INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

@®

UMI

Performance Analysis of Computer Systems

Michele Perucic
School of Computer Science
McGill University, Montréal, Canada

July 2001

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Copyright © Michéle Perucic, 2001

i+l

oN'alional Library m nationale
eucblq:gnphcasn:wms ::qrv‘:ces bibliz‘graphiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canads Canada
Your fis Votre réldrance
Ouwr o Nowe réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve 1a propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent &tre imprimés
ou autrement reproduits sans son
autorisation.

0-612-75334-4

Canada

Abstract

With an ever-growing and more productive computer industry, the performance
of computer systems has become a major concern. Problems related to computer
performance usually occur either because the system is not correctly sized or
because its resources are not adequately allocated.

Performance analysis of computer systems is the process of evaluating the current
performance of a system by monitoring and studying its behavior under different
loads. It involves a deep understanding of the functioning of the basic components
of a system. Performance analysis is typically followed by performance tuning, in

which required changes are applied to the system in order to achieve optimum

performance.

In this thesis, we discuss the basics of performance analysis. The different
resources of a system are described and an overview of performance-monitoring
tools for these resources is presented. An application of performance analysis is
also included: two new major systems at McGill University are analyzed (the

library management system ALEPH and the finance system BANNER).

-t

Résumé

L'industrie informatique ne cessant de s'accroitre exige une productivité toujours
plus grande. Ainsi, la performance des systémes informatiques est devenue un
élément essentiel. Les problémes reliés a la performance d'un ordinateur
surviennent généralement soit parce que le systéme n'a pas la capacité appropriée,

soit parce que les ressources du systéme n'ont pas été adéquatement accordées.

L'analyse de la performance des systémes informatiques s'effectue par I'évaluation
de la performance courante d'un systéme, en surveillant et en étudiant son
comportement sous différentes charges. Cette analyse exige une bonne
connaissance du fonctionnement des composantes de base du systéme. L'analyse
de performance est habituellement suivie d'une optimisation de la performance,
opération durant laquelle les changements requis sont apportés au systéme en vue
d'obtenir une performance optimale.

Cette thése expose les éléments de base de l'analyse de performance. Les
différentes composantes d'un systéme y sont décrites ainsi qu'un apergu des outils
de contrle nécessaires. Une application de l'analyse de performance est
également incluse: deux nouveaux systémes importants de 1'Université McGill
sont analysés (le systéme de gestion bibliothécaire ALEPH et le systeme de
gestion financiere BANNER).

Acknowledgements

I would like to express my gratitude to everyone who has made this work

possible.

Thanks to my supervisor Professor Gerald Ratzer for his continuous

encouragement and support, as well as his precious advice and availability.

Thanks to Vice-Principal Anthony Masi for his financial support, and for the time

and guidance he granted me.

Thanks to Gary Bernstein for his initial help in starting this project, and for giving

me access to the Network & Communications Services facilities.

Thanks to Professor Roger Rigeihof for his help and advice that also made this
work possible.

Many thanks to Shelly Feran for her technical supervision and invaluable help,

and without whom this thesis could not have been achieved.

Thanks also to Jacek Slaboszewicz and to Lyne Thibauit for their generous help
and time.

Thanks to Georges Kanaan for helping me in solving some formatting problems.

I would also like to thank McGill University, where I have spent many useful and

pleasant years.

Contents

.

i [/P i

» r.d 'Yy

(2] 111 - U i

wl ts

Ackno (5 11 0 1] N m

ti 1
EFOAUCEIONooovinrnneeeiieeieoeiieecsseesenssnsesesnsseesesssssssnnnnnes

Probl finiti

1.1 Problem Definitionccvvviiivrieieiiiiiriieiereoreisesaeoansesorsonsons 1

1.2 PrevioUuS WOTK ..ovivroreririirerecnseeceosoessoseorssssessssssssessnssnsassnns 2

1.3 TheSiS SIUCLUIEovviriieiiiiiiieiieieeeereeesrorosssnseosansesssnnsnnnsnens 4

Part I Performance Analysis: Technical Background ... 5

2 System Performance Overviewccccooovivvrennnenn. 6
2.1 System Resourcescoooiviiieiiiiiiimiiriiii e eeane 6
2.1.1 TheCPU ...ouvrririiiiiin ettt ee e sect s e e nane 8

2.1.2 The MeMOrY ..cccvvremiiriiiiiiiieiiiiiieen e sre s e eeens 11
2.1.3 The Disk /O subsystemcoceveermeimenmrrvirieiieiinicacnnnnns 14

2.1.4 The NetWorkceouemeieiiiiiiiii i eee e e 19

2.2 Measuring Performance eeetrsressiaestesre s ae et s oaennenne 22
2.2.1 Performance MEtriCScccovimereriiemirieriireiieniennneecennn 23

2.2.2 Measurement Techniquescocoooveeoimimieiiiiiiiiiiicinenn. 26

2.2.3 Reporting Measurementsccooceeeeoccomierureccrcccecreeenen 30

CONTENTS

\
3 Performance Monitoring Toolsc..ooooiiiiiiiiiniinnn. 32
3.1 Common Monitoring UtIHtesocvveeriverniiiiinrieciiinicrreerenenn. 32
3.1.1 Monitoring the CPUcovimiriiiiiiiiii v reeren e 33
3.1.2 Monitoring MemOrycceverniiniieiiniiniiirireireierennecannn 39
3.1.3 Monitoring Disk /Oevirmrnieiiiiiiiiiiiiiiieeene 42
3.14 Monitoring the NetwWorkcccocovvnmiiiiiiiiiiiiiiieiinens 45
3.1.5 General Monitoring Toolsccooeeriieiiiriiiivierecreeerennn. 49
3.2 Other/Commercial Monitoring ToOISccovevvririvvmvievinnrinnienn, 51
Part II Performance Analysis of two systems: ALEPH
and BANNER ...t 57
4 Performance Analysis of ALEPHccooovrrinnnnnn.n. 58
4.1 ALEPH System OVEIVIEWcouviiniiiiiiiiiiiiiiiiiiriereierrerrenecss 58
4.1.1 System Hardware Configurationccceverveeevveveecacnnene. 58
4.1.2 The ALEPH Applicationcovvvieenrinininiiiicicincecnan. 59
4.1.3 ALEPH’s Intra-communicationccoieivvmeeineninnnenes 60
4.1.4 ALEPHUSEIS ..cocuenniiiiiniiiitiiiniiieiiiinircnrereeeenees 61
4.1.5 SystemUSe ..coirriiiniiiiiiiiiiiicicc e cceccoeeaes 62
4.2 Performance Study of Alephcoooriiiiiiiiiiiiiiiiiccene 62
421 CPUUSAEE ..ovrrrrtrimciciiiiiiieeeiecs e s sn e s on e ness 64
422 Memory Usageocovimiiiiiiiiiiiiiiieciiientciroesenenenesoens 70
423 Disk Subsystem USagecoeeeverrinnnmrerncrnecinreercoeacncens 72
424 Network ACHVILY ...ovenviremrmreeimroceiicececicrcc i o neroneen 75

. CONTENTS vi
S Performance Analysis of BANNER 77
5.1 BANNER System OVErVIiewWcoceiviiiiiiiiiiriiniinciiciicnecienrienen 77
5.1.1 System Hardware Configuration RN £ -

5.1.2 The BANNER Applicationcocoeeviiiiciiiiiiiiecininnnee. 80

5.1.3 BANNERUSEIS ..ccovririiiiiiitiiiiiiirr e e eeeee 82

5.1.4 SystemUSE ..ocovvvriinrerrenrrnrirrerrocorcrrrrreerreerreressnsssen 83

5.2 Performance Study of Nimbus TN 84
521 CPUUSAZE ..coovvviireiniiirirnriiiiiiciee et ct e senessennans 86

522 Memory Usagecoooevriinminiiiiiiiiiiririiienierenernenrenes 92

5.2.3 Disk Subsystem Usagecoevveeiiemieiinerieciiiiiesonnescenes 95

524 Network ACHVILY ...covovvririiririiiiiiimierieiriereeieernrsnorassnes 98

. 5.3 Performance Study of Neptuneccovreiiminiiiiiiiiiiiiiciiennens 100
53,1 CPUUSALEE .coovrrrirniiieniitiiiiiiistciestisiesrersssesiscoresness 100

532 Memory USageocovveiirimiiniiicienreicrnceciactcraessnssnsa 107

5.3.3 Disk Subsystem USageccovvriruiiiiiiiiiiiiisiriresenconens 110

5.3.4 Network Activity creereeens erernenreeneeereeeeeas ceeereasen . 114

5.4 Performance Study of Poseidonc.ccoovieiiiviiiiininvernnennen. 116
54.1 CPUUSAEE ..oorvirririiniiiiiiiicitiieenntscesens s eersaes 116

542 Memory USagecooeiiimiiiiii v s s 121

5.4.3 Disk Subsystem Usageccccovenene... eeeeeeissasen s ersaas 121

544 Network ACUVILY ..ceneiiiiiiiiiiiii e eeee s snes 123

CONTENTS vii

6 Conclusioncooovrririiiiiiiin. peerern e 125
6.1 SUMMALY ...ooviriiiiiiiiciiiir e reees e e renenene 125
6.2 Future WOrKcoveereemieiiiiiiiie e e 126

Appendix A List of tools run on Alephccevveerernniiirnireeennnnenn 128

Appendix B List of tools run on Nimbusccceoeeeeenrerreeemveneennnnes 131

Appendix C List of tools run on Neptunecceeevureeveernernnnrecnen 134

Appendix D List of tools run on Poseidoncceeeuveeeeennererninennn. 137

Bibli h 140
ibliography ereeerens eeeeerer—. e rereer————————

Chapter 1

Introduction

1.1 Problem Definition

In any computer system, and particularly, in shared multi-user computer systems,
performance-related problems commonly occur. These problems are often
characterized by a slowdown or a saturation of the system. Performance problems
directly affect productivity and are often very complex and hard to solve.
However, by regularly monitoring the performance of a system, it is possible to

avoid such problems.

Performance analysis is the process of determining the current performance of a
computer system by observing and characterizing its behavior. Performance
analysis examines how the computer is making use of its resources, and it looks

for existing weaknesses in the system.

The main goal of performance analysis is performance tuning. Performance
tuning is often mistakenly associated with increasing the speed of a computer
system. In fact, tuning is the process of optimizing computer performance by
reconfiguring the system in order to achieve the best possible performance with
the existing resources. When reconfiguring cannot help, additional hardware has

to be bought, and an upgrade is necessary.

Performance monitoring and tuning is an essential task that continues during the
whole lifetime of a computer system because such a system is continuously

evolving (typically the number of end-users increases over time, so the work to be

CHAPTER I. INTRODUCTION 2

processed also increases). In fact, performance should be a design goal, i.e. it

should be incorporated at the source, in the design phase of a system.

The material covered in this thesis is mainly based on Sun® servers running the
Solaris™ operating system, with an emphasis on Oracle database systems, but
almost everything presented is applicable to any UNIX-based system. Moreover,
when tuning, the overall knowledge is portable between computer platforms,
operating systems, and database management systems [DUN98]. The tools
described in Chapter 3, however, are UNIX (mainly Solaris)-specific tools.

1.2 Previous Work

Performance of computer systems is a subject of interest for an increasingly large
number of people. Many books have been written (and are still being written)
about performance, and many vendors have developed different tools that analyze

performance on most computer platforms.

In most cases, the books published in the field of performance are written by
performance specialists, people who have actually had real experiences in
analyzing and tuning all sorts of computer systems in big organizations [CPS98,
LOU91, GCO96, JAI91, and ALO99]. Scholars in universities also often have a
strong interest in performance [CER98, GEL0O and LILO0O].

When working with Sun systems (running the Solaris operating system), the most
famous book used is Adrian Cockcroft’s Sun Performance and Tuning [CPS98].
It is a very rich book containing detailed documentation about the behavior of
systems, with a large number of performance recommendations. It also includes a
thorough description of the SE Toolkit, a very widely used toolkit developed by
Cockcroft for analyzing performance on Solaris systems. A lot of documentation
is also available for Sun system administrators from Sun Microsystems at

http://docs.sun.com or http://www.sun.com/sun-on-net/performance.html.

CHAPTER 1. INTRODUCTION 3

Other books focus on capacity planning and performance management on Solaris
[CER98] or more globally on UNIX systems performance tuning [LOU91]. These
are very practical when analyzing UNIX-based systems, as they review very

clearly all the system’s aspects to be concermed with when looking at

performance.

With increasingly large and complex databases today, database performance has
become another very common area of interest. Many books explore the

performance of relational database management systems such as Oracle [GCO96
and ALO99].

Some authors are mainly concermed with the theory of performance analysis and
of performance measurement more specifically, without worrying about the
platform on which the analysis is to be performed [GUN98, GEL0O, JAI91, and
LIL00]. Their work tends to be quite comprehensive/theoretical, as it is very
mathematically oriented (sometimes prerequisites in statistics can help the

reader).

As for the existing tools to manage systems performance, they are of wide variety.
Besides the basic tools that are often included with the operating system, many
commercial products are available. Vendors often refer to performance
management using different terms, such as: performance monitoring, performance

analysis, capacity planning, troubleshooting, and performance tuning [CPS98].

Performance management, as a subset of the computer industry, has experienced
significant growth in the past few years due to an increasing interest in
performance issues, and new products are still being developed as systems are
getting more and more complex and specialized. The competition among vendors,

however tends to lead to similar features and functionality among products.

CHAPTER 1. INTRODUCTION 4

1.3 Thesis Structure

This thesis is organized in two major parts.

Part I, “Performance analysis: Technical Background”, overviews the theory of

the vast subject of performance of computer systems.

Chapter 2, “System Performance Overview”, describes the basic resources
that affect —and are affected by— performance, with a tuning approach. It
also introduces the reader to the basic performance measurement

parameters and methods.

Chapter 3, “Performance Monitoring Tools”, is an overview of the most
common tools used when monitoring and analyzing the performance of a
computer system. It describes the tools and techniques for using them and

interpreting their output. It also includes a brief overview of some

commercial tools.

Part I, “Performance Analysis of two systems: ALEPH and BANNER”, is an
application of performance analysis as it contains the practical analysis of two

systems that went live recently at McGill University.

Chapter 4, “Performance Analysis of ALEPH”, includes a description of

McGill’s new library management system ALEPH, followed by its
performance analysis.

Chapter 5, “Performance Analysis of BANNER”, contains an overview
and analysis of the new system set up to manage the students, finance, and

human resources information systems at McGill.

Part 1

Performance Analysis:
Technical Background

The following chapters provide the background necessary for performance
analysis. Chapter 2 identifies the resources that are to be monitored, and describes
the parameters to look for when collecting data, as well as the methods commonly
used when analyzing performance. Chapter 3 describes the usage of common
tools that are used for taking performance measurements and overviews some

commercially available tools.

Chapter 2

System Performance Overview

Performance is a design goal; it is not something to worry about only when a
system starts showing symptoms such as a slowdown or when users cannot log in
anymore'. It is essential to integrate performance monitoring as a regular and

continual practice during the whole lifetime of a system.

Indeed, in a system where performance measurements are regularly being taken, it
is much easier to localize a performance-related problem when it occurs.
Conversely, it is extremely hard to identify a problem when no previous

performance measurements have been taken when the system was still healthy.

The following sections try to summarize performance theory in two parts. First,
the basic system resources involved in delivering performance are identified and
described with an emphasis on tuning. Then, an overview of common
performance metrics follows, with a description of basic methods used for

performance measurement and analysis.

2.1 System Resources

In any computer system, there are four basic components that interact and affect
overall system performance. Those components are often referred to as
subsystems or resources, since each one of them is a an integral and vital part of

the system:

! Note that this is an extreme case. Performance problems are usually identified and solved before
this happens.

6

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 7

e The Central Processing Unit (CPU) — It fetches instructions from main

memory, processes them, and executes them;

o The Memory (RAM) - It is the amount of physical/main memory on the
system. It stores the operating system, the application programs, and the
data in current use so that they can be quickly reached by the processor;

o The Disk Input/Output (I/O) Subsystem - It is the hard disk(s) and
interface(s) of the system. It stores large amounts of data (including

databases);

e The Network — It connects computers together, and transports and transmits

the information into and out of a computer to another.

System resources are strongly interrelated and the performance of one resource
often affects the performance of another resource. Also, tuning one subsystem can
improve another subsystem, but it can also penalize yet another subsystem. So
optimizing performance is somewhat a matter of making tradeoffs [LOU91 and

OST96] (see following subsections).

Resources are meant to work together and in a useful manner. In other words,
resources are meant to be used as fully as possible without performance
degradation, because a system is meant to be fully utilized (up to 90%). A system
where resources are always plentiful is an oversized system (i.e. the hardware
bought is more than needed) [GCO96]. To get the best performance out of a
computer system, it is important to understand how each of the components

behaves and how it interacts with the other resources.

All system performance issues are really resource contention issues [LOU91 and
ICCMO00]. Every resource has its own set of limitations. When a performance
problem exists, it is often very difficult to figure out which resource is causing it

because of the complex interaction among the resources.

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 8

In the following subsections, we describe the role played by each of the
fundamental devices listed above, with an emphasis on potential performance

problems affecting each resource and on tuning.

2.1.1 The CPU

The CPU not only executes processes (which are sequences of instructions that
form single units of work) but also controls the activities of the other system
resources. It moves data to and from memory, reads/writes data from/to disk, and
sends/receives data via the network. In current systems, the CPU is generally fast
enough to handle the system’s workload (i.e. the amount of work that the system
has to perform, or the overall demands placed on the system)?; it is actually the
fastest device in the whole system. So when CPU problems occur, lack of speed is
probably not the cause. The problems are usually located somewhere else
[ICCMO00]. The causes can vary from untuned applications, to users opening
multiple sessions of a program, long-running jobs running during peak hours,
memory or I/O slowdown, etc. In an Oracle database system, CPU problems can
be due to undersized or oversized memory allocations for Oracle memory
structures [GCO096].

CPU problems also occur when too many processes are trying to use the CPU at
the same time. This is a frequent situation and is referred to as CPU contention. In
such a situation, a lot of processes end up waiting® in a queue because each one
needs a certain number of CPU cycles to execute and the CPU is allocated fairly,
so each process only gets a fixed number of CPU cycles (time slice). As the
number of processes increase, the CPU gets monopolized. In some cases, a single

huge process may also hog the CPU.

2 Usually, in most On-Line Transaction Processing (OLTP) systems, it is reasonable to assume
that the workload is the number of processes running on the system.
3 At any point in time, a live process is either ready, running, or blocked (waiting).

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 9

There are a few ways to measure CPU contention. The most intuitive way is to
check the load average (see section 3.1). The load average reports the number of
active processes at any time. Although useful, this method is insufficient because
it does not take into account the interdependence of system resources. Indeed, the
load average can indicate a very high load while the CPU is mostly idle. This
happens when the system is short on memory or when the I/O is slow (because
processes waiting for I/O, for example, are reported as part of CPU time and get
added to the load). Another more informative and reliable way to measure CPU
contention is to look at detailed processes status reports (including the size, time,
and priority of each process) or long-term summaries such as logs [LOU91].

Different ways of getting such information will be described in Chapter 3.

CPU utilization is another measure, which reports on the usage under the system’s
workload (see section 2.2.1). When the CPU utilization is high, this alone does
not mean that there is a problem, but rather that the CPU is working hard and
efficiently [ICCMO00 and GCO96]. When a CPU problem really exists, the CPU
utilization shows a very low idle time corresponding to a very low time waiting

for /O (both less than 5%) [OST96]. In such a case, more CPU power is probably
necessary.

It is important to watch how the CPU is spending its time. At any given moment,
the CPU is either servicing a user request (user time), or working in system mode
to access resources (system time), waiting for /O (wait time), or idling (idle
time). The system time should not become greater than the user time (unless the
machine is a Network File System — or NFS* — server), because in such a case it
would mean that there is a process making many inefficient system calls and
consequently wasting the CPU cycles, or that there is a network slowdown
[SOB99, CPS98]. In general, experienced administrators believe that the ‘user
time:system time’ ratio should stay around 2:1.

* An NFS server stores and provides files to different users over the network, as if the files were
on the users’ own computers.

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 10

Other process management issues should also be checked: scheduling and
switching processes [OST96]. The operating system schedules processes and
performs context switches (changing parameters for the next program to run).
These operations can be time consuming for the CPU, especially when there are
too many processes. In an Oracle system, when a lot of time is spent in context
switches, this can be very CPU-intensive if the System Global Area (SGA: itis an
area in memory that is shared by all the users, and which is used by Oracle to
cache database data for faster access) is very large because when small processes
are continually created and destroyed, page tables have also to be built up. This
becomes particularly expensive when shared memory is locked, because then

every page has to be updated and loaded again [GCO96].

Another problem with the CPU is thrashing [STA95, GCO96, and ICCMO00].
Thrashing is one of the worst situations a system can be in. In such a situation, the
CPU cycles become exclusively dedicated to moving processes from memory to
disk and back again. Thrashing is due to excessive paging and swapping to and
from memory (see section 2.1.2). To avoid thrashing, it is very important not to
run out of memory. In the context of an Oracle system, particular care needs to be

given to per-user memory settings [GCO96].

Generally speaking, memory problems affect the CPU more than do disk I/O
problems because disk I/O demands CPU only after it releases data, whereas
memory can make excessive and continual demands on the CPU (c.f. thrashing).
Usually, taking care of the memory and I/O problems will help the CPU, since the
CPU services both the operating system and the user programs.

In Client/Server environments, round trip latency when sending a message can
cause CPU overload. A lot of overhead is generated by applications sending a

message over and over again via the network.

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 11

In CPU tuning, it is important to (1) ensure that the computer is doing useful work
24 hours a day (get the system users to run long-running jobs at night or during
off-peak hours), (2) set priorities to processes: make big jobs run at lower priority,
(3) prevent the system from doing unnecessary work, etc [LOU91].

2.1.2 The Memory

The computer's random access memory (RAM), or simply memory, is the holding
place for all the information currently needed and used by the CPU. It usually
contains the operating system, the program instructions, the program data, and
whatever the CPU is currently working on. Memory is quickly reachable by the
CPU because it is physically located close to the processor in the computer. It is
not the fastest accessible location though; the cache — similar smaller memory
located right next to the processor — is the fastest temporary storage place.
However, memory is by far the fastest when compared to disk storage. That is
why it is always recommended to have a lot of memory; the more RAM there is in

a system, the less frequently the computer has to access instructions and data from
the hard disk.

Virtual memory is a mechanism, which allows more memory than there actually
is on the computer to be available to programs. The way virtual memory works is
by using a portion of the disk space, called swap space, and mapping it to
memory. This way, ‘logical memory’ gets bigger than ‘real’ (physical) memory
[STA95, WIS00, and ICCMO00]. Note that swap space must be utilized effectively
to improve performance: swap partitions should be placed on as many different
disks as possible (but only one disk per controller) and on the fastest disks in the
system, not on full or fragmented file systems.

In general, on most computer systems, memory is managed as a collection of
pages, which are units of data of several kilobytes. When the operating system

wants to allocate memory for a process, it first looks for any free pages in

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 12

physical memory (scans memory). If it cannot find any, it selects pages that
belong to other active processes and copies them out (they are paged-out) to disk
so that they get freed for the new process. This operation is called paging and is
managed by the virtual memory subsystem. When a process needs to access its
paged out page again, a page fault occurs, and the process has to wait until the
page is copied back into memory (paged-in). A similar scenario happens with
swapping, when processes are moved to swap space (on disk). The only
difference between paging and swapping is that paging moves individual pages of
processes to disk, whereas swapping moves entire processes to disk. Both paging
and swapping need CPU cycles and therefore have an effect on CPU utilization.
As the demand for memory increases, the paging and swapping rates also
increase, as well as the associated CPU and I/O activity. When this activity gets
so intense such that the CPU is practically only shuffling pages around (from
memory to disk and back), the system is said to be rhrashing (c.f. section 2.1.1).

Although excessive paging and swapping are clearly memory contention
problems most of the time, they do not always indicate a shortfall in memory. In
fact, under a virtual operating system, moderate paging is normal; it means that
programs are making use of the extended memory space. Also, moderate
swapping is often part of a normal “housekeeping” process: jobs that have been
sleeping for a long time are usually swapped out to free memory. Basically,

paging and swapping prevent the system from crashing due to a lack of memory
[ICCMO0 and CPS98].

However, because paging and swapping use the CPU and /O devices, overall
system performance drops significantly when their rates become too high, and
performance does not come back to normal before the system’s memory
requirements are again within its capacity. So excessive paging and swapping
really are signs of memory shortage {LOU91, CPS98]. In an Oracle system, the

worst situation happens when the system’s SGA is swapped out of memory

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 13

[GCO96). Because disk access is so much slower than memory access,

performance suffers when the system has to go to the disk in such a way.

It is possible to get information from the operating system about the behavior and
performance of memory. Detailed statistics-reporting tools are described in
Chapter 3. But how does one determine what excessive paging and swapping are?
Usually, the thresholds depend on how the system reacts under load and what
kind of performance is considered to be acceptable by the users and the
administrator of the system.

In general, the free memory in a system should not go under 5%, otherwise no
resources will be left when a new user logs in to the system. However, if free
memory is always more than 10% during peak usage times, this means that the
memory resource is not being used efficiently or that there was more RAM
bought than needed [GCO96].

In Oracle systems, or in multi-user systems in general, each logged-in user is
using memory even if he/she is not doing any work. Such inactive users can affect
the response times (see definition in section 2.2.1) of the system when memory is
scarce [GCO96]. Usually user patterns vary a lot and the amount of memory used
by each user depends upon many parameters, such as the program the user is
running and the language it is written in, operating system and Oracle parameters,

the number of users on the system and how many sessions they are running, etc.

To solve memory problems, many approaches can be adopted [LOU91 and
GCO096]:

- Keeping users from doing multiple logins and wamning inactive users, will
improve performance and security.

- By selecting the most appropriate paging algorithm (which is an algorithm that
manages and allocates pages) for the system being tuned, the likelihood that

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 14

the memory shortage will become severe decreases. For example, configuring
the system to start paging earlier might be a good idea.

- Tuning up the application programs so that their patterns of reference to
memory are more consistent (i.e. closer) is an effective — though expensive —
solution.

- Limiting the number of concurrent tasks will also help.

- In an Oracle system, properly allocating memory resources to Oracle memory
structures can have a large impact on performance. When memory resources
are properly allocated, cache performance can improve, parsing of SQL
statements as well as paging and swapping can be reduced.

- In hopeless situations, terminating the jobs with the largest memory
requirements would be a temporary solution.

- Adding memory will almost always improve overall performance.

2.1.3 The Disk I/0 Subsystem

The disk is the typical storage device that provides access to large amounts of
data. Disk capacity (or the amount of data that can be stored on the disk) is often
measured in gigabytes (GB) or even terabytes (TB). In any system, the disk
subsystem is vital to overall system performance. Typically, the /O subsystem
devices are orders of magnitude slower than memory [I[CCMO00]. Whenever
possible, needed data should be located in memory rather than on disk, to avoid

long waiting times.

