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Abstract

This thesis presents an analysis of the expected complexity of range searching and nearest
neighbor searching in randem 2-d trees. We show that range searching in a random rectangle
Oy x Ay canbedonein O [AzAy n + (Az + Ay) n* + Inn] expecte 1 time. A matching lower
bound is also obained. We also show that neatest neighbor sear .hing in random 2-d trees
by any algoiithm must take time bounded by [n"’"l/z/(ln n)"] where a = (V17 — 3)/2.
This disproves a conjecture by Bentley that nearest neighbor scarch in random 2-d trees can
be doue in O(1) expected time.



. Résumé

Cette thése présente une analyse de la complexité moyenne du raage searching et du
nearest neighbor searching dans un arbre bidimensionne! (2-d tree) quelconque. D'une part,
nous démontrons que le range searching dans un rectangle quelconque de taille A, X A, peut
étre exécuté en un temps moyen en O [AzAy n + (Ar + Ay) n* + Innj. Nous caleulous ausst
la borne inférieure coriespondante. D’autres parts, nous montrons qu’ indépendamment de
I’algorithm utilisé, le nearest newghbor searching dans un 2-d tree quelconque prend un temps
en {1 [n“‘l/z/(ln n)a] pour a = (v/17 — 3)/2. Ceci nous permet de rejeter une conjecture de
Bentley affirmant que le nearest newghbor search dans un 2-d trec peut étre éxecnté en un
temps moyen de O(1).
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1 Introduction

The multidimensional binary scarch tree or k-d tree was introduced by Bentley in 1975
[1], it 15 & data structure used for storing multikey records and for sorting and searching
multidiynensional data The k-d tree is a generalization of the one-dimensional binary search
tree; evely node is used to split the remaining elements into those that are larger and those
that are smaller according to a particular key or coordinate. This coordinate is determined
by the level of the node m the tree in a rotational fashion. Level 0 is assigned the first
coordinate and level 7 is assigned the (1 4 mod k)" coordinate.

A range scarch consists of finding all points in a hyper-rectangle. With respect to range
searching, the k-d tiee seems to he as efficient as the quadtree, which is another multidi-
mensional data stiucture mtroduced by Bentley in 1974 [5]. In this thesis, we study 1ange
searching and its implications for 1andom 2-d trces, obtained on the basis of n independent
identically distributed random variables in the unit square Bentley and Lee claimed that
the upper bound for k-dimensional range scarching for both quadtrees {11] [5] and k-d trees
[11] [2] with # nodes is O(n!~'/* + F) where F is the number of nodes lying within the
search region. Based on empurical tests Bentley also claimed that nearest neighbor search
in tandom k-d trees could be performed in logarithmic expected time [1]. Furthermore, he
proved that if a splitting disciiminator is chosen at every level of the k-d tree, we can build an
optimized k-d tree in which the nearest neighbor problem can be solved in O(Inn) expected
time [9]. Finally he also claimed that range scaiching in k-d trees could probably be done in
O(Inn + F) expected time where F is the number of nodes found in the search region [3] [2].

However, moie recently Flajolet and Puech proved that the partial match retrieval prob-
lem in which s of the k ficlds are specified, could be solved in @(n!—*/k+0(s/k)) expected
number of comparisons for random quadtrees with n nodes (8] and O(n!~*/k+0(s/k)) for ran-
dom k-d trees with n nodes [7] [6] where 6(u) is a strictly positive function. This disproves
Bentley’s upper bound O(n!=*/%) [1] that appeais to hold only for very particular cases of
k-d trees. They also proved that in k-d tries, the partial match problem takes O(n'~*/4)
expected time and concluded that 2-d tries are thus more efficient than both quadtrees and
2-d tices which respectively take ©(n(VT7=3/2) and O(n{V17-3)/2) comparisons [13].

Section 2 gives a brief description of definitions and notations used in this thesis. Section
3 presents an algorithm and section 4 contains an analysis of range search. In section 7,
we give one algotithm for searching for the nearest neighbor of a point. Then, in section 8,
we give a lower bound for nearest neighbor seaiching of a randomly chosen node in a 2-d

tree that contradicts Bentley’s conjecture that the expected cost of a random node nearest
neighbor search s O(1).



‘ 2 Definitions and notations

For a 2-d tree, points in the plane are split alternately according to x and v coordinates.
Hence, if we consider a sequence of n independent random points identically and uniformly
distributed on the unit square [0,1]2, Uy, ..., U,, we can build a 2-d tice by successively in-
serting the corresponding nodes uy, ..., u,. Starting with the unit square as mitial rectangle
Ry, each new node u, is inserted in the smallest rectangle, R, , contaming it and sphts R,
horizontally (y-split) or vertically (x-split) into 2 smaller and disjomt 1ectangles 12, and Ry,
(Figure 1), which are called u, — rectangles.

(1.1)
Ug
QU7

U4y
Jua

1o

(0,0)

) x-split
o y-split

Figure 1: Insertion of w9 in T a vertical split.



