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Abstract 

This t.hesis describes the coupled Lasks of using a mobile robot to construct a map with 

noiHY range sensors (sonar) of an initiaJly unfamiliar environment, amI using sueh a 

map t.o determine the l'obot's position and orientation. The map need not necessarily 

repl'csent t.he actual spatial structure of th€' environment so much as it is meant 

1.0 rcpresent the major structural components of what. the robot perceives. These 

"feat.ures" of t.he envil'onment are modeled as straight Hne segments and arc assembled 

t.ogcthcr t.o form a map. One problem with thie: apprDaeh is that maintaining an 

absolute coordinate system for the map is diftieult without periodically calibrating 

t.he position and orientation of the robot, due t.o the unbounded accumulation of 

poait.ional errors as the robot moves and rotates. 

An approach t.o caIibrating the robot's position, knowll as localization, is pre­

sented. ln suitable environments, it is possible to use sonar data to perform this 

operation givcn coarsc estimates of position and orientation, which a.re iteratively 

refincd 1.0 high accuraey using the map and a set of sonar measul'ements from a sin­

gle position. Provisions are made for verification of the results of localization using 

quality indiea/m's, which give a measure of the confidence in the accuracy of a refined 

position estimate. 

The approach is then generalized to allow globallocalization, where position and 

orientat.ion estimates are not available. 

Using a Humber of sample environments, experimental results show that in spi te 

of the inherent noisiness of sonar sensors, accurate localization of a mobile l'obot is 

achievable. In addition, the constructed maps are general enough to be used for 

purposes othet, than loca.lization, such as path planning and collision avoidance . 
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Résumé 

Cette thèse aborde deux problèmes rcllees à la localisat.ion d'un robot, lI\obil('. L(, PI'('­

miel' concerne la construction de cartes d'eIlvil'Onnement. inconnu il l'aide dt' di-u,ct.('III'S 

ultrasoniques, et le second concernc la déterminat.ion de la positioll et. d(' l'OI"iC'nt.at.ioll 

du robot à partir de ces cartes. La représcnt.ation cart.ograplt iquc 1)(' COIT('spond 

pas nécessairement à la structure spatialle exacte de l'cnvirollllcmcnt., mais plüt.ot. il. 

une représentation des composantes majeures de structure t.eUps que p('I'eues pa.!' le 

robot. La modalisation de ces composantes se fait à l'aide de segment.s de droit.e, d. 

la conjonction de ces modèles forme la carte de l'cnvironll1cnt.. Dlî à. l'acculllulat.ioll 

d'erreurs de position et d'orientation du robot., un des problèmes rcncont.r(. él.V('(, cett.e 

approche est le maintien d'un système de coordonnées cart.ographiques a.bsolu sa.IlS 

calibration périodique de la position et. de J'oricntation, 

Comme méthode de calibration, le procédé de localisation est. ut.ilisé. Dans (ks ('11-

vironnements convenables, des données ultrasoniques servent. à. él.a.hlir la. loca.lisa.t.ion 

à partir d'une estimation de la posit.ion et l'orientat.ion du robot.. Cet.t.e C:ÜillléLt.ioll 

est rafinée de façon itérative jusqu'à haut.e précision à l'aide de données et d'une ('art.(~ 

créée à priori. Pour vérifier le résultat de localisation, un -indicateur tif' (f'Iutlilé, qlli 

donne une mesure du niveau de confiance en la précision de l'est.i ma.t.ioll , est. dénlli. 

Cette approche de localisation se généralise pour pCI'mettre une dél.cl'llIillat.ioll cI(' 

position et d'orientat.ion lorsqu'aucune estimation est disponihle. 

A partir d'un certain nombre d'environnements d'essai, les expériences démollt.ml. 

la possibilité d'obtenir une localisation précise malgré la présence inhéreut.e de bruit.s 

dans les données ultrasoniques. Aussi, la généralité des cartes cOllst.r'uit.es pOUl' le 

procédé de localisation permet leurs utilisation pour d'autres fins tels que l'appréhensioll 

de collision et la planification de trajectoire . 
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Chapter 1 Introduction 

One of the common themes of mally mobile robot. systems is the ml(' of sonte forlll of 

map for navigating within an envirollment. This is espccially truc of mohile l'Oho(,1{ 

demonstrating at least sorne minimal amount of autollomy in their t.asks. Applica­

tions such as path planning and collision avoidance arc t.wo examples of (,asks t,JI(\t. 

require that the robot explicitly model its envirollment, in some way, ln fael., t.1H' 

major difficulty in autonomous navigation is not. so much (,he tasks (811Ch as t.he t.wo 

mentioned above), but rather the extraction of uscfu\ information fmm senSOt' dat.a 

and its relationship with a navigation map [23]. 

An important subproblem embedded in navigat.ion is t.hat. of sclr-locali'l,a(,ion. SiJl1-

ply put, localization answers the robot's question "where am I?" and IIslIél.lly IlII1St. he 

solved before proceeding with higher level operat.ions such as pat.h planlling. III cases 

where a range sensing device is mounted on board a mobile rohot, llIea~lJJ'e"Hmt.s 

taken with this sensor will usually be relative to t.hc robot. In ordet' t.o Illaillta.in él.lly 

kind of global coordinate system within a map of the ellVil'Ollment., t.he location or 

the robot must be known before any of the objects sensed can be cot'l'cct.ly placcd 

on the map. In most cases, the location of the robot consist.s of t.he positioll of t.he 

robot in space and the robot's orientation. This informat.ion, refcl'I'cd t.o in t.ltis t,)w­

sis as the robot's pose [14, 31] (also known as the robot's conjigumtion [6]) is what. 

must be correct in order for accu rate placement. of sellsed objcct.s wit.hin éL global 

coordinate system!. For clarification, the t.erm pose wil1 l'cret, t.o t.he posit.ioll t.ogc\,lter' 

with the orientation of a robot in a global coordinate system, i.e. one wOllld say 

pose = (x,y,(}), while position = (x,y) and orientation = O. 

A preliminary question is: why are sensors necded to perform Jocalil',at.ion? Given 

an initial pose of a mobile robot, its current pose should be calculable by intcgrat-

lSince the location of a sensed object is relative to the assumed pose of the robot, ully error in 
the estimate of robot pose is also present in the position of the scnsed object 

:"!1i 



• 

• 

CHAP'PER 1. INTRODUCTION 2 

ing the robot's motion history, assuming this is known. This pro cess is commonly 

known as fleari rcckoning. The problem with dead reekoning is that small errors in 

the intcgl'atioTl of orientation, distance and velocity will accumulate progressively as 

a mobile robot moves through iLs environment (errors such as those brought about 

hy the problems of wheel slippage, uneven ground, or unexpected collisions) unless 

corl'ectcd. Uncorreeted errors arc integrated over time along with the velocity history 

and thcl'cfore el'rors in absolute pose aecumulate disastrously with successive motions 

of the robot. Evcntually, the robot 's estimate of its own pose will be drastically differ­

ent from its truc pose, and therefore it would need to be periodieally or eontinuously 

l'ccalibmlcd in order to minimize this erroI'. 

1.1 The Approach 

Given the neccssity of performing loealization, we need to know what kind of map is 

rcquircd t.o perform it. At a first glanee, a complete and aecurate a priori map of the 

cllvil'onment would appear appropriate in many domains. However, sueh aceurate 

metric maps are rarely available, nor is it al ways easy to fabricate them. More 

importantly, even when metric maps (for example, arehitects' floorplans) are available 

in a usable form, they tend to not portray the environment in a fashion consistent 

with typical robotie sensing devices. For instance, commonly-used sonar devices fail 

to deLed many existing structures (like overhangs or thin cylinders) and may "detect" 

many structures that are not physically present (such as illusionary walls in corners 

and other structures due to multiple reflections of the sonar beam). For these reasons, 

it, would be most valuable if a mobile robot could construct and maintain a map of an 

cnvironment in terms of its own perceptual mechanisms. In simpler terms, the robot 

shollid bc able to bllild the map of the environment as it "sees" it, not as human 

bcings may see it. COllsidering that the robot must be guided by its OWIl sensors, this 

is not an unreasonable supposition. 

Before localization can be accomplished, at least a partial map of the environment 
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is required to which new range measurements are compal'cd2 • l'hprcfore, t.hc lise of 

localization as described here assumes that the robot has prcvio1l8ly cnt,e\'('d an t1llfn­

miliar environment and has construded a map using the map cOIIstmdioll t,echniqu('s 

described in this thesis. The measuremcnts takcn by the l'obot'8 l'auge 8('11 SOI' show 

the assumed positions of objects in the envil'onmcnt based 011 the sensor's PI'('Hf'lIt. 

pose estimate and are compared to the map. At. t.his point. t.he discl'ep<'lIcie8 bet,W{'('1I 

the sens or data and the map indicate t.he error in the est.imatcd pose. 'l'Il<' t,et'Ill l'III/He 

data point refers to a point in space where the range sellHor has obsel'v('d ail ohj<.·d, 

(based on the range of the object from the sensor and t.he pose or t.he S('IIS01'), alld 

this term is used throughout this thesis. 

The localization techniques in this thesis are bascd on l'efining a. eOéU'He esl.illlat.{· or 

pose. This local localization assumes that such a.n estimatc is available hllt, cOIlt.aillH 

errors, such as an estimate obtained from dead reckonillg 01' allothcl' coarse 10ca.Ii:.\a.­

tion technique. The error in the pose estimate for which locallocalizat.ioll funct.ioll8 

correctly is bounded, with the actual upper bound being detcrlllined by t.he enviroll­

ment and the robot's place within it - in general, the local localizat.ioll t.echlliqlle 

discussed in this thesis cannot correct a coarse pose est.imate whose errOJ' il' 1.00 large. 

Local localization is in contrast 1.0 global localization, wltere no a priori est.illlat.e 

of pose is provided by the user, and the robot must re)y ouly on its SCIISOI'S alld it.s 

map. As is shown in this thesis, global methods can be based 011 loca) ones. Loca.lly 

convergent pose estimation (local localization) is furt.hcl' dccornposcd int.o pmiit,Îon 

correction and orientation correction, Ali the components of Jocali~at.ioll are rlllly 

explained in their appropriate sections. 

2The word partial is used because a complete map showing ail t.he details of ILl 1 area IH Ilot, 

necessarily required. As long as there is cnough corrcspondcncc betwcen visible! fe/l.tllres in t.l1IJ 
environment and what was seen al. the last known location, il. is possible for localizlltiolJ t,o he 
performed. Whether a representation of the cnvironment with this kind of minimullI crit.(!rion cali 
be called a map is debatable . 
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1.2 Thesis Outline 

This thesis begins by describing the task of map construction, where objects in the 

wOl'ld are modeled in a way conducive to localization. Once the models and the 

methods of obtaining them are described, the methods of localization are discussed, 

beginning with position correction. The results of position correction then lead to 

the dcvclopment of qualit11 measures, with which verification of these results can be 

donc. These measures also allow for orientation correction and global localization, 

and are discussed on this basis. 

The outline of this thesis follows: 

Chapter 2 discusses sorne related work that has been do ne in the area of mobile 

robot map construction and localizati0n. The three basic approaches to localization 

are discussed with examples from the Iiterature. 

Chapter 3 gives a brief introduction to the robot used in the experiments done for 

this thesis, and how range data are gathered. 

Chapter 4 introduces the approach to map construction. The methods used for 

the clustering of point data, line fitting, splitting and merging are presented. 

Chapter 5 begins the discussion of localization by considering correction of the 

errol' only in the position of the robot. An iterative weighted sum of vectors approach 

is discussed, as weIl as issues such as the handling of errors and of convergence. Sorne 

illust.rative results are shown. 

Cha.pter 6 discusses how one may measure the quality or confidence of a particular 

pose est.ima.te. The two basic types of measures, the least-squares rneasure and a 

neighbourhood occupancy measure are presented, as weIl as third measure that is a 

combinatioll of the first two. Sorne examples using real data are given. 

Cha.pt.er 7 continues the discussion of the measures of quality by demonstrating 

how thcse measures allow correction of orientation in addition to position to give full 

pose localization. The problem of globallocalization (where no initial pose estimate 

is given) is also addressed here. Both are formulated in terms of the optimization of 

nOll-linear functions of the quality measures . 
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Chapter 8 presents experimental result,s of the approarhcs developed ill the pr<'­

vious chapters as applied to one l'cal and two simulated cnvirOlllllcnt.s. This is in 

addition to the example real environment in earlier chapkrs whiclt was uSl'd 1.0 illus­

trate the various aspects of the approach. Quality measUl'CS, rcgions of cOllvcl'gell(,(' 

and globallocalization results are presented for each samplc' cnvirolllll<,nt,. 

Chapter 9 concludes the thesis with a discussion of the t.opics IJI'{'scnt.cd l'cgal'dillg 

map construction and localization, togethcr with a sllmmary of the findings obl.a.ined 

from experiments . 
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Chapter 2 Related Work 

WOl'k in the are as of mobile robot map construction and localization generally began 

in the carly J 980s, and since then there have been several proposed approaches to 

thesc pl'Oblems. This chapter presents a background to the localization issue: map 

making solely for the put'poses of path planning, collision avoidance, etc. will not be 

the foctls. 

Thcl'e are basically three approaches to localization: 

l, active localizatioll 

2. passive localization 

~J. integration of past kinetic history 

Active localiza.tion refers to the a.pproach where beacons are placed in the environ­

ment at known locations so that a mobile robot may receive transmissions from them, 

and thus calculate its global position based on its position relative to the beacons. 

This has been done using both ultrasonic beacons [19] and infra-red beacons [18]. The 

Globa.l Positioning System (apS) of the United States is also an example of active 

localizat.ion, but using sat.ellites as beacons. The main criticism of this approach is 

that while robot positioning may be achieved, it is necessary to modify the environ­

ment in order to do so. For situations where it is desired to introduce a mobile robot 

to an 1II1known environment, it may not be possible to use this approach, at least 

as far as exploration is concerned. In situations where the environment is relatively 

stable (such as a warehouse Hoor), this approach may suffice. 

Passive localization is the approach where the environment is not modified, and 

the OIllIS is on the robot to scan the environment to determine its position, usually with 

t.he aic! of a. map. The term "passive" does not refer to the sensor: sonar, laser and 

infra-l'cd range finders are active sensors, but the environ ment is not "actively" aiding 

t.he robot,. This is by far the most popular approach, sinee the use of environment 

6 
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maps is useful for other tasks in addition t.o localization, and various inCXp('IIRivc 

range sensillg devices are available 011 the market. The varions faect,s 1.0 t.his g<'IH'l'al 

approach is covered in more detail in their own sections in this ehapt.er. 

The third approach refers 1.0 using the past 1110V011lent hist.ol'j' of t.he rohot. t.o 

calculate its present position (assuming of eomse that its initial posit.ioll wa.H kllown). 

The simplest method is commonly known as dead /'cckoning. This is a 1'('lêll,iVC'ly 

simple book-keeping operation where, for example, the shaft.-llIaddngs foulld Oll 1lI0S\. 

wheeled robots are counted as the robot moves and rotat.es. Thp pl'Ohl<'lll wit.h \Ising 

this alone is that errors accumulate without bound as I.he robot. cOIlt.illll<'S \.0 1ll0\'('. 

Wheel slippage, geaI' backlash, the use of finite-precision arit.hl1wt.ic arc a. fcw of (.\1<' 

kinds of errors that affect dead-reckoning. From time t.o t.imc allot.hel· locali~éd.ioll 

method must be used to reset the robot. to a correct position, whiclt, by Home l'e­

markable coincidence, is the subject of this thesis. lIow ort.cn t.his IlIUS\. he dOIl(' 

depends on the degree of error the robot accumulates as il. moves. 

A step up from the distance/angle monitoring of dcad-reckolling are t.he syst.c'llIs 

that use inertial data [34]. These systems have the pot.ent.ial t.o he <luit.e él,C('UI'a,t.e, 

even in less structured environments than indooJ' sit.uat.ions. Like dead-I'cckollillg, t.he 

error in the position estimate still approaches infinity in the limit, bill. in t.ltis case 

much more slowly. In general these systems tend t.o he very cxpenHive, hut. in t.he 

future the costs of accelerometers and gyroscopes and the Iikc JlIay COHW dowll 1.0 t.he 

point of making this approach cost competitive, 

2.1 Passive Localization Approaches 

2.1.1 Grid-Based Techniques 

Grid-based techniques involve the construction of a two-dimensiollal and in Home cases 

a three-dimensional grid which covc~rs the environrnent in which t.he robo1. rnay move. 

MOl'avec and Elfes did early work on the use of certainty or OCCllpaTlcy grids [27, 12], 

which took a probabilistic approach to whether a givcn cell in the envi/'Onmenf. grid 

contains an obstacle or free space. Lim and Cho did further work on exf.cnding thiH 
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idca to accurate sonar modeling [3] . 

Any obstacle or part of any obstacle perceived within a cell is assumed to be 

present within the entire cell; therefore, one con cern with this approach is the size of 

the grid. For maps rcpresenting large areas, a small celI size would preserve detail but 

wOllld increase the memory rcquirements of the map. Large celI size decreases memory 

but also dccrcascs usable frec space due to the larger neighbourhoods surrounding 

obstacles. Kuc and Barshan use a cell size based on an estimate of how far the robot 

can rnovc without a collision [20], but in general there is no rule governing celI size. 

Grid methods commonly perform localization by directly comparing a global or 

known occupancy grid map with the local grid map containing newly acquired data, 

using a cross correlation data matching technique. The accuracy of this method 

is limited in that spul'ious data is weighted equally with good data, sinee aIl cells 

arc used in the correlation. Another concern is that the amount of data stored is 

proportional to the size of the ceIl array, and it follows that the speed of a matching 

algodthm would be affected by an environment who se ceIl size is small. 

Grids can also be used in conjunction with other techniques to reduce the search 

space involved. Gonzalez et al. use a feature-based approach but overlay a grid to 

rcdllce the Ilumber of featllre models compared during matehing [14]. 

2.1.2 Feature-Based Approaches 

These approaches aIl involve the use of a map of the world that contains features 

usahle for localization. There are two primary varieties: 

Feature-Matching: features are extracted from sensed data and matched to fea­

tm'es in the map 

Data-to-Model Error Minimization: the discrepancy between raw sensed data 

and map features is minirnized 

Gonzalez et al. refer to these approaches as feature-based and iconic methods respec­

t.ively [14]. 
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The features of the world map may be provided a priori by t.hc uscr 01' I\lêty he 

"discovered" by the robot as it explores the world. Thcl'<' are tlUIllC('OUS cxnmpl<,s 

in the literature of the first instance [5, 13,4, 22, 2a, 6, 17], but oll-Hnc robot, map 

construction for the purpose of localization is no strangcr 1.0 thc ScellC <'Î t.IIC(· [24, l,l, 

10]. 

The feature-matching techniques, as statcd, involvc cxtl'act.ing f<'é\l.mcs frolll (H'wly 

acquired sensor data and matching them to known fcatmes ill a map. J)mlllhc\l(,1' [fi] 

extracts straight line segments from a sonar coutour (a a(iQO Honar sellRor swecp) 

and attempts to eliminate implausible combinations of line scgmcnt.s lISillg il Illlmber 

of geometric constraints. Holenstein et al ext.ract features from a sOllar COIl!.OIl\' ill a 

similar fashion, but instead of a best fit approach they compare cach paÎl' of ext,m.cl.ed 

line segment models to aU pairs of reference objects (for instancc, the walls 011 fi, map) 

and ca1culate aU possible geometric transformations that would match t.he t,wo pairs. 

The transformations for aH pairs of line segment.s arc then c1ust.crcd in (.l:,y,O) Spél<:e 

and the coordinates of the largest cluster is takcn to bc t.he t.ruc rohot. pose [17]. 

Fennema et al attempt to minimize a quadratic error model, which i8 hasccl on the 

distances between models and extracted features [la]. A conccl'll inh<,rent. t.o a.1I t.h,'(·e 

of these approaches is that features must be extracted fmm a single scan of the 

environment, and to "ensure" that these features arc "wcll s('Cn", dense dat.a SCéUIS 

must be taken1• In addition, if a pal'ticular sensor scan of t.he ellvÎl'OlImcllt, yields 

data but no discernible features, then the matching will not be rdiahle. 

Localization in vision-guided robots has also been tackled by feature-matchillg. 

Roth et al match 2D image features to 3D model features and apply a global <:011-

sistency check for verification [31]. Nashashibi and Devy use a laser' l'ange fiuder t.o 

extract 3D planar faces and then match t.hem to a 3D model of the cnvi/'ollmellt" 

which is then applied to a generalized Kalman filter [28]. 

