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Abstract

This thesis describes the coupled Lasks of using a mobile robot to construct a map with
noisy range sensors (sonar) of an initially unfamiliar environment, and using such a
map to determine the robot’s position and orienlation. The map need not necessarily
represent the actual spatial structure of the environment so much as it is meant
Lo represent the major structural components of what the robot perceives. These
“features” of the environment are modeled as straight line segments and arc assembled
together to form a map. One problem with this approach is that maintaining an
absolute coordinate system for the map is difficult without periodically calibrating
the position and orientation of the robot, due to the unbounded accumulation of
positional errors as the robot moves and rotates.

An approach to calibrating the robot’s position, known as localization, is pre-
sented. In suitable environments, it is possible to use sonar data to perform this
operalion given coarse estimates of position and orientation, which are iteratively
refined to high accuracy using the map and a set of sonar measurements from a sin-
gle position. Provisions are made for verification of the results of localization using
quality indicators, which give a measure of the confidence in the accuracy of a refined
position estimate.

The approach is then generalized to allow global localization, where position and
orientation estimates are not available.

Using a number of sample environments, experimental results show that in spite
of the inherent noisiness of sonar sensors, accurate localization of a mobile robot s
achicvable. In addition, the constructed maps are general enough to be used for

purposes other than localization, such as path planning and collision avoidance.




Résumé

Cette these aborde deux problémes reliées & la localisation d’un robot mobile. Le pre-
mier concerne la construction de cartes d’environnement inconnu a Paide de détecteurs
ultrasoniques, et le second concerne la détermination de la position et de 'orientation
du robot a partir de ces cartes. La représentation cartographique ne correspond
pas nécessairement & la structure spatialle cxacte de 'environnement, mais plitol i
une représentation des composantes majeures de structure telles que percues par le
robot. La modalisation de ces composantes se fait & 'aide de segments de droite, et
la conjonction de ces modéles forme la carte de ’environment. D A 'accumulation
d’erreurs de position et d’orientation du robot, un des problémes rencontré avee cetbe
approche est le maintien d’un systéme de coordonnées cartographiques absolu sans
calibration périodique de la position el de P’oricntation.

Comme méthode de calibration, le procédé de localisation cst utilisé. Dans des en-
vironnements convenables, des données ultrasoniques servent i établir la localisation
a partir d’une estimation de la position et lorientation du robot. Cetle cstimation
est rafinée de facon itérative jusqu’a haute précision a 'aide de données et d’une carte
créée a priori. Pour vérifier le résultat de localisation, un indicaleur de qualilé, qui
donne une mesure du niveau de confiance en la précision de 'estimation, est défini.

Cette approche de localisation se généralise pour permetire une détermination de
position et d’orientation lorsqu’aucune estimation est disponible.

A partir d’un certain nombre d’environnements d’essai, les expériences démontrnt,
la possibilité d’obtenir une localisation précise malgré la présence inhérente de hruits
dans les données ultrasoniques. Aussi, la généralité des cartes construites pour le
procédé delocalisation permet leurs utilisation pour d’autres fins tels que Pappréhension

de collision et la planification de trajectoire.
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Chapter 1 Introduction

One of the common themes of many mobile robot systems is the use of some form of
map for navigating within an environment. This is especially true of mobile robots
demonstrating at least some minimal amount of autonomy in their tasks. Applica-
tions such as path planning and collision avoidance are two examples of tasks that
require that the robot explicitly model its environment in some way. In fact, the
major difficulty in autonomous navigation is not so much the tasks (such as the two
mentioned above), but rather the extraction of usclul information from sensor data
and its relationship with a navigation map [23].

An important subproblem embedded in navigation is that of sclf-localization. Sim-
ply put, localization answers the robot’s question “where am 1?” and usually must he
solved before proceeding with higher level operations such as path planning. In cases
where a range sensing device is mounted on board a mobile robot, measurements
taken with this sensor will usually be relative to the robot. In order to maintain any
kind of global coordinate system within a map of the environment, the location of
the robot must be known before any of the objects sensed can be correctly placed
on the map. In most cases, the location of the robot consists of the position of the
robot in space and the robot’s orientation. This information, referred to in this the-
sis as the robot’s pose [14, 31] (also known as the robot’s configuration [6]) is what,
must be correct in order for accurate placement of sensed objects within a global
coordinate system'. For clarification, the term pose will refer to the position together
with the orientation of a robot in a global coordinate system, i.c. one would say
pose = (z,y, #), while position = (z,y) and orientalion = 0.

A preliminary question is: why are sensors needed to perform localization? Given

an initial pose of a mobile robot, its current pose should be calculable by integrat-

!Since the location of a sensed object is relative to the assumed pose of the robot, any error in
the estimate of robot pose is also present in the position of the sensed object

il Al




CHAPTER 1. INTRODUCTION 2

ing the robot’s motion history, assuming this is known. This process is commonly
known as dead reckoning. The problem with dead reckoning is that small errors in
the integration of orientation, distance and velocity will accumulate progressively as
a mobile robot moves through its environment (errors such as those brought about
by the problems of wheel slippage, uneven ground, or unexpected collisions) unless
corrected. Uncorrected errors are integrated over time along with the velocity history
and thercfore errors in absolute pose accumulate disastrously with successive motions
of the robot. Eventually, the robot’s estimate of its own pose will be drastically differ-
ent from its true pose, and therefore it would need to be periodically or continuously

recalibrated in order to minimize this error.

1.1 The Approach

Given the necessity of performing localization, we need to know what kind of map is
required to perform it. At a first glance, a complete and accurate a priori map of the
environment would appear appropriate in many domains. However, such accurate
metric maps are rarely available, nor is it always easy to fabricate them. More
importantly, even when metric maps (for example, architects’ floorplans) are available
in a usable form, they tend to not portray the environment in a fashion consistent
with typical robotic sensing devices. For instance, commonly-used sonar devices fail
to delect many existing structures (like overhangs or thin cylinders) and may “detect”
many structures that are not physically present (such as illusionary walls in corners
and other structures due to multiple reflections of the sonar beam). For these reasons,

it would be most valuable if a mobile robot could construct and maintain a map of an

cnvironment in terms of its own perceptual mechanisms. In simpler terms, the robot

should be able to build the map of the environment as it “sees” it, not as human

beings may see it. Considering that the robot must be guided by its own sensors, this

is not an unreasonable supposition.

Before localization can be accomplished, at least a partial map of the environment

- -
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is required to which new range measurements arc compared?. Therefore, the use of
localization as described here assumecs that the robot has previously entered an unfa-
miliar environment and has constructed a map using the map construction techniques
described in this thesis. The measurements taken by the robot’s range sensor show
the assumed positions of objects in the environment based on the sensor’s present
pose estimate and are compared to the map. At this point the discrepencies between
the sensor data and the map indicate the crror in the estimated pose. The term range
data point refers to a point in space where the range sensor has observed an object
(based on the range of the object from the sensor and the pose of the sensor), and
this term is used throughout this thesis.

The localization techniques in this thesis are based on refining a coarse estimate of
pose. This local localization assumes that such an estimate is available but contains
errors, such as an estimate obtained from dead reckoning or another coarse localiza-
tion technique. The error in the pose estimate for which local localization functions
correctly is bounded, with the actual upper bound being determined by the environ-
ment and the robot’s place within it - in general, the local localization technique
discussed in this thesis cannot correct a coarse pose estimate whose error is too large.

Local localization is in contrast to global localization, where no a priori estimale
of pose is provided by the user, and the robot must rely only on its sensors and its
map. As is shown in this thesis, global methods can be based on local ones. Locally
convergent pose estimation (local localization) is further decomposed into position
correction and orientation correction. All the components of localization are fully

explained in their appropriate sections.

2The word partial is used because a complete map showing all the details of an arca 18 not
necessarily required. As long as there is enough correspondence between visible features in the
environment and what was seen at the last known location, il is possible for localization to he
performed. Whether a representation of the environment with this kind of minitnum eriterion can
be called 2 map is debatable.

e
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CHAPTER 1. INTRODUCTION 4

1.2 Thesis Outline

This thesis begins by describing the task of map construction, where objects in the
world are modeled in a way conducive to localization. Once the models and the
methods of obtaining them are described, the methods of localization are discussed,
beginning with position correction. The results of position correction then lead to
the development of quality measures, with which verification of these results can be
done. These measures also allow for orientation correction and global localization,
and are discussed on this basis.

The outline of this thesis follows:

Chapter 2 discusses some related work that has been done in the area of mobile
robot map construction and localization. The three basic approaches to localization
arc discussed with examples from the literature.

Chapter 3 gives a brief introduction to the robot used in the experiments done for
this thesis, and how range data are gathered.

Chapter 4 introduces the approach to map construction. The methods used for
the clustering of point data, line fitting, splitting and merging are presented.

Chapter 5 begins the discussion of localization by considering correction of the
crror only in the position of the robot. An iterative weighted sum of vectors approach
is discussed, as well as issues such as the handling of errors and of convergence. Some
illustrative results are shown.

Chapter 6 discusses how one may measure the quality or confidence of a particular
posc cstimate. The two basic types of measures, the least-squares measure and a
neighbourhood occupancy measure are presented, as well as third measure that is a
combination of the first two. Some examples using real data are given.

Chapter 7 continues the discussion of the measures of quality by demonstrating
how these measures allow correction of orientation in addition to position to give full
pose localization. The problem of global localization (where no initial pose estimate
is given) is also addressed here. Both are formulated in terms of the optimization of

non-linear functions of the quality measures.
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Chapter 8 presents experimental resultls of the approaches developed in the pre-
vious chapters as applied to one real and two simulated environments. This is in
addition to the example real environment in earlier chapters which was used to illus-
trate the various aspects of the approach. Quality measurcs, regions of convergence
and global localization results are presented for each sample environment.

Chapter 9 concludes the thesis with a discussion of the topics presented regarding
map construction and localization, together with a summary of the findings obtained

from experiments.




Chapter 2 Related Work

Work in the areas of mobile robot map construction and localization generally began
in the early 1980s, and since then there have been several proposed approaches to
these problems. This chapter presents a background to the localization issue: map
making solely for the purposes of path planning, collision avoidance, etc. will not be

the focus.

There are basically three approaches to localization:
1. active localization

2. passive localization

3. integration of past kinetic history

Active localization refers to the approach where beacons are placed in the environ-
ment at known locations so that a mobile robot may receive transmissions from them,
and thus calculate its global position based on its position relative to the beacons.
This has been done using both ultrasonic beacons [19] and infra-red beacons [18]. The
Global Positioning System (GPS) of the United States is also an example of active
localization, but using satellites as beacons. The main criticism of this approach is
that while robot positioning may be achieved, it is necessary to modify the environ-
ment in order to do so. For situations where it is desired to introduce a mobile robot
to an unknown environment, it may not be possible to use this approach, at least
as far as exploration is concerned. In situations where the environment is relatively
stable (such as a warehouse floor), this approach may suffice.

Passive localization is the approach where the environment is not modified, and
the onus is on the robot to scan the environment to determine its position, usually with
the aid of a map. The term “passive” does not refer to the sensor: sonar, laser and
infra-red range finders are active sensors, but the environment is not “actively” aiding

the robot. This is by far the most popular approach, since the use of environment
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maps is useful for other tasks in addition to localization, and various inexpensive
range sensing devices are available on the market. The various facets to this general
approach is covered in more detail in their own sections in this chapter.

The third approach refers to using the past movement history of the robot to
calculate its present position (assuming of course that its initial position was known).
The simplest method is commonly known as dead reckoning. This is a relatively
simple book-keeping operation where, for example, the shaft-markings found on most
wheeled robots are counted as the robot moves and rotates. The problem with using,
this alone is that errors accumulate without bound as the robot continues to move.
Wheel slippage, gear backlash, the use of finite-precision arithmetic are a few of the
kinds of errors that affect dead-reckoning. From time to time another localization
method must be used to reset the robot to a correct position, which, by some re-
markable coincidence, is the subject of this thesis. How often this must be done
depends on the degree of error the robot accumulates as it moves.

A step up from the distance/angle monitoring of dead-reckoning arc the systems
that use inertial data [34]. These systems have the potential to be quite accurate,
even in less structured environments than indoor situations. Like dead-reckoning, the
error in the position estimate still approaches infinity in the limit, but in this case
much more slowly. In general these systems tend to be very expensive, but in the
future the costs of accelerometers and gyroscopes and the like may come down to the

point of making this approach cost competitive.

2.1 Passive Localization Approaches

2.1.1 Grid-Based Techniques

Grid-based techniques involve the construction of a two-dimensional and in some cases
a three-dimensional grid which covers the environment in which the robot may move.
Moravec and Elfes did early work on the use of certainty or occupancy grids [27, 12],
which took a probabilistic approach to whether a given cell in the environment, grid

contains an obstacle or free space. Lim and Cho did further work on extending this

e, .
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idea to accurate sonar modeling [3].

Any obstacle or part of any obstacle perceived within a cell is assumed to be
present within the entire cell; therefore, one concern with this approach is the size of
the grid. For maps representing large areas, a small cell size would preserve detail but
would increase the memory requirements of the map. Large cell size decreases memory
but also decreases usable frec space due to the larger neighbourhoods surrounding
obstacles. Kuc and Barshan use a cell size based on an estimate of how far the robot
can move without a collision [20], but in general there is no rule governing cell size.

Grid methods commonly perform localization by directly comparing a global or
known occupancy grid map with the local grid map containing newly acquired data,
using a cross correlation data matching technique. The accuracy of this method
is limited in that spurious data is weighted equally with good data, since all cells
are used in the correlation. Another concern is that the amount of data stored is
proportional to the size of the cell array, and it follows that the speed of a matching
algorithm would be affected by an environment whose cell size is small.

Grids can also be used in conjunction with other techniques to reduce the search
space involved. Gonzalez et al. use a feature-based approach but overlay a grid to

reduce the number of feature models compared during matching [14].

2.1.2 Feature-Based Approaches

These approaches all involve the use of a map of the world that contains features

usable for localization. There are two primary varieties:

Feature-Matching: features are extracted from sensed data and matched to fea-

tures in the map

Data-to-Model Error Minimization: the discrepancy between raw sensed data

and map features is minimized

Gonzalez el al. refer to these approaches as feature-based and iconic methods respec-

tively [14].
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The features of the world map may be provided a priori by the user or may be
“discovered” by the robot as it explores the world. There are numerous examples
in the literature of the first instance [5, 13, 4, 22, 23, 6, 17], but on-linc robot map
construction for the purpose of localization is no stranger to the scene cither {24, 14,
10].