We observe that after Uy, ..., U, are inscrted, the square is partitioned into n -+ 1 rectan-
gles However, the total number of rectangles, including overlapping ones, is equal to 2n+1.
Iiach rectangle m the partition thus created is closed. We say that a rectangle R “meets”
a rectangle R’ if and only 1if the interiots of R and R’ intersect. Let B, be the set of all the
rectangles created by the fitst 2 msertions. Starting with a set I3p containing the unit square
Ry as  umque clement, B, 1s deduced fiom B,_; by adding the two new u, — rectangles R,
and Iy, created by the ol inseition,

B, = B,_1 U{u, — rectangles} = B, U {RL,aRZ.}’

Obsnrve that [B,| = 2¢+1. Finally cach k-d tree T may be associated with a binary search tree
Ty(Figuie 2) By induction we can show that the probability of obtaining a random binary
search tree Ty, by inserting random nodes in a k-d tree is the same as that of obtaining 7}
by wmserting tandom nodes in a standard binary search tiee (Bentley, 1975) {1]. Thereforc,
binary scaich tiees cotresponding to random 2-d trees have the same structural properties
as random binary search trees. We write 1, 7y, for the left and vight children of u,, and
denote the coordinates of node u, by (2,,¥.,). Note that u; is the root of T..

root=u 1

x-splt
@ y-split

Figure 2: Binary search tree T}, for figure 1.




‘ 3 Range search algorithm

Given a 2-d tree T with n nodes wuy,...,u,, the range search problem is that of finding all
the points lying within a rectangle Q@ centered at Z, where Z is a random point. uniformly
distributed on [0, 1], and has dimensions

Q = [a;vmns wmar] X [ynnmymar]~

() —rectangles are rectangles having the same dimensions as Q (Figure 3). In this thesis, we
describe an algorithm for range search and analyze its expected time performance. Define
A:c = Tmazr — xmthy = Ymar — Ymumn-

Figure 3: A search rectangle Q.

The following recursive algorithm was suggested by Bentley (1975) [1] (sce also Gonnet,
and Baeza-Yates {10] or Wood [14]). It returns T\, the set of all the nodes in T lying within
our search rectangle Q.



RANGE_SEArcH(T, Q)

ve denote Q = [Ty, Tmaz) X [Ymin) Ymez] and let Z be the center of Q. This
algorithm returns the set I' of points in T that are covered by Q.
T, the subtree rooted at u.

Note:

we root[T]), '—=0
1if [T]=0
return [
if u € Q then
[« {u}
if |T| =1
return ' « I' U RANGE_SEARCH (empty_tree, Q)

if u splits T according to its x-coordinate
case

Ty € Tpn: '~ T U RANGE_SEARCH(T,,Q)

Ty 2 Tmar: I~ T U RANGE_SEARCH(T},, Q)

Tmin STy < ezt ' — ' U RANGE_SEARCH(T,,,Q)
I' « ' U RANGE_SEARCH(T;,,Q)

else {u splits T according to its y-coordinate}
case

Yo S Ymm: I'e~T U RANGE_SEARCH(T,,,Q)
Yo 2 Ymaz: I T U RANGE_SEARCH(T),,Q)
Ymin < Yu € Ymaz: [« T U RANGESEARCH(T, Q)
I' = ' U RANGE_SEARCH(T},,Q)
return [

ond {RANGE_SEARCH}

4

Analysis of range search

(a)
(b)
(c)

(a)
(bv)
(c)

We also denote

Bentley’s algorithm traverses all the paths starting from uy; which are likely to contain a
node lying within Q. A search on a path ends either when a leaf is reached or when the
rectangle R, of the unique child u, of the node u, passed by the algorithm does not meet
(). Hence, none of the non-visited nodes lies within Q; furthermore we may conclude that
the set I' returned by the algorithm is exactly the set of all the nodes in T lying within Q.

Lemma 1. A node u; is visited by the algorithm if and only if at least one u; — rectangle
meets Q. Then, for each node u; visited, the number of u; — rectangles meeting our search
region Q is equal to the number of descendants of u, passed by the algorithm.



PROOF: In cases (a) and (b) of the algorithm, every node u, visited by the algorithm splits

a rectangle R,, meeting Q into two u; — rectangles rectangles (R}, and Ry ) such that R),
meets Q and R;; does not (Figure 4).

Za iR A
Whaa

Rl SRSy

Figure 4: in cases (a) and (b), R|, meets Q and R}, does not.

In case (c) of Bentley’s algorithm, the node u; passed divides a rectangle R,, meeting @ into
two rectangles R, and R, , both of which meet Q (Figure 5).

@

Figure 5: in case (c), R, and R; meet Q).

Conversely, let us now assume that there exists a node u, which has not been visited but

defines two u; — rectangles (R, , R, ) such that at least one meets Q. This means that on

the path from u; to u;, there is an ancestor of u,, u,, such that either u, splits T according

to z,, where z,, < Ty and u; is in the subtree rooted at l,,, or z,, > Tya, and u; is in
the subtree rooted at r,,, or u, splits T according to y,, where y,, < Yy and u, is in the




subtree rooted at I, or ¥, > Ymar and u, is in the subtree rooted at r,,. These four cases
are symmetrical. We assume without loss of generality that we are in the first situation.
Then, Ty, < 7y, < Ty and u, lics within one u, — rectangle, denoted by R;J, that does
not meet Q. Hence, the two u, — rectangles being included in R(‘J do not meet Q. This
contradicts the hypothesis made on u, and we can conclude that for any node u, in T, if
one u, —rectangle meets Q then this implies that «, must have been visited by the algorithm.m

Lemma 2. The number of nodes visited by the algorithm, N, is equal to the number
of rectangles in B,, meeting ().

rroor: Let T be the set of nodes visited by the algorithm.
N = |T]

= 1+ Z number of children of u, visited by a RANGE_SEARCH
u,€Y

= 1+ Z number of u, — rectangles meeting Q.
€T

According to Lemma 1, if a node u, is not in T then no u, — rectangle meets Q, hence since
T is a subset of {uy,uy,...,u,},

N = 1+ Y number of u; — rectangles meeting Q

u, €{u1,..,un}

= number of rectangles in B,, meeting Q.

