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¢ "heakly coupled" and ”%rownian" systems are considered. '

?%xpansion which, as firsit noted by Bogoliubov, renders diver-

. |
o ' ABSTRACT ’ R 2
”

! The presént thesis discusses some of the important
fundamental problems related to the derivation of kineflc
equatlons ybr simple fluids and mixtures frpm thHe Hamilton
equations ‘governing the motion of thé individual particles.
Af&er deriving the Liouville equatim?fku'the full N point
particlg probability distribution, and the B.B.G.K.Y. hier-
archy/%or the reduced S < N particle distribution, the study
initiates an extensive nondimensionalization designed to”
highligkt the average magnitude of ,the v;riousdterms of these
eqfiations, over a given volume iﬁ phase space,\in terms of

a

a set of dimensionless parameters. Using the latter as

v

(classification indices and expansion parameters, '"non-dense'

Fach of these systems 1 first treated, for the simple spa—

tially uniform case, using a straightforward initial value

gent solutions for the single particle distribution. A,napu— -
ral extension of this simple approach, however, involving

the integration of the B. B G.K.Y. hierarchy over a time inter-

val sufficiéntly,short to prevent divergencé, yet adequately

long £o iMpose suitable boundary/conditions, is shoﬁn to yield,
for the ggatially unifnrm cése, familiar kinetic equations

such as those of‘Boltzmann and Unlenbéck—Choh for theQnon—dense’
s&scen and of Fokker-Planck for the Brownian system. Finally

this simple method of "reinitialization" is applied to more

complex non-uniform mixtures interacting with an external field.
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Cette thdse se ppopose'd'étddief certains pfoblémes.
fondamentaux touchant 3 1la dérivgtion d'équations ciné@iquesf
pou; des -fluides simples et des mélanges & partir des équa-
tions d'Hamilton Qui indiquent 1'évolution d'un ensemble
classique de particules. Suivant,kune.dé;ivation‘des édua—
tions de Liod}ille et B.B.G.K.Y. poﬁr,les’distributioh de J
probabllité resbectives de N et S'< N particules, on entref
prend une. &tude dimensionnelle afin d'%pablin, pgur un cef—
tain volume dans ;'espace de phase, l'ordre de‘graﬁdéur
moyen des divers termes de ces equations en fonction d'un

¢
ensemble de paraidtres sans dimensions. Ceux-ci sont par la

sulte utilisés comme indices de classification et paramétres

d'expansion dans le but d'étudier les systdmes dilués, faible~

2

‘ment éouplés et ceux de Brown. Comme_boint‘de départ, on .

traite d'abord le syst&me homogéne se servant d'une expansion
simplé, avec conditions initiales, qul aboutit‘é.une'solut}on,
pour la distributionde probabilité d'une séule ﬁarticule,
éiposant'une divergence temporelle tel}e éue prévue par Bogo-
liubov. Pér suite, on aémontre q'uﬁé simple modification de
cette méthodé, qui 1ntégre 1'équation B.B.G.K.Y. sur une durée
assez.courte afin de réduife les erreurs d'expansion mails,
néamoins, suffisamment longue afin d'imposer‘des conditions
frontiéres raisonnables,aboutituaux eéuations populaires de

Boltzmann et de Uhlenbeck-Choh pour un systéme non-dense. et

3 1'équation de Fokker—-Planck pouJ le systeéme de Brown.
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Enfin on démontre que cette nouvelle méthode de "réinitiali-

°
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“satiéﬁﬁ s'appliquer 3 1'étude de mélanges nori~homog&nes de
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plusieurs espéces de particules -sSous 1'influence d'une force
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. . PREFACE o ' \* | ﬂ
Thé preéent thesis discussés some of tﬁe’méih mathe-

matlcal and phy51cal concepts pertalnlng to the derivation of
Klnetlc equatlens for a system of particles. Due to tFe na-
ture of the sub;ect, 1t is dlfflcult to truiy apprec1ate the

physical. aspects 1nvolved w1thout 1ntroduc1hg a fair degree

N

of mathematics., Furthermore, since this study has been gen—

L]

eralized to include mixtures of _various sp901es of particles,

the equations Wthh emerge of ten display a complex array of

‘ mathematical symbols, subsgripts, sﬁperscyipts and so forth

which do not make the reading of this thesis a trivial task.
For these reasons I would like‘fo offer a few casual sugges-
tions which may he ‘jou, the reader,” to discover, or assess,
as the case may- be, the 501ent1f1c 1mpllcatlons of the pre-

sent study.

This thesis is presented in the form of five main

¢ »
- chapters preceded and followed by an introduction and conclu-

. sion. Each main chapter ends with a "summary and conclusion"

% . [
sec?ion which outlines, with a minimum of mathemdtics, its

main objéctives‘and results. As a first reading I would

therefore suggest the id%roductory chgbfer I, the summaries

of chapters II - VI and the concluding chapter VII. This

will essentially give you the "gist" of the thesis and, hence,

iv
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allow you to decide for yourself accoraing to your back-
ground and interest, those chapters which you wish to ex-
plore in greater detail. Hopefully, by proceeding'in this

manner, the flow of information will proceed along its merry -

path of least resistance.
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. STATEMENT OF ORIGINALITY

. AND

CONTRIBUTIONS TO KNCOWLEDGE

. ‘The author claims originality for the following con-
trlbutlons to the field of nonequlllbrlum statistical mech-
anics: | -

1. the presentation of an extensive and systematic non-
dimensionalization of the Hanrilton, L10uv1lle and
B.B.G.K.Y. equatlon)for a mlxture of p01nt partlcles
de81gned to hhghllght the average relative importance,
over a restrictéd volume in phase space, of the various
terms in\ﬁhese equations;

2. the devel;%ment of a new simple perturbatiop scheme
which consists of integrating the expandéd B.B.G.K.Y.
hierarchy over a time\interval sufficiently short +to

» prevent the bfeakdown of the resulting Solutions, yet
sufficiently long to'impos@dreasonabie boundary condi-
tlons. T%}s method is similar 1h Splrlt yet much more
flexible and simpler in form than the Lew1s and Harrjis

\ time expansion method.. It also clarifies many of the
assumptions and limitations in the fuﬁctioqal expansion
of Bogoliubov and the multiple time scale téchnique of

Frieman.
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3. The application of this concise "reinitialization”
t
'expan51on 1o alternate dergvations of:

& ' a) the Boltzmann and Uhlenbeck Choh equatlong for
¢ . " simple spatially unlform non-dense gases;
b) the spatially uniform Fokker Planck equation for

- ' . a single heavy Brownian particle in a.bath of light

bath Particles;
c) a set of ™M coupled Bol+tzmann equations for a .
N spatial%y non-uniform and nen-dense mixture of M
species of particles interac+ting with a weak ex-
ternal field; , ,

: d) a "generalizeh }iouville" equgtid& for a non-uniform
mix+ture of Brownian particles interacting with a,
weak external field and coexistingiwith a mixture
of light bath particles.

L, The presentation of new scaling arguments, based on the

i aforementioned nondimensionalization of the B.B.G.K.Y..

., hierarchy, which suggest, near equilibrium, inconsisten-~

cies in previous dérivations, by Bogoliubov, Sandri

*_and others, of kinetic-equations for uniform weakly

_&coupled systems. \
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personally to the completion of this thesis. Firstly, I
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. were always sprinkled with a great deal of interest and .

leagues and, particularly Paul Lavallée, for many. stimulating
X dlscu831ons related (and at tlmes refreshingly unrelated) to

the field of "Statistical Mechanlcs“ Very special thanks

are extendsd to’ my father, Joseph Thlbault. for proofreading -

the manuscript and to Marllyn Pollock who, throughout the

writing process, remained a Jjovial and expert typlst. I
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A
CHAPTER I v
s
INTRODUCTION
1 L]
A, THE EARLY DAYS OF BOLTZMANN AND GIBBS

The intense controversy confronting the supporters

'

of the caloric nature of heat and promoters of the molecular

theory during thg late ninetgenth century undoubtably repre-

‘
§
4
{
i

sents one of the most productive disputes in the history of

physical éETBchs, Durgpg these years of active debate,
Ludwig Boltzmann was attempting to explain the macroscopically

observed second law of thermodynamics froma purely. molecular

L I L T

N \
and statistical point of vlew. Amongst Boltzmann's prolific
|

research, one may acknowledge, as Qgtstanding contributions, h

AT

his discovery of the now well known Boltzmann kinetic equa-
tion for dilute gases and his ¥ theorem of\irreversibility.
Boltzmann's equation represented a balance equation in the
' six dimensional "u " space,z,for point particles, accounting =
for the appearance and escape of phase points in every cell
of thgt space. The equation included the fain/and loss of

1 Much of the account of Boltzmann's and Gibb's ideas
presentfi herein is based on the finﬁgfviews by Martin

Kiein, Paul and Eaﬁiana Ehrenfest and George Uhlenbeck
and George W. Ford.lJ K
i
2 This space contains one axis for each component of

the coordinate and momentum of a particle. Consequently,
the state of a molecule is represented by a point in “Au"
space and the state of a system of N particles is depicted
by a set of N points in the space.

oAy ss e -



( L phase points resulting from: .

1) the change in position of each molecule with finite
velgcity{ o ,

'y b . X
e 7 I ‘ee 4
2) the change of momentum of each molecule due to the pre-

'+ sence of an external field; and
’ 3) the change of,moméhtum of the molecules due to their
mutual binary.collisions. i {

o

~ In his evaluation of the third contribution, Boltzmann

e ' ®ntroduced what is now known as the "Stosszahlansatz" assump-

tion which asserted that the collision frequency between
- molecules with momenta P, and B, at a location ﬁ could
\
be assumed proportional to the product,F(q,E‘i)F(q,ﬁ,i) where

.o A ) ,
F(q,p,t\ represents the local density of phase points in

o AU ST S N oL+ o wh o N

the "rx" grace. As a direct consequence of this hypothesis,1 ‘
Boltzmann could then show that the H function:
Hz §{F@.B:t) WF@, pt)d3dp (I-A-1)

3

would monotonically decrease to a limiting value which would

, .
T RO § R A 7 B S S

be attained when the-system reached a state of equi;iﬁfium

at which tinme, - Fka,ﬁ) would:obey the fowell-Boltimann

i

° ° s
distributien. Soon after deriving these results, Boltzmann
$

- S < s
encountered, on one hand, a natural skepticism from the

¢caloric theorists and, oﬁ the other hand, stiff critigism

i

rom-other kinetic theorists, such as Loschmidt who, in 1876,

3 ’ v -t »
It should perhaps be noted hﬁre thbat when Boltizmann
first derived his kinetic equation, he gave no indica- (1]

tion that this was indéed an assumption. . -
. F

Aa
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raised serious doubts on the feasibility of rigorously(
extracting irreversible behaviof‘from,mechanical laws dis-
playing complete time reversibilify. Further criticism \4“
emerged from Zermelo who, in 1896, roted that mechani-

cal systems weré nqt only reversifle in time but exhibited
quasiperiodic motion as shown by Poincayé in 1890. 'Though
Zermelo's comments seemingly excluded any possibility of an
everlasting eduilibfium state, Boltzmann quite easily clis-:im
missed his’priti;?sm on the grounds that, for large systems
(containing, for example, 1018 mo#ﬂcules). Poincafé's cycles
were much ﬁbo long to be of any practical significance or
importance. ‘Loschmidt's remarks, on the other hand, which,
in essence, ‘imglied that any entropy increasing system could

|

be transforméd into -an entropy decreasing one by reversing
the,momenfa of all the molecules, could not bte diépensed
with using purely mechanistic arguments. In fact, Boltzmann
could only fe%nféyce his own views by indicating that the
second law of thermodynamics should never be construéd ;é

an exact law emerging from thg laws of mechanics bunashould
be regardeséas a probabilistic law indicatiné the most prob-

able direction in time 8£ a large system of molecules. Con-

s8equently, though some sys%ems, such as those proposed by

ot b

¥
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1

-+ Loschmidt, may indeed adopf’an entropy _decreasing path, the‘f

% foccurrence of such systems may well be suffic;ently rare to

be of little practical intergst. BoltzmanA further expanded
" this idea by also noting that any system which momentarily
Y suffered an entropy decrease cou%d be expected to quickly

readopt an entropy increasing behavior and eventually reach
- N
a state of equilibriﬂg where it would thereafter spend the

great majorit& of its time. The "Stqsszahlansatz“'along with

-

%he resulting Boltzmann equation and H theorem thus seemingly

-

represented in Boltzmann's mind, valid statements for the
great majority of systems at any given time or for any given
system most of the time. Unfortunately, Boltzmann could

'\Jmuwfigorously prove these intuitive arguments and hence

@

never convincingly refuted Loschmidt's criticism. He did,
nevertheless, display tremendous insight on a dilemma which,

as will be shown later, lingers to this very day. ~

‘

. . # :
In spite of Boltzmann's continual reference to thé

probabilistic behav}or of a system, he never clearly indicéted
how a probabili?¥ distribution Fﬂ(i;;t)ycoulg be constructed
to suitably reé?esent the probability of finding a éystem in

a given microstateii,‘.1 A precise definition .of FoXa )y

" was finally proposed by W. Gibbs in 1902, who Showed that a’

~

-

1 Xu represents a vector in a &N dimensional I space
-with one dxis for each component of the coordinate and
momentum of each molecule. Xs thus completely describes
the microstate of a system of point particles.

» O
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probability distribution functlon could be cons‘tljucted by
introducing an "ensemble" of M systems which initially veried
n their microstate X, but were macros’copical%y idem:ic:atl,1
The state of the ensemble {_)(‘L‘...'X:.,---,X'?,i could then be
represented by a sét,or "cloud" of phase poients: ‘locateci at
the tips of the individual state vectors —)Z,., (L=1... 20 ).
Each of these phase points would naturally travel in time
accordang to the mechanical laws governing the motion of the
molecules. Choosing N large, one could t,he/n obtain a pro- .
bability measure by normalizing the local density of phase
spoints Py (?f,t ) over W so as to define: ,

‘ Fo (Ru,t) 38 00 (X, 1)/ (1a-2).

Using a theorem of Liouville, Gibbs then concluded that, for

a conservative system, the phase cloud would flow in phase s

space as an incompressible fluid and derived a linear, partial

differential equation for F, (in:t) which is generally referred ®

to as the Liouville equation. Unfortunately, the /'transient

solllz.‘ﬁiOH to this time reversible equation_required a parallel
~sc;lut*lon of the complete s‘et of Hamiltonian equations. Since
the task of deriving\ such a solution wa;', generally unfeasible

for systems containing a large nmeer of molecules, Gibbs

introd¥ced some fundamental hypo}heses concerning the behavior
. \ 3

of Fu (_i..,{ ). #His first ass\uhpij,en\ 'w'as one of "“equi-a priori”, '
' -3
1 These systems were also micr-'.o:;écopically identical

in the sense that they contained the same number and
type of molecules. W — J

»
N

o

7
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which simply stated that, for an isolated system at eguili-
brium, every microstate within the accessible volume L the
TZ Space should be eqﬁally probable.f He then further sug-
\gested that any phase cloud that did not 1n1t1a11y occupy
this phase volume unlformly would eventually do so through
a diffusion process in this space. Furthermore, since such

a diffusion process was not completely compatible Qith thf

incompressibility of the phase 5}oud (as dictated by the :

Liouville equation) Gibbs further suggested that the latter
would spread into fine filaments throughout the accessible
phase space such that its average density would eventually

be the same for all cells of finite size within the accessible
volume. Gibbs further expanded this idea by introducing a

- _th
coarse grain density F; , where t denotes the t cell of

the [ space, and deflnlng a new H functlon i
. =L FutnF g " (I-A-3)
By finally showing that H would reach a minimum'as time ap-

proached infinity and that this minimum would correspond to

¢
a uniform distribution for Fu , he was able to draw a some-
what intuitive link between the reversible mechanical laws

and the second law of thermodynamics.

Reviewing the ideas of Boltzmanz and Gibbs, it soon
becomes apparenf that a d;gree of coarse-graining in phase
space (""" or "I") played an important role in their con-
cepts of irreversibility.. Indeed, as a coarse-graining in

"}4" space was necessary for Boltzmann's derivation of his

b P ~ L . C e e ee s 4oe e e
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irrJversible kinetic equation, similarly a coanpe-graining

in I'v space was crucial in Gibb's equi-a-priori and diffusion

assumptions. With any such coarse:graining in phase space,
one must, of course, associate some-coarse-graining (or
averaging) in time since any phase point (in p or Iv space)
will requife a finite time to traverse a finite size cell. &
In view of Boltzmann's and Gibb's ideas, one is thus tem?ted
Yo dismiss Loséhmidt's criticism on thé grounds that any
macroscopic measurement implies some physical épace coarse-
graining and time averaging which, in'turn.bis responsible

for the apparent macroscopically irreversible trend of the
syst%m.%fThis was indeed the view of George Uhlenbeck[jj who
suggested that the cogfif&t between microscopic reversibility
and mbcroscopic irreversibility could be resolved if one
acknowledged "the different leyels of observat&on and des- .
cription" used on the microscgpic and macfoscopic scales.
Unfortunately, such a view, gﬁiugh certainly gach in content,
does not te§] the whole story and somewhat Yelittles the depth
of Loschmidt's ¢riticism and of Boltzmann's reply. Clearly,
aKy system, which to a mécroébopic observer is apparently

irreversible in one direction, may be transfPrmed td seem
irreversible in the opposite direction by reversing the momenta
of all the molecules within the systen. Natu&ally. since

this reversal cannot be accomplished by the macxoscopic®
observer, the key guestion thus becomes - Can the system,

on iﬁs own, reverse the direction of motiqﬁ‘of all its mole-

, e

f
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cules? - or, more precisely, -~ What is the prop;éilipy that

a system will sudded;y suqﬁer alreversal in momgnta of all
its molecules? The ans&er to this guestion would not only .
shed light on the Bolfzmann»Loschmidt debate but would play,

as will bé shown later, an important role in later develop-

ments of the nonequilibrium statistical mechanical theory:

P

of mattier. . .
Before closing'this sectiod on Boltzmann's and Gibb's
ideas, a few wérds should perhapf be added concerning tfe
role of the space-time resolution of the observer in the
quest of physical 1éw§ for classical many-body systems. One
may aéknbwledge for s&ch systems the possible existence of
two extreme observers: one fine-grain observer Ksuch as an
astronomer observing planetary motion, or a "Maxwell demon"’
monitoring moiechlar motion) wﬁich can détect the instan-
taneous change of position and momenta of the individual
bodies, and, on the other hahd, the coafse—grain macroscopic
observer (such as é human observing the flow of a gas or
liquid) which can only react to the global time-smoothed
thermodynamic properties, sugh as-density, pre¢Sssure, tempera-
ture, and so on. While the fine—érain obser#er is generally
contented to use tg% set of deterministic am;ltonian equa-
tions to describe the system,themacroscépic examiner will
quite often resort to the deterministic macroscopic equations
such as the equationé oﬂANawder-Stokeé.forexample. to describe

what he sees and feels. In addition to@ the above two extreme
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cases, there may exist, however, many other observers with
} a space-time resolution sufficiently fine to observe the

internal erratic fluctuations of the system. yet not fine

&

enough to detect the exact origin of such chaotic behavior.

! Such observers will thuslw1tness random motlon! and, con-

)

observatidns. From sucﬂ equations these observers can, by

s n

taking appropriéte averages, not only describe the system as

sequently, turn to stoyhastic equations to‘relate their

seen by the macroscopic obseéver, but also derivg the statis-
1 ‘ - tical properties of the fluctuations% Such observers dof

k) j %ndeed, gxist and may be found in the form of an individual
monitoring the fluctuations of electric current withgthe use

]

) aQ
of a sensitive galvanometer or one observing Brownian motion
. ; -

o

| through a microscope.
\ : -
)} 2 2 ' o 4 \
. B.  BROWNTAN MOTION AND THE CONFIRMATION
OF THE MOLECULAR HYPQOTHESIS ‘

s

The coqtributibns of Boltzmann and Gibbs.to the,
understanding of %he4probabilistic‘mechanic?l theory of
- irreversible processes, custqmarily'referred to as "Non-
équilibrium StatisticaL‘Mechanics". indeed astonishing,
_if one considers that they were formPlated and presented |
5 at a time when many still frowned on the possible existence:
o of molecules too small to be seen. /Those who demanded to'
Usee to belleve were flnally satisfied in 1908, when Albert
Einstein' s[ J theories on Brownlan motlon, developed between

«

e (; 1905 and 1908, were verified by Jean Baptiste Perrln.

e
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Einstein, as Carbonelle and Gouy before him, believeq that
' 1

the i}regular motion of small particles bathing-in a fluid,

#

as first observed through a microscope by Brown in 1828,

could\only be explained by the chaotic collisions between
the "Brownian" particle and the neighboring fluid molecules.
Hg then proceeded to study the ‘motion of such particlee\by
considering a set s»f identical and iﬁaépendent particles
ini?}gély located at the same\point in space. According to’
the molecular hythﬁesis,these particles,shiﬁ&d behave like
molecules of a dissélved solute, and hence, be subjected to an
osmotic force resulting from the presence of spacial gradients
in their é%ncentration. Jhalancing this force with the
viscous dréEﬁ Einstein evaluated the flux'of particles which
he, in turn, equated to the diffusion flux as given by the
macroscopic Ficks law. This allqyed him to evaluate the
diffusion coefficientggng the mean square displacement_of
each Brownian particle in terms of the temperature of the
bath T, tHe drag coefficientg , and Bol%zmann's constant
. In spite of Perrin's verification of Einstein's result: \
Katy= 2Dt: 2z (xi/8)t (I-B-1)
for the mean square displacement (a'), it should be noted
that Einstein wused é rather mac}oscopic'model to describe
the irratic moé?oqp of a microscopip particle. In fact,
Einstein's theory had a major“loophole iﬁ(tﬁat it could no%
explain why a singie Brownian particle, f&ee of osmotic
forces, should exhibit a meah square displacement given by

PR
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equation (I-B~1). This difficulty was removed when Lange-
vin[5j,gUhlenbeck and Or;stein[éj investigated Brownian
motion on a finer'time scale by assuming the forc; exerted
" on the Brownian particle as consisting of-an average drag
force and a rapidly fiuctuating stochastic force both re-
«sulting from interactionﬁ Lith the bath molecules. By
taking approppiate averages of the resulting stochastic
momentum equation and using the law of equipartitién of
energy at equilibrium, they Were thus able to reproduce
Einstein's result for a single Brownién partiéle. A yet
finer grain description was later presemted by Résibois,
Davis, Lebowitz and Rubln[7j (81,091 whe reconsidered
Brownlzh motion in terms of the Llouv1lle equation for the
compleﬁe system of bath molecules and a single Brownian v
particle. One should note,'howeveé, that though these 1attir
N & theories were far superior in rigor to Einstein's original
theory, they in no way belittled.the important role played

by the.combined work of Einstein and Perrin towards a general

acceptance of statistical mechanics.

C. YEARS LEADING TO BOGOLIUBOV .

3

LZ i After Perrin's experiments, the ideas Qf’Boltzmann
were further developed and two important contributions
emerged. One notable work was Paul and Tatiana Ehrenfest's
‘"Conceptual Foundations of the Statistiecal Approach in

Mechdnics" 2] written in 1911 which must be considered as

S
an important contribution to the understanding of both

)

' ‘ o W

-
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~ Boltzmann's and Gibb's ideas. This work not only presented

a clea® review of the structure of statistical mechanics but
presented a critique of the Eoltzmann—Loschmidt controve;sy
w;th such depth that many of the ideas presepted therein were
'fd play a key role in later debates on thermodynamic irrever-
sibility. A second major contribution emerged frqm the re-
se;rch of Chapman[loj and Enskog[llj who, in 1911-12, indep-

endently derived the Navier-Stokes equations and calculated

) ‘ 1

the transport coefficients by taking moments of the Bdltzmann
: )

kinetic equation and obtaining successive approximate solu- )
: . . . . - 3
~tions for the one particle .distribution. \

¥ After the work of Ehrenfest, Chapman and Enskog,

one encounters a certain stagnant period in the development
PAl

of nonequilibrium statistical mechanics which may be explained

b v

by the internal structure andymotivétimn of that field at

~  that time. During the days of Boltzmamm and Gibbs, the main $

objective of statistical mechanics consisted of explaining

the well known macroscopic continuum laws (such as the second ;

law of'thermodynamics) from a discrete molecular probabilistic- i
<;pechanistic approach. Such a motivatiom was certainly wvalid,

at least in the academic sense, as’it led to a bettér untier-

standing ?f these laws. Through the years, however, the

statistical mechanical approach had developed from withiQ

sufficient confidence to seek a more ambitidus and ut}litarian

goal of deriving new macroscopicvlaws mot easily dgriveg from

a’ continuum approach. The possibility of a predictive power
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of statistical mechanics in the felativaly underdeveioped
fields of plasma flow, phase transition, turbulent ﬁloﬁi

aﬁd transport processes in colloids,-for example, represented
a new and exciting objective for the statistical mechanical
approach. Sush an endeavor naturally would necessitate some
generalization of Boltzmann's work to include dense systems
with long range and, in some éﬁgés, attractive potentials.

More precisely, one would need either a genefah;zation'of

Boltzmann's kinetic equation or a new set of kinetic equa-

> A

2

tions valid for various special classes of systems. Unfor-

tunately, Boltzmannk§ highly intuitive approach did not N |
seem to shed\much liéht on how such equations could be sys- u;
«tematically extracted from the mechanical laws govérniqg ‘ %
the moti#n of molecules, {t soqnﬁbecame evident, in fact, .

that important gaps were plaguing the fundamental structure - J

linking these mechanical laws to the macroscopic continuum

L

laws. & ‘ .

Following the results of Chapman and Enskoé, the

general structure of nonequilibrium statistical mechanics
could be divided into two basic sections. /6; one side, one
found the time reversible equations of Hamilton and Liouville
Wthh were, in the cla531cal:sense, Lompletely general while
on the.other ;ide. there existed the irreversible kinetic
and‘tragsporf'equations derived by Boltzmann and Chapman -

]

Enskog respectively. for 'dilute gases.
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An important link was -thus missing between the
reversible Liouville equation for the N particle distribu-
iy
tion and the irreversible Boltzmann equation-for the one '

particle distribution. Clearly, if the statistical mecha-

~ i+
nical ‘approach was to yield new macroscopic laws, this link

would eventually need to be constructed.

The important gap, mentioned™above, was finally

[12]

;ﬁ - - - al _l -
partially filled by Bogoliubov, * Born-Green, [13] Kirk-

wood[lu] and Yvon[15] who.independently derived an equation
governing the probability distribution ~ Fy(G}) for a
\

subgroup of s particles Ry integrating tﬁe Liouville eqﬁa~'f
tion over the coordinates and momenta of the remaining (N-§ )Q

1

molecules. This equation, now referred to as the B.B;G.K.X.
hierarchy, had the form of a Lﬁouville equation for S pa?x ‘
ticles with ad ad?ed "mixing" term which included the Aighe{
order distribution function Fiﬂ(?”.,{) and described thé -

interactions between the subgroup S and the remaining (ﬁ— s )

Y
" particles. Since this hierarchy was also time reversible,

one could thén draw ¥he following revised structure:

"y

o

" et e
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Because of the presence of thd higher ordér distribu-
tion Fg,, in the” B.B.G.K,Y. equation for f , this equation
had an open form and hence could not be solved without jin-

. :

troducing some approximation or assumption to close or

"truncate" it. The closure of the hierarchy, regardless of

the mathematical technique used, was to represent a key phy-

a

sical link in the general structure joining reversible mech-

anics to irreversible thermodynamics. N A

- A

D. THE LAST LINK

1

In 1946, N. N. Bogoliubovl-12) showsd that special
kinetib'edgations could be obtained by conggdering special
cases whgre some of the terms of tﬁe hierafchy, including
the mixing term which was responsible for its open form,
could be neglecfed as a gzeroth order approximation. One
approach in such cases consisted of solVing the reéhlting‘
approximate cliosed edhatfons via some initial conditiorls so0
as-to obtain a zeroth order solution. ,Substitufing the
latter back into the terms of the hierarchy originally ¢
neglected, one could then derive a first order solution

which, in turn, could be resubstituted to obtaln more accurate

4 ’ ’ . . k
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’solutions for F . Naturally, if such a simple method of ;

\fucce531ve approximations converged, one could circumvent
tricky solutlons//f'cumgérsome differential-integral kinetic

equations, such as Boltzmann's kinetic equation. Unfortun-
|

<:f5%€1y, as first revealed by Bogoliubdv, this simple 'initial a
ique yielded resul%s that were

value peaturbation tec
divergent ogﬁsecular i Ktime. More preciselyy one found
tﬁét the higher order correction terms were "secular” in
that they rapidly grew with time to eventuaily"dominate tﬂgﬂ
lower order solutions. In ;;der to eliminate these diver- (]

ences or "secularities”, Bogoliubov proposed an alternate
g€ g \ b |

{ -

perturbatidn scheme which would seek apprioximate solutions
for F(®) of the form Fs (¥ RGP 1)) with a time depen-

‘dence only implicit tﬁrough a functional dependence on

F}(Qnﬁ“ty. Clearly, by obtaaflng such a solutlon, one could

E e

derive approximate closed kipetic eqhatlons for the one

*

particle distribution E(ﬁ“ﬁuﬂ.b

D Mt At~ e 5 N P R

Bpgol}ugov's derivation of kinetic equations could

be described in four important steps. The finst step con-

~ sisted of considering special classes of systems and ordering *

the various terms of the hierarchy in terms of their relative

importance. This ordering could be carried out by finding

»

some dimensionless pardheters constructed from quantities |
which'were characteristic of the system (such as the average

density'and fhe rahge of the interaction potential, for
example) and which dictated the order of magnitude of the

3
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various terms fn the hierarchy. The second stage in the

analysis consisted of asfuming ~F;,( $»2 ), as a /functional

-

2 - : Lnt
of E(q‘,p“t) , as previously mentioned, so as to replace
all time derivatives JdF s»z by functional detivatives

3t
DF = {56 5 6|

expansion of F; and the functional derivative. D in powers

The third step involved an
3

of a characteristic dimensionless parameter“much smaller

than unfty so as to systematically perform the perturbation

lly, the last step con-

scheme previously described. Final
sisted of introducing appropriate boundary conditions so
as to hopefully obtain incrgasingly accurate functional
solutions for - F(X,1F) s»2 and kinetic equations for F,.
The bbundary conditions which Bogoliubov imgosed stated
that any group of partic}es streamed Bgck in jhé'in}inite
past under their mutual intfraction (for étrong répulsive
potentials) orlunﬁer no interaction (for vgry weak poten-
tials) would bé sufficiently separated from eZch other to .

’be assumed uncorrelated. TRis particular boundary condition,
as ‘will be seen later, was to play a key role in the time

directdon (or irreversibility) of the kinetic equations

derived. °
s

~~Using the methoddescribed in {our steps above and

summarized schematically below, Bogoliubov was ablé to derive
. . #
Boltzmann's kinetie equation for dilute gases with strong |

short range {nteractions;gyilendau's equation for gases

with weak interactions between the particles.
’ »
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Summary of Bogoliubov Scheme

~

1. Evaluationzof order of magnitude T » e
of the various terms of the B.B. 5
G.K.Y. hierarchy for special clas- q

-

ses of systems (construction of
! 1

! e » | . -
- _ ,characteristic dimensionless =) Kinetic
- B . J?tquations
. parameters.)
R «
2. Functional assumption.

" 3. Expansion in small parameter o

oo . "4, Statement of boundary conditions.

; -~ !

c # Figure 1-3

As Bogoliubov was developing his functional pertur-
bation scheme,yJohn G. Kirkwood %aé devising his oWwn method
of deriving kinetic equations from the B.B‘G.K.V.(hier~
archy. Kirkwood[lujlrederived ip 1946 th? Boltzmann equa-

« tion for dilute gases using a structure similar to that

\
utilized by Bogoliubov. He repleced Bogoliubov's«second

1 4

o LéAstep (i.e., functional assumption) by introducing a time
" +

faveraged one particle;distribution function: -~

[

— T
F.(q P 1y= L (g, . P -
GBtrs L RGP b ds TESTRN |

which was averdged over a time interval larger than the mean !
: -
collision duration yet much shorter than the Poingaré period.1 '

.

1 In fact, T would have to be chosen much shorter tﬁgn
the kinetic relaxation time of tpe system. —

\
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" sufficiently near equilibrium for the one particle distribu-

!
-
\O

4

Furthermore, he substituted for Bogoliubov' § ﬁAFndary
e

condition, in step four, the assumption that system was

tionsFﬁ(quﬁnt) and F(4,,?,,1) to be uncorrelated in. time:

i.e.,

F' (6“-?(‘{\ F' (ail —F;J ){'\ = Fl (atpﬁut) F;(Ehl-ﬁilt) (I—D-Z) }
The success of Bogoliubov's and Kirkwood's perturba- ;

-
tion scheme was deeply rooted® in the wise choice .of step#
2 F
two and four, which allowed the derivation of non-secular

kinetic equations through the use of a boundary value per-
turbation scheme as opposed!fola simple "secular" initial %
value expansion. It should also be.rdoted that the irrever-
sibility emerging from these two me;hpds stemmed, in part,

from the ci?fse graining in time which they Pnjected. While

gy

Klrkwood perfqrmed this coarse-graining explicitly by defin-

U B A B o

ing time avaragfd distributions, Bogoliubov did so implicitly
through his functional assumption and his boundary condi-

tions.1 ﬁzﬁﬁ coarse~graining introduced in both expansion
e

N e 4

schemes re, in this respect, reminiscent of Boltzmann's

-and Gibb's coarse-graining in phase space which, as previousiy

-

1 One may recall here that in order to justify his :
functional assumption, Bogoliubdv suggested the eXd3tence
of three time 'scales governing the evolution of a mgle-
cular system: a fast "dynamic" time durlng which th
initial correlations were remembered ahd the time depen-
dence of g(xht) (swil) was explicit, a slower "kinetic"
time scale during which initial correlations were for-
gotten and the time dependence of FK(X;iF) 552 was implicit
through F(q“put) and finally, a "hydrodynamic".time
scale during which the time dependence of ¥, was implicit
through the macroscopic moments.

!
Y
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noted, directly implied a simultaneous coarse-graining in
time. ¢ ’
After the results of Kirkwood and Bogo;}ubov, the
general structure of nonequilibrium sFatistical mechanics
. seemed to be in a relatively healthier state. Indeed, .the
structure now possessed seemingly logical links between
the reversible mechanical equations g?d the macroscopic
irreversible laws. Furthermore, the expansion techniqueé
used by Bogoliubov and Kirfwood seemed to indicate a path
for finding more genefal and accurate kinetic equations.
Finally, one could envisage the possibﬁlity of using such
generalized kinetic equations to derive, using Chapman's
and Ensﬁog's ideas, new macroscopic laws. With this hope
in mind, S, T. Choh [16] extended Bogoliubov's perturbation
in density for dilute gases to one higher order so as to
obtain a*hew kinetic equation acco négmg for three body
collisions. Choh then used Chapman's amd Enskog's method
to,derive the usual Navier-Stokes equations and obtained .

o

new expressions for transport properties in dense» gases.

’

Another important and encouraging contribution came in the
’ early 1960's from Lebowitz-Rubin, Résibois and Davis who, as
previously mentioned, derived from the Liouville equzyion a

&
Fokker-Planck equation governing the prebability distribution

for a heavy Brownian particlé in a bath of light molecules.1
~

1 Kirkwoodtlu] had also presented earlier a molecular
theory of Brownian motion using the time ?veraging tech-
nique previously described. o

7
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These derivations, based on a root-mass-ratio expansion,

R—

represented the first clear molecular theories of Brownian
” » ’ "~ ,

motion.

o

During the early years of the 1960's, the research

in the derivation of kinetic equations from the B.B.G.K.Y.

- hierarchy was, to say the least, intense as new kinetic equa-;ﬁg §

t tions were being derived using new expansion schemes. Much ;

] w\ 2

T of the productivity of this period was certainly due, in i
",

part, to George Uhlenbeck who not only introduced quoliubov's
work to the western world, but also did much to clarify some
of Bogoliubov's fundamental conpepts. In particular, one/
recalls Uhlenbeck's clear explanation of the distinct time
scales, or relaxation rates, needed to extract from the Liou-
ville equation, governing equations for "contracted" variables
' such as the one particle distribution and the macroscopic

variables.Ll?J (18] One should also give due credit here

clearly showed the simi-

%o E. G. D. Cohen, who, on one ha

larities and éﬁuivalence betwfen the various derivations of
kinetic equations for dilut¢g and moderﬁtely dense gayxses[lg:l ,
B and, on thé other hand, studied in detail the breakdown Qf
such derivations at higher orders.L2O] [211 [22] Finally,

és wiil be dif%ussed §Portly, Cohen (and Be}lin) revealed the
important role played by the bourtdary venditions in the ir-
reversibility of the kinetic eqdations éerived‘via a pertur-

bation approach. e3] In conclusion, i% ?2 probably fair to

say that Uhlenbeck and Cohen did for Bogoliubov's work what

Paul and Tatiana Ehrenfest had done for Boltzmann.

»
}
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In spite o:\éhe\apparent continual success of the

perturbation aﬂﬁroach in the derivation of kinetic equations,

-

many new difficulties were rapidly brewing. In 19@3, G.
Sandri, using a new expansion technique éeveloPed by E.
Frieman{zu],reder%ved Bogoliubov's results for dilute and
weakly coupled systems.' Friemdn's method consisted of re-
placing Bogoliubov's step two by extending the time domain
into successively slower time scales:t, , t, ,i, ...(with
- t,=t t=et ) t,- 6% ... wheret¢ is the expansioﬁ para-
meter)lso as to replace FK(X,1) by F (Xt t.,t;--) :

| and write the time derivatives in the expanded form:

2.2 yea ., et L

gt otfe ot ot,

@

B& imposing in step four of Bogoliubov's stqucthre the boun-

dary condition that all divergent terms in the fast time
¥

scale solutions vanish as/t;»«», one could then obtaiT kinetic
equations on the slower time scales !, ,t, ... -Using this
method of "ﬁulﬁiple time scales" Sandri£251 and FriemaAPs:]P7}
reconsidered the dilute and ﬁeakly coupled case and showed

that local divergences and singularities existed in both

-

expansions at higher orders. These divergences were con-
! “
firmed and studied by c>’chez's[20:][:28][29»I as they created

serious difficulties not only at the kinetic level but also

>

{
in the evaluation of the maéroscopic transport coefficients ‘
thus greatly hampering the predictive goal of the statis-

tical mechanical approach. /
. ) ¢

,
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\ s ‘
Another embarassing blow to the perturbation methods ;
was rendered by E. G. D. Cohen and T. H. Berlin in 1960,

who noted that the direction of time (or irrev

was not totally inherent in the coarse-graining inz%ime

“ {
introduced, but was, in fact, injected through the particular

choice of boundary conditions imposed in step four. Thgk
further ?emonstrated that seemingly equally plausible boun-
dary conditions in the reverse direction o§~Bogoliubov's
boundary conditiohs and in which particles would become un-

13

correlated when streaméd forward in the distant future,

would lead to a so-called "anti-Boltzmann" equation and
a monotonically increasing 4 function. Finally, they
showed that Kirkwood's formulation could also render an

!

anti-Boltzmann equation by time averaging over previbdus times

in the boundary conditions (I—D—2).1 The authors then rea-
soned that the Boltzmann equation was founded on the assump; ?
tion that all particles were uncorrelated before collision
Lnd became cbrréiated immediately after colliding, while the
anti-Boltzmann equation implied the hopefully less probable

occurrence that correlations would exist.- before collision

.1 This possibility of deriving time irreversible
- equations going.the wrong way was also noted by C. H.
' Su, E. Frieman and M. D. Kruskal [30] who indicated
that an anti-FokkKer Planck equation for the weakly
coupled case could be derived using the multiple time
scale technique by imposing that all secular terms on
the fast time scale vanish ag t.»-w

’
-~ &
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. %
and be wasped away immediately after encounter.1 An interest-
ing reply to this argument, however, 1is that any gas obeying
Bogoliubov's bouﬁdary conditions and'evplving according to ‘
+he Boltzmann equation can::zgzjﬁh§formed into one obeyihg
the Cohen-Berlin reversed b ary conditions by reversing
the momenta of all the molecules in the system. In such a

case, all correlations carried during the forward collisions

would be destroyed in the reverse collisions and the new

Q

" systéem would evolve abcording to the anti-Boltzmann equation

for at least as long as the original system obeyed Boltzmann's

.equation. The Cohen-Berlin reverse boundary conditions thus

represented a haunting return of Loschmidt's criticism of }I

Boltzmann's ideas. It is also interesting, if not ironic,

* to note that their a}gum%nts relating to the probability of

occurrences of these reverse boundary cpnditions were highly
s

reminiscent of Boltzmann's (and Ehrenfest's) reply to Loschmidt.

1

E. AIM OF PRESENT THESIS

~ In the above historical expose we have diSCU?SGd the

underlying mathematical}stfﬁcture and physical arguments which
<

have allowed previous' authors to derive, via a perturbation

1 It should perhaps be noted that if one interprets
Bogoliubov's boundary conditions literally, this argument
should not be expectedito hold since steamxng the particle
forward in the infinité future would give the particles an
1n£1n1te separation in which case one would not expect them
" 1o be correlated. The appropriate interpretation of
Bogoliubov's boundary condition will be investigated in
a later chapter. \ ’

P
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' evaluating the basic structure|from its roots and seeking
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approach, irreversible kinetic equations from the reversible i
mechanlcal laws governing the motion of individual particles.
We have also highlivhted some of the difficultiecs encountered
in properly interpreting the,boundary conditions and the
numerous time scales involved in the thermodynamic relaxation
process and of avoiding divergent terms at the higher orders

of the expansions. In response to such difficulties there -

exists essentlally two basic approaches which one may envisage.
On one hand one may seek slight modificéwions of the existing’
perturbation schemes, such as those of-Bogoliubov and Frieman
which, for example, WOuldf;trige to eliminate higher order !
secularities in particular expansions. Indeed research in
this direction, for dilute and weakly coupled systems, has

[22 ] (301

and Su et al

been discussed in considerable detall by Cohen

respectively. Another approach, however, would consist of re- 1

mathematical simplifications and physical clarifications -which
could result in a sharper general picture of the essential -

conceptual links between the Liouville equation and the kinetic

equations. One of many factors favouri&g such an approach -
rests on the numerous kinetic equafions which have been de-

rived in the past using a multitude of expansion schemes.