The feature-matching techniques, as stated, involve extracting [eatures from newly
acquired sensor data and matching them to known features in a map. Drumbheller [6]
extracts straight line segments from a sonar contonr (a 360° sonar sensor sweep)
and attempts to eliminate implausible combinations of line scgments using a number
of geometric constraints. Holenstein et al cxtract features from a sonar contour in a
similar fashion, but instead of a best fit approach they compare cach pair of extracted
line segment models to all pairs of reference objects (for instance, the walls on a map)
and calculate all possible geometric transformations that would match the two pairs.
The transformations for all pairs of line segments are then clustered in (a,y,0) space
and the coordinates of the largest cluster is taken to be the true robot pose [17].
Fennema et al attempt to minimize a quadratic error model, which is based on the
distances between models and extracted features [13]. A concern inherent to all three
of these approaches is that features must be extracted from a single scan of the
environment, and to “ensure” that these features are “well scen”, dense data scans
must be taken!. In addition, if a particular sensor scan of the environment yields
data but no discernible features, then the matching will not be reliable.

Localization in vision-guided robots has also been tackled by feature-matching.
Roth et al match 2D image features to 3D model features and apply a global con-
sistency check for verification [31]. Nashashibi and Devy use a laser range finder to
extract 3D planar faces and then match them to a 3D model of the environment,
which is then applied to a generalized Kalman filter [28].

The data-to-model error minimization or iconic approach involves minimizing

some error measure which is a function of the individual distances between the raw

1In this context, scan density refers to the angular separation of adjacent measurements, so
making one scan every 3° is more dense than one scan every 12°.
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sensor data and the stored environment map. Raw sensor observations are commonly
paircd with models representing the object(s) in the environment from which the
rcadings were obtained. Similar to the approach taken in this thesis, Cox [4] paired
single range data points to the line segment model closest to them in the Euclidean
sense. He then linearized a non-linear equation about an estimate of the robot’s
position and used a closed form least-squares linear regression to find a solution.
Gonzalez, Stentz and Ollero used the same minimum distance criteria to pair their
laser range data to line segment models, but used an iterative algorithm to find
a Jacobian matrix from which a least-squares fit of robot position and orientation
could be found [14].

Leonard, Durrant-Whyte and Cox have developed a system which formalizes the
localization process as a vehicle-tracking problem [23, 22, 24]. Their approach belongs
in the featlure-matching category since their observations take the form of extracted
regions of constant depth (RCDs - these are angular sectors in a dense 360° sensor
scan around the robot whose distances from the robot are constant over the sector)
from single scans rather than the raw sensed data points. The authors preferred these
RCD observations over straight lines or raw data because they claim RCDs agree more
with the properties of ideal sonar data [23]. While this is most certainly true, these
properties manifest themselves only to a significant degree in specular environments.
In real-world indoor environments, most objects are not ideally specular, and thus
RCDs have a radius of curvature large enough to be well approximated by a straight
line. In addition, truly non-specular planar objects do not visibly exhibit the RCD
property; rather, we have found that these objects are well modeled by straight line
scgments having linear depth variations.

Their system included a sensor model to predict observations; focusing on the
regions neighboring these observations helps to reduce focus on probable object loca-
tions, reducing the search space and helping to avoid spurious data. Once the sensor
model predicts an observation, an extended Kalman filter is employed to track the
observed object as the robot moves through the environment. The authors consid-

cred the cases of planes, corners and cylinders as models (to which they refer to as
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geometric beacons for use with sonar sensors. Map construction was also considered
in the light of localization [24] where they used a model of the sensor to predict range
measurements, and verified them as a function of time. Observations agreeing with
predictions were classified as “expected”; any others were “uncxpected”. By estab-
lishing a confidence measure for each geometric beacon (environment feature), only
those of high confidence were used for localization. Confidence would be increased
or decreased depending on whether the beacon was cxpected or unexpected by the
predicted measurements made using the sensor model. It is worthwhile to note that
this beacon confidence approach is independent of the specific approach to localiza-
tion, as well as how the beacons werc initially extracted. Therclore, as long as an
accurate sonar sensor model is available, i.e. onc whose measurement predictions
match those of the real sensor, it is possible to use this confidence approach without.
the requirement of their particular localization algorithm.

A more recent approach to localization has been examined by Dudek and Zhang [11].
This approach involves training a neural network with raw scnsor data in order to
associate a given observation directly with a known position. Once so trained, this
method is advantageous in that no formal map is required, and thercfore no models
of the environment need to be devised. Since the choice of the models of environ-
mental features often limits the environment in which a particular system may be
used, the neural network approach is less bound by this constraint. The problems
with this approach are that training the neural network may be very time consuming
compared to other methods, and that the lack of a map precludes other tasks being
performed with the same data, such as path planning, obstacle avoidance, and others

that require a map.




Chapter 3 The Robot

The robot used for experimentation in this thesis is Polluz, a three-wheeled cylindri-
cal mobile robot with a 12-transducer TOF (Time of Flight) sonar ring evenly spaced
around it (figure 3.1). The sonar ring rotates with the wheels so that the same trans-
ducer always faces the forward direction. Each transducer acts both as transmitter

and receiver. In the conventional TOF system, such as the Polaroid system [2], a

Figure 3.1: Pollux: a mobile robot

transducer sends out a pulse and receives an echo. The time delay tge1q, between
sending the pulsc and receiving the first echo is converted to a distance measure d
using the simple relation:

_ Ctdelay
d= =2 (3.1)

wherc ¢ is the speed of sound in air. However, the beam of the pulse sent out by
the transducer spreads out into a cone as it travels [9, 20, 36], and so any returned

echo is due to an object somewhere within this cone. Since a single point per scan

12




CHAPTER 3. THE ROBOT 13

is desired rather than a range of possible points, the point at the axis of the cone is

chosen as the most likely position for the object (figure 3.2) This minimizes the error

Sonar Cone
Assumed Position

of Object
Transducer
Physical
Object

Figure 3.2: Finding the Most Likely Position of an Object within the Sonar Cone

of any guess of position within the cone.

Since the arrangement of transducers around the robot is fixed with respect Lo the
forward direction of the robot, we thercfore know the orientation of cach transducer.
For scans more dense than the physical transducer separation, the robot can rotate
slightly to obtain denser measurements. If we consider the robot’s local coordinate
system in polar coordinates, then all the sonar echos received have coordinates (r,0),
with 8 = 0° being the forward direction (figure 3.3). If we know the robot’s correet
pose (recall pose = position and orientation) with respect to the global coordinate
system, then it is simple geometry to find the global coordinates of all the sonar data
points. Once again, we see the importance of knowing where the robot is located.
Errors in pose estimates translate directly into errors in the locations of objects in
the environment.

Figure 3.4 illustrates a type of “map” based solcly on the raw range data from the
sonar sensors. As can be seen from figure 3.4, the gencral shape of objects (in this
case, walls and other planar surfaces) can be distinguished. However, this task done
so naturally by humans is difficult to formulate into a usable algorithm for the robot,
- if it were easy, some general shape problems in machine vision could be solved. As

far as the robot is concerned, it only has a large collection of individual range data
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I e —

r ) Robot

FFigure 3.3: Sensed object placement is at (r,0) relative to the robot

points. Certainly storing every sonar point is not the best way to build a useful map -
while human beings can discern the presence of objects, the robot cannot and would

be limited in its capabilities if this type of map were its only resource.
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Figure 3.4: An Exampleof an Accumulation of Sonar Range Data: this is an overhead
view of a sample environment, where each dot represents the location of a
response within the environment (in global coordinates) from the robot’s

sonar sensors. The circle within the map represents the robot, and the
line within it indicates the robot’s orientation.
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Chapter 4 Map Construction

4.1 The Approach

The mapping approach described here belongs to that class of approaches where maps
are composed of models used to represent discernable features of the environment.
T'wo-dimensional modeling only will be considered. This is based on the assump-
tion of a small robot with fixed height sensors (true for all experiments done in
this thesis, since Pollux was the robot used). In many indoor, office environments
two-dimensional modeling is valid because the commonly encountered objects such
as doors, walls, chairs, desks, etc. with planar surfaces may be considered as two
dimensional but extended into the height dimension.

Onc could use different models for the various office-type obstacles likely to be
encountered [23] but it was decided to attempt to build maps using linear models
only. Since we are operating in an environment where objects are assumed to be
made of planar surfaces perpendicular to the floor, the constant height of the sensor
assumption validates this linear model choice. Each model would thus consist of a
line segment in space, and could be thought of as representing a section of a wall or
other obstacle although, in fact, some linearly-shaped clusters of observations may
not correspond directly to existing structures. For instance, some sonar data may
form linear clusters when the sensor observes a corner between two walls, due to the

effects of multiple reflections of the sound waves.

As illustrated in figure 4.1, modeling with line segments agrees well with the
threshold-based sonars, where each measurement corresponds to the first over-threshold

response for a brief ultrasonic “chirp”. By examining the characteristics of sonar [8,

2, 9] we can roughly describe each outgoing chirp as a 12 steradian measurement
cone and the first object of sufficient size within this cone results in a single response

‘ at that object’s distance. Consequently, a similar orientation that also includes the

16
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same object will return the same measurement (unless it hits a closer object). As
a result, even a small object will produce a collection of measurcinents at similar

distances that are nearly linear in structure [10] (figure 4.1). In spite of this difliculty

Figure 4.1: A Dense Scan of a Small Object

with sonar, using simple line-segment models can build very useful maps, especially
for the localization aspects that will be discussed in later chapters.

Extracting line-segment models from raw sensor data can be accomplished using
one of the many line-fitting algorithms available, and one such approach is explained

in this chapter.

4.2 Clustering

Clustering is the first step in fitling line-segment models to sensor data. Here the
data corresponding to presumably distinct objects in the environment are separated
to facilitate line fitting. Since we require separate models for separate objects, we

can exploit the fact that disjoint data point sets correspond to separate objects by
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dividing the data into groups before line fitting. This allows fitting to be done one

object at a time, and avoids fitting a single line segment to a group of distinct objects.

4.2.1 The Sphere-of-Influence Graph

A ncighbourhood graph may be defined as a set of connections or edges between
points in space. The sphere-of-influence graph, as proposed by Toussaint [32] is a
neighborhood graph [33] that can be applied to any finite set of unordered points in
a plane. It attempts to capturc the essence of a primal sketch for dot patterns of
arbitrary complexity. This graph has an interesting feature in that it may consist
of either a connected graph or a collection of disconnected pieces where appropriate,
and its algorithm does not require any tuning of parameters or thresholds. It is
precisely this characteristic of determining when and where to form disconnected
picces that makes the sphere-of-influence graph so useful for clustering for the line
fitting application.

The definition of the sphere-of-influence graph is as follows [32] (see Figure 4.2):

Definition 1 Lel S = {pi,pa,...,p.} be a finite set of points in a plane. For each
point p,eS, let R, be the distance to the nearest neighbour of p;, (i.e. the closest point
to p;) and let C; be the circle of radius R; centred at p,. The sphere-of-influence graph
is a graph on S with an edge between points p; and p, (i # j) if and only if the circles

C. and C, intersect in at least two places.

To relate this to clustering, we can say that if any two points share an edge of the
graph then they belong in the same cluster, and so, each disconnected piece of the
graph will form a cluster. Figure 4.3 illustrates this relationship between the graph
and clustering,.

The spherc-of-influence graph can be computed with complexity @(nlogn), where

n is the number of points [32].
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Ci C
e pi o
(a)

X
C y
(b)
Figure 4.2: Sphere of Influence Clustering: (@) Around cach point p,, define the cirele

Ci, whose radius is the distance to p;’s nearest neighbour p,. (b) Any p,
and py are in the same cluster if and only if C, and C, intersect in at least
two places.

4.2.2 Modification for Noisy Sonar Data

With the sphere-of-influence graph it is conceivable that a small number of points
very close together could form their own cluster, even among a dense group of points.
This problem could easily arise if a range sensor scanned the same object twice: the
two data points representing the object’s position would likely be very close together.
A cluster consisting of just these two points would be of little use in determining the
overall shape of the object, and would in fact suggest the existence of a very small
distinguishable object (see figure 4.4). However, given the limited sensor resolution
of range sensing devices such as sonar, such a suggestion would not he plausible.

A solution to this problem is to fix a lower limit on R,, guarantceing a minimum
distance to associate neighbours, which effectively places a lower bound on cluster size
and excludes the possibility of tiny clusters. The value of this lower limit, depends

directly on the accuracy of the particular range sensor.

4.3 The Line-Segment Modeling Strategy

Assigning line-segment models to the individual data clusters is done with a. fit-split-
merge strategy (Figure 4.5). Its basic operation is as follows: given a cluster of data

points, a single line segment is fit to the entire set of points. If the fit is good (the

A
- :ﬁé
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(a) A set of unordered points before clustering.

-
(TR

(b) Application of the Sphere-of-Influence
graph.

Figurc 4.3: Clustering and the Sphere-of-Influence Graph. Given a set of points in a
plane, clusters in the data are obtained. Connecting lines denote edges of
the graph. The disconnectedness of the clusters is clearly visible by the

limits of the circles.
line segment fits the data well) then this model is retained as a description for this
cluster. If the fit is poor, then the data is not well modeled by a single line, and
the cluster is divided into two sub-clusters. Fitting is then attempted on each of the
new sub-clusters individually. For instance, a set of points that forms a corner (i.e.
a junction of two walls) is not well modeled by a single line segment - it would be
better to use two perpendicular line segments. Fitting and splitting are performed
recursively until each cluster has a line segment that fits well, or until a stopping
condition is reached. An a priori stopping criterion is needed to prevent splitting
of the clusters into too many tiny groups (in the worst case two points each, since

a line fit to two points is always a good fit). After all lines have been chosen, any



CHAPTER 4. MAP CONSTRUCTION 21

XXX

(a) A simple linear cluster

LD

(b) Rescanned differently

(¢) Using a minimum radius rule

Figure 4.4: Effects of Too-Small Clusters: (a) shows a simple lincar cluster, assumed
taken from a flat object. (b) shows the object rescanncd, but this time
three of the points differed by a small amount (due to sensor error), so
that now two clusters are formed instcad of one. With the application of
a minimun radius rule, as in (c), we get the cluster as before.

line segments that are close together and co-lincar are merged into a larger single

compound line,

4.3.1 Line Fitting Algorithm

The line fitting step of the algorithm is bascd on a least-mean-squares method inde-
pendent of the choice of coordinate axcs, known as eigenvector line filling. Basically,
the fit line minimizes the sum of squares of the perpendicular distances from the

points to the line [7, 30, 15]. In two dimensions, given 1 data points in the form
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Fit Line — Check Line {2 f--_S..I_’_P.‘E..‘i‘.‘]‘.’_?f?.‘.‘i_sf.‘?_‘_’._f
Good romeeemom e S
i All sub-Clusters |
Noi .. Fit? ... §
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Figure 4.5: The Recursive Fit-Split-Merge Strategy for fitting straight line segments
to a single cluster of range data points: If a single line does not fit a
cluster well, split the cluster in half and try to fit a line to each sub-cluster.
Continue recursively until all sub-clusters are either fit acceptably or are
judged too unsuitable to be fit with a line segment.

