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ABSTRACT 

• <. 

The presént thesis discusses sorne of the irnRortant 

fundamental :flroblems related to the derivati6n of kine~ 
equations ~bP 9imple fluids and mixtures frpm the Hamilton 

-equations .'governing the mofion of thé indi vidual particles. 

A~ter der~Ving th"e Liouville eqU~t·ior' for the 'full N pOi'n~ . 
i ' 

particle probability distribution, and the B.B.G.K.Y. hier-
c 

archy for the reduced S < N particle distribution, the study 
/ 

} 

initiates an extensive nondimensionalization designed ta· 

highligNt the average magnitude ~fJthe various terms of 'these 

" "\ 
eqpations', over a gi ven volume iI} phase space, in terms of 

a set of dirnensionless paramet~rs. Using the latter as 

1 classification indices and exparÎsion parameters, "non-dense ", 
\" '-

< Il'Weakly coupled" and "~rOWniatl" systems are considered . 

Each of these systems, i~ first treated, for the s\imple spa­

tially uniform case, us ng a straightforward initial valu~ 

~expansion which, as fir:t noted by Bogoliubov, renders diver­

gent solutions fo~ the single particle distribution. ~ na~u-
1 

raI extension of this simple approach, however, involving 
", 

the integration of the B.B.G.K.Y. hierarchy aver a time inter­

val sufficie'ntly ,short to pre vent divergence, yet adequately 
'\.... , 

long to i'Mtpose suitable baundary conditions, is shawn to yleld" 
~, "\. ., 

for the spatially uniform case, familiar kinetlc equations 

such as those of Boltzmann and Uhlenbeck-Chah for the non-dense' 
r 

. syst,em and of Fokker-Planck for the Brownian system. Finally 

this simple method' of "reini!t'iil.lizatio'n" 1's applied to more 

complex non-uniform mlxt~res interacting with an external field. 
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SOMMAIRe. 

1 

, 
·1 

Cétte thèse ~e propOS~'d'étudier certains problèmes 

fo~damentaux touchant à la dérivation d'€quations cinétiques~ 

pour des -fl~ides simples et des mélanges à partir des équa­

t~ons d'Ha~ilton qui indiquen~ l'évolu~lon d'un ensemble 

classique de ,particules. Suivant, ,une .déri vatio,n' des équa-
... - . 

tions de Liouville eb B. B.G.,K. Y. pour ,les distributïoh de 

probabilité respectïves de N et S < N par'ticule's, 6n' entre~ 

prend'une,~tude dimensionnelle afin d'établi~, pour un cer-
, . 

tain volume dans l'espace de phase, l'ordre de grandeur 

moyen ~es divers termes de ces equations en fonctiop d'un 
a . 

ensemble de parafuètre@ sans dimensions. Çeux-ci sont par la 
1 

suite uti,lisés comme indices de classi ficat ion et p'aramètres 

d f ,~xpansi9n dans le but d' ét udier les syst,èmes dilu,és, faible-' 

. ment couplés et ceux de Brown. Comme point. de d'épart, on 

trai te d' abor.d: le, système homogène se s'ervant d'une expansi'on 
, '. 

simplé, avec conditions initiales, qui aboutit' 'à une solutton, 

pour' la distributionde probabilité d'une seule particule, 
... 

exposant une divergence temporelle telle que prévue par Bogo-
.... 

liubov. Par suite, on démontre q'une simple modification de 

cette méthode, qui intègre l'équation B.B.G.K.Y. sur une durée 

aS,sez courte a'fin de réduire les erreurs d'expansion mais, 

néamoins, suffisamment longue afin d'imposer des conditions 

Il frontières raisonryables ,aboutit ',aux equations populaires de 

Boltzmann et de Uhlenbec-k-Choh pour un système non-dense, et 

à l'équation ~e Fokker-Planck pouJ le système de Brown. 
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, l Enfin on démontre que cette nouvelle méthode de "rélnitiali-

sat1on" 5 ' appliquer à l' &tude' d.e mélangés nori-ho!nogènes de 
r.t . " 

, 
! • > 

plusieurs espèces de particUles'sOus ~r1nflue ce d'une force 
externe. 
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The pregent thesis disc~sse~ sorne of the: main mathe­

matlcal, and physical concepts p~r'taining to the derivation of 

ki~etic equaticns for a sys~m ,?f particles. ,n'ue 'ta tre na­

ture of the subj~ct, i t ïs difficul t to 'truiy appreciate the 
, ,/ 

physical. aspects invol ved wi thout introducihg a f~ir degree 

of mathematics. Furthermore, sinee this study has 'been gen-

eralized ta includé mixture~ of various species of particles, 

the equations which emerge often display a complex array of 

mattiematical symbols, su~s~r~ts., supersc~ipts and sa forth . '. '-,..; 
which do not make the reading of thxs thesis a trivial task. 

For these reasons l would like to of ter a few casual sugges­

tions which may ~ou. the readert to discover, or assess, 

as the case may, he, the sci,entific impliça tions of the pre-

sent study. 

This thesis is presented in the fûrm of five main 
.. 

. ,chapters preceded and followed by an introduction and conclu-
: ' 

sion. Each main chapter ends with a "suMlmary and conclusion" 
~ , 

section which outlines, with a minimum, of mathemâtics, its 
\ 

ma~n obj~ctives 'and resùlts. As a f~rst reading l would 

therefore suggest the irftroductory ch;Pt'er l, the summaries 

of chapters II - VI and the concluding chapter VII. This 

will essentip,lly gi ve you the "gist" of the thesis and, hence, 
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\. STATl.WŒNT oF ORIGINAIJITY 

AND 

C ONTRI BUTIONS TO KN OIJLEDGE 

The author claims originality for the following con­

tributions to the field of nonequilibrium statistical mcch-

anics: 

2. 

\ 
\ 

the presentation of an extensive and systematic non-

dimensionalization of the Hamilton, Liouville and, , 
1 

B.B.G.K.Y. equation for a mixture~of point particles 
l> 

, 
design~d to hf~hlight th~ average relative importance, 

over a restricted voldrne in phase space, of the various 

terms in these equations; 
~ 

the development of a new simple perturbation scheme . . 
which consists of integrating the expanded B.B,G.K.Y. 

hierarchy over a ~ime interval sufficiently short to 

prevent the breakdown of the resulting solutions, yet 

sufficiently long to' irnposeAreas.,onab~e boundary condi-
i 

tions. ThjS rnethod is similar ih spirit yet much more 

flexible and simpler in form than the Lewis and Harr~s 

time ,expansion method" It also clarifies mÇ3.ny of the 

1, 

. , 

, " 

• 

l' , . . 

assumptions and limitations in the functional expansion 
" . 

of Bogoliubov and the multiple ti~e scale technique of 

Frieman. 
/'~ 
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3. 

4. 

...., 

" 
\Tii 

The application of this concise "reini tialization" 

'~xpansion to alternate derfvations ofl 

a) the Bolt~mann and Uhlenbeck-Choh equati6ns for 
1 

simple spatially uniform non-dense gases; 

b) the spatially uniform Fokker Planck equation for 

ri) 

, 

a single heavy Brownian particle' in a, bath of light 

bath particles; 
<, 

c) a set of M coupled Bol tzrnann equations for a 

spatially non-uniform and non-dense mixture of M 

species of particles interacting wi th a weak ex-

ternal field; 

d) a "generalizeh Liouville" equatioh for a non-uniform 
. . 

mixture of Brownian particles interacting.wjth a 
. 

weak external field ,and coexisting.with a mixture 
; 

of 11ght. 1Jath particles,' 

~he p~7sentation of new scaling arguments, based on the 

aforementioned nondimensionalization of the )3.B.G.K,Y., 

hierarchy, which suggest, near equilibrium, inconsisten-

,oies in previous derivations, by Bogoliubov, Sandri 

and others, of kinetic'equations for uniform weakly 

. ~coupled systems. , \ 
\ 
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~s the final"hustle and bustle"of editing and p-roof-, 
~ 
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thanks ta those whô have contributed scientifically or 

personaB.y to the completion of this the~i.s. Fir~t1y, l 
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were al ways sprinkle~ with a great dea~ of interest'and 
" .. 

enthusiasm. ~ 1 would ~o like to acknowledge aIl my co1-

leagues and, particularly Paul Lavallée, f'or,rnany, stimulating 

~cussion~ related (and at ti~es refreshingly unrelate~) to 

the field of "Sta tistical Mechanics" " Very special thailks 
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Radial component in cy11ndrical coordinate sys­
tem; CIV-B-20), 128. 

Cna~acteristic energy used in"the nondimension~ 

alization qf 1.1.,-< ;(III-;C-16), 66.- \ 

Dèfined on""page 146. 
, J .. 

tiefined on page 236~ 

Define6 on pa§e 145. 

Volume in ~ used in the no:ndim~nsiona1ization 

of F" ; (III-C-22), 69. 
, - . 

Volume in f{sJ used in the nondimens10nalization 
... -

of Fh1 ; (III-C-36J, 74. 
'f 

Bogol~ubov functional derfvative; (V-A-6), l5lJ. 

, 

" 

Basic energy set used in the nondimensionalization 
of the governing' equations, 63. ' 

Single partic1e distribution, :function; (IV-B-19) 'j 
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N partic1e distribution functlon; 38. 
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Equl11brlum distribut~on function assoclated ~. . \ , 
,wlth H~ ; -CIV-B-56), 142. if 

Equl1ibrium distribution' function associated 

with H,; nV-B-63), 144. 

Equilibrium distribution function1associated 
with H'hJ.\; CVI-B-24), 229. ~ 

Equillbrium distrib~tion function associated 

with HII.41; CVI-B-30), 230. 
'Ir-

S particle dis~ibution function; 175 . .. 

\ 

Force acting on a Brownian particle; (IV-B-50), 
143. \ 

Force ~cting on a Brownian particle at an earlier 
time; 143. ' 

Force acting on particle h,<i5; (III-C-30), 72 
and (VI-B-36), 231 . 

. ' 
Force acting on a Brownian particle {,-,""} at 
an earlier time: (VI-B-41), 233. 

S partic1e correlation function; 175 .. 
'" 

Relative velocity between partlcles i and j; 
128 .. 

N particle Hamiltonlan; (II-A-l), 31. 

Haml1tonlan for Nb batn particles in the'presence 
crf a fixed Brownian partic1e; (IV-B-56), 142. 

; 
Single partic1e Hamiltonian; (IV-B-53), ~44 .. 

. i 

Hamiltonian for Nb bath particles in the presence 
of a mIxture of fixed Brownlan partlcles; 

.(VI-B-25),229. 

Haml1tonlan for a single bath particle of specie $ 
in the presence of a mixture of fixed Brownlan 
particles; (VI-B-31J, 230. 
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~ part1cle Harni1tonian operator; (II-A-6)~ 36. 
t-'1 

S p~rtic1e Harniltonian oper~tor (S<N) 

Hamilton'ian for a subgroup of oart1c les ~ ~ ~ 
49. 

Hamiltonian operators used for non-dense mixtu­
res; (VI-A-8&9), 216. 

'\ 
Hami1tonian operators used for~own~n motion;Ç 
(IV-B-lf7) ~ 139. 

'.~r 1J HI 1 

1f"""t .... J,}{! IV1.){tuJ Hamiltonian operators used for Brownian mixtu-

, 

.)-(~"I ,J..(·i"\ res; (VI-B-12 to 16), 226&227. 
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S particle interaction operator; (IV-B-38), 
135. ~ 

Boltzmann. collision term for simple gas; 
. (IV-B-20) , 128 . 

, 

Boltzmann collision term tor mixtur~ ; (VI-A- 31) , 
'·222. 

Fokker-Planck operator; 146. 

_S partic1e momenturn convection term; (IV-B~38), 
135. 

Dimension1ess· parameter; (III-C-21), 68. 

'Dimensionless parameter; . (III ..... D-l») 79. , " 

Basic 1ength set used in the nondimenslonaliza­
tian of the governing Equations; (III-C-6), 63. 

Subset of {ll ;(III-C-6), 63. 

Range of externa1 field U' , 62. 

Mix1ng operator; (II-C-12), 46. 

M1xing operator; (III-E-8), 10~9. 
, 

M1xing operator; (VI-B-17), 227: 

Mixin~ operator; 17-5. /' 
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l '" 
Conditional dist'ribution function for a subgroup 
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Mean range of interaction potentials ~L~ 

1l4>~~ ; (I1I-D-3), 81; UI1-D-34), 93. 

and 

Typical range of interaction potential ~Lj 

for a slmplé system; 52. 
,Q.4( C"!y:' ~ Radius of physical ,volume v, = 3 Il (, pver 

whlch the governlng,equations are 'nondimenslonall­
zed; 64: 

Range of the two particle correlation function; 
124. 

" Characteristlc length used in the nondim~nslonali~ 
zation of time; 67. l, 

Dimensionless parameters; (~II-C-21), 68. 
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lizatlon ..... of q~ in governing equations ;.( III-C-8) , 
63; (I11-C-1l6), 76. 

C~aracterlstic~lengths; (III~C-5~), 77. . , 
Transformed partlèle separation v~tpm; (IV-B-12), 
122. 

Time '. 

Tlme scales in Multiple Time Scale expansion. 
(~-A-18), 166. ~ 

Temperàture. 

External field exerted on particle of specie ~ 
'

fi ' 31. 

Average st,rength of external field U"< 

(III-C-S), 62. 

Mean particle speed. 
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Volume in r~ over'which the Liouville eqûatlon 
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Phase vector of particle i ; 175· 
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.~ . 

Pha'se vector of particle \i.,o{\; 219.1" 
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Phase vector in n~; 4~ . 

S particle phase vecto~; 122. 

Axial component in ~ylindrical coordinate system; 
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Partition function associàted with H 
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Partition f\inction assodated with H N 142. 'J 

'ô 

(III-C-l )', 

(IV-B-56) , 

Partition. functlon associated w 
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~­

rU 
h ij //.Ib~;. (VI-B-25), 
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Par'tition function ass ciated with Htl,8J; (VI-B-31), 
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CHAPTER l 

, 
INTRODUCTION 

l 
A. THE EARLY DAYS OF BOLTZMANn AND GIBBS 

~--~~----~----------------------~ 

The intense controversy confronting the supporters 

of the calorie nature of h~at and promoters of the molecular 

the ory during th~ late nlnetfenth centurY.,undoubtably repre­

sents one of the most productive disputes in the histor~ of 

physical ~ces. Dur~g these years of active dèbate, 

Ludwig Boltzmann was attempting to explain the macros~opically 

observed second law of therrnodynarnics from a purely. molecular 
~ 

and statistical point of view. Amongst Boltzmann's prolific 
1 

research. one may acknowledge, as outstanding contributions, 
'" 7~ 

his di~covery of the now weil known Boltzmann kinetic equa­

tion for dilute gases and his H theorem of \irreversibility. 

Boltzrnann's equation represented a balan~e equation in the 

-- 2 six dimensional "fL tI space l ,for point particles, accounting 

for the appearance and escape of phase points in every ,cel1 

~' of that space. The equati::m included the fain/and 10ss of 

1 

2 

Much of the account of Boltzmann's and Gibb's ideas 
presentij herein is based on the fin~Z~views by Martin 
Klein, L Paul and ';['a:!{iana EhrenfestL J and George Uhlenbeck, 
and George W. Ford.LJJ :' 

....a 
This space contains one axis for each component of 

the coordinate and momentum of a particle. Consequently, 
the state of a rnolecule is represented by a point in "#" 
space and the state of a system of N particles is depicted 
by a set of N points in the space. 

- l -

J 1 

i , 
.. ~ 

1. , 
" 

-'~ 
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-: 
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phase points resulting from: 

1) the change in position of each mole cule with finite 

vel9,ci ty; ~ \. 

"" .. 4, (., 

2) the change of momentum of each rnolecule due ta the 'pre-

sence of an external field; and 

3) the chan~e oflmomèh~m of the rnolecules due to tneir 

rnutual binary.collisions. 

'< In his evaluation of the third contribution, Boltzmann 

Itntroduced v.hat is now known as the "Stosszahlansatz" a.ssump-

tion which asserted that the collision frequenc~ betv.een 
~ ~ 

Molecules ~ith momenta ~ and ~ at a location 9 could 
\ 

be ~ssumed proportional ta the product. F(91~.!1~(9'~J~) where 
, _ -' .\ • ~ 0 

FCq,p,t) r~presents the local density of phase points in 

the "p. If ,pace. . f As a direct consequence of this hypothesls, 
" u 

Boltzmann 'could then show that the H function: 

(I-A-l) 

would monofonically decrease to a limiting value which would 
! , 

be attained when the·system reached a state of equilibrium 

at ~hieh t~,e, . ç '(~ ,P ) w0tald, obey the l\\aXWell-;~1 t"z"mann 
r 

distributivn. Saon after, derïving these results, Bol~zmann 
- ,.1 

encountered, on one hand, a natural skeptlcism from the 
.. 

calorie theorists and, on the other hand, stiff criticism 
~ 

kinetie theorists, such as Loschmidt v.ho, in 1876, 

It shoul'd perhap~ be noted hle""~at when Boltzmann· 
first derived his kinetic equation. ~e gave no indica- ll] 
tian that this was ~ndeed an assumpt1on. 

-l< 

, 
, . 

"' 

~ ~ 

1..... ~ r 

~ ... .t...llI .... lH ..... Ie~ ~...Lo.~ ....... _...tO'..IILo~ ...... ~. ~ ........... __ ,...... • •• >...,. _ '.""~_''''' ___ •. 
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raised ~erious doubts on the feasibility of rigorously 
1 

.> 

extracting irreversible behavior from ,mec'hanical laws dis-

playing complete time reversibility. Further cri ticism '4 

emerged from '" Zermelo Who, in 1896" rioted that mechani-

cal systems werè not only reversible in time but exhibited 

quasiperiodic motion as shown by Poincaré in 1890. 1 Though 

Z~rmelo's Gomments seemingly excluded any pos~ibility of an 

everlasting equilib~ium state, Boltzmann quite easily dis~ 
~ 

missed his' priticism on the grounds t~at. for large systems 

(co~taining, for example. 1018 mo~cUles), P~incaré'~ cycles 

were much t60 long t'a be of any practical significance or . - . 
importance. Loschmi~t's remarks, on the otAer hand, which, 

in essence, 'im~ied that an~ entropy i~creasing system could 

be transformed into -an entropy decreasihg one by raversing 

the momen~a of aIl the molecules, courd not be dispensed 

with using ~urely mechanistic arguments. In fact, Boltzmann 

could only reinforce his own views by indicating that t~ 1 

second law of thermodynamics should never be construêd as 

an exact law emerging from th~ laws of mechanics bu~should 

be regarded as a probabilistic law indicating the most prob­

able direction in ti~e of a large system of molecules. Con-
Y' , 

~equentiy, though some systems, such as those proposed by 

, 
, 

( 

'1 

\ . 

, 

1 

1 

1 
1 
1 
"" 
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Loschmidt, may indeed adopt an entropy_decreasing path, the'j 

,occurrence pf such systems may,well be sUfficiently rare to 

be of li ttle practical intery.;t:' Bol tzmanrt :further expanded 

- this idea by also noting that any system which mo,me.nt~ly 

/ suffereq an entropy decrease cou~d be expected to quickly 

readopt an entropy increasing behavior and ev~ntually reach 

1 

. ~ 

a state of equilibri~ where it would thereafter spend the 
• 9 

great majority of its time. The "Stosszahlansatz~ along with 
, 
the resulting Boltzmann Equation and H theorem thus seemingly . . 
represented in Boltzmann's mind, valid statements for the 

" 

great maj ori ty of systems at any gi vep time or for any gi ven 

system most of the time. Urtfortunately, Boltzmann could 

. ~.f1gorously praye these intuitive arguments and hence 

never convincingly refuted Loschmidt's critiçism. He did, 

nevertheles's, display t~emendous ''insight an a dilemma which, 

as will be shown later, linger~ ta this very day. 

In spite of Bolt~mann's continuaI referenc~ ta t~ 
pro,babilistic behavior of a system, h€ never clearly indicated 

how a probabili ty distribution rH (XH.t ) could be constructed 
2 ' ,. 

to sui tably represent the probabili ty of finding a system in 
,. - 1 

a given microstate .XN • A preéise definition~of 
.~ . 

was finally proposed by W. Gibbs in 1902, who showed that al 

..4 

1 )(.'" represents a vector in a (, N dimensional rN space 
,. wi th one âxis for each component of. the coordinate and 
tnomentum of each molecule. XN thus completely describes 
the microstate of a system of point J'articles. 

'\ 
) 

, 0 

( 

," -,"", , 

1 

l 
1 

1 , 
1 
t 

l ' 
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probability distribution func~ion could be constructed by 

introducing an "ensembl!e" of?l systems Vlhich ini tially v~ried 
. " 

Ln their microstate XII but were macroscopical~y identica1. 1 

" .... , L ~ The state of the ensemble {XN"",XN."',X",! could then be 
q < 

represented by a set10r "cloud" of phase points located at 
....... 

the tips of the indi vidual sta te vectors )( N (i.:. 1 ... " ). 

Each of these phase points would naturally travel in time 

" accord~g to the mechanical laws governing the motion of the 
/' 

moleeules. Choosing?'l large, one could t,hen obtain a pro-

babili ty rneasure by normalizing the local densi ty of phase 

;; points f", (~·It ) over 'h so as to definet 
\ / 

Using a theorem of Liouville, Gibbs then eoncluded that, for 

a conservative system, the phase cloud would flow in phase 

space as an incompressible fluid and derived a linea~ partial 

dtfferential equati on for F", (Xti. ~t) which is generally referred " 

to as the Liouville equation. Unfortunately, the transient 
l ' 

solutionto this time reversible equation required a parallel 

's.olut'ion of the complete set of Hamil tonian equations.' Since 

the task of deriving sueh a solution was generally unfeasible , 
for systems containing a large nJmber of molecules, Gibbs 

introdhecd :~ orne fundamental hypothe ses concerning the behavi or . _____ t-

of F .. (iN;t: ) . ..Jliis first as~n, -:"'ûs one of .. equi':'u pri ori" t 

..,. J, .. ). 

1 These systems were also ~iel?o~c'opicaliy identical 
in the ~ense that they coritain~d the sarne number 'and 
type of molec~les. ~, 

... u ••• ,,~ •• H,,}~. 
..<..., ."', -~-- , .... ...!. 

, ! 
1 

! 



J 

1 

. \ 
\ 

( 

- 6 -

which simply stated th.t, for an isolated system at e~li­

brium, every microstate within the accessible volume the 

. r .. space should be eq'ually probable. : He then further sug­

\gested that any phase cloud that did not initially occûpy 
\. , 
this phase volume uniformly would eventually do 50 through 

a diffusion process in this space. F~rthermore, sinee such 

a diffusion process was not completely compatible with thr 

incompressibility of the phase ~oud (as dict:ted by the 
-

Liouville equation) Gibbs further suggested tha~ the latter 

would spread into fine filaments throughout the accessible 

phase space such that its average densi~y would eventually 

be thè same for aIl cells of finite size within the accessible 

volume. Gibbs further expanded this idea by introducing a 
-L 

coarse grain density Fw , where l denotes the 
'''t 

the r:, space, and defining a new H function. 
. , 

-l -" 

H == [ Fw ln r", ,/ il 

.tll 
l cell of 

(I-.A-J) 

By finally showing that H would reach a minimum'as time ap­

proached infinity and that this minimum .ould correspond ta 
c. 

a uniform distribution for "FM ,he' was able to draw a some-

what intui ti ve link between the rev9'rsible mechanical laws 

and the second law of thermodynamics~ 
op. 

Reviewing the ideas of Boltzmann and Gibbs, it soon 

bec ornes apparent that a degree of coarse-~raining in phase 

space (" t-l" or Il Pw ") played an important ';ole in their con­

cept~_ of irreversi bili ty. - Indeed, as a coarse-gra-ining in 
-"IA Il space was necessary for Boltzrnann's derivatlon of his 

Il 
1 

l' ~ ,,' 
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irrdversible kinetic equation, similarly a ~aining , 

,in ~ space was crucial in Gi bb ' s equi-a-priori and diffusion 

assumptions. With any sueh coarse-graining in Phas~ spaee, 
. 

one must, of course, associate some/coarse-graining (or 

averaging)' in time sinee any phase point (in fA or r ... space) 

will require a fini te tirne to traverse a finite size celle 

In view of Boltzmann t s and Gibb's ideas, one is thus tempted . ) .. 
ta dismiss Loschmidt' s criticism on the grounds that any 

macroscopic measurement implies sorne physical space coarse-

graining and time averaging which, in'turn, is responsible 

for the apparenr ma~roscopically irreversible trend of the 

syst~m'yThis was indeed the view of de'orge Uhlenbeck[J] whq 
;~ 't~ 

suggested that the conflict between microscopie reversibility 

and m~croscopic irreversibility could be resolved if one 

acknowledged "the different levels of observat1i on and des-

cription" used on ~he mieros:~~lie af'ld macrOSC:PiC scales. 

Unfortunately, such a view, ?hough certainly rich in content, 

does not t~ the whole story and somewhat oelittles the d&pth 

Or Loschmidt' s c!ri ticism and of BO,l tzmann' s reply. Clearly. 

aAy system, which to a macro~copic observer is apparently 

t:: 

~ , , Irreversible in one d1rection, may be transformed t~ seem 

t 
t • , 
\ 
1 

( 

Î 

irreversi ble in th,e opposi te directi on by reversine; the momenta 

( of all the molecules within the system. Natu~allY, sinee 

this reversai cannat be accomplished by the mac~oscopico 

observer, the key question thus becomes - Can the system, 

on its own, reverse the direction of moti~ of aIl its mole-
'/ 

( 

,;. 
i 
1 



, 

( 

( 

- 8 .. 
\', 

~ \ 
\ cules? - or, more precisely, - What is the pro~abili~y that 

," 

.. 

a system will sudderi~y suffer a reversaI in momenta of aIl 

i ts molecules? The answer to this question would not only 

s~ed light on the Boltzmann-Loschmidt debate but would play, 

as will b~ shown later, an important rale in later dev~lop­

ments of tpe nonequilibrium statistical mechanicaltheory " 

of matter. 

Before closing this sectiori on Boltzmann's and Gibb's 

ideas, a few words shou}d perhaps be added concerning tre 

role of the sp~ce-time r~solution of the observer in the 

quest of physlcal laws for classical many-body systems. One 

" may acknowledge for such systems the possible existence of 

two extreme obse~vers: one fine-grain observer ~such as an 

astronomer observing planetary motion,,.. or a "Maxwell demon" . 

monitoring molecular motion) which can detect the instan-
.-

taneous change of position and momenta of the individual 

bodies, and, on the other hahd, the coarse-grain macroscopic 

observer (such as a human observing the flow of a gas or 

liquid) which can only react to the global time-smoothed 

thermodynamic properties. such aS'denSiiY'l:r sure, tempera­

ture, and sa on. Whi'le the ;ine-~rain obsen ~r is JenerallY 
"4 

contented to use the set of deterministic amiltonian equa-

tions to describe the system, thernacroseopic examiner will 

quite often resort ta the deterministic macroscopic equations 

-such as the equations oP l\awier-Stoke~. for example 1 to descri.be 

wnat he sees and feels. In addition t® the above two extreme 

_. ~ ... 

'. 
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cases, there May exist, however, many other observers with 

a space-time resolution sufficiently fine to observe the 

internaI erratic fluctuations of the system, yet not fine 

enoijgh ta detect the exact origin of such chaotic behaviar. 
" Su ch observers will thus; wi tness random mati ont and, con-

sequentiy, turn ta stochastic equations to)relate their , 

observatidns. From sucH equations these observers can, by 

taking appropriate averages, not only describe the system as 
c 

.. 

seen by the macroscopic observer, but also derive the statis-

tical properties of the fluctuations~ Such observers do, 
1 

indeed, exist and may be found in the form of an individual 

monitoring the fluctuations of èlectric current with the use 
q 

of ca sensitive galvanometer or one observing Brownian motion 

through a microscope. 

B. BROW~AN MOTION AND THE CONFIRMATION 
OF THE MOLECULAR HYPOTHESIS 

"\ 

The contributions af Boltzmann and Gibbs_ta th~ 

understanding of the 4Frobabilistic'meQhanical theory of 
" 

irreversible processes, custqmarily referred ta as "Non­

~qu111brrum Statistical 'Mechanics':, '" indeed astonishing, 

-if one considers that they were formulated and presented 

at a time when many still frowned on the possible existence-

of molecules too small to be seen. Those who demanded to 

~see to beiieve ~ere fin~lly sati~fied i~ 1908, when Albett 

Einst.ein· s [4 ] theorie~ on Brownian -motion, develoP~d between 
Il • 

1905 and 1908,' were verified by Jean Baptiste Perrin. 

/' 
'1 

1 
l 

. 
" 
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Einstein, as Carbonelle and Gouy befere him, believe~ that . . 
tbe irregular motion of small particles bathing-in a fluid, 

,as first observed throug~' a microscoJe by Brown in 1828, 

could\only be explained ,~y the chaotic collisions between 

the "l3r~ownian" partiele and the neighboring fluid molecules. 

ije thën proeeeded to study the 'motion of sueh particles by 
.' - '-

~ 

considêring a set;j1)f identical and independe nt partieles 
\ 

initially located at th~ same point in space. According to 
~'" 

the rnolecular hypôthesis, these partieles ,sh.d behave like 

molecules of a dissolved solute, and h~nce, be subjected to ~n 

osmotic force resulting from the presence of spacial gradients 

in their c~cent;ation[ ~Balaneing this force with the 

viscous dra~ Einstein evaluated the flux ,of partieles whieh 

he, in turn, equated to the diffusion flux as given by the 

macroscopic Ficks law. This allowed him to evaluate the 
1 i. 

diffusion eoefficient~',and the mean square displacement ,of 
,~ ~ ~ ) 

each Brownian partiele in terms of the temperature of the 

bath T, trie drag eoefficien,t (3, and Boltzmann' s constant k 

In spite of Perrin's verification of Einstein's result: 

( I-B-l) 

for the mean square displaeernent <~l>, it should be noted 
... 

that Einstein used à rather macroscopic' model to describe 

the irratic motions or a microscopie partiele. In fact, , 
",.. . 

Einstein's theory-had a major loophole in that it could no~ 

explain why a single Brownian particle, f~ee of osmoti.e 

forces, should exhibit a mean square displacement given by 

\ 

) 
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equation (I .. B-t'). 

vin[5J.:UhlenbeCk 
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This difficulty VIas removed when Lange­

and Or~stein[61 investigated Brownian , 
motion on a finer time scale by assuming the force exerted 

on the Brownian particle as consisting of, an average drag, 

\force and a rapidly fiuctuating stochastic force both re­

.sulting from interactions ~ith the bath molecules. By 

taking appropriate averages of the resulting stochastic 
" 

momentum equa~ion and us.ing the law of Equiparti tion of 

energy at equilibriuM. they were thus a~1e to reproduce 

Einstein's result for a single Brownian warticle. A yet 

.finer grain description was later pr€8~ted by Résibois, 

Davis, Lebowitz, and Rubin[7],[8].[9] 'whlll recons~dered 
~ " 

Brownian~motion in terms of the Liouville equation for the 

complete system of bath molecules and a single Brownian 

/ 

particle. One 'should note •. however, thiai! though these latter . \ ., 
the ories were far superi or in rigor to :Einstein' s original 

theory, they in no way belittled~the i~rtant role played 

by the,combined work of Einstein and P~in towards a general 

acceptance of statistical mechanics. 

c. YBARS LEADING TO BOGOLIUBOV, 

After Perrin's experiments, the fdeas Qf Boltzmann 

were fu~ther developed and two importrun~ contributions 

emerged. One notable work was Paul and Tatiana Ehrenfest 1 s 

"Conceptual Foundations oï the Statisti~al Approach in 

MechÂnics·J 2J wr~ tten in 1911 w{lich musit be considered as 
• ~\ • J an important contribution to the understianding of both 

1 

1 1 
, : 
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Boltzmann' sand Gi bb' s ideas. 'l',his won: not only presented 

a clea' review of-the struGture of statistical mechanics but 

presented a critique of the Boltzmann-Loschmidt contrQversy 

wi::th such depth that many of the ideas presented therein were 

'~o play a key role in Iater debates an thepmodynamic irrever-

sibility. A second major contribution emerged from the re­

searcn of Chapman[10] and Enskog[11] who, in 1911-12, indep_1 

endently der~ved the Navier-Stokes equations and caiculated 
1 •• 

the transport coefficients by taking moments of the Boltzmann 
y 

klnetic equation and obtaining successive approximate solu-

tians for the one particle_distribution~ \ 

After the work of Ehrenfest; C~pman and Enskog. 

one encounters a certain stagnant peri~ in the development 

of nonequl11brium statistical mechanic$. which may b-e explained 

by the internal structure and mati vatimn of that field at 
'. . 

,.. ·that time. During' the days of Bol tzmarnm.· and Gibbs, the main 

objective of statistical mechanics cons1sted of explaining 

the weIl known maeroscopic continuum laws (sueh a~ the second 

law of' thermodynamics) from a discrete m.oIecular prob,abilisticr 

~echanistic approach. Such a motivati~ was eertainly valid, 

at least in the academic sense, as~it 1~d to a bett1r ~er­

standing of these laws. Through the years, however, the 

statistical mechanical approach had de~loped from withi~ 

sufficient confidence ta seek a more ~iti~us and utilitarian 

goal of deriving new macroscopic~laws ®mt easily d~rived from 
'r 

~ 

a'continuum approaèh. The possibility Qf a predictive power 

m"'i!i1 et" ,t œt! t ) te ,t'~" 

J 
1 
1 
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of statistical mechanics in the relatively underdeveloped 
! 

fields of plasma flow, phase transition, turbulent ~low, 

and transport proeesses in cOlloids,-for example, represented 

a new and exciting objective for the statistical mechanical 

appro~ch. Such an endeavor naturally would necessitate sorne 

genera~ization of Boltzmann's work to include dense systems 
c:Y"'" 

with long ranfoe and, in sorne cases, att~active potentials. 

More precisely, one would need eit~e~'a genera~zation'of 

Boltzmann's kinetic equation or a new set of kinetic equa-

tions valid for various special classe~ of systems. Unfor-
/" 

tunately, Boltzmann's highly intuitive approach did not 
\';\ 

~eem to shed,much light on how such equations could be sys­

'tematically extracted from the mechanicai la~s govèrning .. 
the moti 9n of molecules. It soqn'\J:)ecame evident. in fact. 

that important gaps were plaguing the fundamental structure 

linking these mechanical laws ta the macroscopic continuum 

laws . 

Following the results of Chapman and Enskog, the 

g'eneral structure of nonequ111br1.um' statistical mechanics 

could be divlded into two b~sic sections. ~ one side, one 

round the time reversible equations of Hamilton and Liouville 

which ~ere. in the cla:ssical_~·.sense, homPletelY general,' whil,a 

on the, other cide. there existed the irreversi ble k.inetic 

ruld-transport equations derived by Boltzmann and Chapman -

Ensk.og :espectivelY, for Idilute gases. 

) , 

• 

. , 

1 
1 
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Figure 1-1 

1 .' 

, ,~ \.. 

.IRREVERSIBLE 
, 

". , 
-" 

EQUATIONS 

AQ important link w~s -thus mi~s,ing bet~een the 

reversible Liouville equation for the N particle distribu-

tion and the irreversible Boltzmann equation-for the one f 
Ir' 

partiele distribution. Clearly, if the statistical mecha-
. "/ 

nical'approach was toyield new macroscopic l~ws. this link 
, .-

would eventually need to be constructed. 

The important gap, menti oned· ... above, was fina11y 

J ~" t' 11 f· 1 b BI" b [12l B r 1 J l, . par la ,Y lIed y aga lU OV, -' orn-Green, L - Klrk-
-- ...... 

wood[14 J and Yvon[15] wh,o, independently .derived an equation 

governing the probability distribution ". F'<'X:l,t) for a .-
":1 ' ;., 

subgroup of 5 particles çy integra~g the Liouville equa- 1 
; ~: ~ 

tion over the coordinates and momenta of the remaining (N-S )~ 

molec.ules. This equation. no,w referred ta as the B.B.G.K.y • . ' 
hierarchy, had the form of a L~ouville equation for,S par~ 

ticles'with arl ad~ed "mixing" term which included the high~J? 

arder dist~ibution function F.s ... ,(Xs+,;O and described the -

interactions between the subgroup 5 and thé remaining ("'.:- s ) 
'-'particles. Since this hierarchy was also time reversible. . ~ 

one could thén draw tné- following revised structure: 

-. 
1,. l, 

, "," . l ' 

o ' 

,­
.1 , 

, , . . 

.. ' 

1 
, t 
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Because of the presence of t~< higner ordér distribu­

~+, in theO 

B.B.G.K~Y. equation for G 1 this equation 
, 

had an open forro and hence could not be solved without in-
• 

trod~cing sorne approximation or assumption ta close or 

"truncate'" it. The cJ:osure of the hierarchy, regél;rdless of 

the mathematical technique used, was to represent a key'phy-

sical link .in the general st'ructure joining reversible mech-

anics to irreversible therrnodynamics. 

D. THE LAST> LINK 

In 1946, N. N. BogoliUbOV[12] show6d that special . . ~ 
kinetib equations could be ob~ained ?y considering special 

"" cases where sorne of the terms of t1e hierarchy, includi~g 

the mixing term which was responsible for its open form, 

could be neglected as a zeroth order approximation. One 
'" 

approach in such cases consistèd of solving the resulting. 
"' , 

approximate cLosed equations via sorne ini ti~ condi tiorth S 0 

as ·to ob'tain a zeroth order seluti on. ,Substi tuting the 

latter back into the terms of the hierarchy originally 

neglected, one cDuld then deriv~-a first order solution 

whic~, in turn, could be resubstituted te obtain mo~e accurate 

\ 

.~ 
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Naturally, if su ch a simple method of 
" \successive approximat~ons converged, one could circumvent 

trickY SOlutions~~cum~rsome differential-integral kinetic 

equations, such as olt~~ann's kine,tic equation. Unfortun-
1 • 

~Y, as first revea ed by Bogo;Li1.1,bcllv" this simple \in~ tial 

C- value perturbation tee ique yielded results that were 
.1 

d,ivergent o;'secular i (time. More precisely~: one found 

that the higher ortler correction terms were "secular" in 

that they rapidly grew with time to eventually' dominate t~ 
'"l 

lo.er arder solutions. In order to eliminate these diver-

gences or "secularities", Bogoliuboy proposed an alternate 

perturbation scheme ,which would seek,appro~imate solutions 

for !="~(X$~) of the form Fs ~~.s'rF,(ëj,.PI,t)\ with a ~time depen-
, 

'dence,only implicit through a func~ional dependence on 

r, Cq.:, p~li) ,0 Cleaily 1 })y obtaining such a soluti on, one could 
~ ~ 

~~rive approxima~e closed kipetic eqbations for the one 

part~cle distribution 

BpgolIu~ov' s d'érivation of kinetic' equations could 

be described in four important qteps. The fir.st step con-

~~ sisted of considering special classes of systems and orrlering ~ 
\ 

the various te'rms of the hierarchy in 'terms of their relative 
,r'" 

importance. This ordering could be carrie~ out by finding 
1 • 

sorne dimensionless parameters constructed from quantities 

which'were characteristic of the sy~tem (such as the average, 

density'and the range of the interaction potential,for 

example) and which dic'tated the order of rnagni tude of the 

1 ! 

1 
1 

1 
1 

1 

'i 

1 

1 
i 
t 
t 
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\ 

various terms in the hierarchy. The second stage' in the 

analysis consisted ~f a~~~ing --Fs ',( 5>,1. ), as a/~unctional 
of 

1 ... · 

F.(~~IP~lt) , as previously mentioned, so as to replace 

aIl time derivatives s~z by functional detivatives 

The third step involved an 

;, 

~ 

expansi on of Fs and the functi onal derr vati ve, J) in powers 

of a characteristic dimensionless pararneter~uch smaller 
-n 

than unit y 50 as to systematically per~orm the perturbation 

sèheme previ ously desct"Ï bed. F inal11Y, the last step con-

sisted of intrQducing appropTiate boundary conditions sa 

as ta hopefully obtain incr~asinglY a~curate functional 

s olutions f~r -~ Fs (X, 1 F,) :5),Z and kinetic equations for!="l' 

The boundary co~ditions ~hich Bogoliubov im~osed stated 
'. 

that any group of particles streamed back in the-~nfinite 
J J #" J' 

past under thJir mutual interaction (for 'strong r~pulsi ve 
~ 

potentials) or under no interaction (for vgry weak potén-, ., 
tials) would be sufficiently separated from each other to 

be assumed uncorrelated. T~ particular boundary condition, 

as ,~ilt be see~ later, was to play a key role in the time 

ç.irect~n (or irreversibili ty ) of/" the kinetic equat,ions 

derived. '1 

or 
\ 

<~Us~ng the methoddescribed in four steps above and .. 
summarized SChematicallY below, Bogoliubov ~as ablk to derive 

t 
Boltzmann's kinetie equation fo~ dilute gases with strong \ 

short range rnteractions pd Landau' s equation for gases 

with weak interactions between the particles. 

,/. 1 

, 

1 
l' 

1 

1 
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.Surnrnary of BDgoliubov Scheme 
) 

1. Evaluationlof order of magnitude 

of the various terms of the B.B. 

G.K.Y. hierarchy for special ~las­

ses of systems (construction of 
1 

1 

,charact~ristic dlmensionless 

'(. parameters . ) 

2. Functional assumption. 

J. Expansion in small parameter 

"4.- Stat~ment of boundary conditions. 

/ Figure '1-3 

=) Kinetic 
trequations 

As. Bogoliubov was develo'ping his fanctional pertur-
, ~ . 

bation scherne,~John G. Kirkwood was devising his o~n method 

of deriving krnetic equations from the B.B.G.K.V. Ihier­

arrchy. KirkwOOd[14] rederived iJil 1946 the Bolt~mann equa-
- 1 

~ tion for dilute gases using a structure similar to that , 
utilized by Bogoliubov. He repl~ced Bogoliubov's.second 

41","""'" ' î. • 
,,~tep (i.e., functional assumption) by introducing a time 

l.. • 
laveraged one particle Idistribution function: 

~ 

which was averâged over a time interval larger than the mean 

collision duration yet ~uch shorter than the Poin~aré period. 1 

1 In fact, ~ would ha~ to be chosen much shorter t\~ 
the klnetlc rela~ation time of ~e system.' 

\ 
.. ~. 4" _~~ or, ~_ .. ~ ., .. 

Il. 

.. 

) 

, 1 
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bo~ndary 

, .. 

Furthermore, he SUbSti~d for Bogoliubov'~ 
condition, in step four, the assu~ption that vle system was 

sufficiently ~ear equilibriurn,for the one particle distribu-

to be uncorrelated in,timè: 

i . e . , 

(I-D-2) 

The success of Bogoliubov's and Kirkwood's perturba-
-tI 

ti on scheme Y/as deeply rootecf'> in the wise choice, of step~'­, 
two and four, which ailowed the deri vati on of non-secular 

kinetic equations through the use 'of a boundary value per­
l, 

turbation scheme as opposed to a simple "secular" initial 

value expansion. It should aiso be.rlotéd, tnat the irrever­

l' si bili ty emerging from these two methpds stemrned, in part', 

from th; co~se-graining in time which they Pnjected. While 
. 'v/ 

r Kirkwood perfqrmed this coarse-graining explicitly by defin-

ing time averaged distributions, Bogoliubov did so implicitly 
l 

through his functional assumption and his baundary condi-

tions. 1 T~ ~oarSe-graining introd~ced in bath expansion 

schemes ~e, 1n this respect, reminiscent of Boltzmann's 

~d Gibb's coarse-graining in phase space which, as previously 
,/ ... 

1 One may recall here that in order to justify his ~ 
functional assumption, Bogoliubov ~uggested the e~ence 
of three time 'scales governing the evolution of u m e­
cular system: a .fast .. dynamic" time during which th 
initial correlations were remembered ahd the time depen-
dence of. I='J(Xl,t) (nI%.) was e:?Cplicit, a slower "kinetic" 
time scale during which initial correlations w~re for­
gotten and the tirne dependence of F$ \X.ll ~,} '>/~ was implici t 
through F, ('f •. P~lt) and finally, a "hydrodynamic",\.-time 
scale during which the time dependence of FI was imp11c'it 
through the rnacroscopic moments. 

,1 
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noted, directIy implied a simultaneous coarse-graining in 

• time. 

After the results of Kirkwood and Bogol~bov. the 

general structure of nonequilibrium' statistical mechanics 
1 

seemed to be in a relative1y healthier state. Indeed. ~he 

structure now possessed seemingly logical links between 

the reversible mechanical equations and the macroscopic 
J 

irreversible laws. Furthermore. the expansion techniques 

used by Bogoliub~v and Kirkwood s.eemed to indicate a path 

for finding more gen~al and accurate kinetic equations. 

Finally, one could envisage the possibllity of using such 

< generalized kinetic equations to derive. using Chapman's 

and EnsHog's ideas, ne~ macroscopic la~. With this hope 

in mind, S. T. Choh [16J extend4!d BogoHubov' s pe,rturbation 

in d~ns~~ for dilute gases to one hi~r order so 

obtain ~ew kinetic equation aCCO~for three 

collisions. C~oh then used Chapman's amd Enskog's 

as ta 

body 

method 

to derive the usual Navier-Stokes equat~ons and obtained. 
, . f '. . fi . newexpresslons or transport propertlES ln dense'gases. 

Another important and encouraging contrlibution came in the 

early 1960's from Lebowitz-Rubin,Résibclis and Davis who, as 
-

previously mentioned. derived from the iiouville equa~ion a 
lit 

Fokker-Planck equation governing the prmbability distribution 

for a heavy Brownian particle in a batt of light molecules. 1 
/" 

1 Kirkwood[14] had also present~a earlier a molecular 
theory of Brownian motïon using the iiime tjl.veraging tech-
nique pr~viously described. 1 

/ 

1 

1 . ' 

1 
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These derivations, based on a root-mass-ratio expansion, 

represented the first clear moleèular theories of Brownian 
Il 

motion. 

