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une bibliographie détaillée.

Département de Mathématiques, : M.Sc.
Université McGill,

~Montréal. Mars 1973



QUADRATIC FORMS IN NORMAL VARIABLES

by

Issie Scarowsky

A thesis submitted to the Faculty
of Graduate Studies and Research,
in partial fulfillment of the
requirements for the degree of
Master of Science.

Department of Mathematics,
McGill University,
Montreal.

(© Issie Scarowsky 1973

1

March 1973



ACKNOWLEDGEMENTS

I would like to express my sincere thanks to George P.H, Styan
for suggesting the topic of my thesis and for providing invaluable
suggestions and guidance throughout. He was also most helpful in the

compilation of the bibliography.

I would also like to thank Leslie Ann Hathaway for her continuous
encouragement and for the many aspects in the preparation of this
thesis which she did so well. Thanks are due to Lesley Walker for

helping with the bibliography.

I would like to thank my fellow students and colleagues at McGill
and my co-workers at Bell Canada and, in particular, Dave Hartman for
their continuous moral support and understanding during the writing of

this thesis.

Finally, this thesis was typed by Heather Benson who did a superb

job for which I am most grateful.



TR TR M T MR 2 6N S e S e i s

A L T

e et et ot
e T AT

TABLE OF CONTENTS

Chapter I. Introduction and Preliminaries ..csecevecsccsnsesas

Chapter II. Characteristig Function, Cumulant Generating

Function; Cumulants and MOMENtS «eeeeseoecesses
Chapter II;. Chi~-Squaredness ceecvecssvesscscsscasssscesscssscannesna
Chapter IV. IndependencCe .ceecececcccsssseccscsssccsnsasnoncnnsas
Chapter V. Cochran's TheOTem scceeseccccacscsssssossssssnscses

References and Bibliography .ceecccecccesssesssscccsssssacsocssne

Page

1

21

40

63

75



T Y L Y o NI 3 e, VT8 mectsrn ot v op o < et e o782 T T

AR e A bt e e e S BTt

ety

CHAPTER 1

Introduction and Preliminaries

There have been many papers and articles throughout the statistical
literature on quadratic forms in normal variables. This literature
appears widely with much duplication of results. The purpose of this
thesis is to organize these results, to obtain concise and complete
proofs of the basic theorems, and in a historical perspective to trace
their evolution. In addition, many exgensions are given and some new

results are also presented.

This thesis examines, in detail, the following topics on quadratic
forms in normal variables. The first area covered concerns the char-
acteristic function, the cumulants and the momenﬁs of an arbitrary
quadratic form in normal variables. The second topic is the deriva-
tion of ﬁecessaryland sufficient conditions for a quadratic form in
normal variables to follow a chi-square distribution., The third subject
concerns ‘the necessary and sufficient conditions for two quadratic forms
in normal variables to be independent. This result is often referred
to as Craig's Theorem. The last subject discussed ié the interaction
between quadratic forms which individually follow chi-square distribu~

tions and their independence. This is often referred to as Cochran's

Theorem.

These results are extended to include nonhomogeneous quadratic
forms and bilinear forms in normal variables. In addition, we have
considered what these results reduce to when there are additional con-

ditions on the matrix of the quadratic form or on the distribution of
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the normal variables. Also included is a bibliography which contains

over a hundred references covering exhaustively the above four subjects.

One area this thesis does not cover is the computation of the dis-
tribution function (or approximations thereof) of a quadratic form in
normal variables. For references on this and other aspects of quad-
ratic forms in normal variables see A Bibliography of Multivariate
Statistical Analysis by Anderson, Das Gupta, and Styan (1972), under

subject-matter code 2.5.

We shall now discuss the notation used in this thesis as well as
some matrix results that have been assumed. Both Mirsky (1955) and

Searle (1966) are good references for these results.

Throughout this thesis we use matrix notation. Capital letters
denote matrices and underscored lower case letters denote column
vectors. Transposition is denoted by a prime, with row wvectors always
appearing primed. For any square matrix A, we use rk(A) to denote
its rank,‘ tr(A) its trace, |A| its determinant, and chi(A) its

ith largest characteristic root.

A quadratic form in normal variables is a quadratic expression in
random variables which follow a multivariate normal distribution.

Suppose the random vector x= (xl,...,xp)' follows a multivariate
P

P
normal distribution. Themn Q= I I aijxixj is a quadratic form
i=1 j=1

in normal variables. If we let the matrix A = {ai }, then Q may

3
be written Q = ﬁ'Aﬁ‘ The matrix of the quadratic form may always be

'
assumed to be symmetric for Q = x'Ax = x'A'x = x' Lfa’) X, and

2
1
jé%é_i is symmetric. A nonhomogeneous quadratic form contains quad-

ratic, linear and constant terms and may be expressed as



x'Ax + k'xs + c. A bilinear form is a quadratic expression involving a

sum of crossproducts between two distinct sets of variables. For ex-

ample, if x = (xl,xz,...,xp)' and y = (yl,yz,...,yq)' then

P q
Q= I I a,x.y, =x'Ay, with A pxq, is a bilinear form. Through-
i=1 j=1 137173 R ,

out this thesis we assume that all matrices are real.

If the_ pxp matrix A has rk(A) =p then A is nonsinguiar
and A-l exists; otherwise A 1is singular. If A 1is symmetric, then
its characteristic roots are all real. Moreover, if A 1 is a char-
acteristic root of A and if P(A) 1s a polynomial expression in A

then P(A i) is a characteristic root of P(A). Also the trace

p p
tr(A) = I ch,(A) and the determinant |A| = N ch,(A). If A and B
i=1 1 i=1 i

are two matrices such that both AB and BA are defined, then the
nonzero ch(AB) equal the nonzero ch(BA). As a result tr(AB) = tr(BA)
and |I-AB|=|I-BA|, where I is the identity matrix (of appropriate
order). The rank of a square matrix A is greater than or equal to

the number of nonzero ch(A); if A is symmetric, however, then rk(A)

equals the number of nonzero ch(A).

A symmetric matrix A 1s positive definite if E'Aﬁ >0 for all
;5# Q; - the matrix A is positive semidefinite if 75'% >0 for all x .
The symmetric matrix A i1s positive semidefinite if and only if all
ch(A) > 0 and is positive definite if and only if all ch(A) > O.
Every positive definite matrix is nonsingular. For any pxp symmetric
matrix A with rk(A) = r there exists an orthogonal matrix P such

that A = P(A O)P' where A 4is an rxr diagonal matrix containing
00

the nonzero characteristic roots of A. If A 1s positive semidefinite,



then there exists a real matrix T of full column rank such that
A = TT'. For any matrix B, the trace tr(BB') equals the sum of
squares of the elements in B. Thus tr(BB') = 0 implies that the

matrix B=0.

A matrix A is said to be idempotent if A2=A. Throughout this
thesis, idempotent matrices are assumed to be symmetric though the
following results also hold without symmetry. The characteristic roots
of an idempotent matrix are 1 or 0. In fact, if r = rk(A) there
are exactly r chafacteristic roots eqpal to 1, with the remaining
roots all 0. Thus for an idempotent matrix rk(A) = tr(A). Also,

symmetric idempotent matrices are positive semidefinite.




CHAPTER II
Characteristic Function, Cumulant Generating Function;

Cumulants and Moments.

Characteristic functions, and moment generating functions when
they exist, are a powerful tool in probability theory and in mathe-
matical statistics. They may be used in identifying the distribution
of a random variable and in determining its moments. In additionm,
independence of random variables may be‘established by characteristic

functions.

Wilks (1962), in an introductory paragraph to the chapter on
characteristic functions, states

"One of the most important classes of problems in
mathematical statistics is the determination of distribution
functions of measurable functions of random variables... .
Some situations, particularly those involving linear func-
tions of independent random variables, can often be handled
in an elegant manner by making use of the characteristic
function of the particular function of the random variable
under consideration. The characteristic function [is] also
useful for such tasks as generating moments and cumulants of
distributions and testing independence of two or more
functions of random variables."

In the context of quadratic forms in normal variables, the merits
of these techniques are brought out rather well. In particular, the
probability density function and the cumulative distribution function
of an arbitrary quadratic function in normal variables are not available
in closed form, although approximations have been found. [See, e.g.,

Imhof (1961).] The characteristic function, however, is known in

closed form and it is effectively the only way in which we may prove
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results concerning chi-squaredness and independence.

In the next chapter, necessary and sufficient conditions are
obtained with the use of characteristic functions for a quadratic form
in normal variables to follow a chi-square distribution. The charac~
teristic function is also used in establishing conditions for a sum of
qﬁadratic forms to follow a chi-square distribution. Also, necessary
and sufficient conditions for quadratic forms to be independent are
found by equating the joint characteristic function to the product of
the marginals. For these reasons, we sha}l first determine the
characteristic function of an arbitrary quadratic form in normal

variables.

Let x be a pxl random column vector distributed normally with
mean Vector N and variance-covariance matrix J£, possibly singular.
In what follows this will be denoted X N'NP(H,Z) and where the
dimension is understood to be p the subscript may be omitted. Then

X NlNl(uj,cjj), j=1,...,p, where g = {xj}, B= {uj}, = {oij}.

The following results are standard and stated without proof:

2
‘ -(x,~n,)"/(20, )
£(x.) = (270, )"1/2 ¢ 37 33 (2.1)

3 3

EVNOQLE ¢ AR VN QLA v gl (2.1a)

12 G G 2
e

g(x) = (2m)"P/? 12l s |2l >0 (2.2



2
itx ity,=-t%0, . /2
E(e j) = e J 33 (2.3)

Beit'R) = oIk'% - £'25/2 (2.4)

In (2.1) and (2.2) £(-) and g(-) denote density functions; in
(2.2) |2| is the determinant of ¥ while in (2.3) and (2.4) E(°)

denotes mathematical expectation.

We now present the characteristic function of a symmetric quadratic
form in normal variables. We do not exclude the possibility of a
singular variance-covariance matrix. This will allow us to obtain the
characteristic function of a nonhomogeneous quadratic form and of a
bilinear form by simple transformations to homogeneous quadratic forms in

a singular normal vector. See, for example, Corollaries 2.1 and 2.2 .

THEOREM 2.1: If A <48 a real symmetric pxp matriz and x ™ Np(}e,t),
I positive semidefinite, then the characteristic function of x'Ax <s

-1
. ftp' (I-24tA?) 1A
gl A%y - & A v (2.5)

|1-21ta%| 1/2

We shall prove this theorem by obtaining the moment generating
function of x'Ax, i.e., E(etﬁ'%). We then use the general result
[cf. e.g., Lukacs (1970), p. 11 and Section 7.1] that if the moment
generating function, M(t), of a random variable exists in a strip about
the origin, then the characteristic funct_ion of that random variable is

given by f£(t) = M(it) for all real t.

In order to simplify the proof of the above and other results we

use the following lemmas.
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LEMMA 2.1: If x N'Np(g,t), then for any real muxp matrix H,
Hx “'Nm(HR, HEH').

Proof: Immediate from (2.l1la) and (2.4).

LEMMA 2.2: If x N:Nl(o,l), then

2

E[e"* + tx] - et2/[2(1-28)] s s <1/2 . (2.6)

(1-2s)1/2
Proof: Since x “'Nl(o,l), we have

2 © 2 2
E[esx + tx] - (2“)-1/2 ;o eS¥ + tx - x /de

-00

-1/2 7 er[xz(l-Zs) - ez,

-00

= (2m)

Substitute u = x(l-VZS)ll2

Then u2 = x2(1-23) + 1:2(1-2s)-1 - 2xt so that

B[S F 1R L ony M2 T 02y 0 aey 12, E 2 12(128)]

t2/12(1-29)]
1/2 *

(1-2s)

We notice that when s = 0, (2.6) gives the moment generating

function of x N'Nl(O,l),

E(etx) - et2/2

When t =0, (2.6) gives the moment generating function of a xi .

2 2
E[e®® ] = E[e¥1] = (1-26)" Y2 ; s <1/2. (2.8)

(2.7)

- t(1-23)-l/2 which is real when s < 1/2.



The moment generating function of a noncentral xi (uz) is also readily

obtained. Let w = x + u, where x v N1 (0,1). Then

w2 = xz + 2ux + uz v xi(uz) and

2 2
sw] - esu E[esx +2usx]

2 2 2
SH e2s u-/(1-2s)

| (1-26)1/2
su2/ (1-2s)
! = e T gk (2.9)
: 1/2 2"
: (1-28)
| LEMMA 2.3: If B and C are two pxr matrices such that no

characteristic roots of BC' are 1, then

-l rpy—Lat
(I-BC'") = I 4+ B(I-C'B) "C' . (2.10)

Proof: Since BC' has no characteristics roots of 1 the inverses in

(2.10) exist. The product
[I + B(I-c'B)'lc'] [I - BC']

I- BC'+ B(I—C'B)-lc' - B(I—C'B)-lc'BC'

I-BC'+ 1;(1-0'13)'1 (I-C'B)C'

( and (2.10) is proved.