(xi,4.), the covariance or scatter matrix S is calculated as:

1| mmh@- sL-2w-D) )

T Tk =) yi-g) Xy -9
Computing the principal and secondary eigenvalues Aprin and Agee of S and their
respective eigenvectors €y, and €y, finds the direction of maximum and minimum
variance in the cluster. This gives information about the shape of the cluster. Since
the goal is to fit straight lines, the direction of maximum variance is the orientation
at which such a line would be best placed, since the cluster is most “spread out” in
this direction. Therefore, the best straight line given the n data points is a line
parallel to the principal eigenvector €,,. Since the line must be fit onto the cluster,
this best fit line also must pass through the mean of all n points. Note that this line is
of infinite length, as no end points are defined in the above procedure. These may be
easily calculated by finding the perpendicular projections of each data point (z,4:)

onto ¢, and then assigning the end points to the two projection points furthest from
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the mean (one projection point on cach side of the mean along (), yielding the line
segment fseg.

In order to make this computation a little more robust (in addition to its robust-
ness with respect to the choice of coordinate axis) an additional step may be taken.
Whenever a line segment is fit to a sct of points, a fraction of the points is discarded.
By sorting all the points by the distance to their nearest neighbour (which we know
already since they have been clustered) and discarding those few whose neighbours
are most distant, then we are climinating the most likely outlicrs. The fraction to
be discarded is arbitrary but must balance keeping the true shape with climinating
outliers. By experimentation, discarding the most outlying 5% of points has shown
to be more effective than keeping all points, while not losing the essential shape of

the cluster.

4.3.2 Splitting Non-Linear-Shaped Clusters

Now that a line segment has been fit to the cluster, a measure of the quality of
its fit is also needed before we can decide whether or not splitting the cluster is
necessary. To start, we need to visualize what cigenvector line fitting tells us about,
the shape of the cluster. €p.n. and €. are perpendicular vectors, thus they allow
us to visualize the cluster as a shape which may be defined by two vectors, such as
a rectangle or an ellipse. If we arbitrarily consider the shape to he an clipse, then
we are effectively fitting an ellipse to the cluster. The cigenvectors Corm a0 Cy
govern the orientation of the ellipse (they define the orientation of the major and
minor axes) and the eigenvalues A, and A, define the shape (they are the lengths
of the ellipse’s major and minor axes). Note that if we had chosen the rectangle as
the fitted shape, A\,nn and Asee would be its length and width respectively. Since the
cigenvectors and eigenvalues are based on variances, these ellipses will be referred to
as variance ellipses (figure 4.6).

Before deciding how to use the variance ellipse to estimate the “fit, quality”, we

need to clarify some properties that éscg should possess in order to fit a cluster well,
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Figurc 4.6: Interpreting Clusters as Variance Ellipses: The eigenvalues and eigenvec-
tors of the data points’ covariance matrix govern the shape and orientation
of the ellipse that best fits into the cluster. The shape of this ellipse pro-
vides information as to how well the cluster may be modeled as a single
straight line segment.

Two main factors considered here are the elongation of the variance ellipse,

K= Aprin (42)

and the length ||{,e,||. Elongation is defined as the condition number of the cluster’s
covariance matrix, which is the ratio of the principal to the secondary eigenvalue.
An clongated ellipse has the property that when Aprin > Asec, the maximum variance
dominates the secondary and so the cluster tends to be well fit by a single line - in this
case we do not wish to split the cluster and re-fit. A variance ellipse where Aprin ~ Asec
is more circular in shape than elliptical, meaning the cluster is less likely to be in the
shape of a single line, and should be split. There is the case, however, where a cluster
should be split despite a large &: if A is still significant (i.e. more than just a few
centimetres for our sensors). There may be some structure perpendicular to &,EQ that
should not. be missed (figure 4.7). Only if @seg is very long could we have an elongated
cllipse and a significant minimum variance. Therefore it is desirable to split long

lines just in casc this “masked” perpendicular structure exists. If there is no such
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structure and the data is indeed shaped like a long line segment, then the merging
of line segments after the fitting process (section 4.3.3) will make the correction, so
nothing except time is lost in doing the extra splitting. We now define the quality of

Variance Values
0.27

e
o T_)
. 48.65

20 cm Y )

ll< 100 cm >|]

Figure 4.7: Splitting Despite Large x: Given the dimensions of the cluster and the
eigenvalues as shown, one can sec that despite the large & of 180, this
cluster should still be split due to the presence of the 20 cm corner.

a fit line as:

(4.3)

In order tostart with a simple frame of reference, we have defined e so that a perfectly
fit line has a “quality” of zero. While it may seem more intuitive to use high values
for high quality, we would have a value of infinity for perfectly fit lines, which is
too cumbersome to work with. If a straight line fits a cluster perfectly (each point
is on the line), then the variance perpendicular to the line is zero, ic A, = 0, the
elongation « is infinite, and the line quality € is zero. For cxample, consider the
simple case where we have n points that all lic on the same line, such as p, = (i,4),
fori=1,...,n. Clearly 0. (z —2)* = 0 (y — )2 = =™, (2 — 2)(y — %) and s0
the covariance matrix S is singular and therefore onc of its cigenvalues is zero, This
means that £ = oo and so € = 0. In this way we have an easy to use, recognizable
value for a perfectly fit line.

In order to decide whether or not a cluster should be split, we apply thresholding
to the value of €. A typical threshold is 1, which means we should split. any line
whose length is greater than its elongation. Smaller values such as 0.5 would allow

more detail in a map yet would require more lines to do so. The converse is true for
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thresholds greater than unity.

There are additional factors in the line generation process that are not accounted
for in the definition of €. For one, we require a lower bound on the absolute length
of . A tiny line should not be split into even tinier lines if its length is already equal
to the precision of the sensor, and so an additional threshold should be applied here.
The actual number of data points used to fit the line is also an issue. After splitting
a number of times there may only be a small number of points left in a given section
of the cluster, which may not be enough to ensure a line segment consistent with the
overall cluster.

Once it has been decided that a split needs to be made, the cluster is divided into
two parts. The minor axis (the line through the cluster’s mean and parallel to €sec) 18
used as the splitting border to separate the cluster into the two sub-clusters, and each
is then treated as a cluster in its own right and fit with a line segment. Figure 4.8

illustrates an example of fitting and splitting a single-corner-shaped cluster, a shape

that is not well modeled by a single line.

4.3.3 Merging of Line Segments

After fitting and splitting, the collection of existing line segments is inspected and
cvaluated for the merging stage of map construction, which is the combination of
pairs into new line segments.

Mecrging is performed for three reasons:

l. To combine short parallel line segments from a single cluster that may have

been over-split due to its size, shape, etc. (figure 4.9a)

(S

To combine line segments from different views of the environment. For instance,
consider two adjacent sections of a wall seen by the sensor, each with its own line-
segiment model of its part of the wall. Since the two sections are part of the same
wall, it is better to have a single line segment representing the whole wall rather

than two linc segments representing two adjacent wall sections (figure 4.9a).

3. To update the line-segment models with newer measurements. Often only a
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(b) Using Cluster-Splitting to Fit Line Segments

Figure 4.8: An Example of the Cluster Splitting Process

small part of an object is seen from a given position. As the robot moves to a
position from which it can view the object more clearly, it is able to obtain more
precise data, and this new data should be merged with the old data to update
the model of the object. For example, if the front of a small filing cabinet is
seen from many positions, the model representing it would be a line segment,
formed from a combination of lines fit from those positions. Since some of these
views may be somewhat inaccurate (due to distance, angle of incidence, ete,),
using the data from multiple views makes an accurate description of the same
object part more likely (due to the effects of possibly large amonnts of data used
to construct the model). This is different from (2) in that the line segments
to be merged are not adjacent but are models of the same part, of the object

(figure 4.9b).

e
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MERGE

(a) Short lines left over from cluster over-splitting, or lines modeling adjacent sections

of a large object
MERGE

(b) T'wo line-segment models of the same section of an object, differing due to small
measurement, errors

Iligure 4.9: Cases Requiring Merging: scenarios where merging is required

It is assumed that parallel and neighbouring line segments represent either adjacent
or the same sections of an object, such as a large wall. Therefore, any two line
segments are merged together if they are approximately parallel (their orientations
are within some threshold 0y, of each other) and are neighbours in a Euclidean
distance scnse (the distance between the two closest points on differing lines is less
than some dyerge).

Merging is performed in a manner similar to that used for line fitting: eigenvector
line fitting. This time we are not dealing with a set of data points, but as far as
eigenvector line fitting is concerned, we are. This is due to the fact that when we
store a line-segment model in computer memory, we keep the number of data points
used to construct the model (not the points themselves), as well as its mean and
covartance malriz. Given only these statistics of two sets of points, it is a straight
forward matter to obtain the same statistics of the combined set, as follows:

Suppose we have two line segments, and we know for 7 = 1,2 the values for n,
(the number of points used to construct the line), Z; (the mean of the x coordinates),

i (the mean of the y coordinates), and the covariance matrix

t

a, b,

bi c,

We wish to find the statistics for a single line segment obtained by merging the two,
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having N data points, means X and Y, and covariance

A B
B C
So we have [16]:
N = ny + Ng ('||)
- 1
X = -]—V—(nlil + ‘I'Lg.’i‘g) (45)
- 1
Y = S (mi + nags) (1.6)
A= (n1 - 1)01 + (712 - 1)(l2 + n (.’i‘l - /\—’)2 -+ 7112(.’1—_'2 - .\7)2
N
B= (n1 - 1)b1 + (712 - l)bz + n](.’fl - x\,)(gl - Y) -+ 772(.'?‘2 - “,)(02 - ))
- N

C = (n1 = Der + (ng — 1)y +j7\1rl(ﬂ1 — V)2 4 ma(f — V)? (1.7)

So, given two line segments, each with its own cluster statistics, we can combine their
statistics and apply eigenvector linc fitting to obtain the same result, as if we were
given all the data points individually in the first place. This ensures that overall line
merging will be independent of the order of the merging of pairs of lines, plus we
are not obliged to store all the range data points for cach line segment. (a veritable
benison indeed!).

Figure 4.10 is an example illustrating the combined, step-by-step results of fitting,
splitting and merging. Here multiple splits and merges are required to best model
the shape of the two-corner-shaped cluster.

To demonstrate these map construction capabilities, consider an “architectural”
map of a real environment (a portion of laboratory space) as shown in figure 4.11a,
and the map incrementally constructed from it by exploring the environment, (fig-
ure 4.11b). The range data points were gathered by the robot as it moved along the
path marked by the dotted line. Each time new data was acquired, the map was

updated. The dark lines in figure 4.11(b) represent the line segment models of the
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Figure 4.10: The Combined Actions of the Fit-Split-Merge Strategy

map, and their relationship to the actual range data is easily seen. It is important

to rcalize here that this environment was not entirely scanned before building the

map - while this is indeed possible, incremental map construction allows the robot to

correct the positional and orientational errors that accumulate as the robot moves.

This will be explained fully in later chapters.
Figure 4.11 also reveals an interesting aspect of this method when used with sonar
sensors. The upper right shows what is referred to as a spurious wall. This is a wall

' that does not exist in the environment, yet is consistently seen by the sensor from

2
bt
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Figure 4.11: An Example of Map Construction: The robot is in the environment
shown in (a). In (b), as the robot moves in a simple path (dotted line)
around a wooden box in the centre of the arca, it scans and updates
its map, which consists of the line segments shown overlaying the range
data. The range data is shown here for comparative purposcs, but this
map was not constructed from this entire set as a whole; rather, it was
made incrementally from the various individual scans. :

particular locations due to the effects of multiple reflections of the sonar pulses. These
may seem to be a liability to the map, but they nced not be. As long as that, part
of the environment where these illusionary walls were formed does not change, every
time the robot is at or near the location where it first saw the spurious walls, it will
see them again - in other words, spurious walls are consistent. In chapter | it was
stated that the map need only be in terms of the robot’s own perceptual mechanisms,
not necessarily conforming exactly with what human beings would sce. Consistently
seeing these ghost walls makes them valuable as environment features in their own

right. Of course, they can only be seen from a limited area in the environment, but,
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they still have enough use that they do not need to be discarded (which removes the

necessity for deciding which walls are real and which are illusionary).

4.3.4 Sonar-Specific Considerations

Although the aim of this thesis is to develop a localization method independent
of a specific type of range sensor involved (for example, it should work for laser
range-finders as well as sonar), for any given sensor such as sonar there are some
considerations particular to it. Sonar is much more than sending out a thin ray of
sound and waiting for its echo. While the thin line model may be applicable for
laser range finders, the “chirp” of a sonar transducer spreads out in a roughly conic
fashion (of course in reality it is much more complicated than this [20, 1, 21, 9]). Kuc
and Barshan have discussed a physical model where the sonar beam consists of two
distinct regions: a near zone and a far zone [1]. In the near zone, the sonar beam
can be modeled as a cylinder of the same radius as the transducer. The far zone
is modeled as a 3 dimensional cone diverging from the transducer (up to a certain

distance from the transducer), and the half-angle 6 of this cone is calculated as:

_, 0.61)
a

0 = sin (4.8)
where ) is the acoustic wavelength and « is the radius of the transducer. The system
of Kuc and Barshan had § = 10°, while our system is closer to § = 12° (¢=20mm,
f=49.4 kHz, c~ 343 m/s and A = 7). The near zone model is valid for ranges up to
%, which for our system is approximately 55 mm. Since we are almost always dealing
with distances further than this (the robot tends to avoid being so close to obstacles
for safcty reasons), we ignore the near zone and consider a simplified model where
sonar diverges as a cone of fixed half-angle 8 from the transducer in 2 dimensions. We
ignore the 3rd dimension for this simple model as we are using 2 dimensional maps,
although in some cases the 3rd dimension does play a role, as is described below.
Since we are not modeling the surface specularity of objects in the environment,

a worst case approximation is to assume that the sensor responds to the first object
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within the sonar cone, regardless of where it is within that cone'. We assume any
object seen by the sensor is at the centre of the cone (as we want to minimize the
error in the orientation of the object from the transducer).

To see a case where 3-D effects affect the modeling, refer to figures .11 and
4.12: when the robot is away from the desk (the top left desk in figure 1.11(a)),
the sonar cone intersects the deskiop even though the robot could fit underncath
(figure 4.12(a)), resulting in lines fit at the position of the right edge of the desktop.
When closer to the desk (figure 4.12(b)), the cone had not diverged cnough to see
the desktop, so the distance measurements were of the wall behind the desk. In this
case it may be that the sonar pulses will reflect off the floor or the underside of the
desktop. However, since these surfaces are al a very large incident angle to the cone,
the sunar pulses are reflected toward the rear wall, and since the half-angle of the
cone is small (10° to 12°) the error in the distance measured is small. Having these
two different objects that are very close together (i.c. the front of the desk and the
wall behind it) modeled differently is not necessarily a problem, since the robot will
not see both the desktop and the wall behind the desk fromn the same position.