On any system, the /O subsystem is a common source of resource contention
problems. When multiple processes are trying to access the same disk resources
simultaneously, disk contention occurs. In the I/O subsystem not only are the
individual devices (mainly disks) very slow, but also the I/O buses’ transfers are
limited by their bandwidth and all the programs running on a system must share
that finite amount of I/O bandwidth [OST96]. When these limits are reached,

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 15

processes usually end up waiting to access the disk, and often CPU activity has to

be suspended while VO activity completes.

An important factor for the performance of a disk subsystem resides in the disk
interface standard used (or its connection to the host system). Many disk interface
standards exist; the most common ones are EIDE, SCSI, and Fibre Channel. For

information about their features, refer to [SES99].

In large database systems, there is a lot of disk activity, so disk performance is
crucial. Since physical memory is never large enough to hold all the data needed,
disk accesses are inevitable. Because RDBMS (Relational Database Management

Systems) such as Oracle store and process extremely large amounts of data, disk

I/O issues are a major concem.

There are many aspects that influence the I/O subsystem performance. First, the
way in which disk data is accessed — whether it is a read, a write, or an update
(read-modify-write) operation — has two possible forms. Data can be accessed on
a system randomly or sequentially. In a random access, reads and writes affect
many separate small blocks (a few kilobytes of data) randomly; they usually occur
in indexed’ databases or when processes’ pages are being paged-in and out. In a
sequential access, larger and more localized blocks are accessed at once.
Sequential reads and writes occur when large amounts of data are being processed
or when files are created or copied. Updates occur when a database is making a
sequence of transactions; it can be random or sequential. When working on /O
performance, understanding these concepts help in knowing what to expect
{ICCMO00 and CPS98].

A major improvement of overall disk performance can be achieved by well

organizing data on disk, depending on the application(s) running on the system. It

5 An indexed database is one where indexes are used. Indexes are essentially pointers to database
tables that speed up data retrieval from the tables, avoiding full table scans. An indexed database
usually reduces accesses to the database on the disk.

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 16

is important to configure the disk in such a way to spread the disk workload as
evenly as possible across the disks and the controllers/interfaces to avoid potential
disk overloading [LOU91, CPS98, GCO96]. In database systems, it is a good
practice to separate the disk(s) on which the operating system is installed (and
which will be used for paging and swapping — see section 2.1.2) from the other
disks containing the database files. It is also good to put the database tables and
their indexes on separate disks, because they are accessed simultaneously. The
redo logs® should also be put on a separate disk with no other activity, because
they are written sequentially, and sequential writing is much faster when no
concurrent activity is performed on the same disk. Because a lot of database files
are written at the same time when a transaction (involving writing to a data file,
an index file, and a redo log) is processed, performance is improved when they
are put on separate disks [GCO96].

To understand how a disk is organized, it is important to first understand what
filesystems are and how they are used. A filesystem is a data structure that holds
and organizes files in a hierarchical way. It is the most common disk layout (UFS
— UNIX Filesystem — is the widest used filesystem type). A disk drive is split into
several partitions and a disk partition holds one filesystem. Good planning and
use of filesystems can help disk performance. It is important, for example, to keep
similar files in the same filesystem in order to simplify configuration options,
have a larger number of smaller fileystems rather than a few big filesystems
(because data is more easily/quickly locatable when the filesystem is small), and
put swap areas (c.f. definition in section 2.1.2) into separate partitions (to avoid
disk contention) [LOU91]. A common problem with filesystems is fragmentation.
With time, as filesystems become full, portions of files tend to be scattered on the
disk. When a disk becomes very fragmented, performance suffers because files
cannot be read (nor written) sequentially anymore. So fragmentation should be
controlled and kept to a minimum [GCO96 and LOU91].

¢ Every change to the database is written to a redo log. If the database crashes before committing

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 17

The altemative to filesystems is to use raw devices (no filesystem) or block
devices (data stored in blocks). Depending on the types of operations
predominating in the system application(s), the appropriate disk layout should be

used in order to maximize performance.

In order to achieve faster data access to large blocks of data on disk, some
common disk technologies are available. Disk striping involves dividing a
contiguous portion of data and spreading it over many separate disks in order to
permit to multiple processes to access the sequence of data in parallel.
Consequently disk contention is reduced and performance is improved. However,
striping will only help when several random reads of the striped data actually
occur; it does not affect the performance of small random reads [ICCMO00].

Mirroring is another technique used mainly for data security, in case a disk
crashes. It consists in writing the data twice, to two separate disks every time a
write operation occurs. With mirroring, disk read operations are faster than write
operations since the data written has to be written twice. So for a system
performing mostly read operations, it is good to have mirroring. However, if the

system is mostly performing write operations, mirroring will slow down the

writing process.

RAID (Redundant Arrays of Inexpensive/Independent Disks) is a logical way of
combining disks, offering advantages in their failure recovery features. It is a
group of disks that appear to the system as one disk or as many virtual disks.
RAID uses part of the storage capacity to store duplicate data. This technology
can be implemented in hardware or in software (with Sun’s Volume Manager, for
example), and exists in several types and levels and usually implements striping
and/or mirroring [CPS98, SES99, and SVM98].

all the ongoing changes, the redo logs are used to restore the database to a consistent state.

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 18

To detect I/O problems, or to monitor I/O, many tools are available (see Chapter
3). Disk /O activity can be observed and pattemms can be determined. It is
important to note the number of reads and writes per second and per disk or
partition to find out whether there is an overloaded disk. It is possible to make the
correspondence between active disks and active processes, or applications more
generally. By doing this mapping, it is possible to figure out what is happening on
the system and which disks are more loaded. Disk usage can also be checked and
disk space can be managed.

To recapitulate, the following strategies should be included — among others —
when working on improving disk I/O performance [OST96, SES99, GCO96, and
CPS98]:

- Watching disk capacity, always keeping 10% free disk space, will prevent
filesystems from being full. When a disk does become full, the filesystems
should be backed up and restored to avoid disk fragmentation. Adding disks
also helps.

- Removing accumulated core dump files, checkpoint files created by editors,
and other useless data keeps the disk(s) from getting full quickly.

- Configuring the disks in such a way to balance the disk load fairly over all the
disks and controllers reduces disk contention and performance problems that
are due to poor disk management.

- To reduce the activity on an overloaded disk, some of its most accessed files
should be moved to a less active disk in order to achieve a close amount of I/O
on each disk in the system

-~ On an Oracle system, data files and redo log files should be separated to
prevent disk contention problems. Striping data files on separate disks can also
reduce contention.

- Adding more memory reduces paging and swapping, and consequently disk
activity.

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 19

- Other aspects that affect disk YO performance are the speed of the disk
controller/interface (SCSI, IDE/EIDE, Fiber Channel, etc.) and the size of the
disk cache (the bigger it is, the more data it can hold and thus it avoids getting
the data from disk, which is much slower).

2.1.4 The Network

Today, as the trend is to move from mainframes to new downsized (smaller)
computers, the vast majority of systems use a client/server network architecture
because of the significant benefits it presents. In such a configuration, the client
(or clients, since there are typically many clients) makes a service request to the
server (usually one machine), which fulfills that request. The server coordinates
the client’s access to its resources and data (databases, for example). It does this
by having a daemon —which is a server program— permanently running on it,
waiting for and handling requests coming from the client. On a Web server, for
example, a daemon called HTTPD (Hyper-Text Transfer Protocol Daemon)
continuously runs (by default on port 80) and serves Web clients. In an Oracle
system, the listener daemon called msisnr runs continuously (by defauit on port
1521) waiting to service a client connection. Indeed, such server programs are
said to listen on a port. The end-users always access the server through a ‘client’
application running on the client machine. The client machine from where the
request was initiated incurs most application overhead, and does not affect the
other clients. To mn applications in a client/server environment, the

communication between the client and the server must be made over the network.

For a communication to be established between the two parties, most often a
connection must be opened first. This is done most often using TCP
(Transmission Control Protocol) because of its reliability. When a machine
requests opening a connection (outgoing call) to another machine, it is called an
active open. Conversely, when a request to open a connection is made to that

machine (incoming call) from another one, a passive open has to be made. It is

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 20

also possible —although unreliable- to send and receive information via the
network using UDP (User Datagram Protocol) [WIS00 and CPS98].

The client/server communication over the network is done through packets, which
are small units of data (typically 64 to 1500 bytes) that are transmitted over
networks. Each client/server transaction requires sending a certain number of
packets. The network bandwidth is a measure of the maximum number of bits per

second that a network can transmit, i.e. its capacity.

As applications are becoming more and more complex, networks must ensure fast
and reliable service, as well as high bandwidth. Many network technologies exist,
including Ethemet, FDDI (Fiber Data Distributed Interface), and ATM
(Asynchronous Transfer Mode). For an in-depth overview of network
technologies, see [SES99 and CPS98].

Ethemnet is the most popular network technology. It is simple and inexpensive to
deploy, and is suitable for most moderately large applications [SES99]. However,
it is collision-based, as only a single device can transmit data at a time [SES99].
When more than one device transmit simultaneously, the packets collide,
generating garbled data, and the packets have to be retransmitted, consequently
causing overhead and congestion. A common Ethernet network is usually
considered saturated when the network traffic goes over 35% of the total
bandwidth [SES99].

A router is a device connected to two or more computers, that decides to which
adjacent network point a packet is to be forwarded next (on the way to its
destination), based on the current state and availability of the routes; and a switch
is a multi-port device for connecting networks and forwarding packets, often
comprising a router [WIS00]. Breaking down the network into smaller pieces by

using routers and switches generally minimizes collisions (and therefore improves

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 21

performance), because the traffic is reduced on each (smaller) portion of the
network [LOU91 and SES99].

When a large number of packets arrive simultaneously, the receiving system gets
overloaded and starts dropping some (or many) of them because it cannot handle
them all. Dropped packets eventually have to be replaced, consequently adding
overhead and load on the network. Moreover, dropping packets often indicate the
existence of other problems, such as high CPU load that is stopping the network
software from responding fast enough [LOU91].

Device failures on the network can often be the cause of data corruption. Because
data integrity is essential, it is important to make sure that the data transmitted and
received is free from errors. Network protocols often have error-correcting and
recovery procedures incorporated. However, sometimes, these procedures can

generate overhead that can cause significant traffic and delays [ICCMO00].

Many tools are available to monitor the network and are discussed in Chapter 3. It
is possible to obtain network traffic patterns and capture packets, determine if a
system is dropping packets and at which rate, check the network collision rates,
etc. It is also possible to monitor NFS activity. In fact, when NFS is running on a

server, NFS requests are very frequent and significantly affect network traffic,

and network performance as a consequence.

Network bottlenecks generally occur due to an overloaded network. Since
client/server configurations require that data be sent back and forth over the
network, it is best to try to reduce the number of packets to be transmitted across
the network by tuning the application(s) (program code) on the system. This will

prevent network contention problems and improve overall system performance
[OST96].

There are also other practices to improve and optimize performance [GCO96,
ICCMO00, LOU91, and SES99]:

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 22

- Although the number of packets transmitted influence network performance
the most, the size of each packet can also affect it. When the network protocol
permits it, enlarging the packet size might help.

- Compressing data is another way of reducing the traffic on the network.
However, it needs processing power, so should not be performed when there is
a CPU bottleneck.

- Minimum transfers over the network can be achieved by always sending
exclusively what is needed.

- Whenever possible, long-running jobs should stay at the server end.

- Each system on the network should be fast enough to keep up with the network
traffic.

- There should be enough network bandwidth for the needs of the applications. If
bandwidth is too low, the transfers get very slow.

- The client(s) and server should not be physically too far from each other, since
transmission latency/delay also depends on the distance to be traversed by the
packets.

- To solve data integrity problems, it is probably best to identify the faulty
device and replace it.

2.2 Measuring Performance

Performance analysis involves the measurement, the interpretation, and the
communication (or conveyance) of a computer’s performance [LIL0O0]. Several
fundamental parameter values have to be measured or, in some cases, calculated.
Also, many measurement techniques exist, and one has to find the appropriate
method to use on the system being analyzed. Measuring Performance is not an
easy task and different people tend to disagree on the way it should be done
[LILOO]. Performance analysis is often referred to as an art [JAI91 and LIL0O].

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 23

When system performance is poor (typically characterized by a slowdown), it is
usually not obvious to find where the problem is coming from. Instead of
applying a tuning recipe to solve the problem, it is far more useful to first
understand the foundations of performance [ICCMO00] and then to apply them. To

grasp any aspect of a computer’s performance, it is important to first determine
and understand what has to be measured.

The next subsections describe how to measure performance. In section 2.2.1, we
identify and describe the most common -and important!- performance parameters
(or performance metrics). Section 2.2.2 introduces several widely used methods to
measure performance, and section 2.2.3 focuses on the ways to report the results

of the measurements.

2.2.1 Performance Metrics

When measuring performance, we are often interested in timing the duration of
an action happening on the system, in counting the number of times a certain
event occurs, and in determining the size of some parameter [LIL0O]. For
example, some basic characteristics of interest would be to measure the time it
takes for a process to terminate, to count the number of page faults, or to measure

the size of the free memory at some point in time.

Most often, performance is measured in normalized metrics to facilitate
comparisons between different machines. All those metrics embed a form or
another of the basic characteristics (i.e. duration, count, and size). The most
common and fundamental performance metrics are throughput, queue length,
response time, and utilization [CPS98].

Throughput is a measure of the amount of work performed in a given amount
(unit) of time. It is a rate and is measured in ‘quantity’/sec, where ‘quantity’

depends on the device being analyzed (‘quantity’ is most often bytes or

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 24

megabytes). In database systems, for example, the throughput of the system is
measured in TPS (Transactions per second); and for networks, the throughput is
measured in packets/sec. For CPUs, the throughput can be measured in MIPS
(Millions of instructions per second) or MFLOPS (Millions of floating-point
operations per second), but these metrics are notoriously unreliable. The
throughput of a disk can be reported by tools such as iostat (see section 3.1) by
adding the rates of read and write operations. As the load on a system increases,
the throughput increases too (as they are directly proportional) until it reaches a
maximum. After this point, the throughput stops increasing or even starts
decreasing because the workload is too great. To calculate the throughput of a
system, the number of jobs or transactions completed is divided by the amount of
time it took to complete them. So, for the throughput to be easily calculated, it is

essential that the workload be clearly defined (see section 2.1.1).

Queue length is the number of processes (or requests) waiting — in a queue - for
service. It can be calculated as follows [CPS98]:

Queue length = Throughput x Response time.

Many different queuing models exist and they provide important information for
understanding and predicting system performance in some situations. Queuing
theory is a very vast topic and is therefore not discussed here; for more
information, see [JAI91, GELOO, and LILOO].

Response time is defined in two ways, depending on the authors. It can be (1) a
measure of the time between the submission of a command and the reception of
some response, i.e. the amount of time needed to consume a fixed portion of CPU
time (usual definition), or (2) the time between the submission of a command and
the completion of the request with a result. It is generally measured in
milliseconds (msec). When a system is overloaded, the response time increases,
that’s why it is sometimes referred to as “a key system-level performance metric”
[GUN98]. The response time can be calculated as [CPS98]:

Total Response time = Total Queue length / Throughput,

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 25

or as [OST96]: Response time = Service time + wait time.

Service time is defined to be the time it takes to process a request once it has
reached the front of the queue. So when the queue is empty (at low utilization
levels), service time can be referred equivalently to response time, since they are
equal. When monitoring /O, the time to complete a physical /O should not
exceed 100 msec. Service time can be calculated as follows [CPS98]:

Service time = Utilization / Throughput.

Thus, Disk Service time = Disk Utilization / Throughput.

In iostat’s output (see section 3.1), the response time (not the service time) of
the disk is displayed under svc_t [CPS98].

To improve response time and throughput, resource bottlenecks must be avoided.
This way, processes will complete faster because the resources they need are

available.

The Utilization of a resource is a measure of the proportion of time a resource is
busy doing work over a given period. It is usually reported as a percentage of busy
time over the total time of the interval. Idle time refers to the period during which
a resource is not doing any work. When talking about utilization in general, we
usually refer to CPU utilization, where

CPU utilization = user time + system time (see section 2.1.1).

Disk utilization is also a common measure; when disk utilization is high, this
often means that the disk is overloaded (it is common for the disk to be the initial
bottleneck of the system). It is important to try to balance as much as possible the
load in the system so that no resource is utilized more than others. Redistributing
the load also improves response time and throughput, since waiting time to use a

shared device decreases.

There are also some other common and useful metrics that can be used for

performance monitoring; they include:

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 26

Think time is the amount of time the user of the system waits while ‘thinking’, i.e.

not doing any work. Think time affects throughput and utilization, as they
decrease when it increases.

Bandwidth refers to the speed of data that is transmitted over a medium, and is
usually expressed in bits/sec. Bandwidth should not be confused with throughput.
Bandwidth is typically the peak or the maximum speed possible (without
overheads). The bandwidth of a network is a ‘maximum throughput’ measure of

the number of bits that can be transmitted over the network per second.

Collision rate is the number of collisions that occurred during a period. High
collision rates often are a sign of a network bottleneck. This value can be
calculated as follows [DUN98]:

Collision rate = number of collisions / sum of input and output packets.

System capacity is a measure of the processing power of the whole system. It
includes the CPU(s) speed, the disk I/O transfer rates, the network transmission

rate, etc.

Benchmarks (discussed in section 2.2.2) are also used as performance metrics, but

are generally very specific to the type of system being analyzed.

2.2.2 Measurement Techniques

In this section, some fundamental measurement concepts are described, showing
the advantages and weaknesses of different techniques commonly used to

measure performance.

An important thing to be aware of before measuring any system’s performance is
Heisenberg’s Principle: “one cannot measure something without also affecting it

in some way” [CPS98]. Indeed, the perturbation caused by a measurement

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 27

strategy is a major concern [LIL0O]. As the measurement tools themselves need to

use the system resources, they indirectly perturb the system and thus affect the
measured data.

The basic measurement strategies for a live system are event-driven

measurements, tracing, sampling, and indirect measurements [LIL0O].

In an event-driven measurement strategy, performance metrics are calculated
based on information recorded every time a preselected event (or events) occurs,
such as an VO operation or a page fault for example. The simplest way it can
work is by having a counter count the number of occurrences of the event(s). An
advantage of this technique is that it only creates overhead when the event or
events of interest occur. However, when recording the information of high-
frequency events, this introduces much overhead and perturbation, possibly

leading to altered results. Therefore event-driven strategies are usually best suited
for low-frequency events.

In a tracing strategy, upon the occurrence of a specific event, not only is the
information about the occurrence of the event recorded, but also the record keeps
track of information about the state of the system at that moment to uniquely
identify every event that has occurred. As event-driven strategies only provide
high-level information about the system being monitored, tracing programs on the
other hand provides the most detailed system behavior information. The drawback
of this strategy, however, is that it consumes large amounts of resources (because
additional information is recorded) and thus tends to be the method causing the
greatest perturbation on the system being analyzed.

Sampling strategies are most commonly used for analyzing system performance
(most of the tools described and used in Part II of this thesis are sampling tools).
When sampling, metrics of interest are determined by recording system

information at fixed time intervals. These intervals are independent of the number

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 28

of events occurring on the system. In that sense, a sampling strategy is usually
referred to be a statistical one, since it will miss some of the events that occurred,
and will not provide the exact same data each time it is used on the same system.
However, the statistical summary of a sampling-based experiment will usually
show a consistent behavior of the system. The difficulty in such a method lies in
choosing the appropriate interval for sampling. While it is important to have a
sufficient number of samples to get reliable information, increasing the number of
samples (or sampling for a longer period of time) will result in an increase in the
perturbation on the system. But since the overhead is independent of the number
of times any event occurs, the perturbation can be somewhat controlled by the
experimenter as it is up to him/her to decide of the sampling interval. Different
sampling tools usually require different sampling intervals (see section 3.1), and
for each tool some trade-offs have to be made (often we choose to have
insufficient data rather than having unreliable data). Broadly speaking, sampling

is one of the methods that perturbs analyzed systems the least.

In an indirect measurement strategy, the metric of interest is not accessible and is
thus measured indirectly through another metric. The appropriate measurement

strategy is usually developed by the experimenter, so its effectiveness and its
perturbation rely on him/her.

Another widely used method in evaluating performance of computer systems is
benchmarking. A benchmark is a test program that assesses the performance of a
system on a defined set of tasks. Benchmarks are mostly used to predict the
performance of machines that are not yet in production, but they can aiso be run —
with caution— on live systems. Benchmarks often run very specific program to
determine the values of particular parameters, such as computing time of a
specific mix of integer and floating-point operations on a system. Several types of
benchmarks exist and some have become standards which are very widely used,
such as SPEC (Standard Performance Evaluation Corporation) benchmarks
[SPEC] or TPC (Transaction Processing Performance Council) benchmarks

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 29

[TPCW], which come in many sorts and flavors, each destined to be run on a
particular type of system. The problem with these benchmarks is that they are
never exactly characteristic of the application that runs (or is planned to be run)
on a specific system. Benchmarks should be produced by the author of the
application, since he/she is the only one who knows the internal complexities of
the application. Benchmarking was not used in the performance analysis in Part
11, mainly because no appropriate benchmark was found. For further details about
benchmark programs and strategies, refer to [LILOO and PRI89].

Measurements of real systems do not allow much flexibility. It is often desirable
to see how the system’s behavior changes as certain parameters are varied (for
example, deliberately driving the system into a saturated state). However, this is
very difficult —if not impossible— to do on live systems because it perturbs the
normal behavior of the system (often in unpredictable ways) and can affect the

end-users.

Apart from measurement techniques, there are 2 important techniques used when
dealing with performance: modeling and simulation [CER98 and LIL0O].

Modeling (also known as analytical modeling) is a fast method mostly used to
predict the performance of new hardware on the system. Using measurements, a
mathematical description —called a model- of the system is constructed and used
to make predictions. The problem with this method is that is has lower validity

because of the assumptions, generalizations, and simplifications it uses.

Simulation is a flexible technique commonly used to test software using a
generated workload. The results are compared to the expected changes in the
system and analyzed. The primary limitation of this method, when doing
performance analysis, is that it is practically impossible to model every little
detail of the real system being analyzed. For more details about simulation and
techniques to avoid simulation mistakes see {JAI91 and LIL0O].

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 30

2.2.3 Reporting Measurements

After the measurements have been made and the metrics have been collected, the
performance analyst has to present the results and make sure they can be clearly
communicated. Post-processing of measured data is not an easy task and should
therefore be performed carefully [CPS98]. Some authors even refer specifically to
data presentation as an art [JAI91], as improper presentation of results can
damage a report because the conveyance of results is an essential component in
performance analysis [CER98].

The collected data can be simply averaged and tabulated or plotted into a graph.
There are three basic forms for reporting statistics [DUN98]: (1) using snapshots
~showing measured values at a specific point in time, (2) using histograms or
line/pie/bar charts —displaying the distribution of a set of measured values at

fixed time intervals, and (3) using summaries —to see the total values of different

variables.

Besides the average (a.k.a. sample mean), other important values are also
commonly calculated when doing sampling. The most usual (and useful) one is
the variance or standard deviation. Indeed, the average reflects the mean value of
a variable or parameter measured at different points in time, whereas the variance
(or standard deviation, as both basically reflect the same thing) measures the
dispersion of the values in a distribution or collection of values (i.e. the variability
within a distribution). The standard deviation is very important because it shows
how far apart corresponding values are in different samples and thus reflects
whether the system behaves in a consistent manner over time. Other types of
means are thoroughly discussed in [JAI91 and LILO0O].

The formulae used to compute the sample mean (x) and the standard deviation

(s) of a sample of n measurements are:

CHAPTER 2. SYSTEM PERFORMANCE OVERVIEW 31

x =-l—2 x; , where the x; are the individual measured values.
n

i=l

3 5 -2
i=l

T where x is the sample mean.
n —-—

It is important to have good graphs that show all the aspects of the system’s
behavior. Enough data about each resource should be collected with the different
performance tools (see section 3.1) and there should be graphs for each important
performance parameter (such as utilization or throughput, for example) showing
its variability and trend over time, and also with respect to the workload. The
analysis should determine whether the performance capabilities of all the system’s
resources are balanced. Comparison graphs should also be included to show how
different parameters are influenced by each other’s behaviors. The graphs should
be self-explanatory but an additional textual explanation is also useful for the
analysis. Practical examples of all the different graphs are in sections 4.2 and 5.2.
For more specific information on how to make graphs and what bad practices to
avoid, see [JAI91].

Chapter 3

Performance Monitoring Tools

Performance monitoring is an essential task to control a system’s performance. In
order to isolate performance problems (and eventually tune overall system
performance), a wide variety of tools is available. When run on a system, the tools
provide (either directly or indirectly) performance metrics that report on the
system’s behavior.

The following sections describe several performance (sampling) tools in two
parts. First, the most basic bundled Solaris/UNIX tools (usually called utilities) as
well as some tools from the SE Toolkit [CPS98] are described, along with some
hints for interpreting their output, and with an emphasis on tuning. The second

part lists high-level descriptions of several other tools that are available from

different vendors.

3.1 Common Monitoring Utilities

The Solaris 2.x operating system software provides many utilities to monitor the
system’s performance. In this section, we focus on the most common ones and

mainly on those used in the performance analysis in Part II of this thesis.

The way these tools work is by having counters in the operating system that are
incremented each time an event occurs, keeping track of various system activities

while the computer is running. The tools then report the values of these counters.

32

CHAPTER 3. PERFORMANCE MONITORING TOOLS 33

In the following subsections, we overview the utilities used to monitor each
resource in a system, along with a description of what to look for when analyzing
performance. In addition to the most essential Solaris/UNIX utilities, some SE
scripts' are also included. Screenshots are used to illustrate some of the tools;
most of these screenshots were obtained by running the tools on the Aleph
system.

3.1.1 Monitoring the CPU

When monitoring CPU performance, it is important to analyze all the aspects
related to the processor(s). Many utilities exist to manage and isolate CPU
performance problems.

Q@ The first crude but useful command to run is uptime, which displays the
current time, how long the system has been up (since last boot), and the load

average over the last minute, the last S minutes, and the last 15 minutes.

% uptime
12:04pm up 40 day(s), 15:32, 8 users, load average: 3.97, 3.59, 3.31

The load average is the average number of jobs in the run queue. By running
uptime on a regular basis and observing the load average, one can get a
feeling for what is normal and what might be a sign of a problem [LOU91]. It
is also useful to look for an increase or decrease by comparing the three values
reported. Usually, a load average below 3 indicates a light workload; a load
average greater than 5 indicates a heavy workload; and a load average of 10 or
more is considered too high [LOU91]. uptime is a useful but insufficient

tool, as it can sometimes lead to erroneous conclusions (c.f. section 2.1.1).