During the early years of the 1960's, the research 

in the derivation of kinetic equations from the B.B.G.K.Y. 
~, 

hierarchy was, to say the least, intense as new kinetic equa- ~ 

, tions were being derived using new expansion schemes. l\1uch 
'''\ 

of the productivity of this period was certainly due, in 
J!II, 

part,'to George Uhlenbeck who not only introduced Bogoliubov's 
, . 

work to the western.world, but also did mueh to clarify sorne 

of Bogoliubov's fundamental concepts. In particular, one 

~e'calls Uhlenbeck' s clear ë'xp1anati on of the distinct time 

scales, or relaxation rates, needed ta extract from the Liou-

ville equation, governing equations for "contracted" variables 

such as the one particle distribution and the macroscopic 

variab~es. [17J [18J One should also give due credit here 
. 
to E~ G. D. Cohen, clearly showed the' simi-

". 
lari"ties the various derivations of 

kinetic equations for dilut 
- '[19] 

moderately dense gases 

and, on thé other,hand, studied in detail the bre 4kdown of 

su~h ~eri va:ti~s at higher orders. L20] [2~J [221 Finally, 

~s will be dis~üssed shortly, Cohen(an~ Berlin) revealed the 
o 

important role played by the bau~ary ~mnditions in the ir­

reversibili ty of the kinetic eqJ:ations deri ved' via a pertur­

bation appro~ch. ~31 In conclusion, i~ 'S probably fair to 

sa~ tha} Uhlenbeck and Cohen did for BlIgoliubov' s work wha~ 
Paul and Tatiana Ehrenfest had done for Bolt~mann . 

• 
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. In spite o~apparent continual suceess of the 

perturbation a~proach in the de-rivation of kinetic equations. 

manynew difficulties were rapidly brewing. In 1962, G. 
,/II 

Sandri. using a new expansion technique developed by E. 

Frleman[24 J, rederived Bogoliubov' s resul ts for dilute and 
" 

weakly coupled systems.' Frieman's method consisted af re-

placing Bagoliubov's step two by extending the time domain 
1 . 

into successively slower time scales:t~ ,i, ,tz ••• (with 

. .. where ( is the expansi on para-

meter) so as to replace Fs (X~Ii) 

and write the time derivatives in the expanded form: ' , 

~ 
.. : 

~ ~ :. ~ + é. + é .... , Il 

Jt .)tJ. ~tl .;ltt 
.. 

By imposing in step four of Bogoliubav's st~ucture the boun­

dary condition that aIl divergent terms in the fast time 

" 

, , 

scale solutions vanish as ,1. .... 00. one could then obtair kinetic 

equations on the slower tirne scales,t, • t~ ... 'Using this 

method of "~UI tiple tirne scales" Sandri[25 land FriemanL26 ] [27 J 
/ 

reconsidered the di lute and weakly coupleà case and showed 

that local divergences and singulari ties existed in bath 
1 

expansions at higher orders.. These di vergences Viere co,n-

firmed and studied by others[20J [28] [29 ~ as they~ created 
. . 

serious difficulties not only at the kinetic level but aiso 

in the evaluation of the mabros~opic transport coefficients /' 

thus greatly hampering the predictive goal of the statis­

ticai rnechanicai approach. 

:1 
l' 

) 
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,,-
Another embarassing blow tù the perturbation methods 

was rendered by E. G. D. Cohen and T. H. Berlin in 1960, 

who not~d that the direction of 

was not totally inherent in the coarse-graining , 
introduced, but was, in fact, injected through the par~icular 

choice of boundary conditions im~osed in step four. Thlk 

further 1emonstrated that seemingly equally plausible boun­

dary conditions in the reverse direction of "Bogoliubov's 

bO,undary conditions and in which particles would become un­

correlated when stream~d forward in the distant future, 

would lead ta a so-called nanti-Boltzmann" equation and 

a monotonically increasing H function. Finally, they 

showed that Kirkwood's formulation could also render an 

1 
, 1 

! 

1 

l 
! 

1 
i 

anti-Boltzmann equation by time averaging over previôus times $ 

in the boundary conditions (I-D-2).1 The authors then rea- Î 

soned that the Boltzmann equation was founded on the assump­

tion that aIl par~icles were uncorrelated Jefore collision 

bd becarne c'orre-lated irnrnediately after colliding, while the 

anti-Boltzrnann equation irnplied the hopefully less probable 
. 

occurrence that correlations would exist.before c9l1ision 

1 This possibility ~f deriving,time irreversible 
-. equati ons going. the V/rong way was als'o noted by C. H. 

, Su, E. Frieman and M. D. Kruskal [301 who indicated 
that an anti-FokKer Planck equation for the weakly 
coupled case could be derived using the multiple time 
scale technique by irnposing that all secular terms on 
the fast time scale vanish as t ...... --

/ 
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and be washed away immediatelY after encounter.1 An interest-
1 

ing reply to this argumen~, however, is that any gas obeyi~g 

Bogoliubov's boundary conditions and'evolving aceording to 

the Boltzmann equation can 1Je ,tr/n/9formed into one obeying 

the Cohen-Berlin reversed ~ry conditions by reversing 

the momenta of aIl the molecules in the system. In such a 

cape, aIl correlations carried during the forward collisions 
" 

would be destroyed in the reverse ~ollisions and the new 

, systém would evolve abcording to t~e anti-Bol tzmann equation 

for at least as long as the original system obeyed Boltzmann's 

~equation. The Cohen-Berlin reverse boundary conditions thus 
" 

represented a haunting return of 1oschmidt's e~iticism of 

Boltzmann's ideas. It is also interesting. if not ironie, 
, f 

to note that their arguments relating to the probability of 

occurrences of these revérse boundary cpnditions were ~ighly 
/ 

reminiscent of Boltzmann's (and Ehrenfest's) reply to Loschmidt. 

E. AIM OF PRESENT THESIS 

In the above his~orieal expose we have discussed the 
1 

underlying mathematieallstructure and pnysieal arg~ments which 
'\ 

have, allowed previous' authors to derive, via a perturbation 

, 

1 1 t, should perhaps be noted tha t if' one interprets 
Bogoliubov's boundary conditions literally, this argument 
should not be expected \to hold sinee' steaming the particle 
forward in the infinite future would gjve the p~rticles an 
infinite separation in whieh case one would not expeet them 

~ to be correlated. The ap~ropriate interpretatiôn of 
Bogoliubov's boundary condition ~~ll he investigated in 
a later chapter. 

/ 
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approach, irreversible kinetic equations from the reversible 

mechanical laws governing the motion of individual par~icles. 
~ i 

We have also highlighted sorne of the difficulties encountered 

in properly interpreting the boundary conditions and the 

numerous time scales invol ved in the thermodynn:nic relaxa ti on 
,. 

process and of avoiding divergent terms at the higher orders 

of thE' expansions. In response ta such difficul ties there ' 

exists essentially two basic approaches which one may envisage. 
• - l , "-

On one hand one may seek slight modifica"-a ons of the exis ting , 

perturbat~on schemes, such jas those of,- Bogoliubov and· Frieman 

which, for ~xample, would'strive ta eliminate higher' arder 
1 , . 

seculari ties in particular expansi ons. Indeed researc,h in 

this direction: for dilute and ~eakly coupled systems, has 

\ 
1 
1 ,. 

" 1 
1 

[22] [301 
been discussed in considerable detail by Cohen and Su et al 

respectively. Another approach, however, would consist of re­

evaluating the basic structure' from i'ts roots and seeking :\ ~ ~ 

mathematical simplifications and physical clarifications -which 

could result in a sharper general picturelof the essential 

conceptual links between the Liôuville eq~ation and the kinetic 

equations. One of Many factQrs favouring such an approach 
, 

rests on the numerous kinetic equations which have been de-

rived in the past using a multitude of expansion schemes. 

The sheer number of such expansion teChniques has, to say the 

least, made it extremely difficult for a student in this field 
\ 

of research ta grasp their underlying common se~ucture. 

1 

1 

\ 
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Furthermore, as will be shown in ~he pre~ent thesis, many of 

thesc techniques bear a mathematical structure far ~e com-
,~ \ 

plèx than what is in fact needed to deriv,e the:' desired kine-
J 

tic equations. This complexi ty, which is aften introduc,ed 

either in the forro af abstract operntors or auxiliary time 

scales has obscured many of the fundamental conceptual pro­

blems involved in deriving irreversible,kinetic equations 

from reversible mechanical laws. For these reasons the pre-
" 

~ent thesis hopes ta outline and reevaluate the essential 
, ( 

ingredients necessary to recover kinetic equations via a 

perturbation approach. l' 

The starting point in our analysis will consist of 

the Hamilton equatians, for a mixture of M specie~ of point 

particles, from which we shall derive the corresponding 

Liouville and B.B.G.K.Y. hierarchy. We shall then consider 

the mathemati~al and physical arguments which justify a . 
particular expansion for a given system. Since the initial 

work by ~ogoliu9Pv, the conventional approach in the litera­

ture has consistedon non-dimensionalizing the B.B.a.K.Y. 

nierarchy wi th respect to a set of 'seemingly reasonable 

characteristic quantities (such as the typical interaction 

potential range ~ and strength ~~~.) and using the reGulting 

dimensionless parameters (such as E.=- ~~ and E.2.:.m..t•l ') 

te claSSifYa61eCilar jÎystems and to i~dicate po~sible expan­

sions of the hierarch~for particular systems. For exampl~ • 

.. 

.w- """ ... 1 ...... ,. 
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J 

in 'a dilute system where one would per-

,form an expansion of Fs in powers of E,t 50 as to obt:J.in a 

kinetic e~uation(s) 'for ~. This simple approach i~herently 

assumes that the~relative weight of the various terms in the 

resulting dimensionless B.B.G.K.Y, hierarch~ i< completely 

dictated by the magnitude of these dimensionless parameters 

thus implying that the vari~ble terms which the y accompany 

are aIl of the sarne order of magnitude. The validity of such 

an assumption naturally depends, partly on the characteristic 

quantities chosen in the nondimensionali~ation, Clearly if 
1 these,are not very carefully chDsen one may find that the 

resulting dimensionless parameters represent very poorly the 
1 

relative importance of the various terms in the hjerarehy. 

Furthermore, sinee individual terms in the latter may vary in 

order of magni\ude and relative importance over the full range 

of the independent variables, i~ is ~ot at all clear that it 

i8 in fact feasible to obtain a set of dimensianless para-
'Q. 

• 
meters,which dictate the relative importance of various terms 

... 
ov~r the entire phase spac~. Hence any expansion performed 

without these particular prablems in mind becames somewhat 

'hazardous. For this reason one objective of this the sis con­

sists of developing a systematic nondimensionalization of the 
, 1 

Hamilton, Liouvilly and B.B.G.K.Y. equations in ~hich the 

di~ensionless pararneters shoul4.reveal the average relative 

magnitude~ of the various terms over a restricted volume in 

their respective phase space. We shall then conEider the 

; . 
~ 
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; -
simple initial value Rerturbat~on scheme, which was fiTst .. 
discarded by Bogoliubov due to ;the divergences occur,ri~ 1 

even at the lower order of the expansion, and show that a 

simple extension of this approach, which does not rely on 

the introduction of auxiliary time seales, lead$ ta a simple 

method ,of deriving kinetic equations. This method, which, 

briefly stated, consists of i~tegrating the B.B.a.K.y.'hier­
J 

archy over â time interval adequately short ta maintain·a 

reasonable accuracy in the expansion, yet sUfficiently long 
; ..l 

-( ta impose suitable boundary conditions ~ill then be applied 

to a wide variety of systems from the spati~lly uniformldi-~ 
~ 

lute gas to a naft-uniform mixture of Brownian particles inter-

acting with an ~xternal field ,and coexisting with a mixture 0 

of light bath particles. Hopetully/the systcmat~c nondimen-

sionaliza~ion of the governing equations and the development 

of a simple alternate perturbatlon scheme will not only 

c~a~ify sorne of the previously described diffi~ulties in the 

proper interpretation of time scales and, boundary conditions ,.. 
and the elimination of divergent terms occurring at the higher 

ardér of various expansions, but will also eventually lead to 
-"" 
a greater accessibility'of kinetic equations, and thei~ de-

, 
riva"Hon, to the general scientific commun'i,ty. 

l Also referred ta by ather a~hors as spatia~lY horno­
geneous. 
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CHAPTER 1:I 

GENERAL FORMULATION • 
,( 

" The general fofrnulation ~f classical nonequ11ibrium 

statistical mechanics for a conservative system of particle~ 

is founded on ~h~ det,~rministic set of Hamil ttian equations 

gover~ing t*e motiàn of the individual part,icles. Since t~e' 

number of such couplèd equations for a macroscop~c system 

(containing, for ~xample, 102J particles) is ex~eedinglY 
, 4---.} 

large sa as ta prohibit, practically speaking, art y solution, -
and that the exact initial positions and momenta of the 

individual particles are.generally unknown to a macroscopi~ 

obs~r,yer with a coarse-grain space-time1resolution, one 
\ - -~ 

usual~y'prefers substi tuting this set of equations fot a' 
J 

single probabilistic equation gaverning the system. Such an 

Equation may be kiVeà}Y considering al) ensemble aï identi­

cal sysjms contai~, .. the same number and type of molecules. 
~. ., 

The state of ~re ensemble can then be r~pfesented by a set 

ofen points in r"" spaGe lacated at the tips of the lTÏicro-

state vectors (X~ , , .. X~ ... X:) of the indi vidual systems ............ 

If one takes ?7 large" s6 as to obtain a continuum of points" 

and acknowledges the conservation of phase points,~one can 
< ' 

then derive from the Hamilton equa~ions a Liouyille equation 

governing 'the evolution ôf t~e cloud densi ty Pu (X.",Ü and the 

probability distribution F. (x !)= ~ (x",i). The Liouville 
N N, - 11 

equatien, because of the large number ni' independe,nt variabl~s~ 

/ 

- 29 - ~ 
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r 

whi~h it cantains, is in~no way simplet ta solve for large 

systems than th~ complete set f Hamilto~ équations for ~ 

s~~gle system. Fortuna~ly, s'nce most observers are gen­

e~~y insensitive to the fine grain detailed information 

which it contains, one is ally con.tented in seeking an , 

equation for the less informative reduced probability dis-
ri 

tt"buti on PtS! CX ttL i) '-; <-<. N fr m w~ich most ~bserlâble quaf-

tities may be derived. Sudh 1f equation, known ay the 

B.B.G.K.Y. hierarchy, may be from the Liouville 

eq~ation by integrati~ the tter over the coÇrdinates and 

momenta of aH N - S _ \parti C es outsid e the ;OUP' (, 1. As 

the Hamilton,.Liouville and ,B.~.K.Y. equ tians represent 
.. 1 1 

the founda~ions of th~ c ass'cal statist'cal medhanical for-

mulation, this chapter wi:ll' e devoted n\ presefiting the­

,mathematical form and the ph sical conseque1~es of suc~ efua­

tions fo~ a mixture "of poi t particles. 1 

" HAMI TON AND LIOUVILLE EQUATIONS 

Consider a mixture 

with ea9h specie,~ 
,) 

'represent the coordinate 

1 

, 
The mathematical 

t'ion and B.B,G.K.Y. hie 
presented' in this chapt 
o~ similar equations fo 
by J. H. S. L~e in his 
Structure of Classical 
and presented at l'Univ 

~ 

M species of point parti cl. es. 
.... ., ... ~ 

N.t. particles. Let C\~ and p~ 

~~mentum: :Velot ors for t~e. \ t~ 

. 
erivations of th~ Liouville equa­
archy for a mixture' of M species 1 

r t fOllovlclosely the deri vat1.Qns 
a singl,,9 sJJ9cie system preserl"Eed 

ecture not~s on "The fundamental 
tatistical J.1echanics"LJlj yrritrn 
rsité ~e Provence, France. " 

, , 
, . 
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j

e 

.~._~ , ~tI'.w:~,~ ... \dIi.~~'&Vlo..dw~ .. .to#'~~''''1 ~~"''';lo.",~"~,, .-.Ml$." .. ~~~ ....... ""'1I 
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". particle of thel 0(. th specie. 
y 

.. 

,. 
mass of a~art1C)é of specle 0(. 

external e~gy potent~al 
-acting on an '" particle 

t' interaction energy potentia\ 
th -. 

""V' between .;t~e L tti.. part~g..le 
th~' 

and the j IJ particle, 1 

we may \'tri·te the Hamil. tonian of the system as: 
\ 

M N>l· If 
H = L [" l -p:. p~ +- Il. f>l. ('in 

"'''1 LSI ,2 m ... 

[
M If l " A 0( 0 ( .. .. ~ 4:. 

+ l, ~Ll I~c;-~~I) 
Z ti"l J:I 1 - (II-A-1) 

• e>lot \ 
where the C ondi ti on (<Pü = 0 is ne cessarily imposee. 

The Hamilton 8quations fbr the system ryay then 

be·written as: 

• .. :... .. O'H p~ = 1 -:r-
~ 97 (II-A-2a) 

or as: ,/ , . 
"9: = ..g 

~ 

~ 

(II-A-2b) 

The "state" of this mixture of N particles where. 

may be 
. ~ 

by a 6 N dimensional vectorl 

M 

N ~ L Nil 
OS ... r 

represented 

'(II-A-) 

. -~ 

~ ~ ~_ ~""~_""~"'~''''''''#'fiiIiI'III<t"'d''''~. __ Ji~~'''''I.~~'''' t ;;w .... ,......,.._w ......... , .. -

f 

1 

... l ' 
, . , 
1 

... 
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located in a 6 N dimensionaltspace.· 

.- Figure 1I-1 

This vector, as sho~n in Figure II-l, traces out a 
k trajectory in time which is completely ~rescrlbed by the 

'l> 

solution of the Ham11ton equations subject to ,ame initial 

/f 

candi tian, ~ N (0) Sincê t for large systems ft 18 n~t 
feasible to determine 

..... 
)(N'O) , precisely, a conceptual en-

semble of ~ identical systems with initial conditions' 
1 

t 
.. 1 ... ' \ Il'! \ y.. (0) • • • 'J. laI ••• '1. .. (o) is constructed, as illustrated' 

" 1 l If l ' 

in Figure' 11-2, to account for such inevitable ~ncertainties 
1 in the ioi tin.1 "s'tate" of the" particular sy~tem under study . 

"' 
... 

\ 

~ f 

- 1 
~t 

1 

,1 

'( 
.... ,-.r ..... ""'1.,,_ .......... ~~~ .. ,~-'( 

.. .,. r 
' 

1 j_~ 1. 
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.. 

Figure I1-2 

Ta~ing~ to be large, with every syst~m evolving 

independently of eaçh other, it i9 clear,that th~tips'o~ 

... X~( will fqrm a cloud of 
• ! ~ 

.... , 
j;he sequence of vectors ~)(toj 

phase points which flows in the r.. space. This cloud Wil\ 

hav.e a depsi ty f.. ()(",~l where 1 

M ri" 

.. 

f',..c'i Nit' 'ÎÎ 11 Jq~ cl pt 
.,l'CI ,,-/ 

,., Mol • • 

r.!~ d'" d.& l found in the ,volume Il Il ~~ p~ i5 the number of phase points 

, centered at X" ... at time t .. 

1 

) 

,. Hereon, ïthe differential d~ will he 
a differentia~ volume: 

dt\" i: cl q~ d qy cl q .. 
in configurati Qn space. Similarl'y, cl p 
differen~ial volume in momentum spacea . ' 

d P :: d Pt d P 1 d 1'J.~ 
1 

•• 1 L"" , 

.. 
U~J to in~icate­

will represent a 
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Figure 1I-3 

e number of systems in the ensemble is cen­
e points can~ot be created or destroyed. Conse­

control volume VN in the rH space 1 

where;::; .. ls the velO'ci ty of ( phase point in rIt spac ,.-" and A", 
ls the surface area of the control volume. Using GausS's 

l' 1 theorem', the a"tiJove may be wri tten as 1 + .;.... 1 .. 1'1 l'hl ' 

\.l\~.f; + V.· ~N eN Ipt. J9i Ji: = 
0, 

\ " 
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• Since V
N 

i9 arbitrary, we have: 

Renee, (II-A-4) ,reduces tOI 

orl 

"'.e. 
...,;, 

,." ~ ...... ;) e,\! 
.~ 

1 

J f'N .]~ L\ qi. -
~t ~ 9~ 

'Or: 

or, 

. , 

(II-A-4) 

(I I-A- Sa) 

1; 

E:'~1= 0 + ..... 
rYI. d p~ 

(II-A-Sb) 

(II-A-Sc) 

, . 

(II-A- Sd) 
1 This last equation, which is the Liouville equation. 

fo~the mixtur~ can also be given the compact form: 

i 

Il , 1 

~_,~~ •• ~ ___ -"~~"--"' __ o~ 
J 
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, 
-OI-A-.5d) 

where: 

y 

i5 refer~ed to as the Hamiltonian operator. 

,1,.., 
B. SOLUTION TO rHE LIOUVILLE EQUATION 

A solution to (II-A-5d) may be.sought b~ operating 
0' 

both sides by ..R 
Xiii ~ il" 

Doing so, we obtain: 
J..Q J-{,\/t f'N :: 0 

~t 
Upon integration of thi~ equation, ~e conclude that: 

... -}(hlt ... 
PN(XIi,t) = ~ eN (XN,O) 1 (II-B-l) 

J{lIt -H",t 
The raIe of the operator. ..Q and .Q. i5 qui te clear, 

if we also note that the Hamilton equations rnay b~ written as: 
• -& 

p~ = }{ N Pl (II-B-2) 
}{,.rl 

Operating bath sides of these equations by ~ 

and int~grating, we have. the solution: 
... XNt... ... Xliii: ..... 
aot(t)=J(.. qol{O\' p9((f)=~ p~(o) (rI-B-J) 
1L 1. 1 l. .. 

).(.., t 
Hence, the operator, ~ 1 ~treams the coordinates 

and mamenta of the particles forward in time from thèir 

ini)ial values ta their values at time t . 

For this reason, it is referred ta as a "forw\3.r-d streaming 

operator", which is sometimes written aSI 

)<~t N 
..A. := St 

-:><",i 
Si~ilarly, by operating, both sides of (II-B-J) by ~ 

'\ 
may writel 

\ 
, we 

,1 
... ' 
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-){Nt . 
and conclude that the operator, ~ ,streams the coordinates 

and momenta of the particles back in time from their'values 

at time ~ to their tnitial values. This operator is a 

"backward streaminF operator" and is often written as: 
~J{.",t. toi -

..A.. = S_t 
\ 

The properties of the operator S ~ for aIl real values of 

~ve been discussed by E.G.D. CohenI3 2J;they incI,ude 

N toi _ SN 
St, S t.t, - (t, ... t 1) 

.;1 S~ 
;) t 

S III L..I 
t .J" l'II 

Returning to the solution of the Liouville equation, 

(II-B-l), it is now clear that the b~Ckward streaming opera-
, -X,.,t ÎI 

tor, .Jl. ,operates on the state vector, X.... Hence, 

(II-B~l) May be written as: 

eN (XN,il:; f'N ($~t X ... ,o) 

= eN CX:,o) 
-0 

(II-B-l) 

-_wlI-lhere x,., indicates the location of the state vector 
' . .... 

at time t = 0, giren that i t is at X .. a"t time t . The above 

solution thus states that the density, tH' around any phase 

pO,int at time t is equal to the densi ty around the same 

phase point at t = o. The phase cloud thus flows, in a 

Lagrangian frame of ~~ference.\ as an incompr'eSSi ble f'luid. 

This fact is confirmed by recalling tme Liouville equation, 

(II-A-5a): 

.... 

d('N + ;JN ·~N'fll/"o 
Jt 

/' , 

f, 

i 
1 
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1 

and rewriting it as: 

Df~ _ 0 - - (II-B-4) 
'Dt, 

. wherel 
1) - J .L ;J .. ,. V' N - = ~,. ... 
llT. (II-B-5) 

is the time derivative in a Lagrangian frame of reference. 

Since, practically speaking, bne deals with a single 

system. it i8 conceptually advantageous to seek for the 

'i probabili ty of) finding a parti cular system in a certain state. 
, 

This probabili t~ can be evaluatéd by ~aliZing the point 

density as folloWSI 
l • 

-, ' F N :: 

.... t'\ N .. 

Doing so, we obtain the distributi'on F., (X""t) where Fit 11 'il J;~Jp~ 
~1;:f t.=~ , 

now represents the probability of finding a system/slphase 
H ~ _ 

poi~t in the vOl~me .. 7frr, df~ J pr centered around X ~. This 

distribution also obeys the Liouville equation: 

.;Jf=", .{ XII( r~ :: 0 

~t 
with the solution given by: 

F',., ex",,{);: 1= ... ( S~t X,."o) 

~FtJ(X:/o) 

(l'I-B-6 ) 

(II-B-7) 

It should be noted here that in order to evaluate -. or )( N , one must solve the .compl'ete set of Hamilton 

/equations. Hence, solying the Liouville Jquation also 

implies solving t~e Hamilton equations. This is, of course, 

not surprising since the Liouville equation is simply a 

probabilis~ic equation for a Ham}ltonian system with uncer­

tain ~nitial conditions. 

j 

, 

'. :, fi t :sr. *= .. 
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Indeed, if there' are no uncertainties as to the coordinates 
and rnomenta of aIl the particles in the system, the distribu­

tion FH(i ... ,t) takes on the form: 
1'\ III ... 

F .. (XN/t):lTt'f( \(q~-q~(i\).(P>f~('t\) (II-B-8) 
.. al Loi, ,1 

where ~(It-,,'..(tn i6 the Dirac delta functi on. We can, now 
show that for this deterministictcase, the Liouville'equa-

~ tian is simplyan alternat. form of the Hamilton equations. 
To prove this, we simply substitute (II-B-8) into (II-A-5c), 

~ 
1 multiply by q~ and integrate over the coordinates and momenta 

~ 

of aIl the particles to find thatl 

+ f. ~ q~ ~ H • 
;) .. " p~ 

~ ... ~ q~ ~H --:r" 
"', J 9~ 

, = 0 

Using the following properties of the 5 func'tion: .., 
1... ~ ("It. - ~) d ti- '" ' 1 

'" \ 1., q,(-/-) ~(ti--~.)J~::: ~(4-.) .. 1- d $(~--41) .., ~ 'J._ ~(.-t) J f? d ~: - 1. .. d..t ~ (4-4.\ J 4-
the above'Liouville equation reduces'to: 

" 

\ 

/ 

, 

J' 

Il 

1 
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Similarly, substituting (II-B-B) into (II-A-5c), 'multiplyin~ 
.... 

by p~ and integrating over the coordinat-es and momenta of 

all the particles we easily obtain: 
~'" _ Ol 1-\ 1 p~ :: --:0. y ôI cU' 

The Liouville equation and the Hamilton equations 

thus contain identical and complete information concerning 

t«e detailed dynamics of the system. For sm~ systems 

coqtaining only a few particles, one could solve either the 

Il 
'1 

1 

1 

deterministic Hamilton equations or the probabl11stlc Ll,o,uilille ir 

\ 
equation. On the other hand, for macroscopic systems con-

taining a very large number of p,articl'"es (a.g., 102) particles), , . 
it is clearly unfeasible ta evaluate the streaming operators~ . . 
For such systems, one can nei~her predict the trajectory of 

the ,phase point o~he time evolution of ~he phase cloud in ? 
J 1 \ '" 

rH 8pace. F'ortunately, for large systems, one i5 not at ail 
,. 

interested in the complete and cumbersome microscopie infor-

mation' which the solutian of the Liouville equation would 

offer. Indeed. one i8 usually rnueh more concerner with 

the macroscopic properties. such as: 

f~ 
'. 

- N m j , F~ (~, p,i) d p 
- MaaS density of spec1e 0( 

or( , 

r, = N l P Ç'(~lr jt)Jp 

- momentum density of specie 0( 

1 The technique used here to rederive the Hamiltonian 
equations from the Liquville equations is essentially 
Carlo Cercignani's[JJJ method of obtaining the Liouville 
equation applied in reverse. -

, , 

\ 

-~_., ... _,- ,_ .... ~- nt eh t ...... ,.,"'''viIl'.~'*'\~ ............ ~~.n.w~_ ............. f,.J. .............. ~ I--'~ 

~! 



( 

~ 
~ 
~-• ~ 
~ 
~ 

t 
J • 

1 

1 , , 
~ 
1 
t 

( 
, 1 
i 

1 
, t 

1 

f 
-l 

wherea 

( 

o 

- 41 -

kinetie energy density of specie~ 

1'1 /'I~ 
... J d'-r,." (XIt/;l.) '1/1/ 

,'1~1 Ir-' 
/t.tH·tl..t\ 

the system ontaining much lower grade information than the 

! . 

3
se quantities represent contract,d variables for 

mie roseo' state veetor X",ct) or the complete joint probabili ty 

distrib4tion ~. The task of obtaining such important , 

thermodynamic variables from the Liouville equation repre-
v 

sents one of the maj or aims, of the nonequ11ibr.1um statis ... 

tieal approach. 

c. THE B.B.G.K.Y. HIERARCHY 

Since mdst of the macroscopic variables are deriv-

able from the lower level, one partiele distributions 

FI <qr, P: 1 t) " i t is of great interest to deri ve "kinetic 

equations" which· govern the time evo1ution of these distri bu­

tions. The first step in extracting such equatiops from the 

Liouville equation consists of foeusing our attention on 

a subgroup of particles is~ which eontain: "" 

SI type \ partiele . 

.s~ type ex.. partieles 

SM type M partieles. 

• 

\ 

1: 
1 
1 . 
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Figure 11-4 

Let us now seek, sorne equation whtêh dictates the 
~ 

evolution of the reduced probabili ty di~)-ibution J:'"\\\ (Xh~.t). 

In order to obtain such an eq~tion, we erely integrate / 

the Liouville eqtlation ~ov,r the coordinat s and momenta of 

, . '. all the particles outside of {Sj Before performing such 

àn integration, h~wever, let us introduce the following 

notation: 

a) let Hh! represent the Hamil tonian 'operator for an i§o- ) 
~'-, ~ 

lated subgroup ,of particles i Sl; 

b) l~ F\S/j/Bi(X ts1 .q}I,p: ,t) represent the joint probability 

distribution for,all the particles inside ts~ and the J th ?' 

(3 partiele wi th DIB,! tLS5 

Proceeding with the forementiohed integration, we 

wri tel 

=0 j 

(l~I-C-l ) 

(II-C-2) 

! 
, 1 

1 

1 
\ 1 
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We note thatl 
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i' 

~ and: 
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"f Since: 
, 
( 

thé 

SimilartY1 
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- lj 3 - ~

.~; 
1 ! 

1 

(II-C-)) 
\~ 

'(II-C-4 ) 

/ 

-

c,1 

"'\..,. . 
, ' -4 

(Il-C-5) 
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.;> fi \\ 

~9; 

'" Nt 11 11 cl ~:. J p! 
(:'1 IId«1 

t 1'1 "'.. 1.( 
+ ri L[ ~/~ 

,_al t:~:~, ;) q~ 

=tt 

Since FN 'is normalized (i.e., . 
' . 

.J-.. F~ (xN -l) :: 
, ' fA"''''t1O ' 

.. if). which case the second 
n , 

J ' 

J,J t f "~t(. ~,F~ 
J ) _ .. 1 l~ 1 ~ 'i ~ d P ~ 
'" s-< 'r. 

1 
1"\ Nt/. f1 Nil' 1( S 'fl\ 

Finally; 

, 

.. 

-LI;. fu }; ~ ; ~': .~ ~; 
1 ., \ 

e(tJ 
d~,,~ .. 

M 

Î a qr \ 
1 

l'; Ï f Ï t{ d ~}~ 
I
l •• , ~., L'" J:' ~a· j 1 

1 -1 " 

1 ... 

J 

~ 

" 

+ 

" 

(II-C-6) 

= 1 

(II-C-7) 
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Making further use of (II-C-6), the above reduces 
, '\, 
1'1 NI' 

~ F N r,( 11 cI;~ J F% = 
.... 1:1 .::St .. 1 \ , 

d p: 1 
" 

. 
" 

(II-C-8 ) 

-' , 

" Since there exists no special need' of drstirrguishing. a priori, 
~ . 1 1 

.between molecules~ of the sarne specle " lie may a~sume that the 

distri buti on t=" lS~ pc1S?SSeS a symmetry l'or al particles of 

the same typel and that conse~entlYI, 

l=" ~sl.i.G~ '" 1= h,t.'! -::. ~l!."~,,"'l 
where F Ls i J,dHj repredents the joi,nt distrib tian ïor tha. 

lliI' , 
( S(J + 1 ) t~ S par1ièles of t !I ~ and the ]J&1!'ticl 

\ ' We may thus rewrite (II-C-9) as: 

.. 

'" 

" 

1.1 

" 

. , , ' 

! 1 
,1 
,1 , , 
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or, more compactly as 1 • 
1 

t 
ri ,,8 . Q 

( N,(5 - $,4) L :L se( s:-i S ~ S # + 1 j 
"'=1 - (II-C-l1) 

where: $«( , 0( (.1 
-.11 [ S f ;; p, f IAii J d .. a eJ .... t3 

~la\ ... .J p;: ~ SiS'" PS.s., 
;) --0\ ,-. 'l' (I1-C-12a) 

... ' 

be rewritten aSI 

d-ClftJ ' d"'~ 
ri. 1 s",... PS,4.', 

(I1-C-12b) 

"- \. 1 
by dë~ining the ~eparation vectorl 

1 1 . , ' 

,- . 
SCHEMATIC REPRESENTATION OF 

" ''\ " 

PHASE MIXING OPERATOR 

, _/1 

F l ~, \S4+'! -t. 
{st "'0 s~ 

J ,. l ~~-~/ : 0 
• 1 

1 
,. 0 , ..... " MF 

" . '0/, • 
~ 

'0 ~, 
, · 0 • • 1 

1 
,0 0" .. . .- .. - - ..... 

0 0 0 

'(/ 
JI 

,. 
, 

,il Figure 11-5 
• 

1When the mixture only~contains two spècies, this 
equation reduces to the[B.~.G,.K. Y. hierarch}' der'ived b~ Br?wn 
Flores and Garcià-Colin. 34J 1 

r , 
l, 

l 
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Eqtiation (II-C-l1) is generally referred to as the -
{ \ 

B.B.G.K.Y. hierarchyas it relates the lower level distribu~ 

tion FiS \ to the higher level"distiibl!ti~n I="\.s ,~ ... +q. j'rh \ 

term }-( \5\ on the lefrhand side of the hi~rarchy is 

~repr~sentative of t~e interactions oèburring within {s~ whi~e 
tpe mixing term on the right han~side, as illustrated by 

Figure 11-5 expresses the influence of the particles outside . " 

of {sIon those wi thirlt LSi. This lat/ter term imposes a~ open 

form o~ the,hierarchY thus inaking any exact solution for rl51 

impossi ble if the higher level distri buti on Fis, SII+.! is unknown. 

. Suoh a state of affairs was, of course r to be -expected, sinee 

interactions across the bodndary of rs~ do, indeed, exist and 
1 

it ~ould have been rather naive to expect that a pure mathe-' 

f matieal manipulation of the Liouville equation might erase 
~ ~, 

.. 

such interactions~ ~. 
\ .... 

D. SW.'IMARY 

" The results of' this chapter may ~efly be summarized 
~ ,. 

as f'oll,ows: 

1) The evolution of a single system of' interacting particles , ' 

.< descr~bed by the trajectory' of a st;te vector Xlt. '·in a "N 
dimensional fNspace) is governed by the set:of Hamilton 

equations which may be written as: 

. 
'~r; .ër r 

m.", 
• t1 ~. (II-A.."2b) 

, ' 

:J- .. 
p~ :: - ( [ L-

'h\ 1"\ 

.. 

" 

, 1 

\ 
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or equivaléntly aSI 

'1 

Il 
(II!B-2 ) 

where: 

/' 

" 

(II-A~6) 

The soluti~n to these equations ls given bYI . 
""o,l.L "J-{~t\.>oi SN ... 
CfL Cl;) =/-«.. qL Co\::' "t q~{o) 

-.A. ~Nt.... SN_CO() 
f't ct ~ ::. .Jt p~ C 0\::: 1: fI.. (0 

. 
The evolution of an ensemble of 11 identical systems wi th 

-
11 l~rge",.is described by a density distribution fil{ ('iN,·L> 

in r.., space or an N partiele pro'babili ty distribut'lion ~(x:"t) , .-

and is governed by the Liouville equationl 

+ }-(,,, Ç' N :: 0 

(II-B-6) 
.1' 

the solutionl 
) . 

I~ all tne systems of the ensemble 'are initially in the 

same ';'nown microstate XN(ol, the Liouville equation theh 

t reduces, to the Hamilton equat1ons. 

'. 

, , 

1 

. J 

f 
1 
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J) The evolution of the reduced probability distribution 
...a. 

Fl~\(~hht.) is governed by the open B.B.G.K.Y. hier-

archy: 
{ 

~ ç l~\" 
dt 

where 

(IIt..C-ll ) 

The Hamilton, Liouville and B.B.G.K.Y. equations~ 

as previously noted, represent the foundations of he statis-:. 

tical'mechanical formulation and will be referred 0' hereon 
/ 

J ~ 

as the "governing equations" for classioal molecul r systems. 

, 
1 

• 

.rit 

/' .. 
• 

f 
f 
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CHAPTER, nt' 

,C NONDIMENSIONA&IZATION OF 

THE GOVERNING EQUATIONS 

The B,.B.G.K.Y. hierarchy '(II-.C-l1), derived in the 

previous chapter for a mixture 'of classical r~int parti,cle.G 1 

represents, on one hand, a Key governing equation, and.on . 
the o-ther hand, a major Obs~ac~ the stü.til3tic:J.l mecha-

nical stuqy of molecular systems. Indeed. one would like 

to derive from such an equation general an~lyticul expressions 
,', ....... 
/ :"\ r-<' .... .... t for the one particle dist~ibution r, (q,PI 1 from which 

the relevant ffijcroscopic properties of the system could 

eventually he extracted. Unfortunately, it i8 abundantly 

clear from the open form of the hierarchy th~t such a general 

task 18 impossible without sorne knvwledge of the higher 
"-' 

level two particle distributions. Since thece latter di :;-

tributions are themselves governed by yet higher level dis­

tri buti ons and that this inte llo~king chain o'f dependence 
1 4< 0 f, 
propagates ta, the highest ievel âi/~tributi on F" (X" ;4.)', ooe_ 

then reluctantly concludes that the derivation of general 
, "..JI" 1 

and exact expressions for F, (~IP,·t.)" reprCGent:}, in practièul 

terms, an unrealistic objective. The problem at hand, 

therefore, consists of somehow closing or "truncatine;" the 

hierarchy so aG to obtain approximate cl~3ed equations for 

a grou~ of low level reduced distribution::; ç \1~ ,tXhi , t ) 

This simpler task may be accomplished by 2~ckinG Gpecial 

- 50 
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.. 

... 
mixtures for which sorne of the terms of the 

ineluding the troublesome "rnixing" term respon­

or i ts open form,' may be neglected as a "zeroth order" 

J , 

, 
For such mixtures oné may derive approximate( 

order distributions Fts} (and F~Sjj,81 ) which 1l!f\Y 

then be resubstituted into the-terms initially discarded . 
so as to'obtain more accurate » lrstorder" equations for 

't 

Repeating this process of .successive approximation, 

one would then h~peful11 emerge with increasingly aeeurate 

This method o~closing.the closed equations for Fgd . 
. \ 

hierarchy, often referred ta as a "pert~rbati on approach", 

has beer extensively exploited in the past ta der ive approxi­

mate closed kinetic eq'uations for the one partiele dis-

tributions. The viability of this method in the derivation 

of such equations represents, fùrthermore, th~ main concern 

of this thesis. ,. 

A. ESTIMATING ORDERS OF MAGNITUDE: 

. Before any truncation of the B.B.G.K.Y. hierarçhy 

via a perturbationkpproach ls pursued,~one shpuld naturally 
~ 

devise sorne ~ethod o~eStimating the relative impor,tance 

of the various term~ in this equation. One sueh method 

consists of seeking sorne characteriGtj c Cjuuntj tie{j which are 

inherent to the system and co~struc~ine from thece dimcn-

slonai quantitiesr dimensionless intrinsic 'parameters whic~ 

gover~ the relative weight of the variou~, terms of the 

.. , 

,/ 

--. 1 
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hierarchy. This method, initially proposed by BogoliUbov[12] 

in, 1~4?, was later exploited btFrieman' [24J and Sandri[25] 

in 1962 and 196) respecti vely. J Sandri, 'in particular, 

defined the ~ollowing Char~teristic 9 uanti ties. , 

! 1 

ro typical range of the interaction potential. -
<Po - typical st~ength of the interaction potential. 

2. _ 
m "'t't:: .. kln~tic temperature" 

so as to derive for a simple gas~ in the absence of an ex­

ternal field. the dimensionless hierarchy. , 

+ 

~ 
wherel 

.> 

* .- "" 
~ ~S~I d P.s., ' 

2 (III-A-l) 

(III-A-2) 

. ( 

lHereoQ gases containing a single specie of particles io 
will'be referred to as "simple ga:.;es"~ 

2Hereon '* ,'suoerscripts will be used to denote 
dirnensionlcm:; qU:-Hfti tlPG 'nnd orerntorD. 

, 1 .. 

1 ) 

, , 
\ 

/ 

... 1. • 

rh 
.1 

~ ~-- --~ ..... ~ _ .... _ ... _ ...... -~l'l\>I'~"'''~''''.'''''''''''''I)~P''''''"P~'''; -c..ll1l~~~ 1o. ..... 1 .. ..........,J:,.,..~"".,. .. ~ ..... ·"..,., .. ~~ ... ~ ..... t/ __ .....,tW1 ... e .. ' ii.;e,!t.~ ~ 1 
f~ 1 ~ t : 
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* 
, 

..i -" 
9~ :; ~$ - 10 

ro 

... * ... p.-t :::: 1.:.. 
m'lth 

.. 
~U = ~ 

~O 
\ \ $ 35 * Ffi :. Fs V ( m V'th) 

v; physical volume 

.". .. , 

é' 

~ .......----~- ... ....--- - -"'~ --~ .. _~ .. _~ . ,. 

\ 

,,' and where 6, = A.o. " é,,; rnr; (with fi;: LIM.N ; average 
m~t.. "V-rœ V 

t 

., N"CO 
particle~density) represen~ed the dimensionless intrinsic , h 

p~ameters" From the defini tion of these parameters Sandri 

could then interpret l, as the typ~cal ratio of potential 

to kinetic en,ergy durin'g an interaction between two particles. 
• • .., ,-

and é.z. as a measure of the typical number of neighboring 

particles with~n any particle's interaction sphere, Sandri 

further noted that these parameters could 'be used in a sys­

te~ntic claosification of molecular systems. CO~GeqUent1l' 
--.. 

uslng ~ and E~ as index codes, he idcntified the follow' g 

four classes of mixtures: 



( 

- ,--- ,--
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di lute gases with E., ""O[IJ 
:1' 

weakly coupled gases wi th é 1 «1 1 EJ."" OC 1] 

gases displaying weak long range interactions (includ-, 

ihg'coulomb interactions) with, E. I {( \ 1 E.,EL "'OLI) 

4) weakly ~coupled diJ,ute gase~ with E, "'otE.,l« t 

Since, in each of the 

one parame ter € whi ch 

above cases, there existed at le~st 
was much smaller than unit y, san;ri 

thef reasoned that puch a pararneter ,could be utilized as~ 

perturbation parameter in the following expansion of 

al- .. COI Il Hl Z. 1'- It \ F. =F. -+f:F +E. F. .... -s S . 1 5 

By substituting this expansion into 

collecting terms of the sarne order 

(III-A-J) 

equation (III-A-l) an~1 
1.. • 

as E. (L:; 0, \ ,2 ••• ) 

he could then systematically carry out the rnethod of succos-.. 
sive approximatton, or perturbation, preViOUSly~eSCribed .. 

While collecting terms of the samé order of magn, e" 
- ," 

however, Sandri tacitly assumed that the relative weight 
1 

of the various terms of the hierarchy was entirely dictated 

bYe the magnitude of the ~ntrinsic parameters E., 1 and E:)., 
1 ~ ~ 

thus implying that the. variable terms K$ Fs ~) r: J{. and 
*" ' ,Ls rs+ 1 were' ail of the same ord~r of magni tud~. 

~ 

The vali-

dit y of such an assumption should naturally depend, in part, -.,. 
on the characteri9tic -quanti tie~ -chosen to ncSn dimensiona'lize - , 

the'hierarchy. Indeed, if these are not very carefully 

chasen, o~e may find that the intrinsic parameters ob~ained 
l' 

represent very po orly the rela:ti ve importance, of the vari OliS 

1 . 
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terms in this equation. In the fol10wing s~ction we shall 

" consider the feasibility of deriving dimenslonless equàtions 
Il " 

in which the Intrinsic Rarameters dictate thê relative impor-

tance of the various terms '~~' the Âtlr~ r?nge of t~e i~de-
pendent variables. 

" 
These equations, which we shall refer to 

hereon as 'properly ordered', distinguish themse]ves by the 

fact that each term (wlth the exception of the time derlva-
, 

tive) may be \1ritten as a product or,la ~rlable nondimensional 

" term of ..... ot 11 and a group of dimenslonless intrinslc parame- - } 

terse Naturally, if such equations could be derived, the pro-

blem of extracting uniformly valld solutions :from the gover­

ning equatlons would ~ greatly facilltated. 

B. GENERAL REMARK{i OF DERIVING 

PROPERLY ORDERED 

The Hamilton, L and B.B.G.K. Y. equ.ati~ re-

present equivalent forms of the governing laws of mechanics 

and, hence" are founded on three fundamental and indepepdent 

units: length, mass and tirne .. These equations may thus be 

nondlmenslonalized by choslng three 'basic ~t~/ of 'charac­

teristlc quantitles'. The properties o~ the~\ sets may bè 

summarized as follows; 

1) the elements of any single set bear the same units; 

2) the elements of each set bear units which are functions 

of mass, length and time only; 

3) the un1ts of the elements of any se~ are indepen~ent bf 
l, 

the elements of the remalnlng sets; 
~ 

the e:tements of each set are const~ for' a given mixture. 
" 

,-, 
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Choos'ing the elements of these sets rernains, of 

'II 0 course, ~urely arb,i trary matter if one simply wishes to 
f 

~erive governing equations WhlCh are free of units. Orr 

the oth~r hand, i~_one s~e~s dimenstonless equations which 

lend th~msel ves easily to Ej.' '''pertur1:?Jl.tiOlll'' scheme~ i t be-, 
l '" ,,' 

~omesde?~rable, for reasons discussed Urn the previous 

sectio~~ ta find basic sets of characteristic quantities 

which will render "properly ordered" 0 dimmsionle,s~ govern­

lng equations. 'This added criteria that :the gov'erning , '- \ , 
e~,uàtions be ';properly ordered" 'great~ JI"educe~ the arbi tra-

'riness in the choice of the basic sets. :En fact t .D~e can 
• 

~sily verify that there generally does mot exist any three 

basic sets which will yield dimensionless goy~rning equa-
r~ , 

tions which are "properly ordered" over ithe ent.J.I)e range 
" 

of vhe independent variables. Consider~ 'for example, the 

Hami140n equations, as given by'(II-A-2b»: 

-' , .. 
p( 
n'I .. , 

,/ . 