Theorem 1. The expected number of rectangles in B, meeting our search rectangle Q
centered at Z and of size Az x Ay is such that

E{N} < v(AzAy n + (Ax + Ay) n* +1nn),

where 7 is a positive constant and a = E;;s =~ 0.56 .

rroor: Let B, = {R, : ¢+ € {0,1,...,2n}} and let R; be a rectangle of size a, x b;
(a,=x-length, b,=y-length). We partition the unit square [0,1}? into a grid with Ng tiny
() — rectangles of size Ax x Ay (Figure G). Observe that

1 1
No=|-— —1.
@ [Ar] X [Ay]
Since R, is a random rectangle, P [one edge of R; is on the grid] = 0. Therefore, R, meets
n, Q — rectangles (Figure 7), where




(L1
Axe

i553) [7;-] rows.

(0, 0)

I-Elx-‘l columns

Figure 6: Q meets four adjacent Q — rectangles.

Q, b,‘
< el .
- (2 + Am) (2 + Ay)

< 4+2(a;+b) (31.5+Aiy)+ aibi

(2+I-E;-| ) columns

Figure 7: R, meets n; Q — rectangles
Also,

a, b,
> - =,
n; 2 (1+Az) (H— Ay)



Then,

1=() =0 AxAy =

2n 1 1 2n 1 2n
) < — _— 1 bt Ve .
E{Zn,}_]21L+2(A$+Ay)E{§)(a + )}-i—AszE{iz:(:)ab}

1==()

2: 1 1 2n 1 2n
< - — — .
Y on, < 8n+ 4+2(Ax +Ay> D (e +b)+ ga,b.

Thus, E{Z?;‘, n,} may be considered as the expected number of pairs (R,,Q;),(R: €

B, Q, € Q = {Q1,...,Qn,}) such that R, meets Q, and the expected number of rect-
angles R, in B,, meeting @ is given by

2n
E {Z Illf. meets Q]}
1=0

m Neo
< E {L }_, I[H. meets Q,]I[QJ mecets Q]}

1=03=1

IA

Nq am Ng
E {LX: I[ZGQL] ZO Z IIQ, is Q, or one of its neighbors]I[R‘ meets Q,]}
| 1=0 =1

IA

2. Nao No
E {Zo z:l I[n; meets Q,) ; I[ZGleI[Q,, is Q, or onec of its ncighbors]}
1=0 )= =1

m Ng Ng
< E {Z Z I[R. mects Q,]} E {?:1 I[ZGQI:]IEQ& is Q, or one of its neighbors]}

1=0 j=1

since the latter two variables are independent. The area of any Q — rectangle in Q is
not greater than AzAy; therefore the probability that Z lies in @ is less than AzAy.
Furthermore Q) has at most cight neighbors, hence given a rectangle R, and a Q — rectangle

QI)

Ng
E {LE: IIZGQAl[[Qk is Q, or one of its neighbors]}
=1

Nq

= ?_: P [Z € Qk} I[Qk is @, or one of its neighborsj
=1

< 9AzrAy.

The expected number of rectangles R, in B, meeting Q is not greater than

2n Ng 2n
9ATAYE {Z Z I[R, meets Q,]} = 9ATAYE {2 nx}

t=0y=1 =0

and finally,

2n 2n
E {N} <108ArAy n + 18(Ax + Ay)E {Z(a, + b.)} +9E {Z a,b,} .

1=0 1=0

9



We will now see in the following Lemmas how to evaluate the two last terms of our upper
bound.

Lemma 3. Let a; x b, be the size of rectangle R, in B, 0 < i < 2n. Then

E {%(a, + b,)} = O(n T ~ OO,
1=0

PROOF: We may represent the successive insertions in T by a binary search tice 7} with
2n + 1 nodes, where each node represents a 1ectangle R, of B, having cither no descendant
(if R, is no more divided by any inscrtion), or two descendants (if a new point s inserted
in R,). Let (Vi,...,Vig1,Wi,...,Wiy1) be independent random vatiables uniformly and
identically distributed on [0, 1] and suppose the tree begins with an x-split. Then, starting,
at level 0 with Ry = (ag = 1,bp = 1), on level 1 of the tree we find two rectangles whose
horizontal and vertical lengths form couples of random variables distiibuted as (V4, 1) and
(1 — V1,1). The sizes of both rectangles on level 1 are therefore distributed as (Vi x 1).
Similarly, on level two, for each existing rectangle its size is distributed as (Vy x Wy). Then,
by induction, each node at level 2k (k > 2) represents a rectangle whose size 1s distributed
as (Hf;, Vex TTIE, W.) and at level 2k + 1 (K > 1) each node corresponds to a rectangle
whose size is distributed as ( a2l VN § W.). We notice that a, and b, do not have the

same distribution since the choice of the coordinate for the first splitting affects the shape
of the tree. Let us find an upper bound for

g"O(E (@} +E{b}) = é}E{a.} + éE{b,} .

For any rectangle I represented by a node u at level 2k — 1 in T}, the expected number S
of points lying within R in T is the expected size of the subtree rooted at N in Ty

E{S} =([...[laVi] x Wi] ... x Voo x W, | x ... x Vig ] x Wiy | x Vi )).

For a new node to fall within R and create rectangles on level 2k, we must have E {S} > 1.
Thus, on level 2k, the existence of each node is given by

T 1V ) X W X Vi ] X W ] X oo X Vi1 )X Wiy | X Vi | 21}

which can be bounded from above by

I{n(V,x...xV;xW;Y XWy_ )21}

and bounded from below by

I{n(V; XXV xWyx. oWy _)>24}).