A particular aspect of threshold-based sonar sensing is, as figures 4.1 and 4.13
illustrate, that the true size of objects may be smaller than sets of sonar measure-
ments may indicate. Given that we know the location of the sensor for cach range
measurement, we can consider the worst case where the two end points of the line
segment model were obtained when the centre of the sonar conc was directed past
the edge of the object (as in figure 4.13(c)). By approximating the arc of the sector
bordered by the sonar cone as a straight linc, then we can assume that for a given

end point of a line-segment model, the length has been overestimated by
doverest = r'p COS 0 (4())

where 7, is the (assumed) range returned by the sensor. Finding d,u.e. for both

'Even planar objects common to office environments come in a plethora of surface types, so
accounting for individual specularities is very difficult.
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(b)

Figure 4.12: 3 Dimensional Effects of the Sonar Cone: (a) The robot is far away from
the desk and so it “sees” the desktop. (b) As the robot nears the desk,
its cone does not intersect the desktop and proceeds to the wall behind
the desk. Nole that the half angle of the sonar cone has been enlarged
for illustrative purposes.

cnds of the line segment allows us to shorlen it to account for this extra length
aspect. While il is true that the object may actually be as large as or larger than
the measurements indicate, in a worst case situation we cannot be certain of the true
sizes of objects until the robot moves closer. It is also possible that for far models
the shortening could reduce the length to zero - in this case, instead of eliminating
these models aliogether, we may wish to retain a minimum length model just so the

robot can remember that an object was seen.
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(b)

—

(c)

Figure 4.13: Line Lengthening Lffects of the Sonar Cone: (a) Scanning the Middle of
a Planar Object, (b) Scanning the Lidge of a Planar Object, (¢) Scanning
Past the Edge of a Planar Object




CHAPTER 4. MAP CONSTRUCTION 36

4.4 Summary

In this chapter the issue of constructing, maintaining and updating a map from range
data was addressed. There were two main steps in map construction: clustering and
line fitting. Clustering was done to separate distinct areas of the environment so
that they may be modeled by line segments, under the assumption that one cluster
usually represents one object in the world. The clustering algorithm was based on
the sphere-of-influence graph, perfectly suited for linear shaped clusters.

To each cluster was then applied the line fitling process, which attempted to assign
one or more line-segment models to the cluster. This was done using a fit-split-merge
strategy, which began with fitting a single line to a cluster using an eigenvector line
fitting algorithm. If the fit was not good, the cluster was split into two parts and a
line segment was fit to each half cluster. This process of fitting and splitting continued
until the entire cluster was modeled adequately. Finally, the merging of neighbouring
parallel line segments was done to account for any over splitting of long linear clusters,
to combine models representing parts of an object into one model representing the
whole, and to update models with new data. The existence of spurious or illusionary
walls when using sonar sensors was mentioned and ignoring the fact that they do not
correspond directly to physical objects was justified.

To illustrate the combined process, an example using real sonar data was pre-
sented, showing the results of an incrementally built map in a partially enclosed
section of a laboratory.

Finally, improving the modeling process for sonar range sensors was discussed. A
simplified model of sonar and how objects can be seen as larger than they are was
given, and then the method of using it to adjust the size of the line-segment models
was described.

The problem of how to navigate the robot in order to best collect the range
data was not addressed in this chapter. This problem lies within the realms of path

planning and exploration, and is beyond the scope of this thesis.
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Chapter 5 Position Correction

This chapter presents the heart of the localization process, which is referred to here
as position correction. This process takes a coarse estimate of the robot’s position in
its environment and uses it to find its true position (or at least the position as close
as possible to it), thereby minimizing the error in the position cstimate. Although in
reality both position end orientation need to be corrected, at this stage only positional
errors are corrected. Orientation estimates are assumed for this chapter to contain
neglible error. Correcting orientation errors is presented in chapter 7, and is done
independently of position. The assumption of an error-free orientation cstimate is
made at this point in order to construct the basic building block of localization.

Three things are assumed present for position correction:
1. a fair! estimate of the robot’s pose (position and oricntation)

2. an a priori known map of the robot’s immediate environment (constructed via

the methods discussed in chapter 4)
3. a set of range data

Figure 5.1 outlines the major stages in position correction. In the first step, classi-
fication, each point of the range data is matched with a targel line segment, which
is the model closest to it in a Euclidean sense, and is assumed to represent the real
world object from which the range point was obtained. The next step, calibration,
calculates a weighted sum of all the individual vector differences between range points
and their targets, and applies this vector to the current position estimate, generating
a new, more accurate position estimate. These two stages arc performed until the

position estimate converges to a stable value, or until some stopping criteria is met

lexactly what constitutes a “fair” estimate is related to the region of convergence discussed in
section 5.2.3 ~ for this chapter one may assume that the position error in the estimate is small

37
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(which would be the case if the true position could not be found). Finally, the re-
fined position estimate is verified using a unity-scale quality measure (to be discussed
in detail in chapter 6), which guarantees that convergence occurred to the correct

position. Each of these stages is discussed below.

Classify

- match all range data points
to the closest line segment
model

Calibrate

- calculate error vector from
a weighted sum of individual
correction vectors

- apply to present position to
obtain new position

No
[ Convergence? }_——_

Yes

Check Value of Final
Classification Factor

Good Poor

Converged Result Unacceptable Result,
is Acceptable keep original position

Figure 5.1: Stages of Position Correction
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5.1 Classification

The first stage of position correction is called classification. ln this stage, cach range
data point is classified, meaning cach is paired with a target line segment, model.
This target model, constructed from prior data, is assumed to represent the object
in the environment (whether physical or illusionary) from which the range point was
obtained. Since we are given an estimalc of the robot’s position, one can assume for
the most part that if the error in this cstimatc is small enough, then the line segment
closest (in a Euclidean distance sense) to a given range data point will correspond
to the same real world object. The effects of when this is not the case are discussed
in section 5.2.3.

In classification, we are assuming that for small errors in initial position estimate,
the range data points will be nearest to the same linc segment models as would he the
case if the estimate was perfect. In section 5.2.3, the limitations of this assumption
are examined, and upper bounds discussed.

Extending this target pairing idea a bit further, we can project cach range data
point prg to a position p,.,, onto the (imagined) infinite line pasing through pyg’s
target line segment. This in cffect takes a range data point p.y and finds a position
Pprog Which is the projection of p,q onto the target line. py.,, can be considered to he
the location of some obstacle that we saw at .y if there was no error in the position
estimate of the robot. Therefore, we now have p,4, where the robot saw some obstacle,
and pyro,, where the model of the obstacle is located. Now, if the error of the model is
small (i.e. the object is physically at the same location as the model indicates) then
Ppro; is the true position of the obstacle seen at p.q (figure 5.2). It follows then that
the vector pro; — prq shows how far and in what direction the position estimate has
to be corrected in order for p,y and ppr, to coincide. This vector will be heneeforth
referred to as a correction veclor, becausc it provides a direction and a distance that
would correct the error in the position of p.4. Section 5.2 discusses how the total set
of correction vectors (one vector from each range data point) contributes to the final

correction of the robot’s position estimate.
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Line l ROBOT
Segment .
Model AB R
N
- ﬁ
Correction Position Estimate

Vector
True Position

(assumed)

Fignre 5.2: Projecting Onto Target Line Segments: by projecting a range data point
Prd ONLO Ppro; on its target line segment model, we are assuming that the
true robot position is as far away from the position estimate as p,q is
from pyro,. This assumed position may not in reality be so, but for the
single range data point in question it is the position that reduces the error
between the range data point and the line segment to zero.

It is important to note that while the targets are considered as line segments when

deciding which point is paired with which target, the targets are treated as infinite

lines when the projections are performed.

5.2 Calibration

This section examines the stage called calibration, which uses the correction vectors
from the Classification stage to calculate an error vector with which the position

cstimate of the robot may be corrected.

5.2.1 Theory

Figure 5.3 shows an ideal environment of three walls in which an ideal sensor is
used. Here the estimated position of the robot is different from its true position as
shown; therefore the range data points differ from their true position by the same
amount. The arrows show the results of the classification stage: each is a correction
vector from a point to its target indicating the direction and distance the point would
have to move to put it on the target. Consider the leftmost model: alone, it cannot
correct the robot’s position completely, since all the correction vectors are parallel

to the x-axis and the robot’s position error requires calibration in both axes. The
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Correction Vectors

‘ Line Segment Model
| Robot's™ i ;

LTI

LTI

Range Estimated
Data Points Position G)\\
Robot's
Actual
Position

Figure 5.3: The ldeal Case of Position Correction: with ideal models and an ideal
sensor, the error in the Robot’s Estimate Position is a weighted sum of
Correction Vectors

correction vectors for the top line segment are parallel to the y-axis, and so only

corrects for errors in the y-axis. It is therefore required that all correction vectors he
combined in some way to account for the fact that a single vector can only correct, in
one dimension.

This one-dimensional limit on cach line segment comes from the geometric con-
straint (in fact, the lack of constraint) that derives from matching to a one dimensional
(a line) model. We refer to this problem in this context as the long hallway offect,
precisely analogous to the aperture problem in motion estimation [26]. Obscrvation of
position (or motion) of a section of a straight line provides constraint information only
in the direction of the normal to the line. In practice, a robot in the middle of a long
hallway can only correct its position in the direction perpendicular to the hallway.
Movement paralle] to the axis of the hallway gives no displacement information since
the use of line segment models infers that all parts of the walls look identical, and
therefore cannot be distinguished in order to calculate a displacement. This problem

may be avoided (in principle) if two or more non-parallel lines are visible from the
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position of the robot. In the strictest sense this pure one dimensional constraint is
valid for infinite lines only. Using finite line segments in the long hallway example,
a robot could theoretically correct its position completely if it could see the end of
the hall. However, using the end points of line segments as features is dangerous if
the map used for correction does not represent the whole environment. For example,
if the robot is following a long wall and has only mapped a fraction of it, we do not

want the robot to be fooled into thinking it can see the end of the wall just because

an end point of a line segment model is nearby.

5.2.2 The Use of Weighted Sums

We now wish to combine the effects of the individual correction vectors. A robust
estimator can be constructed by weighting each correction vector differently and then
combining them into a weighted sum to find the error vector. This is done instead
of a simple average of » and y vector components because an average would be too
scensitive to outliers: since all range data points would be given equal weight, any
distant, noisy or unreliable data would undesirably affect the resulting vector.
Before discussing the nature of the weighting functions, it is useful to see how
they should be used. If each individual correction vector ¥, is considered to be a
simple vector displacement @, = (Az,, Ay,), we can find the overall displacement

V= (AX,AY) using:
;'l=1 wawi

AX = S (5.1)
= 1A i
AY = ———-E’-;_“:w Y (5.2)

where w, is a weighting function for , (defined below).

In general, given a fair position estimate, range data points close to their target
line segments are more likely to be correct than their further-distance counterparts.
We can expand on the assumption made during the classification stage: if we assume
that a fairly good position estimate is available (where range points are close to their

targets models), points far away from any line segment are most likely either noise

g et
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(erroneous echoes, simple noise, etc.) or are the result of unforescen objects, 'The
latter have no place in calibration since they are not represented by current models,
Therefore, it is preferable to weight close points higher to reduce the likely erroncous
contributions of these distant points. On the other hand, if all points are far from
the line segment models, it is likely that the position estimate is poor, and so we
would like all the data points to have a roughly equal voting strength. This distance
dependency can be applied to the weighting functions in equations 5.1 and 5.2, as

follows:

w, = w(d,),d = ||5] (5.3)

There are hence two main considerations for the design of an appropriate weighting

function:

e The function should have unity value for short distances and should approach

but not reach zero for long distances in order to eliminate outliers.

® The function should be less sensitive to differences in distance at short distances
(i.e. a small first derivative). This allows close data points in a distance range

around the line segments to be weightcd relatively equally.

Table 5.1 shows several functions, only onc of which satisfics both constraints (the
others are present as a comparison). While the step and lincar functions nicely
allow for constant weighting for small d, for large d the weighting is zero. Another
undesirable effect is that data points may jump from non-zero weighting to zero
weighting with just a small change in distance (duc to the discontinuity in the first
derivative), making calibration more sensitive to the sudden inclusion of outliers. T'his
makes the choice of threshold a problem as well. Conversely, an inverse function allows
an asymptotic approach to zero for large d, but the weights are far too large and non-
uniform as d — 0. The exponential function does not suffer from extrememly large
weights near d = 0, but it is not constant for small . Only the sigmoid function offers
a low-d range of relatively constant weighting with the asymptotic approach to zero for
high-d. One may think of the sigmoid as a smoothed step function, in order to create

a so-called “soft non-linearity”. This type of weighting is a scalar multiplication,
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and so it does fit well with the type of weighting scheme in equations 5.1 and 5.2.
The parameter ¢ in the expression for the sigmoid indicates at what distance d the
soft. step occurs. Control of this parameter allows selection of coarse or fine position

correction, since changing ¢ changes what range data points are considered outliers.

[ Function Type | Sample Expression |  Features | Disadvantages |
Step
constant weight for | zero  weight  for
small d large d, too abrupt
step(-d-c)
Linear
constant weight for | zero  weight for
small d large d
\ - g~ din)
Sigmoid
nearly constant
- am weight for small d,
1— dmgem small but non-zero
weight for large d,
smooth transition
Inverse
small but non-zero | too large and non-
1 weight for large d uniform weight for
L 4 small d
Exponential
small but non-zero | non-uniform weight
k —d weight for large d for small d
€

Table 5.1: Function Type considerations for Distance Weighting

5.2.3 Error and Convergence Issues

Given ideal classification, the weighted sumns of correction vectors will provide a vector

that can be added to the current position estimate to find the actual position of
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the robot. However, for substantial errors in the initial position estimate, errors in
classification are usually unavoidable.

These errors, which appear in the individual correction vectors as errors in the
distance between range data points and the real world object from which they were
measured, hinder the position offset functions from delivering the true robot position

in a single step. There are three main sources of crror responsible:

A. Sensor Error

With any range sensing device, there are unavoidable errors in its measurcments.
With a range sensor such as a laser range finder, this error is an accuracy limitation in
the range along its beam, which is itself variable for differert surface reflectivities. For
sonar, the situation is even more complicated. Sonar sensor modeling is an art, unto
itself, and is much more complicated than tracing straight rays. Real world structures
such as corners, edges and cylinders give quite different measurements than their
shapes would indicate. Much work has been done in this arca [9, 21, 1, 23, 25], but
accurate modeling both presupposes knowledge of real world reflectance properties

and is computationally costly.

B. Modeling Error

Since the models of the objects in the environment may be based on erroncous mea-
surements, there will almost certainly be some error in the line segment models of
the environment themselves. This error would be minimal in an environment com-
posed of objects well modeled by straight, flat line segments - structures such as
walls and doors. However, in most indoor office-type environments all objects are not
flat and wall-like (such as chairs, desks, people, garbage bins, etc.) and can only he

approximated by line segment models.