LEMMA 2.4: [Anderson (1958), p. 25] If x ’\le()e,Z), with

rk(f) = r < p, then there exists a random vector v Nr(g,Ir) and a
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real pxr matrix A such that }Y = AA' and

X=Ap+u. (2.11)

Proof: There exists a real pXp nonsingular matrix T such that

TIT' = (Ir 0) . For example, we can write f = P (Ar 0>P', where
0O o 0 0

Ar is a diagonal matrix containing the r nonzero characteristic roots of

I (which are all positive). Then

T=P A'l/z 0 '\p' {2.12)
r
-T

0 I
P

is such a matrix. Let y = Tx, then by Lemma 2,1
~ N_(Tu, TIT') . 2.13)
RN (T, TT) (

Write y = Y1 s Where X1 is rxl and X, 1is (p-r)x1 and write
X2

=T =Y where ¥y is rxl and Y, is (p-r)x1l. Since
X

TIT' = <Ir 0> » we have g, v Nr<X1’Ir) and y, =y, with probability
0 O

1. Let CL"'1 = [A,B], where A is pxr and B is px(p~r). Then

x= T_lyg and so

x= A;el + BX{Z = A’(fl + sz
= A(X{l-xl) + Axl + BXZ
= AGgy,) * Ty

=AYyt H, (2.14)
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-]l

where 1= x{l -

Ny Clearly y '\'Nr(g,I). Also, since TIT' = (Ir 0> .

0

r
0 o

)

= AA' , (2.15)

} = Tt (1 o)('r'l)'

and the lemma is proved.

Proof of Theorem 2.1: Using Lemma 2.4, there exists a X such that
=Ty + x> where A Nr(g,I) and TT' = f. Also, there exists an
orthogonal matrix P such that T'AT = P'AP; A is an rxr diagomal
matrix containing the characteristic roots, Al’AZ""’)‘r’ of T'AT,

or of Al (except for an additional p-r zero roots).

Let gz = Py and denote the ith component of % by z;3 by

Lemma 2.1 H '\fNr(Q,,I). Also, let r\’,' = ZE'ATP'; then
ﬁ'Aﬁ = x'T'ATx + ZH'ATX + H'Akl‘
= X'P'APX + ZH'AT"C + E‘Akl,
=Mt X' T RAY
r

= 2 )
izl(kizi + vizi) + X A}\A‘ .

The moment generating function of E'Aﬁ is
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T
; t 2 (Aizi + vizi)
EeX ) = pEe ™ ) eth'AR

2
r t(\z, +v,2z,)
= E(T e i1 171

y eER'AR (2.16)
1=1 |

But since the 2z, are independent, (2.16) becomes

1
' r t(Aizi + vizi) A
M) = [ 1 Ee )] K 2K
1=1
2.2
yev
- 2|1 - ZtJ\i .
= [T & 75 1 KA (2.17)
i=1 (1-2t})

using Lemma 2.2, provided tki <1/2 for 4i=1,2,...4r. This
condition is satisfied for all the zero roots; it will be satisfied for
all nonzero Ai for all t such that -k <t <k where k 1is the

minimum value of I(ZAi)—ll for all 1 =1,2,...,r such that Ai # 0,

We have
r P
I (1—21:7\1)1/2 = I [1—2tchi(AZ)]l/2
i=1 i=1
P
= I [chi(I-ZtAZ)lllz = |I-2tAz|1/2 , (2.18)

i=1

where chi(°) denotes the ith largest nonzero characteristic root,

and also
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%tzx'(I-ZtA)-lx

= e . (2.19)

Using (2.18) and (2.19) in (2.17) yields

tg'AH + %tzx'(I-ZtA)-lx
E(etﬁ'%) = e

. (2.20)
| z-2tat| /2

Substituting ZE'ATP' back for x' anﬁ using P'(I—2tA)-1P = (I-Zt:P'l\P)-1

= (I-ZtT'AT)-l, we obtain

-1
tu' (T+2tAT (T-2¢T'AT) "11')A
JLE'AX ek Ao (2.21)

E(
|1-2¢a2|1/2

|
From Lemma 2.3, with B = 2tAT and C =T, (2.21) yields E(eX &%) =

etg'(I—ZtAZ)-lA%

177 for all real t such that |t| <k, where k is
| -2tAz| : .

defined as in the paragraph just after (2.17). This implies (2.5)
using the general results quoted above Lemma 2.1l. Thus Theorem 2.1 is

proven.

The above proof through (2.21) follows closely the derivation by

Rohde, Urquhart, and Searle (1966).

Ogasawara and Takahashi (1951) give the moment generating fumction

of E'Aﬁ’ vith x N'Np(&,t) (L positive semidefinite) as

H'[At+2t2At1/2(I-ZtAl)-ltlle]E
e

E(eX' A - |1-2tA1|"1/2 , (2.21a)
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where 21/2 is the positive semidefinite square root of [ and

1/2A21/2. This appears to be the first treatment where 7 could

A1 = 7
be singular though no proof of (2.2l1a) is given. Unfortunately, the
journal in which Ogasawara and Takahashi published appears not to have

been readily available so that (2.21a), as well as various results

these authors derive from (2.2la), were later proved again.

The form (2.5) was obtained by Mikeliinen (1966), using an argument
based on stochastic convergence [the Cramér-Lévy continuity theorem,
see e.g., Wilks (1962)] extending a result of Plackett (1960). Plackett
derived the characteristic function of é'Aﬁ, X “le(H,Z), L positive
definite, as

1 441 , 1 ,.-1,,-1 -1,-1
' -5 R Tu+ Su'l (R T-21itA) X
E(eX R %) = |1-2tAz|'1/ 2, 2 VERTR %

which simplifies directly to (2.5) using Lemma 2.3. The continuity
theorem was previously employed by Good (1963), who gave the character-
istic function of (' for ~ N ositive semidefinite.

: ;5A;§ VN0, 2o
Good (1963) also gave the joint characteristic function for two non-
homogeneous quadratic forms as well as for a finite number of quadratic

expressions.

Less general results on the characteristic function of quadratic
forms in normal variables were known much earlier. Cochran (1934) gave
the ch teristic function of x' for ~ N I). Craig (1938

e characteris x'Ax X p(Q, ) g ( )
extended this result and obtained the joint characteristic function of

8 quadratic forms vhere x “'NP(Q,GZI). Aitken (1940) obtained the
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joint characteristic function of a linear and a quadratic form and also
of two quadratic forms in X N:NP(Q,Z), I positive definite. This result
was also obtained by Sakamoto (1944b) and Ogawa (1946b). Both Ogawa (1950)
and Carpenter (1950) (apparently independently) obtained the character-

istic function with X N'NP(H,I).

Khatri (196la) derived the joint moment generating function for two
nonhomogeneous forms in nonsingular normal variables. The following
year, Khatri (1962) obtained the moment generating function for a single

nonhomogeneous quadratic form in singular normal variables.

As stated previously, the characteristic function of nonhomogeneous
forms or bilinear forms or systems of quadratic forms may be obtained
directly from the characteristic function of a single, possibly singular,

quadratic form. We offer the following two corollaries as examples.

COROLLARY 2.1: If x '\'NP(H’I)’ L positive semidefinite, then the

characteristic function of Q= x'Ax + 2p'x +c¢ 18

oitl(ui2itZp)! (I-ZitAZ)-l (Apth)+p "ptel
|1/ 2 .

E(eltY = (2.22)

| 1-21tAY

Proof: We construct a new random vector X=/(% N'Np+1(&o’zo)’
\1
where Ko = (X and Zo=<2 9\, with 0 a pxl column vector of
1 g' 0
zeros., If Ao =(A Db\, then Q= x'on. Thus
R e

' -1
itgo(I-ZitAoZo) Aogo

itQ ity'A ¥ e
E(e” ") = E(e ov) = . (2.23)
|I-21tA°Z°|1/2



~16-
Substituting for Ko Qo and Zo and simplifying (2.23) gives (2.22).

COROLLARY 2.2: If x,y have a Jjoint multinormal distribution such
that ﬁ'\'Np(kl’x,zm), X Nq()éy,zyy), where both zxx and tyy are .
positive semidefinite and the cross-covariance matrixz of x and ¥
, I
18 txy Ly
by (2.5) with

L E 0 A
R’=<H’X)’ 2'~=<xx xy)and A‘=%< O>.
Ky Zyx zyy A, 0
Proof: The (ptq)xl random vector zZ - (g) N'Np+q(H,Z), and

b
%'AE = g'on. Use of (2.5) on g'Az completes the proof.

then the characteristic funection of §'on i8 given

We now obtain the cumulant generating function and cumulants of an
arbitrary quadratic form in normal variables. The cumulant generating
function is essentially the logarithm of the characteristic functionm.
It is also known [Lukacs (1970), pp. 26-27] that when the moment
generating function exists, the cumulant generating function equals the
logarithﬁ of the moment generating function. This is the approach that
will be used here. The kih cumulant is then the coefficient of tk/k!
in the power-series expansion of the cumulant generating function.
There is a onme~to-one correspondence between cumulants and moments;
thus, if the cumulants up to order k are specified then so are the
first k moments, and vice-versa. See, for example, Kendall and Stuart

(1969), Vol. I, pp. 68-71.

We use the following two lemmas.
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LEMMA 2.5: If the characteristic roots of a square matrix ave all less

than 1 in absolute value then

Proof: See e.g., Mirsky (1955), p. 332.

LEMMA 2.6: If the characteristic roots of a square nxn matrixz G

are all real and less than 1 in absolute value then

log(]I-G|) = -tr = k. (2.25)
k=1
n n n ©
Proof: 10g(|I—G|) = log[ II (l—gi)] = I 1og(1-gi) = 3§ (- gi/k)
i=1 i=1 i=1 k=1

o n o
=-3I I gl;/k = -3 tr(Gk)/k where 8y i=l,...,n are the charac-
k=1 1i=1 k=1

teristic roots of G.

THEOREM 2.2: If x '\'NP(LL,Z), LI positive semidefinite, and A is a
real symmetric matriz, then the cumulant gemerating function of x'Ax
18

® .3 - - 3

s0) = 3z 5Ty ant Ty« EOL ) (2.26)

j=1 ‘
Proof: Using (2.5), ¢(t) = log[E(etXS'A’E)] = 't;d'(I—tAZ)-lA)é-%logII-tAZI.
We can find a to > 0 in a similar manner to fhat used in the paragraph

after (2.17), such that for all t 1less than to in absolute value

|ch(tAZ)| < 1; using Lemmas 2.5 and 2.6, we obtain

o0 o j
¢(t) = t’i‘:' b tjzj (Az)jA}é +_§_ 5 tjzj tr(ng)
jﬂo j:l

) © j
= tjzj'lg'(At)j'lAg-i- L tjzj'lg%—zl-
j-

j=1 1
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which upon simplification gives (2.26).

This result was obtained by Khatri (1963) for the singular case and
again by Rohde, Urquhart, and Searle (1966). In his 1962 paper, Khatri -
obtained the joint cumulant generating function of two nonhomogeneous
quédratic forms in nonsingular normal variates. Dieulefait (1951) and,
apparently independently, Lancaster (1954) obtained the cumulant

generating function for P Ner(g,I).

COROLLARY 2.3: The Jjth cumulant of the quadratic form x'Ax, with

X Nle(&,Z), L positive semidefinite, is

- - k|
Kj(ﬁ'Aﬁ) = j!Zj l[u'(AZ)j 1Ag + tr Séél— 1. (2.27)

Proof: The right-hand side of (2.27) is the coefficient of tj/j! in

(2.26).
COROLLARY 2.4: The first four cumulants of x'Ag, x ™ Np(g.t), are

K, (x'Ax) = E(x'Ax) = p'Ay + trAl (2.28)
(valid also if X <8 not normal),

K, Ge'A%) = V(g'AR) = 4y'AzAy + ;cr(Az)z , (2.29)

where V(*) indicates variance,

Ky(g'Ap) = 24y'AzAZAY + Btz (A1), (2.30)

K, (g'Ag) = 1923"ALAZAZAY + 48tr(aD)* . (2.31)
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The first four moments about the origin when k=0 and L =1 are

ul(g'Aﬁ) = trA (2.32)
uz(;;c"A;é) = 2tra’ + (t:rA)2 o (2.33)
iy (k'Ag) = 8era” + 6tra” + (cxa)’ (2.34)

3

u4(§'A§) = 48trA4 + 32trA trA + 12(trA2)2

+12trA2(trA)2 + trA4 . (2.35)

Proof: (2.28)-(2.3l) are obtained by direct substitution in (2.27).
(2.32)-(2.35) are obtained by substituting the given conditions in the

reversal formulas
ny G = K Gg'ap) (2.36)
uy GE'AR) = KGR + K Ge'A) (2.37)
Ny GEAR) = Ky (e A + 3K, (' ADK, ('AD) + K (g'Ap) (2.38)
AR = K, GEAR) 6Ky G AR, (A + 3K (g Ap)
+6K, GE ADKC GE A + KL GE'AD) (2.39)

which are given, for example, in Kendall and Stuart (1969), Vol. I,

pp . 68-71 . =

COROLLARY 2.5: The cumulant generating fumction of the nonhomogeneous
quadratic form Q= x'Ax + 2h'x + ¢, where g~ Np(g.t), ! positive

gemidefinite, is
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- ] _ ) _ j
o(t) = t(k"' A}¢+2k'}¢+c+trA2‘.) +j::2 -;-:-l- {3 !zj 1((}6'A+k') (tA)j Z(ZAH;"ZR) + trgt;l) )]

(2.40)

and the eumulants are:

Kl(Q) = H'AH + Zk'g + ¢ + trA} (2.41)
=1 yairt P tr (az)3 ' '
R (@ = 31237 ) a3 P amperpy + LS, 5500 )

Proof: Using the same substitution in (2.27) as in Corollary 2.1
gives (2.40) after some simplification. The first cumulant is the co-
efficient of t in (2.40) which gives (2.41). The jtZ cumulant for

j > 1 is the coefficient of tj/j! in (2.40) which gives (2.42).