The sheer number 6f such expansion techniques has, tousay the
least, made it extremely difficult for a student in this fielg

of research to grasp their underlying common s€ructure. -

»
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Furthermore, as will be shoﬁn in the present thesis, many of
these techniques bear a mathemaﬁical structure farcgffe com—\
plex than what is in fact needed to derive thefdesired kine-~
tic equations. This complexity, which is often introduced
eitﬂer in the form of abstract operators or auxiliary time
scales has obscured many of the fundamental conceptual pro-
blems involved in deriving irreversiblé)kinetic equations
from reversible mechanical laws. For +these reasons the pre-
sent thesis hépes to outline andk;eevaluate the essential
ingredients necessary to recover kingtic equations via a
perturbation approach. Y
The starting point in our analysis will consist of
the Hamilton eguations, fop a mixture of M species of point
particles, from which we shall derive +the corresponding
Liouville and B.B.G.K.Y. hierdrchy. We shall then consider
the mathematidal and physical arguments which justify a
particular expansionlfor a.?iven system. Since the initial
work by Bogoliubov, the conventional apﬁroéch in the litera-
ture has consisted on non-dimensionalizing the B.B.G.K.Y.
hierarchy with respect to a set ofﬂseemingly reasonable

characteristic quantities (such as the typical interaction

potential range f, and strength ¢¢?.) and using the resulting

L9

3 .
KT and £z=m‘r0 )

dimensionless parameters (such as ¢£,=

to classify ®®lecular fystems and to indicate possible expan~ .
0 '

‘sions of the hierarchy for particular systems. For example,

. ',
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in 'a dilute system where £, 44 ). , one would per-

.form an expansion of Fy in powers of £, so as to obtain a

kinetic equation(s) for F, . This simple approach inherently
assumes that therelative weight of the various terms in the
resulting dimensionless B.B.G.K.Y. hierarchy ic completely

dictated by the magnitude of these dimensionless parameters

™~

thus implying that the variable terms which they accompany
are all of the same orderlof magnitude. The validity of such
an assumption naturally depends, partly on the characteristic
quantities chosen in the Aondimensionalization. Clearly if

1 |

these, are not very carefully chosen one may find that the !

resulting dimensionless parameters represent very poorly the
}

relative importance of the various terms in the hierarchy.

Furthermore, since individual terms in the latter may vary in

order of magnifude and relative importance over the full range

of the indepéndent variables, it is Qot at all clear that it

is in fact feasible to obtain a set“of dimensionless para-

meters which dictate the relative importance of various terms
&

over the entire phase space. Hence any expansion performed

without these particular problems in mind becomes somewhat

-

"hazardous. For this reason one objective of this thesis con-

sists of developing a systematic nondimensionalization of the
Hamilton, Liouville and B.B.G.K.Y. equations in which the
dimensionless parameters should,reveal the average relative
magnitude of the various terms over a restricted volume in

their respective phase space. We shall then consider the

. i —
Ve b it SR (v, vk £t oL O | ot et et SN il it S b, et Wl e -

ok aa Aed el e i

sttt

LRV ST NS PSS AP OVSIR S SN




’ -’28-

( .

simple initial value perturbatﬂon scheme, which waslfi%st

discarded by Eogoliubo& due to the divergences occurrinéﬁ

even at the lower order of the expansion, and show that a

simple extension of this approach, which does not rely on

the introduction of auxiliary time scales, leads to a simplé
) method of deriving kinetic equations. This method, which,

’ ' briefly stated, consists of integrating the‘B.B.G.K.Y.,hier-
archy over d time interval adeqﬁately short to maintain.a
reasonab%e accuracy in the expansion, yet/suff%giently long

! ’ - to impose suitable boundar& conditions will then be applied

fai-,

.

ﬁo a wide variety of systems from the spatiélly uniform
» - Jlute gas to a nom-uniform mixture of Brownian particles inter-
acting with an external field and coexisting with a mixture,
of light bath particles. Hope?hlly)the systematiic nondimen-
sionalization of the governing equations and the development
of a simple alternate perturbation scheme will not only
cparify some of the previously described difficulties in fhe
' ¢ proper interpretation of time sca%gs and. boundary conditions
and the elimination of divergent terms occurring at the higher
order of various expansions, but will also eventually lead to

) . a greater accessibility'of kinetic equations, and their, de-

Z rivation, to the general scientific communi-ty. ' ;)
i ‘ Also referred to by other audthors as spatia#ly homo-
'~ geneous.

« -
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_ CHAPTER 1I

T

. GENERAL FORMULATION - ,

n
v
EIRS .

Theﬁgeneral fofmulation bf classical nonequilibrium

statistical mechanics for a conservative system of particles
. " o
is founded on th% deterministic set of Hamiltohian equations
¢
. . - s e . .
governlng the motion of the 1nd1v1dual particles. Since tHe

L

number of such coupléd equations for a macroscopxc system

(contalnlng, for example, 1023 particles) is exceedingly
)
large so as 1o prohlblt practlcally speaking, any solutlon

and that the exact 1n1t1al positions and momenta of the o
individual particles are .generally unknown to a macroscopic
obsarver with a coarse-grain space-time ‘resolution, one - q
usuaﬂiy prefers substlfut;ng this set of equatlonémfor a’
single probabiligtic equation governing the systemn. Spch an —
equation may be rived by considering an ensemblelof identi-
cal systems containi mfﬁe same number and type of molecules.,

A ' - *

The state of the ensemble can then be represented by a set

|
of N points in M space located at the tips of the micro- .

4

state vectors (i:, xo i; LX) of the'inqividual systems. wm.,. i.
If one takes 7 largen s0 as to obtain a continuum of points,

and acknowledges the conservation of Phése points,- one can

then derive from the Hamilton equations a Liouville equation
governing ‘the evolution of tqe cloud density fu(Xy 1) and the ° /
probability distributi?n E&‘iuﬁxi ﬁg%gi). The Liouville

equatiﬁé, because of the large number of independent variablgs;
t.;, {
. - 29 - - : " ,
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the foundations of the class

mathematical form and the \ph

tions for a mixture‘of point

represent the coordinate

¢  of similar equations fo

which it contains, is in‘no way| simpler to solve for large
systems than the complete set of Hamiltdh equations for a

slggle system. Fortunat®ly, since most observers are gen-

er%§>y insensitive to the fine grain detailed information

which it contains, one is generally contqnted in seeking an

equation for the less informatfive reduced probability dis-
o

tribution Fg (Xgg 1) S¢N  from which most obseryable quaé

tities may be derlved. Such ﬁfequatlon known ag the

A

B:B.G.K.Y.‘hierarchy, may be erived from the Liouville

eqdation by integratinig the latter over the cobrdinates andu
momenta of all N- 5 particles outside the oup*{sf{ + As

the HamiltOn,;Liouville and B.B.G.K.Y. equations represent

/ y; A

ical statistical mechanical for-

mulation, this chapter will: be devoted rlpreseﬁting the

. s
sical consequences of such eﬂua~

particles.1

A HAMILTON AND LIGUVILLE EQUATIONS .-

Consider a m1x¢ure M species of point parficlea

with each specie o containing N, particles. Let q, and’p;
5 - N A

d momentum vectors for the (i th
f b
erivations of th® Liouville equa;
archy for a mixdpure'of M species,
r, follow closely the derivat

a single specie system presenmted
ecture notes on "The Eundamenﬁal
tatistical Mechanics"i31] written
rsité de Provence, France.

The mathematlcal
taon and B.B.G.K.Y. hie
presented in this chapt

by J. H. S. Lee in his
Structure of Classical
and presented at l‘Unix

. ok V3 PN I 6 200 soles e Al o1 ¢ ORI V. RS
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™

particle of the ec specie. 'Defining:

M = mass of Nﬁ\;ti@é of specie
U g = external enePgy potential
. 1 acting on an « particle
: w8 . ¢ r-
~ Do, (@:-q:,) = interaction energy potential
_ ~p Detween :the Lt particle
’ and the th A particle,‘ ;
" we may write the Hami'ltonian of the s%ystem as: —
y .
ol -
dzlz’\. { * M (7:) |
=t Zm-:. ‘ I
e“‘. ’Za
.._'_ (bl--) ('“fu 3
. 2 e o (II-A-1)
‘ ,«xx
where the condition  ¢ii= © is necessarily imposed.
The Hamilton equations for the system r?ay then
be written as:
A .l
qk = .__H_-_ ) :‘ = - ""T& H
5P~ 3q¢ (II-A-22) ,
or as: ¢ ” ‘ - )
q" = P.: . -7 4
) m« k‘ 4
4 ) ™ Y
p:h{(ﬂiin ) +2 s , R
L INE S .
Toqg N
(II-A-2b)

The "state" of this mixture of N particles where,

(II-4-3)

"
Nz=2 N \
=i

may be representéd by a 6 N dimensional vector:

XN - xi&|,N1"'

- -2, - g
anﬁiq'np”"" qi Pi, -

-~ o

¥

PO,

=M, A
) Qun pun k

Y

B gy e g ey 1
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located in a 6N dimensionalﬁspace.~

D
b

o
P

Figure II-1
&

This vector, as shown in Figure II-1, traces out a

trajectory in time which is completely prescrfbed by the
>

solution of the Haﬂilton equations subject to ﬁome initial

-

condition, XN(ﬂ . Since, for large systems it 1s not

&

feasible to determine inm\ . precisely, a conceptual en-
semble of h identical,systems with initial conditions*

{ i;w\i Ty i;” f.ﬁ X?‘ﬂ & is constructed, as illustrated
in Figure 1I-2, to account for such inevitable uncertainties

in the initial “state" of the particular system under study.
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Figure I1-2

Ve

Taking 1 to be large, with every system evolving

-

independently of each other, it is clear that thq‘tips‘of

$he sequence of vectors {X, ... i?s will form a cloud of
, y »

phase points which flows in thel, space. ‘This cloud wilﬁ’

have a density 6, (xu,) where:
- ra ,'-!} o - B
PN(XN‘ﬂ :n:i'. Jq:‘JP: N .
- = Mo e | -
is the number of phase points ‘found in the ,volume:ﬂ"'llléq(dp;‘ 1
-— -~

. centered at Xy at time t .

J [N

a differential- volume:
: dq = dg, dqydq, .
in configuration space. Similarly, dp will represent a
differential volume in momentum space:

P

dp = dpdpydpt ‘ ¥

1 - Hereon, the differential dg will be ui?to indicate- °

>
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b (T, 0) €x (R 1)

IS
V

v o

e number of systems in the ensemble is cen-

stant, ppaxe points cannot be created or destroyed. Conse-

quent r any control volume V, in the T, space:
(V" . M N Au . .
({ 2e G BT diars o[ G Gubry i,
9 ‘t o LS : //

where F:’u is the velocity of ’fphase point in Ty spacd,.and 4,
is the surface area of the control volume. Using/Gauss's

theorem, the a?ove may be wmttefn ast

”i”" + Ve Sy O &/‘u Jq Jp+ =

?
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Since V, is arbitrary, we have:

J Py +-‘7"~"3~'p~=° _ .
T . ' (II-A-4)

, The 'second term of the above equa‘tion. may be written as:

LN
-6 ‘EN?N = /-&N-_\;Nf’u +(JNVN'MAI

M N ,
A = B Uu fu+ Ou Z): o _.q Tj/_'ﬁtx |
IPEARA L N
- - Tubu 4 On i.{{m Sz )
. = Mogranr 9By
= A Vybn )
Hence, (II-A-4) reduces to:
Il 4 My TPy =0 _
at {II-4-5a)

or!

a s L) aqt Ma a P‘
- (II»A—gb)
ort . M Na
C o aew +Z_Z{<9_*i 90" _ .m] |
at = Llapr 9gr g aprt
. p (I1-A-5¢)

or, finally:
ey, ‘ZZ[P_:.Q;;@_@".Q_
Lz > - ' “

m

|

Ng
T i): iﬂ:ﬂ.ﬁ.]f'u =5 ({1-A-50)

This last eqluation. which is the Liouville equation,

for: the mixturesi can also be given the compact form:

y
:
N
%‘ -

-

F— . )
R IR A o e o ek @

|



‘(II-A-5d)

' - . w3
Hu- L L (_p_:.g:_ ,Qg“.g__ii'%;_%.g)
S A M 9gn g 0 397 apll (11-A-6)

is referred to as the Hamiltonian operator.

Ve
B. SOLUTION TO THE LIOUVILLE EQUATION

N A solution to (II-A-5d) may be, sought by@ operating

' ) Hut #
both sides by R .
Doing so, we obtain:
B VS 4
gﬁ N FN = (@]
ot
Upon integration of this equation, we conclude that:
. “Hat -
Pulis i) = 2 n (Xu,0) , (II-B-1)
N Hye ~Hut .
The role of the operator, 2 and 2 is Quite clear,

if we also note that the Hamilton equations may bg written as:
2 - 2 - *
o qr=Hagqp ; pr=Haopt . (II-B-2)
, Mt
Operating both sides of these equations by _e

and integrating, we have. the solution:

- Hat, . Haut, :
grhr=2 " gr preb £ P o (11-B-3)

H,t
Hence, the operator, 2

» Streams the coordinates

and momenta of the particles forward in time from their
initial values to their values at time t.

For this reason; it is referred to as a "férward streaming

¥

operator", which is sometimes written as:

»x,t ~N
J?-“I'St 1
N -H
Similarly, by operating.both sides of (II-B-3) by 2 N . we
A )

may write: '
C ﬁ& }

i

| -
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ut “Mut o :
q(o\ JLHf q EA p‘m=.¢ N pT (1) o

Xt .
and conclude that the operator, 2 , streams the coordinates

o)

and momenta of the particles back in time from their values
at time t to their ?nitial values. This operator is a

"backward streaminF operator" and is often written as:

-Hut N
2 = S_¢

!
The properties of the operator 5: for all real values of

h@ve been discussed by E.G.D. Cohen[32];they include
N N
St. Stg. =S (t,+t3)

BT SRR S S Y o
KT

Returning to the solution of the Liouville equation,

(II-B-1), it is now clear that the blackward streaming opera-

; tor, -;?-_}{Nt , operates on the state vector, X,. Hence, “
< (II-B-1) may be written as:
Py (R 1) = En (S)t % 0) _
B N = €y (X o) ¢+ (II-B-1)
T.‘where X indicates the locatiom of the state vector

at time t = 0, glren that it is at X.; at time t. The above
solution thus states that the density, fw, around any phase
point at tlme t is equal to the density around the same
phase point at t = 0. Phe phase cloud thus .flows, in a
Lagrangian frame of reference.\ as an imcompressible fluid.
This fact is confirmed by recalling the Liouville equation,
(1I-A-5a): ) ' N

% 4 Ay -Vnfuw=o T o
Jt

e

L L.

— .
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and rewriting it as:
D6 . o (II-B-4)
Dt . ) j
. where:! :Q_.__—, o) ' /\-}M'.E.N
e A - (11-B-5)
is the time derivative in a Lagrangian frame of reference.
Since, practically speaking, one deals with a single ]
system, it is‘conceptually advantageous to seek for the ' l
probability of -finding a particular system in a certain state.
This probability can be evaluated byrgﬁ@malizing the boint |
density as follows:
! FN & _e_ﬁ, ' . * ’
% Al ¢ B
Doing so, we obtain the distribution Fu(iuﬁ) where F, TTJq Jp

-{:ps\

‘now represents the probability of finding a systeﬁ S phase
"N-

point in the volume ai d?o dp? centered around Xy . This

¢y emy =}

dlstrlbutlon also obeys the Liouville equation:

2F FH R =0 ‘ (11-B-6)
Jt
with the solution given by:

FN(;NA):FN(Sj{iNﬂ\
= Fa (X3, 0) | (11-B-7) !

It should be noted here that in order to evaluate

St or XL , one must solve the .complete set of Hamilton

equations. Hence, solving the Liouville Jquatlon also

|

implies solving the Hamilton equations. This is, of course,
not surprising since the Liouville equation is simply a
probabilispic equation for a Haq}ltonian system with uncer-

tain initial conditions.

3 .
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Indeed, if there are no unc_ertaintiés as to the coordinates

and momenta of all the particles in the system, the distribu-
tion F,(Xu1) takes on the form: .

r\Nd ?

Fu (Xa 8y < 10 ‘tn $ (G2 - G2 ch) § (Pr-pl oty (II-B-8)
where §(a-wt)) is the Dirac delta functiOnj. We can now

ghow that for this deterministic'case, the Liouville equa-
tion is simply an alternate form of the Hamilton equations,
To prove this, we simply substitute (II-B-8) into (II'#-SC),

multiply by a:‘ and integrate over the coordinatels and momenta

of all the particles to find that:

- "~ N R d’ A /t‘-‘/io B 8
s H c];‘N zl_l'SCq, qit1) § (p¥- pg ) i }LJqJAPJ
at '
M NG
-y {S §1‘ dH , J ’lT’T’.S(qL 9 Ling (Pl o c{.\‘) I j",d‘?adﬂ) 8
952‘ aa wsl L&l
e ~ 7, ";J/AA g =24
{g» ad .2 IHS(‘Lt ¢ YiTdgddp
- SS 9 5_;% a—?-f ’au,a q& g ) § pe- Pdt)a‘uw q,dp,

Using the following properties of the § function:
«©
f. §(a-adra=

o ‘ |
S $0A S Ca-t)da = pl) ¥

d $(4£-40) ® dowd ‘
{ &‘ ) JZ J - J.a dA 5(4‘4')J¢ , )
the above Liouville equation reduces to:
goy = M 3
Oﬁ: :

1

e i o R N . R
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Similarly, substituting (II-B-8) into (II-A-Sc),'multiplying
by p: and integrating over the coordinates and momenta of

all the particles we easily obtain:
R 1 4

The Liouville equation and the Hamilton equations
thus contain identical and complete information concerfing
tﬁé detailed dynamics of the system. For sma%} systems
containing only a few particles, one could soive either the
deterministic Hamilton equations or the probabilistlc Liouville
equation. On the other hand, for macroscopic systems con-
taining a very large number of particles (e.g., 102? particle§),
it is cl?arly unfeasible to evaluate the streaming operators.
For such systems, one can neither predict the trajectory of
the;phase point of/;he time evolution of the ph?se cloud in
Iy space. Fortunately, for large systems, one isanot at all
interested in the complete and cumberéome microszopic infor-
mation which the solution of the Liouville equation would

offer. Indeed, one is usually much more concerne? with

the macroscopic properties, such as: ‘ ; \

fom =nm [FTGE ) dp

mass density of specie «

431

“* A A - /_x
P2 N [P RGP P
= momentum density of specle o
1 The technique used here to rederive the Hamiltonian

equations from the Liﬂuville equations is essentially
Carlo Cercignani's[33] method of obtaining the Liouville
equation applied in reverse. ’

»
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P x (;,z‘) : N J '%‘m F, (3,p.0) dp
£ kinetic energy density of specle
where: / " '
PG g ) (of Fu el T Jay dpf
" . RELE L3 _ ]

{tystied :
<4

ese quantities represent contraé@gd variables for t
the system kontaining much lower grade information than the R

mic roscopi® state vector Xu{) or the complete joint probability

distribytion f, . The task of obtaining such important p

| o
- 41 - . ’ ’
3

thermodynamic variables from the Liouvillf equation repre-
sents one of the major aims of the nonequilibrium statis-

tical approach.

. L
C. I}E BQB-GQK -Yv HIERARCHY

Since mdst of the macroscopic variables are def&v-
able from the lower level, one particle distributions
E(ﬁ;‘ﬁt,t\ b it is of great iﬁterest to derive "kinetic
equations” which -govern the time'evolution of these distribu-

tions. The first step in extracting such eﬁuations from the

Liouville equation consists of focusing our attention on X
a subgroup of particles {5} which contain: - "
\particle ' . - |

S« type oo particles

J es» |

Sn type n particles. '

R 7 el Y ) '

g % L LTIy
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Figure II-4 )

Let us now seek some equation whith dictates the

evolution of the reduced probability di ﬁ}fibution Fisy (i;,,.{).

-

In order to obtain such an eqgation, we herely integrate
the Liouville eguation ﬁov§r the coordinatds and momenta‘ of

all the particles outside of {$j . Before performing such

/
'e

notation:

a) let HM represent :the Hamiltonian operator for an io-
—— « e,
lated subgroup of particles is); ,

v) 1ef Fls,s,sg(iisg»afjf , ) represent the joint probability

distribution for all the particles inside ls§ and the J th =

fa
B particle with (1,83 €lsS . . N~

Proceeding with the forementiox&led integration, we

write:

. ’:’fyc]"’ -y o .
B Hlaru 43{,‘1?.;}’” lidgydpy =0 /
a :JIxs‘H ) X
: "N | (11-c-1) -
M N« P ‘ ) .
or: \,/..&%QFN +ZZ[E§‘-Q_§*—Q_¢£‘-3F~] : |
- ;t o) L3 m‘ th‘ D?: J-ﬁ;’
A 4
M N4 N8
8" mNy e
_ZZ§[J¢?3 .2Fn } "iTrlT\ly q:dp: zo
oinl i1 Bsy 3zi J'q_, ;-ﬁ.«
A L

» ~

Iz Rz
L (II-C-2)
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¥We note that: Ay , Y " ,"L' oy ey i
OFw WA A O ([F T d3l dp) o
- .3—1——- ie1 R’SiH‘ L3 R ( ‘5‘{, Y=l ReS i / —
d -y
r = ks “ .
at (11-c-3) ~
and " N ;:\" qu | \"
gt L) opr.arw 1T dGE 4
e ast (= e 3 q.{f 7=y R=dpi / .
™M S N N . ,M "ijy - N
‘ “« aF 97 9T d 4 d ¥
: = f J Z [ Z ¥ Z ( -P—"- ‘ ——-—‘N)‘ ¥=i. k5341 QA P,l,
: S e ma 9 . 'r
™M 5* /_g ‘ [
= SE_Z P: , o F(s& e
olul L3t ¥ T ‘ ‘.‘ \\
N ‘M a qb )
1 . ld T
Y e
| + y Sj 2Fn JQZJBJJPZ/[ 7de, d Bl
ol 1 xSl o Cj: M Y= Regypd \
. {R.1EL S L
Since: . -
diwe F =0 (II-C-k)
“ \ T
., theé second terp/vanishes and we retain: .
o ) BY.efw T 5 AP -
Vofmm me o 9ge T RS
. , i 5;:‘« i “ qt.' \%"o
& _‘“ ' . :
. oer L 2Eas Y |
ot X2V m ; (11 C5) ,
>‘ Similar;y: - ‘/X_—
o M N . n o _" ¢ : '
g Jj X A" RFw T ’I—l"’o(q: dpt - ;
. L ey ., ¥z ReSyh
. : wz) L3 9".. & pt ; -
¢ * /
- 'z " L] ;
’f\’\‘ J ['d .
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L | ‘
M N o Ny | .
+f'jz JU . dFy 7 ‘/_{‘ d :JF:
ot [=5,‘Qua : Jj] 5 A .

——x * pary
Kzt (=l Qq: apx
B A . » _. M /‘,:./, b
R ) L. 2 Fu JF:] QU g T T ol o Bk
T L1 Y _;',‘5" e 977—" ¥21 RaSyai
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= 1) we must have

Q -l
Since Fn is normalized (ile., J}FN(&JHM

(I1I-C-6)
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Making further use of (II-C-6), the above reduces L
L& ! . : J »
. 01 - )
: p M Na Ng P M Ny .
Z Z X [ 26 . SFw T T 0/7: u’p: -
' 1o . d aw 5—:-‘ =1 stj‘l \ -
E Jﬁ{l B8z =y §3 x qg, P\. , .
N o SSe “48 - : v
ZXZ 3¢’£i.e75,m ‘s g;; ' n
. o3t =g =] ys! J-q.: P} a: ’ e i
oA w8 r wd - o
ZZ[Z o¢ii . F ys,38(,d9% dpf
0 ‘ J".‘ - %
: el Bze 0 jrigd 9¢ Jpe
7 v (II-C—8)
Comblnlngp(II -C-2), (II C- 3). (II-C-5), (II-C-7) and (II-C-8),
. we }(ave n S« N@ p
‘ - & :
: JFisy }{xxs“tss-):Z[[ J dbiv L 2Fis;)afdgTIPY |
é' L - . ottt 8=l {= J-S,"H Qq«. ‘gpb ( -
; & At [
‘ (11-C-9) |
v + Since there exists no special need’of distinguishing,a priori,
. F i j
Jbetween molecules’ of the same s?pecie.- we may |a3sume that the

distribution F5y pdssgsses a symmetry for all particles of
h |

the same type( and that conseﬁently:l

Frosiay = Funa = Flsisgmy |

s where F[S;;;‘“j represents the joint distribution for the.
- parfri;cles of {s§ and the ( Sg+1 )thfs‘ particle. ]
We §nay’ thus rewrite (II-C-9) as: ( T
( - A HlssF!is =
~ ” at ol 4
- - 7
) ‘ i Z_ {ng- s,g)[):. H*;i 3 Wissats Iy, IR, (I1-C-10) -
[ £ 4 o(tl LS q F:‘/
' -
rx \ _ '
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(’ . X'l or, more compaﬁtly as - ’ !
, / n M «B o ; ’
” o IFUf s My Fray= L (M-S0 & L, Fisisgn

A ' at 8= st . (IT-C-11)

where:

i’: = [ jV 9' ""&i 2__—- d q‘l*' d Psﬂu . f #
i~ Ip
. ! , (II-C-12a)

is a "phasp mixing" operator‘which/may be rewritten as:

w

, o0
Z f f ..__L_AJJ. (i, «.\,Saﬁﬂ .'?._....,- d L, sam dp FJ,M., Y
Jpt
: =t | (II-G-12b)

Ko
by ggfininglthe Separation’vectorx /
_\“ﬁ -~ I 4 ol
t = u.'d__ = 3
'. r(.s "'“ﬂ\) qt \
3 SCHEMATIC REPRESENTATION OF

2, . .

| _ PHASE MIXING OPERATOR

o £ S« F H 3.‘55-“5

. # Figure II-5 ' , /

1When the mixture only_ contains two species, this
equation reduces to the ? .G.K.Y. hierarchy derfived by Brown

v Flores and Garcif-Colin.l
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. Eguation (II-C-11) is generally referred to as the °

5 ..
B.B.G.K.Y. hierarchy as it relates the lower level distribu-

-

tion Fysy to the higher leveﬂ@histfﬁbgtiqn Fus,se+1y . 1Thg\
term M} , on the left/hand side of the hierarchy is

x,’reprgsentative of the interactions oéLurring within {s§ while

! L)
the mixing term on the right handvside, as illustrated by
Figure 1I-5 expresses the influence of the particles outside
of S} on those within {s{ . This laﬂter term imposes ap open

form on the hierarchy thus making any exact solution fortFus

impossible if the higher level distributionfys g, is unknown.

Suoh a state of affairs was, of course, to be -expected, since

interactions across the bodndary of {s{ do, indeed, exist and
’ I

it would have been rather naive to expect that a pure mathe-“

matical manipulation of the Ljouville equation might erase

P
such interactions. . J
| - . ' /—\

D.  SUMMARY

| Theﬁresglts of thié chapter may pfﬁefly be summarized

aB follows: 6

1) The evolution of a single system of interactiﬁg particies
| (described by the trajectory of a state vectoriétvin a &N

dimensional T, space) is governed by the set’ of Hamilton

e

equations which may be written as:

- . EL
2’:: _P_? ¥ ' \ ' e 4:
. ' &
T M ne ¥ o8 » | ‘
5 " SR A
_ S f--[LY an;s] . ua” . (11-A-20)
: . rt ™ 9 qx a9x ) .
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( or equivaléntly as: )
. B

qv = Hoge

S Y . ¥
| pt = Hn PL - (11:8-2) |
( !
p where: S
f H, - )} {kpt‘.o _ oou”
=g (2 = =
Ma aq‘_ A
- . ™M Nﬁ a } -
: R J
g * - L L gk Lo g e
«9) z LY
R P :
& (I1-4A-6)
The solution to these equations is given by:
qUty =2 o = St G o)
’ ‘ -t ‘—c t—l N -_
PR gecty= 2 preay = Sg Pl '
o .
. 2) The evolution of an ensemble of N identical systems with
- \ 7 large.is described by a density distribution Prn (Xn, 1)
v in T\ space or an N particle probability\distrributvion o (Xn,1)

and is governed by the Liouville equation:

I e e
-

f P_Ey + Xlu Fy =0 -
E v 2t " (II-B-6) |
;‘ which has the solution: . . 9
= , -Hat )
: : FN(?,{,H = 2 Fy (XnO Fw (S- {XN al =
b f 2 (II-B-7)

r, R Ir all the systems of the ensemble are 1n1t1ally in the
1 same }mown microstate X~(a\ the Liouville equation thEILI

¥ reduces‘ to the Hamilton equations.

- v ———r st
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3) The evolution of the reduced probability distribution -~
Fus{Xiy,1) is governed by the open B.B.G.K.Y. hier-

arcﬁyx ‘ .

dFuy , Mgy Fusy - }: (Ng- 54)[ is.\ Fisisant

dt (1T-C-11) |
where ’
Mm S« M So s
)‘(us- ZE { :.:Z_ _'_D___é__é.‘.i_ ..[ 9__—__{_.) _i
i = - =y - =4 3 - -
iU age agx 9pe T ogr aps
wd My @ ; A a &
Lo L S 20ign. o d38, 4B,
3 Lzt &q":‘ &p:
. S
.Aaﬂ
= o = Z jj a L‘Jén ((r“)l) D J Y‘d JA*' CIPJ‘-H
! J9 aps

The Hamilton, Liouville and B.B.G.K.Y. equations,
as previousl& noted, represent the foundations of the statis-
tical mechanical formulation and will be referred to;hereon

Vi »
as the "governing equations" for classical molecular systems.
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CHAPTER, IIT b

: ¢ NONDIMENSIONALIZATION OF

THE GOVERNING EQUATIONS

The B.B.G.K.Y.hierarchy (II-C-11), derived in the
previous chapter for a mixture 'of classical roint partiglqsi
represents, on one hand, & key governing equation, and on
the other hand, a major obs&actsjin the sfatisticnl mecha-

nical study of molecular systems. Indeed, one would like

to derive from such an equatlon general analytical expressions
for the one particle dls%&lbutlon F (3,p.1) from which

the relevant m?croscoplc properties of the system could
eventually be extracted. Unfortunately, it is dbundlntly
clear from the open form of the hierarchy that such a general
task is impossible without some knouwledge of the higher

)
level two particle distributions. Since thece latter dis-

tributions are themselves governed by yet higher level dis-
tributions and that this inte ioéking chain of dependence
A « , S S >
propagates to the highest level distribution F (X t)-, one
then reluctantly concludes that the derlvatlon of general
and exact exprcssions for F (g, p'i) reprouent,. in prncflcal
terms, an unrenlistic objective. The problem nt hand,
therefore, consists of somehow closing or "truncating" the
hierarchy so as to obtain approxﬁmate closed equations for 8

a group of low level reduced distributions F;,S{Yhs[{)

This simpler task may be accomplished by ceecking special ,Agb

4
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hieranchy, including the troublesome "mixihg“ term respon-
sible for its open form,wﬁay be neglected as a"zeroth order"
approximation. For such mixtures one ﬁay derive approximate:
;zeroth order dis;ributions F#) (and F&SQ.BI ) which may

» ) then be resubstituted into the terms initially discarded

so as to obtain more accuraté v 17Stopder” equations for
F{;j J Repeating this process of successive appfoximation.
" one would then hopefully emerge with increasingly accurate
closed equations for FiSk . This method ofgsclosing the
hierarchy, often referred to as a "perturbation approach;,
has beeT extensively exploited in the past to derive approxi-
mate closed kinetic equations for the one particle dis- :
tributions. The viability of thié method in the derivation

. of such equations represents, furthermore, thg main concern

]

of this thesis. ' ‘ - ]
t ‘

A. ESTIMATING ORDERS OF MAGNITUDE:

/

N . Before any truncation of the B.B.G.K.Y. hierarchy
Iy via a perturbation kpproach is pursued,\one should naturally
L.
devise some method off estimating the relative importance

~of the various terms in this equation. One such method

consists of seeking some characteristic gquantities which are
inherent to the system and constructing from these dimen-

- sional quantities; dimensionless intrinsic parameters which

govern the relative weight of the various terms of the

v
{ “u

—

- o ", ® . ¥y . I A T ¢ 1 Ay s e
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hierarchy. This method, iﬁitially proposed by Bogoliuﬁov[lzj
in, 1946, was later exploited ngFrieman‘[zu] and Sandri[25]
in 1962 and 1963 respectively. ™ Sandri, in particular,

defined the following charﬁ%}eristic guantities. ‘ N
. |
G = typical range of the interaction potential.

¢o =  typical strength of the interaction potential.

1

“kinktic temperature” '

{ in the absence of an ex-

2
m Ny
so as to derive for a simple gas

ternal field,the dimensionless hierarchy. P

oF Ks kb 5.'1: R |

It
. ¥
- o
. = £,.62 L Fo (IT1-A-1)2
whegzx ' L
S x l
. -
Ks '-'-Z P". é—_q—-'!- b
/ b
t\ Y \ |
s )
*
T = }:I 20u .3 -
s° /[ ak e
= 2% 3R B (III-A-2)
‘ 1 is
s, ) 4
* * & .
» .. - —
Ls= I 9—"""9:’ ) a—_u c,lcfsﬂ dp.sﬂ :
a aqb apb “

{

, Hereond gases containing a single specié of particles +
will be referred to as "simple gases"%

2Hereon ‘e’ sunergcrlpts will be used to denote
dimensionless quﬂﬁiltlps ‘and opcrﬂtor.
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and where £, = ’..‘%:‘h €32 mio (vfith Nz (gﬁ J\:} = average
particle ,density) represented the diminsionless intrinsic
paﬁameters.l ’From the definition of these parametgrs Sandri
could then interpret {. as the typical ratio of potential .
to, kin?’cic energy during an interaction between two particles, \
andbal asfa measure of the typical number of nelghboring
particles within any particle's interaction lsphere. Sandfi | !
further noted that these parameters could be used in a sys-
‘ter'natic classification of molecular systems. Consequenti;/j "
using € and £, a?index codes,‘ he iflonti.[‘ied the followihg

four classes of mixtures:

[
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1) dilute gases with £, ~Ol1] & L

2)" weakly coupled gases with ¢&,<(| | £,~0L1]

3) gases displaying weak long range interactions (includ-
ihg Coulomb interactions) w;th,é,((\ , £.62~011)

) weakly coupled dilute gases with &, ~o0[é&;] <!

Since, in each of the above cases, there existed at legst

one parameter € which was much smaller than unity, Sandri

thep reasoned that such a parameter could be utilized asm

perturbation parameter in the following expansion of

A AL AR
(III-A-3)
By substituting this expansion into equation (III-A-1) add(
collecting terms of the same order as EL ( Lz=0,1,2 «0v )
he could then systepatically car;y out the method of succes-

sive approximation, or perturbation, previously

&escribed.
While collecting terms of the samé order of -Bg;fg-‘
however, Sandri tacitly ?ssumed that the reiative’aeight

of the various terms of the hierarchy was entirely diptated

by- the magnitude of the intrinsic parameters £, and £,

EL. * X » »
thus implying that the. variable terms Ks Fg . I, FL and
4 A 2

*
,LSF;,, were all of the same order of magnitude. The vali-

dity of such an assumption should naturally depend, in part, .
: e
on the characteristic-guantities“chosen\to ndndimensionalize

the hierarchy. Indeed, if these are not very carefully

chosen, one may find that the intrinsic parameters ob}ained

1

represent very poorly the relative importance of the various

’
o

™,

4
S e s o Rk
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terms in this equation. In the following séction we shall
consider thexfeasibility of deriving dimeMsionless equations
in which the intrinsic garagetgrs dictate thé relative impor-
tance of the various terms f&;;the,é%ti}b range of the inde-
pendent vag}ables; These equations, whicé we shall refer to
hereon as 'properly ordered', distinguish themselves by the
fact that each term (with the exception of the time deriva-
tive) may be yritten as a product ofja gariable nondimenéional
term of ~6txj and a group of dimensionléss intrinsic parame- ~ :
ters. Naturall&, 1f such equations could be derived, the pro-

blem of extracting uniformly valid solutions from the gover-

ning equations would we greatly facilitated. - ]
- ’ .

B. GENERAL REMARKS ON THE FEASIBILI OF 'DERIVING o
. e ~
" PROPERLY ORDERED GOVERNING EQUATIONS 1

The Hamilton, Liouville and B.B.G.K.V. equat%pg@ re- .

present equivalent forms of the governing laws of mechanics
and, hence, are founded on three fundamental and independent
units: length, mass and time. ., (These equations may thus be
nondimenslonalized by chosing three 'basic Gotd of 'charac-
teristic qﬁantities'. The properties of theb§ sets may bé‘
summarized as follows;

1) thé elemengs of any single set bgar the same units;

2) the elements of each set bear units which are functions

of mass, length and time only;

3} the units of the elements of any set are indepemden§ of

[

the elements of the remaining sets;

4y) the elements of each set are consjant for;a glven mixture.
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Choosing the elements of these sets remains, of

. . B .
course, d\eurely arbitrary matter if one simplyﬂwishes to .

<

derive governing equations which are free of units. On
the othgr hand, if one ggeks dimensionless equations which
lend themselves eééily to a "perturbatiom" schemed it be—J
comes deﬁ;rable. for reasons discussed im the prevﬁous
sectiony; to find basic sets of characteristic quantities ;
which wili render "properly ordered"“dimensionlegé govern-
ing equations. 'Tbis added criteria that %hg goferning

equations be "properly ordered" greatly meduces the arbitra-

-riness in the choice of the basic sets. In fact, ofe can

gasily verify‘that ;here generall& does mot exist any three
basic sets which will yield dimensionless goyérning equa-
tions/which are "properly ordered® over the entige“range

of the independent variables. donsider,‘for exampié, the

Hamilton equations, as given by ‘(II-A-2b):

AN
@ i
- —J ks
gtz B :
my . ’
Y
7. M N - :
et . 8 4“ - C e
. a
- Pi :_ZZ &91“ (qu.-cbl). \
82 %! QLW A
o .s. e . .®
au. (q"\ s "“‘»\\
X - ‘ -
’ -9 g

The first equation may be nondimensionaliized by chbosing

- » . -
(or constructing), from the basic sets, m characteristic
’ ’ #

) % ’ \

P

R N
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“time Te~ + length L. and momentum \P.tsuch that the

following dimensionless variables may be defined: <>
= , - - T e - é
© . ¥ - .
ts.1 Ted o, Pie B :
== 1 L= ) iz _a_
T iL ™ 170\ (I11-B-1)
One may then easily derive the nondimensioqai equation:-
¢ % * +
ndh o — a

§2 Pt ‘ ’ N

=
"

9 h « _ 2o
where: €L = 1P T& .
Me k. -

- (III-B-2)

b,

) \This equation will Ee/properly ordered if one can fiﬁd a
—s.‘ Y - L o - o N
| P ' such that FferDt\jd for %éi t . This IPC) will natu-.

P Y
‘ra&ly only exist if :(t ) remains of the same order of
magnitude for all t Unfortunately, since particle (i LX)

L

may be expected to suffer numerous encounters witH™ other

particles or interact with a strong external fleld ilt would
" seem only reasonable to believe that $he momentum/of such

a moleculfe would repeatedly vary in magnitude and occasionally
e |

¢

.suffer ‘hangesqofsorder(s) of magnitude. Consequently, .one
A ~

cannot generally hope to derive a dimensionless form of

£
(III-B-2) which is properly ordered for all time. One faces

a similar problem when’ dealing with the'second'equation of -

i
(II-A-2b) which may be freed of units by choosing (or con-

structing) irom the'basic sets the characterlst1c energids
%6
dh; and (l; so as to define the dlmen31onless potentials:

g - [y
: * - % 8 -
8 g Ty - : .
¢‘:-j : - iL‘:% D) ut =y _él_:i f b3 ’ I
b > u: - ) (III*-B-#

~

n
~
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. ('( . One then Pb\;ains the dim¢nsionless equation:’
b, ' i
S a :
N
x P4 - X N N
, | . ! «8 : \
;:. i PI'. = Z Z /L!el' Q¢LJ- (III‘B L")
' ‘ . e ) 4 431 L3 9 _.(*
g o 0 ' 99
s : & &
iv x:, - ra .‘“ *
v o CT XL QU
o | ' . p
§ « . J(’:‘
Pl \ o ‘
t . 2 . o
BE" N ] . . ; !
P A - o )
P - )
; : “ «8 j
P | = bu |70 < (III-B-5)
A PO I
£ ‘
,% i ' , i = u:‘ 7] ' ’ Y
= 2 < % N d
4w Pk | |
T ' B ’ ) B
' I{ a ?15 equatlon will -be properly ordered ir, " for Al 1,
§ f,n I:’ ‘I OQL«I[ ~ ol1] .le ~ oL1] K
o / Q ? \ ’ ’ o q ‘ ’
. i - ; s 4 B [ )( :-/\ o,
et i | 1}
| ‘1;” / Thio w1ll. thermore, pnl b%fthe case if the forees N
N -,
! ‘ / ‘ “ . and ’JL(‘ preserve their order of magnltude ’
| /’ aql 3 Qq: v
. ! . L for allt . Since during a collision or an 1nteractlog
1 S . swith a. stronf external barrier (such as a vessel wall) , -
! f 1 . e ‘these forces‘m:\y be \expe""ted to vary iri order of magm.—
f ~ °
r . tude, ‘one should not exp=ct (III B L) to be properly ordered
i I N
Npq ;“ . for very long times. It j;hus~follow$ grom the above argu- -
’ SRR ments. that a general dei‘:;vatie}x of dimensionless Hamilton
b £y L '
. CEW . o _ equations, properly ordered for arl ¢ canpot be regarded
2 A st » I ; b
2 I Voot 4
: - . - A ' j v ) }
i“ [ Ay - ,' ’ \
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| / ' i . .
( " as a .feasible task.  Using Slml]! » arguments it can also .