The data-to-model error minimization or iconic approach involvcs rninimizing 

sorne error measure which is a function of the individual distances bctwecrr tire raw 

1 In this context, scan density refers to the angular separation of adjacent rncasurcrncnts, HO 

making one scan every 3° is more dense than one scan evcry 12°. 
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sensor data and the stored environment map. Raw sensor observations are commonly 

paired with models representing the object(s) in the environment from which the 

readings were obtained. Similar to the approach taken in this thesis, Cox [4] paired 

single range data points to the line segment model closest to them in the Euclidean 

sense. He tbcn linearized a non-linear equation about an estimate of the robot's 

position and used a c10sed form least-squares linear regression to find a solution. 

Gonzalez, Stentz and Ollero used the same minimum distance criteria to pair their 

laser range data to line segment models, but used an iterative algorithm to find 

a .Jacobian matrix from which a least-squares fit of robot position and orientation 

could be found [14]. 

Leonard, Durrant-Whyte and Cox have developed a system which formalizes the 

localization process as a vehicle-tracking problem [23, 22, 24]. Theil' approach belongs 

in the jeature-matching category since their observations take the form of extracted 

regions of constant depth (RCDs - these are angular sectors in a dense 3600 sensor 

scan around the robot whose distances from the robot are constant over the sect or ) 

from single scans rather than the raw sensed data points. The authors preferred these 

RCD observations over straight lines or raw data because they claim RCDs agree more 

with the properties of ideal sonar data [23]. While this is most certainly true, these 

propcrties manifest themselves only to a significant degree in speculaI' environments. 

In real-world indoor environments, most objects are not ideally speculaI', and th us 

RCDs have a radius of curvature large enough to be weil approximated by a straight 

tille. In addition, truly non-speculaI' pl anar objects do not visibly exhibit the ReD 

propertyj rather, we have found that these objects are weIl modeled by straight line 

segments having linear depth variations. 

Theil' system included a sensor model to predict observationsj focusing on the 

l'cgions neighboring these observations helps to reduce focus on probable object loca­

tions, l'cducing the se arch space and helping to avoid spurious data. Once the sensor 

model predicts an observation, an extended Kalman fiiter is employed to track the 

observed object as the robot moves through the environment. The authors consid­

cred the cases of planes, corners and cylinders as models (to which they refer to as 
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geomet1'ic beacons for use with sonar sensors. IVlap construction was also considC'rcd 

in the light of localizatioll [24] where they used a l110dcl of the' l'rnsor to prcdict. rangc' 

measurements, and verified them as a function of time. Observat.ions agrceing wi th 

predictions were classified as "expected"j any ot.hers were "uIH'xped('d". Ily ('st.ah­

lishing a confidence measure for each geomet.ric beacoll (cI1Vironll)(,1l1. [eétt.mc), ollly 

those of high confidence were used for Ioca.\ization. Confidence would he iIICTC'i\scd 

or decreased depending on whether the beacon was expeded 01' uIH'xp('c{,(·d hy t.IIt' 

predicted measurement.s made using the sensor mode\. It is wort.hwhil(' t.o 1101.(' t.hat. 

this beacon confidence approach is independent of t.he specifie approadl 1.0 lo('ali:t,i\­

tion, as well as how the beacons were initially ext.ract.ed. Thcrdor(', as long <lS ail 

accurate sonar sensol' model is available, i.e. one whost' meaSI1l'Cl1Icnt. pr('C\ict.iol1s 

match those of the real sensor, it is possible 1.0 lise this confidence a.ppl'Oélch wit.holll. 

the requirement of their particular localizat.ion algorithm. 

A more l'ecent appl'oach to localization has been cxamincd by Dudd: ami Zhé\.lIg [ Il]. 

This appl'oach involves training a neural network with raw semiOI' data. ill ol'dC'J' t,o 

associate a given observation directly with a known positioll. Ollce HO t.l'élillC'd, t.h iH 

method is advant.ageous in that no formaI map is required, and t.hcl'dol'c 110 mod('ls 

of the environment need t.o be devised. Sincc t.he choice of t.he JIIodc'ls of envi roll­

mental features often limits the environment in which a pal't.iculal' Hystem lIIay he 

used, the neural network approach is less bound by this cOIIst.raillt.. The prol>lc'IIIH 

with this approach are that training t,he neurainetwOl'k may he very tilll<' COIIHlllllillg 

compared to other methods, and that the lack of a map precl Uc\PH other t.a.SkH hc!j IIg 

performed with the same data, such as path planning, obstacle avoiclallœ, and Ot/WJ'H 

that requil'e a map . 
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Chapter 3 The Robot 

The robot Ilsed for experimentation in this thesis is Pollux, a three-wheeled cylindri­

cal mobile robot with a 12-transducer l'OF (Time of Flight) sonar ring evenly spaced 

around it (figure 3.1). The sonar ring rotates with the wheels so that the same trans­

ducer always faces the fOl'ward direction. Each transducer acts both as transmitter 

ami receivcr. Tn the conventional l'OF system, such as the Polaroid system [2], a 

Figure 3.1: Pollux: a mobile robot 

transducer sends out a pulse and receives an echo. The time delay ide/av between 

sending the pulse and receiving the first echo is converted to a distance measure d 

using the simple relation: 

d = Cide/ay 

2 (3.1) 

where c is the speed of sound in air. However, the beam of the pulse sent out by 

the trausducer spreads out iuto a cone as it travels [9, 20, 36], and so any returned 

ceho is due to an object somewhere within this cone. Since a single point pel' scan 

12 
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is desired rather than a range of possible points, the point. at t.11(' axis of the ('011(' is 

chosen as the most likely position for the object (figurc :1.2) This Illinimizes the ('\TOI' 

1 
Transducer 

AssUlned Position 
ofObject 
~ 

Physical 
Object 

Figure 3.2: Finding the Most. Likely Position of an Object. wit.hill t.IH' SO\léll' (~()ll(, 

of any guess of position wit.hin the cone. 

Since the arrangement of transducers around t.he robot. is fixed wit.h respect. L() tll(' 

forward direction of the robot, we therefore know t.he orient.ation of eac!t f,rallsdll(,('l'. 

For scans more dense than the physical transducer separation, t.h<' robot, cali rof,a(,(' 

slightly to obtain denser measurements. If we consider t.he rohot. 'H loca.l word i \la (,(' 

system in polar coordinates, then aIl the sonar echos received ha.ve coordillat.<'s (r,O), 

with () = 0° being the fOl'ward direction (figure 3.3). If wc Imow the robot'H (orred 

pose (recall pose = position and orient.at.ion) wit.h respect. to t.Ile glolml ('oordillat(' 

system, then it is simple geometry to find the global coordinates of ail t.he sOllar dat.a 

points. Once again, we see the importance of knowing where the robot is locat.ed. 

Errors in pose estimates translate directly into errors in t.he locat.iolls of obj(·c:t.s i Il 

the environment. 

Figure 3.4 illustrates a type of "map" based Roldy on t.he raw range data fro/Jl t.hc! 

sonar sensors. As can be seen from figure 3.'1, t.he general shape of ohject.s (in t.hiH 

case, walls and other planar surfaces) can be distinguishcd. 1I0wever, t.his t.aHk dOlle 

50 naturally by hurnans is difficult to formulate into a usable algorithm for t1H' robot 

- if it were easy, sorne general shape problems in machine vision could he fiolved. Ali 

far as the robot is concerned, it only has a large collection of individual range data 
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Sonar 
Data 1 

POi~~·····\~1 

""\ \'\\ ' 

r \ .-..-. 

Figure 3.3: Sensed object placement is at (r,O) relative to the robot 

points. Certainly storing every sonar point is not the best way to build a useful map -

whilc human beings can discern the presence of objects, the robot cannot and would 

be limitcd in its capabilities if this type of map were its only resource . 



• 

• 

CHAPTER 3, THE ROBOT 

D aJl~ 

'. :".. 
, ' .. 

, . 

", 

" 

'" ..' "t ..... 
s:: • 
-, •• P,' .... ".: 
... ~ Il. 

hn't., .. ' 
,-

" 

: ........... . 

p n .. ~ ... ~ :' ~,," 
.. .." ~ 

u ... ~, " ,,' 

."' ~. pOo • 

" . ", 

"\ 
r,," t 
f "'·\'·"" , - .. . ' .. 

( , 

J~, "\: 
: (' .. 
; ". , 

:1' 
j 

" :ï-:= 
,f' 
l' 

1 

15 

Figure 3.4: An Example of an Accumulation of Sonar Range Data: t.his is ail ovel'head 
view of a sample environment, where each dot rcprcsents the location or iL 

response within the environment (in global coordinatcs) l'rom the l'obot's 
sonar sensors. The circle within the map reprcscnts Ule robot, éLnd the 
line within it ifldicates the robot's orientation . 
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Chapter 4 Map Construction 

4.1 The Approach 

The mapping approach described here belongs to that class of approaches where maps 

are cornposed of models used to represent discernable features of the environment. 

'l'wo-dimensional modeling only will be considered. This is based on the assurnp­

tion of a srnal! robot with fixed height sensors (true for aIl experiments done in 

this thesis, since Pollux was the robot used). In many indoor, office environments 

two-dimensional rnodeling is valid because the commonly encountered objects such 

as doOl's, walls, chairs, desks, etc. with planar surfaces rnay be considered as two 

dimcnsional but extended into the height dimension. 

One could use different models for the various office-type obstacles likely to be 

encountered [23] but it was decided to attempt to build maps using linear rnodels 

only. Since wc are operating in an environment where objects are assumed to be 

mad(' of planar surfaces perpendicular to the floor, the constant height of the sensor 

assumption validates this linear model choice. Each model would thus consist of a 

line segment in space, and could be thought of as representing a section of a wall or 

othcl' obstacle although, in fact, sorne lillearly-shaped clusters of observations may 

not correspond directly to existing structures. For instance, sorne sonar data may 

form linear clusters when the sensor observes a corner between two walls, due to the 

effeds of multiple reflections of the sound waves. 

As illustrated in figure 4.1, modeling with line segments agrees well with the 

threshold-based sonars, where each measurement corresponds to the first over-threshold 

responsc for a brief ultrasonic "chirp". By examining the characteristics of sonar [8, 

2, 9] wc cau roughly describe each outgoing chirp as a 12 steradian measuremellt 

cone and the first object of sufficient size within this cone results in a single response 

at that object's distance. Consequently, a similar orientation that also includes the 

16 
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same object will return the same measurement (ulllcss it. hit.s a closcl' objert,). As 

a result, even a smaU object will produce a collcdion of mcasnrcmcnt,s ëÜ silllilat' 

distances that are nearly linear in structure [10] (figUl'c 4.1). In spite of t.his diflklllt.y 

• 

Figure 4.1: A Dense Scan of a Small Objcct. 

with sonar, using simple li ne-segment models can build vcry llscflll llIaps, ('sl>C'cially 

for the localization aspects that will be discussed in lat.cr chaptcl·s. 

Extracting line-segment models from raw sensor data cali be accolllplished \Ising 

one of the many line-fitting algorithms availablc, and one sueh approach is expillilled 

in this chapter. 

4.2 Clustering 

Clustering is the first step in fitting line-segment models 1.0 sensor data. Hem the 

data corresponding to presumably distinct objccts in the environrnent are Heparatcd 

to facilitate li ne fitting. Since we require separate models for scparate objeds, wc 

can exploit the fact that disjoint data point sets correspond to scparate objects by 
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dividing the data into groups hefore line fitting. This allows fitting to he done one 

object at a time, and avoids Iitting a single linc segment to a group of distinct objects. 

4.2.1 The Sphere-of-Influence Graph 

A ncighbourhood gmph may be defined as a set of connections or edges between 

points in space. The sphcre-of-influence graph, as proposed hy Toussaint [32] is a 

ncighborhood graph [33] that can he applied to any fini te set of unordered points in 

a plane. ft attcmpts to capture the essence of a primai sketch for dot patterns of 

arbitrary complcxity. This graph has an intcresting feature in that it may consist 

of either a connected graph or a collection of disconnected pieces where appropriate, 

and its algorithm does not require any tuning of parameters or thresholds. It is 

prccisely this characteristic of determining when and where to form disconnected 

pieccs t.hat makes the sphere-of-influence graph so useful for clustering for the Hne 

fit.ting application. 

The definition of the sphere-of-influence graph is as follows [32] (see Figure 4.2): 

Definition 1 Let S = {PhP2"" ,Pn} be a finite set of points in a plane. For each 

point p,c-.S, let R, be the distance to the nearest neighbour of Pi, (i.e. the closest point 

to IJi) and let Ci be the circle of radius Ri centred at PI' The sphere-of-influence gmph 

is a graph 071 S witl!. an edge belween points Pi and P3 (i =/: j) if and only if the circles 

CI a7ld CJ i7lte1'secl in al least two places. 

To relate this to clustering, we can say that if any two points share an edge of the 

gl'aph thcl1 they helong in the same cluster, and so, each disconnected piece of the 

gra.ph will form a cluster. Figure 4.3 illustrates this relationship between the graph 

élnd c111stcring. 

The sphcrc-of-influence graph can he computed with complexity O(nlog n), where 

11 is t.he number of points [32], 
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Pi 

(a) (b) 

Figure 4.2: Sphere of Influence Clustering: (a) Around cétch point. p" defiuc' t.h(' circl(· 
Ci, whose radius is the distance to Pi'S Ilcal'cst ncighbour l'J' (b) Any l'" 
and py are in the same cluster if and only if C;r and Cy int.c'rsect. in at. 1 t'mil, 
two places. 

4.2.2 Modification for Noisy Sonar Data 

With the sphere-of-influence gl'aph it is conceivable that a small numhet· of poillt.s 

very close together could form their own cluster, cven arnong a dellsc group of point.s. 

This problem could easily arise if a range sensor scanncd the saUle ohj<'ct. t.wice: t.Iw 

two data points representing the objed's position would likcly be very dose t.oget.her, 

A duster consisting of just these two points would be of !itt.lc use ill ddel'lTlilling t.he 

overall shape of the object, and would in rad suggest the exist.encc of a. very HIlHl.1I 

distinguishable object (see figure 4.4). However, givcn the lirnit.ed HetlHor resolutioll 

of range sensing devices such as sonar, such a suggest.ion woulcl Ilot he plausihle. 

A solution to this problem is to fix a lower Hmit on n, gual'anteeing a lIlinillllJ/ll 

distance to associate neighbours, which effedivcly places alowcr hOUI1() on c1ust.er Hi~f,(' 

and excludes the possibility of tiny clusters. The value of t.his lower Iirnit depcllds 

directly on the accuracy of the particular rangc sensor. 

4.3 The Line-Segment Modeling Strategy 

Assigning line-segment models to the individual data clusters is done with a jit-liplit­

merge strategy (Figure 4.5). Its basic operation is as follows: given a duater of data 

points, a single line segment is fit to the entire set of points. If the fit iR good (the 
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• 
(a) A set of unordcrcd points before clustering. 

~ 
(b) Application of the Sphere-of-Influence 
graph. 

20 

• 

Figure 4.3: Clustering and the Sphere-of-Influence Graph. Given a set of points in a 
plane, clusters in the data are obtained. Connecting Hnes denote edges of 
the graph. The disconnectedness of the clusters is clearly visible by the 
limits of the circles. 

line segment fits t.he data weB) then this model is retained as a description for this 

c1uster. 1f the fit. is poor, then the data is not weB modeled by a single line, and 

the c1ust,cl' is divided into t.wo sub-clusters. Fitting is then attempted on each of the 

ncw sub-clusters individually. For instance, a set of points that forms a corner (i.e. 

a junct.ioll of two walls) is not weIl modeled by a single line segment - it would be 

bett.er t.o use two pel'pendiculal' Hne segments. Fitting and splitting are pel'formed 

l'ccursivdy until each cluster has a line segment that fits weIl, or until a stopping 

condition is reached. An a priori stopping criterion is needed to pl'event splitting 

of the c1usters into too mauy tiny groups (in the worst case two points eaeh, sinee 

a line fit to two points is al ways a good fit). After aIl liues have been chosen, any 
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(c) Using a minimum radius rule 

Figure 4.4: Effects of Too-Small Clusters: (a) shows a simplc Iillcar c1ust.cl', étSSIIIl)('c! 

taken from a flat object. (b) shows the object rcscéUlIlCd, hut. t.his t.illl(· 
three of the points differed by a small am ou nt. (duc t,o SCIISOI' ClTo!'), so 
that now two clusters are formed instcad of onc. Wit.h t.hc applicat.ion of 
a minimun radius rule, as in (c), wc gct. thc clust.cr as bcfoJ'(~. 

line segments that are close together and co-lincar arc mcrged int.o CL Im'gel' sillgle 

compound Hne. 

4.3.1 Line Fitting Aigorithm 

The line fitting step of the algorithm is bascd 011 a least.-mcan-squé\.rcH Illef.ltod ilJ(h 

pendent of the choice of coordinate axes, known as cigc1tvcclo1' lin(~ fill-ing. BasÎerllly, 

the fit line minimizes the sum of squarcs of th(' perpcndic'Ular dist.ances fl'OUI t.he 

points to the line [7, 30, 15]. In two dimensions, given n dat.a point.s in t.he f01'/1I 
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1 :---- ---- n_ - -------- - n - l ,--------- ... _----, ' ,--_ .... _-----_ ... - -----_ .. _-_.-------, 
1 Fit Line H Check ~ine Poor·1 Split (sub)Cluster l 
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rï\1;rg~--l 
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Figlll'e ~ .5: The Recursive Fit-Split-Merge Strategy for fitting straight line segments 
1.0 a single cluster of range data points: If a single line does not fit a 
c111ster well, split the cluster in half and try to fit a line to each sub-cluster. 
Continue recursively until aIl sub-clusters are either fit acceptably or are 
jlldged 1.00 unsuitable to be fit with a line segment 

(:/'id/l), t.he covariancc or scatt,er matrix S is calculated as: 

(4.1) 

Comput,ing the principal and secondary cigenvalues Àprm and Àsec of Sand their 

rcspective eigenvectors ëprll1 and ësec finds the direction of maximum and minimum 

val'Îancc in the cluster. This gives information about the shape of the cluster. Since 

the goal is t.o fit straight lines, the direction of maximum variance is the orientation 

al. which such a tillc would be best placed, since the cluster is most "spread out" in 

t.his direction. Thcrefore, t.he best straight. line i given the n data points is a line 

pa.ralld t.o t.he principa.l eigenvector êprin • Since the line must be fit onto the cluster, 

t.ltis best. rit. linc aiso must. pass through the mean of aIl n points. Note that this line is 

of infinit.c lcngtlt, as no end points are defined in the above procedure. These may be 

('élsily calculated by finding the perpendicular projections of each data point (XI' Yi) 

0111,0 f, and tltcn assigning the end points to the two projection point,s furthest from 
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the mean (one projection point on each side of t.he mcan alollg (), yi<'ldilll!, t.l1<' lin(' 

segment Êseg. 

In order to make this computation a litt.le more l'obust. (in addition 1,0 it.s rohust.­

ness with respect to the choice of coordinatc élxis) éln addit.iona.l st.ep Hlél)' 1)(· l.ak(\II. 

Whenever a line segment is fit to a set of points, a frad.ioll of tlw poillts is di:·;car<I(·(1. 

By sorting aH the points by the dist.ance 1.0 thcir nemcst. neighbolli' (wlticlt W(' kllOW 

already sinee they have been cIustcrcd) and discardillg those few whos!' lleighholll'S 

are most distant, then wc are c1iminat.ing thc most. likcly OUt.li(\I'S. TIIC' fl'adioll t.o 

be discarded is arbitrary but must balancc keeping t.he tl'll(' sltap(' wit.h (·lilllillat.ing 

outliers. By experimentation, discarding t.hc most outlying 5% of poinl.s has showlI 

to be more effective than keeping ail points, white Ilot losing t.he essential sha.pe of 

the cIuster. 

4.3.2 Splitting Non-Linear-Shaped Clusters 

Now that a line segment has bœn fit to the dustcr, a. mcas\II'(' of t.1U' qllalit.y of 

its fit is also needed befol'e we can decidc whel.hcl' or not, split.t.ing t11(' dllst,(·!, is 

necessary. To start, we need to visualize what. eigenvector line fitt.ing 1.('lIs liS a.bollt. 

the shape of the cluster. ëprzn and ësec are perpendicular vedo!'s, 1.ltus t.hey allow 

us to visualize the cluster as a shape which may bc defined by t,wo V<'d OI'S , SII('h as 

a rectangle or an ellipse. If we arbitrarily consider the shapc 1.0 he éLlI dlipH(', t.IJ(~1l 

we are effect.ively fitting an ellipse to thc cluster. 'l'he cigenvcct.ol's (;/11'111 alld ((~((' 

govern the orientation of the ellipse (they dcfine the oriellt.at.ioJl of t.he lIlajol' alld 

minor axes) and the eigenvalues Àprm and À.9CC define t.he shape (t.hey (lI'(' t.he lellgt.hH 

of the ellipse's major and minor axes). Note t.hat if we had c:IlOS(~ll t.h(! rectallgle ilS 

the fitted shape, À prm and Àsec would be its lellgth and widt.h l'cspedively. Silice the 

eigenvectors and eigenvalues are based on val'Îances, these ellipsC's will Iw l'del'l'C!d t,o 

as variance ellipses (figure 4.6). 

