confidence Limit: H+L

O ~ Actual Program LOC:
P - Confidence Percent:

! L-Logic, I-/0, C-Calculation, T-Text, D-Data, S-Set-up

Disciplined Software Engineering - Assignment #4

R

SIGNIFICANCE CY/N)

C++ Code Review Guideline and Check List (example)

PROGRAM NAME AND #.

Suggestion Complete a checklist for one program unit before starting the

next.

Review one checklist item completely before doing the next.
Completeness | Ensure that the code covers all the design_
Standards Follow the coding. nam‘mg. and defect reportinﬁ standards.
Includes Check that includes are complete
Initialization Check variable and parameter initialization:

- at program initiation

- at start of every loop

- at function/procedure entry
Calls Check function call formats:

- pointers

- parameters

- use of '&'
Names Check name spelling and use:

- consistent

- within declared scope

- structures and classes use '’ reference
Strings Check that all strings are:

- identified by pointers

- terminated in NULL
Pointers Check that pointers are:

- initialized NULL

- only deleted after new

- new pointers are always deleted after use

- always used within their defined range
Output Format | Check the output format:

- line stepping is proper

- Spacing is proper
{} Pairs Ensure that the {} are proper and matched
Logic Verify the proper use of ==, =, |}, etc.
Operators Check every logic function for proper 1]
Line by Line Check every line of code:
Check - instruction syntax

- proper punctuation
File Openand § Ensure that all files are:
Close - properly declared and used

- opened
- closed

Disciplined Software Engincering - Assignment #7

TEST REPORT TEMPLATE

Student Date
Instructor Program #
Methods Language
Test Name/Number:

Step # Data/Action/Result

Test Name/Number:

Step # Data/Action/Result
Test Name/Number:
Step # Data/Action/Result

Disciplined Softwarc Engineering - Assignment #3

PROCESS IMPROVEMENT PROPOSAL (PIP) FORM
PIP Number

Student Date

Instructor Program #

Methods Language

PROBLEM.:
Number Description:

PROPOSED IMPROVEMENT:
Priority Description

Disciplined Software Engineering - Assignment #2

APPENDIX H

Defect Types Standard

Sherdil

123

Defect Types Standard

Documeniation (101)

Incorrect Comments 110
Wrong Headers 120

Incorrect Coding Standards 130
Other Documentation 190

Build/Package/System (201)

Wrong Include Files setected 210
Incompatible Version of Compiler 230
Using wrong Editor 240

Wrong Module Export Import Interface 250
Other Build/Package/System 290

Design (301)

High Level Algorithm Design Emrors 310
Medium Level Algorithm Design Errors 320
Low Level Algorithm Design Errors 330
Faulty planning in Arguments passing 340
Faulty planning in Linking Functions 350
Errors in Flow Chart / Structured Chart 360
Control Flow Logic Error 370

Data Flow Logic Error 380

Other Design 390

Pure Syntax (401)

lncorrect Spelling 410

Incorrect Punctuation 420

Missing Tokens,.;: () := { }": 430
Typos 134

Case Sensilivity Errors 440

Other Pure Syntax 490

. Compilation/RunTime/Semantic Errors (501)
Name Structures (5101)

Unknown Identifier 5110
Duplicate Identifier 5120
Variable not Declared 5130
Undefined Variable 5140
Constant out of Range 5150
Uninitialized Variables 5160
Invalid Compiler Directives 5170
Other Name Structures 5190

Simple Data Types (5201)
Type mismatch 5210
Type not defined 5220
Const/Var confusion 5230
Floatfinteger Confusion 5240
Error in defining Char type 5250
Confusion in Local/Global Vars 5260
Other Simple Data Types 5290

Enumerated Data Types 530
Boolean T or F Confusion 531
Wrong UserDefined Enumerated Types 532
Other Enumerated Data Types 539

Data Strugtures (5401)

Arrays/Structures 5410
Initinlization Errors 5411
Array Maximum Capacity Exceeded 5412
Incompatible Data Type 5413
Not declared propedy 5414
Out of Range Indices 5415
Problems with Hierarchy of Structs 5416
Other Arrays/Structures 5419

Pointers 5420
Memory Allocation Errors 5421
Uninitialized Pointers/NULL values 5422
Wrong Assignment 5423
Wrong use of & 5424
Wrong use of * 5425
Wrong use of -> 5426
Error in Declaration 5427
Errors with New/Dispose 5428