10




We can then write for the 22 nodes on level 2k (k > 2),
E{ax} < E{Vl X oo X Ve Itnvy x..xViexw x...xw,,_,zl}}
< E{Vl X ... X Vi I{nV,x...ka__,><W1x...><Wk_,21}}
and
E {by} < E{Wl X oo X Wi Iy x. xVixwy x...xw,,_,zl}}
< E{W, X ... x Wiy I{nV,x...xV‘,_,xW,x...ka_,ZI}}-

Similarly, for the 22t! nodes on level 2k + 1 (k > 1),

E{a2k+l} < E{Vl X... X Vk+1 I(nV,x...kaxW,x...xW,,Zl}}

< E {Vl X...xV I{uV,x...kaxwlx...kaZI}}

and
E {byp1} < E{Wl X... Wex I{nV,x...kaxW,x...kaZI}}-
Therefore,
2n +00
ZE {a, + b.} < Cp X Zz%E {Vl X...x Ve I{nV,x...kaxW,x...kaZI}} .
1=0 k=1
Define
V = —-In(\ x...xWV),
W = —ln(Wl X...X Wk)

We note that V and W are independent gamma(k) random variables, and the density of V
is
k-1 ,-v

(k)

f(v) =

forv 2> 0.

Then

+00
ZQ%E {Vl X...xX Vi x I{nV,x...kalex...xW,,Zl}}
k=1
+00
== Z 22kE {C—V X I[ne“ve"le]}
k=1

2o v

_ g f -

= ) 2 E{e XI[v+ws|nn]}
k=1

too N
= g 2 /020 [uzo f(v)f(w)e X I[v+w51nn]dU)dv

+o00 k,,k —2v —-w
oUWt e"Ye
/ / Z 22 5 X I[,,+w5|,,,,]dwdv.
v20Jw>0 \;Z1  T(R) vw

o

i

~ s

11




Let first give an upper bound for ¢. Define 8 = 2\/vw.

Since
27r
) 2 (e) v

v
we may write

+
8

ﬁ2k +o00 kﬂ?k

o<

>
i

k
and, using k! < (&) v2rkel/12,

+o00 el/lZMﬁ(zﬁ)?k—l
= V2r(2k - 1)

Q
IA

ﬁ62ﬂ81/12 +o00 (2ﬂ)ke—2ﬁ
< VE+1
ver ?:‘;, k!
28,,1/12
< ﬁe\/e_ E[VP+1],

where P is a random variable with a Poisson distribution of parameter (23). Then, Jensen's
inequality allows us to write

20 ,1/12 203,1/12
o < ﬂe ¢ \/:2ﬂ4r1<ﬁe S —(y26+1)

112
<
< r(ﬂ+

We can now give a new upper bound of our sum

V2832,

+00
Y 2%*E {Vl X...X VX I{nV,x...kaxW.x...xW,,Zl}}

k=1
2112 (1 4 2(0w)'*\ | fozo2v-u
e'Vv dwdv.
v,w20 Jv4w<lnn \/27( Vw

If we transform the coordinates by setting

w=v+uw,v=0w=(1-0w0<0<1,w>0,

the Jacobian is w and the above integral reduces to

“n

9¢1/12 2/ w24 g 0 1)‘
\/—2? /o<o<1/o<w<lnu ( ) + (6(1 - ))1/4) eV dwdf.

12




We note that the function ¢(0) reaches a maximum at 6y = -1;%@ where the maximal value
‘ 1S ¢ = (/)(00) = —\/—]—,Z———s
that, for 0 € {0,1]

. Furthermore, ¢ is concave and there exists a constant v > 0 such

#(0) < ¢(0) — v(0 — 6,)>.
If we denote C = 4"7'4-— for all € € (0, min(6y, 1 — 8y)),

+00
S 2%E {Vl X oo X Vi X Ifnyx.. kaxW,x...kaZI}} <

k=1
Cr /0 ~0g|<e /0<w<|nn ( 1 - 9) + (6(1 — 9))1/4) € dwd

7

“v*

I

| 1 2w w(0)
Cl [0_00|2( ,/()Sw_<_|nn (‘/0(1 —_ 0) + (9(1 - 0))1/4) ‘ du)dg.

v

L

INTEGRAL I). If we write & = supjy_g, /<. (Wll——ﬁ')) , then

< L 1/2 ) w¢(0)
s &Z'Fld'/lo—oolﬁf /<>5w51nn (1 + ?@) ¢ dwdd
2

® < G / / 3¢“H9 dwdd + / 3¢aew¢(°>dwdo]

[Jo<o<1 Jo<w<1 0<6<1 J1<w<Inn

< G 3¢ + / / 3¢5e”<°-"(°-”°)’>wdo]
L 0eR J1<w<lInn

< o Wa

- C2 _36 + 1<w<linn € (/:r:‘eﬁ \/_ dx) dw]

< G 3e"+3\/—i / e“’“dw]
L V J1<w<lan

< Cyl3e* + ?’—\/Zz“]
L a vy

= 0O(n®).

INTEGRAL Ip. If we write a** = supj_g |5 #(8), then o** < o and

1 1

< a**w
< G 0<w<lnn /w—o.qzc (‘/9(1 —0) + (61 — 0))1/4) 2viwe™ “dfdw

< 206 l""(lnn)a/?/

( = + ! do
0<0<1 \/0(1—"0) (0(1 — @)/ |

This last integral converges so that

‘ I < C3n®" (Inn)¥? = O(n®).