, , 
The first equation may be nondimensionaUDze9 by choosing - . (or constructing), from the basic sets, ~ characteristic 

f 

,. 

l ' 

1 
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time Tc -, length L.~ and momentum ,:P:t's~ch that the 
~ 

~ollo~ing dimensionless variables May be defined: 

.,.1. ' 
" il - Ir < - ..:.a.0I& Il ..... 

t : . t. 9: " .. ~ p (' 11:1 (tII-B-l) 

One May then easily derive the nondimensional equation:" 

where: 
( 

(III-B-2) 
-

This equation will be properly ordered if one can find a 

11f ,. such that p; NOL \-J ~or all t", This i=P~\ w~ll natu-1..... ~,. ~ 

\ rally only exist if r~ (t) remains of the sarne order of 

ma:ni tude for aH t 'unfortunate,lY. sinee partiele ~i i:J"') 
May be e~pected t 0 suffer numerous' encounters wi~oth;'r 

particles al' fnteract wi th a s~rong external :field ,ti ~ .. would 
Il ,1' 

a , ( 

~eem only reasonable ta belie~e that ~he momentum of such 

a mol~cu e would repeatedly vary in magnitude and occasionally 
1 

,.suffer 'hanges{of ;order(s) of magnitude, C'onsequently, . one 
"" ~ 

cannot en~ral y hope to der~ve a dimensionless ~orm of 
1-

(III-B-2) which is pr.operly ordered for all time, One faces 
\ 

a similar problem whenA dealing with, the 'second equation of • 
0\ 

(II-A7 2b) which May be'freed of units by choosing (or cOn-
J 

structing) froln 
;:~~ -. ~ 
'l'LJ and U. i. 

the"basic sets the characteristic energi~~. 
• 

1 
so as to Qefine the dimensionless potentials: 

- . 

) 

.. 
, .' . 

( 

t 

( 

, 
~! 

. j 

( -.<-
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One then ob\ains the'dim nsi9nless 'equationl' 

. .. ~ "1 ...... [[ ~1 .. .. 0 
~. 1 = ~ dl ~I' L ' .J '( !ÎI-B-4) 

) , J: 1 L:I J -",-
0 

l ,~~ 
, , 

Il 
j 

tJ. .. 
7 'Xl .) /10( 

.. , 

,". ... 
~1r 

( 

where ,l 
A " 

/ 

! • .... 0 -.8 , 
t 

Jlc) (h~ To-
, e{ - .II , 

-P7 / 

'f 
) 

(III-B-S) 
1 

, 

" 
.. 

, . ~~ i17 1 - , 
-P~ 

j 1 

1 ~,àEin equati,~ will-..be pr perly ordered if 1 for <l,lt -t. 
., ,'''''..(,' , , ~ 

./ : 1 ~ ~t N, 1 • 1 ~ ~f 1 N 0 ( 1] , : \ 

l, This will. ~thermore,., onl( b~ thjl case if thè ~ foroes 

;' " 1;) ~ ~' l,' apd 1 J, ~-< 1 

, , 

serve their order of,mapnitude 
1 • 

ft / Jq~ ~~~ 
, < for all -t: Since durin a collision or an int~ra~tion 

-':", 

~ 

"' 
". 

,-

,~, . 
,.with a, strong externéÜ b rrier (such ils a V'GOGcl. w,all) " 

"' 
'these forces'mny 

r 
tude, ~ne sho~ld not , ., 

, 
ted to vary ,in order of magni-

Î ~r ~ 

. '. ' ct (III-B-4) xo be properly ordered 
t ' 

for very long times. It ~hus"follow~ (Fom the above argu--

vatidh ~f dimensionless Hamilt~n 
. 

ment& that a general der , 

equat-ions. properly orde ed for 
aU ~ • 

cannat be regarded 

, / 

, . 

" 
T 

JI 

fi 
t r 
1 
1 
1 
: . 

.,i 
i 
1 
1 
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a,feasible task. Using Si~i~ argumen ~ 'it can als,o 
, 1 

shown that the derivation of dimensionl SB Liouville and 
. .' 

IB.B.G.K.Y. 'equa~ibns which are properly 8>r ered for the 
1 
1 • 

/. entire range of the independe!lt vatiables . s equally in-
\. , 

~ 

tractible~ ,The reason for this i5 that th 
\ 

in their dimensional form~, contain terme 

CIf t3 et 

~ <1>1.,) • J E!~~ ~ U. " • .;> 1='1$1 , 
~ld â"( d p~ ~9~ d Xo( 

f~ \ "FI. • • 

be expected to.presefve thei~ ~rder 

tive weight) :Jver tne,..full range of 
... oÀ 

ables, 97 ,1"7 and t . 
the 
~ 

1 • The implications :.f the above dis 

se 1QUations, l 
ike 2: . ~~l J, 

nt", ô) q!' "' 
\. .. 

not generally 
.J 

i tude (olr rela-

ependent vari-

)' 

are indeed 

se!"i qus since, as previousl:,r n::;ted, one S ould usually n'ot 

" in the relative importance of their terms 
~ 

range of the inde~endent variables. 
1 

Fort,unâtely 1 many 
l, ( , 

kinetic equations may be derived by performing expansions 
, 1 ~ 

l
~' which are,'.in"fact, only valid for ares Iricted yet signi-

ficaQt range of the indeDenàent\va~iable One reason for~ 
• f • (1'.( 

1 _ ith{s i s tha t. in' order t 0 cl ose th~ hiera chy for P!S) ~ one 

1 
\( o,nlY nee~s approximate soluti ons for p[S, lB 1 ovar a range 

\', ~a ~ BI' -
l, of a~ and PJ' which Significan}ly,.contribute to the inte-

J
' : . " gra;~' of the mixing terns in (IVC- ~1) • Furthermor~. sinee 

~ these' integrals vanish for 9J>~ ~hosen ou side th~, interaction 

'\ i ( .~ sphare s of the parti cies wit~in ! SJ, and ~ F [s ; ; aj i tsalf 

may be neglecied for large values' of 1 P .. ' , i t thus follows 
~ 1.-

\ 4 
'1 ~ 

( 

r, -- -. ___ r' ___ ..-=......,.... .. _..,.....,.~ ~ ... ~~~IQlWI~ ... *'(~_i~7.fa .... ..., QrJ .... _z_,j'~""*' .. ~~'JiItI4I!N"W~,f'.,.'ti~~_t4iijj 
~} .(,,~.t ~_ .. "'. ,_ ."', ... .,. _ ' ... __ .. '~ ' ... Jo. 7'-." ." .. ~.' ,.~?f'.jo. .. _.~/': .. '-",' ... ~ .. :.~~, . ;f." .. ~f~_ .~ .. ·r.t.';;'_' .• .J ~.t .. ';:, i,:, 1 .• 1 
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~ ~ ~ 

S « '" range ~or q{JJ' a[ld p~ that,for " , the#contributing .• is, 

~n fact, qui te restricted. Consequently, one is somewhat 

justified in seeking dimensionless gover.ning equations 

whiçh a~e properl~ ordered, bn the average, over a limited 
• • i 4- 1 

1 

range of· the independent variables. These equations: which 

-shall be referred hereon as "quasi-ordered" equatiohs would} , 
1 \ 

then contain dimensionless intrinsic p~ameters which "' ' .. . ;; 
1 

dictate locally and on the average the order of magnitude 

of the various t~rms in these equationsl Finally, these, 

parameters, when much smaller than unit y, would represent 

suita~e expansion para~eters in a Iperturbation scheme 

yielding approximate local expansion solutions. 
1 {'l" 

Many of "the climensionl~ss governing equations . " 
• -, (1' ~ l ' 

previ ously aeri ved by Sandr i and others in the ffeld of 

.. 

statistical mechanics are, in fact, quasi-ord~red-equations, , 

Unfortunately, these equations have very often been used 

. wi thout a clear knowle?ge of the range of the independent 
• q 

f'~ variables over wh~ch ,they are pro~erly ordered. Such a 

cas~al. approaeh has ~ot only left a cloud of uneertainty 
~ .' l ' 

tm the.Jrange of validfty "'Of the perturbation solut'~ons 
~ ? 

derived~from sueh equatioAs but has of~en led to lopal, 
~ 

, ~ 
and sometimes, eJ.obal 'breakdown of the perturQation scheme. 

,. . ' 

1 
1 

·1 
1 

1 

, , , 
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, 
c. DERIVATION OF "QUA$I-ORDERED" DIMENSIONLESS ~ 

EQUATIONS ... fP' 

. / This section presents a derivation oi' "quasi-
ob • t1'" "'1 

o;':derêd" dimensionless e;~ations based on t~,e fo11owing 
t7 

ass1.jlmptions: 

1) the _system is near canonical -equili briu_m such that FN 
It 

is reasonably clo~e to the canonical distribution: 
\ 

/' 1\ .. 

( 

(III-C-l) 

al); interaction potentials are bounded (in· 'magni tude 

and range) and may be wri tten as: 
( w 

:t ot(J 1IA\G{. ~ tif--= ~~J + '"t'l.J ~ 
--

, , 

Figure 111-1 

/ 
, , . 

, (1 l l -C - 2) , 

.. 
.. 

• 

l 
1 
l, 
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) 

• 
where: 1 

-A. 

l .". oc (J " / r. '.,. et ,fJ 

J l "Jo " , 

1 (l'II-C-)) 

\ 

« kT \ \ 

" s 
The-external potential U is weak and has a fini te 

« kT 
Çc- ! 

1 

(III-C-5) 

• . " r 

" ' 
( 

~,~'e nondim~nsic?nalization will tfe fOl1hded 'on tne 

three. basic 'sets 1ml . le l jnd,",lll bea.ting ~he units of 

mass.energy and leng~~ respectively and!défined as follows: 
, ' n' l' r 

l ml a t m, ,ml. . ". m_ "" ~ ,~, 
1 '1 • 

1 

/' 

" 

" 

f, 

" 
1 

/' 

, " 
1 
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Xl e( 4J 
. ,Ci> 1 

-1 - .. , -Ml 
u, •.. ,u.: •... Ur) 

/' 

:r .... 0 11 oc B '1. "',H Il M. t1 
.. ,'( • (, ... ,f , r 

(III-C-,6) 

where the subset 11J c;ntains 'a set or characteristic 

lengths'to be defined later. 

·a) Hamilton.E~uations; 

Quasi-ordered Hamilton equations may be derived by 
1 

firs~ constructing from the basic sets the characteristic 
, ,,12. 

momenta (m .. kT) 1 and defining -~ 

..EL, IlL 
( mOlleT) 

suc~-that for the averag~ mo1e1ile: 
..... '" 

1 pit 'V 0 (\) 
'\ 

-(III-C-7) 

-
We tnay then nondimensionalize the coordinate q: by intro-

• \' ~ '..s 
ducin'g sorne ut ~ 11ôl'" which sha11 be le ft arbi trary for .. 
the tirne being, and' defin~-l 

" 
-a *' -'1: .91 ~ :: ;>' 

.". dr 
" 

) 

, \ 

(III-C-B) 
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We shall now f'ree the potefitials à>~J 

Jy definingl 

4>~j of their 

units 

:t -16 

(where ct 

. lJJ a:1d 

n .,e 
and a 

~ 

le l ) -

(III'':C-9) 