. Other Pointers 5429

Files 5430
Invalid File Type 5431
File not found 5432
Path not found 5433
File access denied 5434
File not open 5435
File not closed 5436
Wrong File Pointer 5437
Confusion in Binary/ASCI! 5438
Other Files 5439
Streams/Memory 5440
Wrong number of bytes 5441
Error in Memory Read/Write 5442
Incorrect Seck,Rewind operations 5443
Problems with Shared Memory 5444
Other Streams/Memory 5449
Strings 5450
String Length mismatch 5451
Using Char instead of String 5452
String Constant too big 5453
String Concatenation problems 5454
String Comparison problems 5455
String Copy problems 5456
Other Strings 5459
Classes/Unions {54601)
Invalid Declaration of Classes 54610
Confusion in Public/Private 54611
Errors in Creating Insertors 54612
Using wrong Super/Sub Classes 54613
Errors in Protecting a Class 54614
Inheritance Problems 54615
Other Class problems 54619
Errors in Declaring Objects 54620
Errors in Messages 54630
Problems with Methods/Functions 54640
Errors in Using Constructors 54641
Errors in Using Destructors 54642
Wrong Overloading of Functions 54643
Error in using Friend Functions 54644
Error in Inline/Macro Functions 54645
Error in passing Objects to Funclions 54646
Wrong Overloading of Constructors/Destructors 54647
Error in Dynamic Initinlizations 54648
Other Methods/Functions 54649

C++/O0P Errors 54650
Wrong Overloading of Operators 54651
Errors using C++ KeyWords 54652
Errors using Unions 54653
Wrong use of :; operator 54654
Errors in using Polymorphism 54655
Other C++/00P 54659

Other Classes/Unions 54690

Other Data Structures 5490

Control Structures (5501)

Sequential (55101)
Assignment 55110
llegal Assignment 55111
Var/Expression not Type Compatible 55112
Division by Zero 55113
Floating Point Overflow 55114
Range Check Error 55115
Invalid Numeric Format 55116
Other Assignment 55119
Print/Scan (551201)
Wrong Arguments 551210
Invalid Format Specified 551220
Incorrect use of & operator 551230
Error Reading EOF EQLn 551240
Error in using cout, cin 551250
Other Print/Scan 551290
Expressions/Operations (55130)
Operand types don’t match operator 55131
Cannot Evaluate Expression 55132
Invalid Floating Point operation 55133
Bad Combination of OpCode/Operands 55134
Arithmetic Expression Errors 55135
Boolean/Relational Expression Errors 55136
Logic Expression Errors 55137
Wrong Operator Precedence 55138
Other Expressions/Operations 55139
Other Sequential 55190

Selection (55201)
Wrong Boolean Expression in If-Then 55210
Wrong nesting of If-Then-Else 55220
Errors in IF-Then statement syntax 55230

. Errors in SWITCH statement 55240
Errors in BREAKs 55250
Other Selection 55290

herative 5530
Incorrect Entering status in Loops 5531
Wrong Boolean Expression in Loops 5532
Error in Incrementing loop counters 5533
Ermrors in DO-While Syntax 5534
Errors in While-DO Syntax 5535
Errors in FOR loop Syntax 5536
Incorrect loop termination criteria 5537
Other lterative 5539

Hierarchical (55401)
Recurssion Errors 55410
Wrong No of arguments passed 55420
Wrong Type of arguments passed 55430
Invalid Function Reference 55440
Invalid Function Declaration 55450
Incompatible function return type 55460
Stack/Heap Overflow Error 55470
Other Hicrarchical 55490

Other Control Struciures 5590

Deep Semantic Errors 560
(these involve modifications in multiple
control structures, modules, eic)

Other Compilation/RunTime/Semantic 590

Configuration (601)

Qut of Memory 610

Include Files not found 620

Wrong Extemal Variable 630
Problems in Linking 640

Path for Include Files not found 650
Disk Read/Write error 660

Disk Seek Error 670

Problems with Processes 680

Other Configuration 690

. Maintenance 7-{Above ErrorNo]

Dictionary of Abbreviations

Phases

Requirements and Specification (RS)
Design (D)

Code (C)

Code Review (CR)

Compile (CP)

Test (T)

PostMortem (PM)

Maintenance (M)

-

I N N

Activities

Problem Undersianding (PU)

Domain Analysis (DA)

Building User Requirements (BR)
Requircments Review (RR)
Specifications (8)

Specifications Review (SR)

High Level Design [Key Modules] (HD)
Low Level Design [Objects, User Interface] (LD)
Pseudocode, FlowCharts (PC)

Design Review (DR)

Coding (C)

Code Review (CR)

Structured Walk Through (SW)
Compiling (CP)

Debugging (DB)

Test Case Generation (TG)

Testing (T)

PostMortem (PM)

Maintenance (M)

WMo wmE R WM -

U P =
N h L O

126

[APPENDIX]