13




We conclude that

400
Z 22kE {‘/1 X...xV I{nV, X..xV; xW,x...kazl}} = O("a)a
k=1

and therefore

2n
ZE {a. + b;} = O(na) = o(nﬂZ;’) ~ 0(11.0‘56).
i=0

Lemma 4. If a; and b; are as in Lemma, 3,
2n
E {Z(L;b,} = 2Hn+1 - 1.
=0

PROOF: Define
A= ) area(R),
REBy
where R and By are as defined above. The first area Ay is equal to 1 and by induction,
according to the definition of sets B and Byy1, Aryg is defined by the sumn of A; and the
areas of the two new w1 — rectangles. These two rectangles form a partition of R, 41 80
that Ay, is equal to the sum of A, and the area of R,,,,. Thus, the last itcration returns

2n
A= ) area(R) =) ab,.

ReBy i=0
We deduce that
2n
E {Zaib;} =E { > area(R)} = E{A.},
1=0 ReB,
that is,

E {ga;b,-} = A + Z E {arca(R,)} .

=2
To evaluate this expression we need the following Lemma that gives a precise calculation of
the second term of the above sum. n

Lemma 5. For ¢ > 2,

E {arca(R,,)} = —1%;

PROOF: By definition, R,, is the smallest rectangle accepting u,. It is well-known that the
i rectangles defined by wu,,...,u;_; are distributed as uniform spacings. That is they are
distributed as (V,41 — V;) where 0 < j<i~1land 0=V < V5 < ... < Vjouy) < Viy = 1,

14




and Vi1y,..., V) is a permutation of i.i.d uniform [0, 1} random variables Vi,...,

Thus,

1—1
E {area(R,)} = E{Z(V(J+1)—V(J))2}

1=0
= {E {(‘/(1))2} (symmetry)

= z'/ol 72 f(z)dz,

where [ is the density function of V.
From

PlVin>2z] = PVi2z]x...x PV, > 1]
— (11__ x)i—l
= /x f(y)dy,

we sce that f(2) = (2 — 1)(1 — 2)*-2 and

E {1/(21)} =(—-1)x /01 2?(1 — z) %z = GrD

Thus,

E {area(R,,)} = i-f-l'

CONTINUATION OF PROOF OF Lemma 5.
We deduce that

n2
E{4,} = 2+;i—+—I

n-l-ll
= 2 —_ -
277!
= 2Hn+l—1'

CONTINUATION OF PROOF OF Theorem 1.
From the properties of harmonic numbers,

In(n+2) < Hpyy <1+41In(n +1),

and therefore,

2n
E {Z a.b,-} ~ 2lnn.
=0

15



Collecting all this yields the bound

E{N} 108AzAy n+ C(Az + Ayn® + 18H, .1 — 9

<
< v(AzAy n+ (Az+ Ay) n®+1nn),

where 7 is a positive constant.

In section 6, we will show that the bound of Theorem 1 is tight. The above inequality
is a sum whosc terms reflect the main computations of the algorithm. The fist term of the
upper bound (AzAy n) represents the number of points of the 2-d tice lymg within the
search rectangle and returned by the algorithm. The second term ((Ar 4 Ay) n®) is an
upper bound of the expected number of nodes visited outside the search rectangle These
nodes cannot be eliminated since one coordinate lies within the bounds while the other is
unknown. Finally, the third term (Inn) corresponds to the expected length of the path fiom
the root to the leaves found in the search rectangle Q.

The expected cost of the algorithm has an oider of growth dominated by one of the
three terms depending on the given Az and Ay values. Without loss of generality, we may
assume that Az is larger than Ay. Hence, if Ay = Q(1/n*) such that &, < 1 — « then
E{N} = O(AzAy n). However, if Ay = Q(1/2%) and O(1/n*) such that k; < « and
k2 > 1 — a then the expected cost is O ((Az + Ay) n®). Furthermore, the second term still
dominates if Ay = O(1/n**) when k; > a and Az = Q(1/n**) when k3 < «. Finally, the
expected cost is logarithmic in n when Ay = O(1/n*?) and Az = O(1/n*) if ky > o and
k3 > a. We then have E{N} = O(lnn) .

According to the zbove remarks, in partial match query (i.c. when (Az, Ay) = (1,0) (or
(0,1)) ) the expected cost of the algorithm is bounded from above by the second term of our
sum, E{N} = O(n®). This yields the result proved by Flajolet and Pucch [7] for partial
match retrieval in k-d trees of size n for k = 2.

However, we notice that the upper bound does not confirm Bentley’s claim [1] that the
expected cost for a partial match query in a k-d tree of size n where s ficlds are specified
is O(n!~*/¥). This result appears to be valid in the very special case of perfectly balanced
k-d trees in which the splitting coordinate at each level of the tree is determined by the
data values. Moreover, Bentley’s conjecture [2] that the expected cost of range searching is

O(Inn + F) is not verified by our upper bound: in the simple case of Az = Ay = 1//n, the
expected cost of our algorithm is O(n*~1/2) =~ O(n%%).
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5 The shape of the rectangles

i —

T X
11

e |

Figure 8: Random 2-d trees. Note the elongated nature of most rectangles.

Let denote X and Yi the horizontal and vertical lengths of a rectangle taken at level k.
A rectangle drawn randomly from a node at level 2k has edge ratio Xok[ Yo where

Xow ¢ Viy-- -, V%
Yoo Wi,...,Wi
Therefore, using the same definition as in the previous section,
V = —-In(V} X...x V),
W = —In(W) x...x W),

L{ [ A V3 )XW oo X Vi | X W ] XX Vi1 X Wiy [ X Vi |21}
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at level 2k,

W-V
e (Lo UnVa ] X W3 X Vi | X Won Ix XVl JXWiq | VR ]2 1)

r_v
(3“ !

vV
(3“ !

