
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Web Services: Framework and Technologies

Yonghan Zhu

School of Computer Science

McGill University, Montreal

J anuary 2004

A Thesis suhmitted to the Faculty of Graduate Studies and Research in

partial fulfillment of the requirements for the degree of

Master of Science

© Yonghan Zhu, 2004

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-612-98772-8
Our file Notre référence
ISBN: 0-612-98772-8

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Acknowledgement

1 would like to express my gratitude to Prof. Monty Newbom for his guidance and moral

support along the course of the research, which made the completion of this thesis

possible. His recommendation offered me an excellent opportunity to deepen the research

at IBM Toronto Lab.

Many thanks go to Dr. Terry Lau, Senior Researcher at the Center of Advanced Study

(CAS), IBM Toronto Lab. His mentoring and encouragement added notable value to this

research.

My grateful appreciation goes to Jennifer Ellis. Her continuous encouragement and

favorite helps on editing made this thesis a complete work.

1 would also express my gratitude to Mr. Ed Mischkot, Don Boume, Anthony Jong, Rick

Strobel, Andrew Chen, Steve Sun, Justine Yoon, and other people at IBM Toronto Lab for

their professional advices to the research.

And, last but not least, my love goes to Kathy Zhang for all her great selfless support and

cares, for all the good and bad times we have shared.

TABLE OF CONTENTS

Abstract. ... 1

Introduction .. 3

CHAPTER 1. Web Services Perspectives .. 6

1-1. What Are Web Services .. 6

1-2. Web Services Concepts And Working Flow ... 8

1-3. A Brief History Of Web Services ... 14

1-4. CUITent Web Services Architecture And Components 17

CHAPTER 2. Web Services Technologies ... 21

2-1. Transport Technologies .. 21

2-1-1. HTTP ... 22

2-1-2. FTP ... 24

2-1-3. SMTP ... 25

2-1-4. IIOP ... 25

2-1-5. BEEP .. 26

2-2. XML Technologies .. 29

2-2-1. XMLNamespace .. 32

2-2-2. XML Schema .. 33

2-2-3. XML Style Sheet .. 34

2-2-4. XML Parser. ... 34

2-2-5. XMLAddressing .. 36

2-2-6. XML Query .. 37

2-3. XML Web Services Interaction Technologies ... 38

2-3-1. XML-RPC .. 39

2-3-2. SOAP ... 42

2-3-3. WSDL .. 47

2-3-4. UDDI. .. 51

2-4. Web Services Business Specifications ... 55

2-4-1. Business Process Execution Language For Web Services (BPEL4WS)

..................... 56

2-4-2. RosettaNet. ... 63

2-4-3. ebXML .. 66

CHAPTER 3. Feature Considerations For Web Services 73

3-1. Interoperability .. 73

3-2. Security .. 77

3-3. Choreography/Orchestration .. 82

3-4. Reliability ... 85

CHAPTER 4. Web Services Standards Organizations And Products 88

4-1. Standards Organizations ... 90

4-1-1. World Wide Web Consortium (W3C) .. 90

4-1-2. Organization for the Advancement of Structured Information Standards

(OASIS) .. 92

4-1-3. Internet Engineering Task Force (IETF) 93

4-1-4. United Nations Center for Trade Facilitation Electronic Business

(UN/CEFACT) .. 94

4-1-5. Web Services Interoperability Organization (WS-I) 95

4-1-6. RosettaNet And Other Business Specification Organizations 96

4-2. Key Web Services Vendors and Products ... 98

CHAPTER 5. Web Services: What It Brings , 100

5-1. Web Services Provides A Growing Publicly Available API Across The Web ... 102

Abstract

Immediately after its appearance in 1999, Web Services has become the hottest topic in

the information technology industry. Web Services was primarily fostered by the

exponentially growing demand for highly efficient Business-to-Business (B2B) solutions.

Web Services is a highly modularized application level framework. Its fundamental idea

is to enable Web applications to interact with each other regardless of platforms,

languages or network infrastructure used. This understanding has been accepted and

shared by CUITent Web Services vendors, users, professionals and standards organizations.

Meanwhile, Web Services concepts, architecture, components, working models and

direction are still under debate. This thesis provides an introduction to these topics based

on a thorough research across existing materials.

Web Services consists of two groups of technologies. One of these two technology

groups is represented by a layered stack on top of network transport layer. This stack

contains a number of core Web Services technologies including eXtensible Markup

Language (XML), Simple Object Access Protocol (SOAP), Web Services Description

Language (WSDL) and Universal Description, Discovery and Integration (UDDI), along

with other additional or alternative technologies. The other technologies group is a set of

feature specifications including interoperability, security, choreography/orchestration,

reliability, etc.

Both of the two groups of Web Services technologies are quickly evolving by adopting

new technologies and updating existing standards with newer versions. Currently, above

the transport layer, Web Services is a framework fully based on XML technology.

Therefore, Web Services is also referred to as XML Web Services in sorne documents.

The first part of this thesis clarifies the architecture and basic concepts of Web Services.

The second part provides a complete introduction and analysis of the two groups of

technologies stated above, and shows how these technologies work together. The third

part of this thesis presents a discussion of the advantages and potential applications of

Web Services. It is based on the perspectives of a variety of technical experts and solution

designers.

The source materials used by this thesis include technical books, standards organizations

documents, major vendors' technical papers and other articles collected from websites,

e.g. webservices.org and coverpages.org.

In summary, this thesis provides a thorough discussion of the technologies currently used

by Web Services, its development status, advantages and the potential applications. The

discussion provides an overall independent vision of this fast evolving new framework by

presenting its key technological points.

2

5-2. Web Services Introduces A Loosely Connected Application Architecture 103

5-3. Web Services Provides A Solution For Integrated E-Commerce (IEC) 104

5-4. Web Services Offers A Complementary Means For Software Service 105

5-5. Web Services Enables Grid Computation Across The Web 107

5-6. Web Services Fosters Flexible Low-cost Worldwide Inter-business

Solutions ... 108

5-7. Promotes Possibility Towards Semantic Web 109

CHAPTER 6. Conclusion ... 110

REFERENCES ... 112

APPENDICES .. 123

Appendix A The Difference Between the Internet and the World Wide Web 123

Appendix B Dave's History of SOAP ... 125

Appendix C How ebXML Will Transform the Software Industry 128

Appendix D Web Services Visionary (Part) ... 133

Introduction

Web Services, also known as XML Web Services, is a new Internet technology emerged

in 1999. Although the basic idea behind it has existed for a long time, its emergence was

triggered by and is currently based on the maturity of XML technology.

Today, almost aIl the major E-business relevant vendors and organizations are

collaborating on Web Services development in various fields. The major E-business

. platforms, incIuding IBM WebSphere, Microsoft .NET, SUN ONE, etc., have

provokingly announced solid support to this new framework and its technologies. The

major Internet application standards organizations, such as World Wide Web Consortium

(W3C) and Organization for the Advancement of Structured Information Standards

(OASIS) are actively spending time and effort defining technical standards and their

implementation guidelines to fulfill the exponential growth in demand for

implementation.

With tremendous technical advantages for implementing distributed applications systems,

Web Services is becoming the next wave in the computer industry after the World Wide

Web (WWW). The Founder and CEO of Forrester Research Inc., Mr. George Colony, said

in the ICT WOrld Forum 2003, "(A new) technology thunderstorm hits every five to nine

years and we are due one (Web Services) now" [94]. Bill Gates, the Chairman and Chief

Software Architect of Microsoft, also stated in his paper Microsoft .NET Today on June 14,

2001 that "XML Web services (are) gaining momentum among developers as the next

3

generation of Internet-based computing" [14]. The exciting future of Web Services looks

irresistible.

By the middle of 2003, a stack of core Web Services standards has already been widely

accepted by the industry and implemented into the major E-business products. This stack

includes XML and XML Schema, which define the basic format and semantics of the

data exchanged, SOAP, which defines the data exchange scheme between Web service

provider and Web service requester, WSDL, which provides a technical description of the

interaction pattern and message format requirements for each Web service, and UDDI,

which specifies a uni vers al means for publishing and discovering Web services.

These core stack technologies are developed and standardized by the most influential

Internet standards organizations: OASIS, W3C and Internet Engineering Task Force

(IETF). Each of the se standards also has a number of other substitution technologies. In

addition to these existing technologies, the major Web Services product vendors are

either independently or collaboratively developing a variety of new specifications. These

new specifications reflect the industry' s approach to provide more interoperable, reliable,

secure and collaboration-enabled Web services by concerning various features.

Web Services, as a new technology framework, is still in its infancy stage. The

understandings of its concepts, structure, working mechanics and developing direction are

inconsistent in the industry. This inconsistency remains a critical hurdle to be overcome

before Web Services can truly "boom".

One reason for this inconsistency is that the recommendations upon which

implementation of core standards are based are constantly being updated. For example,

after SOAP v.1.1 had been recommended by W3C and implemented in most Web

4

Services products for under one year, SOAP v1.2 was released with a significant

extension.

Another reason for inconsistency is the incompleteness of the whole Web Services

technology stack. Since it is not complete, it is by definition unstable, so vendors choose

to develop and adopt various proprietary technologies to implement their own products.

Often, even when implementing an identical standard, different vendors take slightly

diffèrent implementation approaches.

Furthermore, there are still a lot of sustaining technologies to be developed in order to

fully explore the advantages of Web Services. But what these technologies should support

and how they should realize it is still not clear for the industry.

The purpose of this thesis is to present an updated complete, clear and vendor-neutral

understanding of the XML Web Services framework and its technologies. It is based on

thorough research of the latest technical specifications, papers and books.

This thesis will present a complete neutral vision of CUITent Web Services perspective, a

complete understanding of the Web Services architecture and the latest version of

dominant standards and specifications, and an analysis of present and potential

application advantages of Web Services.

5

CHAPTER 1

Web Services Perspectives

1 - 1. What Are Web Services?

Web Services has recently become a frequently used term, representing a new breed of

applications. Unfortunately, this term does not yet have a commonly agreed upon

definition. Experts, vendors and standards organizations define Web Services by focusing

on various aspects.

One of the leading World Wide Web (WWW or Web) technology standards organizations ,

the World Wide Web Consortium (W3C), defines a Web service as " ... a software system

designed to support interoperable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards" [1]. The www.webopedia.com (a popular

website that functions as a dictionary for IT terminology) states: "The term Web services

describes a standardized way of integrating Web-based applications using the XML,

SOAP, WSDL and UDDI open standards over an Internet protocol backbone" [2]. And

Aaron Skonnard, an instructor and researcher at DevelopMentor Inc., says, "Web Services

6

represents a new platform on which developers can build the same distributed

applications they've al ways built, but this time with interoperability as the highest

priority" [3].

Three Web Services-related terms are currently being used to refer to this new breed of

applications by describing different aspects and, however, with sorne ambiguity: Web

service, Web services and Web Services. "Web service" generally refers to a single

application system that provides certain functionalities. "Web services" is a term with

ambiguous meanings: sometimes it is used to refer to more than one "Web service", and

sometimes it is used to refer to the abstract concept of this new breed of applications.

Meanwhile, in sorne articles, "Web Services" is used to refer to the abstract concept

instead of "Web services".

To avoid ambiguity, this thesis uses "Web Services" to refer to the abstract concept of this

new breed of applications, uses "Web service" to refer to one single Web Services

application system, and "Web services" to refer to more than one Web service.

It is difficult to give a concise definition of Web Services that can be univers aIl y accepted

by the industry, especially wh en this technology is still in fast evolving. A conceptual

description of Web Services is given below as the basis of further discussions in this

thesis:

Web Services is a highly modularized application level framework that enables

distributed applications to publish self-descriptions, discover interaction manners of

others and interact with the discovered applications. Within this framework, each

application can be independently developed in any language, running on any

platform and deployed in any network infrastructure. Currently, Web Services

7

consists of a core stack of several commonly agreed on standards including

eXtensible Markup Language (XML), Simple Object Access Protocol (SOAP), Web

Services Description Language (WSDL), Universal Description, Discovery and

Integration (UDDI), etc., and other alternative and adds-on technologies.

A Web Services framework is typically implemented by employing a full stack of

standards and following their implementation guidelines if available. Within such a

framework, Web-based applications are able to intelligently coordinate and collaborate on

various tasks. These tasks can be Business-to-Business (B2B) transactions, grid

computations, or other tasks that need collaboration among multiple applications in a

distributed environment.

Currently, a Web Services application can be written in any popular Object Oriented (00)

language including Java, C#, C++ or Visual Basic, sorne Procedure Oriented languages

such as C [4], and even sorne script languages such as Perl [5]. Such an application hence

can be deployed on any pl atform , such as IBM mainframe, AS/400, UNIX, Windows,

Linux, etc. As long as a common standards stack is adopted, Web Services applications

can either provide Web services to or utilize the Web services from others.

1 - 2, Web Services Concepts And Working Flow

Although many different, and sometimes inconsistent, definitions have been given to Web

Services, the basic concepts and mIes within this framework have been recently clarified

and shared by the parties who are developing it. These concepts and mIes are given below

according to W3C's working draft of Web Services Architecture of August 8, 2003 [1].

8

A Web service is an abstract set of functionality provided by a legal entity, which may be

an organization or an individual. Universally, each Web service is identified by a Uniform

Resource Identifier (URI). A Web service conceptually consists of two sets of actions:

message exchange and data manipulation. The message exchange refers to receiving and

sending messages, while the data manipulation refers to the set of functionality the Web

service provides. The data manipulation may contain a number of different functions

towards the same data subject. These functions are generally referred to as operations of

the Web service they belong to.

[URI, URL and URN:

The term URI, which stands for Uniform Resource Identifier, "is a compact string of

characters for identifying an abstract or physical resource" on the Web [6]. Unlike other

Web standards that generally have alternatives, URI is the only official technology for

Web addressing/naming today. It makes the Web resources recognizable and accessible

via various naming schemes and access methods.

The term URL, which stands for Uniform Resource Locator and was defined in RFC 1808

[7], was the most widely adopted technology for locating Web resources. After the

RFC2396 [6] was officially released, URL became informaI but still a widely used

standard to locate the Web resources with popular URI schemes, such as http, ftp, mailto,

etc.

URN, stands for Uniform Resource N ame, is another subset of URI. It has two distinct but

related meanings: a persistently available URI with institutional commitments, and a

persistent location-independent Web resource identifier scheme defined in RFC2141 [8].

9

The relationship among URI, URL and URN is illustrated in Figure 1-1.

1
ftp: 1 1
gopher: 1 1
http: -1 1
etc. 1 1 um: 1 1

1-1 1 1
URLs 1 1 1

1 1 1
URNs 1

1

URIs

Figure 1-1 URI, URL and URN

(Source: Naming and Addressing: UR/s, URLs, ... at http://www.w3.orglAddressingi [9])

]

In a Web Services framework, a legal entity refers to an individual or an organization that

has the right to form and execute interacting agreements with other legal entities. A legal

entity that provides a Web service is called a service provider entity. A legal entity that

wishes to utilize a Web service is called a service requester entity. The interacting

agreements between two or more provider entities and requester entities are referred to as

contracts.