Sample Complexity Results

Sherdil

573171994
PC-METRIC (C++) Version 4.05
Summary Complexity Report for; ANSTD1,RP2

Software Science Lenigth (N); 229
Estimated Software Science Length (NA); 276
Software Science Volume (V); 1336
Software Science Effort (E): 69278
Estimated Errors using Software Science (BA: 0
Estimated Time to Develop, in hours (TA); 1
Cyclomatic Complexity (VG1); 6
Extended Cyclomatic Complexity (VG2): 6
Average Cyclomatic Complexity: 0
Average Extended Cyclomatic Complexity: 0
Average of Nesting Depth: 1
Average of Avernge Nesting Depth: 0
Lines of Code (LOC): 141

Physica! Sotirce Stmits (PSS): 114
Logical Source Stmts (LSS): 29
Nonexecutable Statements: 23
Compiler Directives: 5

Number of Comment Lines: 23
Number of Comment Words: 155
Number of Blank Lines: 27
Number of Procedures/Functions: 7
5/31/1994

PC-METRIC (C++) Version 4.05
Summary Complexity Report for: ANSTD2.RP2

Software Science Length (N): 684
Estimated Software Science Length (NA); 402
Software Science Volume (V): 4274
Software Science Effort (E); 282147

Estimated Errors using Software Science (BA: 1
Estimated Time to Develop, in hours (TA): 4

Cyclomatic Complexity (VG1): 27
Extended Cyclomatic Complexity (VG2): 42
Average Cyclomatic Complexity: 5
Avernge Extended Cyclomatic Complexity: 8
Average of Nesting Depth: 3
Average of Average Nesting Depth: 1

Lines of Code (LOC): 243

Physical Source Stnts (PSS): 215
Logical Source Stmts (LSS): 111
Nonexecutable Statements: 14
Compiler Directives: 4
Number of Comment Lines: 22
Number of Comment Words: 160
Number of Blank Lines: 28
Number of Procedures/Functions: 5

5/31/1994
PC-METRIC (C4+) Version 4.05
Summary Complexity Report for: ANSTD3.RP2

Software Science Length (N): 1109
Estimated Software Science Length (NA: 546
Software Science Volume (V) 7319
Software Science Effort (E); 895684

Estimated Errors using Software Science (BA): 2
Estimated Time to Develop, in hours (TA): 14

Cyclomatic Complexity (VG1): 46
Extended Cyclomatic Complexity (VG2): 64
Average Cyclomatic Complexity: 6
Average Extended Cyclomatic Complexity: 9
Average of Nesting Depth: 3
Average of Average Nesting Depth: 2

Lines of Code (LOC): 366
Physical Source Stmts (PSS): 326
Logical Source Stmts (LSS): 174
Nonexecutable Statements: 29
Compiler Directives; 5
Number of Comment Lines: 27
Number of Comment Words: 208
Number of Blank Lines: 40
Number of Procedures/Functions: 7

5/31/1994
PC-METRIC (C++) Version 4.05
Summary Complexity Report for: ANSTD4.RP2

Software Science Length (N): 954
Estimated Software Science Length (NA): 660
Software Science Volume (V): 6506
Software Science Effort (E): 886479

Estimated Errors using Software Science (BA): 2
Estimated Time to Develop, in hours (TA): 14

5/30/1994 Page: 1
PC-METRIC (C++) Version 4,05
Complexity Report by Function for: ANC631004.CPP

Function FT N N ¥V E VG! VG2 Dpth AvgDph PSS LSS Nonex
CCDir Blk Cmt CmtWrd SP VL

- S BLS Ewee SREESS SLEN MESE Beees meses sed She Teewee we -

i’gmld::Pgmld() 9 10 23 47110 052 0 000 010
Pgmld::~Pgmld() 2 1 1 11106 040 0 001 110
FilelO::FilelO() 2 1 1 1110 040 0 001 110
File1O::FileOpen(char) 56 103 266 3621 33 2 12411 1 007
?’?[e?O?:FiIcRead(Fﬂ..E.im) 31 76 136 1961 2 2 1 013 5 0 003
;;lefo?:FileReadZ(FlLE.im) 39 74 171 2784 221 013 5 0 003
ll*':':le:l"'of:FileClose(FILE) 5 8 12 22110 071 0 003 80
l:':’ilclO::-FilelOO 2 1 1 1110 0400 001 110
MeanStdDist::MeanStdDist() 2 1 1 1110 0400 001 01
gdcanSldDist::Cn]cMcan(im.im) 42 72 184 2548 2 2 1 015 6 1 003
;\J(l}e:nsﬁtdbist::Ca]cSthev(int,im) 63 113 306 5420 2 2 1 117 8 1 003
:lczanTSldDis!::Cachist(im) 44 92 204 260522 1 112 4 0 00 3
:dtgmgsldDist::DispObjSizesDala(int.i 91 140 463 5185 33 1 023 13 2 03
‘ltdemllgtdlDisst::-MeanSldDisto 2 1 1 1110 0400 001 1
;lt?pemtercept::slopelntercepl() 2 1 1 1110 040 0 001 01
glopelmercept::CachlO 12 28 42 14511 0 0 9 2 0 004 16
gl:pelnterccpt::CachZ(int.int) 107 112 520 11644 2 2 1 12512 1 006
Elztz)[?eslfnercept::DispBlBZ(inl.int) 63 10t 300 3549 22 1 017 9 1 003