Iinvix . xVaxWyx..x Wy -y >24)

v iV

InvixxVixWyx . xWy>2k41)-
In the same way, at level 2k 4 1, we have

Xok+1 Vi,oo o, Vi
>

I, 5 st .
7 Lt {nVIXL VX W x Wi D204 1
Yorqs Wiy s Wi }
s My LY Ty
= ] nVix. x¥ xW; x ..X“'AZQL-}—I}
Wi,..., W,

‘V—VI
zZ ¢ {nVix..xVixWix. xWy>2h+1}

Thus, we have the following inequalities

min{XZk Xokt1 > N I
3 nVix.. X Ve xWy X . x Wy >2k+1
Yor ' Yorq Wi,..., W L R ! }
w-v
2 e x I[V+W$In( 2=

We note that V and W are both gamma(k) distributed and that according to Central Limit
Theorem,
W-V .

T = N(0,1),

where 5 denotes convergence in distribution, and N(0,1) is the standard normal law. This
means that the above ratios have an order of growth of approximately eV2*. For k = O (In n),
very high values of Xy /Yo and Xopy1/Yaory reflect the clongated shape of the rectangles,

Therefore, it appears that most of the rectangles in our 2-d tree are very long (Figure 8).
This is responsible for the O(n®) upper bound calculated for the expected sum of the perime-
ters of the rectangles in B, as the perimeter (a, + b,) of R, decreases very slowly with i. In
other words, this disproportion explains such a high number of Q — rectangles meeting R,.
It also explains why the k-d tiee is virtually useless for nearest neighbor scaich.
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6 A lower bound for range searching

The upper bound for the expected cost of the range search given in Theorem 1 was com-

posed of three terms reflecting the main computations of the algorithm. Here, we show that
Theorem 1 is tight.

Theorem 2. The expected number of nodes visited by a range search in a rectangle Q
centered at Z and of size Ax X Ay is such that

E{N} =Q|AzAy n + (Az + Ay) (ﬁ) -Hnn] ,

where a = ';_"3 = 0.56 .

Proor: Thiee terins clearly lower bound the expected cost of the range search.

PARrT 1: By definition the range search returns all the points lying in a rectangle of size
Az x Ay, hence, since the expected number of points in this region is (AzAy n), the algo-
rithm takes at least Q(AzAy n) expected time.

PART 2: The search is done by visiting a random binary search tree and cannot be completed
unless a leaf is reached. Therefore, the expected minimal distance from the root to a leaf in
a random binary search tree with n nodes being O(Inn) [4)], the expected cost of the range
scarch can be bounded from below by Q(In n).

PART 3: Now, we evaluate that the number n; of Q — rectangles of size Az x Ay meeting
a random recta. gle R, of the 2-d tree T,

a, by
i> 11 ——-) 1+—].
= ( + Az ( * Ay)
Thus, we can write

2n 1 2n 1 2n 1 2n
> — — — bi b
E {gn.} >2n+ AxE {ga.} + AyE {gb.} + Aa:AyE {ga.b,}
Since at least one fourth of our random search rectangle centered at M meets the unit
srquare (Figure 6), we deduce that any random search rectangle meets at least 1/16th of a

Q — rectangle of the grid. Thus, the expected number of nodes visited by the range search
18

. 2n
E{N} > AlAyE {Z n.}

16 =0
1 2n 2n 2n
> T (Aa:Ay n+ AyE {Z a,} + AzE {Z b,} +E {Z a.-b.}) .
1=0 i=0 =0

A thitd lower bound for the expected cost of the range search algorithm results then from

s =a[(G)]

Inn
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2n

o =)

=0
We now show these bounds. We have

Ef{ax} > E {Vl X.ooo XV I{nV;x...pr(W.x...ka_|2'2k}}
2 E {Vl X...xWV I{nV,x...x\'kxwlx.‘.xWAZQk)} )

and

E {bo}

v

E{Wx X...x W I{nV.x...kaxH’lx..xW‘_;Z‘Zk}}
2 E{Wx X.ooo X Wi Linvix  xvixiy x .xw.z-zk}}-
For all £ > 1 we also have
E{az-1} = E{an},
and
E{by-1} = E{ba}.
Thus, there exists a constant Cy > 0 such that
ZE{G.} 2> Co 22*E {Vx .x W I{nV,x...kaxW,x...xW.Z:!k)}~
i=0 =1
With the same notations as in the proof of the upper bound (Lemma 1), we obtain

ko k —2v ,—w
o2k VEWE ) e e
z'_oE{a.} z Co />o /w>0 (k_l I‘(k)2) vw Tiotwem gy dwdv

2 ] —2uy -
v20 Jw20 k—6 inn I‘(k) vw

where § is an arbitrary constant in (0,2). By Stirling’s approximation, as in the proof of the
upper bound, we note that

0 > C1fe?E{V1+ P X Iasinn<p<tinn)}

where 8 = 24/vw, P is a random with a Poisson distribution of parameter (2) and C) is a
positive constant. This is bounded from below by

{ Cofic?inn if 6lnn< B < 2lnn,

0 otherwise,
. . /4
where C; is another positive constant. But VInn > (vw)'/®, so that we have the lower bound
0 > C3B* 2 Ii5100p<inn)-
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This leads to a lower bound equal to