%e shown that the derlvatlon of dimens1onless Liouville and

» n
\ ' |

/B.B.G.K.Y. equatibns Wthh are properly #rdered for the

b !

- [~entire range of the independent v;riables is\equally in-
tractlblew The reason for thls is that these ?quatlons. ’l

‘ in their dlmenmonal forms, contain terms like “ ., 2 Ejs}

| i m'k aqu
» ) «8 ’ ., 3 e
3 ’ Mgg;‘ ;2%:’—“ ) g—%: : g%?k “ whi?h cannot ge;é'rally

be expected to preserve their order of magnitude (of rela-

tive weight) over the, full range of the ingdependent vari-

= -l. ¥ 4

- \ o °
atles. 9, , [P and T .

’ ]

. . . oo . s
/ "The impIications cf the above dis us&on are indeed
. }
. serious since, as previously ncted, one should usually not

nore to derive uniformly valig perturbation solutions by
"exranding in equations whélch do not prese Y a certain order

' . . . . ) oF
'; in the relative importance of their terms| over the entlreo
3

v

~ range of the independent variables. Fort’unately. many

t kinetic equation$ may be derived by performing expansions
) ! l Y . ]
1 which are, in fact, only valid for a res‘%ricted yet signi-

. . - ~ \ i. .
] ficant range of the independent variables. One reason for®

Ny
4 : 4

/"jthfs is that, in order to close the hierarchy for F{s}?one : f

only needs approximate solutions for FlS. je| over a range

3 . L - =Y ! - :
g ) ' oor q? and pf which %ign)ifican ly contribute to the inte- .

grals of the mixing terms in (II'C—%ﬁl). Furthermore, since

: ‘ / , 28/ . . . ;
? _ these integrals vanish for C]? chosen outside the interaction
i ‘( spheres of the particles within {S}and that F;;;;g;itseli‘

may be neglec’ﬁed%for large values of Ip:ti , it thus follows

; . ’
4
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that, for SN, the,contributing range for §;

e -
8
and O,

Consequent}y, one is somewhat

LY
justified in seeking dimensionless governing equations

¥n fact, quite restricted.

whlch are properly ordered, bn _the average,

over a limited
] -

range of'the independent varlables These equations.owhich

shall be referred hereon as'ﬁua51~ordered'equations would *

then contaln dlmen31onless intrinsic parameters Whlch 5
» =
{ /

dictate 1ocallv and on the average the order of magnltude

of the various térms in these equations+ Finally, these ,
parameters, when much smaller than unity, would represent~
sui?ahle expansion parameters in a perturbation scheme
yielding approximate local expdnsiﬁn solgfions.

Many of -the dimensionlgss governiﬁg,equations ’
breviouslyﬂderived by Saﬂdfd and»otﬁérs in the field of -
statistidal mechanics are, in fact, éuasi—ordéred’equations.

Unfortunately, these equations have very often been used

, without a clear knowledge of the range of the independent -

\ ° Q ! ’
variables over which they are proyerly ordered. Such a

cas@al approach has not only left a cloud of uncertainty v

4

e . .
on thevrange of valldlty of the perturbatlon solutlons % é@

¢
derived .from such equatlons but has often led to lopal

and sometimes, global breakdown of the perturbation scheme.

[
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-{ ‘ C. DERIVATION OF "QUASI-ORDERED" DIMENSIONLESS .
*>

EQUATIONS . N

‘ . i This section presents a derivation of "quasi-
& » N . [”\
\d .. . . - . -
ordered" dimensionless equations based on f?g following
&

assumptions:
% .

1) the system is near canonical equilibrium such that Fu

-

, ' g
is reasonably close to the canonical distribution:
. ( . .

o ( e sHskm
Fun ~ L ‘

{ - ¥ (\ . ZN s ) . ’
3 . ‘- ) -
_H M Ne« -
\\‘ ' = - /kT i':" e ot ) I »
¢! ZN - J—} 2 -l:‘l L‘n CJQL AR‘ . |
' ‘ P

) , ’ . (III-C-1)
. 2) all, interaction potentials are boundéd (in magnitude ' .

Lo ' and range) and may be written as: * oo ~

; | o8 I <0
L RSN

e~

. (I11-C-2)'

&

I ‘ - "
1 ‘ A , LJM“

ﬁ ' 5

a3 /

id
-

t 2 - A '.‘ ’, - ! ! ! L
+ - - i
_ . ‘ , .
) - b :
! ( i ) ' 'g
. . ,

. ® aad - '
, éi . oo , Figure III-1 o
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where: ' d
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¥ I o8 _ «8 I -ra
¢ "‘-m b o 0
='o NP
:rr-rB . .
o TTws ~ el T x8 T “ws
o'z 3 ‘S ety 37T gy d oy
( (IV--(IS) O& =
X o :
~ OCXT] ' (ITI-C-3)
“ T e 4 .
~ % \ « > ¢ .
’ ' t ’ o ]I o - =8’ i }'
” v > - T P ag, ., 1 -0
- ] ' i ¢ q)".imu= (b';.l(v~ ) ){/’ r;,l<, \
) / 3 ) "‘ . .8
- o ] = d’u " 4|ﬂ3|$‘f"' B ‘r»ol>r ¢
.
£ II- I -
¢~ = (m‘,:) o~° (m,-'l) dm,
~ °b 7 . (11I-C-4)
KKT ’ -
f . N ¢ 5 - . ’
U \ 3) The“external potential u is weak and has a finite
1 - -~ -
! | range L such that: 3 .
o ’ J V= gﬁ( L) , .-
& ™ ) ) ’ -
U= 3 JJJ qu:,> dv ' | ‘
o 3 '
’0 '
> L 4 (L) « S . | ~
o » L J# ¥ ) » ! an / (III".C"S) /’
3 ¢ (( kT ‘ d }
® ) - - 0 - . i
The nondimensionalization will fouhded 'on the '
” three basic ‘sets lm} ,1el and ‘u,] bearing the units of
# . I . . PR
| _ mass, energy and length respectively and-/dfefined a’s follows: - ‘
E |

b e lmm m.,‘..t.ﬁ..x )
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I
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" S i | (II1I-C-6) .

P

i , . where the subset {ltchntains a set of characteristic
e | lengths to be defined later.
N ‘a) Hamilton.Equations:

Quasi-ordered Hamilton equationg may be derived by
firsﬁ)constructing from the basic sets the characteriétic .

' ) 2
¢ momenta (M«kT) , and defining

.- - ~ d 1
-~ «
_Pi = .EL ‘/& ! — »

i . Cmgx) . (I11-C-7)
; S
. such’ that for the average moleigle
| 1)~ o R
v . . %
4 .+ We may then nondimensionalize the coordinate CE by intro- LA

, . « e
L ducing some (R ¢ Iﬁz;r which shall “e left arbltrary for g

the time being, and’definex p R
: ) -
1 L3 . °
i T - % -
‘ = q 7 (I11-C-8)
Y qc. - 6}"‘ , 8’
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’ We shall now free the potehatials d);, . ¢f-i of their ,

units by defining: -

I3
b

' ST 1,m6 G
> d}#, : b4/ la

[
LY

' ' D.a8 n,<8 '
‘ o Wz du/la
§$; \ | (III<C-9)

I8 a«s
(where @ and a | are‘to be constructed from imi Y

- * . T wE ¥ .
5 14} ane  lel). |We shall also impose that j QQL-_‘ and
L / "’aqc,'
= I «8 n ,
L ’ y ‘ J@q are typically of the order of one over some dimen- ,
aq; “ . g o
sionless physical volume V. , where: > | L
*a 3 - &:‘
| Ve 2 ve /(&P '
3 o
(’ and Ve £ é Mre - is some characteristic physical , ]
, volume. ‘More precisely, we shall demand that: }
Iy ) o @
Ve 1” w8 - A N
: - L. J” ‘_;_@_.t_‘. d qf ~ Cé\[ LD
1 . Ip —.‘. J - ]
' - o VC 9 qb '{ , i
. e ™ |
Ve omLgt - | |
{ Ug x o P dc’; ~ o1 /
4 Tﬂ . —h‘,* : |
Vo o 3 C“' r ‘
& " ® o . *
: : . S ‘ -
' - Y .(III-C-10) ’
. - *
! ' LT wd I x8 ’
! such that the gradients i -and: Q_Q_q» are properly .
3 é ' » - . '
- - ‘ ' aq-; ‘ aql’ ‘ -
i / ' ordered over a.finite range in the Jphysical space.
- - r )
, The first equdation in (III-C-10) may algo be
' written as: . - \ ’ - 3
A T Lo
‘ © R . © N ~
¥
. ! ‘ ' - ”@* s
3 L . ‘i o . N
L;;fc N E &N " ) ! . 1 '

1
\
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i
eend
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\ () o v‘, x" -.8

1.8 m 70 l dgf Aol .

v. o EN | \
. ' (I1I-C-11)
If v, is thosen sufficiently large to enclose the spherical

< 6 3 )
interaction volume ﬁ@ Q7&WJ ) , we may rewrite (III-C-11)
as: :‘.-(6

o T wh !
3R J ¢l oadin| de o o}
T ey o Yo

Furthermore, assuming the pofential.é@ be reasonably smooth

3, «ft
such that %%L is typically of thggorder of kI for

Tend

F.§ R
€4r"% | we then obtain:

3 ,
. KT <0ift (“"r"‘) A OLIT U
A ot T\ e S

Consequently choosing: = »
‘ ' 3
Id,.‘ss KT Q a«) (:rqa) -
. Irﬂé ‘ r(, \
. o ;
. ree thd : (III-C-12)
we may define the dimensidnless potential: ’
Iq)q;____ Iig 'xr.dB f > \
. = ==\ A= 18 (II11-C-13)
o KT ® r 3

Similarly, we obtain from the second equation in
(I1I-C-10): »~ K ,
n’he; « a 3 : b ‘
& & \ [ 2" Vol @
[
Ia'd nrﬂs rc éﬂ
such that €hoosing: .
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. q \ « - |
we may define ' r;’
i ’(B* I 4 8 3 '
¥ = a?'<r)(r> o
T ~ -
T’ \ & P (I11-C-15)
In an analogous way we can define a dimensionless Y
potential. ‘;d
, .(“ L4 . !
- d = i s (ITI-C-16)
boob - .
%  guch that: ‘ . _
. i '
. V(_. - . . . .
a ”J l o ~oltl .
Ve aq:" | %
£

. o
We then, obtain two possible definitions for b . 1f the

f

characterlstlc volume Ve is enclosed in the volume ( L) (1 e.,

t

v. ¢ (U ) ") we conclude that:
~_ ‘q*. o -« ' , ) . '
“ ) ) : ‘
A\t AR 3 » : ,
(v.c (1)) : '
~ ¢ VA (III-C-17a)
, «w3 - ‘
‘" On the other hand, 4if °(L} Ve, wte then obtain:

y
:
) I

3 . K

g

i (ve 2 (1) (III-C-17D)
¢ Finally, we ma,# nohdimeénsionalize time itself by
» J # . ' A
,( a ” . ) / "3;3(
o . : S R " | |

*
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N
defining some characteristic time t, :

to = ’R/(/n\

where Me{ml,Re{f} ana E efe!

-

There exists natufally many possible choices fort,, some

of which are more physically meaniﬁZ}ul that oth;rs. In o
'tﬁis thesis, we-shall define:
M= m; , E:KT
and leave R arbitrary ‘such that: | *%k
3 .
t, w/ (T )™ R
o 6111 C-18)
represents the typlcal tlme for a particle of, tha first
. sp?cle to traverse some chara?terlstlc 1qutp'R . Defining:
$ ’ i - e o
, tT=t o= (KT)/’zt R ,
T, m, R ) (II1I-C-19)

and substituting thé previously defined“dimensionless quan-
tities into (II-A-2b), we then obtain the following set of

dimensionless Hamilton equations:

-A’* ] \ “'"* K 9 ’
- da - KR T
dt |
- Nes
- % = S Y- T =8
dp - _ ¥ \ R .2 .
. dq-
d t . qc
B Jmt )
N p o
®
L] ( ‘q /
) ' ~
; \ N ~ -
1' . ‘
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: *9q;
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: -« « XN \’* |
oA o, |
I3 «4/%3 aq& \3
r (II&-&C-ZO)’
where: ' ‘ |
. - - ! ’ "
< AA /]' a ’/ ) ~
\ud 2
A S TR V‘f(m_;)' N
R - Me :
& - <
-~ 3
T8 z a8 R L o 8 '
R = :—_B.qg(.i )1' 'R 'H—B‘;@ ("r"‘) l
Y Yo r Ve
,‘&f N
«8 D48 « T
gl 5 /)gf ) y 2 LX'._. ¥
kT / KT .
%
¥
« ~ 3 .
Az 3 o ARO[
4—':" - —L-':‘ T i «
. 3 " . 3 ¢ -
v c (1) (Yew (I11-C-21)

TN Note that in the above equations R , R and ¢ are

totally\arbifrarx. While the- choice of R ’in essence depends
on the time scale we wish to use tc; deseribe the evolution

of the ‘system, the selection of R hinges on the particular
=length scale .we wish to ‘Atilize to investigate the.motion

& ™
of specie= . In mapy cases, one can choose R=R" g0 as

r f
5 v - v
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3

to make J(%(\ . Since the terms on the right hand side of
(III-C-20) are properly ordered over a physical volume Ve
"we should choose the latter according to the volume in

ph¥sical space which interests us at the time. Naturally,

L

if V¢ is chosen large.. there may . exist aflarge section
>
~ within V, where the equations do Lot flaﬁ proper order. The

reason for this lies in the fact t at‘the eguations are only
properly ordeve;h;h the average oyer V¢ . Choosing v, very
large may then cause some locai breakdown»if one seeks an
approximate perturbation solution of #the Hamilton equa%ions.
Finally, it must‘be neted that the above equations are only
%roperly ordered if all the particles have a(momen%ym

ot(rndKTjﬁ- Naturally, if N is sufficiently large. this

‘ »
° condition will always be violated by spme partjcles. In

.

such a case a few of the terms in the Hamilton equationé A

will not be properly ordered.

b. Liouyille Equation: R

) .
Using the same procedure as in the previgﬁg\sub—

section, we may derive a\quasi—ordered,ﬂaouvirie equation

7

bysdefining a dimensionless probability distribution:

* ;
¥w. = Cy Fun (III-C-22)
»
Such that the terms \QLEN; and ;“6>FN are typically of the x
EE RN N
f /order of one over some volume \Aa.u& fh space. Using the
‘ .A* _‘*‘

prévious nondimensionalization for Cﬁ and F , this volume

may be wrltté% ast

»
- L, -
~

Py
.?ﬁ ) v L

P

—l\
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- , (I11-G-23)
. where: .
0 ' o gn M NG/
= LS ,,L ) »
vN 5 &C rﬁ) (m‘ KT) f
. ! - . (I11-C-24)
* Pepreséhts approximately the volume in ﬂu where qté\k.
and ,pﬂ~otf"?] vivay Consequently, we shall 1mpose the
follpwing two conditions:
< ' V,: x W ' ;
% K 3
|9Fu = | Jf ’3 FN JVN' n oL} "
= x % e 1 . N -
@ 9 q: '\iN“ aqz‘ e 2 é
(II11-C-25a) i
VN* )
: " x X » ~ \ i
& ¢ . /9 FN = _L S... QFN J d\/N \ NO('] !
] - - QE:‘ \/\:\ aﬁqx - :
- f L oy
M N (1I11-C-25b) '
- X _ ~ f"" - -‘: & . . ¥
where: / A Vn = 1) ~ll dq:( JFL ,

ozl L3
7N Using (III—C—ZE) (II1-C-23) and (I11-C-24) and the

N oty -l
previous nondlmenslonallzatlon of ql and p: .

il

criteria

 {III-C-25b) may be written as:

; vn :
.
' . Cu Jm.‘)ﬂ' S} !JFN ~dvy. ~otil
—_ =7 .
< ¥ ; Vu . 4 N

Since we have assumed that the system is.near canonital

..l L3 I 3 a
equilibrium this reduces to:

(" ‘ ’
A,
* L * - .
L
-
* b
R -
v
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Now, if 'we define W, (#\' to represent the probability ‘that,
for a system chosen at randém, X, eVi ,F;’(X'«.{) may be

P

{rrritten as the product:
& '

! - -
, B O = W) Pa (Ru 4 1Xwe ) (TII-C-27)

"where Py denotes the conditional probability distribution

- ‘\ — \
for X, given that Xue&Vw . Substituting (III-C-27) into
VN ‘
Cn Wil } S tplt Pu dvw ~ofd -
Ve Vm.okT :  (I1I-C-28)

Since: . , to. '
Va . \I

| jf Sﬁg‘l P dvu o Wmiwi) "

Wn ) ~a H@v"/}’ )“] :

where 4/, denotes the probability, at equilibrium, that
1P ~ olfmaxT 1, ( [IfI-C-ZBQ) may then be written in the

(I11-C-26), ©one o/t:tainss:

-

o Y
farm L -y
> “..
v ¥ . N '
Mg @ (%) ~ofd o
‘ V, v - R -
° Qf’ 1 - VN jyo - -
A or: f " H h / B
; ~ N C\ .
“/— <. #,"_L_,rﬂh?ﬂ* -0[|] > .
i = Vm ’IT [ Ma KT] /& :
( oldl _ . . -l
o gonsequently,wrdefiningx . ) d .
] . " i * ’ Lt
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v Py N M L3
Cy = (°V ) M im, KT\ /2
—_— ottt
£o /‘je‘\
P N ,
& ' . N . ‘ ‘ ) b
we- havef, v o e
R SO N m " 3~.,/2 - ~ 7
PR Fu = ( V) T (mexT) Fu ‘ :
¢ - — ] Lez| .- ' -
Hig | R - :
‘ \ ’ (1I1I-C-29) - *
Substituting back into (III-C-25a) one has ' ‘
N VN } o i \ ‘Lh
[N ( = ‘ .
7 } ( \4 ) ®R j J I fw dVw ~ ofi] R
Ve Meg | ?‘; '
[ - | ‘
, or: "( - — .
’&@/ JJ , 2P d Vu rnvofll ’ . ‘.
xR

%

ey

Near canonical equilibrium, this criteria may be written as:

'\ J “}: I _P;‘ee(, \lc]\/u . n o) v
KT

¢ ) ‘ '(III-C—BO) ;
where: ‘ ‘ o
. . A -
- L% n  Ng K ~ - i
T w8 8wt
.5 :‘—:_}'Z{agu +Jg"qj ~
.‘u‘ 9 N -
8z s aqv (h :
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® 99,
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iep;esehts the external force exerted on the particle

f ‘ .
by the remaining particles and the external field.

Defining: ' i b .y
. ‘ vV
M Ny . -
Q= JJ Pu T dp" “.
¢ aty Ly
"P\ (III"C"‘BZ)
(III-C-30) becomes: I )
RYAF N, ~oln]
xT - (II1-C-33)
where: - .
= i — W M N« N
CUSF " 1eq a}...}ls? | Qu,, T g
' ' (III-C-34)

- ia -
represents-the average maghitude of the force JF at ®
equilibrium. Since, al1%the particles of the same specie

-

ﬁ.
W

are identical, we have:

< \33'5‘*0,; CLFEMYE s,
' (111-C-35)

It now seems quite clear from (III C-33) that Gl

A

may no longer be left arbitrary. Consequently, we define:

R kT , | S
LAVSFS ey | z (ITI-C-36)

o
FUCh that G{:represents the distance over which

i

he force
N )
E15F7) 7.4  must be exerted to accelerate, from rest, a

particle (i) to a kinetic energy k7.

a

With Fn defined by (III-C-29), alosg with the pre-

A

viously defined dimensionless qpantltles. one obtalns the

following dimensionless Liouville equation:

n\

N
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(z11-C-37)
where: .
* ¥ G ek
]{u.z ZQKKP;Q,__*
aq‘L ,
wzy (¢l -
‘ M Ny ™ Ng

.¢ I o 8 3‘-’3 *anpé‘:le *)‘,ﬁg_:{‘
qu o qy IP.

ozl L=y ge) Jo

EZ AT 2L L2
aqL 29"

osi L] . %
ol
! @j<* = R < \ ﬂ: ‘ ‘>41
kT
which is properly ordered on average over \{N .

-

R

c) B.B.G.K.Y. Hierarchy:

The B.B.G.K.Y. hierarchy may be nondimensionalized
80 as to be properly ordered, on the average, over some
3 e ‘
volume V‘ssln the reduced phuse space T'M by defining:
*
Fis) = Cug Fusy. . | {rre-30)

and imposing that:

il
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) ' ’ ¥
Vig o« )
| Ej Ic?ﬁss ~ O i1 v .
— —a% - - ,
V!ss aqt o ) 8
§~ (I11-C-39a)
Vis * * | k
| . JJ dFisi| dVig <~ o0
e - )
Vi BRE (II1-C-39b)
&
VM * * 2
. Kyt § . *
B ]| P | 4
Vs \
VIJ;S ’ﬂ ﬁ)_\ * —n: X , *
s
- __‘_ )g JJ a@is‘ﬂ arls 3att} clr\.i +, AP““ ‘JV{SS )
- * ’-b_‘ *
Vlﬂ aq& fa PL
~ C5 2 . .
* o " (1I11-C-3Gc)
where: ‘
»
o Vig = Visg/ m 3s.
oo /’iT(Gf\/m‘KT) 1
g . o=y ' (III—G*“O)
) ' 35-&/2
| Bnd: vlSS = ‘,‘va (m KT)
u n

%
(III-C-“I) v
Proceeding exactly as in the previous subsectlon.

one can satisfy (III-C-39b) by defining:

3 /2
C s ‘:‘(_\i))ﬁ’(m‘.xﬂ
Meg] == (III-C-42)
such that:
% . S m 3./t
‘ ~
Fgg = ( v T (meT) s}
— oz
o Hes S (117-C-43)
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- . - Similarly, criteria (III-C-39a) may be shown to
‘ 1 4
imply that: .

- -

v‘s} ’ ‘.

J.S l dvisy ~olil
24, |

13

(TII-C-4&)

where:
. -S

‘P‘S‘(xlizvt) = (_\_‘3‘; /u¢1‘> F\Sl (5(‘“\,{)‘

'
L)

. (III-C-4%5)
represents a”condit%onal probability distribhtian for Xy
given that )l(me\'//m. Since it becomes evident irzn (III—CTL&L&)'
that R should be chosen according to the subgrougr {s}

we shall define:

\ - ' -1
o ’ ° '
GKBL = { J/ d Py l .
' o9 ‘.
P & (111-C-46)
where the ini‘tia'tl distribution: ’ o _
-] - - . - * L
"?h\ (xhﬂ = ?\5‘ (X\ss , O) , (II1-C-47)

»

has been introduced so as to make (R ygy time inderendent.
. . :
Finally, defi}r}ing the dimensionless separation

vector:( Coe T “ < ¢
k q‘ - r wé ;1 X qs * . <,
e = 'ru/ R S o
R=4,2 . {(1f1-c-u8)
v ¢ \
criteria (III-C-39c) may ben; written as:

4 - ‘ ug
# .
) 4 FN ! .
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Jog CR™) g8 A= L
. Vi wi S T |
X -8
l J[ l JJ : ?iu - A s s} d ] Sg*) d Psa+i dViss
R , |
. ~ol1] (I1I1-C-49) )
where: ‘ )
o ,
. - M -~ -.I‘ _.“ -
Pissonp (Rist, Buy, Pogor 1 | uss € Viss) -
) A ) (-' -8 . a : .
¢ , = rzs ! Sl”s xlSS ] qs,n ) pS‘gfr ' t ) \A/US (-L’} .
. \ ’ - (I11-C-50)
‘ 3
represénts the conditional probability distribution for
v
. -4 Y . - [ ’
l X sy, Qe p;" given that X5y €V)sy . Consequently,
we shall define: . : '
kR _«f . - “«l .3
Ruyy = z V Vmaxt V7 Lf&. ) o0
XR%S xrdﬁ
R ) /1“1' ¢ - #
% V*" - hand : ) '/3
¢ ) ' . X «d ° -“dﬂ -6
e ® x J"'J ' Sf d ¢LJ . 9P s Sanf d (‘i”s“::r o’ Pg;’ﬂ J\/flf}
B g9 9PC ]
Pl . LER &1 o
N 4 ;’ 3 " . f
' ‘ ” © (III-C-51)

Substituting (IT1I-C-43), (III-C-48) (along with
\:, ’ ‘ "
previously defined dimensionless quantities) into” (II-C-11},

we then obtain the followi@ngdimensioaless B.B.G.K.Y.

P

hierarchy. , v ! .
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6.1 ofcf R=T

: ©o {111-C-52)

: / where:

C3 . = *
, . aq "/ QF |
Bsp protxt (=] “
5 ' : ) A1 o -
" o " i
— ZVI X ‘A Ju » ¢ '9‘.: X
|oeg P S
6 ot (I11-C-53)
ri’u\ﬁ/{_ T .(grr‘*ws x«
= ey Aleg
Sel * '
1T w8 ,— -t
/lzl aq: JP“ > ‘

t

and nKm g ’R/(Rm . ( (III-C-54)
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(I11-C-55).

Taking the so called "thermodynamic limit",

¥y

o . A”D ﬂ:/"/

Ng»o v
V—Pﬂ «
r .(; . .
. the Yagt parameter, £‘lﬂ i , may be writt:rras:
«f ! X _wd 3 h | ‘.
!éx ] /’l/ (ml“) ‘ J.{’\ (iII—C—Sé)

: It should once again be emphasized thﬁt equation

(IIT4C-52) is properly. ordered on the average only over a

phase volume \/“‘ for F]ﬁ reasonably close to equlllérlum.

D. , CLASSIFICATION OF MIXTURES:

The dimensionless B.B.G.K.Y: hierarchy contains

the following set of iqtrinsic parameters: .

i R e

« 8 vﬁ T )
teg- Ly .Km,ae ARy ey
: . =1, -m, 81, M iR<1,D
i where in summary: ' .
- ¢ ) ’/
3 ¢ - -
B l_m_. . J
. my . .
» ‘ .
g - K= R A‘ .
a{s} - 4
1 ‘ qa 3 ,
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€, = "&% . Q ,
kT’ , ) . . ‘
. . - « _.‘ Y . ' B v -
X = oou. ; .
KH’ [ L
- ‘ : »  (III-D-1)
]
P . o ' o, w 2
_‘ Az -R % el
v L* © N
o ‘ 3% 8
QA H R L.. (LI C.Vc
. L ’r‘
A ‘
. 3
] op R_«8
"ISS= /nﬂ (jR(sS) R th'H » .
These parameters, prov1ded"R and V. are flrst deflned,_ 7

‘ may be used.as index codes in a cla851flcat10n qof mlxtures.

. aturally, since two of these 1ntr1n31c panameters are

dependent. on the subgroup {S} where the numbe{ of elements
in15% varies from jtoN, it fBIlows that the number of
elements in the "index' set" {£§ nmay become awkwardly large
for systems contalnlng many particles. Indeed if Q\
thermodynamlc linmit is 1mposed fed will,. in fact possess
"an inflnltp number of ‘elements. Thiz thesis, therefore,
Rwill‘not atteﬁpt to pfgsént a complete and geﬁeral classifi-
:M‘k*gﬂﬂﬂﬂ//ﬁcatidﬁ of ﬁixtgres oh thé’basis of tiliiﬁ{# ather will cdn-}

sider very special classes of molecular systems which are

‘ 1
+ o ¢ «
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3
N »
v
.
-~ 81 - ;
¢

‘compatible with a truncation of the hierarchy via a ﬁer—
turbation approaéh; More prec1selj. we shall restrict

oyr attentlon to these systems, of phy31cal 1nt$rest which
conEaln in their index set {€{ ,” some intrinsic parameter(s)
&hich is (ére) sufficieﬁtly smalie? thagyone to qualify as
an expansion parameter. These parameters, furthermore, will

usually reside in the right hand side of the B.B.G.K.Y.

.hierarchy so as to allow the omission of the "mixing te¥m"

of the hierarchy as a zeroth order approximation. Th parti-

~

cular, three classes of mixtures will be studied: nhon dense,

" weakly coupled, and So-called "Brownian" mixtures.

a) Non-Densé‘Mixtures:

Non-dense mixtures aistinguish themselves by the
. N 3
low percentage of molecules which are interacting at any

given men1 Our analysis of such mixtures will be based
on the following assumptions:
‘. . ‘ ’ ) .
1) the strong interaction po’centialIE‘:j is repulsive and
!&%

its range is roughly the same for all pair§ of molecules;

x B8

ie. e ao0rv for alle,d, (ITI-D-2)
where: M M J
¥o= Mamy e’ -
o= Ze Mg © (III-D—3>,
t m , -
and: | Bt s ) .
~M ~ .
rm = X Ma o (I11-D-4)"
er=1 R
1 . »

If there is only a single 'specie present, such. sys-~

" tems are usually referred to as "dilute gases" However,

gince the word "dilute" 1s also.commonly used to indicate
the low concentration of ‘one or more species in a mixture,
we shall avoid using it in this thesis.
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2)

b)

5)

6)

o 3

J - 82 -~

all the molecules have similar masses:

R i .

e.

‘85~ ol1l

(I1II-D-5)

the particle densifyyis roughly the same for -each

specie:

i.

TT«f
the weak interaction potential = ¢, may be neglected:

e,

i.e.

/ﬂ«'; ol ”/m]

ET’-—+ o)

with IY*®  finite

the external field is weak:

i

.eO

X L4

and long range such that:

5

4

“"&f
(III-D-6)

’ - (III-D-7)

(I111-D-8)

'
Kl

(III-D-9)

the averaé% number of particles in each particle's

~

interactidn sphere 1s very small:

i.

3

e.

¥

3 : — s
ma (T Lo my 77 44

(II1-D-10)

Let us now consider, in the light of thé above

assumptions, the magnitude of fhe various intrinsic para-

meters in {€{ by restricting ourselves to subgroups {5} con-

taining a small number of particles (i.e. S~otil ), 1In

order to evaluate these parameters, the characteristic lengths

R and 7 must {irst be defined.

such that the characteristic time:

td =,

@

I~

R=s~

‘ m,
KT

Let us prescribe:

(III-D-11)

(III-D-12)
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PR Y
represents the typical interaction time betweenimolecules

and choose (. as follow:

Yol «m _ (111-D-13) 1
such that the hierarchy becomes properly ordered over a
physical vdiume larger than the size of a molecule's inter-
action sphere.but much smaller than the molecular "specific

volume" ~~ ' . “With these selections for R and Y. , one then

o

obtains from (III-D-1):

e = ¥ fr«ﬁ“) :
1«8 e . (III-D-14)
. 19 . . . ~ T «8
The remaining intrinsic parameters J<uiand E‘ls
. s

may also be evaluated by estiméting the magnitudes of tne

L < ‘78«8 ,
characteristic lengths Oqiﬂznui fRuy The former length

(. L. vu o -
. QR - ijm 9P Avm}
A ,
shall be considered for two special cases: $?! and $=) .

In the first instance, we shall assume that the magnitude

. ]
of the gradient IPusi, is mostly governed by the correla-
Qqr

tions between the mol?cules within iSk which, in turn, will

be assumed to be dictated by the strength of the interaction

_potential. Consequently, it would seem reasonable to ap-

0 v
proximate 'P“‘as.the canonical distribution for a group {sj

Fod
and hence assume that: \

A T
o ©
1 . \‘Hereon the symbol & in A £ 4 denotes that o 1is
smaller than and of the same order of magnitude as y

¢
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: Ly ” € . b g d Vi
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such that: ) . ¥
.
ﬂh “m Sa /
,eﬂ’u} ~ of Z[ ¢>L, 'Pass ]
oq" 2 q: %1
L ) . L] .
' (111-D-16) !
Substituting the above into (III-C-46), we then have:
i A3
. o Vm o 1wl ° -1
Ry~ °[—,{TJ 122 .é’_@u’ Pug dVigl
Jq’ I~
8~ )3 v
(III-D-17) k
Finaldy, since within V. one has, on the average: |
, ( 3 | |
L8 \ (T ad8 \
. T !
D‘L] NO{(%B)(—WZ) ] !
a -
-3 . d
7
~ol o (1) ] |
(111-D-18)
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(e- “and S~0[1] we may write SN ?
T J o
62." “ >3 Mgy R .
,~O0f[ 1T J <« .
| Rig- ~o [ L(E) ] Pigg dvasy ] o
" \ . N P .
' L } (III-D-19)
! . ) » 7 , 1
or: o ‘
£ « ’ . 3 .
6{ T o= Syl ¢
. sy ~O 5 _.9.)
. £ : ) [ ( v ] . ~oL1]
S SR ' (III-D-20)
For, theisl’)e’c,ial case S=! , we shall only consider moderate
spatial gradients so as to assume: /’
\ - Viiag - ' - h
+ » * ' o '
. , Jf I.D it | d Vi < [ 1
e - . . '( A.‘ r‘-c
2.7 199 '
! . and obtain:. . .
%,ﬂ . I . ‘
. K Ay > T . : (I1I-D-21) - -
. .lll |- : by, ’ N
rSubstituting (ILI-D-20) and (III-D-21) into (III-D-1), we |
then conclude that: . .
. K- ~olwl sy ‘ (III-D-22)
" w which, from (III-D-13), implies: . .
) % N °< e (11I-D-23)
< » ' . s
I ) l}<153= » m , o
' .- y
. , Similarly, for 5';‘! , one obtains from (II"I-D-lﬂ) and (ITI-D-21):+

r « z = - '

' - 3 , | g

| Ky <L |
i ~ ) ) . , (III-D-24)
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We shall now estimate the order of mag itude of:
L Y : 1«8 , 3
KR'“ = { v J/;: g ( (e )
8l
'y . ' /141 VKT g :‘ ¢ t’\
Visj -
J f ‘ ’f cD ¢¢.J . o ? 15, sa+1} CJ b,‘“ p:‘ﬂ_\J lsj}
3 aq: J'F’»

S
by noting, on one hand, that: »

r.\. - . b 3 I's
. IJ—R‘{{V /'n:“rwxﬂ(rc\)

b /a‘z '/F vd

t o \/)3' : . o N R
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P:
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.and, on the other hand, that the integration over d Vi sgs1

is performed over the entire physi‘cal volume, wherel on the

s -
average: T,
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Assuming that R yfé sufficiently near equilibrium

to Write: . 4 .
o -
2?_!5»51*‘} e F - -p(is 544-!5]
.o P: md KT .

we then have, approximately:

’

-(Kn 4 3
1K [ % /—m.‘ T ) \
——“——~—~—— ¢a \

‘ - R 4= ‘ /s
) XJng k7 7 -—---——IP:l T”u‘«w}" desu‘“/’s!} J

< 7
$olfe/in] | \
Since @/u,’ ~o[t]) , The above result reduces to:
T w8 .
S‘Rlss \g o [ r&] ‘ < o~
1 ' . - (III-—D-25)

such that:

a T o8 «B3 3
€2, F g R Ysg)

( O [marcal

5 »
K :
(I1I-D-268) ~
. /
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Listing of Intersié)Parameters
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For Non-Dense Mixtures
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» The above results are summarized in Table ;II-l

o

where the first column denotes the intrinsic parameters,
)

the second column gives the precise definition of these

parameters, the third celumn lists their order of magnitude

in terms of ¥ » Mg and . , and, the last column tabulatest
the orders of magnitudes when f. is chosen according 3jo //

: i /
(I1I-D-13). *

o

Let us now consider some of the implication$ of the
dimensionless B.B.G.K.Y. hierarchy (III-C-52) and Table III-1
for non-dense mixtures by comparing these results with the

analysis of Sandri previously described. Sandrj restricted

- his nondimensionalization to simple (single specie) systems

in the absence of an external field so as to obtain the

dimensionless B.B.G.K.Y. hierarchy:

* _ * * _* l* *
| oF 4 Ko F g IgF - &6k b w
* h

2t
# (11I-A-1)
A % *
where k;, I,xand Ly were definedin equation (III-A-2).

For non-dense systems, Sandri regsoned that:

é,m"'ot\] “ &, L4L |

I
a

" such that L,F;: could be assumed very small and would

be neglected at the zeroth order of an expansion in €z -
/

#
For the sanie physical system.and using simi%ar notation,

the B.B.G.K.Y. hierarchy (III-C-52) of the Lresent thesic

may be. shown to reduce téi

- - «

S
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QFs 4 oAy Kk, Fs
[ ]
ot x Tt r 'z LA g
- R I, Fs = '54“,;}? Hn ke Fou
¥
[ 4
(111-D-27)1

Now, choosing (. according to (BII-D-13) one sees from the =
last column of Table III-1 thatxéz(/ékl Y represents the
predominantly §mall parameter. Furthérmore, it is clearly
evident that any perturbation of (III-D-27) - in terms of ifz
is eq;ivalent to a similar perturbation of (III-A-1) in

terms of &£, . It would, therefore, seem that the above
nondimensionalization -of the B.E.G.K.Y. hierafchy for non-

dense systems is completely consistent with Sandri's ideas.

/ In spite of the apparent mutual agreement between

the above analysis and|Sandri's nondimensionalization, one

important dissimilarity must be noted. W& recall that the
dimensionless B.B.G.K.Y. hierarchy as given by (III-C-52) -~

is only properly ordered over a characteristic volume:
< . ’1

, 35./2
M (myxT)

N 3
Vis, =- W
ol=})
such that any expansi%g performed on this equation should
be restricted to thermal molecules (i.e. molecules with

momenta O [Jm‘xT] sharing the same volume V. ). This

»

-
1The definition for K; , I: and L, are as given

by (III-A-2) with the exception that gq  , p;, o, , f;

are defined differently.

b

k-

-
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latter volume may be regarded as a “floating" valume which
¥
may ;e chosen anywhere within the physical space and could,
in fact, travel to follow a given particle if so desired.

Once chosen, however, it may not vary in size and must re-

main more or less sp‘herical.1 Clearly, if one’/wishes to

enlarge the.range of validity of any expansion performed.

v

-~

on (III-C~52) or (III-D-27) one must initially ch%cise a
larger volume V. . Unfortunately, any attempt to inflate
this volume will provoke two undésirable effects. On one

o

hand, .since the B.B.G.K.Y. hierarchy is properly ordered *

on. the average over \/M' any enlargement of this volume

.

through an inflatiort of v, may eventually create large local

regions within V(s over which the hierarchy is not at all
pr,?perly ordered. Furthermore, as can be seen from the

e i
third column in Table III-1, any enlargement of V. to the

-l " . I .
size OImM'] will increase the magnitude of €; in (III-D-27)

s,

. .
from ¥ €, <X to &4 £ 00(] . Furthermore, one notes
. 3 ,

from the same column that this choice of ¥y will yield for

h g
R ana K, (in III@—R—Z?) magnitudes which are much smaller

than unity. For such a choice of V. it would, therefore,
. 3
seem more reasonable,to expand in 'R ahd H, than in €&,

If one, in fact, performed such an expansion one would then

4

Ithe reason for this is that in evaluating the

typical order of magnitude of l gd)bs‘ over V., , a spherical
q.

volume was assumed. Clearly, if this volume is drastically
distorted in shape, these estimates. may no longer hold. Y

RV

R L i AT T
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naturally find that all the terms in (III-D-27) (with the
- exception of the tlme derivative) would be neglected at the
zeroth order. Finally, one.may easl}y note from the third
column in III-1 that though !iRtf decreases rapidly in
order of magnitude with an increfse in f¢ , the product .
éRdﬂxéziss genefally,remains insensitive to such an en-
largement of V. . Consequently, one may conclude frdm
" (III-D-27) that an 1nflat;on of V. will generally have the
effect of decreasing the magnltude of Hﬁﬁ” while leav1ng
the mixing terms moré or, less unchanged in their order of,
magnitude. Hence, any attempt of overenlarginé through an
increase of V. will generally intensify the relatine impor-
tance of the troublesome mixing terms.

We may conclude from the above arguments that the
expansion parameters chosen in a perturbation analysis
greatly depend on the volume )/ls& over which the prdpdsed
expansion wiii be performed. Furthermore, any attempt to B
increase Vﬂsj will, on one hand, fcreate local regions in

Viéy in which the expansion is not at all valld ‘and on ;
the other hand, increase the relative 1nportance of the

*

troub}esome mixing terms. These conclusions, which were
fnot at all evident. from prevxous nondlmen51onallzatlons of .
the hlerarchy (such as Sandri's) w1ll bear bo1v1ly on the
expan81ons to pe performed in lateéychdpters of thls thesis

for non-dense mixtures.’ ' ;

ks ]
.
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D) Weakly Coupled.Mixtures:

‘We shall now'evaluate the intrinsic parameters for
ne /

a mixture which dia@@ﬁys extremely short range strong inter-

qcﬁiﬁns@and moderately long range weak interactions.such

that:
Ma(678Y. —0 (II}—D—ZS)
0«8 3 .
: \ III-D-2
' M (BT~ ol1] ( ‘ 9)
and: ' ,
. 8 n,«8 \ ] ‘
£° = Q—T K : (III-D-30)
hd o K [ o
The analysis will rest on the following assumptions:
1) All particles ‘have rbughly the same mass:.

s

2)

3)

[ ]

ige. ¥ ~oOII] ' . (III-D-31)

All specdies have similar particle -densities:

Y.e. ‘ L T B
my~ 0lmd~olUm] .

ns ‘a result of equation (III-D-29) tﬁis assumption

(III-D-32)

also implies:

! “Y ﬂ\d
Tl otk

(11§;p~33)

~ ol ¥ ]

where, in this subsection, T is defined by:

M
- 2 _«B 2
L Me s ¥ .
:§: m e (III-D-34)
ol sl 6;\ . .
The external field is very weak and long range:
« , - .
i.e. )( i< 1 s “' ‘ (ITI-D-35)
S D VRN S . (III-D-36)
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- represents the typical duration of a weak interaction.

i.e. . Ve 2 | (III-D-38)

.