Slopelntercept::Est TotLOC() 36 73 158 1739 33 2 116 6 1 003
914

Slopelntercept::~Slopelntercept() 2 1 1 1110 040 0 001 11
0

main() 141 169 745 28617 3 3 1 0 41 25 8 0 826 774
9

Number of functions in this file: 21

127

® APPENDIX K

Sample Section from Spread Sheet

Sherdil

[te I e 3 O O 5 o O . 1 0 ¢ . To ﬂﬁ
| =y 1 | 1 |] I | I]
5 Q T oy wd 7] 0 0 O 0 _o _c O @ d 0 O _.m 0 Wd P
B 0 T W00 g 9, O] Wl 0L
) o L] F) POWd
) O L TR PRI
W [] TepoRI) L]
[(]) L]
| 0 AN W qag
AN B [")
L=
o Ol L Tru0 W. 0 0 D 3] 0 5 O ? LTF.
[° ﬂ..uuT (] v o [O] 10 O 0] ®
Zvm9i ZIE |WIEE o o [T ity (L3 PEL ({3 "EE vE 3 a6 ot L)
Teiceiet st (Tt LT g (I [[H3 [G Jir H (3 [} M 12 eqived Y
T3aLE EF |18 (I i3 3 [[oi (3 3 [) LY
Loy € [Ty [U3 T (13 0 3 E ¥ 3 o 0 . -y
[L] [T U] i 3 o 0 [] C o8 *u [[] [ML) DY
LeMIvIP 10 |8 T T [1.4 (21} (i3 {3 8 rc 9 oy o8l SR 2P PRV |
3 3 — ey dpg mov(is v 51 d _-.- [T s ¥ 5 - [md
X3 13 a1 Faamg oo | 1€ ¥ 0 Tt it O 1 O 0 5T T3 —
g | | i
{ 1
E W ez L 0L P\ O § 0O o5t) o8E 3 oiL [T.. L)
TIvIREE |10V LT L) [3 [T oy 5T o 3 O]
LA ey s [OZ | oy (O o€ (1 oF o8 3 0T o 1 hha]
EZ v 3 - P (021 3 oy 3 (D 59 or I oF Y ")
O 0 Ly a5 O CJ 0 0 0 o 10 0 WL e
iy A0 el) Py |6 9 (T (3 ok 13 @ (12 23 [[T]
CECELOE UE [BLY i L G 0 [of (1] of (B3 ot ® T]
T¥TIN IE |O0E o R0 F O oz 0 D (3 0 o [1) LTy]
[
r— —
5 D #eT1 PRS00 1 B0 D 081 001 C 5ot _ D I 50 CDh CD e]
G208 BEREL LFLIGIS S BICELS 196 AIOZEGLEL 6 JROBILLNE F [GLEEL00I C [ISLETLL & [SreiZ0 0L [Civéovd 11 |98 1€ {PeiLLs co) [sLofRES L {i1ss. ' SrsdLe e ﬂﬂt "wh Lpap Y
ICCEN S 18 JORIOZIL ST |WITIPE CLE EVOCOeE EL [FIRZELY 08 | Lv2orior L | 1961608 6L [rvisieE v (REWE© TOsoILS B1 (Eiatai oc |oactiin £1 |sMTati O [L9nAmas 81 [(rizieL & =1
TZUD WVELE_[WROWFT VT _::-.:3 O I N A TR T (P O G T e (N T T 3 I {eT9evwd 01 |Civ iRl 10 |ERIRVEIE & [INOFERL It |LDRLWiY T]
L]
WrCZEOZ 6 |Z1NNTE ZKC Sokoci | E9Z1106 §1_[T6CZIEE FE fsai11it €1 (6101 00 [VEIsvat CF | 1800060 £t [EPLssrs B |6E1 EE e 1600060 T [SWI8\C0 24 [CeEammp ot T g iy
LLOFPLE LT |CIDEAT PP W[EZIL0R1 T8 |TYOSIV0 K6 |SEPERSY (T _[LCCRCT WD |GZPILEE 06 {EPFERIC WL |ZLBIZOL 1T _|COLZIOE G4 |RCVHIIE CF | LISOZVEL ZE [66¢ BEv 68 5]
GO (O WL |ChTyeat Ui [IRIVEROCF [LCIiLIL KL [EVORCOY 96 [PIICCZY O [siAB ML SEEAsSL 61 JEUCNRES A3 [E(IRER L (BLEL VRN 3 |peecite e wid),
[3 A1 TEoikd €1 |ISNEFITT6 [P0 O WETes Iy Jizeiie o _|ZWvLivw 91 [LooEuh &y (Seidis £L_[TLacie &¥ | IWWTZTL L U6 VELHLELD & [ieuig By,
TN LW I T TS T < 3] 7313 E0ZaiZs #C [LPEPEVS we |ELBLELE LE (b2 9T 52 GRTETEC [Loy#ie O [SuIrsts 6e D :
[Posniy)
-aﬂ_ g
o Q e T LY [O O O L O O O » B | (o ﬂ\ Siing SN L Y|
TV T8 JELLL T W L BOV[191 [¥ @ 3 ve M m TS B (113 i S 0 iy o), v
CETIRIN LS JEIIT LY) 3 &F TR ve 7 o §% 3 [[i 5 e
e [Eie | e ot 3 13 €% [[o D T8 I §it 1] L
0 § P P | 0 0 0 0 o O 0 T 0 0 e
[0 [ko] O B ® D & O ® o 0 ¥ s ® 1]
] [] [t Lol [] [& [o 3 [] . 3 . [—
[madd
|
a 0 0 o 0
03 (13 [0 13
13 [13 s 0. 13
& 0 O O 901
0 O] ¥ 0
2 0 0 O v
L] [] o [[]
¥ T 5 T ¥