Before deciding how to use the variance ellipse 1.0 estirnat.e t.he "fit. Cjuality" , w(~ 

need to clarify sorne properties that êscg should possess in order lo fit a dllst.er weil. 
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F'igUl'C ~.6: Interpreting Clusters as Variance Ellipses: The eigenvalues and eigenvec­
tors of the data points' covariance matrix govern the shape and orientation 
of t.he ellipse that best fits into the cluster. The shape of this ellipse pro­
vides information as to how well the cluster may be modeled as a single 
straight Hne segment. 

Two l11ain factors considered here are the elongation of the variance ellipse, 

Àprin K,=--
Àsec 

(4.2) 

and t.he length Il êseg '" Elongat.ion is defined as the condition numher of the cluster's 

covariance matrix, which is the ratio of the principal to the seeondary eigenvalue. 

An c1ongat.ed ellipse has the property that wh en Àprin ~ Àsec, the maximum variance 

dominates the seeondary and so the cluster tends to he well fit by a single Hne - in this 

case wc do not wish to split the cluster and re-fit. A variance ellipse where Àprin fV Àsec 

is mol'c circulaI' in shape than elliptical, meaning the cluster is less likely to he in the 

shape of a single Hne, and should be split. There is the case, however, where a cluster 

should he split despite a large /i,: if Àsec is still significant (i.e. more than just a few 

ccnt.imct,res for our sensors). There may be sorne structure perpendicular to êseg that 

should ilOt. be missed (figme 4.7). Only if Iseg is very long eould we have an elongated 

ellipse and a significant minimum variance. Therefore it is desirahle to split long 

Hnes just in case this "masked" perpendieular structure exists. If there is no sueh 



• 

• 

CHAPTER 4. MAP CONSTRUCTION 25 

structure and the data is indeed shaped like a long line segment, th(,11 t.he lIIl\\'gillg 

of line segments after the fitting proccss (section 4.3.3) will makc t.he' correct.ioll, RO 

nothing except time is lost in doing the extra splitting. vVe now derille t.ll<' qlla/illI of 

Variance Values 
0.27 

T • • • , 
20 cm ••• 1 •• • • 

L 48.65 

• • •••••••••••••••• 1.1· • • • 

1< ~------------------------- 100cm ~I 

Figure 4.7: Splitting Despite Large li: Given the dimcnsions or the clul>t.cr and t.he 
eigenvalues as shown, one can sec that dcspitc thc large,... or 180, t.h il> 
cluster should still be split due to the presence of the 20 cm COI'I)('I'. 

a fit line as: 
lIi.~egll 

ê=-­
li, 

In order to start with a simple frame of referencc, we have defillcd ê HO t,ha.t. él. j>('I'f('ctly 

fit line has a "quality" of zero. While it may seem more int.uitive t.o IIHC high valu('s 

for high quality, we would have a value of infinity rOI' perrect.ly fit. lill('H, which iH 

too cumbersome to work with. If a straight line fits a c1usteJ' pel'fcct.ly «-ach poi/lt 

is on the line), then the variance perpendicular to the line is :",cro, i(' Àm.r = 0, th(' 

elongation K is infinite, and the line quality ê is zero. Fol' exam pie, (,(J!lsidel' UIC' 

simple case where we have n points that ail lie on thc samc lille, sllch as Pt = (i, i), 

for i = 1, ... ,no Clearly L:~=I(X - x)2 = L:~=I(!J - y)2 = L:~I(:I; - :Î:)(y - y) alld HO 

the covariance matrix S is singular and thercrol'e one of its cigcllvalues is r.ero. This 

means that K = 00 and so ê = O. In this way we have an easy 1.0 lIHe, J'ccoglli:",ahle 

value for a perfectly fit Hne. 

In order to decide whether or not a cluster should be split, wc apply tlrresholdillg 

to the value of ê. A typical threshold is 1, which means wc slroultJ split, ally lille 

whose length is greater than its elpngation. Smaller values SlJch as 0.5 would allow 

more detail in a map yet would require more Iines to do 80. The converse is tru<! for 
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thl'csholds greatCl' than unity . 

Thel'c are additional fadors in the line generation process that are not accounted 

fol' in the definit,ion of ê. For one, we rcquire a lower bound on the absolute length 

of i. A Uny line should not be split into even tinier lines if its length is already equal 

to the precision of the sensor, and so an additional threshold should be applied here. 

The actual number of data points used to fit the line is also an issue. After splitting 

a lIumbcr of t,imes there may only be a small number of points left in a given section 

of the c1ustcr, which may not be cnough to ensure a line segment consistent with the 

oW'rall cluster. 

Once it has beell decided that a split needs ta be made, the duster is divided into 

two part.s. The minor axis (the line through the cluster's mean and parallel to ësec ) is 

used as i1l<' splilting border to separate the cluster into the two sub-clusters, and each 

is then t.rcated as a duster in its own right and fit with a line segment. Figure 4.8 

illustral,es an example of fitting and splitting a single-corner-shaped cluster, a shape 

t.hat is Ilot weIl modeled by a single line. 

4.3.3 Merging of Line Segments 

,\l'ter fitting and splitting, the collection of exist.ing line segments is inspected and 

evaluat.ed fol' t.he merging stage of map construct.ion, which is the combination of 

pairs int.o new linc segments. 

Mcrging is perfol'med fol' thrce reasons: 

1. 1'0 combl1le short. Pélrallei line segments from a single cluste1' that may have 

Iwen over-split. due 1,0 its size, shape, etc. (figure 4.9a) 

2. '1'0 combine line segments from diffel'e111 views of the environment. For instance, 

comiidcl' t,wo adjacent sections of a wall seen by t.he sensor, each with its own line­

segment. mode! of its part of t.he wall. Since the two sections are part of the same 

wall, il, is better to have a single line segment representing the whole wall rather 

t.hall t,wo line segments representing two adjacent wall sections (figure 4.9a) . 

3. 1'0 upclale the line-segment models with newer measurements. Orten only a 
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Fil Llne 

, II 1 

" SpliHlng Border 
•••• " (along mlnor aXIs) 

'" ./ 
, .--

(a) Fitting 1 Lille ScgnH'lIt. 1.0 a ('01'111'1'­

Shaped Cluster. 

Fit Llnes 
/, 

J ...... ~"~, B«do. 

1 \ ,,1:"" ~-'.:..' .:.' '~-,--t.~____ '. 

(b) Using Clustcr-Split,t.ing to Fit Linc Seglllent.s 

Figure 4.8: An Example of LllC Cillst.cr Split.t.illg J>ro('('ss 

small part of an object is seen from a givclJ posit.ioll. As tlll' 1'0\'01. IIIOV('S 1.0 II. 

position From which it can view the object more cleal'ly, il. is a"I(' 1.0o"l.aill Il lOf'(' 

precise data, and this new data sholild he I1Jcrgcd wil.h I.I)('olcl claU, 1.0 Ilpdill.(· 

the model of the object. Fol' cxample, if t.he fl'OlIt. of él. slllal! filillg (,il.hillpl. is 

seen from many positions, the model repl'l'scllting il. would 1)(' il lill(' S('t!;III1'IIf. 

fOl'med from a combinatiolJ of Iines fit from t.hos(' positions. Silln~ SOli Il' of' t.lre:w 

views may be somewhat inaccurat.e (duc t.o dist,àllce, éLngl(' of iIlCidl'lJ('(', <'1,('.), 

using the data From multiple views makes alJ accurat.e dc'sCJ'ipl.iofl of 1./1<' Sill/II' 

object part more likely (due 1.0 the efrects of possibly lalW' étlllOlJllts of dal.a, IIsl'c1 

to construct the modeI). This is difrerent. froTTl (2) ill litaI. t11(~ Iillc~ s(·grrl(·lJt.s 

to be merged are not adjacent but arc moclcls of the samc' part. of tIlf~ c,bjl'd 

(figure 4.9b). 
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MERGE 

---
(a) Short lincs Icft. over from c1ustcr ovcr-splitting, or lines modclirig adjacent sections 
of a large object 

MERGE 

(b) Two line-segment models of the same section of an object, differing due to small 
IlICa'iUrClIl<'nt crrors 

Figure 4.9: Cases Requiring Merging: scenarios where merging is required 

28 

Il is flSSIIBlCd that paJ'alJel and neighbouring Hne segments represent either adjacent 

or the same sections of an object, such as a large wall. Therefore, any two line 

s('gmcnts are rncl'ged together if they are approximately parallel (their orientations 

arc within some threshold O~lerge of each other) and are neighbours in a Euclidean 

distance scnse (the distance between the two closest points on differing lines is less 

thall Rome dmcrge). 

Mcrging is performed in a manner similar to that used for line fitting: eigenvector 

lille fitting. This time we are not dealing with a set of data points, but as far as 

eigcnvcctor li1le fitting is concemed, we are. This is due to the fact that when we 

storc a line-segment mode} in computer memory, we keep the number of data points 

lIsed to constl'llct the model (not the points themselves), as weIl as its mean and 

covariance '1nall'ix. Given only these statistics of two sets of points, it is a straight 

forward matter to obtain the saille statistics of the combined set, as follows: 

Suppose wc have two line segments, and we know for i = 1,2 the values for ni 

(t.he lIumbcr of points used t.o construct the line), Xi (the mean of the x coordinates), 

!I, (the Illcan of thc y courdillates), and the covariance matrix 

[
a, bl ] 

bi C, 

Wc wish to find the statistics for a single line segment obtained by merging the two, 
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having N data points, means .X and f, and covariance 

So we have [16]: 

N = n} + n2 

- 1 x= N(ntXt+n2x2) 

- 1 
Y = N(ntih + n2ih) 

A = (nt - 1)al + (n2 - 1)a2 + nl(xl - X)2 + n2(:r2 - .\')2 
N 

B = (nt - 1)b1 + (n2 - 1)b2 + nt(xI - .t)(iÏt - }7) + 112(:;'2 - .Y)UI2 - l') 
N 

C = (nI - 1)Cl + (11.2 -1)C2 + ntUh - y)2 + 1/,2(fJ2 - f')2 
N 

2H 

( ·Ui) 

So, given two line segments, each with its OWIl c1ust.cl' st.at.ist.ics, we cali comhille t.1a('il' 

statistics and apply eigenvector line fitting 1.0 obt.ain t.he saille l'csult. as if we were 

given aIl the data points individually in the first place, ThiH Cl\Stll'CH t,ha.!. overalllille 

merging will be independent of the order of thc merging or pairs of Iilles, pll1s we 

are not obliged to store aIl the range data points for each line segment, (a verit.ahle 

benison indeed!). 

Figure 4,10 is an example iIlustrating the combined, step-by-stcp re:mlt,s of fit.t.illg, 

splitting and merging. Here multiple splits and mergcs are requit'cd t.o best. modd 

the shape of the two-corner-shaped cluster. 

To demonstrate these map construction capabilit.ies, consider al\ "éLrchit.edllral" 

map of a real environment (a portion of laborat.ory space) as shown Î n figu l'e 1,11 a, 

and the map incremental1y construcf.ed from it by cxploring the envÎl'OflllIcnt. (fig­

ure 4.11 b). The range data points were gathered by the robot. as it lTIoved alollg t.he 

path marked by the dotted line. Bach time new data was éLcquired, t.he map was 

updated. The clark lines in figure 4.11 (b) represent. the line segment. models of the 
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® 

o 

CD--@ 
Iterative Cluster Splitting and Refitting 

@ 

Merging of Applicable Lines 

Figure 4.10: The Combined Actions of the Fit-Split-Merge Strategy 

map, a.nd l.heir relationship to the actual range data is easily seen. It is important 

1.0 l'calizc here that this environment was not entirely scanned before building the 

lIla» - while this is indeed possible, incremental map construction allows the robot to 

corrcct the positional and ol'ientational errol'S that accumulate as the robot moves. 

This will bc explained fully in later chapters. 

FigUl'e 4.11 also reveals an intel'esting aspect of this method when used with sonar 

sensol's. The upper right shows what is referred to as a spU1'ious wall. This is a wall 

t.hat, does not exist in the envirollment, yet is consistently seen by the sensor from 
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Figure 4.11: An Example of Map Construction: The robot. is ill t.he CIIVÏ!·OIlIlH'IIt. 
shown in (a). In (b), as the l'Obot moves in a. simple pat.h (dott,('d 1i11C') 
around a wooden box in the centre of t.he area, it. SCéUlS alld Il J>da.t.(~s 

its map, which consist.s of the line segments shown ovcrlayillg the rallgc 
data. The range data is shown here for comparative purposcs, bill. this 
map was not constructed from this entire set as a whole; "ather, il. waH 
made incrementally from the various individual SCéUlS. 

particular locations due to the effecl.s of multiple l'eflcct.iolls of the sOllar PII!f;CS. Th('se 

may seem to be a liability to the map, but. they nced ilOt. be. As long éLS t.hat part. 

of the environment where these illusionary walls werc formcd <loes 1101. cha.nge, every 

time the robot is at or near the location where il. first saw the spurious walls, il. will 

see them again - in other words, spurious walls are consistent. III chapl.f!r J il. waH 

stated that the map need only be in terms of the robot's own pc!recpt.ual /TI(!chanislTlH, 

not necessarily conforming exactly with what human bcings would see. COllsistelltly 

seeing these ghost walls makes them valuable as cnvironment fcatllres ill t.heir OWII 

right. Of course, they can only be seen from a Iimited area in the environment, hllt. 
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they still have enough use that they do not need to be discarded (which removes the 

nccessity for deciding which walls arc real and which are ilIusionary). 

4.3.4 Sonar-Specifie Considerations 

A Ithough the aim of this thesis is to develop a localization method independent 

of a, specifie type of range sensor involved (for example, it should work for laser 

rangc-findcrs as weIl as sonar), for any given sensor such as sonar there are some 

considerations particular to it. Sonar is much more than sending out a thin ray of 

sound and wa,iting fol' its echo. WhiJe the thin line model may be applicable for 

laser range finders, the "chirp" of a sonar transducer spreads out in a roughly conie 

fashion (of course in reality it is much more complicated than this [20, 1,21,9]). Kuc 

and Barshan have discussed a physical model where the sonar beam consists of two 

dist.inct regions: a near zone and a far zone [1]. In the near zone, the sonar beam 

can he modcled as a cylinder of the same radius as the transducer. The far zone 

is modeled as a 3 dimensional eone diverging from the transducer (up to a certain 

distance from the transducer), and the half-angle () of this cone is calculated as: 

O 
. _1 0.6L\ = S1l1 -­

a 
( 4.8) 

where À is the acoustic wavelength and a is the radius of the transducer. The system 

of ]{uc and Barshan had 0 = 10°, while our system is c10ser to () = 12° (a=20mm, 

.r =49.4 kHz, c ~ 343 mis and À = '1). The near zone model is valid for ranges up to 

~~ , which for om system is appl'oximately 55 mm. Since we are almost always dealing 

wit,h distances further t.han this (the robot tends to avoid being so close to obstacles 

fol' safety reasons), we ignore the neal' zone and consider a simplified model where 

sonar diverges as a COlle of fixed half-angle () from the transducer in 2 dimensions. We 

ignore the 3rd dimension for this simple model as we are using 2 dimensional maps, 

a.lthough in some cases the 3rd dimension does play a l'Ole, as is described below. 

Siucc we arc not modeling the surface specularity of objects in the environment, 

a worst case approximation is to assume that the sensor responds to the first object 
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within the sonar cone, regardless of where it is within that COI1(". We a.sSlllllC' auy 

object seen by the sensor is at the centre of the COllC (as wc want 1.0 minimi:œ 1.11<' 

error in the orientation of the object from the transduccr). 

To see a case where 3-D effects affect the modclillg, rder 1.0 figlll'('S ,1.11 and 

4.12: when the robot is away from the dcsk (the top lcft desk in figure ,1.11(a)), 

the sonar cone intersects the desktop even though the robot. collld fit. llu<l('l'lI('at.h 

(figure 4.l2(a)), resulting in lines fit at thc position of the right. edg(' of t.he d('sldo!>. 

When closer to the desk (figure 4.12(b»), thc cone had Ilot diverg('cl ('l1011gh 1.0 sel' 

the desktop, so the distance measurcments were of thc wall behind the cI('sk. III t.ltis 

case it may be that the sonar pulses will refled off thc noor 01' t.he lllldersid(' of t.\t<' 

desktop. However, since these surfaces arc at a v('ry large incident. a.lIglC' 1,0 t.h(' ('011(', 

the sunar pulses are reflected toward the l'car wall, and silice the> half-a.lIgl<' of t.1\(' 

cone is small (10 0 to 12°) the error in the dista.nce measured is smal!. lIa.villg t/)('sc 

two different objects that are very close t.ogether (i.e. the fronl. of t.hc delik alld t.he 

wall behind it) modeled differently is not nccessarily a problclll, sillcc I.h(~ robot. will 

not see both the desktop and the wall behind the desk from the same posit.ioll, 

A particular aspect of threshold-based sonar sensing is, as figUl'cs '1.1 alld '1.1 a 
illustrate, that the true size of objects may be smaller than set.H of sona.r IlJeilSIlI'('­

ments may indicate. Given that we know the location of t.he senso!' for each range 

measurement, we can consider the worst case where the two end points of the liJl(' 

segment model were obtained when the centre of the sonar cone was direded past 

the edge of the object (as in figure 4.l3( c)). By appl'oximatillg t.he al'c of t.he secl.or 

bordered by the sonar cone as a straight line, thell wc can élHSIIITIC t.ha.t. for a. givC'lI 

end point of aline-segment model, the length has been ovcrestirnated by 

doverest = r p cos 0 

where rp is the (assumed) range returned hy the sensor. Finding do1lcrr:llt fOI' Imt,h 

1 Even planar abjects corn mon to office environmcnts come in a plethora of surface t.Ypf!H, HO 

accounting for individual specularities is very difficult, 
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(a) 

(b) 

Figure 4.12: 3 Dimensional Effects of the Sonar Cone: (a) The robot is far away from 
the desk and so it "sees" the desktop. (b) As the robot nears the desk, 
its cone does not intersect the desktop and proceeds to the wall behind 
thc desk. Note that the half angle of the sonar co ne has been enlarged 
for illustrative purposes. 

cmls of the line segment a.Ilows us to shorten it to account for this extra length 

aspect. While it is true that the object may actually be as large as or larger than 

thc measll1'cmcnts indicatc, in a worst case situation we cannot be certain of the true 

siv,cs of objects until the robot moves closer. It is also possible that for far models 

t.hc shortening could reducc t.he length to zero - in this case, instead of eliminating 

t!tcse mod<"ls altogether, wc may wish to retain a minimum length model just so the 

robot can remember that an object was seen . 
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(b) 

(c) 

Figure 4.13: Line Lengthening Effeds of the Sonar Cone: (a) Scallllillg t1w Middle of 
a Planar Object, (b) Scallning the Bdge of a PlanaI' Object., (c) SCél.lll1illg 
Past the Edge of a PlanaI' Object 
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4.4 Summary 

In this chapter the issue of construr.:ting, maintaining and updating a map from range 

data was addressed. There were two main steps in map construction: cIustering and 

linc fitting. Clustering was done to separate distinct areas of the environment so 

that fJley may be modeled by line segments, under the assumption that one cIuster 

usually represents one object in the world. The clustering algorithm was based on 

the sphere-of-influence graph, perfectly suited for linear shaped clusters. 

'1'0 each cluster was then applied the tine fitting process, which attempted to assign 

one or more line-segment models to the cIuster. This was done using a jit-split-merge 

str'atcgy, which began with fitting a single line to a cluster using an eigenvector line 

fitting algorithm. If the fit was not good, the cluster was split into two parts and a 

line segment was fit to each half cIuster. This process of fitting and splitting continued 

until the entire cIuster was modeled adequately. Finally, the merging of neighbouring 

pal'allelline segments was done to account for any over splitting of long linear clusters, 

to combine models representing parts of an object into one model representing the 

whole, and to update models with new data. The existence of spurious or illusionary 

walls when using sonar sensors was mentioned and ignoring the fact that they do not 

correspond directly to physical objects was justified. 

To illustrate the combined process, an example using real sonar data was pre­

sented, showing the results of an incrementally built map in a partially encIosed 

section of a laboratory. 

Finally, improving the modeling process for sonar range sensors was discussed. A 

simplified model of sonar and how objects can be seen as larger than they are was 

given, and t.hen the method of using it to adjust the size of the line-segment models 

was described. 

The problem of how to navigate the robot in order to best colle ct the range 

data. was not addressed in this chapter. This problem lies within the realms of path 

planning and exploration, and is beyond the scope of this thesis . 