C. Classification Error

In section 5.1 we assumed that the line segment model closest to a given range data

point represents the object in the real world from which that data point was measured.

RNy

o
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Obviously this will not be the case except for very small position estimation errors or
very simple environments. Even in the ideal case of figure 5.3 a few misclassifications
are visible (top right corner). Misclassifications are range data points that associate
with the wrong model. These may be few in number, but they still have an effect

on the overall weighted sum. This effect is usually slight for good initial position

estimates.

So far it has been illustrated that correspondence errors prevent accurate position
correction with a single weighted sum. However, there is nothing to stop us repeating
this process, with the results of the first position correction used as the new position
estimate for the second iteration. The process can be performed repeatedly until the
position converges, assuming it does converge. There is no guarantee of convergence,
but as will be discussed in the next chapter, it is possible to verify that correct
convergence has taken place.

Recall that we use a sigmoid function to give higher weights t» range data points
close to their target line segment. The iteration process can be further refined to
exploit the non-uniform sigmoid weighting so that in early iterations, the drop to
ncarly zero in the sigmoid function w(d) (table 5.1) takes place only at very large d,
which in effect weights all but the most distant range data points equally. This is
done by using a large value of ¢ in the equation of the sigmoid in table 5.1. Since
this is effectively ignoring distance weighting, we obtain a coarse position estimate
correction based on both good data and outliers together. Therefore, initial iterations
usc a large value of ¢ and apply distance weighting only to extremely distant data
points, if any. Classification and calibration are iteratively applied until the estimate
converges, or until some maximum number of iterations has been reached (if this
happens, the estimate may not be able to converge).

Since the sigmoid w(d) =~ 1 except only for very large d, any range data point
outliers (those that do not rightfully correspond to a line segment model) are also

being included. So, after the first convergence, the soft step decrease of the sigmoid is
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brought closer to d = 0, i.e. the sigmoid parameter c is decreased. Position correction
is then re-applied until convergence with this ncw weighting function. Assuming we
move closer to the actual position each convergence, this change in w(d) is a shrinking
neighbourhood around each line segment model, with only those points inside cach
neighbourhood weighted highly. In the final few iterations the virtual neighbourhoods
have been decreased enough to ensure that only the very closest (and presumably best )
data points will be considered. Iteration until convergence is performed repeatedly
until further changes in the weighting function do not affect the resultant position,
allowing progression from a coarse position correction to a precise one where only the
best (most confident) data is used.

There are some cases when convergence will not succeed. If enough range data
points are correctly classified initially, the corrected position estimate will be nearer
to the actual position than the first (the estimate will not necessarily move dirccily
toward the actual position, but the distance between them will certainly decrease)
and successive iterations will move the position estimate as close as possible to the
actual robot position (ie convergence will occur). If there are too many initial mis-
classifications, convergence will fail.

Those data points correctly classified all tend to work together, imcaning their
respective correction vectors are components of the true vector diflerence hetween
the actual and estimated positions. Incorrectly classified points give rise to correction
vectors that in general do not tend to work together, and the weighted sum of these
vectors tends to have a smaller effect than the others.

One way to perceive this situation is to consider an crror vector € associated with
a correction vector ¥ (refer to figure 5.4, a simple case of the robot in a corner, with
outside edges nearby). Given that ¥ projects a range data point to a position on its
target line, we define € as the vector difference between that projection point and the
position of the true point. The true point may be considered as the position of the
range data point if there was no error in the position estimate. Clearly for any such
range point 7+ & = E, where E is the error vector representing the error in the robot’s

position estimate, neglecting modeling and sensor error. We do not however know

.
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&, 50 using ¥ only provides a component of E orthogonal to the point’s target line
segment. For incorrect classifications, € may be very large to make up for the poor o,
and so ignoring € lcaves us with a potentially large error for that range point. However,
the resulting € of incorrect classifications is more a function of the distribution of line
scgments in the map than the true position of the robot. If we consider a map as
a sct of randomly oriented line segments, the € vectors from incorrect classifications
will also be randomly distributed, and together will not contribute as much as the
correctly classified points whose correction vectors arc components of E.

It is clear that ¢ is parallel to the target line segment for a perfect object (where
many or all range data points will be on or very close to their representative line
segment model) and a correct classification. This is to be expected due to the iong-
hallway effect previously mentioned.

So, to summarize, if a range data point is correctly classified, then its projection
is a point on the infinite line through the target line segment model closest to it
(section 5.1). This may not be the point in the model representing the same real
world position from which the range data point originated, but it differs only by a
vector parallel to the model. The key point here is that as long as the range data point
is classified correctly, i.e. it is matched with any point on its target line segment, its
correction vector will be a component of the vector £ which represents the error in
the position estimate of the robot. If the point is misclassified, the error vector can be
much larger than the error in the position estimate, as illustriated in figure 5.4. Yet,
this type of error is not as critical as it may at first seem. As mentioned previously
(page 47) the correction vectors of correctly classified range data points tend to work
together, while thosc of incorrectly classified points do not since they are randomly
distributed.

Gencral predictions of how many correct classifications are required for successful
convergence are very difficult ~ matters of convergence are very dependent on the
arrangement of line segment models in the map. Consider Figure 5.5: 6 out of 11 of
the range data points are initially misclassified. Here in this particular arrangement

of line segments, four of these misclassified points provide a correct component of




CHAPTER 5. POSITION CORRECTION 49

Line Segment Model

)

True Position
of Robot

/’ Incorrect Position
\ Y Estimate of Robot
\)\ True Position of

Range Data Point

)\ Measured Range

Data Point

Figure 5.4: Misclassification of Range Data Points: shown are the true and incorrect
estimate of the robot, the true positions of range data points (dark cir-
cles), measured range points duc to position estimate crror (light circles),
correction vectors (), and the projection error vectors (¢). Note that. ¢ is
not shown for correctly classified range data points, since they are parallel
to their target line segments

the position error vector, while the remaining two do not. The four “accidentally”
provide useful information in this case due to the sparsencss of the map, where there
are few line segment models to which range data points may become misclassified.

The main issue here is that for the first iteration, the algorithim depends on a
sufficient number of correctly classified points to bias the position correction in the
appropriate direction towards the true position, at which point the iterations that
follow can use that better estimate for further refinements. Again, this “minitum
correctly classified” threshold is dependent on the arrangement of line segients in
the map.

This coarse-to-fine approach of the position estimate to the true position can he

seen in Figure 5.6 (taken from the map of Figure 4.11 on page 31), which shows one

et
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Figure 5.5: Convergence in Spite of Misclassifications: although 6 of 11 range data
points are initially misclassified, 4 of these still provide useful vector com-
ponents since the misclassified line segment model neighbours the correct
model and is on the same side of the points. The two misclassified points
that provide completely erroneous information do not affect the outcome
since they are in the minority of range data points.

such localization that does converge. Initially it only moves toward the true position
marked by an * in the z-direction, but the later and more precise iterations show the
estimate closing in more directly.

‘ If this type of convergence plot is expanded to a large region around the true loca-
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Figure 5.6: The Path of Convergence of the Position Estimate: from the initial posi-
tion marked ”0”, to the true position marked ”*”. Note that the estimate
does not move directly toward the truc position initially, but does move
close enough that the more precise iterations later can do so.

tion, we can find that location’s region of convergence in the given map. In figure 5.7,
initial position estimates are spread out all around the actual robot’s position (in
this case, the home position (z,y)=(300,300)), and their paths of convergence can he
observed, as well as any paths that do not converge to home. The initial positions
that do not converge are “fooled” by the local atiractors in the environment. These
are locations at which the local environment resembles the local environment al the
home position, based on the range data scanned there.

It is easier to see the actual region of convergence in Figure 5.8. The entire top
left corner of the region (position (z =0, y = 0)) converges correctly for this map and
robot position because there are no models in this region to confuse the correction.
Usually when there are dense collections of line segment models are the chances of

significant misclassifications an issue.
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Figure 5.7: Paths of Convergence of Region Surrounding Robot: as in Figure 5.6, for
many initial position estimates surrounding the robot.
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Figure 5.8: Region of Convergence around the True Robot Position at (z = 300,y =
. 300): an o represents initial estimate that correctly converges to the true
robot position, while a - represents an incorrect correction.
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Of course, the convergence plots were made given that we knew the robot’s true
position, and were simply checking the correction algorithm against it. It is possible
to construct these same plots without knowing a priori the true position of the robot,
and this will be covered in Chapter 6. It is worthwhile to mention here that at the
end of correction, the final solution, converged or not, is checked as to whether the
result is feasible as the actual position. If it is judged infeasible, then we know that,
correction either did not converge or converged to an incorrect position. In other

words, if the algorithm did not work, we will know it.
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5.3 Summary

This chapter introduced the heart of the localization process, known as position cor-
rection. Given an estimate of the robot’s position, a map constructed as per Chap-
ter 4, and some new range data, position correction can find the robot’s actual posi-
tion. It is assumed for this procedure that the robot’s orientation is known correctly.

This is accomplished in two major steps: classification and calibration. In clas-
sification, cach range data point is paired with its closest neighboring line segment
model, called its targel, which is assumed to belong to the object in the world from
which the point was derived. A correction vector is calculated for each point: each is
the vector difference between the range data point and its projection onto the infinite
line through the target line segment. Once these correction vectors have been cal-
culated, they are combined in a weighted sum that takes into account the distances
between the range points and their targets (under the assumption that closer points

are likely to be more accurate), doing this using a sigmoid function, which is of the

form:
m
9"
dm + c™

Section 5.2.3 discussed sources of error that affect correction, the greatest of hese
being classification error. Due to these inherent errors, correction must be repeatedly
performed in order to converge to a solution. After convergence, the parameters of
the sigmoid distance weighting function are changed and the corrections are iterated
again. This repeats until changing the sigmoid function no longer changes the conver-
gent result. This gives the process a coarse-to-fine precision improvement behaviour,
where initially all range points contribute to get a coarse position estimate, and later

only perceived good data are used for fine tuning.
Sometimes crrors prove too great and convergence to the correct solution does not
occur. Knowing the true robot position, tests were performed to examine how much
crror there could be in the initial position estimate before incorrect solutions began

to occur. This was tested in a region around the true position to find a region of

convergence,
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‘ Finally, a final check was described that is performed after all iterations have been

completed to assure consistency of the solution. This check is discussed in chapter 6.



Chapter 6 Quality/Confidence Measures

6.1 The Need for a Measure of Confidence

As discussed in chapter 5, it is possible that the outcome of correction is not the true
position of the robot: cither the iterations may not converge or they may converge
but to an incorrect location. In cases such as these, it is imperative that it be known
that correction did not find the correct robot position; otherwise the results could be
disastrous, since an incorrect solution could be even worse than the initial estimate!
Once correction is completed, we need some kind of quality measure so that we can
quantify our confidence in the solution. In addition to this, if we for some reason
have multiple solutions (as we will have in chapter 7), we need to compare them and

find the best one. Therefore, some criteria for a quality measure are as follows:

1. Incorrect solutions should have a low quality measure, ideally zero.

2. Correct solutions should have a high quality measure.

6.2 Types of Measures

A quality mcasure is a function of robot pose (pose = position + orientation) cal-
culated by performing some comparison between the range data points and the line

segment modcls.

There are two basic measures used here: the mean-squared error measure, and

the classification factor. Each is discussed below:

6.2.1 The Mean-Squared Error Measure

This quality measure is simply a measure of mean-squared error and has the form:

Epse = i—}:(dist(p,,f,))2 € [0,00) (6.1)

n
t=1
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where 7 is the total number of range data points, p, is the i*" of these, ¢, is p,’s target
line segment model, {; is the infinite line through ¢;, and so dist(p,, €,) is the distance
from a point p; to the closest point on the infinite line through the line segment. €,
Distance is taken from the infinite line rather than the line segment to allow for the
case where the robot may be following a wall: in this case, range measurements along,
part of the wall not yet modeled would give risc to a larger £, in spite of the fact
they belong to the same wall.

This measure is good if its global minimum occurs at the correct location of the
robot. At the correct location, it is assumed that all or at least the vast majority of
range data points are very close to their classified linc segment models, and would
then yield a low value for a correct solution. While this may be contrary to the
criteria outlined in the previous section, inverting it is a simple way to force it to
conform (since there is always at least some error with some data points with real
data, the chance of inverting zero is neglible).

Figure 6.1 shows E,,.. as a function of position, where the correct robot, position
is at (z,y)=(300,300). It is rather difficult to sec exactly how different the values
are at the correct position, so figure 6.2 shows the same data but with the mean-
squared-error measure inverted. Therc is a problem with this measure however: it is
very suceptible to outliers, which will certainly affect the results even if the position
estimate is very good. Since it is not known how many outliers are in the range
data set, there is no theoretical upper bound on E,,,., making decisions of a single
good/bad convergence very difficult based on this measure. However, it is useful when

used to compare between two solutions.

6.2.2 The Classification Factor

The classification factor (or classfactor) E.; is a quantity based on the fraction of all
range data points that are closely classified. Consider a neighborhood of fixed size
cm around all line segment models. If all the range data points within a neighborhood
of a model are counted and then the sum is divided by the total number of points,

then we obtain the fraction of the total number of points within z of some model.

FIECY
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Mean Squared Error vs Position

Mean Squared Error
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Figure 6.1: The Mean-Squared Error Measure vs Position: the mean-squared error in-
creases dramatically as the position leaves the robot’s position at (300,300)

Given that close data points are more likely to be correctly classified, this measure
tells us how good our position estimate is. Obviously, incorrect classifications may
creep into this and give false readings. However, the only way to get a measure
approaching unity is to have a position estimate very close to the actual one, or to
be in part of the environment that is very similar to the one in which the robot
is located. Ignoring the latter, this measure should then give a value close to unity
when the position estimate is very close to the correct position, and near zero when
the error of the estimate is large.