Taday

[e _ T6s Pl [3 v O Tes
5 (3 _ru. _2 3 _- I_..In (3 T
-

Iv 331 D A Pommens (501 &N D 901 D 303 05 Set e (D
sl ites {rristey ad JELitag ot “Tageaii| ELantden & |WUPUE0 63 | (taVe0s Z1 (EROILEE I |TUI504 SC JZEBIrae @ J2eLis2L 82 112 v {THINLL Bb
e IWLLE L1 |ELRIPD WO T O TL_JCREFOEIE £ |FCILERLCL [INRrRIE O [EWEIL & | INORREL 4X_[VOIEITI O [Poniiria T
SLIo 969L [SEI8LEE £1 JZRLCED BIT R EvirEr OF |ChCOIKI IS | LFROFEOF & | POLFIC1 1P GONG1IPVE € |SVEYeOR 48 1% TC_[PHEZDAL £F |CECULLE 66 {LDTOPET 84

L]] 1 1

PLLLIZE ZE 1622120 2C g LaTerEt L4 [S0619LP B [WEZLRL LX [CPalEOE BE Jiuaibil KT JSTCLCEO 04 [rsos L5 P O s It CCECEET iv

W] L2Y 61 _rLSSIRL L BN LEEEITN] SeSLE OF JALZEYSS £1 [EESXL0 0 [ZOSHML X JISEINIS LC 1173
maifieoesID #i [ZPPSACT &4 [6r0301 OC JLOWEES LS [PIPZLIN 18 JISHUORLTA R1EIE6C BT IRSFIGE P [GPRELIS 62 | SBLKICH

WeO¥Y|0ZEvLiS L3 [EiRLEEY pZ JL502PLL 1T J2ORENED 45 [CraliaZ RE 1R ROLLEN #r [OC COMELER L2 [EZPEL 6T L18FPLE 8T
Demen3 | CZEOSZE B3 _|VOVLLE U [SIAWFE BT |IEFLILE 0L |EZ8TEE CETEECEC L JERIENLe OX |5 05 [N
]
i
A0 Giseeaid
EECLILOE £ {LF Wiy S WL 0 0 _o _- 8 3 | 0
T wi g ZZv a1
& L&y W61
L [#8
0
0 €
Q 1
O @
gzt m
o (]
o (13
O ot
o (D
o (13
[3
e _d
1N R (113 ST Th1
] 0 »
108(Z Bt CRL 58 Joiz TitTrs Tl
FarALOS 104AI0s TorAI0e WA 'arAlGe TeIATGS
3 _o e (2 0 T 0 _-
O O & » 3 3 ¥
[3 I8 O ¥ [] Sk 1
o 0 © O 0 [0 &
T 0 o & (3 0 &
O O 0 0 0 0
O 0 0 _o] 0 _u
| 1 |
]
@ 0 O () 0 © 0
LI9FFRS C5 {061 T mwaovewilis £ 5 @ ¥ 0 (1 €
Y GO T Mspauveelly ¥] ¥ © [3]
%o O ey o]0 o [) 2 3 [) T []
o [] ot =[] 0 4] 3 0 [) 0 []
GG ED B v e[t [] 5 o L [3 vl L
IIFIFIIY & |OT S0 BV G| ¥ 3 [] 0] (I3 [3 1