A physical entity (generally a piece of running software) that implements the message

exchange for a Web service is called an agent. For a Web service,both service provider

entity and services requester entity have their own agents. A service provider is an agent

that either implements the functionality by itself, or acquires the result by coordinating

with other programs. A service requester is an agent that composes and sends out request

messages to a specified Web service, and receives and passes up the result. The service

10

requester agent if required, also accomplishes searching available Web services across the

Web, analyzing and selecting the best choice, etc.

One significant advantage of Web Services is that a service requester can intelligently

search for available Web services across the Web, analyze the search result and make a

choice. It presents significant progress towards highly automated B2B systems.

In order to realize this advantage, a servIce provider needs to provide a

machine-processable document that describes the mechanics of using its Web service to

potential service requesters. These mechanics refer to the Web service's message

exchange pattern, message format, data types, communication protocols, etc.. This

document is called a Web service description (WSD) and is normally described in WSDL.

Besides WSD, a commonly understandable contract that specifies the effects and

requirements of invoking a Web service may also be required. This contract is called the

Web service's semantics. Web service semantics can be specified either in human

languages or in machine-readable languages, either oral or written.

Typic aIl y, Web service agents are implemented in 00 programming languages such as

Java, C# and C++. A Web service provider normally runs as a public object (referred to as

an operation in WSDL), which consists of a number of methods (each of which is

referred to as a method in WSDL). Each method implements a manipulation function of

the invoking data contained in the request message. The function may be processing the

invoking data in the service provider's back-end system, or even organizing a series of

other Web services to coordinate on certain tasks as requested.

Sorne Web services function independently. They simply receive requests, process the

invoking data and respond with the results. Other Web services are designed to

11

collaborate on accomplishing certain tasks. Web serVIce choreography refers to the

defining of the sequence and conditions, under which multiple cooperating Web services

interact with each other to achieve a certain function.

Currently, most Web services are only available to their pre-authorized service requesters,

such as service requesters within the system or service requesters from business partners'

systems. Sorne Web services are also public1y available to aIl users on the Internet, such

as those free Web services provided by Google at http://www.google.com/apis/.

A simple Web Services working flow is illustrated in Figure 1-2:

Requester Entity + --------------------------,

Requester

Huro.n*

~ ..
2. Input :. •
Semantics~

& W'SD

1

: ."".--4IiIIIot 1 .,- __

."". "". ~ 1. Agree on semantics & W'SD

3. Interact

1 ---------------------------

Figure 1-2 Web Services working flow

Provider Entity
---------------------------,
1 1
1 1
1 1

--t-, : '" __ .., Q Provider:

X Human

-... : 2. Input
: Semantics
-: & W'SD

•

(Source: Web Services Architecture, W3C Working Draft8 August2003 [1])

12

Before using a Web service, a service requester entity and the service provider entity need

to negotiate and agree on a set of contracts defining the semantics and WSD of using the

Web service, and store the description of these contracts at locations accessible for both

parties. Today, these descriptions are generalIy written in WSDL and stored in UDDI

registry servers.

To make use of a Web servIce, the service requester checks and confirms that the

semantics of the Web service satisfy its requirements. It then retrieves the WSD

description, figures out the message format and interaction pattern, and sends out a

requesting XML message to invoke a specific method of the service provider. In sorne

advanced scenarios, the service requester may even need to search across the Web for aIl

available service providers and make an intelligent choice. After the request is processed,

the service provider responds with a result, which may sometimes be a failure message, to

the service requester in the format defined in WSD.

The most prominent advantage of the Web Services framework is its interoperability.

That is, as long as the two agents of a Web service are able to exchange messages by

folIowing the industry standards and implementation guidelines, they can smoothly work

together. The agents can be programmed in any languages, running on any platforms

within any network infrastructure.

Currently, Hyper Text Transfer Protocol (HTTP) is the mostly employed protocol for

transferring data between Web service agents. AlI Web service exchanging messages are

presented as XML documents. Web service requesters and service providers generalIy

adopt SOAP or eXtensible Markup Language based Remote Procedure CalI (XML-RPC)

to interact with each other. WSD is usualIy described in WSDL. The commonly agreed

upon means to publish and discover valid Web services across the Internet is UDDI. In

13

some cases, if the service requester has full knowledge of the semantics and WSD of a

service pro vider, UDDI and WSDL can be omitted.

These standards and their implementation guides are still under refinery by the most

influential Internet standards organizations inc1uding W3C, Organization for the

Advancement of Structured Information Standards (OASIS) and Web Services

Interoperability Organization (WS-I). Most of the major Web Services vendors, such as

IBM, Microsoft, Sun, HP and BEA, have announced their support for these standards as

. the Web Services core stack.

1 . 3. A Brief History Of Web Services

The origin of the Web Services idea can be traced back to some old science fiction stories.

In these stories, the "future" world was described as so automatic that machines

(programs) would be able to intelligently communicate and collaborate to accomplish

sophisticated tasks without human intervention.

To achieve this goal, there are a few crucial technological requirements. First, a network

must be set up to connect the collaborative machines. Second, an interoperable

framework must be defined on top of the network to enable interactions among programs.

Third, the collaborative programs must be able to intelligently understand the exchanged

information and make correct decisions.

In the late 1980s, the Internet started to provide a super network connecting individual

machines and Local Area Networks (LANs), which satisfied the first technological

requirement described above.

14

A few years later, the Web was invented with two fundamental protocols - HTTP and

HyperText Markup Language (HTML). The Web provides a convenient and user-friendly

way for humans to interact with Web applications through browsers. It dramatically

improved the usability of the Internet and stimulated the booming of the electronic

economy [11]. It made progress towards the second requirementbut is still far from

satisfying it.

[Internet vs. World Wide Web:

Many people use the term Internet and World Wide Web (Web) interchangeably, which is

not correct. According to Webopedia.com, "The Internet is a massive network of

networks, a networking infrastructure" and the Web " .. .is a way of accessing information

over the medium of the Internet" [12]. Defined by W3C, "The World Wide Web (known

as 'WWW', 'Web' or 'W3') is the uni verse of network-accessible information, the

embodiment of human knowledge ... " built on top of the Internet [13].

When an increasing number of Internet-based business systems had been deployed, the

demand of improving their interoperability grew. Normally, different Internet application

systems are developed in different languages and run on different platforms within

different network infrastructures. In this situation, too much incompatibility exists among

the various Internet applications. People had to either get involved or employ very rigid

application interfaces to enable data exchanges. This constraint frustrated the electronic

economy's further evolution.

In the late 1990s, when the XML technology became mature, the industry was delighted

by the agreement on a pragmatic new technology for data exchange that is based on the

15

XML technology - the XML-based Web Services framework. It enables Internet

applications to exchange data and collaborate on sophisticated tasks regardless of what

platforms the y are running on or what language the y were developed with.

Web Services has drawn the attention of most major E-business vendors and standards

organizations since it first appeared. The most influential Internet standards organizations,

including W3C, OASIS, Internet Engineering Task Force (IETF) , etc., have started

making standards, rules and implementation guides for Web Services. The key E-business

platforms in the market, including IBM WebSphere, Microsoft .NET, HP Open View, Sun

One, BEA Web Logic, etc., have also announced their support to this XML-based Web

Services framework. Furthermore, some vendors and organizations have co-founded new

organizations specifically for Web Services. These newly founded organizations include

WS-I and Webservices.org.

Bill Gates, Microsoft's chairman and chief software architect, stated in his article

Microsoft .NET Today of June 14, 2001: "With XML Web services gaining momentum

among developers as the next generation of Internet-based computing, it's time to deliver

a platform that makes it simpler to build these solutions and pro vides a reliable

framework for integration and interoperability ... Microsoft's platform for building,

deploying, operating and integrating XML Web services is .NET" [14].

Although many Web Services vendors have claimed their support for a few common

technical and business standards, such as SOAP and WSDL, the Web Services

implementations are still somehow vendor-specific and sometimes having trouble

interoperating with others. The industry has already realized this problem and started to

collaborate on developing standards implementation guidelines. [15] WS-I is the

organization formed by most of CUITent Web Services vendors to improve Web Services

16

interoperability among different platforms, languages, and applications. Nowadays, its

effort is focusing on SOAP, WSDL, UDDI and Web Services security.

1 - 4. Current Web Services Architecture And Components

The Web Services architecture can be described in vanous dimensions. This section

describes it in two typical dimensions: the layered communication model and the

interactive application model.

Figure 1-3 illustrates the static communication model. It presents a layered stack of

available Web Services interoperation protocols. From level 2 up, each protocol is

supported by any one protocol in its immediately lower level. AlI protocols within a level

provide similar interfaces and functions to their immediately upper level and are

alternative to each other.

Level 5: XML-based business

protocols (BPElAWS, ebXML

RosettaNet PIPs, HL7, XBRL,

etc.)

Level 4: WS-Choreography,

WS-Coordination WS-Transaction etc.

Level3: SOAP, XML-RPC o UDDI 1 WSDL l

Level 2: XML (namespaces, Schemas, DTD, XSL, XSLT, XDOMISAX, XPointer, XQuery, XLink ...

Leve! 1: HTTP/SMTPIFTPillOP/JMSIBEEP

Figure 1-3 Web Services Architecture: layered communication model

17

a:: 0
êl <:

(1j
po ..,

[Jq ê: (1j

~ ~
:::t po
r ç::
(1j @
(") '" '-' ,-..,

VJ
(1j
(")
ç::
::1.

':<

1

To implement a Web service, one protocol of each level has to be employed from level 1

to level 3. The standards in level 4 can be used to coordinate a number of Web services to

accomplish sophisticated tasks. Level 5 consists of a variety of business protocols

applicable to implement B2B processes for various industries. Besides, there is an

eXtensible Markup Language (ebXML), which intends to define a full package of

specifications for developing B2B systems with the Web Services idea. These

business-oriented specifications define counterparts of the function-oriented standards

from level 3 to lev el 5. ebXML can optionally adopt SOAP and UDDI for business

process interaction and service discovery. The standards from level 3 to level 5 in Figure

1-3 are mostly specified by W3C and OASIS while ebXML is solely developed by the

United Nations Center for Trade Facilitation Electronic Business (UN/CEFACT). The

overall features shown in Figure 1-3 represent the feature considerations that affect aIl

levels in the stack, such as Web Services security and other management features.

The standards in level 1 to level 3 are used to build up the basic Web Services framework.

WSDL and the UDDI can respectively be employed for describing and discovering Web

services. In many articles, WSDL and UDDI are considered very useful (but not

necessary) for improving Web services interoperability.

The bottom level of Web Services stack is the Transport level. It consists of the protocols

to be adopted for transporting messages between Web Services agents. HTTP, which is

the only data transfer protocol for the Web and the dominant data transfer protocol on the

Internet, is currently the most widely supported Web Services transport protocol. A new

alternative protocol of HTTP is Blocks Extensible Exchange Protocol (BEEP), which is

an IETF recommendation (RFC3080) with a number of advantages. It " .. .is a new

Internet standards-track protocol framework for new Internet applications" [16]. It

requires only 30 bytes overhead while HTTP requires 100-300 bytes overhead for a

18

typical message transfer [10].

The interactive application model is illustrated in Figure 1-4. The protocols indicated in

this figure are the most widely accepted XML-based Web Services standards. Till today,

most Web services are still deployed for internaI usage only, i.e., to be used inside a

business's private system or within a number of business partners' systems. It is still in

the experimental stage for Web services to be publicly available on the Internet. Renee,

the Web Services registry and discovery service is not widely adopted yet. In Figure 1-4,

step 1, 2 and 3 represent the processes related to Web services registration and disco very,

while step 4 and 5 represent a simple interaction between a Web service provider and a

Web service requester.

Web servIce

requester agent
2, Web service inquiry UDDI (WSDL)

4, Web service request
SOAP/XML-RPC

3, Web service inquiry resu
UDDI(WSDL)

5, Web service response
SOAP/XML-RPC

Web Services

Registration service

Web service 1, Registration UDDI (WSDL)
provider agent

Figure 1-4 Web Services architecture: interactive application model (a simple ex ample)

19

In a fully implemented Web Services environment, a Web service needs to be registered

onto a UDDI (or other commonly agreed on registry protocol) server (step 1). The

registry server stores the information of the Web service provider entity, the Web service's

purpose, functionality and consequence, interacting mechanics, and aIl other useful

information into its database. This information can be discovered by valid service

requesters. When an authorized service requester needs to make use of a Web service, it

first queries the reachable registry server's database for aIl the available Web services that

meet its requirement (step 2). Each registry server then retums a result message

containing detailed WSD and semantics of aIl the valid services to the service requester

(step 3). After analyzing the acquired descriptions automatically or manually, the service

requester selects one service provider and sends out a request message according to the

WSD of this Web service (step 4). After the service pro vider completes the process, it

retums the result to the service requester (step 5).

Today, Web Services choreography, security, reliability and other feature considerations

are evolving quickly. Thus the actual process of steps 4 and 5 may become very

complicated. These additional considerations allow Web services to be executed in

collaboration and add on security, reliability and other features to guarantee higher

service quality.

Web Services have attracted the attention of the E-business industry. A core stack

consisting of a number of institutionally agreed upon standards has already been

integrated into most Web Services products. Meanwhile, an increasing number of

technologies, which are either necessary complements or nice-to-have add-ons to the Web

Services core stack, are under collaborated development to meet a growing demand. The

following chapters will introduce both the core stack standards and the new technologies

of Web Services framework.

20

CHAPTER 2

Web Services Technologies

The discussion in this chapter is organized in a layered structure as shown in Figure 1-3.

2 - 1. Transport Technologies

The basic components of Web Services are the alternative transport technologies shown in

level 1 in Figure 1-3. Today, the widely supported transport technologies for Web

Services are HTTP, Simple Mail Transportation Protocol (SMTP), File Transfer Protocol

(FTP) and Internet Inter-ORB Protocol (HOP), which aIl support SOAP and XML-RPC.

These standards are mature, whereas BEEP is a new transport technology for Web

Services with a number of advantages. BEEP was released as a standard in 2001 and is

expected to be more efficient for Web Services than the other transport standards.

HTTP is the only transport proto col for the Web and the dominant transport protocol for

the Internet. "By 1998, HTTP accounted for over 75 percent of the traffic on Internet

backbones dwarfing other protocols such as e-mail, file transfer, and remote login" [17].

NaturaIly, HTTP became the most widely adopted transport protocol for Web Services.

The interactions between Web service requesters and Web serVIce providers can be

21

categorized into two types: RPC-Oriented and Document-Oriented [18]. RPC-Oriented

interactions refer to real-time and synchronous Web service interactions that " ... take the

form of a method or a procedure call with associated input and output parameters" [18].

Document-Oriented interactions refer to Web service interactions behaving like a batch

job. The service requester submits a request message to a queue of asynchronous

processing and receives the result once the job is completed.

Naturally, HTTP became the major transport protocol for RPC-Oriented Web service

interactions, which is joined by IIOP and BEEP. FTP and SMTP are the major transport

protocols for Document-Oriented interaction.