Using a fixed neighborhood size suffers from the same problem as distance weight-
ing did in scction 5.2.2: if a range data point is just a minute distance outside the
ncighborhood, it will not be counted as being inside that neighborhood. Another
range point very close to the first but inside the neighborhood will be counted, and

so this abrupt neighborhood boundary increases the sensitivity of the neighborhood
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Mean Squared Error vs Position

.ot

x 10

1

084

Mean Squared Error

Y coordinate (cm) 400 200

X coordinate (cm)

Figure 6.2: The Inverse of the mean-squared-crror measure Measure vs Position: with
the robot again at (300,300), we can sec the global maximum at this point.

to range points just outside its boundary. In order to smooth the boundary of the
neighborhood, a sigmoid function is applied as a distance threshold, forming “softly”

non-linear neighborhoods. Thercfore, the classification factor is thus defined:

Eep = 0,1 6.2
! ;( (lm T m) €[o0,1] (6.2)
where: d = dist(p,, &) The cho-
¢ = a user defined parameter indicating neighborhood size
m = exponent governing steepness of sigmoid, commonly m = 8

sen value of ¢ in equation 6.2 depends on the noisc estimate of the sensor and the
error in the models. If a pose estimate is correct, then all correctly classified range
data points should be very close to their target line segments (right on top of the line

segments if not for the modeling and sensor error). Ignoring the sigmoid for now,
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we have a simple step function for the neighborhoods (imagine that the sigmoid just
. smooths out the step). Experiments with objects such as walls, wooden desks and
burlap office dividers have shown that a noise estimate between 5 and 10 cm works
well, which is a rather liberal estimate of the uncertainty in the range sensor. The
neighborhood should not be too small in case a model does not exactly fit the shape
of an object. On the other hand, too large a size defeats the purpose of the measure.
Unlike L., the neighbourhood of E.; works with the line segment ¢; rather
than the infinite line £, through it. This causes E.; to favour the limited known walls
instcad of the potential extensions of these walls, and so the two measures complement
cach other.

Figure 6.3 illustrates £,y in the same environment as the previous figures. At the

Classification Factor vs Position

t

Classificatnon Factor

Y coordinate (cm) 400 200

X coordinate (cm)

FFigure 6.3: The Classification Factor: for this robot position in this environment, E, 1
reaches a maximum of 0.947.

. actual robot position (again, (x,y)=(300,300)), we see the global maximum approach-

ing very closely to unity, while the function is much less everywhere else. The very
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useful property of E.; is that E,; € [0, 1], and this allows for a simple threshold test
to be made for the likelihood of a convergence being good or bad. Through exper-
imentation in real environments, a good acceptance threshold was discovered to be
about 0.6 for typical indoor environments consisting of walls, desks, doors, boxes and
suchlike. This value makes sense since we should expect more than half of all points
should be within some small neighborhood of their targets, even if there is some small
error in the pose estimate.

One problem with E.; is that it is not as useful as I, when dealing with very
fine differences in position. Since it in essence just counts the number of points within
a neighborhood, it cannot give precise detail of where the points are within it. For
instance, if there are two positions on the map (most likely very close together) such
that all the range data points are within E.;’s neighborhood, then the number of
points counted will be equal, and thus ., cannot tell which one is closer to the
correct position. For this reason, F,; alone is not used as a comparative measure,
E,.;c does not suffer from this, as it deals with actual distances from the line segment

models.

6.2.3 The Comparative Quality Measure

While it is quite possible to use the inverse of the mean-squarcd-crror mecasure as a
comparative tool to choose between two solutions, the comparative qualily measure
Ecqm adds the effects of both E,,. and E.g, as it is a combination of hoth. It is

defined as follows:

(Ecr)”

ECllm = (Emse)b

€ [0,00) (6.3)

The exponents a and b respectively weight E; and F,,,. relative to each other.
Figure 6.4 shows Ey,, in the same environment as figures 6.1 and 6.3. The correct,
robot position at the central peak is now more pronounced with respect to the sur-
rounding positions. This is due to the fact that [ acts as a non-linear scaling factor
to E:TZ’ and this scale factor approachs unity only when the crror in the pose estimate
approaches zero. Since F,,;. is minimized when the pose estimate has minimal error,

It
cl
Dt
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‘ the arca far from the actual pose are de-emphasized.

Comparative Quality Measure vs Position

Comparative Quality Measure
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Figure 6.4: The Comparative Quality Measure E,,n; a=2, b=1

In fact, if 1/ E,,e and Egyy are compared on a logarithmic scale (Figure 6.5), then
it is clear that F,, has increased the “importance” of the global maximum by well
over an order of magnitude over surrounding positions.

As its name implies, Ep, is a comparative measure only, inheriting this property
from £,,,. As mentioned above, this measure is used to choose between multiple
solulions of position correction, such as is the case in the next chapter.

One unfortunate aspect of E., is that the global maximum may be found by

gradient ascent methods only close to the global maximum. Away from the global

maximum there are many local maxima which make using general gradient ascent

impossible.
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Figure 6.5: A Comparision of the Ranges of £, and I, a=2, b=

6.2.4 Verification of Quality Measures

One way we can verify the correctness of the quality measures defined thus far is to
compare them to the data obtained when the correct robot position was known.

In figures 6.1, 6.3 and 6.4 the domain of the quality measures was simply the
area around the actual robot position. In contrast, figure 6.6 shows £, factor and
Ecqm vs initial position estimate - position correction is performed at each location
and the quality of the converged result is shown. It is important to notice that the
maximum values of these plots for each measure form a region that is alimost identical
to the region of convergence in figure 5.8 in chapter 5 (it would be identical except
for one extra peak in the quality plot). In that figure it was known a priori where the
correct position was, but in figure 6.6 this is not known in advance, yet the region
of convergence is the same. This simply means that those position estimates around

the actual robot position that can be corrected arc all of maximal quality.

Y
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Classification Factor vs mitial Position Esimale
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Figure 6.6: Quality of Converged Solutions vs Initial Position Estimate: Position Cor-
rection is performed on each initial position, and the quality measures of
the resulting solution are calculated. Therefore, each initial position is
mapped to a final position quality measure.
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6.3 Summary

This chapter presented an approach to the measurement of the quality of an estimate
of robot pose. Two base measurements were presented: the mean-squared error
measure (E,,.) and the classification factor (£.). Ey is a measure of the distance
between a set of range data and a map (consisting of linc segment. models), while
E.; is a weighted count of the number of range data points that arce close to their
respective line segments. The advantages and disadvantes of hoth were presented. A
third measure, the comparative quality measure (., ), was in fact derived from the
first two in an attempt to emphasize the global maximum.

Ecqm was presented as the measure to be used for maximizing quality with respect

to robot pose. E.; was better suited for absolute tests, where a particular solution of

correction could be deemed incorrect or correct based on this unitary scaled measure.
When these measures were compared to tests in which the correct position of the

robot was known, the results were shown to be the same.




Chapter 7 Extensions of Position Correction

So far we have seen that position correction can correct the position of a robot given
a good map and a fair position estimate, and that the results can be confirmed with

the E;; quality measure. In this chapter two applications of this will be examined:

1. Orientation Correction In addition to correcting positional error, this tech-

nique corrects errors in orientation.

2. Global Localization When a map of the environment is available but esti-
mates of position and orientation are not, this technique still allows local-

ization of the robot from anywhere in the environment.

7.1 Orientation Correction

Orientalion correction is similar to position correction in that it takes an estimate
of the pose of a mobile robot, a set of range data measurements and a map of the
cnvironment and attempts to minimize the error in the estimate. However, in orien-
tation correction, the orientation of the robot is no longer assumed to be completely
accurate, and must be corrected in addition to position. As outlined in chapter 3,
errors in robot orientation can have equally disastrous effects on the construction of
global coordinate maps as do positional errors, so it is very desirable that these kinds
of errors be minimized.

The approach to orientation correction is based on two quality measures, the clas-
sification factor E;; and the comparative quality measure Ecym. Consider Figure 7.1:
Near the true orientation (an angle deviation error of 0°), (a) E.s aiid (b) E,,, are
well-behaved and appear to be locally convex functions of angle deviation 6;. There-
fore, if the estimate of the robot’s position is close enough to the actual position, then
the proper orientation of the robot can be found by maximizing Ecqm. Since we are

assuming that a given pose estimate is good if its E.; value exceeds the acceptance

66
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threshold (as discussed in section 6.2.2), we can conjecture that when the estimate is
good enough, E., will be a locally well-defined, single-peak function. For compatr-
ative purposes, the angle deviation test of figure 7.1 was done at two positions: the
correct position, and an incorrect position (in this case about 100 ¢m away). This
way we can see that both the position and the orientation must be correct (or at. least
very close) in order for the quality measure functions to be well-behaved cnough to be
optimized. In position correction, the orientation estimate had to be correct for the
actual position to be found. Orientation correction likewise ideally requires that the
position estimate is correct, but this is not usually possible. However, if we assume
that a small error in the position estimate will not change the optimum orientation
by a large amount, then this constraint can be relaxed to allow the small positional
error.

We only wish to correct orientation when the error in the position estimate is small,
otherwise the quality measures will be too ill-behaved. Thercfore, when attempling
to correct orientation by maximizing Eegm, it is useful to use a modified oy, which

we call E’Cqm, and defined as:

A E. if E.; > Acceptance Threshold
Ecqm = o d ) P (7 | )
0 otherwise

Figure 7.2 shows E’cqm taken from the same measurements of Figure 7.1, and using
a classification factor acceptance threshold of 0.5. l;"c,,m is simply the well-behaved
region of Ec;n, which we found not by looking at a plot such as Figure 7.1 (since
the robot would not have access to such a plot), but by applying the classification
factor acceptance threshold. Thus, we can ensure that we only attempt orientation
correction when Eg, is well-behaved enough to allow gradient ascent to its global
maximum.! Where the position estimate is such that Iy exceeds the aceeptance

esho e avoi numerous local maxima of Iv,,, for angle deviations where
threshold, we avoid the ous local maxima of I, for angle deviat ]

This assumes that gradient methods are used for global maximization - we assumed that, the
brute force approach of calculating E.qp, over the entire domain and comparing would be too time-
consuming,

"
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Angle Deviation vs Classifier Factor
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Figure 7.1: Variations in Quality Measures as functions of Angle Deviation: with the
true robot orientation at an angle deviation of 0°, the quality measures
decreasc as the error in the angle grows larger. For this environment, the
effective angle range is about 35°, given an E,; threshold of 0.5. The solid
line represents the quality measures at actual robot position and varying
orientation, while the broken line represents the quality at an incorrect
position.
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Angle Deviaton vs Comparauve Quahity Measure
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Figure 7.2: E,,,, is defined over a smaller domain where any angle deviation may he
g )
corrected
Ec; is too small.

To get some indication of the maximum orientation crror that can still be cor-

rected, we can look at the effective angle range.

Definition 2 The effective angle range (EAR) is thal range of angle deviations about
the true robot orientation for which E.; exceeds the acceptance threshold. Any angle
deviation in this range is small enough lo allow the correct ovicnlation lo be found
using gradient ascent mazimization. This range is nol necessarvily symmelric about

the correct orientation.

The effective angle range (EAR) for the actual pose Figure 7.1 and Figine 7.2 is
about 35°: here angle correction succceds if the position estimate is error-free and
the oriention error is between about —18° and +16°. This range is reduced when
the position error is increased, but for position estimates close enough to the actual
position to exceed the E s acceptance threshold, experimentation has shown that in
general an EAR tends to be on the order of —10° to +10°.

Now that we know that it is possible to correct the robot’s oricntation as well ag

its position given fair initial estimates, we can construct the following algorithm to
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perform localization:
1. Initial pose estimate (zo, yo,00) available.

2. Perform position correction: given that (z,,y;,0,) are the results of each itera-

tion, for each iteration find E’cf(w,,y;,0,).

3. If lZ’cI(wi,y,,oi) > 0, then hold z, and ¥, constant and maximize ch as a
function of § by using a non-explicit-derivative-using maximization technique

such as Brent’s method [29].
4. When the maximum is found, update the orientation estimate 6,.

5. 1 0; changes very little over the course of a few iterations, ignore the orientation
correction steps 3 and 4 in future iterations and concentrate on refining position
only. This is done to increase the speed of the algorithm once the orientation

has been corrected.

7.2 Global Localization

Global localization refers to the case where a map of the environment is available, but
a reliable cstimate of the robot’s pose is unavailable. To use the localization algorithm
developed thus far, a pose estimate is required. Therefore, we can incorporate local
localization into global localization in a similar fashion to the way position correction
was incorporated into orientation correction: by use of the quality measures E.; and
Feym- In theory, to find the actual pose of the robot we need to perform localization
al every pose in the environment and select the result with the highest quality.

We can consider all possible poses (z,y,0) of the robot within the environment

that the map represents as the domain of a composite quality function
F(2,9,0) = Ey(z',y,0) (7.2)

where ', y" and 0’ are the results of the local localization algorithm of section 7.1

applied to x, y and 0. F is called composite because localization is done to (z,y,0)
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before calculating E’Cq,n, making F' akin to a function of a function.

This gives a global quality function that describes the quality of localization when
applied to a particular location. In theory we can imagine F calculated for all (ayy,0)
in the environment, and can find the pose of the robot by maximizing /. The actual
robot pose would then be (2',y',8’) (from equation 7.2).

The problem with maximizing F is that F = I?Cqm, and from the previous section
we saw that the global maximum of E‘cqm can only be found by gradienl methods if
gradient ascent is initiated close to the global maximum. Since we cannot use gradient
ascent over the domain of the entire environment, we have no choice but to resort,
to sampling the environment until we find a pose where Ec m > 0, at which point
we can use gradient ascent. Sampling in this context means applying localization lo
selected poses in (x,y,0) space and checking the value of £,

The issue of the sampling size can be resolved with the concept of the region of
convergence (section 5.2.3) and the effective angle range (or EAR, in section 7.1).
The sizes of these can tell us how far apart we may place the localization samples,
since by definition any pose estimate within these regions can be corrected. However,
the region of convergence is dependent on the arrangement of line segment models in
the map and the robot’s location within the map. Similarly, the eflective angle range
changes with the error in the pose estimate, and neither of these can be explicitly
calculated to aid in localization (if they were known, the problem would he solved).

Through experimentation we can find some general values for the sampling spacing
by performing localization at known poses and finding their regions of convergence
and EARs. Samples could then be spaced accordingly and the poses within the arca
of the map could be tested. If no solutions are found, then cither the map and the
environment do not correspond, or the sampling spacing was too large. If the latter
is true, the sampling spacing could be reduced and the sampling could he repeated.
It is only a matter of calculation time in resampling the poses in the arca of the map.

Experiments have shown that in most sufficiently occupied environments?, posi-

2Here the term “sufficient” refers to environments that contain enough objects to uniquely identify
individual positions within the environment. As will be shown in chapter 8, similarities between
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tion correction convergences successfully within about 50cm, and orientation correc-
tion in a —10° to +10° range. Possible exceptions are in maps with a high density of
line segment models (rooms that are very cluttered with non-planar surface objects,
for example) or maps with a very low total number of line segment models within
sensor range of the robot (where the robot cannot see enough of its surroundings to
make accurate comparisons).

Once the sample size is known, the straightforward approach would be to sample
the entire environment at poses separated by the sample size. However, for large
maps this could require very many samples, the majority of which do not find the
correct, pose. So, in the interests of saving computation time, one may super-sample
the environment. This strategy is a coarse-to-fine approach: initial samples are placed
far apart, and if no satisfactory results are found from these samples, more samples
are taken with smaller inter-sample distances. If there are still no satisfactory results,
then the process can continue with smaller and smaller sampling sizes, down to the
minimum size as dictated by the regions of convergence and EARs as mentioned above
(figure 7.3). In the worst case, complete sampling of the environment would be done
at the minimum sampling sizes.