3 _on -

' For the weakly coupled case, we shall prescribe:

Rszv . (I1I-D-37)

such that the characteristic time:
X - | kT
to= "R/J‘aw“ 2 r/J?ﬁ.

-

Fﬁrthermore. we shall choose Y. slightly larger but of the

same order of magnitude as ¥ :
= [ ]
r

4

As in the non-dense case, the characteristic length R [s§

will be estimated for two cases. On one hand, we consider
«. ' -
ﬂm (s> l) for a mixture with weak nonuniformities.

For such mlxtures, the gradients Q—PN are essentxally
. aq-t
governed by the correlations resulting from the strong and

weak interactions between the molecules. Consequently,
o
for such mixtures, we shall estimate G‘hsy(sﬂ) by assuming

Ehat initially _Pi” is not too distant from the canoni-

. . [+
cal distribution for a subgroup {$} . Hence,’ —Pm

v;ill be approximated by:

=3 "-(2 \
o e BEBECE RS s RiEmd ]y

) ‘P‘lsl ~ O ][ ‘.‘Z‘S) eq -ln {z1 6= 55 ~
1«8 n «8
e g FERECESD) - Y ma)
hud 5,__ . ot 31 @t J5¢ ‘ d‘/is}
Ziw = J) oo
such that: | | |
M 38
’ I 4 T «8 o
Q‘P‘“ ~ O [ l Z Z ( J éii + 3'42.,) > ?lxi
Ja~ ) gq«f v 2 g <T 7
- oF; w0 o )T
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and © - '
- .. V{Si M Se / n q‘
ah‘! ~O[ " l fj bJ + ¢LJ
o Q
0’!' Ju/ q"
Now, within V.[ , we note that:
suf ' 8
. 99, o [ xT (rruo) ]
Iq AT
and: p s
& of : ol -
J¢LJ~0[ I‘bﬁ (nf”)a}
24 ARV
\ .
Furthermore since: ‘
. 3
@(:(uﬂ) - 0O
and ) »
e« ~O [ 7{] ~ o0l Ve ]
. $
we then have , <« .
3
(’ I..“_'(e> - © .
N rc ™~ J
Consequently, for

s~of1)

(
or: . v K

)

., we conclude that:

N e

v

LA
P AR SAN

(IIi-D—39)

(III-D-40)

. A
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-and therefore:
« 3 p
Hi = R 0 [N
ysy = — ~ [ (.?:) ! ]
Ry
) w8 s
~ 0l & ]
!
« X
We shall now consider, as_the
' * ture in which the gradients 2Py
Jqx

spatial

[

the correlations.

-3
choose for.-Pu;

Py ~o [

" such that:
02“)&!0 {
i ~D [

Assuming that for all o

For such mixtures,

-

M 5«
" “ ’Pl‘-"s (qLipLa
w-| Lt‘
Vis - o .. '
” A1« 147 7))
Jq
V\L:-:S /o '
JJ 9 tb,"‘ (qb PL
- Fy23

(III-D-41)

second case, a mix-

are mostlw/gue tolthe

-

mnuniformities within the system rather than to

"it is preferable to

'l

%

ib:L .
o . ol B
B Prier QgD dvisr]

et 4 1y, 63 a

(“Vli.us ]—.‘ .

» the gradiemts due to spatial

nonuniformities are moderate such that:

V‘h"‘

[ li?%:d

62

(z’:;ﬁ?) J V“ﬂ(j

(o (L]

-1

T i
‘
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*
we then obtain&i§
- r « ) ! ; )
and hence
« T
J(iss ‘< O[?c]
{ ori1l (III-D-42)

g v x8
Finally, the characteristic length 5;21“ (R=I.1)

|
may be evaluated exactly as in the non dense case to yield

- .3 <8

Ry € o tra k=1,1 :
such that: \
‘a';"m ¢ otomel]
{ o tlm¥v]
{ o1l

\ (III-D-43)
Thébabove results may be summarized. as'in the -
previous section, by Table III-2, where the third column .
indicates the orders of magnitude of the iﬂtrinsic para-
meters when Y. is arbitrary and the last column lists the
respective orders of magnitude when Ye ~0L Y]

N .
Let us now cfénsider the implicatiops of these \

PR o

results in terms of Sandri's analysis of simple weakly

coupied gdses in the absence of any external field.

e me ——— ———
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%
— . _%0& :-: N uﬁ (( l
| T
s
' . /
= R ' ; ¢ Y
A= 2 toly)
L - : L
; Y4 r «8 3 (<OY./)7I‘3]
b E.z“‘ = 2 (SR 155 ) , 3 18 €
bl
4 Table III-2
) 1 Weak spatial nonuniformities
( 2 Moderate spatial nonuniformities
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Listing of Intrinsic Parameters

For Weakly Coupled Mixtures
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( t . Using a notation similar to Sandri's, the B.B.G.K.Y.
. ‘ , ;
!

hlerarchy (III C- 52) may be written for thls 31mp1e sys-

- tem as: , ) -‘ o ;
" £ _x i .
‘ Q)Fs + d<$ K$ F& - ¢R 61 \I\S LJ - -
#~ “m, ‘\\v, a t‘ \ ]
¥ * %
: E' £" IR Het, L\S Fsi; @
" - ' (III-D-44)

. LS { : . )
If one now considers the case where the spatial nonuni-

..

formities are moderate and one chooses ‘e '“OCVJ one can

; - then.conclude from the last c¢olumn in Table ITI-2 that
H
A&, K represents the predominantly small parameter

in (III-D-44)." Furthermore, it is evident that any expan-

sion of F? in powers of €, in (III-D-44) is equivalent to

'\a similar expansion in Sandri's % in (II1-A-1). Hence, (//P\\
l!ﬂ!a& \for this particular case of moderate nonuniformities, the j
above analygls is apparently consistent ‘with Sandri's ideas.
. ’ On the other hand, if one considers 'the particular gase of .

a weak spatial nonuniformities , it becomes apparent from the

\ . last column in (III-2) that, along with E}. a second para-

g

%hmtem'qﬁ, o} the same order of magnitude a% ¢, ¢ emerges. »
i | : - » 4
Purthermore, it is evident that any simultaneous expansion .o
A ‘ ¢
o
of 5& in powers of €, and Ks.will result in the neglect of ( K

all the terms of. (ITI-D-44) (with the exgeption of the time
{ A

derivative) at the zeroth order. This redult, which is in

di;EE§ conflict with the analyses of Sandri and others for

uniform weakly coupled gé;ep,gxems'from the fact that, near ’

‘ 4

- o TR SR s (ue A5 e S A Y A IO AT S, M L R v ¥ o NN K s e koS LBy e AR e b 4 - L J.. . B € . A S B AR deidei ) A e Pkt s ve v .



of = § ... (Ho-” as the "bath" molecules, we shall investi- ~
H .
* gate such. "Brownlan" mixtures unéer the following assumptions:
4 % . . . .
® }ib 1) All the Brownian particles are roughly of the same.

. \ -
Aequilibrium. if one neglects the interactions contained in
f:F: one must similarly discard the correlations created
by these ihteractions in K:}i‘ . This point, seemfhg}y ~
overlooked by Sandri and many others will hagg grave con-
sequences whén a truncation of the B.B.G.K.Y. hierarchy for

uniform weakly coupled gases is attempted in later éhapters

of the present thesis.
|
|

5

Before concluding the present discussioﬁ. one should
perhaps note that many of the remarks presented prev1ously
form}gn dense mixtures apply equally to weakly coupled : ‘\\
systemé. In particular, ¥t should be emphasized tqgt aﬂy
attempt to increase t?@‘range of validity of an expansion
by inflating V5 through an enlargement of Ve will have the
Qndesirable effect of creating on one hand local regions !
within Visi wheré thé dimensionless hierarchy is not ptroperly*
ofdered and intensifying, on the other pand, the relative

importance of the troublesome mixing terms.-

c) Brownian Mixtures:

’ >
. . . Al
As a final special class of mixtures, let us now

consider systems which consist of a groda&of heavy particles

«L£oexisting in a bath of light molecules. Identifyihg species

3
o« = M. -M as the heavy "Brownian" particles and species
1}

mass:

L]

i.e. m,~olm3l for 2 ‘MEx &M

& N
P Kl AL AR 3 N wsie At o v Gl WHee T VAR me caar ¢ b ames B e T
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2) All the bath particles are roughly of the same mnass: -
i.e. ma« ~olm7 ﬂ for o <M i

3) The Brownian particles are much heavief than the bath
particles: 7 / ® - -

T :"'\\

iveu ¥

-

M e L (III-D-k5). d

for %L M,

-

L) The external field exerted on the s&stem is weak:

i.e. X4 , (I1I-D-46)

-

- for all ‘ ’

With these assumptigns, we immediately obtain two
s (3 . * “ . *
intrinsic parameters X and Y7 (7 M) which, because of
their very small order of magnitudé, may be used as expan-
ﬁ .
sion parameters in any of the dimensionless governing
equations, provided, of course, that they, in fact, dictate
the order of magnitude of the various terms in these equa-
o 1 4 ~tin
tions. Strictly speaking, this will only_be the case if )

the remaining parameters are ~0[il1 , on the average over

some range of the independent variables. On the other hind, ,
e ’ - i
if one does not propose to pursue the expansion to high

drders of (¥, e, YX"), we simply demand that the remaining

[

: . . ) ‘ e &
intrinsic para'eters be within the range:
’ -

max. [ ¥ (e Mo) X*T < €, 4K min. [ [ =nne '1v] (iII"D.’b’?)

-

- (for all £.ciel, £, # ¥ ante) L") A X

( , . s

. {
e B : - - !
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In order to verify (III-D-47) one should, of course, '<:l :
proceed as in the previous sections an& define some/charj e i
acteristic l?ngths'R y Yo and introduqe some, reasonable |
initial conditions 13; to estimate the orders of magni-
tude of all the intrinsic parameters. Unfortunately, for
the general case of Brownian mixtures, it becomes impossible®
to choose reasonable initial conditiogs‘for 'qu w{thgpt
resorting fo very special cases (such as non-dense or weakly
coupled systems). For this reason, it will be assumed in
the present thesis that (III-D-47) is, in fact, valid for
some choice of Q_andlﬂ and hence, some range of the indepen-
dgntcvariables. Such an assumption, though rarely acknow-
ledged, is, in fact, iﬁplied in all previous perturbationaﬁF

=

analyses of Brownian motion, including those of Lebowitz<

TPV ] R RS SN

Rubin, [8 ] Résibois-Davis, L'7] Lebowitz-Résibois, [9 ] lr ' ;

Cuckier and Deutch, 35 ] Deutch and OppenhelmE36] and R. 4/%%
Mazo.[37] It is, indeed, r?grettable that this hypothesis
be needed, since it leaves us somewhat in the dark as to

the range of validity of the expansions. Suffice it to say,

N\

therefore, that the truncgtionnpf the B.B.G.K.Y. hierarchy !

. presented in the following chapters of this thesis via an ex-

pansion in[ﬂqmunlfk will be presented with some reservations.

E. Summary and (‘oncluolonu
.

The presenf\bhgpber has developedda gystematic method |
s 4

of noﬂ%imensionalizing the governinp equati@ns, for systems-

s 4
%
¢
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not too distant from equilibrium, such that on.the average,
over a restricted domain in phasé space, the various terms
of thése equations, excepting the time der tives, may be
written as the product of non dimensional terms ~ 0f1) and

~

dimensionless paraneters which dictate the relative weight

" af each term in Ythe respective equations. This method dif-

fers considerably from the more casual approach adopted by
others[12]’[25] whlch consists of non dimensionalizing -the
governing equations ygfh respect to a set of seeningly phy-
8ically reasonable guantities and aSSu@ing that the ;elative
welight of the various terms are in faect solely dict;ted by

P

the estimated magnitude of resulting dimensionless parameters

-

such as &, = ;%ﬂv ,£,=;1rf where ¢, and . represent the
characteristic ;;rticle interaction potentlial energy and
range while n and §,denote mean particle density and kinetic
temperature respectively. \This latter method though consi-
derably simpier, unfortunatély Becomes extremely risky when
such parameters are later used as expansion coefficients to
truncate the B.B.6G.K.Y. hierarchy sinece throughout the expan-
sion, one remains uncertain of fhe range of validity in phase
space, if any, of the resultiﬁg pexrturbatlion solutions. In
such a bold approalh one is then obliged to pursue the expan~
sion until divergent terms appear at higher orders and assume
(i.e., hope) that the convergence of the lower order solu-

\
tions will also imply their ~valfdity. .

Having derived dimensionless gowerning equations which

ey
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X
are "well ordered" over a restrict volume in phase space s

we may then, through estimates of arious dimensionless
sparameters; undertake é classification of molecular systems
and seek for particular systems for whiﬁh some of- the terms

!

in these equations may be neglected aiéa zeroth order appro-
ee¢ such systems have

ximation. In the present thesis thr

been considered: "non-dense" systems in which the percentage

of molecules interacting at a given time i1 v?ry low,"weakly
counled"systems characterized by the negligible effect. of
strong interactioﬁs and a moderate percentage of weakly
interacting particlés.and finally "Brownian" systems distin-

guishing themselves by the presencé of heavy "Brownian" par-

icles coexisting with a bath of light/particles.

For ke particular case of non-dense systems, the

’
may be expressed as follows

s s 5
JFs + Z 4*-‘2_5 - ‘Z_la¢‘j-a_&':£srs+l
N 2t Y m 32]n /" gq“. g'ﬁc

i s 1 %, $ot mbl]
L :

/ , (ITII-E-1)
.
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where X,y 1s chosen within the phase volume Vi Iin which-
10~or{mal 1 and E“c , Lel.. 5, S¢{N may be enclosed In
i 19 -1
in a spherical volume V, , where 00 LV, L ‘Jon»s’eguen-—

tly, over the small ohase volume Vist ,( and physical volume Vi ),

+ - " . -
one may follow Bogoliubov [12] , Sandri [25* and others by
3
assuming that the momentum convection term X p. . Fs and
m ‘1
L3t [

s s :

the interaction term X 205 . s dominate over the mixing
¢ . > L Qq O?

FLINR . (3

term ,f, EFssy . Hence, whithin this small volume, a perturba-

tion scheme which negiects the mixing term as a zeroth order I l

approximation would seem reasonable. However, over a larger

3
volume Vi~ 0Ln'X)» where A  denotes the mean free path, the

nopdimensionalization executéd in this chapter suggésts the fol-

lowlng scaling of terms ‘for uniform (or quasi-uniform) systems.

N4

S

. s S '
2F, +X E,DFS—Z[‘?__Q_E_.\.O?_E;= ds Fo

Jt om 9§ e 99: 9JFR:
| | |
. nt’ N I

(III-E-2)

Consequently, over this larger physical volume (and hence lar- |

ger phase volume )Jthe momentum convectfon and interactlon terms
\ . ,

do not necessarily dominate over the/remaining mixing term.
. ) |

» 5
1 \ The symbol ¢ inax « 4 denotes that 4 1s smaller thak»\_’
' and of the same order of magnitude as a .

1 o : ;

b
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‘(The reason for this rests gn the fact that within such a

volume the mean distance between s particles, where

s ~ 0[1], is much larger than the range of strong inter-

4

action between-particles. Furthermore, the resulting

weak average interaction between the molecules implies
near equilibrium a correspondingly we;k averagé correla-
tiqn and cdonsequently, for a uniform (g; quasli uniform
system) a small sp;éial gradient 2Fs .

s 9§
¥ L
derivation of a closed equation for the single particle

Fortunately the

distribution only requires an appréximate solutioﬁ for
Fo(%,%; ,t) only when \§¢—§J$< Oo Hence one may pursue

on the basls of the ordgring of terms indicated by equation
(III-E-1) provided of course that the iimited range of vali—.

dity of the solution for F, 1s taken into account when boun-

2
dary conditlions are imposed.

The dimensi;%al analysis presented in this chapter
fér weakly coupled systems have resulted in a somewhat dis-
'éoncerting observation. For the case of modera&e'nonuni; ‘
formities one méy follow Bogoliubov, Sandri and others and

express the ordering ¢f terms as follows

¢ S
i&x\iﬁ-“’_& —§L=,‘;’_i"_t5-‘;’_._>\=xsg*7
at m 99, 9G; IP.
1 ‘ J \
| . ﬂ'%(“l 6‘ -

(IIIZE-3)
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when X, 1s chosen in the volume Visy where 1P~
otvmkr J and §_,.=1 5 are found in the physical vol-
ume Ve~ol 07 ﬁowever, in the uniform (or weakly
non-uniform)case one finds that within the same phase

“

volume V¢ the ordering of terms becomes o
5 *,) I 7
Z‘ ofs FJ"I
k l
£

(ITI-E-4)

i

~te
™

"'l

«wA

"

3
L

-
£ - &« - &

Indeed in this case contrary to the views of Bogoliubov and
others, the momentum convection term no longer dominates
oqsr the mutua; interaction and mixing terms since the ave~
rage weax interactions occuring within V. will, near equi-
libriun, result in similarly weak correlations and conse-
' quéﬁtly small gradients ,%éi . Naturally, when all the
terms become equally small,tthe truncation of the B.B.G.K.Y.
hierarcy via a perturbation approach ré%resents a most dif-
ficult, if not impossible task. |
The particular case of a Brownian system algo pre-
sents its own hardships as it seems rather difficult to
estimate the magnitudes df the relevant dimensionless para-
meters without seeking further spﬁﬁialization such as low
densiiy or weak coupling. The dpproach adopted in the

thesis Has therefore consisted of assuming that the dimen-

sionless parameter’ Y= ms emerging from the nondlimen-
' . ms




»

s

sionalization dictates the relative weight of the various

s o o

te%ms in the dime;:)onless Liouville and B.B.G.K.Y. hler-
archy. Consequently, for a single g}ownian particle (B) /
in a bath of indentical light particles (b) one would have -
in the spacially u&iform case the followlng orderfhg of |
'termF in the dimensional Liouville equation (for the N

Bath particlés and single Brownilan pargféie) and B.B.G.K.Y.

L]

'equation (for the single Brownian particle) respectively:

T g Y,
arwnl +}{MM ﬂmu +}ﬁmurﬁJJ=°
at : : .

¥ v . < b

| g:J%?% ;<l )

o
o (ITI-E-5)
Qr(o”i - 3: F {l.lj .
35T | ~
, Y
where . ‘ @
N
iy
S |
' }{!mu Z: fL.'g. ‘
» . ke Mb J‘ééb , \'
. - bb Y} / )
- Z { ( Z.- Qﬁa ) + iy . J :
= a3t - - -h
[&F] Qq‘b 9 q; JFo ,
( ' » ' ' f
S | (III~E-6)
' - ’*\ .
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'

represents the Eamiltonlan 6§erapor for the N bath particle

interacting with themselvesland the-Bréwnian'particle .

’ '

~N
I . Bb :
B
Mgy = B2 - L 202
. mg 053 99" 2 pP ,

(III-E-T)

]

denotes the Hamiltonian cperator for the Brownian particle

interaéting with all the bath-particles and finally

. ?b -
i = N r ]( a0 . d r‘?‘b J?J’
29 op* - N\

(ITI-E-8) '~

represents the mixing term In the B.B.G.K.Y. hilemarchy

N

Indicating the Iinteractions between the Brownian particle
and the N bath particles: ’Hence ail terms associated with
the slow motion of the heavy Brownian particle are assumed
much smaller téan those réiated to the fast movement of .
the light bath particles. Although thig cdéual approach

is also inherent in previous studies by Lerwitz—Resibois[gj
and others[ 81091 we must acknowlédge thatﬁ;&s range of

vaiidity in phase space of any expansion solution based on

the above ordering must remain somewhat 1in doubt .
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. quately described the approach of a given molecular system

CHAPTER IV ’ /

THE INITIAL VALUE PERTURBATION SCHEME

The preceding chapter, devoted to the nondimen-
sionalization of the goYerning equations for classical
mixtures, has been presented to set the scene,*~and to
establish the mathematical foundations for a éubsequent
perturbational study of these equafions. As a first phase
in such a StUdyﬁ this chapter will consider the initial

value perturbation scheme, which undoubtably represents

one of the simplest methods of truncating the'B.B.?.K.Y.
hierarchy. In general terms, the initial value perturba-
tion (IVP) scheme involves an expansi;n of the dependent
variable of a governing equation in powers of a small in-
trinsic parameter and a subsequent solution of the resulting
simpl}fied equation through the introduction of some known

(or assumed) 1n1t1al condition(s). The first attempt of

applying this scheme to the truncatlonfof the hlerarchy was

made by Bogollubov[lzj in 1946, who expediently abandoned .
it on the grounds that it could-only lead to apprbximate
solutions which rapidly diverged in time. Since the (IVP)

sc?eme could not produce well behaved solutions, which ade-

to an equilibrium state, Bogoliubov subsequently developed |

an alternate "functional® perturbatién method which could 5

- 110 -
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yield, at the lower orders of the expansion, useful kinetic
equations governing the singie particle distribution

F, (§.,Bt) . As adirect result of the evident
inadequaci;§\of the (IVP) scheme, and of Bogoliubov's
search for af%ernate expansion methods, few investigators
have reconsidered this method, p;eferring to devote their
effort in dgveloping théir own alternate perturbation schemes.

This hasty rejection of the (IVP) scheme seems somewhat

.
% -~—unfortunate for two very important reasons. On one hand,

thé/lack of a true éppreciation of this perturbation method
has led to the devisal of alternate schemes containing |
often unnecessary'assumpfions and usually displaying aimgtﬁe—
‘matical structure which is far more complex than what is, +
in fact, needed to suitably truncate the hierarchy.
Furthermore, because cf these supérfluous;ingredients. it -
has become exceedingly difficult to pin-point the exact ~\\\
origin of the divergences plaguing most of these alternate
perturbation schemes at the higher orders of the expanéions.
For these reasons, the present'chapter will be completely’
devoted to a detailed study of the relevant and important
features of the very simple (IVP) scheme. ’

In spite of the very lean research on “the use of
the (IVP)' scheme in the truncation of the B.B.G.K.Y. hier-
archy, significant contributions in this area may, never-

theless, be found in the work of Montgomeryt38] and Sandri,[zsj

who have discussed the application ¢f this perturbation metﬁgg

-~
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' The initial value perturbation scheme represents,

to uniform "non—dehse" and ﬁweakly coupled” systeﬁé res< o
pectively. The studies presented by these investigators, \
hbwever, tend to be rather brief and extremely Yrestrictive
in their choice of initial conditions. Furthermore, as
noted in the previous chapter, Sandri's ordering of term;'
in the B.B. G K.Y. hierarchy ?Pr weakly coupled gases seems
somewhat questionable. Coné%quently. this chgpter proposes
to investigate, in much greater detail and Scope, the main
features of the (IVP) scheme Qﬁen applied to "non-dense",

"weakly coupled” and aldo "Brownian" systems. Such a com-

prehensive review of this perturbation method 'will justify

itself in the following chapter of this thesis by the valu-

able insight it will cast on the gevelopment of a simple

and concise alternate method of truncating the hierarchy.
Al

A.  SIMPLE MATHEMATICAL EXAMPLES K

*

generally speaking, one of Tany methods of extracting ap-
Jproximate solutions from ordinary or partlal differential
"(and integral) equations. Since this method may be ap-
plie§ to equationswhich‘be%r a much simpler form than th&
complc* B.B.G.K.Y? hicrarchy, it would seem ndvisable to
seek exfremely gimple and ilkustrative examples which can
highlight some of its main features. ’

As a first example, let us consider the trivial

equation: . , N

T E RV P R S SO

- e

T e e,




R g

d > (IV-A-1)

which has also been considered by Su, Frieman and Kruskal[goj.

If we asgﬁ(% fh t x$t)[0 and €£<<ofn ,‘i% then follows

that the right hand side of this equatlon rémains very small

in magnitude. Consequently. oqe may seek approximate

éolq;lons to (IvV-A-1) by expanding X 1n powers of the

small paramete E . .

ey X= x'+£x+£ X 2?.A2)
such that by substituting (IV-A-2)into (IV-A-1), one obtains:

/

. §0) A1) . ]
(X ex " retx™"s ] —-£[x e X g2 N

If we now assume that x“‘ and A" ﬂare typically of the same
order of magnitude feér all \’

teer xmori™~ ol ¥ o x™y (T¥-4-3)

/

’ for all L ¢k

i

we ‘may isolate terms of the same order of magnitude by
‘ N

‘simply collecting t€rmg with the same powers of £ . Doing

,\\ ﬁ,
80, we obtain the equations: - 2
L4 v (0} - K
N . . ‘
.x“) : - xu) i
“n ) (i-1) ‘ (IV—E-H)

b
"

The (IV?) stheme consTsts.of solving the above equations in |

-terms of some initial conditions., Imposing that the zeroth
! 1

- {9)
order solutifon X is initially exact,

T N -

i.e. 7 X (o) = Xlo)z X,
' xNe) = o , for U (IV-A-5)

- ‘ :
-

¢

.
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equations (IV-A-4) may be trivially solved to yield ‘
¢ ” i

!
- X X, T
x‘*‘ Ay = - Xt
‘ ‘ |
X b= e K, $/40 (IV-A-6) |
X

such that, substituting back into (IV-A-é), one obtains

1. . ‘ b4 i
Xy ~ x.(v-eb v g2 o e s“_t‘ )

n . * L “ (‘IV_'A"?)

From equatiom (IV-A-€), we may easily note that the higher

‘ . L () b
order connections, gbxk ({¥»1) rapidly diverge in time

)
and eventually dominate the lowest order solution X'° S50

a

as to discredit the earlier assumption (IV-A-3). This
N
behaviour of the (IVP) solutions, which is usually referred

« ™

to as "secular", clearly prevents one trom obtaining, with
Né fﬁnlte number of contrivbuting terms, aPprox1mate solu- K(ﬁ\
tions which are well behaved forglarge values of the 1ndepen—
dent variable . Nevertheless, for¥the problem at hand,

one may obtain a solution for X(t) by noting that the

infini%e sum in (I¥%-A-7) converges for all values of t and
o . -et
\* simpky represents theMaclaurinseries expansion for X= X,€

Whlfh naturally, expresses the exact solution to equatlon

1 (;V -A-1). Unfortunately, the 1nf1n1te series obtained from &
qgr'a simple' (IVP) expansion maf‘not always uniformly converge.
- For examgle. consider the follow1ng simple equatlon. ¢ g )
v dx _ z . (IV A-8) ka
i , : |
N o )
¢, ) .. ' 3 .
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One can show without great difficulty, that following the
same steps as-in the previous example, the (IVP) scheme

will yield the infinite series solution
l ' \«/,\r'-—/"’

i s
X (1) Xo Z 0 (% &) (1V-£19)

which diverges when t) |/x,¢ In fact, the only means
we have of extracting usefﬁl asymptotic information from
(IV-A-%) is by noticing that the lnﬁgﬁlte sum in fact
represents the maclaurlnserles expansion for

Xty = Ko/ e xoet) R
which, once again, expresses the exact solution to the‘
problem at hand. We note, however, that such an iQentifi— ’
cation %ﬁ an (IVP) series with that of a well known and
well behaved function remains, for more complex equations,
an extfemely dﬁﬁficult,and often impossible task.1 Consider,
as a.}inal example, the following "time delay" equation

dx - _Ext- f’)

at ) (IV-A-10)
which has an exact solution, providkd that the past hlstory
of «xl) is known ch} (‘f(o .  Expanding (IV A-10) in the
power Sgries (IV-A-2) aqd collecting,‘as in the previous

examples, powers of §, we obtain the following set of equa-

tions: -
" ’ i

| This view has also been expressed by Su, Frieman é\QF

and Kruskal 130} ‘ |

a\
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X - \ /
. (l‘ '
Y X =
t2) ar
X = -X t-7) ,
»n (k-1 -
T - x (1-m)
h =z
‘, .
which, as usual, shall be solved by requ;ring the geroth
order solution to be initially exact:
i.e. o) i ’ . ‘ L
X oy = x(8) = Xi ' ’ ‘
() '
X (o) = 0 ko1
Succgsdively solving equations (IV-A-ll) with the above
, 13 : .
initiad conditions, we then obtain for X ), Kkel,...4 the
foll‘owi?g expressions:
10)
X = Xo R
fﬂ B " ~ a
1
' X‘ L Xo{
e} t o~ ‘.
X = Xc*— '( P )
» ¥t 4T 27t o+ 37‘)
%t ( A
g - Xt (1’ 3Tt iz TH- T3
’ 6 4

such that, to the fourth order of & , oneé obtains for xu):

|

e

RN
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wie

X T
é

Xt) = Ko[ b- €t (14veTs 2 27%4
/

"t
+ 5= (1 + 267 +4e*T?)

t
e T (1t 3eT)

The above exprgssion once again illustrateé the secular
nature of the (IVP) perturbation solutions. Furthermore,

we note, from the progressive complexity of the higher drder
soigtions, the extreme difficulty (and‘perqaps imﬁossibility)
of identifying the infinite series emerging from such an

expression with that of a well behaved and well known

function.
The foregoing simpltgfijgfmatical examples have %
illustrated some of the main features and doynfalls of the

(IVP) scheme. In particular, the frequent secular'behavior
.of this type of expansion, which pﬂ%ﬁibit@ well'behav;d
approximate solutions to be extracted using a finite nuﬁber
of terms, should be kept in mind. Furthermore, the diffi-
culty of identifying the infinite series resulting from such |
an expansion in complex equations should be emphasized since
this burden will becomé a natural handicap in the truncation

of the relatively complex B.B.G.K.Y. hierarchy.
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B. APPLICATION ak THE (IVP) SCHEME TO THE TRUNCATION

The present sef{tion will investigate the impliéa—
tions Sf the above disciyssions on the fruncation of the
B.B.G.K.Y. hierarchy via an initial value perturbation ap-

proach. To avoid sacrificing conceptual clarity for mathe-

matical generality (and complexity), we shall restrict our -/

considerations to very simple physiFal systems. These will
. ' . L

7

include:
a) a simple uniform non-dense gas, . sx/f
b) a simple uniform weakly coupled gas, and

c) a system consisting of a single large Brownian particle

in a uniform bath of light bath particles.

’

a) Simple Uniform Non-Dense Gas

A non-dense gas, we recall, characterizes itself by
the very low percentage of particles interacting at any

,glven time. A simple uniform system, furthermore, distin-

guishes itself by theg“'presence of a single type of particle
and the independende of the‘One particle distribution F,

on the coordinate q; - For such a systsm one may e;s%;y
reduce the ?.B.é.K.Y. hierarchy (III-C-%2), with the help
of gkk assumptions and results in the suﬁsectioﬁ (III-D-a)

to the simpler equation

LR, MLE i 4t Rl
gt: + s 's = 6; s .S (IV*B—I)

™ »
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where, (in this subsection):

4

[3 ]

\ H, K, L P L

o
i® qu »

_:R.ii Tou 2,

Jrl iz 9 qv J P\.

\t

o * »
i: : x JJ Qd)o. s, 3_“ d ™ sar. d Py
. ; ¢
\ . (1v-B-2)1
‘}\ and: N
i; K, Y>otmv]
K ¢ ! /
”
\ N ¢

Equation (IV-B-1)/ we recall, is properly .ordered on the

average over the/phase space volume

: 3s
Vs £ Vs/(ms
where |- / ?
Vs T E WV, MKT) s“‘O[- -f_‘)] For $»|
~
"’",{ . )o[(‘_] FoR S=|
’ -l
and w_;%ﬁu LLolm')

Consequently, one may attempt, within this VOlume,'to trun-
* ~J -
cate this hierarchy by expanding Fg in powers of the small

s

: N X
intrinsic parameter £,

1No external field term has been included in. H,
since it would forcibly create spatial nonuniformities

ithin the system. This omission of an external force will
also prevail in the remaining examples of this chapter.
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v , ‘

i.e. | /
" " * w" 2
Fo= Fo +% Fo e F e (1V-B-3)

3 S
i , _ )
Before doing so, however, it would em desirable, for the
sake of mathematical convenience, to rewrcite (IV-B—;) in -

. the following dimensional forms

IF s HsFe - e dF »
ot - ~ (IV-B-4)
where
- P .2 f:i. d¢ii. 2
H‘ - §| m E‘qg 3u| L=l é—a:. a—‘pc
$ ’ .
‘i.s = 9 “ Qi . 2 A?hw d Bun
, - Y ‘qu / J-};s ,
(IV-B-5)

and where &(z1) 1is simply a label parameter denoting the
small term which will be neglected at the zéroth order of

the expansion. One easily notes that the expansion (IV-B;B)‘

"
of F, within (IV-B-1) is equivalent to the following expan-

sion of F; =«
z)

o) . o)
o e R (xv-5-6)

within (IV-B-4), provided one collects powers of € when
substituting (IV-B-6) into (IV-B-4). Proceeding as such,
one then obtains, after collection of terms, the following

set of equations:

L ANS
—
k)
~

~
L
)
‘5"'\
d
O

<
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(IV-B-7)

We shall ‘now seek solutions to the above equations by im-

k4

posing an initial exactndss on the gzeroth order solution;

s

leB. (o)

F;_(T(,,o) = Fy ('32, ,0).
|
[
F, (X,,0) = © RY | . (IV-B-8)

Noting that for a spatially uhiform gas

H F =0

we may easily integrate equations (I1v-B-7), for S§=1 . |

and obtain:

t9) ¢

F,, (P.,,t\ F‘\ (F‘tio)

W t o) i
FY Gty = J L F. (Xt dt
, i )

» ®

. ¢
k) -
FY pt)

i

(u-ﬂ_.’
J L. Fo (x. by dt

1

- ™ - (Iv-B-9)
Solutions for ?Fs (X,,t) (s%#2) may also be derived by

integrating equations (IV-B-7) after operating both sides
' .t

QU UV SD VW L GUMP U U

by the forward streaming operator ¢ y and recalling from

R S ol i

NG 0 380



-solutions when S=I . The first time dependent solution

Chapter II that:-

}{st H,t ' ) .
2 H s/ = IR -
: 31 \ .
l&fter integration, we then obtain the solutions
0y "H, t ) J
Fo (x,1) = 2 F, (X;,0) . o]
» .
' o t -H,t-t) tn
LRy (1) = | L. . (X,,,,0) dt!
‘ S .t CH Lt
{ S T s (k=) -
F\s (X,U = A i& FSN (X;“.o\ J{:’
¢ © (IV-B-10)

Let us now investigate Ithe asymptotic behavior of the above

is: t
) TN

) - — \
Fl (PU'HS'J ‘;f‘: F;. (ﬂ,',p;‘,p},O\ ‘Jt

which, using (IV-B-5) and (IV-B—13\), may also be written as:
t 0

w - Lty -~ e
F, (pet): J “ Qdij e Fo (RGWHBWR),0) 42,47, dt

S J9; (IV-B-11)
wher;sz . ’ -H“"'J)t K ‘, !
Ry (1) = » € “ o

d - _H‘(['é)t N IS

an P oz o TP ,
' - “H, @t T

Pty = Pi (IV-B-12)

represent, as illustrated in Figure IV-1, the separation and

momenta of molecules L and 3 after fthese have been 'streamed
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1 i
back, in time £ , under their mutual interaction. , .
( =
Fl. 1 ' 1 Pa
xl‘
i i.,: (‘L)
Pty /S NP, )
Figure IV-1
We note that the only contribution to the integration over s
Tn in (IV-B-11), lies(within the region where ||
is sma}ler than the interaction;radius f . Now, if we ,

maintain theAassumptlon of the previous chapter that the
T

interaction potential is ‘purely repulsive:

20l
and 'if we further assume that

4

2 . .
S dij has a finite
3 il

magnitude for 0 T {¥ , it then follows that for all |Tul

1Expressed otherwxse.'R NCATE P.tt) and R
represent the initial separatlon and mdmenta of particles
t and J which will lead to, after a tramsit timet, a
sepaggxlon T and momenta p and pJ . '

& , w0
‘251nc these assumptions lmply that l 9¢bal is un-
- k2

defined when ©~ Y; =0 , _we shall omit thls singular p01nt i

in the integration over ¥,  in (IV-B-11).

3 /
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¥ q

within this domain, and for all possible values of _F;\ and
P, . there exists a finite time  T,(¢u,P.,p,) such that ;o
R, Y »Iv for t) T,(ry, )BL)BJ)

Since the particles conserve their individual momentum when

they are outside 'éach other's interacti\on range, we then

conclude that: . //
- - | '
P ) = Potesy’ )
Py = :ﬁ,j () (1Iv- B—l})

for ty T (Fn,—ﬁu-ﬁ,) . Consequently, the/ﬁolutlon for

(\\
£ (p,, t), as given by (IV-B- 13), _may alsw be wéltten for t

largér than :the maximum value of T, {r“ , Pt , -FS,\‘M y asi

-

, T
('\ e ' ,: ) N
F‘ (Put) - (N_ngg Q¢LJ[ J J Fz (—RL)“),-P;_({‘),-PJH'),O) CJ{..
DC]L 4 9;‘
) t X
!
+/ 2Fe (Ris @), P, By, 0) ]J; "
_. ‘ i3 'pJ \
™ P ' /
c —— - —
. t>max T (5,00, P) (V-B-14) .
L]
Furthermore, assuming all initial statistical correlations
to have’a finite range Y, , with r, 2" , we may'also define )
a time T (7 VPP ) such that, as {llustrated in
Figure III-2: - . ‘
VRO Y { -
1‘I'hls maximization is to be performed over the
range - 0( I¥ 1 (% and over all possible values of p
and B, . . . /-
\ I / -
/
/
/
/ I
/
( 14
¢ ;/ |3
/

e b e e e i /
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for t)’n‘l(?:s.?c.?n
. ; s
~and 1t ' . . ‘ >
[ T
i . - ) ”~
° , .
; .
, | /j , ¢
?Ew\ / * ;'\:P: (w)
11 ! ' . - . )
Figure III=2 N
Consequently for |17l $*c L
| -
and i) ’ﬁ(l?u VP, P))
we have oL N -
. (o)) = F, (P (), 0 F, (P (@,0))
F, (‘Ru (‘{\l’P.(oo),,I:,(-o) N 0 ) (IV-B-15)
/ " such that, for™ .'L') maxT, , we may rewrite equation
- (IV-B-14) as: ' |
’ ’ q; / - - )’ -
. 1) ; - 4 ]
' F, (p.1) gu—n[! dbii . D [ ( Fo (Ra), Ry W,0) dt )
' 9'6],. 9?._ o ' ’
7/
LY
P
a. . C»"NJ
TITmT T T T e o oo -
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( T C .;,;/ ;
, S R F, (R, 9, P, P @,0) dt
Ib‘f ' ‘ ’:;
A g
, 4 (t-7) Fe(Pa),0) F, (P,(go,a\,o) " dvy 4,
‘ Af‘
: P
"y ; , .
’ / R . =

It becomes evident from the above expre5510n that for ‘t)nnax1l
o\

the' solution Ior F, (n”i) will dlverge at a constant rate
A5 max T . B
“\ ’ X -’ - " -~ /.;7
- F, o (p 1Y~ (N-l)fJS O . 2 F (P, BT F, (P, 0) dr; dp,
o 92‘0. JTDL
| (1V-B-16)1

5 such that, fo

-

Consequently, it also follows that this solution will even-

: o :
tually dominate the lower order solutlon.F;(p“if, given by

(III-B-9) thus establishing the "secular" behavior of the

AN

“IVP expansi

N

*J The abové results. whlch are consistent with the

ha ]

-

simple examples of the previous sectlon, seem also to agree
-with previous intuitive arguments given by BogoliuboY[ 2]

and a simple ahalysis given by Montgomeryt38] using the very .

specialized initial conditions. '’

’

F"‘ (q‘-laioaha;,o’ = F (EUO)F (B,;O) .

Oﬁe may gaslly verify that thls result would also
emerge if one assumed the initial correlation range n.ta bd
smaller than’vr

e, A e S 30
¢
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Tﬂe presenﬁ and previous_analyses* indeed, seem to estab-
lish E?e limited value of the ?iVP) scheme in producing well
behaved sglutians for the one particle distribution F,(p,t)
This is clearly the casé if the expansion 1is carried'put to

m .
a finite order & of the expansion parameter* . Furthermore,

s

because of the progressive complexity of the higher order
° s

solutions in (IV-B~10), one can readilyféismiss any attempt

[

v
of obtaining an infinf@e sequence which can be easily

\
el

identified. For these reas!%s, most researchers have com-
pletely disregarded the.(IVP) scheme tb seek alternate ex-

pansion approaches, which could divulge some information on

I

the‘approach‘of a uniform non-dens systfg/to an equilibrium
Y M - o
state. Such a hasty dismissal of) thd (IVP) scheme seems
k [ )‘: -
indeed regrettable since this mgth gﬁ in spite of its obvious
' ¥ Y

downfalls, can qffer much insight on the development of a
. ; -

simple alternate scheme. Consider, for example, equation

(IV-B-16) whfch descriﬁes the asymptotic behavior of the
W Y

Q)]

first order (IVP) solution for F, (p ,t) . Ffom,thii~ex—‘
pression we conclude -that for \{>> max T,
’ ‘ o), <\\ N . Ce R
| JE L e J IM“ - L EXP @, 0 F, (Pjue,0 1 dip,
at 29, JB. . (Iv-B-17)

Now, after some mathematical manipulation, this equation
¥

may be reduced to the following form:é . “A

1See Appendix I for details.