128

® APPENDIX L

Calculations for Personal Capability Index

Sherdil

erso ability Index (Scale:
This index is divided into two categories:

o Experience (60)

» Performance (40)

The details are as follows:

(i) Experience (60)
1 ri inP
» 0.1 point/month for each programming language

e.g, Experience with C++ for 2 years and Pascal for 6 months would yield 2.4 + 0.6 =
3.0 points

2. Diversity in P i 1

+ 1 point/programming language in which subject has over 1 semester of
programming experience

* 0.5 points/programming language in which subject has less than 1 semester of

programming experience

e.g, an experience of 2 years of C, 1 year of Pascal and 2 months of Adn would give 1
+~ 1+ 05 = 2.5 points

» 3 points for each completed B.S or M.S degree

» 2 points for each degree which has not been completed yet but the subject is
enrolled in

¢ . point for each additional Major/Minor besides Computer Science

e.g, a subject enrolled in the M.S Computer Science program, with a completed B.S
in Computer Science and a minor in mathematics would get 2 + 3 + 1 = 6 poinis

®

i r d fi
e 2 points/year for full time experience

¢ 1 point/year for part time experience

e.g, 2 years of full time and 6 months of part time experience would yield 4 + 0.5 =
4.5 points

5. F . ith Soft Pacl (5)

» 0.5 poines for familiarity with each software package related to Databases,
Spreadsheets, Graphing tools, etc.

e.g, a subject with some working experience of Excel, Cricket Graph and DBase IV
would get 1.5 points. '

f

* 1 point/course in software engineering or OO-Design
e 1 point/tool used related to software engineering or OO-Design
(ii) Performance (40)

* 1 point for every 5 LOC/hr value of productivity. This productivity is the
average of the productivities in the 9 projects.

e.g, a subject with a productivity of 45 LOC/hr gets 9 points

8. Defects /KLOC (10)

» 0 points for a defect-rate of 100 defects / KLOC or more

e 1 point for a defect-rate of every 5 defects/KLOC below the 100 / KLOC level

e.g, a defect-rate of 85 / KLOC means 15 /KLOC below the base level, yielding 3
points. The defect rate is the average of the 9 defect rates for the projects.

®

9. Defect Removal Rate (5)
* 1 point for each 6 defects removed /hour value.

e.g, a defect removal rate of 15 defects removed per hour gives 2.5 points. This rate
is calculated from the averages of the nine projects.

i ubject i

This is the letter grade assigned to the subject in the PSP course, transformed to a
scale of 0 - 10.

®

VITA

Khalid Sherdil

Education:

Honors/Awards:

Societies:

M.S. in Computer Science (expected Feb. 1995)
McGill University, Montreal, Canada

B.S. in Electrical/Computer Engineering, 1993
Washington University in St. Louis, MO, USA

B.S. in Computer Science (Honors), 1993
Washington University in St. Louis, MO, USA

B.A. in Physics, 1991
College of Wooster, OH, USA

Tau Beta Pi

Eta Kappa Nu

Golden Key National Scholastic Society

Elliot Honors Student, Washington Univ., ‘93
Graduated with Distinction, Washington Univ., ‘93
Academic Achievement Award, Coll. of Wooster

ACM
LEEE
American Physical Society

129

-S_il-erdil

130

BIBLIOGRAPHY

[11 gﬁsic_liler. P. "Shared Learning," Management Science, vol. 36 (Aug. 1990), no 8, pp 938-

[2] Adler, P, and Clark, K., "Behind the Learning Curve: A Sketch of the Learning Process,"
Management Science, vol, 37, no 3 (May 1991), pp 267-281

[3]1 Albrecht, A., Gaffney J. "Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation," IEEE Transactions on Software
Engineering, vol. SE-9, no 6, Nov. 1983, pp 639-648

[4] Argote, L., Beckman, S. and Epple, D. “The Persistence and Transfer of Learning in
Industrial Settings,” Management Science, vol. 36, no 2, (Feb. 1992), pp 140-154