Of course, it would be a waste of time to attempt localization at poses already
attempted when the sample size was larger. Therefore a list of attempted poses should
be kept and compared to any new pose to ensure each pose is tested only once.

Results of global localization are presented in section 8.4 in the next chapter.

different areas in an environment can lead to an incorrect localization
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Figure 7.3: Sample Size Reduction: a coarse-to-fine search strategy: in (a), the sample
size is large. If no satisfactory localization is found, then the environment,
is resampled at the smaller and smaller sampling sizes in (b), (¢) and (d).
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7.3 Summary

'This chapter discussed two applications of the quality measures E s and E,,,, over and
above verification of a single localization attempt. These applications were orientation
correction and global localization.

In orientation correction, the properties of the quality measures were examined
for angle deviations around the true orientation. It was found that they were locally
convex functions in the neighbourhood of the true orientation, enabling gradient-using
optimization methods to find the global maximum that occurs there. The size of this
neighbourhood was introduced as the effective angle range, or EAR, which bounds the
angle error relative to the actual orientation that can still be corrected. A modified
comparative qualily measure Ecqm was introduced to aid the optimization process.
This measure equals E,, when E is above an acceptance threshold, ensuring that
it forms a convex function (although not a strictly convex function).

Given this method to correction orientation, a complete algorithm for local local-
ization (where a pose estimate is given) is given.

The complement to local localization was introduced as global localization, where
the robot has no prior estimate of its pose. Following the same reasoning as was done
for orientation correction, a function F' was constructed using the quality measures
whose global maximum occurs at the robot’s actual pose. As was the case with
orientalion correction, the function is locally convex only at the correct pose, but this
time we have no estimate of this pose. This discounts gradient methods for optimizing
I,

A simple approach to solving this problem was described in terms of sampling the
environment represented by the map at different sizes. Initially, samples are sparsely
located, and localization is attempted at these poses. If no satisfactory results are
found, then the environment is resampled at more densely located samples. This
process continues until a satisfactory localization is found, although the sampling
sizes should not decrease below the sizes estimated by the regions of convergence and

EARs common for that environment.
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Chapter 8 Experimental Results

As the theory of localization was developed in previous chapters, the real environment,
of figure 4.11 was used to illustrate localization’s various aspects. Iu this chapter
another real environment and two simulated environments will be assessed in terms

of the performance of localization within them.

8.1 Map Construction Results

In this section, map construction in thrce sample environments is presentesd. In cach
of these environments, the robot (virtual, in the first two) wandered about, scanning
every few centimetres and incrementally built a map. In addition, localization was
performed every few moves to be sure that small positioning errors did not accumu-
late (on the average, every other move — this was an ad hoc choice, trading off the
accuracy of localizing every move with the time required to localize). Ior the sim-
ulated environments, artificial errors were introduced to simulate positioning crrors.
Uniformly distributed errors in the [0,1] cm range were added to the x and y coordi-
nates «very 10cm of movement, as well as [0°,1°] in orientation. For simplicity, the
robot used an uncomplicated wandering algorithm for exploration: keep going in a
straight line until range measurements indicate an object is too close, at which point,
randomly pick a new heading and continue. Certainly hetter exploration algorithms
do exist ([35], for example), but are beyond the scope of this thesis.

For the two simulated environments, three maps were constructed:

1. Ideal Sensor Map: for this ideal case, the sensor is modeled as a thin straight
line extending from the robot, where the range measured is from the robot to

the first object hit, regardless of the angle of incidence.

2. Sonar Sensor Map: this sensor models the propertics of sonar, including multiple

reflections and incidence angle effects, as per [9].

(f]
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3. Corrected Sonar Map: these maps use the same sonar sensor as above, but the
line scgment models of the map are shortened to account for the size of the

sonar cone, as described in section 4.3.4.

Iigure 8.1 shows a simple room with similarly appearing corners and three obstacles,
the largest of which creates a hallway at the bottom of the room (for this map and all
such maps in this thesis, the coordinate system is non-standard: the x-axis proceeds
from left to right, the y-axis from top to bottom, and orientation is counterclockwise,
with 0° along the positive y-direction - the origin would be therefore in the upper right
corner of the map.) Figure 8.2 is the second of the two simulated rooms, this time
a little more complex, containing a number of “sub-rooms” within it. Both figures
show some difficulty with modeling corners with the ideal sensor. This effect comes
from the splitting phase of fitting models to objects (section 4.3.2), where a cluster
of range data points may not split at a corner, or where a subcluster’s elongatedness
is acceptable at 45° to the corner walls, yet too small to split. The sonar sensor maps
without correction show the effects of misjudging the size of objects. Here we can see
the apparent sides of objects extended far past their true borders, as well as a flurry
of noisy line segments in the corners of the rooms. The corrected maps reduce this
border-extending effect to produce a clearer map.

Figure 8.3 shows the results of a map made from an environment with physical
objects. Whiteboards, together with wooden, metal, and cardboard objects were
placed in an area enclosed by office dividers and walls to provide a variety of surface
reflectivity types. The images of the area in figure 8.4 show details of the area,
including the tiled floor surface which adds error to the robot’s pose as its wheels

pass over the tile edges, in addition to slippage errors common to smooth floors.
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(a) Source Map (b) ldeal Sensor Map
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(¢} Sonar Sensor Map (d) Corrected Sonar Map

Figure 8.1: Room 1 (simulated): from the source map of (a), 3 maps were constructed:
(b), the ideal range sensor map; (c), a map made with a sonar simulator;
(d) a map made with the sonar simulator but corrected for the shape of
the sonar cone
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(a) Source Map
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Iigure 8.2: Room 2 (simulated): from source map (a), (b) is the map made with
an ideal sensor, (c) shows the sonar simulator map, and (d) shows the
sonar-cone-corrected sonar map.
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(b) Constructed Map

Figure 8.3: Room 3 - A Real Environment: the layout of the environment is as shown
in (a), and (b) shows the map constructed from sonar data with line
segment length correction. -
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(a) Upper Left, View

(¢) Lower Left View (d) Lower Right View

80

Figure 8.4: Details of Room 3: these views of the environment show the types of

objects present
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8.2 Quality Measures

Since the quality measures E s and E,,, indicate how effective localization is within
a particular environment, it is useful to usc them to examine the three example

environments.

8.2.1 Room 1 (Simulated)

To compare sonar with an ideal range sensor, consider figure 8.5 and figure 8.6 which
examine the quality measures of range measurcments taken at the example pose
shown. As seen in section 6.2.2, each (z,y) point indicates the quality that would
be obtained if that point was a localization convergence point, and if there was no

. The figures show that all plots have a single dominant

error in the orientation
peak indicating the true robot position; however, the surrounding positions in the
two sonar maps are noisier, especially in the £.; plots.

In order to examine the effects of changing orientation, we can hold one of the » or
y coordinates constant and compare the other with changing orientation (figures 8.7
and 8.8). Here we can see convex shape of the measures near the true pose. The peak
in figure 8.7(d) is rather noisy and is not, convex, and so the local maximum near the
global maximum may affect the results. They are however very close together which
in this case does not present too much of a problem.

From this point on when the sonar maps are mentioned, they will refer to the cor-

rected sonar maps, as the corrected sonar maps are the ones used in real environments.

It is useful to see how a pose within a relatively sparse hallway fares with respect
to the quality measures. In figure 8.9, orientation @ is held constant, and a and y are
varied. From the locations of the range points in (a) one can sce that for the sonar
map, the high quality peak forms a line rather than a sharp point. The ideal map
has a more rounded peak since the ideal sensor can sce more of the hallway, but it is

still spread out parallel to the hallway. In (e) one would expect, a less rounded peak,

lideally we would like to plot (z,, 0) vs. quality, but, this would require a 4-dimensional plot,
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Classification Factor

Y coordinaic (cm) X coordinate {cm)

(a) Example Pose 1 (b) E.y, ideal sensor

¥ coordimte (c1n) X coordinate (cm) ¥ coondinate (cm)

X coondimate (cm)

(¢) £y, sonar sensor (d) E.;, corrected sonar sensor

Figure 8.5: K¢y, Room 1, Pose 1, z vs. y: with the robot at the position marked
in (a), the quality of the range measurements varies over the x-y plane.
'I'he sonar map is shown in (a) rather than the source map to show how
the range data relates to the map the robot constructs. The small circles
indicate the range data. For the ideal sensor map, the range data points
follow the walls of the source map exactly. In (b)-(d), the robot’s actual
position is at the centre of the xy-plane.

but for this particular map, both sides of the hallway were not fit as perfectly parallel
lines (since the error in the robot pose is not eliminated completely).

The same effect can be seen if the y-coordinate is held constant and 8 is allowed
to vary, as in 'ﬁgure 8.10. As the robot and data points turn to face down or up (as
seen on the room map), the range points are no longer close to any walls, thus the low

quality. One interesting note for this case is that there are two peaks along the § axis,
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Figure 8.6: Eym, Room 1, Pose 1, x vs. y: the sharp central peaks indicate that,
if orientation is held fixed, the highest quality coincides with the actual
robot position.

which correspond to the robot facing left or right on the map. Both face parallel o
the hallway, and so are very similar. They are less similar in the sonar map hecawse
of the imperfectly fit borders of the hallway.

If we compare variations in y-coordinate and orientation 0, the hallway effeet, is
invisible (figure 8.11). Except for some similarily between 90° and —90° in (a), (b)

and (d), the quality measures correctly identify the true (y,0).
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Orxhtatnn (degrees) X condinste (em) Onentation {degrees) X connthmane (cmd
(a) E¢y, ideal sensor (b) L., sonar sensor
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Figure 8.7: Quality Measures, Room 1, Pose 1, = vs. 0: again the central peak
indicating the true pose dominates, but, in (d) this peak is not convex and

is incorrect.
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Figure 8.8: Quality Measures, Room 1, Pose 1, y vs. 6: the global maximum is not as
sharp in (b), since the small clusters of data points are close to the map’s
line segments even for larger than usual orientation deviations.
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Figure 8.9: Quality Measures, Room 1, Pose 2, = vs. y: the global maximum may
not necessarily be unique or completely dominant in long hallways as the
robot position is moved parallel to the hallway. This is how one may
recognize the long hallway effect as described in section 5.2

ey

2N
Mg i




CHAPTER 8. EXPERIMENTAL RESULTS 87

Onentation (degrees) X coondmate (cm) Onentation (degrees) X coondinate (cm)

(a) E.y, ideal map (b) Ecy, sonar map

Comparnasve Quality Measure

200 100

Orictitation (degrees) X coordinate {cm) Oncatation (egrees) X coonduate (cm)

(c) Ecgm, ideal map (d) Ecgm, sonar map

Figure 8.10: Quality Measures, Room 1, Pose 2, 2 vs §: the long hallway effect is again
visible as the x-coordinate is changed. This time there are 2 dominant
maxima, one for each direction parallel to the hallway (i.e. down the
hallway and back again).
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Figure 8.11: Quality Measures, Room 1, Pose 2, y vs. 0: the long hallway effect is not
as evident here since the y-axis is perpendicular to the hallway. However,
the presence of significant local maxima at 180° to the global maximum
suggest at least the presence of a short hallway.
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8.2.2 Room 2 (Simulated)

If the robot is in a positi;on where visible perpendicular walls surround it, then the
robot should be able to Jocalize itself accurately. Consider the pose of the robot in
figurc 8.12: figures 8.13 ;nd 8.14 show the relationships between x, y and # for this
pose based on the sonar tnap. As expected, when the test pose is outside of the map
arca, both quality measures are effectively zero. The true pose is at the centre of

cach plot, and the global maximum exists al this point for all plots. In addition

I\

bg

Figure 8.12: Room 2, Pose 1: the robot can detect the walls almost all around it, as
well as corners.

to verifying that the true robot pose implies a global maximum of a quality plot,
the plots of E.s can also identify similarities and/or symmetries in the environment.
Figure 8.13(a) reveals 2 local maxima where E.;y > 0.6. The one with the greater
y-coordinate refers to a position in figure 8.12 in the semi-enclosed area directly below
the robot’s present position, where the top right corner is similarly structured to this
lower area. The other is not actually a structural similarity in the room, but rather
a similar arrangement of line segments. This spot is in the upper left section of the

environment, where the top wall and top left corner combine with the top wall of the
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X coondinate (cm)

(a) Eegy & vs. y

=

A

20
Onentanon (degrees) X coondinate (cm) ¥ conmtinie em) Orientation (deegrees)

(b) Ecp, z vs. 6 (c) Eepyyvs. 0
Figure 8.13: Classification Factor E; for Room 2, Posc |

open space below (with the triangle). The plots of ¢y do not have this property
to the same degree, as they are much more discriminating, dealing with fine pose
differences rather than the coarse quality of F.;.

The lower right and upper left areas of Room 2 demonstrate propertics very similar
to the pose in figure 8.12, primarily the sharp global maximum coinciding with the
robot’s true pose. The middle section joining these areas exhibits this also, except
that no inside corners are visible. However, at the true pose in figure 8.15 (lower left
robot position with small circles indicating range measurements), incorrect results
begin to appear, as figures 8.16 and 8.17 indicate, in particular 8.17(a) and 8.17(c¢).

One of these high quality but incorrect poses is also shown in figure 8.15 with range
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Figure 8.14: Comparative Quality Measure E., for Room 2, Pose 1

measurements appearing as x’s. Here a cluster of the points seem to be in the middle
of the room, but their distance from the infinite line through their target line segment
(above) is small (recall that the component Ese of Ecqr, works with infinite lines).
This is an example of a case where assuming the range points belong to an extension
of their target wall fails, and explains why the FE.; plots are correct with respect to

the global maximum while the E., plots are not.
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Figure 8.15: Room2, Pose 2: The actual robot pose is the one closer to the trian-
gular object, and its range measurements are indicated by circles. The
other robot pose shown has a similar surrounding structure (range points
shown by x’s).
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(b) Eep, xvs. 0 (c) Ecp,yvs. 0

Figure 8.16: E.; for Room 2, Pose 2
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Figure 8.17: E¢pm for Room 2, Pose 2
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8.23 Room 3

The environment shown in figures 8.3 and 8.4 differs from the previous two in that
it appears to have few or no arcas similar to each other. This would seem to suggest
that the quality measures should clearly indicate where the robot’s true pose is, given
a sel of range measurements. We will check this with three example poses. The first
example pose, as shown in figure 8.18, is roughly in the centre of an open area. The
actual position and orientation for all poses in this environment were measured by

hand. Figures 8.19 and 8.20 show that localization can be correctly verified for this

Figure 8.18: Room 3, Pose 1

pose since both Fgp and Egy,y, obtain their maximum at the correct robot pose. One
observation to make here is that the peak values of both E.; and E,, are lower than
found in the simulated environments. This is likely due to sonar effects not included

in the sonar model, such as diflering reflectivity in surfaces and 3-diinensional effects.