are" ta be constructed. from lm! t 

- J J ... 15 .. l' \-;e shall also impose" that ~ t. and 
'\1 ' 1 ~ Ql q~ ;' . 

~~~ are typic~lly of the order of one over sorne dimen-

~ 9: , 
wherel ~onless physical v~lurne 

" 

*'& / Li 3 'Ir.. _ Ye. - ,CX, ) 

and Vc :: ~ 'îi f', 3 - i8 sorne characteristi.c physical 1 

,'·1 
. " 

..... It 

d~ -,oC,] 

r 

, <, 

. " , (III-C-l0) 

such that the gradients are properly 

.. 
qrdered over a.finite range in the physical space" . 

T~e first equation in (III-C-l0) may al~o be 

written as: \ 

0, 

1 
l 
1 

, 
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v, .... 
<Re( 

HI' 1 
'~ .• 1 d9f 1 ;) LJ rv 0 {I) 

"- --;.--
r -c' v" n 01 9: ' ~ 

/ 

(III-C-ll ) 

If y, is èhosen sUfficiently.large to enclose the spherical 

--" 41 r.Y 1./'"-<6 3 
• interaction volume 13 1/ ~,) , we May rewrite (II I-C-ll) 

l .. 

aSI 

0(1) 
'X -., 

J <P (r) 
;)(' 

Furthermore, assuming the potential '0 be ~easonably smooth 
t' 

;)~~ .11 
-such that J r is typically of thvorder of %~. for 

, we then obtain: 

kT (~)r;:r IV 0(1] l -- +~ %a"'& \t 

Consequently çhbosing: ~ 

'" 
t 9 

r ",S 

kT Q~~ (~.) a :: 
~ % (""'6. r c.. 

'" r, E. \ 10 ~ ('III":C-12) 

we may deftne the dimensi 'l\onless potentialr .. 
:z.~~~. 

' '! 
r<l>~~ = ~J (J::8

)\ f, ) '_.J • ~J -
<R."" Ir"'· (IIÎ-C-l) ) KT 

Similarly, we obtain from the second equation in 

( III -C -10) 1 ,. - a !' 

J!-~ e '( /li') "" ( 4;,d) \ ~ 0[1] ~ ,.!... "rd 
1 

t 
Buch that t:hoosing: 

- 1 

1 

1 



'~ 

; 

t 
i 

1. 

ft 

r • 

t 
1 

( ... ! 

..J 
~ 

f" 

A.... 

-. 

, 
we may define 

11 .... 8 ... 

<Plj = 
{~-, 

" 

In an 

potential: 

~ 
-<-

t1.. = 
~ .. 

su ch that: 
"-t 
'le. . , 

JJJ "'iï;c 
V~ 
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Il;'.4 (X ... e) ( ~ 3 4>'~J '( (', 
l1it'/ oto( lIr .... 8 

------ -..... -'" . -"--

- "' 

./.:J , , 

(I11-C-14 ) ... 

analogous way we can def~ne a dimensionless .. 

(I1I-g-16 ) 

CI(. 

We then; obtain two possible definitions for b If the 
4(. 9 

oharacteristic volume Vc,. is enclosed in the volume ( l ) (i. e • 1 , , . 
.t.) 3, v, C. (L ) w,e conclude thatl 

~~/ IL'- ~(~) .(~:) " 

f On the 

&1 

'\ 
( V, C (Le()~) -. JI1I~C-17a) 

3 ... 
1 other hand, -if o( Lor} c:. \l, J then obtain: w~ -' . 

fi '"' 

( III -C -17b ) 

Final~y, w~ m~ nohdimenslonalize ti~e itself by ., 

\ . 
" , 

, 
1 

" 1 . 

f '. 

>Il 
-~--'----'---.......-.-_ ... ~_. _. ----___ 'tf_, _"' ~'" 
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-( 

defining sorne charac,teristic time to 1 

/ 

E y,%. 
t 0:: '"R (lM) 1 

where t1 E. {mj ) R € ! ~ land E ~ {e 1 
• 

Thel;'e exists naturally many possible choices for to , some ... 
of which are more physically meaningful that others. tn 

·this thesis, we· shall define: 

E!: kT 

and leave ~ arbitrarY'such that: 

t ..! 
o 

CIII-C-18) 
j \ 

represents the typical time for a particle ofJt~a first 

specie to traverse sorne characteristic'length ~ . 
· t:. _ 

Defining: 
• 

( 
'1< T )'I.t t -
ml ~ 

, . 
\ 

"( l II - C -19 ) 

and substi tuting the previously define'd'''dimensionless quan­

tities into (II-A-2b), we then obtain the following set of 

dimensionless Hamilton equationsl 

.. 

= 

-lit 

li'" I·t 1 u7 -
d t *. " ... S., J-' 

-1 
.., 

li. 
, , 

"" 

\ 

/II 

r 

% 0( 8 ~ _8 
;R • ~ ~i; 

ô) 9i-t 

'r 
J . , 

, . 

• 

\ 

i 
• 1 

1 , 

" , . ~ 
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,/ 

where: 

1 

1 

, 

.( 

J<;: ~ f) . -. 1 

CR 

~ 

3 
I;R"'S=.. . 11 \.~d); 

l' 1"" ~ . t'" . 

[787. )~.fB 
KT i 

. 
1 

~ 
~ 

* ' 

" ~ote that in the a~ove equations ~ , ',cJ? and ~ are 
totally arbi trar~. While t'h~ choice of ~ 4"'in essence depends 
on the time Genie we wish to use to describe the evolution 1 

~r· the ',system, ~Ie selecti on of (p.- hinges on the par\icular 
°length scale-we wish to ~til1ee to inYestigat~ the ,motion 

" or specie 0( • In ma.[!Y cases, one can cboose (St:"'R' so as ,'i..-

1 
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... 
to make J< = , Since the terms on the right hand side, of 

( 
(III-C-20) are properly' ordered over a physTçal volume Vc. 

'we should choose the latte~ according to the vol~me in 

phtsical space Whieh interests us at the time. Naturally, 
» 

if ~ is chosen large" there may,exist aflarge section 
r 

" wi thin v, wh:re the equations 'da ~ot jirll prope~ order. The 

reason for this lies in . , ~ 

properly ordered on the average 0 r V,. Choosing I/e. very 

the fa~t t at t~ equ~tions are only • 
. ... 

large may "tflwn cau'se sorne local breakdown if one ~eeks an 
( 

approximate perturbation solution of the ~amilton equations. 

Finally, it must be 

~rOperlY ordered if 

n~te,d that the above equati ons are only 

aIl the particles have acmomentum 
• ?!--:;' .. ,/. 

o[(m«~T)t NaturallYJ ifN is suffieiently larg~J this 
.l'J, 

condition will always be violated by ~me partjeles. In 

sueh a case a few of the terms in the Hamilton equations 

will not be properly ordered. 

b. Liou'ille Eguat{~nl 

Using the same proe~dure as in the previ~ sub­

section, we may der ive a,quasi-Ordered,îliouvil\le equation 

by~defining a dimensionless probability distribution: 
.7 

(III-C-22) 

* '0> Ç' N are typically of the " 
lé) p: * 

USin~ the 
* ~ 

lorder of one over sorne volume VN in r", space. 
.!* ..... *' 

prviouS nondimensiona'lizatioA for 9:'" and f~ . 
may be wri tt1n aSI 

this volume 

i 
, 1 
l, 
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~~ /) 
'1 

-t., 
VN :: \fI , tJ 1'\ 

\ <K"< Jmol.k T ) 
3 Nt<. ... 

'II 
" ,,- ":r. , 

(III-C-2) ) 

wh~rel ,~ 
l , 

~a: "" ~N .. /"t 
VN = 'il ( m .. K T) , 

.t" 1 (III-C-24) 
-1> 

repre~ts <7pproximately the volume in rN where ~~ ~ Vc , 
1 \ \ 

and 1 P:\"'O rJt1I.!~TJ , "\1 .... ' • C onseq uently , we shall impose the 

follpwing ,t,,:,o conditions: 

" " " . VN 

1 d F: f-I I~I 
J ,#- OCI] ;:: VN' l'V 

cP ~~. 
-""'lI 

'VN ~9t • 0 

~ " 

(III:"'C-25a) 

Il ;) ~A A 

d p~ 

1 
~ where: d v~ = 

M .1'4. 

'îl1I 
""'. ~:. 

~ , Using (III~~-2?l (III-C-2)) and (III-C-24) and the 

p);vious riondim~n.sionali~ation of 47 apd FZ ' criteria 

(III-C-25b) may be written as: 
v ... 

~ ... j NotlJ 

Since we have assumed that,the syst~m is.ne~r canoni~al , 
equiiibrium this red~ces ta: 

, " 

,( '~ 

t 

Il 
l, 

1 
1 , , 

II 
'1 l, 
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t t 
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,VM 

1" " ~ ... !' 
Jm",KT 

{~ 
q, ~,.. ... 

~ 

.. 
Ir 

~ 

FI,! d Vu 1 P~\ ...v 0 ri] 
~ 

(III-C-26) 

N ow. if "we • de fine '"" .. (II" t,o repr.e sJt the prob'1-bil i t Y 'tha t • 

for a system chosen at rand~mA~V~ 1~·(~N,.f:.) may be 

Written as the product: 
i 

~ (XN,t) : V"'(t)l'N (xo/,tltlllE.IIN ) (III-C-27~ 
" Whe;'e PN de{lotes the condi tionai probabili ty dü;tr..ibution 

".} 
1 

,/ 

1 ÎJ 

-' \ 
-" " for )(111 giyen that XtlEIVN . Substituting (III-O-27 ) into 

,\ 

(III-C-26), -one o/tains: " .--
V"" 

CN 'viN Il) j ~ 
.... oC. l' d liN rv 0 (,] (PI. 1 N 

VN J m ... I<T _ OII-C-28) 

Since: 
VN 

r'-J \.~~I 1'-,.1 d \IN. ,':"'0 [J m~ K T J " 

! . -
and: 

-.>< 
,1 

" (1/ 
" VI ri (t) -..JO l ~~. ;i~t) ] 

where .Pi' denotes the probability) at" equilibrium) that 

IPt\", O(~"'otKT J , ('rfr-C-28') may then be w:t;'itte.n in the 

f<à!'m: 

toi l N 

J'f1 C?J ( v<). 
VN VJ'c +, 

or: 
N \ 

fi" CN 
3.NYt H 

'" "rJ 11 ( mil KT J 
.cil' --Consequently, ,definingl 

JI; _ 1 

/ , 

, 

l. . 

"" 0,(1] --
. / 

\~'------~~--------.... ~ 

.. 

1 ....- . 
i , 

, 1 

l' 
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, (.III-C-29) 

Substituting back into (IIIrC-25à) one haB: 

(Y'-, 
N (} ) l-

e( 

î( :'JJ.,) <R ~ cl V", N 'o,,[,J 
~ . ... 

.(i. ~~ 
- " r , .. 

orl 

~~ JJ 
,.----- , 

.;>: 'Pu d V.., l'VOLt] -.-, lA,. dct f 
, 
" 
1 

Near cànonical equiJ,.ibrium, this criteria rnay be'Written aSI " 
1 , • 1 If, ~e( 1 

\ 

1 g-!}--J l .. c,. d V..., . NOrt] • , 

~.> K1 . (III-C- JO) . 
1 

" • j 
./ " wherel , 1 

~ '" /1 ,. '" 1 .... le( 

rfl 
- r . 

JF % ., 8 

h' J l / - ;> .pu + ~ -
~ ... 

d ~·t.' " ~ ~9~ .JI 

• ,~, Ja' 

t 6) U't. . , 
f 

\ ~ -:.:-' 
" ~ aiq-« 

..l.-
' " , 

1 
(~-~-Jl): ~ ( 

'\ 

J 
1 

-. 
1 

,""~ •• 
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73,- • 
represe~ts the external force exerted on the particl~ 

f 

by the remaining particl~s af.ld the external fie'Id. 
~ 
, Definings 

,Q", 
(III-C-)2 ) 

(III-C-30) bec ornes 1 

(III-C-))) 

where: 

represents-the average maghitude of the force 

equilibrium. Since, aIl "'the particles of the same specie , 
are identical, we have 1 

(1 II-C- 35") 
''-L 

It now seems quite clear from (III-C-))) that dt 

may no ~onger be left atbitrary. Consequently, we definet 

fuch 

<: \ sJ. '" 1 )_, 

'\ (III-C- )6) 

distance over which ,~he force' 
) 

must be exerted to accelerate, from res~. a 

particle (~,4I() to a kinetic energy KT. 
1t 

Wi th r N defined by (III-C-29). alo~g wi th the pre-

vi ously de.fined dimens i onless qy'anti ties, one obtains the 

following dimensionl~ss Liouville equationl 

. / 

1 

Il 

i 
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/' 

" }{= V: ~ l=" N ·~I -::. 0 
;> t i 

(III-C-37) 

where: }{:. ~tr'J(~t -* 0'" ;;) . 
r~ • ---*. 

,;> <\: 1 

..t= 1 ici 

.... M Nol 

* II ~~~ xe( ~ . J ., 

1 
- ... * ,;) pZ * 0> 9i. 

sAi oro. ' \. .. , 
~ ~. 

"lit 1 eK'. '"R < .l·ff- ~"1 > .. , 
kT ... 

which is properly ordered on average over \{to1 • 

c} B.B.G.K.Y. Hierarchy: 

The B.B.G.K.Y. hierarchy may be nondimensionalized 
, SO as to be properly ordered 1 on the average 1 .over some 

• * volume V\S~ln the reduced phase space 'r1S1 by defining: 
il-F' tsl :. GUl F\~l, (III-C-J8) 

and imposïng that~ 

( 

1 
1 . II( 
t ' 
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.,. 
d Vls\ 

, 
o t (III.C-)9a) 

IV 0 (1] 

" (III-C-J9b) 

.... (1 II-C- ,39c) 

~ 

VlSlj M 35", V\·S~ - 'fi ( <R..e(. J m .. K Tl' 
(III-C-40) , 01. = 1 

~- s M ~SW(/% 

- 'il (m."T) v lS~ , v, ~ 
0(= 1 

\ (III-C-41) • 

Proceeding exactly as in the previous sUbsection, 

one can satisfy (III-C-,39b) by defining: 

)

5 ~ gs., 12-
C \si = (.Y... \1 (tn.K T) 

~~, of::. 1 (III-C-42) 

such thatl 

~ ~ S t'\ 3s.,./t 
FlSi - t;.,l '\1 ( me( ~ T ) f \ s i 

.,(::; 1 

(III-C-4)J 

" 
f 

r ~I j,,~ 

" 

1 ", 

" 1 ) 

1 
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, Similarly, criteria (111-C-39a) May be shown ta 

. 
'YotlJ 

(r-11-C-44 ) 

wherel ... 

-5 

~ 

- (~ )le,) FI \1 ( X \<\ • ! l 
(1II-C-4:5) 

• 1 

represents a" candi ti onal probabili ty distri biuti on for X i 1 t 
,/ 

given that ~\S,,~VtSI' Since it become~ evident f?:'~:-l (I11-C~44) 
oc. 

that ~ should be c[1.osen according ter the subgr::mF (Sl 

we shall define: . 
" 

\ -1 

6t~s~ t Jf 
0 

d "\'1 r - ,;) 1'U\ 
-::a- / 

~9: , Ir' (111-C-46) 

where the initial distribution: . 
1>~ .. \ (Xht) :: 1\~\ (X\~\IO) (1:11-C-47) 

-<. ". ' 
has been introduced so'as to make 6!\S~ time inde;endent. , 

Finally, 'defi~ing the dimensionless separation 

vectoral 
... ,. 

ft .-
1'i.j -

l .,.,15 / IC en wc 8 
rl~1 lI"\ 

., 
R ::'1,1. 

criteria (11+-C-39c) May be ~tten aSI .. ' L 

-. 
..". .. 

• 

~ ItI-C-48) 

,', 
( " . 

i 

, ' 

\ 1 
• 1 

.. 

, 

• 
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(III-C-49 ) 

where: 

,. 

(III-C-50) 
• 

represènts the conditional probability distribution for 

given that C onsequerytly, 

" 

. 
1 

· FI Il! 
• al: ,"Il 

. ' (III-C- 51 J 

Suq~tituting (III:C-4J), (III-C-48) (along with 
\ 

previous'ly defined dimensionless' quantities) into· (II-C-l1f, 

( 
we then obtain the following'dimensionless B.B.~.K.Y. 

p ~ 

hierarchy. V-

1. 
" 

f 
j , 

1 
(' , 
1 
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f- ttt 13:-1 el •• Il''I 

(" 
I 

-/ wherel 
, • t1 . 

}{,,, '\. V" .1<;1 
- \S~,~' L 

..rai 

~ nLt.t t 

• 1 

(III-C-:-5J) 

ri~ . lst -: 
1: 0( f> ~J< fi co( ~ é:t~ . t )1~1 \sS . 

5.t. 
% It.S - • -" l n d" .fJ cl P:6~1 ~<Vd .J 'f tSr' - --:.. Il .a • 

0> 9: ~P: \ l= 1 

" lE o(~ l(p.,1 If ittl.l, li: -<6 011 
IS~ 

:: f,. ~, J\ -
~ J ... ,,1' 

"\ 

L . J~ .. J 
-:;;".,." 
~P.: 

,\ 
i: 1 

• It 

~/6?~s~ and J<\ll, 
... (III-C-)4) 

" 
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-
Taking the 50 called "thermodynamic limi t" • 

~ NB = ,'11,' 
N6'" ., V 

"' .... "" .. 
" 

the lia t 
It #1(' 

parameter, f,t ' 
hl 

• may be ~Tittenoass 
/~h~ ~ 

(III-C-56) 

It should once again be emphasized thât equation 

(Ill C- 52) is properly, order'ed on the average only over a 
" ' , ~ J' \ 

phas volume, ,V~S\ for rr~t reasonably close to equili'brium. 

D. CLASSIFICATION OF MIXTURES, 
) , 

The dimensionless B.B.G.K.Y. hierarchy contains 

the following set of i~trinsic parametersl 

t el 01/ r «(1 t elfJ , 
et .." l -<If ~-

Lél ~ '( 1 cl< US 1 ~ l ' X 1 J. l ,E...z 1 si ' 1 J 

-,=1,"'" 1 8= l,' ·11 i~.::r,lJ 

where in summary: 
" 

,~~,- E ~. 
m", 1 

a( 

J(hS = "K 
-:::-;c 
<.R tsi 

l;RtI(a :: 
j 

~ (t~~o) 
/, r.{'01.4 

" 

.. 

r 

! 
- 1 

'; 

1 , 
' ' 
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~ 
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(lrr .... D-1) 

,. 

These parameters, pravided ''"'R and Vc. are flrs't defined: ,.' 

ma:y be us-ed.'as index codes' in a classificatïon Qi mixtures. 

J~turallY, since two of these intrJnsic parameters are 
,9~ , 

dependent, on ~he sub'group t Si .where t!le nlJmbe~ ipf elements 
'. , 

i'n l S ~ varies from 1 to N, it fD'Ilows tbat the number of 

,elemènts in the !' index t set" {ll may become awkwardl,Y large 

for systems containing, l)lany particles. Indeêd, i,f ~e 

thermodynamic limi t ls, imposed t lE.\ will" in fa ct ,- possess 

'an infinitc nurnb.er of',elements. This Uesis, th'erefore, 

~will not atte~Pt ta pr~es'ent a complete and general classifi-
, , ' , 

- --- --~ 

cation of mixtures oh the b~sis of Hl .bultather will con-) 

aider ver~ special classes of molecular sy~tems which àre 

• 



( 

- 81 

'compatible Vti th a trunoation of the hierarchy via a }?er­

turbation approach. More precisely, we shall restrict 

04r attention to these sys-terns, of Physica'l int~re'st, which 
" \ 

conia1n in their iridex set 'El: sorne intrinsic parameter(s) 

~hich ls (~re) sufficie~tlY smaller than one to qualify as 

an expansion parameter. These parameters, furthermore, will 

usually reside in the ri!ht hand side of,the B.B.G.K.Y . 

. hierarch~ s~ as to allow the ,omission of the "~ixing tepm" 

of the hier~rchy as a zeroth order approximation. I~ parti­

cular, three' classe~ of mixtures Vtill be studied: hon 'dense, 

Vteakly coupled, and so-called "BroVtnian" mixtures. 

a) N on-Dense( Mixtures: 
\ 

Non-dense mixtures di~inguish themselves by the. 
\., 

low percentage of mole cules Vthich are interacting at any 

gi~e) Our analysis of sueh mixtures Vtill be 'based 

on the following assumptions: 

1) the strong 
:I "1:",8 

interaction potential ~~j is rep~s~ve and 

its range is roughly the same for aIl pairs of Molecules: 
• 

i.e. ::1 f e(.e, N 0 ( r J for aIl «,B) (III-D-2) 

where: 
~, 
1 
1 
1 -

and: 

'hl (III-D-'4) . 

tIf there is onlya single 'specie present, such.sys-
terns are usually referred to as "dilute gases". HOVtever, 
Since the word "dilute" is also .commonly used to i·ndicate . 
the low c oncentrat i on of lone or more species in a \Tlixture, 
we shall avoid using it in this thesis. ~ 

.f 

" ) 

.' 

1 
~ 
1 
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~) atl the moiecules have similar masses: 

i. e . -~.",..,. 0 ( 1] (III-D-5) 
, 

J) the 'particle dens1ty is roughly the same for 'each 

specie: 

Le. (III-D-6) 

4) the,weak i~teraction potcntial 
J!-~8 

4> ë. j may b.e ne?lected 1 

• C~I~ -+ 0 1.e. c (III-D-7) 
wi th 1I.'f'" il finlte 

5) the'external field is wea~: 

Le. -X- .(..(""1 
'--( 

and long r.3,nge such that: 

(III-D-8) 

t-< ) (,- (III-D-9) 

6) the ~veragf riumber of particles in each particle's 

1nteract10n sphere 13 very small: 

i.e. 

(III-D~10) 

Let us now consider, in the light of thé' above 

assumptions, the m~gnitude of the various intrinsic para­

meters in te.i by restricting ourselves ta subgroups ~st con-
fi 

taining a small number of particles (i. e. S - oC 1] ). In 
1 

order to evaluate thesè parameters, the characteristic lengths 

"'R and t'c must :(irst be defined. Let us prescribe: 

(III-D-ll) 

such that the characteriGtic time: 
" 

td ~ 1:, r ;-i- (III-D-12) 

• 1 

1 
1 
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.. 
represents the typical interaction Itime betweén\molecules 

and choose f, as follow: 

-r o - '/3 < f, « ,m (III-D-1J) l 

su ch that the hierarchy becomes properly ordered over i , 
, 

physical volume l~rger than the size of a molecule's inter-

action.sphere,but much smaller than the molecular "specifie 

volume" ffI-~ .' Wi th thes.e selecti.ons for"'R and ft. , one then 

obtains from (IIX~D-l): 

(III-D-14) 
-C :r otS 

The remaining intrinsic parameters J<\S! and E 
1 lsl 

may also be evaluated by estimating the magnitudes of tne 
0(. ':x~ <>(8 

characteri sti c lengths <K. \.s~ and ffil~f The former l ength 

:: l J~~l ~l' ;~i d V\Si t - " 
l J ;J 9~ J 

shall be consider.ed for two special cases: 5) 1 and .s = 1 

In the first instance, we shall assume that the magnitude 
o 

of the gradient QI" l~l is mostly governed by the correla-
;;9:.~ 

tions between the molecules within \51 which, in turn, will 
/ 

be assumed to be dictated by the strength of the interaqtion 

. potential. Consequently, it would see~ reasanable to ap-
"'Do ' 

proximate rhl aQ, the canonical distri bution for a group {5! 
, ' 

and hence assume that: 
~~ 

0 0 

l "-Hereon the symbol <- in ~ <.. i denates that r/J 1s 
smaller than and of the same arder of magnitude as ~ . , 

'N. 

; 1 

1 



/ 

( 

" 

- 8~ -

"\ 

;;~ . f;:/m~] h 

where: 

(III -D-15) 
, 

such that: 
r 

'''1 s. 

Id~~'1 LI ;/~"':~ 
0 

rv o( 1'IS\ ] ~ 
~9: 

.f 

~ 9~ I<T 
'al je, 

~ 

(III -D-16) 

Substituting the above into (III-C-46), we then have: 

(III-D-17 ) 

Final.ly, since wi thin Ye. one has, on the average 1 

\ 
\ 
1 

... 

1; 

(III_D_~ 
î 

1 1 

.1 
1 

1 
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- " 
" and ,we may wri te 

} 
! ~ , 
: 

.J 

/"'--

, (III-D-19) 

orl 

. 3 

(i) ] 
(III-D-20) 

For, the. spéc,ial c'ase SI:. 1 , we shall only consider moderate 

spatial gradients S0 as t,Q assume: 

V.l~t(. 

J f ~!'<I J VI"I . < 
'-'''\ q .. 

" 

l ," 

, 

. (III -D-21) 
'" l ' 

rsubstit~ting (II'I-D-;2Q) and (III-D-21) into (III-D:-U, w~ 

then conclude tha~:, 
-c r 3 

~ISj' r.J 0 [7r.] s)' 1 (III-D-22) 
... 
from (III-D-13), implies: 

~o • 

~) 

, . 
(III-D-23) 

Similarly, for i' !i =/ , one obtains from ( III-D-l) and (III-D-21) 1· / fi 

CI{ 

< f. < ~ 
0 

J(llJ 1 
f"(. 

.... (I,II-D-24 ) 
... a 

l 
\ r' 

"" 
...... 
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We shall now estimat: the o~der of ma~tude of, 

1 t 
• 1 

. -

, . 
v hj .. 

, H \ if 
/'-

by noting, 'on one hand, that: 

, , ... 

• 
.~ , , c 

.. 
\. . and, on the other hand, that the integration over 

is perform~d over the entir.e physical volume, where on the 
A 

" 
1 
l, 

! 1 

.. 1 l 

[ ~_K _:_r_L J '" 0 
, 

,j 

( 

-
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f 

\. 

( 0 

Assuming that "P. 
.~ sufficiently equilibrium tl S near 

to write: " r r ~. 0 
0 

, "P ,1 •. ,.+1) ] 
/ 

;) r h,SA"'} 
~ N 0 e~ 

'" 
ô) -0(. .... m'" KI • Pc.. 

tç we then hav,e t approximately: 

:r~II(6'. ( o[ l V V/7/f.c :1\,"""6\ (e. ) 
3 

1" " /KT If"4 \ .-- )1.11 KT ' 

Vft! ' 1/ 
"l- r L j ~ 

KT r.t IP:I -po r'"'' cl ..... id J V'Si J 'J x 1 s,Scr+d f\.l P"6'" 
V m .. I(T 

1 ~ 1 \ 

~ ~ 0 [ f c / J fi" ] \ .., 
Since 

Il 
/"..J 0'[ rJ "the above result reduces tOI JI ~, , 

~ 

/" :r ffi .... ~ ~ o [ Je.) /" l-
I , ' !Si ;1/1' (III-D-25) 

such that: 
"", ~ 

r .& ]' #1( 8 3 
E :: ..-n(J ( SR "iSj) , z. • .s l 

t < 0 [ ntfj f! l !, 
' .. , 
t 

,.J'1 

l ~ 
- , 

l' 0 ( /11-tJ f ] 
" ~ 

, , . 
l .. 
i 

({ 

(III-D-26) ". 

\ 
~ , 1 
.~ 

1) 

( 
~* 

0 

1 
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Listing of IntrilhSicLPararneters 
<::Y • 

For Non-Dense Mixtures 

l 

o ( ~1 3 "R 
~ - -e( 

6l.LS~ 
t', 

""R < t-t1 - -co( 

CR \1\ \ .,. 

~: 
1 

[ '1 - l'V 0 -
m. 

... (' ~~'r ~-' 
N o [ f ] 3 - ift(fi f, 

JJ~o(~ '\ 0 - .-,. -- KT 
-<. « - U ..... 

KT 
- ~ 4 0 L ~, 1 A.- • 

L-<' 
'0' . 

:r ~s 3 ( /"Il" r 1] - m~ ( ffi lH) ~ 0 -
~ 

" 

Table 1I1-1 v , 

~ v,.. _ _ .... A __ 

- j 

~ ml 
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-, 
» hlî 
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< 
~o 

/" 

<Z 1 

~ otlJ 

1" 

, (1... , fi 

, ~ 
\ 

'G _ 

'" 

) 

jt , 

; 
\ l, 

! 

1 . , 

l~ 



• 

( 

" 

1 , , 

( 

, 

" 

i Il i ____ --1 _________ _ 

, - 89 
The above results are summarized in Table 111-1 

where the first column denotes the intr1nsic parameters. 
Il 

the second colurnn gives the precise definition' of these 

parameters, the third column lists their arder of magnitude 
\ 

in terms of f , /.n~ and f', , and; the last column tabulates 
1 

the orders of magnitudes, Vihan f, is chosen a / 
(III-D-1J). l' 

Let us now consider sorne oZ the implication of ~he 

dimensionless B.~.G.K.Y. hierarchy (II1-C-5Z) anp Table 11I-1 

{or non-dense mixtures by comparing these ~esults with the 

analysis of S~dri previously described. Sa~ restricted 

- his nondimensionalization to simple (single specie) systems 

in the absence of an external field sa as ta obtain the 

dimensionless B.B.G.K.Y. hierarchy: 

" (I11-A-l) 

where ~, I J ,and ~$ were define in equation (III-A-Z). • ~ *' t 
For non-dense systems, Sandri. r soned that: 

, IV 0 t \ 1·, f. 2. ). <. 1 
1 _ 1 

su ch that " L, Fs., could be assumed very small and would 

be neglected at the zeroth ord'er of an expan6ic2fl in é.t, . 
; 

For the sanie phycical cystent.;,and usi~g sitnil,ar notation, 

the B.B.G.K.Y. hierarchy (III-C-SZ) or the 1resent thesiG 
1 

May be. shown to reduce toi. 

.. 
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-III 

~-t: 
r "z • ,c. %J? " ~ r:-; --,...... 

I~ = .é.t.
bl 

:;R }'~, L j:"'UI 

1/' 

(III-D-27) 1 

Now, choosing f~ acoording to (»II-D-l)) one see~ from the 
r 

last coluIl).n, of Table 111-1 ,that E. z (Al" 1 ) represents the . 
predominantly Ismali parameter. Forthermore, it ls clearly 

:r 
evident that any perturbation o_f (III-D-27)· in terms of é z. 

" is equivalent to a, similar perturbation of (III-A-l) in 

terms of' l.z.. It would, therefore, seern that the above 

nondimensionalization'of the B.B.G.K.Y. hierarchy for ,non­

dense systems is completely consistent with Sandri's ideàS. 

1 In spi t'~ of the apparent mutual agreement between 

the above anaiysis and!Sandri's nondimensionalization, one 

important d~ssimilarity must be note~ W~~recall that the 

dimensionless B.B.G.K.Y. hi~Ia~~hy as ,givèn by (III-C-52) 

ls only properly ordered over a characteristic volume: 
t1 

s. 3S-c/.z. 
= V, 'i1 (m-c 1( T) 

suer that any expansicw performed on this equ~tJ on should 

be restricted to thermal molecules (i.e. Molecules with 

momenta 0 [Jrn"K 1) sha,ring the sarne volume V, ) . 'l'hi s 

~The definition for k: 
, by (III-A-2) with the exception 
are, defined different\ly. 

Il 

t r. 
that 

". 

and L. are as gi vén 
9: , p~ , 4l~) F; 

• 

\ 
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latter volume may be regarded as a "floating" vo,lume 'Nhich 

may ~e chosen anywhere wlthin the physical spaee and could, 

in faet, travel to follow a given particle if 50 desired. 

Once ehosen, however, it may not vary in size and must re­

ma-.in more or less sp'heric~l, 1 Clearly, if on~/ wishes to 

enlarge theurange of validity of any expansion per!ormed. 

on (III-C-52J or 

larger volume V, 

(III-D-27) one must lnitial~y eh~se a 

Unfortunately, any attempt ta inflate 

this volume will pravoke ,two undesirab~e effects. On o:'.e . 
hand, ,sinee the B.B.G.K.Y. hierarehy is properly ordered ~1 

on, the avera~e over ViS\' any enlargement of this volume 

through an inflation of v(.. may eventually create large local 

regi ons wi thin VI~l over whleh the hieraréhY ls not at aIl 

prfperly. ordered. Furthermore, as can he seen from the 
r. . 

third column in Table III-l,' any enlargement of VI. ta the 

size o lm'-') will inctease 
r 

the magnitude of 6z in (III-iJ-27) 
1 

.I[,t".(\ 
~ 

~ otl] . fr.om ta _é" Furthermare, one l1ates 
J 

from the sarne eolumn that this choice of" "e. will yield for 
:r 
~ and tKi (in II:r-~-27) magnitudes which are mueh smaller 

.r-
than unity. For sueh a choice of V(. it would" therefore, 

seem more reasonable, ta expand in ~ . ahd J<~ than in 1't:.t. 

If one, in fact, perfarmed sueh an e~pansion one would then 

l The reason for this is that in"evaluating the 
typical order of rnagni tude of \ § ~~; lover 'le. , a spherical 

volume was assumed. Clearly, if this volume is drastically 
distorted in shape, these estirnates, may no longer hold. 

" 

f 

,l, 

, 
" 

l' 
1 
1 

--1 
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paturally find that aIl the terms in (III-D-27) (with the 

e~ception of the time derivative) wauld be neglected at the 
/ 

zeroth arder. Finally, one,m~y easily note from th~ third 

• " :r _TIei 8 d . l . column ln 111-1 that though ~ ecreases rapld y ln - ~ 
arder of magnitude ~ith an increase in ~ • the product / . ' 

:r "0- fJ:r 0( 8 ' 
~ 6&\$S generall~ reMains insensitive to s~ch an en-

largement of V~ '. Consequently, one May conclude from 

, (III-D-27) that an inflat~on ot: ,Vt., will generally have the 
, , 

,} 
, • II, 

effect of decreasing th~,' magnitude of ~~~l wtüle le-aving 
!. , 

the mixing terms morê or, less unchanged in their order of, 

magnitude. Hence, any attempt of overenlarging through an 

increase of V, will genJrally intensif y the relative impD1;'­

tance of ~he troubles'ome mixing terms. 

We may conclude fForn the above arguments that the­

expansion parameters chosen in a perturbation anal~sis 
~ , 

greatly depend on the volume Yl~~ ove~ which the proposed 

expansion will be performed:. F~rthermore, any attem~t to 

increase \1'\ Sl will, on one hand, " create local regions in 

"ls~ in which' the' expansion i8 not at aIl valid'and on 

the other hand, increase the relative importance 'of the 

troub)l.esome mixing' terms . These cO,ncluslons, which were 
~ . r ~ 

'not at aIl evident. from previous nondimensionalizations of 

the hierarchy (nuch as Sandri 1 s) will be:'l.r Qcavily on the 
" " 

expansJons to 1;>e performed in late~;chap1t.erS of this .thesis 
\ 

for non-dense mixtures. ~ 

"& 
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b) Weakly Coupled,Mixturesl , ' 

·We shall now.:evaluate the intrinsic parameters for 
1 

a mixture which di~~ys extremely short range strong inter-. ". -

actj.''On~and moaerately long range weak interactions ,such 
.. .2"'~'" .. , F~ 

.' 

that: 
3~ -

h1.s (1'( "1' li ) - - ---+' 0 

/Y1.A(Œ(".ocS,)~ l'''V 0(\1 

(111-])-28) 
" 

(II1-D-29) 

~dl 
. ,,6 =n~8 .« 1 ,E, - KT (II1-D- 30) 

jO 

'" The analysis will rest on the following assumptions: 

1) AI'I 'particles 'have roughly the same mass: , 
", ~OI.. l'V 01: IJ J,., e . .. (III-D-31) 

1 

2) AlI sp'eéies have similar particle-densities: 

t.,e . 

(III-D-32) 

as 'a result of equatton (III~D-29) this assumption 

also implies: 
'~, 

,..Jotrl" 
where, in this subsection, f is 

·r .. = tf 11- A1~ ''('''S 
LL /ft/. 

01-' AS:y.' 
'3) The external field is very weak 

• i.e. -y..t( «i 
LOI. >, 'f, 

.. 
.. 

• 

,.. 
.... 

~ 

(III?-))) 

defined by: 

" ,. 

... , ( II l - D- 34 ) 

and long ran~1 '. (III-:"'D- 35) 

- tIII-D-J6) 

, \ 

.. 

/ 

, . ' , 

" 
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" F"or the Yveakly coupled case, we sha.ll prescri be: , . 
~;: (- (lIII-D-]7,) 

sucn- that the characteristic time 1 

represents the typical duration of a weak interaction. 
, , 

F~rthermore, we shall choose 'f, oSlightly larger but of the 

same order of magnitude as ~ 

~.e. (III-D-J8) 
'le: 

As in the non-dense case, the characteristic length <R hj 

will be estimated for two cases. On one hand, we consider 

v:t ~'l (~> 1) for a mi~ture wi th weak nonuniformi ties. 

For sueh mix~ures, the gradients ~ are essentially 
. dq~ 

" ," 
governed by the correlations resul ting from t'he ,strong and 

, 
weak interactions between the molecules. Consequently, 

"" for such mixtures, we shall estimate lR.\S1 1 (5) \) by assuming 

that initially l'tSl .. is ~ot too distant frbrn the canoni-

cal distribution for a subgroup (SI 
o 

Hence l' t'hl 

will be approximated by: 
li 

... Z 1 Mt MS, 'loC' 1"0(8) lPi\!:m-t] ) 0 _1 -xh II [rL (4).j + ~~l -+ 
"'Ptsl NO l ,~b) 

e' ..... L:I ,., FI 

1, , 

Vl'I -k lfr(f[Cc):~ ~I[~:~) + \ pi \7 m,,] J 
,~ 

J-J ,. e 
.-. l-. " .. ,)"' d~s} 

Z(Sl -

such thatl 
M S4 

:t oi d lt ceS 

~PISl "" 0 r1II( .;) ~d + d'~"J ) ~ J -0{ -:r- ~ ;}~: " ~9: 9" 
~.I Je\ 

r .. 
,--:, 

41 
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and ' 

Now, within v~I.1- w,e note ti1at:. 

and: 

Furtherwore since: 

, !!J-( Z(ef4) 9 ~ 0 

and ._ _0'/$ 
(" "'-' 0 [~11"oJ or n1 J 

• we th en have ~ 

C~8)3 ~ 0 

"" . fc. 

C ol1sequently, for ~ ..... O(1) , . 

ors. 

. , 

, ' 

,. 

.. 

''--
"- \ 

(111-0-39) 

we conclude that: ,~ 

(111-D-40) 

" 

.' 
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f(_)3 c,otlJ] 
'" 0 l ;, ' c. 

(I11-D-41) 

We shall now consider, as~ tpe seeonp case, a mix­

ture in which the gradients Jl'\11 are mostly/ctue to' the 
~q: 

spatial nonuniformities within the system rathgr than to 

the correlations. For such mixtures, 'it ]s preferable to 
1 c 

choose for, ""pu. 

0 M 50{ 

""PlSj ,.,;0 [ '1I'îÎ --P[i.,o(~ Cq~ pO( 0 lJ 
,""" i.-\ 

lit. , 

such that: • 

Vu .. '" 

[ J f 

Assuming that for all ~ , the gradients due ta spatial 

nonunlformltles are moderate such that: 

1 o 

1 
d P~~,.d (~~,~) 
;J 9: 

r 

1 1 
1 
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we then obtai~ 

and hence 
~ 

J{ is~ .1.. 

< 
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• 

(III-D-42) 
It rn-< B 

Finally, the characteristic length J,,", U~ ( It .. r .U.) 

1 

May be evaluated 

., 'J:Ro<a 
exactly as in the non dense case to yield 

~ 0 [f'(.1"/ 
iJj 

-... such that: 
lit o(/J 
é 

.1 h5 
4 0[112f':] 

~ 0 (;rt ("3-'] 

~ 0 (1] 

~= I.n 

(III-D-4J) 

The\above results may be summarlzed, as in the 

previous section, by Table 111-2, where the third column 

indicates the orders of magnitude of the intrinsic para­

meters when le. is arbi trary and the last c olumn lists the 

respective orders of magnitude when I{'c. -ot1"J 
~ 

Let us now c6nsider the implications of these , 

results in terms of Sandri's analysis of simple weakly 

coupled gâses in the absence of any external field. 
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( Listing of Intrinsic Parameters 
1 

For Weal{ ly C oUI2red Mixtures (-' 
\ . .1 

.( l 9 .. fJ ... ,] 
J{ [st 'R .-v 0 [t] t, ,-o'E, .. 

- ~ , 
S) 1 6t"'Ul <~ \ " 

fi( 2 
<o"lf.c.1 -< 0 C IJ J<'\Sl ""R -

$), 1 <R'\ss 
" -t .... 

'iW- - -& N ° CI] ~o[l] 

~ Jf' 

%~-<8 
E 

"R' ( '~:'f ~ 
0 

l" ("" '. 
• 

\J " 

~o[*'lS Il ~c(e 'R Vi' _P f , oC IJ - ,N 

Il?'' fv~ 
1/ ' 

E;ecq Il - '<19 \ <~ <P 1./, , - -
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Using â no~ation similar to Sandri's, the B.B.G.K.Y. 

hierarchy (111-C-52) may bé written for this c simple sys-

,tem as: 
ft 1 

V:s• lIeR 
.. 

1=";1 
" 

~ cJ F 5' tK5 K,$ E , 16 :. + - J -If. 

" 01 t-"" ".." 

11 .. .. 
E, éa, J< .Me, L.s ~ s~, 

'''1 (I11-D-41() -.. "-
If one now considers the case where the spatia.l nonuni-

formities are moderate and one chooses t, ... oC (- J , one can 

then conclude from the last èolumn in Table 111-2 that 
~ 

.,' f 1 < < represents the predominantly small parameter 

in (11I-D-44)," Furthermore, it is evjdent that any expan-

* sion of ç'~ in powers of El' in (1II-D-44) is equi valent to 

\ a sim'ilar expa0s10n in Sandri' s ~.~ in (II I-A- 1), ' Hence, 
\ 
for this particular case of moderate nonuniformities, the 

f above analyJi.s is appar'entlY consistent "wi th Sandri' s ideas, 

On the other ~and, if one considers the particular case of 
o. " .. 

weak spatial nonuniformities , it becomes apparent from the 

last column in (111-2) that, along with é., a second para­

~ete,r J<s' o} the same order of magni tude a~ li f emerges, 
• 1 ~ 

•• # 

Furthermore, it is evident that aQY simul~aneous expansion 
, • 41 

of ~~ ip powers of E, and cks . will resul t in the neglect of 

aIl the terrns Di', '(1II_D...l~l~) (wi th the ex~eption Di' the tirne 
\ \ 1 \" r 

derl.vative) at the zeroth order. 'This result, which is in 

di;ec~ conflict with the analyses of Sandri an4 pthers for 

unif~;m wea~lY coupled ga~~ ~tems from the fact that, near 

" , 

L 

1 
... 1 ~ 
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'-
equilibrium. if one neglects the interactions contained in 

" 1: F; one must similarly discarJ the correlations created 

by these Ihteractions in T 
., .1,.1 

hlS pOlnt, Geemlngly , 
overlooked by Sandri and many others will hav! grave con­

sequences when a truncation of the B.B.G.K.Y. hierarchy for~ 

uniform weakly coupled gases ,is attempted 
... 

later chapters ln 

of the.present thesis. 

Before concluding the present discussion. one should 

perhaps note that many of the remarks present~ previously 
~\ 

for onon-dense mixtures 
~', 

apply equally ta weakly coupled 

system~. In particular, ~t should be emphasized that a~y ,.. 
attempt ta increase t~'range 

'by inflating V ls1 through an 

of validity of an expansio~ 

enlargement of ~ will have the 

undesira~le effect of creating on one hand local regions 
, 

.... i t.tlin V\.sl wher~ the" dimensi onles3 hierarchy i8 not properly" 

ordered and intensifying, on the other ~and, the relative 

importance of t~~ troublesome mixing terms.~ 

c) Brownian Mixtures: 

As a final special class of mixtured, let us now 

consider systems which consist of a grou~,of heavy particles 
, 

~oexisting in, a bath of light mole"cules. Identifying species 
1 

oC :: Mo . '"' as the heavy "Brownian" particles and sp~cies 
\ .( = 1.·· (~o- J) as the "bath" molecules. we s,hall Investi- '" 

gate ~ d such- ".l3rownian" mlxt'ures un er the .fol.lowing a:::;sumpti ons: 

1) AIl the Brownian particles are rougbly of the same. 

mans: 

i.e. for J 

,. 

1 

( 
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-2) AlI the bath particles are roughly of the same m.1.3S: 

i . e. m. - o( mir for Q( < Mo i 
J} The Brownian particles are much heavier thetn the bath 

particles: ? ) .. 

i.e. 
,.------..._ .. -~ 

Dt 

i 
/ 

-~ ~.( 1 

me( (III-D-4 5)-
"-

for 't ), Mo 
. 

• .. 
4) The extepîal field exerted on the system i " " weal( : 

Le. Y-"'- l. J.. 1 (III-D-46) 

- for ail ..{ 
1 

With these assumpti9ns, w~ immediately obtain two 
v*<' .Jo( , 

intrinsic parameters ,... and () (0{"7/ M.) which, because of 

t'heir very small order of magni-tude, may be uGed as expan­, 
sion parame,t'ers i·n any of the dimensionless governinr; 

equations, provided, of course, that they, in fact, dictate 

the order of m~gnitude of the various term~ in the~e equn-
, • , ..q.. 

tions. Strictly speaking, this will onlY,be the case if 

the remaining parameters are"'" 0 t Il , on the average over 

sorne range of the independent variables. On the other hind, 
~ 

if one does not propose to pursue the expansion to hieh 
.. et 1( _ .. 

orders of ('i 10(.),1'1, 1 Y.. ), we simply demand tha t the rcrnaining , .. 
intrinsic ' para' leters be wi th in the range: , .. (~., 

max. rrol(e()/Mo) -x...:]' « (.~(<. min.['/i"(o(~/n.,'/1t'] cIII-D-47 ) 
- \ 

(for aIl lo {, {(~, [. #. 'Y-(CI(.),f'to\ 1 tOC) 

o 1 

• 

1 
, ' 
j : 

i ; 
i 1 

.. 

l 
1 
1 
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f 
In order to verify (III-D-47) one should, of course, 'Q/ 

preceed as in the previous secti ons and define sorne char- .­

acteristic lengths"'R , 'f(.. and introduce sorne" reasonable 
1 

o 

lni tial cOl)d~ tions ~'.1 te estimate the orders of magni-

tude of all.the intrins~c parameters. Unfortunately, for 

the genera1 case of Brownian mixtures, it becomes impossible' 
.. 

to choose reasonable initial conditions for "P\Sj without , . 
resorting to very special cases (such as non-dense or weakly 

1 
ceupled systems). For this reas on, i twill be assumed in 

the present thesis that (III-D-41) is, in fact, valid for 

sbme choiee of ~ and ~ and hence, sorne rang~ of the indepen­

~t·variables. Such an assumption, though rarely aCknbw­

ledged, _}!, in fact, i~plied in aIl previous perturbationa~ 

~alyses of Brownian motion, including thoSe of Lebowi tz":' 

Rubin, [ 8 ] Rési bois-Davis, L 7 ] Lebowi tz-Rési bois. [9 ; 

Cuckier and "Deutch,[35 ] Deutch and Oppenheim[36 ] and R. 

Mazo ,[3'7 J. It is, indeed. rjg;ettable ~hat this hypothè'Sis 

be needed, since it leaves us somewhat in the dark as to 

the, range of validity of the expansions. Suffiee it to say~ 
• 

therefore, that the truncation of the B.B.G.~.Y. pierarchy , ", 

presented in the following chapters of this thesis via an ex­

~anSlon ln [t~o(}I"'O\1 1.. ... t YV-ill 'be presented tri th sorne reservati ons. 
, . 

E. Summary and Conclusions --. '" The present~pr has deve10~d..4ii '~stematic method 

of notdimen~iona1iZlng the g~veY'.nlng eq~:t'l;ns ," fO"Y' systcm3· 
• •• , ' . 

.' 

/) 

./ , .. 

7 
i , 
" 
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not too distant from equilibrfum, such that on,the average, 
• 

over a restricted domain in phase sDace, the various terms 

of the se equations, exceptlng, th~ t~me der~tives, may be 

w~ltten as the product of non dimensional terms ~ O[lJ and 

dlmensionless parameters which dictatc the relative weight 

of each tern in \he respective equations. This method dif-

fers co~siderably from the more casual approach adopted by 

'others [12 J , [25] which consists of non dirnensiohali zing -the 

governing equê-tions W.j..th respect ta a set of Seelfljng: y phy­

~lcally reasonable quantities and assu~rLg that the relative 

weight of the varlous terms are in faet 501ely dictated by 

the estimated magnitude of resulting dimensionless parameters 
3 

Bueh as E.,::. 4>o~ J G,: >= 1'1 ro where ~o and fa represent the 
mllt'll 

charac~eristic particle interaction potential energy and 

range while n and ~odenote mean particle density and klnetic 
.... 

" 
temperature respectively. This latter aethod ~hough cons1-

derably s1mpler, unfortu~ately becomes extremely risky when 

Buch parameters are later used as expansion coefficients to 

truncate the B.B.G.K.Y. hierarchy s1n~e throughout the expan­

sion, one rernains uncertain of the range of validfty in phase 

~pace, if any, of the result1ng perturbation solutions. In 

such a bold approaëh one 18 then ob11ged to pursue the expan~ 

sion unt1l divergent terms appear at h~er orders and assume 

(i.e., hope') that the convergence of the lower order solu-
\ 

t10ns will also imply thelr tValfd1 ty .. 

Havlng der1ved dirncnsionless go~rning equat~ons which 

; 

1 
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are "well orde:ed" over a restr:J" volume in phase space ( 

we may then, through estimates -:~~arious dimensionless 

/parameters'; undertake a classification of molecular systems 
~ and seek for partlcular systems for whlch sorne ofe the terms 

in these equations may be neglected ~a zer~th order appro­

ximation. In the present thesis threH such ystems have 

been considered: linon-dense" systems in whi h th-e pÇrcentage 

of molecules interactin,g at a gi ven time 1 very low, I.'weakly 
l 

cou!l-led "systems characterlzed by the negl gible effect. of 

strong interactions and a moderate perce ,tage of weakly 
, . 

1nteracting particles and finall"y "BrOi'l ian" systems dist1n-

g~ishing themselves by the presenc~ of eavy "Brownian" par-

ticles coexistlng with a bath of llght particles. 

For td&~ particular case of no -dense systems, the 

~1mens~onal' arguments in the present chapter suggest that 

t~e relative we1ght of the various t rms in the B.B.a.K.Y. 
1 

• 
may be expressed as fo1low5 

1 -
oS S 

+ L 
(.l' 

[ ë)~d.;)f, = is rUI 
~., ~·I 

d 9L (Pi 1 

1-

~ 

1 ~ 1 xl. ~ tiC ",r.'l 

/ 

1 

• / 

'1 

( 1 

(III-E-l) 

1-

1 
1 

... 

/ 
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wrutre X", is chosen wlthin the phase volume VII' in which' 

Ip.:l"'odmll.l1 and 
..... 
q~ 1 

in a spherical volume V, 

l • 1.. S 1 .S< < N may be enclosed in 

r.!f.31V~ -Ill , where 4/, \1 • " 1 < W\.. tOThseguen-

tly, over the small phase volume VlH ( and phys i cal volume V, ), 
'" ' 

one may follow Bogoliubov [12] ,Sandri [251 and oth'ers by 
l 

assuming that the momentum convection term L ~ 
L" m 

't 

and 

. the interaction term dominate over the mixing 

Hence, whithin this small volume, a perturba-

tion scheme which negiects the mixing term as a zeroth order 

approximation would seern" reasonable. However, over a larger 
, . 

volume ''Il'" O( n"'l{>.' where À denotes the mean free path, the 

no~dimensionalization execut~d in this chapter SUgg~sts the fol-

lowing scaling of terms for uniform (or quasi-uniform) systems. 
l' 

$ 1 5 

[ ~ [[ J ti.l . ô> F:s iJ 
Il 

J F~ "'- ;) rs :: r)il 

.;>t 
j.a. .... JS, .. -, .... 

~ p~ ln ~ 'l,' ~ 'j.: l 
l l 

3 nf. :1 
3 

t1 r. ~ n 1'" 

_,1 1 

(III-È-2) 

Consequently, over this larger physlcal volume (and hence lar­

ger phase volume) the momenturn co~v~et on and interaction terms 
~ \ 

do not necessarily dominate over the renaining mixing terme 
At 

l The symbol ~ in 1'/. <. ~ denotes th1ll.t t/. 15 smaller tha~ 
and of the sarne order of magnitude as ~ 

1 
t , 
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li The reason for this rests on the fact that w1th1n such a 
( 

volume the rnean distance tetween s partic1es, where 

s ~ 0[1], is mùch larger than the range of strong inter-
, -

act~on between-particles. Furthermore, the result1ng 

weak average interaction between the rnolecules Implles 
~ 

nelar equilibrl um .a correspondlngly weak average corre la-. 
~ tion and êonsequently, for a unlform (or quasi uniform 

system) a small spacial gradient J ~ Fortunately the 
"OfJ d CIL 

derivatlon of a closed equation for the single particle 

distribut'itm only requlres an approxlmate sOfutlon for 

Hence one May pùrsue 

on the basls of the orderlng of terms indlcated by equatlon 
, 

(III-E-l) provlde~ of course that the llmlted range of vall-

dit Y of the solution for F2 Js taken Into account when boun­

dary conditions are imposed . .. 
The dimensional analysis presented in this chap~er 

, 
for weakly coupl~d systems have resulted in a somewhat dis~ 

. èoncertin~ ~bservatlon. For the case of modera·te 'nonuni­

formltles one May fo~low Bogoliubov,. Sandri and others and 

expr.ess the orderlng bf terms as follows 

.~ 
t Jr, -4 

. ,J Çs E[~j + e. .. • ~ -= 
~t """ - J.' ~~I .... ;; p~r 01 Q) q~ Jq,' 

, l 1 
( . ~ <,~ j 1 ln ! ' 1 

, 

(III::'E- 3) 

[~ 
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a, 

when X Is~ ls chosen in the volume V ISi where 1 i$d ,.. 

o (Jmn) and ~ l. 1 I..q ~ are round 1.n the phy~ical vol-

ume v c "",0 t r.~] ,However, in the uniform (or weakly 

non-uniform)case one finds that within the same phase 

volur:le V ts\ the ordering' of terms becomes 

J" t L ~CPd 'j!="s '1: 

JI' ,~, a 9L l tJ iô~ : 

.. 1 
f,:. ~; < < 1 El 

(III-E-4) 

Indeed in this case contrary to the views of Bogoliubov and 

others, the momentum convection term no longer dominates 
d 

~r :he ~ut~al interaction and mixing terms since the ave-