2 - 1 - 1. HyperText Transfer Protocol (HTTP)

L...-A_p_p_li_ca_tl_o o_n_L_a_Ye_r ___ ---l~~========::::1 Application Layer

U
Transport Protocol (TCP) Transport Protocol (TCP)

Internet Protocol (IP) Internet Protocol (IP)

Network Technology Network Technology

Figure 2-1 Internet communication system

[Source: Stephen A. Thomas, HITP Essentials [17]]

22

In 1990, the father of the World Wide Web, Berners-Lee, along with Robert Cailliau,

designed HTTP to enable communication between Web servers and browsers. The

Internet is a multi-layered communication infrastructure illustrated in Figure 2-1. HTTP is

the most popular communication protocol in the application layer of today's Internet,

which is built on top of TCP.

"The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

collaborative, hypermedia information systems. It is a generic, stateless, protocol which

can be used for many tasks beyond its use for hypertext, such as name servers and

distributed object management systems, through extension of its request methods, error

codes and headers" [19].

IETF has developed two versions of HTTP, which are both being used today: version 1.0

and version 1.1. They are defined in RFC1945 and RFC2616 respectively.

[Complementary to HTTP, a number of protocols have been developed recently: Draft

Standard RFC2617 - HTTP Authentication: Basic and Digest Access Authentication;

Information RFC2145 - Use and Interpretation of HTTP version numbers; Proposed

standard RFC2109 - HTTPState Management Mechanism.]

Like many other communication protocols, HTTP defines two distinct parties - a client

and a server. A Web-browsing PC can be seen as an HTTP client and a website hosting

system is a typical HTTP server. Only a client can initiate a communication, by sending a

request to the server. The server then sends back a response to the client with a result of

the request.

HTTP has only defined a few frequently used standard request operations, which are

23

called methods in RFC2616 [19]:

GET: Retrieve data resource (e.g. Web page) from the requested URI

HEAD: Retrieve information about the specified data source URI

POST: Provide subordinate with the request to retrieve result from the Web server

PUT: Upload enclosed data entity to the requested URI

DELETE: Delete objects specified by the requested URI

TRACE: The server sends back the request message to the client as it recei ved

OPTIONS: Obtain a description of what the request URI can provide

CONNECT: A reserved method for use with a proxy that can switch into a tunnel

HTTP is a stateless communication protocol in the application layer. Each

request-response operation is independent. It saves a possibly tremendous cost for the

server, which does not need to keep an ever-increasing resource for tracking the

communications. Where it is sometimes necessary to keep track of a series of related

requests from the same client, the cookie technology is adopted.

2 - 1 - 2. File Transfer Protocol (FTP)

FTP stands for File Transfer Protocol. This is a popular, reliable and efficient file transfer

model over the Internet. Like HTTP, it also works in client-servèr structure. However, in

FTP, the objects to be transferred are files to be stored in the target system's storage for

indirect or implicit usages, while in HTTP, the objects to be transferred are primarily

content to be directly used by the client's operations. An FTP server is generally referred

to as a File server, while an HTTP server is generally referred to as a Web server.

The first proposed file transfer mechanism, which is considered the original version of

FTP, was defined in IETF RFC 114 in 1971. The current version of FTP is defined in

24

IETF RFC 959 [50].

2 - 1 - 3. Simple Mail Transfer Protocol (SMTP)

SMTP, stands for Simple Mail Transfer Protocol, is the dominant electronic mail transfer

protocol on the Internet. It enables mail relay across transport service environments. A

transport service forms an Inter-Process Communication Environment (IPCE), which may

contain one or multiple networks or a part of a network. Processes are able to

communicate with each other through mutually agreed IPCEs. Electronic mail is one way

to accomplish this kind of communications.

SMTP is defined in IETF RFC 821 [51]. Within this standard, it officially specifies

supports to a number of popular transport protocols: TCP, NCP, NITS and X.25.

2 -1- 4. Internet Inter-ORB Protocol (HOP) [52]

HOP stands for Internet Inter-ORB Protocol. It is a communication protocol developed by

the Object Management Oroup (OMO).

In OMO's Common Object Request Broker Architecture (CORBA), objects communicate

with each other through Object Request Brokers (ORBs). HOP is the common

communication protocol in CORBA that enables ORBs, which may be developed. with

different vendors' products, to exchange messages with each other over TCP/IP

connections such as the Internet. HOP is the basic required transport specification for

implementing CORBA systems.

HOP is a protocol with client-server infrastructure. It can transport integers, arrays and

25

other more complicated objects in addition to text. It is defined in the basic CORBA

specification, which is generally referred to as CORBNIIOP. CORBNIIOP specification

can be found at http://www.omg.org/technology/documents/corba_spec_catalog.htm. Its

latest version is 3.0.2.

2 -1 - 5. Blocks Extensible Exchange Protocol (BEEP) [53][841

BEEP stands for Blocks Extensible Exchange Protocol. It is a new transport technology

on top of TCP/IP at the same level as HTTP, published by IETF in March 2001 in

RFC3080: The Beep Core and RFC3081: Mapping The BEEP Core Onto TCP. Both of

these two RFCs were solely authored by Dr. Marshall T. Rose, who has authored over 60

RFCs.

BEEP holds several advantages over HTTP for Web Services: while transport overload is

becoming a serious consideration for HTTP, BEEP reduces its overload to a very low

level; HTTP is a stateless protocol, whereas BEEP keeps the conversation states that

makes it a better solution for state-oriented communication schemes; HTTP is a

synchronous protocol, whereas BEEP supports both synchronous and asynchronous

communications; while BEEP defines the transport infrastructure, it employs XML for the

data structure it transports, which makes BEEP more natural to work with XML. Along

with other advantages, BEEP is expected by many professionals to replace HTTP to be

the major transport protocol for XML-based frameworks, such as Web Services. [53]

Unlike HTTP, which provides a client-server data transfer model, BEEP is peer-to-peer

that allows simultaneous and independent message exchanges. BEEP messages are

exchanged as Multipurpose Internet Mail Extensions (MIME) content.

26

Using BEEP, when a connection is initiated between two parties, a session is established.

A session can launch a channel for each specifie interaction. Each channel is identified by

a digital identifier starting from "0" and owns a specifie profile defining its context.

Channel "0" is the reserved management channel launched while the session is first

established. It is used to negotiate the setup and interactions rules of other channels.

The BEEP profiles can be categorized into two types: tuning profiles and data-exchange

profiles. Tuning profiles are set up at the start time of the session and affect aIl other

channels. It inc1udes the channel management profile, which is used by channel 0, and the

optional Transport Layer Security (TLS) transport security profile and Simple

Authentication and Security Layer (SASL) family of profiles. Data-exchange profiles are

used for establishing data transport channels. These profiles are defined by the application

protocol designers, such as the designers who designed SOAP over BEEP.

Figure 2-2 shows the relations between session, channel and profiles.

Session

Channel 0: Management- channel management TLS profile

Channel 1: - data-exchange profile A

SASL profile 1

Channel n: - data-exchange profile X SASL profile m

Figure 2-2 BEEP session, channel and profiles

27

Though BEEP is a peer-to-peer protocol, it would be convenient to identify the roles of

the two parties in a BEEP communication. RFC 3080 specifies the roles of the peers at

different stage of the session: at the initialization stage, the peer initializing the session is

labeled initiator and the other is labeled listener; at the continuation stage, the peer

starting the exchange is labeled client and the other is labeled server.

BEEP allows three styles of exchanges: MSGIRPY, in which the client sends a "MSG" to

request the server to perform a certain task and the server sends back a "RPY" with the

result while the task is accomplished; MS G/ERR , in which the client sends a "MSG"

request to the server, the server replies an "ERR" message without performing the task;

and MSG/ ANS, in which the client sends a "MSG" to request the server to perform a

certain task, and the server then sends back zero or a number of "ANS" messages

containing the result with a "NUL" message to end. [54]

BEEP uses MIME to frame the content it transports, which enables its flexibility and

capability to work with XML-based application protocols. Although not pointed out in

formaI specification documents, BEEP is an ideal transport protocol for ebXML since

ebXML also employs MIME to construct its messages (see section 2-4-3 for details about

ebXML).

BEEP gives a cautious security consideration in its core design, making it complementary

with more consistent and integrated secure communications than other protocols.

While XML is playing a more and more important role in E-business and Web-based

applications, BEEP is predicted to be a powerful competitor of HTTP in the near future. It

is eurrently supported by Java, C++, C and Tel.

28

2 - 2. XML technologies

"HTML - the HyperText Markup Language - made the Web the world's library. XML­

the Extensible Markup Language - is its sibling, and it is making the Web the world's

commercial and financial hub." - Charles F. Goldfarb, the father of Standard Generalized

Markup Language (SGML) [20].

Charles F. Goldfarb invented SGML in 1974 while he was working for IBM. He led a

team of hundreds of experts, spending twelve years finishing CUITent SGML specification

- ISO 8879. (The story is given in http://www.sgmlsource.com [21]) Since the Web

appeared, SGML has brought out most of the Web language standards that represent

structured data and documents. HTML and XML are the two most famous representatives

of these languages. They are both subsets of SGML and fully compatible with it. While

HTML tells how to display data on the Web, XML tells what the data is and what it

means.

While creating SGML, the authors obeyed three basic principles:

It must have a common data representation: markup

The markup should be extensible

There must be a mechanism for describing rules for document types

XML fully inherited these principles.

There are sorne differences between the characteristics of XML and HTML. First, XML

is a "formai" language whose rules must be strictly followed. Otherwise the XML

document cannot be parsed or represented at all, i.e., all right or none right. HTML is

somewhat more "informai" in that its processors (browsers) will parse and represent

whatever it can understand and ignore the rest. Second, XML is used to transfer data itself

29

and its structure, while HTML is transferring the information of how to display the data.

Third, although "XML and HTML share a common tag-based structure, but HTML has a

fixed vocabulary of tags with standardized meanings. XML tags, on the other hand, have

no predefined meanings. You define your own syntax for describing data" [22].

Figure 2-3 illustrates the relationship between XML and HTML.

Figure 2-3 XML and HTML

(Source: Dino Esposito, XML Language, Microsoft Internet Developer [22])

Figure 2-4 shows W3C' s vision of the "next generation of the Web".

As shown in Figure 2-4, XML is the foundation of Web Services technology. It not only

defines the format of aIl Web Services messages (XML documents) transferred between

service agents and registry servers, but also provides the language to describe Web

service definitions, facilities and aIl other features. Furthermore, XML is becoming a

fundamental technology for tomorrow's Web, like HTML for today's Web.

30

XML
!Narr","par:e;; XML Sd,,'m.ls, XSLT, XPalh, XLmk XML RJ~", XQIhN)', DOM 1

HTTP 1.1

Figure 2-4 Web Architecture for today and tomorrow

(Source: About the World Wide Web Consortium (W3C) [23])

XML document structure can be understood in two dimensions: the physical structure

(also known as linear structure) and logical structure (also known as tree structure).

In Object Oriented technology, an object can be treated as a set of well-organized

components. While an XML document is seen as an object, the logical relationship of its

components is viewed as its logical structure. The representations of the components in

this logical structure are called elements. The elements construct a tree structure with only

one root element.

On the other hand, physically an XML document is represented by a stream of characters

and markups, which is called its physical structure. A program (parser) is required to

31

read through this stream, parse the markup and pass the data to applications. Such a

stream is potentially organized in multiple "pieces" of text. These piece-of-text constructs

are called entities.

XML is fully specified in Extensible Markup Language (XML) 1.0 (Second Edition) [24]

as an official recommendation of W3C.

In order to fully exploit the XML advantages, a number of popular XML technologies and

tools have already been or are being developed by various institutions. These technologies

are becoming widely used across the Web.

2 - 2 - 1. XML Namespace

A very important scheme introduced by XML is Namespace. It brings many benefits to

Web Services. "A namespace is a set of names in which aIl names are unique" [25].

While more and more application systems are deployed across the Internet, the amount of

interactions among applications increases. Therefore it becomes very difficult to keep the

uniqueness of variable names from different resources. Variables from different resources

may possess the same name but carry completely different meanings.

It is confusing for interacting applications, e.g. Web service agents. XML experts figured

out a proven efficient way to solve this problem - adding a prefix string, which indicates

a context where the variable name belongs to, to the variable name. This method enables

interactive applications to tell one variable from another even when they hold an identical

name. This prefix string represents the namespace where this variable name is defined.

32

For Web Services, a name space is represented by a URI. The namespace URI is just a

unique name that represents a specific namespace in the Web; it may not really relate to

any physical Web resource. The XML namespace was announced by W3C as a

recommendation on January 14, 1999 [26].

2 - 2 - 2. XML Schema

XML is a Meta language. It can define a document type (called a schema) for each XML

document by declaring a specific document structure and the data types it uses. Currently

there are two ways to define XML document types - Document Type Definition (DTD)

and XML Schema Definition Language (XSDL). DTD is the default document type

defining mechanism specified within the XML specification. XSDL is a newer add-on

mechanism that supports more sophisticated definitions. XSDL was first officially

recommended by W3C on May 2,2001. Its current version is 1.1.

The concept schema here is like the schema to define a database. Logically, a database

file can actually be treated as a well-structured document. In sorne circumstances, an

XML document is also considered a database file.

The normative XML schema specification currently contains two parts: XML schema part

1: Structures [27] and XML schema part 2: Datatypes [28]. There is also a non-normative

easily readable description of the XML schema, XML schema part 0: Primer [29]. A

complete information collection about XML schema can be found at

http://www.oasis-open.org/cover/schemas.html.

33

2 - 2 - 3. XML Style Sheet

A style sheet is a file describing how to display a certain data document. The popular style

sheet specification before XML is Cascading Style Sheet (CSS), which "is a simple

mechanism for adding style (e.g. fonts, colors, spacing) to Web documents" [30]. XML

has developed a specifie language to define XML style sheets, which is called XML

Stylesheet Language (XSL). Each XSL style sheet is used to describe a certain type of

XML document and each XML document type can have multiple style sheets for different

purposes. XSL is full Y compatible with CSS.

XSL is specified by W3C [31]. Its specification consists of three parts: XSL

Transformations (XSLT), XML Path Language (XPath) and XSL Formatting Objects.

XSLT is a subset of XSL that enables transformation from XML documents into any other

document types. XPath is an expression language used by XSLT to access or refer to parts

of an XML document. It is also used by XML Linking (XLink). XSL Formatting Objects

is a vocabulary for specifying XML formatting semantics.

XSL is also an extensive language. AH the syntaxes used by XSL belong to XML.

2 - 2 - 4. XML Parser

An XML message is also seen as an XML document. It is transferred on the Web as a

well-formed character stream. When an XML message is received by an application, e.g.

a Web service agent, it is physically just a stream of data and XML tags organized in a

certain sequence. The recipient application thus needs to understand the logical document

structure and the data contained in this physical character stream.