A «
ot ’ ,
' o

‘@

}

s et
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f

where

and J

-
'qu's

P B

Q_,‘
]

~g,(5‘i)

s (e ) = “

- S -~ \“j
= %(p‘,b\ %(p“o) ] db dédp,
\ \

and where p, P,

o

m

:N‘F‘(N; o

W -

-

(IV-B-18)
(IV-B-19)

{b '§u\[ -ﬁ(ﬁ:\",o)‘%/(ﬁj,o&s‘

~

» (IV=-B-20)
j

v

represent the momenta of particles ¢

; .the variables Y and ¢

%

aftet colliding with a relative approach velocity ¢

, as illustrated

in Figure IV-3, simply denote (along wiith a third variable,,
- ’ A
3 ) cylindrical coopdinates describing the relative position

14

1

of the two molecules.

Figure IV-3
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Combining (IV-B-18) and (IV-B-19) with the zeroth order

solution in (IV-B-9) and the expansion (IV-B-6), one then

obtains the approximate equation N -
Jj\ ~ N d F.\M + £ F,“)
Jt 2t ot
& \-.,
~ Jg ({ (5., 0) (Iv-B-21)

This result seems highly reminiscent ol the well known, and
highly usefﬁ%. kine%’c equatibn: -

% =m});a(%(§,_,iﬂ

2t (Iv-B-22)
derived by Boltzmann, using intuitive arguments, during the
Jdate nineteenth century, and redérived by many others using
v;riousnperturbation schemes. Evident;y, the onlypdifference
between equations (IV-B-21) and (IV-B-22) lies in the time
dépendence of Jal ,(EL{ﬂ in the latter and the time indepen-
dence of Jg(%(ﬁuoﬂ in 'the former. THis minute, yet crucial,
differencegywhich distinguishes the secular behavior of the
solution of- (IV-B-21) fr;m the well behaved solutions of
Boltzmann's equation seems to pinpoint exactly ‘the dominant
feature and the ultimate deficiency of the in¥tial value \
perturbation'§cheﬁe when applied to the truncation of the™Ns~
B.B.G.K.Y. hierarchy for a non-dense gas. In fact, this
seemingly "uncanny" resemblance between equations (IV-B-21)
and (IV—ELZZ) will play an important role in the forthcoming

development of a simple alternate perturbation scheme.

L

-

.
PR SR e .
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b) Simple Uniform Weakly Coupled SYSTEM

The)(I%P) scheme, used in the above subsection to -

truncate the hierardhy for a non-dense gas, may. also be

applied,

without tonsiderable modifications, to a simple

uniform weakly coupled §ystem.The latter, we recall, dis-

tinguishés itself by the %@fihitesimal range of its strong

X
interaction potential 9.;, and the moderate range ,of its

weak potential n<?t,. Proceeéing as in the prevjous sub-

sec%ion, we may, for this system of molécules. reduce the

dimensionless hierarchy (III-G-52) to the less cumbersome

¢

form:
» W

»* * 1
4 5, }{5 F_S = 6! is \\FJ-&!
2t

where, in this subsection,

(IV-B-23)

-

- ¢, 99, ?
s ﬁt"
F:3 L
..JR;ET ): 5&@5} -
- - R
D q. o

L=t i qt PL

I
* S I T K *

’ 1 (Y] qu ] JP"'




' 4 -/

™

-
R ~ ol V]
3

' Since eqratlon (IV-B-23) is properly ordered over the phase

. 4volgme Vs =V,
/(J KTG{

3s5/2
wherD Vg = \4 (mxT)

Y. ~ o [*¢3]

|
‘
_G;Mo{;{*
we may attempt, within th¥s volume, to truncate, the hieraééhy

by expanding €, in powesxs of the small intrinsic parameter

* ?n Qz 2) \\§
+ & F :

' ) ~ (IV-B-25)

we shall find it convenient to

!

As in thexyon-dense case,

_€£; + Eﬁj}{,F; = & i:,‘i,.

” at *(IV-B-26)
s s“ R ..
o -
HJ’ :Z _& - i - X[ ngLJ - 2__
. a. a 2P
Lu m ’ L Jst (=t qu p"
%r f z (’V'S')Z T Lse) _;9__ J rL s*i J Pses .
JC} I Pe - (IV-B-27)

, once again, is the label parameter. We

Y

and where (€= ﬂ

shall now proceed with the expansion
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Fo=F, e F +e Fov ...
(IV-B-28)
in (IV-B-2¢), which, we recall, is equivalent to the ex- |
pansion® (IV-B-25) in (IV-B~23), provided we collect powers

of € 'in (&V-B-26). Proceeding as in the non-dense case,

we obtain, after collection of terms, the following equations:
o) .
26 = o <
at -
)

(o)
élEé = *:}{S‘F; * ;fs F;“ '

at | ‘
(x) (-1 tr-1)
Q——’:s = - j{s r& + is rs"l
ot
, (IV-B-29)
Imposing, as usual, the initial conditions
(o) —:4) —
” Fo (X,,0) = Fg (X5,0
- '
o (X,0) =0 R>1

‘ (IV-B=30)
we may then easily integmate equations (IV-B-29), so as to

obtain the following solutions:
y o
Fs (X5.0)

£ ' 3
() B ) . ) o
R (Rt - J [-,H,\E ,’<x;,t‘)+isF,i.’§x,+,,t')]Ji'

s

18y -
F (X, 6)

’ R !-l). ‘ ~ R
F:.‘n (Xa,t\ = {J [‘ H; E( (xji‘) *is ;-Si;t ’(X\;..,t')] Ji,
, )\ - (IV-B-31)

% -3 -
v

§
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/ constant rate and will eventually dominate the zeroth order

&
Let us now investigate tre nature of these sclutions when

- N I For this gpecial case we obtain, at the zeroth
order, the time iqéependent solution:

F'.“‘ (.F;i., Y o= r‘ (Btié) | (IV_YE_BZ)
Furthermore, since - ‘
H,F m‘h =0 {

the first order solutlon reduces to:

AR j L,

= £| F; (X;,O)t

(IV-B-33)
Consequently, if

T - R -t 7-‘-u [
OX E(N-l\ Ia ?‘3 . I:-i( Cu y Pu, P, Io) ‘JTLJ JP-)
, ;chﬂ &Plst

does not vanish, the first order solution diverges at a

solution, fhus introducing a’sedular behavior to the expan-

sion. If/, on the other hand.I;EfX;Jﬂ vanishes, which, for

example /is the case if the particles are initially free of

statistical correlations,

Fo (X, ,0) = n F (P ,0) :
=1 / , (IV-B-34)
we /then obtain the trivial solutijﬂ v \
Fl (;l ,t) = 0 r v »

One may show, however, from the/é;cond equation in (IV- B 31)
(and from the definition of }{/ and.:ﬁ ) that, for such an

itially correlation free gqé, the solution for F'(Xl,t)

’ "
'y

// . ’ ‘
ﬁi / )
/ .
l'/ ‘ .
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i

will itself diverge at the following rate:

) /‘ R o
¥ F,(puo\ 2 F (p,,0)

J P,
—FF(P O)J (P‘,O\ il-t'
2 P

seem to reinforcg< once more,

The above result
the views of the previgus investigators on the inadequacy
of the (IVP) scheme i/ yielding useful apgrgximate solutions
to the B'B G.K.Y. h; rarchy. We hasten to add, however, that
the above analy51s/of the uniform weakly coupled gas, dlverges
considerahly from/a prev1ous (IVP) investigation of a similar
system b& G. Sandri. Sandri, as mentioned in the previous
chapter of this/thesis, has considered the problem at hand

from a completely different approach by using the follow1ng

dimensionlesg equation as a 'starting point:

* __»n * K

* _x
+ Ks s 4+ ‘ngs "5 = £,&, Ls Fsa
(IV-B-35)

2P (1V-B-36)

|

/powers of the small coupling parameter
5

Such an approacﬂ, which is equivalent to expanding F;

and by expanding F¢ in

£

L
A

/ : ,
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/
in powers of the label parameter & in the folloang dimen-

-

sional form of the hierarchy:

JFs Ksrs‘ + EI,F = & l:an

ot | , (IV-B-37)
where ( )
K = 2 B .2 ,
2 . m aq‘_
S i *
I, - E o (b'ti . Q_f
I { 2 ‘ ? Pi g /
3 ' # .
L. =(n-s) o Qi el . _:__)_ d ANETY J-F’ S+
* 23, ap, o (IV-B-38)

1]

differs from our own analysis pased on)equation (1V-B-26)

by the assignment of a much smaller magnitude to the inter-.
action term I,F, than'to the momentum streaming term K Fy .
This peculiar ordering of terms in the hierarchy, which
emerges as a direct consequence of the different set of

characteristic quantities chosen by Sandri in his nondimen-

sionalization of the hierarchy, must naturally result in
perturbation solutions which differ drastically from those
derived in the present study. Furthermore, in light of the
detailed arguments given in the previous chapter with regard
to the dimensional analysis of Sandri for a uniform weakly
coupled.gas, one may justifiably question his ordering of
terms on the grounds that, when such a gas approaches a

state of equilibrium, the weak potential ¢,; in the interaction
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. 4 /

pors

term I, F, of the dimensional equation (IV-B-37)will eventually ;

cause correspondingly weak correlations in Fs which, in turn,

will result in small gradients JF; for sy . Hence, following

9,

. !
the analysis of the previous chapter, one should have in

(IV-B-36) ~

s 3
) . by, IFs ] =

Consequently, the expansion parameter € should, on the left
hand side of (III-B-37), accompany not only I,F, , as suggested '
by Sandri, but should also reside with K F; . Sandri's
initiq& value perturbation solutions furthermore seem even
less plausible due to his choice of the very special initial
conditions . s &
,F (R,0) = T (R0

L=l

which, we recall, pfesume that the particles are initially
completely uncorrelated. Clearly, if one substitutes these v
initial conditions into (IV-B-37), one immediately notes in
the spatially uniform case the vanishing of the momentum
and mixing terms K,F; and |, Fiei . Since I,Fy; will not

generally vanish with these initial conditions it then fol-

lowd that the latter are completely inconsistent with Sandri's

0 13 s . ’
assumption that K F is much larger -in magnitude th*n

I, F .
d
Before closing the present discussion, it would seem

worthwhile to note that many of the incomsistencies, which

£
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emerge from Sandri's analysls of the weakly coupled system
(and wﬁich have heen emphasized here because of their rele-
vance to future discussions‘fonce;ning this system), stem
from his somewhat casual approach of nondimensionalizing
the hierarchy with a set of apparently pKysically plausible |
characteristic quantities, and expanding F; within the
' resulting dimensionless equations in powers of whatever small
intrinsic parameters that emerge. Procekdlng in this manner,
without verifying, a priori or a posg%rlorl, that these -
parameters in fact dictate the relative magnitude of the
various terms in #heée equations, represents, as emphasized |

in the previous chapter of the‘present thesis, a very .risky

approach. .

¢) Brownian Mixture

¥
As a final example of the application of the (IVP)

scheﬁe to the trpncation of the B.B.G.K.Y. hierarchy, this

section will consider a very simple Bpownian mixture con-

s;sting of a ;ingle heavy Brownian particle in a uniform

: bgth of identical light bath particles. We Ishall further

restrict ourselves, for the sake of mathematical simplic}ty,

7

to the special case where thé Brownian particles' probability’

&istribution is uniform in physical épace. Denoting as FISJ}

the joint probability distribution for the S5 bath particle

and the single Brownian barticle, and employing the superscript

B to denote the Brownian particle and swuperscript b

to identify a bath particle, we may write the B.B.G.K.Y.

pt;__ r

”
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hierarchy (1T11-C-52) for Fyoy (P, 1)  and the Liouville .

equiation (II1-C-37) for FlNJ}(X;m“ “f )  in the

following form:

wheke:

and:

where:

. * -3y ) * *
°2_F_lou! (P* ) {*).:: ¥ :f’lo.ll F"'Q

o -B-39)
1/ ! '
" - e ‘ X, 3" x"'h*é";“
i{oﬂs =Z //ae" JJ __Q_‘ D‘ d LAY P‘
Kl ] aq 2P (Iv;B—uo)'
» t* a* » .
dFim 4 t }{iu.;; +y }{Ei/wl& Fingy = © |
o - (IV-B-41)
H iN, U °K INI X t "
Jq‘
LI I__wb T bb T_. bb bb 'ﬁbbb‘ 5
{ R 28, NS a+;;J oy
. o 9; 79, ¢
Jrt L=t
- * by b8 X by
!;R'“ ;r \:.' . €, b0 L. _;:_7__1“
g > » a—‘b (ha F.‘_
293 Qv
(=)
™~ (IV-B-42)
H”‘ L “
iNM - .K Y p 3’;‘“
t s ‘Bb~ T 8b™ nylb 2p 3D
D:R 24, ”%{*J > Ps
Jet 1 (IV-B-43) .
“ ”
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We may now attempt to truncate (IV-B-39) by expanding both

* L
Floqy ‘and Fyy. in powers of the root —mass ratio para-.
meter ¥ . Before doing so, however, we shall, as in the {

<

previous cases, rewrite the .above equations in the more

convenient dimensional form

2Pt = & £ Fuy f
Ji . o (IV-B-44) A
i 1 a : ‘
3 Finay 4 {}{Wo'\ + & Hn & Fingg =0 )
at (IV-B-45)
where, ip this subsection,
4 1 LA “3b b
i:NJJQd)'.l L2 ddvdel
) g ap’ (IV-B-46)’
,:}_{ I’ & -~ b Y Ps
ingy = E P -2 - (,
mb gq: v 9 @
; - ts! . -a._i\
e 3 bb b8y .
/ Jd)i) + 9 QU . _Q___
\'\’ 9 -"'b ' J -b-b a-ﬂ.b .
/ Lzt '_\al q‘ ! q" 'PL
z , N i
I Bb 0
Htu.t} e -2 _Z Idyi - 2
‘ mg 9 oat o9’
‘ SR P (IV-B-47)
" “Expanding FM,‘ ) Fh-lj and F\“-‘S in powers of/the label
~ parameter €& ’ !
1.e./ * ‘? W . . @ :
— Four = Fron [ EF oy v £ F o1y
(O) (l‘ 2 u)
":x F"n'l = FU.“ 3 FU;" + t FU.'S ,
o) o ! t2)
F(n.d = Ft‘u.t} + € Fouy ‘,,*’ £t F i (IV-B-48)
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" then obtain the following set of equations:
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-

) v .
and collecting powers of € in (IV-B-4#4) and (IV-—B-hj'). we

o 6) . . ) ‘ -
o F jony = O / ‘
21 : - \-
(), . (o) (S
< Fio:'& = ‘f jo, F—“'ﬂ
at '
(n) ‘ (R-1)
JFlo - flgbls Froug - £
at ' . )
R 4G | Q-IV-B-'+9)?
[ ] R . ’
* J '
to) ‘T L0}
dFing + 3—(,,, ! Flu.t! = 0 -
at \\ :
u) - 1 ¢4 x )
dFingg o H TR F niy =T Hw.w rm.ls
t | S
t \e } "
“ (0 z ’ () 7> (R-1)
‘?.-_.F“W + }[ tnaj HN"\ - - H Ly rln.x\
ot { ‘ ! N,
’ (Iv-B¥50)
Imposing the initjla'i' conditions, ' . I
6o L O - l
arxs.u (xis.ns ,03"' Fls.«s (X{ma‘: 0) )
A e o $u1 " (IV-B-51)
F)s.\s 3(11.1540) = ’ -B-5
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we may integra{’te ’équations (IV-B-50) so as to obtain the

L foilowing ‘solutions:

o g

(1)) - )
Fl"nf) ( p,/{)
N h‘ W) ' t

K (o} ,
F-’a,l} HX(PB: t‘\n = J ita‘li Flhlj (aQU'l},{.I) l{

]

F‘O,ls (-ﬁa; 0}

¢

~

* Fi“)’.?i (;J,t\ = j i\o 3 ‘:u“:gd (X\.,q,{) ".'
o (Iv-B-52)

These solutlons may be e@luated expllcztly by first
evalymting FU ,j. which may be expressed in terms 01“ Fl(:).s ‘

1" by 1ntegrat1ng the latter xoveg' the coordinates and momenta

& \
?f every bath particle except the first: ,.
.« 7 -

i.e. ) . R 4
® “*gp, - !
Fu 1 ( Cia ,'P P ) S S FtN 1 (XiN.IS t) ” J JPJ
. (IV B~ 53.)

(k)
Solutions for - F‘N g ozrl; the other hand, may be dagived

‘ " by ‘opérating both sides of the equatlons (IV-B-50) by the
~N ﬂ-

t
forward streaming operator _g ‘" Wk “and integrating over t.

|
Proceedlng .as such, one easlly obtains the following solutlops:

‘e T Hm.us{ 8- t'
FlNuS ( XtN.\g -{) = G:Q ‘ FIN\\\ (X iN i )O)
, . ) s :
\ ) LR t o) ,
.FiN‘ls (xiN.lht ) = - S K 8 !N s F{H ‘& (X‘N 5‘{)‘1! ¢
R . . o -
(I; 1 }{ LR ({" (=) - s

P (’(iu.as t) = - S4 :Hm s Fin, ”g, Xmsi)Ji

o

(IV-B-54)

)




7

‘ I
Now, we easlly note from (IV-B-47) that 3 ,,,,, simply re-

presents the Hamiltonian operator fof a system of N bath

particles in the presence of(a flxed Brow%?an particle. ¢
Muat
Conig%?ently. 2 wh s1mpf§ streams these bath particles

under their mutual interaction ®nd their interaction with

tﬁe single Browﬁéan particle, withput affecting in any way
the ordinate and momentum of the léiter. Naturall&;
,bec?use of the large number of bat partlcles one cannot, in
most cases, exp£§01tly evaluate th zeroth order,. solution ‘
in (IV-B—54).’ However, if we,reét ict ourselles to the™

very special case where the bath particles are initially in
’ 7

equilibrium with themselves andwith the single Brownian

particle:
l',s. Ftu,ls (f’x‘Nl|slo) = Fi |°$¢7 F’o.,s (5‘,'0),
| (1v-B-55)!
where @ | 2 ' (
. |- -~ Hu/ kT
1 Fise,, = (Z ) £ \
N . N 9 . l 's N
- B
‘H:/ EZ{tph‘ s, 1L 4>'2va l
L= 2 . . Z Ll !
( 3 : ‘ |
(-' {
- Hu/ KT »
Zn = 2 T dabdBb ) l
" [ LX) \ q P. |
< - ~ o
(IV'B“SG)v
@ 1 < ¢

Note this restriction does not require the

Brownian particle to be” initially in equilibrium with the
?th molecules.

./v
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- !
we may then note that: T ,
“Hat , . o
A F iN, 0} " = F[u.05¢’ (IV-B_B?)

and hence write the first two equations in (IV-?—SU) as:
/ ‘ . g b *

(L] - ’} v =3
FlN.l\ ( X‘“IISI{) ; FiN,O;,, Flol'{ ( P /] o)"
/ i ‘HIlN.u (f-t‘z)x

[()] a - i
F g X i d) ='J 2 H sy Fm,a;,1 Flous (Pha)di'
o ‘
. X ‘ , (IV-B-58)
Now, ¥rom the definition of H ing§  »:We have
4 ﬂ % -53 -t
}{'IN.II Flu,os,.] r\o,;; (p , 0)=
F ] ’ N ’
| g [ ) 3b . o .
. {. P2 - o A'_‘ . ___s r{u,osq FM,‘ (p, oL
" (IV-B-59)
¥ e '
Furthermore, defining: ;
- N N >
— b —
F= - X c'»’(bow S X- 5}0 .
5 o (IV-B-60) -

A
'as the total force exerted on the Brownian particle by the
‘bath molecules, and é\&stituting (IV-B-55) into (IV-B-59),

/ .
we then .obtain from (IV-B-58) the following expressions for

o)
Fing . o4 o
Fum_\ (XQN.IS,{-)’ ~
LR
- J §F Yt E" - § riﬂ.oln Flo.ls (p% o) '
e .
& o i mgkT  JP (IV=B-61)
-—n - 't‘ —n .
where sF-t)- o T T represents the force acting
¢ | - v "

|

’ t
o . N N . - . . f v -

L)
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- s .
: on the Brownian particle when thexbgth particles are streamed

: A4 ) ~Hl“r'it' .
‘ back in time by the o;mr@or L . Using (IV-B-61)

along with the first equation in {IV-B-58), we may,/with
the help of (IV-B-53)4 obtain the following expressions

/ " )
‘ and F :

f for F b Ly -
» . -
* 0}

5 Fua = Freay (B 0) Fliobay

g

w t - . N | ‘-
- . (-t T dqe ey 4t
1 Fua j [{ 5508 Frua, T 435 df 4t

[

) o / ,
.E;_‘ + 9_. ] F(o,lj (“53, o)
m:KT - JE‘. : (IV-B—62)
| .
\ ' where: » ‘ 4
e - Ht /KT !
whows | . -
. Fquj%= Z "2 N !
- /\

2 B

. / b b ’
. 4 H|" l_Ei_l s b ) '
‘ b Zm, 7 | J
o -H:/KT
‘ ZI‘ J J 2 . J ?‘qu‘b . b
- K : T (IV-B-63)

+
- \
~ w v

oy, - r
Finally, substituting (IV-B-63) into (IV-B-52) and notipg:

thats . :
'f'h') r{a.tl (9, o) Fiuesq =0
. ¥ ] | . N (\l\ *®
we can then obtain the following solutions for F)&.; 4
e ﬁ . .} ’ 7 \

k=0 1,2
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F ri'o.lg (p’1) =0 ¥ ©
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) : [ ? +2_] Frouy (F’B.ﬂ) Ji. - /
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U81ng the definition of ii°‘$ as given by (IV-B-46), one
may transform, after some manipulation, the second order

solution F{%H (p?,1) to the following form:;/ ‘

i

t
2l -
Fio.l& < Jo B(t)dt' _.:)_ [ _‘é_’ ) ] F“.” (]5’,0)
. J'F',“B m,nT J ¥ .
where: :’ < e ‘
“ LBy 2 J COF Fetndey 4t
and]where: % - : ’ |
- - ) . ) ) | |
L | Aﬂ: iF "t\>‘i: SJ & 5.5:,&1‘) F&"-"S:‘ ’;II J‘i'. J'p: :

represents a measure of the autocorrelation of the force
‘ e%frted ‘on the Brownian particle by the neighboring bath ;

Is . '
particles. Since this autocorrelation may be expected

to decay rapidly with time, it wou;d seem only reasonable to
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* assume that there exists some *time 71 such that, for t? Te

(@S%m%fo

Consequently, we conclude that for’
(2 ’rh

l F o (P t)= T_L Byt « (-1 b )

2 [ B+ 2] Fua PR

P’ Mgk T b

where: 3 o

This solution, naturally, dizgrges at. a constant rate thus
“causing, as in the previous cases, a secudar behavior of

the (IVP) expansion. We note, however, that for t» T
t2)

that the rate equation for F o1y may be written as: ‘
@ o)
DFW.!S = JF.P ( Fqu { P 0\)
. 5t
where - . & '
Jer o2 ko 2 [ . ] .
o P, m'KT P f

Combining this last equation with the constant first and

A
zeroth order solutions, we may then write the following

-

P

approximate equation for Fieus (P* 1)
2 Fionf = -.)Fy (FlNS (p 0)) ~ -

Jt
This equation is hlghly reminiscent of the equatlon '
! dF o) == JEr { Fiong (PPLY) , 'J
at .

known as the Fokker-Planck equation which has been used with
. , . .
great success by many investigators to describe the evolu-

\}

tion of the probability distribution of a single Bro;nian ,
particle in a bath. As imthe non-dense cage, the charac-
teristic distinguishing the secular equation from fhe well
behaved equatig% lies in the absence of a time dependence

in the right hand side.
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:

C. Summary and conclusions"

Ks previously stated, one of the simplest methods
of extracting approximate solutions from the complex
B.B.G.K.Y. hierarchy, for a particular system, would in- )
volve a straightforward expansion of the s particlecdis—
tribution F; in powers of a relevant small dimensionléss

i » v L4
parameter, derived from the nondimensionalization of the

previous qhapter, and a solution of the resulting set‘of
simplified pertdgségﬂequatigns with respe?t to a set of
given or assumed initial conditions. In general, the fga—kd
sibility Qf using such an initial value perturbation (IVP)
écheme to obtain aoproximaﬁe solutions to any dffferential
(or differential-integral) equation varies considerably
from one particular equation ké another. In the more for-
tunate cases one may either obtain well behaved solutions

at every order_pf the expansion or-an infinite sum of
divergent terms which converges to an easily recognizéble
function represe }ing the echt solution to the original
gquation. Unforqugtely, as noted by Bogoliubgv, the
B.B.G.K.Y. hierarchy doeé not so easily lend itself to an
IVP‘schemQ since, as 1&1ustr§ted in the present chapter

for spatially uniform “ggn dense", "weakly coupled" and
"Brownian" systems, this simple ,scheme when applied, renders
an infinite sum of divergent terms so complex that one ¥

could neither hope to idenfify it with any well known

‘function or, éven establish its convergence. In spi'é of
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this najor breakdown of the IVP scheme some interesting
results nevertheless emerge from cuch a simple aJpvoach.
In particular the ‘first order equations for the sinmle
‘ particle distribution for spatially uniform non-dense,

and Brownian systems, may be written in the simple form

o4 poh = J (o CPi oY
ot f

' (TV-C-1)
where

- -lrl.@ -

J(‘{t(ﬁL:O)) E j}j,blé-:]‘ [% (F:lo)“g'(ﬁz'o)
: EEPA L e ’
- 7/ (P;,0 %(5,.,03]4 bd¢dp, = Istfif o)
(IV-C-E) 40

and ’ 23 ‘ ! ! '

J({(ﬁg,o)\* A i {E;__ + 2 k‘{(ai,oh#r(f{.(ﬁ,o))
' . 3‘.‘ mKT, ‘D-P..u
P (IV-C-3)
»

for the former and latter systems respectively. In equa-

»

tions (IV-6-23 b, ¢ and z represent cylindrlcal coordirmtes
with the z- axis chosen in the direction of the relative

velocity 3 and in (IV-C-3), ,L J <SFST¢#)7Ji'

»

where den@teu the force axcrted by the bath particles %m

the Brownlan parﬁicle ana ¢ - )rq. indicates an equili—_
brium ensemble average. Now, thnso cqudtion, bear a form
very similar to the familiar BolL‘mann and lFekker-Planck

LA

equationo, of the form,.

. ,'(‘:,‘L)'?-_-.' J t;t)
240 '/‘f’ )

“
.
&




!
J

(IV-C-4) lies in the ti

deed the only differengf bet,

e dévendence and indépendence of

the .,right hand sidékof the Yatter and former. Consequently

the ‘solution of (IV-C-1) divergss while that of (IV-C-1) ev-

olves towards the well\known Maxwell=Bgltzmann distriﬂu-‘
! | ° \

tion 1la¥. : in the case of a-uniform non dense system, f{or

example, the IVP solution for f. diverges at such a rate -

1
that the scaling. of terms assumed in (IIT-E-1) prior to

the expansion qfeaksdown after a'time ~ o L /a] character- .
1stic of the time interval between collisions. ’ The elimi-

nation of such divergences and the derivation of uéeful

kinetic equations such as those of Boltzmann and Fokker-

Planck represents therefore the major concern of the fol- g

™

lowing chapter.

‘il\




_CHAPTER V

DERIVATION OF KINETIC EQUATIONS

FOR SIMPLE UNIFORM SYSTEMS

Ve

The foregoing discussions on the Initial Value

Perturbation scheme have essentially sbt,thé groundwork for
* ’

the deYelopment of a simple alternate method of truncating

the B.B.G.X.Y. hierarchy. Indeed, as will be shown short-

ly, the (IVP) approach requiresqonly minor modifications

to render useful, non secular, kinetic equations. Before
!

disclosing the'gist'of theie alterations, however, it would

he. sake of completeness, to es-

-

only seem reas8n ble, for
tablish suitable'points of referemce by considering some
# of the‘alternate ﬁethods previoﬁsly used by numerous inves-
tigators to close the hierarchy. For this reason, the .
‘appesent cha%ter, which is devoted to the derivation of
kinetic equations for spatlally uniform systems, will dedi-
cate its first section to some of those ‘who, through their

own alternate perturbation techniques, have signifiizyflx

contributed ga the formulation of this thesis.

A
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A. THE FORERUNNERS ”

~a) Bogoliubov's Functional Expansion » ' °f
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The last four decades have witnessed the unfoid;ng 4
of numerous perturbation schemes, designed for, or applied
to, the aerivation of kinetic equations. While many of
these expansion methods remain buried in the vast lité?é-
ture, a few techniques, such as Bogoliubov's_functional

expansion, Frieman's multiple time scale perturbation and’

Zwanzig's projection operator appreach, have succeeded in
drawing a substantial audience.

| Thé aim of the present section consists of high-
lighting, amidst a formidable inventory of availableaexpan—
sion schemes, a selgct fgw which, from this author's experi-
ence, may best illustrate the fundamental structures com-

mon to most perturbational derivations gf kinetic equations.

.

& %~been chosen
3

for their pedagogical value rathédr than their mathematical

These representative selections, which

elegance or their current popularity, include the distinct
' | 5s.[39]

&

methods of Bogoliubov.[lg] Frieman [gu}and Harris-ILewis.

{ . . .

In 1946, I. Bogoliubov briefly stated the inade-

quacies of the (IVP) scheme and proposed another perturbaﬁ
- 7

tion apbroach which he and kryiov [uolhad earlier devise! X

R‘ .
.
to analyze the motion of various non-linear oscillators.

This alternate technique basically consisted of replacingvﬂ
~ ] L}

3

ha .
’ .
N N ' ’ S
~ - .
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“
1]

the explicit time dependence Bf a giﬁen time sensitive
variable by a functi¥mal d%fﬁndencq‘on a less sensitive
"contracted" variable. Applied to a non-linear oscillator,
the method involved substituting' the e;plicit time depen-
dence of the position variable Xét\ by a functional depen-
dence‘on the slowly varying amplitude 4ty and frequency
uﬁi)- In an analogdus manner, Bogoliubov sdggested thgt
one could, in principle, perform a fruitful expansion of
the hierarchy by choosing some suitable contracted variablg(s)
which would 3gscribé, on a "slow" time scale, the evolution
of & molecular system. QEqurther expanded this idka by
pointing to the plausible existe of two charactgristic

time scales assq;{;zzz\;zzﬁ;gﬁz/::iural molecular relaxa~

tion process. The first "dynamic" or "fast” t¥me scale. +

VARN

consisted of a brief regime during which the initial 1
correlations between molecules remained imporfaht aﬁd joint
probability distryibutions F; (R‘,,h/(,%y) depended on tige
explicitly.' This initial phase would only last, howe;er.
for the typical duration, To , of anNnteraction ggtween !
two molecules so as to give way:to a longer "kinetic" or

"slow" regime, during which the initial cprrelations would

be forgotten and Fs(s>3) would only bear an implicit time
dependence through a functional dependence on F, . Fop‘é

w # .
non-dense system, t@is latter regime would persist for a

period, T s comparable to the time interval between col-
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. B

o - -
Jk}isioqs (i.¢. Tﬁvo[*/%]) with A = mean free path and

o

* scales in mind, Bovollubov concluded that kinetic equations
could be derived for f))’ﬁ by 51mply seeklng solutlons
for F, bearing a time dependence only through a functlonal

dependence on F, which thus became the desired "contracted"

o
/ »
. s

R variable.

/ 1

ideas let us reconsider the ple non-dense system and re-

call the ByB.G.K.Y. hierarchy in the form given by (IV-B-4)

Ve = average molecular speed). With these important time

In order to illustra&imﬁhe/applicqtion of Bogoliubov's
S :

:

oy

b

R
. ‘95 + -}Z[st = £ is E..: AIV-B=-4)
o g‘t s b -
s »
){ s = 272 ad)l..‘ t;) ;
\ m faq 23, “FB N (IVB5)
~ t;l
¢ i s f E JJ ‘D$Lné*l . 9 J t $+1 J S-H M‘\\
. =) Jql-° QP‘
’ The initial, and crucial step in Bogoliubov's ap-
Y
fproach consists of seeking approximate solutions for Fg
which carry a functional degpendence on the one particle
distributions f (p; D)o (Vvies) '
- - i . 4]
i_'e. F-S = FS (XS .l F‘\ (Pl|.£)) T ° (V*A—})
In mathematical terms, this assumption implies, that the
; time derivative in (IV-B-4) may be expressed in- terms of
“ appropriate functional derivative. Consequently one may
¢ J ; ) s
| . o
e

T

gt v -
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where the functional derivative § . must be takem over

all F:('Puk) L es

usual expansion of F (%S,t) , for s¥1 , in powers of the

label parameter &

(2) - .
ie. L FB(XR) - ngmF) ve B Py s 2R R R

where :Dms

. (IV=B-L4) ‘and collection of orders of £ renders the follow-
N
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: N

Y 4 Y . !
i - !.

a R '

0
.
* -

af: - i s a_f-'_-k' '
2t SF(p.ty ot ' (V-4-2) - 1y

o

S Fpt) .

The second step of the scheme now involves the

sy 1 ’ (V-A-~3)

“Substitution_of this expansion into the hierarchy will
then render, fpf a spatially uniform gas,;jhé“fbllowing

kinetic equation i . )
(l -1) - -

(V-A-4).

JE O G U A A !

Furthermqre substituting (V-A-3) and (V-A-4) into

A -
ﬁﬁy-A-Zli we may write the time derivative.&% in the follaw-
‘ 3

ing expanded form ; ' ‘
(L)

- - ‘Q‘
(QF; et { FS ) , . ’
ot Z g A

=i

{ ‘f F(bﬂl (V-A-6)

]

1

[,

such that further gubstltutlon of (V—A 3) "and (V—A -5) into: T

ing set of hierarchy equationsg - v ;

2]
-

y k3 . : ) y
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. H.F,“"=0 o (V-A-7%0)
’ “ . ’ i o 1 °) () (0) _
, S H R T Fm D F {V-A-7-1)
 f (1) (R-4£) ~
- ' (R 3 V"'A- "h
. H,E®. L RS 42 Fs (V=4=7-)
( . Equation (V2A=14) to (V-A-7) essentlally form
. a the structure oZ'Bo%o;iubov's perturbation schime. The
§ - : °
& emaining work ; imply involves the slolu“tion of equations

-A 7), subJect to some plausible boundary conditions,
o
subst{tutlon of these particular solutions for

\ m
i (XZ,F { 1nto (V-A-L) and (V-A- 6) so as to obtaln

h
¢ a k ‘order l}unetlc equation for F, and an expression for
)
the hlgher /order functlonal derivative T . Hence,

o BN

. schema‘ca.ca{lly, Bogollubov s scheme may be summarized as

+ l‘ ’ \
P ° foll ’ N .. d
f o ollows boundary conditions

’ v ol " a
.

k
°7 . 4
o Te @ 'i’_’v k=Q«¢ ~'—‘f—v Y‘A- 7"k—-—-—-—;-V"'A‘4 Fﬂ Z i F-z‘ )
. . 2t

F(k) , I—D
» « I ) 1 ) he

4 ' .‘" ‘ / ’ . ¥ V—A—G F il
) . o "[ ) . »,\ ’ , bi :,4\ f -

L L o k= k+1+ ’J)";") ‘ : e )
N 4 a
;o % ) : D‘Bogoliub‘ov scheme ' . :
s ’ . o ° Fig. V-1 ;o ,
‘; . . g : - Let us now 1n1tiateﬁth‘1s procedure 'by solv1ng
. : : ';_ ‘eéua%ipn (V-A-?-O)f tris may ‘pevaccomplis'f‘xeld by épera-
'€> e . ti‘g‘l'g both sides of the equation by .Q){’T and recalling,
. . N \

»

A

|

)
.
/

:
Ia
~1,
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1

from chapter II, the following identity

> t
. . ‘ v
N \%
«

-

‘ }("r » HS’T J H,T
‘R . HS = ]..(/3,1 = ;‘:‘r ig
Doing so, we then obtain the following ejuation
.17 0) :
. 24 F(FLD . o A (Y-A-8)"
R !
for which one may write the solution either. as
|
lc)%l -~ . - "'}CJ’T [
Fo X (R Bat) = &0 R (X6 (B b)
X . . '
- , / (V-A-9-2a)
or as -~ / : . S
i, 1
(J\ - - 3 HJITI 7 - - R ¢
ol X Foep ) = 40 R (X5 F cpo b))

.4
?

(V-A-9-b)

., Clearly neither of these equations, in their present

form, seem to
10}

Fs to itself

found, in terms.of E.

must first be
donevin the (J

%e of great‘value since they mefely relate
« Indeed b%fore eﬁﬁ%}éﬁt solutiOn%rm?y be.
some suitable boundary condit%Ons
impgsed. ZLet us therefére assume, as was

V.P.) expansion, that all statistical cor-

relatipns in F;)are finite in range swech that, in the -
\ i -{B{;‘r ‘}_(S
limit ‘Tsao , the strdaming operators 2 and { ‘ /X

due to the rep
/

ulsive potentials ¢, in M, , will ultimately

displace the particles in {s] outcide their mutual cor
"y

relation range

one of the fol

« In this 1jmi% we could then impose

lowing bou ;yqponditimmsf

-

- e
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( T M,
} Lbim. 2 F,(Xg: F)= Lim 2 n F(p 1) (V-A-10-a) -
™ Mo . Yoo .
a
) = ll F, ('? (o 4)
Y L—\
| ! . T HT ’
: ;" im. 2 F Gyl Limy fnjr.(a,t) (W-A-10-b)
. . h Ter® ' Twe .
. ! ¢
e , - F,('P(w)t) F
! where N H, /r,
{ Nt K ’PL(:’II)U . = £ JP,‘l ' (V_A/lll)
:/ _Pl. (’r) fod I}[ ,rPt

Upon substitution of the expansion (V-A<3), these

bouﬁdary conditiohs may also be written as -
\ ' . - | JH,T
Z‘ i (L) = f--' .
! Lim. 2 Fo X, F) = HF(—P () /t)
, Ty N =
, - __){ ., (V-A-12-2a)
E( . x le, 27 (X,*,F)-O k_>/ -
; Tox -
M, fr s
X ' Lim. 2 ® Xy F) = TIJF, (P (), 1)
. T .o T “
| : ~ S ¢ ' . (V-A-12-b)
Ve 5w .
- T | l;;_m.i Fo (% F) =0, k)
t 'ﬁl l v ’
. J v Now sinoe the left hand sides of (V-A—9a§c f@aren—.#
indepéndent of T , we may choo e the 1atte}' ate our own
+ ‘ 4
convenience. “Considering the boundary conditions which
we have Jus‘t 1mposed. 1t would seem na’cural to chooge the
limiting case g+oo for whlch we have the follow:mg two
,‘ possible solutions. ' !
¢ - . .
O :
: )
# - (\6“
o » [} e 3
@ 4
" .
P

¥
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~x

4

A

» (&3] ! )
' . o (V-A-13-a
-~ A »
* S

-

¥

FooGX, F) = WFAP @, t) . ‘

-

Y= T F (P o) .
T A (V-A~13-b)

Clearly, these two soluticns fgre not equivalent

since Pim and P (o) will not generally coincide if ‘ne or

more interactions occur during the backward or forward

- ) i
equations derived from such solutions should also be

s (\ dis;pinc.:t. Following- the *general plan in figure V-1, let

%,

streaming of thé s part’icleé. Consequently any kinetic

™ v us substitute (V-A-~13-a & b) into (V-A-4) so as to’
ob _the following two pofssible first order kinetic
equations. & ) , ) ©
‘ S/ JF, = ¢ I,, F, (P o)) F, (P () (V-A-1ha) -
It ‘ +oletly . S
- ~ ( B . 2 N . !
- F e LR (Par 1) F, (P] @ 1) (V-A-14b)
- ot oo +oLe"l , R
. The first of these equations bears a strong simi- E

‘the (IVP) scheme. «jn fact, with arguments similar to

-« those presented in appendix I , we may easily show”that

larity with equation (IV-B-17) previously derived using

'» ( ll&-'a) reduces to the familiar Boltzmann equation

¢ R ‘ L Lo B .

: 9_%(3,{) . (-{, (p. . : (IV~B-22) :

i 8 ' . i
. \ P} . o

. e &£ ‘ i ' 14 . '
g: v .+ *  where we recall
)
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J4.‘ (p., 1) :J L Ip, - Bl [{Jp}j){,(p}.ﬂ

- -{. (.0 .{,t‘ﬁ,,t)} bdbd § 4%

#
Boltzmann, who derivgd this equation in tpe la%e 19th cen-
tury, using rath;r~intuitive arguments, also established
soée of %fs imporﬁang properties such as the ezistence of
a Maiweliiam stationtiry solution and the intrinsic irrévér-
sfbility'of its transiengLsolutionsﬁwhiph must evolv? in
the direction of increasing entgopy or degggasing H<whefe,

f - F (' .
' Hﬁ»s\gjf(ﬁ,f)zﬁnb{‘rﬁttld‘ﬁ‘ A
¥

Since its derivation, sthe Boltzmann-equation has been

LS

:successfully applied to a wide variety of physical pro- fﬁ

blems. The non-uniform ve®dion of this equation has, in

ke )

particular, proved highly valuable in the calculation of

-~

transport coefficlents for non-dense gases.