The cumulant generating function for a bilinear form may be obtained
in a similar manner to Corollary 2.2. However, the resultant expression

is awkward.
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CHAPTER III

Chi-Squaredness

Quadratic forms in or, equivalently, linear combinations of squares
of normal variates occur throughout statistics. This is particularly
so in the theory of regression and analysis of variance, as well as in
time series analysis. The determination of the exact distribution of
such quédratic forms is, therefore, of some importance. Although the
cumulants and moments of all orders are.available in closed form for any
quadratic form in normal variables, the density or distribution function
is available in closed form for surprisingly few. Amongst those for
which the density function is known, the predominant ones are the central

and noncentral chi-square and scalar multiples thereof.

In this chapter, necessary and sufficient conditions for a quad-
ratic form in (possibly singular) normal variates to follow a central
or noncentral chi~-square distribution are established. Also, equivalent
formulations of these conditions are discussed. As corollaries, simpli-
fied versions of these conditions are obtained for particular quadratic
forms or covariance structures. Also, necessary and sufficient condi~
tions for a nonhomogeneous quadratic form to follow a chi-square distri-
bution are derived.

1f Xps¥gyenerX, are independent and identically distributed

r

Nl(O,l), then S= I xi
i=1

with r degrees of freedom. This is denoted § ™ xi. If the means of

is said to follow a chi-square distribution

the x; are not all zero, i.e., E(xi) = Uy i=1,2,...,xr, then S is
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said to follow a noncentral chi-square distribution with r degrees of

r
freedom and noncentrality parameter 62 = 3 ui . This is denoted

i=1 .
S v xi(éz). The distribution is central when 62 = 0 which occurs if

and only if E(xi) = 0 for all i=1,2,...,r . It follows that

E[xi(&z)] =8 4r. (3.1)

S may be written as S = x'x, where x “'Nr(Q,I) or Nr(g,I).

From Theorem 2.1 it then follows that

X, -r/2
E(e ) = (1-2it)F (3.2)
itxz(sz) it62/(1-21t)
and Ee © )=2 75 - (3.3)
(1-21t)*

The fundamental result of this chapter is:

THEOREM 3.1: I ~ N not necessaril and 18
% p(g,Z). X ¥y 9 4
positive semidefinite, then a set of necessary and sufficient conditions

for §'A§’N:xi(62) 182

EAZAYL = IAY (3.4)
B @a2)? = u'AZ (3.5)
R'ALAR = u'Ay (3.6)
and then
ex(al) =z, p'Ap =60, (3.7)

We note that (3.4), (3.5) and (3.6) may be compressed into
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<z )Amz,g) =<z>A<z,;-¢> :
'y R

Proof: A necessary condition for E'Aﬁ to follow a x:(éz) distri~

bution is that the moment generating function of x'Ax,

Y (I—ZtAZ)-lA;d
| 1-2taf|
equals the moment generating function of xi(&z),
2
2 et& / (1-2t)
¢, (tsr,87) = 7 (3.9)
(1-2t)

for some positive integer r and a real constant 62 > 0. The func-
tion ¢l(t) is continuous for all real t except for a finite number
of values. These values are at the points where I-2tAl is singular
and hence would have a determinant of zero. They occur when the char-

acteristic roots of I-2tAl (which may be denoted by 1-2tA where

j’
Al,kz,...,kp are the characteristic roots of AJ) vanish; i.e., when
l-2t)\j =0 (or t= (2)\:])_l for Aj # 0). On the other hand,

¢é(t;r,62) is continuous with a single discontinuity at t = 1/2. As

both functions have the same points of discontinuity, (2}\._])-1 =1/2
or Aj = 1 for all nonzero Aj. Thus r must equal the number of
P

these nonzero roots and r = = tr(Al), which is the first part

ZA
j=1 7
of (3.7). Let m be the rank of 7 and let f = TT' where T is a
real p*m matrix. Let ch(AZ) denote the characteristic roots of
Af. Then the nonzero ch(AZ) = ch(ATT') = ch(T'AT). Thus, T'AT must

also have r roots equal to 1 and m~r roots equal to zero. As

T'AT 1is symmetric, it must be idempotent of rank r. Therefore,
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T'ATT'AT = T'AT . (3.10)

Premultiplying (3.10) by T and postmultiplying by T' gives (3.4).
Now, in order to use Lemma 2.5 to expand (I-2tAZ)-1, the character-
istic roots of 2tAl must be less than 1 in absolute value. By

selecting t, = min(] (2A )_ll) for j=1,2,...,p and Aj % 0, it

k|
follows that [ch(2tA)| <1 for all t such that -t <t <t

Using Lemma 2.5 gives

B (T-2eA2) Tay = ! 20(2t)k(AZ)kAJ¢ : (3.11)
k= |

As the exponent of (3.8) must equal the exponent of (3.9)

N ZO(Zt)k(AZ)kA;é = s/ Q-2t) . (3.12)
k=

Simplifying gives

RLRY @O A -an iy = 62 . (3.13)

By (3.4), which we have already shown to be a mecessary conditiom,
@n® = an’ | (3.14)
so that (3.13) reduces to
w'Ap + 2ty Alap-p'ap] + 20)2 [y arAzAy-p'azay] = 67 (3.15)

for all t such that —t, <t <t As (3.15) holds for infinitely
]

many values of t the coefficients of t° are equal for j=0,1,... ,

and we get H'AZAH = u'Ay or (3.6). Also
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H'AZAZA& = H'AZAH . (3.16)
Combining (3.6) and (3.16) gives
(y'A-p'AYA) L (AZAp-Ap) = 0 . (3.17)

Since ! is positive semidefinite, (3.17) implies (u'A-u'AIA)E = Q'

and (3.5) is established. Using (2.28) and (3.1), we note that

EGrap) = p'Ap + tr@al) = 62 + r = EDC(D] . (3.18)

From (3.15), it is clear that H'AE = 62; therefore from (3.18) we

see that r = tr(Af). Thus, necessity has been proven. To prove suf-
ficiency, (3.4) - (3.6) are assumed and (3.8) must be shown to equal

(3.9); i.e., the moment generating functions must be equal.

From (3.14) all the nonzero characteristic roots of AY are equal

to 1. If there are r of these then r = tr(Al) and

1/2 r/2

P
|1-2ea2]Y2 = T @-2e2)% = @-20)7/2 . (3.19)

)
=t 3
From (3.14), (3.5) and (3.6), g'(AZ)kAH = H'AH for k=0,1,... .

Thus,

g (-2ean)lay = = o)yt ankay - 68 1 @ot
k=0 =

k=0
(3.20)

= §2/(1-2t) ,

with 62 = H'AH and - %-< t < %-. (3.19) and (3.20) show that the

moment generating functions are equal and so the theorem is proven.

COROLLARY 3.1: If x Ner(g,Z) and x'Ax follows a chi-square dis-
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tribution, then the distribution is central if and only if

p'ag =0 and ZAH =0, (3.21)

Proof: If the chi-square distribution is central 62 = 0 and

H'AH = (0, Also H'AH = g'AZAk = (T'A%)'T'AH = 0 which implies

T'Ay = or JAu = 0, Conversely, if u'Au =0 and JAu = 0 then
o K KoK K= A

' 62 = 0 and the distribution is central.

Ogasawara and Takahashi (1951), Rao (1962), Khatri (1963),
Rayner and Livingstone (1965), and Mikeldinen (1966) all, apparently

independently, obtained the above results.

The following theorem states an equivalent set of necessary and
sufficient conditions for the quadratic form ﬁ'Aﬁ to follow a

xi(ﬁz) distribution.

THEOREM 3.2: If x “'NP(R,Z), with ! positive semidefinite, then a
set of necessary and sufficient conditions for x'Ax to be distributed as

x2e? s
prandlag = 6®; 3-1,2,3,4 (3.22)

and

e = eran)® = tr@at)? = er@at) = r . (3.23a)
If A <8 positive semidefinite then (3.23a) may be replaced by

tr(A)> = tr@ar)? = tr(af) = r . (3.23b)

Proof: We must show that (3.22) and (3.23) are equivalent to (3.4),

(3.5) and (3.6). Clearly (3.4), (3.5) and (3.6) imply (3.22) and (3.23).
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Now from (3.22) we obtain
N'AZAN = E'AZAEAH' = J‘x"AZAZAZAH , (3.24)
or, equivalently, by wrifing L =TT

&'(AZAT—AT)(AZAT—AT)'& =0. (3.25)

This implies

E'AZAT = ;d'AT , (3.26)

which by postmultiplying by T' gives (3.5). Note that (3.22) also
implies (3.6). Let Al,...,)\p be the characteristic roots of Al and

hence of T'AT. Since T'AT is symmetric, all the A, are real and

i
(3.23a) becomes
P P P P
Ixg= 0= Ia2= 52, (3.27)
i=1 i=1 i=1 i=l
which implies
P P
5 (A‘i‘-zxiﬂi) = 3 Ai(ki-l)z =0. (3.28)
1=1 i=1

But as each Ai()\ i--l)2 > 0, the characteristic roots A, must either be

i
equal to 0 or 1 and as r = tr(Af) there must be r characteristic

roots equal to 1. Thus T'AT is idempotent and
T'ATT'AT = T'AT , (3.29)

which is equivalent to (3.5). When A is positive semidefinite, we

know that the A i must all be nonnegative since T'AT is then also

positive semidefinite. (3.23b) implies
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P 3 P 2 P '
X Ai = 3 Ai = I Xi (3.30)
i=1 i=1 i=1
or
P 3., .2 P 2
I (X1-2k1+li) = I li(li-l) =0, (3.31)
i=] i=1 : .

But each 11(11-1)2 > 0, therefore each A, must equal either 0 or

i

1. Again, as r = tr(AZ), r of the A, equal 1 and the remainder

i
0. This implies that T'AT is idempotent and we obtain (3.29) which

is equivalent to (3.5). Thus Theorem 3.2 is proven.

The latter part of the above proof is due to Shanbhag (1970)
extending a previous result of Good (1969). The following theorem is

given as an exercise by Searle (1971).

THEOREM 3.2a: If x “'NP(H,Z), with Y positive semidefinite, then a
necessary and sufficient condition for g'A§ to be distributed as x§(52)
i8

tr(At)j + jk'(AZ)j-lAg =r + j82 s 3=1,2,..., (3.32)
2 -
where 6 = n'Ap.

Proof: The cumulant generating function of xi(dz), obtained from the

logarithm of its moment generating function in (3.9) is

6(t) = t62/(1-2t) - r[log(1-2t)1/2 . (3.33)

Expanding the right-hand side as a power series in t, for |t| < 1/2,

gives the jth cumulant as the coefficient of tj/j!; that is,
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& 06D = 2 G0rensd) 5 3= 1,2, (3.34)
The jth cumulant of §'A§, as given by (2.27), is
' o3-1 ' j-1 k| .
Ry [g'ag) = 27ty @ e @and/an 5 g = 12,000 L G039

Since the moments of the chi-square distribution determine that distri-
bution uniquely (cf. Anderson, 1958, p. 172 and Rao, 1965, p. 86), it
follows that a necessary and sufficient condition for §'A§ to be
distributed xi(Gz) is that the right-hand side of (3.34) equals thé
right-hand side of (3.35) for j=1,2,... . After simplification,

this gives (3.32) as a necessary and sufficient condition for §'A§ to

have a Xi(GZ) distribution.

Theorems 3.2 and 3.2a show that (3.32) is equivalent to (3.22) and

(3.23a), a result we have not been able to prove direétly.

Another set of necessary and sufficient conditions for ﬁ'Aﬁ to
be distributed xi(&z) is given by Rao and Mitra (1971). The set of
conditions is (1) JAZAZ = ZAZ, (ii) H'AZAE = H'AH and (1iii) ZA%
belongs to the column space of [AL. The proof shows the equivalence
of (iii) and ZAZAg = JAy. Rohde, Urquhart and Searle (1966) knew of
this result from personal communications with Rao and used it to prove
the following. Let x v Np(H’Z)’ with % = TT', where T is a real
p*m matrix and m = rk(f) and let X “ho(Q,I). Then a necessary and
sufficient condition for g'Aﬁ to have a xi(ﬁz) distribution is that

there exists a real mxl vector [ for which

X'Ax = (yte) 'T'AT(yig) , (3.36)
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with T'AT idempotent.