34

To achieve this goal, there are two approaches: either let the application read through the

document and retrieve what it needs by itself, or employa too1to parse the document and

transfer the parsed message structure along with the data into the application. Apparently

the first way may be too complicated and leaves too much tedious work to application

development and maintenance. The second approach enables developers to concentrate on

the application logic and makes it easier to modify message formats and application

logics. Hence it is more attractive for today's XML application development. Those tools

used to parse XML documents are called XML parsers.

There are a number of available XML parsers. Logically each of these parsers is a tool to

parse XML documents in a specifie approach. Physically they are a variety of APIs

provided by various programming languages.

A popular XML parser API is Document Object Model (DOM). DOM "is a platform- and

language-neutral interface that will allow programs and scripts to dynamically access and

update the content, structure and style of documents" [32]. It is currently supported by

Java, C#, C++, Visual Basic, Perl scripts, Python, and is a built-in part of Windows 2000.

It contains three parts: Core, HTML and XML. The Core part defines general parsing

rules for aIl structured documents. The HTML and XML parts respectively define

addition al parsing rules for HTML and XML documents.

Another popular XML parser is Simple API for XML (SAX). It was developed by an

informaI group of participants in the XML-DEV mailing list. The XML-DEV mailing list

comprises an open group of people who voluntarily participate in code development,

protocols and specifications creation, and other contributions to XML implementation and

development [34]. SAX was initially the first XML parser in Java and used to be a

Java-only API. Today, it starts to be implemented in other languages. The latest version of

35

SAX is SAX 2.0.1. The official web site of SAX is http://www.saxproject.org/ [33].

XML DOM is document-oriented while SAX is event-oriented. XML DOM reads in the

whole XML document and outputs aIl the parsed data in one tree structure that aIlows

random access. SAX treats the XML document as a stream of events, where each event

represents a handler function calI while a chunk of XML syntax is recognized. In many

situations, DOM is a neat solution. However, in sorne circumstances, the target XML

document may be too big or even on the other side of the Internet. It may take too long a

time for the local application to get the parsed result. This time-consuming process hence

may jam the process, especiaIly when what the application requires is just a smaIl part of

the target XML document. In these cases, SAX is a preferable solution.

2 - 2 - 5. XML Addressing

In many cases, while an application is processing XML resources, it needs to use

identifiers to address the fragmentations within the XML resources with URI references.

Such an addressing system provides a framework to identify the internaI structures of

XML resources.

XML Pointer Language (XPointer) is such a framework. It is officaIly recommended by

W3C. XPointer provides a resource fragmentation addressing framework for sorne other

W3C XML specifications including XML Linking Language (XLink), XML Inclusions

(Xinclude), Resource Description Framework (RDF) , and SOAP 1.2. XPointer is the

official basis of resource identification for resources whose media types are text/xml,

application/xml, text/xml-external-parsed-entity and

application/xml-external-parsed-entity. Other XML-based media types on the Internet are

also encouraged to adopt XPointer to define their fragment identifier languages [35].

36

XPointer is an extensive framework based on XML Path Language (XPath). XPath is a

W3C recommendation, which concisely defines the addressing mechanic inside an XML

document. It is also the basic fragment identification specification for XSLT. XPath is

complimentary to other specifications and can not be used alone [36].

XML Linking Language (XLink) is another W3C recommended specification that

" ... allows elements to be inserted into XML documents in order to create and describe

links between resources" [37]. The "links" here are explicit elements within an XML

document representing XPointer addresses.

2 - 2 - 6. XML Query

An XML document is effectively a well-structured tree of elements. By using parsers, the

logical structure and data contents of an XML document can easily be retrieved and used

by applications.

In many circumstances, XML documents are used as database files or database record

sets. The leaf element names of an XML document can be seen as the column names of a

database table and the data contained in the leaf elements can be treated as values of the

table column. Similar to DataBase Management System (DBMS) that has SQL as its

query language, W3C drafts XML Query Language (XQuery) to be the query language

for XML.

XQuery is expected to be a widely adopted technology while the XML documents are

more and more widely used as data containers. Currently W3C has released its draft

version 1.0 [38].

37

"A Java Specification Request 'XQuery API for Java (XQJ)' submitted by IBM and

Oracle Corporation has been published through the Java Community Process (JCP). The

specification design goal is to develop a common API that allows an application to submit

queries conforming to the W3C XQuery 1.0 specification to an XML data source and to

process the results of such queries. XQJ relates to XQuery in the same way that JDBC

relates to SQL" [39].

2 - 3. XML Web Services Interaction Technologies

To invoke a Web service, a service requester must be able to locate a service pro vi der,

discover its communication mechanism, expected interaction pattern and message format,

and negotiate with the target service provider on interaction features including security,

reli abi lit y, coordination, transaction control, etc. These activities are currently defined as

Web Services-specific on top of available XML and transport technologies.

Internet standards organizations have developed a number of Web Services specifications

and defined a core technology stack. The core stack includes XML/XML schema,

SOAP/XML-RPC, WSDL and UDDI. Most of today's Web Services products have

claimed their support to this stack.

In Figure 1-3, level 3 and up are Web Services specific protocols. SOAP and XML-RPC

are the two major protocols defining Web service interactions between service requester

and provider. They both were developed before the Web Services framework came into

reality and became the basic technologies of this framework. UDDI is a powerful registry

and directory service system, which enables Web service provider entities to publish their

services and Web service requesters to discover valid Web services. The Web service

38

interaction mechanisms and formats can be formally described in WSDL.

However, Web Services is still a new framework with many unspecified and even

unrecognized feature considerations. Various Web Services vendors are developing

specifications for sorne of these feature considerations. A few of these specifications have

been submitted to the standards organizations and further developed to bec orne industry

standards. Meanwhile, many other concems of the Web Services framework are emerging

into the industry's vision and stimulate vendors to develop new specifications. In order to

provide a complete Web Services solution, major Web Services products are generally

implemented with sorne vendor-specific specifications in addition to the widely accepted

industry standards.

2 - 3 - 1. XML-based Remote Procedure Cali (XML-RPC)

XML-RPC, which stands for XML-based Remote Procedure Call, is designed by Dave

Winer. It incorporates the idea of Remote Procedure Call (RPC), which is also designed

by Dave Winer himself. RPC is a framework that allows one pro gram to calI another over

a network with the help of a registry server. XML-RPC can be seen a Web

implementation of the RPC protocol. It was inspired by both RPC and, more importantly,

the old draft of SOAP. In sorne opinions, CUITent SOAP standard was inspired by

XML-RPC [40].

XML-RPC represents a client-server service model on top of HTIP. To start a

communication, the client program sends a request message in XML format to the server

as a HTTP POST request. It invokes a specified service program. The invoked service

pro gram then processes the parameters included in the message and sends a result back to

the client. The procedure is synchronous, which means the client program keeps active

39

while waiting for the response from the service program. When XML-RPC is employed

by Web Services, a Web service requester and a Web service provider respectively

represent the client pro gram and the service program.

The XML-RPC specification consists of three parts: Data Model, Request Structures and

Response Structures.

Data Model defines the data structures that can be used in XML-RPC messages. The

basic types are <int> (or <i4», <Boolean>, <string>, <double>, <dateTime.iso8601>,

<base64> (base64-encoded binary number), <struct> and <array>. The default type is

string if not specified.

An XML-RPC request contains two parts: a header and a payload. Below is an example

of XML-RPC request that contains an the required parts:

POST /RPC2 HTTP/1.0

User-Agent: Frontier/5.1.2 (WinNT)

Host: betty.userland.com

Content-Type: text/xml

Content-length: 181

<?xml version="1.0"?>

<methodCall>

<methodName >examples. getStateName </methodName >

<params>

<pa ram >

<value><i4>41 </i4> </value>

40

</param>

</params>

</methodCall>

The first five lines construct the header. AH values of these parameters have to be exactly

specified, except the first line that is omitted when the server is only handling XML-RPC

caHs.

The XML-RPC response also contains two parts: a header and a body. Below is a

response example corresponding to the above request message example. The first six lines

construct the header of the response.

HTTP/1.1 200 OK

Connection: close

Content-Length: 158

Content-Type: text/xml

Date: Fri, 17 Jul1998 19:55:08 GMT

Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>

<methodResponse>

<params>

<param>

<value> <string>South Dakota </string> </value>

</param>

</params>

</methodResponse>

41

The latest version of XML-RPC specification is written by Dave Winer [41].

2 - 3 - 2. Simple Object Access Proto col (SOAP)

Simple Object Access Protocol (SOAP) is both the trigger and the core technology of

Web Services. It supports a much wider range of message exchange patterns for Web

Services than XML-RPC. Its emergence is an important event that brings the Web

Services idea into reality.

SOAP can be seen as an extension of XML-RPC. It provides a simple and extensible

message exchanging system based on XML, which enables Web applications to define

business-specifie message content, structures and process logics by strictly following its

essential non-business-specific rules. SOAP does not define any specifie application

semantics but rather defines a modular packaging system and the corresponding encoding

mechanism.

On June 24, 2003, the latest SOAP specification version, Version 1.2, was released as a

W3C official recommendation. It consists of three parts: SOAP Version 1.2 Part 0:

Primer [42], SOAP Version 1.2 Part 1: Messaging Framework [43], and SOAP Version

1.2 Part 2: Adjuncts [44]. The discussion in this section is based on this recommendation.

The Primer part of SOAP v1.2 is a non-normative document that provides an

easy-to-understand tutorial of the features in this SOAP specification. The Messaging

Framework part defines the core of SOAP, including the processing model, extensibility

model, binding framework and message construct. The Adjunct part defines a set of

adjuncts that can be used in connection with the SOAP messaging framework.

42

Unlike XML-RPC, SOAP defines a peer-to-peer stateless communication model in a

decentralized distributed environment. It is fundamentally a stateless one-way message

exchange paradigm. By combining such one-way exchanges, applications can create more

complicated interaction patterns such as requestlresponse (as XML-RPC does),

request/multi-responses, etc., with features provided by underlying transport protocol

and/or application-specific information.

SOAP interaction patterns can be categorized into two models: Remote Procedure Calls

and Conversational Message Exchanges. The former model represents the RPC-like

requestlresponse interaction pattern defined in SOAP v1.1. The latter model provides

flexible support to a wide arrange of interaction patterns for Web applications (Web

service agents).

Considering the increasing demand of implementing B2B transactions that are combined

with a series of sub-transactions processed by multiple parties, SOAP v1.2 brings in a

mechanism that can route messages. In such a mechanism, each party involved in a

message processing is called a SOAP node. The set of SOAP nodes, through which a

single SOAP message passes, is called a message path. It includes the initial SOAP sender,

zero or more SOAP intermediaries, and an ultimate SOAP receiver. By indicating a

message path and its processing logic, a Web service can use SOAP to form a line of

sub-transactions to accomplish a certain business process. The template that establishes a

pattern for the message exchanges between SOAP nodes is called a Message Exchange

Pattern (MEP).

Enabling a Web Services communication protocol to work with lower level transportation

protocols, e.g. HTTP, is called binding. While XML-RPC is bound to HTTP only, SOAP

is not restricted as to what transport protocols it can bind to. Though W3C's SOAP1.2

43

recommendation only gives the default specification of binding with HTTP [44], it may

also be bound to SMTP, BEEP, FTP, Transport Control Protocol (TCP) or other available

transportation protocols.

A SOAP message is an XML document following the W3C recommendation - XML

Information Set (XML Infoset). XML Infoset is "an abstract data set", which provides

" ... a consistent set of definitions for use in other specifications that need to refer to the

information in a well-formed XML document" [45]. An important feature of Infoset is

that it requires each name to be declared within a qualified namespace. A SOAP message

also must not contain Document Type Declaration (DTD) information items or Processing

Instructions (PI) information items.

A SOAP message is constructed with three parts: Envelope, Header and Body.

Envelope is the root element of a SOAP XML message. It contains a Body and an

optional Header as its child elements, along with a number of attributes including a name

value Envelope, a namespace declaration http://www.w3.org/2003/0S/soap-envelope,

etc.

Header is an optional child element in a SOAP message. It contains aIl the extensible

features of a SOAP message as its subelements or attributes. A Header can contain a

number of blocks describing various features or data. Three attributes are critical while

declaring Header blocks in a SOAP message: role, mustUnderstand and relay. In sorne

circumstances, a message may need to pass through multiple nodes. The raie attribute

indicates to which SOAP node in the message path a Header block is targeted. The

mustUnderstand attribute indicates whether a process on a certain Header block is

mandatory or optional for the targeted node. The relay attribute indicate whether a Header

44

block targeting anode should be relayed if not processed. These three attributes form a

realistic pattern of serialized SOAP transaction.

A SOAP message Body may consist of a various numbers of elements and attributes

representing the information being sent to the ultimate receipient.

Figure 2-5 shows an ex ample of conversational SOAP message.

<?xml version='l.O' ?>

<env:Envelope xmlns:env= ''http://www. w 3. org/2003/05/soap-envelope">

<env:Header>

<m: reservation xmlns: m= ''http://travelcompany.example.org/reservation "

env:role= ''http://www.w3.org/2003/05/soap-envelope/role/next''

env:mustUnderstand= "true">

<m: reference> uuid:093a2dal-q345-7 39r-ba5d-pqff98fe8j7 d</m: reference>

<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>

<lm: reservation>

<n:passenger xmlns:n= ''http://mycompany.example.com/employees''

env:role= ''http://www.w3.org/2003/05/soap-envelope/role/next''

env:mustUnderstand= "true">

<n:name>Ake J6gvan (lJyvind</n:name>

</n:passenger>

</env:Header>

<env:Body>

<p:itinerary

xmlns:p=''http://travelcompany.example.org/reservation/travel">

<p:departure>

45

<p:departing>New York</p:departing>

<p:arriving> Los Angeles</p:arriving>

<p:departureDate>2001-12-14</p:departureDate>

<p:departureTime>late aftemoon</p:departureTime>

<p: seatPreference >aisle </p: seatPreference>

</p:departure>

<p:retum>

<p:departing> Los Angeles</p:departing>

<p:arriving>New York<lp:arriving>

<p:departureDate>2001-12-20</p:departureDate>

<p:departureTime>mid-moming</p:departureTime>

<p: seatPreference/>

</p:retum>

</p:itinerary>

<q:lodging

xmlns:q= ''http://travelcompany.example.org/reservation/hotels''>

<q:preference>none</q:preference>

</q:lodging>

</env:Body>

< env:Envelope >

Figure 2-5 an ex ample of conversational SOAP message

(Source: SOAP Version 1.2 Part 0: Primer [42])

There are two optional standard namespaces that can be adopted by SOAP:

http://schemas.xmlsoap.orglsoap/envelope/ for Envelope and

http://schemas.xmlsoap.orglsoap/encoding/ for encoding. They can be substituted by

46

other namespaces if necessary.

Vendors of the Electronic Business industry have already released various development

products supporting the SOAP v1.l API in programming languages including Java, COM,

Perl, C#, Python, etc. Binding specifications with transport protocols other than HTTP are

either already implemented in a product (e.g. SMTP in .NET) or under development (e.g.

SOAP over BEEP by IETF).