.:::-
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Chapter 5 Position Correction 

This chapter presents the heart of the localization process, which is l'cfel'I'ed t,o hel'(.' 

as position correction. This process takes a coarse estil11a.te of the robot.'8 posit,ion in 

its environment and uses it to find its true position (or at least the posit.ioll as close 

as possible to it), thereby minimizing the error in the positioll estimat.e. Alt,hough in 

reality both position and orientation neecl to be corl'ected, at this stage only posit,iol\étl 

errors are corrected. Orientation estimates are assumed fol' this chaptel' 1.0 (;ollt.aill 

neglible error. Correcting orientation errors is presented in chapter 7, and is dOllc 

independently of position. The assumption of an erwl'-frec oJ'Îent.a.tioll est,illln,t.e IH 

made at this point in order to construct the basic building block of locati:r.at.ioll. 

Three things are assumed present for position correction: 

1. a fair} estimate of the robot's pose (position and orientation) 

2. an a priori known map of the robot's immediate envil'onmcnt. (coll8tructed via 

the methods discussed in chapt.er 4) 

3. a set of range data 

Figure 5.1 outlines the major stages in position correction. In t.he fi!'sf. st.ep, classi­

fication, each point of the l'ange dat.a is matched with a [a1T/cl tille s(~grnelJt, which 

is the model closest to it in a Euclidean sense, and is assurncd to represcllt. t.he l'cal 

world object from which the range point was obtained. The next. st.ep, cfûibmliort, 

calculates a weighted sum of all the individual vedor diffel'enccs bctweclI range point.s 

and their tal'gets, and applies this vectol' 1.0 the cul'rent. posit.ion est.imate, generatiJlg 

a new, more accurate position estimate. These two stages arc perfonned unt.i1 the 

position estimate converges to a stable value, or until sorne stopping criteria is met 

lexactly what constitutes a "fair" estimate is related to the region of convergence discUHscd in 
section 5.2.3 - for this chapter one may assume that the position error in the eHtirna.tc is Hmall 

37 , 
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(which would he the case if the true position could not be found). Finally, the re­

fined position cstirnate is verified using a unity-scale quality measure (to be discussed 

ilJ detail in charter 6), which guarantees that convergence occurred to the correct 

posif.ion. Each of these stages is discussed below. 

Classify 

- match ail range data points 
to the closest line segment 
model 

Calibrate 
- calculate error vector from 

a weighted sum of individual 
correction vectors 

- apply to present position to 
obtain new position 

l No 
Convergence? J 

Yes 

Check Value of Final 
Classification Factor 

Good 

Converged Result 
is Acceptable 

Poor 

Unacceptable Result, 
keep original position 

Figure 5.1: Stages of Position Correction 
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5.1 Classification 

The first stage of position correction is callcd classification. ln t.his st.ag(" ('1\('h mnge' 

data point is classified, meaning ('ach is paircd \Vith a tOl:lJcl Iillc' segllH'nt 1II0d('1. 

This target model, constructcd from prior dat.a, is élssl\llled 1.0 \'('I)l'('S('III, i.I,(' ohj('c\. 

in the environmellt (whether physical 01' illusiollmy) l'rolll which t.h(' rallg(' point. WilS 

obtained. Since we are given an cst.imat.e of the robot.'::; posit.ioll, 01)(' Céln a:iSIIIIlC' fl'I' 

the most part that if the error in this cstimatc is small enotlgh, t.h(,11 t.h(' lillc' sc'glllc'llI, 

closest (in a Euclidean distance sense) to a given 1'<1Ilge data poillt. will cOI'I'('sl)(>llCl 

to the same real world object. The effects of when titis is ilOt. t.h(' case (11'(' discltsH('c! 

in section 5.2.3. 

In classification, we are assuming t.hat fol' small ert'ol's ill illit.ial positioll (·St.illlél!.(', 

the range data points wil1 be nearest t.o the same li ne segmcllt. moc!cls as wOllld 1)(' t.he 

case if the estimate was perfect.. ln section 5.2.3, t.he limit.at.ions of t.hiH élHHttlltpt.ioll 

are exarnined, and upper bounds discussed. 

Extending this target pairing idea a bit fUl't.her, wc cali proje'd ('ach l'iI,lIge' dat.a. 

point Prd 1.0 a position pproJ onto the (imagined) illfinitc lill<' pasillg t.ltrottglt PI'/S 

target line segment. This in cffect takes a range dat.a. point. ]JI'II and filld:i il. posit.ioll 

PproJ which is the projection of Prrl onto t.he t.argct liue. 1'711'0) Célll 1)(' cOIIHidc'l'('d t.o 1)(, 

the location of sorne obstacle that we saw at. Prcl if t.hel'c was 110 e~rJ'OI' ill Ut(' !>o:iit.ioll 

estimate of the robot.. Therefore, we now have ]Jrd, whel'e t.he robot. saw SOIlt(' ohst.acl(·, 

and pproJ' where the model of the obstacle is locat.cd. Now, if t.he CITOI' of t.he Illodd is 

small (i.e. t.he object. is physically at the same locat.ioll as the lI\ode! i IHlicat.C's) t.IJeIl 

PproJ is the true position of the obstacle seen at. ]J7'd (figure 5.2). It, follows t.ltml t.lmt. 

the vector Pproj - Prd shows how faf and in what direction the posit.ion cst.illlat.(· haH 

to be corrected in order for Prd and PproJ t.o coincide. This vedol' will Iw IJellcd'ort.ll 

referred to as a correction vector, because it. provides a directioll alld a dista.nce that. 

would correct the error in the position of prd. Section 5.2 disclJSHeS Itow t.h(~ t.ot.al sd. 

of correction vectors (one vector [rom each range data point.) cont.rihut.es t.o t.he filial 

correction of the robot's position estimate . 
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Line 1 Segment 
Model 1 ~ 

~'f ) P.d 
Correction 
Vector 

ROBOT 

(~:: 8~ ! Position Estlmate 

True Position 
(assumed) 

40 

FigllJ'c 5.2: Projecting Onto Target Line Segments: by projecting a range data point 
Prtl onto Ppro) on its target line segment model, we are assuming that the 
true robot position is as far away from the position estimate as Prtl is 
from PproJ' This assllmed position may not in reality be so, but for the 
singlc range data point in question it is the position that reduces the error 
betweell the range data point and the line segment to zero. 

ft is il1lportant t.o note that while the targets are considered as line segments wh en 

deciding which point is paired with which target, the targets are treated as infini te 

li Iles whcll the projections are performed. 

5.2 Calibration 

This section examines the stage called calibmtion, which uses the correction vectors 

from thc Classification stage to calculate an error vector with which the position 

cst.imate of t.he robot may be corrected. 

5.2.1 Theory 

Fig\ll'C' 5.a shows an ideal environment of three walls in which an ideal sensor is 

uscd. Bcrc the cstill1ated position of the robot is different from its true position as 

showlI; therefore the range data points differ from their true position by the same 

amOlll1t. The arrows show t.he results of t.he classification stage: each is a correction 

v('do)' frolll a point 1.0 its t.arget indicating the direction and distance the point would 

have' 1,0 move 1,0 put it on t.he target. Consider the leftmost model: alone, it cannot 

cOl'l'ect. t.he robot 's position completely, since aIl the correction vectors are parallel 

1.0 the x-axis and the robot 's position error requires calibration in both axes. The 
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Correction Vectors 

Range 
Datap~ 

"1.lIII11IlIIIUIlIUIIIII 

Robot's ---C';'') 
Estimated ....... Q 
Position \ 

Robot's 
Actual 
Position 

·11 

1 

Figure 5.3: The Ideal Case of Position COl'l'cction: with idcal 1l1Oc!"ls alld i111 id('al 
sensor, the error in the Robot.\; Estimate Posit.ioll is il wC'ighl.(·cI HIIIJI (Ir 
Correction Vectors 

correction vectors for the top line segment arc P,lI alld 1,0 t.lw y-axis, and HO Ollly 

corrects for errors in the y-axis. 1t. is thcr('fore rcquircd that. ail COIT(·ct.iOIl v"c!.orH I)(~ 

combined in sorne way to account for the fac!. that. a sillgl(l V(lCt.OI' carl oldy COIT(·eI. ill 

one dimension. 

This one-dimensional limit on each line segment cOllles l'rom t.he gCOIll<'t,I'ÏI' COII­

straint (in fact, the lack of constraint) that dcrivcs from matcllÎlIg 1.0 éI (1)(' dillwllsiollHl 

(a line) model. We refer 1.0 this problern in t.his cont.ext. as t.he IOllg /wllwfl.l} f'lJf'd, 

precisely analogous to the aperture problcrn ill motioll estimat.ioll [:W]. Ohs(lrvat.ioll of 

position (or motion) of a section of a straight. line pl'ovidcs cOllst.raiJlt. illfoI'lU;It.ioll ollly 

in the direction of the normal t.o the line. In pract.icc, a robot in t.he IlIiddlC' of a IOllg 

hallway can only correct Hs position in the directioll pcrpclldicu);lI' t.o t./J(' hall way. 

Movement parallel to the axis of the hallway gives no displaeelllellt. illfol'lnatioll sille<' 

the use of line segment models infers that ail parts of the walls look identical, and 

therefore cannot be distinguished in order 1,0 calculate a displacemclIL TbiH pl'Ol)lelll 

may be avoided (in principle) if two or morc non-parallcl lincs are visible fWIII Ure 
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positioTl of the robot. fn the strictest sense this pure one dimensional constraint is 

valid fol' infinite lilles only. Using finite line segments in the long hallway example, 

éI robot muId theoretically correct its position completely if it could see the end of 

t/w hall. lIowever, using the end points of line segments as features is dangerous if 

t,J)(' map Ilsed fol' correction does not represent the whole envÎronment. For example, 

if t.he robot is following a long wall and has only mapped a fraction of it, we do not 

Wélllt the robot to be fooled into thinking it can see the end of the wall just because 

élll elld poillt of a line segment model is nearby. 

5.2.2 The Use of Weighted Sums 

We now wish 1,0 combine the effects of the individual correction vectors. A robust 

estirnator can he constructed by weighting each correction vector differently and then 

combining thern into a weighted sum to find the error vector. This is done instead 

of a simple average of x and y vector components because an average would be too 

sensitive to out.liers: sinee ail range data points would be given equal weight, any 

distant, \loisy or umeliable data would undesirably affect the resulting vector. 

Bcforc discussing the nature of the weighting functions, it is useful to see how 

they should be used. If each individual correction vector VI is considel'ed to be a 

simple vector displaccment VI 

\i = (~X, ~}") using: 

(~XI' ~YI)' we can find the overall displacement 

(5.1 ) 

(5.2) 

wh('\'(' w, is a wcight.ing fuuction for V, (defined below). 

III general, given a fair position cstimate, range data points close to their target 

Jill<' segments are more Iikely to be correct than their further-distance counterparts. 

\oVe Céln expétlld on the assumption made during the classification stage: if we assume 

thai. a faidy good posit.ion estimate is available (where range points are close to their 

targcts Illodcls), points far away from any line segment are most likely either noise 
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(erroneous echoes, simple noise, etc.) or are the rcsult. of unforesc('n ob.krt.s. 'l'Il<' 

latter have no place in calibration since theyare not. represcnt,<,d by CUIT('Ilt. 1l1odels. 

Therefore, it is preferable 1.0 weight. close points highel' t.o l'<,duce tll<' lik<'ly ('ITotl<'OllS 

contributions of these distant points. On the othel' hand, if (/[[ point.s élre fat' f\'Ol\I 

the line segment models, il. is likcly that the posit.ion estimate is pOOl', êllld so wc' 

would like all the data points to have a roughly equa.l votil1g st.rcngth. This dist,an('(' 

dependency can be applied t.o the weighting functiolls in equat.iolls 5.1 and !i.~, aH 

follows: 

(G.:l) 

There are hence two main considerations for the dcsign of an appropriat.(· wt'ip,ht.i IIg 

function: 

• The function should have unit y value for short distances and sltould approélclt 

but not reach zero for long distances in order 1.0 e1iminat.e out.liers . 

• The function should be less sensitive 1.0 differences in dist.ance al. short. distallces 

(Le. a small first derivative). This allows dose data points in a dist.ance t'angc' 

around the line segments to be weight.ed relativcly equally. 

Table 5.1 shows several functions, only one of which satisfi('s both cOlIst.raillts (t.hc~ 

others are present as a comparison). While the ste}> a.nd Iincat· fUIlct.iolls lIicdy 

allow for constant weighting for small d, for large d t.he weight.illg il' ~ero. AllotJwJ' 

undesirôble effect is that data points may jump fl'Om nOIl-~ero weight.ing t.o ~ero 

weighting with just a small change in distance (duc to tll<' discontilluit.y ill the first 

derivative), making calibration more sensitive 1.0 the sud den inclusiolt or outlicr·s. ThiH 

makes the choice of threshold a problem as weIl. ConvcJ'scly, ail inverse J'uIl ct,ioll allowH 

an asymptotic approach to zero for large d, but the weights are far 1,00 large alld 11011-

uniform as d ~ O. The exponential funct.ion cloes not suffer J'rom extrelTlenrly large 

weights near d = 0, but it is not constant for srnall J. Only the sigmoicl functiolt ()fr(~l'H 

a low-d range of relatively constant weighting wit.h the asymptotic approach LO zero fol' 

high-d. One may think of the sigmoid as a smoothed ste}> function, in ord(!r to CI'CaLe 

a so-called "soft non-linearity". This type of weighting is a scalar multiplication, 
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and so il, does fit, weIl with the type of weighting scheme in equations 5.1 and 5.2 . 

'l'he parameter c in the expression for the sigrnoid indieates at what distance d the 

soft step oceurs. Control of this parameter allows selection of coarse or fine position 

correct.ion, Binee changing c changes what range data points are eonsidered outliers. 

1/ Funetion Type 1 Sam pIe Expression 1 Features 1 Disadvantages /1 

Step 
constant weight for zero weight for 

step(-d-c) 
small d large d, too abrupt 

Lineal' 
constant weight for zero weight for 

\ 
small d large d 

1- ~(d- dltn ) 
r~n 

Sigmoid 
nearly constant 

\-
dm weight for 8ma)) d, 

1 - dmtcm small but non-zero 
weight for large d, 
smooth transition 

Inverse 
small but non-zero too large and non-

L_ I weight for large d uniform weight for 

d small d 

Exponential 
small but non-zero non-uniform weight 

l __ e-d weight for large d for small d 

Table 5.1: FUl1ction Type considerations fol' Distance Weighting 

5.2.3 Error and Convergence Issues 

Given ideal classification, the weighted surns of correction vectors will provide a vector 

that can be added to the current position estirnate to find the actual position of 
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the robot. However, for substantia.1 el'l'ors in thc initial posit.ioll C'stinmt.c, ('ITOn; ill 

classification are usually unavoidable. 

These errors, which appear in the individual correct.ioll vcdol'S as ('l'\'OI'S in thc' 

distance between range data points and the real world object, l'rom \'Ihich t.hey w('rt' 

measured, hinder the position offset functions from dclivcring the t.1'I1<' robot. posit.ioll 

in a single step. There are three main sources of CITor rcsponsihle: 

A. Sensor Error 

With any range sensing device, there arc unavoidablc crl'ol's ill it.s llWélSIlI'C'Ill('lIl.s, 

With a range sensor such as a laser rangc finder, this errol' ls an acclll'acy Iilllit.atioll ill 

the range along its beam, which is itself variable fOI' diffcl'CI.t. surface l'cncct.ivit.ies. FOI' 

sonar, the situation is even more cornplicated. Sonar sensor l110dclillg is ail a.d. 1I11t.O 

itself, and is mu ch more complicated than tracing straight l'ays. IlCéll world St.I'lICt,\II'C'S 

such as corners, edges and cylinders give quitc differcnl. rneaslll'cmcnt.s I.ha.n t.hdl' 

shapes would indicate. Much work has been done in t.ltis arca [!J, 21, 1, 2:1, 25], hlll. 

accurate rnodeling both presupposes knowledge of l'eal world l'cflcd.a.nc(! pl'opel'l.ies 

and is cornputationally costly. 

B. Modeling Error 

Since the rnodels of the objects in the environrncnt may bc based on ClTonCO\lS IIWiL­

surements, there will almost certainly be sorne crror in thc 1inc seglllcllt trIodels of 

the environment thernselves. This error would be minimal in a.n Cllvil'OIlIllCIlt. COHl-

posed of objects weIl modeled by straight, fiat line segmcnt.s - sl.J'uctlll'es sllch a.s 

walls and doors. However, in most indooJ' office-type cnvil'Onments ail object.s are 1101. 

flat and wall-like (such as chairs, desks, people, garbagc bins, et.c,) and can only 1)(' 

approximated by line segment models. 

C. Classification Errol' 

In section 5.1 we assumed that the 1ine segment model closcst to a given range dal,a 

point represents the object in the real world From which t.hat data point. was measurc!d. 
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Obviously this will not be the case except for very small position estimation errors or 

very simple environments. Even in the ideal case of figure 5.3 a few misclasszfications 

are visible (top right corner). Misclassifications are range data points that associate 

with the wrong model. These may be few in number, but they still have an effect 

on the overall weighted sumo This effect is usually slight for good initial position 

estimates. 

So far it has been illustrated that correspondence errors prevent accurate position 

corrcction with a single weighted sumo However, there is nothing to stop us repeating 

this pl'Ocess, with the resuIts of the first position correction used as the new position 

estimate fol' the second iteration. The process can be performed repeatedly until the 

position converges, assuming it does converge. There is no guarantee of convergence, 

but as will be discussed in the next chapter, it is possible to verify that correct 

convergence has taken place. 

Rccall that we use a sigmoid function to give higher weights t.) range data points 

close to their target Hne segment. The iteration process can be further refined to 

exploit the non-uniform sigmoid weighting so that in early itel'ations, the drop to 

nearly zero in the sigmoid function w(d) (table 5.1) takes place only at very large d, 

which in effect weights all but the most distant range data points equally. This is 

done by using a large value of c in the equation of the sigmoid in table 5.1. Since 

this is effectively ignoring distance weighting, we obtain a coarse position estimate 

correction based on both good data and outliers together. Therefore, initial iterations 

lise a large value of c and apply distance weighting only to extremely distant data 

points, if any. Classification and calibration are iteratively applied until the estimate 

convcrges, or until sorne maximum number of iterations has been reached (if this 

happens, the estimate may not be able to converge). 

Sincc the sigmoid w(d) :::::: 1 except only for very large d, any range data point 

ontliers (those that do not rightfully correspond to a line segment model) are also 

being included. So, aiter the first convergence, the soft step decrease of the sigmoid is 
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brought closer to d = 0, i.e. the sigmoid parameter c is decreased. Posit.ion COlTCct.iOIl 

is then re-applied until convergence \Vith thi5 IlCW wcighting functioll. Asstll1ling wC' 

movecloser to the actual position each convergence, this change in w(d) i5 a ."h,.;"killg 

neighbourhood around each line segmcnt model, wit.h only th05C points insidc cé\ch 

neighbourhood weighted highly. In the final few iterations t.he vil't.uallleighbomhoods 

have been decreased enough to ensure that only the vcry closest (and pr('Slllllably bcst.) 

data points will be considered. Iteration until convergcnce is pCl'fol'lIlcd l'epCéüt,(lIy 

until further changes in the weighting funct.ion do not affect. the rcslllt.allt. posit.ioll, 

allowing progression from a coarse position corrcction 1.0 a prccise one W!tNC ollly t,hc 

best (most confident) data is used. 

There are sorne cases wh en convergence wi\1 not succccd. If e1l01tflh mnge dat.a. 

points are correctly classified initially, the corrected posit.ion cstimat.e will be IIcm'('1' 

to the actual position than the first (the estimatc will not neces5al'i1y 1lI0VC dil'cdly 

toward the actual position, but the distance between thcm will cCI't.ainly decrca.sc) 

and successive iterations will move the position estimate as c10sc as possible t.o t.hc 

actual robot position (ie convergence will occur). If there arc too rna.ny init.ial lI1iH­

classifications, convergence will fail. 

Those data points correctly classified aIl tend 1.0 work togcthel', mcanillg t.hei,· 

respective correction vectors are components of thc true vector diffcl'cIICC bct.wœll 

the actual and estimated positions. Incorrectly c1assified points givc ri8c 1.0 col'l'ect.ion 

vectors that in general do not tend to work togethel', and the wcighted Hum of thcHe 

vectors tends to have a smaller effect than the others. 

One way to perceive this situation is 1.0 consider an cl'r01' vcGtor fi étHsocial.ed wil,II 

a correction vector ii (refer to figure 5.4, a simple case of t.he robot. in a COrlier, wit.h 

outside edges nearby). Given that ii projects a range data point. 1.0 a posit.ioll on il,li 

target Hne, we define ë as the vector difference between t.hat projection point alld t.he 

position of the true point. The truc point may be considcred as the posit.ion of t.he 

range data point if there was no error in the position estimate. Clcarly for any Ruch 

range point ii+e = Ë, where Ë is the error vector representing the crror in the robol,'s 

position estimate, neglecting modeling and sensor error. We do not howevcr know 
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ë, so using 'Ïj only provides a component of Ë orthogonal to the point's target line 

segment. For incorrect classifications, ë may be very large to make up for the pOOl' V, 

and so igno/'ing ë leaves us with a potentially large error for that range point. However, 

the l'csulting ë of incorrect classifications is more a function of the distribution of line 

segmellts in the map than the true position of the robot. If we consider a map as 

a set of randomly oriented line segments, the e vectors from incorrect classifications 

will also be randomly distributed, and together will not contribute as much as the 

co/'/'cctly c1assificd points whose correction vectors are components of Ë. 