Bogoliubov's pe;turbational derivation’ 8f the

Boltzmann equation undoubtedly represents a foremost con-

2

t¥ibution - of the statlstlcal mechanical' approach as it draws

an important link between the reversible mechanics and .-
the familiar irreversible thermodynarfics. . : -
. . J o ,

The exact origin of the 1rrever51b111ty induced
by the expansion becomes furthe;%&?e an interesting and

) enllghtenlng point for Q1scu5519n.\ Cerfainly as pointed

LI
“*

mps———p—
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.
outhw UhlenbeckLS{ the coarse-graining in time promoted,

and implied, by Bogoliubov's functional assumption does
play an important role. The fact that functional form
of F, (X,, F,(gt)) cannot resol¥e the short time scales
of the 'dymamic regime does indeed imply a coarse~graining
in time which is highly reminiscent to that evoked by
Boltzmann‘throuéh his partitioning of theq;{ spaée and
his‘“StosSzdhlans%tz" assumption? JFurthermore coarse-
! \ graining in FL space which must accompany any loss of
resolution in time also brings together Bogoliubov's time:
- scale arguments and Gibbd-discretization of the phase
- space. The coarse-graining in timeaénd phase space does
/ therefore unite Bogoliubov, Boltzmann and Gibbs in their
effort to give a molecular interpretatien of the second

¥

law of thermodynamics. However there dges éeem to exist

;, in Bogoliubov's expansion aﬁproach a certain ambiguity as”
Xo tﬁe direction of the irreversibility which he induces. |
Indeed, as first noted b® Cohen and Berﬁin,[23] Bogoliu-
bov's derivation of Boltzmann's eguatiosm iSJTodnded on

+ one possible solutiggefor FL(X,,F)  (that is V-A-13-2) &
which emerges ;; @.consequencé of the marticular backward
boundaty condition (V-A-10-2) which he uses. Altérnatively
howéver; one could choosg the forwarq baundary condition
(V—A;io—b) with the solutdon (V-A—lB—b».so as to emerge

N > / -
(i‘k with the kinetic equation (V-A-l4~-b) which, in turn, may
7 rs *

£

e

. .
~f ! -

<



-

+ the "anti-Boltzmann" equation.

Ly
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/‘ k - , )
be shown to imply the‘foliowigg equation for »6‘(§“L)

'a_i}i - - J,(-{,) .

It : (V-A-15)
Thi: equation because of its sign, displays - the inte}est-
ing property!of admitting only solutions wpich evolve in
the direction of increasing {4 , or decreaégng egtropy,
For this f%ason it has, at times. betn referred tot as
The poss?gality'of/derif

k] /

ving, via a Bogoliubov expansion, a kinetic equation with
a time arrow seemingly pointing the wrong way remains, o;(
course, a disturbing enigma. Cpheq’aﬁd Berlin have,%gedo
some light on the problem by suggesting tﬁgt the back-~.
ward boundary condition and, hence, the Boltzmann equation,
are founded on the plausible assumption that two p%rticiés

, : \ .
are generally statistically independent before mutyally

colliding and inherit a mutual correlation after collision.

The forward boundary conq}tion, and the anti—Boltzﬁann_

equation, on the other hand; would call for an intuitively

. “less plausible case, in which two approaching particles

would be peculiarly correlated before collision such that
this correlation would%find itself anihilated after the

two particles interact. This argument, however, implies -

.a very special physical interpretation of the mathematical g

limit 1>«  in both boundary conditions (V-A-ld;a&b).
, ' -H,T
Clearly, in this limit, any streaming operator L o or -
\
. b2

0
-
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}(ST ) \
£ which brings two particles in%&ya collision will o

also subsequently separate these particles such that they

uf%iﬁately become infigitely distant from one another.

Now, because of ‘thé gctu{al presence of numerous other
particles, it would seem quite implausibl:e that two part-
jcles, infinitely distant from each other, would rema;.n "
correlated as the result of a remotely possible collision

in the distant past. Conseb@}ntly,one so&n reali?es that
Cohen and Berlin's reasoning %\n favor of /’c}‘[e backward bound-

ary condition (V-A-10-2) may only find prover Jjustification

if the limit T+oo is not ;hterpreted literally but, in

% fact, replaced, as illustrated in figdure V-2, “by an altern-

ate limit T - T ® where T¥ is chosen within the range

» B
0

To (( T‘l( fr, . v N '
\ . ot J-(‘uj)'l'. _;"_ )-(itul’l‘? .
. - > : ' 'P‘l.g P _PJ= A . P
' \ ] t r
P | T )
¢ * . ﬁ( §5 '
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» . : . . "
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In this new limit, with T & chosen mugh ‘longer than{the .

rt

mean interaction ti\n\e, and yet much s&ortef than the mean’

[

time: between collisions, ohe may reasonnbly argue that

-H o) TO
while tf{% backward streaming operator x will C
stream partﬁicles t and J of figure {a) into a precol~
lisional uncorrelated state, the forward st;:‘eaming Yopera-
tor JH'“':;TO in:figure (b) will displace ;ghese particles
intc;‘a post-collisional correlated status. However, if
oneg 50 v}i"shes to tamper with Bo’goliubov's original bound-
ary conditions one must also face the consequence ‘that-
the above restrictions on T ® also imply & parasitic
limitation on the valldity of the backwar& boundary cond;tion
in momentum and physical :s.pace. Indeed the modified bound-

» / -

ary condition

M (i5) 18- . 7
14 fﬁ,(‘ic xjly= F‘ (PO E R t)
. - (V-A-16)
- - -H,uhT® : ' -
Wi'th P L ’ -F;‘ A
« ~ ' - . N
which we suggest, cannot -be expected to hold if Yu |, p, |
- L % -H‘(l«'} ’T@ ’

and P; are so choseh that the operator s . streams

part'icleé i and *.'l back in time towards or into, but not

through , a blnary collision (as illustrated in figure ¢
* A

" of fig. V-2). 1In fact, the restriétion&? imposedon T @
" o

{0)
would imply that Bogoliubov's solutions for F, should

!

only be use foré }?{sl((). . Naturally since the derivation

& X . . .
of the first order kinetic equation only requires the .
: =4

|

Baition et il




knowledge of En)for il this‘limitation should have
no béaring on the validi;y of the Boltzmunn equation,
Furtheerré, recalling the‘gimensifnal arguments of chgpt—
er III, one notes that the relative weight assigneh t0 the
various termg of the hierdarchy for non-dense systems no
longer apply whén\?ﬁ\ is chosen of the same order as, or
larger than,the megp particle separati%g&’Hence:the very
expansion which Bogoliubov performs remains valid only
when W dAYW> . In fact if the perturbed equations were
valid for all Ity one ‘could avoid Bogoli;bof's boundary %
éonditiohs completely, and simply afcall’the cond}tion (I1I-
C-4) imposed at \ﬁJ—’aa as in the origin%} derivation of
the B.B.G.K.Y. hierarchy. Furthermore, if only the latter
boundary conditions in physicdl space were used one could
easily show that the Bogoliubov scheme would render tri-
vial kinetic equations at all orders of the expanzion fﬁl
This fact further confirms the limited validity, in phy-
sical*spaée. of the expanded hierarchy (V-A-7) used by )

Bogoliubov. . N

The ahove discussions have suggested'a modified

set of boundary conditions, in the limit T»T® which

would. conform with some of the arguments presented by Cohen ¢

and Berlin< Unfortunatgly we have, as yet, not given much

G

¢ - - . ' . i
1 See appenqu IT . for priof. '

A -
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)
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insight as to the exact reason for which the original- for-

ward boundary condition cannot be used in the limit 1iﬁQ) .

gerté%ply the very fact that this physically plausible

A

boundary conditionlrendéis a kinetic equatiog which we -in-
tuitively dispute cannot seriously be accepted as suitable

grounds for rejection. Indeed the poss{bility of deriving

e .
a questionable result from a seemingly plausible assump-
tion simply é:;gests an inherent flaw, or)at least ambi-~

guity, in the perturbatfﬁk scheme itself. There clearly
' )
exists, within the Bogoliubov aﬁﬁroach. numerous sub-

tleties which become extremely difficult to assess with- 7 )
»

out considering alternate apﬁroacﬂes to_thiyproblem. The

~

arbitrériness of the auxiliary time variable T introduced
in the Bogoliubov approach represents-only one guandary
which will fequire future attention. The functional as- o

sumption, itself, represents a‘limitation_whiéﬁ'one would .

]

enjoy removing. Fortunately, alternate perturbation ap-
] o

«
prgaches, such as the Multiple Time Scalg gxpansion have

shed some light on these difficulties. »
: !

s e
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b Multiple Time Scale\QXﬂansion. '

In\l962. E. Frieman proposed a new éxpansion
scheme which could truncate the B.E.G.K.Y. hierarchy
by exﬁ%icitly introducing a discrete’set of time scales
and'sys%ematically eliminatikg‘secg%aritieé aé they ap-,
pearedp This method, which has since4been referred to
as th% Multiple\Time Scale A4MTS) scheme, may be illustra-~
ted by considering, once more, the non-dense uniform
system and, hence, recalling the B.B.G.K.Y¥. hierarchy as

expressed by equation (IV-B-4),.

2F T, H,F = e L, R, *
ot ) ~ (IV-Belt)
{ ‘ (

3

The (MTS) approach consists of rewriting the time depend-

ence of F¢ in terms of a discrete set of independent

time scales -to,t, t, .- ' .
¥ ' & .
ie. Fs (G 8) = Fodxg, to 4, 1, ) &\(V—A—l?)
where 1, relates to the real time tz 85 Tollows f
cji{ - & ‘ {V-A-18) >
\ . :
Let us, (as usual, expand F, im powers of the \
¥ J\ ‘ LI
label parameter
, F-’ - F,“‘ vE F.’ﬂ) N ez F’(2;+ . (V-A-—l9)
. } 1
{/ and further note %hat, due to equation (V-A-18), the /
ry

1 A
-
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derivative in (IV-B-4) may also be rewritten in the expand-

ed form

J Ce ,
at, at, f (V-4£-20)
rd - -~ .
gebstituting (V-A-19) and (V-A-20) into (IV-B~4) we then
obtain the following expanded form for the B.B.G.K.Y. hie/

rarchy
¢ ‘ .
N ‘ « '] ¢
S ¥ S $
t | . (V=A-21=~0)

<

) o) (o} - 10}
"aF . M,F = L F. - 2F ' :
e T T (V-A-21-1)

)

2t, ‘ .

| "
) (w-r) -2 .
FEARN 'O Al 7 2y E Fl .

Jth (V-A-21-k)
A=

Pfoceeding, as in the (fVP)‘scheme, we shall now seek

’ o

. - (e} R ry - .
solutions for E on the f, time scale in tqrms of the

initial condifons. at to=© . Considering, firstly,,
the zeroth order single particle distribution, we note

L]

from (V-A-21-0) that -

oF" (3 .t ik VY- to

(V-4-22)
. a o
OI‘ (;)\.. ; <o) - / < i
Foep bbb ) =B CRo b ta) (V-A-23)
h
' . vy

\
A
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+

which simply establishes the ihdependence of

the fast time ‘scale 1, .

equation (V-A-21-0) may be integrated in t

to yield the following solution -

e

On the other hanq,

(A~

?’ . to) -H,t, (o}

4 Fs (isptn,t-:ta ):l

i

F-s (2, ;O,t-tx

?f usual manrer

fw)
Fo on

for 3>i

y
vy

¥

Yy (V-A-24) >

Similarily, one may move along to the next order of the

-t

expansion by substituting the abaqve solution, for

(o)
Flou

into (V-A-21-1) so as to obtain the following rate equa-

. n
tion for F,

on the to time scale.
! B S N
-] S FM(Z,qt“t
Qt, at,

-

writtern as
. ) 16}
RLAL- S
o &T.o at

. . e
Upon integration over 1,
~

)
Ji.e. F

L,L,70 =

(—P.{lt
J-te2n” m,ot..; Ji
21,

.o .

which,ﬁysingEthe notation of (IV-B-12), may also be

=y

“)' .
F‘ (P,;,O,t.,i.;

e

)

(V-A-25)

e

oS

(—Ru(t\v(io\? (t) Ot t

C(V-A~ 26)

rmuiivtg)ﬂui)ot{)dt

-/

T at

-A~ 27)

+ Y
i
i

e
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we may now'notg/ﬁhe/ﬁimilarity between the above solu
! W) *
tion for Ff and the corresponding solution (IV-B-11) \ -
ipreviouﬁ}y de;fved using the (IVP) scheme. Indeed using

aréyments similar as those‘p#ysented then, we may show

tiat, for t. larger thaﬁdthq maximum time T, , required .
. for two interacting particles'to'be streamed outside each
’ -}(l“l)to ' 1
other's correlation range by & ' , one has

Fo (RL ooy et Prdi, ot by, o) =
- 4’/\\ ) } |
} r. &'P:_ (co), O,‘L, ,t; A F,{{a’\-”; { o) ,0, t',{a. ) ia‘ > ,i_,*

e

(V-4A-28)

> 1 \ !

Consequently for t, sufficiently long, both terms on the

~£3ght hand 1fde Pf (V-A-27) diverge at a constant rate,

.

"thus giving the solution for Ff“ a secular character.

However, due to the added flexibility alloted by the exist-

ence of numerous distinét time scaleg, one may, in the.
(MTS) approach eliminate the secular terms by simply im- ,
posing that in the limit 1o e,
k|
TR Iz} y] _‘- o »"
.J_F, (P;' t“t“") = i. F:. (?kt‘w\’ltt{"\ Fl (?J(m‘ltﬁnf'i"')
Jt, . ) ‘ -
which glso implies that
4 A3
\ ”? . ¢
, N
! 08 -
-> ° '?\ ~
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1
N . . , @ - N ‘
R, Q_F._‘ (7 1ot 1. ) = f,; \ (R, Pod, Pt o b iy, ) |
)t :
il e} - @ S, !
= E ’g?hlp\,t.,{ﬂ F, (?,.m,t,,{,.)} | : ;

T “{V-A-30)

By thus elimingting the secular t?{‘ms as they appear one ,
then obtains a kinetic equation for I—',m on the t, , time
séale which bears a stronga resemblance with equation -
(V-A-14-a) prieviously deriwed using the Bogoliubov sche-
me. Indeed, using arguments,similalxr to those presented
in appendix I and‘combini'ngﬂequations (v-B-22), (VTA:29)
and (V-A-30) one may easily show, in the limit ‘(‘,‘—900,

that the distribution {5 %%, obeys, to the first order

in ¢ , the familiar Boltzmann equation ‘ - ' ‘

< -

g_i. . Jg (v{. (p, b)) +ofe*d’ / ‘
3t ‘ .

The above expansion may be carried’ out to a
higher order of £ by integrating the first order equaiion

(V-A-21-1) for $¥ , onthets time scale, and substituting

P

~the solution for &m into the higher order equatign
(V-A-21-2) for s=i.. Integration of thris latter équa-—

tion over t, and elimination of secular terms will then

~result in a second order kinetic edquation on the t,, time

scale. 1In summary, the (MTS) expansion for the non-dense.

gas proceeds), therefore, as follows
- r R

AT
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MTS Expansion Schéme’/

1

Intetrration on L t‘;h
1, time scale k order

k= O»T—-——-——-»(V —A-21- k)———sand elimination———kinetic
9= 1 of secular terms eouation
el\

. ~l

& , l
k=k+1 Tnter~ration «———— (v-A-21-K)4—ro

on 1, time scale Sy 1 .
Fig- V""3

The (MTS) approach, which derives kinetic equa-
tiond¥ on one time scale by eliminating secular%solujtions'
an another time scale, represents a systematic method of
circumventing the usﬁ:;tl secularities e“ncountered in the

(IVP) scheme. The mathematical and physical significance

of the discrete set pf time scales, which this approach

introduces, remains, however, an important point for dis-

cussion. Mathematically some investigators [25] have
opted to treat the variables 1t,,t,,. . as independent
variables in the strict sense, thms allowing them to im-
pose such 1limits as tevee witho’ut implying any similar limit
[on'the other time scales. Clearly, considering equation

(V-A-18) which relates these time scales to the real time

{

i e
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. o
t , on¢c cannot accept such a premice once the const-

ants of integration of this equation have been chosen.

Indeed if one sets these constants to zero, for example, '

the following relationship between the time scales must

be observed

to = t‘/a=‘t'/e" LY Py S, (V-A-31)

[25]

Consequently some authors have adoptéd the more
reasopable point of view of treating the f%dependence
of the various time scales as an approximation which
bécomés reasonable provided one remains as close és pos-
\ sible to the "physical line" dgfined by (V-A-31). Natu-
( ) rally, as in the Bogoliubov e;pansion, this outloock re- =
quigg; some physical interpretation’ﬁ% the time scales '
involted, particularly when limits such as te > oo
are imposed. Thqueneral physical arguments, found in
the literature, describe t. as a "fast” or fine time scale
and depict 1, t, {. as progressively "slower" or coarser
time bases. The reasoning behind this point of view
becomes quite evident if one reconsiders the expansion
parameter & and the time variable "t in their dimension-
v “less forms £;=/nf: and £t/ , where te=folw
Uﬁ}ng,equation {(V-A-31) one may then write the multiple
time scales t,, ..t. in their dimensionless form
P o \

. ¥
3 4
( . ,
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‘t:-{‘:t/ﬂ’, o N ;
t* o et/ ~ '
£ e T (V—A-zz’) ’

-
© »

;»~’r0ne thén notes that while ts is scaled on a time unit
To , comparable to the typical duration of a binary

collision, and t, paces itself on a much longer cha-

racteristic time T

w L A
7o fe ~ol umet T~ 0l W)
(whiéh is typical of the time interval between collisionc)

-~ X
the remaining time scales {l,t, ‘ *: become normal-~
4 ¢ 4.

v 8

4zed with réspect to progressively longer characteristic
time measures. Consequently t, and t. respectively
follow the fast “dynamic" and slow "kinetic" regimes of

1

\ the Bogolilbov scheme. %Furthermore, if one assume®” that

the range of ‘correlation is such that 1, , in boundary

condition (Y—A—28)’ may be chosen much shorter than T, ,
nemay then interpret the limit t.=« , in the above o -

(MTS) expansion, as a limit {oa'TQ such that to plays

the same role as the auxiliary time variable .7 in the.

~ -

FBogoliubov expansion.

In spite of the numerous similarities :?ared'by
the Bogoliubov and (MTS)(sghemesfi%he latter method does
offeﬁlthe distinct advantage of by-passimg the functiona£ -
assumpt;on required by the formeru Indeed the function-

,al form of the- (MTS) solution for F:” only emerges-ﬁhen

»

oo



- 174 - j

1> 7, as a result of the baundary condition (V-A-28)
which is 1n fact equivalent to the modified Bdgoliubov
boundary condition previously discussed. The (MTS)
scheme on the other hand suffers a great handicap in,
that one must know the'exact form of the secular terms in
the corresponding (IVP) scheme. In the uniform case,
naturally, we have previously sho@n that secular terms
grow as powers off%ime. Unfortunately in non-uniform
systems the exact nature of the ségﬁﬁarities become ex-
tremely difficuit to determine. For tbis very reason the
use of the (MTS) ‘approach has ge?erally been restricted
to"uniform or q&asi—uniférm systems, where don-uniform—
ities in‘spgce'of F. may be completely neglected in
the %eroﬁh order of the expansion. ﬂvideqtly both of
these expansion schemes fiﬁd themselves hampered by dis~
tinect and” important restrictions. These limitations fur-
fhermore emerge'as~§ result—of.unngig?sarily complex mathe-
maticq} abproaghes fovjhe problem at hand. Indeed, as
will be shown shortfy, a clearer understanding of the 7
time scgleé involved wijl guide,us:toaa simple transpa-
rent method of deriving kinetic equé%ions without re-
sorting to restrigtive functional assumptions or artifi-

cial expansions in a multitudé of time scales.

- -
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- K ¢ A
c) ' Time. Expansion of Harris and Lewis //r
. R 1 .
ﬂ In 1964, S.Harris and M.B. Lewis praposed .

an a;%ernate technique of deriving kinetic equations, for
' non-dense systems, which avoided® s;me of the previously

described limitations of the Bogoliubov and (MTS) method.

T%ls scheme starts off by rewriting the hierarchy in terms

of the correlation functions 3s(f‘ . X,,t) , which, for

5§2n3,*4 y, may be expressed as follow: L S
/ ,
q,dia,t) s P L% ) - FGg D F (G ‘ < ,
(V-A-33) '
93 (2\,21,24,t) = FJ (;1,3(‘:,;3,{]
3 -~
~TE i) - Z FiriXo ) 9.0, % 1)
s P4,3,3) ¢
. 4 (V-A-34)
3<x.,x¢ PFEETRAL Fq(X:.X;,X,,X ) —A/:J E(x.,i)
): [F o d1F 7, 3,<v..xlt)+3,(xbx,,t\g<X~,i'3',f) - R gy, K00, )]
?(‘ﬂyl V) (V"A'—és )
where %: - denotes a sum of all permutations of the
01,3,3,4). .
indices ¢,d, k,{ over the values 2 ,3.4 .,
Substituting the above expressions into the B.B.G.K.Y. ’
hierarchy (IV—B—M),‘one may then obtain, after some mani-

%‘ : ‘ ~ - i @ o
pulation, the following set of open equations for,‘E(ntnqﬂnni}
and (j,(i.j‘;,t)

t ’ ~ N’; Y b
1 In this sub-section we shall useFsV F and i, Z(f’¢““»§zm'%yﬂmn

with m . de N :

Noeo
Ve
Eal

o oty Aot = e = o e S

e v a




now be integrated, in the usual fashion, for
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\ ~d‘ n o d ) t 4
2R, G0 . e &g E ) (V-A-36)
.9 - )
. . 29, (K, 1o h - Mo oun £3L<3€‘,3€”{)
T ot s _ o
. ¥ o, F (?'IMF(;L,{L + £ x(‘i.i‘l'{} (V-A~3T7)

ML(XJ X..,X;,,i) + H; (L;,:,?) 33 (X, IX;'X.,.‘(') N

ot o S X
= ﬁ(x‘,xL X,,'i\ "’ & *(X.,X;,xy,i) (V-—Aq38)

¥
)
v

!
- ) .

]

L Go.zE (X, “3 (xx,x,,i)

L-—'\

49:17—:.( ;,i) 3;(;(. x,,%Jng + JD 3,(x,,x,,x,,i)

: (V-A-39)
a H4 (él.‘; %e..ﬂ E,‘z.{) 33(?;,;’,:{) © ;
. . /’I R - _ *
+ (9lnl+6’|’) F) (xtlt)a;(X\,xl.t) !
*Ceurtean F0D g R (V-A-40)
X=° Jéﬁ){ o,.gF.(x\_ t}a,u’x“m . f'
+ (6,44 e,,) 33“""'“3 (x.,x. hclx., + fg 34/ (X«.xﬂs,xv,i)
(VeA-41)
6u - 204 . _D___‘ 4 a_gu.ﬂ
aqﬁ- Jpe qu QP)

" These rather comp,l,ex -and cumberqome equatlons may

§s 2,3

over the full time interval [o{) so as to yield the follow--

-
! . ,

- . . - -
hd a

7
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‘.ing equations. ‘ ) v
_ -}(4(1,:\’:‘ Y . ’
C g RRN e g (R Ee e
o "t".’)"“'“t'\ - ~ , ‘
B o o - ” s o F, (R, 44 F bt Ji >
. . 0‘
oML Ut ) )
+_] 2 g L (RN, E-CY I Ce .
‘ : « (V-A242) '
o | z
- N -X,ua.3) t ﬂ
- 9, (X, %,,%, b=z g3 (X, %:,%,,6) oo
B ' ,’ o £ - XzC,a,3) 1 - o 4
: .+ J . LB XX, -0V v € ¥ (X, Xs X, t-141) 1]
: T T N . . .
’ o AV-A-43) - I
v : Ak ) . . ) |

£

. Lew1s and Harrls, at thls point, Smellfy the
analysis. by assumhng all. correlatlons to vanish at tﬂ*

so as to eliminate the first term-in the above two equations.,

If one then expanc_ls 9s in powers of (»',

i.e. C:Is z 3;" v & q;') + £ 3“*‘ . (V-‘A-u:l}.)
a and substitutes into (V-A-42) and (V-A-43), while collect-

ing orders of £, one then emerges'with the ‘fo'llowing ex-

préeéssions-for- 3;“‘ 3¥ and‘—' 'j,"” -which are those required

H/ . . ’ . "}
to derive first and second order kinetic equations

LY

e -
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& {,/-'H 0, ﬂf, S ' A
. " _f 2 ©ia l-‘ (Y. t- t')l-‘(xg,t iy 4t '
) Y (V-A-L5)
¢ 'ﬂ:((;l\t‘ ’ ) " ; ’ L
, - ) tol ) , J{
,"zgo} o { Fot t-t)/.gxftt 3‘tt -
¢ -Hsuant S (V—A-L&&{ ' ’
te) - ' o) 7 ,
9 = J, e AR ) 5; 1 i’))c){
, (V-A-47)

'/
The above expansion, thusrfar, differs from the

usual (IVP) scheme’ only in the initial conditions which \‘}é '

(§ 3]

' " have beena/syd and the use of the correlation funct-

pendence (which for ira<’r. last only for a period of the

particles 1 and 2 outside the range of the interaction

ions g urthermore one easily notes that the zeroth

"order solution bears on, one hand, an explicit time de -

order of Mo =~ [Jr/s/. ) and an impliéit ;i‘epende'nce, via a
functionalv .deper}denc.é on ‘F.('f:\t‘) , which prevents the
appeara.r?ce c;f sﬂec'ul:ar terms w»)\“é"n (V-A-45) is substituted:
back into the rate’ ;quation (V-A-36). Now, since f‘or-~ Wl
the integrand in z<requat:1on (V A-45) vanishes when }'is larger

) A - -}(u:)t'
than the time Tz ~0 [T requlred for = to stream

potentiak 4>.... in e, it would seem reasonable to attempt

to express F, (X, ,4-1) in terms of Fax, D Fy performing - ‘(

. . . ! - ~ .
some expansion in time about t-0 . By 50 doing one could

A
' o

> r
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obtain a tlosed, markovian, kinetic equat}on fOF-Fn .

In order to accomplish this feat we need only to inte- -
grate equatjon (V-A-36) over the interval [tt\t] 5o as

to arrive at “

A \, ' &
Foep, . t-t) =T§ ( ‘ﬁk.i)ﬂéJi. g 0%, -0 dt (V-A-48)

[+

Furthermore, in order to formulate this expansion in ti- o
me and distinguish it frgm the perturbation in & one

introduces a second label parameter &, and rewrites

@

(V—A—hé) as

)

F (B t-th<F Bty +e€” J;ﬂ' s X, ¥, t-1") (V-A-L9) -

or as at i .
¢ ~ -~ * [ 3 coY o EINE)] 1
. FoGga t-t) = Fgeeoty + &€ j L9, +€9. %€ 9. v Jd
& 19 (V-A<%0) .

1

(!) = - t
Now since g, are themselves functionals of F, (o, t-19

Harris and Lewis pursue a se¢ondary expansion of these

correlation functions

. | B0 P (R, 2)
e qé vEE gy v CEEN g (V-A-51).
e \




]
Substituting (V-A-51), (V-A-49) into (V-A-45) and collect-
ing orders of €& one then obtains at°the ver§ lowest

order the following solution

v

t X, a0t - . - ,
ara,o) ] J P 0, F 0, 1F X, t)dl
a - .
s (V-A-52)
which may also be written as -
(0,0) t ']"[:(lc{)t‘ -
g: = _( = WuaF X0 F Xty 1’
Mot - s :
= L A _‘} F|(x|\t)rl(x.‘llt)
. > (V-A-53)

Consequently the lowest order kinetic eqﬁﬁ%ion bec omes

:\ - H, a0t , v
B0 . el 2 FEGORGD (Vo5 )
2t ~

a -
which for 1»7. may also be written as

~ L ‘ . Lrg
- L F (Pl F (Pt (V-A-55)
at

such that,/using arguments similar to those in appendix I ,

one recovers the usual Boltzmann eduation;

' Q;é - JB(‘#, \ 1
at .

The Harris and Lewis expansion, due to its uke N
of correlation functions and double”€xpansions, certain-

.
ly does not represent one of the simplest methods of

y ‘ ) ,

oy P
" ” N




truncating the hierarchy. Congequently one must undertake
férm}dable calculations fo pursue the éxpansion to higher
orders. Furthermore, b%cause of the extremely complex form
of the higher level correlation fundtions g5 with s larée .
the scheme must generally restrict itself to expansions in
which only the low level correlation functions contribute to
the lower order kinetic equations. For this reason this ap-
* proach would not seem very well suited to the study of Brown-
ian motion where the full N particle interactions play a role
in the kinetic equations. Finally the assumption qf an ini-
tially correlation free gas wéuld seem unnecessarily restric-
tive, Névertheless, in spiteﬂof these limitations, the Lewis"
and Harris approach does avoid Bogoliubov's functional as-
sumption and, unlike the (MIS) perturbation, can be us?d for
non-uniform systems. Furthermore some of the techni@ueswuéed
" to avoid secular solutions meritspecial notice. These 4n-
clude, on one hand, the introduction of correlation functions,
and on the other hand the integration of (V-A-36) over the
short time interval [t-t', t 1 with {'~ol%1 , as opposed to the
« full range [oll used in the (IVP) scheme. This latter pro-
. cedure, which allows one to exp?ess Fep, ) in terms of the
nearb; R(Fut4f) Father than a time independent\ ElﬁAn re-
presents a very clear and useful appr;ach which will be fuilly

exploited in the following section devoted to the development

of 'a simple alternate expansion schene.

¥

L

&

o
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B.y A REINITIALIZATION PERTURBATION APPROACH “
N, [ ' ’ —

4 A str%ﬁghtforward perturbational derivation of

kinetic equations may be formulated if one Erle fly re=~
considers some of theé main features of the (;VP) sche- °
me described iq the previous chapter. Let us, for
instance, recall. the simple illustrative time delay equa-

tion . ‘ :
dX = -&£X (t-71Y ' ’
dt b . © " (IV-A-1Q)

where - /
X(t) = X, for tyo

' T = constant

& (L1 ' a

e,
Now, we recall that the simple (IVP) expansion of

(IV-A-10) renders secular solutions which cause a complete
breakdown of the. expansion when ty7r° T‘~o[Ak] One obb-
v1ou& way around this obstacle consists of applying this
ex ion scheme only over a time interval at<(T?®, .
Indeed, let.us relnstate the power expan51on (IV-A—?) v

(1\ 22y

X(t\=x +EX e T 4,

ey
and the resulting expansion equationo (IV-A-11)
“dxt.‘ o < /
dt - oo (IV-A-11-0)
» '
dx. - -7
. di,,,, f (IV-A-11-1)
e

.€*' -
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(> X :
: - ®-1 . ]
. dx ™ o kT e “
. L T . ~ (IV—A—11~1Q
) o o
Now integrating (IV-Ar%}—b) over the imterval [ t-at i3]
- ’ . M
such that

te
.
»

. ¢

X'ty = ,Tg« (b-st) ot @ (V-B-1)’

|
and further ass

uming that T T' we may then write (V-A-11-1)
' as

. ¢ ' -{inl - - x,.\ (i) P . | ;}a,
di b , -\ ”
. |
Consequently combining (V=B-1) and (IV-A-11-0) one, thus

obtains, to the first order of €. , the following, non’

& seqular rate equation for xct)
dx - -éx +ole?] © (V-B-2)
] ¥ .\d-t L . o
~ -
Furthermore, one may pursue this type of expansion to
[N — g‘ ) '
higher orders by rewriting the %pcond order equation as j
dx¥. - x"t-m ’
d t " t )/_ o~
. _i X" (t) +J x”‘(h&{'} ) ,
] - ' ’ t-7 \ 1 \
’ M 0
RIS I RT3} _
’ DI [}
such that combining this equation'with the lower order: '
- -
( ]
VA . R
h —
\:\' [}
Ay b‘. ;
D ’ |
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q
expressions one obtains
: ) ) .
dx - €L eTIx(d) + 0ol | : :
dt ‘ (V-B-4) .

Ly

The above perturbation scheme distinguishes itself
V \
from the (IVP) expansion only by the fact that solutions

) : (3]
for X (1) are expressed in terms of X t-at) , atw Y

i

.
rather than X (o) ; }n this way the scheme reinitializes
itself so as to prevent the appearance of secular terms.
This of course does not at all imply that the sol&tions

extracted from this scheme will, in fact, converge to the -

4

exact solution. Indeed, since the latter requires the prew

. : /
vious history xit) ,-T¢té¢o , while the solutions of the expan-

sion equations (V-B-2) and (V-B-Uf may be obtained from xro)

alone; it is clear that, for this simple example;~the above

a it

perturbation can, at best, lead to approximatevsolutions for xy.

a) The Simple Uniform Non-Dense System.

/

The above feinitialization perturbation approach
may now be applied to the truncation 'of the B.é.G.K.Y.
hierarchy for particular molecular systems. Lgt-us-for
example, reconsider thc simple uniform non-dense gas by
recalling the hiorurchy{in theé following form

£ Y o
‘%‘ + Hby = Laa K - (IV-B-1) ’

and 8xpanding F, in powers of & ) »
g .

TR v ) VIMGSTR T IMTLMI e ST e R G AR L A e ARTI W ot e e
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o\ ]
4 € Fsg= F; +g F;‘

“such that, collecting orders of ¢

()]
IF;
oy HiF=o

. o) to)
‘gf_’”+ H ks = i’st"

ot

)

1. (2

+ £ Fs

)
one retains

(IV-B-7-1)

(x-1) -

(x)
Q_E_S_ +9'{5F5 :‘ispsn ' )

ot

The main feature of
consists of integrating the

interval at sufficiently

/ (IV-B-7-1)

the reinitialization approach
above equations over a time

short to preserve the valid-

ity of the expansion. Now since the (IVP) scheme comple-
tely breaks down when t.>0[?QJ , or, in dimensional terms,
when 120[T] ~0[AAhl¥, one should therefore restrict at

to values much smaller than the time interval 77, betweer

collisions. With this constraint in mind, let us integra-

& /
te the zeroth orderKEquation (IV-B-7-0) over the interval

[t-st t]

so as to obtain the following solution for F;”

(o) , —3—{:5 At - i . u};
F:' (xs,t)= R Fo (xg t-gb)
» st (fl-B-5)

Now assJﬁ\pg that for a given q?q (KT, -there exists a
/ \ | . |
’ . s K

f

TE T Y i Mgt AT 4 S odinek Tt L temt T e e o
o o e
s < o G i 1
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/ + - . " ' n

volume V{ss‘?v{ss in P;;g space for-which the backward

-H st
streaning operator R ,(uhthdt)’l’u,\ will ctrecam the s part-

) ) . icles permancntly outo ide their mutual range of interuaet\on
warr
and correlation, one may then impose the rollowmg modifie
Bogoliubov boundary conditions
. . S0
-H, at ’ . . ..
.4 Fy (b = T F, (Putooty (V-B-()
™~ . Y ‘ \
’ Aty T : .
| +
Xisy € Visj ’ -~
) Substituting the expansion of Fg .into the above equa-
tion and cdllecting orders of & we may then write the )
following particular boundary conditions reguired to de-
\ rive -firtt and second order kinetic ecquutions. ,
-HL(L J)A{: . £
A F, 15 X, 1) = F (TJ cao),t) F. (P; (o}’:) 4 '
) ‘ atd Tyzy V
\ . L3
. , - - 9{3 (¢, ) At ! X i T 4
R F;d(x'-)x.lo l)— 7’{:.:!0 2 F (PL,t)F(pJ,t)F(-ﬁ,,t)
’ - v X3G V{gi (\V"E 8) ’
: Aty sy €
- 3"{1 (L,J)A{
* Y (N o — 1 - ) :)'-
. 2 B =L . DFF el |
. @ . o
! N ‘(‘P( )ﬂF ('PLI-»\ U] (V-E-9)
b . ' . Xz.“— VV»S o
‘ . }
( : st 77[13 - &
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With thefe boundary conditions, and equation
. (V-B-5), at hand ae may then write the following zeroth
s \ - +
order solutions which shlxould hold \\for X, € V(Si , and

chosen such that fr{s) LT \ |

! i
-~

FG 0 = 7 (B t-ab) *  (V=B-10)

at LT, . ~

Y s ) - 7 -
YRR R s B (o FE e t)  (V-B-11)

¢ *
. X € Vi :
7}{“ <("Y| ’
) Lo M T '
,.,4 F3 (‘inx)oxﬂlt) = T/'é/:b L F’,‘F‘Ll{) F’I‘ﬁ):t) F'(ﬁﬂ»'t)
d X34 € ngg “(V-B-12)
'4 T KT
o Now since one may derive a first order kinetic equation
{ " " with the knowledge of F (x, X, ,t) for \Qil\ilf’/“‘ and that, for
: e T~ 0 RTl ~ oL T AL] KL
po such a restricted domain, _'izf ™ ° ) ° !

’ _one may then use the solution (V-B-1l) and substitute it

3 into (IV-B-7-1), for S=1 , .so as to obtain the following

first order “equation for F, , -

]

o) 0 - o) = _
oF, . X, Fl%(F o 1) F, (P ey, ) - (V-B-13)
3t '
Furthermore, combining (V-B-13) and (IV-B-7-1) for s=/ ,

and resorting to arguments similar to those of appendix
N a

- -

| e

k.




)

I y, one then retains the familiar Boltzmann eéuation

/

i o -/ |
9 =| ds (0 - ‘
Jt ' ‘

u

fo

as a first order |kinetic equation. ‘ % .

The above expansion may bBe pursued to a higher
order by first integrating (V-B-13) “over (Fa time interval
(t-at 31, at«T ,\‘1so as to obtain a suitable expression
of F,“‘(t-ét)in terms of F.“\{H and ’ F.“’P{) . One can then
integrate the first order eq‘\rxa‘(cion (V-B-7-1) for' s=2 , also
over the time interval ‘[{-At,tj’ so as to derive'with‘ the
helé) of boundary conditlon (V-B-9) a suitable solution
for Fi" which may then be utilized to derive the second -
order Uhlenbeck and Choh [41] kinetic equation, 1 In éum—-
mary, therefore theAreinitializa‘tion scheme may be described

3

schematically as follow. ‘
Boundary conditions

th
I___,‘ R order ‘kinehc cquation ° ‘[

i
-, kel (V-B-7-R) . |
, R i1 . f:teorj.rft won (v-8-7-r) | intecqration
~at,t), Aty over
A ft-at 13 b (T,

° o i

i

Re ks

Fig. V-5

1 See appendix III for details 1< 2

4
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Vad

e

The reinitialization perturbation scheme des-
, . . . oo
cribed above, simply involves the integration. of the |

perturbed rate equations over a time intedval 4t

“reasohably short to precerve the validity of the éxpan-

¥

3

conditions. This olmple approach offgrs the advanuage
of avoiding Bogoliubov's restrictive functional assump-
tion and the previously describéd limitations of Ha;ris
and Lewis' cqmplg} double expansion of correlation func-
tions. Fingily.’as will be shown in chaoter bVI , one
may apply this sche%e to non-uniform siﬁﬁle gases or

mixtures which do not lend themselves to an (MTS) expan-

sion.

b) ' Simple Uniform Weakly Coupled System

Let us now consider the feasibility of applyihg -

tne reinitiatization expansion to a simile uniform weakly

coupled éystem by recalling the B.B.G.K.¥. hierarchy in’

51on yet suif1c1ently long to 1mpo”e reasonable boundary:

|

the form of equatlon (iV—B-Zé) . -
Y .
i.e. IFs e Hok = e L R, (IV-B-26)
2t
and performing the usual expansion in powers of the label
parameter ) "
Y . v
. 1) ) 8
R A AR AR
¥ * -~
Y
o
! u - + # . -
w ) . &

o3
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L -

( ] ' [
: b o o
g

- such that ambatltuflng the/ above equation into the hle—

- rarchy andxcollectlng orders-of £ -, one retains the .

L .
T following perturbed equations ’
) ’ ) : ’ ) C .
AN 2= o , (1V-B-29-0)
~ 31 } . . .
N B l’
” ’ “ .
“ . . . e-E_;:) N :H; F“)-V“ is F;‘.)l ) (IV7B-29—1)
O 21 '
< 3 ” '
v \ (R-1) (h-1)
» ° 26", - HF A .
. | . It ’ ‘ (IV~B~29-k)
,_wxfr - e
- Integratlng (IV-B-29-0) over the interval (¢-at 1), we ob-
i tain the follow1nv tr1v1a$ solutlon
I ;
| I () \,;s '
] ) Fo (X, b= (x Jt-aty . {V-B-1&)
. y? . .
"The simplicity of this solution becomes, in- fact, some-
. - z .
. e what disconcerting since the absence of a streaming ope-
rator on the rlght hand side of (V-B-14) prevents us
ey from 1mp081ng suitable boundary condltlons which cou%d
transform the oolut;on into a viable explicit, or impli-
; . cit, splution in time. Consequently, one must reluctant-
' . - .1" A
~ 1y conclude that, for weakly coupled systgg. as defined
in the present ‘thesig., one cannot derive a useful kinetic
( " equation via a perturbation approach. Indeed, one would’

.oy -
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- ¥

face the very same dilemna if a Bogoliubov, (MTS), or

Harris and Lewis expansion of (IV-B-26) had been attempt-

eé. In spite of this conclusion, one may find in the 1li-

terature numerous perturbational derivations of kinetic
equatiyné for uniform weakly coupled syétems. However,
as previously emphasized these derivations are generally
founded on faulty dimensional analyses which dubiously °

assign a greater weight to the momentum streaming term

LB 3%; than the remaining ihteraction and mixing térms,
m .

> d bo2E ;ﬁ; Four . Such a peculiar scaling
9. “ap, A .

could, in fact, qnly hold temporarily as the result of

‘" strong initial correlations. Naturally, if one acgepts

/the ideas of Bogoliubov,. such correlations would be

forgotten when the kinetf&ﬁaagime established itself.

Consequently, any kinetic equation founded onltiis spe-
cial ordering of terms would seem rather suspect.
i :

A) Simple.Uniform Brownian éystem.n

'

As a final illustration of the reinitialization

- .
perturbation method for spatially uniform systems, con-
!

'sider the special case of a single heavy Brownian part-

icle coexisting with a bath of N 1identical light parti-
cles. For this‘purpose, let us recall  the B.B.G.K.Y.
hierarchy for the s®ngle Bréwnian particle and the full

Liouville equation as given by equations (IV-B-44) and

. !