We now present corollaries to Theorem 3.1 in which additional
conditions imposed upon the covariance matrix and/or the matrix of the
quadratic form simplify the necessary and sufficient conditions for

chi-squaredness.

COROLLARY 3.2: If x v Np (,d,z), and if L 48 positive definite,

then 'ag follows a x>(87) distribution if and only if

AJA = A, (3.37)

2

and then r = rk(A) and 6" = y'Ay, The distribution is central if

and only if Ap = Q.

Proof: When ! is positive definite, (3.37) readily implies (3.4),
(3.5) and (3.6) and thus that x'Ax dis distributed X.(8%) with

r = tr(Al) = rk(AZ) = rk(A) and 62 = H'Akl‘. When 76'A7\5 is distri- -
buted as x§(62) then (3.4), (3.5) and (3.6) hold. If { 4is posi-
tive definite, (3.20) follows. Also, whereas zAJd = ,Q and }é'AJ& =0
are necessary and sufficient for central chi-square, the positive

definiteness of }% reduce these conditions to AH = ,Q

Corollary 3.2 was given by Carpenter (1950), Graybill and Marsaglia (1957)
and' Rao (1965); when R =0, Ogawa (1946b) indicated that it was proven by
Sakamoto in 1943. (Cf. Sakamoto, 1944b)

We note that (3.37) implies that % is a generalized inverse of
A (cf. Rao and Mitra, 1971); we write [ = gl(A). " We also see from

(3.37) that A 1is positive semidefinite.
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COROLLARY 3.3: If X Nle(H,Z), I positive semidefinite and
rk(Z) = r < p, then a set of necessary and sufficient conditions for

x'bg to be distributed xi(az) is that

A=g (Z) or JAL =1 (3.38)
and
R'AZAL = u'Ap (3.39)
where 62 = u'Ap.  The distribution is central if and only if H'AH = 0

or, equivalently, [Ay = 0.

We note that this result differs from Theorem 3.1, in that here

we specify that r, the degrees of freedom, must equal rk(%).

Proof: Let I = TI' where T is a pxXr matrix. If g'Aﬁ is dis-

tributed xi(dz) then (3.4) implies that T'AT 1is idempotent. As
r = tr(ALl) = tr(T'AT) = rk(T'AT), T'AT is nonsingular. Since the
only nonsingular idempotent matrix is the identity, T'AT = I, and so
TT'ATT' = IT' or (3.38). Also, (3.6) is identical to (3.39). On the
other hand, when (3.38) and (3.39) hold, (3.4), (3.5) and (3.6) follow
and thus ﬁ'Aﬁ ~N xi(sz), with 62 = H'A&. The conditions for central

chi~square remain unchanged.

This corollary was proven for B = 0 Dby Khatri (1968) and by
Zelen and Federer (1965). It is interesting to note that if rk(Z) = p,
then JAl = ¢ reduces to A = Z-l, a result proved differently by
Bhat (1962).

COROLLARY 3.4: If x Nle(Q,Z), L positive semidefinite, then X'



follows a xi distribution <f and only if
IAIAY = AL , (3.40)

and then r = tr(Al). If 1 is positive definite, then (3.40) reduces
to (3.37).

The proof follows directly from Theorem 3.1. Rayner and
Livingstone (1965) claim to have had this result in 1955 and draw

attention to an incorrect version in Rao (1962).

The following theorems and corollaries will try to relax condition
(3.40) given certain additional conditioms on the trace or rank of
combinations of A and Y. The motivation for this is to reduce the
necessary and sufficient condition (3.40) for chi-squaredness. Indeed,
with certain additional information, we do have simpler necessary

conditions.

LEMMA 3.1: If % s a pxp positive semidefinite matriz and A = A',

then

@ fafar = 1At e (w3 = gm?, (3.41)
(2) rk(AY) = rk(fA) = rk(AZA) ,. (3.42)
(3) rk[ (A1)%] = rk(aD) = rk[ (0)?] . (3.43)

Proof: As ¢ is positive semidefinite, we may write I = TT' where

T is a pxs matrix and s = rk(i).

(1) Clearly JAZAZ = 7AL dimplies (ZA)> = (ZA)%. Now

(2a)? = (28)% implies
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PATAYATAY = IATAZAY = IAYAY . (3.44)

This yields

(ZAYAT-ZAT) (ZAYAT-JAT)' = 0 . (3.45)
which gives JAJAT = JAT and so ZAYAL = fA}.

(2) rk(Al) = rk[(@AL)'] = rk(fA). 1In addition

rk(AL) = rk(ATT') = rk(AT) = rk[(AT) (AT)'] = rk(AZA).

(3) rk(fAZ) = rk(TT'ATT') = rk(T'AT) = rk[(T'AT)(T'AT)']
= rk(T'ATT'AT) = rk(TT'ATT'ATT') = rk(JAZAY). But as rk(fAl)
> rk(ZAYA) = rk(AZAZ) > rk(JAZAL) and rk(ZAZ) = rk(YAZAL), the

inequality string collapses and (3.43) follows.

COROLLARY 3.5: ILet 1, = rk(AY) and r, = rkl @an?l. If s = k(@)

and r = rk(A), then

§21; 21, and r>r, >, . (3.46)

If =1, then s=r, =1, anc? if r_=r2, then r=r;=r, . (3.47)

Proof: s = rk(¥) > rk(AZ) > rk[ (AZ)Z] and r = rk(d) > rk(al) > rk{ (AZ)Z].

When the extremes are equal, equality holds throughout, i.e., (3.47).

THEOREM 3.3: (i) If A <is positive semidefinite then r, = r

1 2

where ) = rk(A?) and r, = rk[(AD)?]. (i1) If AY ie symmetrie,

then r, =1,

Proof: (i) From Lemma 3.1 r, = rk(ZAL). Since A is positive semi-
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definite, we may write A = FF', where F is a pxr matrix. Then

tk(ZAZ) = rk(IFF'E) = rk[(PF) (ZF)'] = rk(IF) = rk(IFF') = rk(fA) = r.

(W) 7, = rk[(AD] = rk[(A2) AD)] = k(A AD'] = rk(AD) = r, .

THEOREM 3.4: (1) JAZAYZ = IAYL = rk(ZAL) = tr(Al)
(11) ZAZAL = 7AY and rk(A®) = rk[(A2)?] = AZAZ = Af
(iii) LAZAY = TAY and rk(A) = rk(Al) = AJA = A

(iv) APAL = AL .and rk(l) = rk(AZ) = JAL =1 .

We prove this theorem using the following lemma due to Styan (1971).
LEMMA 3.2: If GHB = GHC and rk(GH) = rk(H) then HB = HC.

Proof: We may write H = KL' where K and L have full column rank.
Then rk(GH) = rk(H) implies rk(GK) = r(K) and thus GK has full
column rank. Hence GHB = GHC, or GKL'B = GKL'C, implies L'B = L'C

or HB = HC.

Proof of Theorem 3.4: (1) ZAZAY = Al implies T'ATT'AT = T'AT, or

T'AT idempotent. Thus Trk(T'AT) = tr(T'AT). Since tk(T'AT) = rk(fAl)

and tr(T'AT) = tr(AZ) we have rk(YAL) = tr(al).

(11) Since rk(A?) = rk[(A2)?], we have rk(ZAZ) = rk(Al).
Applying Lemma 3.2 to [FAJAZ = JAYl with G = [, H = AL, B= A], and

C =1 we get AJAY = AL.

(1ii) Since 1rk(A) = rk(Al) = rk(f¥A), using Lemma 3.2 on [fAJAZ.

with G=%, H=A, B= %, and C = A}, gives AZAL = Af. Again by
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transposing and reapplying the lemma, we obtain AJA = A.

(1v) since rk(Z) = rk(Al), applying the above lemma to
AJAL = AY gives JAL = £, as required.

COROLLARY 3.6: (1) If JZAYAY = JAY and rk(A) = rk[(AZ)Z] then ALA = A.

(11) If AJAL = AL and k(L) = rk[(A2)?) then AL = 2 .

Proof: Using Corollary 3.5, rk(A) = rk[(A2)?] implies rk(A) = rk(Al).
Also, rk(}) = rk[(AZ)Z] implies rk(Z) = rk(A¥). Using Lemma 3.2

establishes (1) and (ii).

Parts of the above theorems and corollaries from Theorem 3.3 on-
wards occur throughout the literature. See, for example, Rayner and
Livingstone (1965), Shanbhag (1968), Good (1969), Styan (1970), Rayner

and Nevin (1970), and Rao and Mitra (1971).

When x N'NP(Q,Z), with ! positive semidefinite, the necessary
and sufficient conditions for g'Aﬁ to be distributed x: reduce from

(3.4), (3.5) and (3.6) of Theorem 3.1 to
IAZAYL = PAY , (3.48)

and then r = tr(AL) as in Corollary 3.4. Shanbhag (1970) obtained an

equivalent formulation of the above results as follows:

COROLLARY 3.7: Let x Nle(g,Z), with I poeitive semidefinite.

Then x'Ax follows a xi distribution if and only if
4 3 2
tr(Al) = tr(AL)” = tr(AL)" = tr(Af) = ¢ . (3.49)

If A 1is positive semidefinite then x'Ax N:xi if and only if
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trat)? = trap)? = tr@al) = ¢ . (3.50)
The proof is immediate from Theorem 3.2.

The next two corollaries,whose proofs are also immediate (and

therefore omitted), are included to give historical perspective.

. COROLLARY 3.8a: [Cochran (1934), Craig (1943)] If X Np(,Q,I),
then x'Ax follows a chi-square distribution if and only if all the

nonzero characteristic roots of A are 1 or, equivalently, A% = .

2
COROLLARY 3.8b: [Carpenter (1950)] If X Np(;g,o I), then ?G'Aﬁ
follows a chi-square distribution xi (62) if and only if o%a? = A,

and then t = tk(a) and &> = y'ay.

The necessary and sufficient conditions for a nonhomogeneous quad-
ratic form in normal variables to be distributed xi(Gz) are now ob-

tained using the same technique as in Corollary 2.1.

COROLLARY 3.9: If x VN (u,%), I positive semidefinite, then
XV NG p

x'Ax +2p'x + ¢ is distributed xi(ﬁz) if and only if

ZAJAY = JAY (3.51)
(Apth) "EAL = (Aptp)'E (3.52)

(Auth) 'E(Apth) = p'Ay + 2p'y + ¢, (3.53)

and then r = tr(Af) and 62 = H'A}é + 2}3'16 + c. The distribution is
central if and only if

(At = Q' . (3.54)



-37-

Proof: If X, =<§) , then Xo ™ Npﬂ(}\i'o,zo), where K, = (;é)
1 1
and Zo =(Z 2 . If Ao = (A b\, then ;\E;Aoﬁo = ﬁ'A?\‘. + 2)e'§ + c.
Q' 0 k' c
Moreover, §5Ab¥o follows a x5(62) distribution if and only if (by

Theorem 3.1)

zvozoAbzo = zvozo (3.55)
H;Aozo = H;(Aozo)z (3.56)
KoBoko = HoBolohoko » (3.57)

2
and then r = tr(AbZo) and 6§ = g;AoHo' Substituting for Zo, A
and Xo in (3.55) gives (3.51), in (3.56) gives (3.52) and in (3.57)
.gives (3.53). The distribution is central if and only if
(Ag+k)'Z(Aka) = 0., This holds if and only if (AH+R)'T = Q' or,

equivalently, (Ap+h)'E = Q°'.

This result was obtained by Khatri (1963). Ogasawara and
Takahashi (1951) found the necessary and sufficient conditions for a
nonhomogeneous quadratic form to follow a central chi-square distribu-

tion. Khatri (1962) considered x “'NP(H,I).

We now examine the necessary and sufficient conditions for a bi-

linear form to be distributed as x3(62).

THEOREM 3.5: Let x = §1>NNM(’¢’Z)’ where g-(}d1> » L =(Z11 0 )
(k&z K2 0 Iy

and X1 «,Np(;él,zn) and | Xo "’Nq(k‘,z'zzz)° Then ;\:’J'.th, where Ao
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18 any pxq matriz, never follows a xf_(sz) distribution.

. .]-'. =
Proof: Let A = 2 (0 Ao) « Then E'Aﬁ 7\5:'LA07\52' Were Kf]',Aoﬁz or
A' O
o

equivalently ﬁ'% distributed as xi(éz), then

r = tr(Al)

ntr[}'<0| Ao) (zll 0 ):I
2\l 0/\0 £./|

Hence, ;é]'_A°§2 cannot follow a chi~square distribution.

We now derive necessary and sufficient conditions for an arbitrary

bilinear form to follow a xi(sz) distribution.