O sar (system activity reporter) is a very useful utility that reports on system

activity. It can operate in two modes: in the first mode, the data is extracted

! The SE Toolkit was developed by a Sun Microsystems engineer in order to monitor Solaris
systems [see CPS98].

CHAPTER 3. PERFORMANCE MONITORING TOOLS 34

from sadc, the system activity data collector. In the second mode, discussed
here, sar collects and reports data upon request (in real time). sar takes two
arguments; the first argument specifies the number of samples to be collected
and the second argument specifies the sampling interval length. In the
following example, six samples are taken, at S-second intervals®. With only
these arguments (without options), sar reports on the percent of time the
system is in user mode (%usr), in systtm mode (%sys), waiting for I/O
(%wio), and idle (3idle).

% sar 5 6

SunOS aleph 5.6 Generic_105181-19 sun4u 03/13/01

15:58:17 $usr %sys swio $idle
15:58:22 22 13 10 55
15:58:27 20 10 16 54
15:58:32 20 11 27 42
15:58:37 17 10 19 55
15:58:42 10 10 72 8
15:58:47 16 13 67 4
Average 17 11 35 36

In the default sar output shown here, CPU utilization is reported: it is the
sum of %usr and %sys. CPU utilization should not be constantly low, since
this would mean that the system is oversized (c.f. section 2.1). A CPU
utilization of 80 or 90% during peak loads means that the system is making
good use of the processor(s). However, a continuously high CPU usage can be
a sign of CPU contention or a sign of a hardware failure. In such a case,

upgrading the CPU (or adding processors) can help improve overall
performance [SES99].

On a system running normally, system usage should not get greater than user
usage (c.f. section 2.1.1). Moreover, if system time is greater than 30%, the
system is considered to be under heavy system CPU Utilization. When this is

2 It is important not to run sar with an interval that is shorter than 5 seconds because in that case,
the execution of the tool itself will perturb the system (and consequently alter the results).

‘ CHAPTER 3. PERFORMANCE MONITORING TOOLS 35

associated with a high number of interrupts, a hardware problem or a
bottleneck in an I/O device possibly exists ([SES99].

The user CPU usage level also should not get too high (60 or 70%). When it
does, processes running on the system should be examined and, in the case of

CPU contention, an upgrade to a multiprocessor system will help [SES99].

When idle time is constantly less than 20%, this means that the overall system
performance is probably suffering [CER98]. Again, conversely, if idle time is
constantly too high (greater than 70%), it means that the system is not
working efficiently and that it is oversized (unless the CPU is waiting for

some external event to happen).

With options, one can get more diverse information from sar. For example,
sar -q shows the occupancy of the process queues (used to determine

. whether processes are waiting for an available processor). Options in sar can
also provide information about other resources in the system (memory and
1/0; see sections 3.1.2 and 3.1.3).

Q vmstat (virtual memory statistics) mainly reports on virtual memory
statistics and is thus introduced in section 3.1.2. However, it also includes

CPU-related information, which we describe here.

vmstat reports on process information (i.e. process queues): the number of
runnable processes (r), the number of blocked processes (b), and the number
of swapped processes (w). It also reports on trap/interrupt rates per second for
device interrupts (in), system calls (sy), and CPU context switches (cs). And
like sar, the percentage of CPU time spent in user time (us), system time

(sy), and in idle time (i4) are included (see example in section 3.1.2).

l In vmstat’s output, one should look for long run queues: the number of

runnable processes r should not exceed 4 times the number of CPUs,

CHAPTER 3. PERFORMANCE MONITORING TOOLS 36

otherwise processes would be waiting too long for a CPU time slice, and
response time would increase [CPS98]. Also, one should look for processes
blocked waiting for I/O or paging (b), because whenever there are blocked
processes, all CPU idle time is treated as wait for I/O time. The faults rates

reported by vmstat should also remain low, as traps and interrupts generate a
lot of overhead.

With the -s option (summary mode), vmstat includes’: the total number of
CPU context switches, device interrupts, traps, system calls, the total number
of user, system, wait, and idle CPU time, and the percentage of time that the
requested data was found in the name lookup cache (cache hits). The cache
hit rate should stay at 80% or more, otherwise the system probably needs

more memory or tuning [SOB99].

O mpstat (multiple processor statistics) is a very useful utility when analyzing

a multiprocessor system. mpstat reports on per-processor usage and gives
additional information. The following example shows mpstat’s output for a
two-CPU machine with a sampling interval of 3 seconds and 2 samples.
mpstat displays 16 columns of data conceming each processor: the CPU
number (CPU), the number of minor faults (minf), the number of major faults
(mj£), cross CPU calls (xcal), interrupts (intr), interrupts as threads
(ithr), context switches (csw), involuntary context switches (icsw), thread
migrations across processors (migr), spins acquiring kernel mutex locks
(smtx), spins acquiring read/write locks (srw), system calls (syscl), and
again: user time (usr), system time (sys), wait for /O time (wt), and idle
time (id1). The first sample outputted is generally ignored because it covers
the time since the system’s last boot:

3

vmstat -s reports absolute system counters since the machine’s last reboot.

CHAPTER 3. PERFORMANCE MONITORING TOOLS 37

% mpstat 3 2
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

0 437 4 869 6 0 511 4 10 6 1 480 10 7 43 40
1 197 7 61 8 0 674 & 10 6 2 545 11 6 43 40
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
0 751 20 1975 9 1 685 7 22 12 0 1790 7 12 65 16

1 275 5 3143 22 0 1602 16 23 16 0 2196 23 8 60 9

mpstat is commonly used to determine how the load is balanced across the
CPU:s. Also one of the key measures to look for in mpstat’s output is smtx,
which reports the number of times the CPU could not obtain a mutex (mutual
exclusion*) immediately. When smtx is greater than 200 for each CPU,
system time usually goes up. To solve high levels of mutex contention in
Solaris 2.6, mutexes suffering from contention should be identified [CPS98].
The number of context switches should also be watched, as a lot of context

switches tend to consume too much CPU (c.f. section 2.1.1).

cpus. se is another useful tool for multiprocessor systems. cpus.se is part
of the SE Toolkit. It simply displays a list of the CPUs that are on the system
along with their clock rates, checking that they are all online.

nproc.se is another simple but very useful tool from the SE Toolkit. It
displays the current number of processes that are running on the system. It is
particularly interesting to run this tool with other utilities simultaneously and
with the same interval, in order to compare the behavior of a particular

resource under a certain load.

ps is the typical command used to get information about the active processes
on the system. It is generally run with options, because without options it only
gives information about processes associated with the controlling terminal and
user. With the -ef option, ps displays a full listing with data concerning
every process currently running on thé system: the process owner/user ID

(UID), the process ID (PID), the parent process ID (PPID), the starting

* Mutual exclusion is needed by two (or more) processes when they need to access a resource
exclusively (i.e. without sharing it) [STA95].

. CHAPTER 3. PERFORMANCE MONITORING TOOLS 38

time/date of the process (STIME), the controlling terminal type (TTY), the

cumulative execution time for the process, and the name of the process (CMD):

% ps -ef | head -12

UID PID PPID C STIME TTY TIME CMD

root 0 (V¢ May 16 ? 0:01 sched

root 1 [V May 16 2 2:17 /etc/init -

root 2 0 0 May 16 2 0:59 pageout

root 3 0 1 May 16 2 810:21 f£sflush

root 739 678 O May 16 ? 6:45 /opt/SUNWvmsa/../jre -

root 510 1 0 May 16 2 0:01 ipmon -s

root 11 1 0 May 16 ? 0:04 vxconfigd -m boot

m505 16650 15633 0 13:24:52 2 0:02 /alephl/./exe/pc_server_main
m505 15505 1 0 07:03:01 2 0:00 csh /alephl/../proc/sc_server
root 550 1 0 May 16 ? 0:00 /usr/sbin/inetd -s

root 575 1 0 May 16 ? 0:02 /opt/sbin/sshdz

root 566 1 0 May 16 2 0:04 /usr/sbin/cron

Another widely used version of ps is the BSD version (/usr/ucb/ps).
With the uaxw option, ps displays a comprehensive performance summary of
all process-related information sorted by recent CPU usage. Thus it can be
used to obtain a good top-ten listing of the busiest processes currently running
on the system. The report of ps uaxw includes: the percentage of CPU time
. used by the process ($CPU), the percentage of the system’s physical memory
used by the process ($MEM), the total size of the process in virtual memory
(sz), the amount of physical memory in kB allocated to the process (RSS —the
Resident Set Size), the status (S) with three possible values (O meaning on-
CPU or running, R meaning runnable and waiting for a CPU to become free,
and S meaning sleeping), the time the process started up (START), the total
amount of CPU time used so far by the process (TIME):
% /usr/ucb/ps uaxw | head

USER PID %CPU SMEM SZ RSS TT s START TIME COMMAND
m505 18535 3.4 1.020339240912 2 0 06:33:14 119:19 ralephl/../exe/rts32

m505 358 2.4 1.25386447576 2 S 12:23:04 3:07 /alephl/./exe/www_server
m50S 1214 2.3 0.117656 4144 2 o Jul 04 4154:35 salephl/./exe/rts32
oracle 18546 1.8 4.117029616440 2 0 06:33:14 51:48 oraclealephl

m505 5973 1.7 1.04443238528 2 S 12:26:29 1:50 salephl/./exe/www_server
m505 5975 0.7 0.94179235632 2 S 12:26:29 1:28 salephl/../exe/www_server
m505 22114 0.4 0.73303227256 2 S 12:36:16 0:01 ralephl/_/exe/pc_server
m505 5389 0.4 1.04656038544 2 0 12:07:53 2:53 ralephl/_/exe/www_server
root 3 0.4 0.0 o] 02 S Jun 08 2072:19 fsflush

So ps gives a global and accurate picture of what is happening on the system.

‘ When analyzing ps’s output, one should pay particular attention to large

CHAPTER 3. PERFORMANCE MONITORING TOOLS 39

TIME fields corresponding with recent START fields, as this would be a
characteristic of a process that is monopolizing the CPU. However, large
values of $MEM and RSS are not necessarily an indication of problems; many

programs require large amounts of memory to run.

Q The top utility (not supplied with Solaris) is similar to ps but can also be
used as a supplement to ps. It displays a list of the most resource intensive
processes (fifteen by default) and updates itself dynamically every five
seconds. Although very useful, top consumes a lot of the system’s resources

and should therefore be used with care (c.f. section 2.2.2).

Q iostat is the typical I/O statistics reporting utility and is discussed in section
3.1.3. However, we just mention it here because, with some options (such as
-xPnce), it also reports on CPU statistics including user time (us), system

time (sy), wait for /O time (wt), and idle time (id).

3.1.2 Monitoring Memory

Memory management is a complex area in systems performance. When running
processes need more memory than is available on the machine, memory can
become the system bottleneck [CER98]. Memory activity has to be understood in

detail in order to solve the problems related to it.

O vmstat (virtual memory’ statistics) is the primary, most used and most useful
utility for obtaining memory information. It is also often used to get some disk
and CPU activity information. When run without options, the memory
statistics (virtual memory counters in kilobytes) reported include: available
swap space in kB (swap) and free memory in kB (free), reclaimed pages in

pages/sec (re), minor faults® in faults/sec (m£), page-ins (pi) and page-outs in

3 ¢.f. section 2.1.2 for definition.
¢ A minor fault uses very little CPU time, as it is resolved without having to do a page-in.

CHAPTER 3. PERFORMANCE MONITORING TOOLS 40

kB/sec (po), pages freed in kB/sec (fr), memory deficit pages in kB (de), and
scanned pages rate in pages/sec (sr). In the following example four samples
are taken at 3-second intervals’. The first line covers the time since the system
was last booted and is generally ignored; each one of the subsequent lines

covers the period since the previous line (3 seconds in this case):

% vmstat 3 4

procs memory page disk faults cpu

rbw swap free re mf pi po fr de sr s0 sl s7 s8 in sy cs us sy id
1] 4720 2608 13 358 907 175 402 0 41 4 4 3 3 1273 1429 101 7 3 90
0 4829792 231960 2 189 1029 0C 0 O 3 6 0O O 1330 24707 4937 15 4 81
0 4859872 247840 0 1028 437 2 2 0 012 23 0 0 1282 16879 2935 7 3 90
0 4848920 240128 1 825 338 10 10 0 0 13 26 O O 1293 13830 4430 13 13 85

The output of vmstat is very rich in information about memory. When
monitoring paging activity and swapping, several counters should be looked
at. The most important values are po (the number of page-outs) and w (the
number of swapped-out processes), as they directly show whether there is
paging and swapping activity on the system (LOU91 and CER98]. If po is
large (significantly greater than zero) during a long period of time, system
performance will be affected [LOU91]. Also when the deficit paging
parameter (de) is non-zero, excessive swapping is performed because of a
great memory shortage. Note that the £ree column is not an indicator of a
lack of memory, because there may be a great amount of unused memory that
has yet to be reclaimed by the page-stealing daemon {CPS98].

Page-in and swap-in activities are normal and should not be used to determine
whether there is excessive paging and swapping [LOU91]. Determining
whether a certain number of page-outs is excessive depends on the system
being analyzed, how it reacts under different loads, and what performance is
considered acceptable [LOU91]. However, in general, if page-outs are
continuous, then more memory is needed [CER98]. Occasional page-outs on

the contrary are part of a normal system behavior [LOU91]. The page-stealing

" However, usually, it is more useful to run vmstat with a relatively large interval in order to
capture meaningful values for paging activity and for most other parameter values [DUN98]).

CHAPTER 3. PERFORMANCE MONITORING TOOLS 41

daemon scanning rate (sr) is a key memory-shortage indicator when it is
continually above 200 pages/second [CPS98]. For swapping also, if a system
swaps out often, then there is need for more memory; otherwise, if there is
only occasional swapping, then there is nothing to worry about [LOU91 and
CER98). It is also good to make sure that the available® swap space (swap)
does not get down too low (32 MB or lower), because it would stop additional
processes from starting [CER98].

With the -s (summary mode) option, vimstat reports on several values since
the machine’s last reboot’: the total number of swap-ins and swap-outs, the
total number of page-ins and page-outs, the total number of reclaims, the total
number of minor faults, etc. With the -S (capital S) option, vmstat reports

on swapping activity (in kB/sec).

The sar utility introduced in section 3.1.1 also reports some memory
information, when used with options. sar -r shows the available swap in
512-byte blocks (freeswap) and the free memory in pages (Ereemem). Also

sar -w is used to monitor swapping, and sar -p and —-g are used to monitor

paging activity.

swap is another command used to monitor the swap space. swap —s displays
summary information about swap space usage and availability, swap -1 lists
the status of each separate swap area, and swap -a and swap -d are used to

add and delete a swap area respectively.

vmmonitor.se is a program from the SE Toolkit that is based on vmstat.
By default, it runs and samples data every 30 seconds, looking for little swap
space (minimum default value: 400 kB) and low RAM identified by a high

scanning rate of the page daemon (maximum default value: 200 pages/sec). It

¥ When available (not free) swap is used up, the system cannot allocate more memory [CPS98].

. CHAPTER 3. PERFORMANCE MONITORING TOOLS 42

tries to sound an alarm and displays a time-stamped sample of current
counters based on vmstat’s output. The environment variables used as
thresholds for RAM (VMMAXSCAN) and swap (VMMINSWAP) can be set to an
appropriate value depending on the system being monitored. In the following

example, VMMAXSCAN is set to 300 pages/second and VMMINSWAP is set to
1GB:

% se vmmonitor.se
vimonitor.se thresholds set at 1000000KB min swap space
and 3100 pages/s max scan rate

vmmonitor.se problem detected: Thu Apr 12 05:46:01 2001
procs memory page faults cpu
r b w swap free si so pi po sr in sy cs us sy wt id
0 1 22 1482594 62378 0 0 1379 396 563 1451 704 807 0 22771
Sustained scan rate over 300 pages/s - need more RAM

3.1.3 Monitoring Disk I/O

The disk subsystem is a common source of contention problems and often
. becomes the bottleneck of a system [LOU91 and CPS98]. As disk performance
directly affects overall system performance, it is important to ensure throughput
and storage efficiency. Disk activity can be monitored with several utilities, which

we discuss here.

QO iostat is the typical disk I/O activity reporter, although it also gives
(limited) CPU information. Using the output of iostat, one can obtain
several parameter values such as the transfer rate of each disk, the throughput,
the queue length, etc. The option -xPnce shows physical disks in the
cXtXdxXsX format instead of the sdxX format (which is most usually
displayed) and reports extended per-partition statistics, along with a summary
of device errors. The report includes many statistics for each disk: the number
of reads and writes per second (r/s and w/s), the number of kilobytes read

and written per second (kr/s and kw/s), the average number of transactions

. ? Note that vmstat —s can report bizarre values when its internal counters overflow. This usually
happens when the system is not rebooted for a long time.

CHAPTER 3. PERFORMANCE MONITORING TOOLS 43

waiting in the queue for service (wait), the average number of active
transactions (actv), the average response time in the wait queue in msec
(wsvc_t), the average response time of active transactions in msec (asvc_t),
the percentage of time transactions are waiting for service in the wait queue
(%w), the percentage of time the disk is busy (%b), a report on the errors that
have occurred, and finally the device names corresponding to each disk. In
general, the first sample displayed is ignored, as it covers the total time since
the last boot; each subsequent sample covers the time since the prior interval
only. In the following example, two reports (samples) of iostat -xPnce are

run at 3-second intervals:

% iostat -xPnce 3 2

cpu
us sy wt id
9 5 43 43
extended device statisties ---- errors ---
r/s w/s kr/s kw/s wait actv wsve_t asve_t %w %b s/w h/w trn tot device
0.0 0.0 g.o0 0.0 0.0 0.0 0.0 10.0 b} [¢] [¢] 0 o 0 ¢5t0d0s0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 "] 1] 0 0 0 0 c5t0d0s2
1.0 2.4 9.4 26.6 0.0 0.1 7.1 27.3 0 2 0 0 o] 0 c5t0d0s3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.4 [0 0 1] o} 0 cS5t0d0s?
cpu
us sy wt id
18 13 57 12
extended device statisties ---- errors ---
r/s w/s kr/s kw/s wait actv wsvc_t asvc_.t %w %b s/w h/w trn tot device
0.0 0.0 0.0 0.0 0.0 0.0 c.0 0.0 0 0 0 0 0 0 c5t0d0s0
0.0 0.0 c.o 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 c5t0d0s2
0.2 0.2 1.8 1.8 0.0 ©.0 0.0 7.5 ¢ 0 0 0] 0 c5t0d0s3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 "] o] o o o] 0 c5t0d0s7

From these numbers, one can easily calculate several important metrics such
as the throughput (= r/s + w/s), total queue length (= wait + actv), total

response time (= total queue length / throughput), and disk utilization (%b).

When watching iostat’s output, one should look for disks with high
utilization (x/s, w/s, kr/s, and kw/s), which correspond with high CPU
waiting time (equivalent to $wio in sar) meaning that there is a disk
bottleneck. The average response time should stay under 10 ms. Also, the
average response times (asvc_t) should be low (usually 30 ms or less, when
the sampling interval is short) for disks that are less than 5% busy (%b)
[CPS98]. Note however that disks with UFS filesystems might show high

CHAPTER 3. PERFORMANCE MONITORING TOOLS 44

asve_t values that correspond with very low %b values (meaning that the
disks are idle). This is due to the frequent updates of the filesystem flushing
process (fsflush) [CPS98].

Q At is a simple utility that reports on disk space. It is usually used with the -k

option and displays the amount of available, free, and used space for each
filesystem (including remote —-NFS— filesystems). It also shows where each
filesystem is mounted'®. df is a useful tool for monitoring disk capacity
(making sure there is always 10% free space) and disk usage, and can be a
good starting point when solving disk contention problems.

sar (introduced in section 3.1.1) also reports some I/O information. High
$wio values mean that there is a lot of time spent waiting (blocked) for /O
operations to complete. This indicates that there is a slow disk, so throughput

should be increased or /O bus capacity should be added or rearranged.

With the -4 option, sar shows the activity for every block device (such as
disk or tape drives). It reports on each device’s busy time, utilization, service

time, etc.

vmstat (described in section 3.1.2) can also be used to get some disk
information. Processes blocked waiting for /O (b) in vmstat's output
indicate a possible disk bottleneck. Tuning is necessary if this number (b) is
close to (or greater than) the number of processes in the run queue (x).
vmstat also reports the number of disk operations, for up to four disks (by
default), but this information is usually insufficient.

iomonitor.se is a program from the SE Toolkit that works like iostat but
does not display anything until it sees a slow disk. The thresholds for disks

busy time and average service time are set by the user, using the environment

' Correct filesystem layout is an important factor in avoiding /O contention problems.

. CHAPTER 3. PERFORMANCE MONITORING TOOLS 45

variables IOMINBUSY and IOSLOW. By default, TOMINBUSY is set to 20 (i.e.
under 20% busy time is not a problem) and TOSLOW is set to 50 (i.e. 50 ms or
more of average service time is slow). The default sampling interval of
iomonitor.se is 30 seconds (to avoid false alarms). When it sees a slow
disk, iomonitor.se tries to sound an alarm and outputs a time-stamped

sample of the responsible disk’s statistics, using a format similar to iostat.

3.1.4 Monitoring the Network

With client/server configurations, networks are gaining more and more
importance, as they can become the limiting factor in overall system performance
(LOU91]. Thus, network performance monitoring is an essential task to avoid not
only network performance problems but also overall system performance
problems (c.f. section 2.1.4). Network problems are often difficult to understand,

‘ but with the existing monitoring tools, it easier to identify the cause of a problem.

QO netstat is the most common utility for network statistics reporting. The
following example shows netstat with the -i option (which is used to
summarize all the interfaces, when there is more than one interface), and
specifies a polling interval of 3 seconds; there is no way to tell netstat how
many reports to generate. The default interface here is hme0; in order to
specify another interface, the ~I option is used. Each one of the columns
displayed represents network packets over a sampling interval (the interval
since the last line). The input/ocutput packets are the number of network
packets received/sent respectively; the input/output errs are the number
of errors that have occurred while receiving/sending packets, respectively.
colls is the number of packets that were blocked by network collisions (for a

full-duplex Ethemet card and hub, this number will always be O on Solaris
systems [SOB99)).

CHAPTER 3. PERFORMANCE MONITORING TOOLS 46

% netstat -i 3

input hmeO output input (Total) output
packets errs packets errs colls packets errs packets errs colls
75364653 2 486083593 0 0 98596201 2 509315141 O [}
88 0 99 0 0 131 0 142 0 0
102 0 123 0 0 227 0 248 0 0
52 0 72 0 0 114 0 134 0 a
61 0 54 0 0 120 0 113 0 0
87 0 117 0 0 240 0 260 o] 0
87 0 112 0 4] 162 0 187 0 0

The 6™ through 10™ columns contain the same information as the 1** through

5™, except they cover all packets on all network interfaces, and not just the
default interface.

To display the per-protocol (TCP, IP, UDP, ICMP, etc.) statistics, the -s
option is used. And to limit the output to just one protocol, the -P option is

used.

In netstat’s output, it is important to watch the input and output errors
columns (input errs and output errs). The number of input errors should
not be more than 1% of all incoming packets; otherwise this could indicate
packet corruption problems or insufficient network buffers. Also, if the
number of output errors is more than 1% of all outgoing packets, this means
that there is a hardware problem or that the maximum collision retry count has
been exceeded [CER98]. Some authors even put these threshold ratios much
lower (at 0.025%) [LOU91 and SES99].

Collisions are a good indicator of the network load, since they increase as the
network is more heavily used [LOU91]. The maximum number of collisions
that should be tolerated is 10% of the total number of output packets [LOU91
and SES99]. When this ratio (colls / output packets) is greater than
10%, this means that the network is overloaded, so the traffic must be reduced

(by dividing the network into two or more subnetworks, for example).

‘ CHAPTER 3. PERFORMANCE MONITORING TOOLS 47

O netmonitor.se is a program from the SE Toolkit that waits for a slow
network, and then outputs some statistics using a format similar to netstat.
Its default sampling interval is 30 seconds long, and it uses the following
environment variables to set the thresholds: NETACTIVE (minimum
packets/sec to worry about; default is 100) and NETMAXCOLL (maximum
collision rate tolerated; default is 10).

Q The nfsstat utility is used to get statistical information about the NFS
(Network File System). When the -s option is added, server statistics are
reported. When the -c option is specified, client statistics are displayed. And

with the -m option, nfsstat reports network statistics for each NFS-mounted
filesystem.

Q nfswatch is used to monitor an NFS server. nfswatch monitors all
. incoming network traffic to an NFS file server and divides it into several
categories. The number and percentage of packets received in each category is

displayed and continuously updated.

Q ping is asimple command that is commonly used to check if a remote system
is down. It does this by using the ICMP (Internet Control Message Protocol)
to send messages to a remote host, and then waits for an answer to be echoed.
If the host responds, it outputs a message saying that the host is alive, along
with a measure of the amount of time it took the host to answer back. If the
host does not respond within 20 seconds (default timeout value), ping reports

“no answer from host”; the remote system is most probably down.

O traceroute is a very useful utility for tracing the path of network packets. It
is only supplied with Solaris 7, but can be downloaded from the Internet for
earlier versions of Solaris. traceroute traces the path/route of a packet from
its source to its destination, showing all the hosts through which the packet

’ went along with the round-trip time it took to get to each router. The

CHAPTER 3. PERFORMANCE MONITORING TOOLS 48

following example shows the output of traceroute from the local computer
nova.cs.mcgill.ca to the remote machine hell.cc.mcgill.ca. After
the warning, the IP address of the target is displayed, followed by the
maximum number of hops that will be traced, and the size of the packet that
will be used. Each subsequent line is numbered and shows the name and IP
address of an intermediate destination host, as well as the time it takes a
packet to make a round-trip to that destination and back (there are three

numbers because traceroute sends three packets to each destination):

% traceroute hell.cc.mecgill.ca
traceroute: Warning: ckecksums disabled
traceroute to hell.cc.mcgill.ca (132.206.35.52), 30 hops max, 40 byte packets
1 132.206.51.251 (132.206.51.251) 0.925 ms 0.947 ms 0.795 ms
2 132.216.101.254 (132.216.101.254) 1.783 ms 1.216 ms 1.460 ms
3 burnside-core-msfc.GW.McGill.CA (132.216.216.161) 1.694ms 6.486ms 1.390ms
4 burnsidel-msfc.GW.McGill.CA (132.216.216.42) 2.463 ms 1.686 ms 1.398 ms
S hell.CC.McGill.CA (132.206.35.52) 1.8l16ms 2.5l ms 1.848 ms

The traceroute utility is very helpful when trying to identify a network
bottleneck or to solve routing problems. When a host is unreachable,

traceroute shows the path of the packet, where it stops, and what the
round-trip delay is.

spray is generally used to check whether a system is dropping network
packets. It generates network traffic between two hosts and reports on the
overall transfer rate and on the number of packets that were received and the
number of packets that were dropped. If a lot of packets are being dropped
(over 5%), this means that the receiving system is slower in receiving the
packets (maybe because it is overloaded), or that the data is being corrupted

on the way (less likely) [LOU91]. The -c option is used to specify the number
of packets to send.

snoop is used to capture and analyze network packets, usually in order to
track client network activity. Captured packets can be displayed as they are

received (i.e. in real-time), but this generates a lot of overhead. It is therefore

CHAPTER 3. PERFORMANCE MONITORING TOOLS 49

better to save the received data for later analysis. However, multiple-machine

diagnosis using snoop can be very tedious [CER98].