C, / / VI 20w () A dudu.
v,w>0 v+w§|n(-2'-'5),2\/ﬁu'€[6lnn,2lnn]

With the transformation used in the upper bound,that is
w=v+wrv=0ww=(1-0w,0<0<1,w>0,
with a Jacobian equal to w, the latter expression reduces to

0(1 — N 4320 dusds.
C‘ILSOSI,OwaIn(%)[dmelglnn'hm]( ( )) wr'e

We kuow that ¢ reaclhies its maximum at 0y = L"—IQL‘@E and takes the value a = ¢(8¢) = @
We also note that ¢(0) > a — v(0 — 6p)* for some v > 0 and give a new lower bound

Cif / (—3—) 1 Jeam 00 gy,
i<o<i lnn<u<ln(—i——) i6

By the normal integral we have the following inequality

3 2 Cs
wi(0-00)" df >
€ > .
/% Vwv

for some constant Cs. Thus we obtain as lower bound

3\ C l(zEs) 3I\V4C  pin(as) n \e
il - wa el -~ wa g, A
(16 \/B %Inn we 2 (16 \/17 g—lnn e © [(lnn) ]

if § < 2. We have then proved that

iE{a.-} B [(lnn) ]

Similarly we may prove that

2o =)

Collecting all this yields a general lower bound for the expected cost of the range search;

E{N} =0 [AxAy n+(Az +Ay) (1‘:7)0 + ]nn] :
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REMARK: More careful but-tedious work in the truncation allows us to get rid of the
1/(lnn)* factor in the above lower bound. Weused the inequality

L. LVl x Vol x Vil > nVix... xV— [l + Ve + Vo 4+ 4+ ViV L V)

3

Z

and bounded Zj. by k, which led to the extra 1/(In n2)* factor. However, as k& goes to infinity,
Zy approaches Z,

Zi 5 Z,, whae E{ 2y} = 2, Var{Zo) = 1/2.

As Zi is basically behaving as a constant random variable, we could then make the logarith-
mic factor disappear. The calculations are not included here.

7 Nearest neighbor algorithm

The search for the nearest neighbor of a node v, in T may be divided into two independent
searches: either the nearest neighbor is in the subtree T,, rooted at wu, or it is in the tree T
minus 7. In a random 2-d tree T, the subtree rooted at any node u, can be considered as
arandom 2-d tree in which the search for the nearest neighbor of u; has the same properties
as the search of the nearest neighbor of the root of 7. This section presents an application of
the range scarch when searching for the nearest neighbor of a randomly chosen node v and

we will then see that the nearest neighbor search in the subtree rooted at # may be done in
O(1) expected time.

Lemma 6. Suppose that we can execute an algorithm A on a 2-d tree T" with n nodes
in O(n®) expected time where 3 is a positive constant strictly smaller than 1. Then A,

applied to the subtree of T rooted at a randomly chosen node u, T, takes expected time
0(1).

PROOF: After u; isinserted, T}, the binary search tree corresponding to our 2-d tree, consists
ofi+ 1 external nodes. Each of these nodes is equally likely to he an ancestor of any of the
n —t remaining nodes. Thus, the expected size of the subtree rooted at u, is

n—1

1+ 1

According to our hypothesis, if we dcnote C; the cost of the algorithm A i the subtree
rooted at u, then

E{S}=

E{C|$}< c S*

where 0 << 1 and 0 < ¢ < co. Due to the concavity of z?, we can write
E{C} = E{E{C|S}}

22




IA

cE{S:)
—i\B

()

oy

Given that cach node u; is chosen with equal probability 1/n, if we denote by C the cost for
computing A on T, the subtree rooted at a randomly chosen point «, then

IA

IA

E{C}

i

~YEB(Ci)

=1

2 (D)

n
c nf! (1 +/ —l—ﬁda:)
1 T

= O(1).

IN

IN

We will now present an algorithm that finds the nearest neighbor of a randomly chosen
node u; of a 2-d tree and verifies the above hypothesis. It is not adaptive: it requires knowl-
edge of the size of the rectangle to which the data points belong. Given a 2-d tree T with
n + 1 nodes, this algorithm, NN (T,v,), finds the nearest neighbor of »; by computing the
range search returning the set I'; of all the points in the 2-d tree T lying within a region Q.
dcfined as the square centered at u; and of size Ax = Ay = 7";

NN(T, u,)

Note: this algorithm returns the nearest neighbor in the tree T with 7n+] nodes

of a node ;. Q. denotes the square centered at u; and of size Az=Ay= -\f;

Delete u; from T {we have a new 2-d tree T' with n nodes}
Set ¢« 0
Repeat

c—c+1
I'. —RANGE_SEARCH (T",Q.)

until [ # 0 {Note that ¢< \/n at this point}

Find the nearest neighbor of u; in I'. by brute force

{end NN}
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Theorem 3. This algorithm finds the nearest neighbor of a random node u in a 2-d tree T'
with n +1 nodes in

O(na—l/2) o O(n\/ﬁ/2—-2) ~ 0(110'06)

expected time.

PROOF: Let us first evaluate the expected cost of deleting the root of a 2-d tree T. If
we suppose that the root splits the tree according to its x-coordinate, deleting the root may
be done recursively by finding and deleting the x-minimum node in the right subtree of T°
(as suggested by Bentley in [1]). This node can be found with very high probability with a
range search in a rectangle @ such that

Q= [z, z+1/n]x{0,1],

where z is the x-coordinate of the root of T. If 7y denotes the time taken by this procedure,
by Theorem 1, we may write

E {n} = O(n*).
Moreover, by Lemma 6, we note that the expected cost of the deletion of a random node is

E {T()} = 0(1)

After the deletion, the range search is applied to a square Q. totally independent of
T'. Let N be the first ¢ for which |I'¢| > 0 in the algorithm. Let 7. be the time taken by
RANGE_SEARCH(TY, Q.). Then, the total time is

N
T=) T
=1

and,

E{r} = iE{n Ivsa}

< SE{n}P{N 2.