It is clear that ë is parallel to the target line segment for a perfect object (where 

rnany 01' ail range data points will he on or very close to their representativC' Hne 

segmellt model) and a correct classification. This is to be expected due to the long­

hallway effect previously mentioned. 

So, to summarize, if a range data point is correctly classified, then its projection 

is a point on the infinite line through the target line segment model closest to it 

(section 5.1). This may not be the point in the model representing the same real 

world position from which the range data point originated, but it differs only by a 

vector parallel to the mode!. The key point here is that as long as the range data point 

is classificd correctly, i.e. it is matched with any point on its target line segment, its 

cOl'I'ection vcctor will be a component of the vector Ë which represents the error in 

the positioll estimate of the robot. If the point is misclassified, the error vector can be 

Illuclt larger than the error in the position estimate, as illustriated in figure 5.4. Yet, 

t.ltis type of error is not as critical as it may at first seem. As mentioned previously 

(page '17) the correction vectors of correctly classified range data points tend to work 

togcthcr, while those of incorrectly classified points do not since they are randomly 

distributcd. 

General predict.ions of how many correct classifications are required for successful 

cOIlV<'rgence are very difficult - matters of convergence are very dependent on the 

arrangement of line segment models in the map. Consider Figure 5.5: 6 out of 11 of 

the range data points are initially misclassified. Here in this particular arrangement 

of line segments, four of these misclassified points provide a correct component of 
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v 

, 
1 , 

Figure 5.4: Misclassification of Range Data Points: shown are the t.I'lH' and incOI'I'ed. 
estimate of the robot, the true positions of mnge dat.é\. poillt,s (clal'k cil'­
des), measured range points duc to position estimate CI'I'OI' (light. circlc's), 
correction vectors (il), and the projection error vectors (é). Not.e t.hat. (! is 
not shown for correctly classified l'ange data points, sinœ tlwy are pal'alld 
to their target lille segments 

the position error vector, while the remaining two do noL The l'our "accidellt.ally" 

provide useful information in this case due to the sparscllcss of tilt' map, whcrC! t.herC! 

are few line segment models to which range data points rnay b()collJe 1I1isclassific!d. 

The main issue here is that for the first iteration, tlte algorit.ltrn depends 011 a, 

sufficient number of correctly classified points to bias the position cOl'J'edioll ill t.he 

appropriate direction towards the truc position, at which point. the itcl'at.iolls t.hat. 

follow can use that better estimate for further rennements. Again, titis "rnillillllllJl 

correctly classified" threshold is dependent 011 the al'l'angernclIt of line segment.s ill 

the map. 

This coarse-to-fine approach of the position estimate to the tJ'U<! position cart be 

seen in Figure 5.6 (taken From the map of Figure 4.11 on pag{~ :}]), which shows olle 
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FigUl'e 5.5: Convergence in Spite of Misclassifications: although 6 of 11 range data 
points are initially misclassified, 4 of these still provide useful vector com­
ponents sinee the misclassified line segment model neighbours the correct 
model and is on the same si de of the points. The two misclassified points 
that provide completely el'l'oneous information do not affect the outcome 
sinee they are in the minority of range data points. 

sueh localization that does converge. Initially it only moves towal'd the true position 

markcd by an * in the x-direction, but the later and more precise iterations show the 

cstimatc closing in more directly . 

If titis t.ype of convergence plot is expanded to a large region around the true loca-
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Figure 5.6: The Path of Convergence of the Position Estimatc: 1'1'0111 the ini t.inl posi­
tion marked "0", to the true position markcd "*". Notc t.hal. t.he (IHI,ill\éÜ(1 
does not move dil'ectly toward the truc position initially, bllt. do('s lIlove 
close enough that the more precise itcrations latel' can do HO. 

tion, we can find that location 's region of conVC1:qencc in the gi ven map. In figure r,. 7, 

initial position estimates are spread out. ail arollnd t.he act.ual J'Obot's posit.ioll (ill 

this case, the home position (x,y)=(300,300)), and their pat.hs 01' con verge'lI ce ('ail he! 

observed, as weIl as any paths that do not converge 1.0 home. 'l'he' illit.ial 1)()sit.ioIlH 

that do not converge are "fooled" by the local attractol'S in t)lC' ellvirolllllcnt. These 

are locations at which the local environ ment rcsembles the local cmvirOlllllcllt. al. t.1J(! 

home position, based on the range data scanl1cd there. 

It is easier to see the actllal region of convergence in Figure .1.8. The eJltire t.op 

left corner of the region (position (x = 0, y = 0)) converges cOl'rcctly fol' this Hlal' and 

robot position because there are no rnodels in this region 1.0 confuse t,he correction. 

Usually when there are dense collections of line segment rnodcls are the chanees of 

significant misclassifications an issue. 

, J 
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o I()O 200 300 400 SOO 600 
X coordmate (cm) 

Figure 5.7: Paths of Convergence of Region Surrounding Robot: as in Figure 5.6, for 
many initial position estimates surrounding the robot. 
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Figure 5.8: Hegion of Convergence around the True Robot Position at (x = 300,y = 
300): an 0 represents initial estimate that correctly converges to the true 
robot position, while a . represents an incorrect correction. 
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Of course, the convergence plots were made givcn t ha.t. wc kncw t.he robot.'s t,1'\1(' 

position, and were simply checking the correction algorithm against. it,. It. is possible 

to construct these same plots wit.hout knowing a priol'Ï t.he t.ruc posit.ion of t.he robot., 

and this will he covered in Chapter 6. It is wOI't.hwhile t.o mcnt.ion hel'(, t.ha.t. nt. t.he 

end of correction, the final solution, convergcd 01' ilOt., is chcckcd as {,o whet.hcr' t.he' 

• result is feasihle as the actual position. If if, is judged infcasihle, t,hen wc know t.hat, 

correction either did not converge or converged 1.0 an incorrect. position, ln ot.I\('1' 

words, if the algorithm did not work, we will know il, . 
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5.3 Summary 

This chapter introduccd the hcal't of the localization process, known as position cor­

rection. GivclI an cstimate of the robot's position, a map constructed as pel' Chap­

tc!' ~, and some new range data, position correction can find the robot's actual posi­

t.ioll. II, is assumed fOI' this procedure that the robot's orientation is known correctly. 

This is accornplished in two major steps: classification and calibration. In clas­

sification, each l'ange data point is pail'ed with its dosest neighboring line segment 

III ode! , ca.lled iLs trl1'gel, which is assumed to belong to the object in the world from 

which the point was derived. A correction vector is calculated fol' each point: each is 

the vcctOl' difference between the range data point and its projection onto the infinite 

lil)c thl'Ough the target !ine segment. Once these correction vectors have been cal­

cu latcd , t.hey are combined in a weighted sum that takes into account the distances 

betwccn the l'ange points and their targets (under the assumption that doser points 

a!'c likdy 1,0 hc more accurate), doing this using a sigmoid function, which is of the 

fOI'I1\: 
dm 

1---­
dm +cm 

S{·ction 5.2.~1 discussed sources of errol' that affect correction, the greatest of these 

beillg classification errol'. Due to these inherent errors, correction must be repeatedly 

pcrfol'lllcd in ol'der to converge 1.0 a solution. After convergence, the parameters of 

the sigmoid dist.ance weighting function are changed and the corrections are iterated 

again. 'l'his l'cpcats ulltil changing the sigmoid function no longer changes the conver­

gent. l'CS li It. This gives the process a coarse-to-fine precision improvement behaviour, 

whel'e initia.Jly aU range points contribute to get a coarse position estimate, and later 

only pCl'ceived good data are used for fine tuning. 

Sometimes Cl'I'ors prove too great and convergence to the correct solution does not 

occur. Knowing t.hc true robot. position, tests were performed to examine how much 

C1'1'01' there could be in t.he init.ial position estimate before incorrect solutions began 

1.0 OCClll'. This was tcsted in a region around the true position to find a region of 

r011 VCl'gfll cc. 



• 

• 

CHAPTER 5. POSITION CORRECTION 

Finally, a final check was descri bed t ha t if! pcrfo\'l11<'d a ft.e\" aH i t ('l'il!. ions hm'(' 1)('('11 

completed 1,0 assure consistency of the solution, This check is discusst'd in chapt,(·1' (l. 
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6.1 The Need for a Measure of Confidence 

As discllssed in chapter 5, it is possible that the outcome of correction is not the truc 

posit.ion of the robot.: cit.her the it.erations may not converge or they may converge 

hui. 1,0 an incol'J'cct location. In cases such as these, it is imperative that it be known 

t.hat correction did not. find t.hc correct robot. position; otherwise the results could be 

disast,rolls, since an incorrect solution could be even worse than the initial estimate! 

Once corrcct.ioll is completed, wc need sorne kind of quality measure so that we can 

qllant.ify our confidence in the solution. In addition to this, if we for sorne reason 

have mult.iple solutions (as we will have in chapter 7), we need to compare them and 

find t.he bcst. one. Therefore, some criteria for a quality measure are a.s follows: 

1. Incorrect solut.ions ShOllld have a low quality measure, ideally zero. 

2. Correct solutions shollld have a high quality measure. 

6.2 Types of Measures 

A qualit.y rneasl1l'c is a function of robot pose (pose = position + orientation) cal­

culat.ed by perfonnillg some comparison between the range data points and the line 

segment. modcls. 

'l'hcrc are t.wo basic measUI'cs used here: the mean-squared error measure, and 

t.he chlssificalioTl factol'. Each is discussed below: 

6.2.1 The Mean-Squared Error Measure 

This quality measurc is simply a measure of mean-squared error and has the form: 

(6.1) 

56 
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whel'e n is the total number of range data points, Pt is thc i tlt of thcRC, fi is PI 'R t.argct. 

line segment model, li is the infinite Hne through fi, and so dist(p" f.) is t.ht' dist.anœ 

from a point Pi to the closest point on the infinite line through t.l\{' linl' segment. (1' 

Distance is taken from the infinite line rather than the line segllH'nt t.o Hllow fol' t.lt(, 

case where the robot may be following a wall: ill t.ltis case, rallge ll\eélSIIl·('IIH'lIt.S aloll.L!. 

part of the wall not yet modeled would give rise t.o a larger l~lIIsr, in spit.<, of Ut(' fad 

they belong to the same wall. 

This measure is good if its global minimum OCCUl'S at. t.he COI'I'('('t. lo('at.ioll of t.ht' 

robot. At the correct location, it is assumed that ail 01' al. \('ast t.h" vast. lIlajorit.y of 

l'ange data points are very close to their classificd lille segment. models, and wOllld 

then yield a low value fol' a correct. solution. While t.his Illé\.y he (·olll.l'éu·y t.o t.lre 

criteria outlined in the previous section, invert.illg it is a simple' wa.y 1.0 force il. t.o 

conform (since there is al ways at least. some eITor with some dat.a. point.s wit.h renl 

data, the chance of inverting zero is neglible). 

Figure 6.1 shows Emse as a function of posit.ion, where t.he correct. J'Ohot. posit.iolJ 

is at (x, y)=(300,300). It is rather difficult, to sec exactly how <Iiffcrcnt. t.he values 

are at the correct position, so figure 6.2 shows the same dat.a. but. wit.h t.1J(' Il]('1111-

squared-error measure inverted. There is a pl'oblem with t.his IlIcasure howevel': il. is 

very suceptible to outliers, which will certainly affect the l'esult,s cvell if t.he posit.ioll 

estimate is very good. Since it is not known Irow mally out.liet's are ill the J'all/?,e' 

data set, there is no theoretical upper bound on Em.9c, makiug decisiollS or il Hillgle· 

goodjbad convergence very difficult based on this mcastlJ'c. Ifowc'ver, il. is IIsdnl wlHm 

used to compare between two solutions. 

6.2.2 The Classification Factor 

The classification factor (or classfaclor) ECJ is a quantity bascd 011 the fl'adion of a.11 

range data points that are closely classified. Considcl' a IIcighbol'hood of fixed Hi~(! :1; 

cm around allline segment models. If ail the l'ange data points wit.hin a IIcighhorhood 

of a model are counted and then the SUll is dividcd hy t.he total numher of point.s, 

then we obtain the fraction of the total number of points within x of sorne mode!. 

, 

< 

.e' ..... :ii 
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Mean Squared Error vs Position 

10000 

, ' ' 

y coordmalc (cm) 400
200 X coordinatc (cm) 

Figure 6.1: The Mean-Squared Errol' Measure vs Position: the mean-squared error in­
creases dramatically as the position leaves the robot's position at (300,300) 

Given that close data points are more likely to be correctly classified, this measure 

tells liS how good our position estimate is. Obviously, incorrect classifications may 

crcep into this and give false readings. However, the only way to get a measure 

approaching unit y is to have a position estimate very close to the actual one, or to 

be in part of the environment that is very similar to the one in which the robot 

is located. Ignoring the latter, this measure should then give a value close to unit y 

whcn the position estimate is very close to the correct position, and near zero when 

the etTOI' of the estimate is large. 

Using ct fixed neighborhood size suffers from the same prohlem as distance weight­

ing did in section 5.2.2: if a l'ange data point is just a minute distance outside the 

ncighborhood, it will not he counted as heing inside that neighborhood. Another 

range point vcry close to the first but inside the neighborhood will be counted, and 

so this abrupt neighborhood boundary increases the sensitivity of the neighborhood 



• 

• 

CHAPTER 6. QUALITY /CONFIDENCE l'1EASUnES 

~ 08 
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~ 
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Mean Squnrcd Error vs Po~ition 
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400 

Figure 6.2: The Inverse of the mean-squared-error measure Measure vs Posit.ion: wit.h 
the robot again at (300,300), wc can sec t.he global maxilJlullI éll. t.his poillt.. 

to range points just outside its boundary. In ordcl' to smooth the boulldary of the 

neighborhood, a sigmoid function is applied as a distance thrcshold, formillg "sof't.ly" 

non-lineal' neighborhoods. Thercfore, the classification facto]' is UHIS dcfilled: 

1 n dm 
Ecf = -E(1- l ) E [O,IJ 

n 1=1 lm + Cm 
(H.2) 

where: d - dist(p" id 'l'II(! cho-

c a user defined pararneter indicating ncighborhood si;"e 

m - exponent governing steepness of sigrnoid, cornmollly m = 8 

sen value of c in equation 6.2 depends on the noise estimat.e of t.he scnsor and the 

error in the models. If a pose estirnate is correct, thcn ail corrcctly classified l'ange 

data points should be very close 1.0 their targct line segments (right on t.op of t.he linc 

segments if not for the modeling and sensor error). Ignoring the sigrnoid for now, 
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wc have a simple step function for the neighborhoods (imagine that the sigmoid just 

smooths out the step). Experiments with objects such as walls, wooden desks and 

burlap office dividers havc shown that a noise estimate between 5 and 10 cm works 

weB, which is a rather liberal estimate of the uncertainty in the range sensor. The 

neighbOl'hood should not be too small in case a model do es not exactly fit the shape 

of an object. On the other hand, too large a size defeats the purpose of the measure. 

UnIikc Em.,e, the ncighbourhood of EcJ works with the li ne segment fi rather 

than the infinite line il through il,. This causes Ecf to favour the limited known walls 

instead of the potential extensions of these walls, and so the two measures complement 

cach otlle!'. 

Figure 6.3 illustrates ECJ in the same environment as the previous figures. At the 

Clas~ifica, ion Factor vs Position 

400 

y coordinatc (cm) 400 200 
X coordinate (cm) 

Figurc 6.3: The Classification Factor: for this robot position in this environment, Ecf 
reaches a maximum of 0.947. 

adual robot position (again, (x,y)=(300,300)), we see the global maximumapproach­

ing VCl'Y c10sely to unit y, while the function is much less everywhere eise. The very 



• 

• 

CHAPTER 6. QUALITY /CONFIDENCE MEASURES 61 

useful property of Eef is that E ef E [0,1], and this allows for a simple threshold I,('sl, 

to be made for the likelihood of a convergence being good or bad. Thl'oll~h exp<'I'­

imentation in real environments, a good acceptance threshold was discovered to be 

about 0.6 for typical indoor environments consisting of walls, desks, <1001'8, boxes and 

suchlike. This value rnakes sense since wc should exped more thélll half of a.1I point.s 

should be within sorne small neighborhood of t.hcir targcts, evcn if t.\wrt' il' SOIlH' l'mali 

error in the pose estirnate. 

One problem with Eef is that it is not as lIseflll as Emsf' whcn d('aIing wit.h vcry 

fine differences in position. Since it in essence just counts the Humber of points wit.hin 

a neighborhood, it cannot give precise detail of whcrc the points arc wil.hin it.. Fol' 

instance, if there are two positions on t.he map (most likcly very close t.oget.hel·) s\lch 

that all the range data point.s are within Ee!'s neighborhood, t.hem the nllmbel' of 

points count.ed will be equal, and thus Ecf canllot. tell which 011<' is c10ser 1.0 !.II<' 

correct position. For t.his reason, Eej alone is not used as a compamt.ivc IJWiUHlJ'('. 

Emse does not suffer from this, as it deals with adual dist.anccs from the lille se~lJlellt. 

models. 

6.2.3 The Comparative Quality Measure 

While it is quite possible to use the inverse of t.he rnean-squal'ed-cl'l'Or ITICélsure (lS a. 

comparative tool to choose between two solutions, the comparaûlJc qll.ality rrW{l1f11:f'(~ 

Eeqm adds the effects of both Emse and Ecf, as it is a combinat.iol1 of hoth. II, is 

defined as follows: 
(Eef )a 

Eeqm = (E
mse 

)11 E [0,00) 

The exponents a and b respectively weight. Eef and Errue relat.ive t.o cach ol.lle!'. 

Figure 6.4 shows Eeqm in the same environmcnt as figures 6.1 alld 6.a. 'l'he cof/'ccI. 

robot position at the central peak is now more pronounccd wit.h respect 1,0 t.he SUI'­

rounding positions. This is due to the fact that Bef acts as a non-linear scaling factor 

to -El ,and this scale factor approachs unit y only when the crror in the pose estimate 
m •• 

approaches zero. Since Emse is minimized when the pose estimatc has minimal error, 
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tbe arca fal' from the actual pose are de-emphasized . 

Comparallve Qualily Mea.~ure vs Position 
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Figure 6.4: The Comparative Quality Measure E cqm ; a=2, b=l 

In fact, if 1/ E mse and Ecqm are compared on a logarithmic scale (Figure 6.5), then 

it. is clear that Ecqm has incl'eased the "importance" of the global maximum by weIl 

ovel' an ordel' of magnitude over surrounding positions. 

As its name implies, Ecqm is a comparative measure only, inheriting this property 

frol11 Emse. As mentioned above, this measure is used to choose between multiple 

solutions of position correction, such as is the case in the next chapter. 

One unfortunate aspect of Ecqm is that the global maximum may be found by 

gradient ascent methods only close to the global maximum. Away from the global 

maximum thcre are many local maxima which make using general gradient ascent 

impossible . 
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Figure 6.5: A Comparision of the Ranges of Emse and 8c'lm: a=2, b= 1 

6.2.4 Verification of Quality Measures 

One way we can verify the correcLness of the quality mcasUl'cs dcfincd t.huH fal' is t.o 

compare them to the data obtained wh en the cOfl'ed. rohot. positioll was kIlOWII. 

In figures 6.1, 6.3 and 6.4 the domain of the quality ITIcasurcs was simply t.he 

area around the actual robot position. In contrast, figurc 6.6 shows I~('J factol' and 

Ecqm vs initial position estimate - position correction is pcrformcd at. each locat.ioll 

and the quality of the converged result is shown. Jt is important 1.0 1I0tice that the 

maximum values of these plots for each measure form a regioll that is alrnost idcllti<:al 

to the region of convergence in figure .5.8 in chapter 5 (it would be identical exœpt 

for one extra peak in the quality plot). In that figurc if. was known a priori wllC!re OIC 

correct position was, but in figure 6.6 this is not known in ad vancc, yet the regiolJ 

of convergence is the same. This simply means that those position cst.Îmates around 

the actual robot position that can be corrected arc ail of maximal quality. 
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y u."dtnlle (Lm) X I.onrumate (cm) 

(a) Ee! 