ra~e ;·;eak interactions occuring within V,- will, near equi­

libriu~, result in similarly weak correlations and conse­

quentIy small gradients ;) fi Naturally, when aIl tpe 
~ ~ 

terms becorr.e equally small, the truncation of the B.B.G.K.Y. 

... hierar)y via a perturbation .approach r~resents a most dif­

ficult, if not impossi~le task. 

The particular case of a Brownian system also pre-

sents its own hardships as it seems rather difficult to 

1 estimate the magnitudès of the relevant dimensionless para-
" . 

meters without seeklng further spe~lallzation such as low 

density or \·reak coupling. The t"pI1roach adopted in the 

thesis has therefore consisted of assuming that the dtmen­

sionless parameter' ~.: Jm~ emerglng from the nondirnen-
ml! 

....... 1 

l' 
1 

t 
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sionalization dictates the relative weight of the varlous 

te~ms in the d!me~Onless Liouville and B.B.G.K.Y. hler-. - , 
archy. ConsequentlY, for a single Brownian particle (B) 1 

in a bath of indent1cal light particles (b), one would have . 

" in the spacially un1form case the following orderlng of 

, ter~F in the dlmensiona;L Liouville eqUati~n (for the N 

bath particles and single Brownian par~réle) and B.B.G.K.Y . 

equatlon (fo~ the single Brownian partlcle) respectively: 
) 

11 

+ }(IN"J ri! = 0 
j 

t::J'Rit HI 

:::. 
OII-E-5 ) 

11 

}{ /U,l! = 

1 

(III ... E-6) 

.. 

1 
1 
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" 
... _ <'c.<$\, , 

represcl}"ts the Hamiltonian opera,tor for th~ N bath p!1.rticle 

intera~tlng with themselves and the ~r;wnia~ particle . 

il 

){IN,I~ = 

1 
(III-E-7 ) 

denotes the Hamiltonian operator for the Brownian particle 

Interacting with aIl the bath 'particle sand !'inally 

\ 

• c (III-E-B) 
( . 

represents the mixing term in the B.B.G.K.Y. hienarchy 

Indicating the interactions between the Brownian particl~ 

and the N bath pa~ticles; Hence aIl terms assoclated with 

the slow motion of the heavy Brownian particle are assumed 
1 

much smaller than those related to the !'ast rnovement of . 
l 

the light bath particles. Although this clsual approach 

18 a180 Inherent in previous studies by Leb'owitz-Reslbols[9] 

and others [ 8 J[ 9 ] we must acknowledge that the range of 
, ~ 0 

validlty ln phase space o~ any expansion solution based on 

the above orderlng must remain somewhat in doubt. 

./ 

\. 

'. 

'1 ' . _~ __ _ - _ . 
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CHAPTER IV / 

THE INITIAL VALUE PERTURBATION SCHE~lli 

The preceding chapter, devoted to the nondimen-

sionalization of the go~erning equations for classical 

mixtures, has been presef1ted t 0 set the scene_.f /~and to 

/' 

establish the rnathematical foundations for a subsequent 

perturbational study of these equations. As a first phase 

in sueh a study, this chapter will consider the initial 
\/1 

. value perturbation scheme, which undoubtably represents 

one of the simplest methods of truncating the 'B.B.G.K.Y . 
. " 

hierarchy. In general terms, the initial value perturba­

tion (IVP) scheme involves an expansion of the dependent 

variable of a governing equation in po~ers of a small in­

tri~ic pararneter and a subsequent solution of the resulting 

simplified equation through the introduction of sorne known 

(or assumed) initial·condition(s). The first attempt of 
- 1 J 

applying this scheme to the truncatior{ of the hierarchy was 

made by BogOliUbOv~12J in 1946, who expediently abandoned 

it on the grounds that it could'only lead to approximate 

solutions which rapidly di verged in time. Since the (IVP r 
scheme could not produce well behaved solutions, which ade-, ' , 

quately described the approach of a given molecular system 

to an equilibrium state, Bogoliubov subsequently developed 
, . , 

an al ternate Il functional'" perturbation method which could 

110 

. 
" 

• 

1 
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yield, at the Iower ordèrs of the expansion, useful kinetic 

equations governing the single partiele ~istribution 

ç 1 {~~ l,i\ \ t) As a direct resul t of the evident 

inadequaci'~S of the (IVP) schem.e J and of Bogoli ubov 1 s 
, '~ 

search for atternate expansion methods, few inv~stigators 

" have reconsidered this method, p:referring to devote their 

effort in developing their own alternate perturbation schemes. 

This hast y re jecti on, of the (IVP) scheme seems somev.hat 
1 

"",,,,J: - --"""""'unfortunate for t'NO very important reas ons. On one hand, 
" 

_IJ ....... _~: 

thE!' lack of a true appreciation of this per,;turbation met'hod 

has led to the devisaI of alternate schemes containing 1 
, , 1 l ' 

biten unnecessary 'assumpti ons and usually displaying a mathe-

,matical structure which is far more complex than what is, 

in fact. needed to suitably truncate the hierarchy. 

Furthermore. becq.use of these superfluous, ingredients. i t .--_. 

has become exceedingly difficult ta pin-point the exact ' ~ 
origin of the divergences plaguing most of these alternate 

perturbation schemes at the higher orders of th~ expansions. 

For these reasons. the present chapter will be eompletely 

devoted to a detailed study of the relevant and important 

features oT the very simple (IVP) scheme. 

In spite of the very lean research on 'he use of 

the (IVP~ scheme in the truncation of the B.B.G.K.Y. hier-

archy. significant contributions in this area may. never­

theless. be found in the 'Nork ,of Montgomeryl38J and Sandri ,[2"5 ] 

who have discussed the application di this perturbation methèa 

• 

1 

1 

L 
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pectively. The studies presented by these investigators, 

however, tend ta be rather brief and extremely ~estrictive 

in their choice of initial condit~ons. Furthermore, as 

noted in the previous chapter, Sandri's ordering of term{ 
. ':j 1 ~ , 

in t~e B.B.G.K.Y. hierarchy ~r weakly coupled gases seems 

somewhat questionable. Con(~quentlY, this ch,pter proposes 

to investigate, in much greater detail and scope, the main 

" features of the (IVP) scheme when applied ta "non-~ense", 

"weakly coupled" and als\o "Brownian" systems. Such a com-

prehensive ~eview or this perturbation method 'will j~stify 
" .. 

i tself in the foll,O\'ilng chapter of this thesis by the valu-

able insight it will cast on the ~evelopment of a simple 

and concise ,alternate method of truncating the hierarchy. 

A. SIMPLE MATHEI\1ATICAL EXAr.lPLES \ 
The initi~ value perturbation scheme .represent~, 

gBnerally speaking, one of tany methads ~f extracting ap­

~roximate solutions rrom ordinary or partial differential 

'(and integral) equations. Since this rnethod may be ap­

plie,d to equatiom which' be~r a much sirnpler fo~m than the, 

complcx B.B.G.K.Y~ hicl'archy, lt wally! sücm ~dvis~b)e ta 
\ . 

seek extremely qimple ur~ il}uctrative examples which can 

highlight som-e of i ts main f'eatures. 

As a first example, let us consider the trivial 

equation: 

( 

1 
1-
i 



( 

, 
1 r 

î 

r 
f' , 

1 
1 
i J 

, . 

l' 

J Q 

. ' 

~) 

d x 
dt 
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é.X 

(IV-A-i') 

which has also bren considered by Su, Frieman and Kruskal[30J. 

If we a4 thft X ~ 0 (.1 and! «0 rI] .' i t then follo". 

that the ri~ t hand side of this equation 'rEÎmains very ~mall 
in magnitude. 

'" ' sOltp;ions to ( V-A-l) by exp~ding X in 
'41> 

Consequently, o~e may seek approximate 
'. 1 

powers of the 
\. 

small parqmete E 
l.~· " Il) 1. lot) 

i. e .. ,: X = X. +.E. X. + ~ )( +... (J)'--A-2) 

such' that by substituting (IV-A-2)into (IV-A-l), o~e ~btains: 

[ 
• C.) • Il} 1. •• 1.' J ('01 (1\ ~ laI 
X + f. X +.,E., X -t-., • = - E X +!)( '1" f )( ..... ] 

ILl' • ül . 
If we now assume, tl').at X and}\ ...,are typlcally of the same 

arder. of magni tude for all i. > 

i. e . X CL) ":"" 0 [ X (k'] .., 0 [ i~'] _ Cl ( X lII\] (IV-A-) 

for all i,~. 

we 'may isolate term~ of the sarne ordilr of magn'i tud~ by 
,f 

'simply coll~cting t~rm~ with the sarne 
~ , 

Doing '. 

so, we obtain the equations: 
• III! 
X :0 0 
• 11\ ,.).,. 
X : - X 

• ci) , I~-I) 
X :: - X (IV-A-4) 

,The (IV:?) s~heme conB"tJ3ts ,.or' solving the ab ove eque.tions in ~ 
... 

·terms of sorne initial conditions.. Imposing that the zeroth 

order ~o~utton X 10') is ini tially exact., 

i.e. 

(IV-A-S) 

, 

J 
J 

1 
1 II; 

1 
J 'ft 

m-
I 
j 

1 
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equations (IV-A-4) may be trivia1ly solved to yield 
~ 

"" . X (il~_--Xo -' 
Xl).' (t~ ~ - x.t 

(1.' , 1. i. 
X ct):: (-1) Xo t /L·! (IV-A-6) 

~ 

sllch that, substituting back into (IV-A-2), one obtains 

x d.) ,... 
'IL .. 

x. l \ - é t + E zi." _ ..... 
-il 

+ ... ) 

. (~V:-A -7) 

From equatioG (IV-A-6), we may easily note that the higher 
i. li) ~ 

order connections, E X (t~l) rapid1y diverge in time 

X
'O) 

and eventually dominate the lowest order solution so 

as to discredit the earlier assumption (IV-A-]). This 
J • 

behaviour of the (IVP) solution~, which is usually referred 
'-, 

to as "secularll, clearly prevents one f,rom obtaining, wi th 

,..; 
JI 

Ja'f~ite numbe~ of contributing terms, 
\, 

tions which aré ~ell behaved for~large 

afproximate sol~- .~ ~ 
val ues of the indepen- 'f 

1 
f 

dent variable Nevertheless, for~the problem at hand, 
" 

one may obtain a solution for X Ct) by noting that the 

infini ~e suIf! in (~A-7) converges for aIl values of t and 
-Et 

x= x.e simp~y represents the Maclaurin series expansi on for 

~h~fh, naturally~ expresses t~e exact solution to equation 

~V-A-l). Unfortunately, the Infinite series obtained from , . 
a simple' (IVP) expansion may not al ways uniformly converge. 

For exam~le, consider the following simple equation: • 

dx 
dt 

t, 

= -p' 
\. 

(IV-A-8) 

'. 

• 1 

... 
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t One can show without great difficulty. that following the 

Same steps as-in the previous example. the (IVP) scheme 

will yield the infinite series' solution 

'l, ) {IV-A-9 

which diverges Vlhen t> 1/ x. E • In fact. the only means .. 
we have of extracting useful asymptotic information from ~ 

1 

(IV-A:9-). is by no~icing that the infjf+i te sum in fact 

'( represents the riiaclaurin series expansion for 
1 ~ 

which, once again, expresses the exact solution ta the 

prQblem at hand. We note .• however. tha t such an identifi­

cation ~ an (IVP) series with that of a well known and 

well behaved function ,remains, for more complex equations, .. . 
an extremely ~ficult~nd often impossib~e task. l Consider, 

~ 
as a ~final example, the following "time delay" equation 

dx -:: _E.y..(i-rj'),og 

dt (IV-A-l0) 

which has an exact solution. providbd that the past history 
'" 

of ")Cl!) ia, known fO)1"<~{(O Expanding (IV-A-l0) in the 

power series (IV-A-2) and collecting, as in the previous 

e-xamples, powers of f , we obtain the follo~ing set of equa- .: 

tionsi 
.. , 

i This v1ew has also been expressed by Su, Frleman arR} 
and Kl"uskal 1;301 

) 

'-

\ 
\ 

t , 
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. ,-, :;> X = '\ / 
. (" ... , 
X = - X ({-'r) 

• 121 III 
X = - X ft - '/, 

. 'If' Cl-,) -
. X = - X ('t.-7'1 

(IV;-~-ll) , 
which. as usual. shall be solved by requiring the zeroth ., 

order solution to be ini tially exact: / 
i't e. " • :: . 

("\ ' . 
X l D) " x (,,) = X~ 

I~l 
X co) = ,.0 R)t! 

Succ/sqively solving equations (IV-A~l) with the above 
~ 1'\ 

ini tiai conditions, we 'then obta~Jl for X ct) / il. l, •.• i thé 

fOllowxyg expressions: 

X'·) .:. X 0 

X ,Il .. - x. t 

such that, te the fourth order of E • one obtains for xli.\: 

) 

1 

-Il " 

/, 

~---- ~--__ ~'N"' H, ......... _ ...... _ .... _ •• _._., ____ "__ 1 
~........--.-~.~.if"olII1foI,WJtI~,A,.. ...... ~ 
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X{t-);: «'0 [ 1- lt (I .. t"'~ ! E,3.1'~-+ ~ é:J"Î') 
~ 

1 

The above expression once again illustrates the secular 

nature of theAIYP) perturbation solutio,ns. Furthermore, 

we note, from the progressive complexity of the higher 6rder 

sol~tions, the extrema difficulty (and' per~aps impossibility) 

of identifying the infinite series emerging from such an 

expression with 'that of a well behaved and well known 

~Jction. 

( The 

illustrated 

foregoing simp1~ ~at~matical examples have 

sorne of the main~tures and downfalls of the 
1 

(IVP) scheme. In particular. the frequent secular behavior 
" ,of this type of expansi'on, which p!ohi bi ~ well 'behaved 

approximate solutions to be extracted u~ing a finite number 

of terms, should be kept in mind. Furthermore, the diffi­

CÙlty of identifying the/ infinite series resulting from such 

an expansion in comple~ equations should be emphasized'since 

this burden will become a natural handicap in the truncation 

of the relatively complex B.B.G.K.Y. hierarchy. 

\ 

r , 
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B. APPLICATION SCHEf,'IE TO THE TRUNCATION 

OF THE 

The inves~igate the impliea-
o • 

tions of the above dise ssions on the truncation of the 

B.B.G.K.Y. hieraTchy via an initial .:value perturbation âp­

proach. To avoid sacrificing conceptual clarity for mathe-
" ~ , 

matical generality (and complexity), we shall restrict our / 

considerations to very simple physifal systems. These will 

includel / 

a) a simple uniforrn non-'dense gas, 
l 

b) a simple uniform weakly coupled gas, and 

c) a system consisting of a single larg~ Brownian particle 

in a uniform bath of light bath particles. 

a) Simple Uniform Non-Dense Gas 

A non-dense gas, we recall, charœcterizes itself by 

the very low percentage of particles in~acting at any 

.given time. A simple rm system, f~hermore, distin-

guishes itself by th presence of a sin~e type of parti~le 

and the of the One particl~ distribution 1=", 
a 

on the For such a systEm on~ May easily 
-- """ 

the ~.B.G.K.Y. hierarchy (III-C-~), with the help 

assurnptions and results in the lillIbsection (III-D-a) 

reduce 

of ~ 
to the simpler equation 

\, . ... 
}{, F, + (IV-B-l) 

.. • 

f 

f 
1 
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where, (in this subsecti on) 1 

$ • 
• L -

}-($ fX$ p~ -
L~' 

s S ~ .. 
-~'I[ ."J ~Xd 

J"' laI d9~ 

fi 

1..:, - 1~ rt t, 

andt 

J< $/ 
-'] tyt( 

1 ' ] 
l"~ »" 

<-
T 

E.~. « o t:, 1 

1 (IV-B-2) 

Equation (rV-B-l) we recall, is properly ,ordereq on the , 

average over the/phase space volume , 
il 1 1 35 

Vs:: 1 Vs / ( CRs ~ m kT) 

\. /' s 3S/1. 1 r: 3 
Vs . 7' V Co (m KT) 1 CR s .... 0 [ "T ( f'J] hll $ > 1 

,-:- , 

where 

+, )Otf ... l 
. J 

v c. = ~ 'il (Co 1.1... 0 ( I)t-' J 
l , 

f' •• S'" 

and 

Consequently, one May attempt, within this volume, to trun-,.. 
cate this hicrarchy by exp:mding F~ in" powcrn of ~thc mnall 

/ 
J: 

intrinsic parameter' El. , 

l No external field term pas been· includèd in. Hs 
~ince it wo~ld forcibly create spatial nonuniformities ' 
within the system. This omission of an external force will 
also prevail in the re~aining examples of this chapter. 

l' 

l' 

1 

! 

, . 

• 

.. 
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;' 

i.e. 

Before doing sa, ho~ever, it 

sake of mathematical convenience, ta 

the fallowing dimensional forma 

where 

1 

-! __ c ___ " 

.. 

1 
(rV-B-) 

desirable, for _the 

. te (IV-B-t> in 

(rv-B-4) 

(IV-B-5) , 

and ~here t (E 1) is simply a labe'l parameter denating the 

small term which w~ll be neglected at the zéroth arder of 

One easily notes that the expansion (rV-B-J> the expansion. 
" 1 of ~I within (IV~B-l) is equivalent ta the fOllowing expan-

sion of F s 
(0). (1) A. (1.) 

F, :. F, +lF~ "" E. F$ 1- • ~ • (IV-B-6) 

within (IV-B-4), provided one collec~s powers of E when 

substituting (IV-B-6) into (IV-B-4-). Proceeding as such", 

one then abtains. after collection of terms. the following 

set .of equat.i anD 1 

( -= 0 

. \ 

/ 
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ca) ( 
1 1 F tII-.\ 

;)Fs + ~ ~ .s H\ 

~t 

(rV-B-7) . 
We sha1l 'now seek solutions to the above equations by im-

1 

posing an initial exactnéss on the zeroth arder solution; 

'i.8. fol 

~.~X:l ,0) : 

m .. 
Fs (X.s. (») :: (IV-B-8) 

No~ing that for a spatially uhiform gas 

H, F, = 0 

we may easily i~tegrate equations (IV-B-7), for S ~ 1 

and obtainr 
,.) (0\ 

F" (p,;, t) = F \ (p~ 1 (») 
t 

• 
• • . 

(.) 

J 
11') -::. -t, Ft. (X.2.,t') Jt' 

" '\ 

• 
{IV-B-Y} 

Solutions for )F.1 <X"t) (S~/Z) may also bé derived by 

integrating equations (IV-B-7) ufter operAting both sidas 
- J-C.t-

by the forward streaming operator ~ and recalling from 

. / 

l, 

1 

" t 

, " 

1 



( 

~ 

" . 
1 

f 
{ 
! 

, 
r , 

( , 

1 : 

i 

r 
t 
1 

Chapter II that:-

kfter integration. we then obtain the solutions 

(1\ 

F, 

, (IV -B-l0') 

Let us now investigate the asymptotic behavior of the above 

- solutions when s= 1 The first time dependent solution 

is: 

which, 

wherë: 
-}{ CL,j) t te, ..... ..... 

'"R"j d) • - ...t ('" l.j 

and ..... - H a(l.~) t 
'"Pi ct) 

... 
= ~ p~ 

~ 

..... - - }{a(~;J) t 
1>j (t) -- Jl. JO~ (IV-B-12) 

represent, as illustrated in Figure IV-l, the separation and 

momenta of Molecules i. and j after tthese have been .streamed 

1 
( 

, ' 
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back, in time t . under their mutua1 interaétion. 1 

FI. t 

Figure rV-l 

We :ote that the on1y contribution to the Integration ovrr 

f,,~ in (rV-B-1L), lies wi thin the region 'hhere 1 r~J 1 
( . 

z. 
is sm~ler than the' interactiQniradius f. Now, if we 

maintain th!_assumption of the previous chapter that the --. interaçtion potentlal,.is'~urely ,repu1sive: 

i.e. i'~hj for o < 
, J j'("'J J 

an4 if we further assume that 

magni tu de for ~ < f\.:a 4 s.r 1 
~ 4>~ 'l 2 has a fini t e ,J,rj ... 

• i t then follows that for a1l l fLJ 1 

- . 
lExpressed, otherwlse. "R" (-0 ,l'i. ti) tmd '"'P, <t,) 

represent the initial separation and mO'lDenta of particles 
i. and j which will lead to, after a transit time t , a 
s~pa~ion (LJ ( and momenta p\ ~nd PJ 

\2s1nc j';hese assumptions imply that 1 Jd>I"J'J is un-
, .;> qL 

derined when .J- -C;j : 0 • we shall omit tliis singular point 
in the Integration over 7~J (,in (IV-B-l1).... II' 

.. 
(' 

."'t" __ _ 

J -

l, 
1 
j 

1 
, 
! 
j, 
1 

t 
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) 

.... 
within this domain, and for all pOGsible values of PI. and 

Pi , there exists a fini te time rr:( -;Lj 1 p\ ,PJ) such that -- t Ii'..... - .... 'R~j (t.) >.~'f far > ' .. <fd,PI.IP) 

Since the p~ticles conserve' the~ir indi vidual momen'tum when 

they are outside jeach other' s interacti,on range ~ we then 

conclude that 1 

-- - .... 1 
-Pi. Ci) '7 "'PL (~) ~ 

-1>,,- cn ;: 1,) (cc) (IV-B-l) 

for t> 'Yo (f..J ..... p .... p,). Consequently, the.A3olution for 
J 1 L' J r- \ 
(,\.... • • ff ~ 

,F, (p"t) , as, given by (IV-B-1J),.may alSOi'be "1itten fOrt 

larger than .the maximum value of 'T. (1L~ 1 PLI P J'1.", , as 1 1 

. fl'o 

.,'" ( p" t) ~ (~.'l ({ d !,j l 1 .) ~ ~., (tlt, (t'l,l', ({'\,1', (t'), 0) df' 
J ) d9L 0 J Pl 

& ' 

(V-B-14) 
~ 

Furthermore, assuming aIl initial statistical correlations 

te have i a finite range r~ , with • we may'also define 

a time such that, as fllustrated in 

Figure I1I-2:' 

~his max~mization is ta be performed over the 
range . a < 1 ~(,' {.Ir aIÎd over aIl possible values of PL 
and P. 

\ 

1 

! 

/ 1;: 
, / 

-~ __ '_"_b,_ .. _ .• ~_t~ _.- -,...--_.,........~---~-~,.,.,.........,.."j iL III 

;' 
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for 

and 
... 1 

1 ru. < (" 

.. 
p~ t 

. " 
.. 

" Figure III~2 

ConsequentlY for Iri,jl ,x(' 

and 

we have 

(IV-B-15) 

such that, for"'-· ,t > 
(IV-B-14) aSI 

r 
max~-, we May rewrite equation 

/ 

.. 

l ' 

. 1 

.... ~"~1"''''''''~ rra. 1_.. ." '.«',_ M' 
. J # .. ". . . ~ .-._ 

'. J L ., •• r • .,.t"u.'i • .... -.:I!!'f!ritfo'A'IfJfQ , ; il t 'T_JZ""IOCIf~ 
. ,.; .... ',"';',}' .. 
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• 
, IJ 

1 ... 
lot, l. 

..... 
~,.(1)l(OO),O) FI ("PJ(CX),o),o) 

f' 
~ 

:;.L 

It becomes evident from the aboya expre~sion that forA t >max1"+ 
0\ .... 

the' so+ution for r, (Pi l:? will diverge at a constant rate 

such that,~ fo ~~ max 't 

F,('\ p( ,l) ,...., (N~ l)tJ j cJl:~~J J FI ( "'P~ (10) 1 ~ f:", 'l>J (oo\,~) \,{rij dPJ 

" ..;t 9~ cJPI. 
1 (IV-B-16) 

Consequently, it alsô fo11ows that this solution will even-
~ .... 

tually dominate the low~r order solution. ~,'O}P~li{ 1 givèn by 
« 

. . .. \ 

(III-B-9) \us establiS~l~g the fi seCUl~r" behavlor of' the ~ 

'rI)p expans i~ , ' ' 1~ 
The abov€ results, w~ich are consistent with the . 

~ 'Ï 

simple examples of the previous section. seern also ta agree 

,with previaus intuitive arguments eiven by Bogoliub~[12J 
ànd a simple ahalysis given by Montgorneryl33J usihg the very, 

specialized ini tïal candi tions. ' 

F.r. (~~,Pi..qJIPJIO) .: r, ~p"o)F, (p"o) 

loAe May ~asily verify that thi~ result would also 
emerge if one assumed the initial norrelation range ~~t~ b~ 
$maller than:I r "" 

1 

(' 

1 • 

r 

1. 
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The present and previous_analyse~ indeed, seem to èstab-

1ish the limi ted value of the (IVP) scheme in producing weIl ..... 
behaved soluti ~ns for the one particle distribution FI (P~)t) 

1his is clearly the case i~ the expansion is carried put ta 
111. 

a fini te arder [ of the expansion parameter~. Furthermore, 

because of the progressive complexity of the higher order 
~ , 

solutions in (IV-BriO), one can readilY(diSmiSs any attempt 
'--w 

of obtaining an infini'"t!e sequence .whïch dan be easily 
" ' 

identified. For these rèas~sl most3searChe;s have com­

pletely disregarded the, (IVP) scheme t seek alternate 'ex­

pansion approaches, ~hich could divul e some information on 

the,approach of a uniform non-dein~yst~m/to an equilibrium'~ 
~ ~J 

state. Such a hast y dismissal 0 th~ (IVP') scheme seems 
" • Ji 1\ Jo 

indeed regretta'ble since this me{th\Jd 1 in spi te of i ts obvi ous 
, 4t;t 10. 

downfalls i can Qffer much insight on the development of a 

simple alterQate scheme. Consider, for example, equation 

(IV-B-16) whtch \d,escribes the asymptotic 'behavior of the 
CI) 

:t'ilj'st order (IVP) solution 'for F, ( PI. 1 t ) irom, this ex­
\t 

Now. a~ter sorne mathematica1 m~nipula+ion, this equation ,;- Ill: 

May be reduced to the following ~orml.J ... ~\ 

4 

1~ee Ap~endix l for details. 
~ 

" 
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0' 

1 

(IV-B-18) 

(IV-B~19) 

$ 

1, ( ~ , 0 ~ ~ /( P; 1 0 ), ' 

.J .... ~J"" ]'-
;; ~I (~~,ê) (J', (PJ,o) <dbd~dp~ ) (IV:-B-20) 

~ 
and 

...... .... 
Wher: PL 1 PI represent the °rnomenta <Df partiel,es c. 

and J after colliding with a relative a~roaeh veloeity t .. .. 
PI - P,; ; . the variables b and + , as illustrated 

m 
~ 

in Figure IV-J, sirnply ote (along wiU a third variable •. 

~ ). eylindrieal eoo Clinates describing tine relative position 
1· , 

of the two moleeules. 

1 

~ 

~ 'o. 
1 

f 
Figul;'e IV-) ~ 

... 

" } 

1 

r--
..... _1-

v-
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'-1 
Com~ining (IV-~-18) and (IV-B-19) with the zeroth order 

solution in (IV-~-9) and the expansion (IV-B-6), one th en 

obtains the approximate equation , 

(rV-B-21) 

This resu1t the well known, and 

high1y usef~~, kinet, equat~1 

(rV-B-22) 

derived by Boltzmann, using intuitive arguments, during the 

late nineteenth century, and rederived by many others using , 

variou~perturbation schemes. Evidently, the only difference .. 
between equations (IV-B-21) and (IV-B-2Z) lies in the time 

dependence of J, (f (P:. i)) in the latter: and the time indepen­

dence of JI (" (p"o)) in 'the former. T~is minute, yet crucial, 

differénce~which distinguishes the secular behavior of the 

solution of- (IV-B-21) from the well behaved solutions of 

Bo1tzmann's equation seems to pinpoint exact1y the dominant 
, 

feature and the ultimate deficiency of the initial value 

perturbation '~cheme when applied to the truncation of theV 

B.B.G.K.Y. hierarchy for a non-dense gas. In fact, this 
~ ~ 

seemingly "uncanny" resemblance between equations (IV-B-21) 

and (IV-B-22) will play-an important role in the forthcoming 

development of a simple alternate perturbatiop sch7me. 

if 
- -:; ..... _~~t, .... ~"'_~~.r.--"'lI.~~~~_I=.,.-__ , ........ ~ •. > ...... ~_. __ ..-r._"~ ............. ~_ .. ___ "<" .... ~--~ .•• __ ., 

~ 
1 

"> 
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-b) Simple Uniform Weakly Coupled SYSTEM 

The (IVP) scheme, used in the above subsection ta 
r 

truneate the hierarchy for a non-dense g~s, ma~ also be 

applied, without bonsiderable modifications, to a simple 

unir'orm weakly couple? ~ystem: ~he lat ter, \lie recull, dis­

tinguishés itself b~ the i/finitesimal range of its strong 

interaction potential Iq, «'J 1 and the moderate range ,of i ts 
f> 

weak potential 114> LJ' pr'ocee~ing as in the prey) ous Su'Q-
n . , 1 

section, we may, for this system of molecules. reduce the 

dimensionless hierarchy (III-C-52) to the less cumbersome 

-forml 

where, in this subsection, 

){'" 
oS 

/' 

'ILl « \ 
1 

V \~ 
Gf\ s ;ov 0 

~ 

\~ .s+/ 

11 " 
.;J qt5-fl 

~9: 
) 

(IV-B-2)) 

• 

! 
, 1. 
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-.... 
;R l'V oto 

-
Since eqy.atio.n (IV-B-2)) is properly ordered aver the phase 

'" volume Vs = Vs / 1 3 s 
/ (JmK:1 CR:.) 

wherJ 

'11 

(Xi /V 0 [~;,] 
we may attempt, within t~' vdlume, to truncate the hier1iWt:hy . " 

by expanding é, in pow~s of the small intrinsic parameter 

i.e. 

where 
'\ 

li- , 
~t. r..t) ~~ *' F IO

) 
0) 

~s :: + é, I=":s + E, F~ + 
1 $ 

(IV-B-2.5) 

on-dense case, we shall find it convenient ta 

the hierarchy in the diIllensional {arml 
, 1 

.;l j:""s + E' }[.s F $ = é. 1.. s r, ~ 1 

Jt '(IV-B-26) 

:a 
d pi. HI • L 
oJ â. 

ft.. 1 
(IV-B-27) 

and where ct:: 1) , once again, is the label parameter. We 

shall naw proceed with the expansion 
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F
u.) • F u\ .t rU) F.s'" $ + t $ + E. r~ + 

in (IV-B-26), which, we re9a1l. ls equivalent to the éx- , 
1 

pansion'{IV-B-2~) in (IV-~-2J)' provided we collect powers . , 
1 

of t 'in (~V-B-26). Proceeding as in the non-dense case, 
we obtain t after collection of terms" the following equations 1 

= -

Imposing, as us~alt the initial conditions 
-J - ~ - -F, ()(3 ,0)' = i="s (x s 1 0) 

(IV-B.;rz9 ) 

(IV-B:'JO) 

we may then easily integnate equations (IV-B-29), so as to 

obtain the following solutions: 
~ 

= F, ex" 1 0) 
t . · 

J [ }[ r rll .... . <..fJ F ce) ... ~ J : __ . s,r • . (X s ,l1 + .... s+: lx,." t')j t' 
-1. 

(X$,t) 

1
'1 

~ [-
\ 

o 
, .! 

, 

\ 

__ MI .. '1I1"_ J • pM LM ,._ 

I~ , 

~ T'" ~ .... -
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/ ) 
. 

Let us now investiga e t~e nature of thes.e ~olutions when 

.. 1 For this pecial case we obtain. at the zerot~ 

order, the tirne i~ependent soiution, 

F. '" ( Pt!'" • r; l P" dl (IV~- )2) 

Furthermore, since 
! 
1 

}{ 1 FI (P .. J'I : 0 .. ' 
the first order solution reduces tOI 

'" JfIItt· 'fi) ... - IJ r: (Pi tl :,;. ~, F.a {X~lt')dl.' 
1 '. • \ 

: ;l.F, (X, ,0) t ) 
(IV ... B-JJ) 

Consequently, if 

;[ ~ X 0) :(N-7.\(J J1t<pd . ~ ~ .. (-;c.J 1 p~, p~ 1 o} J~:J d Pol 
L ~, :a.) - ) ~~.:' ~ p~ 

does not van" h, the first or der solution diverges at a . 
cor~stant ra e and will ev~ntually dominate the zeroth order 
,~ 

solution, hus introducing a'seéular beh1vior to the expan­

sion. If, on the other hand,t.l.~(Xa.IO) vanishes, which, for 

example is the case if the particles are initially free of 

statis ical correlations, 

i. e. ,,$ -

': 11 F (P~ ,0 ) 
• 1 
,:q (IV-B-J4) 

) 

we th en obtain the trivial ~~luti~ ! 

Ç.(Plai): 0 / 

One may show, however, from the foecond 'eQUation in (IV-B-)l) 
/ 

(and from the definition of }{~ and J:~) that, for such an 
CI) -0.. 

1 
ini tially correlat.ion free gaf3! 

. / 

\ 
/ 

/ 

.,/ 
1 

, / 
/ -

/ 

the solution for ~ (X,,', t) 
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will itself diverge at the following ratel 

0) 

F,t (X1.1t.) 
-

::. ~ cPc,.,) / FI ( PI. 1 0 ) ;). 

d9" . ;} 
FI <PJ, D) 
..,0.. 

Pi 
r 

4- I=,,t P ,) 10) ;J rI (p l 1 0 ) 
:l> 

J p~ 
The above result seem to reinforc~ once more, 

the views of the previ us investigators on the inadequacy 
9 

of the (IVP) scheme i, 1 
yielding useful approximate solutions 

to the B.B.G.K.Y. hi rarchy. Wê hasten to add, however, that 

the aboye analysis ,';f \ the uniform wrakly c oupled gas. di verges 
'l, ( 

consideraQly from 'a previous (IVP) investigation of a similar 

system by G. 
" 

Sandri, as mentioned in the previous 

chapter of this .. thesis, has considered the problem at hand 
/,1 

From a comple ely different approach by using the fOllowing 

dimensionles equation as a 'starting pointl 

1 
(IV-B-J,5) 

wheJe 
... 

k, 

f 

'" -'- "" '" ~ 4>~ ~+I • L d 1S+JJps-+, 
;; 9~· J J,p~ Il (IV-B-J6) 

and by expanding F,·. in ;powers of the small coupling parameter 
J \ 

t.. Sucb an approac~, which ls equivalent to expanding F$ 
" ' , 

1 • 
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:~ powers of the label parameter t in the fOllowt~g dimen­

s10nal form of the hierarchys 

JFs - + 
.Ji (rV-B-J7) 

where 
1 

k, .I .... 
::::. Pi ~ ... 

tn ô) 9~ 

1. = L 
s , 

~~ L ~ !" · .... 
/~ 9· ;J P.: 

.1,:1 \11 ~ • ... s 

l. :(N-'fl J .~ 9q'!" :> cl ft su J P ~.I "-..... (rV-B-J8) ~ f' t , ... 
differs from our own analysis ~ased on equation (rV-B-26) 

by the assignment of a much smaller magnitude ta the inter­

action term Is i='s than 'ta t~e momentum streaming term K,s FoS 

This peculiar ordering of terms in the hierarchy, which 

ernerges as a direct consequence of the diff~rent set of 

characteris~ic quantities chosen by Sandri in his nondimen­

slonalization of the hierarchy. must naturally result in 

perturbation solutions which rliffer drastically from those 

derivccl in the present study. Furthermore, in light of the 
/" 

detailed arguments given in the previous chapter with regard 

ta the dimenaional ana~ysis of Sandri for a uniform weakly 

coupled>gas, one may justifiably question his ordering of 

terms on the grounds that, when such agas approaches a 
, 

stat,e of equi.li brium. the weak potential <Pi J' in the inte action 

1 

1 

l 
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term 1. ~ of the dimensional equation (IV-B-)7)will eventually 

cause correspondingly weak correlations in ~5 which, in turn, 

will resul t in small gradients J I="s for 5),1 
r 9L 

Hence, followlng 

the analysis of the previous chapter, one should have in 
, 

(IV-B-)6) 
s s 5 

L ...... c[ E[ ~·~1:o[IsF$] Ks F, iL . .) rs l'V - m~ d q~ J P. jal Loi pl 

Consequently, the expansion parameter ê should, on the left 
,--

hand side of (III-B-37), acc ompany not only l s 1=" 5 , as suggested 

by Sandri, but should also reside wi th K $ Ç"s Sandri 1 S 

initial value perturbation solutions furthermore seern even 
... ' 

less plausible due to his choice of the very special initial 

conditions .s 
dF -'" JI 1 ( Pli 0) 
l=1 

which, we recall, presume that the particles are initially 

completely uncorrelated. Clearly, if one substitutes these 

initial conditions into (IV-B-)7), one immediately notes in 
. 

the spatially uniform case the vanishing of the momenturn 

and mixing terms \(~ r" and Ls fs ... ,',. Since l s F$ will not 

generally vanish with these initial conditions it th en fol­

lowi that the latter are completely inconsistent with Sandri's 

assumption that KsFs 

I. J=s 

1 

16 much larger in magnitude th~n 

~ 
Before closing the present discussion, it would seern 

worthwhile to note that many of the incGn~iGtencieG, which 
1 

/ \ 

1 

.. 
""'~~~~"~""~~Ii~'Ii~~""rir.I~4K,t~IiI\~~~t_.;~~ 

". 
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emerge from Sandri's analysis of the weakly coupled system 

(and which have Qeen emphasized here because of their rele-
1 

vance ta future discussions foncerni~g this system), stem 

frorn his somewhat casual approach of nondimensionalizing 

the hierarchy with a set of apparently pKysically plausible' 
• characteristic quanti ties, and expanding Fj wi thin thê 

resulting dimensionless equations in powers of whatever small 

intrinsie parameters that emerge. proCe~ding in this manner, 

wi thout verifying, a priori or a pos~iori, that these / 

parameters in faet dictate the relative magnitude of the 

various terms in thes'~ equations, represents, as emphasized 
.. 

in the previous chapter of the present thesi p , a very.risky ...-
approach. 

Brownian Mixture 
? 

As a final example of the application of the (IVP) 

scheme ta the truncation of the B.B.G.K.Y; hierarchy, this 

section li11 ~onsider a very simple Brawnian mixture con­

sisting of a sing~e heavy Brownian particle in a uniform 

b~th of identical light bath particles. We 18hall further 1 

restrict ourselves, for the sake of math~matical simplicfty, 

to the special case where thë Brownian partieles' proba~ility' 

~i stri bution is uniform in physieal' ~pace. Denoting as F {S ,Il 

the joint probability distribution for the 5 bath partiele 

and the single Brownian partiele, and employing the superscript 

~ to denote the Brownian partiele and s~petseript b 

to identify a bath partiele, we May write the B.B.G.K.Y. 

".' 
" 

1 1 
1 

1 

! 
l' , 
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hierarchy'(IJI-C-52) for F,o",} (p~', t) alld the Liouv'lle_ 

equiation (III-C-37) for FlN,!} (XIN"} ,: t) in the 

following forma 

* ( -~ .. {/I- ' 
,. il-

~ r 10111 fi, 1 ) ,= >1 f (0,11 r Il.ij 
1 

';> t~ 
1 

11 

" 
WJe, 

JI ib' ~ =I 
f(' )II ';R'b t {O,l~ lz '/jJ.e, ;) .-

~~' ~pl· 

andl 

where: 

1(-1 1 

* 
~t/'lIJj 
~ t· ~ 

t" 

}{ (N,lj : 

l:~ .. t }{ 1 Nol1 

" oK (N,lj 

• 

1 

* ~~ \ 
~ '1 li rN,tl r'N,I) 

lL.-,b\ bB 

+~ é , 

.. , 

=-

(1 -B-J9) 

1 

~ .. - .. 
Ir ., d .. d ("". P, 

(IV-B-40)' , 
~ 

0 

(rV-B-41) 

(rV-B-4z) 

. . 

• 

/ 

i, 

i 

t • 
• , 

f ' 
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We may now attempt to truncate (IV-B-)9) by ,expanding both 

in powers of the root--maSs ratio para-. 
/ 

( 

meter t. Beiore doing 50, how~ver, we shall, as in the 

previous cases, rewrite the,above equ~tions in the more 

convenient dimension'al form ' 

where, 

JF\Odf : f. ;!r:llll~ 
~i 

il) this subsection, 

-;tt;;: '{ ~ , 'lb . ;) 

Jo 

(IV-B-44) 

rI N.'t, :: 0 

(IV-B-45) 

..-. 
d 1 b b ~ 

(II J P, 
N j J ~ ~ ',1 

, é) 'l' .;> p" (IV-B-:-46) ( 

"~ 
( 
1 

< "'Expanding 

Y" parameter:. 

i.e. 

:J: 
N 

" l ~ 

,}{ l~,'l .... b 
Pc: ;; 

m b 5qt 
,,, 1 ~ 

'1'i t t "1 
., ) J<t>~j + ~, J 

~ 9·1> , ~ 9~ ;) pt> 
l=\ 

~ , , ~ 

J'U 1 

.. -1 ~ J-[ l~,lj 
n _ 'B 

: ~ • J ;) l' • ~o 

ma ~ql 0> q' ,;)1>"' 
(rV-B-47 ) J=\ 

ftO"l , F l .. ,} and F\,.,'1 in powers oi' the la~el 
• 

! 

(0) 

:;: 1=' 16,IS 
(0) 

:: F ",H 

1 . (1) 

! +: E. F IOlt} 

hl 
+ E. tll,l} 

j 

(IV-B-48) 

; 

/ 

( 
/ 

'" 

--- -._-.~ ~--'----__ .. _,. 1 ••• __ ...... ' ..... '" 

'" 

" 

!II 

.' 



1_\ l' ~ ,.. ~~ 

~ -- -... ~ ~ ... ~ 

t - ' 1 t 
1 

-.l.J lijQ - " ~ ., 1 
r--

.,. 
1 ~ 

( 4 

If' . 
and collecting powers' of E. in (IV-B-44) and (IV-B-4S) , we 

,) 
. 

then obtain the following set of, equati on~ 1 • -/ \' • 
'r li) 

;J F IOII~ ":. 0 -.y 

~i' \~ 

" 
tl) (0) 1:' 

.....,.-. ;;) F 1 0',\ ~ , 
':. ;llO,\\ F \1.\\ 

;)'f. 
. "~I 

>, 

• ~ .,. 

<Id 
i 19~1~ 

( ~-I) 

;; Flo.tS F t'OtiS 
' 1 

:: 
d~' 

d ~ 
, .,1 UV-B-49) 

t 
$ 

1.) • '%. " 10) 

d J:"IN"! 4- J{l~.'l ': 0 

dt 

J-C" il) "X et\ If) 

;)rlN.1j "'- 1 j'.,'1 r lN,I~ ;;: - , .. ,1\ f"N,'l IL 

)i 1 • 

, 

. - (~) 1 

% (t) 

- J-(~N,,~ r (1·/) 

~ f 1/11,1) 1 }[IN,li r ~NII\ ) 

+- la 11'4,1\ ,1 

J~ 1 '~ ; 1 

(IV-~SO) 1 j 

\ 
, 

Irnposing the init~ai'conditions, 
i 

) 
. 

0 ,"0' 

(X1S.I~ ,0): 
1 

J:"'S,IJ FU,d Cx (S,I\', 0) 
. 

1 

1. '. 
,,'" \.;"1 r 

Ct} 
(~II,'L 0) F fSII~ 0 $), 1 (IV-B-51 ) 

... ", 

:: 

C' ...: 

.. 
..,"iIN' .. t'Yfl., a.a.t'p. Il ....... ' 

...l. , ( "'", ! 
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.' 

~ ~ 4' 

we rnay integrate tquations (IV-B-50) 50 ~~ to obtain the f 

following"solutions, 
... 

f.l ( p', {) r to,t} ::. r IO.I~ C?~, 0) 
.f 

t. , • (l' 

J i lo.,) 

tot 

Flo,,) 
... 

!=' 11.IJ ,( p',t\. :. 

(J 

... 

• 

Thése so~utions may be 'e~luated e~plipitlyby first 
CIl) . ' (Il) 

evalWing Ft/"j 1 which rnay be expressed in terms of F lN.I~ , 

by'i~tegrating the latter~9ver the coordinates and momenta 
~ \ 

of every bath particle except ,the first: ~. 
~ • l ' 

i.e. r 

(It) .... 15 b - - ( 

FIO,'I ,< '-'01 ,~', P,') ~ J-") 
( If) 

; l~' t.J 

FlN1 \l 0< tt-tdi It) :,7ÇJ9! ~P; 
(IV-B-5) 

Solutions for '" rIN"~ , on the, other hand, may be ~ived 
'~ ... , 

by'opérating both sides of the equations (IV-B-50) by the 
• " h :X'l:., t '.),.. . 

forward streaming operator..;(. \!i,IS C',and integrating over t . 

.' 

l' \ 
Proce~ding .as sUch, one easily obtains the following so~utiors, 

't: 

(0) .... - HlN.'\ t , ..... ~). 
FlN'I\ (XlNII~It.) el, t="lNI\~ (X\M,'I\)O 

.' 

C 1\ ..... 

r lH,I~ (X 1.,,1) 1 t ) 

(IV-B-54) 

\(. 

. 
J 

\ 

, 1 

- , 

--------_ ..... ,\". 
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7 

Now, We eas"tly_ note from (IV-B-47') that H iN',IJ simply re-
• presents the Hamiltonian operator fo~ a system of N bath 

Il 
particles in the'presence of(a fixed Brow~an particle. 

-HI" 1 t \1 ,t:ft 
c o~~uentlY, ~ l' simply streams these bath particles 

under their mutual interaction ~nd the~r inter~ction with 
cl 

the single Brownian particle, wit~out aff@cting in any way / 
l ,! 

the ~ordinate and mOmentum of the latter. Naturally, 

_ bect~~e of the large number of- bat Pa'9::'t:(c~es ,one cannot. in 

most cases, eXPl~citlY evaluate th ~ zeroth order~solution 
in (IV-B-54)'1 However, ,if we ,rest içt oursel~es to t'he' 

very special case where rticles are initially in 

r equilibrium with themselves an~with the single Brownian 

.. 

particle: 

i~. 

,where ( :1 

.\ :. H ... / kT 

FJiI.6!., - (Z:) .l. .-

1 
'\ fil 

.1.[ bB 
4>0\.1 /' + 

1, J1'1 

- JI 
" 

, , 
(IV-B-56) , 

1Note this restriction does not require the 
Brownian particle te beninitially in equilibrium with the brth molecules. 1 

/ 
/ / 

• 
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: 1 

we may' then note thàt: 
l '1: 

-H",i 
-, 

(IV-B-S7) 

and hencel write the first two equations in .'IV-,t54 )" as: 
,( 

... 

1 

f:"lN,.S.7 F'o,IS (P~D)J-[.t 
• 

.. \ 1 

Now, ~rom the definitioq of 

, 

" .. Furthermore, definingl 
~ -_ f 
Sf:: 1-+ 

ja l 

(IV-B-58) 

f ~we have 

... . 

CIV-B-59) 

( IV - B-6 0), ' 
Ab 

,as the total force exerted on the Brownian particle by the 

1 bath' molecules, and ;jsti tuting (IV -B- 55) into .< IV -B-59) , 
l ' 
we then ,obtain from (1 ~B-58) the following expressions for 

CI\ 

F bl.ll 
('" -.1 

F lN,ll ( X lN,I\ • i)· 
~ 

J
';;' C-i.'}Jt' '[ L 

D mIS leT 

where 
"\1'% , 

-A -~l.' li _ 
'"'C t' .. ,1 i ("t'"" SJ (- ) = .Jbo JJ" repr1sents the force acting 

. , 

1 1 
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o , 

( 
( 

.. 
on the Brownian particle when the bf\th particles a,re streamed 

X:l , 
~ ." 

- lH.I. t 

back in t ime by the operifor .J. Using (r,{;B-61) 

along with the first :;uation in trv-B-58), tHe may,l wi th 

/ 
the help of (IV-~-5J) obtain the,followirrg expressions 

(.1 li) 

for F l',1 ~ and F lt.lj 'r 

'" 
~ 

.. 
.; 

,0\ "'1 
" r LI.II :: r lo,11 ( ta , 0) Ç" t l, o} .. f .. _/ . 

" 

CIl i # , · -J. \ \ 
-0, N 

.... F ll.11 Sf (-t') F ,- .... b J ... ., dL lN,O\ .. , " J qlt Pli " 

1" .. .1 1 

\, , "" 
.. 

[ 
.... , ';) 1 r lo,q (P',O) ..e.. + 

M,K T '" .;>"P' ". 

(IV-B-62) 
1 

J 
, 

where: À 

~_ ~./I(T 

r\l,.l .. ~ = 
f~ 

..... 
?-. ~~ ~ 

" / 

Il 111 

.. I-l • 1 p~l .. ~ ',1 \ 

2m., ! r! 

J J 
_ H, /J<T 

Z 1 c. ~ 
J ... b J-~ ,,-

. PI ~I 

Î 
" 

f (IV-B-6J) 
,; 

~ 

Finally, substituting (IV-B-6J) into. (IV-B-5Z) and ,notiJlg· 

thatl 
, iiCl,,} rto.l' 

... , 
( P " 0) r Il, 0 SI' =0 . 

ca' 
... 

. 
then ~btain the we can fol~owing solutions for F .Jl.r11 C \~ 

" '> ,,, 
k-o,\,t. fi' \ 

.~ 
~ 

,1' : 
• 1 

\, 

/ / 
ft """ .. 

• 'L 
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ç tO,I) (pi.!): 
), 

t,' -t 

J~ J. Il 
- H d1: ;f 10,' ~ }y (-t") F 'il J p: Jill \1\,0\ .. , 

It • .r. 
\ 

\ '. 

1 \ 14. 

. ( .... , 
: p1 l Fl".,\ ( P ~ 0) J L' ,. ..e.. + 

m .. KT 

Using the d\firiition of 
.4 ~ 

as given by (IV-B-46), one 
111' 

order may transformJ after sorne manipulation, the second 
solution 

~ .. ' 

wherel 
Ir 

and Jwherel 

\ 

,.&) .A.':l i 
F ( 0" ) to the following form: " 1 t-"l r 1 

t 
" 10 -B (f)J{' 

t _ ~ 

_ t ( ff fFet'I)", Ji.' , 
N~ .. 

~. 1 -~ fF \1: (·t ))A, :: n:: rf. ~) r \ rl.o~~ liT 
II·' 

a measure of the autocorrelation of 

. 
d-· -. ~. dP" 

the force represents 
e~rted bn the Brownian part}cl. by the neighboring bath 

Since this autocorrelation May be expected particles. 
to decay rapidly with time, it would seem only reasonable'to 

1 

l ' 
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assume.- that th'ere exists sorne Itime 1'10 such that, for t) ï'b 
-"" Jo 

< fF rF (-i \) .1, = 0 

Consequently, we conclude that for' 
( 11 1" .. 

Fto,l \ (;,',t); r J. id:)Jt' ... d-'rlt)}] 

~ [ 
-, 

:p,l F 10,1\ (P V, 0,) . L + .. 
~p' m,KT 

where: 1 -
:: "B (œ) 

This solution, naturally, diverges at. a constant rate thus 
loo 

~causing, as in the previous cases, a sec~ar behavior of 

the (IV!?) expansion. We note, however, that for t» ~ 
lt) 

that the rate eqyati on for F lo,11 may be ""ri tien as: 
(a~ 

where 

~ F lO,,~.. J F.f ( 1= ~::Ij (p', 0)) 

jT 
:. 

J ~ j [_' ~] F.l'. ..Ir: -::. .f2.. + ~ ~ 
J p" m,KT J P 

Combining this last equation witn the constant first and 
~ 

zeroth order solutions, we may then write the following 

approximate equation for F lOII~ ("P', t.) 
JFlo\l! = JF.f. (f:'lD,I\ ('p~o)) 
Jt 

,,-

This equation 16 highly reminiscent of the equation 

.;> j:' iQ,lj,.. J n. ( 1=" !o,11 (p!i)) 
dt " known as the Fo~ker-Planck equation which has been used with 

• • 
great success by many investigators to describe the evolu-

tion of the probability distribution of a single Brownian 

particle in a bath. As i~the non-dense ca~e, the charac-
, 

teristic distinguishing the secular equation from the weIl 

behaved equati~ lies lu the absence of a time dependence 
4> 

in the right hand side. 

t 

/ 



( 

( 

.. 

1 

~ 

- 147 -

C. ~ummary and conclusions' 

~ 
As prevlously stated, one of the simplest methods 

. of extracting approximate solutions from the complex 

B.B.G.K.Y. hierarchy, for a particular system, wou Id in-

/" \ 

< 
volve a stralghtforward expansion of the s particle dis-

tribut ion ~ in powers of a relevant small dimensionléss ., 
parameter, deri ved from the nondim,ensionaliza,tion of the 

previous chapter, and a solution of the resulting set of 

simPlified' pertu~ equati~ns wi th respert ta a set of 

gi ven or assumed inJ tial conditions. In general, t,he f~a-.J 

sibilitY..Q.f using such an initial value perturbation (IVP) 
'\ " / 

scheme to ootain aooroximate solutions to any differential . " 

(or differential~lntegral) equatian var~es considerably 

from one particulai equation to another. In the more for-

tunate cases one may either obtain weIl behaved solutions 

at every order~f the expansion or'an Infinite sum of 

divergent terms which converges to an easily recognizable 
• 

functio~ represe~ting the 

.quation. un(Or~~telY, 
exact solution to the original 

as noted by Bogoliub9v, the 