[5] Arrow, K. "The Economic Implications of Learning by Doing," Review of Economic
Studies, vol. 29 (April 1962a), pp 166-170

[6] Baker, A., et al.. "A Philosophy for Software Measurement," J. Systems Software, vol, 12
(1990), pp 277-281

[7]1 Baloff, N. "Extension of the Learning Curve - Some Empirical Results," Operations
Research Quarterly, vol. 22, no 4, 1971, pp 329-340

[8] Barnes, B., Bollinger T. "Making Reuse Cost-Effective,” IEEE Software, Jan 1991, pp 13-
24

[9] Basili, V. "Quantitative Evaluation of Software Methodology,” Technical Report TR-
1519, Dept. of CS, University of Maryland, July 1985

[10] Basili, V. and Weiss, D. "A Methodology for Collecting Valid Software Engineering
Data," IEEE Transactions on Software Engineering, vol. SE-10, no 6 (Nov. 1984) pp 728-
738

[11] Basili, V., Rombach H., "Goal Question Metric Paradigm,” Encyclopedia of Software
Engineering, vol. 2, 1994, John Wiley & Sons, Inc.

[12] Basili, V., Rombach H., "Measurement," Encyclopedia of Software Engineering, 1994,
John Wiley & Sons, Inc.

[13] Basili, V., Selby R. "Comparing the Effectiveness of Software Testing Strategies,” 1EEE
Transactions on Software Engineering, vol. SE-13, no 12, Dec. 1987, pp 1278-1296

{14] Basili, V., Selby R., Phillips T. "Metric Analysis and Data Validation Across Fortran
Projects," IEEE Transactions on Software Engineering, vol. SE-9, no 6, Nov. 1983, pp
652-663

[15] Basili, V., Selby, R. and Hutchens, D. "Experimentation in Software Engineering," 1EEE
Transactions on Software Engineering, vol. SE-12, no 7 (July 1986), pp 733-743

[16] Boehm, B. "Software Engineering Economics,” 1981, Prentice-Hall, Englewood CIiffs, NJ

[17] Card, D., Agresti W. "Measuring Software Design Complexity,” The Journal of Systems
and Software, vol. 8, 1988, pp 185-197

Sherdil

131

(18] Chillarcge, R., et al. "Orthogonal Defect Classification - A Concept for In-Process
Measurcments,” JEEE Transactions on Software Engineering, vol. SE-18, no 11, Nov.
1992, pp 943-9535

[19] Coulter, N. "Software Science and Cognitive Psychology," IEEE Transactions on
Software Engineering, vol. SE-9, no 2, Mar 1983, pp 166-171

[20] Curtis, B., et al, "Measuring the Psychological Complexity of Software Maintenance
Tasks with the Halstead and McCabe Metrics," IEEE Transactions on Software
Engineering, vol. SE-5, no 2, Mar 1979, pp 96-104

[21] Cuntis, B., et al. "Productivity Factors and Programming Environments," Proceedings of
the Seventh International Conference on Software Engineering, Washington DC, IEEE
Computer Society, pp 143-152

[22] Curtis, B., Sheppard S., Milliman P, "Third Time Charm: Stronger Prediction of
Programmer Performance by Software Complexity Metrics," Proceedings of the 4th
International Conference on Software Engineering, 1979, pp 356-360

[23] Dunham, J., Kruesi, E. "The Measurement Task Area," IEEE Computer, Nov. 1983, pp
47-54

(24] Dutton, J., Thomas, A. and Butler, J. "The History of Progress Functions as a Managerial
Technology,” Business History Review, vol. 58 (Summer 1984), pp 204-233

[25] Emum, K., Moukheiber, N. and Madhavji, N. "The Empirical Evaluation of the G/Q/M,"
Proceedings CASCON 1993, vol. 2, pp 265-289

[26] Fagan, M. "Advances in Software Inspections,” IEEE Transactions on Software
Engineering, vol. SE-12, no 7, Jul. 1986, pp 744-751

[27] Gill, G., Kemerer C, "Cyclomatic Complexity Density and Software Maintenance
Productivit%,s"leEE Transactions on Software Engineering, vol. SE-17, no 12, Dec. 1991,
pp 1284-1

'[28] Herbsleb, J., et al., "Benefits of CMM-Based Software Process Improvement: Initial

Results,” Technical Report, CMU/SEI-94-13, Aug. 1994, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA 15213

[29] Hirsch, W. "Manufacturing Progress Functions," The Review of Economics and Statistics,
vol. 34 (May 1952), pp 143-155

[30] Humphrey, W. "Managing the Software Process,” Reading, MA:Addison-Wesley, 1989
[31] Humphrey, W. "A Discipline for Software Engineering,” (currently being published)