«

o~
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. . /
(IV-B-45) respectively o
. QF{O‘It - Eipg,,,s
ot ‘ .-
‘arlNil-&{J{{Nd +£}[{N1§}F{Nl§ = O
_ at ‘
where . 3 .
L -n //‘ag,',, NI 4 L
, 29’ Op’
1 n ‘ N N .
h !
}[sz-Z E'_. 9 Z (JZ'QQLJ)
° L= k aq“ (] < J-é‘b
b3 7.
NEYIa Fl ,
Jql-, Jﬁ‘ N‘
- a . - .
Hiwn =57 2 Za"?._»;w :
msg Jg? ezt D < P,7 /

(IV-B-44)

(1V—B}45)

(IV-B-46)

(IV-B-47 )

_/

Expandlng Fisuy » @s in the pf?vFous chapter, in-

(IV-B-4l4) and (IV-B-45) we thén retain, after
()

,of termsk/the following equations for thw

(s}
gr{o,I} = O / ]
& .

2t

N ) (p\
* 3F oy = L Fyin

Q-

R

(r-1
;E4:{~hs

WL

e

- powers of the label parameter & and "ubutltutlngilnto

collection
! (k)
and F 4

+

(IV-B-49)

=
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“ il
( H , 0 1 to) — ’
IF b+ Hiwag Fiwap = ©
, Jt
& ~ o i (e) o /
. ol T _ty)
- :;,)_E{N.lk + Hm.u*m.:s : -H !N,llF*”-'S IV=B-50)
at p (IV-B-5
. g : ' (R-1) '
. (R) : R p
. 9‘“ NG 4 ng‘i.ls F\N.IS = }[M'i FIN 1o .
At /
!
Following an outline similar to that used for the
non-dense system we shall integrate (IV-44-0) and (IV-B-
50-0) over the time interval [t-at , t] 'where 2t will be N
chosen as short as possible to preserve the validity /
- of the following solutions PN
2
4 (o) a (o) 2 X
Frowg (PLE) = Fyoy (3i4-at) (V-B-15)
T e ”
{p) -D-(’tN\! At
- g V-B-16
F,{N.\! {N”{\ ] !N ’s X}N ls'{' At) ( )
' . "} [N |$ { v
Now, since".f sinply streams the Dbath
particles back in time in the presence of the Brownian
- particle, we shall assume that there exists a relaxation
time 7 such that for at) 7, these light particles will
have reached an equilibrium state with the larger particle,
In other ,words we cha¥ assume the following boundary con-
w ° dition
1 1
-}{".N;‘} A{ '3{[N.J$mk
-8
£ Frooy Xy B = Finogag Foy (70 4)
© = F{N.Ol“‘ﬂ‘ Fio”s (P;B,'{})
& Ai)'TL
¢ P -

Do e WL AT TR ks XA o 2 iy A g Sk S W e . mrser o
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where ﬂNp}q denotes ‘the equilibrium distribution for

the bath particles as defined by (IV-B-56). Now substitu-

ting the expansions for F,, and Floyy . into (V-B-17)

~and cqlleéting orders of & one then emerges with the follow-

-

ing boundary condition for

I
':}{I A't ‘Hw.t) atl
B o . (R) =
1.2 F{N.‘l (X‘NJ} 't) = Q2 FiN,Oj 1 F{O,Is (?, I'L) '
‘ V-B44.8
- o (A8

Consqquently if we further assume that the time interQal

At remaing sufficiently short to preserve the validif}
of the expansion we may then rewrite the zeroth order so-
lution (V—B—lé) as:

10} R » A
F{N'W (XlN.'J-{) = F{N.o}lq Floay ¢ p. t-at)
tol R
= F{N.Oﬁzq F)o,t} (P.u,‘t) (V—B_l9)

which simply states that, in the zeroth order approxima-

s o

tion the bath particles may be considered in equilibrium

= o

with themselves and the Brownian particle although the

—— -

latter remains in a.state of nonequilibrium.

We may now derive a' first order kinetic equa-
X
(o) ,
tion by integrating F{Nﬁj over the coordinates and momen-

ta of all but onc bath particle co ac to obtain a suit-
able zeroth order solution for the two particle distri-
~b ap ap -»3B

© ,
bution anl(qnpc‘$.ﬂ't)' Performing this integration one,

then obtains

R P
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- ) (o) - N '
Frag € B = JJ Finag (XJNM,{) E;Aqt dpr _
. t0) .
Floyy (B°H) Fil.o517 (V-B-20)

where F“,o!,‘, denotes the Maxwellian distribution defined
in (IV-B-Eéj). Substibuting (V-B-20) into (IV-B-49-1) -

one emerges with the following trivial kinetic equation

|
, o)
/’_\ °_-)_E_t°;l{ﬁ' = O

at (V-B-21) .,

which, as usual, shall be integrated over the in‘cerval‘
‘[_t—At t1 to yield .
< .
Fi::u (B 1) = F{:?w( 7 t-al) {v-B-22)
) .
Now proceedﬁing to the first order equation for Fyy
let usiintegrate (IV-B-50-1).0over the interval [t-at i3

all (V-B-22) and the boundary condition (V-B-18)

and re
£
so as to obtain the following solution /

) B ( .
Fi"“l (xf”di’ﬂ - F!N.Okvi F!onS (P?;t)

T \
at Mt g "

(o} R ,
-/ 2 ‘}{Lu.u plN,o}z-? F\o,q (P‘B,{) dt
° - (V-B-23)

which, after some manipulation may also be written as

1

W

[
7

S M s
-

EE. AP,

-

»
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Mm 1)
F\N‘q (xhn; i) = riN.as FM,‘ (P.y,‘{)

- "
e o N . ,

* Yot ' ’
v - \ _n’ ot _.‘
¢ - ‘/ JF (-t') J‘{ . ( __P_.__ + _Q__ ) F‘,u‘o] 1) Fl"n) (’P."‘L)
o My T P?
. ~ . | (V-B-24)
where T . ] ‘
- - H lNNJ.{' '
SF(-1) = = ¥
- N N
g : ~ Bb -
(F = ‘Z d bty =Z )
o 3 q", i . . .

\ ~ Now integrati;lg this solution over the coordinates

and n\omenta of all, but one, bath particles, we may then

exﬁreqs Ftnj as follow:
at

cq { N

t F wp = —J j! \ST‘ (-1 F/ﬁl.ag.g.i rlT J"?S JF: J t ¥

i3 . . R'z
¢ ° .

R , - 14}
\k S ) ( B, _2__) Fiogy 2. t)
. i ! m;KT i o ﬁg ' .

o

: N - N * +
s such that substituting this solution’ into (V-B-49-2) for Fioy

v T, N 3l

and assi»gnir'ig, once more, no distinction between bath

partlcles we may ‘;hen arrive at the following ra’ce equation
LN (2

.fori/ F‘o‘s ’ A
l r(?\ ) ‘t —
IF oy - j 4537“‘;“13 Ji
Jt e T .
. -~ (o) ‘ A
: P (B L2 )f «#
. IpF VmaxT - opt/f "ol - | (v-B-26)
A‘L)’lﬁ; ‘ '

:‘/\“'-\
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Finally since At must be chosen larger than the time
required for the bath particles to reach an equilibrium’
with the Brownian particle, which is characterized byﬁa
much longer relaxation tim;.qk , it would seem reasop-
able to also assume that the .autocorrelation‘function
{fF-Ft)) should become vanishingly small for L'y
Consequently, with this further assumption one may Fewrite

\ &
(V-B~26) as

(2) = ) N 7 (0} P%
I F o b 2__’{fei, + ELu] Flou& °
4 at IP LmkT IR
where - , < i
b= 5% fFandt | (v-B-27)
T A

Consequently combining this equation with the lower order

equations (V-B~21) and (IV-B-49-0) one emerges with the

following kinetic equation

s

<_;__F{0.U - JF,‘P_ (Fi_o,ﬁ\ + OY-E-EIJ
t

' 1
~

Jey, = b9 [f’i ¥ Ql B

e 4 Q-ﬁ.ﬂ ’ mtkT 9—‘?2
which is, of course, the well known Fokker Planck equa- s

] . .
tion for Brownian Motlonr
® o \ . ~

-

o

This chapter has revliewed some of the alternate

“. perturbation schemes which have been used in the past to

i . . ) ' ) . v

—— saraon, 5

AR i, L . ..
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. » . v
derive non divergent kinetic equations. It has also deve-

L)

loped a simplified exp?nsion approaep, emerging as a

natural extension of the initial value perturbation scheme,

L S N

N
whic¢h hopefully clarifies some of the limitations and

e
subtle ambiguities encountered in these earlier methods.

o ~

In tﬁis review, three particular approaches have ,been con-

sldered: Bogoliubov's functilonal exvansion ,}EI, Frieman's

-

multiple time scale (MTS) perturbaticon scheme [24[ and

finally Lewis and Harris' time ekpansion method 139'
'

Furthermore,for the sake of illustration, each technique

v
has been applied to the simple spatlally uniform non-dense

o~

system.

!

The Bogcllubov,approach rests on the assumption

-

‘.
that for t» Ah, Fs (s22) bears a time dependence only

o’

through a functional dependence on F,rand hinges, in" its -

derivation of the Boltzmann equation, on the boundgry con-

dition “H,T -HaT
,&,m, L Fq (;(.c,;j”:.) = Jrﬂ 2+ Fi(g .t F.I(F;J.‘.t)
fr:; Tow ] (V-C-1)

The, MTS expansion, on the other hand, replaces the real [

time ¢ by a set of progressively slower time scalesi¢i‘¢r.- s
&

'
¢

where <t =t =1,/ =1a/e*= -+ 1 /e¢ (Vﬁglg)

and derives the Boltzmann equation on the slow t, scale,//
b - )
o

TOTITIT N et b e e amia ) ki Ik BN S MY g6 e e % - e - - et -
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3 1
by impocing on the fast {, scale the Boundary condition
§ ”

*HL{:O -H‘{O 1e)
Ao 27 FCRR, 0, b)) 2 e 2 FU U 0, LY F (B0t

14
t,»o - t,-’@

(V-C-3)

s
-

and setting to zZcero the sum of all terms prowing linearly
with te , a5 ter e , in the solution for F, . The
strength of 'both of these expansion methods would seem tol
re:l on the added flexibility alloted by the introductioq
of auxiliary time varilables Such as T 4n the Bogolipbov
approach*and ts,t, in the MTS method. Whereas in the
former expansiqgﬁthe arbitra}y indepéndent time variable T
allows oné to seek a particular boundary Pondipion in the
1imit T @ without naturally imposing a similar limit in #
the real time t, the discrete sct of time scgles in the
latter approach allows the derivation of a kinetic equation v
on a slow time scale through the elimination of secular

terms on a faster time scale. Unfortunately, these auxi-
liary time scales also carry with them a certain 1¢ve1'of
arbitrariness and at times, a definitc degree of linconsis-
tency. For example the particuldr cholce by Bogoliubov of

the 1imit T- @ in the boundary condition (V-C-1) reprecsents
\ .

¢
one not only of insigﬁfj\pgt of convenience. Indeed, as
24 ~
J

1 This.boundary condition has orvcasionallv been revnla-
ced by the initfal condition on the to time scale[25].

» 48) o

* a ] - L L) -
/ . FJ. (xi'XQINS) = Fl (Pu 0o;tnt1")FI(P;‘,O,tl.tx"')

2 )
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)

first noted by Cohen and Berlin [23] the sceminmly equally

plausible assumption that

SH,GNT cHL DT
Ao 2 F o (R R VF) e dm 4 F (P 4) F 0B, 1)
M- \ T2 -0

(V-C-4)

leads to a so-called "antirBoltzmaﬁn" charactericed by a
négative collislon termljmd,a time evolution wit@ decreas-
ing entropy. Such an equation, with 1its-irreversitbiljty
seemingly pointing the "wrong way", could also be extracted
from the MTS scheme by imposing the seemingly recaconable

boundary conditlon

-3, Geivle M, te ‘
L 0 BR R, 0t V= L 2 FLUBL 0yt t0) BB, 0,4, 60)
Zy>-co0 Y por-eo x
7 . ) - (v-C-5).-

and eliminating seculér terms appcaring in the 1imt t,»-«a
Furthermore, due to'equation (V-C-2) relating the various

time scales with themselves and the real time one cannot,

strictly specaking, cogsider such variables as indgpeﬁdent

and consequently take a limit to # 2@ without implyving simi-
lar limits on t ,t,.... Finally, in termsiof possible appli-
cations, the MT3 approach‘suffors Qfom the fact that kinetic
equations cmerge only If the cggct form of the secular terms
on the fést time scale may be derived. Unfértunately, since

such.a task becomes extremely difficult in the case+of a non

unlform system, the derivation of kinetic equations, using




-

/
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i
the MT& scheme has generally‘been festricted to uniform {or
quasjiuniform) syétems. A

It has become quite evident since the development
of the Bogoliubov and MTS expansions that such methods re-
main in their mathematical form incomplete without a praper’
interpretaffon of the assumptions and auxiliary time scales
involved. Hence, as will be discussed,shortly, tge resolu-
tion of +the inconsistencieé mentioned above lies beyond their
detailed mathematical manipulations into what we shall very
loosely refer to as their inherent "physical spirit"... In
fact it was presumably in the hope of clarifying this "physi-
c¥l spirit" of thgge schemes that Lewls: and Harris  pre-
sented an alternate derivation Ef kinetic equations for non-
dense systems which they be;iéved to be "physically more
transparent than other mé€thods." The Lewis ana Harris scheme

-

essentiaily consisted oﬂ/;xpressing the $ particle distribu-

tion in terms of correlation functions and perfopming»a double 7

expanétbn in dgnsity and time on the B.B.G.K.Y. hierarchy.
Without reviewing théﬂdgtailéd description of this method,
which is included in the main text of thjs chapter, suffice
it to say that, due to the complex form these correlation
functions give\to the B.B.G.K.Y. hilerarchy, along with the
cumbersome doubie expansion, the Lewis and Harris approach
does not represent,(in mathematical terms, the simplest me-

thod of deriving kinetic equations. Furthermore, due,to the
o FA ,
2
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intricate'form of the higher level corr=lation functions such
a method would not lend itséiT@Qery well, for example, to

the study of Brownian ﬁot;on involving the simultaneous an—
teraction between a large number of particles. Nevertheless
the joint use of the correlation functions and <the additional
time expansion inherently allows one, for Iful< f, , to limit
all time integrations over a time much shorter than ", thus
avoiding the secular terms encountered in the IVP scheme
without artificially introdqucing auxiliary time variables as
in the Bogoliubov and MTS methods. It is in fact this aspeot
of limiting the range of the time integration which suggests
an élternaﬁe mathématically simple and physically clear exten-
s%on of the IVP scheme leading to a straightforward truncation
of the B.B.G.K.Y. hierarchy, which we shall now diséuss.

'The breakdown of the IVP, when applied to a uniform
;on—gensesystem for-t~o[1]~o[%hJ, would sgggest an alternate
scheme in{which integrals would be performed over a time in-
terval of Aﬁ « T, so as to maintain reasonable accuracy yet
much longer than’nvoﬁxw] as to impose sﬁitable boundary con- /

4

ditions. With such an approach one could then write the zeroth

order solutions for F, and F4 as’':

10 & 0 , *
F;,(F“t) = F ,(Fb,t'At) ;A QT (V-C-6)
F G 3D 2 BE it 4tam (V-C-T)

and impose, for AT T » the followimg boundary condition:

. . .
SV DA N .

TR T b Sl P




}'Hz (enat “Ha(e)T
2 Fo (X, 1) = Lo 2 F (B 0 F(F, 1)

A't 7) ’To ’r"“" g
: : ! (V-c-8)

T

Hence selecting 7o (<At 4& 7T, one then emerges with

the familiar zeroth' order solution

“" '}(z(b.l)'r
Fao(x, % ty= 2 F OB A, (pJ,{) (V-C=9)

Ty
and the well known Boltzmann equation for F, . In this method

the initial conditions in the IVP scheme are substituted by
reasonable boundary conditions and each equation is integrated
over a short time [ t-af ,t 7], rather than the full -time in-
;erval [o'f 1 so as to tonstantly reinitializ% the system.
Furthermore the time interval a4t in the method of "reinitia-
lization" represents a real time interval which is carefully
chosen so as to oﬁtlmlze the eventual solution. The criteria

for such an optimization are also conceptually quite clear

since one wished, on one hand, to minimize at to a value much

shorter than ’Vp so0 as to maximize the accurécy of the ap-

.proximate equatlons (V- C 6) and (V- CT7) and, on the other

hand malntaln Af sufflclently largofi

g allow the interacting

particles to decouple and, hence, unc:?.elate under the back-
=M, ) at
ward streaming operation £ , . It is in fact these

criteria for optimization which prevent one from wrlthg the

solution (V-C- 6) and (V-C-~7) in the form: '

1o\’

FOp, = Fp tead) (V-C-10)
- }{1(0..!)1*-"
Fo (i, )=2  F (%, 7, teat) (V-C-11)
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and derive the alternate solution:

L] - LM’T
Fx (XX ,t}: /4’”1 £ F'.(;t,‘t\ F'(ﬁ-l't)
-0 (V-—C—lZ)

which would reﬁult in the infamous anti—Boltzmann equation.
One may fully appreciate this fact by reviewing thaqeffect

'H:(ll) at
of the backward streaming operator & on F}(XL,J,t)

¢ i

9
Al

“ alie  atyo >
v .
ateo
1ty T - M enat ¥ .
BT

(no correlation)
mg Pre-collision:

3 (no correlation).

BOLTZMANN
—_— ' - -  EQUATION
Transition‘*f\_“’/ ' IAU‘:::;\\\\\\
regime r///jx F Spatial correlationy
atco
alj~ol T
‘.l ] Post~ colision
momentum correlation
btdo | et « N
Fig. V-6
JAs illustrated in figure V-6 there exists for the full ra@ge
of at five domains of interest. When At Yy To , the opefé—
=K, (i) At )
,tor &7 streams the particle L and !¢ outside their

LY

. .
mutual range of interaction into a pre-callision configuration.
I
In such a state, one may reasonably assume a complete lacRk y

of correlation between the positions and momenta of the two

?
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particles and hence impose the boundary condition (V-C-8)
which will result in the Boltzmann kinetic equations. 0On the
other hand for A4to and~ To (< iabh L& 7T .0 " the streé%ing

-}(,(u)nt .
operator £ once again streams the particles
outside their mutual range of intéfaction but this time in a
state of post-collision. As suggested by Cohen and BerlianB] .
one must assume, in such a configura{ion. the existence- of

momentum correlations between these two particles’. Hence/

for this case the use pf'the forward bouqdar& condition}

M, () st H,ooenT
N ) Filx., X, 1) = ,ql:m 2 F (P b Fp, 1)
&
T, 4¢ st ’

in the reinitialization approach to derive anti-Boltzmann

S

equation would seem invalid. The above reasoning would of

course break down if, as suggested by Cohen and Berlin, two
molecules were in fact very peculiarly correlated prior to
their collision that their subsequent interaction would re-
sult in a post-collision uncorrelated state. Such an event
would, for example, happen if tgg motion of the individual

particles were at some time reversed in direction such that

e ndngns et

correlationg created in the forward colli;ion would once
dgainlvanish after the reverse encounter. Naturally, as |
first noﬁed by Loscpmidt, if such a reversal of motion should ;
occur one would indeed expect the system to display an irre-
versﬁhility which, from od? experience, i; prqceeding the
"wrong way". Confronted with such a possibility let us simply/

¥

k 1

S T '

S A e setumeton i e i e B A

14

g
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fsllow Boltzmann and hope that such a réversal of motion
is highly improbable and suggest that the sq£ond law of
thermodynamics represents one of high probability rather than
of certainty. ... Pursuing in our analysis of the possible

domains in fig. (V-6) let us now consider the particular

%
Jchoice of at< o with Lot M T, ‘. In this case

Myt . )
the operator L not only streams the partlcles’

forward outside of their mutual range of interaction but
displaces them with a separation much larger than the<mean
free path of the gas. Because of the presence of other-mole-
cules one can hardly consider &he resulting confﬁguration as
one of post-collisipn since in the real gystem it is highly

improbable that particles in such.a state actually inté&tacted

in their recent past. Consequently for at<e, i1atl 27,

one could justifiably ﬁmpose the bodhdary cond%%ion:

i
~}(£(‘J) At }{JT ‘
2 F At = e 2 Fop BYF (BN
/ ateo 12t T
| ' (V-C-13)

However,  since the IVP scheme completely breaks down for such
large values of At » the above forward boundary condition
cannot be used in the solution (V-C-11), valid only for

batl LT, to render an anti-Boltzmann equation. Final-
ly,since the regions pat1 $00 71 (ITI) and atdo , 1ati~otw)(III)
do not represent proper domains for the existence of suitable

boundary conditions which would allow one to express F, as a

W

—— « -
LR A o e v _o‘,mwm» " e e - . [P P .
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functional of F, ,we thus conclude from figure V-6 and the
range of validity of the relnltlallzed solution (V-C-6) that,
at the zerogh order of the expansion, the domain ’F({Ai((
leading to the Boltzmann equations represents the opt}mal
choice in the expansion. .

It would appear that the res%f&ction 1oty 4L 77'
inspired_by the breakdown of the IVP scheme not only allows
the derivation of non secular kinetic equations but also in-
dicates the“proper choice of boundary conditions. We should
also note that this limitation on the magnitude of 4t is also
implied by the nondimensionalization performed"in Chapter III
o£ the present thesis since the results of that analysis es-
sentially, indicate that the mixing term of the B.B.G.K.Y.
hierarchy is only dominated, on the average,‘by the remaining
%omentum convection and interaction terms over a physical
volume Vl44/n" . Hence any solution of the forﬁ: |

-}(,(ca)ét
“F, U580 = & R (XK BRat) ot dde

/.

should restrict itself to time intervals sufficiently short

-}(aLL))At .
to prevent the operator £ from streaming the par-

-

ticles outside this volume. Consequently the scaling argu-
ments suggest a limitation At <X ﬂﬁ%}i {4 T . With the
\above simple expansion method which completely avoids the
artificial introduction of auxiliary time variables we may .

now attempt to interpret some of the ambiguities encountered

in the Bogoliubov and MTS schemes. We recall that due to the



equation (V-C-2)

teto=t,/e =t,/e2 - ... (V-C-2)
relating the time scales ¢,,¢,,... +to themselves and the
real time,it becomes mathemét”ically inconsistent to treat
these variablec as truly indepe,nden‘t and impose a limit te—>o0
without imposing a similar 1limi’t on the remaining time scales.
For this reacon somne authors[26] have opted to treat the
independence of the various time scales as an approximation
which becomes quite adequate if one remains reasonably close
to the physical lin&'defined by equation (V—-C—2). Now since
this latter equation states that if the real and fast time
scales t and t, are scaled on a unit of time, To-
the slower time t. should consequently scale itself on a
longer time & To = & m/n!p = /%?1"‘0[%%] =T/, it would then B
follow that to remai}l reasonably close tb the "physical line",
.any 1limit t, > should really bear the physical interpreta-
tion t,» 7® where To <£{ T®<< T, . Hence the adxiliary
time variable t, in the MTS scheme would seem to play the
" same role and Bear the same restrictions in magnitude as the
time interval 4t in the reinitialization approach. With this
interpre‘té.tion the MTS scheme then becomes exempt, from the
possibility gf deriving the intriguing yet embarrassing anti-
Boltzmann equation. Similarly, by pure cdmparison of the
mathematical form between the Bogoliubov and the reinitiali-

zation scheme one could tentatively argue that the auxiliary
&

o

N
N
z’
|

A

s

¢
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time scale in the former scheme and the time interval atin the
latter share a close resemblance iq roles. Howevet, there

does not exist in the Bogoliubov approach any mathematical

’

reasons for restricting the magnitude of T within tBe range’y
To T4 T and hence avoid\fﬁe fimit “T= - oo which
leads to the anti-Boltzmann equagion. Indeed if any restric-
tion exists it can only be found in The "spirit* of the as-

sumptions of Bogoliubov suggesting®the occurrence of two

&
distinct time scales, one which is dynamic, ~ o L[] , govern-

ing the early development of Fs(?hi\ sw2’and the other kinetic

~ol 1] which paces the evolution of+ F, and the late#

.development of ﬁs(xrle . Consequently if one identifies T

{

as the dynamic time variable, the limitation 171 <4 71

)

would follow and the possibility of a forward boundary con-

dition and an anti-Boltzmann equation would seem to have been%

%

»

intuitively eliminated,
i &

’ . In Appendix IIT we have pursued'the reinitialization

expansion to derive a second order kinetic equation which -was

initially obtained by Choh[l6] using a Bogoliubov perturbation

scheme. The derivation of such an equation éssentially re- v

quires a first order sokution for F, whicg is in turn expres-
i ,
sed in terms of a zeroth order solution for F; . Unfortunately

n . ' 3
one notes that, over a physical wvolume *r <<V, {4 Af y a boun-

dary condition of the type:

Xt at - Hlan T
2 (A ) = e 2 FBO PR D) BLPLH
A’t) Te T~ 00 (V_C_ll_',) AN

(‘U
i
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-
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. E4
E . >which one requires for zeroth order 3 particle distribution

cannot bé imposed for a time T® T . Indeed, as
A noted by théﬂ%] éd others [26-], and illustrg"ced in figure
-6 there exists ox'ﬁ‘igurations for which the complete set

of rev/erse interacdions occur over a path much larger than the

/

mean Jfres,p path.
~

s

Consequently in the reinitialization scheme which attempts to

L
R

‘z-"p minimize the ’ti'me ;lnte'rval of integration and explicitly
prohi/bits ény At %ol T} ’r}a reasonable\ optimal chc;ice for Lo
‘ “this interval exists. As a compromise tne is therefore forced
to 1imit the range of integration over X, in the Em solution
. to’' the phase volume where the boynddry condition (V-C-:lb) may
be applied for a at < m o Naturally this procedure which { .
v

b - u/
(.\ ignores the domain-for which we have no accurate solution for |

- ' \
.

. a , -
. - bﬁ
.
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F;? strives on the hope that the error committed remains
minimal. \
The expansion m%thod described above has also been

applied to the uniform weakly éoupled system which, for rea-

7

” . N - ﬁ
sons given in Chapter III, is characxerlzed by the similarly

small contributions from the moﬁ%ntum convection, interietfon
/

and mixing terms”in its B.B.G.K.Y. hierarchy. Consequently -

a simple expansion neglecting these terms at the zeroth order

yields the following'trivial equation for F;ﬂ

DFJ -0 .
or CFs(Xg = F (X, t-a1) v

) {
Cleay1y$ with no operator in the abové solution to stream the

particles«gutside thelr mutual range of interact}on and cor-
relation we cannot in this case, for any cholce of at R
find an explicit solution for F, in ter;s of F, . Conse-
qdentl& we find oursekves unable tb'derive a suitable kinetic
quationtfor thié sysé§h via a perturbation appreach. Indeed
. th the ordering of terms suggested in Chapter III, other
me;hods 1nclud1qv{thé Bogoliubov -and MTS perturbation schemes
(ﬁ?guhd lead }o the same disappoknting conclusion.
Finally, we have considered in the present chapter
the case of Brownian motion for which ‘as previously stated,

we assume the root yess ratic Y= a between the light (%)

‘bath partlcles and heavx (8 olngle‘Brownlan partlcle to dic-

tate tHé relative magnl}yde of the verious terms in the dimen-

RO |
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sionless Liouville equation for the complete system and the -

B.B.G.K.Y. hleggssﬁzdgnverniyg the single Brownian particle
L .

distribution E'(ﬁg't\ . By so doing all terms associated

with the motion of the heavy Brownian particle are neglegted

at the zeroth order of the expansion. Consequently we have #
at the zeroth order for the full Ntw+((3, particle distribu-
tion F1~J1(xlwu,£ ) the following equation:
19 I _ o) 4 .
dFimey + H iNgg = © ‘
— {Nut '
ot » (V-C=16)
with the solution expressed ast
. (o) N "M iN§ A#O\ N ‘ ©
/ F{”l'] ( X!N‘u ’{) = Q2 F(N.I' '(X’Nﬂj ’{'At‘ /
/ s (V-C-17)

where}ﬁwirepresents the -Hamiltonian operator of the N bath

particles interggiing with themsglves and the heavy Brownian
H
tN}

v

4
partic%g and, consequently, _£ streams these light par-

ticles back in time without operating on the coordinates or
- \
momentum of the heavy Brpwnian particle. Now we recall from

1 .
the discussions in the Chapter III that this particular expan-

sion is, in many ways, Blfnd since we do not know over what
region in ‘7~Jj space, if any, our assumption regarding the
relatixe weight of the various terms in the-governing equation *’
remains valid. We do know however that the initial value ex- {\
ransion does yield divergent solutions and, hence, eventug&%y 7
completel& breaks down. It w&uld therefore seem reasonable to

seek a suitable boundary condition which would yieli-an explicit
W

\k . 3\ — !
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solution for Fy,,; = as a functional of ¥, while keeping the

time interval 4t to a minim®@ . With this goal in mind we
have 'assumed that tLere exists a time T: much shorter than
the relaxation time T of the slow Brownian particle, durihg

which the bath particles reach an equilibrium with themselves
/

; > and the Brownian particle. By thus assuming that
’ ‘}{&u;‘{ *® i | ’ : ’
. - 3 - -

E . L ’ Fluay Xy by = rju.oy “""1 Foy (P H) (V-C-18)

. one obtains a solution for Fy,, ° which results in a kinetic

} equation for F, . As this latter equation is ¢tonvergent and

‘ - | ,

‘ bears the form of the well known Rgkker-Planck equation com-
s’

- monly. and,successfully used to describe Brownian motion, we .

then cdﬁéiude that our approach, in spite of its limitations,

% ) :
& | .

Ek\\v does yield a reasonakle result. ‘ J

|

2 N -
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DERIVATTON OF KINTTIC ﬁQUATIONS FOR_NON-UNIFCRM MIXTURES

I

&

The previous chapter has illustrated some of the
main features of the reinitialization expansipn by apply-
ing this technique to very simple molecular systeﬁs.

It would now seem appropriate, in érder to fully appre-

" ciate the scope, and limitations, of this approach, to pro-

e

i

be into slightly ﬁpre complex and general molecular mixt-,
I

ures. For this purpose, let us, then, recodéjder the

. | 4
non-uniform, non-dense, and Brownian mixtures pre-
viously defined in the third chapter of the present tpesis.
" A. NON-UNIFORM NON-DENSE MIXTURES
The non-uniform, non-dense mixture, we recall,
B} can [be described by the dimensiC:Ez.qj B.B.G.K.Y. hieraxf_
e chy (III-C-52), which may also Be—written as:
- : x ’
¢ X oo o» 1 i AL
— 260 (Rianf) o (g 1) Pl g
.‘\ - a‘t y v . , *
*

- ™ . +* T« . ?
’ ' s = i Z (i‘:“e +‘i}:‘ )F-s:,sg'ﬂ_} ¢

el o(ei 51 (VI-A~1) !

where :
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1‘ o o _.“Q
:}-{\5‘ = .; X Q}<{-§! Zl PL P g“.‘
oq;
M 3 S« * _ ~ %
« , 7. =8 «8 8«8 )
FYY v oRe iy L £0FC )2,
-‘B=lxu| J=1 LT 19.;_" Qq:‘ QPL
| ' (VI-A-2)
Htss?:;”“’“ T 4
AN ' i 29 IF (VI-A-3)
z .IB* x ‘:6 ‘ xB ‘
' ! iisx = E«z‘ﬂ;\R X/(ﬂ i s
¢ . )
‘ ] Z_: J[ Q_-@.'- 54+| i: d* \"“ 4 J P‘ "
/\/ / Co o Cfé Jp: ‘ (VI-A-k)
, ’ o «x8* x «f 0‘6 P 8 b ‘ '
’ I- = £ 1158 R’( X/”ly .
Sw K #
k ’ ” _Qélsﬂ” 9"”'1 éxfa’ﬁﬂ r P54+\
it J ?o P. (VI-A-5)

Now. the d1mens1onal arguments of chapter I}I in-

dicate ’that for
Y
Xy € Vtss

where
¥

‘Visl-’ = Vis:/ ) 35«  (VI-A-6)
Ve J!( MekT) L
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one has, for a non-dense oy tem

2454 (1
and 5
5" —-> 0
14

Furthermore, if the extgrnal field‘;s

assume that
o
XK |
Consequently, writing (VI-A-1) in the

dimensional form

é_Fisi + (}{jsg re J—C:;) Fisy (7?2551_“ /
.. a3t ] s
elg;.EESJFwﬁﬁaHj (VI-A-7) , .
where /
1 < S« M S, M Se
His ?,Z. Lopr.2 - ‘B.Z I |
e ‘9‘{“ BT r>7lﬂ‘b (VI-A-8) x
}[153‘2;}: &u \
@} : L=t QL df% (V1-2-9)
NPT 5o ‘

-

o B Su s s
L. - we] E Ny
1=t

we will attempt, as in the simplé.uni

following expansion in powers of the

29y Ip

one may also
~

weak,

more convenient

3‘+]

(VI-A-10) f

LSgty

|
form sysiem, tﬂe

label parametic ¢
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) ‘ 0 ') N () R ¢
. Fisg (X t) = Fysg € Fuf+ E° Fygy+o - (YI—A—ll)

/ ,
' Substituting (VI-A-1l) into (VI-A-7) and collectijg~orders

~ of &€ , one then obtains the following set of rate equations

10 )

. dFysy +Hiygy Figy =0
; at (VI-A—lZ-O)

- N I ") gl to) MmN (8 4
' DFysy + H 54 Fm = '}L{ss’:{sj "'Zz:_ —i F

\ S 15,540

| at g o
| N ' (VI-A-12-1)
' (k) r k) T ) i M« (ol
Q_Elif + }{-isi F {s§ = ‘}(HSF“I +5=| n(z--tisd F{SIS/‘”}
at ’
(VI-A-12- )

Let us now proceed with the reinitialization approach and
integrate the above equations over a time interval at
much shorter than the mean time between collisions ™.

At the zeroth order, this integration yields

T oat
(0} ,'}{ is§ ol
Fisg (Kiss, 1)= 0 Fiip(xgg teat). (VI-A-13)

Furthermore, assuming, as in the previous chapter, that’
-, . ! ‘

+
for a given 7&3(<7: , there exists a volume Vis! ffviﬁ

in Fm space for which the backward threamin'g operator:
will stream the § particles’permanently outside of

their mutual rfange of interaction and. correlatior}. we

l
I

a
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. | o .
may then impose the boundary -conditions ’ ’\iiﬂ
x I
-H, ot - .
"Ss = f.:" fé:'" -‘-( 4
£ Fesy = X JTAT By o pr )y (VI-A-1K)

> +
Ak)ﬁﬂ 3xwgévngvﬁﬂ}

Substituting (VI-A-11) into (VI-A-14) and col-
lecting orders of & one theh obtains the following part-
) (o} ' (0) .
lcular boundary conditions for F{M«;J,Qj v Fojee,s, 85k,

: )
and Fl‘-)"")énﬂk
1 z '
‘:H.lL,ot.;s,ﬁ}A't ‘J{{L,m,_,,efdf " ‘
(0 (d Bt o ap =
2 P =2 Fi s (@0, Pn Ve (37 P00

t

- 52“,«,.\,85 qev*{a,«.,,,a‘ ; Af) /TJ“,«,:,,gs _ (VL—A—]_S),

e I

- X {\.,a@,J,B;h,HA{ -H 1(.,«,;,,3.)1,)’}1\12

. 0 _ o — tol g *g ] y

‘9' Fil.%;J,B;k,xi (‘L) -'Q Fih“-'}’(qup;l{) FH;BS(qJ’P) ){)F{lﬂl(qn\P‘l’h{)

-~ o
X {9,850 ,Y) € Va8, R .at? ,T)Ll%"J,G;k.y} (VI—‘&—lé)

1 T -

-H (et 4,84 Ajc '}[liv-*]).ﬂ At Y
M 4)c e [ FED (& 5 bF 1§ ped
L hu"h)nej oot =R Yo,0cf qL’PL! ’ "..\,Bi'qJ)PJ‘ )
(o) - - om - - v

+F e (95, pfh‘c) Frisg (qF, pt, b1
Xiww,igf € ey ; at> Ty s,4y (VI-A-17)
' 1 rd

Combining (VI-A-15) and (VI-A-16) with (VI-A-14) we then

emerge with the following zeroth order solutions

2
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*
F_“” DU -}(H,q at (o) — =
ot (G008 = 2 Fros (90, Py, -at)
stu (VI-A-18) -
F(q N
toees .8} ( Xlt.«,.wﬂ& =
I I ‘T
‘}{itﬁt,a.B}A{ H{L.-:.s‘d }(lj‘s;‘d LI ) *Q L
2 3 I} { F(w(c,‘,pt.{‘) Fulﬂﬁq“pf‘{ﬂ

- + -
Xii, i, 88 élv{f"“ﬂ'”i s Thuiag CALTO (yrp 19y

.
(0) N
Ftw.J.s,k.Ys (Xu,ec,;,s,m;ﬂi \

I T b *1;
~Hiiw, ha,u,y;Af Huws st Hy gat Hiypyyat
N3 ‘ ) £ 2
(0) fo)

. - {0) s R
z Fims (xh.«j,b Fi;,a;(xii,ﬂs,{) ;ims (X{ms,ﬂ

¥ + 7 .
Xiorna, et € Vi, 0,00y 5 Hewoy,8,00g 6 LT,

(VI-A-20) *

Now, since we may derive a first order kil'xetic equa-

PR A

L] o\ —f ’
tion with only the knowledge of Fitﬂ,].as for 10a Y ol "¢ 1~0l%r)

v

T
we may,. for this restricted domain, where /IJ{u.x,‘),ejqu[ r//zﬂ.]

~ol 7T, ] , rewrite (VI-A-19) ag

] -~ / g
F [L, .8 ( X\h").')ss'-l:) =

!

{0 - = (0) - -
F i\t.*’s ( QU cat) ):Pf (1, 1) Fy) g ( Q? (Ai)),?:(zs{)'_f)
: . (VI-A-21) d
- -}(;L,x;J,esAi Hiuug A'E _ | : #
where: Q_(A'}.) = Q0 PR q': ] |
.....: -}{Ilb,d;j‘gj Aty }(x“,‘,s A't_‘ '
Frune s
| \ N
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Q a"q' A q J /

! \ .
T b & .
ap A u.«;s,as‘tHu.mj‘: ‘ =y
—BJ“Q:’Q gl PJ' J (V—A-—22)

¢

in equation (VI~A-21) represent the coordinates and mémenta

of particles {i«l and}, 8l after they have been streamed

:H_ Ly qs A'é
forward, in the absence of any interaction, by g
i
and £ oy ® respectlvely, and streamed back’ in tlme,
) lr. <, 3,84 at
with a mutual interaction 2 “ For

e L ey . .
Ciy £°C77, the final outcome of these streaming opera-

tions becomes independent of A't ' , for at » To

Cobsequently one may write the zeroth order solution for

!

FU;‘M\":@S ’ as: '

ro\

[ (q (o) ?*(oo\ Y E ues(a (m)'Pwo)‘H

FA.'W(}-i;GS T T S

(VI-A-23)
n t
Furthermore since ' @
b2
Hipys®tay oy ]
Pr = Pa ,
l (VI-A-24)
/
/
we then have , /
M at -
— i'-n ;-"as b
TL () > ,,Um £ : PL 'P: foo) A .
~ Al 1
(VI-A-25)

-H 10,5183 AG —ry

A Aem 2
R TR e P>
) - & » \
.such that ] \ :
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F\hﬂﬁ,gsngté:h&y{\ ﬁt(aﬁﬁ EERR

t

(Q l-\—P u»'(:) ‘

i

%‘ . - ! v i
 (VI-A-26)
Substituting ‘this last equation into (VI-A-12-1)
’ «)
one then obtains the fo’llowxng rate equation for fy, o (CIL,P t).
. ) 7 (:)— T o)
* e Frows * Ml Fiowg

=
| e o & o

(Q (o0), 'P"(m\ ‘f.) Fh 8 (Q (oo\_P (e, 1)

;J_E\td

. 3 )
M

. — [‘ t,x ) "- °’-i

}
/

(VI-A-27)

o

Whiéh, when combined with the zeroth order rate equation
(VI-A-12-0) and the expansion (YI—A-—ll). renders the follow- \

ing set of coupled fir:st order kinetic eguations for

! [ %
t
!

1 1
E—E{"r'(-j + (H hmﬁ" }_(“-u'(i) F{L,“(S -

|
i
|

Qt
| .
£ o8 .L
Z-_l iil.-ﬂ 1) ( q ‘va () “ F;-‘ Bb(q () R’ )
oS
w P ' , i
~ (VI-A—28)
’ Now, ..,:ane the right hand side of (VI-A-28) vanish- ‘

es for |\ ) “~ 0 Cr1and IQL~ql:~o[‘(“%~o[r]-

= rptons i
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one may simplify this equation by neglecting the variation
s . ! 0
of the single particle distributions over a length scale

L~oL»1 . Consequently, if one assumes moderate spa-

tial nonuniformities, one may rewrite equation (VI-A-28)

as ]
I . N 1 , n ,
F*l‘-l’(j + (){!C,qs +}'[h‘q}) r*f‘,ﬂ
t . ]
,ﬁi ;£«8 . i
) L Lyies Fria (32,38 Fy o (A t)

! ) (VI-A-29p -

e ° Y
which, uping arguments similar to those found in appendix

Q ' T ,] may be reduced 1 the following Boltzmann form

1 T
‘;-iu.«j + et M) X“"’"
at - : 4

. “‘) \ "gg J“ (‘{Nms.luds) ) (VI-A-30)

naf
[, 450 Pf'“{is,gsq?‘f’?'“
/ o

ﬁw’ Ma
A o -8 ~8
) ‘g“-tﬂ (qt‘f’w“jss.e;‘ﬂf pS,tidb dd dF; (V1-A-31)

and _ (VI-A-32)
'ﬂ&i.us = N P ’

The'abovg'kinetic equations (VI-A-28) and (VI-A-30)

- ™~ .
for non-uniform non-dense mixtyres could, of course, have

( ) A
' - .