B.B.G.K.Y. hierarchy does nct so easily lend itself te an 

IVP scheme since, as i~lustr~ted in the present chapter 
" 

,-
for spatially unlform linon dense ll

, IIweakly coupled ll and 

Il Brownian " systems, this si~ple .scheme when app1ied, renders 

an Infinite sum of divergent terms 50 comple~ that one ~ 

could neither hope to iden~ify it with any weIl known 

function or, even establish its convergence. In sp~ of 

, , 

; 

~'" .... ".--~ ... '" ....... .- ... _~~ ........ \ fiR '.lil.N1' lU •• MI .t'II.' ~Il 1 1.t;.~ • . i p~.I?f. .,,_ ~.'I " .• ~ ,~.~,,..~. Ir ".. ,. r 1 .Ji!' '.1 \1 " .. i li, ~'.t. P 1 ;""If'(~ 
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this ma~'or breakdown of t,he IVP ::;chc-mc some i!lt..cr(',~t, lllt'; 
o 

results neverthc1ess emerge from ::3uch 3. simple ::w!'!JO:lC!I. 

In particu;l.ar the 'first order e,ql1:-ttlons for the :: inf';ll' 

partlc1e distribution for spatially uniform non-dcnoe, 

and Brown1an systems; may be written in the simple form 

OV-C-l) 

where 

and 
-

j ( ;. ( Pi. 1 0)) ~ ), 

;, 
for the former and latter systems respectively. In equ3.-

" 
tions (IV-C-2) b, ~ and Z repre:-;(.:'nt cyl indr lcal coord 1 rl'D. te s 

" 
wlth the z-axis chosen 1ri the direction of the relative 

1- -- J". < SF fi: (.t·) ~ j t ' 
. ",. 1 

~ . . 
e.xerted by th.e bath partlcle:J ~~n 

velocity f~l and in (IV-C-3), 

---where st derl,te s the force 

(Ji.. . 
the B~ownlan par~ic1e and 1.. . > ~~. indfcatcs (ln efluLl i - _ 

, 

brium ensemble average. Now) the~(' equailotl~j L\.!ar [l form 

very s:l,.milar to the familial' Bolt.;:,mnnn fmd FGI<ker-l'l:mck 

equat1ona, of the form. 

(IV~-4 ) 
J ( f. ( P.:-, t) ) 

1· 

~.-",,,,--~~~'.:-:~,,,,,,_, _r .... ~. """If"""''''' ............ _!'l'Jrllll!''.,,. ... -'!!f"''' ,""',._ ..... J1P'"".,.""'n""' .. !!111.4". 1 •. "_' """".FL!III!.I/III'l1_'!'l!, ... Jl ......... F""'U_ ..... ~ .. 9))~"""I ..... n._I$i .......... "'!"._ ... 4~.Jl' ...... __ 1J""IIiI-.. ,IiII!II ...... !!IIIfV .. '.'tf.'IIIII ••.• fl_,F 

t . 
1 

• 1 

.1.', 

" 
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oftèn used to describe the evolution of these systems. InJ 

deed the only differen( be een equations ( -C-I) and 

(IV-C-4) Iie~ in the ti e d pendence and ind pendence of 

-) the ~right hand side'of the r. Consequently 

the 'solut,ion of (IV-C-I) di ver 5 while at of (tV-C-II) ev-

olves towards the weIl known Maxwell-B Itzmann distribu-' 
1 \ 

tion laft. · in the case of é:b uniform no dense system, for 

example, the IVP solution for fI dive ges at such a rate 

that the scaling,of terms assumed in" (III-E-I) prior to 

the expansion ,"~eaksdown after a' time ,.., <> ( )o/..J.) character­

ist1e of the t1~e ;nterval between col11sions: t The ~limi­

nation of such di ve'rgences and the de:rivation of u~eful 

kinetic equatio~s such as those of Boltzmann and Fokker-, 

Planck represents therefore the major coneern of the fol-

low1ng ,chaP:ter. ", ,\. 

( 

.' 

,.-

/ 

/ 

/ 
/ . / 
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.CHAPTER y 

pERIVATION OF KINETIC EQUATIONS 

FOR SIMPLE UNIFORr.t SYSTEMS 

/ 

The foregoing discussions on the Initial Value 

Perturbati on scheme have essentially sOet the groundwork for~ 

the developrnent of a simple alternate method of truncating 

the B.B.G.K.Y. hierarchy. Indeed, as will be shown shart-
~ 

ly; the (IVP) approach requires only minor modifications 
0, 

to render useful, n9n secular, kinetic equations. Before 

disclosing·t~e'gist'of thefe alterations, however, it would 

only seern reasônible, for tha sake of cornpleteness, ta es­

tablish suitable1points of refer.~ce by considering sorne 

~ of the'alternate methods previously used by numerous inves-

!il 

1 • " 

tigators to close the hierarchy. For this reason, the 
~ 

p~esent chapter, which is devoted to the derivation of 

kinetic equations for spatially uniform systems, will dedi-

cate its first section ta sorne of those 'who, through their 

own alternàte perturbation techniques, have s~gnifiC7l~ 

eontributed to ~he formulation of this thesis. ., 
'1lo.,. 

~L'· 
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A. THE FORERUNNERS ,. 

1 

The last four decades have witnessed the unfolding 

of numerous perturbation cchemeo, denicn~d for, or applied 

to, the derivation of Kinetic equations. While many of 
• • J/ 

these expansion methods remaln buried in the vast Iltera-

ture, a few techniques; such as Bogoliubov's functional 

expansion, Frieman's multiple time scala perturbation and 

Zwanzig's projection operator approach, have succeeded in 

drawing a substantial a~dience. 

The aim of the present section consists of high-
" lighting, amidst a formidable inventory of available expan-

sion schemes, a sel,ect f:;w which, from this author' S experi­

ence, may best illustrate the fundamental structures com-

mon to most pe~turbationai derivations ~kinetic equa:ions. 

These r~presentative selections, wl1ich "" been chosen . 

for their pedagogical value rath~r than their mathematical 

elegance or their ourrent populari ty 1 include, the disltinct 

methods of :S0goliubov. [12] Fri'eman [24] and 'Ha'rris-Le~isJ39] 

_ a) Bogoliubov's Functional Expansion~ 
, . 

In 1946, 1. Bogoliubov briefly stated the inade-

quacies oltthe (IVP) scheme and/prop~sed another perturb~i 
• p 

tian approach which he and Krylov [40]had earlier devise~ 
, 

to analyze the motion of various non-linear oscillators. \ 
\ 

This al ternate technique basically consisted of replacinl\. \. 

\ 
...~- ...... ,..... ... ~1 .. ___ .. __ . -1.----' ----.... -... -~ __ III'IWi __ ............... -~-__ ~-___ _ #7' ··t'tmua IR_ 

.ni .... 1 fT" '.'1 ,*1"""**11 " n ... ' ... "' .... "9" ltir. l,y ......... 
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the explicit time dapendence of a given time sensitive 

variable by a functi~al d\dendence" on a less sensi ti ve 

"c~ntracted» variable. Applied to a non-linear oscillator, 

the method involved substituting'the explicit time depen­

dence of the posi tian _variable )«t) by a functional depen­

dence--on the slowl!, varying ampli t1,lde A(t~ and frequenéy 
f ,~ 

~li). In an analogous manner, Bogoliubov suggested that 

one could, in principle, perform a fruitful expansion of 
" 

the hierarchy by choosing sorne suitable contracted variable(s) 
\ 

which would ~scribe 1 on a "sldW" time scale,' the evolution 

of a molecular system. He further expanded this i~a by 
'-.; 

painting t,a of two charac~ristic 
"'", 

time seales assd iated wi th' t' e natural molecular relaxa-

tion process. The first .. dynamic" or Il fast" ~e scate, 

conslsted of a brief regime" during which the initial 

correlations between molecules remained important and joint 

probabili ty distii butions Fs (X$' t ~~ 1) depended on .ti~e" 

explicitly. This initial phase would only last, however, 
, 

for the typical duration, 7. , of an '\interaction 15etween 

two molecules sa as ta give'way'to a longer "kinetic" or 

"slow" regime, during which the initial correlations would 

be forgotten and Vs (s ~'I) would only bear an implicit time 

dependence through a functi anal dependence on F,. Fo}:' a 
.,.. 

non-dense system, t~is latter regime would persist for a 

period. 1: • comparable ta the time interval between col-
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/ 

mean' free path and 

v. = averaee molecular speed). Wi th the3e important ti:rle 

" scales in mihd, Bogoliubov conc1uded that kinetic equations 
" "'" 

could be derived f~r ~>} ~ by'~impl~ seeking solutions 
<1 

" , 

for F; bearing{-a time d~pendence on1y through a functional 

dependence o~ Ç', which thus became the desired "contracted" 

variable. 

./ In order to illustra~ the /applic9tion of Bogoliubov' s 

ideas let us reconsider the slIDple non-dense system and re- ~ 

cali the ~B.G.K.~. hierarchy in the form given by (rV-B-4) 

~ F, + },( 5 ~ =- é. is ~+-I 
Ji 

AIV-B-4 ) , ~ 

s 
)-{ ..... 

.5 - Pl d4>':J • d -L rn J q, J Pt (IV-B-S) 
L: 1 

JI 

"-

L Ji 'i 5 = 
L:I 

;) ~lJ+1 d 

d~\., ';?Pl 
... 

The initial; and crucial step in Bogoliubov's ap­, 
proach consists of seeking approximate sol1iltions for r5 

which carry a ~unctional d~endence on the one partiele 

distributions r. ( P.: 1 t)" ( 'ri 1.. é. S) 

éIl' " 

i.e. r5 == r:s (X s ; f=", CPL,t)) o 1} 

(V'-A-]. ) 

In mathematical .terms, ,this assumption implies, that the 

time deri vati ve in (IV -B-4) may be expressed il)· terms o'f 

'" appropriate "functional deri Jati ve'. C onseqUentlY' ' one may 
4'. 

\. 

1 J 

! 

1 
: , 

1 
1 
1 
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l ,,~.; 

write .. r o • 

c";) fs ::. l ~ ~\ --J-t ~ F, ( PL.t) ;) t (V-A-2) 

where the functional derivative ~ must be takel'1l\ over 
S r,(P •. tl 

aIl r. ('Pl!:) L ~ 5 

The second stcp of the scheme rtO\'l 
. 

involves the 

~('X5,t) 
.i' . usual expansion of f!Or oS ') 1 , in powers of the 

labél parameter é 

i . e • • Vf ( ~ s,FI) 
1 0 • 

:::. 
.... ' r 10\ ( v,~ ï ) r (') - 1. F (oZ)... \ 

,.. /\' r +E.t"s (xs.r,)+E J (Xs,F.,L'''' 
~ " (V-A-J) S) 1 

..... 
Substitution of this expans~on into the hierarchy will 

~j 
then rende~~ ~9r a spatially uniform gas.~ê-follo~ing 

kinetic equation ~0 
(Il-I) 1 

(, , ~f ~~. =,1 r. E" 't, fJi.; r:, l. 

~ Furthermo~~ sU9stituting (V-A-) and 

\v-A-zi. we may wri;~ the time d~rivative ;~ 

QI· 
(V-A-4). 

(V-A-4) into 

ing expanded form 

tE" "DI<'t.. /' F, <.lI 

~ L ;l F (t-I' 1 
L S t,' 1 ~ l 

where 

in the foll~-

(V-A-5) 
\ 
(V-A-6) 

...,~ 

such t,hat further substi tuti on' O,f (V-A-J) "and (V-A-5) into' ... ' . 
(IV.-B-4), and collêction of,orderG of t renders the i'ollow-

ing set of hierarchy equations~ 

, 

.1 

. 1!"~· ~ -'. 1;; 
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" 
(1 

J{ (<(Il 

S Fs : 0 

J-( r. CI' _ :Ls 

co) 

1='5;' S S -

(1) (0) 

- J> I="S {V-A-7-1) 
• k 

'"" r I=: 01.\ _ "" VOt) l "'J)(,tl F~l~-..t' 
J"l ~ s - 1 S S .to. ( 

(V-A-7- R) 

Equationr (V~A-4) to (V-A-7) essentially form 

;the ,stru,cture 0fBO~O;liUbOVI s perturbat:4on sc~me. The 

emaining work ~implY involves the Slolu'tion of equations , r . 
J Y-A-7), subjeét to sorne p~ausible boundary conditions, 

,~ '. \ /, ~ 

and sUDstitution of these particular solutions for 
(Il) ... ' J . 

F-z. (~X.t i f:, l' in,to (V-A-J.J.) and (V-A-6) ~o as ~o obt,ain 
toit ' 

~ R 'order ~inetiè equation t'or ~J 8Jld an' expressi on for 
1 (~t 

the higher/order functional derivative J) • lience. 
, . 

. sChe,attclllY; Bogoliubov's sch~me may be summarized as 

, f'ollows 1 \ " ~ 
[bOUndary conditions 

, ( , 

1 

'\ /L) 

l "'. 1 

'1:' k=Q""" 
(, 

k 

V-k 7-k~V-k-4 J(,' -
• F.Cltl 1 ,- -

. ~ . Ji 
,~. V-A-S' 

L 
-'=0 

,. 
L __ \ 

i, rzC,.fl 

• 

1 " 

p 

) " .. 

. . , 
• "/: .. , "f. 

" , ~ ~. 
"r--k= k+ 1 'j)~Il+I) 

\ 

" 
" ' 

f 
... i 

, , 

0-

f ' 

., "tJ-

:() 
• 

." 

.' 

,Bogoliubov scheme 

Fig. V-l 
" 

- 1 
J Let us "now initiatetthis procedure by 

, '. 
equation (V-A-7-0){ 

, . ., 
this may b~,accomplished 

. ..., X "l'" 
tiH~ both sides '~f 

.......... 0 
the equation by' -t J and 

,1 

J ., 

ù 

,,,. '\ 

" 

solving 

by 6pera­

reç.,alling, 

l' 

1 

T 

l 

• 
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Doing 50, we then obtain the following e1uation 
Hl7' (0) , 

'J 1. F} ( F, 1 V '" 0 

for which 
~~ 

one ~ay wr;t~ the Golution either.as 
1 

1 

10) ... 

~ 'l X si' 1=", (p~\ t)) = 
... (V-A-9-a) 

or as 
t 

~ 

(X,; F", (Pl/el) = 
• }{.s '\ ./~\..... : 
.-f /~ (XS;F,(Pl,b) • / 

(V-A-9-b) 

neither of these equation:s, in their present 

form, seern to e of great value sinee ~ey merely relat~ 
. /", 

Indeed before exnlicit solutions may be . ,. .., , 
10) 

~.s to i tsel • 

f ound , in ter fot Fa, sorne sui table bWJmdary candi tians 

must first be impqsed. Let us therefo~ assume, as was . 
r 

donQ ,in the q.V.P.) expansion, that aU! statistical cor-
/" 

relatipns in 

"' limi t 1'+ ClO 

finite in ran~ s~h that, in the 
\ î -]{s~ .Hst 

t e stfsaming operators..R and.,f . 

due to the reliu1::;i ve potentinlG <P~J in Ms will ul timn:t7r 
) l , 

displace the ~ar~iCleG in (51 out"idc thcir mutuai cor . 

relatiçn rangel. In this lfmit we coul~ then ~mpose ther 

one of the fOlllO~ing bOU~ry .condi tiana. "'" 

l , 

, 
t 

\. 
" 1 

, / 

II<""" 

/! r 1 
1 

\ 

1 

1 
1 

, 

.-{ 

,1 
1 

.. : .... , 

,i' 

.~"j 

'--

,"" ,,1 
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\ -----\"'v-----____ ,_ "- 1'1--

. " 
~ 

~- l,57 

\ _Hs~ .){.,"Î 

LU\1 ~ Fs OZ" ; .. l . h' '4 i (V-A-IO-a) / 

.l. r,)- nnl Il r,CPII) 
"'1" L= 1 

'l"'-co ' .... 00 

'" ~ ... " 
:: II r, ("1': (00\ 1 t) 

\.=1 ' 

f .x,1'. Hsl 
Li m. F.s <X-,sj F) = L.'m1 1rF,CPl,t) (V'-A-1O-b) ~ 

'i~" 1." 

"'-+CI? • 
.... + r 

= 11 F,,( 'PL (CD); t) 
~/ -H f - , ~ 

l' 1- ( "Î). • - ..f P: 
....... ,,' Hs'T ~ J 

-PL ('T') = ..t, PI. 

where 
(V-A~ll) 

'Upon substitution of the,expansion (V -A-'"J), these 

boundary conditiohs may alpo be written as 

".)-{J 1"', 1 _ 
(0) ..... t.m . ..t .F~ (Xs,r,) 

'l"-+co 

s ~ 

:: 1T~( -P~ (Q7) J t) 
fi t:1 ' 

'1 

... 

.,) 

(V -A-12-a ') 

H"l' 
I

I 10\ .... 

Im . .1 o~ (Xs'/F,):. 
'T'-" 

,; 

If" \10 

1 

(V-A-12-b) 
• 

, . 
J ;. Now ~in~ the left' hand, sides o~ (V.,;A-9af V are~ 

~ndep8ndeht·of ~ • we may cho~se the latt~7'at~our 9wn ' 

convenience .•. C onsidering the boundary candi ti ons whi~h 

we have just imposed, it would secm natural to c~oose the 

'" limi ti,ng cane --;:;'00 for which we have the fOllowing two . . ,. 
possible s olu'ti ons. 

• 1 .. 
.' 

, r~ 

1; 
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$ , -
:: 1\ F", (1{ (en), t ) 

LK' 

Î 

. .- ------------.- -, . 

(V-A-13-a [ 
, ~. '\ 

~ ',. 
(V-Ji..-13-b) '.. . , 

C1early, these two SOlutions·tre not equivalent -
since --P~(CO) and 1>[(00) will not generally coincide if 'One or 

more interactions oceur durin~ the backward or forward 
o 1 

streaming of th~'S par~icle~. Consequently any kinetic 
• - ) , 

equations ~erived from such solutions should also be 

_( dis~j.nc.t. Following- the fogeneral plan in figuré V-l, let 

, us~ substitute (V-A-l)-a & b) into (V-A-4) 50 as ta 

obtai~ the following two PobSible first order kineti; 

equatiùns. jt. 

1 (V-A-14a) 

(V-A-14b) JF. -- dt -
The first o,r these equations bears a stron,~ simi-

. 
Xarity wi,th equation (IV-B-17) previously derived using 

1 ,-
the (IVP) scheme. ~n fact, with arguments similar to 

f~' 

.v.I' th~se~ ,P~~::;ented in appendi?, ,1 ~ we' may easi1y shoW'""that 

(~14-a) reduces to the familiar Bolt~ann equation 

(IV-B-22) 

" where we recall 

, ~ 

, 1 

l 
1 
l 

J, 

\' 



r 
1 

. ~ 

( 

- 15' -

J;h (Pi ,tll. JC011'i"J' ~ 1;;,- éd [1,1 Pyl -l,lp;.i1 
_ D 0 rn 

"" , ' -1' q5L ,t) 1t CPJ,t\ J bdhd4»dP; 

e 

Bol tzmann J who deri veld this e,quatian in tpe late 19th cen .. 
, 1 

tury, using rather-intuitive arguments, also established ~ 

so~e of its impor\ant properties sueh as the existence of 
~ p 

a Maiwelliaf,l station~ry solution and the intrinsic irr'~vér-

slbility- of its transient solutions whi.,.ch must evolve in 
>t.. " 

the direction of inereasing ent~opy or decr,easing 1-+< where . --,. 

, 
Since its derivation,lthe Boltzmann·~quation has been 

, 
/success~lly applied to a wi:de variety of physical pro': 

blems. The non-uniform ve'!"tion of this equation has. in 

p;:;ticular, proved highly val~ab'le in the caleulation of 

transport coefficients for non-dense gases. 

1 

'1 I{ 

Bogoliubov's pe1turbatianal derivation'Gf the 
:ft' l " 

Boltzmann equation undoubtedly represents a, for.emost con-

ttibution,of th~ statistical mechanicalappro~ch as it draws 

an, important :J,.ink bétween the. reversi,ble' mechanics and 
'-

the familiar irrevérsible thermodyna~ics •. 

Th~ exact origin of the irreversibility induced 
". 

'~Y the expansIon become~ furthe~e an "interesting ~d 

enlightening point for discussion. \ Certainly as pointed . , 
li 

.' 

Jj ; g le )!. t 1 I~t " 

• ',1 
1 

, 1 
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r • 
out'Ibyl Uhlenbeck L3J, the coarse-graining in time promoted, 

• 1 

and irnplied, by Bogoliubov' El functional assumption does 

play an important r.ole. The fact that functional form 

of F5 (X,s 1 ri l PI t)) cannot res 01 ~e the sh art time scales . 

\ 

of therdymamic regime does indeed imply a ccarse-graining 
r 

in time which is highly reminiscent to that ev~kéd by 

Boltzmann' through hi? parti tioning of the,,}). space and 

his '''Stosgzahlansatz'' assumptionO~, ,Furthermore coarse­

graining in rN space wl'\ich must accompany any loss of 

resolution in time also brings together ~ogoliubov's time' 

scale arguments and Gibbê-~iscretization of the phase 

space. T~ coarse-gr~ining in time~and phase space do~s 

) therefore un-ite Bogoliubov, Boltzmann and Gibbs in their 

effort to give a molecular interpretaticn of the second 

law of thermodynamics. HQwever there dges seem to exist 

in Bogoliubov's expansion approach a certain ambiguity as" 

xo the di~ection of the irreversibilit7'which he induces. 

lndèed. as first noted b~Cohen and BerJlin,[23J .Bogoliu-

bav's derivation of Boltzmann's equati~ isAfounded on 

one possible" SO~lutl~for F.z.(XZIF,,) 11tha~ i5 V-A-l)-a) t. 

, , 

which emergCG as F consequence of the ~ticular backward 

bounda}y condition '(V~A-ID-a) which he ases. Al~rnatively , 

however, one could choose :the forward lIoolundary candi tion' 

(V-A~lO-b) with the solut1on (V-A-13-b» so as to emer~e 
1 

with the kinetic equa~ion (V-A-14-b) ~ch. in turn. may 
j 

1 tUb" 

" , 

" , ~,~ 

." 
J 



1 

( 

J 

"" 

Q 

.----,., 

(: 
\ 

r _.~ • 

- 161 -
./ 

be shown to imply the' foliowiAg equation for ~,(P\lt.) 

(V-A-15) 
~, . 

This eq~ation because of its sign, displays·the interest~ 

ing property!of admitting only solutions which evolve in 
.::. 

the direction of increasing H . or decreasing entropy~ 
/ .. 

For this rlason it has, at times, be'en referred tolas' 
, . 

p' the nanti-Boltzmann" equation. The possibility of deri-
1\ • "'. , 1 ( • 

ving, via a Bogoliabov expansion, a kinetic equation with 

a time arrow see11lingly pointing the wrong 'fiay remains. o~ 1 . , 
Berlin have, shed course, a disturbing enigma. Cphen and 

~ 
some light on the problem by suggesting 

. 
that the back-J 

,- '\ 

ward boundary C ondi ti on and, hence, the Bolt~mann equation. 

are founded on the plausible assumption that two particles 
. ' \1 . 

are generally stat~stic'ally inde pendent befo~e mut~allY' 

colliding.and inherit a mutual correlation ~fter collision. 
. 

The forward poundary con~i ti on, and the anti-Bol tzmann . 

equation, on'the other hand; would calI for an intuitively 

/less p~ausible case, in which two approachi~g particles 

wourd he peculiarly correlated before collision such that , " 

this correlation woul~find itself anihilated after the 

two particles interact. This argument. however, implies 
... 

" a very special physical interppetation of the mathematical 
-

limi t ~o:I' in botl1 boundary conditions (V-A-IO-a&b) • 
. ){ l' 

ft a , 
Clearly, in this limit, any streaming operator A 

\ 
or r 

F pt aAA ~ .. \. 

\" 

.\ "" 
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~.~ .~ 
~ which briQg~ two particles in~ a collision ";~ll 

alse subncquently separate these particles sueh that they 

ui'"tim'ately become i~fi~i tely distant from one another. 
\ 

New, becaùse of the actual presence of numerous other , , 

particles, it would seem quite implausib~e that two part-

icles, infinitely distant {rom ench other, would remain ~ 

cerrelated as the result of a remotely possible collision 
l , 

D in the distant pasto ConSeq~ntl"Y ,ohe scon real.izes that 

f Cohen and Berlin' s reasoning ~ ,favor of (' t~e backward bound­

'ary 'condition (V-Â-IO-a) may only find proper justification 

if the limit ~~OO is not ~nterpreted literally but, in 

fact, replaced, as illustrated 10 figure V-2, 'by an ,altern-
1') 

ate limi t 1' .... 'T'. where 1"''1(1 i8 èhoGen wi thin the range 

'10 {~ '(e '-< 'T. . 

-

! 
;. a) 

-Pi 

. Ji., u,) f'P 
1';- 1:,..A. p~' 

Fig. V-2. 

c) 

, . 
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Pi 
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In this new limit, with 1f • chosen much 'longer thantthe 
1 ~ 

mean interaction ti~e and yet much shortûr than the mean" 
" '\': ' 11ft 

time'between collisions, one may reasonably ar~ue that 
-){.r.'d) 1'«9 

while t~ backward streaming operator ~ will 

stream particles i. and J of figure (a) into a precol-

lisional uncorrelated state, the forward streaming~pera-.. 
)( ~ l i.1l1"f) ; 

tor..1 oP in figure (b) will displace these particles ,., 

into a post:èollisio~al correlated statu~. Howeve~, if 
~ .. one so wishes to tarn'per wi th Bogollubov' 3 original bound-

. , l 

ary, condi tians one mùst also face the consequence 'that·· 

the above restrictions on 'T' 0' als 0 imply q,. parasi tic 

limi tation on ~he vdlidity ,of th~ backward 'boundary condition 

in momentum and p1\ysical space. Indeed the modified bound-

ary condition 
\-H' ( .. ) 1'(8 . r 

~ LJ , .. -..( !{ (,*~ ljt) = F, ( ! Z . t) P. (!; j f: ) 

~ HAl( j) 1"61 
(V-A-16) ... 

"-

with y" .... 
Co = ...t Pl '" IK - ..... ...... 

which we suggest, cannot -be expected t 0 hold if '( d , p~ . 
~ -H (lJ} 'Tf) 

al:"e ~o chosert that the operator..R ~ and - streams Pi 
part'icles l back in time towards or into, but not 

through • ~ blnary dollision (as illustrated in figu~e c 
/1. 

rot fig. V-?,). In fact;'the restrictions impo:4..ed"on '1' (j). 
• ~ ID) ,.; 

would imply that Bogoliubov's solutions for F~ should 

only be use~ tOI; ,fi.'j\{(). • Na'turally sinee the derivation 

ot the rfrst order kinetic equ",ti~n only rccjuireo the 
A 

J 

< 

\ : 
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If) 

knowledge of ~ for ''(\J {~(" this limitation should have 
" 1 

no bearing on the validity of the Boltzmann equation . 
• 

Furthermore, recalling the dimenSi~ arguments of chapt-. ~ \ 

. J 
er III, one notes that the relative weight assigned te the 

various terms of the hierarchy for non-dense systems no J, 
1 

longer apply when \ '(il \ is chosen of the same arder an, or 

1arger than,the meaf particle separatl~ Hence;the very 

expannion which Bogoliubov 'performs remains valid only 

when ift.I~(ri'bH).. In faet if the perturbed equations we:re 
\ 

valid for all ÎTiJ\ one (could avoid Bogol3,ubov' s bound.arY ,~ 

conditions completely and simply reeall the cond~tion (II--
0".... ,!f 

C-4) imposed at \-9''''00 as 'in 'the original derivation of 
L \ 

the B.B.G.K.Y. hierarchy. Furthefmore, 1f only the l~tter 

boundary conditions in physical spac~ were used one could 

easily show that the Bogoliubov scheme would render tri-
",J. 

vial kinetic equations at all orders of the expansion • 

This fact further confirms the limited validity, in ph~ 
\, ' 

sical Ispace, of th,e expanded hierarchy (V-A-7) used by 

Bogoliubov. '\ 

The above discussions have suggested à modified 

set of boufldary cC,ndi tians,. in the limit ~ .... '1., which 

.. 
/ 

q 

wou·lci, conform wi th s'orne of the 'argumenta presented by Cohen <1 

and Berlin'i Unfortunat~ly we have"a3 yeti not given much 

r 
1--- . 

• 

\ 1 

1 1 

1 : . , 
i 

\ 

i' 

. " 
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insight as tQ the exact reJlson for which the original' for­

ward boundary ~ondition cannot be used in the limit 'f~I~ 
, 

Certai~ly the very fact that this physicallY plausible 
~ c (, 

~I \ * 
boundary condition rende'rs a 'kifletic equation which we ·-in-

1 Il 

tuitively dispute cannot seriously, be accepted as suitab1e . 
grounds for rejection. Indeed the possibility of deriv1ng 

(' 

a questionable result from a seemingly plausible assump-

tien 3imply ~ests an inhe;ent flaw~ or lat leaGt ambi­

gui ty, i'n the perturbati"n scheme i tse1f,. There clearly 
). 

exists. wi thin the Bogol'iubov approach, numerous sub-

tleties which become extremely difficult to assess with- /. 
~ ~ 

out censidering alternate approaches to. the problem. The 
. .. ~ '-

arb5. trariness ~f the auxiliary time variable 'T' introduced 

in the Bogo1iubov approach represents"only one quandary 

which will require future attention. The function~l as­

sumption. itself, repr€sents a limitation. whictr one woÛld 
~ 

enjoy removing. Fortunately, alternate perturbation ap-
~ if 

pr~ches, such as the Mùltiple Time Scal~ fxpansion have 

shed sorne light on these difficulties. 
\. 

1 

1 

1 
1 
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\ .-

b Multi le Time Scale . 

In 1962. E. Frieman expansion 
4~ " scheffie which cou1d truncate the B .. G.K.~. hierarchy 

f 
by exp~icitly introduciQg a dis crete set pf 

and, systematically eliminati~se~~arities 
time scales 

, 
as they 

peared. Th~s method, which h s since~en referred te 

as th~ Multiple'Time Scale' be i1lustra-

-' 

~ 

( 

ted by~ eonSidering, once 'more, the non-dense uniform 

system and, hence, recaIIjngthe 'B,B.G.K .. !. hie!'archy as 
-.; 

expressed by equation (IV-B-4). 

;) Ç"s + li s Fs ':: [. t s F,t'I 
Ji (IV-:&-4 ) 

J 

The (MTS) approach consists of rewri tint; the time depena-

enee of Fs in terms of' a discrete set 0:[ independent 

. t Q ", t, ,t.t 
1 

time scales . . \ . 
1-

~') 

\ 
i.e • 1="$ (;($ i) :: t s ( Xs 1 tOI i. . t Jo • ) ~ (V-A-17 ) 

'\ 

where i~ relates to the real time 1' as; Îo11ows 

Ji;. ::. .[. c. ,,,(V-A-18) ~-

\ 
dt 

Let us, .. as usual, expand F"s i1l1 powers of the , ".. , 

" J 
label parameter 

" \, F u\ (il %. (.Z) 
S ::: 1='.1 ... E. F.s ~ E.. F~ ~ + • . • (V-A-19) 

~at, 
~ 

,and f'urther note due to equatioD ((V-A-18) • the 
;.$' 

'" 

,; -.. .. .., 

1 
1 

.. 

! 

t' 

1 

·1 
(1)-

• 0 --

,,' 

.. ' 0" 

" .. 
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r/ 

der~vative in (IV-B-4) may aiso b~ rewritten in the expand­

ed form 

1 l ~ .j.'c.!t J 4-." 
+ -? -

;> t., .;1 t~ ! CV-A-20) 

~ . 
8ebstituting ,(V-A-19) a~d (V-A-20) into (IV-B-4) we then 

obtain the following expanded form for the B.B. G .K\' Y. hiel 

rarchy 

F. 10} la) 1) . ~ .j. }-(~ Fa :; 0 

J to (V-A-21-0) 

;; ç (Il 
li) 1 (0) .;J'ç 10} 

}{.s F, :: s r$". ~ -1' - :..:...J (V-Â-21-1) , 
;J t 0 ' . .;t t , 

l ' ( 1.01) 
l 

(tr-.R 1 J ç (k) J-( F tt.' l 5 ~ :; t s ~t-' - ~I; ... 
~ + 
cJ t l dt!,. CV -11.-21- h.) 

.( = 1 

1 ~ 
Proceeding, as in the (IVP) .scheme, we slbJall now seek 

, (1) ...' "1 solutions for ~ on the io time scale i.n terms of the 1 

Consi3i1œring, iïrstly" 

the zeroth order single particle d~stri~tion, we note 

from (V-A-21-0) that 
" . 

(V-A-22) 

or '" . (V-A-2J) 

t ,.. .. 
1 , , .. 

J 

, p 

<y 

.. 

'lI> 

, 
''lf 

1 

r ,l. 
l, 
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which simply establishes the independence of 

the fast timc 'Gca~e 1 to' On the other hnnd!. 

equation (V-A-21-0) may be integratedl~~~ 
ta yield the fallowing ~olutian 

on 

for s'> 1 
\ 1 

usual manrter 

Si~larily. one may move along ta the next arder ot the 
1 

expans~on by substi tùting' the aba,ve solution .• for F 
(0' 

.t '.J ... 

r (1) t 
t", on the 0 time seale. 

_}-( .. tb 
,,10\'" F Co) -... .1 L 

_~' + ,j..J,}l. :t. CX .. ,a, 1..,:l.J, ) 

Ji, (V-A-25) 

WhiCh,}Sing),the 

wri tte as 

,'; 

notation of (IV-B-12), m~y also be 

Upon integration ov~r to 

i.e. 

" 

., 
f 

f 

! 
,~ 

. . 
. ' 

'p 

, , 

, r 

, . 

\ ' 

1 : 
: 1 
1 

': , 
j 
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I~'I' 
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w: may now' noty--tW~imilari ty between t~ ~bove SOlU~ 
• (l' .. 

tion for FI and thE~ cûrresponding solution (IV-B-ll) , 
, ~ 

-previousjy d:~:ed ~sing rrc (lVPl scheme. 

ar~ments similar as those-prrsented then, 

triat, for t~ larger than 'the maxim~m time 
1 

Indeed using 

we may show 

1'+ ' required 

~ for two interacting particles·to tie streamed outside each 
- )(.lu nie. . 

other' s correlation range by ..A.. • one has 

'\ f , 
Consequently for t~ sufficiently long, both terms on the 

'~ght hand ~de ~f (V-A-27) diverge at a constant rate, 

1 thus gi ving the s oluti on for F,'" a s!;!cular character. 

. 

However, due to the added flexibility ~loted by the exist-

ence of numerous distinct time scal~p, one may, in the. 

(MTS) approach eliminate the' secular terms' by simply im-

posing that,in the ;limit , 
1.' .p 

;J F. (p t t ... ) - ,)..JI _, li 111 -

cJt 1 

which a130 implies that 

J 

..... 

, ... 

" 

1 
1 
1 
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~r.(I) lPi,tc,',i./t.;.)::: 1; ~ F.;(·\~·\.I(t.\I=P,-d:,),=P;(t.).oJ.itl, 

/ -iV-A-)O) 

Dy thu~ elimin~ting the secular t~rms as they appear one 

th~n obtains a kinetic equation for 
1'\ r. on the t l , time 

scale which bears a strong,resemplance with equation 

(V-A-14-a) previously der1ved using the Bogoliubov sche-

me. Indeed, using arguments.similar to those presented 

in appendix l and combinlng.,equations (V-B-22), (V-A:-29) 

and (V-A-JO) one may easily show, in the lirnit 

that t?e distribution {= *' obeys, to the first arder 

in E the familiar Boltzmann e-quati on 

The above expansi on may be carrl ed: out ta a 

higher order of E. by intègrating the first order equ.ation 

(V-A-21-1) for S)I , onthe te. time scale. and subs~ituting 
. r (,\ • 

... the solution for ~s into the higher arder equati ~n 

(V-A-2l-2) for Sai •• Integration of th'ls latter rqua-
) 

tion over t 6 and elimination of.secular terms will then 

resul t in a seco,nd order kine,tic equation on the t., time 
. 

scale. In nummary, the (MTS) expannion for the nOQ-denGe 

gas procecds" therefore, as j'ollows 
, " 

r 

1 

, 
.. -\lit ~,t~~~""~~~i .. .r"~L ""'~-""'-""'~"""~-"""'J ,_ .... ", .......... " .... _ ............ ,.~ .. ..,~ ..". 

\_ ...... 
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MTS Expansion Schemé 
, , 

Intergrati·on on 
,. i. time scale 'j(th arder or (V -A-_2l-k) ----....~ and e liminat ion--:---+~kinetic 

of secular terms enu~tion 
" S - l .. 

'.' 

..... 1 

i 
k:: k + l---Inter-:ration 4-4----,,-- (v-;\-2l-k)~ 

on 1.. time 'scale S) 1 

Fig. V-') 

The (MTS) approach, which deri ves kinetic equa­

tion:t on one t1i1le scale by eliminating seCUlar\S01~tions' 

~ another, time scale, represents a systematic method of 

circumventing the u~ûal secularities encountered in the 

(IVP) scheme. The mathematical and physical significance 

of the discr~te, set pf time scale$., wh ich this approach 

introduces, remains, however .. an important point for dis-

cussion. Mathematically sorne investigators [25] haye 

opted ta treat the variables t ... t, .... as independent 

variables in the strict sense, thns allowing them to im-

pose Guch limi ts aG to-"oo wi thout imply ing a.l1Y 3imilar limi t 
1 

lon'the other timc scaleo. Clearly, considering equation 

(V-A-18) which relates these time s~les to the real time 

... 

, . 
1 
1 

1 
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Ir,'! 

t , one cannot acccpt such a premicc once the conGt-

ants of integration of this equation have been chosen. ". 

Indeed if one sets these constants ta zero, for example, 

the following relationship between the time seales,must 

be observed 

(V-A-Jl) 

Consequently sorne authors 126J have adopted the more 

reasopable point of view of tr~ating the ~ependence 
of the various time scales as an approximation which 

becom~s reasonable provi~ed one remains as close as pos-

si ble to the Il physical Une" defined by (V -A-Jl) • Natu-
) ,,' 

rally, as in the Bogoliubov expansion, this outlook re- • 

quires som~ physical interpretatiorAf the time seales ' , 

invol*ed, particularly when limita such as t. ~ 00 

are imposed. The oge.neral phYGical arguments, found ih 
ç ..... 

the literature, describe io as a "fast" or fine time Bcale 

and depict t, 1 tJ l.. as progressi vely "slower" or coarser 

time bases. The reasoning behind this point of view 

becomes quite evident if one reconsiders the expansion 

parameter é nnd the time variable t in their dimension-

{ l tf\ __ t/l ~ t r / ')ess forms ~:: IYL rD and ,,~, where 0"" 0 Il. • 

Using, equation (V-A.-Jl) one rnay then write the multiple 
~ 

time GcalcG t. 1 •• t. in their dimenGi onless form 

\ 
• t 

'-'. , ·_~ __ w ___ ~~........... Id) , ? ."', 

, 
1 

1 

• 
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Il 
(V-A-)2) 

. 
~ -,-One thén notes that while t b is scnled on n tirr.e uni t 

~ 1 comparàble to the typical duration of a binary 

collisIon, and i, ~aces itself on a much longer cha-

racteristic time ~ 

'l, = ,Ii; lE. ,... 0 [ \1 .. ~,! 1 ,.., 0 t À/v.l 

(whiéh is typlcal of the time interval bet~een collision2) 

.. t k 
1 ~ the remaining time scales t 1 1 3 L_ beco:ne normal..! 

~zed w~th r~spect to progress{vely longer characteristic 

tirne measures. Consequently te, and ~. rBspectively 

folLow the fast" dynamic" and slow Il kin~tic" regiir:ès of 

\ the Bogoliùbov scheme. ~urthermore, if IOne assume. that 

the range of 'correlation is such that ~ , in boundnry 

condition (V-A-28) may be chosen much shorter than ~ , , 
cnemay then interpret the limit t,-9DO, in the above 

(MTS) expansion, as a limit {o""" T® such that tD plays 

the same role as .the auxili\ary tlme variable ." in the· 
• 

~ogoliubov expansion. 

In spite of the numerous ~imilazities ~hared by 

the Bogoliubov and 

offe~ t~e distinct 

(MTS)( sq,hemes ,r-ihe latter method does 

advantage of by-passimg the functional • 

assumption rcquired by the forrrU?r._ Ind~d the functi on-

F Cb) • l 
"al: form of the~ (MTS) soluti on for ~ cmn y cmere;es 'when 

'Î 

, .. 
.. /~ .... ~ ........ ,.~.'"""'...,....:r""'"-t. ...... -...-_, ... __ .... ,~ __ ~""-_ ... -..-._._-~ __ * __ ~., __ .1~ .. ,. '.< __ .,. _ _ .I~ •. '''M._ 

J 

, . , , 
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t > 1 .... as a re~ult of the bcundal\Y condition (V-A-28) 

which is in fact equivalent to the modified Bogoliubov 

boundary c ond,i ti on previ ously di 8cuGsed. The (r,TTS) 

scheme on the other hand suffers a great handicap in. 

that one must know th~~'exact 'forIl'! of the secular tcr;ns in 

the corresponding (IVP) scheme. In the uniform Cqse, • 
naturally, we have previously shawn that secular terms 

grCMI as powers of' time. Unfortunately in non':'uniform 

systems the exact nature of the ~rities béco~C ex-

tremely difficult ta determine. For this very reason the 

use Çlf the (MT$') "approach has ge1erallY been refDtricted . ' 
to-qniform or quasi-unif6rm systems, where non-unifor~-

.. 
i ties in sp,§lce 'of F, may be completely neglt:cted in 

~he zeroth arder of the expansion. ~ide~tlY both of 
( -

~hese expansion schemes find themselves hampered by dis­
, , 

tinct an~important restrictions. Theze limitations fur-

thermore emerge as a result ,of.unne~essarily eornplex mathe­:>, 
~ , 

matica} approaches to ".the problern at hand. Indeed, qS 
, , 

will be shawn shortly, a clearer understanding of the 

"" time seales invo!lved wi,~l guide ,us to ,a simple trans~a-' 
" 'l' 

rent method of,deriving kinetic equŒtions without re-

sorting to restrictive functional assumptions or artlfi­
\ 

cial expansions in a multitudJ of time ,scales. 

.. 

, ' 

7 

, 1 
1 

1 

- t 
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If 

'c) 'lime-Expansion of Harris and LéWis ( 
In 1964, S.Harris and M.B. Lewis prQPosed 

, 
an a:j.'ternate technique of deriving kinetic. eq:lations, for . 
non~dense systems, which avoide~ sorne of ,the previously 

dè~cri bed limitations of the Bogoliuaov and (MTS) method. 

~hiS scheme sjarts off by rewriting tne hierarchy in terms 
, 

'of :the correlation functions ~s(~, . x:),t) which, for 

s ~ :L, 3 • Ji may he expresseç:l as followl 1, 

,... 
F, \X"i.\ F, (x',-t.) 

(V-A-JJ) 

~J (x"x.,X J ,-/;) = t.1 (X,.x~.xl,i) 
3 

- if r; (ç;,i) - L F, ( x ~ ,t.l ~.I. (;~ ,; .. 1 i ) 
1-/ l\l,~,}) " 

. .. (V-A-34) 

q (-;, t x Xul)· F1I (x"x1,x"x",il -II !ft;.,!.) 
JI ' 1)/" -, A./ 

-, l [r,(;,.i.iF,tX~,l)'3.1.(; • .71..~)+~J(X~xJ,t)3L(X',;J,i) - ~(X.:i)~1(;J:X.r,f/llJ1' 
1(1.1, •• .,.) (V-A-B5) 

where L. den otes a sum of aIl permutations of the 
Pc I,~,).'i). . 

indices i., j 1 k.,l over the values' /, t J :J • -1 

Suhstituting the above expressions into the B.B.G.K.Y. 

hierarchy (IV-~-4)" one may then obtain, after some mani-
~ ,.., ... ... 

pulation, the followi'ng set of open equati ons for ,J r. (t, fT I~~(r.~ ... {l 

and Cj 1 (x, : ~ x J t) -, 

wl th' nt :::.1;-. t:{ 
/>1.... V 
v ..... 

" - -- ~ 

1 i 
J 

0 

1 

1 
1 
1 
1 

\ 
i 

Il 

I~ 

". 



,. 
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( 

( 

1 

i se$' 

" 

where: 
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J 
? r. (î.,tl 

.~l-. 

',~·C;,.î'l;i) +}{.l{I,J.) ~ .. (x.,t: .. {t) 

~t ,.. ,... 

) 

J: 9> l, 1 J! 1 (t" t. ) F (; ", fi -+ € 0(. (X , XI. , {) 

(V-A-36) 

CV-A-37) 

~C~.,i""/:i;"t) ~ -+ X;s (L),s) ~J (X, 1 X~ 1 Xl,{}'· 

Jt " 

• cl.. = 

-t C f (X, t ){ > 1 )( Iii) 
l, , 

, ~ 

hl < J r 6" J ~ (X;, t) d ~ (Xl.'; J, i) 

, , 

~ 9",1. F, (x).l'i) ~2.(X";,,,t] JXJ + 

'"" ' .. (6,,1 ~ é.J,J) F, â.,tl d1.(X"X,,'t\ 

+ 

f;J. '3 (>:" X~, t~1 i) 
(V-A-39) 

, 0 

(V-A-40) 

i:: - ;nJE (él,..ff,(;\.,t)~I(~XJC~'/,'t\ 
lu .... ,)} \, ~ " , 

4- (8~.4." ElJ,,) ~.\(;,,1~11.\~~~ r.,1.,.t)Ul/ . .J l, df'(X,.hl".r~,i) " 

, (V'-A-41) 

QLl = -2ti1 . 2. ~ ~ .~.L. 
., cfl. ~ Pi ~ 9 s ~ PJ' 

'" . 

These rather qomp,l,e'x 'and' cumbersome equations may 

,now be integrated. in the usual fa8hi on. for ~a 2-,3 
, 

',' 

'. 

over the "full time interval [Olt) so as to yie~d thé follow--

1 

• '" , 

A 

. " 
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.. 
\ 

, ,in:g equatians. 

• }(" C, 1,2\ i 
Cj l (X" X ~. t) '-;"p' • '31 ('.r" ta.. 0 ) 

, -' 

-1 "'1,·_}(·(I,~,t', ,...' 
a· J F ... li') ç:. <i .. ,t·t,) J{' t o:~ G '. Z • ' (X 1 • 1:. _ , , , 

1;: -){l (1,1)1" 

+'J.'~, € c;l., eX,','-;;', t-t.') Ji' -. 
.. 

'\ l ' - }tj<l,J , 3) t 
\~3 <)'1 iL.X.s,~)='..Jl. ~3 (x"x .. ,x,;,C)) 

. ' 
~ .,. H.;r(I,l,J) il 

+ 1" "Jo ((3Jt" X",XJ ,.J:.t.') ~ E 

" 

. ' 

.1 

)0 

(V-A:'42) 

,tV-A-4J) • 

, Lewis and Harris 1 at tttis .. pain.t, simplify the 

analysis. by àssum~ng aIt c orrelati ons ta vanish at t. 0' " . \, 

Sa as ta eliminate the first ter~~n the above two equations. 
J 

If one then expanQ.s a 
d S 

i. e. <;1s 
101 + .~ 

(,) 
:; ~s '3, 

in po.wers of €. 

+ 
;1, u) 

f<j, +." (V-'A-44) 

\ 
and substi tu t'es into (V-A-42) and (V-A-4J) , while collect-

, . 
in~ orders of L, one then emerges with the following ex-

, ,~, 11\ • '10) • • 

-presslèms' for- <J~- 1 ~. - • and-, ~J ·WhLCh- are thOSe.1equlred 

ta derive first and second order kinetic equations 

• 

." 

, . 

'.,..--. " .. .., 

1 

1 
1 

-' 

, . 

. ,1 1 
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(V-A-45 ) 

_):(.J(C,l't.' .. ,.1 
01.. { F, ( t-t·) / ~L ( 

f ' ) ,,,) , ) 1 J 1 

t'·t·}, ~J 1 t-t,) c:n. 

-t - ) .. h lI"u)'t.' ' . (V-A-4~ 

~;~.. t Il. !3 ( F,I 

(V-A-47) 

\" . 
T~e above expanSlon, thus far, 

~'" L ~ 

(IVP) scheme:6nly in the initial 

" . 
differs from the 

cDndi~iori~ which ùsual 

'have been assum d and the use df the' ~orrelation funct-

ions urthermore 'one ~asily notes that the zeroth 

, order sol,uti on beé'j.rs on., one hand. an explici t tim~ de' -
b '" 

pendence (which for \( wH 1'f _ last onlY for a peri od of th~ 
~ . 

or~er of ri. '"" ( Iv. ) and an implici t d'ependence, v.ia a 

functional dependenc~ on F, tx. ,t) , which prevents the , , . 
appear~ce of secular terms v.:h"~n (V-A-45) is substïtuted' 

b~ck into the rate equation (V-A-)6). Now, • - :t 
S lnce for- '''"" .. 1 (.. , 

the i.ntegrand in equation (:V-A:"45) vanishes \'J!'1çn t' 13, larger 
f " t,r -X}I.t) , 

than the ti.me 1<t,x~)""o [1.1 required for.4 . to stream 

particles l and 2 out!Jide the ranGe of the intcractlon 

potentia::t ~,,1. ,in e,,~ . i ~ would' seem rea50na bl e to at'tempt 

to e~press r. Ci\,{"{'\ in terms of F,ex.,!) Iby performing 

sorne expansi on in time about t ': 0 By 30 doing one could 

, f 

, " 

;' ,1 

. 

1 
JI 

1 

1 
1 

, i 
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i ' 

; 

.j 

'1 



1 

... 

(, 

) 

1 - 179 -

:r 
obtain a ~losed. markovian, kinetic equation fo~· ri • 
In order to accomplish this feat we nced only to inte­
grate equat~on (V-A-]6) over the interv3.l [t-t'\~J so as 

t 0 arr ive 3. t 

.Ii , 
F, l Pi : t -t') ;ï', 1 p"Ü + .. J 1: ~,('" ii"i-t') J l' 

• (1 

CV -A-48) 

Furthermorc, in order to formulate this expanpion in ti-
me and distinguish i t f~m the perturbation in E. one . introduces a second label parameter [0 and rewrites I" 
(V-A-48) as 

.d 
F. (-:p~t-t'I},,:r: <P,.t)' +EE

If JiI9:t(;";~It:-i.\) 
• 0 

(V-A-49) .. 

or as 
,-

F, (6/-t') = F~p: ,t) ~ lE" 

.At ( l ~ (0\ J ,t St 
" 

(Il li. t~) J'il 
+ E 92. t E ~.t. t".. d 

(V-A~jO) 

N ow since are themselves functionals of 
1 

Harris and Lewis pursue a seèondary expansion of these 

correlation functions 

(V-A-51 ).. 

l 
j 

\ l, 

1 

, 1 

i 

/ 

, 1 
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Substi tuting '(V -A- 51). (V -A-49) into (V-A-45 ) and collect-

ing orders of ét one then obto..ins at"the very lowest 
0 

order the followlng solution 

) i _X,,(l,.l)t ' .- ~ ,.. .... dJJ 
Cj ~' 0 :: J..( El l , ~ r, (,c, • t \ F ,) Xl., t } 1. 

() 

(V-A- 52) 

which may also be written as 

(",Ol t - }f. ~ r 1,1 } t 1 

'31 ": - Jo ..R. X.h,&lr, (~,t) r-,tttt1 di' 

_ - H.,.o,:t)t .... _ "(_ 
':0 L .J.. - 1 ] r, ( x lit) r, (X;t, t.) 

l> (V-A-5J) 

Consequently the lowest order kinctic equ~tion becomes 

,... -}{.I.(f,l,)[ 

~ Et,...t r,ex,,{)r,Ct.2,t) (V~A-54) 

\.." 

which for t)-'1.. may also be written as 

'"" jr, (PI.t):: 'i, F. l1',-(a.!kt)~, ("1';(00);0 (V-A-55) 

~t 

such that,!using arguments similar to those in appendix l , 

one recovers the usual Boltzmann equation; 

,,-' 
The lIarri0 and Lewis cxp~si on, duc t6 i tG u'tle " \ 

of correlation functions and doUbl~s, certain-
\... 

ly does not represent one of the sirnplest methods of 

1 • 

~ 4 
;-

-4 
_::10"\ 

\ 

r 

.. 
~ . 
" 

"-
) 

f 

~ J 
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( 

," 
" 

truncating the hierar?hy. 
~ 

Consequently one must undertake 

f~rmidable calculations ~o pursue the expansion to higher 

orders. Furthermare, because of the extremely comple~ form 
1 \ 

of the higher levél correlation fun~tions ~$ with s lar~e ~ 

the scheme must generally restrict itself to expansions in 

which only the Iow level correlation functions contriDute ta 

the lower order kinetic equations. For this reason this ap-

~proach' wou~d no~ seem very weIl ~uited to the study of Brown­

ian motion where the full N parti9Ie interactions play a raIe , 
in the kinetic equations. Finaliy the assumptian of an ini-

tially correlation free gas would seem unnecessarily restric­

tive. Nevertheless, in spite~of these limitations, the Lewis' 

and Harris approach does avoid Bogoliubo'l' s functional as­

sumpti on and, unlike thff (M}I'S) perturbati on. can be used tor 
\ 

non-uniform systems. Furthermore sorne of the techniq'ues "Jused ... 
to avoid secular solutions meri t:special notice. These ~n­

clude, on one hand, the introduction ~f correlation functions, 

and on the other hand the integration of (V-A-)6) over the 

short time interval [t.-l' 1 t ) wi th 1.'''''0(-1. J 

ful~ range [0,1.1 used in the (IVP) scheme. 

as opposed ta the 

This latter pro-

oJ., cedure, which allows one to express 
1 

r, (p\ \ 1) in Iterms ai' the 
) 

nearby F,(P~lt·t') rather than a time independent\ F,/Pi,o) re-

t 

presents a very clear and useful approach which will be fÛ~y 

exploited in the following section devoted to the developrnent 