[32] Irwin, P. H and Laugham, F. W. "The Change Seekers," Harvard Business Review, vol. 35
(Jan-Feb. 1966), pp 81-92

[33] Jones, T. "Measuring programming quality and productivity," IBM Systems Journal,
Vol. 17, No 1, 1978, pp 39-63

[34] Jones, T. "Reusability in Programming: A Survey of the State of the Art," IEEE
Transactions on Software Engineering, Vol. SE-10, No 5, Sept. 84, pp 488-494

[35] Kemerer, C. F. "How the Leamning Curve Affects Case Tool Adoption," IEEE Software,
May 1992, pp 23-28

Sherdil

132

[36] Kemerer, C., Porter B. "Improving the Reliability of Function Point Measurement; An
Empirical Study," IEEE Transactions on Software Engineering, Vol. 18, No 11, Nov. 92,
pp 1011-1024

[37] Kerlinger, F. "Foundations of Behavioral Research,” 3rd ed., 1986, Holt, Rinchart and
Winston, New York, NY

[38] Kidder, L. "Research Methods in Social Relations," 5th ed., 1986, Hold, Rinehart and
Winston, NY.

[39] Kleinbaum, D. "Applied Regression Analysis and other Multivariable Methods," 2nd ed.,
1988, PWS-Kent Pub. Co., Boston, MA

[40] Koffman, E, "Turbo Pascal,” 3rd ed., Addison-Wesley Publishing Company, Inc.,
Reading MA, p AP-42

[41] Leblanc, R., Fischer C., “A Case Study of Run-Time Errors in Pascal Programs,"
Software-Practice and Experience, Vol. 12, 1982, pp 825-834

[42] Levy, F. K, "Adaptation in the Production Process," Management Science, vol, |1, no 6,
(April 1965), pp B136-B154

[43] McCabe, T. "A Complexity Measure,” JEEE Transactions on Software Engineering, Vol.
SE-2, No 4, Dec. 76, pp 308-320

[44] PC-Metric, SET Laboratories, P.O. Box 868, Mulino, OR 97042

[45] Putnam, P. and Myers, W, "Measures for Excellence," Englewood Cliffs, NJ: Yourdon
Press, 1992

[46] Rapping, L. "Learning and World War II Production Functions,” Review of Economics
and Statistics, vol. 47, 1965, pp 81-86

[47] Remus, H., Zilles, S. "Prediction and Management of Program Quality,” Proceedings of
the 4th International Conference on Software Engineering, Munich, Germany, 1979,
p341-350.

(48] Ripley, D., Druseikis F. "A Statistical Analysis of Syntax Errors," Computer Languages,
Vol. 3, 1978, pp 227-240

[49] Rosenthal, R. "Essentials of Behavioral Research: Methods and Data Analysis," 1984,
McGraw-Hill, New York, NY

[50] Russell, G. "Experience with Inspection in Ultra-Scale Developments,” IEEE Software,
Jan 91, pp 25-31

[51] Sheil, B “The Psychological Study of Programming,” Computing Surveys, vol. 13, no
1, Mar 1981, pp 101-120

{52] Shepperd, M. "An Evaluation of Software Product Metrics,” Information and Software
Technology, Vol. 30, No 3, April 1988, pp 177-188

[53] Sherdil, K., Madhavji N. "Personal Progress Functions in the Software Process,”
Proceedings of Ninth International Software Process Workshop

[54] Standish, T. "An Essay on Software Reuse," IEEE Transactions on Software
Engineering, Vol. SE-10, No 5, Sept. 84, pp 494-497

Sherdil

133

[55] Strait, PY "Probability and Statistics with Applications," Harcourt Brace Jovanovich, New
York, N

[56] Straub, D. "Validating Instruments in MIS Research,” MIS Quarterly, June 1989

[57] Sunohara, T., et al. "Program Complexity Measure for Software Development
Management," Proceedings of 5th International Conference on Software Engineering,

1981, pp 100-106

[58] Turban, E. "Incentives during Learning - an Application of the Learning Curve Theory
and a Sugvey of Other Methods,” Journal of Industrial Engineering, vol. 19, no 12, 1968,
pp 600-607

[59] Walrad, C. and Moss, E. "Measurement: Key to Applications Development and Quality,"
IBM Systems Journal, vol. 32 (1993), no. 3, pp 445-461

[60] Yelle, L. "The Learning Curve: Historical Review and Comprehensive Survey,” Decision
Sciences, vol. 10 (Feb. 1979), pp 302-328

[61] Zultner, R. "The Deming Approach to Software Quality," Quality Progress, v 21, no 11,
pp 58-64

Sherdil