The pose shown in figure 8.21(a) is another example of a pose that is verified by
quality measures. (b)-(d) show F,,, for Pose 2, and again the dominant peaks occur
at the correct pose. ;s is not shown since it is also similar to that of Pose 1.

The last pose for which quality measures will be examined is shown in figure 8.22(a),
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Figure 8.19: E¢y for Rooin 3, Pose 1: [, is not as great at the peak as was seen in
the simulations, yet the actual robot position in the centre is still the
only position for which ££,; > 0.6

along with ;. Looking at the plots of ., in figurc 8.23 we can sce that there is
indeed a second peak that rivals the global maximum. The pose which gives rise Lo
this peak is just above and to the right of Pose 1 in figure 8.18, where on the map
the top border of the box is combining with the right and lower line segments 1o form
a similar area to that which surrounds Pose 3. This is no cause for alarm however,
since the modified comparative quality measure l?cqm as shown in figure 8.23(h) is a

single peak maximum, which is used for orientation and global localization.
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Figure 8.20: E,,, for Room 3, Pose 1: like E,;, this maximum of this quality measure
has smaller magnitude than those of the simulations, but the actual robot
position is still distinguishable in relative terms
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Figure 8.22: Pose 3, E,; for Room 3
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8.3 Regions of Convergence

As previously defined, the region of convergence is a set of poses within the environ-
ment where each pose acting as an initial estimate results in localization converging
to the robot’s true pose. This helps to judge how accurate a pose estimate must be
in a given area for a given environment (since the size of this region varies with the
structure of the environment) for localization to function correctly. In this section we
will look at the region primarily in terms of position: all test poses begin at 0° but
arc frec 1o rotate as localization proceeds. Successful localization is again classified
as within 5cm of the actual robot position (hand measured in the case of the real
environment). All regions of convergence in this section are from maps constructed
with the corrected sonar sensor, both simulated and real.

Figure 8.24 shows four test poses within Room 1. The resulting regions of conver-

gence are shown in figure 8.25. The regions of (b) and (d) are quite small due to the

@ (a)

Figure 8.24: Test Poses for Room 1

lack of distinguishable features viewable from their respective poses. In (d), the case
is extreme, where the true 2-coordinate cannot be distinguished from its neighbours
due to the featurclessness of the hallway.

Results are a little better for the test poses of Room 2 (figure 8.26). Figure 8.27

displays the regions of convergence for this environment. Since the test poses have
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Figure 8.25: Room 1: Regions of Convergence: successful convergences have a final
error of less than 5cm, with the true robot positions for cach plot being
marked with a "*’. The minimum radius of convergence is given in the
caption of each position. In this environment with few unique features for
localization to discriminale, the region of convergence for each position
is not very wide-reaching. While in the long hallway in (d), the region
is very small because the proper z-coordinate cannot be distinguished
from most others in the hallway.

been placed primarily in the differently sized semi-enclosed areas, the local structure
of the environment is distinguishable enough for localization to work over a wider
area. However, as seen in the previous scction, the quality measures indicate that
there is still some similarity between some locations, limiting the size of the regions
of convergence.

For the real environment of Room 3 where the features of the environment are more
distinguishable, the regions of convergence are much larger. Consider the six example

poses of figure 8.28, for which the regions of convergence are shown in figure 8.29.
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Figure 8.26: Test Poses for Room 2

Thanks to a smaller number of similar features in this environment, the regions of
convergence for all the sample poses are quite large, indicating that the initial pose
cstimates necd not be completely accurate for successful localization. We can see how
initial estimates outside of the region of convergence change by examining the path
of convergence plot, as was first seen in section 5.2.3. Figure 8.30 shows two path of
convergence plots using the sample poses (c) and (f). The plots in this figure show
that the initial estimates tend to converge together to common positions, and many
converge to positions within a small area. This, like the quality measures, is another
way to examine similarities of different positions in the room. Since the incorrect
convergence positions, or local attractors draw pose updates away from the actual
robol pose as the algorithm iterates, they must at least fit the range measurements
to some extent; in order to do so the arrangement of line segments about the local

attractor must be similar to that of the actual pose of the robot.
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Figure 8.28: Example Poses for Room 3
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Figure 8.29: Room 3: Regions of Convergence (final error less than Hem, actual po-
sition shown by a ™’, minimum radius of convergence shown for cach):
these regions are all much larger than those in the previous two en-
vironments, since here there are fewer similar features to confuse the
localization algorithm.
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indicate convergence points. This type of analysis can show where the lo-
cal attractors are, i.e. positions whose view of the environment is similar
cnough in structure to that of the actual position to draw convergence
away from the true position.
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8.4 Global Localization

As explained in section 7.2, global localization refers to the case where an estimate of
the robot’s pose is not available. In this case the robot has only a map of the envi-
ronment, a set of range data, and knowledge of the robot’s position and orientation
relative to the data (but not to the map). This scction examines how global localiza-
tion functions in the three sample environments discussed thus far in this chapter. In
each case, the results are presented in two ways: a 2-D overlay of the room comparing
true robot position and corrected robot position, and a 3-D plot comparing the full
initial pose (z,y,0) with the pose after global localization. The map used for cach
case was constructed with the corrected sonar sensor, and a description of cach is
contained within its caption. Table 8.1 summarizes numerically the results of the 3

global localization trials.

Localization Errors
Min | Max | Mean | S.Deviation. | Median
Room 1 | Position (cm) |f 0.7 | 456.5 | 60.9 132.44 2.6
figure 8.31 | Orientation (°) || 0.1 | 189.4 | 32.2 62.03 2.6
Room 2 | Position (cm) || 0.2 | 402.3 | 26.8 91.85 0.9
figure 8.32 | Orientation (°) | 0.0 | 174.8 | 17.0 44.94 2.8
Room 3 | Position (cm) || 0.1 | 3.9 2.5 1.56 2.8
figure 8.33 | Orientation (°) {| 0.0 | 1.5 0.6 0.64 0.3

Table 8.1: Numerical Summary of Global Localization Trials: the results show the
high accuracy of localization when correcting Room 3, where most pos-
sible robot poses have unique surroundings. Rooms 1 and 2 show the
limitations of localization when used in environments with varying degrees
of symmetry.

In other experiments with other experimental environments (both real and simu-
lated) we observed that the likelihood of correct global localization tends to increase

with the size of the region of convergence for a given pose.
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Figure 8.31: Global Localization for Room 1: the actual robot poses are marked by
o’s, and the poses found through global localization are marked by x’s,
with a dotted line between them. For this example all poses were set to an
oricntation of 0°, and the 4 incorrect localizations show that the mistaken
poses all deviate from the true orientation. In two of the incorrect cases,
one corner was confused with another.




CHAPTER 8. EXPERIMENTAL RESULTS 1o

150 S

W <

S0

onematon (degrees)

1

S0

100 0
100 2
200
w0 am
400
s

oK
[L11] ¥ Lot e

X wotdinate

(b) Actual Pose vs. Calculated Pose

Figure 8.32: Global Localization for Room 2: the actual robol poses are marked by
o’s, and the poses found through global localization are marked by »’s,
with a line between them. Again all actual robot poses have an orien-
tation of 0°. This time there are 2 incorrect localizations out of the 18
poses tested.
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Chapter 9 Conclusions

A method for the construction of a 2-dimensional map based on range measurements
from a mobile robot’s on-board sensor has been presented and used as a basis for the
development of a system to successfully localize the robot within the environment rep-
resented by the map. The map, consisting of a set of straight line segments (modeling
the world as a set of planar surfaces), may be incrementally built from measurements
of range data from different positions in the environment. These positions may he
chosen heuristically by a human user or may come from an external exploration al-
gorithm. This allows a mobile robot to perform map construction and map updating
as it explores its environment, while at the same time to use localization to minimize
the errors in pose (position and orientation) that accumulate as the rohot moves.

The map construction technique as presented is based on a fil-split-merge strategy
applied to clustered range data. This technique allows distinct features in the envi-
ronment to be separated and modeled individually, while allowing for single objects
(such as a chair or a corner) to be modeled by more than one line segment. ‘I'he clus-
tering technique needs no user-provided parameters, while the line fitting algorithm
allows the user to control the degree of splitting and merging to suit. a particular
environment or sensor.

The problem of localization was first approached by solving the simpler position
correction problem, where a coarse estimate of position was available and no orien-
tation error was present. The problem was solved with an iterated weighted sum of
vectors technique, which involved incrementally updating an initial position estimale
by reducing the overall difference between range data points and the line segment
models of a map. Range points were classified (paired) with target line segments
assumed to represent the same objects as the measured range points. The distance
norm between a range point and a linc segment was deflined as the length of the

vector perpendicular to the line segment, with its tail at the range point and its head
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touching the infinite line passing through the line segment. This perpendicularity
constraint was necessary due to the undesirable long hallway effect, analogous to the
aperture problem in computer vision [26]. The use of weighted sums added robustness
by weighting range points closer to their targets more heavily than those far away,
since far range points were more likely to be outliers than close ones. However, since
it is nol known at the outset of localization how best to define “close” for this purpose
(since good data may be far away from their true target line segments if the initial
position estimate is poor), all points were initially weighted equally to get a coarse
position update, and after several iterations of classification and sum calculations
only those points very close to a line segment model were weighted heavily, resulting
in a fine, precise position update. It was shown that convergence to the correct so-
lution is possible even if some of the range points are classified with incorrect target
line segments. A study of the errors involved in the position correction problem led
to the concept of the region of convergence, iuside which any initial position esti-
matc will successfully converge to the true position. Related to this is the radius of
convergence, which is the distance in any direction from the actual robot’s position
under which correct convergence will occur. This extra measure was useful due to the
non-symmetric shape of these regions. Regions of convergence change from position
to position and between environments, but can help to roughly predict a lower bound
on the accuracy required for initial position estimates in a particular environment -
a useful value for the more general global localization algorithm.

Since position correction fails under some conditions, a method of verification was
developed to check its results. These quality measures act as functions in the domain
of possible poses the robot can take, and are designed to achieve their global maxima
al the pose estimate whose error is minimized (which is assumed to be the robot’s true
pose). Two measures were presented and used to test data: the classification factor,
which is a coarse indicator of confidence in a converged solution and takes values
between 0 and I; and the comparative quality measure, which is more sensitive to
small errors in a pose estimate but can only be used for comparative purposes since

the values of its global maxima are not consistent from environment to environment.
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In addition to verification of a converged solution of position correction, quality
measures were shown to be useful in correcting a robot’s orientation as well. Orienta-
tion correction was approached as an optimization problem in the quality measures,
and allowed full pose correction given a sufficiently adequate initial (xr,y,0) cstimate.
The introduction of the effective angle range extended the region of convergence into
the orientation dimension, allowing the lower bound of accuracy of the estimate to
include the robot’s angle as well.

Finally, the problem of global localization was considered, where an estimate of
robot pose is not available. This problem was approached as another optimization
problem, this time globally optimizing the quality mecasures in the 3-dimensional posc
domain, with each (z,y,0) point therein acting as an cstimate for a complete local
localization. The difficulty with this method is that only the region ncar the global
maximum is convex enough to allow gradient ascent maximization methods. There-
fore, a sparse-to-dense sampling approach was devised to find the global maximum
without the brute force and time consuming requirements of dense global sampling,.

Time-of-flight sonar sensors werc the range sensors used for all experiments in
this thesis (both real and simulated, except for the idcal simuiations). The maps con-
structed by the robot matched the environments quite closely. Special considerations
were given to the mapping process that took into account sonar scnsor propertics,
and these resulted in better maps. Since these considerations were not part of the
cluster-fit-split-merge modeling process, we can see that the mapping process is open
to accept special considerations that exploit or account for the particular range sensor
being used with the mobile robot.

Quality measure experiments were performed to illustratc how the classification
factor and the comparative quality measurc can be used to hoth verify localization
results (since correct convergence is not guaranteed) and to choose between multiple
solutions. In tests with the three rooms, all but one of the cases showed that the global
maximum occurred at the true robot pose. The case where this did not occur was due
to similarity in the surrounding of the true robot pose and the pose corresponding

to the global maximum, and this was illustrated. Of all the trials, this only occurred
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for one position, showing that only in the most symmetric of environments will the
quality measures not indicate a correct solution, making them robust to the many
possible environments a mobile robot may encounter.

Regions of convergence were calculated for a number of randomly selected posi-
tions within each sample environment. The radii of convergence for these regions were
found to be small (6 cm to 40 cm) in a plain environment with few unique geometric
features and similar-looking areas. For an environment with a lesser degree of self-
similarity and morc unique features, the radii increased (10 cm to 60 cm) as expected.
FFor the final trial, the cnvironment with many geometric features yielded the highest
radii of convergence, ranging between 42 cm and 90 cm for the six poses tested. These
experiments demonstrated that the more unique geometric features an environment
has, the less accurate an initial pose estimate needs to be. Knowing the bounds in
which localization may work correctly allows a user or an exploration system to judge
how far a mobile robot may move before its pose should be recalibrated.

Finally, global localization was tested with the robot in the same randomly selected
sample poses as the previous tests. Irrors were larger and more frequent for the low-
feature environment (up to 4.5 metres and 190° in error for a few poses, with an
average of 60 cm and 30°), were reduced with the introduction of more geometric
features in the second environment (up to 400 cm and 175° error, averaging 27 cm
and 17°), and in the real-world environment containing many geometric features very
accurate results were obtained (maximum error of 3.9 cm and 1.5°, averaging 2.5 cm
and under 1°). One important and very interesting observation was that all global
localization trials demonstrated a median pose error of under 3 cm in position and
under 3° in orientation.

These encouraging resulls show that although sonar has complex geometrical ef-
fects and is a velatively imprecise range sensor, it still can be used for accurate mobile
robot. localization using maps it builds by itself; therefore, one may conclude that
super-high accuracy sensors and perfect environmental models are not necessarily

required to obtain accurate localization.
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Several interesting issues remain to be further explored and included with the
present system. For instance, map construction could be made more dynamic by
allowing line segment models to be deleted when range measurements show the objects
are no longer present in the environment. This has alrcady been studied by Leonard,
Durrant-Whyte and Cox [24] based on model confidence values, and could be adapted
for use with the approaches discusscd in this thesis. Other issucs include the use
of better optimization methods for global localization, such as simulated anncaling
or other such techniques for optimizing multi-dimensional ill-behaved funetions; and
exploration techniques which use the present, state of a map to decide where to explore
next. Exploration work such as that done by Whaite and Ferrie [35] is independent
of localization and could be inserted as a parallel module to the system deseribed in
this thesis.

Finally, as has been mentioned a number of times in this thesis, range sensors other
than sonar are perfectly usable with this system. Some future work could involve
stretching the lower error bounds to the limit when range sensors more accurate than

sonar are integrated into the system.
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