-.., 

of 'a simple alternate expansion scheme. 

'. 

' ..... 

1 , , 

1 
ï' 
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A REÙjITÙŒIZA'TION T'ERTURBATJ ON APPROACH --*" 
~-''''---, ." \ .....--. 

r .A str~ghtfO:ward perturbation~l derivation of 

kinetic equati ons may be formulated if onè IbrieflY re­

considers sorne of the main fentures' of the {T'VP} Gche- ~ 
f, ? 

me described i~ t~e previous chapter. Let us, for 

instance, recall,the simple ~+lvs~rative time delay equa­

tian 

'(IV-A-IQ) 
" 

where 
x <t> ::. Xo For t> 0 

. r( ~ co ns·tant , 

E .< < 1 

J 

• ,Now, w~ recal~ that the simp.le (IVP) ~xpansi~ of 
(IV-A-IO) renders secular solutions which cause a c~mplete 

One ob-breakd,~wn of the- expans ion ~hen t>,.,b J l'jl. NO ['Id. 

viou~way around this obstacle c9nsists of applying this 

eX~~lfl SChem~ only over a time interval Ai« 1". . 

IrMeed, let,us reinstate t'he pow,er expansion (IV-A-2) 
" ' , 

t , (1\ 1. (~\ 
Xli) = i.. 0 "'EX +!)( + ... 

.", 

and the resulting expansion equations (IV-A-ll) 
'-cl Xt

•
l
_ 0' - -

u\ .L -x' (li -7'). 
'§ 

'i 
;-

(IV-A-II-O) 

(IV-A-ll-l) 

j 

1· 
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( -'-1) , 
X. (1,-'il 

. . 

, Now integrating (IV-A~l?-à! over the i<ltèrval (-t .• i:, ,iJ 

such that, 
.. 

u\ , (V-B-1 ) 

' . 

~ (t;) "= f (t-.d.) 
~ 

and further assuming that ~~{ ~ we may then write (V-A-ll-l) 

as 
, J'X"I __ X"I dJ - -
di \ 

Consequently col'liQining (V'~B-l rand (IV-A-II-O) one thus ~ 

obtains, ta the first order of E, , the following, non 

se,ular rate equation for X ri) 

dx = -f,X + o [E-z,] 

, "d t 

.. 
{V-B-2~ 

. 

Furthermore, one may pu~sue this type of expansion to 
~ \ 

higher orders by rewriting the second order equation as *. 
d X l.tl =. - X' l' (t - ;r 1 

d t 

.. Il) '0\ l =. -lX Ct) 4- r(x (i) , 

such that combining this equation w~th the low€r order: 
.." 

... 

, 
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( 

expressions one obtains 
I.f 

dx 
ci. t: 

= - E [ \+l'1] xci) + 0 [[3] 

(V-B-4 ) 

The ubove perturbation scheme distinguishes itself 

• from the (IVP) expansion only by the 
(It) 

for X Cl) are expressed in terms of 
..... 

'V \ 

fact that solutions 

X<t\i-At) At<.<.'Y* • 
rather th~n )(0) ; in this way the scheme reinitializes 

~ 

• 
itselF 50 às ta prevent the appearance of secular terms. 

~his of course does not at aIl imply that the solu~ions 

extracted from this scheme will, in fact. converge to the • 

exact solution. Indeed, sinee the latter requires the pre. 

v10us history )(,(tl ,-:r.< t 4 0' , while the solutions of the expan-
. ; 

sioq equations (V-B-2) and (V-B-4) may be obtained from ~(O\ 

alone, it 18 elear that, for th1s simple example,~the above 

perturbation can, at best, lead to approximate solutions for ~u. 

" 
a) The Simule Uniform Non-Denee System. 

, 
The above reinitialization perturbation approach 

~ May no~ be applied to the truncation 'of the B.B.G.K.Y. 

hierarchy for particular molecular systems. L~t us for 

example. recon~3ider the uimple uniform non-dense gas by 

recalling the hicrarchY! ln the following form 

ar=- - " 
-$ + J-(J~ = [ :Ls FS+ 1 

di • (Iv -B-4) 

in powers of E. 
,f 

/ 
, 
l, 
1 
i 
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l 
, such that, co11ecting orders of E one retains 

(.) 
JCs rsl" = 'i (Ol "\Fs + c-O' SrJ+1 

;l-t, (IV-B-7-1) 

• 
(IV-B-7- k.) 

The main feature of the' reinitialization approach 

consists of integrating the above equations over a time 

intervad. ~d sUfficiently short to preserve the valid-
'" ity of the expansion. Now sinee the (IVP) scheme comple-

, tely breaks down when t->oC 'il,] , or, in dimensional terms, 

when t) 0 1: 'T'J '" 0 (À /'1/0 ).' 1 one sh ould there"f'ore restrict At 

, 1 

to values much smaller than the time interval 1(, between 

1 

collisions. With this constraint in mind, let us integra-
\., / 

te the zeroth order 'equation (IV-B-7-0) over the interval 

[t-At tJ • so as to obt~tn the fo11owing • Fs(O) So1utlon .for 

- j{s At 
ca) 

.1 Fs (x ~'; t -Id:) 
Il 

'0\ ' 
F,)'(Xs.t)= 

, \ 

Now assu~g that 1\S} <., 1'; 
/ 

for a gi,ven • ·there exists a 

(~-B-5) 

\. , 
'> 1 

~ 
1 ! 

, ' \ .. 

" 

.. 1 
1 
1 , 

t 
! 
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! + IJ 

volume V\5\ '- V{S\ in r1S \ 3pace for' which the bu.ckward 
-li .at. 

::;trewllng opcrator..t ~(Ullh"'t>'T'ul'will stream the S part-

iclc::; pcrmancntly outr:idc their mutual ran[.e of 

and correlation, one ma) then impose 
1 • " 

Bogoliubov boundary conditions 

- 3-C $ 1 .. 1: s ~_ •• 
..i Fs (lC$ ;t) = 'il 1=, CP~ (oo).·b (V-B-G) 

t~ 1 

Ai) 'Tlsl 
1 +" 

X l~\ c; VL.f~ 

St:lbsti tuting the expansi on of Fs .lnto the above equ3.-

tion and côllectine orders of E. we may then wri te "thé' 

following particular b9undary conditions required t~ de­

rive·first and second order kinetic equatian~. 

-!}{LCL,J) .. d: 
,., __ -.â ... - ~ 

..J F~ (Xi..lCJ -t):. F. CPi.(~,t) 
... ... 

, tz. ~ V(oll 

4 At> 7'( %.~ 

..... +-

X'- (; V ll.~ 

At ) 1"l~\ 

.. 

" (V-B-7) 

,~. 
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With thes; boundary conditions,. and equation 

(V-B-5), ut hand cre may th en 

o,rder solutions wh~ch s~ould 
chosen such 'th~t l'fIs,,, -<. 1". 

writç the following, zeroth 
\ -" + 

hold \for X s 6 V(s\ ' and 
( 

~ 

Ç"(O\ (ëj. i-At) 
• 1 ~ • (V-B-10) 

At {" ~ ? 

c Dl ..... _' F (01 .... -
FI (1\. (a)\,t) 1 (Pjc";!,,t) (Y-B-ll) 

X lotI Ë VtL~ 
'Y \1\ < (.'l'. 

'tol.... _ ~ -)-{,IU." 
F3 (x,.xJ,)\.,t):: ~ F,cfZ,{) F,IPJ,t)F,cP/f..,il 

"'''«1 
XI" ~ V"',3f /(Y-B-12) 

, -
'1 ''Tl 3 1«rr', 

Now since one ma~ derive a first order kinetic equation 

with 
, -" 1-1 

the knowledge of F.: CX, ,)(~. t) for '(-ktI <. {'" and that, for .. 

such a restricted domain, _"il.'f '" 6 ('T'o 1 ,-..1 0 (r.., /vo) < <. rr: 
---- - - 1 

one may th en use the solution (V-B-l1) and substitute ii 

~ into (IV-B-7-D, for $"- 1 ." ,so as to obtain the following 

first order ~equation for F. , 

(V-B-l) 

Ftlrthermorc, combining (V -B-l) und OV-B-7 -1) for S = 1 

and resorting to arguments similar to those of appendix 
tI. 

1 -
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i 
1 

, 

l J one thcn retains the familiar Boltzmann /quation 

for j,: 
~I 

1 

JB (1' ) / 
= 

dt . 
as a firs,t ol7der kinetic equa tion. \» ;4f 

1 
.~ 

Thé abOVE expansion m ay 1:)e pur::>ue~ to a higher 

-B-lJ) ('~,ver 
, 

order by first in \ egrating (V a time interval 

[t'A*,i1 1 I:lt~{r. J' so as to obtain a suitable expr~s~ion 
, 

\ c 1\ 
f r Il t· f F (1 l d o r- 1 (t - 4 ) ln te rms 0 , 1: an 

101 

F, (.{) • One can then 

integrate the first order eqMation (V-B-7-1) for s:z 1 also 
1 

over the time interval (i-At,tJ so as to derive with the 

helj of boundary conditlon (V-B-9) a suitable solution 
(,) , 

for F2. which may then:be \,ltilized to derive the second 

order Uhlenbeck and Choh [41] kinetic equation. l In sum-

mary, therefore the reinitialization scheme maY,be described 
'j 

schematically as follow. 

Rc1 ---J 

/ , 

th 
,..---4" P. CfC'def' Rinet.tt e~u.aHon 

(V-'B-7-R) 
5=1 

1 

, j~ 

. 

,. 

~ 

Intt't'qY"at lOf\ 
OV'el" 

rt-n,t), At«,r. 

Fig. V-5 

1 See appendix IIr for detail,s 

Illter'jritlon 
ovtl" 

t-.at tJ ,At ({,,; 

/' 

1 
1 
1 
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The reinitialization perturobation scheme des­

cribcd ubovc t simply involves the integ;-atio~, of th(,: 

perturbed rate equationG over a time inté~val ~t 

,vreasohably short to pre:::;erve, the validi ty .of the éxpan-
, 1 

sion yet sufficiently long to irnpoc~ reasonable boundary . . 
, , condi tions. This simple approach off~rs the advantage 

~ 

of avoiding Bogoliubov' s restr:ictive functional assump- .:, ' 
- ' tian and the previously described limitations of Harris 

>' / 

and Lewis' cQmpl~~ double ~xpan~ion of correlation func- Il,' 
tions. Fin~ily, as will be shown in chaoter VI one , , 

may apply this schéTe to non-uniform simple &ases or 
. 

mixtures which do not len~ thernsèlves to an (~ITS) expan-

sion. 

b) l, Simple Unifo,m W'eakly Coupl~d System 

Let_ us now consider the "feasitiUüt y of applylllg ~ 

the reinitiatizatio~ expansio0 to a siml~e uniform weakly 

coupled system by recaJ:ling the B.B.G .K .. :n., hierarchy in' 

the forrn of equation (IV-B-26) 
! ~ 

i.e. cJ F s + E... }{ $ hs = é -;t $ ~ + 1 

~+ 

, . 

(IV-B-26) 

and perforrning the usual expansiOO in pm'.ers of the label'­.. 
" i.e .. r=; r. le') Fft}~ + é.2, Ft,l) +< :: + é. $ . "f'. Il , 

-, $, . , 
-:Jo .... 

.... 

1- ~ 
p 

- .' 
'"1 

'" 
;; ~ .. 

", n ...... 

-, 
1 

, ...... 
1 

1 • 

,.' 
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1 -'. 

/.;;~ 

'SuC~ that ~bstit~ting ~he(abo~e equation ~nto the hie­

.,..-"" rlîr'~hy" and ,collecting order? of t.. " one retains th~. 
-, 

following pcrtu~bed equations 
'F 

(!J) 

Jf='s::. 0 (IV -B-29- 0 ) 
,. .:>t 

.' 
~ .. 

• 
"'. .... 

• . , 

, l' 

(IV-B-29-1) 
1 

, (1-1) ;l~ CIt-/) 
"'1 r Cl. 1'\ (r- ... r 
~ ~ -J"tsrs sr~ 

~t (IV -Br29- k.) 

Integrating (IV -B-29-0) over the interval ct-At, t), we ob­
\ ' 

~ 
tain th_ rdllowing trivial solution 

) .,1 
l' 

, l 

" , 
.. " 

. ,{.y-B-14) 
';1 ... 

The simplicity ~f this solution becomes, i~'fact, some-
1 . 

what disconcerting s~nce the absence of a streaming ope-

rator on the ri9ht hand s+de of (V-B-14) prevent~ us 
/ 

froll) imposing sui table bounda.t'Y c ondi ti~ons which C oUfd 

transform the S oluti on in'1;o a viable explici t. 'or impl.i-
. \ 

C1t. solut1on in tlme. Consequently, one must reluctant-
~ . 

& '1 ' .. 

ly conclude that, for,weakly coupled syst~, as defined 

in the present thcGi~, one cannot àcrive a useful kinetic 

equation via a pertu~bat1on appronch. Indeed. one would' 
... ~ t 

" 

• 

/' 

• r 

.. 

, . 



~. 
l 

( 

( . 

( 

191 

face the very same dilemna if a Bogoli ubov. OoITS) , or 

Harris and Lewis expansion 'of (IV-B-26) had becn attempt­

eh. ~n spite of this conclusion, one may find in the 1i-
\ 

terature numerous perturbation~l derivations of kinetic 

equations for uniform we~kly couplcd systems. However, 

as previously emphasized these derivations are generally 

founded on faul ty dimensi onàl analyses whi,ch dubi ,?1;ksly , 

as~ign u greater weight to the momentum streaming term 

than the re~aining ihteraction and mixing tërms, 

• Such a peculiar scaling 

could, in fact, only hold temporar~ly as the result of' 

strong initial correlations. Naturally, if one accepts , 

l/the ideas of Bogoliubov,. such correlations would be . 
forgotten when the kinet~ime establishea itself • 

• 1 C onsequently, any kinetic equàtiorl founded on 1 tJiS spe- -, 

~ ~ia~ ordering ,of terms would.seem rather suspect. 
1 

cl) .Simele,Uniform Br?wl}ian System. 

As a final illustration of the reinitia1ization 

pe~turbation m~thod for spatially uniform systems, con-

, sider the special case· of a single heayy Brownian par't-

icle eoexisting with a bath of N idcntical light p~rti­

cles. 'Par this 'purpose, let us recull· the B.B.G.K.Y. 

hierarchy for the sfngle Brownian partiele and the .full 

Liouville equation as given by cquations (rV-B-44) and 

.11 

1 

.. 

.51 

1 
f 

t 
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\ 

(IV-'B-45)" rcapectively 

cl F iO, IJ = E;l r~ 1 , li 
Ji (IV-B-44 ) 

-. 
where 

(r'v-B-46) 
.' 

,. 
'I ri 

:J-[l~ l &b. ;) 
i.=, -b 

m \II J Cft 
+ :J e ,~~ ] 0. d 

dqt cJP: /. 
a N ~ 

1r ~1' [ '1A>B"b
J J"t tN,ll =./Z!. . ~ ~ '" ;;J 

m 8 .;J9! - l.= I:tt! .;) p,"~' -"-

/ 

(IV-B-Lt7)- , 

Expanding F\s,l} , as in the pr'èv~,ous' chaptei', in-

po\ters of the label pa,rameter t and su15sti tutingl into 

(IV~~-44) and (IV-B-45) we then retain, aiter collection 
C Il\ lI() 

rOf termsl'~ the following equations for Ffo,,~ and F{N,I~ 

Il) ;t (4)\ (IV-oB-Lt9 ) , J F lo,,~ F=' 1,0/ 'l ';; 

.;) t '--
J ,! 

,n 

1 

cd' ;L (11-/) W" 

.JFlo,1j = ·F IN:I! 
~i 

I .... ~ 

" 

t. ,~ , .. \ 

... 

t 
1 f. 

1 

1 
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(.) l 10\ 

dr U-I,I\ +'}{IN,,! F'IN,11 = 0 

.;>t 

(Il '1:. I\} rr 10) 0 

~r!H,J~ + J-{ !N,'j Ç" IN,J! :. -}( iN,I! FiN ,1l 

cH 1 

._ (R) 1 UV cr ( /l-I) 

J-C IA,I~ FlN,'l -:H 10'1,'1 ~ll'l"J .;lf- {N!d + = .. 
eJt l, 

Following an outline similar to that used for the 

ITon-dense system we shall intcgrate (IV-44-0) and (ry-B-
50-a) ovûr the time interval rt-At ltl wherc At will be 

chosen as short as possible to preserve the validity 

of the following solutions 

(0\ 

= r lo,l) (-:P~ -t-Ât) (V -B-15) 

(V-B-16) 

:partiéle, we shall assume that there exis'ts a relaxati on 

time 1"'b' such that for At '7 '/10 these light particles will 
) 

have reached an equilibrium state with the larger particle. 

ln other words wc sha~ assume the following boundary con-
1 

di tion 

" 

- r1N,O!.I<IfI' r\o,l~ (PllI ,1;) 

.11) 1 .... 

1 
- f 
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r 

where ri 101 ,o} e1 denotes 'the ~q uili bri um distri buti on for 

the bath particles as defined by (IV-B-56). Now substitu-

ting the expansions for FIN,I~ and rto,l~ \ into (V-B-17) 

and cQlle~ting orders of E one then e~erees with the follow-

ing boundary condition for 
l l 

- J{ (1I,ll At -J-( 111,\) .6. i 
(Ill ..... 

".Jl FIN,I! ()(\IJ,I} ,i)" ::: ..Q. 

Consequently if we further assume that the time interval .. 
rcmain~ sufficiently short to preserve the validity 

of the expansion we may th en rewrite the zerüth order so­

lution (V-B-l&) as: 

(V-B-19) 

which simply states that, in the zeroth order approxima-

tion the bath particles may be considered in equilibrium 

with themselves and the Brownian particle although the 

latter remains in a,state of nonequilibrium. 

We may now derive a'first order kinetic equa-
(0) 

tion by intcgrating ~ lN,1} 

'" 

, 

over t~ C oorltinates and momen-

ta of all but one bath particlc GO as t~ obtain a 3uit-

able zeroth order solution for the two particle distri-
(0) r .... b ..... b .... 11 ... îI ) 

bution rtl,l\ (9"Pl.,Q"p"t • 

then obtains 

, 
Performing this integratioQ one 

\ 

, 
1 
l, 
IL " , 
", i 
l', 

\ 

1 
: 
i 
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f\I co\ 

.tl, JJ (0\ 

Ftl•,! ( F IN,lJ (X.t f'{,1\,t) '1/ cl " d p: R~.t 9, 
~ 

'" 

(V-B-20) 

where rUIO~.II~ denotes the :.1axwc~lian distribution defined 

in (IV-B?6)J. Sub8ti~u~ing (V-B-2~) into (IV-B-49-1~~­
one emerges with the following trivial kinetic equation 

(1) 

;; F tOI liA'" .:: 0 

~t (V-B-21) 
'. 

which~ as usual, shall be integrated ovcr the interval 

r.t-.t.t If. ] to yi eld 
1 

Now 

let 

and 

• 
'tV-B-22 ) 

proceéwng to the first ordùr equation for F!N,\~ 

us~integrate (Iv-tl-50-r).~ver the intcrval [t-~t ,tJ 

reJall (V-B-22) apd the boundary condition (V-B-18) 
1 

(V-B-2) 

which, after sorne manipulation may also be written as 

./ 

'4 

" , , .',''' 

\ 

1 ,. 

r" 
j 
i , 
< • 

t 
1 
1 

~ 1 " 

) 1 
l 

~I 
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~'A-t 1 

-j if (-i') Ji' . ( ri' 
" \ m, .. T -.. 

, " '1 (V-B-Z4) 

'<Where-

--JF (-i') 

1'1 N 

'- [ , JI, 
.... 1 .. [ ...... 

: ;; cP l,; f.f' (lf,~J\ :-
J J.' .A j :, 

. i} 'l,' 
. , 

\, Now 

and n\omenta 

integrating this solution over the coordinates , 
of aIl, but one, bath particles', we may thep 

exrJres"s 
Cil 

F ll,d as foLlow,: 
.. d: 

('\ -t JJ \ N 

F ll,11 :0 '{f. (-t') ~('(J1. 41 ~ "''1 
'li' J .... i J (; 't cl l' 

1 ~k J 

.- 11·1. 
i- • 

1 -) 

"\ J , ( ., 
:PV) F" 1 d, q (PIJ

, -t) • P, + 
\ Ill,KT ,. 

~ u ~ • 

• suc~ that substi tuting this sOluti,od 'into' (V-~-49-2) for F (0,1\ 

and assii;nirlg, once more, no distinction between batn 

particles we may ~hen arrive at the fOllowing rate"equation 
. " i.z) 

'\ ~ 
.for\ /' F {O,IJ 

f 

(.:1'1 

J, ( l~1j 
,,;>t 

,,' ~ 

1 (V-B-26) 

). ' 

";. 

.'5 
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\ 

Finally sinee.ü must be chosen l'arger than the' time 

required for the bath particles to reaeh an equili~~um\ 

with the Br~wnian particle, wnich is charo..cterized by a 

much longer relaxation time , 1'8 1 it would seem reasor-

able to also assume that the.autocorrelation'function 

(IT.fF (-t') should become vanishingly small for t 1 ) 1"a. 

Consequently, with th1s further assumption one may rewrite 
1+ 

. (V -13-26) as 

p. 
o 

1 

where 
(V-B-27) 

Consequently combining this equation with tne lower order 

equations (V-B-21) ànd (IV-B-49-0) one emerges with the 

fol1owing kinetic equation 

~{O"j J F. 'P. ( F lo,I\) +0\:,[.3J ~ 
dt '\ 

J n', =- 1,. ~ [ -~ :PI~l ,- p. of ~ 
~ ( 

J -'" 1 ., mlleT P, 

which is. of course, the weIl known Fokker Planck equa-
\ , 

tian for Drownian Motion/, 
/li l 1 

SOMMARY AND CONLUSIONS 

This chapter has revlewed sorne of the a1ternate 

Ir, perturbat::t"on schernes whlch have b~en used in the past ta 
1 ) 

1 

( 
,. 

\ 

\ 

, 

l, 
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derive non divergent kinetic equations. 1 It has also deve-

/ 
subtle ambiguities encountered in these earlier methods. 

.. 1 
1 

In this review, three particular approaches have~be~n con-

sidered: BOgOlfUbOV' s functional exoansion ~I '}2 1, Frieman' s 

multiple time scale (MTS) perturbation scheme 1241 and 

finally Lewis and Harris' time expansion method 1391 
1 

Furthermore~for the sake of illustration, each technique 
If' 

has been a:pplied to the simple spat-ially uniform non-den'se 

./ system. 
~/ 

1 

1 1 

The Bogoliubov,approach rests on the assumption 

that for t » (~/J, , F~ (H,l) be<:j.rs a tirne d
4

ependence onlY 
, 

through a functional dependence on ~,'and hinges, in'its 

derivation of the Boltzmann equation, on th~ bound~:ry con-

dition -}{"T ,-:1<.11 
J. ~.t (X~)XjJF,) =..L,."..A- r:, (p~li) I=")CPilt) 

'f-rtIIJ (V-C-l) 

The. MTS expansion, on the other hand,' replaces the real 

time t by a set of progressively slowe!" time scales io.t"i:.a"· , 
~ 

where' t = i. · t, lE. .: L./!.1.. • 
, 

(V-C-2) 

and derives the Boltzmann equation on the slow t., scale, 1 
o 

, 

. 
<o''''~''_ ~-""''''''''_W:''' - ....... , ~_'.."."..,. ...... .-.-~~ M-
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1 

by impasinr; an the fast 1:.
0 

scale the Bound:lI'',' condi tian
l 

u 

(V-C-3) 

and setting to zero the sum of aIl terms~rowln~ lincarly 

wi'th to ,u,: _.to-l' Q) in the solution for 1='", • The 
/ 

strength of'both of these expansion methods would seem ta 

'" rest on the added flexibility alloted by the introduction 

of auxiliary time variables éuch as ~ in th~ Bogoli~bov 

approach'and tOlt , ... in the MTS method. \.,rhereas in the 
o 

J 

former eXpanGiq~the arbitrary indepéndcnt time variable -r 
allows one to seek a particular boundary rondition in the 

limit '1~GO vJithout naturally imposing a simiÙl.r 11mit in f-

\ 
the real time t, the discrete set of time scales in t'Je 

latter approach allows the derivation of a kinetic equation ~ 

on a slow time scale through the elimination of secular 

terms on n fUGter t1mc seule. Unfortunat(~lv, t<!JC;;C aux1-
" 

liary time seales also carry wlth th~m a certain level of 

arbitrariness and at times~ a definltc degree of\inc~nsis­

tency. For example the particulàr ehoice by Bogollubov of 

the limi t rr ... CI) 

... 
one not only of 

in the boundary condition (V-C-l) reprcsentn 
~ ,. 

l_nsight ;~t of convenience. Inqeed J ar. 

------
l This.boundarv condition has oocasionallv been renla­

ced by the 1nltfàl cond1tïon on the to time scale [25J. 

'l' ,.\ 

FJ. (Xi IX~ I~:i) 

\ 

1 

1 
JI 

1 

-t 
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first notcd by Cohen and Berlin (23) the ~eerrtlY equ:lJ ly 

plausible aÜ0umption that 

-J-{.:r(~J)'r _){.:r lt. J )1'" 

ç' ~ (( ... ,xJ 1 F,)-· ~ .i- F. (PL. i) F, ( pj .1:) , 
(V-C-4) 

leads to a so-called "antl:-Boltzmann" characteri::;ed h.v a 

negatlve collisl..on term.jlld a time evolution wit~ decreas-

1ng entropy. Such an eC]uation, wlth itsoirreversitbil,Lty 

seemlngly pointing the "wrong way", could also be extracted 

from the MTS scheme by imposing the seemingly rca:::;onable 

boundary condition 

-)-{4(I.J)io 
,., f" 

..IL J:'; ( p", 0, t"t.d r, (PJ l "1 t" t~) 

.1' 
~... ,,'" (V-C-5) . 

and eliminatine; seeular tcrms appcaring ln the l1mt t.~-co 

Furthermore, due to'equation CV-C-2) relating the variou:::; 
, 

time scales with themselves and the real time one cannot, 

strictly speaking, consider such variables as ind9pendent .. 
and conr.equen t ly take a limi t to JI ~ <D W t thout i mJ11 vtnp; Glml-

< • 

1ar lirn1 tG on il , t2,' .•. 
. 

Flnally, in termsiof po~s1ble appli-

cationn, the ~'.rS appronch suffer:> from the faei that.. kinetlc 
{ 

equationn erncrgc only 1f the exact form of the ~ecula~ tcrmn 
, 

on the fast time scale may be derived. Unfortunately, r.lnce 

such.a tank bccornes extrcmely difflcult in the caGe'of n non 

unlform system, the derivation of kinetic cquntion~, u~1ng 

1 
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has generally been restricted to uniform (or 
1 

quas"un"form) systems. 

It has become quite evident sinee the development 

of the Bogoliubov and MTS expansions that such methods re-

/main in their mathematical form incornp)Jete wi thout a pr~er' 

interpreta~ion of the assum~tions and auxiliary time scales 
\ 

involved. Hence, as ~ill be discussed,shortly, the resolu-

tian of the inconsistencies mentioned above lies beyond their 

detailed mathematical manipulat~ons lnto what WB shall very 

loosely refer to as their inherent "physical spiri tOI • .. In 

fact i t was presumably in the hope of clarifying this "physi-

c~ spiri tIf of th~~~ schemes that Le\'lis" and Harris pre-

sented an alternate derivation of kinetic equations for non­

dense systems which they believed ta be "physically more 

transparent than other méthods." The Lewis anu Harris scheme 

essentially: consisted o{expr:ssing the s particle distribu- -

tion in terms of correlation functions and performing a double . ~ , 

expan~n in density and time on the B.B.G.K.Y. hierarchy . 

Without reviewing the detailéd descriPtiIn of this method, , " . . 
whieh is included in the main text of tn S ehafter, suffiee 

it ta say that, due to the complex form these correlation 

funct10ns g1ve to the B.B.G.K.Y. hlerarchy, along w1th the 

c~mbersome double expansion, the Lewis and Harris approach 

does not represent, i in mathematic'al teras, the sirnplest me­

thod of deriving kinetic equations. Fur1hermore, due,to the 
," .., 

, 1 

( 

1 

"y 

" l " 

1 , 
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(', 

intricate form of the hi~her level correlation ~unctions such 
'-' ... ~<J 

if' .t-""4~ 

a method would not lend its~1~ very well, for example, to 
, . ; 

the study of Brownian motion involving the simultaneous in-

teraction between a large number of pa'l'ticles. Nevertheless 

the joint use of the correlation funetions and ~he additional 

time expansion inherently allows one, for \(\11 < fo , to limi t 
. ,~/ 

all time integrations over a time mueh shorter than INo thus 

avoiding the sec~lar terms eneountered in the IVP seheme 

without artificiall? introQucing auxiliary time variables as 

in the Bogoliubov ahâ MTS methods. It is in faet this aspeot 

of limiting the range of the time integration whieh suggests 
, 1 

an alternate mathematically simple and physieal~y clear exten-

sion of the IVP scheme leading to a straightforward truncation 
~ . 

of the B.B.G.K.Y. hierarchYI whieh we shall now diseuss. 

The breakdown of the 'IVP. when applied to a unif orm 
). 

non-?ense system for t""o['(,J""'o[~,w.l. would S'uggest an alternate 

àcheme in whieh integrals would be performed over a time in­

terval of IJ. t <.( 'r. 50 as ta main tain reêliSonable accuraey yet 

as ta impose suitable boundary con-

ditions. With sueh an approach one then write the zeroth 

order solutions for F, and F L as': 
101 ... lI)' 

Ç, q;, , t l :: r ( p &. , t·" t) ; .d (V-C-6) 

, _ ){.tllJ).Qt \ 

'I! ... l F "" - - t"'" ç: (-'x '1.,1.):: J.. • ('x,.)C. •• t-6~i,d <'\ Il,, 
" \ 1 .. .. 

(V-C-7f 

and impose. for , the follo~ boundary conditionl 

-, • • '" ___ ~ _4-. , __ 
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rJ:f.z h,J)~t 
~ F.z (X.,x J ,il .:: 
A1 » 'II> 

1 

H enee selee ting 'If> < < A t ~ < ri, 

the familiar zcroth' arder solution 

(v-c-8) 

one then emerGes with 

I.l -}{.z (i,J) '1' 
F.t (i; X

J 
i:) ~ L .J. F. Cp\,{)'j:", cPJ,tl (V-C-9) 

" 'r-r«J 

and the weIl known Bol'tzmann equation for F",. In this method 

the initial conditions in the IVP scheme are substituted by 

'" 

reasonable boundary conditions and each equation is integrated 

over a short time L t-At ,i li rather than the full~time in­

terval [0 ,i ] so as ta tonstantly reini tialiZp the system. 

Furthermore the time interval .d i in. the method of "reini tia­

lization" represents a real time ~nterval which is carefully 

~hosen so as ka o;timize the eventu~l solution. The criteria 
. .. 

for such an optimization are also eonceptually quite clear 

sinee one wished, on one hand, to minimize ~t ta a val~e much 

shorter than T, ' 
. 

sa as ta maximize the accuracy of the ap-

.proximate equations (V-C-6) and (V-Cri) and, on, the other 
, 

hand , maintain ~t suffièientl~ larg~allow the interaeting 

~articles t~ ~ec ouple and, hence 1 'u~_ela te under the back­
-l-l .. (LJ) ..!l.t 

ward s treaming opera tian ..A. l t ls ~n fact these 

Icriteria for op:imization which prevent one from writi1g the 

solution (V j C-6) and(V-C-7) in the forml 

(V-C-IO) 
.. 

CV -C-ll) 

- , 

i 
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and derive the alternate solution: 

,~ -'H,lI 'i 
i=".t (Xc, xj l' t) ., k J. F:-, ( Pl ,t) F,C PJ ' t) 

~ . 

, , 

rr~-a;, (V -C-12) 

which would re~ult in the infamous anti-Boltzmann equation. 
l ' , 

One may fully appreciate this fact by reviewing tliiL. e'ffect 
II/ -X"tU) ",t ," 

Î ~ ..... 
of the backward streaming operatD~ .1 on r.t{X~IXJ-,t) 

~ 
for and all real -vaiues of ~ t 

'J 

V 
At<.o 

ILlb)} T, 

(no co~elation) 

D 

Transition~ 

IV 
) 

regime )~ 
.,t(O I! 

IALJ .... o (1';J 

Fig. v-6 

( 

II ~ 

l 
dt» 'T, 

Pre-collision: 
(no correlation)1 

BOLTZfwlANN 
EQUATION 

l~tI ~ 0 ['10] ~ __ 

Spatial correlatio~ 

Post- coHision 
momentum correlation 
~t.(O,~'«14t., <<..'ij 

l ' 

~s illustrated in figure V-6 there exists for the full r~nge 

of At fi ve domains of iriteres t. Wh en At) > 't, 
-H" (i.j) Ai: 

tor JI 1 streams the particle l. and J 

. 
, the opera-

outside their 
..r • 

mutual range of interaction into a pre-collision configuration • 

In such a state, one may reasonably assgn~ a complete lac~ 

of correlation betwe~n the positions and momenta of the two 
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",' 

particles and hence impose the,boundary condition (V-C-8) 

which will result in the Boltzmann.kinetic equations, On the , 

operator once again streams the particles 

outside their JIlU tuai range of interac ti on but this time in a 

state of post-collision. As suggestedl by Cohen and BerlinL23J .. 
, 

one must assume, in such a configuration, the existence-of 

rnomeoturn correlations between these two particles', HenceJ 

for this case the use bf'the f,orward boundary conditionl 
1 '.. ' 

H.:a t l J lAt ){. ( LJ ) rr 
J.. F~(X",XJlt):::1--...t F.<pl,t)r,\p"t) 

'Ï--r «J 

"fa Ü .â·b < 1"'; 

in the reinitialization approach ta derive anti-Boltzmann 

equation would seern invalid, The above reasoning would of 

course break down if, as suggested by Cohen a~d Berlin, two 

molecules were in f~ct very peculiarly correlated prior to 

their collision that their subsequent interaction would re- , 

suIt in a post-collision uncorrelated state. Such an event 

would, for exa~ple, happen if t~e motion of the individu~l 

particles were at sorne time reversed in direction such that 

correlation~ created in the forward collision would once 

again vanish after the reverse encounter, Naturally, as 

first nord by Losc[hmidt. if sU'ch a reversaI of motion should 

oceur one would indeed expect the system to display an irre­

vers~lity which, from oJr experience, is proceed1ng the' 

"wrong way" • Confronted w~ th such a possibili ty let us simply 

• 
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follow Boltzmann and hope th~t such a reversal of motion 

is highly improbable and 8uggest that the seJond law of 

thermodynnmics represents one of high probabili t:9" ra tlter than 

of certainty •... Pursuing in o~r analysis of the possible 

domains in fig. (V-6) let us now consider the particular 

, choice of il t {o wi th 
-'H,ldPt 

the operator 3 

l.ôt.l) rr: In this case 

not only st,reams ,the partieles 

-forward outside of their mutual,range of interaction but 
1 

displaces them wi th a separation much larger than' the"dmean 

free path of th~ gas. Beeause of the pres~ce of other-mole­

cules one can hardI y c~nsider ~he resulting configuration as 
1 1 

one of post-collision sinee in the real system i~ i8 highly 
, . 

improbable ,that particles in such,a state actually intlftacted 

in their r'ecent pasto Consequently for !lt(O, l.dt.l »'1r 
one c ould justifiably lirnpose the bou'ndar:y condJjti on 1 

• J{,lT 

.t F, (PL 1 t \ r, (PJ 1 f) 

, (V-C-l)} 

However,'since the IVP scheme cornpletely breaks down for such 
~ 

large values of , the a1:rov,e forward boundary conq.i tion 

cannot be used in the solution '(V-C-ll), valid only for 

1 .id: \ (<. ", ta render an anti-Boltzrnann equation. Final-

lY,since the regions 14tl~oC"'.1 (II) and ,,1<0 , lAt l ""OC'I.] (III) 
1 

do not represent proper doma~ns for the existence 0$ suitable 

boundary conditions which would allow one to express F~ as a 
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funetional of F, ,we thus eonelude from figure v-6 and the 

range of validity of the reinitialized solution (V-C-6) that, 

at "the ;z.ero·~h order of t~e expansion. the domain 'i';,<-<.Ai.({ 1. 
leading to the Boltzmann equations represents the optimal 

1 

ehoiee in the expansion. 
'\-' 

It would appear that the restriction tilt, J...J... 1-; 

irtspired by the breakdown of the IVP seheme not only allows 

the derivation of non seeular kinetie equations but also in­

dieates the~proper choiee of boundary conditions. We should 

also note that this limitation on the mag~itude o~ At is also 

" implied by the nondimensionalization performed in Chapter III 

of the present thesis sinee the results of that analysis es-.. 
sentiall~ indieate that the mixing term of the B.B.G.K.Y. 

hierarchy is only dominated , on the average, 'by the remaining , 

~omentum convection and interaction terms over a physical 

volume Hence any solution , 
-X,,<d)At 

'-f.;t <'t,xl,t) = Jl Fz. (X\IXJï~- ... d) 

of the form: 

should restrict itself to time intervals sufficiently short 

~o prev~nt the operator 
~'}{.tU.l)At 

~ from str~aming the par-

ticles outside this volume. 

ments suggest a limitation 

Consequently the scaling argu­
i -1- r.-' A 1. -<" 3rm 111., -< <. l, Wi,th the 

,above simple expansion method which eompletèly avoids the 

artificial introduction of auxiliary time variables we may 

now attempt to interpret sorne of the ambiguities encountered 

in tne Bogoliubov and MTS schemes. We reeal~ that due to the 

l 

• 
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equation (V-C-2) 

t "" t. 0 ':: t IlE. = t',t Il. ~ = 
re],atine; the tirne scales 1:"1 i, 1'" 

(~-C-2 ) 

to themselves and the 

real time,it becornes mathem~tically inconsistent ta treat 

these variables as truly indep~dent and impose a limi t 1: 0 -+ 00 

without i~posing a si~ilar limrt on the remaining tirne scales. 

For this reason sa~e authors[26] have opteè to treat the 

independence of the various time scales as an approximation 

which becornes quité adequate if one remains reasonably close 

to the~PhYSiCal lin~'defined by equation (V-C-2). Now sinee 

this latter equation states that if the real and fast time 

seales t and to are scaled on a uni t of time. '10 ' 

the slower time t, should consequently scale itself on a f 

,.,... /lo / 1'l1....ÎE:2 [ À 1 _ n--I fI 
longer tirne ! /0 =l, 1"'-'0"'" Nu "'0 A10 - li. it would then 

follow that to remain reasonably close tb the "physical Hne" :-.",\ 1 
any limi t to ~ 00 should really bear the physical interpreta-

ti on t ...... 'Ïœ ~here Hence the aùxiliary 

tirne variable to in the MTS scheme would seem to play the 

same role and be~r the same restrictions in magnitude as the 

time interva14T in the reini tialization approach: Wi th thisl 

interpretation the MTS scherne then bec ornes exempt,from the 

possibility qf deriving the intriguing yet embarrassing anti­

Boltzmann equation. Similarly, by pure comparison of the 

mathematical forro between the Bogoliubov and the reinitiali­

z.ation scheme one could tentatively argue that th,e auxiliary 
'!-

'." 

1 

! 
i 

1 
(J, 

1 

, \ 

l ' 

" 

1 

t 
1 
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time scale i~ the former scheme and the time interval At in the 

latter share a close resemblance in raIes. Howeve~, there , 

does not exist in the Bogoliubov approQch any mathematical 
1 

reasons for restricting the magnitude of T wi thin the range ( 
J 

and hence l imi t ... '/..., - 00 which 

leads to the anti-Boltzmann 

avoid )th'e 

equa{tion. Indeed if any restric-

ti on exi s ts i t can only be found in the "spiri t lt of the as-

sumptions of Bogaliubov suggesting~the occurrence of two 

qis tinc t time scales, one which is dynamic, r-- 0 [~J 
~ 

, govern-

ing the' early development of l='s (~ll{) n,z' and the other kinetic 

."" 0 ( t .. ] which paces the evolution o~ F, and the la ter" 
.... 

FIS 0< ri FI) Consequently if one identifies rr' 
~ ~ 

,development of 

as the dynamic time variable, the limi tatian \ 'T l ,,-<. rr; 
J-~WOUld follow and the possi bili ty of a 1'orward boundary C on-

.. dition and an anti-Boltzmann equation wauld seem ta have been\ 

intuijively eliminated • 
• 

) " In Appendix III we have pursued the reini tialization 

expansion to derive a second order kinetic equation which -was 

initi;lly obtained by Chah[16] using a Bogoliubov perturbation , 

scheme. The deri va ti on of such an eq ua ti on èssen tially re- \, 

quires a first order solution for I='.z. whic!). is in turn expres-
\ 

sed in terms of a zeroth order S olu tl on for F3 Unfortunately 
.J 

one notes that, ovér a physical volume I f
3

<.<.VI (\ >..; , a boun-

dary condition of the typel 
_ )-{I(~I-')At 

..R." ~J (t,Xl XLi) = ~ 
~d: ) '/ ® "-"NJO 

(i' 

- }{J (l.J (\ '1 

.R.- F, (f L t.l p. (PJ • t) ÇH P If 1 t ) 

(V-C-14 ) 

\.. .. , 

I~ 

Il 
1 
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\ \ 

" 'which one requires for zeroth order J' part~c~e distribution 
\' 

cannot bê im~os~ d -for a time Tf&) 1..< 'Y, Indeeej, as 

noted by Coh n 1J fnd others [ 26 l, and illustrated in figure 

~-6 there eXlsts orifigurations for which the complete set 

C of revirse interac ons occur over a pa th much larg.er than the 
..,j h mean rr~~ pat . , to 

~ 
1\. 
A ~ t 

-....J 

e.; 
,J 

~ 
1 ' " , .. 

'" Fig. v-6 
,. , ) 

Consequent1y in the reinitia1ization scheme which attempts to 

minimize the ti'me interval of integration and exp1icitly .. 
) 

,'1 r .1t >,0 [1:1 prohibits any ~o reas'onable optimal choice for i . 
,-

" 
. this interval exists. As a compromise "One ls theref<ore forced 

-' to limi t tl'~7 range of integration over xI( 
,,) 

in the Fz s olu"t~on 
" 

to'the phase volu~e where the boun~ary condition (V-C-14) may 
< 

be applied for a At. <J.. i Natura~ly this procedure which 

i~n~res the domain"for which we have no accurate solution for 
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( ~~~" 
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" . 

( 

r;'~ strives on the hQpe that the error cOY'lr:'li tted rem:lins 

minimal. 
,-

The expansion m1.thod dcscribed ubove has also been 

applied to the uniform weakly coupled system which, for rea­

sons given in Chapter III, ls charac\èrized by the simi~~rl,: 
small contributions from the mom~ntum convection, interdction 

and mixing tcrmS""in its B.B.G.K.Y. -hierarchy. Consequently 

a simple expansion neglecting these terms at the zeroth order 
/ ., 

yields the following trivial equation for rs ' 
u) 

''J ;>F~ :: 0 

;Jt 

or • F$(Xs,i):: i="s exJ,t-At) 
1 

Clea;lY~ with no operator in the a'pove solution to stream the 

particles. outside th~1r rnutual range of interaction and cor-
{ 

relation we cannot in this ca~f? ~ for any choice of A t 
... 

find an explici t solution for r.%,. in terms of ri \ 

Conse-

qùently we f~nd ourse\ves unable ta derive a suitable kinetic 

~
uationLfor thi~ syst~ via a perturbation appr@ach. Indeed 

th the ordering of terrns suggested in Chapter III, other . 
'1 

me~hods incl~ding the Bogoliubov-_nd MTS perturbation schemes 

~Uld lead ~o ~h~ same disappo~nting conclusion. 
tiY' , 1 

Finally, we have considered in the present chapter 

the case of ~rownian motion for which, 'as previously'Stated, 

we assu~e the root ps ratio ~ == !r;.~ between the light 1 \,) 

pat,h part~cles and _h.eav~ c,tn SinGlctl Brownian pa~ticle. to dic­

tate t~ relative magni;ude of the verious terms in the dimen-, 

1 

\, 

J ' 
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sionless Liouville e~uation for the e~mplete system and the ' 
",~ 

B.B.G.K.Y. hi~verni?e the sinele Brownian particle 
#1 ' 

distribution r. (;5'8, i) By so doing aIl terms a~sèeiated 
1 

with the motion of the heavy Brownian particle are negle~ted 

at the zeroth order of the expansion. Consequently we have 

at the zeroth ~rder for the full N(b)+ltf 

F tN.I! ( )( '''',.,11" i ) the f 011 owing 

partiele distribu-

tion equation: 
,~ l (~ 

;J 1="("",,\ +- J-C r=- 111111 = 0 __ \N." t 

1 ;> t: 
with the solution expressed 

~ 

(V-C-16) 

1 

where }flll,,; represents tl1e ·HamiltoniaA operator of the N bath 

particles inter~ting with themselves and ihè heavy Brownian 
r 

• ~ -}{t ll ,!/ 1 • 

partlc\e and, consequently, ~ streams these llght par-

ticles baek in time' witQout operating on the coordinates or 
lM \ 

momentum of the heavy Br~wnian particle. Now we recall from 
l , 

the di~cussions in the Chapter III that this particular expan-
~ 

sion is, in many ways, Blind sinee we do not know over what 

space, if any. our assumption regarding the 

relative weight of the variou8 terms in the'governing equation . ' 

remains valide We do know however )hat the initi~l v~lue ex­

pa~sion does yield divergent solutions and, hence, eventu~y 

completely breaks down. l t would therefore seem rea,sonable te 

seek a sui table boundary condi tion which would Yiel\_I~ explic.i,. t 

\.. ~ 

.... \ 
1. 

~ ~" 

o 
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) 1/ 
solution for 1='\1<1,1) 'as a functional of ri while keeping the 

time in terval Al: ,t"l a minimtrin. Wi th this goal in mind we 

have 'assumed that there e~ists a time ~ much shorter than 

the relaxation time ~ of the slow Brownian particle, durihg 

which the bath partic1es reach an equi1ibrium with themselves 
/ 

and the ~rownian particle. By thus assu~ing that 

- }{ :Hdl At ~ ~ ~ 
r 14 , .....'.... ( 8) 

~ 1'"\"',1) (XtNlll,1.\"~N.ol(X").,~o.11(P~i> V-C-l 

., 

ohe obtains a solution for FLN,. ~ which results in a kinetic 

equation for ~ As this latter equation is éonvergent and 
\ 

bears the forro of the weIl known 'R9kker-Planèk equati~n com~ 

monl~ an~succesSfullY used to describe B~ownian 

then c~lude that our approach. in spite of its • 
does yield ~ reasona~le resûlt. 

1 

"'''·_-~t'Uit t"'l1 :1., ........ '-'''tw.-ni • t Il 1 !_., ." Il. 
. ':.. l 'J. ~/ . . ", 

li ,< 

motion, we , 

limitations, 

'1 

, , 

• 

.1 •• 

'1 
) 

1 
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• CHAPTEH VI 

DERIVA'l'TON OF KINETIC QUArTONS FOR NON-UNIP'ORr.1 mXTURES 

The, previ DUS chapter has j llustrated sorne of the 

main features of the reini tialization expansion by apply­

ing this technique to very simple molecular systems. 

Tt would now seem appropriate ,1 in llrder ta fully appre­

ciate the sCape, and limitations, of this approach, to pro-

be in1!o slightly ~re camplex and general molecular mixt-

1 ures. For this purpose, let us, then, recori~ider the 

non-uniform, non-dense, and 
~ 

Brownian mixtures pre-:-

viously defined in the third chapter of the present thesis. 

A. NON-UNIFORM NON-DENSE MIXTURES 

-1 The non-unifarm, non-dense mixture. we rec~ll. 

can~e described by the dimens~nies1 B.B.G.K.Y. hiera~~ 
chy (III-C-52), which may aiso ~itten ass 

il- ~ * ho ( :r ~ 1l~) *! ~hi l )\ts~ I t ) + J-C h \ + J-{::l F"jSl 
/ èHt· . • 

where 

( 

- 21~ -

, 
• 

(VI-A-l) 

/ 

:' ~' /"':"'-;;'-1-
\ ~. ~ ~,~ ~~ .. ~ ,'"'>'" :~~ ~ .. 
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,-
.... * JI-

d=rt~~~1 d P:~+l 
(VI-A-4) 

i 

(VI-~-5) 

dimensional arguments of chapter IiI in-

v7'1 ~. 
VISl/" 3 •• 

(VI-A-6 ) 

"': 'î/([(YIoI,KT) , 
." 

"' .. 

J 

J 
L .. 
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one has, for a non-den&e system 

:JI- eiB 
t ~ {Sj .{ { 1 

and 

/ 

( 

Furthermore 1 if the ext~'rnal field ln weak 1 one may also 

assume that 

Consequently, writing (VI-A-l) in the more convenient 

dimensional forrn 

(VI-A-7) 

where 
P\ ~"" M s~ 1'1 '. ! IL . J - r [ [[ J~:~ . J Htsi 

.. ~ 
E.: ... , \ ~, ~~ -'111 L~IIJ.' .Jt.1 --::- --::::r:-

f\ s. m", d ~ ~ d q~ .J 13; (VI-A-8) 

J[ ~S\ ,,-IL ~ u"< .J 
., .. , i:. ~_ --:r. 

~ ~~ d p; (VI-A-9) 

1.,C( (j ,. 
.s~ 

lN,.~,[ 5) 7 ..1/1 J"''' p ~ -... ~ J dh,sl1~J .d ~"" f'" 5",+\ d t'.,~+ 1 
i~1 d---" J.~ (VI-A-1O) 

9" PI. ., 

/ 

we will attempt. as in the aimplé 'uniform GYs~cml trie 

following ex~ansion in powers of' the label paramctic E 

r 

'" 

11 

, 
l' 
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1. e. 

(VI-A-ll) 

Substi tuting (VI-A-11) into (VI-A-7) and c Ol.lec:il orde~s 
" of [ , one then obtaim:: the fol1owing set of rate equation3 " 

(VI-A-12-0) 

" 'II) l'li) 

.) rlS~ .. J-C 1S\ F tsj 

dt 

(VI-A-12-

Let us now proceed wi th the reini tia1izati on apP,roach and 

integrate the above equations over a time interval At 

much shorter than the' mean time between c 011i,,8i ons 'T'; 

At the zerotn order, this integration yields 

(VI-A-lJ) 

1 
Furthermore, assuming, as in the previous chapter, th~t' 

./ + 
for a gi ven 'riS} < < '1. , there exh:ts a volume \I\S~ co V \s,} 

in riS! ~;ace for which the backward s1reamin~' ope;~to1;" 
will stream the $ particles Ipermanently outside of 

their mutual ~ange of interacti on and. corre1ati ory, Vie 

1 

J' 

.... 
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(' 
May then impose the boundary -conqitions 

(V~-A-14) 

Substituting (VI-A:11) 'into (VI-A-14) and co1-

lecting orders ,of E one then obtains :the following part-
(0) , (0)' 

conditions for F tc.,oC.jj ,~! ' F l L ,O<:)J,t3j R.,~j 

and 

1 
j 

1 
t 
i 

1 i,", .. ,;,6/ '" ~ +l');/''l , Ai>, 'f"t'f j ,4j (VI-A-17l 

Combining (VI-A-15) and (VI-A-16) wi"\ih (VI-A-14) 'Ile then 

emerge with the following zeroth order solutions 

• • 
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( 1 
(VI-A-18) 

1 " 

'(VI-A-19) 

( 0) 

F lL'"',J,4J I!,Y~ (Xll,et,j,B,~lIli) =__ \ 

/' 

( 

, (0) (0).... fo) 

i Fü,-:~ (X/L,~j,{) ~ iJ,sJ(XU,.B~It) ÇiIU'~ (X/~.;rL{) 
X V+ ri t rr h,o(IJ,.6',k,.v\ E i~,"',JI/,It.l'J; Ih,-..J,8,R.tj «A « Il 

(VI-~-20) • 
-

Now, since we may derive a first arder ki~etic equa-
(0\ --.8 :ro{~.f:. r ft .l 

ti on wi th only the knowledge of ~tlla(.,j,4! for 1 rd 1 < ( Nol f ] ""0 [ rJ 

we may.l fo~ this restrlcted domain, where 1'tl.'o{/J/Gjtvot