ComprltJlie QUllily MclUlUrc VA Initiai Po.'Iitinfi &oihmale 

y C'lK'dlhlte (cm) X L'1JI'dmlte «.m) 

(b) Eeqm 

Figure 6.6: Qualit.y of Converged Solutions vs Initial Position Estimate: Position Cor­
rection is performed on each initial position, and the quality measures of 
the resulting solution are calculated. Therefore, each initial position 1S 

mapped to a final position quality measure . 
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6.3 Summary 

This chapter presented an approach ta t.he measuremcnt of the qualit.y of an ('st.illlat,t' 

of robot pose. Two base meaSllrement.s were presentcd: t.!\(' I1WClll-sqUéU'C'd ('1'1'01' 

measure (Emse ) and the classification fador (Eef). Ems/' is a IJ1casl\l'(' of t.he disl.an('{' 

between a set of range data and a map (consisting of tillc s('gnwnL lIlodels), whilt' 

E ef is a weighted count of the number of range dat.a point.li that. are dmw t.u t.ht,it· 

respective Hne segments. The advantages and disadvantcs of hot.h \Vere !>l'<'s(ml.t'tl. A 

third measure, the comparative quality measure (Ecq11l ), was in t'ad. d(,l'iv('(! 1'1'0111 t.he 

first two in an attempt to emphasize the global maximum. 

Ecqm was presented as the measure ta be used for lI1axil11i~ing qualit.y with l't'SI)('('1. 

ta robot pose. EcJ was better suited for absolute tests, whcre a pa ... t.kulm· solllt.ion of 

correction could be deemed incorrect or correct based on this ullit.ary SCêl,kd Il lt'é\.HlII'e. 

When these measures were compared ta tests in which the correct. posit.ion of t.lu· 

robot was known, the results were shown ta be the same . 
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Chapter 7 Extensions of Position Correction 

So far wc have seen that position correction can correct the position of a robot given 

a good map and a fair position estimate, and that the results can be confirmed with 

the Eef quality measure. In this chapter two applications of this will be examined: 

1. Orientation Correction In addition to correcting positional error, this tech-

nique corrects errors in orientation. 

2. Global Localization When a map of the environment is available but esti­

mates of position and orientation are not, this technique still allows local­

ization of the robot from anywhere in the environment. 

7.1 Orientation Correction 

Orientation correction is similar to position correction in that it takes an estimate 

of the pose of a mobile robot, a set of range data measurements and a map of the 

environment and attempts to minimize the error in the estimate. However, in orien­

tation cOl'1'ection, the orientation of the robot is no longer assumed to be completely 

acc.urate, and must be corrected in addition to position. As outlined in chapter 3, 

erl'ors in robot orientation can have equally disastrous effects on the construction of 

global coordinate maps as do positional errors, so it is very desirable that these kinds 

of crrors be minimized. 

The appl'Oach to orientation correction is based on two quality measures, the clas­

sification factor Ecf and the comparative quality measure Eeqm. Consider Figure 7.1: 

Ncar the true orientation (an angle deviation error of 00
), (a) E ef aI,d (b) Eeqm are 

wcIl-behaved and appear to be locally convex functions of angle deviation ()d. There­

fore, if the estimate of the robot's position is close enough to the actual position, then 

the proper orientation of the robot can be found by maximizing Ecqm. Since we are 

assllming that a given pose estimate is good if its Ecf value exceeds the acceptance 

66 
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threshold (as discussed in section 6.2.2), we can conjecture that wl}(,ll t.ll(' el'timat.(· il' 

good enough, Ecqm will be a locally well-defined, single-peak fundion. FOI' compar­

ative purposes, the angle deviation test of figure 7.1 was donc al, \'wo posit.ions: t.he 

correct position, and an incorrect position {in this case about. 100 ('111 away). This 

way we can see that both the position and the orientation must be ('orrect (01' al. kllst. 

very close) in order for the quality measll1'e functions 1,0 be well-behaved <-'lIough t.o b(· 

optimized. In position correction, the orientation estimate l1é\.d t.o be correct. fol' t.lu· 

actual position to be found. Orientation correction likewise ideally r('<Juires t.hat. 1,11(' 

position estimate is correct, but this is not usually possihle. Howcvel', if wc aSSUllIC 

that a small error in the position estimate will nol change the optimum ol'Îpnt.a.t.ioll 

by a large amount, then this coustraint can be rclaxed 1,0 allow the sllla.1I posit.ioll,,1 

error. 

We only wish to correct orientation when the errol' in the posit.ion estilllat.e iH H 111 1\.1 1 , 

otherwise the quality measures will be 1,00 ill-behaved. Th ercl'ol'e , whcll a.t.t.elllpt.ing 

to correct orientation by maximizing E cqm , il, is useful 1,0 use a modified 1~('IJIII' which 

we caU Êcqm , and defined as: 

A {Ecqm if EcJ ~ Acceptancc Threshold 
Ecqm = 

o othel'wise 
(7.1 ) 

Figure 7.2 shows Êcqm taken from the sa.me meaSUl'ement.s of Figure 7.1, and l1SllIg 

a classification factor acceptance threshold of 0.5. kef/m is simply the well-beltav(~d 

region of ECqml which we found not by looking at. a plot such as Figul'e 7.1 (sil1(,C! 

the robot would not have access to such a plot), but by applying t.he dasHificat,ÎolI 

factor acceptance threshold. Thus, we can eusure t.hat we only at.t.clTlpt oricntat.iol1 

correction when Ecqm is wetl-behaved enough t.o allow gradient. asccllt t.o it.s glohal 

maximum.1 Where the position estimate is sueh that ECJ excceds the acceptétllCC! 

threshold, we avoid the numerous local maxima of BCf/m for angle deviatiO/IH wllere 

IThis assumes that gradient methods are used for global maximization - wc aHHlJfTwd t.hal, I.he 
brute force approach of calculating Ecqm over the entire domain and <:omparing would be 1.00 I,irne­
consuming. 
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Figure 7.1: Variations in Quality Measures as functions of Angle Deviation: with the 
true robot orientation at an angle deviation of 0°, the quality measures 
decrease as the error in the angle grows larger. For this environment, the 
effective angle range is about 35°, given an EcJ threshold of 0.5. The solid 
line represellts the quality measures at actual robot position and varying 
orientation, while the broken line represents the quality at an incorrect 
position . 
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Figure 7.2: Êcqm is defined over a smallcr domaill whcre any allgl(· d(·viat.ioll ll1i1y 1)(' 
corrected 

EcJ is too small. 

To get sorne indication of the maximum orientation CITor t.hat. Ca.li Htill hl' ('01'­

rected, we can look at the effective angle range. 

Definition 2 The effective angle range (EA Il) is Iha.l mn9c of angle devùûiolls abOlit 

the true robot orientation for which Ecj exceeds lhe acccp/auce Ih,.r;shold. A Ill) (/1I.ql(· 

deviation in this range is smalt cnough 10 al/ow the C01'1'ect O1';flltalio/l to 1)(: fO/l,m[ 

using gradient ascent maximization. This range is not nCCf'.'Iful1·ily 8l)1I/,1I/.d rie about 

the correct orientation. 

The effective angle range (EAR) for the actual pose Figure 7.1 alJd Figlllc 7.'2 is 

about 35°: here angle correction succceds if thc position cstimate is (!ITol'-fl'œ alld 

the oriention error is between about -18° and + Hio. This ra.nge is 1'(!<luœd wll<!l1 

the position error is increased, but for position cstimates close C!lIollglJ 1.0 the adllal 

position to exceed the ECJ acceptance thrcshold, expcrimclltation has showlI t.hat. ill 

general an EAR tends to be on the order of -10° 1.0 +] 0° . 

Now that we know that it is possible to correct the robot.'!) ol'ient.ation as weil aH 

its position given fair initial estimates, we can constl'uct. t.he folJowing algorithm 1,0 
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perform localization: 

1. Initial pose estimate (xo, Yo, 00 ) available. 

2. Perform position correction: given that (x" Yi, 0,) are the results of each itera­

tion, for each iteration find ÊcJ(x" Yi'O,). 

3. If kcf(xt,l/t,Oï) > 0, then hold x, and y, constant and maximize Êcf as a 

function of 0 by using a non-explicit-derivative-using maximization technique 

such as Brent's method [29]. 

4. When the maximum is found, update the orientation estimate Op 

5. If Oi changes very little over the course of a few iterations, ignore the orientation 

correction steps 3 and 4 in future iterations and concentrate on refining position 

only. This is done to increase the speed of the algorithm once the orientation 

has been corrected. 

7.2 Global Localization 

Globallocalizatiol1 refers to the case where a map of the environment is available, but 

a l'eliable estimate of the robot 's pose is unavailable. To use the localization algorithm 

developed thus far, a pose estimate is required. Therefore, we can incorporate local 

localizatioll into globallocalization in a similar fashion to the way position correction 

was incOl'porated into orientation correction: by use of the quality measures ECf and 

Erqm. ln t,heory, to filld the actual pose of the robot we need to perform localization 

al. cvery pose in the ellvironment and select the result with the highest quality. 

Wc can consider aIl possible poses (x,y,O) of the robot within the environment 

that the map repl'esents as the domain of a composite quality function 

F(x,y,O) = Êcqm(X',y',O') (7.2) 

wherc or', y' and 0' are the results of the local localization algorithm of section 7.1 

applied 1.0 :1', y and O. F is called composite because localization is done to (x, y, 0) 
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before calculating Êcqm , making F akin 1.0 a function of a funct.Îon . 

This gives a global quality function that describes the qllHlit.y of 10{'ë\li~itt.ion wll<'l1 

applied to a particulal' location. In theOl'y wc can imagine F calculat.ed fol' a.1I (:l',y,O) 

in the environment, and can find the pose of the robot by lllaxill1i~illg P. The act,lIal 

robot pose would then be (x', y', 8') (from equat.ion 7.2). 

The problem with maximizing Fis that F = Êcqm , éllld froll1 t.he pl'l'ViOltH s('cUon 

we saw that the global maximum of Êcqm can only be found hy gl'adiellt. lIlet.hods if 

gradient ascent is initiated close to the global maximum. Since wc Cil Il ilOt. liSe' gl'a<lÎ<'IIt. 

ascent over the domain of the entire environment, wc have no choicc hlll, t.o n'HOI't. 

to sampling the environment until we find a pose whel'c ÊCJm > 0, a.1, which point. 

we can use gradient ascent. Sampling in this context means applying lo('a.li~él.t.ion 1.0 

selected poses in (x,y,O) spaee and checking t.he value of /Êcqm • 

The issue of the sampling size can he resolved with l,he concept. of t.he regiOIl of 

convergence (section 5.2.3) and the effective angle range (01' EAH, in sedioll 7,1). 

The sizes of these can tell us how far apart we may placc t.he localilf,atioll HéullpleH, 

sinee by definition any pose estimate within these l'egiolls can be cOJ'rcded. Ilow('veJ', 

the region of convergence is dependent on the al'l'angcrnellt of line HcglT1e'llt modelH in 

the map and the robot's location within the map. Similarly, t.he crrective allglc J'allge 

changes with the errol' in the pose estirnate, and neit.hel' of tll<'He CéUI I)(~ explicif.ly 

calculated to aid in localization (if they were known, t.he problcm would b(~ Holvcd), 

Through experimentation we can find somc geBcral values fol' t.he sa rnplillg S)HleillJl, 

by performing localization al. known poses and finding t.heil' l'cgions of cOllvergeIlC(' 

and EARs. Samples could then be spaced accordingly alld t.he !>(>HCH wit.hill t.he Il.J'C(L 

of the map could be tested. If no solutions are found, t.hcn cithm' t.he lTIap and t.he 

environment do not correspond, or the sampling spacing was t.oo large. If t.he lat.tel' 

is true, the sampling spacing could be l'educed and the sampling could he l'epeat.ed. 

It is only a matter of calculat.ion time in resampling the poses in Hw area of the' miLp. 

Experiments have shown that in most sufficicnt.ly occupicd enviI'Onmellt.s2, posi· 

2Here the term "sufficient" refers to environments that contain enough objectR 1.0 uniqucly idcntify 
individual positions within the environmenL, As will he shown in chapter 8, sirnilaritics b(!l.wl!Ctl 



• 

• 

CIlAPTBU 7. EXTENSIONS OF POSITION CORRECTION 72 

tion correction convergences successfully within about 50cm, and orientation correc­

tion in a _100 to +100 range. Possible exceptions are in maps with a high density of 

line Hcgrncnt models (rooms that are very cluttered with non-planar surface objects, 

fol' example) or maps with a very low total number of line segment models within 

sensor' range of the robot (where the robot cannot see enough of its surroundings to 

rnakc accul'ate comparisons). 

Once the sample size is known, the straightforward approach would be to sample 

the cntire environment at poses separated by the sample size. However, for large 

maps titis cOllld require very many samples, the majority of which do not find the 

correct. pose. So, in the interests of saving computation time, one may super-sample 

the environmcnt. This strategy is a coarse-to-fine approach: initial samples are placed 

far' apart, and if no satisfactory results are found from these samples, more samples 

arc takcn with smaller inter-sample distances. If there are still no satisfactory resuIts, 

then the proccss can continue with sm aller and sm aller sampling sizes, down to the 

minimum size as dictated by the regions of convergence and EARs as mentioned above 

(figurc 7.3). In the worst case, complete sampling of the environment would be done 

at t.he minimum sampling sizes. 

Of course, it would be a waste of time to attempt localization at poses aIready 

a.tt.ernptcd when the sample size was larger. Therefore a list of attempted poses should 

he kept and compared to any new pose to ensure each pose is tested onlyonce. 

Results of globalloca.lization are presented in section 8.4 in the next chapter . 

diffcrcllt arcus in un environment, run lead 1.0 an incorrect localization 
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Figure 7.3: Sample Size Reduction: a coarse-to-finc scarch strategy: in (a), tbe liiullple 
size is large. If no satisfactory localization is round, then the enviroIlJrl('lIt 
is resampled at the smaller and smaller sampling si~cH ill (1)), (c) (tlld (d) . 
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7.3 Summary 

This chapter discussed two applications of the quality measures EcJ and Ecqm over and 

above verification of a single localization attempt. These applications were orientation 

correction and global localization. 

In oricntation correction, the properties of the quality measures were examined 

for angle deviations around thc true orientation. It was found that they were locally 

convex fUllctions in the neighbourhood of the true orientation, enabling gradient-using 

opt.imization methods to find the global maximum that occurs there. The size of this 

IIcighbourhood was introduced as the effective angle range, or EAR, which bounds the 

angle error relative to the actual orientation thf'lt can still be corrected. A modified 

comparative quality measure Êcqm was introduced to aid the optimization process. 

This mcasure equals Ecqm when ECJ is above an acceptance threshold, ensuring that 

it, forms a convex function (although not a strictly convex function). 

Givcn t.his method to correction orientation, a complete algorithm for local local­

izat.ioll (where a pose estimate is given) is given. 

Thc complement to local localization was introduced as globallocalization, where 

the robot has no prior estimate of its pose. Following the same reasoning as was donc 

fol' orientation correction, a function F was constructed using the quality measures 

whose global maximum occurs at the robot's actual pose. As was the case with 

orient.at.ion correction, the function is locally convex only at the correct pose, but this 

time we have no cstimate of this pose. This discounts gradient methods for optimizing 

P. 

A simple approach 1.0 solving this problem was described in terms of sampling the 

cllvironmcllt represented by the map at different sizes. Initially, samples are sparsely 

locat.ed, and localization is attempted at these poses. If no satisfactory results are 

round, t.hm t.he cllvironment is l'esampled at more densely located samples. This 

P"ocess continues unt.il a satisfactory localization is found, although the sampling 

sizcs should Ilot decrease below the sizes estimated by the regions of convergence and 

EAHs C01111110n fol' that environment . 
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As the theory of localization was developed in pl'cvious chaptcl's, tltt' l'cal <'lIviI'OIlIlU'lIt, 

of figure 4.11 was used ta illustratc localization's varions aspects. 111 titis rhapt.('I' 

another real environment and two simulated cllvironmcnts will !>p ass('ssed in 1.('I'IIIS 

of the performance of localization withill them. 

8.1 Map Construction Results 

ln this section, map construction in thl'ce sample environl11cnts is pl'csl'nt.('11. III ('ach 

of these environments, the robot (virtual, in the first two) wandcl'cd about., H('él.lll1illg 

every few centimetres and incrementally built a map. In addition, lo(:alizat,ioll was 

performed every few moves to be sure that small posit.ioning CI'l'OI'S did Ilot (1,('('1111111-

late (on the average, every other move - this was an ad hoc choicc, t.l'adi ng ofr t.lte 

accuracy of localizing every move with the time l'eq uired to localizc). Fol' t1H' si 111-

ulated environments, artificial en'ors were introduced 1.0 simulat.e positiollillg ('l'I'OI'S. 

Uniformly distl'ibuted errors in the [0,1] cm range werc added t.o t.he x a.ll<l y cool'(Ii­

nates (very lOcm of movement, as weil as [O°,]oJ in oricntat.ion. Fol' silJJplicit.y, tlt(· 

robot used an uncomplicated wandel'Îng algorit.hm fol' exploration: keep gOÎlIg in /l. 

straight line until range measurements indicate an object. is 1.00 close, at. whidl point. 

randomly pick a new heading and cont.inue. CCl'tainly bctter cxplol'at.ioll algoriUllIIH 

do exist ([35], for example), but are beyond the scope of t.his t."csis. 

For the two simulated environments, three maps WCI'e construct.cd: 

1. Ideal Sensor Map: for this ideal casc, the SCnHOI' is modeled aH a t.ltin stl'étiglJt. 

line extending from the robot, where the l'ange rneasIJ red is fJ'Om the rohot. to 

the first object hit, regardless of the angle of incidence. 

2. Sonar Sensor Map: this sensor modcls the properties of flOnal', illdllding tIllJltiple 

reflections and incidence angle effects, as per [9]. 

75 
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3. Corrected Sonar Map: these maps use the same sonar sensor as above, but the 

line segment models of the map are shortened ta account for the size of the 

sonar cane, as described in section 4.3.4. 

Figure 8.1 shows a simple room with similarly appearing corners and three obstacles, 

the largest of which creates a hallway at the bottom of the room (for this map and aIl 

such maps in this thesis, the coordinate system is non-standard: the x-axis proceeds 

from left to right, the y-axis from top to bottom, and orientation is counterclockwise, 

wit.h 0° along the positive y-direction - the origin would be therefore in the upper right 

corner of the map.) Figure 8.2 is the second of the two simulated rooms, this time 

a lit.tle more complex, containing a number of "sub-rooms" within it. Bath figures 

show sorne difficulty with modeling corners with the ideal sensor. This effect cornes 

from the splitting phase of fitting models to objects (section 4.3.2), where a cluster 

of range data points may not split at a corner, or where a subcluster's elongatedness 

i8 acceptable at 45° to the corner walls, yet too small ta split. The sonar sensor maps 

without correction show the effects of misjudging the size of objects. Here we can see 

the apparent sides of abjects extended far past their true borders, as weIl as a flurry 

of noisy line segments in the corners of the rooms. The corrected maps reduce this 

border-ext.ending effect t.o produce a clearer map. 

Figure 8.3 shows the results of a map made from an environment with physical 

objects. Whiteboards, together with wooden, metal, and cardboard abjects were 

placed in an are a enclosed by office dividers and waHs ta provide a variety of surface 

rcflcctivity types. The images of the area in figure 8.4 show details of the area, 

including the tiled floor surface which adds error to the robot's pose as its wheels 

pass ovcr t.he tHe edges, in addition to slippage errors common ta smooth floors . 
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D 

(a) Source Map (b) Idcal SClIsor Map 

/ 

(c) Sonar Sensor Map (cl) Corrcctcd Sonar Mat> 

Figure 8.1: Room 1 (simulated): from the source map of (a), 3 maps were cOllsl.nJ(;l.ed: 
(h), the ideal range sensor mapi (c), a map made with a sonar sirnulatol'j 
(d) a map made with the sonar sirnulatol' but correctcd fOl' the shape of 
the sonar cone 
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Figure 8.2: Room 2 (simulated): from source map (a), (h) is the map made with 
an idcal sensor, (c) shows the sonar simulator map, and (d) shows the 
sonar-cone-corrected sonar map . 
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Figure 8.3: Room 3 - A Real Environment: the Jayout of the enVil'Olllllent iH as HhOWII 
in (a), and (b) shows the map constructed fro!n sonal' dat.a with line 
segment length correction . 
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(c) Lower Left View (cl) Lower Right View 

Figu\'c SA: Details of Room 3: these views of the environment show the types of 
objccts present 
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8.2 Quality Measures 

Sinee the quality measures E cf and Ecqm indicat.e how e[('di\'(' localiu1l.ion is wit.llill 

a particular environment, il. is useful to use t.hClll Lo examine t.h{' !.I11·C(· ('xilmplt' 

environments. 