3.1.5 General Monitoring Tools

The previous sections have described utilities that concentrate mainly on a single
resource. Several other tools and techniques exist and are used either to monitor
the whole system at once'' (i.e. all the resources together), or are used to

automatically launch a command or utility to log data.

QO perfmeter is a utility that is only available in the OpenWindows
environment. It displays system performance statistics for a particular host
(local or remote) using strip charts (default display format). The display is
refreshed every 2 seconds (default sampling interval), and provides summary
information for the CPU, memory paging activity, network packets rate, disk
I/O, etc. perfmeter has many options, such as logging data to a file for

example.

O xload is a GUI-based tool that is part of Solaris (with X-Windows). It
displays a periodically updated histogram of the system load average.

O xosview is an application originally developed for Linux. It is a graphical
performance meter presented as a bar graph of the current system state. It
displays the status of several system-based parameters, such as CPU usage
(usr, nice, sys, free), memory usage (used & shared, buff, cache), swap space
usage (used, free), paging activity (in, out, idle), disk activity (read, write,
idle), interrupts, etc. Its appearance is fully configurable via command line or
X resources.

'! The perfmeter, xload, and xosview tools described here are all X-Windows applications
designed to graphically display system performance measures.

. CHAPTER 3. PERFORMANCE MONITORING TOOLS 50

Q cpg.se, the capacity planning guide, is a program from the SE Toolkit that
gathers information about all the system’s resources. It checks paging and
swapping, disk saturation, the directory-name lookup cache (DNLC) hit rate,
the CPU, and the network interfaces, reporting any errors that have occurred.

It has different modes of operation and can work in a continuous or sampling
mode.

Q 1live_test.se is also program from the SE Toolkit. It tests all aspects
resources of the system and displays everything in 1ive_rules. se, a set of
predefined rules that set thresholds for each resource [see CPS98]. The rules
have color codes defining states: White state (idle/inactive), Blue state
(imbalance on different instances of the resource), Green state (no problems,
active), Amber state (waming condition), Red state (overloaded or problem
detected), and Black state (error condition indicating component or system

. failure). It provides a text-based system monitor and outputs information with

30-seconds intervals (by default).

Q virtual_adrian.se is a script that works as if Adrian Cockcroft was
actually monitoring the system [CPS98]. It reports on anything that does not
look well tuned and also uses the SE rules. Parameter thresholds can be set at
once using several environment variables in /etc/rc2.d/S90va_monitor.
The program takes a look at the system every 30 seconds (by default) and only
displays something when it finds a problem. Upon detection of a problem, a
complaint is made and the data that caused the complaint is displayed. Also,
immediate (tuning) changes can then automatically be made to some system

variables.

Q cron is used to start a process that executes commands at specified dates and
times. It is particularly useful for regularly scheduled commands (sampling

I utilities for example). These are entered in crontab files using a specific

format including the date, hour, and minute.

. CHAPTER 3. PERFORMANCE MONITORING TOOLS 51

Q at is a utility that is used to execute jobs at a later time (but using the same
environment setup). It is usually used for commands that are to be executed
only once. It is very useful when running sampling tools, as it can serve for

example to start or stop them at a certain date and time.

O System Accounting: Many processes have very short life spans and thus
cannot be seen with tools like ps (c.f. section 3.1.1), but these processes may
be so frequent that they dominate the system load. The only way to catch them
is to ask the system to keep a record of every process that has run, who ran it,
what was it, when it started and ended, and how much resource it used. This
can be done using the system accounting subsystem. System Accounting is
available on Unix systems and can be enabled or disabled. It is a major tool
for long-term reporting and logging of system data. The system accounting
software is in fact a set of tools that can be used to report on performance

. information and/or build resource accounting systems. Accounting is turned
on at system start-up time. Process accounting is handled by various
programs, all of which write records in the master collection file
/var/adm/wtmp. In addition, when a process terminates, various statistics
about the process are written to /var/adm/pacct. Using accounting data,
one can identify how often programs run, how much CPU time, disk IO, and
memory each program uses, and what the work patterns throughout the week
look like. Although collecting accounting data always generates overhead, it is

usually insignificant. However, accounting data consumes disk space.

3.2 Other/Commercial Monitoring Tools

Although the basic utilities described in section 3.1 are very commonly used on
Sun systems, there are other (mostly commercial) tools that are also used mainly
because of their extended functionality. Indeed, these commercial tools/products
‘ are generally easy to use (typically all have a GUI) and they facilitate the task of

CHAPTER 3. PERFORMANCE MONITORING TOOLS 52

monitoring performance, as they monitor and analyze all the aspects of a system
at once. Also, a lot of them are platform independent (i.e. they can run on most
major operating systems).

Many vendors provide several software products with a different service level.
Some products perform a more detailed analysis than others, but they typically all
help automate the process of performance management. The following is a brief
overview of some commercial tools that only highlights the essential features
each product; links to the respective vendors’ Web sites are provided for further

information. The list is organized in alphabetical order, according to the company
name:

Q BGS Best/I manages the performance and capacity of all UNIX systems and
includes integrated support for several common database systems. Best/1
features visualization and prediction facilities, as well as a real-time monitor
that sounds an alarm when a problem occurs. It is possible to configure Best/1
to continuously collect performance data on the system. BGS is at

http://www.bgs.com.

Q BMC PATROL is a collection of products with many features. Two most
important features are performance management analysis and performance
prediction. With performance management analysis, PATROL provides
current and historic analysis of systems and applications. The results are
graphed and automatically published on the intranet to facilitate the
communication within an organization. With performance prediction and
capacity management, PATROL provides advanced modeling and analysis of
changes that would be implemented in the system’s hardware. It also provides
potential solutions to performance problems and uses prediction to try to

prevent them. BMC is at http://www.bmc.com.

‘ CHAPTER 3. PERFORMANCE MONITORING TOOLS 53

Q Compuware EcoSYSTEMS is a product suite that provides a comprehensive
application management. The suite is composed of many useful tools:
Application Expert helps in profiling and predicting application performance;
Application Vantage troubleshoots the performance of applications;
EcoTOOLS manages application availability; EcoSCOPE analyzes networked
application performance; EcoPREDICTOR predicts application and network
performance; and Interval Pro monitors performance and manages failures of

Windows applications. Compuware is at http:/www.compuware.com.

Q Entrix Direct GENSYS Monitor Suite monitors applications and devices
across multiple platforms. It has a built-in knowledge of typical systems and is
also customizable. GENSYS identifies, or even anticipates problems and
rectifies them automatically. It can also send alerts using e-mail, fax, GSM,

etc., and it is reliable and secure. Entrix Direct is at http://www.entrix-

. direct.com.

O FORTEL SightLine software provides real-time performance management
for e-Businesses. SightLine provides a view of the service level of the e-
Business in real-time and continually analyzes the relationships in the system
looking for any threat. This way, it lets the organization identify service level
problems before the customers experience poor performance. FORTEL is at
http://www.fortel.com.

Q Fujitsu Softek SANView is a product intended to manage Storage Area
Networks (SAN). It monitors the performance of all the devices that are
connected to the SAN and signals problems before they actually cause
damage. Softek SANView can also locate all the devices on the SAN and
draw a topology map showing the interoperability and connectivity of the
different devices. Softek SANView is fully based on Java and thus is platform
independent. Fujitsu Softek is at http://softek.fujitsu.com.

‘ CHAPTER 3. PERFORMANCE MONITORING TOOLS 54

Q HP OpenView GlancePlus Pak 2000 is an integrated product for managing a
system’s availability and performance. GlancePlus Pak 2000 includes three
products: GlancePlus, which provides real-time diagnostic capabilities;
VantagePoint Performance Agent, with its historical data collection
capabilities; and Event and Availability Management, which monitors the
system looking for events affecting performance. HP OpenView is at
http://www.openview.hp.com.

O HyPerformix Strategizer and SES/WorkBench are tools for predictive
simulation modeling. Strategizer is a simulation modeling tool for
performance analysis that locates potential problems, bottlenecks, and
weaknesses before the system is put in production. SES/WorkBench is used to
model complex systems with interacting components in a visual simulation
environment. It evaluates the effects of each aspect of the modeling.

. HyPerformix is at http://www.hyperformix.com.

Q@ ISM (Information systems Manager) PerfMan is a systems management
and monitoring tool that can run on many different platforms (including
Windows NT/2000, UNIX, OS/390, MVS/ESA). With PerfMan, it is possible
to get metrics on hundreds of performance factors affecting the system,
including long-term historical data. More information can be found at

http://www.perfman.com.

QO Landmark TMON exists is a wide variety of versions for a number of
different operating systems and database systems. Depending on the system,
TMON (meaning The MONitor) provides real-time software and hardware
performance information, historical analysis of resource usage trends, quick
problem isolation, database application utilization information, etc. Landmark

is at http://www.landmark.com.

‘ CHAPTER 3. PERFORMANCE MONITORING TOOLS 55

Q Metron Athene is a software package for performance management on
Windows NT, UNIX, and most mainframes. Athene provides performance
analysis, capacity planning, database performance reporting, fast automated
performance reporting, trend analysis, and analytical modeling. Athene
captures, collects, and transfers data to a Performance Database. More

information is available at http://www.metron.co.uk.

O Quest Software Spotlight is a tools for real-time diagnostics. It exists in
several versions, each adapted for a particular environment (such as Web
servers, Oracle databases/applications, SQL servers, etc.) and operating
system. Spotlight works in real-time, displaying graphs of the server processes
and flow of data in order to quickly identify congested areas and take
appropriate corrective action. More information is at

http://www.foglight.conVspotlight-portal.

‘ Q Sun SyMON is a very well known system management product of Sun
Microsystems. SyMON (System MON:itor) exists in many versions and offers
monitoring capabilities for several Sun servers using a configurable
CDE/Motif-based GUI. SyYMON analyzes system performance in real-time
and sends an alert when a problem occurs. It monitors the performance of the
CPU, memory, disk, and network. SYMON can also display views of the
system’s configuration, allowing quick and detailed information access for
administrators. It can also isolate potential problems or failed components,
and always keeps system log files for future analysis. More information on
SyMON is available at http://www.sun.com/products-n-solutions/hardware/docs/
Software/Systern_Management Products/SyMON/index.html. Note that the single

node version of SYMON is available for free with Sun servers.

Q Sysload Software Sysload is a product with several modules, each dedicated
to a task in the performance management process. There is one module for

. monitoring resources usage that can produce reports giving details of the

CHAPTER 3. PERFORMANCE MONITORING TOOLS 56

behavior of the system with an accuracy ranging from one minute up to one
year. Another module is dedicated to observing the behavior of the system (in
real-time) and optimizing it. Another module uses artificial intelligence
technology to quickly analyze and find diagnostics. Sysload permanently
collects data and monitors main operating systems, databases, and main

applications. Sysload Software is at http://www.sysload.com.

TeamQuest performance software comprises four products: Alert, On the
Web, View, and Meodel. The main feature of Alert is its multi-system
monitoring capabilities, as it can monitor hundreds of different systems in a
single display and with built-in assistance. On the Web is an automated
report-publishing tool that handles the post-processing of the collected data: it
publishes the results and delivers them on the Web. View is a comprehensive
performance analysis tool. It can detect bottlenecks and report on the system
performance of several different systems. Model is a tool that is used for
predicting systems behavior using analytical modeling. TeamQuest is at
http://www.teamquest.com.

Tivoli Distributed Monitoring provides automated monitoring for distributed
systems. With centralized information technology, monitoring parameters can
be changed for hundreds of (remote) systems directly. It also includes views
displays to help for capacity planning and performance trend analysis. The
views are also used to predict performance bottlenecks. More Tivoli products

can be found at http://www tivoli.com/products.

Web Performance Trainer 2 is a tool designed to improve the performance
of Web-based applications. Trainer 2 simulates multiple users to find
performance bottlenecks, increase performance, or do capacity planning. It is
a useful tool for finding out how many users a Web-based application can

handle. Web Performance is at http://webperformanceinc.com.

Part 11

Performance Analysis of two
systems: ALEPH and BANNER

In Part I, we presented an overview of the theory of computer systems
performance analysis. In this part, practical applications of performance analysis
are carried out on two systems (in Chapter 4 and Chapter 5), using the technical
background provided in Part I.

Chapter 4 introduces the library system ALEPH, followed by its performance
analysis. Chapter S5 presents the finance system BANNER, along with a
performance analysis of the main machines involved. ALEPH and BANNER
applications are built similarly: both are a mix of C and Cobol programs, both

have a GUI client and a Web user interface, and both use Oracle.

Although Oracle databases are a major component of both systems, the analysis
conducted here does not include an Oracle performance analysis per se. However,
the analysis covers system aspects that are directly related to the Oracle database
and that consequently affect its performance (as an example, /O performance
analysis — and tuning — will result in better Oracle performance since Oracle
depends heavily on I/O performance). The analysis is mainly based on — but not
limited to — data gathered during the months of March and April 2001.

57

Chapter 4

Performance Analysis of ALEPH

4.1 ALEPH System Overview

McGill University Libraries have recently installed Ex Libris Inc.’s library
management system ALEPHS500™ (version 505.12.3). The installation was
completed in summer 1999 and the system went live in May 2000. The
ALEPHS00 system enables users to access the libraries’ massive catalogue and
resources through a web-based interface. It also provides a PC graphical user
interface to the librarians. ALEPHS00 (internally called MUSE 2) replaced the

ten-year old library management system Notis (MUSE 1) that was running on a
CICS mainframe system.

4.1.1 System Hardware Configuration

All of the ALEPH500 components run on a single server called ‘Aleph’. The
system (server) model is Sun’s Enterprise 5500. It has nine 400Mhz-CPUs
(UltraSPARC-II) sharing 4GB of RAM, twelve mirrored disks (so in fact
12*2=24 disks") with almost 100GB of data, and running Solaris 2.6. The disk
management software is Sun Enterprise Volume Manager 2.6, and the filesystem

type is UFS (Unix File System). The machine has one 100-Mbit full duplex
Ethernet interface.

! Actually, the system sees more than 24 disks: 12 mirrored disks in the array (A5200), which
become 24 because of the mirroring, which then are transformed into 48 disks because of the
multipathing (there are 2 paths) + 4 system disks (for holding the operating system) =52 disks
appear in total.

58

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 59

4.1.2 The ALEPH Application

ALEPHS00 is a library management system that provides services (1) via Web
clients (browsers): for library users, such as professors or students (searching for
books, registering, viewing list of items on loan, etc.), and (2) via PC-GUI clients
running on MS Windows: for librarians/library staff (for daily library functions —
such as cataloging books, doing checkouts, collecting fines, and so on; to run

batch jobs, etc.) (see Figure 4-1).

There are 4 database categories, referred to as libraries (or types of records):

BIBliographic library (mgu01, mgu30),

AUThority library (mgul0, mgull, mgul2, mgul3),
« ADMinistrative library (mgu50),
HOLdings library (mgu60).

(Note: mgu is the name for customized McGill-ALEPH libraries)
Each type of library (BIB, AUT, ADM, and HOL) runs different daemons.

ALEPH's database is based on Oracle 7 RDBMS. Every ALEPH library has a
separate root directory and each library directory contains information for
administrating the library (configuration files, log files, etc.). Each library's
database is implemented within Oracle: each library is implemented as a separate
Oracle user, who owns a set of tables containing the data. So when logging in to
Oracle as mgul3 (for example), all the tables for mgul3 become ready and
accessible. The system actually uses these Oracle users (which have Oracle

schemas) intemally to do the work.

The ALEPH server requires the m505 (which is now m535) Unix user and Oracle
users corresponding to each of the libraries (mgu0Ol, mgulO, mgull, etc.).
ALEPH connects to the Oracle database through a dedicated Oracle user named
aleph. Depending on the database user, different rights and permissions are

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 60

assigned. Of course, the connection between ALEPH servers/procedures and
these Oracle users is transparent to ALEPH end users (using the Web or PC-GUIL

interfaces).

4.1.3 ALEPH’s Intra-Communication

Most of the end users are external users (students, professors, etc.), so they
connect to ALEPH via a Web browser. The connection is made through a socket
at port number 4535 (or 4536, and so on, up to 4545) where the web server
(process www_server_main) is running. ALEPH then sends a query to Oracle.
The Oracle server replies back to ALEPH and ALEPH to the Web user.

Other users can be librarians or library staff. They connect to ALEPH for different
purposes via a PC-GUI client (there are 226 users with librarian accounts). The
connection is made at port number 6535 where the PC server (process
pc_server_main) is running. ALEPH then sends a query to the Oracle server,

gets a reply, and returns an answer to the PC-GUI user.

The ALEPH client is really a collection of clients, each dedicated to a particular
function: Acquisitions client, Admin client, Cash client, Cataloging client,
Circulation client, ILL client, Items client, etc.). Every client has a set of
directories (\Bin, \files, \Help, \Tab, etc.) with execution files containing various
definitions. All clients have a client.ini file, which defines their look and
behavior. As examples of clients: The OPAC client of ALEPH enables users to
search the database for a record, to view holdings/location info, to place a request,
etc. The Users client enables borrowers to review their registration, view list of

items on loan, renew loans, etc.

2 Librarians can even send batch jobs through a special web page by filling a form (at
aleph.mcgill.cad4535/S/), so they do not need to know UNIX commands.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 61

PC-GUI
client

(Windows)

< client software >

Aleph
(Solaris)

3
Oracle
database

Figure 4-1. ALEPH System Hardware Architecture.

4.1.4 ALEPH Users

The ALEPH license specifies that the maximum number of Web users is 450
(simultaneous access) and the maximum number of PC-GUI users is 226. There is
a log file on Aleph (/home/lyne/stat-session) keeping track of these
numbers by counting the number of Web sessions and the number of PC-GUI
sessions, both daily and every half-hour. These statistics are obtained using the
ALEPH Utilities s-4-1 and s-4-2.

Other statistics are also being kept. Some of them are obtained directly from
ALEPH utilities, whereas the others were extracted using Perl programs written

by Lyne Thibault. The statistics, started since May 2000, include:

o The daily and monthly circulation statistics for all sub-libraries (Utility s-1-8);

» Daily user web response times or the number of requests that were serviced
within acceptable time boundaries, i.e. within 2 seconds or less;

« The number of hits® (GETs) or web pages retrieved (daily, with the total for the
month), as well as where the requests came from (McGill domain, McGill

3 The user response times and the number of hits are not kept for the PC-GUI interface.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 62

DAS, or other). These Apache log files are located in /var/log/www/ (one
file per month).

There are also other Web log files and PC log files in /alephl/a53_5/tmp/,

keeping track of the type, the origin, and the time of the transactions performed on
the system.

4.1.5 System Use

The two main/primary processes running on the machine are:

« a Web server (ports 4535, and on) having the majority of use, and
« aPC server (port 6535), only used by a few hundred librarians.

There is also a database server "behind the scenes"” to which both mentioned
servers send queries. The database is a large* Oracle database with a web interface

and a PC-GUI interface. More information on the processes running on Aleph is
included in section 4.2.1.

4.2 Performance Study of Aleph

The analysis presented in this section is based on statistics gathered using most of

the tools® described in section 3.1. These cover part of the month of February, all
of March and all of April 2001.

February, March, and April are interesting months for the analysis of Aleph’s
performance, as the peak usage loads for the winter semester occur during that
period (see Figures 4-2 and 4-3). Figure 4-2 shows the total (monthly) circulation
for all McGill’s sub-libraries over 13 months. The highest activity during the

* McGill University owns over 3 million volumes.
% The tools used for Aleph’s analysis are listed in Appendix A.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 63

winter semester is observed from February to April, which is the month that
marks the end of the winter term. Figure 4-3 shows the ALEPH Web users
activity per month, over a year. Again, the (winter) load is highest during

February, March, and April.

Total Circulation for all sub-libraries

120,000 .
100,000 FEIEERESEE BTOTAL
80.000 - . Loans

oo SR §| lmTOTAL
. ' & | Renewals
| o BB | OTOTAL

T] Returns

20,000 N [FEETIREEPES,

AN A A QA
FIE IS EL S

Figure 4-2. Total Circulation for all sub-libraries.

Total number of Web pages retrieved by month

180000 e
160000 £5

140000
120000
100000

60000 &
40000 ¢
20000 £

May- Jun- Jul- Aug- Sep- Oct- Nov- Dec- Jan- Feb- Mar- Apr-
00 00 00 00 0O OO0 OO0 OO O1 01t 01 O1

Figure 4-3. Total number of Web pages retrieved by month.

As mentioned in section 4.1.5, ALEPH has a Web server, a PC server and a

database server running. In the following subsections, all the relevant aspects are

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 64

examined and are divided into four parts: the CPU (4.2.1), memory (4.2.2), disk
/O (4.2.3), and the network (4.2.4).

4.2.1 CPU Usage

Let us first get a general idea about overall system usage by looking at the load
average reported in Figure 4-4 by the uptime utility (c.f. section 3.1.1). uptime
was run with a 10-minute sampling interval during two weeks (last week of
February and first week of March), and the average load for one day was
computed and is shown in Figure 4-4. The standard deviation of the
corresponding samples for each day was very low (rarely going over 1), and so
the 24-hour load average shown in Figure 4-4 is characteristic of the load on

Aleph every day.

Load Average over 24 hours

FIRIEIEIRIATRIRIRENEY
time

Figure 4-4. Load Average over 24 hours.

Looking at Figure 4-4, we observe an increasing load during the day (working
hours) reaching maximum values around 3:00pm and 4:00pm. The increase of
load during the night (between 2:15am and 4:30am) is due to the backup that is
done on Aleph every night. Overall, we see that the load average — or the average

number of jobs in the run queue — is low (always below 3.20), indicating a light

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 65

workload [LOU91]. Since the load average is continuously low throughout the
day, this indicates that the system is probably underused.

The next step is to check the CPU utilization (c.f. definition in section 2.2.1) to
determine how the CPU is being used. Using the output of the sar utility (c.f.
section 3.1.1), Figure 4-5 shows the average CPU utilization over 24 hours. The
samples were taken at 5-minute intervals during several days, and the average
utilization for one day was computed by averaging the corresponding samples
together. The standard deviation of corresponding samples remained low
(between 2 and 5) for the majority of the samples, which means that the CPU
utilization is consistent day to day.

Average CPU Utilization over 24 hours

a5

40 E

- 35

£ 30 £

525 =

§

%10

5 M - :
o= -—-_,.I.','.. R L i . -
E€g3 2988329 8FI3 29883
- N T VW~ - A 30O e D2 oo

time

Figure 4-5. Average CPU utilization over 24 hours.

Observing Figure 4-5, we first note the great similarity with the shape of the load
average graph in Figure 4-4. The average utilization over one day (24 hours) is
16.80%, which is relatively low. However, let us look at the peak utilization
values: these show maximums reaching at most 40%. Since utilization never
attains 80 or 90% during high loads, the system probably has more CPU power
than needed (c.f. sections 2.1 and 3.1.1).

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 66

Although the utilization is a very important measure, it is also important to
monitor the individual user usage and system usage (i.e. the percentage of time
the system has been in user mode and in system mode, respectively). Using the
output of sar, we find an average user time (%usr) of 12.46% and an average
system time (%sys) of 4.34% (both over 24 hours). The user time is relatively
low, with a peak time barely reaching 30% (see Figure 4-6). The system time is
also low, but since it is less than 30%, then the system is considered to be under
(very) light system CPU utilization and the CPU probably is not the next
bottleneck of the system (c.f. section 3.1.1). Also, because system time is so low,
we do not have to check the number of interrupts or the number of spins acquiring

mutex locks (both values reported by mpstat -see section 3.1.1).

At this point, it is important to compute the ‘user:system time’ ratio (3usr/%sys).
The resulting average over 24 hours is 2.7 (with a standard deviation of 0.5). This
value shows no sign of wasted CPU cycles (c.f. section 2.1.1). Using vmstat -s,

which reports total user and system time since the machine’s last reboot, we also

find an acceptable ratio value of 2.

Average User and System usage over 24 hours

35 v

30 §
- i :
25 i | ——%usr
820 %
) 15 } oSYyS
s 10

5

0

eI 3828438§38T @
S - M O © O N M Y ™~ B O N M
-~ - = v = = N N N

time (6-minute intervals)

Figure 4-6. Average user and system usage over 24 hours.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 67

Idle time is to be checked next. The average value reported by sar is 76.76%
over 24 hours, which is quite high. Looking at Figure 4-7, we see that the idle
usage ($idle) curve never goes down below 43% (which is the idle time value
corresponding to peak utilization). This is another sign showing that the system is
probably oversized (c.f. section 3.1.1).

Average Percentage of CPU time Waiting and
idle over 24 hours

120 g

100 £

80 £=

60 O
40 B
20 .'.._
o

usage (%)

IR
- ©°

S L)

36

1018 RGNS

5

Figure 4-7. Average Percentage of CPU time waiting and idle over 24 hours.

Since Aleph is a multiprocessor system (with nine CPUs), it is interesting to look

at the information reported by the mpstat utility (c.f. section 3.1.1). Figure 4-8

shows the per-processor utilization.

Overall, the load is balanced across Aleph’s nine CPUs, even though CPU 14
seems to be constantly busier. During the backup at night (between 2:15am and
4:30am), however, we see that some CPUs are working harder than the others
(CPUs 8 and 9 are 10-20% less utilized than the rest of the CPUs). This is
probably due to the composition of the filesystems, so backing up different
filesystems causes different loads.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 68

Per-Processor Average Utilization over 24 hours
—a—CPUO

so I8 cPUt
£ ol Bl —<—cpua
% w0 B WE! | —=—crus
P3| —e—crus

g 2 3

Figure 4-8. Per-processor average utilization over 24 hours.

Let us also check whether all the CPUs were online and working as expected
during the period of the measurements. cpus. se, which was run on Aleph during

the months of March and April, reports that all nine CPUs were working fine
(always online at 400Mhz).

The workload is next to be determined. We consider here the number of processes
running on the system to be the workload (c.f. section 2.1.1). The nproc.se tool
(c.f. section 3.1.1) was used to evaluate the workload on Aleph, reporting the
number of processes every 10 minutes. Figure 4-9 shows how the number of
processes varies over 24 hours. The curve is similar to the load average and
utilization curves in Figures 4-4 and 4-5 respectively, but is not exactly the same.
The number of processes increases during the day (working hours) reaching a
maximum of 395 around 2:00pm, and decreases at night to about 200 processes.
Between 2:00am and 7:00am (when ALEPH is shut down daily), the number of

processes stays around 60.