THEOREM 3.6: Let ﬁ'(’h) NNp_Fq(E,Z), where %1 i8 px1, %o i8

X2
qxl, K = (h) y L= (Zn 212> , with 1 positive semidefinite. Let
X2 1 Zp

A be a pxq matrix; then a get of necessary and sufficient conditions
for xiAx, to be distributed x2(8%) is (3.4), (3.5) and (3.6)
with A = 1(0 A) and y and I as above. Then r = tr(Aoz21)

- [+]
Z\ar o
[o]

2 _
and § legz .

Proof: Since ;\:"Aﬁ = EZ;.AO?\SZ’ conditions (3.4), (3.5) and (3.6), which

are necessary and sufficient for &'A;é to be distributed x:(Gz), are
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equally necessary and sufficient for EiAoﬁz to have a xi(éz) dis-
tribution. In addition,

r = tr(A}Y)
0 A A z
,tr%< o)(ll .12)
Ay 0/ NIy Iy,

At AL
=tr%(021 _022)

1 |
Aozn Aoz12

1 i ' -
=gtk ) g e ) =@l ),

2 1] ]
and ¢ = R AH = &1A°H2 .
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CHAPTER IV

Independence

In this chapter we present necessary and sufficient conditions for
two quadratic forms in noncentral, possibly singular normal variables to
be independently distributed. For corollaries, we obtain conditions for
the independence of (i) two nonhomogeneous quadratic forms, (ii) two
bilinear forms and (iii) a quadratic form and a set of linear forms. We
also study the special cases of central variables, of a positive definite

covariance matrix, and of positive semidefinite quadratic forms.

Independence of random variables is very useful to know. When two
random variables are independent, their joint distribution function is
the product of the two marginal distribution functions. Also, the ratios
of certain random variables follow well-known distributions if the
numerator and denominator random variables are independent. Examples of

this are (i) the ratio of a standard normal variable to the square root

of an indépendently distributed central chi-square variable divided by
its degrees of freedom follows Student's t distribution, and (ii) the
ratio of two independent chi-square variables, each divided by its degrees
of freedom, follows the F distribution. These facts are extremely useful
in the analysis of linear models; e.g., regression and the analysis of
variance. It should be stressed, however, that the conditions for the
independence of two quadratic forms do not in general depend on the in-
dividual distributions of the quadratic forms (e.g., whether or not they

are chi-square).
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THEOREM 4.1: If x ™ Np(g,z‘.), I positive semidefinite, and A,B are
pxp 8ymmetric matrices then a set of necessary and sufficient conditions

for the quadratic forms x'Ax and x'Bx to be independent is

fAfBY = 0, (4.1)
iBfAy = 0, (4.2)
lafBy = 0, (4.3)
p'AfBy = 0, (4.4)
or
L\AZB(Z,p) = O . |
(y) (4.4a)
We will use the following lemma to help prove Theorem 4.1.
LEMMA 4.1: If A and B are sgymmetric matrices then
| |1-sa[.|1-tB| = II-sA-t;Bl for all real s,t (4.5)
if and only if
AB =0 . (4.6)

Proof: Since [I-sA|.|I-tB| = | 1-sA-tB+stAB| for all s and t, it

is clear that (4.6) implies (4.5).
For all s,t sufficiently small such that

lch(sa)] <1, Jch(tB)| <1, | (4.7)
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we may take logarithms of both sides of (4.5) and obtain
log(|I~sA]) + log(|I-tB|) = log(|I~sA~-tB|) . (4.8)
We may apply Lemma 2.6 to (4.8), which then becomes
® . ®

? sfer @)k + 2 Fer @ /k = 3 tr[(saven)* /K . (4.9)
k=1 k=1 k=1

Equating the coefficients of s"‘zt2 from both sides of (4.9) gives
0 = 4tr(a’8?) + 2cr(aB)? . (4.10)
Since both A and B are symmetric (4.10) may be written as
2tr (AB) (AB)' + tr(AB+BA) (AB+BA)' = 0 . (4.11) |

As both (AB)(AB)' and (AB+BA) (AB+BA)' are positive semidefinite,

(4.11) implies AB = 0, as required.

. = ! = w!

Proof of Theorem 4.1: Let Q x'Ax, R=x'Bx and let ¢1(s), ¢2(t)
be the moment generating functions of Q and R respectively and let
¢ (s,t) be the joint moment generating function of Q and R. Then,
since their moment generating functions exist, Q and R will be

independent if and only if for all s and t sufficiently small,
- ¢,(8), () = ¢(s,t) . (4.12)

From (2.5), we obtain for all s and t sufficiently small so that
the characteristic roots of 2sA)f, 2tBf and 2sA) + 2tB!l are all less

than one in absolute value,

oSh' (I—ZsAZ)-lA)é
|1/2

¢, (s) = (4.13)

| I-2sA2
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-1
tu' (I-2tBE) "By
ek |1/2‘§ | (4.14)

¢,(t) =
| 1-2tB2

: eH'(I-ZSAZ-ZtBZ)-l(sA+tB)g
¢(s,t) = 1/2 . (4.15)
| 1-2sA2-2t B2 ]

Using an argument similar to that used in the proof of Theorem 3.1,

(4.12) will hold if and only if
|1~28A%].|1-2tBE| = |I-2sA%-2tBE| (4.16)
and
sy’ (I—ZsAZ)-lA;é + tkl"(I-ZtBZ)-lBkl' = p' (I—25At-2tBZ)-l(sA+tB)]¢ . (4.17) |

Lemma 4.1 does not apply directly to (4.16) since AL and BL are not
usually symmetric. If, however, we write [ = TT', then (4.16) is

equivalent to

| I-2sT'AT]|.

I-2tT'BT| = |I-2sT'AT-2tT'BT

. (4.18)

We may take T to be a real pxr matrix where r = rk(Z). Using

Lemma 4.1, we find that (4.18) and (4.16) hold if and only if

T'ATT'BT = 0 (4.19)
or equivalently,

ZALBL = 0 . (4.20)

Since we agsume that s and t are sufficiently small so that the
characteristic roots of 2sAl, 2tBf and 2sAf + 2tBf are all less
than one in absolute value, Lemma 2.5 applied to both sides of (4.17)

gives



Y

zo,é'[(zs)k(Az)kM(zc)k(Bz)kB]g= £ p'[(2sAL+2tB) "] (sabtB)y . (4.21)
kem =0

As each side of (4.21) is the same power series expansion, the coeffici-
]

ents of sjtj , j =0,1,2,...5 j' = 0,1,2,... are equal on both sides of

(4.21). When 3 =3' =1, we obtain p'A¥By + j'BIAj = 0, and as

J'AIBy = u'BfAy (since the transpose of a scalar equals the scalar) we get
N'AZBY = 0 . (4.22)
When j = j' = 2, using (4.20) in (4.21) gives
u'BIAZAZBY + H'AzBZBzAJé‘ =0. (4.23)

_ As both BYAZALB = BIAT(BYAT)' and AZBIBZA = AIBT(AIBT)' are positive

semidefinite, (4.23) holds if and only if
T'ALB = 0, T'BlAy =0, (4.24)
or equivalently,

IALBy =0, IBIAW =0 . (4.25)

It is clear then that (4.21) is equivalent to (4.22) and (4.25) as the
coefficients of sjtj', j=12,3,...3 j' =1,2,3,... on the right-hand
side of (4.21) are all zero because of either (4.22) or (4.25). Also
the coefficients of sj, j=1,2,3,...; and of tj', j' = 1,2,3,...

are clearly equal on both sides of (4.21). Thus the necessary and
sufficient conditions for the independence of the two quadratic forms

§'A§ and §'B§ are (4.20), (4.22) and (4.25) which proves Theorem 4.1.
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COROLLARY 4.1: (i) If |I| # 0, condition (4.4a) is equivalent to
AfB =0 . (4.26)
(11) If A <ie positive semidefinite, condition (4.4a) i8 equivalent to
AEB(Z,u) = 0 . (4.27)

(111) If both A and B are positive semidefinite, condition (4.4a)

reduces to (4.26).

(iv) If I = oZI, where o2 i8 a scalar, then condition (4.4a) simplifies

to

AB =0 . (4.28)
Proof: The proof of (i) is immediate. To prove (ii), note that
A(4.27) implies (4.4a). Also (4.1) implies [YBEALBL = 0 which, since
A 1is positive semidefinite, implies AYBZ = 0 and (4.3) implies '
g'BZAZBg = 0 which implies AZBH = 0. Thus (ii) 1s proven. For (iii),
note that (4.26) is sufficient for (4.4a). To see that it is also
necessary, (4.1) implies AZBf = 0 from (ii), and this implies
AIBIA = 0 and since B is positive semidefinite, .AtB = 0, Finally,

(iv) follows immediately.

Theorem 4.1 on the independence of quadratic forms is sometimes
called Craig's Theorem or the Craig-Sakamoto Theorem. Craig (1943)
claimed that if x \pr(Q,I), then x'Ax and K'Bg are independent
if and only if AB = 0. Sakamoto (1944b) claimed that if x “'NP(Q,Z),
L positive definite, then §'A§ and §'B§ would be independently
distributed if and only if AZB = 0. Hotelling (1944) showed that

Craig's proof was incorrect and attempted to give a correct proof, but
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this also contained inaccuracies. Ogawa (1946a) also attempted to
prove Craig's Theorem but apparently was unsatisfied as later,
Ogawa (1949) states:

"A.T. Craig (1943) and H. Sakamoto (1944b) showed that
the ... condition |I—sA-tB| = II-sAI.lI—tBI 1s equivalent
to AB = 0, but thelr proofs were incorrect. H. Hotelling
(1944) also tried to prove this fact, but his proof was
also not satisfactory. J. Ogawa (1946a) tried to derive
these results ... but his proofs were also not satisfactory".

In his (1949) paper, Ogawa then proves Theorem 4.1 for x N'NP(Q,Z),

LI positive definite.

Matusita (1949), who claims to have had the proof in 1943, and
Aitken (1950) also proved Craig's Theorem for X N'NP(Q,Z), i
positive definite. Carpenter (1950) extended this result to noncentral
vgriables; that is, if P NlNé(g,Z), L positive definite, then a
necessary and sufficient condition for H'A* and E'Bﬁ to be independ-

ent is still AJB = 0. This result was also proven by Ogawa (1950).

The result in the most general case when x NINP(H,Z), )5
positive semidefinite as in Theorem 4.1, was first stated and proven
by Ogasawara and Takahashi (1951). The proof we have given follows
theirs to a great extent. Since 1951, there have been others who have
restated and reproved this theorem. See, for example, Khatri (1963),

Good (1963), and Rao and Mitra (1971).

Prior to Craig's Theorem, the criterion used to judge independence
was effectively the factorization of the joint characteristic function.
Cochran (1934) first stated this for the case when % “'Np(g,l); i.e.,
§'A§ and x'Bx are independent if and only if | I-21sA-21tB]

= |I-2isA|.|I-2itB] for all real s and t. Craig (1938) extended



this result to the independence of q quadratic forms when

X NP(Q,UZI). Aitken (1940) extended this result by proving that if

x Np(,Q,Z), £ positive definite, a necessary and sufficient condition

for x'Ax and x'Bx to be independent is |1~sZA-t2B| = |I-sl4|.

]I-tZBl, for all real s and t. Lancaster (1954), using cumulant
generating functions, showed that when P ~ Np(,Q,I), _a necessary and
sufficient condition for the independence of x'Ax and ;\c"Bﬁ is t:r(sA)j +

t:r(tB)j = tr(sA-l-t:B):j for j=1,2,...; for all real s and t.

We extend Theorem 4.1 on the independence of two quadratic forms
to Theorem 4.2 on the independence of two nonhomogeneous quadratic
forms ;\':'Axs +2a'x + a, and §'B§ + 2p'x + bl. As the.values of the
constants a, and b, do not affect the independence of the nonhomo-

1 1

geneous forms, we do not lose generality by setting a, = bl = (,

THEOREM 4.2: Let x ™ NP(H,Z), where I <8 positive semidefinite.

Then a set of necessary and sufficient conditions for the independence
of x'Ax+ 2a'x and x'Bx + 2p'x te:

ZAYBL = 0 (4.29)
EAL(Buth) = 0, IBI(Ap+a) = 0, (4.30)
(Buth) 'Z(Apt+a) = 0 . (4.31)

 Proof: We comstruct the new variable x= (ﬁ) . Then y VN 1:)_|_1(kl‘°,‘zo)a
1
where u = (kl‘) and 20 =(Z g) If A, =/A a\ and
1 g0 (ie' 0)
B = (B }a) , then x'on = §'A§ + 2,%'&5 and y'Byy = x'Bx + Z}a'x\‘.
R0
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The necessary and sufficient conditions for the independence of the

nonhomogeneous quadratic forms are identical to the conditions for the
1} |

independence of the two quadratic forms X on and y Box. These

conditions are from Theorem 4.1:

2 A LB L =0 (4.32)
szozoBoEo = 8’ zoBozoA'o’éo = 2 (4.33)
H;AozoBok‘,o =0 . (4.34)

By substituting for 2‘.0, Ays By, N, in terms of L, A, B, 2, b and x
and simplifying, conditions (4.32), (4.33) and (4.34) become (4.29),

(4.30) and (4.31) respectively.