8.2.1 Room 1 (Simulated) 

To compare sonar with an ideal range sensor, consider figure 8.5 and figure 8.6 which 

examine the quality measures of range measurements t.akcll at. t.1H' ('x(l.lllpl(· pOH(' 

shown. As seen in section 6.2.2, each (x,y) point indieates t.he qualit.y I.hat. wOllld 

be obtained if that point was a localization convergence point., and if 1.11('1'(' WélS 110 

error in the orientation 1. The figures show t.hat ail plot.s hav(' é\. si ligIe dOIll i Il il Il t. 

peak indicating the true robot position; however, the SIllToulldillg posit.iolls ill t.h(· 

two sonar maps are noisier, especially in t.he Eef plots. 

In order to examine the effects of changing orient.a.t.ion, W{' cali hold olle of 1.1)(' .1' or 

y coordinates constant and compare the oUler wit.h changins oriellt.a.tioll (fi/!,Ill'l':-; 8.7 

and 8.8). Here we can see convex shape of the rncasllres lH'éU' t.he tJ'lW pos(', Th{· IWi\.k 

in figure 8.7( cl) is rather noisy a.nd is not COllvex, and so the local maxillllllil IU',U' 1.11<' 

global maximum may affect the results. They arc howevcr very dos(' t.o1!,(·t.her wllÎl'lI 

in this case cloes not present 1.00 much of a problem, 

From this point on when the sonar rnaps are mCllt.ioJlcd, t.hey will l'der 1.0 t.lt(' ('01'­

rected sonar maps, as the corrected sonar mars arc t.he OIlCS usee! ill l'(·a.l (!lIvirollllu·IIt.S, 

It is useful to sec how a pose within a rclat.ively spal'se ha.l/way rares witll respect, 

to the quality measures. In figure 8.9, orientation 0 is Ile/cl const.a/lt, ami :1: alld JI are 

varied. From the locations of the range point.s in (a) olle can se(~ t.bal. l'or t./H' 1'01111.1' 

map, the high quality peak forms a Hue rather than a sharp point. 'l'Ile ideal map 

has a more roundecl peak sinee the ideal sensol' can Se<! more of t.be !uillwa.y, huI. il. is 

still spread out parallel 1.0 the hallway. In (e) one woulcl expec1. ft Jess l'OlInded peak, 

lideally we wou Id like te plot (x, y, 0) vs. quality, but I.his wOllld require Il 4-dirneusirmal plot. 
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8 

y uXJrdmlt.c (cm) X clltJrdmalC «(.RI) 

(a) l~xamplePosc 1 (b) ECf' idealsensor 

112 

V cunnJuUlle «(.1n) X coonhnate (cm) \ , ... IRIIMt,(an) X ""rdtna", (cm) 

( c) EcJ , sonar sensor (d) EcJ' corrected sonar sensor 

Figurc 8.5: Eef, Room 1, Pose 1, x vs. y: with the robot at the position marked 
in (a), the quality of the range measurements varies over the x-y plane. 
The sonar ma]> is shown in ( a) rather than the source map to show how 
the range data relates ta the map the robot constructs. The small circles 
indicate the range data. For the ideal sensor map, the range data points 
follow the walls of the source map exactly. In (b )-( d), the robot's actual 
position is at the centre of the xy-plane. 

but for this particular map, both sides of the hallway were not fit as perfectly parallel 

lines (sill(,(, the error in the robot pose is not eliminated completely). 

Thc same cffcct call be seen if the y-coordinate is held constant and () is allowed 

t.o vary, as in figure 8.10. As the robot and data points turn to face down or up (as 

spcn on t.he l'oom map), the range points are no longer close ta any waHs, thus the low 

qua.lit.y. Olle intcrcstillg note for this case is that there are two peaks along the () axis, 
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(a) Ecqrn, ideal sensor (b) Er,/flI, sonar I-l'lIsor 

y l'CMlnlm,lIc ((.m) 
Xtuurtllllltlt..(llll) 

(c) Ecqm, corrected sonar scnsor 

Figure 8.6: Ecqm , Room l, Pose 1, x vs. y: the sharp ('elltral peal<s illdicaf,l' I.hal. 
if orientation is held fixed, the highest qllality coillcides wit.h !.Il(' act. Il a 1 
robot position. 

which correspond to the robot facing Jeft 01' righl, on the ma.p. Bot.h fa.ce pal'all(·1 1.0 

the hallway, and so are very simiJar. They arc less similar ill t.he· SO/léU' IIlfl.l> IH!('iI.llS(' 

of the imperfectly fit borders of the hallway. 

If we compare variations in y-coordinate and oriellt.atioll 0, t.he hallwélY dred, iH 

invisible (figure 8.11). Except for sorne sirniJal'it.y bct.ween 90° alld -Hoa ill (CL), (1)) 

and (d), the quality measlires correctJy identify t.he t.ruc (11,0) . 
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Figure 8.7: Quality Measures, Room 1, Pose l, x vs. 0: agaill the celltral peak 
indicating the truc pose dominates, but in (d) this peak is nol, <:OIlVCX él.ll<1 

is incorrect . 

- .~'-~ ,,--,"'.,. 

"" 
" 



• 

• 

CIIAPTBIl 8. EXPERIMENTAL RESULTS 

j IIH 

.i 116 

~ II~ 
III 

~ IIl5 

i III 

11115 
~ 

i III 

~ 11115 

Onen .. tinn (oleg,..,,) 
y tUlf'dlJUItc (cm) 
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85 

y colIRlmat. (cm) 

(b) EcJ, sonar sensor 

Y < .. IRI .... 1c ('111) 

(d) ECqml sonar sensor 

Figurc 8.8: Quality Measures, Room 1, Pose 1, y vs. (): the global maximum is not as 
sharp in (b), sinee the small clusters of data points are close to the map's 
line segmcnts even for larger than usual orientation deviations . 
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(a) Example Pose 2 

VUMlflhnlIC(Lml XUM10IJlllkiLIIII 

(b) Eef 1 ideal map (c) Bef 1 sOllar IIIlli> 

X LUllnSlOll.: (~ml 

(cl) Eeqml ideal map (e) Erqflll ideal map 

Figure 8.9: Quality Measures, Room l, Pose 2, x vs. 11: the global maximum may 
not necessarily be unique or completely dominant, in long hall ways aH the 
robot position is moved parallel to the halJway. This il! how olle rnay 
recognize the long hallway effect as descl'ibed in section .1.2 . 

, .... < ~1f.1 
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(a) EcJ' icleal map (b) Ec/, sonar map 

Oncnlauun (dclrm) X L'txnhnate (cm) 

(c) Ecqm , ideal map (cl) E"qm, sonar map 

Figure 8.10: Quality Measul'es, Room 1, Pose 2, x vs (): the long hallway effect is again 
visible as the x-cool'dinate is changed. This time there are 2 dominant 
maxima, one fol' each direction parallel to the hallway (i.e. down the 
hallway and back again) . 
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Figure 8.11: Quality Measures, Room l, Pose 2, y vs. 0: the long hallway erfed is ilOt. 

as evident here sinee the y-axis Îs perpendiculal' 1,0 t.he hallway. 1I0wevel', 
the presence of significant local maxima al, 1800 1.0 t.he global maximulTI 
suggest al. least the presence of a short hail way . 
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8.2.2 Room 2 (Simulated) 
• 

If t.he robot is in a positi~n where visible perpendicular walls surround it, then the . 
robaI, should be able ta ~'ocalize itself accurately. Consider the pose of the robot in 

Â 

figure 8.12: figures 8.13 and 8.14 show the relationships between x, y and () for this 
~ 

pose based on the sonar map. As expected, wh en the test pose is outside of the map 

area, both quality measures are effectively zero. The true pose is at the centre of 

cach plot, and the glob'al maximum exists al. this point for aIl plots. In addition 

'" 

1> 

Figu re 8.12: Room 2, Pose 1: the robot can detect the waHs almost all around i t, as 
well as corners. 

ta verifying t.hat the true robot pose implies a global maximum of a quality plot, 

the plots of Eef can also identify similarities and/or symmetries in the environment. 

Figure 8.13(a) reveals 2 local maxima where E ef > 0.6. The one with the greater 

y-coordjnate refers ta a position in figure 8.12 in the semi-enclosed area directly below 

the robot 's present position, where the top right corner is similarly structured ta this 

lower area.. The other is not actually a structural similarity in the room, but rather 

a similar arrangement of line segments. This spot is in the upper left section of the 

environment, where the top wall and top left corner combine with the top wall of the 
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y rounhnalc (1.'0) zou 
X t'uunhnaac (cm) 

(a) Ee]. or vs. y 

l ' 

~ OH 
li,; 

J 
d 04 

02 

OnenlAlmD (dc,rces) XI.'Utlll1lhIl1c(cm) 
y lUnnJllUitc km) 

(J,lrUlllliltfl (lLe,fecl' 

(b) Ecf, X VS. () (c) ECf. 11 VS. () 

Figure 8.13: Classification Factor EcJ for Room 2, Pose 1 

open space below (with the triangle). The plots of Ecqm do not have this pJ'operty 

to the sarne degree, as they are mu ch more discriminating, dealillg with fille pose 

differences rather than the coarse quality of ECJ. 

The lower right and upper left at'eas of Room 2 dernonstrate properties very sirnilar 

t0 the pose in figure 8.12, primarily the sharp global maximum coillciding wit.h the 

robot's true pose. The rniddlc section joilling these arcas exhihits this also, except 

that no inside corners are visible. However, at thc truc pose in figure 8.1.5 (Iowm' left 

robot position with small circles indicating range measurements), incorrect, rcsults 

begin to appear, as figures 8.16 and 8.17 indicatc: in particular 8.l7(a) and 8.17(c) . 

One of these high quality but incorrect poses is also shown in figure 8.15 with range 
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X "xJrlbnale (cm) 

(a) Ecqm. :z: vs. y 

o 

Ortcnlatilln Clt.lUI) X tt.",lInatc (cm) 
400 Orientauon (des"",) 

y « ..... Ina .. (an) 

(b) Ecqm. J: vs. () Cc) Ecqm. Y vs. () 

Figure 8.14: Comparative Quality Measure Ecqm for Room 2, Pose 1 

measurel11ents appearing as x's. Here a cluster of the points seem to be in the rniddle 

of t.he room, but their distance from the infinite li ne through their target line segment 

(a.bove) is small (recall that the component E mse of Ecqm works with infinite lines). 

This is an example of a case where assuming the range points belong to an extension 

of their target wall fails, and explains why the Ec! plots are correct with respect to 

the global maximum while the Ecqm plots are not . 
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f -
l 1 (0 

r ~ (!!BJJ 

«) 

1> 
oP 

Figure 8.15: Room2, Pose 2: The actual robot pose is the onc c10scr 1,0 t.he trian­
gulaI' object, and its range measurements are indicat.cd by cÎrdCH. 'l'he 
other robot pose shown has a similal' surrounding structlll'c (l'ange point.s 
shown by x's) . 
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V l"UIMÛJtlIII~ (cm) X COONUUlIc (4.111) 

(a) ECf' x vs. y 

UK i UI. 

S 114 

Il.2 

Orient"'lll" (dcareo.) 
X (uunhnale (c.:m) Onenlnllon (cJe,rtell) y uxJrthnalc (cm) 

(b) Eef' x vs. 0 (c) ECf' Y vs. 0 

Figure 8.16: Eef for Room 2, Pose 2 
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X ('uunJmale (UII) 

(a) Ecqm, x vs 11 

(b) Ecqm, x vs. 0 
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Figure 8.17: Ecqm for Roon! 2, Pose 2 
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8.2.3 Room 3 

'l'tIC' ('lIvironment shown in figures 8.3 and 8.4 differs from the prcvious two in that. 

il. appears 1.0 have few or no aJ'(~as similar 1.0 each other. This would seem 1.0 suggest 

that. the quality measurcs should clearly indicatc where the robot's true pose is, given 

a. set. of range measUl'cmcnts. We wiII check this with three example poses. The first 

exarnple pose, as showlJ in figure 8.18, is roughly in the centre of an open area. The 

adual posit.ion and orientation for aIl poses in this environment were measured by 

halld. Figmes 8.19 and 8.20 show tha1. localization can be correctly verified for this 

... 

J \ 
J 

Figure 8.18: Room 3, Pose 1 

pose since bo1.h Bef alld Eeqm obtain their maximum at the correct robot pose. One 

obs(,l'vation 1.0 make hel'c is that the peak values of both E ef and Ecqm are lower than 

round in t.he simulated environments. This is likely due ta sonar effects not included 

in t.hc SOlléU' moclcl, such as differing reflectivity in surfaces and 3-dimensional effects. 

'l'hr' pose shown in figure 8.21(a) is another example of a pose that is verified by 

qualit.y measl1l'Cs. (b )-( cl) show Ecqm for Pose 2, and again the dominant peaks occur 

at. t.he correct pose. E cf is 110t shawn since il. is also similar to that of Pose 1. 

Thc last. posc for which quality measures will be examined is shown in figure 8.22(a), 
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ns 

j nt. 

i 
~ 114 

oz 

Yl'UllUfllldlC (l-m) f<Xl Il 

(a) Eej, J' vs. y 

(~MJ fltltlllltUUllflit _1t'101 

X UKlfcllllllte (un) y wtlnlllMh .. h III) 

(b) Ecj, x vs. 0 (c) grj, ,II vs. () 

Figure 8.19: Eef for Room 3, Pose 1: Eef is Ilot aH grcat al, t1)() lH'ak as WHS S('('II ill 
the simulations, yet the adual robot positioll ill t.lte ('('IIt./'(' is still Lit<' 
only position for which Ee! > 0.6 

along with Ee!. Looking at the plots of Ecqm ill figure 8.2:J we ('(1.11 S('(' tlta1. t,I)(,I'I' i~ 

indeed a second peak that rivais the global maximum. The pose whi('h p,ivcs riS(' t.o 

this peak is just above and to the l'ight of Pose 1 in figure 8.18, wll<'J'(' 011 tll(' IlIal> 

the top border of the box is combining with the l'ight and lower Iille S(~gll)(!llts 1.0 fOI III 

a similar al'ea to that which surrounds Posc :3. 'J'his is /la callS(' for alil/'lT! how()v('r, 

sinee the modified comparative quality mcasurc Êcqm as showlI ill figure! 8.~:J(b) is a 

single peak maximum, which is uscd for orientation and glohal locali;t,ét1.ioll . 
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(b) Ecqm , x vs. 0 
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(c) Ecqm , Y vs. () 

Figure 8.20: Ecqm for Room 3, Pose 1: like ECf' this maximum of this quality measure 
has sm aller magnitude than those of the simulations, but the actual robot 
position is still distinguishable in relative terms 
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Figure 8.21: Ecqm for Room 3, Pose 2 
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Figure 8.22: Pose 3, Ecf for Room 3 
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llO'" , an~ 

y coonhMIC (un) X ", ... dmllie (,-m) 

(a) Ecqm. x vs. y (b) Ècq",. J! VII. 1/ 

x 10'" 1.10-4 

OncnlallllB (dcarccJi) 
X cuuRhnate (cm) y t.UlIl'lhIJUIC (UII) 

(c) Ecqm. x vs. () (d) Bcql1l • 11 VII. 0 

Figure 8.23: Pose 3, Eeqm for Room 3: (a), (c) and (d) show Eel/m ' alJd (h) ShOWH 

Êeqm for x vs. y to show that alihough t.wo maxima rnay éLppear if) I~crlm, 
for orientation and global localization a low Eef calHleS ÊclJm t.o have ft 

single maximum . 
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8.3 Regions of Convergence 

AH prcviollsly defined, the region of convergence is a set of poses within the environ­

mCllt whcl'c each pose acting as an initial estimate results in localization converging 

(,0 the robot's truc pose. This hclps to judge how accurate a pose estimate must be 

ill a givclI arc a fol' a given environ ment (since the size of this region varies with the 

st.ructure of the cmvironment) for localization 1.0 function correctly. In this section we 

will look al. the rcgion primarily in t.erms of position: aIl test poses begin at. 0° but 

are free 1,0 rotate as localization proceeds. Successful localization is again classified 

as wit.hin 5cm of the actual robot position (hand measured in the case of the real 

cllvironment). Ali regions of convergence in this section are from maps constructed 

with the correctcd sonar sensor, both simulated and real. 

Figure 8.24 shows four test poses within Room 1. The resulting regions of conver­

gence are shown in figure 8.25. The regions of (b) and (d) are quite small due to the 

8(8) 

D 
(j)(b) 

0(C) 

G(d) 

Figure 8.24: Test Poses for Room 1 

lack of dist.ingllishablc fcatures viewable from their respective poses. In (d), the case 

i8 extreme, where the true œ-coordinate cannot be distinguished from its neighbours 

duc 1.0 the featllrclcssness of the hallway. 

Hesult.s are a little better for the test poses of Room 2 (figure 8.26). Figure 8.27 

displays the regiolls of convergence for this environment. Since the test poses have 
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Figure 8.25: Room 1: Regions of Convergence: successf'ul convergences ha.ve fi. filial 
error of less than 5cm, with the truc robot posit.iolls for each plot. heillp; 
marked with a '*'. The minimum radius of convergence is givell in t.he 
caption of each position. ln t.his environment wit.h few IInique feat.lIl'eH fol' 
localization to discriminate, thc region of convergcllce for ench posit.ioll 
is not very wide-reaching. Whilc in the long hallway in (cl), the regioll 
is very small because the proper x-coordinate cau Ilot be diHtillguiHlled 
from most others in the hal1way. 

been placed primarily in the differently sized semi-cnclosed areaH, the locnl Htrudllf'(' 

of the environment is distinguishable enough for localization t.o work ovnI' a wid('1' 

area. However, as seen in the previous section, t.he qualit.y mCélHureH illdieate UIiLf. 

there is still sorne similarity bctween some locations, limi1.ing t.he si:t,(! of the regiollH 

of convergence. 

For the real environment of Room 3 where the fca1.urcs of the cnvil'Onrnellt are mo!'o 

distinguishable, the regions of convergence are much larger. Considcr the Rix example 

poses of figure 8.28, for which the regions of convergence arc shown in figure 8.29. 
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1 
Q<b) 

8(8) 

C)<c) 

0<d) 

(j)<8) 

Figure 8.26: Test Poses for Room 2 

Thanks t.o a smaller number of similar features in this environment, the regions of 

convergence for an the sam pIe poses are quite large, indicating that the initial pose 

cstimat.es necd not be completely accurate for successfullocalization. We can see how 

init.ial estimates ouiside of the region of convergence change by examining the path 

of C01wc1'gcncc plot, as was first seen in section 5.2.3. Figure 8.30 shows two path of 

conveT'f}ence plots using the sample poses (c) and (f). The plots in this figure show 

t.hat the initial estimates tend to converge together to corn mon positions, and many 

converge to positions within a small area. This, like the quality measures, is another 

way to examine similarities of different positions in the room. Since the incorrect 

convcrgence positions, or local attract07'S draw pose updates away from the actual 

robot pose as the algorithm iterates, they must at least fit the l'ange measurements 

to some extcnt.j in order to do so the arrangement of line segments about the local 

att,ractor must be similar to that of the actual pose of the robot . 
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Figure 8.27: Room 2: Regions of Convergence: succcssful convergence rrwanH t.he 
final position error is less than 5cm, and the aduaJ po<;ition of cach is 
indicated bya '*'. The minimum radius of convergence is showlI for each 
region. These regions are larger than in Roorn l, because the features of 
the environment are much more distinguishable (the siiles of t.he semi­
enclosed areas are different) . 
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Figure 8.28: Example Poses for Room 3 
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Figure 8.29: Room 3: Regions of Convergence (final el'rol' Icss than ,lem, actual po­
sition shown by a '*', minimum radius of convcrgence showlI for eaeh): 
these regions are aU much large!' than t.hosc in thc p!'(!vÎOllS two cn­
vironments, since here thcrc are fewcr simila!' fcatut'es to cOllfusc the 
localization algorithm . 
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Figure 8.30: Pat,hs of Convergence for Room 3: the small ch-des indicate initial esti­
mates of position, the lines track the updated estimates as the localiza­
tion algorithm tries to find the true position, and the small + symbols 
indicate convergence points. This type of analysis can show where the lo­
cal atfracto1'S arc, i.e. positions whose view of the environment is similar 
cnough in structure to that of the actual position to draw convergence 
away from the true position . 
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8.4 Global Localization 

As explained in section 7.2, globallocalization rcfcl's to the rôse whe\'(' a.n ('stimat(' of 

the robot's pose is not available. In this case the robot has only ô map of t.h(· <'lIvi­

ronment, a set of range data, and knowledge of the robot.'s position a\ld oric'lIt.at,ioll 

relative to the data (but not to the map). This sect.ion examines how glohallocali;"a­

tion functions in the tlll'ee sam pIe environmcnts discussed t.hUH fa.r ill t.his chapt,(·r. III 

each case, the results are presented in two ways: a 2-D overlay of t.he 1'00111 (,olllparÎlIg 

true robot position and corrected robot position, and a a-D plot C'Olllpéll'illl!; t,he' 1'111\ 

initial pose (x,y,()) with the pose after globa.l 10calizatiol1. TI\(' lIIat> lISI)d for parI! 

case was constructed with the correcied sonar senso!', and a descript.ion of eacl! is 

contained within its caption. Table 8.1 summarizcs nUIllerically t.}H' 1'('sltlt.S of tlJ(' :l 

global localization trials. 