Let us take a closer look at those processes and identify them. For that purpose,
ps and top (c.f. section 3.1.1) were run on Aleph. From the information reported

by these utilities we find out which are the busiest processes at every moment (in

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 69

24 hours). During the day, the busiest processes are the web server
(www_server_main), the PC server (pc_server_main), rts32 (background
daemon that runs when ALEPH is started up — used by ALEPH libraries), and the
Oracle server. During the night, these processes (excluding the PC server)
continue to run but are fewer (c.f. decrease in the curve around 17:00 in Figure 4-
9). At 2:00am (and until 7:00am) the ALEPH application is shut down and the
main process observed then is the backup process dsmc (IBM’s ADSM package).

Average Number of Processes over 24 hours

number of processes
88

238888

Figure 4-9. Average number of processes running on Aleph over 24 hours.

Another thing to look at is the process queues length (i.e. the number of processes
waiting for a CPU time slice). vimstat and sar -q both report information on
process queues (c.f. section 3.1.1). Looking at the output displayed by vmstat
(run at 5-minute intervals during two weeks), we find that the number of runnable
processes (r) is constantly 0. This value shows that no processes are waiting for a
CPU time slice. It also means that the response time is equal to the service time,
since the queue is empty and thus no time is spent waiting (c.f. section 2.2.1).
Looking at the measurements of sar -q (run at 5-minute intervals during a
week), we find a maximum run queue length of 1.6, which is a negligible value,
and we deduce that no additional processors are needed [ALO99]. Also, vmstat

reports on the number of blocked processes (b). The maximum value found

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 70

during the two weeks is 4, which is also negligible, and means that almost no

CPU idle time is treated as wait for [/O time.

Overall, it seems that there is too much CPU power for the current workload on
Aleph. Although this guarantees the absence of contention problems, it also

means that the system is probably oversized.

4.2.2 Memory Usage

The first thing to check when monitoring memory is whether there is (excessive)
paging and swapping activity on the system (c.f. section 2.1.2). We first look at
the po (number of page-outs) and w (number of swapped-out processes) counters
reported by vmstat (run at 5-minute intervals during two weeks). We find a
continuous value of 0 for w, which means that the swapping activity on Aleph is
very low. However, the values of po vary significantly, ranging from O to 4561
kB/sec with an average of 180 kB/sec with a very high standard deviation (273.3).
Figure 4-10 shows the average number of page-outs happening on the system
during a 24-hour period. The values were computed by averaging corresponding
samples together during 6 days. Although informative, this graph is not exactly
characteristic of the number of page-outs because of the high variability (large

standard deviation) among the corresponding values sampled each day.

Overall, the page-outs rate increases during the day with variable peaks that reach
very high values (close to 1000 kB/sec at the start and end of the workday).
During the night, the page-outs are fewer, and during backup time (2:00am to
7:00am) there are no page-outs at all (value 0). Excluding the very high peaks, the
highest number of page-outs stays around 400-500 kB/sec during the heavier
workload (c.f. Figure 4-9), which is normal since a system with virtual memory is
supposed to be paging when needed (c.f. section 2.1.2). As for the very high
peaks, there probably is not a problem of lack of memory because these peaks are

not continuous (c.f. section 2.1.2 and 2.1.2).

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 71

Average Number of Page-Outs over 24 hours

245

2 IIIITIITISIITLI3 I
S-AdYTbesosgdazTerEgy

Figure 4-10. Average number of page-outs during 24 hours.

Let us also check the page-stealing daemon scanning rate (sr) in vmstat’s
output to make sure that there is no memory shortage on the system. Figure 4-11
shows the average scanned-pages rate every 5 minutes during 24 hours (computed
by averaging corresponding samples together during 6 days). We observe that the
rate increases with the workload again (c.f. Figure 4-9) — which is
normal/expected - and that the highest values stay around 200 pages/sec. This

shows that the system is not suffering from a lack of memory.

Average Scanned Pages Rate over 24 hours

8323833322833 q3 23

Q = N <€ O M~ 0O O v~ N € 0 M~ O D
- e = = e = v~
time

Figure 4-11. Average scanned pages rate over 24 hours.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 72

Let us now look more at the swapping activity. The deficit paging parameter de
reported by vmstat reflects excessive swapping (and consequently an important
memory shortage) when it is non-zero. Looking at the statistics on Aleph, we find
this value to be almost always 0, but with a few (exceptional) bursts reaching
several thousands of kB. Since these bursts are not continuous, we probably can
ignore them. Also, looking at the output of sar ~r, we find that the available
swap space is always large: it reaches 5.5 GB at night and never goes down lower
than 2.5 GB under the heavier workload during the day (those values are reported
by the freeswap counter in 512-byte blocks —c.f. section 3.1.2).

Overall, there does not seem to be any major problem with the memory on Aleph
presently. However, memory should be constantly monitored to watch whether
the large number of page-outs is increasing, as it could be the cause of a possible

memory bottleneck in the future.

4.2.3 Disk Subsystem Usage

Let us now tumn our attention to disk I/O activity on Aleph. The machine has 12
mirrored disks (so 24 physical disks) of which 2 are operating system volumes
and 10 are for the ALEPH software and the database. Using the output from
iostat, we can observe the activity of each disk (and also compute several
important performance metrics — c.f. section 3.1.3). The operating system disks
(the 4 physical disks®) appear to have a similar and consistent behavior. Figure 4-
12 shows the utilization and throughput (both obtained from iostat) of one of
these disks. The samples were taken at 5-minute intervals during 24 hours. Both
parameters increase during the higher workload (c.f. Figure 4-9), but their values

remain low overall (15% maximum utilization and 35 operations/sec maximum
throughput).

6 c5£0d0s3, c5t1d0s4, c5t8d0s4, and c5t9d0s4.

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 73

Activity of device c5t9d0s4 over 24 hours

B (— Uiilization
’ Throughput

Figure 4-12. Activity of an operating system device over 24 hours.

We also computed the values of the total queue length and total response time
(c.f. section 3.1.3). The total queue length calculated is negligible (less than or
equal to 0.5) during the whole day, with just one exceptional peak reaching 7.6
around 5:00am for one of the two mirrored disks. The total response time

computed is also negligible (under 0.6) for all the samples.

As for the other 10 mirrored (20 physical) disks, the activity of each one them is
different from the others. Utilization and throughput vary significantly from one
disk to the other. The disks containing the ALEPH software (c2t2d0s2,
c3t50d40s2, c2t18d0s2, and c3t34d0s2 — all in volume /alephl) have very
low utilization and throughput values that rarely go over 2% and 2 operations/sec
(respectively) during the higher workload in the day. The disks that serve for
development purposes (c3t37d0s2 and c2t5d0s2 in /aleph3) show very
unstable utilization and throughput values. A sequence of peaks is observed
during the higher workload, with a maximum utilization of 4% and a maximum

throughput of 2.6 operations/sec.

The database disks (c3t32d0s2 and c2t0d0s2 in /aleph, c3t39d0s2 and
c2t7d0s2 in /aleph4, ¢3t42d0s2 and ¢2t10d0s2 in /alephS5, c3t48d0s2

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 74

and c2t16d0s2 in /aleph6, c3t54d0s2 and c2t21d0s2 in /aleph9,
c3t56d0s2 and c2t22d0s2 in /alephl0, and ¢3t58d0s2 and c2t24d0s2 in
/alephll) have a similar overall activity, although some disks are busier than
others. The disks in volume /alephS are by far the most active, with a maximum

utilization occasionally exceeding 40% and a maximum throughput reaching 32.8
operations/sec.

The disks in volume /aleph4 and /alephé6é show unstable utilization and
throughput values with several peaks during the higher workload, all under the 25
threshold (for both parameters). The other disks (in volumes /aleph, /aleph9,
/alephl0, and /alephll) have a similar activity pattern with maximum
utilization and throughput values ranging from 8 to 11. Figure 4-13 shows the
utilization and throughput of one of those disks (device c2t0d40s4). We see that
the throughput and utilization increase during backup time and during the higher
workload in the day (c.f. Figure 4-9), which is normal and expected.

Activity of device ¢2t0d0s4 over 24 hours

9 .

a -

7

6 — Utilization

*i Throughput

3

2
115 :

o - } . P R ke ram——a — S ‘.
Ee23888228888828
OPQ?@QQ:&S&D?_)&&&

time

Figure 4-13. Activity of device c2t0d0s4 over 24 hours.

The queue length and response time values computed for all the non-operating
system disks are very low: the maximum queue length and response time for all

samples are both less than 1. This means that there are very few processes waiting

CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 75

for /O. Indeed, vmstat reports a maximum number of blocked processes (b) of
4. So there should not be any disk contention or bottleneck.

Let us now look at the disk space usage. df -k, which was run once a day for a
month (March), shows that the usage of all filesystems is quite stable (i.e. no disk
is getting filled up quickly). However some volumes (/aleph5, /aleph6, and

/aleph9) are almost full and a cleanup or a redistribution of the data might need
to be performed soon.

Overall, all the disks on Aleph seem to be under-utilized. Although low utilization
usually guarantees the absence of disk bottlenecks, it means, once again, that the

system is oversized.

4.2.4 Network Activity

Finally, let us check the network activity. Using netstat -i we obtain
information on Aleph’s network interface. netstat -i was run during two
weeks at S-minute intervals. Figure 4-14 shows the average number of incoming
and outgoing network packets during a day. We observe an enormous peak of
output packets (almost reaching 70,000) and another smaller peak of input packets
between 2:15am and 4:00am. This is the backup’ time and such an activity
therefore normal. During the backup, ten instances of the dsmc process are
running in parallel (c.f. section 4.2.1). The limiting factor here is probably the
network interface of the mainframe.

We also observe an increase in the activity during the day (working hours) that

corresponds to the higher workload observed in Figure 4-9.

Over all samples, no input and output errors are reported (value constantly at 0)

and the collision rate is stable at 0%. This shows that the network traffic is light.

" The backup is done to a remote machine (mainframe) across the network using TCP/IP.

. CHAPTER 4. PERFORMANCE ANALYSIS OF ALEPH 76

Average Input and Output packets during 24 hours
£ 700000 §
§.50°°°° in packets
S 400000 & out packets
€ 200000 {8
2 100000
o 1 ‘
8T8 8832c-85
S re-o222288
time

Figure 4-14. Average input and output packets over 24 hours.

Next, we look at the TCP data reported by netstat -s, which was run every 20
. minutes during two weeks. We can get some statistics about the connections
opened. The number of currently established connections (tcpCurrEstab) noted
varies between 5 (minimum) and 168 (maximum) during one day. We also find
maximum numbers of active and passive opens (tcpActiveOpens and
tcpPassiveOpens) of 4,095,296 and 9,737,682 respectively. There is another
counter that is worth checking out: tcpListenDrop, which counts the number of
times a connection was dropped (because of a full listen queue). The value

reported is 484 (maximum); because it is greater than zero, the size of the listen
queue should be increased [CPS98].

Overall, there does not seem to be any network problem on Aleph. The traffic is
very light and thus the network does not constitute a bottleneck for the system.

Finally, the performance of Aleph is good and no major problems or bottlenecks

exist on the system. However, the system not fully utilized because of an oversize
. in the hardware.

Chapter 5

Performance Analysis of BANNER

5.1 BANNER System Overview

The BANNER system, produced by SCT Corporation, is the new Enterprise
Resource Planning (ERP') system at McGill that is replacing the mainframe
system for the Student, Finance, and Human Resources systems. It is an
integrated client/server system that uses common/shared data and provides easy
and secure access through PC clients (majority of use) and through the Web, for
different categories of users.

The BANNER system is composed of many products that run concurrently and
share data. The Finance Information System (FIS) has been live since June 1%,
2000; the Human Resources Information System (HRIS) — excluding the Payroll
system (to be installed January 1%, 2002) ~ is live since January 1¥, 2001; and the
Student Information System (SIS) is to go live in the near future (the Admissions
module of it will go live in November 2001). The General System contains the
modules and data that are common to all the BANNER software application
systems. Data, procedures, and functions for all the modules are stored in an
Oracle database. Client connections are made using either Oracle forms
developed with Oracle Developer 2000 (version 6), or through the Web using the
Oracle Application Server. Additional Web products are also part of the system.

L ERP is a common industry term that designates multi-module application software that typically
use a relational database system.

77

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 78

5.1.1 System Hardware Configuration

In the BANNER system hardware architecture many machines are involved (see
Figure 5-1). The core BANNER system hardware is composed of rwo Solaris

database servers, one Solaris Oracle Application server, and one Novell forms

server. Several other systems including additional Web servers and a data

warehouse server provide peripheral functionality. The three Solaris servers

included in the performance analysis of BANNER (sections 5.2, 5.3, and 5.4) are
described below:

1)

2)

3)

‘Nimbus’ is the central production machine with the Oracle database. Itis a
Sun Enterprise 3500 with four 400Mhz-CPUs (UltraSPARC-II) sharing
3GB of RAM, with three internal SCSI disks and rwenty-two disks (a
mixture of 9- and 18-GB disks) in one A5200 fiber channel array (RAID 1 -
mirrored), and running Solaris 2.6. Its disk management software is Sun
Volume Manager 2.6, and the filesystem type is UFS. It has one 100-Mbit
switched duplex Ethemet interface.

‘Neptune’, the development machine, contains the identical software as
Nimbus and several copies of the Oracle database (different development
teams use different database instances to do their work). It is a Sun
Enterprise 450 with four 400Mhz-CPUs (UltraSPARC-II) sharing 4GB of
RAM, ten 18-GB disks (no Volume Manager and no RAID) with UFS, one
100-Mbit switched duplex Ethernet interface, and running Solaris 2.6.

‘Poseidon’ runs the Oracle Application Server (Web server). It is a Sun
Enterprise 450 with four 400Mhz-CPUs (UltraSPARC-II), 2GB of RAM,
one internal 18-GB SCSI disk with the OS and the Oracle Application
Server, and one external 18-GB SCSI disk for backups (no Volume
Manager and no RAID), with UFS, one 100-Mbit switched duplex Ethemet

interface, and runs Solaris 2.6.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 79

(utside MeGll) Banner imaging
Terminal Query tool query/
n .
sarvices o ciong <clientsoftware > | Wepoowser (. Crystal | raporting
client Reports)
| Banner
Web site
: il &Web forms
| load Banner products
4 exacutables store, Index, and Hetcules (prod)
viewimages Web server
Ts1-14Ts1-2
Terminat Server Posaidon wm (Windows NT)
with Banner Client OASWeb ab » Crystai
(Windows2000) server + print server Conan tesf
(Solaris) (Windows NT) Web server
(Windows NT)
load Banner \M, client run stock
executables access view Crystal
s images seports
Oracle ¢b
Banner Solarts) Oratle data
Forms server [Moptune esn | image server warehouse
(Novell Netware) Oracle db (Windows NT) ‘ (Solaris)
(Solaris))
nightly data load (Mon-Fri)

Figure 5-1. BANNER System Hardware Architecture.

There is one more Solaris Server —Zeus’, the Oracle data warehouse server — but
it is not included in the BANNER performance analysis, since it contains no
BANNER software but only BANNER data and Oracle. Its detailed description is
therefore omitted from the list above. This Oracle data warehouse is a resource
that is used to supplement BANNER'’s reporting capabilities. Most users access it

using the Crystal Reports report tool (either directly from a PC-GUI client or via a
recently installed Crystal Web gateway).

The rest of the machines include:

« The BANNER forms server ‘Banner’ running Novell NetWare, from which
the BANNER executables are loaded to the BANNER PC/full clients and to
the terminals. The BANNER PC client software consists of the forms runtime
executable and about 700 compiled Oracle Developer 2000 forms; copies of

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 80

the compiled forms and the Oracle Developer 2000 software are stored on the
BANNER forms server;

« The BANNER image server ‘Mountain’ running Windows NT, which stores
images such as invoices scanned by the BANNER imaging PCs;

« The two machines ‘Tsl-1’ and “Ts1-2’ running Windows 2000 and Microsoft
Terminal Server software, which serve users who cannot easily run the PC
GUI client locally (Macintosh/UNIX users, users who are located off of
McGill’s campus in several hospitals);

e The machines used mainly for Crystal Reports (for professors/researchers):
- the Web, Crystal, and print server ‘Athena’ running Windows NT, which
serves as a Web front-end to the data warehouse;
- the web server ‘Hercules’ (production) and ‘Conan’ (test machine)
running Windows NT.

The existing BANNER software installed is version 4. The Oracle version used
for it is 7.3.4.5, with a Client-Server and multithreaded architecture. BANNER

5.0 uses Oracle 8.1.7.1. Some of the BANNER 4 databases are currently being
moved to Oracle 8.1.7.1.

5.1.2 The BANNER Application

There are two full installs of all the BANNER software (C and Cobol programs,
forms source code, database packages, etc.): one on Nimbus and one on Neptune’.
The compiled Oracle forms and the runtime components for the client are

installed on BANNER (the Novell server). The Oracle Application Server (Web

server) is installed on Poseidon.

% Neptune has one BANNER 4 install and one BANNER 5.1 install.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 81

The BANNER modules are interdependent because they run concurrently and

share data; each module has components implemented (or to be implemented):

» The Financial Information System (FIS) is composed of different modules:
General Ledger, Purchasing, Accounts Payable (including imaging), Accounts

Receivable, Budget Development Grants and Contracts, Stores Inventory, etc.

o The Human Resources Information System (HRIS): General Person, Position
Control and Budget Development, Personnel Services Budgeting, Time Entry

and Payroll, Employment/Compensation Administration, Benefits/Deductions
Administration, Electronic Approvals, etc.

e The Student Information System (SIS): General Person, Recruitment,
Admissions, Catalogue, Registration, Student Fees, Academic History, Course
and Program Planning, Class Schedule, Faculty Load, etc.

All of the BANNER modules store data in one database. The production copy of
this database is on Nimbus and is accessed by all the real BANNER users
(professors, departmental administrators, etc.) either through the PC forms client
or via the Web server. On the test machine (Neptune) there are twelve copies of
the database. The databases on Neptune all started out as standard copies of a
BANNER database, but now are each used by different development teams to test
programs, test loading data, make changes to the BANNER procedures, etc.
Because all the modules share tables in the database, it is difficult for the
programming teams to all use the same database. The twelve database copies are
therefore essential for the testing purposes, even though they consume

significantly large amounts of memory on Neptune.

The database is shut down nightly — but the operating system stays up — and is
backed up once a week. Every night (Monday to Friday) data is extracted from
the BANNER production database on Nimbus and loaded into an Oracle 8.1.6.1

TP aArR™I oy~ =~ & rra- =~

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 82

database on Zeus (the data warehouse). Data loads are done daily so that reports
to be generated have the most up-to-date information.

5.1.3 BANNER Users

BANNER does not have statistics-reporting facilities like ALEPH does, so it is
more difficult to get precise numbers about the users connected at one time and

the categories of users of the system.

Generally speaking, the end-users are professors, researchers, departmental
administrators, accountants, etc. All of them access the database server (on the
production machine Nimbus). The users of Neptune are developers, testers and
traineces. The Web server (Poseidon) is presently under-used because most of
BANNER users are connected through the fully functional PC client. When the
SIS will be live, Poseidon will have its load substantially increased (about 45,000
additional users), since the students will connect through Web browsers. Also,
with the Payroll component that will go live in June, there will be an increase of a
few thousand users on the system. So the total expected growth rate of BANNER
users is very significant. Presently, the only live module is the Finance module
(FIS), so most of the current users are performing tasks such as processing

purchase orders, balancing accounts, and so on.

The BANNER license is a CPU- or ‘power unit’-based license, so there is no
contractual limit on the number of users to connect. There are presently 5,255
defined Oracle users who can access the database. Only 1,800 of those are
actually used (mostly by the Finance administrators), and just 500 processes can
be simultaneously run (i.e. less than 500 users, since some can be have multiple

connections).

The listener process on Nimbus (/opt/app/oracle/product/734/bin/

tnslsnr) has been running since March 2000 and keeps track of all the

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 83

connections made to the database. The log file generated
(/opt/app/oracle/product/734/network/log/listener.log) contains
the number of connections — or sessions — made as well as where they came from
(Web or BANNER client). This number cannot be used to deduce the number of

users of the system, since one user can open many sessions.
5.1.4 System Use

Every machine has one predominant process running:

o On Nimbus, the main process is evidently the database server;
« Similarly, on Neptune, the busiest process is the database server;

o On Poseidon, the main process is the Web server.

In the next sections, the performance analysis of the three BANNER machines

Nimbus (section 5.2), Neptune (section 5.3), and Poseidon (section 5.4) is carried
out.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 84

5.2 Performance Study of Nimbus

In this section, the central production machine — with the Oracle database and the
database server — Nimbus is analyzed. The tools used for this analysis are almost
identical to the ones used in section 4.2 (all described in section 3.1), and are
listed in Appendix B. These tools were run mainly during the months of March

and April, as well as in the beginning of May 2001.

Figure 5-2 shows the total number of connections to the database on Nimbus each
month. There is an increase in the number of users of BANNER (as the finance
system went live on June 1, 2000, more employees are trained on the system and
are now using it regularly, developers are added, etc.) every month. Therefore,
compared to the previous months, March and April 2001 are the most interesting

months for taking measurements, as more activity can be recorded.

Total Number of Connections to the Database each

Number of Connections

Apr-00 May- Jun- Jul-00 Aug- Sep- Oct-00 Nov- Dec- Jan- Feb- Mar- Apr-OY
[+] 00 00 00 00 01 01 [+

Figure 5-2. Total number of connections to the database each month.

Also, a much higher activity is recorded at the beginning of each month. Figures
5-3 and 5-4 show that during the first week of each month, the number of
connections to the database is 1.5 to 2 times bigger than in the following three

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 85

weeks. Indeed, the activity generated at the beginning of the month is due to the
effective closing of the fiscal period (during the first few days of the month) and

to users then checking their new balance (for research grants, for example) for the

new month.
Number of Connections in March 2001

O 4500 E

gaooo

3500

£ 3000

S 2500 -

S 2000 HE

» 1500 N ,

2 1000 P e

E m -0

= \ !

2 0
EKEEEEEEBEEEEEEE
= £ === =3 =323 ===
Teere - 2bd2IR888

Day of the month
. Figure 5-3. Number of connections in March 2001.

Number of Connections in April 2001

T

Figure 5-4. Number of connections in April 2001.

The performance analysis of Nimbus is presented next and is divided into the

following subsections in order to analyze all the aspects of the system: the CPU

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 86

usage (5.2.1), the memory usage (5.2.2), the disk usage (5.2.3), and the network
activity (5.2.4).

5.2.1 CPU Usage

Let us start by taking a look at the load average (Figure 5-5) reported by uptime
(c.f. section 3.1.1). The samples were taken every 5 minutes during ten regular’

days in the first two weeks of April.

Load Average over 24 hours

O a2
DoperO®O

load avg.

Figure 5-5. Load average on Nimbus over 24 hours.

During the day (working hours), the load starts increasing around 8:00am and
keeps on increasing until 12:00pm (to a value of 0.81) where a decrease is
observed (because users go on lunch break). The load goes back up around
2:00pm and reaches a maximum at the end of the day (1.02 at 4:36pm). This end-
of-workday peak is probably due to the closing of the BANNER clients, which

commit to the database and thus generate a higher load.

In the evening, there is still some activity (some finance jobs are carried out), as

the BANNER system is available until 10:00pm (production hours are 6:00am to

3 Le. excluding the days where the data conversions are performed.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 87

10:00pm). At 10:00pm, the database is put into restricted access and the batch
jobs are started in order to extract the data to refresh the data warehouse Zeus (c.f.
Figure 5-1). This generates a high load on the system and is observed in Figure 5-
5 between 10:30pm and 11:30pm. The following peak observed at around
12:30am is due to the backup of the archive logs (used for recovery). At around
1:30am - and until approximately 4:00am - the database is shut down and is
backed-up along with all the files that have been modified (the first higher peak is
due to the search of these files).

Figure 5-5 does not include the data from the days where the data conversions®
are performed. When this data is included, a higher load average is observed

during the day reaching a value of 8 around 10:30am.

Overall, the average number of jobs in the run queue (i.e. the load average) seems
very low. This probably indicates a light workload [LOU91] and possibly that the

system is underused. The next step is to look at the CPU utilization on Nimbus.

Figure 5-6 shows the average CPU utilization over 24 hours, obtained by
averaging several weekdays of sar statistics. Since the utilization is not exactly
the same every day, the graph is not fully characteristic of a 24-hour utilization
and the standard deviation is often relatively high (with values ranging from O to

25). However, it is still useful to have an idea of the overall behavior of the

utilization curve.

We notice, in Figure 5-6, a close resemblance with the load average graph in

Figure 5-5. The major peaks correspond and their interpretation is thus the same.

The average utilization over 24 hours is 14.68%, which is relatively low. Also, the

maximum utilization is below 50% (45.25% is the maximum value found),

* The human resources data is taken out of the mainframe and converted (through conversion
programs) to be loaded into the BANNER database. The data conversions are generally started on
Fridays at 5:00pm and last until Saturday afternoon (sometime between 12:00pm and 6:00pm).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER

\
(]

Utilization (

Average CPU Utilization over 24 hours

50 4
as |}
40 §
35 4
30 +
25 §
20
15
10
5 ¥
0 4 —— —_——
5582255829558 22558%8
S -d¥a e ZdFTBEEEIG YR
time

Figure 5-6. Average utilization over 24 hours.

88

whereas it is supposed to reach 80% or 90% under heavy loads (c.f. sections 2.1

and 3.1.1). However, if we look at the utilization on Saturdays, we see a

significant difference. Indeed, Saturday is usually the day where the data

conversions (which generate a heavy load on the system) are performed. The

average utilization found for Saturday is 31.24% and the maximum utilization is

100% (which is too high and often means that the system is saturated). The

average utilization values for each day of the week are shown in Figure 5-7.

utilization (%)

Average Daily CPU Utilization over a week

- = NN
o O O v

Mon Tue Wed Thu Fri Sat Sun
day of the week

Figure 5-7. Average daily CPU utilization over a week.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 89

Let us now look at the individual values of the user and system usage (i.e. user
time and system time) for a usual weekday. Still using the output of sar, we find
an average user time (%$usr) of 12% and an average system time (%sys) of
2.81%. The user time is relatively low, with a maximum value of 36%. The
system time is generally very low, with a maximum of 9.25% (relatively high)
during the data extraction time (around 11:00pm).

We can now compute the %usr/ssys ratio. We find an average value of 3.71
(with a standard deviation of 1.88), which is good (c.f. section 2.1.1). Also,
looking at the total user and system time since the machine’s last reboot (reported

by vmstat -s), we find a ratio value of 4.

As for idle time, we find an average value of 81.5% (reported by sar) over 24
hours, and that is a very high value. Idle time only goes down to 33.75%
(minimum found) during the data extraction time. This means that during the day,

the system CPUs are not being fully utilized.

Let us take a look at the utilization on a per-process basis. Figure 5-8 shows the
individual CPUs utilization reported by the mpstat utility.