Without an institution al implementation guide, the message exchanges between different

vendor platforms or APIs may encounter difficulty to interoperate even if they have

employed the same SOAP v1.l standard. This implementation incompatibility appeared

among early Web Services platforms and still exists among sorne products today. It is one

of the reasons that forced the creation of Web Services Interoperability Organization

(WS-I) and its development of basic profiles to guide Web Services standard

implementations including those for SOAP vl.l.

W3C released the official recommendation of SOAP v1.2 on 24 June 2003.

2 - 3 - 3. Web Services Description Language (WSDL)

Web Services Description Language (WSDL) provides a model to de scribe the

mechanism of using a Web service with machine-processable XML documents. Microsoft,

IBM and Ariba released the first version of WSDL in September 2000 and, along with

sorne other companies, submitted WSDL Version 1.1 to W3C in March 2001. A W3C

Working Group is currently developing WSDL Version 1.2. The discussion in this section

is based on the latest WSDL v1.2 working draft of June 11,2003.

47

WSDL Version 1.2 consists of three parts: Part 1 - Core Language, Part 2 - Message

Patterns and Part 3 - Bindings. Part 1 defines a language to de scribe abstract Web service

functionalities and a framework for describing the concrete Web service description

details [46]. It defines the framework and the basic concepts of WSDL v1.2. Part 2 -

Message Patterns defines the sequence, direction and cardinality of abstract messages

sent and received by a Web service operation [47]. The supported interaction patterns by

WSDL v1.2 are ln-Only, In-Out, Request-Response, ln-Multi-Out, Out-Only, Out-In,

Out-Multi-ln and Multicast-Solicit-Response. Part 3 - Bindings defines Web service

binding extensions and corresponding message formats for SOAP Version 1.2, HTTP

Version 1.1 GETIPOST and MIME (IETF RFC2045) [48].

Figure 2-6 illustrates the understanding of Web services In the VISlOn of a serVIce

describer. WSDL describes Web services starting from the message exchanged between

service provider and requester. An exchange of the message between a service requester

and a service provider is called an operation. A collection of operations forms an

interface. An interface is bound to one or more transport protocols and corresponding

message formats via binding. Each binding, and therefore the interface it binds to, is

accessed by a number of end points, each of which is indicated by a URI. A Web service

hence refers to a collection of endpoints bound to the same interface.

48

Figure 2-6 Understanding of Web services as a service describer

(Source: WSDL v1.2 Part 1: Core - W3C Working Draft 11 June 2003 [46])

A WSDL document is an XML Infoset document with the extension name .xdsl. Its root

element is <definitions>, which is actually a container of two categories of components:

WSDL components and data type system components. The WSDL components are

messages, interfaces, bindings and services. Data type system components are element

dec1arations and data type definitions from other data type systems. Each component is an

Element information item specifying certain properties.

The <definitions> component of a WSDL document defines the following properties:

<messages>, <interfaces>, <bindings>, <services>, <type definitions> and <element

dec1arations>. The structure of a WSDL document is defined as follows:

- A local name "<definitions>"

49

- A namespace name ''http://www.w3.org/2003/06/wsdl''

- One or more attribute infonnation items amongst its <attributes> as follows:

- A targetNamespace attribute information item that affiliate to the top level

components, including message, interface, bindings and service.

- Zero or more namespace qualified attribute information items. The namespace

names declared here MUST NOT be ''http://www.w3.org/2003/06/wsdl''.

Zero or more element information items amongst its [children] in the order:

- An optional documentation element information item, container of

human-readable text.

- Zero or more element information items from among the following in any order:

- Zero or more include element information items, which allows for inclusion

of definitions from relatively independent documents in the same namespace.

- Zero or more import element information items, which allow for the import

of components from documents in another namespace.

- An optional types element information item, which contains imported and

embedded schema compoents.

- Zero or more element information items from among the following, in any order:

message element information items

interface element information items (includes operation definition with

message pattern)

binding element information items

service element information items

- Zero or more namespace qualified element information items amongst its

[children]. Such items MUST be a member of one of the element substitution

groups allowed at the top-level of a WSDL document.

Ruman developers or Web service requesters can read and analyze WSDL documents to

50

understand the interaction mechanisms and required message formats to interact with the

described Web services. Certain feature descriptions, such as Web Services choreography,

security and business processes, can be added on top of the basic WSDL descriptions to

define more sophisticated tasks.

WSDL is currently the major method to fully describe Web service mechanisms. It is

expected to become a more powerful description tool with a more extensible frame along

with Web Services' evolving.

2-3 - 4. UDDI

In order to exploit the functionalities provided by Web services, users must be able to

discover sufficient information to locate and execute the Web services. Universal

Description, Directory & Integration (UDDI) is such a mechanism that is universally

accepted.

UDDI is developed by UDDI.org, a member section of the Organization of the

Advancement of Structured Information Standards (OASIS). It provides a set of

descriptions and discovery services for: (1) businesses, organizations and Web service

providers; (2) available Web services provided by these institutions; and (3) technical

interfaces to make use of these Web services. UDDI provides interfaces for both

publishing the information and discovering the published information. It can be employed

both public1y on the Web and privately within an organization.

UDDI is a scheme on top of a number of Web standards inc1uding HTTP, XML, XML

schema and SOAP. Because most of today's Web services are available only for internaI

usage, UDDI is the most sparsely adopted technology among the four Web Services core

51

stack technologies: XML, SOAP, WSDL and UDDI. .

UDDI has so far been developed in three verSIOns. UDDI version 2 was ratified an

official OASIS standard in May 2003. It was criticized for lack of sufficient security

consideration. UDDI.org therefore released UDDI version 3, which addresses security

concems that were criticized missing in version 2 and adds an advanced access control.

This latest version of UDDI also enables robust query against rich metadata, which

envisions UDDI as a "meta service" for locating Web services.

UDDI v3.0 is widely expected to be a complete powerful solution for Web serVIces

description and discovery. The discussion in this section is based on UDDI version 3.

In UDDI, a structure of data representing a certain object is called an entity. Each UDDI

information model is composed of a number of instances of six entity types:

businessEntity: Describes a business or organization that provides Web services;

businessService: Describes a collection of Web services provided by a businessEntity

instance;

bindingTemplate: Describes the essential technical information to use a Web service;

tModel: Stands for Technical Model, which represents a reusable concept, such as a

type of Web services, a category system, or a protocol used by Web services;

publisherAssertion: Describes a businessEntity's relationship with another one;

subscription: States a standing request to keep track of the changes of certain entities.

The businessEntity, businessService, bindingTemplate and tModel form the core data

structure of UDDI. Figure 2-7 illustrates the core data types and structure.

52

buslnenEntity: Information about the
party who publishes information about
.. service

businessEntlues oonlain
businessServiœs

buslnessSel'\lÎCe: Descriptive
infoona~on about a partb.llar family of
tectmiœl services

businessServices conlain
bindingT empiates

bindingTel11iPlare: Tachniœl
information about a service entry point
and implernenlatiOll specs

tModel: Descriptions of specifications
for servlœsor value sets. Basis for
technical fingerpnnts

blndingTef'1l>lates cootain referenœs to
IModeTs. These references deslgnate the
interface specifications for a serviœ.

Figure 2-7 UDDI core data types and structure

(Source: UDDI V3.0, UDDI Technical CommitteeSpecification, 19 July 2003 [49])

UDDI data structures are formally defined with XML schema version 1.1.

UDDI defines two types of API sets to define and manipulate the entities: Node API sets

and Client API sets. The Node API sets include UDDI inquiry, UDDI publication, UDDI

security, UDDI custody transfer, UDDI subscription and UDDI replication. The Client

API sets include UDDI subscription listener and UDDI value set. A set of Web services

supporting at least one Node API set is referred to as a UDDI node. A combination of one

or more UDDI nodes forms a UDDI registry. The businessEntity, businessService,

bindingTemplate and tModel form the core data structures of UDDI. Within a UDDI

registry, each core data structure instance holds a unique UDDI key. By following an

appropriate policy, a number of UDDI registries can form a UDDI affiliate to share

controlled copies of core data structure instances.

53

In order to use UDDI services, UDDI defines a UDDI programmer API and a Replication

API set. Each UDDI registry must have at least one node that offers a Web service

compliant with Inquiry API set. Normally, a UDDI registry should also have at least one

node that provides a Web service implementing Publication, Security, and Custody and

Ownership Transfer API sets. The Replication API should also be provided as Web

services if a registry has more than one UDDI node. Generally, these Web services that

implement UDDI APIs employ SOAP to define their interaction patterns. WSDL

descriptions for a Web service are easily to be broken and converted into businessService,

bindingTemplate and tModel entities in UDDI under the service provider entity's

businessEntity.

Figure 2-8 illustrates a typical usage of UDDI registry for locating and invoking Web

services.

Web service requester

, Web service invocation (.n,·,..,.,,,

Web service provider

Figure 2-8 Web service using UDDI Web service APIs

54

2 - 4. Web Services Business Specifications

SOAP, WSDL, UDDI, XML, HTTP and their alternative technologies compose the

fundamental Web Services technology stack. This stack enables distributed applications

to freely exchange data and collaborate on accomplishing various tasks. Web Services

brings many valuable benefits to business application development, one of which is

enabling businesses to conduct B2B processes in an automated, highly efficient and

low-cost manner.

In a B2B process, at least two parties are involved: a customer and a supplier. Sometimes

even multiple suppliers might be involved. Each of these parties is represented by a set of

applications that share an identical interface, which conducts trading activities in place of

humans. GeneraIly, these applications can discover, locate and interact with each other to

collaborate on conducting business tasks on top of sorne message exchanging

mechanisms such as the Web Services core technology stack.

While Web services are able to provide a highly interoperable mechanism between

business systems, business applications must also be able to interact with each other via

common business languages and logic. Since each industry has its own specifie business

terms and process definitions, it is natural to employ a specifie business language to

implement a specifie type of transactions.

A business language for a specifie industry normally needs to precisely define aIl the

required terms, communication specifications and business patterns of this industry to

implement business transactions in an extensible manner.

55

Many different business language specifications have been developed by various

business-focused standards organizations. They are either for describing business

processes in different industries or representing the activities in the same industry from

different approaches. Most of these business languages are developed based on XML

with XML Schema, which makes them easily be applicable to the Web Services

framework with minimum modification.

A few of these business languages are more widely adopted by their target industries than

others. These popular languages are mostly developed by business specific organizations

including RosettaNet, HL 7, XBRL, etc.

The Internet standards organizations and key Web Services vendors are collaborating to

further improve the existing business languages and standardize the common areas

between different business languages. IBM and Microsoft, along with a number of other

vendors, have also developed a general business language standard Business Process

Execution Language for Web Services (BPEL4WS).

2 - 4 - 1. Business Process Execution Language For Web Services (BPEL4WS)

BPEL4WS is a business language specification that can be used to describe general

E-business process patterns with multiple Web services and standardizes the internaI and

between-partners message exchanges. It derives from two private business process

language specifications: Web Services Flow Language (WSFL) and eXtensible

LANGuage (XLANG.), which respectively belong to IBM and Microsoft.

IBM, Microsoft and a few other E-business giants first submitted BPEL4WS version 1.0

to OASIS on 31 July 2002 and then version 1.1 in May 2003. OASIS initiated a Web

56

Services Business Process Execution Language Technical Committee (BPEL TC) to

further improve the BPEL4WS specification.

BPEL4WS collectively defines a mechanism to reliably and consistently define, create,

and interact multiple business processes in a Web Services environment. It adopts the

ideas from WS-coordination and WS-transaction, references various specifications for

describing Web services coordination and collects the transactions belonging to IBM,

Microsoft and BEA. [55]

In BPEL4WS, a business process is a complete business activity that might involve a

sequence of inter-business interactions among multiple business partners to accomplish a

certain task, which should have a start operation and an end operation.

Normally, an E-business process is described in two models: executable business process

model and business protocol business process model. The executable model describes

process behavior of each business participant, whereas the business protocol model

focuses on message exchange behaviors between business participants. A process

description in the business protocol model is called an abstract process. BPEL4WS

specification focuses on the common core concepts for both executable and abstract

processes. Meanwhile, it also provides modest extensions for both of the two patterns.

The discussion in this section is based on BPEL4WS vl.l. It is layered on top of a

number of XML specifications: WSDL vl.l, XML schema vl.O and XPath vl.O, among

which WSDL vl.l holds the most influence on BPEL4WS.

A business process normally consists of multiple interactions among a number of partners.

Within a Web Services framework, each business interaction is implemented as a Web

57

service interaction, which is described in WSDL. BPEL4WS defines the whole business

process by specifying peer-to-peer Web service interactions and their orchestration. While

referring to a Web service, BPEL4WS uses its abstract description - portType (interface

in WSDL), but not any deployment-specific description (e.g. binding). This approach

keeps the BPEL4WS business process descriptions reusable and durable regardless of the

specifie Web service deployments being used.

In a business process, each participant business entity is called a business partner. A

business process normally involves multiple partners. Partners are connected in a bilateral

manner called partner link type, which specify two sets of aIl the Web services provided

by both of the connected partners. Each partner can use BPEL4WS to define each of these

Web services as a role, which indicates the role of this partner in the interaction while

using this Web service. For each business process, a subset of roles can be selected to

form a partner link. Within a partner link, the local partner's role is defined as the value

of myRole, and the partner's role is specified as the value of partnerRole.

Implemented with Web services, the business process or part of the business process may

be either synchronous or asynchronous.

Each business process is executed within a specified business context. A business context

is composed by a collection of containers, each of which consists of critical data for

correctly performing a business process. Normally business contexts are persistently

stored, in order to preserve the consistency and reliability of business processes. For

example, in case of system outrages, those running business processes can be

appropriately resumed by recovering their business contexts from persistent storage.

A partner system might be involved in more than one business processes at the same time,

58

especially when it is participating asynchronous processes. In these situations, each

message handled by the system needs to be recognized according to the business process

it belongs to. This recognition information is referred to as correlation. In BPEL4WS, the

data representing correlations is referred as property.

The major function of BPEL4WS is to describe business processes. A process can be

defined as a structural composition of activities. BPEL4WS v1.1 specifies 15 types of

activities that are categorized into two groups: basic activities and structure activities.

The basic activities include:

<receive>, waiting for an invocation request from a specific partner and link

<pick>, waiting for a message from any partner to continue the process

<reply>, replies a request, generally in an asynchronous model

<invoke>, invokes another operation in an asynchronous model

<assign>, copies container content to another container

<terminate>, indicates the business process should be immediately terminated

<throw>, signaIs an error occurrence

<wait>, causes the business process to wait for a specified period

<empty>, suggests doing nothing

<compensate>, undoes what has been accompli shed within the business process.

The structure activities can be used to define structural business process logic. It is like

using <if> ... <then> to define structural blocks in programming. These structure activities

include:

<flow>, indicates the activities within it can be executed concurrently

<sequence>, defines its sub activities to be executed in sequence

<switch> and <while>, define the structure of the processes like "switch" and "while" in

59

popular programming languages

<scope>, defines a group of activities sharing the same properties.