COROLLARY 4.2: (i) If u =0, the necessary and sufficient conditions

in Theorem 4.2 reduce to
PAIBL = 0, JAfLp =0, IBfa=0, Rh'Fa=10. (4.35)
(11) If 1 <48 positive semidefinite, the conditions reduce to
AlB=0, Alp =0, Bfa=0, p'fa=0. (4.36)
(111) If A 18 positive semidefinite, the conditions simplify to
| AFBE =0, AL(Bp+h) =9, IBfa =0, (Buth)'fa=0. (4.37)

(iv) If both A and B are positive semidefinite, the necessary and

sufficient conditions for independence are (4.36).

Proof: (i) Substituting X =9 into (4.29) - (4.31) gives (4.35).
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(ii) Since I is positive definite, Z-l exists. Pre- and postmulti-
plying (4.29) - (4.31) by Z-l to remove the leading and/or the

trailing ! whenever necessary, gives (4.36).

(1ii) When A is positive semidefinite, A may be expressed as FF'.
Thus (4.29), JIAYBY = 0 implies [BFAZBZ = 0 or [ZBIFF'IBl =

(ZBZF) (EBEF)' = 0., This last statement implies JBIF = 0 and so
LIBLFF' = fBJA = 0, the first part of (4.37). Also premultiplying
ZAZ(B&&R) =0 by (B¥+k)' gives (Bgﬁe)'ZFF'Z(BH+k) = 0, and so

| AL(Byth) = Q, the second part of (4.37). The remaining two conditions

follow from (4.30) and (4.31).

(iv) When, in addition to A being positive semidefinite, B 1is also
positive semidefinite, the conditions (4.37) reduce further. B may be
represented as GG'; then AJBL = 0 implies AZBFA = AJGG'FA = 0 and

AlB = 0. This and the remainder of (4.37) reduce to (4.36).

.The following lemma which was first stated and proven by Good (1963)
will be useful in the proofs of subsequent theorems and corollaries.
The result, as it appears in Good's paper is that if a set of quadratic
expressions in normal variables are pairwise independent then they are
mutually independent. The proof we give is stated in terms of quadratic
forms and is not less general than Good's, és any quadratic expression

may be represented as a quadratic form.

LEMMA 4.2: Let g N'Np(g,z)s L positive semidefinite, and let
ﬁ'Al¥’ ﬁ'Azﬁ”"’ §'An§ be n quadratic forms which are pairwise
independent. Then the quadratic forms are mutually independent.



Proof: From Theorem 4.1, the pairwise independence of quadratic forms

implies
ZAiZAjt =0 (4.38a)
zAizAj)é =0 (4.38b)
;‘é'AiZAjy, = 0; 1, =1,2,..0o03 1 #3 . (4.38c)

To show the mutual independence of the quadratic forms, the joint
moment generating function ¢(tl,t2,...,tn) must equal the product of
the individual moment generating functions ¢1(tl), ¢2(t2),..., ¢n(tn),

where from Chapter 2

n 7yl n
"(I- I 2t,A zt
R j=1 337 a1 Wik

o (t ;t yeeest ) (4.39)
1’72 n n
|1- = thAjt|1/2
3=
and ' -1
s etj)é (I-thAjZ) AZ‘H_‘ i |
t.) = ’ ELlylyeaeyll »
33 |1-2¢.4, 2|22 3 .
i3
Thus, we must show that (4.39) equals
n . -1
flti)‘l‘ (I-thAjr.) Ajkl'
. ()b ()t () =2
1172172 n n 1/2 1/2 °*
or
n n n
R(I- T 2t Ants t A= Itp'(I-2t.A £t X (4.40a)
=1 33 k=1 j-lj 33 3

and
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n
lI—jflztiAﬂzl = II-ztlAlz

os e l I-ZtnAnzl . (4.40b)

For tl,tz,...,tn sufficiently small so that the characteristic

n
roots of I 2t A .Y are all less than one in absolute value, Lemma 2.5

P

glves

n -1 @ n h
(I- 2 2t A f) "= I (Z2tA.15) .
j=1 33 h=0 j=1 33

Therefore,

n
1 z

n
BT 2D T

@® n hn
t = I u'(zZ2tA0) (¢t ) . (4.40c)
4 ek IR LA ik c

From (4.38a) ~ (4.38c) we see that terms with j # k in the right-hand
side of (4.40¢c) must be zero. Hence (4.40c) reduces to
n _i n n ® h
1"(I- 22, AL) Tt Ap=u'[ T I (2t.,A.%) t.A ]y
L b R A T T

which is the right-hand side of (4.40a) using Lemma 2.5.
Moreover,

n n ‘ n
- = - - = -— 1 - ]
I jEIthAjtl |1-2t.4,2 j§22tjAjZ| |1-2¢,1'A, T jEZthT AjTl. (4.41a)

where £ =TT' and T is a pxr matrix of rank r = rk(f). (4.38a) is

then equivalent .to T'A,TT'A,T =0; i,j = 1,...,n, 1 # j. In particular

iy
T'AlTT'AjT =0, j= 2,...,n and
n
T'AlT (z T'AjT) =0, (4.41b)

3=2



~52-

Using Lemma 4.1, (4.41b) implies that (4.41a) is equivalent to

n n
lx-jzlzchjzl = |I—2t1A1Z|.|I-j222tjA3Z|. Using the same argument

recursively we obtain

n
II—jEIthAjZI = lI-ztlAlzl.|1-2c2A22|...11-2tn4hzl,

which is (4.40b) and thus Lemma 4.2 is proven.

The following Lemma 4.3, which we use in a subsequent corollary,
is an immediate consequence of Lemma 4.2, It states that if a quadratic
expression is independent of each member of a set of quadratic

expressions then the quadratic expression is independent of the set.

LEMMA 4.3: Let x N'NP(H,Z), L positive semidefinite and let
X'A%s X'BiEs X'BoXseees X'Bx be n+1l quadratic forms euch that
x'ax is independent of each ﬁ'Biﬁ; 1=1,2,...on. Then x'Ax <8
indépendeni of the set of quadratic forms {ﬁ'Bjﬁ; i=1,...,n}.

Lemmas 4.2 and 4.3 may be extended to two sets of quadratic forms
ﬁ'Alﬁ’ g'Azg,..., ﬁ'Amﬁ and E'Blﬁ’ K'Bzﬁ""’ ﬁ'Bnﬁ. If every
§'Ai§ is independent of every E'Bjﬁ for 1 =1,2,00e,m5 J =1,2,0.0on
then the set {g'Aiﬁ; i=1,...,m} is independent of the set

{§'Bj§; j=1,...,n}.

COROLLARY 4.3: Let x “be(g,Z). t positive definite. Then:
(1) The necessary and sufficient condition for the linear combinations

a'x and R'x fo be independent is

%'Zk =0, : (4.42a)



(11) The necessary and sufficient condition for the quadratic form
X'Ax and the linear combination h'x to be independent is

Atp = 9 . (4.42b)

(111) The necessary and sufficient condition for the quadratic form
X'Ag and the set of n linear combinations Bx, where B 18 an nxp

matrix, to be independent ig
AlB' = 0 . (4.42¢)

Proof: (1) Substii:uting A=0 and B=0 in (4.29) - (4.31) gives

R'ER = O.
(ii) Substituting B = 0 and a= 9 in (4.29) - (4.31) gives Alk = 2

(iii1) The matrix B may be rewritten as

A
pe |H
Y
and the vector Bﬁ as
R1%
BKE = l’,é?é .

From Lemma 4.3, ﬁ'% is independent of Bx if it is independent of
each k:'t;\‘:’ i=1,...,n. From (ii) the necessary and sufficient condition

for g'Aﬁ to be independent of }ai;\g is AZ}ai = 0. As x'Ax and
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kiﬁ must be independent for each i = 1,2,...,n,

AZIRysRyree+sky] = [9:0s+ x50

or

AfB' = 0 .

Theorem 4.2 and its corollaries apﬁear widely throughout the
literature, for example Aitken (1940, 1950), Kac (1945), Matérn (1949)
Ogasawara and Takahashi (1951), Laha (1956), Khatri (196la), Good (1963),
Lukacs and Laha (1964), Styan (1970), Searle (1971) and Rao and Mitra

(1971).

The first general treatment for quadratic forms in noncentral and
possibly singular normal variables was by Ogasawara and Takahashi (1951).
Good (1963) presents an alternative approach to obtain the necessary and
sufficient conditions for the independence of the nonhomogeneous quad-
ratic forms x'Ax + a'x and E'Bﬁ + h'x. He first establishes condi-
tions for the independence of two quadratic forms K'Aﬁ and ﬁ'Bﬁ' of
a quadratic form §'A§ and a linear combination k'ﬁ’ and of two
linear combinations %'§ and k'ﬁ' He then concludes that the
necessary and sufficient conditions for the independence of the two
nonhomogeneous forms are that x'Ax, ﬁ'Bﬁ; E'Aﬁ’ k'ﬁ; 2'%s %x'Bx; and

2'%s p'x must be pairwise independent.

We shall now obtain a set of necessary and sufficient conditions

for any two bilinear forms x'Ay and ﬁ'Bx to be independent.
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THEOREM 4.3: Let gx,y have a joint multivariate normal distribution
such that XV Np()&l,zll) and A Nq(k‘.z’zzz)’ where both le and
222 are positive semidefinite. Also, let the cross-covariance matrix
between x and y be ”12' Let =<;‘¢1> and
X2

L= (le 212). Then a set of necessary and sufficient conditions for

ziZ z22
x'Ay and x'By, where A and B are pxq matrices, to be independent

z><o A> L <o B) (Z,p) =0 . (4.43)
<H' A' 0 B' 0

Proof: The random vector z = <§> N'Np+q(g,2).
b
Let A, = (1/2) 0 4 and B, = (1/2) o B . Then the set of
1 Al 0 1 B' 0

i8¢

necessary and sufficient conditions for ¥'Ax and ﬁ'BX to be
independent is equivalent to the set of necessary and sufficient
conditions for E'Alﬁ and E'Blg to be independent. From Theorem 4.1,

(4.4a), E'Alé and E'Blﬁ will be independent if and only if

<2>Alz§l(z.;¢) =0. (4.44)
El

Substituting for A1 and B, in terms of A and B gives (4.43)

directly.

COROLLARY 4.4: (1) If n =90 , the necessary and sufficient eondition

for independence is

Z<O A)t(o B\L=20. (4.45)
A' O B o> |
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(1) If I is positive definite, the necessary and suffieient conditions

for independence are:
(Az_zzB' AZizB ) -0 (4.46)
A'lpB' A'Ly,B
(ii1) If Ziz = 0, the necessary and suffieient conditions for
independence are:
2118898ty = O
Tggh'ly3Blyp = 0
71187988y = § 11BE0AK, = Q (4.47)
Zogh'211Bhp = © Z92B'E118, = 8
K1AZyoB'Ry + KpA'E g Bly = O

Proof: (i) When N= g, (4.43) clearly reduces to (4.45).

(i1) When [ 4is positive definite, (4.44) reduces to’ Alz‘.B1 = 0,
Substituting for Z,Al,B1 gives (4.46).
(iii) When 212 = 0; i.e., when % and y are uncorrelated, (4.43)

reduces to (4.47).

Very little has appeared in the literature on the independence of
bilinear forms. Part (ii) of Corollary 4.4 was proven by Aitken (1950).
Craig (1947) proved the following result: let %y be jointly
multivariate normal such that X \'Nb(g,l), X'NINPQQ,I), and the

covariance matrix between X and Y is pI. Then the necessary
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and sufficient for the independence of ﬁ'Ax and ﬁ'BX is

AB = AB' = A'B = 0. This result is readily obtained from (4.46).

An extension of the above is to consider the independence of two
nonhomogeneous bilinear forms ﬁ'AX + gig + %éx and E'BX + ki§ + kix,

We construct a new random variable Z= X and matrices

b
1
0 A g 0 B Rk
A =W/ a 0 g, B, =(1/2)[ B' 0 k,].
R Ry O Ry Ry O

Then the necessary and sufficient conditions for the independence of the
two nonhomogeneous bilinear forms are equivalent to the necessary and

t
sufficient conditions for the independence of E'Alﬁ and F4 Bla which

may be obtained in a similar manner to Theorem 4.3.

A different approach to obtain necessary and sufficient conditions
for the independence of quadratic forms was taken by Matérn (1949),

Kawada (1950), Lancaster (1954), Laha and Lukacs (1960) and Khatri (1961a).