1=]

Here we employ an association inequality stating that 7. and N are negatively dependent.
By Theorem 1,

E {1(c)} <7 (02 4+ 0% X c+In n) ,

for some positive constants  and a. Also,

P{N2>c} < P{l.., =0}

1(c—1)2\"
s (l"z = )

e—(e=17/4.

IA
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as at least one fourth of Q.. intersects the unit square (Figure 9). Hence, the expected time
'3 {7} satisfies

E{r} £ 7(1\0 + A, no3 +Aglnn),
where

oo
Ao = 3 xelem P,

c=1

ad 2
Zc x ¢~(c=1) /4,

c=1
o0

Ay = Y ee/4,

c=1

Ay

We notice that Ag < A; < Ag and that 32, ¢ e~ 1*/4 < oo, Thus E {7} = O(n*~1/2).

a.1)

0o R

(0, 0)

Figure 9: a square Q..

The complexity of the last step — finding the nearest neighbor of the root %y in I'; — is not
greater than 7. Therefore the expected complexity of the algorithm is O(n®*~1/2) and Lemma
6 allows us to conclude the proof of Theorem 3. [ ]

In the next section we will sce that the expected time for finding the nearest neighbor

of a random node in a 2-d tree may be bounded from below for any algorithm that is given
a random 2-d tree by

B(r) -0 [T |

This lower bound is very close to the upper bound proved for our algorithm. We also proved
that the neaiest neighbor of the root in T can be found in O(n?) expected time where
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0 < B < 1. Therefore, according to Lemma 6, the nearest neighbor of a randomly chosen
node u in T, the subtree rooted at u, can be found in O(1) expected time.

The above algorithm may be made adaptive. Furthermore we may increase ¢ geometri-
cally (¢ « 2c) for faster execution times.

8 A lower bound for finding the nearest neighbor

In section 7 we described an algorithm for finding the nearest neighbor of a 1andom node
in a random 2-d tree whose complexity may be bounded from above by n” where g is a
strictly positive constant. We are very far from Bentley's conjecture that claims the nearest
neighbor of a random node, in a random k-d tree with n nodes, could be found in O(1)
expected time. In this section we give some evidence that this conjecture may be disproved.

Theorem 4. If we co: .der a sequence of n independent random points identically and
uniformly distributed on the unit square [0,1]?, Uy,...,U,, we can build a 2-d tree by sue-
cessively inserting the corresponding nodes uy,...,u,. Let Z be a 1andom point uniformly
distributed on the unit square. Then the expected time E {7} for finding the nearest neighbor
M of Z among 4,241, - . ., 4, may be bounded from below by

w-alf5]

PROOF: Without loss of generality we assume n is odd. Let R be the square centered at Z and
whose vertices touch the circle C centered at Z with radius A equal to the distance between
Z and M. Let Q be the square centered at Z of sides 2/+/n. If we define the “splitting line”
of a node u; as the line segment according to which u, splits the 2-d tree, then in the smaller
2-d tree Tj built from u;,...,us 2, any node whose splitting line intersects R may be closer
to Z than M. This means that we cannot conclude M is the nearest neighbor of Z until we
have visited all the nodes whose splitting line cuts I.

If Q is included in R, the expected time E {7} taken by the ncarest neighbor scarch may
be bounded from below by

E{r} > E{N ljgcn}
2 E{N ’mz\/w‘nl}

where N is the number of splitting lines of uy, ..., u,/2 in T intersecting (). In this smaller
tree T, if we denote “final rectangles” the n/2 + 1 smallest rectangles partitioning the
unit square (no node lies within a final rectangle) then each of these lines may be seen as
bording two final rectangles meeting Q. Thus, N is the number of final rectangles meeting @
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(1,1)

(0,0)

Figure 10: Z and its nearest neighbor, M.

minus 1. In the proof of Theorem 2, we can modify PART 3 and write in the case of our
square ),

E 2 g%
{N}ZV—;E{Za'}—l

=0
Now, we have

E {ax} > E{Vl X ... xW I{nle...kaxW;x...xW,,_,=2k}}a

and the calculations are easily adapted and return the lower bound
2 [ n\*°
E{N 20| (22) |-
N} 2 [ﬁ Inn ]
Since the nearest neighbor of Z is sought among a data set independent of the lines

cutting (), we have
E{r} >E{N} P {A > ,/2/n} .

From Theorem 2 we recall that

E{N}Z%(%%;),

where C is a positive constant. We also have

n—2
P {A > 2/11} > (1 - -———) " /2,

27




Hence,

E{T}‘—‘Q[%}.

This result contradicts Bentley’s conjecture that the nearest neighbor of a random node
in a random k-d tree could be found in constant expected time.
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9 Conclusion

Using a geometrical and probabilistic approach, we have analyzed the complexity of range
searching and nearest neighbor searching in random 2-d trees. The general formula of The-
orem 1 applies to many kinds of operations besides ordinary range search. In particular, in
the case of partial match query, our thcorem returns the result Flajolet and Puech [7] proved
with the help of generating functions. It has also been shown in the text how the formula
applies to deletions of nodes and to nearest neighbor searching. We would like to extend
these results to non-uniform distributions.
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