BPEL4WS also provides a description section to handle process faults. This section is

defined in <faultHandler> block, which may include sorne BPEL4WS activities. A

<faultHandler> block requests business process partners to provide "un do" Web services

in order to recover from a fauIt while executing a business process. BPEL4WS also

provides a flexible and extensible scheme to define fault-dealing procedures.

BPEL4WS is a language based on XML. It provides a flexible and extensible document

format that fully meets XML requirements.

Figure 2-9 shows a typical BPEL4WS document structure.

<process name= "ncname" targetNamespace= "uri"

queryLanguage= "anyURI"?

expressionLanguage= "anyURI"?

suppressJ oinF ailure = "yes 1 no" ?

enablelnstanceCompensation= "yeslno"?

abstractProcess= "yeslno"?

xmlns= ''http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<partners> ?

<!-- Note: At least one raIe must be specified. -->

<partner name="ncname" serviceLinkType="qname"

myRole= "ncname"? partnerRole= "ncname"?> +

</partner>

</partners>

60

<variables> ?

<!-- Note: The message type may be indicated with the messageType

attribute or with an inlined <wsdl:message> element within. -->

<variable name="ncname" messageType="qname"?>+

<wsdl:message name= "ncname">?

</wsdl:message>

</variable>

</variables>

<correlationSets> ?

<correlationSet name= "ncname" properties= "qname-list"/> +

<lcorrelationSets>

<JaultHandlers> ?

<! -- Note: There must be at least one fault handler or default. -->

<catchfaultName="qname"? faultVariable="ncname"?> *

activity

</catch>

<catchAll> ?

activity

</catchAll>

</faultHandlers>

<compensationHandler> ?

activity

</compensationHandler>

<eventHandlers> ?

<!-- Note: There must be at least one onMessage or onAlarm handler. -->

<onMessage partner= "ncname" portType= "qname"

61

operation = "ncname" variable= "ncname">

<correlations> ?

<correlation set= "ncname" initiate= "yeslno"?> +

<correlations>

activity

</onMessage>

<onAlarm for= "duration-expr"? until= "deadline-expr"?> *

activity

</onAlarm>

</eventHandlers>

activity

</process>

Figure 2-9 BPEL4WS document structure standard

(Source: Business Process Execution Languagefor Web Services Version 1.1 [56])

!:: BPEL4WS 0 -U
ca
r.n 0
!:: 0 ca WSDL :J
l-

I

en
$

1
SOAP

Figure 2-10 Web Services specification family with BPEL4WS

(Source: Business Pro cess Execution Language for Web Services Version 1.1 [56])

62

The position of BPEL4WS in current Web Services framework is shown in Figure 2-10.

2 - 4 - 2. RosettaNet Standards

RosettaNet is a self-funded global consortium of Electronic Components (EC),

Information Technology (lT) and Semiconductor Manufacturing (SM) companies. It

works to create, implement and promote E-business process standards for these three

industries. The standards it works on are focused in the global B2B supply chain

interactions in these three industries.

RosettaNet is composed of five boards: the EC Supply Chain Board, IT Supply Chain

Board and SM Supply Chain Board that le ad the standard development in each industry,

Solution Provider Board that drives critical development and implementation strategies to

support RosettaNet's key initiatives, and Executive Board that supervises the

organizational direction and issues between different supply chains.

RosettaNet is one of the most influential E-business standard organizations in the world.

It currently operates with the collaboration of more than 400 companies in EC, IT and SM

industries representing more than US$l trillion in total.

RosettaNet was formed in 1998. It was named after the Rosetta stone, the ancient tablet

discovered in Egypt, which carries inscriptions of the same message in Greek and two

ancient Egyptian languages. Scholars translated the two unknown Egyptian languages

by using the Greek inscription.

RosettaNet is committed to driving "" .collaborative development and rapid deployment

of Intemet-based business standards, creating a common language and open e-business

63

processes that provide measurable benefits and are vital to the evolution of the global,

high-technology trading network" [58].

h uman-to- hu man
business exchange

system-to-system
eBus in ess exchange

Figure 2-11 RosettaNet standard illustration

(Source: http://www.rosettanet.org)

The RosettaNet's standard structure is illustrated in Figure 2-11. This XML-based

structure provides a framework of cross-platform, -application and -network interaction

standards.

The RosettaNet standards consist of three parts: RosettaNet Dictionaries, RosettaNet

Implementation Framework (RNIF) and Partner Interface Processes (PIP).

RosettaNet Dictionaries define a common semantic platform for conducting businesses

within the suppl Y chain. This semantic platform standardizes the terminologies for

conducting businesses and eliminates process overlaps among E-business trading partners.

It consists of a Business Dictionary and a Technical Dictionary. The RosettaNet Business

64

Dictionary defines transaction properties for business activities, whereas the Technical

Dictionary defines technical properties for products and services.

RNIF Core Specifications define the XML-based exchange protocols for RosettaNet

standards. These protocols define message transport, routing and packaging, security,

signaIs, and trading partner agreements.

Rosett3Net PIPs define business processes between trading partners. It is the core

component of the RosettaNet standards family. These PIPs are divided into eight clusters.

Each cluster is a collection of categorized core business processes that compose the

business network backbone.

These clusters are indicated by numbers from 0 to 7:

0: RosettaNet Support, provides administrative functionalities

1: Partner Product and Service Review, allows various manipulations on trading-partner

profiles and product-information

2: Product Information, enables distribution and periodic update of detailed product

design information

3: Order Management, completely covers the order management business procedure from

price quoting to payment and discrepancy notification

4: Inventory Management, supports all inventory related processes such as replenishment,

allocation, etc.

5: Marketing Information Management, defines communication of marketing information

including campaign plans, lead information and design registration

6: Service and Support, provides post-sales support, warrant y and asset managements

7: Manufacturing, covers communication of design, configuration, and other information

that support "Virtual Manufacturing" environment.

65

Each of these clusters is divided into a number of segmentations. Each of these

segmentations defines a set of cross-enterprise business processes that are collaborated by

multiple types of partners. PIPs are specifications of the business processes defined

within the se segmentations.

By June 23, 2003, totally 107 PIPs have been published in RosettaNet's website

www.rosettanet.orgl [57] while more PIPs are under development. Each PIP has a unique

identifier of a three-character string. In this string identifier, the first number indicates the

cluster it belongs to, the second letter indicates its segmentation and the third number

indicates the number of this PIP within the segmentation. For example, PIP 3A4 indicates

the 4th PIP within segmentation A of the 3rd cluster.

Each PIP cornes with a detailed PIP specification and a PIP Implementation Guide (RIG).

A RIG consists of two parts: an Implementation Guide and a Mapping TooI. The

Implementation Guide describes the business scenario, usage notes and Iessons Iearned of

the PIP, whereas the Mapping Tool assists it with information types and formats for future

business partners.

RosettaNet PIP is one of the most widely employed business standards as weIl as a very

good choice for implementing E-business with Web Services.

2 - 4 - 3. ebXML

The term ebXML stands for Electronic Business using extensible Markup Language. It

" .. .is a modular suite of specifications that enables enterprises of any sizes and in any

geographical location to conduct business over the Internet" [60]. OASIS and United

Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT) jointly

66

sponsored the development of ebXML. UN/CEFACT, which has developed the widely

adopted Electronic Data Interchange (EDI) standard, is a subsection of the United

Nations.

The mission of ebXML is "To pro vide an open XML-based infrastructure enabling the

global use of electronic business information in an interoperable, secure and consistent

manner by all parties" [61]. Furthermore, the goal of ebXML is " ... creating a single

global electronic market" [65].

ebXML is continuously under development. This technical suite adopted experience and

strengths from the existing Electronic CommercelElectronic Data Interchange (ECIEDI)

technology and use XML for its data presentation. Currently, it contains specifications for

exchanging business messages, conducting trading relationships, communicating data in

common terms and registering business processes.

SOAP, WSDL and UDDI form an approach towards Web Services from a different

direction than ebXML. The former approach was initially to establish an RPC mechanism

to enable free and efficient message exchanges based on XML. The latter approach was

initially to improve the business document exchange based on the idea of the existing EDI

technology and borrowed part of the EDI terminology. However, after a period of

development, these two approaches are merging towards providing compatible solutions

for business-to-business document exchange across the Web.

The latest ebXML suite was recently endorsed jointly by UN/CEFACT and OASIS on

June 3, 2003 at Geneva, Switzerland. This latest suite is generally referred to as ebXML

2.0. It consists of seven components: ebXML Message Service Specification v2.0,

ebXML Registry Information Model v2.0, ebXML Registry Services Specification v2.0,

67

ebXML Collaboration Protocol Profile and Agreement v2.0, ebXML Business Process

Specification Schema vl.Ol, ebXML Technical Architecture vl.04 and the ebXML

Requirements vl.06. AlI these specifications can be found and downloaded from

http://www.ebxml.org/specslindex.htm.

The sc ope of ebXML is the business side in both B2B and Business to Consumer (B2C).

Application to Application (A2A) within an enterprise can also adopt ebXML to

implement. But this implementation should not be developed in the expense of B2B or

B2e.

Like the Web Services mechanism are composed of SOAP, WSDL, UDDI and BPEL4WS,

ebXML defines the architecture and a set of specifications for implementing electronic

trading systems with similar functions and feature considerations. The technologies used

in the former Web Services mechanism are relatively independent so that the y can also be

used in other purposes. This attribute makes this mechanism more flexible than the latter

one. The latter mechanism' presents a one-piece total solution for E-business, which

makes it more integrated and more consistent.

To avoid overlap or ambiguity, ebXML recommends the UN/CEFACT Modeling Method

(UMM) as its modeling methodology to be described in Unified Modeling Language

(UML).

UMM modeling system can be broken into two parts: Business Operation al View (BOV)

and Functional Service View (FSV).

In ebXML, any business that participates into a certain business process is called a

trading partner. Within BOV, a trading partner applies its business collaboration

68

knowledge, uses the existing ebXML core library and business library, and follows

certain analysis and design mIes to define its own Business Pro cess and Information

Models. The core library contains core components, which are the commonly basic

components containing data and process definitions that can be adopted by various

business processes. The business library contains business processes and business

information, which in tum contain common or standard business process and information

definitions that can be reused. BOV provides a three-phase method to design an ebXML

system and allows defining the system by specifying Business Processes and Information

Models. These Business Processes and Information Models are Meta models compliant to

ebXML and ready to be used by trading partners.

With complete Business Processes and Information Models, FSV standards specify the

supporting services for ebXML.

FSV requires an ebXML registry service, which stores the XML conversion of Business

Processes and Information Models, along with other repositories including the core

library. ebXML can employ UDDI to implement this registry service. Before performing

a business process, a trading partner needs to access the registry to retrieve Business

Processes and Information Models, core library and Collaborative Protocol Profiles

(CPPs) of other trading partners with whom it intends to do business. A CPP is a

document that describes the Business Pro cesses and Business Service Interfaces a trading

partner can provide. Each trading partner should have its CPP published in the registry

server. Based on aIl registered CPPs, trading partners need to negotiate and form a

commonly agreed on agreement to conduct their business interactions. This agreement is

called Collaborative Pro cess Agreement (CPA). By strictly following a CPA, a group of

trading partners can then perform business processes with Message Services (message

exchange mechanics).

69

ebXML defines three functional phases to accomplish business processes.

The first phase is Implementation Phase. In this phase, a trading partner retrieves the

Business Processes and Information Meta Models, core library, business library and other

information from the registry service, implements its own business processes, submits

and updates corresponding information inc1uding CPP to the registry service.

The second phase is Discovery and Retrieval phase. In this phase, a trading partner

discovers and retrieves all the information it needs to implement business interactions

with others. The information may inc1ude: updated information acquired from the

Implementation Phase, the other trading partners' CPPs, a list of scenarios, messaging

patterns and security constraints. AU trading partners involved are required to participate

in the negotiation to work out a choreographed CPA to conduct future E-businesses. Each

CPA then needs to be assigned a universally unique identification, such as a URI. In

current ebXML specifications, the negotiation of a CPA has to be manuaUy performed.

This negotiation process is expected to be automated in the future when appropriate

technology is developed.

The third phase is Runtime Phase. In this phase, the trading partners can do the actual

transactions via ebXML Messaging Service by following those negotiated CP As. ebXML

Messaging Service does not specify any transport protocol but is open to any appropriate

protocol. SOAP with attachment [66] is an optional standard for ebXML Messaging

Service. The Messaging Service model is shown in Figure 2-12.

70

Figure 2-12 The Messaging Service Architecture

(Source: ebXML Technical Architecture Specification vi.O.4 [63])

71

ebXML is still not a complete E-business standard suite yet. Apart from the seven

endorsed specifications introduced earlier in this section, a few complementary technical

reports are still under development. These reports include Core Component Dictionary,

Catalog of Common Business Processes, etc. On the other hand, ebXML is open to adopt

independent technologies to make its standard stack more functional. For example, SOAP

can be adopted by ebXML for its Messaging Service and UDDI can be adopted by

ebXML for its Registry Service.

Dieter Jenz from Jenz & Partner says, "At present, ebXML is the only non-proprietary

horizontal business collaboration infrastructure architecture that provides integration at

the business process level" [59].

72

CHAPTER 3

Feature Considerations For Web Services

Besides the Web Services core stack technologies described in Chapter 2, there are sorne

other critical technical considerations before Web Services can be widely deployed.

These considerations, similar to that of other interaction technologies, inc1ude

Interoperability, Security, Reliability, Orchestration, Scalability, etc. The key Web

Services vendors and standards organizations are collaborating on developing highly

effective solutions for these features. Sorne progress has already been made.

3 . 1. Interoperability

Any technologies that involve interoperations between systems, inc1uding Web Services,

need to consider their interoperability. Interoperability generally refers to the capability of

conducting smooth interoperations between various deployments while employing the

same technology, such as Web Services.

A Web service requester needs to be able to interoperate with the service providers and

the Web Services registry server, exchange data and error messages in XML, acquire and

73

analyze Web service descriptions, negotiate and set up security protocols, choreograph

collaboration activities, and conduct other activities. The interoperation may be within an

enterprise, between business partners or across a heterogeneous set of applications,

platforms and languages.

Currently, most Web Services solutions are developed for Enterprise Application

Integrations (EAIs) within enterprise systems. Normally an enterprise will choose

identical platforms, languages, Web Services technology stack and products to implement

its Web Services EAI. This makes the implementation easy for Web services designers. A

framework or platform would have no problem interoperating within itself.

Along with the evolution of Web Services technologies, products and EAIs, the demand

to implement inter-business Web services is growing. This makes Web Services

interoperability a critical issue: machine-to-machine interoperation requires that aIl

participants completely understand each other's communication protocols, message

structures, contents and semantics without any ambiguity.

In fact, however, participant business partners normally employ various types of Web

Services platforms that may have sorne difficulty in interoperating with each other.

Many Web Services standards have already been released by standard organizations and

vendors, which include W3C, OASIS, UN/CEFACT, IBM, Microsoft, etc. Sam Ruby, a

key member of IBM Emerging Technologies Group, stated in an interview, "There's no

question that (Web Service) standards have outpaced implementations. There are too

many standards out there. There will still be more standards created." [67] For Web

Services, the proliferation of standards may cause confusing while implementing products,

hence discourage the evolvement or even adoption of this technology.