~ 
Loca.Jization Enol's 

Min Max Mean S.Devia.tioll. Medié\.ll 

Room 1 Position (cm) 0.7 456.5 60.9 1 a2AtI 2.n 
figure 8.31 Orientation (0) 0.1 189.4 32.2 62.0a 2.n 

Room 2 Position (cm) 0.2 402.3 26.8 9t1.85 0.9 
figure 8.32 Orientation (0) 0.0 174.8 17.0 tltI.9t! 2.8 

Room 3 Position (cm) 0.1 3.9 2.5 1 )6 2.8 
figure 8.33 Orientation (0) 0.0 1.5 0.6 0.6t! O.:J 

Table 8.1: Numerical Summary of Global Localization Trials: t.he resllits show t.he 
high accuracy of localization when cOI'l'Cct.ing Roolll 3, whcl'e most I>OH­

sible robot poses have unique surroundings. ROOIIIS 1 alld 2 show t.lte 
limitations of localization when used in environments witlt Vé1l'yillg dep,n'('s 
of symmetry. 

In other experiments with other experimental environmcnts (bot.h real and SiUIII­

lated) we observed that the likelihood of correct global localization tend:.; 1.0 increase 

with the size of the region of convergence for a givcn pose . 
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FiguJ'c 8.31: G1oba.1 Loca.Iiza.tion for Room 1: the actual robot poses are marked by 
o 's, and the poses found through global localization are marked by x 's, 
wit,1I a dotted line between them. For this example aIl poses were set to an 
oricntation of 0°, and the 4 incorrect localizations show that the mistaken 
poses aIl dcviate from the true orientation. In two of the incorrect cases, 
onc corncr was confllsed with another . 
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Figure 8.32: Global Localization for Room 2: the adllal robot pmiC'S arc lIIarlwd by 
o's, and the poses round t.hrough global localj~at.joll a.re lJJarl{('d by x 's, 
with a li ne between thcm. Again ail actual robot poses have ail oriell­
tation of 0°. This t.ime thcrc arc 2 incorrect locélli~at.iom: Ollt. of t.h(! 1 H 
poses test.ed . 
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Figure 8.33: Global Localization for Room 3: actual robot poses and calculated poses 
are marked by o's and x 's respectively, with a line between them. For 
this example, the 6 poses of figure 8.28 were used without initial esti­
ma.tes, and in each case the true pose was correctly found . 
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Chapter 9 Conclusions 

A method for the construction of a 2-dimcllsional map bascd 011 l'allgc ll1C'ilSlIWII1('IIt.S 

from a mobile robot's on-board sensor has been prcsented and t1Hcd as ê\ hasis fol' 1,IH' 

development of a system to successfully localize the robot within the ellvil'Olllllent, 1'('p­

resented by the map. The map, consistillg of a set of stl'aight. linc segmcnts (mo<!c'lillg 

the world as a set of planar surfaces), may be incrementally built. fl'om IlI<'ilSlln'IIlCIlt.s 

of range data from different positions in the cnvil'onmcnt. These posit.iollH 111ay hc' 

chosen heuristically by a human user or may comc from an cxtcl'lIéll (!xplol'ê\.tioll al­

gorithm. This allows a mobile l'obot to perform map constmct.ioll and llIap IIpdat.ing 

as it explores its environment, while at thc samc Ume too usc localizat.ion t,o minilllille 

the errors in pose (position and orient.ation) tohat accumulat.e as t.he l'obot. 1l1OVcs. 

The map construction technique as presented is bascd on a fil-split-7ncl~/C st,I'é\.t.C'gy 

applied to clustered range data. This technique allows dist.inct fcatlll'cs in the Cllvi­

ronment to be separated and modeled individually, while allowing fol' si ligie objed,s 

(such as a chair or a corner) to be rnocleled by more t.hall one lillc segmcnl., The dw;­

tering technique needs no user-provided parameters, while the lille fit.tillg algOl'itlll1l 

allows the user to control the degree of splitting and merging t.o suit. a partÏclllHI' 

environment or sensor. 

The problem of localization was first approached by solving t.he simpler position 

correction problem, where a coarse estimate of position was availablc and 110 ol'i(!II­

tation error was present, The pl'llblem was solved with an itel'êtt.ed wc!ighted Hum of 

vectors technique, which involvcd incl'ementally updating an initial position est.illlate 

by reducing the overall difference between range data points êtnd the lil1c segment. 

rnodels of a map. Range points were classified (paircd) with target linü segments 

assumed to represent the same objects as the rncasuJ'cd range poillts. The distanee 

norm between a range point and a linc segment was defincd as t.he lüugth of the 

vector perpendicular to the line segment, with hs tail at the range point and its head 

112 
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touching the Înfinite line passing through the line segment. This perpendicularity 

constraint was necessary due to the undesirable long hallway effecl, analogous to the 

aperture problcm in computer vision [26]. The use of weighted sums added robustness 

by weighting range points closer to their targets more heavily than those far away, 

Rince far range points were more likely to be outliers than close ones. However, since 

it is not. known at t.he outset of localization how best to define "close" for this purpose 

(silice good data may be far away from their true target line segments if the initial 

posit.ioll estimate is poor), aIl points were initially weighted equally to get a coarse 

position update, and artel' several iterations of classification and sum calculations 

onfy those points very close to a line segment model were weighted heavily, resulting 

in a fine, precise position update. It was shown that convergence to the correct so­

lution is possible even if sorne of the range points are classified with incorrect target 

line segments. A study of the el'l'ors involved in the position correction problem led 

to t.he concept of the 1'egion of convergence, inside which any initial position esti­

mat.e will successfully converge to the true position. Related to this is the radius of 

convemence, which is the distance in any diredion from the actual robot's position 

under which correct convergence will occur. This extra measure was useful due to the 

non-symmetric shape of these regions. Regions of convergence change from position 

1.0 pORit.ion and between environments, but can help to roughly predict a lower bound 

on the accuracy requil'ed for initial position estimates in a particular environment -

a llseful value for the more general globallocalization algorithm. 

Sincc posit.ion correction fails under sorne conditions, a method of verification was 

developed 1.0 check its results. These quality measures act as functions in the domain 

of possible poses the robot can take, and are designed to achieve their global maxima 

at the pose estima.te whose error is minimized (which is assumed to be the robot's true 

pose). Two measures wel'e presented and used to test data: the classification factor, 

which is a coarse indicatol' of confidence in a converged solution and takes values 

bctwecn 0 and 1; and the comparative quality measure, which is more sensitive to 

small Cl'l'OrS in a pose estimate but can only be used for comparative purposes sinee 

the valucs of its global maxima are not consistent from environment to environrnent. 
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In addition to verification of a converged solution of position cOl'red.ion, <]lIulit,y 

measures were shown to be useful in correcting a robol,'s orientation as well. Ol'iünta­

tion correction was approached as an optimization problem in t.he qualil,y rncasut·cs, 

and allowed full pose correction given a sufficicntly adcql1ate init.iétl (:1', !J, 0) cst.iIl Httc. 

The introduction of the effective angle range extended the regiol1 of convcrgellCl' inl,o 

the orientation dimension, allowing the lower bound of accUl'acy of the est.imat.e 1,0 

include the robot 's angle as weil. 

Finally, the problem of global localizalion was cOllsidered, where an est.illlélt.e or 

robot pose is not available. This problem was approached as a.not.her opt.itllill,il.t.ion 

problem, this timeglobally optimizing the quality measures in t.he 3-dimensional pose 

domain, with each (x, y, 0) point therein acting as an estimat.e for a colllplet.e lo('al 

localization. The difficulty with this method is that only the l'egion nCéll' t.he glohal 

maximum is convex enough to allow gradient asccnt maximill,al.ion Illdhods. Therc­

fore, a sparse-to-dense sampling approach was devised to find t.he globa.l maximum 

without the brute force and time consuming requirelllents of dense gloha.1 samp\ing. 

Time-of-flight sonar sensors were the range sensors t1sed for a.1I (!xperilllenl,s i Il 

this thesis (both real and simulated, except fol' the ideal simuiat.ions). The maps ('011-

structed by the robot matched the environments quitc closcly. Special coIIsidpI·ilt.iOIlH 

were given to the mapping process that took into account sonar seHHOt' propcrt.ies, 

and these resulted in better maps. Since these considerations were 1101. pa.rt of t.he 

cluster-fit-split-merge modeling proeess, we can see that the rnapping pl'ocess il> 0PPJ1 

to accept special considerations that exploit 01' account for the pal'ticulal' J'auge sellHor 

being used with the mobile robot. 

Quality measure experiments were perforrned to illustratc how the c1assifical,ioJ1 

factor and the comparative quality measure can be uscd to hoUI verify localbmtioJ1 

results (sinee correct convergence is not guaranteed) and 1,0 choose between multiple 

solutions. In tests with the three rooms, all but one of the caSCH showed t.haL the global 

maximum occurred al. the true robot pose. The case where this did nol, oecur was duc 

to similarity in the surrounding of the true robot pose and t.he pose cOl'rcsponding 

to the global maximum, and this was illustrated. Of ail the trials, this only oc<:ul'red 
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for one position, showing that only in the most symmetric of environments will the 

<juality rneasures not. indicate a correct solution, making them robust to the many 

possible environmcnts a mobile robot may encounter. 

Regiolls of convergence were calculated for a number of randomly selected posi­

tions withill each sam pie envil'onment. The radii of convergence for these regions were 

round to he slTIall ((i cm to 40 cm) in a plain environment with few unique geometric 

feat11res élnd sirnilar-Iooking areas. For an environ ment with a lesser degree of self­

similarityand rnOl'e uni(jue features, the radii increased (10 cm to 60 cm) as expected. 

For the final trial, the environment with many geometric features yielded the highest 

mdii of convergence, ranging between 42 cm and 90 cm for the six poses tested. These 

expcrirnents dernollstrated that the more unique geometric features an environment 

has, the less accu rate an initial pose estimate needs to be. I<nowing the bounds in 

which localization may work correctly allows a user or an exploration system to judge 

how far a mobile robot may move before its pose should be recalibrated. 

Fiually, globallocalization was tested with the robot in the same randomly selected 

sample poses as the previous tests. Errors were larger and more frequent for the low­

feal.ure environ ment (up to 4.5 metres and 190° in error for a few poses, with an 

average of 60 cm and 30°), were reduced with the introduction of more geometric 

f('atures in t.he second environment (up to 400 cm and 175° error, averaging 27 cm 

and 17°), and in the real-world environment. containing many geometric features very 

acclIrat.e results were obt.aincd (maximum error of 3.9 cm and 1.5°, averaging 2.5 cm 

and limier 1°). Olle important and very interesting observation was that aH global 

localizat.ion trials demonstrated a median pose error of under 3 cm in position and 

IIl\dcr 3° in orientation. 

ThC'se cncoUl'aging results show that although sonar has complex geometrical ef­

fcds and is a rclativcly impl'ecise range sensor, it still can be used for accurate mobile 

robol. localizatioll using maps it builds by itselfj thel'efore, one may conclude that 

supel'-high aCClll'acy sensol'S and perfect envil'onmental models are not necessarily 

rC<luircd to obt.ain accu rate localizat.ion . 
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Several interesting issues remam ta he flll't.hcr cxplo\'cd élnd inc\uded wit.h t.he 

present system. For instance, map construction could he made more dynélmÏ<: Ily 

allowing line segment models to he dclcted when range meaSl\I'CII1(mt.s show t.he objed.s 

are no longer present in the environment. This has already bccn st.l1died hy Lcollêll'd, 

Durrant-Whyte and Cox [24] based on model confidence vahl<'s, élnd could IH' adapt.('d 

for use with the approaches discusscd in this thesis. Ot.hcr issues incll1c\(' t.h(' liSe' 

of better optimization methods for global localizat.ion, such êlS silllulat.ed é\.llllt'élling 

or other such techniques for optimizing mult.i-dimcnsional ill-lH'hav<,d ('III1Ct.ioIlS; and 

exploration techniques which use the present. st.ate of a map t.o decide wl\('l'(, 1.0 pxplol'(' 

next. Exploration work such as that donc by Whaite and Fel't'Ïe [:lf>] is illdepenc!('III. 

of localization and couid be insel'tcd as a. parallcl module t.o t.ht' sysi.('111 dc'sni ),('<1 in 

this thesis. 

Finally, as has been mentioned a Humber of timcs in this t.hesis, rallge' sensoJ's ot.hc'J' 

than sonar are perfectly usable with this system. SOIlW fut.lJI'e wOJ'k cOllld illv()lv(~ 

stretching the lower error bounds t.o the limit when l'étnge SCIISOt'S lIJoJ'e aecllJ'(II,(' t.haJl 

sonar are integrated into the system . 



• 

• 

References 

(1 J Bi!lur Bal'shan and Roman Kuc. Differentiating sonar reflections from corners 

alld planes by employing an intelligent sensor. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 12(6):560-569, 1990. 

[2] C. Bibcr, S. ElIin, E. Shenk, and J. Stempeck. The polaroid ultrasonic ranging 

system. Pl'OC. of the 67th Convention of the Audio Engineering Society, 1980. 

[3] D. W. Cho. Certainty grid representation for robot navigation by a bayesian 

Illcthod. Robolica, 8:159-165, 1990. 

[4] Ingemar J. Cox. Blanche - an experiment in guidance and navigation of an 

alltonomolls robot vehicle. IEEE Transactions on Robotics and Automation, 

7(2):193-204, April 1991. 

[5] /\. Curran and K.J. Kyriakopoulos. Sensor-Based Self-Localization for Wheeled 

Mobile Robots. In IEEE International Conference on Robotics and Automation, 

pages 8-13, Atlanta, Georgia, May 1993. 

[6] Michael Dt'urnheller. Mobile robot localization using sonar. IE'EE Transactions 

011 Pattcm Analysis and Machine Intelligence, 9(2):325-332, 1987. 

[7] Richard O. Duda and Peter E. Hart. Pattern Classification and Scenc Analysis. 

John Wiley & Sons, Inc., 1973. 

[8] Gregory Dudck, Michael Jenkin, Evangelos Milios, and David Wilkes. Sonar 

sensing and obstacle detection. In Proceedings of the Conference on Military 

Robotics, Medicine Hat, Alberta, September 1991. 

[9] Grcgory Duclek, Michael Jenkin, Evangelos Milios, and David Wilkes. Reftections 

on modelling a sonar range sensor. Technical Report CIM-92-9, McGill Centre 

for Intelligcnt Machines, 1992. 

117 



• 

• 

References 

---------------=--~='+J! 

s~ 

ILS 

[10] Gregory Dudek and Paul MacKenzie. Model-based map COtlstl'uct.ion fol' l'Obot. 

localization. In Proccedillgs of Vision Inlelfacc 1993, Nort.h York, Ontal'io, May 

1993. 

[11] Gregory Dudek a.nd Chi Zhang. POSC est.imation from image dat,a, \Vit,hout. explicit. 

object models. In Pl'oceedi1/gs of Vision l/l/erface 1.994, Banff, Albert.a, WH'J. 

[12] Alberto Elfes. A sonar-based mapping and navigat.ion syst.em. [n 1 E'E/~' 11I1f.,.­

national Conference on Robo/ics and A utomatioll, pages 1151-- [ [5G, H)SG. 

[13] Cla.ude Fennema, Allen Hanson, Edward Riseman, Ross.J Bevel'i<Ige, and Hakcsh 

Kumar. Model-directed mobile robot navigation. IEEE 'l1'onsncliolls 011 "yfi/cms, 

Man and Cybernetics, 20(6):1352-1369, 1990. 

[14] Javier Gonzalez, Anthony Stentz, and Anibal Ollcl'O. An iconie posit.ion CHt.illla.t.OI' 

for a 2d laser rangefinder. In IEEE International Confcrence 0/1, !lobolics and 

Automation, pages 2646-2651, May 1992. 

[15] Rafael C. Gonzalez and Paul Wintz. Digital lmll!}e P'1'Ocessing, Addison-WeHley, 

1987. 

[16] William C. Guenther. Analysis of Variance. Pl'entice-Hall, IIIC., H)()4. 

[17] Alois A. Holenstein, Markus A. Müller, and Essam Badl'cddin. Mobile rohot. 10-

ealization in a struetured environment cluttered with obst.acles. In /I,,'EH Inlc1'1U1,-

tional Conference on Robotics and A utornation, pages 2.576-2581, Nice, FI'ancc, 

May 1992. 

[18] R. A. Jarvis and J. C. Byrnc. An automated guided vchiclc wit.h map building 

and path finding eapabilities. In Bolles and Rot.hs, cditol's, P1'occcdin,fJ,q of the 

4th International Symposium on Robolic Rescal'ch, pages "n7-50~. M fT Press, 

1988. 

[19] Lindsay Kleeman. Optimal estimation of position and heading fol' mobile rohotR 

using ultrasonic beacons and dead-reckoning. In IEEE International C(mfcrrmcc 

on Robotics and Automation, pages 2582-2587, Nice, France, May 1992. 



• 

• 

Ilcfcrenccs 119 

[20] Roman Kuc and Billur Darshan. Navigating vehicles through an unstructured 

environment with sonar. In IEEE International Conference on Robotics and 

Automation, pages 1122-1426, 1989. 

[21 J Roman K uc and Omur Bozma. Building a sonar map in a specular environ­

ment. using a single mobile sensor. IEEE Transactions on Pattern Analysis and 

MfLchinc Intelligence, 13(12):1260-1269, 1991. 

[22] .John J. Leonard and Hugh F. Durrant-Whyte. Application of multi-target track­

ing 1.0 sonar-basf'd mobile robot navigation. In Proceedings of the IEEE 29th 

International Conference on Decision and Control, pages 3118-3123, Honolulu, 

Hawaii, Deccmber 1990. 

[23] .John .J. Leonard and Hugh F. Durrant-Whyte. Mobile robot localization by 

tracking geometric beacons. IEEE Transactions on Robotics and Automation, 

7(3):376-382, June 1991. 

[24J John J. Leonard, Hugh F. Duri'ant-Whyte, and Ingemar J. Cox. Dynamic map 

building for an autonomous mobile robot. The International Journal of Robotics 

Research, 11(4):286-298, August 1992. 

[25] .long lIwan Lim and Dong Woo Cho. Physically based sensor modeling for a 

sonar map in a speculaI' environment. In IEEE International Conference on 

Roboli('s antl A utomation, pages 1711-1719, Nice, France, May 1992. 

[26] David Ma.rr. Vision. W. H. Freeman and Co., New York, 1982. 

[27J H. P. MOl'avec and A. Elfes. High resolution maps from wide angle sonar. In 

IEEE lnternafional Conference on Robotics and Automation, pages 116-121, St. 

Louis, Missouri, 1985. 

[28J 1". Nashashibi and M. Devy. 3D incremental modeling and robot localization 

in él structured environment using a laser range finger. In IEEE International 

Conference on Robotics and Automation, pages 20-27, Atlanta, Georgia, May 

1993. 



• 

• 

References 120 

[29] William H. Press, Brian P. Flanncry, Saul A. Teukolsky, and William 'l'. Vd,t.('I·­

Hng. Numerical Recipes in C. Cambridge University Press, H)~H. 

[30] Azriel Rosenfeld and Avinash C. Kak. Digital Piclllrc Pro('fssillf/. A('é\(It'll1ic 

Press, New York, 1976. 

[31] Yuval Roth, Annie S. Wu, HenlZi H. Al'paci, Tcrry Weylllout.h, a.nd Hallll'sh .Jaill. 

Model-driven pose correction. In IEEE Inte'/'lIllfiollal COllfcl'cnN' 01/ Hol!ofi('s tlnd 

Automation, pages 2625-2630, Nice, France, May 1992. 

[32] Godfried Toussaint. A graph-theol'ct.ical primaI sketch. C0111jJ1/fa.fiollallHol'phol­

ogy, 1988. 

[33] Godfried Toussaint and Jel'zy W. Ja.rornczyk. Relat.ive Ncighborhood GI'a.phs 

and their Relatives. Proceedings of the IEEE, 80(9): 1502-1517, Sept.cmhel' 1 ~H)~. 

[34] J. Vaganay, M.J. Aldon, and A. Fournier. Mobile l'ohot. at.t.it.ude est.imation 

by fusion of inertial data. In IEEE Intc1'nalional ConJe'rc'llcc 01/. Uo/Jofù''<; and 

Automation, pages 277-282, Atlanta, Georgia, May 199:1. 

[35] Peter Whaite and Frank P. Ferrie. Uncertaill views. CVPR, HJ92. 

[36] A. Zelinsky. Mobile robot map making using sonar. J01t'T'1utl of Uo!Jofù: S!J,<;lt·71I..';, 

8(5):557-577, 1991. 