Define the random variables x and y to be uncorrelated of order

(T.',S) if
cov(xi,yi) =0 for 1i=1,00esr; J =1,000,8 ,

where cov(xi,yJ) is the covariance of xi and yi. Kawada (1950)
showed that when X N'NP(Q,I), the necessary and sufficient condition
for the quadratic forms §'A§ and §'B§ to be independent is that

they must be uncorrelated of order (2,2). Moreover, if A 1is positive
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semidefinite, they must be uncorrelated of order (1,2). If both A and
B are positive semidefinite then ﬁ'Aﬁ and E'Bﬁ are uncorrelated

[of order (1,1)].

Lancaster (1954) showed that when P NfN#(Q,I), ﬁ'Aﬁ and E'Bﬁ
are indeppndent if and only if Yij =0, for 1i=1,2; j=1,2,

where Yi; is the (i,j)t% cumulant of (E'Aﬁa E'BE).

Laha and Lukacs (1960) showed that when x N'NP(Q,Z), X'ax +a'x

and R'ﬁ are independent if and only if they are uncorrelated of order

(2,2). W

Khatri (196la) gives the most general results. He first shows the
equivalence of Kawada's result with that of Lancaster's by proving that .the

quadratic forms E'Aﬁ and §'B§ are uncorrelated of order (r,s) if
and only if Yij =0 for 1i=1,...,r; j=1,...,8. He then proves
that when x N'Np(g,z), with I positive definite, x'Ax + a'x and

k'ﬁ are independent if and only if they are uncorrelated of order (2,2),
or of order (1,2) if A 1is positive semidefinite. He also proves that
if % N:NP(Q,Z), L positive definite, then §'A§ +a'g and x'Bx are
independent if and only if they are uncorrelated of order (2,2) or of
order (2,1) if B 1is positive semidefinite. Khatri points out that
this last result '"cannot be proved for noncentral normal variates" for

the reason that "it is not possible to reduce in terms of finite higher

order uncorrelation".

We conclude this chapter with miscellaneous results on the inde-
pendence of quadratic forms that have appeared throughout the litera-

ture.
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THEOREM 4.4: [Ogasawara and Takahashi (1951)] Let X N'Np(g,Z), with
L positive definite. Suppose that x'Ax and x'Bx are independent
and that B 18 positive semidefinite. Then for any positive semidefi-
nite matrix C such that B-C <8 also positive semidefinite; x'Ax

and x'Cx are independent.

Proof: Since x'Ax and x'Bx are independent and ! 1is positive
definite, part (i) of Corollary 4.1 gives AJlB = 0. Since B-C 1is
positive semidefinite so is AZ(B-C)ZA or ALBJA - ALCIA. As AJYB = 0,
- AICYA must be positive semidefinite. But since C is positive
semidefinite, so is AJCYA. Thus, AJXCIA = 0 or, equivalently,

AIC = 0. Therefore, by Corollary 4.1 (i), x'Ax and §'0§ are

independent.

THEOREM 4.5: [Bhat (1962)] Let p N'Np(g,t), with I positive defi-
nite or with p =0 and @ positive semidefinite, and let A and B
be positive semidefinite. Then x'Cx is distributed independently of
x'Ag + x'Bg if and only if it is distributed independently of the pair
KA &' B

Bhat (1962) only considered ! to be nonsingular; we show that
Theorem 4.5 is also valid for x N'Np(g,t), whére I is positive
semidefinite. In both cases, it is obvious that the condition is suf-

ficient.

Proof: When ¥ is mnonsingular, the independence of §'C§ and
x'(A+B)x dimplies, by Corollary 4.1(i), that C[I(A+B) = 0. Postmulti-

plying by IC yields CZ(A+B)XC = 0 or CJAZC + CIBIC = 0. As both
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matrices are positive semidefinite, they must both be equal to the zero
matrix; i.e., CJAILC = 0 and CIBYC = 0. This last result gives

CIZA ; 0 and CEB = 0 which by Corollary 4.1(i) implies that x'Cx is
independent of x'Ax and of X'Bg. Wien K =0 and L is positive
semidefinite, the independence of E'Cﬁ and *'(A+B)§ gives, by
Corollary 4.4(ii), LCL(A+B)Z = 0. Postmultiplying this by CZ yields
ICL(A+B)ICL = 0. Using the same argument as above, we get JICZAICL =0
and JCIBYXCL = 0 or JCIA=0 and JCYB = 0. By Corollary 4.1(ii),
x'Cx is independent of x'Ax and of x'Bx. From Lemma 4.3, the pair-
wise independence of x'Cg, ﬁ'Aﬁ and x'Cg, ﬁ'Bﬁ implies that §'C§
is independent of the pair of quadratic forms %'Aﬁ, x'Bx (and hence

of their sum).

Theorem 4.5 may be readily extended to the independence of a quad-
ratic form and a set of n positive semidefinite quadratic forms. That
is, if Ai; i=1,...,n are positive semidefinite, then the quadratic
form §'A§ is independent of the set of quadratic forms §'Ai§; :
i=1,...,n if and only if it is independent of ﬁ'Alﬁ + §'A2§ + e
+ E'Anx' The proof follows by induction from Theorem 4.5 (or it may be

proved in a direct manner, similar to the proof given for that theorem).

THEOREM 4.6: [Hotelling (1944), Laha (1956)] Let x “le(g,I) and
let x'Ax and x'Bgx be independent. Then there existe an orthogonal
transformation y = Px such that the resultant forms do mot contain

any variates in common.

Proof: Since E'Aﬁ and E'Bﬁ are independent, AB = BA = Q. Hence

there exists (cf. Mirsky, 1955, §10.6) an orthogonal matrix P such
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that
PAP' = A and PBP' = A ,

where A and A are diagonal. Hence AA =0 and so a nonzero dia-
gonal element in A corresponds to a zero diagonal element in A and
vice versa. Thus x'PAP'x and X'PBP'X do not contain any variates

in common. Setting x= P'x yields = Px and the proof is complete.

COROLLARY 4.5: Let x ’VNP(,Q,Z), with ] positive semidefinite of
rank r <p and let x'Ax and x'Bx be independent. Then there
exists a random vector XN Nr (9,I) such that X =Fy, where F 4is
a pxr matrix, and such that the.two quadratic forms will be funetions

of disjoint components of X*

Proof: From Lemma 2.4, we know that there exists a z v Nr(g, I) such
that x =Hz and H is a real pxr matrix. Then the quadratic forms
?\{.'Aﬁ’ K‘,'BK‘, may be written as %'H'AH‘% and ;E'HfBHé respectively, and
are still independent. Using Theorem 4.6, we know that there exists a

vector y = Pz (or z = P'x), where P 1s orthogonal, which reduces

the independent quadratic forms E'H'AH% and E'H'BHE to functions of

. disjoint components of y = {yi}. As x =Hg = HP'y, the independent

quadratic forms xg'A;\c' and ;é'Bﬁ are functions of disjoint vq and

have no variates in common.

The next theorem, proved by Good (1963), generalizes some of the

proceeding results. An outline of his proof is given.

THEOREM 4.7: Let Q15Qy,...,Q, De quadratie expressions in
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x Nle(Q,Z), where rk(l) =r < p. If the Q's are pairvise inde-
pendent, then there exists a z “lNr(Q,I) for which X tea linear
transformation of g and the Qi's are dependent on disjoint subsets

of z.

Proof: The proof is initially similiar to that of Theorem 4.6 in that

we find a % NINE(Q,I) such that x = Fz. We then write gz = g(l) +

(2) (1) (2)

% ~» wvhere gz and 2z are in orthogonal vector spaces depend-

ent on the quadratic expressions. We then show that Qi is express-

(1)

ible in terms of the components of g2

(2)

tions of the components of X . This procedure is easily extended to

, Wwhile Q2,...,Qk are func-

all k quadratic expressionms.
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CHAPTER V

Cochran's Theorem

In Chapter III we obtained necessary and sufficient conditions for
a quadratic form in normal variables to follow a chi-square distributionm.
. In Chapter IV, we determined.neceSSary and sufficient conditions for two
quadratic forms to be independent. In this chapter we show how these
two results interrelate. In particular, we derive a set of necessary
and sufficient conditions for k quadratic forms to be pairwise inde-

pendent and to individually follow chi-square distributions.

We also study, in detail, the situation, whiéh occurs frequently
in statistical analysis, where a quadratic form is expressed as the
sum of a set of quadratic forms. In this case the conditions for hav-
ing chi~-square distributions and for being independent are sometimes
equivalent. Indeed, any knowledge of the chi-squaredness of the quad-
ratic forms may, on occasion, help determine their independence and
vice versa. Also, a knowledge of relationships amongst the ranks of
the quadratic forms is useful. These results are combined as Cochran's

Theorem. We start with:

THEOREM 5.1: Let x “'Np(g,Z). with 1 positive semidefinite and let
x' 1K i=1,2,...,k, be k quadratic forms. Then a set of mecessary
and sufficient conditions for the quadratic forms to be mutually inde-

pendent while individually to follow chi-square distributions is

ZAIA 2 = &

4 ithiz (5.1)
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ZAiZAja = GijzAi& ‘5.2)
RIATAN = 8 0'A N (5.3)

for 1,3 = 1,2,...,k, where Gij 18 the Kronecker delta (Gij = 1

if =) and 8. =0 if 1#)).

3

We note that (5.1), (5.2) and (5.3) may be rewritten as

(Z) AJEAL(Ep) = 6y, (2) A () - (5.4)

Y X

The proof is a straightforward application of Theorem 3.1 and Theorem
4,1. The conditions for chi-squaredness are those given when i=j and
61j = 1. The conditions for independence of ﬁ'Aiﬁ’ §'A3§ are those
when i#j and Gij = 0, Furthermore, the fact that the quadratic forms
are pairwise independent implies, by Lemma 4.2, that the quadratic forms

are mutually independent.

COROLLARY 5.1: (i) If k=29 the necessary and sufficient conditions
reduce to (5.1).

(i1) If I <se nonsingular the necessary and sufficient conditions
reduce to AizAj = Giin’

(111) If p=Q and L =1, the necessary and sufficient conditions

reduce to AiAj = Giin'

The proof of Corxrollary 5.1 follows by substituting the given
conditions in (5.1), (5.2) and (5.3). Part (iii) was proven by Craig
(1943).
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COROLLARY 5.2: et x ™ N (u,2) and let x'Ax+2Rix+cy 3
i=l,...,k, be k nonhomogeneous quadratic forms. Then a set of
necessary and sufficient conditiong for them to be mutually independ-

ent and individually to follow chi-square distributions is

ZAizAjZ = GijZAiZ (5.5)
ZAiZ (Aj k‘:"'kj ) = Gij'z (Ajlé"')?,j) (5.6)
G TN t(Aj3¢+}aj) =85 (u'A p+2hipte,) (5.7

for 1i,j = 1,2,...,k, where aij 18 the Kronecker delta.

The proof of Corollary 5.2 follows directly from Theorem 5.1 by
constructing a new variable g = (ﬁ) » and new matrices Bi = (Ai ]31)

)
Ri ©3

such that E'Bié = ;s'AiK:I + Z}agﬁ +e. Applying Theorem 5.1 to the

1

%'Biﬁ; i=l,...,k and resubstituting gives (5.5), (5.6) and (5.7).

This result may also be obtained from Corollary 3.9 and Theorem 4.2.

Although both Theorem 5.1 and its two corollaries are straight-
forward, they do serve as a good starting point for Cochran's Theorem
as they show the similarity in structure between conditions for chi-

squaredness and conditions for independence.

Cochran's Theorem as given by Cochran (1934) is the following.

i=l,...,k be symmetric matrices such

Let x v NP('(‘)"I) and let Ai’
k
= = \l -
that iflAi I and let rk(Ai) Ty. Then x % follows a chi

square distribution with r, degrees of freedom and is independent of
k
T T, = P- Note how much simpler this

i=1

i
the other R'S'Ajg if and only if
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condition is to state (and sometimes to verify) than Ai = Ai and
AiAj =0 for 1,j =1,...,k and i#j. We shall prove a more general

version of this theorem as given by Styan (1970).

THEOREM 5.2: Let x ’\'Np(}é,i‘.), with Y positive semidefinite, and

let x'Ax, ;5'Ai;§, i=l,...,k be k+l quadratic forms such that
k

. §'A¥ = iilﬁ'AixE. Also, let r = rk(IAL) and ri = rk(ZAiZ)’ i=1,...,k.

If (1) ! <is nonsingular or (II) t is singular and =0 or (III) L
is eingular, p not necessarily @, and the A, are positive semide-

finite then

(a) and (d) dimply (b) and (c) (5.8)
(a) and (b) imply (;) and (d) (5.9)
(a) and (c) dimply (b) and (d) (5.10)
(b) and (c) imply (a) and (d) , (5.11)

where

NN

(a) x'Ax v xi(ﬁz)

[] 2 2 . =
(b)) x Ai¥ “fxri(Gi) s 1=1,...,k

n

(c) 76'A1K5’ 7\5'A2§’ cees ;\:"Ak;é mutually independent

k
() r= Ir

g=1 1

If (V) L is singular, y + Q, and the A, are not all positive

gsemidefinite then (5.9) and (5.11) etill hold, while (5.8) and
(5.10) need not hold.
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Proof: Let ¥ = TT', where T is a pxm matrix and m = rk(¥).