74

To achieve complete interoperability between Web services, sorne requirements must be

fulfilled. First, the Web services must adopt the same protocol stack for implementation

and deployment. Second, any of these standards must follow the same unambiguous and

complete implementation guide, which clearly states mandatory and optional parts of the

standards and how they should be implemented.

ln order to work out an industry-wide solution for this critical issue, E-business vendors

including IBM, Microsoft and BEA founded the Web Services Interoperability

Organization (WS-I).

WS-1 defines a set of profiles, testing lOols and use cases and usage scenarios, and a

number of sam pie applications to improve Web services implementation and

interoperability. Each profile declares a set of optional specifications, which can be used

to compose certain Web Services functionalities, and their correspondent implementation

guidelines. The testing tools include a communication sniffer and an analyzer. These tools

can be used to test whether an implementation precisely meets the requirements declared

in the profiles. The use cases and usage scenarios respectively specify the indicated

requirements that use Web services. The sample applications are implementations of the

use cases and usage scenarios that can be used to help improving the testing tools. WS-I

puts aIl its delivered documents on their website at http://www.ws-i.orglDocuments.aspx.

Among these documents, Basic Profile vl.O [76] is currently a draft for public review. It

specifies a Web Services standard stack including Messaging, Description and Service

Publication and Discovery with optional Security concems, and a standard

implementation guide for these specifications.

75

The Messaging specifications inc1ude SOAP 1.1, XML 1.0 (Second Edition) with HTTP

1.1 and HTTP State Management Mechanism (RFC2965). The Description specifications

inc1ude WSDL 1.1, XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.

The Service Publication and Discovery specifications inc1ude UDDI Version 2.04 API

Specification - Dated 19 July 2002, UDDI Version 2.03 Data Structure Reference - Dated

19 July 2002, and UDDI Version 2 XML Schema. The optional Security specifications

include RFC2818: HTTP Over TLS, RFC2246: The TLS Protocol Version 1.0, The SSL

Protocol Version3.0, RFC2459: Internet X.509 Public Key Infrastructure Certificate and

CRL Profile. Since this Web Services stack is specified for general usage purposes

beyond businesses, no business specification (e.g. ebXML) is included.

The Basic Profile dec1ares a number of must-follow implementation requirement

statements for aIl the se specifications in order to achieve interoperability. These

statements are labeled with strings in the format Rnnnn, where each nnnn represents a

unique string of four decimal digits. By following these statements, Web services can

maximally achieve interoperability within the scope of the specified standard stack.

Beyond the Basic Profile, WS-I is also working on sorne other important issues to further

improve Web Services interoperability. These issues include defining implementation

requirement statements for other valid Web Services standards and for upper level

standards, e.g. Web Services-based business standards.

Presently, there is no other significant dedicated effort towards Web Services

Interoperability like WS-I. No other industry-wide accepted interoperability specification

beyond the Basic Profile has been claimed yet.

76

Backed by its members inc1uding most giant Web Services vendors, WS-I's deliverables

are expected to be the leading specifications to improve Web Services interoperability.

Sun Microsystems c1aims its newly released J2EE1.4 is conformant to the WS-I Basic

Profile.

3 . 2. Security

The Internet is a global infrastructure for sharing information that is accessible to aIl. For

those Internet-based businesses, online data exchange and storage need to be kept private

and secure. Normally, online information security refers to keeping data reliable,

integrated and away from any illegal breach. Along with the evolving of Internet-based

businesses, the volume of data exchanged and stored online is swiftly increasing. This

increasing demand for data security is fostering the development of Internet and Web

security technologies.

Web Services is a new Web-based mechanism, which is primarily adopted to conduct

businesses processes on the Internet. Naturally, security became a critical issue for Web

Services too. Web Services security is also continuously under development along with

Web Services itself.

The Web Services security issue consists of both the Web security considerations and

none-Web Internet security considerations. This is because the transport layer for Web

Services inc1udes not only HTTP, on which the Web is based, but also other none-Web

protocols such as SMTP, FTP or BEEP. [Refer to section 1-3 for the difference between

the Internet and the Web] Web Services security is still in its infancy. It primarily adopts

77

existing Internet and Web security technologies and adapts them into the Web Services

framework.

In general, the term "security" inc1udes Confidentiality, Authentication, Trust,

Non-repudiation, Integrity, Authorization and Auditing. These features strengthen the

Internet information security from different approaches. Confidentiality keeps the

exchanged or stored data invisible to unauthorized entities. Authentication guarantees the

parties that are exchanging data are the "true" entities as they c1aimed. Trust set up

various trust levels for various parties involved in the data exchange, whereas

Non-repudiation bars out those entities with bad records from any data sharing activities.

Integrity keeps the data reaching its designated receiver unchanged. Authorization defines

certain rights for each party to access various data resources. Auditing records aIl the

activities of an entity after it entered a data resource and keep these records for security

check.

In order to implement these security features, the industry has already collaborated and

developed various technologies: key-based digital encryption and decryption to keep the

Confidentiality; username/password, key-based digital signing and signature verification,

challenge-response, biometrics, smart cards, etc. for Authentication; key-based digital

signing and signature verification for Trust; key-based digital signing and signature

verification, message reliability for Non-repudiation; message digest, itself authenticated

with a digital signature for Integrity; application of policy, access control, digital rights

management for Authorization; and various forms of logging, themselves secured to

avoid tampering for Auditing. To implement secure Web Services solutions, aIl these

features need to be carefully considered and these technologies need to be adopted and

adapted.

78

Before June 2002, even the Web Services had already been in the stage for over two years

and an institutional standard stack had already been accepted by the industry, there was

no well-defined industry-accepted security standard for Web services yet. Many early

Web services adopters simply use the existing Internet or Web security technologies to

secure their systems.

Early adopted technologies include those of XML level: XML Digital Signature, XML

Encryption and XML Key Management from W3C and IETF, Security Assertion Markup

Language (SAML) from OASIS; and those of transport level: Socket Security Layer

(SSL), Secure HTTP (S-HTTP), Public Key Interchange (PKI) , Virtual Private Network

(VPN), Kerberos, X.509, etc.

Based on these pioneering efforts, IBM, Microsoft and VeriSign developed a Web

Services Security (WS-Security) Specification v1.0 and submitted it to OASIS on June 27,

2002 as a proposaI. A number of other Web Services vendors, including Sun

Microsystems, BEA, Intel, SAP, Cisco, etc., immediately announced their support to this

specification. A newly forrned Technical Committee (TC) - Web Services Security

Technical Committee at OASIS is now working to improve WS-Security .

. Experts from IBM and Microsoft developed a white paper - Security in a Web Services

World: A Proposed Architecture and Roadmap, Version 1.0 on 1 April 2002, which

became the base of WS-Security [68]. This white paper specifies a comprehensive

security model for Web service users to adopt both the existing and new security

technologies. It provides an abstract model that can be employed by various Web service

infrastructures. By following it, users can either easily build up secure interoperable

solutions in single heterogeneous systems, or collaborate different identification

79

mechanics within a secure framework that meets various business requirements within

various technological environments.

This white paper presents a whole Vlew of the Web Services Security consideration

beyond WS-Security. It discusses a group of Initial Specifications and a group of

Follow-On Specifications.

The Initial Specifications include: WS-Security, which describes how to attach signature

and encryption headers to SOAP messages and how to attach security tokens, including

binary security tokens such as X.509 certificates and Kerberos tickets, to Web Services

messages (Security Tokens is defined as "a representation of security-related information

(e.g. X.509 certificate, Kerberos tickets and authenticators, mobile device security tokens

from SIM cards, usemame, etc.)" in this white paper.); WS-Policy, which describes the

capabilities and constraints of the security and other business policies on both

intermediary nodes and endpoints, such as required security tokens, supported encryption

algorithms, privacy rules, etc.; WS-Trust, which describes a framework for trust models

that enables Web services to securely interoperate; and WS-Privacy, which describes a

model for Web service providers and requesters to state subject privacy preferences and

organizational privacy practice statements.

The Follow-On Specifications include: WS-SecureConversation, which describes how to

manage and authenticate message exchanges between parties, including exchanging

security context and establishing and deriving session keys; WS-Federation, which

describes how to manage and broker the trust relationships in a heterogeneous federated

environment, including support for federated identities; and WS-Authorization, which

describes how to manage authorization data and authorization policies.

80

Figure 3-1 demonstrates the structure described in this Web Services Security roadmap

white paper.

WB;.·,;'· 1
8eçureC~fCltlon .

1 WSi~, Il
~···I ::=::::::::::::==:
Ws;~ Il

Today

Figure 3-1 Web Services Security Specifications

(Source: Security in a Web Services World: A proposed Architecture and

Roadmap, v1.0 [68])

Without an institutionally agreed on security standard, it is hard to make Web services

work together in a securely interoperative way. In January 2003, after IBM and Microsoft

started collaboration on this white paper and released WS-Security 1.0, CBDI forum

proved that a secure Web service implementation could be realized between a

Microsoft .NET - and IBM WebSphere-based solution. This is considered a big step

towards securely interoperability of Web services [72].

Security in a Web Services World: A Proposed Architecture and Roadmap, Version 1.0 is

the first document that outlines the overall security mechanism for Web Services, which

is composed and supported by leading E-business vendors including IBM and Microsoft.

Its first initial specification - WS-Security - has already been officially developed by

OASIS. Rence this roadmap is very likely to become the guide for Web Services security.

81

3 - 3. Choreography IOrchestration

While the basic stack of Web Services is becoming stable with XML, XML Schema,

SOAP, WSDL and UDDI (considered optional at this stage), current Web Services

development efforts are focused on its security and choreography. To fully explore Web

Services advantages, patterns that would en able multiple Web services to interact and

collaborate on accomplishing more sophisticated tasks are expected. Choreography is

such a pattern that defines "how multiple web services are used together", specifies "the

linkages and usage patterns involved" [1]. The term "linkages" here represents

interactions between Web Services, which are implemented by sending messages between

the paticipating parties such as invoking a Web service.

The Orchestration is easily to be confused with the Choreography. In many conditions

these two terms are used interchangably. As one of the authors of BPEL4WS, Sanjiva

Weerawarana, states: "During the lifetime of the BPEL4WS document, it was at one point

called WS-Orchestration, then WS-Choreography, then WS-Business Process and and

eventually BPEL4WS" [73], this two terms are historically interchangable. The chair of

W3C's Web Services Choreography Working Group, Martin Chapman, believes there are

sorne distinctions between them as Orchestration holds an managing fuction while

executing the grouped Web services (such as in a transaction) and Choreography just

gives the suggested execution plot without enforcing it. [73]

In W3C's Web Services Architecture Document draft published on the Web on July 1,

2003, Choreography is defined as the abstract concept for describing how Web services

collaborate and exchange messages, while Orchestration is referred to as one of the

techniques that realizes it [1]. In Chris Peltz's Web Services Orchestration - a review of

emerging technologies, tools and standards, he states "Orchestration refers to an

82

executable business process that may interact with both internaI and external web services.

For orchestration, the process is always controlled from the perspective of one of the

business parties. Choreography is more collaborative in nature, in which each party

involved in the process describes the part they play in the interaction" [74]. This is a more

commonly agreed on distinction between these two terms. However, recent development

and standard convergence are blurring the distinction between them. Hence, the following

discussion uses these two terms together.

There are three basic requirements for Web Services Orchestration/Choreography:

asynchronous conversations, flexible and adaptable flow coordination, and exception and

transaction integrity management.

A number of Choreography/Orchestration standards have already been released by either

Web Services standards organizations or Web Services vendors. These standards include:

eCo, Web Services Conversation Language (WSCL), XLANG and Web Services Flow

Language (WSFL). eCo is developed by CommerceNet, which focuses on document

exchange for B2B integrity. WSCL, however, is a simple conversation language focused

on modeling the sequencing of Web Services interactions. XLANG was initially created

by Microsoft and employed by Microsoft BizTalk Server. XLANG focuses on business

processes creation and interactions between business providers. WSFL is an IBM

proposaI, which can be used to specify both public and private B2B process flows [89].

Based on these pioneering specifications, a few other specifications have been developed.

BPEIAWS is a specification that models Web services behavior for business interactions,

superseding WSFL and XLANG. BPEIAWS is essentially layered on top of WSDL,

whereas WSDL defines each of the operations allowed and BPEIAWS defines how these

83

operations collaborate together in a sequential logic. BPEIAWS is currently an OASIS

standard draft un der development (see Section 2-4-1).

Web Services Choreography Interface (WSCI) [90] is developed by Sun, BEA, SAP and

Intalio for Web services collaboration. Unlike BPEL, WSCI does not define the whole

map of how a group of Web services collaborate, but defines only the observable part in

each Web service's point of view. A WSCI choreography includes a set of WSCI

documents, each of which describe the should-do behaviors for each of the Web services

in this group. WSCI has been submitted to W3C and becomes the basis of W3C' s

undertaken WS-Choreography specification.

Business Process Management Language (BPML) was developed by Business Process

Management Initiative (BPMI.org), an independent organization chartered by Intalion,

CSC, Sun and others. It borrows many ideas, views and syntax from WSCI so that a

BPML document looks like a WSCI document. Meanwhile, BPML also provides sorne

similar features like that in BPEIAWS, including similar process flow constructs and

activities. BPML is a language designed for managing long-lived collaborated processes

with persistent support.

Business Process Specification Schema (BPSS) from ebXML is another choice for Web

Services Orchestration. However, since BPSS is coming as a tightly-connected

component within the whole ebXML infrastructure, its relationship to other specifications

is murky.

Figure 3-2 illustrates the relationship among BPEIAWS, WSCI and BPML.

84

CoIloborawe
Protoools

Executable
Business
Processes

BPEl4WS
Executable
Proœsses

BPEl4WS
{IBM, Microsoft, BEA)

WSCI!BPML
(Sun, Intalia, SAP)

Figure 3-2 Relationships among BPEL4WS, WSCI and BPML

(Source: Web Services Orchestration [74])

3 - 4. Reliability

Reli abi lit y is always a critical consideration while developing a technology, especially

one involving data exchanges between partner systems. One of the most significant value

points of Web Services is it provides a programmable data exchanging mechanism among

various application environments. Renee reliability is also a critical issue for Web

Services, especiallY for Web Services asynchronous interactions.

Reliability for Web Services primarily means ta guarantee the exchanged data ta be

delivered properly from its source ta its destination.

85

Current Web Services reliability efforts are primarily focused on guaranteed message

delivery, duplicate message elimination and message ordering-enabling while applying

Web services.

Today, there are two approaches towards Reliability of Web Services: WS-Reliability and

WS-Coordination/WS-Transaction.

WS-Reliability [77] is a royalty-free specification currently under development of OASIS

Web Services Messaging Reliability Technical Committee. Fujitsu, Hitachi, NEC, Oracle,

Sun and Sonic Software are the initiators of this specification.