Per-Processor Average Utilization during 24 hours

60 I

50
£ 10 B | —~=—CPU10
€ cPuU
i » —»—CPU14
5% ——cpuis|

Q) Q) Q) Q o QO O

Figure 5-8. Per-processor average utilization over 24 hours.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 90

The utilization of the four CPUs (called CPU 10, 11, 14, and 15) on Nimbus
seems balanced overall. The only exception is during the data extraction time,
where CPU 15 is busier than the other three.

Looking at the data reported by cpus. se, which was run every two hours during
the months of March and April, we see that all four CPUs were always online at
400 MHz, as expected.

Let us now evaluate the workload, which we consider to be the number of
processes running on the system (c.f. section 2.1.1). The nproc.se tool (c.f.
section 3.1.1) was run on Nimbus every 10 minutes; Figure 5-9 shows the average
number of processes reported during one day (24 hours). The average numbers
were computed by calculating the average of corresponding samples of five
weekdays in the beginning of April. The standard deviation was relatively low
(average of 6.75) and therefore the workload is consistent during the week. On
week-ends however, the number of processes goes down significantly (from a

maximum of 355 during the week to a maximum of 157 on Saturday).

Average number of Processes over 24 hours

Figure 5-9. Average number of processes during one weekday.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 91

During the day (between 7:00am and 6:00pm), the shape of the curve in Figure
5-9 is close to the daytime load average (Figure 5-5) and utilization (Figure 5-6)
curves. The processes start to increase in number at around 7:00am; they keep
increasing until lunch time where they decrease, and then increase again early in
the afternoon, before starting their decrease till the end of the day. The significant
difference with the load average and utilization curves is that no peaks are
observed during the night. Indeed, a light workload is running on the machine at
night and the reason for this is probably that the batch jobs and the backup

processes are few (even though they are considerably large in size — c.f. Figures
5-5 and 5-6).

Using the ps and top utilities, we can identify those processes running on
Nimbus. The busiest process observed during the day is oracleMCGP, which
represents an Oracle session (from the production database). Also, there are
several different processes running on the system 24 hours a day (but more clearly
observed outside working hours). The main ones are sqloper (the AppWorx®
Master process — schedules and manages jobs), sooper (the AppWorx Agent
process — accepts job requests from the Master process and starts them),
sowineng (the AppWorx daemon that handles connections from the GUI client),
oracleWORX (an AppWorx Oracle session), and dsmc (the backup process —
only runs during backup time). Other processes also noted (but less frequently)
are forappl (the BANNER finance system document approval process) and
fgractg (the BANNER finance system posting process), which are BANNER C

programs run by the scheduler.

Let us now look at the process queues and see the number of processes that are
waiting for a CPU time slice, using the output of vmstat and sar -q. vmstat,
which was run every 5 minutes during two weeks, reports a very low number of

runnable processes (r) (almost always 0, with very few exceptional maximal

5 AppWorx is an automation package used for job scheduling.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 92

values of 5 and 6), which means that almost no processes are waiting for a CPU
time slice. We can also assume that the response time is equal to the service time,
since the queue is practically empty (c.f. section 2.2.1). Looking at the reports of
sar -q (run at 5-minute intervals during a week), we find an average run queue
length of 0.8 (maximum of 6 on a Saturday, when the data conversions are
performed), which is a negligible value, so no additional processors are needed on
Nimbus [ALO99].

Let us also look at the number of blocked processes (b) reported by vmstat. We
find processes blocked occasionally, with a maximum of 4 at a time. So there is
probably little CPU idle time treated as time waiting for I/O.

Overall, with such a low load average and utilization on Nimbus, it may seem that
there is too much CPU power on Nimbus. However, the user population of the
system is growing significantly every month (c.f. Figure 5-2), so there should be
enough the CPU resource to handle the additional (future) workload.

5.2.2 Memory Usage

Let us first check on the paging and swapping activity on Nimbus. We first look
at the po (number of page-outs) and w (number of swapped-out processes)
counters reported by vmstat (run at 5S-minute intervals during several days). The
average number of swapped-out processes is 20.54 (with a maximum of 76 and a
minimum of 10). These values are a sign of excessive swapping activity (more on

swapping further in this section).

The average number of page-outs computed is 92 kB/sec (with a maximum of 972
kB/sec and a minimum of 1 kB/sec). Figure 5-10 shows the average number of
page-outs happening on the system during 24-hour. The values were computed by
averaging corresponding samples together during 3 days (in the second half of the
month of April). The standard deviation of corresponding samples was variable,

. CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 93

sometimes very high (over 300), so the graph is not exactly characteristic of the
24-hour page-out activity on the system, but it is still useful.

Average Number of Page-Outs during 24 hours

b

kB/sec
5388884888

|

i
-
N
[x¢]
~N

- e P P P PR e P P e PR e P P P g P P P e

2T AT NO - AUNNITUVATANNITNO =

OPNC"?U,NQOOPNVI")'D!\QQP&
g G o~ o R et ' |
time

Figure 5-10. Average number of page-outs during 24 hours.

. During the day and the night (until midnight), we observe a continuous paging
activity with numerous peaks (the higher peaks correspond to the heavier
workload during the day — c.f. Figure 5-9). Although the rate of the page-outs
around 200 kB/sec is usually acceptable (excluding the very high peak during the
backup of archive logs between 12:00am and 1:00am), the continuity of the page-
outs is possibly a sign of a lack of memory (c.f. section 3.1.2). The only time
where there is very little paging activity is when the database is shut down for

backup (from 1:30am until approximately 5:00am).

To get more information about a possible memory shortage, let us have a look at

the page-stealing daemon scanning rate (sr) in vmstat’s output. Figure 5-11

shows the average scanned-pages rate every 5 minutes during 24 hours (computed

by averaging corresponding samples together during three days). The activity

observed corresponds to the workload variation during the day (c.f. Figure 5-9).

The highest sr value is very close to 200 pages/sec (excluding the high peak of
‘ more than 300 pages/sec during the data extraction time around 11:00pm).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 94

Average Scanned-Pages Rate during 24 hours

3. 150 B o . PED S
100 § . R
s0 -8 - L ST R

3 o4 - R AR SN ",. P i

0 g | P
5285852832585 25¢83525¢
- - e P P = e N N

Figure 5-11. Average scanned-pages rate during 24 hours.

But let us now have a closer look at the swapping activity. Let us first check if the
deficit paging parameter de (reported by vmstat) is non-zero. We find that the
value of de is highly variable (within a day and across samples), with very high
peaks during the heavier workload during the day (c.f. Figure 5-9) reaching huge
values (such as 40,000 kB). This usually means that excessive swapping is
happening, and is generally due to an important memory shortage.

Looking at the £reeswap counter reported by sar —r, we find that the minimum
available swap space is 1.25 GB (and the maximum is 2 GB), which is sufficient
and only means that the swap space configured on the machine is large enough.
The excessive swapping observed, however, means that there is a lack of physical
memory (that is compensated by having a large swap space), because the swap

space is being heavily used.

It seems that the memory on Nimbus is insufficient to serve all the running
processes, as several are being swapped out. There is most probably a need for

additional memory on this machine.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 95

5.2.3 Disk Subsystem Usage

We now analyze the disk subsystem. Nimbus has 25 physical disks of which one
is for the operating system and 24 are for the database and the BANNER
software. The operating system disk is divided into several slices, one for each
filesystem. The BANNER software is installed on one mirrored volume (2 disks)

called /sctv4. The database is on 14 volumes, including one for the logs.

Using the output from iostat, we can observe the activity of each disk (and also
compute several important performance metrics — c.f. section 3.1.3). The
operating system disk c0t0d40s2 has five active partitions. These partitions all
have a maximum utilization inferior to 1.75% and a maximum throughput of 1.45
operations/sec (except during the backup at 1:35am, where the throughput goes up
to 7.7 operations/sec for some partitions). Figure 5-12 shows the utilization and
throughput of one of these partitions. The samples were taken from iostat at 5-
minute intervals during 24 hours. We see that the utilization increases with the
heavier workload during the day (c.f. Figure 5-9), whereas the throughput remains
fairly constant throughout the day, except for the backup peak at 1:35am. Overall,
utilization and throughput are rather low on this disk.

Activity of device c0t0d0s6 over 24 hours
7z
CR -
5 —Utilization
,~e; Throughput
2 E
1 £
- Al
o = :
8e¢23 883228888828
OPQQ@Q@:?&:”_EEQ&&&)
time

Figure 5-12. Activity of an operating system partition over 24 hours.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 96

Utilization and throughput are also low on the /sctv4 volume (disks
c2t57d0s2 and c2t42d0s2) containing the BANNER software. Both
parameters remain under 2 during the whole day, except for a peak throughput of
12 operations/sec at 1:40am, during the backup time.

As for the database disks (c0t1d0s2 and c2t33d0s2 in /dbpl, c0t2d0s2 and
¢2t35d0s2 in /dbp2, ¢2t53d0s2 and ¢2t32d0s2 in /dbp3, c2t37d0s2 and
c2t36d0s2 in /dbp4, c2t48d0s2 and ¢2t38d0s2 in /dbpS, ¢c2t51d0s2 and
c2t39d0s2 in /dbpé6, c2t54d0s2 and c2t41d0s2 in /dbp7, ¢2t49d0s2 and
c2t58d0s2 in /dbp8, c2t56d0s2 and c2t50d40s2 in /dbp9, ¢2t34d40s2 and
c2t52d0s2 in /dbpl0, c2t40d0s2 and ¢c2t55d0s2 in /dbpll, c2t38d0s2
and c2t41d0s2 in /dbpl2, and c2t39d0s2 and c2t49d0s2 in /dbpl3), the
activity of each pair of mirrored disks is different from the other pairs. Utilization

and throughput often vary significantly from one disk to the other.

The disks in volume /dbp5 are significantly more active than the others, and
show many (unstable) utilization and throughput peaks during the day more or
less corresponding to the workload peaks (some peaks reach 35% utilization and
43 operations/sec throughput). The second most active volume is /dbpl, where
the utilization of cOt1d0s2 reaches 20% and its throughput reaches 38
operations/sec at the beginning of the workday. Actually, if we look at what /dbp5
and /dbpl contain, we see that /dbp5 has two of the busiest database files for
MCGP (the production database) along with the Oracle temp tablespace files, and

that /dbpl contains the active redo logs (c.f. footnote 6 in Chapter 2 for
definition).

Volume /dbp2 shows a very low activity around 1 or 2 (for both utilization and
throughput) during the whole day, with only two peaks: one during the backup at
1:45am and one at the beginning of the day between 9:00am and 10:30am. The
disks in volumes /dbp2, /dbp3, /dbp6, /dbp7, /dbp8, and /dbpl3 have a
rather similar behavior overall. They have a significantly higher utilization and

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 97

throughput varying between the values of 10 and 25 at the start of the workday
(between 9:00am and 10:30am), and several other unstable peaks throughout the
day. At night, all these disks show peaks due to the backup processes, but some
are busier than the others (such as the disks in volumes /dbp2, /dbp3, and
/dbp7). The disks in volumes /dbp4, /dbp9, /dbpl0, and /dbpll are almost
inactive during the day and only have one peak usage moment at the backup time.

The utilization and throughput peaks observed throughout the disks during the
day (and corresponding with the higher workload) and during the backup time at
night are normal and expected.

The total queue length and total response time values (c.f. section 3.1.3) were
computed for all the disks on Nimbus. The results obtained show negligible
values, both mostly under 0.5 for all the samples. This means that there are very
few processes waiting for I/O at one time. In vmstat’s output, we find a
maximum number of blocked processes (b) of 4, which implies the absence of

disk contention or bottleneck.

However, the iomonitor. se tool (c.f. section 3.1.3), which was run during the
last three weeks of April, generated several complaints about slow® disks at
variable times. The disk that generated the most complaints is c2t56d0s2 (in
/dbp9). Also disks c2t36d0s2 (in /dbp4), c2t41d0s2 (in /dbp7),
c2t49d0s2 (in /dbp8 or /dbpl3), and c0t0d0s2 (the operating system disk)
generated some complaints (between 24 and 35 complaints in a nineteen-day
period). These values should be further investigated for possible configuration
problems.

Looking at the output from the df -k utility, we can now check the disk space
usage. df ~k was run during the second part of March and all of April. The usage

% The T0SLOW environment variable was set to 80.0 (see the description of iomonitor.sein
section 3.1.3).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 98

of the filesystems seems fairly stable but some of volumes have a tendency to fill

up relatively quickly (/dbp3, /dbp8, and /sctv4) and need a regular cleanup to
avoid disk contention problems.

Overall, there does not seem to be any major problem with the disks on Nimbus.
However, most of the disks are under-utilized, as utilization and throughput are
very often too low. The disk subsystem might be oversized for the current

workload, but as the user population grows, there should be enough disk resources

for a heavier workload.

5.2.4 Network Activity

We now look at the network activity on Nimbus. The netstat -i utility
provides information on the network interface on the system (c.f. section 3.1.4).
netstat —-i was run every 5 minutes during one week. Figure 5-13 shows the
average number of incoming and outgoing network packets during 24 hours. The
average was computed for each sample for several weekdays. As the network
activity varies each day, the graph shown is not a characteristic pattern of a 24-
hour period. However, the overall shape of the graph is more or less consistent,

especially during the day.

Indeed, when a backup is performed on the machine, the number of output
packets increases significantly (up to 80,000), because the backup is done on a
remote machine over the network. The number of input packets also increases
during the backup, but not too much. During the day, the activity rises and
follows the utilization and workload pattern (c.f. Figures 5-8 and 5-9), as
expected. The peak observed at the end of the workday (close to 70,000) is
probably due to the closing of the BANNER clients over the network, which
commit to the database generating a higher activity.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 99

Average Input and Output packets during 24 hours
ieoooo : S - —in pckis
5 50000 & IR out pckts

40000 &) g N 3 s

€ 40000 4 SIEIEIR V., ¥ S o9 R L

2 8- $3858325838¢c¢9

Cr-ravToro a3 ER2R] A8

time

Figure 5-13. Average input and output packets over 24 hours.

In all the netstat -i samples collected, no input or output errors were reported
and the collision rate on Nimbus remained at 0%. This implies that the traffic on
the network is light.

Let us now look at the information reported by netstat -s, which was run
during two weeks at 20-minute intervals. We are mostly interested in the TCP
statistics provided. The number of currently established connections
(tcpCurrEstab) observed in a 24-hour period varies between 21 and 273. Also
the maximum numbers of active and passive opens noted (tcpActiveOpens and
tcpPassiveOpens) are 335,781 and 74,402 respectively. The number of
connections dropped because of a full listen queue (tcpListenDrop) remained
at zero through the whole measurements, which means that the size of the listen
queue is appropriate [CPS98].

Overall, the network seems to be performing acceptably. The network traffic is
rather light, but as implied in Figure 5-2, the traffic is expected to increase in the
near future, so the network throughput will increase as well.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 100

5.3 Performance Study of Neptune

In this section, we look at the performance of the development machine Neptune,
which contains the identical software as Nimbus, as well as twelve copies of the
Oracle database. In fact, because Neptune is a test machine and several different
development teams work on it (using different database instances to do their
work’), it does not have a consistent workload and behavior, and it is therefore

difficult to analyze its performance exactly.

The tools used for this analysis are the same as those used for Nimbus in section
5.2 (all described in section 3.1), and are listed in Appendix C. The period of the
measurements is also mainly the months of March and April, as well as the
beginning of May 2001.

In the following subsections, we try to evaluate the performance of Neptune by

looking at the CPU (5.3.1), the memory (5.3.2), the disks (5.3.3), and the network
(5.3.4).

5.3.1 CPU Usage

To have an idea about the overall system usage, we look at the load average

reported by uptime in Figure 5-14. The samples were taken at 5-minute intervals
during the first week of April.

As expected, the load average observed is fluctuating with several different peaks
during the 24-hour period. However, the standard deviation calculated over all the
corresponding samples is low (maximum value of 3.2), which means that the

pattern represented in Figure 5-14 is a typical daily load average on Neptune.

7 The developers use the database to test programs, test loading data, make changes to the
BANNER procedures, etc. ’

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 101

Load Average over 24 hours

3
<
-
e
o
o

EEEEEEEEEEEEE
séééa%a%a%aéaé
time

Figure 5-14. Load average on Neptune over 24 hours.

The highest peak observed (around 1:00am with a load of 2.24) is due to the
backup, which goes on until 5:00am approximately. Around 6:00am, another peak
marks the beginning of the Application Server reload®. At 9:15am, the peak noted
probably marks the beginning of the workday, as the developers log in. Several
different peaks follow during the day and in the evening and are due to different
activities performed by the development teams. From 10:00pm to 11:00pm, the

successive peaks observed are due to the batch jobs started.

The load average reported for Neptune seems quite low overall. This usually
implies that the workload on the system is light [LOU91] and that the system is
underused. But we still have to look at the CPU utilization and the workload to
draw any conclusion. Also, remember that uptime can sometimes be misleading

(c.f. section 2.1.1).

The CPU utilization is one of the most reliable measures. However, taking
utilization averages on a test machine like Neptune can also lead to erroneous

conclusions. This is because the utilization differs significantly from one day to

% There are 8 Web servers (or Application Servers) on Poseidon, of which 7 have connections to
the database on Neptune and are used by the developers.

‘ CHAPTER S. PERFORMANCE ANALYSIS OF BANNER 102

the other, as the developers perform different jobs every day and at different

times. Figures 5-185, 5-16 and 5-17 characterize such a situation.

Average Utilization over 24 hours

22:07 JENE
23:.25 _ .

0:01

1118

237

3:55

513 |
6:31 TN
7:40 P

9:07

10:25

11:43

’ se5B g 2
time
Figure 5-15. Average CPU utilization during 24 hours.
. Figure 5-15 shows the 24-hour average CPU utilization of several days. The

samples were taken every 5 minutes and corresponding samples for each day were
averaged together. Of course, the standard deviation calculated is very high
(maximum of 65.76). Looking at the curve in Figure 5-15, we see that the
utilization pattern is quite unusual, as it increases during the night and decreases
during the day. The backup, Application Server reload, and batch jobs peaks are
visible (c.f. Figure 5-14), and the maximum utilization values are close to 50%.
This value is low for a maximum, as the utilization is supposed to reach 80 or

90% during high loads on a right-sized system (c.f. sections 2.1 and 3.1.1).

However, Figures 5-16 and 5-17 reveal that the utilization pattern in Figure 5-15
is not representative of the daily utilization of the system, neither in the shape nor

in the values.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER

Utilization for March 6, 2001

100 ¢
90 § o e
- 80 =
£ 70 § :
€ 60 £ -
£ 50 %
8 40 §
5 3017 u
20 ¥ : :
10 £
o ,,._‘ z e e 1

O - a T O~ N W e o oy

time

Figure 5-16. Utilization distribution for a weekday (March 6, 2001).

Utilization for March 7, 2001

100 -Er=cmpres
90 4

80
70
60
50
40 B
30 U8
20
10

Utliization (%)

0:01
1:25
2:49
413
5:37
7:00
8:25
9:49

v
Al
1
4
v
v

[
v
<]
N

j |
&
a

37

01
15:25
16:49
18:13
19:37
21:01

"
12
14

Figure 5-17. Utilization distribution for a weekday (March 7, 2001).

103

Indeed, looking at Figures 5-16 and 5-17, which are two separate (in this case
consecutive) days, we first see that they are totally different; they are actually the
complement of each other. Figure 5-16 shows a very low utilization for the first
part of the day (generally less than 20%), followed by a significant increase that
starts around 5:00pm. reaches almost 90%, and continues all night with different
peaks. The explanation for this is probably that a batch job was sent at the end of
the workday to run all night.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 104

Figure 5-17 shows a graph that behaves in the opposite manner and which is the
continuation of the previous graph (the job started the previous night continues).
It starts at high values (80%), then the curve goes down (probably because of the
termination of the batch job) to 25%, and then up again for the Application Server
reload at around 5:00am reaching a maximum of 93%. At the end of the
Application Server reload (before 8:00am), the utilization goes down for the rest
of the day and stays around 10% (except for the batch jobs run daily from
10:00pm to 11:00pm that reach 33% utilization).

So by observing Figures 5-16 and 5-17, we understand the utilization pattem in
Figure 5-15 (which is a combination of both). We also see that the maximum
utilization is not 50%, but rather 90%. This high value is expected from a system
under heavy load, however, it should be watched because a utilization that is

permanently at 90% is a sign of CPU contention (c.f. section 3.1.1).

Let us now look at the user time and the system time independently (both reported
by sar). We find a daily average user time (%usr) of 15.7% and an average
system time (%sys) of 2.18%. The maximum %$usr reaches 90% at heavy
utilization and the maximum %sys found is 9% (both during the backup time).
The $usr/%sys ratio computed using sar average values is 7. Using vmstat -s,
we also find a ratio of 7 for the cumulative values (since the machine’s last

reboot). This ratio value is big, but it guarantees that no CPU cycles are being
wasted (c.f. section 2.1.1).

The idle time (%idle) reported by sar is very high during light utilization
(maximum of 95%) and extremely low during heavy utilization (minimum of
2.5%). Over 24 hours, the average idle time is 72.96%, which is quite high and
which means that the minimum idle time does not occur very often. Therefore

overall performance is probably not suffering (c.f. section 3.1.1).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 105

Because Neptune is a multiprocessor system (with four CPUs), it is interesting to
see how each individual CPU is being used and compare its usage to the other
CPUs on the system. Figure 5-18 displays this information reported by mpstat.
The per-processor utilization pattern is similar to the utilization pattern in Figure
5-15. However, some peaks differ, as the average for mpstat was taken over

different days and the utilization on Neptune is not the exactly the same each day.

Per-Processor Average Utilization over 24 hours

103

QPQ?QI\QON(QIDQQQ'—&
- = e e = = e N
time

Figure 5-18. Per-processor average utilization over 24 hours.

Overall, the utilization of the four CPUs (CPU 0, 1, 2, and 3) is balanced, so the
load is well distributed. Also, the cpus.se script, which was run during the

whole month of April, reports that all CPUs on Neptune were always online at
400 MHz, as expected.

We now look at the number of processes running on Neptune. It is important to
note that Neptune is not a live OLTP system, and therefore the number of
processes running cannot be viewed as the workload (c.f. section 2.1.1). Indeed,
the number of processes on a test machine is not a good representative of the
workload on the system, as many sessions are permanently open, generating
numerous — often idle — processes. In such a case, working with the utilization as

a reference is much more reliable. Figure 5-19 is only included for illustration.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 106

Average Number of Processes over 24 hours

LoD~ v~ i o~ < g
2¢¥¢2T2CE2RSH
time

Figure 5-19. Average number of processes running on Neptune over 24 hours.

We observe a fairly stable average number of processes (more or less 300)
running on the system the whole day. The reason for this is because many Oracle
sessions are open the whole time and some of them are idle. Also the developers
tend to stay connected on the system even when they are not working, so several

processes are using resources but are actually idle.

Let us now look at the output of ps and top in order to identify the processes
running on Neptune. Overall, we find that the busiest processes on Neptune are
the same than those running on Nimbus, the production machine. In addition to
sqloper, sooper, sowineng (AppWorx scheduling processes — see section
5.2.1) and the BANNER processes (forappl and fgractg) several and various

Oracle sessions are running on the system all day long.

The process queues are to be checked next. vmstat and sar -q (which were run
every 5 minutes for a month and for a week, respectively) report on the number of
processes that are waiting for a CPU time slice. We find a negligible number of
runnable processes (r), waiting for a CPU time slice. However, sar -q shows
that the run queue length is often 1, sometimes up to 2, and exceptionally 6.
Although non-negligible, these values should not be alarming as long as they are

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 107

not frequently large and do not exceed 16 (c.f. section 3.1.1). The number of
blocked processes (b, reported by vmstat) is mostly O, but often reaches values

of 2, 3, and 4 at night. This means that there is some CPU idle time that is treated

as time waiting for I/O.

Overall, the CPU power on Neptune seems adequate, as it is being efficiently
used during high utilization. However, CPU contention and bottlenecks are
possible, since the utilization sometimes tends to be too heavy on the system. The

utilization should thus be regularly monitored, and an additional CPU can also

help.

5.3.2 Memory Usage

When monitoring memory, the paging and swapping activities are the most
important values to be determined. Let us first look at the paging activity on
Neptune. We first look at po (the number of page-outs, reported by vmstat) to

find out whether there is excessive paging happening on the system.

The average number of page-outs, computed by averaging the samples (taken
every 5 minutes) of four days in March, is 492.49 kB/sec, which is significantly
large. Also, even the minimum po value is very large (75.75 kB/sec), and the
maximum value is huge (7492.75 kB/sec). The 24-hour distribution of these
values is shown in Figure 5-20.

The page-out activity is very high all day long (mostly between 75.75 and 1000
kB/sec). There are two much higher peaks clearly observed. The first peak is
around 9:00am and is probably due to the logging in of the developers on the
system (note that each Oracle session uses up to 115 MB of memory), and the
second (maximal) peak is at around 5:00pm and is due to the shut-down and

restart of the RTRNG database. The RTRNG database is the database used for the

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 108

BANNER training courses and is stopped, refreshed (all database files are
replaced), then restarted every day at 4:45pm.

Average Number of Page-Outs over 24 hours

.

-]
-~
o
-

23:49 =

!
3
N~
-

0:04
119
2,34
3:49
5,04
6:19
7:34
8:49
10.04

13:49
15:04
18:49

&

21119

2234

a 12:34 N

Figure 5-20. Average number of page-outs during 24 hours.

Average Scanned Pages Rate over 24 hours

Figure 5-21. Average scanned-pages rate during 24 hours.

Such a continuously high paging activity affects system performance and is
possibly due to a serious memory shortage. The page-stealing daemon scanning
rate (sr, reported by vmstat) also shows some activity. We find a rate mostly
under 50 pages/sec (in a 24-hour period), with a maximum reaching 421
pages/sec at around 5:00pm (see Figure 5-21). Although these sr values are not

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 109

extremely high, they do cormrespond to the po values (note the similar patterns in

Figures 5-20 and 5-21) and therefore indicate a lack of memory on the machine.

Now let us look at the swapping activity. The values found for w (the number of
swapped-out processes, reported by vmstat) are quite variable: in a sample with
5-minute measurements during a month, some days have constant zero values for
w, others have a higher values reaching a maximum of 317 swapped-out
processes, which is very high. The w values were usually found to be constant
from one day to the other (more specifically from one day at 5:00pm to the next
day at 5:00pm, probably associated with the batch jobs started at that time and
that continue until the following day).

The deficit paging parameter (de) is to be verified next. Using vmstat, we find
that the de parameter has a very variable activity day to day and within a day.
However, in general it seems to have high values mostly during the workday.
These values can get very high (highest value observed in 3 days of
measurements was close to 30,000 kB), meaning that excessive swapping is

happening on the system.

Let us check if there is enough swap space configured on the machine. The
freeswap counter (in sar -r’s output) reports a minimum available swap space
of 3.8 GB (and a maximum of 5 GB), which is very large. So the excessive

swapping happening on the system are most probably due to a lack of physical
memory.