When { is nonsingular so is T and then r = rk(A) and r, = rk(Ai).

i

Under (I) and (II) we may rewrite (a), (b) and (c) as
(a') T'AT = (T'AT)? ,
] L = 1 2 ° =
(') T'AT=(TAD; 1i=1,...,k,

(c") T'AiTT'AjT =03 i,j=1,..0,k 3 143,

using Theorem 3.1 and Theorem 4.1. Under (III) we need in additiomn to

(a') and (b")
(a") }é'AZAJ‘l' = )e‘lAkE
(") kl"AiZAi]‘n’ = kl"Ai y 1=1,...,k .

Note also that r; = rk(ZAiZ) = rk(T'AiT). We first prove (5.8) -

(5.11) with (a), (b), (c) replaced by (a'), (b') and (c'). We then
prove that when these hold (a") and (b") are equivalent. We may write

1 = '
(cf. Styan, 1970) T AT UV, where both Uy and v, are real mxr,

matrices and have full column rank for i=1,...,k. Then

k k
T'AT = L T'AiT = I UiVi =pv', (5.12)
i=1 i=1

where U = (Ul’Uz"”’Uk) and V = (Vl’VZ’”"Vk) are both mxr,
From (a') UV'UV' = UV'. As from (d) U and V have full column rank,

Lemma 3,2 gives V'U = I. As
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vus=(w\ @,..,0) = fviul vee viuk‘ . (5.13)
) ] )
VZ V2Ul * e VZUk
L] ] )
% AR

we get -Vj'_Ui = Iri, for i=1,...,k, and Vin =0, for 1,j =1,..0,k 3
' L - 1 ' '
i#j. Thus UiViUivi Uivi and (b') and (c') follow. To show (5.9)

we use the result that the rank of a symmetric idempotent matrix is equal

to its trace. (a') and (b') imply r = rk(T'AT) = tr(T'AT) =

k . k k k
tr( 2 T'AiT) = E.tr(T'AiT) = 3 rk(T'AiT) = 3 ry and thus (d)
i=1 i=1 i=1 i=1

holds. By (5.8) (c') also holds. When (a') and (c') hold,

k k 2 k 9
T'AT = I T'AiT = (2 T'AiT) = I (T'AiT) y O
i=1 i=1 i=1
(5.14)
k k 2
z T'AiT = } (T'AiT) .
i=]1 i=l
Multiplying (5.14) by T'AjT, for fixed j, gives
'h o2 R
(T AjT) = (T AjT) . (5.15)

Since the rank of a symmetric matrix equals the rank'of any power of

it, Lemma 3.2 applied to (5.15) gives

(T'A.jr)2 =TAT, J=lk. (5.16)

"Thus (b') holds and hence (d). When (b') and (c') hold

k k

(T'AT)? = ( % T'AiT)z = 3 (T'AiT)z + I T'ATI'AT
i=1 i=l i3
K , k
= s (aD?= 5 TAT =TT . (5.17)

i=1 i=1
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Thus, (a') holds and hence (d) also holds. When (a'), (b'), (c') and
(d) hold, then clearly (b") implies (a"). When each A; 1s positive

semidefinite, we may write A, = B,B! for iml,...,k and then (b')

i i'i
gives T' B B TT' BijT = 0 for i#j; therefore
tr(T' B B TT' BijT) (5.18)

Also,

tr (T’ B B TT' BijT) tr(B:iTT BiBiTT'Bj) .

= tx(BJTT'3,) (BiTT'B

i)' (5.19)

and B,IT'B; = 0 for 1,j = 1,...,k i#j. Thus

k k
H'AtAg g Z A Z T Ajg

kK k
= I I y'BBITI'SB
1—131»' L

k
= 2 g B B TT'B Bik . (5.20)

From (a"), M'AtAg = H'AE' and (5.20), we get

k k
2 E B B! TT B Big : H'B Big

or equivalently,

k
z k'Bi(I-BiTT'Bi)BiH =0 . (5.21)

As ch(I—B'TT'Bi) =] - ch(BiTT'Bi) =] - chCT'AiT) and as ch(T'AiT)

i

are 0 or 1, the characteristic roots of I - BiTT'Bi are either 1
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or 0. Thus I =~ Bj'_TT'Bi is positive semidefinite for all i and

H‘Bi(I-BiTT'Bi)Big > 0. From the above and (5.21) we must conclude
that H'Bi(I-BiTT'Bi)Big =0, or H'A12A1¥ = H'Aig for all

i=1,...,k, as required.

Under (IV), for (5.9) we must show that (a'), (b'), (c') and (d)
together with FYAZAy = YAy and A FA.u = JAy imply zAiZAj)é =0
for i#j. Premultiplying PA,PAp = FA.u by ZAj and using (c')
gives ZAj ZAi;é = g as required. For (5.11) we must show that

ZAizAik = zAiH and zAizAjH = 0 imply FAZAw = fAu. ZAZAy =
k k k

T PAJAu= I fAJA,u= I JA,u = FfAu and (5.11) is proven. To
1,4=1 * L S U e

show that (5.8) and (5.10) need not hold, consider this counter-example.
, A1 =f/1 0 O\ and A2 =/0 0 0

10 0-1 0
00 \0 0 1

Let y=/0\, A= t=/1 0 0
1 0 0 O
0 0 0 1
Then A = Al + A2 and ¥ (and A) may be writtem as TT' where
T=/1 0\. Note that I,A and A1 are idempotent and that T'T = I
00
0 1
so that T'ATT'AT = T'AT, g'AZAt = p'AL and g'AZAE = u'Ay = 0. Thus

(a) holds. Also AlZA2 = A22‘.Al = 0, so that (c) holds. Finally
rk(T'AT) = 2 = rk(T'AlT) + rk(T'AzT) and (d) holds. However,
g'AIZAlg =0 # ¥'A1E = 1 so that (b) does not hold. Therefore (5.8)

and (5.10) are shown not to hold in general under (IV). Thus the proof

. of Theorem 5.2 is completed.

The result as stated in Theorem 5.2 has been given and proved by

Styan (1970), Searle (1971) and Rao and Mitra (1971). Ogasawara and

2’
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Takahashi (1951) have also established most of the above results.

Madow (1940) extended Cochran's result for X N'NP(E,I).
Sakamoto (1944b), Ogawa (1946b) and Matérn (1949) considered Cochran's
Theorem for x NINP(Q,Z), with ¥ nonsingular. Graybill and Marsaglia
(1957) and Chipman and Rao (1964) extended the results to X NprQH,Z),
I nonsingular. In addition, Craig (1938), Aitken (1950), Dieulefait
(1951), Nelder (1951), Lancaster (1954), Banerjee (1964), Rao (1965),
Loynes (1966) and Luther (1965), have all proven Cochran's initial

result as well as other related results.

It should be noted that many of these results correspond to results
in matrix algebra. In fact; Theorem 5.2 may be so restated. Although
credit for this theorem has always been given to Cochran, it should be
noted that Fisher (1925) gave a result which foreruns Cochran's Theorem.
In fact, Rao (1965) refers to Cochran's result as the Fisher-Cochran
Theorem. Fisher's result is as follows. Let P *'NP(Q,I). If z="Px
where P is hxp such that PP' = Ih’ then x'x -z'z "V xi_h inde-

pendently of g.
We now state and prove a result given by Hogg and Craig (1958).

THEOREM 5.3: Let x NINP(H,Z) with (I) I nonsingular or (II) I
singular and =0, and let X' A%, §'Ai¥; i=l,...,k be k+l quad-
k

follow chi-square distributions with degrees of freedom «r, s

i=1,..., k-1, respectively, and if A, 18 positive semidefinite then
k-1

x'A x also follows a chi-square distribution with r - L r

4V 4" {m=1

of freedom and ﬁ'Al , ﬁ'Azﬁ' veey ﬁ'Akﬁ are independent.

1 degreese
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Proof: Write ¥ = TT' where T has rank 8 = rk(f). Then under

(I) or (II) the conditions that X'A%, §'Ai§ follow chi-square distri-

butions are
T'AT = (T'AT)? (5.22)
T'A,T = (T'AiT)Z ; 1=1,...,k-1, (5.23)

respectively, where r = rk(T'AT), r, = rk(T'AiT). We shall prove
this result by induction on k. Let k=2; i.e., A= A1 + A2 and
§'A§, ﬁ'Alﬁ follow chi-square distributions. Also, A2. is positive
semidefinite. We have
] ] 2 ] 1 2
T'AT = (T'AT)" = (T A1T+T A2T)
(5.24)

= 1 2 1 ' ' ' ' 2
(T AlT) + T AlTT A2T + T AZTT AlT + (T A2T) .

Using (5.22) and (5.23) in (5.24) gives

2
' ' = Tt ' ' ' ' '
T A].T + T A2T T AI.T +T AlTT AZT + T AZTT AlT + (T AZT)

or, equivalently,

2
' = T ' ' ' '

T A?.T T AlTT A2T + T AZTT Al'.l‘ + (T AZT) . (5.25)
Premultiplying (5.25) by T'AlT and using (5.23) to eliminate
T'AlTT'AZT from both sides of the equation gives

2
= 1 ] \j 1 \J
0=T AlTT AZTT AlT + T AlT(T AZT) . (5.26)

Equating the traces of both sides of (5.26) gives

a ' ' ' ' ' '
0= tr(T AlTT AZTT AlT) + tr(T A2TT AlTT AZT) . (5.27)




As both matrix expressions are positive semidefinite they must each

equal the zero matrix and, in particular,

' ' -
T AlTT A2T 0. (5.28)

Substituting this into (5.25) gives

T'A,T = (:r',«.zr)2 (5.29)

and thus ﬁ'Azﬁ follows a chi-square distribution. Using (5.9) in
Theorem 5.2, we obtain r,=r-r and that E'A1§ and K'Azﬁ are

independent. Let us assume the theorem is true for k = n. Now let

ntl
k=n+1; i.e., A= iilAi, where E'Aﬁ and &'Aiﬁ; i=1,..4,n0
follow chi-square distributions and Ah+1 is positive semidefinite.
Let B = A.n + Ah+1' Then under (I) B 1is also positive semidefinite
n-1
& A= I Ai + B. From our induction assumption for ke-n, gx'Bx
i=1

- t—3 '
has a chi-square distribution. But B A.n + An+1’ where X Anﬁ

follows a chi-square distribution and An+l is positive semidefinite.

Therefore E'An*lﬁ must also follow a chi-square distribution as this
is the case where k=2. Under (I1), from Lemma 2.4 there exists a

n+l
z'\/Ns(,Q,I) such that x = Ty. Then x'T'ATx = le'T'AiTx, where
1=

y'T'ATy, x'T'AiTx, i=l,...,n have chi-square distribution and T'An+1T

is positive semidefinite. As 3 has a nonsingular covarilance matrix,
oy = =e!
the first part of this proof shows that X T An+1Tx b3 An+1¥ must

follow a chi-square distribution. As under (I) or (II) ¥'Ai¥ has a

chi-square distribution for all 1, they must again be independent and
n

r =r = Ir,. Our proof by induction is therefore complete.
n+l i=1 i

Part (I) of Theorem 5.3 appeared in Hogg and Craig (1958) and was

later proven differently by Banerjee (1964). It was also obtained
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earlier by Ogasawara and Takahashi (1951). Note that this theorem makes
(5.9) of Theorem 5.2 more general. We now conclude this chapter by

extending Theorem 5.3 with the following:

COROLLARY 5.3: Let ¥ ~N (u,1) with (1) f nonsingular or (II) 1

singular and p =0, and let x'Ax, x' 43 i=1,...,k+2 Dbe k+i+l

k+2
quadratic forms such that A = izlAi. Also let ﬁ'Aﬁ, §'Ai§; i=1,...,k
follow chi-square distributions and let Aj; j = k+l,...,k+ be positive
semidefinite. Let I = TT', where T has full columm rank. If either
k+L k+2
(a) rk(: T'AjT) = I rk(T'A,T), or
j=ktl =kl 3

(b) ﬁ'Ai ’ E'Ajﬁ are independent for 1,j = ktl,...,k+2; 1 # 3 ,
then each ﬁ'AjE’ j = k#l,...,k+% follows a chi-square distribution
and all the E'Aiﬁ’ i=1,...,k+2 are independent. (

Proof: Under either (I) or (II), since each Aj’ jo= ktl, .. ktl is
ket .

positive ‘semidefinite, the sum I A, 1is also positive semidefinite.
=it 3
k+8

Thus Theorem 5.3 shows that ﬁ' I Ax follows a chi-square distri-
=kl 3

bution. This and either (a) or (b) imply by (5.8) and (5.10) respec-

tively, that x' 5% for 3 = k+l,...,k+% follow chi-square distribu-
tions. As each E'Ai s 1=1,...,k+. and E'Aﬁ follow chi-square dis-

tributions, reapplying (5.9) completes the proof.
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