Y )
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©

been derived with other expahsion methods than %he rein-
itialization tecﬁpique presented here. Braun, Flores -
?nd GarciaLColin [34] have  treated non—uniform non~dense ’
binary mixtyres using a Bogoliubov func&*pnalfexpansiqﬁ,;x

with slightiy medified boundary conditions. . Lewis and

"

uniform, non-dense syste

-

which would certainly be gx-
tended to include-mixtures. As previous}y mentionéﬁ ho-
wever, the simple reinitialization appfbach doé¥ offer :
the advantage of avoiding the funcﬁionai assumption of

the Bogoliubov scheme and the mathematical complexity

of the Lewis and Harris approach. - l

B. NON-UNIFORM BROWNIAN MIXTURES

Let us now consider, as a final example of this ¢

A

tg}sis, a non-uaiform mixture of Brownian particles inter-

\ -

3 -
acting with a weak external>field and coexisting with a

bath of light particles which are free from any exterp—l_
ally imposed farce field. 1If species ol=M,,...M repre- ' *
sent the Brownian particles, while species «=i, n,-t de-"
note the ligﬁt bath particles, the dimensionless Liou-

ville equation (1I-C-~37) may be written in the follow-

= 3

e
P

ing form

a
-5
7
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( 9 Fing +[ Hm,*}{lu)"}{ms] ths‘o
- T gttt
(+ - ] (Vi-B-1)
-
) ’3’ -
‘'where Mo-i f.(
T8 )
\ - tni d«-l Lz1 }
* / Me-" N« M N8

‘ & d - Z [ y"‘(IR.‘B I o8 .

! - ws | Lz B2 gm0
b
! ‘ ) M Ny

ﬂ X,

} } A H]Nj & Z Z Q}(dxd *: & “
} ocxMy (3
| . M N M oNg

j - ZTijfg: Y

’ N oz My Ul. 81 =

T

) M Ny ' *
b 2 o * »
N }{M\=—ZZ Jd A X Q_g;,:) ’ |
’ azH, (71 R e .
; . 9~ opl (VI-B-4) |
y ' 3 Lo
§ Similarily the B.B.G.K.Y. equation govething the
S ’
distribution F {ny Of all the Brownian particlés mdy a4
’ 2 be written as . . ' ;
. ; A ‘g n » 4 !
i "Z_tEM:j + [ Hirm +H lms] EIN;j ’d&
ot* ) '

Mol M

. xz «@ T :,3 x T \j
= Z z ( i Ny + i: &N'l) F !Nl‘,(l,m’ ' le . )
:\1 \ 831 M, A I- 5) :
( ’ » ’ v ) :
.
_ ‘ ’ i : i
- \ .
iﬁ . B »
2 , ) :
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3

3 A
Huy = AT U, 2
, e 23; IR |
o o ; (VI-B-7)
“ .
: ' ’
‘ [ 2
and ‘ids I wd T_N8
vy * EJ(N ; R X /(‘?
[
¥ [ ags TE e
t=) "L:" ’ 2:- J rL v J P /
Jq.  Ipd
RN (VI-B-8)
‘ g 8" o ;1 - ) \ /
“ z wf “48 w8 W
E Ny * 5‘::«.,“?5' @ Y Ag “
Net Tugs v
o -
2 E qﬂ
.Z j [ &, 9 Ju‘.b-l Jp, «ﬁ '
Lot -n..‘i ..5“3 . a
9§ 9P
‘ . (VI-B-9)
. ES

i N
s Let us now assume that \X“ ~ol¥%] ~o{X“]~0l%%]

S '. fored ,8 = Ma... ™ , and rewrite the above

e

dlmen?(lonless Liouville and B.B.G.K.Y. equations in the

following convement dimensional form

SN | )
. ’ g
/
\ - 225 -
( J"' { |
- where \
Hans Z X ‘K{N‘\ z pl. .
e L=‘ gq‘- "
LB « T ~8% 8 T8 < \ N
- Z-ZDZZ IR MH LEPR OO Y 0
B=M, =t =My (=4 _,: - e
- 3 A ! JqL JPL
ap - L
qt o (VIZB-6)

1

/
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’ !
J Fim *[H-ms"é}(LNS” }{“’3] FM = e ) -
at
(VI-B-10)
~
t
- Arl
i rf:r F e, o
8~| Y '} Bt
Mo (VI-B-11)
where . e A “ ' X b
‘ }{fﬂj = Z Z E_: : 3—.
. x| L= Ma J‘.‘
9.
+ Me-l Ny M NG oy
- ZZ;; by . 2] -
wE] L=t ) 4% - B w0
o q- J '
9 i - (VI-B-12)

« (VI-B-13)

\

N\

(VI-B-14) ==
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FIYY ae

PR -
wxMy 3V BaM, 4=} - -‘-:.‘ . ,
/ 99, 9P , (VI~B-15)
3 M N .
Mo 3 - L L 2u
waPMe L;l 9 -
5“ (VI-B-16)
«8 by ’ «0 { 2wl =g
ih‘“ = Nﬁ z S §'9¢LI . 9__ 4 r{q c’ P| .
[N } - e e
. Jﬁf IFE (YI-B-17)

A closed rate equa‘?ion for . F,N” may then be
' z

.

derived by expanding Fzss for all f§s5 in poweps of
3

the label parameter ¢

. (0} T3 i 2 (.z) '
l.e. F{Sj = FISS +¢& F]SS + & FIH + e Y (VI-B-18)
»

%
’and substituting this expansion inte (VI-B-10) and (vi-

B~1l) so as to obtain. after collection of terms, the”

following perturbed eguations for Fyng and/ rzw;ﬁ

o} T )]
“IFwy * Hy Py =0
ot ) *(VI-B-19-0)
Wy o’ o ¢ . ‘
J F;N] ¢ 3 (Ims Fins = —Hl*'b FlN.\ -
) i m

J F'les + iy ths == Howg Frug ~ :HMFMJ
' ‘ VI-B-19-

at ‘ ;o ( 9-2)
g ’ n Lo {r-1 (k-3) -

JF(M *3‘(1'45 Fivg = ‘]“[m&rm }{N, [

> VI-B-19-k
at- ( 9~ )

N
k 3 o \ ¥

it ety g
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UP F(N B = (o] [
ot ’ - . -
o (VI-—B-ZO-—O)
1) R (£
Fingy = }(lms Fl“lS o):u _‘Z‘Mi ingl FlNin“ ot
ot
” Mot M I (VI-B-20-1)
(3 ) 4
\DFWM 3 ‘HM:S tngy * X Z i’WiSF -
T owet INs; C,8)
at 8 . .
B (8 I
- Hm E 7
: AL o (VI-B-20-2)
T} R-1) h .
JF o T iNa) = . W’S rm ‘g .Z'nii N gy th;(t,A\j
o t L2
. e
}[@ ® {(p-2) .
sy © N (VI~B-20-k) N
p é (3] \
Proceeding with the reinitialization approach, we now o

integrate equat\ions (VI-B-19-0) and (VI-B-20-0) over
/

the timeydnterval [t ~st 11 where at will be chosén as short

ible so as to preserve the validity of the expan-
“6h. One obtains from such an eguation the following

{9 .
utions for Finy and FlNiS

\ ‘.\ ”}{{NgAJc .
Fl”‘ (X‘Ns,{) = F‘N) (xle,{ At) (VI"B"Zl)
N -
to) - o) R
Fiway (Xpngg, 035 Foygg (Xm., 1 -at) (V1-B-22)

¢ As in the s1mi>le Brownian system, discussed in
- -}(MSA't

previous chapter, let us assume -that, since

streams the light bath particles in the presence of
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serve the \}alidity of the expansion the solution for
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!
r 4

the heavier Brownian particles, there exists, for the
. e

;

bath molecules, a relaation time Ty , such that for

Aty T, %one .may impose the following boundary con-

dition
Hy, At R
£ (x““ 'é}” F{N53'1 ['-{N,S(X{N;j {.) -
+ (Vi-B-23)
3 I *
where ) o = Hig /kT
- _ I \ [ P .
Fm..h, =(2,,) » (VI-B-24)
Myl N -t Ng M-l N 4
Hihh.\ Z Z m%’m. 2 ii[ X (D‘:J
:I—l | Ne & Jui gz L3 }
+ i i Zz ¢u’
ArMe B21 w=1 L= (VI~B~25)
P T d - H‘:NMIKT ;’f.:' Ny
Z‘,“: j J 2 u' ‘1. clchl dp, )
' (VI-B-26)

'represents the equilibrium distribution for the bath

partlcles under the influence of the wghborlng Brown-
ian particles. Substlctutmg the expansions for
JFM Guwh and  FuyyGusd) and collecting orders of ,E
Mo may then reer.te (VI-B-23) as
-J{M st ‘ ) o
2 Ry Gt By, F‘,,“um,,,t) (VI-B-27)

Consequently if 7, remdns sufficiently short to pre- ' .

-

-

¥

- . )
/ :-‘kf
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) wy ' .
F g iag 1) DecoOmes
i [} / 10) ' _.\ e
i F(NS (XINSI{\"— F(NES" FlN;S(xlNU,{-A{') "

Fingg g £ ingg (R pogg t) (VTB-ZB)

-

Integrating the above solution over all bath part-
‘' jcles except {!,8} { one may also obtain the following

. 10)
solution for F IN g0, 8¥

~
! | el (o) )
Frugoe = F sy Otinad) B ggag i AVI-B~29)
L, : :
| o .
where
| ' - - Hye (KT
L ’ Fiisseg = Z gy = (VI~B-30)
M N Br
- T of B
H I8 = ’P.al /-?m,s + Z I ¢;_ ! ¢ (VI-B—}l) B \
: wzM il
; >I v
é ! - H.is‘ss IxT
' - -> .AB
Za* S g £ 43/ de, ) (VI~-B-32)
Thig solution may then be substituted into (VI-B-20-1)
B . g, i
E:’ to render the following rate equation for F'M‘s . [

o) (L] .

A
JFU‘“ + Hm.gF(un .

) at ZM i.-: f"a "
= F 3' ;“aﬂls }
) with gz N0 " 3 (VI-B-33)

. A wh
. which, using the definitions for -H Ingy  and i,,,,a}

C ? %‘b . 1

s
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may -alsp be wnitten as
i . + I
‘?_E‘ sl + ‘H'I.NUI Flugj = 0 i
at. (VI-B-34)
where: .
A M Ny R (
+ .
Howyy = Hingy  * Z }; <3F‘3,1_ 2 (
( “3My L Jq: (VI_B_BS)
! 4‘ o=l ﬂ’d . -
el (84 A —g -
and CSF " day ='NAZ-JI422 Fuisi, d3’dp
| oW .
. M-l  Ng . “
=) ) {SESY (VI-B-36)
A I

repﬁ%sents the average force exerted by all the bath par-

)

ticles on the Brownian particle {t,«} when the former “are

in equilibrium with the field exerted by all the Brownlan

particles. Naturally i1f the latter are seperated by distan- °

ces much larger than the typical Brownlan-bath range of in-

-

teraction, this average force vanlshes. Coﬁbining (VI-B-34)

ana(VI—B—2Q—O) one may then write the following sirst oréer

rate equation for ;
' |
+ ' 4
binst. + Hingg Fragy =0 / '
ot - (VI-B-37)
/
/

IOne may pursue thils expansion to a highér order by
recalling equation (VI-B-19-1) and integrating it over the
/
time interval [t-at 1] 55 9é'to obtain |

!
4 p LN

/ '
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" -H(NjA£
o
/ ,Fms ("tus.ﬂ- - F,”, (Xyny, £-at)
at _}{l t a
:J < " }'[w; f:ms(x;,‘“{i) Jt' '
’ (VI-B-38)

i Choosing at57T, , and combining equations (VI-B-27),

(VI-B-28) and (VI-B-34), this solution may also be written
P ¥ ﬁ" '
as

o

- [4) -
’F-i"” (X‘Ni'{) s FIN(AJ’ ['l: Ing§ (X{N‘Bp{)

3 ' }{4 ) -«#
ﬂ ey Fingy (Xiwgg, 1) 8t ] :

-}("“}{‘} b1 te) o )’
_J £ (m) F;ugs (XINBSI{)}INM"y Jdt

(VI-B-39)

or, after some manipulation, as '

“) — . _(l,/ -
Fhu (xlus £)' FIN‘,S.’ F (Ngy (XlNBs.'{)

™M
et - R, )
j .z;.gl ( ( t)' <8 7 1) °H‘ FN»“‘)
i cor -
. &.\o_b s O } F i <xlNo,'L) \
quT Ip. . Y
SY )Y« 3 B2 “’ |
- )‘7 ’ _E_‘_’_ F{Nb,t1 F‘N'S(X,Nm{) A.é
ST o= mukT | /o
‘ (VI-BL4O)
N //’
where /
7 B /
[‘ / '
’ - .




L

o rmbee e Kam s m

b

‘ f (VI-B-41)

Inteérating ’chis solution over the coordinates and mo-

menta of all bath molecules, except 11,4} one then ob- /
tains the following expression for /
o 0 — ’
Foing, ey = Fu as,, Fuugs (Xiwgg )
t [ )
a
J Jf ZZ (ST- (t)-<ﬁ: >-'1) }'iﬂin,
o “sM, L7 =i _
«Q
- ; {0} M" hl)l/ -
Mkt P 1Y
n,yuu,as

X Z < S.S: >‘1 PL F{;"]lq F(N.s(xl"ih A-i

v=n, iz
MeKT

(VI~-B-42)

which, after substitution into (VI-B-20-2), leads to the
. {2)
following rate equation for Fing

/
2) + L) B ()
J FW-S M ‘ch.\ Fum * s Fim
at
p
~

( S—‘F“(:t')" < 5¥ L‘)lr );1 J{’

LELD (s

P2 [ EL .

()] -
] Fines (Xqwiy, 1) P
Ipi L maxT

A
IP:

]
o
v

Fl‘il; (;EIN'. i)] at }

L ),,(rf g2 [P
(VI-B-43)
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Furthermore, defining ,
I 7 )
— o - LI(‘ ~ - P .
ASFT e 0T - ST T , (VI-Bbs)
and noting that
CSF L0y 265 Ty (VI-B-45) .
we may also rewrite (VI-B-43) as
{
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] Now, the right hand side of the above equations ,

still beéars a dependence on At which must be chosen larger {
than the relaxation time of the light bath molecules, yet

sufficiently short to preserve the validity of the expan-

|

. !

gion. Unfortunately, since At may still assume a wide ’
{

) C e /

]
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range: of values, the equation (VI-B-46) remains rather

arbitrary. One may of course, partially resolve this pro-

blem by assuming that the cross correlations (A‘JitiA SF "{.‘{\709
4

become vanishingly small for t) 7, '§uch that

at

S LA S-?LJ.A S:;'L"‘z-t')/ >‘1J{| =5 < A S—]b: L«Aé“;t'-:_tl) >‘1 OH_
C e . (VI-B-47)
st T,, y

The last term in equation (VI-B-46),+however, grows 1li-
nearly with sl and can only be eliminated if one rest-
ricts Yﬁ”vs to a volume Vaﬁ)gg in which Brownian

particles are sufficiently distant from ea'ch other that
they cannot share any direct interaction with the same

bath particle. In this volume (where Brownian particles
may still ;nteract with each other if ‘their mutual range
of‘ interaction is much larger than their range of inter-

action with the bath particles) one has
~
(SF Day=o “= Mo H

- ® —~
Consequently, for Xius€ V(ng; we may write the followir;hg

/

rate equation

l (1)
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which, when combined with equations (VI-B-20-0) and (VI-B-34)

renders the following second order equation:

/

¥

] 2)_"_“"‘5 * [ m.s v H th}‘“
Jt
Z i‘i nont = Lw,
.‘,.A.L,dm‘__ L) o gﬁd[—p—"—-—- ]F[N;j
s e q ? o p‘. Ma e
N —i e
. : Xinsj € Vinsg (VI=-B-48).
where X
T e, i L (% __ et ! 3
b iz < SF sy (-i')>,1 Ji ———,
J‘ N .
| o .
(VI-B-49)
N ]
The above equation which has a Fokker-Planck form g

may be viewed as a "Generalized Liouville"[ﬁz] efuation for ‘ !
an open system of heavy particles exchanging energy and mo-

mentum with a bath of light particles. 1In its domain of va- I

- © / o
lidity, X,,,"e\/,,m, this equation reduces to similar equatilons
derived by J.M. Deutch and I. Opgen‘heim [36] and R. Mazo [37]
using a’"Projection ‘Operator"' technique develoPéd by R.W.

Zwaﬁziglg‘“] '
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c. SUMMARY AND CONCLUSTONS /

In the present chapter we have extended the analysis
of *he previoﬁs chapter to include more complex systemi‘such
as non uniform mixtures interacting with a weak external
field. As previously noted it gene;all§ becomes quite diff}—
cult for such systemsnto fully assess the breakdown of the
IVP solutions. Nevertheless, ‘even igfthese cases, the goal
of the reinitialization technique does not drastically change
in principle as one still strives to minimize fthe time inter-
val of integration at of the perturbed equations so as to ag-
sure the acéuracy of their solutions. Furthermore, for non-
dense sYstems, one should maintain At<(’ﬁﬁt<41ﬂ such
that the phase vector ¥ isn \Wili remain within the volume Vi¢y in

iy corresponding to a physical‘volume V, «¢ ' in which
the density expansion is)valid. With thi§ restriction anhd
boundary conditions similar to those uséd for a uniform sys-
tem one the obtains, for a non dense mixture of M species,

Ve
a set of M coupled Boltzmann equations provided the external

field is ‘weak and the one particle distribution F, does A&T
significantly vary_spatially within the interaction sphere
of'the individual”ﬁolecules: One may similarly consider a
mixture of n,, Species of Brownian particles interacting with .
a Qgﬁk'external field and (m - vy ) bath particles, by aséuming
that the relaxation rate for the light particles is much fas ter

than that for the heavy particles. By further requiring that

the inter Brownian particle separation is sufficlently large

S o 'l
/j - @ )
» <
. B
< ~ «
> -
.
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Y to prevent two such particles from sharing a mutual interac-

tion with a small bath particle one then obtains an equation

for,ﬁﬁg Ns Brownian particle distribution ﬁt“” In its
domain of valldity, this equation reduces to& the Fokkér—?lahck
equations derived by J.M, Deutch a%d I. Oppenhe}m [36] and
! o ‘R. Mazo [37]‘using a "Ppojeétion Operator; techniquéﬁﬁéveloped

5

by R.W. Zwanzig L*3] .
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- CHAPTER VII .

1 “ @ . I
% 4
In the present thesis we haveyreevaluated the mathe-

-

matic§1”EXpansions and the physical assupptions leading to
well knJE; kinetic equations such as the Boltzmann eguation
fof no&éaense syste&g and, the Fokker—g;anék equation describ-
ing Brownian motion. Using the Hamilton, Liouville¥and B.B.
G.K.Y. hierarchy as governing equyations for a system of po%ht
g?rtlcles we have firstly developed a systematic nondimension-

alization of these equations whic%‘clearly reveals the rela-

tive magnitude of their various terms, over a particulaer

fvolu&% of their respective phase\iface, for special classes

of systems. Secondly, we have redonsidered the straight-
¥
forward initial value perturbation scheme (IVP) and studied (

the exact form of the divergent terms which appear for spa-

2

tially upiform ndﬁ-qense,yeakly cghplea ana Brownian systems.
Finally, previo&ﬁ'expansion methﬁds such 2% those of Bogoliu- /
bov.le] Friemganu] (MTS), and Lewi.s--Harrisl-39:l havg been ,
reviewed an& an al%ernéﬁi.expaﬁsikn method, which emerges

as a natural extension of the IVP.scheme has been proposgd
and applied to simple uniform systems and to non-uniform mix-

turest interacting with a weak external field. In summary, .
]

%

"we may offer the réllowing conclusions. .

,{ . - 239 -
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UNIFORM SY%’I’EJIS
a. Non~dense system

There gxists, for the uniform non-dense systeﬁ, a small

region V4 in the s particle ﬂﬂ space where the
s ! v '
momentum convec’cion term L P..9F and theé interaction
l tm J Y
N J (3 13
term | m m ﬁ{ = in the B.B.G.K. Y hierarchy

dominate, on the average, over the mixing term i Fsai
;[‘hls&vol}lme is roughly deflned by the region in !‘,‘S,
whe;e ol per ofimk T },ti=r 3, and where.the s mole-

+

cules may be enclosed in a spherical physical volume V,
i 3

larger than the interaction sphere of the individual

particles, ye‘t much smaller than the specu‘lc volume

' (where .. represents the average particle den-

-4

sity). For the larger regions‘ in [ space correspond-
N :

/ ing to a physmal volume Vy, ~ o[ m."] tiweimixing term

may beéar the same rela.;cn.ve welgh‘t. on the average, ‘

4

as the remaining momentum convection and th¥ interaction
/ ’%

Wterms .

Performing a‘simple,hggpansion in density, which neglects

<

the. mixing term of the%B'.B.G.K.Y. hierarchy, in the
small phase volume \/m Sy las a zeroth order approxima-
,t/i,on. and assuming that initial correlations are finite
in range we then obtain; at the first order of the ex-
‘pansipn! an equation for F, which bears a form identi-
cal to the Boitzmanh equation with ‘t?e exception that

- <

, -
§ / ¢

%,
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" time ~0[47) of the initial value perturPa'tion& scheme,
SO PETEER SENENE,

Pl

the collision term igwbased on, F:(F‘,c>\ ra{ﬁey than

F¢ FL,{Jyl . The time independence of this term thus
leads to a divergence causing a total breakdown of the
expansion when t~o0[T = ;:/n’.] N
The above results and a review of the Bogoliubov func- ~
tional expansion,ﬂFrieman's multiple time scale’ pertur-
batign scheme and Lewis and Harris's tihe exp?ns;on ap-
proach suggest the development of a very simple aiter-
nate perturbation scheme which £ollows as a natural ex- =«
tension of the IVP approach and which essentially con- i
sists of integrating the B.B.G.K.Y. hierarchy over a,
time interval [ t-al |t ] sufficientrﬁlgiort to pre-
vent bréakdowﬂ%wet‘§ﬂf%§gientyy long to impose reason-
able Soundary conditions. oo
Assyming that for I'cit—&‘m <A, , the boundary condition:

~H ) At -J-;:((in’r’
2 Fa (X, 1)+ }ém 2 R g
. "y oo

is valid for aty7® ‘where [T=%d¢ T8 [Tr 'l  one
recovers, at the first order of this new "reinitializa- L

tion" expansion method, the familiar Bol'tzmann equation.

It is also shown that since the alternate boundary con-

dition| My (st . MH,unT | »

‘ 2 Fa e, V) 2 doe 2 Fup O FBidbe &
" Tm® 2 '

should only hold for 4t much arger, than the breakdown

Y

- . -
.

P . £
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the possibility of deriving an asti-Bolfzmann~equation
is inherently excluded in this expansion q@thgd.
6. Pursuing the expfdsion to a higher order, one finds v
r that there does not exist a at <{ T sufficiently
long to impfseksuitable boundary conditions allowing

¢o)

the derivation of a zeroth order solution F, over

- the domain Y‘g) contributing to a first ordgr solution
, for Fp (X.F,t) where |§-4,] (e . This diTficulty
’ -
4 & emerges from particular three particle configurations

which, as noted by Cohen and others, require a time

~ol{1] or longer for the reverse set of inter-

“H, (Law) at
actipns induced by £ , to occur. We have

essentially dealt with the problem using the pragmgfic
’ w -
aApproach of deriving solutions for F(x,Dusing solely
k4

the domain in [}; where suitable boundary conditions

, exist for at«« T, By thus assuming that the domain

R MO e i Ny e o e
oy

neglected in rb, does not significankly contribute

RN

to a second order kinetic ‘equation, we then emerge with
b

a Uhlenbeck-Choh equation«for F, . 3 -
b. Weakly coupled system ° " “

L) i
l. There exists, for the spatially uniform weakly coupled

system, a small region V5 1in [y where the momentum
- donvection, interaction and mixing terms are all very'
¥ ~small and, on the average, of the same order of magni-

tude. This volume is roughly definﬁd by the region in
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sy where I P! ~woCimer 1 (¢s1,...5) and where

ithe S molecules may be enclesed in a spherical ‘physi-

cal ‘volume V(“'OE“VJJ where ¥ repJesents the range
of the weak interaction potential. For phase volumes
corresponding to larger physical volumes V »™” one

finds that the mixing term, however small, in fact

"dominates, on the average, over the remaining momentum
™ -

convection and interaction terms. These results, which {
conflict with previous scaling arguments by Bogollubov,[12]
Sandrl[ 5] and others, [3 ] emerge due to the fact that ,
near equilibrium, the weak potential in the 1nteract10n

and mixing terms imply in V¢ a similarly weak corfela-
tion and hence a small gradient JFs in the momentum b

aqL
convectlon term.

’ Performlng ‘a simple initial value expansion within Viys;

one obtainq, at the first order, SOlutions for ¥, which
diverge linearly with time if the system has initial

two particle correlations. On the other hand if one
assumes “‘the system to be free of such initial correla-
tions, one then emerges with a first order solution for
F2 which also diverges linearly with time.

Attempting a "reinitialization" expansion one finds that,

due to the zeroth orger equation: « /
IR 0 =y F (X0 s F X, i-at)
Jt

there do#® not exist any choice of at which suggests

L 4

the introduction of suitable boundary conditions which,
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in turn, would allow one to express F:ﬂ as a functional
of F. . Consequently, in coﬁtrast with the results of
Bogoliubov, Sandri and others, np kinetic equation for
the system should emerge, near equilibrium, via a weak .

coupling expansion.

c. Brownlan system

For a system consiéf%ng of a single Brownian particle
coexisting with a bath of light particles it becomes

difficult to estimate, in general, the various dimen- ‘ j

AN Yoaa,,
sionless paré“eters present in the nondimensionalized

Liouville and B.B.G.K.Y. eguations. Consequently we

have followed the pragmatic approach of ﬁebowitz—ﬂeseboistg J
and others[35] and assumed the root mass ratio ¥=J?§§ to
dictate the relative magnitude of the various terms’inr

these equationsf”.By so0 doing one essentially assigns

a relatively smaller weight to these terms associated

with the slow mot%?n of the heavy Brownian particle than

,

those corresponﬁing\*o the faster motion of’the.light !

bath particles. p
A simple initial value egpansggn for this system yields {
a first order kinetic equation for the single Brownian

particle distribution Fg (p%H) which bears a form iden-

tical to the well known Fokker~Plahck‘equation'with/the”
exception that the d;mping and diffusion terms are based

on ﬁo,q(;’-ﬂ rather than Floay (PoY) . Consequentlyfgre

solution of this equation diverges linearly with time.

- . T S g
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A true Fokker Planck equation may be derived, via a
reinitialized expansion, by assuming the relaxation
time,'TL,bf the bath particles to be much shorter th

that, Tg, of the slower Brownian particle and by inte-

grating the expanded equations over a time interval

Lt2t 11 where T, ¢ at 4T

NON-UNIFORM MIXTURES ,

Some of the results in the above analysis for simple
& .

non-uniform systems have been generalized to include non-—

uniform mixtures interacting with an external field. In .

particular, we have shown that

1.

!

For anon-dense mixture of M species of particles one

may derive a set of coupled Boltzmann equations for the
single particle distribution of each sﬁecie by assuming

a weak external field and 1ntegrat1ng the expanded B|B.G-
X.Y. equation over a time interval [¢- Att] where A<<a£< X
and imposing boundary conditions similar to those in

the Spatialﬁy uniform case. Thik derivation, as in th /
Bogoliubov expansion, also requires tha% the spatial no ?
uniformities over a length scale L ¢o (fB] may be {
néélected.

Similarly, for a mixture of M, species of Brownian par-
ticles interacting with a weak external field and coexist-
ing with ( M- M, ) species of light bath particles, one

may, with a reinitialization expansion, derive.a ;§%sed
t

1

— e At v o ne .
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equation for the full gL, Byownian partilcle distribution.
'an by assuming tﬁ; relaxaéion time for these particles
to be much longer than that of the light particles. This
'equation which is similar to the'Fokker-Planck equation
derived by Debtch and Oppenheim '36! and Mazo {37’ using
a "Projection Operator" method of Zwanzilg !£3‘, emerges,
however,only if thé separation between Brownian particles
is sufficientix 1arge:zo prevent the latter from sharing

a mutual 1nteract%on with the same light particle.

The above Sonclusions confirm the self-evident nécés—
sity of carefuily esti;ating the relative impoftance of the
various tefms of the ﬁ.BiF.K.Y. hierarchy prior‘to perfor;ing
a particular expansion for a special system. Clearly, in =
o;éer to accomplish such a- task, the stralghtforward approach,
used by prevloui‘authors. of nondimensionalizing this equa~
tion with reSpect to a set of seemlngly reasonable character-
istic quantities and subsequently expanding in terms of what-
ever small parameter which emerges, is not at all recommended.

Indecd we have shown that such a .casual approach has:led %o

major inconsistencies in previous derivations by the same au-
’ '{E‘ -

thors for spatially uniform weakly coupled- systems. Naturally,

the proper estimation of the relative importance of various
terms in & complex equation such as the B.B.G.K.Y. hlerarchy

represéntq, prior to its solution, a difficult task, which

',
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usually requires a good deal of "educated guess work". 1In
the preéent tﬁesis we have designed a nondimensionalizingc
schemelin < which each term of the resulting dimensionless
governing equation may, on the average, over a restricted
volume in‘phase space, be writtenq;s the product of variable
terms '~oli] and a set Pf dimensionless parameters. The
magn;tude of the ;atterlfhus dictates the relative importance
Mof éﬁch term in the equation, In any such analysis many as-
sumptions and restrictions must of course prevail. In parti-
cular we have assumed the syst{em of partiqles to be .reasonably
-'Jclose to a canonical equilibrium and esti&ated average values
of produc{é of'térms fsing products of their individual esti-
mated average magnitude. In spite of the"importanée of ‘these
restrictions we ﬁ%vertheless beiﬁeve that such an analysis
represents on one hand a true recogﬁ}tionlof the problems of
Fcaling ih the Hamilten Liouville and B.B.G.K.Y. equations,
and a first step in confronting these’ difficulties prior to
an otherwise semi-blind peifurbétiongl derivation of a kinetic

»
equation,

>

The presént thesis has also revealed that one may §
derive kinetic equations for particular systems of point jpar-.

ticles using a vegry simple extension of tﬁe initial value per-
{

+turbation scheme. This alternate method éonsistsnof integrat-
ing the expanded form of the B.B.G.K.Y. hierarchy over a time

interval {-A{_,{~]. where At is suffggiently short to pre=

4 ~

3

'

1
\
1
|
|
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serve the acguracy of the expansion yet adeduately long to ,

S Y,

1Apose éeaéonable boundary conditions. Hence cne simply seeks
an optimal value %or’at whichy in the case of a uniform non-
dense system,'for gxample, Sﬂst be chosen much shorter than
T}iA/¢ as suggested by the breakdown of the IVP scheme for
t) T . This method of "reinitialization" thus avolds the
introduction of auxiliary time scales as in the Bogoliubov qné
MTS schemes or the unnecessary use of abstractjoperatprs as in
the Zwanzig projection operator approach. Furthermore, the
natural® constraints on st in this optimization, which 1s also
'_ implied by the small domain in phase space over which fhis par-

ticular expansion is valid, also suggests the proper choice of

boundary conditions and inherently eliminates those which would

/

lead to irreversible equations evolving in thegf

5

tion. We have also noted that ih the derivati-*;'f the Uhlen-

Y
£
=
x, w

beck and Choh equation, which takes 1ntg account three particlé
interactions, the restraint on At also imposes a 1%mitation on
‘the validity of Fhe zeroth orderasolution Fyﬂ by eliminating,
in DJ, regions which correspdnd to thred particle interaction

sequences occuring over a time interval atyo[7] . For this rea-

son’' we suspect t®at the constraint on the t}me interval of iInte-

gration in the reinitialization scheme plays a similar roleias

[21,26]

the "damping exponential" used by some authors to elimi-

‘ " nate divergences at the higher orders of the density expansion
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Finally, one could also speculate that thls expansion scheme
o P - -

may also be used to derngg macgé%copic laws from kinetlec equa-

' tions’gnd, hence, serve as a simple alternativer to the Chapman-

Enskog procedure.

In many respects the preseht thesis represents a re-~

view, critique, simplification and clarification of a collectioh

of coneepts and ideas in the fiéld of "nonequdlibrium statisti-
cal mechanics" . Naturally, such clarifications are often séme-
what per;onal and do not always reflect a lack of clarity in

the original cont¥ibution of others. For this redson, as a fi—\

nal conclusionAand tribute to the founder of this fieldy the

following quotation wouldwseem rather appropriate. - .
V.

.

I am concious of belng only an 1ndivfg3$1
struggling against thg stream of time.

But it still remains 1in my power to contri-
bute in such a way that, when the theopy

of gases is again revived, not too much will
have to be rediscovered.

(Lﬁ’g%itzmann) [1] B

g P
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APPENDIX I

DLRIVATION‘QF EQUATION - (IV-B-18 )%

/
‘

50

Equation (IV-B-17) may be transformed into (IV-
B-18).by using arguments very similar tothose presented ,
by Bogoliubov 112] ana Cohen|32| in thekr derivation of

the Boltzmann equation. Let us figxst note that the' pro-

] iz ’
duct F, (Peo,0)F(Pi=),0) represents z?%tationary solution of

the zeroth order equation for s=2 . Consequently, from

L

the definition of X 5 , one may write

e L, O ‘F.ﬂ('ﬁ(m\.o) F,"‘(ﬁj(w),o)

e

)
o

-©-

4

9.
k_ s . ._)___ + E&. .
- aq.')'\ J-ﬁ,, m

°

QJ‘QJ

& o

L Dq‘,

N _o o
¥ E‘L.J \\“. (,P._(oo\..uw-,“(?,(m.o}
—_——
m

(A-I-1)

ey

@

k]
a

' Substituting (A-I-1) into (IV-B-17).and noting that -

o

] Y, Lim F.'m(?c(w‘,ﬂ F,m (?r(oo\,o\ = O
(‘ 1P, e
- s w-

we "then have 7

—! = (N1}
\ ot

-

Fu"r‘chermore, introducing the change of variable
-

- Q . N\
. - 250 -

(A-I-2)

N . o o0
J F.m S g ( Pe.d + E.L -9 \Fn (Pitm), o) F.(z?a‘”’:"‘s'ﬁ»dﬁa
o m aqt m )

(A-I-3)
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( O . /
' ) - 9e = 9. ‘ Q/ - o 1
S Tu=39,-3. ‘ T : . (A-I-4)
and noting that P, (o) and :ﬁJ(m\ only depend on
i+ P and P, we may write ’ o
\,&5 ‘ , ) - - L o . - —
IF," (,J_n” (B, -B) .9 F (PreaF, (P o dTy 4P,
! ot m QF\J . ‘ h
" (A-I-5)
We shall now perform the spatial integration over
i ’ d v QUang the: cylxn@@&cal coordinates (z.b,¢ ) whe—‘
¥ re. the z axis is chosen in the direction of the relative

!

velocity qu,=?i"§x , while b and ¢ denote the, radial
m

. ., -

" and angular coordinates. With this geomﬁ%ry. eguation

(A-I-S) may now be rewritten as,

°°.17’m o0

‘PL| 0) Fl‘;‘(PLLm),O’ Fl'"(?‘)‘w),;})cjg bJLd*J?: —_

at 4,,' m 99 (
@ ul ‘\
jJ |@|F ('Pm\ O F, (?moo\ beJ#Jg

, (A-I-6) ~
e- ° ° g-q-w s

(Y]]

| Before evaluating the stationary solution F, (ﬁL,ﬁj,ﬁt;ﬁ,)=
F (3 ) ,00F P, ,0)"  at the limits g% let us
first recall that the original perturbed equation (IV-B-7)

3

only hold for XyéVisy ,or T L1t 78

m e e ——

Consequently it "becomes totally meaningless to even use -

{ !*i - &,
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this .solution for 3)’ oLmhy, Fbrtunﬁtel&, we also note -
" that since the integrand, in the originai equation (IV- t
o B-17), vanishes when ,;&”.l\)‘r y one may in fact replace .
» It , < ‘
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where —fDED and p represent the pre-collisional momenta
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Now, p and P; also represent the post«callision momen~
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" uniform non-dense system when only the original bounda-
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g THE INVALIDITY -OF BOGOLIUBOV'S FUNCTIONAL

EXPANSION FOR SIMPLE UNIFORM NON-DENSE 2
SYSTEMS OVER LARGE PHYSICAL VOLUMEg [

In this appendix we shall consider the result of .

' | & , "
erforming Bogoliubov's fuhctional expansion of simple
p g Dog

Y

ry conditions (II-C-~4) and (II-C-6) used to derive the

¥

.B.G.K.Y“.’hi,erarchy are ‘applied. Let us first recall the
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such that the last two terms in (A-III-2) vanish. Fur-

thermore, since the system haslbeen assumed uniform, '
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the remaining term on the righthand side of this equation |

must also vanish. Consequently one has at the first order

of € , the trivial kingtic equation g *
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The last integral of the above expression vanishes ~
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Since‘F;\ obeys the same equation as k we thus deduce
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that
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and hence, to the second order,od ¢ , F, obeys the
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trivial kinetic equation

(A-II-13)

Similarily one can easlly see that suchaprivial‘kinetic=‘

f%ap equations should emerge at all orders &f ¢
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DERWATION OF UHLENBEGK-CHOH EQUATION

The density expansion performed in chapter V gay
- be pursued to a higher order by following the outline illus-
trated in fig. V-é As a first step lei us integrate (V-B-13)

4 ,
’ over % time interval [ t- at t ] wherg once again- st 1
so as to obtain ! ‘ :
~ ) ~ > _ ) v . B .145
F“l (Fllt) = F-l (PL "t ~A{) + ¥ ) .
. . j , o~ 1) - ~ (= . - ,,
:Cm (Prioh 4t F ' (P oo, -1 I
Atu'r . (A-III-1)
which, using the zeroth order solution-(V—B-,—lp) for F.") may .
also be written as:
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¢ Let us now rewrg to equation (IV-B-7-0) and rewrite the
) equation for F1 in “the following form: 4
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Operating both sides of this equation by the forward stream-~
Hyunt
ing operator 2 Y and integrating ovﬁ the interval :
[ t-at t ] one then obtains!
s ) 'J'{a (LJ) At % '
~ 0 - . g
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We recall that, in order to derive a second order kineticy
- b —)
equation for F, ‘we only require a solution for Fe (X%, 1)

-~

when | §-~§1 <t . Further, due to the definition of Z£, i)

]
and <)) , the only contribution to second term on the rlght
hand s:Lde of (A- IV 3) lies in the region where either
St , -H it
2 1 g -8, <”f‘ or 2 13 - O

Finally, since 1' is l1imited to a value much shorter than the

mean time between collision. it thus rollow.= that all contri#

butions to the integrals 1n ‘?f (), and «f‘J) are on ‘the whole,

‘ 3
restrictedfto a physical volume. Vi, ( { A e

We also recall, however, that the zeroth order solution for
”) ut

IF A 1, 1l as given by (V- B—l") ’
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is re$tricted to the phase volume'Vjy in which the three

par{icles may be streamed backwards in me by the. Operator]

i =H,eamy at . o - , i
v s outside their mutual range of correlatiod -

for At 7T Clearly, eved within the small physical volume
f / V|<<A°there exi@ases as noted by Cohéntgl] and illustrated

{in figure (A-IV-1) where {ne complete reverse collision pro-

i
i
i
; 1

cess wotild take a much larger timé than % to be completed.
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)y Hence we seem to possess a.solytidn for F, with insufficient
~ 1) .o
range of validdty to offer a complete, solution for F: when :
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lc}t- - g;1 ¢t . Faced with this problem, let us then adopt
o the utili@rian approach of restricting the ,domain of integra-
Py - ~ +
| \ ’ & tion of Tf,m and J.u) over the domain Viy where the solu-
» r a
| _ tion (V-B-11) is valid and hope thatrthe region ignored will
R N r . -
. not rep¥esent a significant errorfk" Doing so,one then obtains
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wheré the zeroth order solution.for F, (P.,,fﬁi has once
I ‘“r . ) z-(
again- been used. Now choosing at ))%-7’-‘ A).J, we\may then,
N for |<TL *'5]',1 o impose the bBundary,condition (V-B-9)
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Following Choh ,,L16] we shall now define
6 = b . I + ¢ 3_ - | "
94, IP 99, 9P .
‘ (A-111-7)
such that, after some manipulation we have
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Finally, if we now assume that the previous restric-
tions on the range of integration Jf d§ydpy are sufficient ;
. [

for the above time integral to cenverge within the specified

1imits on st we may then, withogj/anyﬁerror; replace 2t by

-

the limit d4dt—e Furthermoré, since we may replace

&
. M) T - Hy el T ) “
,ZL& 2 e by A 2 > , eaquation
T Tr® .
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This result is very similar to that obtnlned by Choh

using' the Bogollubov scheme. Indeed, from the deflnltlon of
’ . © - Hoeiyt
/\ A ?”1 , )’[.t(t:.l) and -J[. {(eiey and "t){e 1dentlty 2 * ﬁ;(“)
“ rent
= - 24 , one may show after some manipula-,

. ”J-t »
tion that (A-IV—B)/reduced to the simple form
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Substltunng this solutlon into the second order equatlon,
wo v~
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and combining the latter with ' the first order and zeroth
y. ' ~ .
© order equations one then obtains in terms of Fp,, )  the L
. following kinetic equation ‘
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represents ‘the triple collidjon term first derived by Choh
using a Bogoliubov expansion approach. -
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