The memory on Neptune seems to be insufficient for the current workload,
because the system is sometimes desperately paging and swapping processes. The
current physical memory is insufficient for all the Oracle instances running.

Adding more memory will most probably help improve the performance (on a
short time basis).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 110

5.3.3 Disk Subsystem Usage

The disk I/O activity is the next aspect to be studied. The iostat utility reports
most of the information required. Neptune has 10 physical disks with no volume
manager. One disk is for the operating system and the other nine are for the
database, the archive logs, and the AppWorx scheduler.

The operating system active disk partitions are six: c0t0d0s0 (/), cOt0d0s3
(/var), c0t0d0s4 (/home), c0t0d0s5 (/opt), c0t0d0s6 (/usr), and
c0t0d0s7 (/archive). The activity of all these partitions is similar: the disk
utilization is almost always under 1% (excluding a few peaks, such as at the
beginning of the backup process around 1:00am, where the utilization reaches a
maximum of 11.5%) and the throughput is mostly below 0.5 operations/sec (with
a few exceptional peaks, mainly at the start of the backup around 1:00am,
reaching a maximum of 13.45 operations/sec). These values are very low and

show that the operating system disk is underused.

Figure 5-22 is an example that shows the activity of one of the operating system
partitions. The pattern observed shows a utilization that increases during the
backup time (one peak), then during the workday (with several peaks from
9:00am to 5:00pm), and at night during the processing of the batch jobs (a few
peaks from 10:00pm to 11:00pm). The throughput appears to be almost constant
throughout the day with practically just one peak (at the backup time).

Over all the partitions of the operating system disk, the queue length and response
time calculated were negligible (with values almost always at zero), meaning that
practically no processes are waiting for /O from that disk at one time. However,
the iomonitor.se tool (run during the last nineteen days of April) reported
many complaints (83 exactly) saying that this disk was slow. Note that the
IOSLOW environment variable was set to 90.0 (c.f. section 3.1.3). These

complaints imply the existence of a possible configuration problem.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 111

Activity of device c0t0d0s0 over 24 hours
[e —
1.4 EEB
12

SiE — Utilization
3 g: : - Throughput
0.4 LEEE

02 ¥l

Figure 5-22. Activity of an operating system partition over 24 hours.

The activity observed on the /opt/appworx filesystem (device c2t3d0s6) is
low. The activity pattern shows a utilization and throughput almost constantly
lower than the value of 1.55. The only exceptions are the peaks observed at
12:00am (due to the batch jobs), 1:00am (because of the backup) and around
5:00pm (probably due to the closing of the different sessions), reaching a
maximum of 7.5% utilization and 12.1 operations/sec throughput.

The /archive/arch (device c2t4d0sé6) filesystem’s activity pattern shows
successive peaks between the values of 2 and 8 (for both utilization and
throughput). Only two major peaks (reaching a maximum of 23.5% utilization
and 28.9 ops/sec throughput) are observed: the first happens at around 6:00pm
(probably due to the hourly backup of the archive logs and is more active at
6:00pm, possibly because more data is created on the machine between 5:00pm
and 6:00pm) and the second peak is around 11:00pm (batch jobs sent). The
iomonitor.se tool generated several complaints (24 in nineteen days) stating
that this disk was slow. However, the complaints were all made between 12:00am
and 6:00am, which is mostly backup time and therefore does not imply the

existence of a possible configuration problem.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 112

The queue length and response time values computed for c2t3d0s6 and
c2t4d0s6 were also found to be negligible.

The remaining disks are all database disks. Filesystems /bdatal, /bdata2, and
/bdata3 (devices cOt1d0s6, c0t2d0s6, and c0t3d0s6 respectively) are by
far the most active, with a maximum utilization reaching 68.5% and a maximum
throughput close to 95 operations/sec. These values show that the disks are being
efficiently used. Figure 5-23 shows the activity of one of those disks during 24

hours; the other two disks have a very similar pattern.

Activity of device c0t0d0s6 over 24 hours

S [— utilization
Throughput

QO N MO U M~ O - M B N~ O = o
- e e = + N «N

time

Figure 5-23. Activity of device c0t2d0s6 (/bdata2) over 24 hours.

The utilization and throughput first increase during the workday with several
peaks. A relatively higher peak is observed at the end of the workday (probably
due to the closing of the sessions and the committing of the databases). The last

peak of the day occurs at 10:00pm and goes on until 11:00pm (which is during the
batch jobs).

The queue length and response time of these three disks was slightly higher than
the other disks. The queue length values computed varied between 0.1 and 0.8 all
day. The response time was lower, with values under 0.03.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 113

Disks c3t3d0s6 (/bdatad) and ¢5t3d0s6 (/bdata7) have a very similar and
low activity. The values of utilization and throughput are constant all day and
remain under the value of 2 (for both parameters) for the two disks. Only one
peak is observed at around 10:30am (maximum utilization of 12.5% and
maximum throughput of 31 operations/sec) and is probably due to some job

executed by the developers.

The last two active partitions are ¢3t4d0s6 (/bdataS) and c4t3d0s6
(/bdatasé). These have similar utilization and throughput patterns that are almost
constant throughout the day. The utilization is permanently between 1.5 and 2%,
and the throughput is almost stable between 3 and 3.5 operations/sec.

The response time and queue length values computed for /bdata4, /bdatas,
/bdataé, and /bdata7 were constantly at zero, meaning that no processes at all

are waiting for I/O from that disk at one time.

Let us now check the disks space usage using the information reported by df -k
(in March and April). In general, the usage of the different filesystems seems
rather stable, except for three of them. The two filesystems /archive/arch and
/opt/appworx show a very fluctuating usage due to the database archive logs,
and the /home filesystem (in the operating system disk) has tendency to fill up
because they contain the output of the batch jobs. These disks should be regularly

verified and cleaned-up to avoid contention problems.

The disks on Neptune do not show any major problem. Some are underutilized
and some are efficiently utilized. No change is necessary for the time being, but a
redistribution of the load could be useful.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 114

5.3.4 Network Activity

To determine the network activity on the system, we first look at the information
reported by netstat -i. Figure 5-24 shows the average number of incoming and
outgoing network packets on Neptune'’s interface in a 24-hour period. The values
were computed by averaging corresponding (5-minute) samples of 4 days
together. Because the network activity on Neptune is very variable day to day (the
standard deviation values calculated were very large — up to 100,000), the graph

in Figure 5-24 is not representative of the network load and is only included for
illustration.

Average input and Output Packets over 24 hours

£ 200000 §
s
%150000 . gl ——in pekts
§ 100000 : Hl - out pekis
S 50000 + e
o & j e
2852388258528 ¢
O = M I M M O N @ 10D O ™ &
- e = = = = N
time

Figure 5-24. Average input and output packets over 24 hours.

Several peaks are observed in Figure 5-24. The first peak at 1:00am is an output
packets increase reaching 237,622 (the input packets only increase at that point to
43,220). This is due to the backup, which is done on a remote machine across the
network. The next significantly high peak occurs shortly after 6:00am, and is due
to the establishment of several Oracle sessions (simultaneously) for the
Application Server reload (c.f. Figure 5-14). At that point, both input and output
packets reach 155,314. The following peaks are variable and depend on the day

(i.e. on what the developers are doing). Throughout the day, incoming and

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 115

outgoing packets are very close, showing normal activity. The last peak occurs
around 10:00pm and is due to the batch jobs being sent.

In a week of 5-minute measurements of netstat -i, no input or output errors

were found and the collisions rate was constantly at 0%.

Next, we check the TCP data reported by netstat -s (run every 20 minutes
during the last two weeks of March). The number of currently established
connections (tcpCurrEstab) observed is quite variable, with values from 3 to
115, and is not consistent day to day. The number of active and passive opens
remain close overall with maximum values of 1,293,448 (tcpActiveOpens) and
1,297,981 (tcpPassiveOpens), which are relatively large. The number of
connections dropped due to a full listen queue (tcpListenDrop) started at zero
in the first few days of the measurements but quickly increased to reach a
maximum of 6 at the end of the measurement period. Therefore, the size of the

listen queue might need to be increased.

Overall, the network on Neptune seems to be performing efficiently and the
traffic seems to be running smoothly.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 116

5.4 Performance Study of Poseidon

In this section, Poseidon — the machine running Oracle Application Server — is
analyzed. This Web server is already live and in use by some BANNER clients.
However, its major use will be when the Student Information System goes live in

the near future.

The tools used in this analysis are almost the same as those used in the previous
sections (all described in section 3.1), and are listed in Appendix D. The

measurements were taken mainly during the months of March and April 2001.

In the following subsection the performance of Poseidon is studied in four parts:
the CPU usage (5.4.1), the memory usage (5.4.2), the disk usage (5.4.3), and the
network activity (5.4.4).

5.4.1 CPU Usage

The first thing to look at is the load average, as it gives an idea about the overall
system usage. Figure 5-25 shows the 24-hour load average (reported by uptime)

computed over 6 weekdays. The sampling interval is 5 minutes.

Load Average over 24 hours

025 —
0.20 £
015
8 010 £
0.05 §
0.00

avg

12;015"\ P e

€E EEE EEEEEETETETETETEFE

§2dsgidigesgzesgoes

4 b - TS H B NT - OO NN R

PN'ONQQ:?ANO“@NQE
time

Figure 5-25. Load average on Poseidon over 24 hours.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 117

Throughout the day, the average number of jobs in the run queue (i.e. the load
average) is significantly low. It is almost always under 0.05 and the only two peak
times happen during the Oracle Application Server reload around 6:00am, and at
night (probably during some development work associated with the Web servers

running on Poseidon). Even these peaks do not reach 0.25.

Let us now look at the CPU utilization over 24 hours, using sar’s output. Figure

5-26 shows the average CPU utilization computed by averaging corresponding (6-
minute) samples of several weekdays.

Average CPU Utilization over 24 hours

Figure 5-26. Average utilization over 24 hours.

The utilization pattern shows that the highest usage occurs at the Application
Server reload time (around 6:00am) and during the workday (between 9:00am and
5:00pm exactly). The utilization starts rising at 9:00am and continues until lunch
time. Between 12:30pm to 1:30pm, a significant drop is observed. Shortly after
1:30pm, the utilization starts increasing again (maximum reached around 2:00pm)
then starts decreasing later in the afternocon until 5:00pm, when it stabilizes
between 0 and 0.5% until the next moming.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 118

Throughout the day, and including all the peaks, the CPU utilization observed is
extremely low (maximum of 3%). Figure 5-27 shows a quite interesting
comparison of user time and system time. It appears that system time is almost
always greater than user time. The only exceptions observed are the two maximal
peaks at 6:00am (during the Application Server reload) and at 2:00pm (at the
highest utilization of the server).

Average User and System usage over 24 hours

~——%usr
. %ISYS

Figure 5-27. Average user and system usage over 24 hours.

The reason for this is that the machine is so underused that the operating system
itself appears to be the major CPU-resource consumer. If we look at the numbers,
we see that the highest system usage never goes beyond 1%. Therefore, the fact

that the system time is almost the double of the user time should not be alarming
in this case.

The idle time reported by sar ($idle) is, of course (by consequence), very large.
The minimum value found in four days of measurements is 95%, which means

that Poseidon currently has practically no work to do.

Let us now look at the utilization of every process individually. Figure 5-28

shows the per-processor utilization (reported by mpstat) over 24 hours.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 119

Per-Processor Average Utilization during 24 hours

o

[

Utilization (%)
oin-ai-n.toguinhinm

o

Figure 5-28. Per-processor average utilization over 24 hours.

On the graph, the utilization of the four CPUs (CPU 0, 1, 2, and 3) does not seem
balanced. But in fact, because the utilization is so low, the scale used here (y-axis)
is very precise and thus shows the smallest details of the pattern (which did not
happen in the previous analyses in sections 5.2 and 5.3). The overall utilization is
actually balanced across the CPUs on Poseidon. Also, all four CPUs are working
as expected: cpus.se, which was run during the second part of March and all of

April, reported the four processors always online at 400 MHz.

The next step is to look at the number of processes running on the system. Figure
5-29 shows the average number of processes running on Poseidon over 24 hours.
Because the machine’s utilization is so low, we cannot view this pattern as the
workload pattern. The number of processes is almost constant throughout the day
with only a few peaks probably due to the Web development work on the
machine. Poseidon actually has eight Web servers running, and only one is used

for the production (the others are for development).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 120

Average Number of Processes over 24 hours

of processes

LD~~~ ~ D~ =
oS Mo m o o o
Q w=w M ¢« © ™~ O

e~ oD~ O~ -~~~
o Qe a9 O o n e a
ONOID(DQO’Pg
— e v = v e =

time

Figure 5-29. Average number of processes on Poseidon over 24 hours.

Using ps and top, we now look at these processes to identify them. The
following processes are running all day on Poseidon: oassrv, oasoorb,
otsfacsrv, and wrksf (which are Oracle Application Server processes); and

oraweb (the Oracle Web listener). The backup process dsmc is also reported.

Let us now check the process queues (using vmstat and sar -q) to see whether
there are any processes waiting for a CPU time slice. During three weeks of 5-
minute measurements, the number of runnable processes r was constantly zero.
The sar -qg utility reported a slightly larger queue length (mostly O or 1, and
exceptionally 3 or 5), but this can be ignored because the values are below 16 (c.f.
section 3.1.1). Also, no CPU idle time is treated as time waiting for /O, as the
number of blocked processes b (reported by vmstat) was continuously 0 in all

the measurements.

Overall, the current workload on Poseidon is too light for the existing CPU power
because the processors are mostly idle. The expected growth in the user
population should make the system use more (efficiently) its resources.

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 121

5.4.2 Memory Usage

The first thing to be verified when monitoring memory is the paging and
swapping activity to determine whether it is excessive. Let us first look at the
paging activity on Poseidon. The average number of page-outs (po) reported by
vmstat (which was run every 5 minutes during three weeks) is 0 kB/sec. Also,
the page-stealing daemon scanning rate (sr) is O pages/sec across all samples.
This means that there is absolutely no paging activity happening on the system. It

also means that the system is not making use of the virtual memory (c.f. section
2.1.2).

Let us now look at the swapping activity reported by vmstat. In the three weeks’
measurements, the number of swapped-out processes (w) is constantly at 0. The
deficit paging parameter (de) is also 0 kB across all samples. The configured
swap space on the machine varies between 1.4 GB and 1.5 GB. This variation is

probably due to the use of the tmpfs (temporary filesystem), since tmp£fs and
swap share space.

With the current workload on Poseidon, the physical memory seems to be more
than sufficient, as there is practically no paging nor swapping happening on the
system. When the system will have a heavier workload, the paging and swapping

activity will surely increase, but it is difficuilt to predict whether there will be a
shortage of memory.

5.4.3 Disk Subsystem Usage

We now look at the disk I/O activity. Poseidon only has two disks of which one is
currently not being used (c0t1d0s2). The operating system disk c0t0d0s2 has
five active partitions: c0t0d0s0 (/), cOt0d0s3 (/var), ¢0t0d40s4 (/home),
c0t0d0s5 (/opt), and c0t0d0s6 (/usx).

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 122

Using the output from iostat, we observe the activity on each one of these
partitions. The first thing we see is that the activity is very low and similar over
all partitions. The utilization is always at 0.1% (or very close), except at 4:30am
(when the backup starts), where it reaches a maximum value of 5%. The
throughput varies more, but is still very low. The average throughput value is
between 0.1 and 0.2 operation/sec, except during the backup, where it goes up to a
maximum of 9.15 operations/sec for one partition (partition c0t0d40s5, or
filesystem /opt). Figure 5-30 shows the utilization and throughput for one of
these partitions/filesystems.

Activity of device c0t0d0s3 over 24 hours

8 [——Utilization
' Throughput

!

X

Figure 5-30. Activity of an operating system partition over 24 hours.

i

Although the utilization and throughput patterns are similar across all partitions,
the resemblance is even more notable between two pairs. Filesystems / (root) and
/usr have an almost identical activity, and filesystems /var and /home show a

very close pattern. Filesystem /opt has a slightly different behavior, but is a little
more active than all the others.

The total queue length and response time values was computed for all partitions.

The results obtained were all zero (or very close) even during the (slightly)

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 123

heavier utilization. Also, the number of blocked processes (b, reported by

vmstat) was constantly zero.

Looking at the disk space usage (using 4f -k), we see that no filesystem is
significantly increasing in size. The usage is very stable, as the activity on the

machine is very low.

Overall, the disk subsystem usage on Poseidon is very light. The disk resources

should be sufficient for a (future) heavier workload and usage.

5.4.4 Network Activity

We now look at the network activity on Poseidon, using the netstat -i utility.
Figure 5-31 shows the average number of incoming and outgoing packets on the
system’s interface over 24 hours. The values were computed by averaging the

corresponding samples of several weekdays in the second part of April.

Average Input and Output Packets over 24 hours

140000 -
120000 &
2 100000 &
8 ' -
s 80000 ——in pckis
a 60000 out pckis
]
= 40000
20000 £
0 [' 1 7 HA
S 8 T O N - S b TH & S 0
S-ebdrd N FTosgyR

Figure 5-31. Average input and output packets over 24 hours.

Throughout the day, the network activity is very low and only a few peaks are
observed. In all daily measurements, two major peaks appear consistently: at

CHAPTER 5. PERFORMANCE ANALYSIS OF BANNER 124

4:30am during the backup, and at 6:30pm, where the peak reaches 115,570
packets (this last peak is not attributable to any regularly scheduled system
process). Note that in the first peak, there are much more outgoing packets (since
the machine is being backed up to a remote mainframe), and in the second peak

the number of incoming packets is much greater.

The other peaks observed in the network activity pattemn are lower and are not
consistent day to day. They are probably due to the development work related

with the Web servers running on Poseidon.

Over all samples, no input or output errors were observed and the collision rate
remained at 0%. This is expected, since the traffic on the machine is significantly
light.

Let us now look at the TCP information reported by netstat -s (run every 20
minutes during the last week of March and the first week of April). The number
of currently established connections (tcpCurrEstab) is more or less consistent
every day with a minimum of 131 and a maximum of 245. The maximum
numbers of active and passive opens (tcpActiveOpens and
tcpPassiveOpens) observed are 197,205 and 74,313, resprectively. The
number of connections dropped because of a full listen queue (tcpListenDrop)
remained at zero across the samples, so no changes in size need to be made to the

listen queue for now [CPS98].

Again, the network on Poseidon is a very lightly used resource because of the
current workload on the machine. As the network activity and traffic increase,
further measurements should be taken in order to assess the state of the network.
Also, it is important to monitor the other machine’s resources as well, when the
utilization will increase, in order to determine the performance under the real

workload.

Chapter 6

Conclusion

6.1 Summary

The purpose of this research was to present performance analysis of computer
systems, highlighting its importance. Indeed, any computer system is subject to
performance degradation (or other performance-related problems) with time if its
basic resources are not regularly monitored and corrective actions taken if
necessary. Performance analysis prevents performance-related problems, which

directly affect productivity.

The basic resources to be monitored on a system were described in a
performance-tuning approach, and numerous monitoring tools (commercial and
non-commercial tools) and techniques for performance measurement were

presented.

Two new major systems at McGill University were analyzed in this thesis: the
ALEPH library management system and the BANNER finance system. The result

of the analysis showed varying activity and usage across the different machines.

The ALEPH system’s machine Aleph revealed to be oversized in hardware, as the
current utilization and workload on the system are relatively low'. However, this
usually implies the absence of resource contention problems and bottlenecks.

Also, the extra capacity can support special projects, such as the testing and

! Note that the measurements and analysis of Aleph covered the busiest period of the year.

125

CHAPTER 6. CONCLUSION 126

deployment of new software releases’. Moreover, as the user population of
ALEPH increases, the current system should be able to handle a heavier (future)

workload.

The BANNER system’s machines Nimbus, Neptune, and Poseidon had different
behaviors. The production machine Nimbus was found to be slightly oversized in
the CPU and disk resources, with a relatively light network traffic. However, the
memory subsystem is experiencing some problems when the workload increases.

Adding physical memory on Nimbus should help relieve this problem.

The development machine Neptune showed a quite complex and mostly
inconsistent behavior and was found to be somewhat undersized®’. The major
problem was with memory, as the current physical memory configured is unable
to handle the multiple Oracle instances that are running on the system. Additional
memory is clearly needed on Neptune. The other resources’ power and size can

also be increased, as this would probably help performance too.

The Web server (or Oracle Application Server) Poseidon is currently oversized. In
fact, the system was sized for a workload that hasn’t yet materialized. Indeed,
since the Student Information System (SIS) is not yet live, it is difficult to
determine its performance under the ‘real’ workload. Another set of

measurements will be needed when the machine will be running the SIS.

6.2 Future Work

In this thesis, we looked at performance from the computer’s view. Studying the
performance from the user side (i.e. from the client’s perspective) is another

interesting task. Moreover, as client machines are generally running MS

2 In fact, this work is currently being done on Aleph, and the machine is now supporting two
releases of the ALEPH software.

3 In fact, in the capacity planning phase, there was no plan to have twelve databases running on
Neptune.

CHAPTER 6. CONCLUSION 127

Windows, it would also be interesting to analyze the performance of that

operating system (or any other operating system).

Another (more complex) analysis would be to determine the performance of
Oracle on the current system. This analysis requires a very deep understanding of

the Oracle database system, as well as the platform on which it is running.

One could also concentrate on the network performance between client machines

and server interfaces, and compare the performance of different network
interfaces or topologies.

When source code is available, application performance analysis is another useful
task in which the application running on a system is analyzed (in terms of
efficiency of code, etc.) independently of the platform. In such an analysis,
mastering the software application in all its aspects is necessary in order to find
ways to improve its performance. Another interesting task would be to determine

the performance of an application running under different operating systems.

Running different monitoring tools on a system and comparing their operation
and results is yet another challenging task. One could use character-based tools,
tools having a GUI, commercial tools, etc., resulting in a comprehensive overview

of tested monitoring tools.

Appendix A

List of tools run on Aleph

128

SOINUIW G AIBAR 'GRJUOID YiiM un) "v90'sd qan/1p0zsieIS/eleudiu/ewoy/[90:81 ‘0t 1dy| 10:0 ‘9 'idy| peey | mxen sd/qon/isn/

SeNUIW G Alane ‘QejuoI Yiim uni HY90°'c01du/ L 00ZsIeIS/eleydlw/ewow| G0:GL ‘L AeN| 10:0 ‘9 ‘idy es'o04du 8s

00:91 pue '00:¥| ‘00:21 I Aep/xg ‘QeluoID YiM uns Hvs0'6do/ L oozsieis/eleyoiw/ewoyy| 10:v1 ‘L Ae| 00:2t 'S ‘idy| [iiel pue peey] es'6do as
(sinoy yz 10}) sfeasejul eynuiw-g 1e ‘iq uf uni Hvv0°'1es/L002sIeIS/el8udluy/Bwol/| GGiE€2 ‘v idy| 00:0 ‘v 1dy 882 00€ Jes
slelsju) 8inulw-g Je ‘6q) unif HYY0 '8U4X-1eIS0)/ | 00ZSIeIS/ejeydiuy/ewoy/| Gz:tl G ‘idy[00:0 ‘v ‘Idy 00€ 89UdX- Jeisol

senuIw G AI9A8 ‘GeIucID Yiim un) HWez awndn/|00zsieIS/eleydiw/ewoy/| g0:Gl ‘L Ae| L0:0 '82 ‘few ewdn,

S|eAe)u) puodes-G| 1e 'bq uj un)j YNEZ I0NUOWIWA/L00ZSIEIS/ejeydIW/ewow/| G591 “ I i idy| 000 ‘€2 ‘e 10} UOUWIWA

SeAleju) puooes-G| 1e ‘6q Ut un)| HINGL ‘Joiuowol/|o0gsieIS/eleydiw/ewoy/|€1iGL ‘0L “idy| 00'0 ‘61 JeN «Jojjuowio|

(seinuiw G Joj sun1) sejnUL g AleA8 ‘GBIU0ID Y)m UNn) HN6 L 1eS/L00ZsIeIS/eleyoiuewoly| 2yi9t ‘e ‘idy| 100 ‘6L ‘e 0l 0t les
sfensjul einuiw-G Je ‘6q uj uni| UNZL FIeIsieu/L002sieIS/eleydiu/ewow| 116 ‘92 “1e| 106 ‘21 ‘el 00€ |- leisjeu

sejnulw 0Z A19AS ‘Gejuosd Yum uns| YINZL's-lelsieu/| 00zsielS/eleudlw/ewou/| 106 ‘92 Jew| L0:0 ‘2L ‘1eW s- jeisieu

00:L1 1e Aep e 83u0 ‘qe|uoId Yim uns HNBO0™-1p/L00ZSIeIS/Bl8ydiuy/awoy/| 00:£1 ‘O '1dy| 00:ZL ‘8 ‘1eiN % 4p

sinoy Z Aleas ‘qejuosd yim unj HWSo'sndo/L00zsieis/eieuaiw/ewoy/| 1o'tL ‘t Aew| 00:2L 'S ‘leiy es‘'sndo es

selNUIW G| A18Ae ‘Qejuosd Yim uns HING0'sdqan/L00Zs1eIS/eleyoiw/ewoy/|00:0L ‘2L Y| 00:01 'S ‘JelN| pesy | mxen sd/qon/isn/

senujw G4 A18AS ‘qeIu0Id Yim uni HiNG0'doy/L 00ZsIeIS/aleydiw/ewoly/| G0'6 ‘2L ‘JeN| S0:0 ‘G ‘Jel do

00:pL 1e Aep e 83U0 ‘qejuoid yum uni HW10'6do/100zsieis/eleyoiw/ewoy| Loyl ‘v idy| 00:vL ‘1 “dew| [ire) pue peey] es'6do es

(‘uw G 1en0 ‘BAe) seINUIW 01 Klers ‘qeju0Id Yum uni 3402 1e1sduy/100zZsIeIS/8leudiw/ewoy/| 068 ‘61 1eW| S0:0 ‘82 'aed 2 00¢€ 1eisdw
sieAejut eynuiw-G 1e ‘6q ui un) 34/2"1eISWA/L002SIeIS/8leydiw/ewol/(00'91 ‘v1 ‘1en(60:01 ‘L2 ‘aed 00€ 1eiswA

(seinuil G Joj Suni) seynujwi 9 AleAe ‘GejuoIO Yiim uni 3492'1es/1002sieIS/a8ydlw/awoy/| 62'6 ‘2L Je| G2:6 ‘92 ‘aed 0L OE Jes
senuiw 0| AleAe Bujdwes ‘qejuoid yyum uni 3461 20.du/ | 00ZsSIRIS/0l0YdIW/ewoy| 0G:e2 ‘s ‘1dv|oE:0tL ‘61 ‘G4 8s'001du es
seinujw 0 Kiene buiidures ‘qejuosd yym uni 3461 ‘awndn/L00ZsIBIS/BI8YOIWY/BWOLY/| 016 ‘2 ‘1dv(02:0L ‘61 ‘qed euidn