r/ll1o] 

,...J 0 [ 1"'0 J 1 rewrite (VI-A-19) as 

(0) ..... 
., 

Fll,o( J J ,,If { ( X h ,0( 1 j S ~ • t) ::: 

1 1 

" 

( 
\ 
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CV-A-22) 

in equation (VI-A-2l) represent the coordinates and momenta 

of particles {l,c( 1 and l JI dl after they have been streamed 
}{~~O(\At 

forward, in the absence of any intéracti on 1 by J." 1 

H," B~ LI t 1 and ~ h respectively, and streamed back" in time, 
'1" -Hfl.a( J BS At 

wi th a mutual interacti on..R 1 • 1 For 

.... 0( /3 '1 -t tl ft) (, , the final outcome of thece streaming opera-

tions becomes independent of At' , f or Il t >'l '10 Jo 

CopsequentlY one may write the zeroth order solution for 

F "( as: lL,c(,J,G l 

:Furthermor;e sinee 

){ ~ ",i) At .. t 
~ l'Il :: 

we then have 

-" -< 
il"" 1>~ (co) ,. 

rJ .4 e..,.o 
..... 0 

• ,,{t-,li (CID ) 
.dt~'" 

,such that 

(VI-A-2J) 

(VI-A-24) 

a 
(VI-A-25) 

.. '" 
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. 
(VI-A-26) 

, ' 1 

Substituting this last equation into (VI-A-12-1) 

;,. 

/ 

.. l' 
Il 

1 t 

1 

( l \) 

one then obtn.ins the .fo11owing rate equation for Fhlll\~ Cq~,p~ ,f) . 

(VI-A-27) 

Which, when combined with the zeroth order rate equation 

(VI-A-1!2-0) and_the expansion (YI-A-11), renders the fallaw­

ing set of eoupled first arder kinetic equatians for 
\ 

r1 

L 
-c" 1 

/ 

(Vr-A-28) 

Now, oinee the right hand si de Qi (VI-A-28) vanish-

es for 

,.1 
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( 

one may simplify this equation by neglecting ~he variation 
/' " 

o( the single particle distributions over a le~gth scale 

L 1: • 
... 0 ['(" 1 . Consequently, Lf one assumes moderate spa-

tial nonuniformities, one may rewrite cquation (VI-A-28) 

as 
l rr 

+ ( }{j(,oc~ f'}[ ~~I~J) ftr/ojj 
j 

(VI-A-29' . , 

. 
wfftch, u in,g arguments similar to those found in appendi:t 

l 1 may be reduced tJrthe fOllowing Bol~zmann form 

" j 
(VI-A-JO) 

-1 

1 
1 ~ and (VI-A~J2) .. 

The -abov~ kinet~c equations (VI-A-28) and (VI~A-3D) 
"-

for non~uniform non-dense mixt~rés could, of course, have 

, 
/' 
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been derived with other expansion methods than the rein-

itialization technique p~esented here. Braun, Flores 
1. • 

and Garcia-Colin [34J have'treated non-uniform non-dense 

binary mixtvres using a Bogoliubov func~onal, expansi~n, ~ 

wi th Slightiy modified bounolary condi tions. , Lewis and 
A 

Harris[39] have alS6--' presentedj an expa'nsicon for simple non-

uniform, non-dense syste~hich would certainly be ex-

tended to include-mïxtures. As previously mentio~eft ho-
.... 

weYer, the simple reini tialization appr"oach doës offet' 
1 

the advaptage of avoiding the funciional assumption of 

the Bogoliubov scheme and the mathematical complexitT 

of the Lewis and Harris approach. 

B. NON-UNIFORM BROW~IAN MIXTURES 

Le~us 'now consider, as a final example of this 
---~-

t~SiS, a n~5..form mixture of Brownian particles inter:'" .. 
acting with a weak external'field and coexisting with a 

bath of light particles which ~re free from any exterp­

ally irn.posedf~e field. If species cI.=-MD, •.• M repre-

sent the Brownian particl~s" while species' oC;:;/. 11,-1 de-' 

note the light bath partièles, the dimensionless Liou­

ville equation (lI-C-J7) may be writtcn ~P the follow­

ing form 

\ 

, . 

'r , 

• 
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) 
S~milariLY the B.B.G.K~~. 

'distribution r t N,] of all the 

(VI-B-l) 

(VI-B-2 )_ 

~/ 

'(VI;",B-4 ) 
, "-

~quation gQve?ning the 

Brownian parti.cÎ\s mly 

1 1 

, 
o J 

1 
1 

_1 __ -' 
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" y 

" '. 
where 

'10.1 ~ v )...0( J U e{ .. ~ - . -" .. 
~ q~ ,.') p~ 

" (VI':'B-7) 

/ 

and 
, 

~ JJ 
t.:' 

(VI-B-8 ) 
... 1 

'\ 
\ 

"l 

j f . . 

) 
" ",~,! "";;' , . fi 1 

Let us now assume that '\ rel ,.... or~4J ""o[x"tJ"'oc~OJ 
« j. for cl. ,t3 • Md '. . M • and rewrite the above " ... 

dimen~onless Liouville and B.B.G.K.Y. equations in the 

fol1owing convenlent dimensional form 

, 

fi 

, 
{ 

l ' 

~; , 
1 

... l 

.. u~ 
J 11_"'P',' .. , •• r~ ;. 

" 
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, . , 

:r 71 ~}-(1JL] I="tN~ = 0 + [}{ +é Hl.tH4' [ hl\ , \1'4\ , 

(Vl-B-lO) 

( 

8", ...!:.11 0 (VI-B-ll) _..--... 

Mç' ~o{ 
'l Ir ;... .. 

J )-( IN 1 = E..!:. . .... 00(", ~:I 

mOI ~~~ 

- ['[ff at!'3 
J~ ~ 

.-
.... 0( tIC:" ,:r 8s' Jo, 

.;? q~ .,;) PI.. 
" 

, (VI-B-12) 

(VI-B-1J) \ 

~ 

(VI-B-14) 

=> 

l, 

" 

" 

.. 
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,., "'oe M ilia 

l Il>I ..-6 
~J ~ ":"lL'" a-"", J~I 
~ 9: ~ p~ (VI-B-15) 

,., 1'1..-

J IL ~ u:{ }{ tPlai à -
.:,"';-

.... ". &.:'1 

~ q: .. 
(VI-B-16) 

0(8 
l'J~ 1 r i 0(6 \ 

.... 8 ..... 8 
i IN.~ '" N~ \,~ .~ J f~ 1 J PI 

l.. .. \ .... ~ 
t-

oIff~ ,~pZ (yI-B-171 If ! 

" , A closed rate equayon for ,1= IN.l maY ~hen be 
derived by expanding Fl.S! 'for ali \s5 in poweps of 
the label parameter E 

.. .,' (VI-B-18) 

• 1 
and XVI-

i.e. 

1 , 
,and substituting this expansion in~ (VI-B-10) 
B-ll) 50 as to obtain, after collection of terms, the~ 
following perturbed equations for FI" \ and; rl'JIl 

,.\ T ,.) 

/ . 

J~~N'I + }{ tNS r tlllJ --.- . (VI-B-19- 0) Ji , 
c'l J !r "1 

:J ~ INI .. J-( I~I) ÇlNI 

~t. 
(.2) r t J.\ 

)-( IN} 1=, rJ~ ;; F 1"'\. + 
.,t . . 

" (., r r (Il) 

J ç 1"'1 ... " J{ 1 NIf:" 1 N ~ -Jt 

.~ 
" 

, 
(VI-B-19-1 ) :m /.J 

- }{ lNlrl.vJ 
(VI-B-19-2) 

) 

i ' 

! 
·1 

• tE- ( T1Wffiifiidii ;;;; . ...; 
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,el 

/P FiN al:: 0 

Jt 

(,\, A,,,, 
J F 11\111 :; - }{ ''''aS FINIS 
ait 1 

(VI-B-20-l) 
, {Sf 

\J~,tN'I\ 
~ t 

ca' 
J ç till-Il 
;at 

, j 

(VI-B-20-k) 

proc'eedlng wi th the reini'tialtzati on approaCh~ now 

integrate equations (VI-B-19-0) and (VI-B-20-0) over 
i 

. nterval [ t -At ,i] where l:J. twill be chose'n as short 

l le so as to ;reserve the validity of tke expan-
, 

One obtains from such an equation the following 

utions for 
'0) 

and F l/lll$ 

(VI-B-21) 

(Vl-~-22) 

• As in the Siril~le Brownian systelll,' d'isc"ussed' in 
-:H:,w,t 

previQus chapter, let us a$sume ,that " since.,Jo , 

streams the light bath p&ticles'in the presence of 

• 

Il 
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( 

the heavier Brownian partiales, there exists, for the 

bath molecules, a rel8Xil.ti()n tim~ 'lb , such that 'for 

. llt ) -r;, ~ 
one.may impose the following boundary con-

dition 

where 

(VI-B-24) 

) 

"",.. I!=' ot=1 L"" (VI-B-2.5) 
~ - .., :N~~ II< T 110·/ N( 

""'" Z~ J-J ljJ 'il J-411' d .... r' :; JI. 'fil PIl , .. ,\ r'=l 1·' 

(VI-B-2q) 

. " . 
represents the equilib~ium distribution for the bath 

particles under the influence of the ~ghboriI}g Brown-
~ , ---

ian particles. Substi tuting the expansi ons for 
;< :r 

. ) f"ll\l~ cXIN,t) and J: lH~ (~"'. Ii) and cOllecting orders of .JE.. 

~~ may then rewrite (VI-B-2)) as 
1 J 

(Vt-~-27) 

Consequently if ~ remans sUfficiently short to pre-

( . serve the· lAlidi ty of the expansi on the solution for J 
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1.' .. 
FfN5 (X,o/\.t\ becomes 

(' 

.. 
Integrating the above solution over aIl bath part-

, icles except t 1 1 f3 j f cné may also obtain the following 

F 
t~) 

solution for 1 ~ NB 1(1, Il,, 

,,(VI-B,-29 ) . 

where 
-f - H {l,Ils/Ki 

F ll."'l~~ = Z /1'''5 -t. 
(VI,-B-)O ) 

1'\ No( f ' 

H Itl'~" 1 PI~I1l/:im~ + L l <1>7 ~ 
.,;M.':'·f 

(VI-B-)l) 

- H.t,,&~ II<TI 
Zif,l~ ~ ) \ .R., J q~ d r~ (VI,-B-)2 ) 

//"'" 

This solution may then be substi tuted into (VI-B-20-1) 
.1) , 

to render th,e following rate equation for r lN,1 
ctl A (.) 

J F't",,\ + )( INt! F PH! 

~ t M ",,-1 cl d 

= Ol~' ~:I i tN,~ 
A 

which t usil'lg the de.fi'ni tians t;or .,?'! /tt/'i 

(VI-B-)J) 

01.4 
and ;1 ) N,) 

l ' 
1 

i ' 
1 
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o 

may,alsp 

,. 0 

(VI-B- 34 ) 

where: 

(VI-B-35) 

11.-1 1>14 
and < if ~">., r J J .J *" J 

F cr"" .J "'" ::-NIJ 1',M.l7 CJ. p, 
lB' 1 J9t l't.-, N' ."~ JI f 

• rI ..... .:.. = (VI-B-36) ( 5'f~ .. ) 
A. 1 j., 

... 
rep~esents the average force exerted by aIl the bath par-

r 

• 
tlcles on the Brownian particle l \,. ,-< ~ when the former ~are 

in equlllbrium with the field exerted by aIl the Brownian 

particles. Naturally if the latter are seperated by distan­

ces much larger than the typical Brownlan-bath range of in­

teraction, t~is average force vanishes. Co~binlng (VI-B-34) 

and(V1-B-2Q-O) one May then write the follow~ng first or~er 
f 

rate equation for 

/ 

(/1-8-31 ) 
7 

/ 
/ 

1 

One May pursue thls expansion ta a hlgher order by 

recal11ng equation (VI-B-19~1) and integratlng it over the 
! 

tlme interval [t-~t:, il SÔ '8' to obtain 

/ 
, 

Il 
/ 
" 

• ~"I r 

t 
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Il 

1 

" 
(VI-B-)8) 

, and c'ombining equati ons (VI-B-27) • 
. 

(VI-E-28) and (VI-B-J4), this solution may also be written 
t''' 

as 

or. after sorne manipulation, ,as 

Cil .... 

Fu.'j ()( IrJS 1 i) a r 1 tJ \0 ~ : , r (1 rN B ~ (X l /II if ~ 1 -t ) 
Â t: M Net 

-j L L 
D 01 .. 11_ ".1 

\- ":Â '~ ...l.Â 

(51= <-t'),- < çç > .. ,) Jt) 

'/ 

where 

: ' ... 
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(VI-B-41, 

Integrating this sOlution over the coordinates and mo-
~ 

menta of aIl bath molecules, except li, (J 5 

tains the following expression for 

one then 

,., N~ 

II -:+ ~~ --. 
< rs: }.t,. f'~ Fl 1'4J.I' rIN.~(XI~'~/t) bt 

n1 .. /(T 

1 
j 

ob- ' 1 
/ 
/ 

(VI-B-42) 

which, after SUbStitu~ion into (VI-B-?O-2), leads to the 
1 I~> 

follo~ing rate equ~tion for ç lNI~ 

1 
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J 
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Furth~rmoret defining 

/ 

(VI-B-44 ) 

and noting that 

(VI-B-45) 

we m~y also rewrite CVI-B-43) as 

11' + U\ J1 1.) 
Jr={N.~' + }{{N.~Ç'!NaJ "}{INilS("IN'J = -... 
~t 

(6) 

r iN1I~ ~ XlN,j, t) 

4- <'If lOI),,'f < if L1o/').L,: ~~ [P~' Fi~J~ (Xn~l,i:}J~.t J' ' 
;Jp~ m .. ·~T 

(VI-B-46) 
i) 

Now, the right hand side of the above equations 

still béars a dependence on jj t which' must be chosen larger 

than the relaxatron time of the light bath molecules, yet 

sUfficiently short te preserve the validity of the expan­

sion. Unfortunately, sinee At may still assume a wide . . 
/ 

ftnmam 

'''J, 

! 
, . 
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~. 

range' of values, the equation (VI-B~46) re~ains rather 

arbitrary. One may of course, partially resolve this pro-
~ :1 -4 -6 • 

blem by assuming that the cross c orrelatl ons < 4 ff. '''' A 5'F L't-i) 7; 
4 , 

b~CO~ v~:,:h:n:~ ::.~"~_t~O:,'~:, ~f( ::h,.t:::~~l') >., Ji 

~ J~ - (VI-B-47) 

.. d. > 'Ile 

The last term in equation (VI-B-lr6),~.-'however, grows li-

nearly wi th Â t and can only be eliminated if one rest-
œ 

ricts X IN,~ to a volume V iNB~ in which Brownian 
'\ 

particles are sufficiently distant from each other that 

they cannot share any direct i~teraction with the same 

bath particle. In this volume (where Brownian particles 

may still interact with each other if their mutual range 

ofl interaction is much larger than their range of inter­

action with the bath particles) one has 
~ . 

< 
l.J 

SF )"'1:: 0 

- s ~ ~ Consequently, for X IN.~ ~ V {/IIIS we may wri te the f ollowing 

rate equati on 

1 

1 
M Wei M No( 

. [ L,L [. 
.. .:,.,. c..:.. e(',t'It"c..':1 

0-
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CVI-B-48 ) 
o 

~lhlch, when combined w1th equat10ns (VI-B-20-0) and (VI-B-34) 

renders the following second O'rder equat1on: 

m .. K 

(VI ... B-48 ), 

where 
'( 

(VI-B-49 ) 

The above equat10n wh1ch has a Fokker-~lanc~ form 

may be vlewed as a '''Generallzed Liouv111e,,[42] e&uation for 
, " 1 

an open system of heavy part1cles exchanging energy and mo-

mentum with a bath of light oartlcles. In its domain of va-
.... f> J 

119i ,ty, X l''',s~ VIN,}, this equation reduces ta sim11ar equations 

der1ved by J.M. Deutch and I. Oopenheim [3
6

] and R. Mazo [37] 
• 0 ~ 

using a/nprojection Operator" technique developéd by R.W~ 
'-

, ·..--... r li 3] 
Zwanz1~ ~ 

/. 

1 

·1, 

1 
1 1 
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SUMMARY AND CONCLUSÎONS 1. 
In the present chapter we have extended the analysis 

of the previous chapter ta include more complex system\. such 

as non uniform mixtures interacting wi th a weak external 

field. As previously noted it generally becomes quite diffi-

cult for such systems ta fully asSess the breakdown of the 
.,-

IVP soluti ons. Nevertheless l 'even i'n these cases, the goal 

of the reinitialization technique does not drastically change 

in principle as one $till strives to minimize ~he time inter­

val of Integration ~t of th~ perturbed equatioqs so as to af-
• sure the acéuracy of their solutionso furthermore, for non-

1 

dense sYs tems, one should main tain lit « Jr,; 1190 <J. 'l, such 
\ 

that the phase vector X IH \.-ilJ~ remain within the volume V(1) in 

rut' corresponding to a physical volume v, <.<. /11.-' f in which 

the density expansion is valid. With this restriction ahd 

bo~ndarY c~rlritions similar to those us:d for a uniform sys­

tem one th~) obtains, for a non dense mixtu~e of M species, 
/ 

a set of t1 coupled Boltzmann equations provided the external 

h field is 'weak and the one particle dis tri bu ti on r, does ndt 
~ 

significantly vary spatially within the interaction sphere 

of the indi vidual'" molecules. One may similarly cansider a 

mixture of Ml' species of Brownian particles interacting ~i th r 

a weak "external field and (M - t1 .. ) bath particles t by assuming 
-

that the relaxation rate for the ligh t partièles is much faster 

than that for the heavy particles. By fUrther requiring that 

the inter Browni~ particle separation is 8ufficiently large 

, ,1 

1 ,...,-

1 

1 
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1 "' 
~' ~ , 

( J f . 
t to prevent two such particles from sharing a mutual interac-. 

tion with a small bath particle one then obtain's an equation 

for .~e Na Brownian particle di"stribut ion , t,N,1 . In its 
• " 

4 

domaln of valldlty, this equation reduces to the Fokker-Planck 

" [36] equations derlved py J.M. Deutch and I. Oppenhe;'m and 

R. Mazo [37]'using a "Pr-ojection Operator" technlqU~~Veloped 
[431 

, 

by R.W. Zwanzig 
• 1; 
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CHAPTER. VII 

CONCLUSION 

Il} ~ r 

In the presarit thesis we hav~reevaluated the mathe-

matical expansions and the physic~l ass~,ptions leading t~ 

weIl ~nt:n kinetic equa tions such as 'the Boltzmann equation ,\ ' 

for non('êlense syste's and, the Fokker-P~anck equa ti on descri b-

ing Brownian motion. Using the Ham~lton, Liouville~and B.B. 
i • t 

G.K.Y. hierarchy as governing eqïations ~or a system of pofnt 

particles we have firstly developed a systematic nondimension­

:lization of these equations Whic~ClearlY reveals the rela­

tive magnitude of the~r various tfirms, over a particular 

• (volum\ of their resp.~tive phase 1pace. for special classes 

of systems. Secondly, we have reconsidered the straight­

forward initial value perturbation scheme (IVP) and studied ( 

the exact form of the divergent terms whic,h appear for spa-, 
-

tially uniform non-1enSe,~eaklY c,upled and Brownian systems. 
, , 

Finally, prev~o~ expansion methods such as those of Bogoliu-

bov, l12] Frieman[24J (MTS), and Lewis-HarrisL39 ] hav~ been l ". ' 
reviewed and an alterna" exparîsi!on me~hod, which emerges 

as a natural extension of the IVP.scheme has been proposed " 

,and applied to simple uniform systems and to non-uniform mix-

tureS\ interacting wi th a weak external fielq. 

we may offer the r~llowine conclusions. 

- 239 '-
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In summary. 
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f, 

A. UNIFORM SYSTEMS 

a. Non-dense system 

1. There exists, for the uniform non-dense systef, a ~ma11 
{ 

region in the 5 partr'cle space where the 
s f ~ 

momentum convection term r. PL. ~~Ç" 
•• , t1"I :J 

~ S ! L 

and thé interaction 

term r. L ~4t.,L in the B.B. G.K . Y. hierarchy 
.. -, ; .. , ;} q cJPI. 

dominate, on the average, over the mixing ierm ~i~ FS+ 1 

1 

.:rhis \, vo1pme is roughly defined by :the regi on in flsJ 

whete 1 PLI Noe Jm KT J • (i.-I J) 1 and where. the s mole-
. 

cules may be enclosed in a spher"Ï.cal physica.?- vdlume V, 
1 

larger than the interacti on spliere .. of the indi vi dual 
~ 

particles, yet much smaller than the~specific volume 
, _1 

, Hl 

si ty) . 

ing to 

(where~ represents t~e average particle den-

For the larger regi on, in r lsJ space c orrespond­

a physl.cal· volume v~· "'" 0 Ir "",,-'] tlKe IlmiXing term -- Jo 

May bear the same rela~ive weight,' on the average, 

as th~ remaining momentum convect~~and th):interaction 

AI' term::>. 

Performing n-simPle_:SPansion in density, which neglects 

the, mixing term of the-B.B.G.K.Y. hierarchy, in the 

sma11 phase volume V ISI " as a zeroth order approxima-

tion, and assuming that initial co~relations are finite 
1 • 

in range we t~en obtain, at the first order of the ex-

pansipn, an equation for f:, which bears a form identi-. 
cal to the Boitzmqpn equation with 'the exception that 

.,( 

{ 

1 

,1 

/ 

" 

: 
1 

""'1 , 
1 

i 
l 

î 

1 
l 

·:1 



( 1 

'" 

1 

/ 

... 

" 

( 

I, 
3. 

4. 

'r 

~ 1 

( 

241 

" ~ the C oilisi on term is based on~ r. (p ~ 1 0) rathef than 

r C PL l'L ) " Thy-time independence o~ this term thus 

Ieads to a divergence causing a total breakdown of the 

expansion when t,.., DE ~ : :/nJ.1 ~ 

The above resui ts and a review of the Bogoliubov func-. 
tional expansion, Frieman's multiple time scale'pertur-

" bati1n ~cheme and Lewis and Harris's time exP/ansion ap­

proach suggest the development of a very simple alter­

nate pe7turbation scheme'which ~o~lows as a natural,ex­

tension of the IVP ~pproach and which essentially con-

, sists of integrating the B ... B.G.~.Y. hiera~y over a j 

time interval [ t - At 1 t ] sufficient:r1 short to l're­

vent br~a~dow~et. ~~ientll long to impose reason-

able bou~dary conditions.~ ,~ 
Ass~ing that for '9L -~i' <.;. t the boundary condition: 

~ -}{. (d) .4 t " 
J. {:.:z (i~ X~li) '" .Lm. . 

~ ~,J) ,,-

..L F,(PL.-l)r.(~,{} 

is valid for Ai) ,,/6> ·where [T.r. o/..ù< < -7'®« [7,- "lAI.] one 

recovers, at the first order of' this new "reinitializa-
1 

tian" expansion method, the familiar Bol 'tzmann equation. 

5. It lS aiso shown that sinee the al-ternate boundary con-

)(,l(U) .,.. 

Ç.lPi.. i) r, (Pi ,-1. h<'" ;; 
, f'J 

-,#' '7'~~ \\ 

should only hold fpr Â! much J:argèl':, than the breakdown 

.. titne - 0 rr;:) of the ini tial ~~~ue. ~e~turF.ationlO, ~ch~me,. 
l " 

, .. 

·1 

i • 
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'V 

the possibi1ity of deriving an anti-Boltzm~nn'equation 

is inher~ntly excluded in this expansion ~thod. . ~ 

Pursuing ,the eXPirision to a higher order, one finds 

tha t there do~s not exist a At <." -r; suffici èn tly 

long to iTllPlose~ sui table boundar~ C ondi ti ons allowing 
, _ t~ 

the der~vation of a zeroth order solution ~3 over 

the domain V \ 3) 
'\ 

contributing to a first or~\r solution 

for F': (X" xJ t) where \9\.- ëj J 1 <. (0 This di'fficulty 
! 

emerges from particular thrse particle configurations 

which, as noted by Cohen and others, require a time 

,o..J 0 (~I 1 , or longer for the reverse set of inter­
-}{,1 ( l. J R\ At 

~tiQns induced by ~ , to oceur. We have 

essentially dealt with the problem using the pragmatic 
) 

h'--. ...& 

,appI"oach of deriving solutions for rot {t,xa{)using s0-1ely 
, 

the domain 1n Ils, where sui table boundary conditions 

exist for At.(.{ '1. By thus assuming tflat the domain 

neglected in G" does not signifiCan~lY' contribute 

to a second order kinetic 'equation, we then emerge with ... 
JO 

a Uhlenbèck-Choh equation~for ~J 

b. Weakly coupled system '.> • 
" ( There exis'ts, for the spatially uniform weakly coupled 

system, a small region \/ t$~ in / fîsj where the momentum 

~onvection, interaction ana rnixing terms are all very 
, ' 

srnall and. on the average, of the same order of'magni-, 

tude. This volume is roughly defin1d by the region in 

o 

f 
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r ISl where 1 PlI ,.., 0 C r;;;-;; l (;~~ l,." s) and where 

lthe S molecules may be enclosed in a spherical~physi­

cal 'volume VI '" 0 ("Ir )J where ~('" rerJesents the range 

of tbe weak interaction potential. For phase volumes 

corresponJing ta larger physical volumes V» ll-r 1 one 

finds tha t the mixing tkrm. however smil. in rile t 

'dominatcs, on the average, over the remaining momentum 
'loi 

convection and interaction terms. These ~esults, which 

copflict with previous scaling arguments by BogOliUbov,[12] 

Sandri[25] and others,[38] emerge due ta the fact that , , 

near equilibrium, the weak potential in the interaction 

and mixing terms imply in V \q a similarly weak co&ela-
, 

tion and hence a small gradient in the momentum 

C onv ec ti on term. 

2. Perfarming 'a simple initial value expansion wi thin VlsS 

). 

~ 

one obtains, at the first order, Solutions for FI which 

diverge linearly with time if the system has inttial 

two particle correlations. On the other hand if one 

assumes ~he system to be free of such initial correla­

tions, one then emerges with a first order solution for . 
'Fa which also diverges linearly wi th time" 

Attempting a "rehütialization" expansion one {lnds that, 

due ta' the zeroth or~r, equation, , 

~ F/·'= 0 =) F s ~ X S 1 i) A 1=' (Xs , 1. - .4 t } 
~1. 

there do~ not exi~t any choice of At which suggests 
It 

the introduction of suitable boundary qonditions which, 

,,1 
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,0) 
in turn, would allow one to express F, as a functional 

of r, Consequently, in eontrast with the resülts of 

Bogoliubov, Sandri and others, np kinetie equation for 

the system should emerge, near equilibrium, via a weak, 

coupling expansion. 
., 

c. Brownian system 

For a system con~i~ of a single B~ownian particle 

coexisting with a bath of light particles it becomes 

diffieult to estimate, in gen€ral, the various dimen-
" , ...... 
/ slonless par~eters present in the nondimensionalized 

Liouville and B.B.G.K.Y. equations. Consequently we 

.. 

have followed the pragmatie approach of Lebowi tz-Resebois[ 9 ] 

and others[ 351 and assumed the root masS ra ti 0 '/" ~~ to 

dictate the relative magnitude of the various terms'in 

these equations.~ By so doing one essentially assigns 

a relatively small~r weight to these terms associated 

wi th the sl ow moti~n of the heavy Brownian partiel,e than 

th·ose corresponain~o the faster motio~ ~f the ~ight 
bath particles. 

" A simple iri1tial value e~ansion for this system yields 

a first order kinetic equation for the single Brownian 

particle distribution F!o,,\ (p~H which bears a,- form iden"" 

tical to the weIl known Fokker-Planck .equation' wi th l the '. 

exception that the damping and diffusion terms are based 

on ~Oll\ (p',o) r~ ther than F '~,I\ (P'l,!). C onseq uentlY'le 

s91ution of this equation diverges linearly with time. 
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J. A true Fokker Planck equation may be derived, via a 

reinitialized expansion, by assuming the relaxation 

time ,ry'b, bf the bath particles to be much shorter th 

that, 7~, of the slower Brownian partic~e and by inte­

grating the expanded equations' over a time interval 

.. ( i -.bt ,t 1 where 'rio H At <" '1., 

jB. NON-UNIFORM MIXTURES 

Sorne of the results in the above analysis for simple , ,( 
non-unlîorm systems have been generalized to include non-

uniform mixtures interacting ~ith an external field. In 

particular, we have shown that 

1. For a non-dense mixture of M species of particles one 

may ~erive a set of coupled Boltzmann equations for the 

single partiele Gistribution of ~ach stecie by assum\ng 

a weak external field and integrating the expanded B\8 ..... G-

2. 

, (. 

.K. Y. equat10n over a t1me 1nterval rt~l)i:,tJ ,where %.<'< ~t< 

and imposing boundary conditions similar ta thqse in 

the spatially uniform case. Thi§ derivation, as in th 

Bogoliubov exPansion, also ~eqUires that the spatial 

uniformi ties over a length stCale L ~ 0 ({o 1 may be 

neglected. 

Similarly, for a mixtu~e of M, species of Brownian par­

ticles ~nteracting with a weak external field and coexisl­

ing with'{ M-I'1., ) species of light bath particles ... one 

may, with a reinitialization expan:ion, derive,a c~osed 
/' 

;1 
t, , , 
! 1 

" 1 
1 
1 

1 
o ) \ 

.- 1 
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/ 

equatlon for the full t. 8lf'ownlan particle distribution 
1 

~11J.1 by assumlng ttt relaxation time for these partlcles 

to be mueh longer than that of the ligh~ particles. This 

equatlon which 1s similar to the Fokker-Planck equat10n 

deriveœ by Deutch and Oppenhe1m 1361 and Mazo 1371 using 

a "Projection Operator" method of Zwanzig ",4 31, emerges, 

however,only if th~ separation between Brownian par~icles 

i8 sufflcient,~ large' ~o prevent the' latter from sharln~ 

a mutual interaction with the same llght partlcle. 
) 

i' - LA The above co clus ions confirm the self-eviden~ n~ces-
\ .. 

of carefully estimating the relative importance of the 
1', 

various terme of the ~.B.G.K.Y. hierarchy prior to performing 
\.. 

a particular expansion for a special system. Clearly, in 
r, 

order to ac~omp~ish Bueh aRtask, the straightforward approach, 

used by previou\ authors, of nonqimensionalizing this e:ua-
4 , 

tion with respect to a set of seemingly reasonable character-' 

is.tic quanti ties and subsequentlY expanding in terms of what­

e~er smala parameter which emerges, 15 not at aIl recommended. 

Indecd we have shown that sueh a !Cas'ual approaeh has' led \0 
" 

major inconsistenc'ies in previous derivations by the sarne au-
f; 

thora for spatially uniform weakly coupled,/systems. Na~uréj.ll(Y' 

the proper estimation of the relative importanc,e of var10US 

terms in a complex equation such as the B.B.G.K.Y. hierarchy 

r~present!J.' prior ta i ts solution, a difficul t task, 'which 

\ 

1 , 



( 

( 

•• • 

\ 

- ~117 -
... 

usually requirès Cl. good deal of "educated guess work". In 

the present thesis we have designed Cl. nondimensionalizing
l 

scheme in ~ which each terrtl of the resul tine dir:nensi onless 

go~erning equation may, on the average, o~er a restrieted 
---.. 

volume in'phase space'. be written as the product of variable 

terms l"""OLI1 and a se~ pf dimensionless parameters. The 
1 
, , 

magnitude of the latter thus dictates the relative importance 

of eaeh term in the eqllation. In any suc~ analysis many as­

sumptions and restrictions must of course prevail. In parti-

1 

cula,r we have assumed, the sys~em of parti9les to be .reasonably 
i 

'close to a canonical equilibrium and estimated average values 

of produc;~ of't~rms JSing products of their individual esti­
'\.... 

~ated ave~age magni~ud~. In spite of the' impcrtance of ~hese 
~ . . 

restrictions we nevertheless bel~eve that such an analysis 
/IJI' , 

repre~ents on one hand a trué recognition of the problems of 

Jtcaling ih the Hamilt@n Liouville and B.B.G.K.Y. equations, 

and a first step in oonfronting' these"difficulties prior to 
, ' 

an otherwise'semi-bllnd perturbàtional derivatian of a kinetic 
li> 

eq1+ation. 
, 

, . The present thesis has also revealed th~t one may J., 
derive kinetic equations for particular systems of point~ar-, 

ticles using a v~1 simple extension of t~e initiaf val~e per­
I 
1 

,turbatian scheme.' This alternate method consi~ts, of integrat-

ing 'the expanded forro of' the B. B. G,.K. Y. h1erarchy over a time 

interval 
( 

where At is suff}.9liently short te pre­
.... 

--......."-_,_ ......... ,,,..~-v'-__ .,.f..rU' __ ..... _~_ ............. III!! ___ ... _, .. _ ....... _~.~-,..,.~!~""""":""- ..... ' -:1""- {..,....-~ .... _,-- --v-..- -y--- ...... -- ~ 

, .. 

" , 
, 

l, \ 

1 
1 • 

,', 



( 

/1 , 

1 
/ 

1 
/ 

- 248 -

~er-ve/ the acpuracy of the ~xpansion yet adequately long to 

i~pose ;ea;onable boundary conditions. Hence one simply se~ks 
1 _ 

an optimal ,value for 6t which} in the case of a unlform non-

dense system, for example, must be chosen much shorter than 

1"; :. )../~. as suggested by the breakdown of the IVP scheme for 

t ) 1", ' This method of "reinitialization" thus av01ds the 

introduction of auxiliary t~me scales as in the Bogoliubov ~nd 

MTS schemes or the unnecessary use of abstractloperatprs as in 

the Zwanzig projection operator approach, Furthermore, the 

natural' constraints on ~t in this optimization, which is also 

implied by the smali domain in phase space over which this par­

ticular expansion is valid, al~o suggests the proper choice of 

boundary conditions and lnherently eliminates those which would 

)ead ta Irreversible equations evolving in th 

tion. We have al'so noted that in the der1vati "f the Uhlen-

~ -beck and Chah equation, which takes into account three particle 

/, 

interactions, the restraint on At also imposes a limitation on '1 

the validity of the zeroth order solution r ('\ 1 by eliminating, 

in r,u', regions which correspond to threE:! particle 1TltelJ:'action 

sequences occuring over a time interval AO,O [1;]. For this rea­

son'we suspect ~ffat the constraint on the time interval of +nte-, 

gratton in the'~einitializati~n sch~m~ plays a simllar role~ as 

the "damplng exponential" used by sorne authors [21,26] to elll,T1i­

nate divergences ~t the higher orders of the density expansion~ ~ 
\ 

\ 
1 

, 
,.' 
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Flnally, one could also speculate that this ,expansion scheme 
~ ~-

may also be used to der~ macr~coPiC ~aws from klnet1c equa-

tians and, hence, serve as B simple alternativ~ te the Chapman-
A > 

Enskog procedure. 

In many respects the present thesis represents a re-

vlew, crl~ique, simplification anQ clarification of ~ collectio~ 

of con~epts and ideas in the field of "nonequllibrium stat1st1-, 

cal mechan1es". Naturally, such clarifications are often some-

what personal and do not always refleet a lack of elarity ln 

the original con~ibution of others. For this reason, as a fi-
A 

nal conclu?ion and tribute to the founder of this flel~ the 

following quotation appropriate. 

l' am conc~ous of being only an Indivi~l 
struggling against th~stream of time. 
But 1t still remains in my power to contri­
bute ln such a way that, when the t~eorY 
of gases 15 again revived, not too'much will 
have to be rediscovered. 

, \ 

'r Il (LÇB~l't ztnann ) l. 
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B-l8). by uS,ing argummts very :3imilar to those pr'esented 

by Bogoliubov 1121 and cohenl321 in the~r derivation of 

t~e Boltzm~nn equation. Let us fi~st note that the' pro-
u) /.\ ~_. 

duct F, '~(oo"o)F(~u,,),o) represents a t.tation~ry solution of 

the z~roth arder equation for s=l . Consequently, from 

• the defini ti on ,of }{.t • one may wri 1ie 

./ 
f 

(} '. t 

EL . J f- ( ~ P .. lDO),.OII) F, ('P~ (/ID) , 0 ) 
_ ) _ 10\ ..... '0' ... 

~ ~" m ,.1 i 

(A-I-l) 

1 Substitut~ng (A-I-~) into (IV-B-17).and noting that 

L -'"., ,...10\ ) d 
~rn \= 1 l'V~(ool,o) ri (i'(OO)/O C 

IlOJ\~oo 

we'then have 

,; 
Forthermore. introducing the change of variable 

" . 

, , , 

- 250 -

(A-I-2 ) 

l , 
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....... 
and noting that -P\loO~ 

and PJ 
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.! 
., (A-I-4) 

..... 
and l'J{oo) only depend on 

we rnay write 

Il) J] ~ :'= (IH) 

-"..... (0) --.. (01 ~ ..... ' 

(PJ -'p~) . .:J F, t"?~too),o)F, (1\too),o\ cl (~,) d.p,) 
rn drd 

, --------- (A-I-5) 

We shall now perform the spatial integration over 

ré, the z axis is chosen in the direction of the relative ... , 
-'" -->. -' 

veloci ty ~\.J "P-.L:-.E.l , whiJ!e band , denote the", radial 

and angular co~dinates. With this geom6tr;, -~qUation 
(A-I - 5) m:J.y now be rewri tten as, \ 

JF, .. I, rrtr Ii'J-ê,1 ; JC:1(p"m),'I~:"nJ,ml,~)J.;1bJbdIJp'. = 
lat _~ 0 0 __ m ~ 

/ ~ i'" ~ .. O) • 

\ J J f Ij 1 ~~ Pd r,"\ 'P, , .. \::H:" (PJ 'OI,'\ bJ b d + J éJ 
_ .. 0 li ~.,_"" 

, 
" , 

10\ 

(A-I-6) , 

Before evall,lating the stationary solut~on r:~ (ql.l{\;,P~,PJ)::' 

at the limits let us 

first rec:J.ll that the original perturbed equation (IV-B-7) 

.. 
Consequently it becomes totally rncaningless to even use .... 

0 
, ~ 

" ~ 
-~ 

~, 
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this ·s oluti en for ~ ~ 0 [l'''''''J • 
'. 

o , , 

Fortunately. we also note 

that sin~e the integrund, in the original equation'(IV-
1 

B-17). vanishes when I~. j \ ') xf J one may in fact replace 
r 
1 

th~ 1imtrt ~ - l,CIO -by sorne al ternate li'mi t 

wh re t~' may he chosen wi thin th~ range 

r ".-:r'\ ,'/3 
" z'f\ <. g\il '-.1.. IY\.. (A-I-7) , 

1 
# 

f· 
l 

1/ " 

\ 
j 

\ 
" '1 f 

1 1 

1/ 

, 
1 

we· caneI u~e7 hat 

, 
li) 

,:'P
L 

(œ) 

1/ , , 

t ' 
~ 

~ 

• p, , 

1 . 

l'j(œ~ p j 

9J'" 

" L 
, ,,\ .... 

" 

- -' 

~ 
1 

(Jt-I-8) 
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1 
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On the othe'rnand, since' 'in the limi 1).., ~ -;7 () G) , particles 

move away from each other such that they! and. J 
"-~ 

cou~~ interact when streamed back in time we then ha~ , 
, Il 

=PI. (Q») -= ~p\t;t) 
'~ 1 

\ \. (A .... !-9) 
Il -' .... L;X ....r~ p~ Cœ)"" Pj~ 

IJ ~~ifl' i -
where p~ ând' R~ represent 

*r 

1 

the pre-collisioaal momenta 
( , / 

9f particles L'and J Hencb, we may rewrite equation 

(I~6) in the follo~g form ~ J' 

, 
(A-I-IO) , 

I......G> ..,ÀG>~ 
Now, PL and f'J' also represent the Pos.t-callision momen .. 

ta 
.... 
p~\ 1 pi t' of two particles 1. and j wi th momenta p~ 

respectively in a relative configuration, t bl~+'iÏ, , 
i ' 

and p~' 

sinc~ th~ integration i~ (A-!~lO) _ /?(i) 1 
fi l Consequent~Yt 

~ ro; 

is perf,orméd over the full range 0 ~ 9 .{. :tH of the peri·od 

Finally de.t:ining cf. (~t)::.N Fltp~,t)the 
~ , 

.. 
" . ) 

above equâtion'may be 

t. 

______ ... ~ ~,_ww._ ._ .. _.- _____ -~--_. _________ ....... 
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rewritten into 

.,' 

where for N large: 
1 

00 ~rr lb 

J.({~) 'L \~ J. 
fi 
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APPENDIX II . \ 
;' '* ...... THE INVALIDITy..oF BOGOLIUBOV' S FUNCTIONAL 

.' 
EkPANSION FOR SIMPLE UNIFORM NON-DENSE 

SYSTEMS OVER ~ARGE PHYSICAL VOLUMmd" 
. , 

In this appondix we sh~ll consider the resuli'af 
J ~ 
1 ~ , 

performing Bogol,iubov's fuhctional expansion of simple 
( . 

" uniform non-dense system when only the original bounda-
) ~ / 

ry candi ti ons (II:"'C-4) and (II-C-6) used ta deri ve the "\ 

~.B. (J..lt. Yi"'-h:i,.erarchy are 'a~plied. Le:t us first ;ecGl-ll ,the 

" 

'pert~d equati ons (.V -A-7) .. 

/ 

, -r 

, -. 
(Y-A-7 -0) 

"" CY-"A-7-l) 

- 1 
(V-A-7- R) 

. (V-A-6) 

/ 
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l ' 
1 

(A-II- 3) 

(A-II-4) 

such that the'last two terms in (A-III-2) vanish. Fur-

thermore, s ince the system héls.\'been aSGumed uniform, 
4 1 h . 

the rcmaining tèrm op the righthand si de of ithïs equatfon 

must also vanish. Consequently one hars at the f1rst order 

of E the trivial kin~c equation 

(A-II-4) 

we also note from (V-A-6) and (A-II-5) that 

fi' 1> = 0 , (A-Il-fi ) 
) 

, ~. 
(A-II-7) 

such that the first order equation for F~ may be written 

1 -

1 Q) , 

ul ~..A ..,. '.1......... 
}{.l (c.,j) Fil (lC.: 1.; IF.):: ,u1..(L,J) F;J (X. Xl XI/IF.) 

• .." 

as 

... .. 

now sinee 

j 

l' • 

Jo '- ' 

1 , 
! 

f 
1 

i 
1 . 

1 

1 • 
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, r , 

l. ~ t - 10\ ... (~-~)t}{~t~~) j~~3 (r,XJ l("Fi)d~(.Jp .. 1-. . .., 

-\- ~ ~ t b ,il.. -;> cPlfL • ~ 
l'Y\ d~C J ~If d Px 

1 / 

~;'\;~xJx~IFI) JfJl J'pl. 

*' 
;>1b ... ~,.;;,),J - '-"'-... ' ... 
J q. ~p., 

(A-II-9") 

The last integral of the above expression vanishe's 

conditions (Id-C-4) Il 

\ 
/ as a consequence of boundary 

(11-C-6) • 
. . Ii 

~- j r 
Furthermore since 

and 

•• 1 

~3 (;.;I;-C IF,) dJt.J""PI 1: r:tl 
(;,X~ \F,) 

/" 

, 1 

(A-Il-JO) 

",. 

and 
(A-Il-11) 

" :l-
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I~ t~ 
S ince ,F 1. obeys the same equation as Fa we thus deduce 

} 

that 

i - CI' (- ... 
1 Id Fa X. Xi IF,):O 

(A-II-12) 

• 
and hence t ta the second order, o~ ~ , FI • obeys the 

trivial kinetic equation 

(A-II-13) . 

. " 
Similarily one can easilY see that such t~ivi~l' klnet1c~' 

r:' 

.~ equations should emerge at aIl' orders ~f é 
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APP~DIX III 

QER~ATION OF UHLENBECK-CHOH EQUATION 

The density expansion performftd in chapter V ~ay 

be p~rsued to a'hikher or~er by following the outline illus­

trated in fit. y-~~ 1 is a first step lej us integrate (V-B-l)) 

o:ver l, tim~ interval [ t- At 1 t ] wher,e once again' Ail.. < 1"; 

so as to obtain l 

which, using the zeroth order solution·(V-B~lO) for 
t • 

also be wr~tten as: 

~ l') ... ""(.1 i 
F, (p i , i. ) :: F, ( P ~ 1 i: -11 ) " 

.: - 1 

At 1"" -

F") 
1 

+ J b t, (l) ... F, fOl ( 1: (001 1 t) tf. ,el {:p; l col • t. ) 'J t 1 

, ~ i~"" r. , {A-III-2a') . 
or simplY as: 

. 
,-J 

,-' 

--1 ,,fI - - ,el ... - .L 
.... J,J,(t..l F, ("'P~",ol,i)r, (1\ (CI)),{l Al; (A-III-"2b) 

& Let us now re~r~ to,' equation (IV-B-7-.0) and rewri te the 
11\ 

may 

equation for F',t in 'the following form: ..?il 

~thlS appendix 
} wit h hl =.i-". !! 

N~t1O v· 
v ..... 

;. 
.. . 

t 
) , 

1 

i ,; 
1 1 
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~ 

1 
\ ~ ____ 1 _ ~~_ ~ ~ 

= ( f, (L) +. i, (l)) r;O\ (X.:,t),XI,t) 
Je" 

(A-III-J) . 
• 

Operating both sides of this equation by the f'6rward' stream-
H.r<tHt & " 

ing o'perator.R '\ and integrating ov~ the interval 

1 one then olHains l 

..Jl. 

-J-C,dI.J).ât. \ 
,.. Il) .. ... 1/ 1 

.1 r,z ( ~L L~; , "t -A1) 

1 

,., 1 
'J iI',- ,..., (.l 

tilt.) + t,(J»)iF; ,<x.: ,'ij,xl,t-{'j 
1 

-1 

(A-III-4 ) 
1 

We recall that, in order to derive a second arder kinetic~ 
.. 1 -0) 

equation for ~cz we only..require a solution for F,l (~t x/~i) 
~ aa 1 .p 

when 1 ~L -~J 1 < ,. Further, due to the def ini ti on of dJ, li) 
1 

and 1., 'J \ , the only c ontri buti on ta se.cond term on the right 
.... 

hand side of (A-IV-) lies in the region where either 
-){.lI~J)'t' .... " ~ -}{all)\t'.... 

..R 1 9~ -t 1 . ~ f or ~ I~j - 9. 1 < f 

Finally, since t' is limi ted "to a value much shorter than the 

mean ti~ bet~een collision, lt thus follows that aIl contri4 
,.J t,.., .-

buti ons to the integrals in ~ i, (L ). and i, tjl are on the whole 

o restricteq(to f physfcal volume < < . ..... , 
.. , We al~ 0 recall, however, that the ~eroth arder solution for 

! '~)..J...... \ 
~f3(JI.tJ~.t\as given,by (V-B-.l2)' 
\ . 

....... 

/ 

• 
i... 1 il 

l 
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0, 

,.. 'tl 

F. (~~ x~ 1. 1 { ) 

/ 
::~ 

-'1-*-

(V-~-12) 
~ ,~~ , \ ... -

is re~tricted to the' pha~e volume 1 VPI in which the three 

particles may be \ streamed 'backwards in àme by the: operator , 

outside their mu tuaI range of correlatio~ -

for At < {'" • Clearly, even wi thin the smail physical- volume 

V.<o.' there exi~ases as note'd by Coh~n[211 and illustrated 

lin figure (A-IV-l) where ~e complete reverse collision pro-, ' 

cess wo~ld talce a much larger tirne than rr. to be cornpleted. 

/ 

.. 

" 

, 
Fig. A-III-i 

J 
,~I.I 

Hence we seern to possess a.soly.ti&l for I='J ~ith insufficient 

range of vaIid~y to oiter a complete.solu~ion for 

-) 

1 
') 

,.. (1) 

Fz when 

, 

, 

1 
1 / 

, 

~ 

,1 
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\..., 
1 
~ .... s 
~L' - ~~.\ (, r Faced 

the utili~rian approach 

with this problem, let us then adopt 

of restricting the,domain of integra-
- - + 

tion of' 
'W 

i. (L) and J. (J) over the d-omain VI'" where the S olu-

,/' 

tion ~V-B-ll) is valid and hope thatfthe region ignored will 
r 

not rep~.esent a signific'ant error~" Doing 50, one t}i),en obtains 

), 
\" the solutionl 

= 
( 

L 

l, 

1 -}{ li 'I..n~t 

1 
\ 

-,d 
~~ (x L X J 1 i -.d.) 

") 

'.1 

(A-III-5) 
"', -"'" 1.) ~ 

wherÈ1 the zeroth order solution. for r. X:" (PL 'lL has once 

again· been used. Now choosing At »1.'/.& f,t..,.J, we 'inay then, 
....... • ....l J. '\., 

for 1 CfL ~ Cfl' < f impose the boundary.condition (V-B-9) 

~and aoncluqe thati 

\ 
,.., (1) \ 

P.t. (iL, XJr i \ = 

( 

/ 

... " " 

, . 

: , 
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~t 

. - J ( \ 
' . , 

D 

1 <"~ 

, 

\ (A-III-6) 

Fo11owing Choh ,,[16J we sha1l now. define 

G("J ;) 4>LJ ~ + ;} cb II ;;> -
il ' .. 

~ qL ".;) .... d qJ ~PJ p~ 
(A-III -7) 

, 
, 
~ 

suah that, after sorne minipulation we have 

;: III .... - t 
r.l ( t ~ X J • ) ::. 

- Ji.a cd) r 
~ !~,;_. [ 

'" '/-.00 
At -}{~(&.J)t' ~-,)-(,ldtl)-l' 

+ t "l li [~' (" <L H :,.) -' 

-}(d L ,l1 -}t~lJIt-l'" 

• - t A"{ 9j1t.& } , 

(A.,.III-8) 

l '!. 
'10 (~ At '-< r,; 
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Finally, if we now assume that the I?rev'ious restric-

tians on the range of integration Jf Jf~.Ip~ a,r~ sufficient ~ 

for the above t~me integral ta c~nver~e within the specified 

limi ts an.d we may then, w.i tho1:l t_any) errar; replace ~t by 
e ~ 1 

Furthermore, since:we ~ay replace 

" by equat ion 

; (A-III-8) may aisa be wri tten as:' 

" 
(lI -' __ 

F 1. (X\, XJ ,-L) =-

-){l(LJ)"1' 
/J 1 -J fo\.... "" cd ~ -v (0\ --' :-" 1 ~ ~ ~ (r, (f\,OF, <PJ,t.)+F, (fJ,iH, (Pl.,tl] 

rr--.aJ 

.. 

/ 
- .JI-

- )-( ~ (J 1(0) r 
, .J 

-;::-- ... 
, t 

~(~ - -F (... j. Î /0) (~p l) F ,,,) ~ 1. 1 ~ ,..... , J , 
1 Pt.,") r, J, , (P/f..L) d91t ,dPR d1. 

f 

1t-' (A-IJ.T":'xj) 

This result is very similar ta that obtained by cho~l161 
using' the Bogoliub~v scheme. Indeed, from cthe defini ti.on of 

Q , }-()~] J - , . - J-{:d d ) t .. "1.. -
;: t.J 1 1 .t (~J and '. -l,(u If» and ~f1e identi ty ,;. J-t. .. (j,j) 

-' \n"((lJlt 
_ _ ,;).P. , one may show after sorne rnanipula- .. 

• cJ-t 
tion that (A-lV-8) reduced to the ~lmple form 

. . 
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,. . 

'. . 

1 
, 1 

l 
j 
1 

~ 
,1 

1 

, 
c, 



, ... 

') 
1 ~ 

..... 
',( 

1 

1 

;" 
1 ) , 

"" 
1 . 
"1 

! , 

1 

. 

i 

l , 
! 

...... 
, .. 

C~ 

. . 

/ l 
-- fT' -----;::;"':--...... 

-, 
...... -~-- ... --_.-~---'-- """' ---~ 

J 
--- - - ~ t 

( ./' . 

/' 

./ , 

. . 

• , , 
j • 
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or Hl,- ( t J ) 1" -)-{ 10. (...11\ 1" 

( (A-III,-lO) 
• ( 4 

Substi tuting this solutiQn into the ~cond arder equation, 

'" "~, (1 ::::":; r (.1 .... 
oIr, ~I /1.,) ,.,1. ·(x~ Xj {) 

Jt (A-Ill-11) 
. 

and combining the latter with'the first order and zeroth , ,..... 
order equations one then obtains in terms of FI (Pi. 1 t ~ the 

fI 

foll'owing kinetie equation , 
,... 

,J F, 
.). t 

, f·. V{here 
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. 

,41' 
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.. 
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,-:. 
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Jvc, ': ~ JfJf r4>t.j J 
---:<.., 

r(""t» t) q.: Jp, 
"~ 

-:K~ cdJ1"t -X~(~Atlr. 
- JI.. , ..... 
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represent~ 'the triple c~lli~on term' first. derived by Choh 

usi"ng a Bogoliubov expansion,approach. 
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