(00€) siensiu) einupw-G e ‘(punoibyoeq) Bq uj unal 3461 00CIEISWA/L00ZSIEIS/B8YdIW/eWOY/| 9E'G ‘12 'qed| LE6 ‘6l ‘aed 00€ 1e1SWA
spuodes og Kiaae Bujidwies ‘iojensiuiwpe Aq uni mo_;o._:oe\mm\sugmz €0:2 ‘02 Aey| 0002 ‘92 ‘1dv es‘UelpeT|enyin es

S|eAlelU) SINUIW-G Jé Dq Ul Uni] UV /2 80UdX-1eIsol/ | 002SIeIS/e[euiW/eWou/| GE:E2 ‘L 1dv] 00:0 Z¢ Jav 8dudx- 1eiso|
slease)u} puodes-og 18 ‘Bq uiun)] W81 1Ser eAl/)o0zsieIS/eleydiw/ewiowy/| /68 ‘61°1dy| 00:0 ‘81 ‘Idy es'|Sa) @A|| es
sjeAlejul puodes-0g 1e ‘Bq Ul uni| Wy, L Jonuouseu/ | 00ZsIeIS/eleydiw/ewow/| 002t ‘v dv |Gzl L1 iy «Jojjuowieu

(seinuiw G 10} sung) senuwl g AIBAS ‘QBIUOLD LM un) Hv.1 'b-1es/ | 00zsieiS/eleydiw/ewoy/| yzZigl ‘ve ‘1dv|EpiZL ‘L) ‘idy G 09 b- Jes
(seinuiw g Joj suns) seinujw 9 A1BAS ‘GeIU0ID YiM Un) Hv.| 'I-1es/|00ZsI1RIS/Bl8YdW/BWOL| b2i2L 'v2 ‘1dy|Eb:LL ‘L1 1dy G 09 - 1es
(seinuiw G Joj suny) sejnuiw 9 Aieae ‘Geju0IO Yiim uny Hv.1 ‘B-1es/L00gsiRIS/BleYdIW/BWoY | bei2l ‘b2 ‘idy| 10:0 ‘L1 ‘dy G 09 G- Jes
sjeAsjul ejnuiw-G 1@ 'Bq Ul uni| WY.L -leIsieu/L00gsieIS/eleydiuewow| 12:ZL ‘b 1dy| 100 ‘L1 ‘idy 00€ |- 1eIsieu

seinuiw G A1eAe ‘qejuoid yim unll Yy L S-1eISWA/| 002sIeIS/aleydiw/ewoy/f 12:21 ‘p2 1dy| 10:0 ‘Li 1dy §- JeISWA

s|eaJeu) pU0oas-0g 18 '6q Ul uni| Yyz | loluowwA/Lo0zsielS/eleyaiwy/swoly| 60:G1 ‘L Aey| 00:0 ‘2L ‘idy JONUOWIWA

sjeaseju) puodes-og 1e '6q uruni| Yy | ‘Jojiuowol/| p0ZsieIS/eleyoiw/ewoy/| ge:yL ‘L Aew| 000 ‘L ‘idy Jojitiowo

sjeAelu) eInuiw-G Je ‘Bq uj uni| Wvgo’es 1eISWA/L002SIeIS/eleudiw/ewoy/| 1Gi8 ‘L1 idy| 100 ‘g Idy 00€ ©5'|eJSWA es

Appendix B

List of tools run on Nimbus

131

SfeAIs)U| SPU0D8S- OF JE '0q Ul UNI[YY6 | 10lUOWWA/LQ0ZSIBIS/eleydiw/ewoy/| 9g:cl ‘| AeW[00:ct 6} JdV JOJUOWIWA

siensau) spuodas- 0 1e 'Bq ul uni| Uy6LIse) eAl/L00ZsIeIS/eleudiu/eliow/|0s 21 ‘02 ‘1dy|0E:L L 6 ‘idv 85'1S0) OA|| 8s

(senuiw g 10j sunJ) sejnuiw g A18A8 'qejuoId Yjim uns V.1 'b-1es/ 002sieIS/8leyolw/ewoly| peigt ‘ve'idy| 10:0 ‘2t ‘idy G 09 b- Jes
_as::_s G 10} sunJ) sejnuiwi 9 AI8A ‘qejuoId Yiim uni HYZ 1 1-1es/L002sIeiS/eleyojw/ewoy/| el ‘vz'idy| 100 ‘2L “tdy G 09 i Jes
(senujw G 10j sunJ) sejnuiw g A19A8 ‘qeju0Id YitM un) "vZ 1 b-1es/L00zsieiS/el8ydiw/ewoy/| p2igt ‘ve'idy| 10:0 ‘21 1dy G 09 b- Jes
sfene)u; seinui-G 1e ‘Bq U uni| v/ L '1MeIsieu/L00zsieIS/eleyoluw/ewoy/| p2igt ‘veidy| 10:0 ‘L1 “idy 00€¢ (- 1eisieu

sjeaejul sejnuiw-G 1@ ‘6 U uni| HyZ L 1eISWA/LO0ZSIBIS/eloydiw/ewol/| L L6 ‘¥2 “dy| 100 ‘2l ‘idv 00€ 1eISWA

s|eAle)U) Spu0des- O 1e ‘Bq u) uni| Hyz| loluowioy/| p0ZsIeIS/ejeydjw/ewow/| 00:9 | Aew| 00i0 ‘21 idy «Jojjuowoy

sejnuiW G AI9Ae ‘qeju0Id Yyum uni Hvzi ooidu/L00gsierS/eleyoiw/ewoly| 94:Gl ‘L Aey| 10'0 ‘gt ‘1idy es‘c0idu es

sonuiw 0| A19Ae ‘qeluosd yum uni| Hyso'sd qonyL00zsieiS/eleudiw/ewoy/|osiee ‘04 ‘idy| 00:0 ‘G 1dy| peay | mxen sd/qon/isn/

00:91 Pue ‘00:S1 ‘00:¥L ‘00:01 18 ABp/X} ‘QEIUOIO YiM U "vr0'6do/L 00zsieiS/eleyaiw/ewoy/| 10:51 ‘1 Kew| 00:01 ‘v ‘idv|liter pue peay] es'6do es
(sinoy vz 1o)) sfeaseiul senuiw- G 1e *Bq ui uni Hvv0°'Jes/L002sIeIS/aleyoiw/awoy/| SGiee ‘v “idy| 00:0 ‘v 1dy 88¢ 00¢ fes
sjeneju) seInuiw-G Je ‘Bq u) uni| Uvro'eoudx-eisol/L gogsiels/eieusiwyewoy/| 002t 'S idy| 00:0 ‘v ‘idy! 00€ 99UJ4X- Je}sof

sejnuiw G A1eAe ‘qejuoido yum unif Hingz ewidn/Lo0ZsielS/eteydlw/ewoy/| 9L:GL ‘L Ael| L0:0 ‘82 “Je ewndn

(seinuiw G Jeno ‘Gae) seinujw o} Ai1oae ‘qejuos yim uni| YL 2 eisdwy/LoozsieiS/eleyaiyewoy/| Gpipl ‘s 'idy| 60:0 ‘1.2 ‘Je 2 00¢ yeisdwi
seinujw oz K1ene ‘qejucio yim uni| Y61 s-1eisieu/L00zsieis/eleusiw/ewoy/| Lyie2 ‘s 'idv| L0:0 ‘61 ‘Je s- jejsieu

Inoy Kiene ‘qejuosa iim unii NG s-1eIsWwA/| 00ZsielS/eleydiw/ewoly/(og ez ‘St 1dy| 0€:0 ‘St ‘1ey S- 1eISWA

sinoy g A1ene ‘qejuoid yim uns HING L 'sndd/L00ZsieiS/eleydiw/ewoy/| (oL ‘L Aew! 10:0 ‘L “1eiy es‘sndo es

senuiw Q| Aleas ‘QeIuoId Yim un) HIS L ‘001du/ | 00ZsIeIS/8leydjw/ewoyy/(os:ee ‘L L ‘1dy| 00:0 ‘St ‘tep es'00idU s

00:21 ye Aep & 83u0 ‘Geju0ID Yitm un) HNZL Y-1p/L002SIBIS/8leudiw/eWoYy/(00:2L 'O 1dvDO:LL ‘2L Jew X p

seinujw G| AJeA8 ‘Gelu0. Yim uni "Nz L doyL00zZsIeIS/aleydiw/ewoy/| 06 ‘6L ‘1eN| SO0 ‘2l ‘Je doy

seinuiw 01 AleAs ‘qeiuoso yim uni| Yz L ewndn/L002sIelS/aeudlwewoy/| 0€:6 ‘2 tdy| 00:0 ‘2L fel ewdn

(seinujw G 10§ SUNJ) senuIL g AIBAS ‘GRIUOLD YiIM UN HINZ1 Jes/L00gs1eIS/ejeydlw/ewoly/| 9g:6 ‘2 Jdy| 10:0 ‘2L Je 0l O¢ Jes

T

X

)

S{eAejul Sejnulll-G Je 'Dq Uj Uni[YINO | 8oUdX-1eISo)/100ZSIelS/eieudiw/euow/[GG:eZ ‘0t AWy 00:0 ‘0L AeW 00E @dudXx- Jeiso|
S[eAeju) SeINUIW-G Je ‘Bq Ul uni| HYZZ'82udx-1eisol/00Zsiels/eieyolu/ewol/|GGiez */2 '1dy| 00:0 ‘22 1dy 00€ 82udX- 1e|so|
s|eAleju| spuodss- Og Ie '6q ul uni{Hv6 | Jojuowley/|00ZsIeIS/Bleydiw/ewoy/|00 2t ‘2 'idv|00:21 ‘6l ‘Idy «Jojuouneu

Appendix C

List of tools run on Neptune

134

SjeAs|Ul SeINUIW-G 1é 'Dq Ul Uni| Wy | HeISIeu/[002ZSIBIS/Bleudiuy/euloy/[90:61 ‘v Jdy] 10:0 LI 1dy 00¢ I- 1eisiau|

s|erelu| seinuiw- G 1e ‘Bq u) uni| Yy/| es ieiswinL00ZsIeIS/eleudiw/ewoy/| 1g:LL ‘b2 idy| 10i0 ‘L1 1dy 00€ ©S'1eISWA 6s

s|eAse)U| SpU0des- OF 18 “6q Ul uni| Yyz | JoluowiUIA/|00gSIBIS/eleydiw/ewoly/(8yi2e ‘0t ‘idy| 00:0 gt ‘idv +JOJ|UOWWIA

SjeAIs)u) spuodes- Og 18 ‘6q up uns| Yy 1ouuowol/|00ZsielS/sleyoiw/awoy/| g80:1 ‘L Aew| 00:0 ‘2l ‘idy Jojuoulo|

sejnuiW G A1eAe ‘qejuold yim uni Hvz |l ‘o01du/ L 00ZsielS/eleydiw/awoly| 10:GL 'L AeN| 10!0 ‘2L idy es'ooidu es

seinuIW 0| AI9A0 ‘qejuoid yim uns| HyGo'sd qan/L002sIeiS/elaydiwy/ewoy/|0S.€z ‘0L ‘idy| 00:0 ‘G ‘idy|pesy | mxen sd/qan/isn/

00:91 pue ‘00:S4 ‘00:¢t ‘00:01 18 Aep/xt ‘qeluoId YiIM UNJ uvv0'Bda/i00zsieis/eleydiw/awow/| L0:GL ‘L Ae| 00:01 ‘¥ 1dv[iier pue peey] es'6dd es|
~ (sinoy pg 10)) sleAlel) selnuiw- G je ‘Bq uj uni Hvv0'1es/L00ZsIelIS/eleydlw/ewoy/| SSigg ‘v idy| 00:0 ‘v 1dv 862 00¢ Jes
s[eaeju| sejnujw-G je ‘Gq ut uni| Wyp0'edudx-teisoy|gozsieis/eteydwewoy/| 00:ZL ‘G Idy| 00:0 ‘v idy 00€ 89udx- 1ejso

S{eAB)U| SPU0DBS-G je .a u) uni| Yyeo'iser-as'ieiswia/Loozsieis/eeyolw/awoy/| opie ‘v ‘1dy| 00:0 ‘g 1dy G 8S'|eISWA 8s

sfeaeju) spuooes-G Je ‘Gq Ul unijyvEDIsel-leISuIA/ L 00ZSIeIS/Bleydiul/ewol/| obi6 ‘v idy| 00:0 € ‘1dy G 1BISWA

Kep/xg ‘qejuoio yym uni "wie'sndo/|00gsieIS/8leyoiw/ewoy/| 00:EL ‘| AeW|00:0L ‘L€ ‘le es‘sndo es

sejnujw Q| A1eAe ‘qejuod Yiim uni HINOE ‘004du/ | 00ZSIBIS/018YdIW/BUWoY/|0G:E2 ‘L | ‘1dy0E:St ‘08 ‘1TeiN es‘'ooidu es

sejnuiw G Alene ‘qejuoid yum uni|l Yez euidn/L002s1eIS/eleydiuy/ewoy/| L0:GL ‘L AeW| L0:0 ‘82 ‘el ewydn

(seinujs g Jeno ‘6ae) seinujw o} Kiere ‘qeiuoio yum uni| YN L 1EIsdwy| 002sieIS/eleydiw/ewow/| thibL ‘S ‘idy| S0:0 ‘12 ‘Jew 2 00€ lejsdw
seinuiw 02 A16A8 ‘qejuoio yim uni| HING L 'S-1eIsiau/L00ZsieIS/elaudlwyewoy| Lyi€2 ‘G idy| 100 ‘61 Je s- jejsieu

inoy AieAe ‘qejuoId Yim uni| HING L S-1eISWA/L002SIeIS/8leydlul/euioy/|08:€2 'L ‘Idy| OE:0 ‘GL Je S- 1BISWA

sjeaeju) sejnuiw-G 18 ‘Bquiunl| WWzZ1 1BISWA/|002SIeIS/eleudiw/euiol/|sogl ‘2t 1dv| ¥06 ‘21 JeN 00€ 1BISWA

sejnujw G| A1eAe ‘qejuoid yim uni H21 'doyi00zZsierS/eleyojwyewoy/| S0:6 ‘61 “1e| S0:0 ‘et ‘few doy

00:84 1€ Aep B 89UO ‘qeIUID YiiMm uni HINZ0"-1p/1002S1eI1S/8leydiuy/Bwiol/|00:81 ‘0E 1dy| 00:81 L ‘Jew X ip

senuiw g A18A8 ‘qejuoid Yiim un) HNGo ewndn/L00zsieiS/eleydiws/ewoyy| 0z:6 ‘2 ‘1dy| 00:2L 'S ‘1eN awipdn

(seinuiul G 10} suns) sepnuiw c Alene ‘qeiuoio yim uni ms_mogwm\Somm.sw\o_o:o_s\oso& ‘€L ‘92 ‘tley| SGiLlL ‘S ey

S{EABJU} SOJNUIW-G 8 'DQq U UNI| VIND | 83UJX-1BIS0)/|00ZSIeIS/PIeudiw/aWow/[SG ez ‘0L AEW| 00:0 ‘01 AeW 00€ edugx- 1eiso|

s|eAejul seinuIW-G 18 ‘Bq utun1| Wvy.Z2'ecudx-jeisol/|opzsiels/aeyowyeuoy/(cGiez /2 ‘Jdy| 00:0 ‘22 ‘1dy 00€ 92UdX- }e)so)

s|eAssiu) Spuodes- OE 1e ‘6q Ul unif W61 Joluow)ey/|L00zZsIeIS/eleydiw/ewoly/f 1021 ‘G2 '1dv|00:G1 ‘6l ‘1dy «Jojjuouneu

sjeAlaju) spuodes- O¢ 1e ‘Dq uj uni| UV61L IS8l Al L00ZSIEIS/eleudiw/ewioy/| 0801 ‘02 1dV|SEi0L ‘61 ‘idv 8s°|Se} eAl| es

(Seinujw G 10} SunJ) SBINUIW 9 AIBAS ‘QRIU0ID LM Un) Hv .1 'b-tes/L00zsieiS/eleyoiu/ewowipGg:2t ‘ve sdy| 10:0 ‘21 ‘idy G 09 b- Jes
seynuIW G 10j suns) selnujul g A18Ae ‘qejuoid yiim uni HvZ1'1-1es/1002s1eIS/8l8yoiuy/ewoly|pGiZ1 ‘ve ‘idy| 10:0 /1 ‘1dy G 09 J- ies
SOINUIW G JOj SUNJ) sejnui 9 AIBAS ‘GBIU0ID UM uni "vZ1'B-1es/L00zsieIS/eleydiw/ewoly/|vG:z1 ‘v2 ‘1dy| 100 Z1 Idy S 09 b- hmm_

Appendix D

List of tools run on Poseidon

137

R R

S|EAIBJU| SPU028S- OF 18 'Dq Ul UnJHYZ | J0NUOWIWIA/ | 00ZSIeIS/eleydiul/awow/[| 1:2t ‘02 1dy| 00.0 2t 1dy JO}UOLILUA

s{easeu) spuodes- Og 1e ‘Bq Ul uni| Hyg| JonuowoyL00zsIeIS/Bleydlw/ewoly| LEip 'L Kewy| 00:0 ‘2L idy «Jojjuotio)

seinuiw G AueAe ‘qejuold Lyim uni Hvez 1 o01du/L00ZsieIS/eleydiw/ewoy| 12:G1 ‘L AeN| 10:0 ‘2t ‘1dy 9s'00idu es

s|eAeju) sejnuiw-G Je ‘6q Uy uni| Hv20'eaudx-jeisoy LoogsielS/eleyojw/ewoy/| Ly ‘0L dy| 100 'Z ‘idy 00€ 89Udx- teisol

sjeaisju; selnuiw- G Je ‘6q u) uni| WY /0'es 1eISWA/ L O0ZSIBIS/eleydlw/ewoly/| L¥i6 ‘0L idy| 100 'L iy 00E ©S'|eISWA es

senuIw G A1aAe ‘qejuoso Yim un) Hv20'00idu/ L 002s1BIS/8l8yd|W/ewoly| 9G:eZ ‘6 ‘idy| 10:0 ‘2 ‘idy as'ooidu es

seinuiw g A1eAe ‘qeiuoio yim un)| Yyso'sd qon/L00zsielS/eieydiw/ewoy/(0s:€2 ‘ot ‘1dy| 000 ‘S ‘idy|pesy | mxen sd/qon/isry

(sinoy 2 10}) sjenss)u) senuiul-g je ‘Bq uj uni HVv0'Jes/L00ZsIeIS/Bleydjw/ewol/| GSige 'y idy| 000 b Udy 882 00€ Jes
s[eAeju) sejnuiu-G 18 'Bq Ul uni| Hyvo'ecudx-jeisoy LgozsielS/eleydiw/ewoy/| czigL ‘9 ‘idy| 00:0 ‘v idy 00€ 8dUX- |eisol

00:91 PUE ‘0051 ‘00:¥1 ‘00:01 18 Aep/xp 'qEIUOID Yim Uni Bvr0'6do/1002sieiS/eleudiwrewoy/| 10:GL | Aew| 00:01 ‘v ‘1dyiies pue pesy] es‘Gdo es
sejnulw 0z A18Ae ‘eIU0ID Yum Uni| HINBZ'S-1eIsieu/L00ZsieIS/eleyaiwyewoy/| |2:21 '6 ‘dy[L2iL1 ‘82 ‘JeW s- jeisieu

seinuiw G A19A8 ‘qejuoiO yim uns| HiNgZ ewndn/|00zsiels/eleyaiwyewol/| 1251 ‘L Aely| 100 ‘82 ‘e euwdn

sjeAaju| ejnujui- | 1e ‘eul| puio woyy bq Uy uni| UGz esudx-1eisoy| oogsieiSeleydiwewoy/| 2pi6 ‘g ‘idy| 66:6 ‘92 ‘Je 09 8dudx- jejso|
(seinujw G Jano ‘6ae) seinuiw 01 Aieae ‘qejuod yum uni[Yyl g 1eisdwy/ [00gsielS/eleydiwyewowy| og:ZL ‘6 “1dy| G0:0 ‘12 e 2 00¢ lejsdw
noy Klene ‘qejuo1d WM UNni HING L S-1eISWA/ L 00ZSIeIS/elaydiw/ewol/|0g:c2 ‘Gl ‘1dy| 0E:0 ‘G1 ‘le S- JeISWA

SIN0OY g A1eAe ‘qQejuod yim uni HWS1 'sndo/Lo0gsieiS/elayaiu/swoy/ co:vL ‘L Ae| 00:0 'Sl ‘e es'sndo es

sanuIW O} Aleas ‘QeIu0ID)M uni HING L '001du/ L 00ZSIeIS/818ydiul/swow/|0G:E2 ‘L L ‘idy| 00:0 ‘GL ‘e 8s'00idu es

seinuiW G| AleAe ‘qejuoid yim un) HWG 1 ‘dol/L00zsIeIS/aleyjw/ewoy/| SE:6 ‘92 ‘1eN| S0'0 ‘St “JeW doy

00:Z1 1@ Aep & 82O ‘qQEjU0ID YiIM un) HWY L '%-1p/100ZSIeIS/aleydiu/ewoy/(00:L L ‘0¢ ‘1dyi00:LL ‘v ‘TeN X-ip

seAejul SeINUIW-G e ‘aul| pusd wiod) 6q Ui uni| WYL 1eISWA/ L00ZSIeIS/eleydiw/ewoy/| 918t ‘g idy| 1G'6 YL ‘Jen 00€ 1eISWA
seinuiw G| Aiene ‘qeiuoid yim un)| HINZ 1L 'sdqon/|00zZsielIS/eleydiwyewoy/| Siie ‘o ‘1e| 00:0 ‘2t ‘tep| peay | mxen sd/qon/isn

[seinujw G 10j suny) seynulw 9 A18A8 ‘GejUO0ID LM Uns HWZ| 1es/L00gsieiS/alayaiw/awoly| a6 ‘2 ‘idy| 10:0 ‘2L el 01 OE Jes
sejnuiw 0| Aiene ‘qejuoid yum unsl Yzl ‘ewndny/ipozsiels/eieyaiw/ewoy/] 0S:6 ‘2 ‘idy| 00:0 ‘2L ‘te ewpdn

S[eAe)u) SeINUIUI-G Je 'Dq UJ UNI| VINOL 8dUdX-1eiSol/|002SIEIS/aIeldiW/auow/[GG:EZ ‘0L AeW| 00:0 0L AeW 00€ eoudx- jejso|

S|eAelUl SeINUIW-G Je ‘Bq ul uni| Hy.2'8oudx-1eisoy/1 002sieIS/aleydiwyewoy/|GG:gz ‘22 "1dy| 00:0 ‘Z2 “idy 00€ @audx- jeiso|

sjealeju) spucdes- O Je ‘Ba ul uni| WYv61 1Sel eall/L00ZSIeIS/eleyaiu/ewoy/(gs:gl ‘02 dv|00:2t 61 ‘idy e5'|s8) eAl| 88

s|enleju) spucoes- O 1e ‘Bq ul uniHye | Joluowieu/|00ZsIeIS/eleydiw/euiow/|0t | ‘¥2 1dv(00iSt ‘61 idy »i0}|uouneu

(seinujw G 10) SUNL) seINUIL g AIBAG 'GRILOID YIIM UnJ uvZ 1 b-1es/L002s1e1S/8l8UdIW/BWOW|9E:E L ‘b2 Udy| 10:0 ‘L1 ‘idy G 09 b- jes
(seinu|w G 10§ suns) sanuiwl g AssAs ‘qeju0Id Yiim uni HV. | '1-1es/L002ZsIe1S/ejeydiw/ewow|ag:e | ‘ve ‘1dy| 10:0 ‘21 ‘idy G 09 J- les
(senujw G 10) SuUn1) sEINUL g AJOAS 'GBILOID YiM Ui dv.1 6-les/LgozsieiS/aleydiw/ewoy/(ocel ‘ve 1dy| 10:0 ‘21 ‘idy G 09 b- Jes
S|eaejul sejnuiw-G je ‘Gq Ul unlf Hv/|1eisieu/|00zsielS/eleudiw/ewoly/|9L 61 ‘v ‘Idy| 100 2L ‘1dv 00€ (- 1ejsiau

Bibliography

[ALO99]

[CER98]

[CPS98]

[DATO0]

[DUN98]

[GCO96]

[GELOO]

[GUN98]

Oracle8 and UNIX Performance Tuning, by A. Alomari, Prentice Hall,
1999.

Solaris Performance Administration: Performance Measurement, Fine
Tuning, and Capacity Planning for releases 2.5.1 and 2.6, by H. Frank
Cervone, McGraw-Hill, 1998.

Sun Performance and Tuning, Java and the Internet, 2*° edition, by
Adrian Cockcroft and Richard Pettit, Sun Press, 1998.

An Introduction to Database Systems, 7% edition, by C. J. Date,
Reading Mass.; Harlow, England: Addison-Wesley, 2000.

Database Performance Tuning Handbook, by Jeff Dunham, McGraw-
Hill, 1998.

Oracle Performance Tuning, by Mark Gurry and Peter Corrigan,
O’Reilly, 1996.

System Performance Evaluation: Methodologies and applications, by
Erol Gelenbe, Boca Raton, Fla.; London: CRC Press, 2000.

The Practical Performance Analyst: Performance-by-design
techniques for distributed systems, Neil J. Gunther, New York;
Montreal: McGraw-Hill, 1998.

[ICCMO00] Institute for Computer Capacity Management: www.iccmforum.com.

140

BIBLIOGRAPHY 141

(JAIO1]

[LIL0O]

[LOU91]

[OSTI6]

[PRI89]

{SES99]

{SOB99]

[SPEC]

[STA95]

The Art of Computer Systems Performance Analysis, by Raj Jain, John
Wiley and Sons, 1991.

Measuring Computer Performance: A practitioner’s guide, by David
J. Lilja, Cambridge, UK; New York: Cambridge University Press,
2000.

System Performance Tuning, by Mike Loukides, Sebastopol, CA:
O’Reilly, 1991.

Oracle 7 Server™ Tuning manual, from Oracle Technology Network
(htep://technet.oracle.com/doc).

A Benchmark Tutorial, by W. J. Price, IEEE Micro, Oct. 1989 (28-43).

Delivering Performance on Sun: System Tuning, Technical White
Paper by Greg Schmitz and Allan Esclamado, Sun Microsystems Inc.,
1999.

A Practical Guide to Solaris, by Mark Sobell, Addison-Wesley, 1999.

The Standard Performance Evaluation Corporation (SPEC) benchmark
site at http://www.specbench.org.

Operating Systems, 2™ edition, by William Stallings, Prentice Hall,
1995.

[SVMOI8] Sun StorEdge Volume Manager 2.6 User's Guide, Sun Press, 1998.

(TPCW]

[WIS00]

The Transaction Performance Council (TPC) site at http://www.tpc.org.

The IT-Specific encyclopedia at www.whatis.com.