WS-Reliability specifies a fundamentally reliable transport infrastructure in application

level, which is based on SOAP but not restricted to any transport level specification. It

achieves SOAP messaging reliability by defining a set of syntax and instructions that can

be declared in the header and body of SOAP message Envelopes. The parties of an

interaction guarantee the interaction reliability by following the instructions defined by

these syntaxes to. In addition, WS-Reliability also contains an extended consideration,

which makes asynchronous message exchanges as reliable as synchronous message

exchanges. WS-Reliability is a complementary specification to ebXML and is proposed

to be able to work with WS-Security once released.

WS-Coordination [78] and WS-Transaction are two specifications submitted to OASIS by

IBM, Microsoft and BEA.

WS-Coordination defines a Web service coordination mechanism, which uses a specific

Web service called coordinator to coordinate certain Web service activities. A Web

86

service activity refers to a set of Web services collaborating to accomplish a certain task.

The task can be either simple or complicated.

Defined in WS-Coordination, a coordinator consists of three different types of

components: an Activation Service, which -is invoked by applications to create a

coordination instance and the coordination context, a Registration Service, which enables

an application to register for coordination protocols, and a set of coordination protocols.

While an application needs to start an activity, it first invokes the coordinator's Activation

Service to create a coordinator instance and build up the environment

(CoordinationContext) for this activity. Secondly, it sends the activity identifier with

other context information to other participating applications. The other applications then

register themselves to the Register Service of various coordinators and choose a

univers aIl y accepted communication binding. Lastly, the coordinators interact with each

other and their registered applications to accomplish the designated activities.

On top of WS-Coordination, WS-Transaction can be applied to ensure that a transaction

is full Y completed or otherwise fully roll-backed. Therefore the transaction activity can be

kept consistent and integrated.

Although WS-Coordination and WS-Transaction were not developed to simply improve

Web Services reliability, they can be used in this purpose when applied together.

WS-Coordination and WS-Transaction improve Web Services reliability on the

transaction level wh en implementing business activities, whereas the WS-Reliability is

located right on top of SOAP and focuses on improving common Web Services

Reliability including business activities.

87

CHAPTER 4

Web Services Standards Organizations and Products

Each popular technology generally has a few organizations developing standards for it, a

group of vendors implementing the standards by developing platforms and tools, and

various users developing and deploying application solutions with these platforms and

tools. Among them, standards organizations and vendors have direct influence on how the

technology is evolving and where it goes.

Web Services derives from existing Web technologies. The major Web technology

standards organizations then naturally play a major role in the evolution of Web Services.

These organizations include World Wide Web Consortium (W3C), Organization for the

Advancement of Structured Information Standards (OASIS), Internet Engineering Task

Force (IETF) and United Nations Center for Trade Facilitation Electronic Business

(UN/CEFACT). Sorne Web Services-specifie standards organizations have also been

formed to meet the various demands of this fast evolving technology. These new

organizations include Web Services Interoperability (WS-I), Uni versaI Description,

Discovery and Integration of Web Services (UDDI), etc.

88

A number of E-business vendors play an important role in applying Web Services

technologies. They continuously perceive demands from the market, analyze the demands

and interpret them into technical ideas and designs, actively participate and influence

standards organizations' work, and accelerate adoptions of standards.

Currently, the most influential computer giants and E-business pioneers, inc1uding

Microsoft, IBM, Sun Microsoft, HP, BEA, Commerce One, etc., are still the most

powerful force driving Web Services. They lead in the design of new specifications and

infrastructures, submitting specifications to standards organizations and participating in

their further development, and use their marketing power to influence users and

competitors. Meanwhile, a number of small size vendors, who are strong at sorne specifie

areas in Web Services technology, are emerging.

Currently, the major vendors already have their own flagship products in the market.

Most of these products are integrated into existing E-business platforms and tools as an

additional part. The major products that provide complete Web Services support are IBM

WebSphere, Microsoft .NET, Sun Microsoft Sun One, HP OpenView, BEA Web Logic,

etc. They aIl have already acquired a certain proportion of the market.

Vendors generally implement a standard in various approaches, which might cause

difficulties while interoperating with each other. It is more serious for implementing Web

Services products since Web Services is primarily providing interoperations between

systems. Rence besides the Web Services standards, vendors and organizations are also

actively collaborating on implementations, e.g., developing implementation guides.

89

4 - 1. Standards Organizations

4 -1-1. World Wide Web Consortium (W3C)

Web site: http://www.w3c.org/

Dr. Tim Bemers-Lee, who invented the World Wide Web in 1989, founded W3C in

October 1994 at MIT, Laboratory of Computer Science (MITILCS) in collaboration with

European Organization for Nuclear Research (CERN). He is currently the director of

W3C. W3C was founded " ... to lead the World Wide Web to its full potential by

developing common protocols that promote its evolution and ensure its interoperability."

[23]

W3C currently has 13 offices around the world and 390 member organizations (by July 4,

2003) including three hosts: MIT/LCS of US, European Research Consortium in

Informatics and Mathematics (ERCIM) of France and Keio University of Japan. !ts

members are primarily active vendors and organizations on Web technologies including

IBM, Microsoft, Sun, BEA, etc. Each member organization has a seat in the W3C

Advisory Committee (AC), which elects an Advisory Board that provides guidance to the

W3C Team on strategy, management, legal matter, process, and conflict solution issues.

W3C has a W3C Team that consists of more than sixt Y researchers and engineers, who

work at the three host institutions, lead the technical activities and conduct the operations

ofW3C.

W3C Activities are conducted by three kinds of groups including Working Groups for

technical developments, Interest Groups for other generic works, and Coordination

Groups for coordinating multiple groups. These groups develop technical reports and

open source software, as weIl as provide standard related services. Members of these

90

groups are individuals from W3C member organizations or the Team, and invited experts.

These groups are divided into four categories: the Architecture Domain, which develops

the underlying Web technology standards, Interaction Domain, which improves the

interaction between Web users and content providers, Technology and Society Domain,

which augments the existing Web to address social, legal and public issues, and Web

Accessibility Initiative, which fully ex tends the Web availability.

W3C receives original proposaIs, which are referred to as Activity ProposaIs, and then

distributes them to all its members for review. Once the proposaI has reached a consensus,

W3C forms an Activity to pursue further development of the proposaI. The Activity first

works out a working draft and publishes it on the Web for members and the public to

review. Regarding to the se reviews, the Activity groups develop the working draft into a

candidate recommendation, which W3C believes satisfies the Ac ti vit Y requirement, and

publishes it for implementation experience.

Once this candidate recommendation is mature after wide review, it is submitted to the

AC and the director for final endorsement, and is referred to as a proposed

recommendation. After the endorsement, it becomes W3C's official specification, and is

now called a recommendation. It is like a standard in other organizations and is

encouraged by W3C to be widely implemented.

By July 4, 2003, W3C has approximately 60 recommendations and proposed

recommendations, 16 candidate recommendations, and 130 working drafts. All these

recommendations are free of charge for people to use.

91

4 - 1 - 2. Organization for the Advancement of Structured Information Standards

(OASIS)

Web site: http://www.oasis-open.org/

OASIS was originally formed in 1993 under the name SGML Open. It was formed by

vendors and users to develop interoperability for using SGML. In 1998, it adopted its

current name, OASIS, to reflect its expanded technical scope.

OASIS currently has over 600 corporate and individual members located in over 100

countries. As a non-profit organization, OASIS drives the "development, convergence

and adoption of e-business standards."

OASIS currently works to produce global technical standards of security, Web Services,

XML conformance, business transactions, electronic publishing, topic maps, and

e-market interoperability. OASIS is active in collaborations creating global e-business

standards. It jointly sponsored the ebXML project [61] with United Nations Center for

Trade Facilitation and Electronic Business (UN/CEFACT). Meanwhile, it hosts rich

technical information Websites including http://www.xml.orgl,

http://www.coverpages.orgl, and supports a variety of networked sub organizations

including http://www . uddi.org/, http://www .cgmopen.orgl, http://legalxml.oasis-open.orgl

and http://www.pkiforum.orgl.

OASIS forms Technical Committees (TCs) for developing standards.

To initiate a TC, a proposaI has to be submitted by at least three OASIS members. Within

15 days, the board of directors will notify the proposaI submitters of its decision. Once it

is approved, OASIS will broadcast a call for forming a TC among the members and also

may invite some outside experts. A TC is formed and named with at least three members.

92

TC workouts may either TC Specifications or OASIS standards. A TC Specification is a

completed work within the TC just before approval. After a TC specification is submitted,

OASIS will caU a review and vote on this specification among aU its members. If it is

approved by at least 2/3 of the members and objected to by less than 1/4 of the members,

the TC specification can bec orne the OASIS standard. OASIS encourages

implementations of TC specifications even before they bec orne standards since normaUy

there would be no difference between a TC specification and a standard. OASIS

registered a namespace to uniquely represent each document created by TCs. The

namespace looks like this:

um:oasis:names:tc:{tc name}:{type}{:subtype}?:{document-id}

While XML and other SGML-derived technologies are growing and becoming dominant

in the Web, OASIS and W3C start to have more overlaps. Today, Web Services standards

are partly developed by W3C and partly developed by OASIS. Praised for its high

efficiency, OASIS is attracting more proposaIs form Web Services vendors.

4 - 1 - 3. Internet Engineering Task Force (lE TF)

Web site: http://www.ietf.orgl

The IETF is an open-to-aU global organization that coUaborate the efforts of interested

network designers, operators, vendors and researchers to improve the architecture and

smooth operations of the Internet. IETF activities are under the guidance of the Internet

SOCiety (ISOC) and sorne of its subgroups.

ISOC is a professional global organization with over 150 organization members and

16,000 individual members in over 180 countries. It is the world's leading entity dealing

with Internet-related issues, which is managed by a Board of Trustees elected by its

93

members. ISOC chartered the Internet Engineering Steering Group (IESG) and Internet

Architecture Board (IAB) to guide IETF activities. The IESG consists of Area Directors

that technically manage the IETF activities and supervise the Internet standard process.

The IAB focuses on the architecture issues and long-range planning of the Internet, and

coordination of the IETF activities.

IETF activities are conducted by working groups, each of whieh focuses on a specific

area of Internet technologies. Working groups are directed by Area Directors (ADs) from

IESG. The chair of IESG and IETF is the General Area Director (GAD), who used to be a

member of IAB, and supervises the activities in IETF and IESG. IAB provides an

architectural guidance to IETF works.

Anyone can propose an IETF standard. The proposaI is sent to IAB for evaluation and

adjustment. Once it is approved, the IAB refers it to the proper IETF working group. This

proposed document thus becomes an Internet Draft (I-D). An I-D is published to receive

comments from aIl interested parties and to be revised. Once it is weIl revised, the AD of

the working group sends it to the IESG for any further necessary changes to be approved.

The final version of the Request For Comment (RFC) is worked out and published by

RFC editors.

4 - 1 - 4. United Nations Center for Trade Facilitation Electronic Business

(UN/CEFACT)

Website: http://www.unece.org/cefactl

UN/CEFACT is an open organization of United Nations (UN) state members,

intergovernmental organizations, and Economie and Social Council of the United Nations

(ECOS OC) recognized private sector and industry associations. It was formed in 1996 to

94

better apply the newly developed technologies and to better make use of UNIECE's

abundant resources. ECOSOC is the highest UN body in the areas of economics, trade

and development. The UN/CEFACT resides within the Economie Commission for Europe

(UNIECE), which directly reports to ECOSOC. This hierarchy structure makes

UN/CEFACT the ideal body to coIlaborate the expert efforts around the world on making

E-business standards that better meet various global business requirements.

UNIECE was the creator of the first widely adopted E-business standard - Electronic

Data Interchange (EDI). This accumulation of a variety of technical and business

knowledge is applied in the coIlaborative work on ebXML between UN/CEFACT and

OASIS. Moreover, the ebXML is developed to keep maximum consistency to the EDI

standard.

4 -1 - S. Web Services Interoperability Organization (WS-I)

Web site: http://www.ws-i.orgl

WS-I was created in February 2002 by a group of key players in the Web Services are a,

which include Accenture, BEA, HP, IBM, Intel, Microsoft and SAP. AlI WS-I members

are organizations that are relevant to Web Services standards, especiaIly implementations.

It consisted of about 150 members by July 4, 2003, including almost aIl of the important

Web Services vendors, developers and users.

While there are a lot of standards organizations defining the specifications of Web

Services, users are also expecting implementation alignment and agreement of these

specifications to provide interoperability and direction. The major goal of WS-I is to

promote aIl-feature interoperability of Web services among different platforms, OS and

languages provided by various vendors.

95

WS-I delivers profiles that guide the implementation of groups of Web Services

specifications to guarantee their interoperability, usage scenario and use cases to reflect

the real world business and technical requirements, sample applications to implement the

scenarios and cases and to test and improve the profiles, and testing tools to test and

ensure an implementation's conformance to the profiles.

AlI the work in WS-I is conducted by the experts of its member organizations under the

supervision of a board consisting of about 20 of the most influential vendors and

organizations in the Web Services industry.

Currently WS-I has delivered a Basic Profile that provides an implementation guide to a

Web Services stack consisting of XML Schema 1.0, SOAP 1.1, WSDL 1.1, and UDDI 1.0

along with their corresponding testing tools. An increasing number of vendors have

already announced their conformance to the WS-I Basic Profiles, including Sun J2EE 1.4,

and used the testing tools to prove it.

While there are a couple of open global organizations making specifications for Web

Services, WS-1 has been chosen to guide the industry with its implementations. With

WS-I's growing influence, a Basic Security Profile Working Group (BSPWG) was

formed on April 1, 2003 led by Eve Maler from Sun Microsoft, and a Japan Special

Interest Group was formed on May 30,2003.

4 - 1 - 6. RosettaNet and other Business Specification Organizations

RosettaNet, described in 2-4-2, is one of the most influential and rapidly deployed

business specification standards organizations today. While RosettaNet's ~ccomplished

standards are focused on the suppl Y chain of four high tech sectors, other business

96

standards organizations are also gaining support in their specific business sectors. Today,

the major concems for the co-existence of these organizations are reducing the overlaps

of their works, complementing each other in order to fully coyer the business industry,

and improving their interoperability.

A short list of representative business standards organizations are listed below:

RosettaNet:

Web site: http://www.rosettanet.orgl

RosettaNet focuses on the supply chain standards for business sectors inc1uding

Information Technology (IT), Electronic Components (EC), Semiconductor

Manufacturing (SM) and Solution Provider (SP). It is a subsidiary of the Uniform Code

Council Inc. (UCC), which is a leading U.S.-based organization that makes multi-industry

standards for product identification and related electronic communications. More than

250,000 U.S.-based member companies are adopting UCC's standards in their supply

chain control and management.

On June 3, 2003, RosettaNet and OASIS formalized a plan to collaborate their efforts on

multi-industry business standards development and implementation. "Under this scenario,

RosettaNet can leverage standards developed by OASIS, such as ebXML and the

Uni versaI Business Language (UBL) , creating implementation-oriented solutions at a

content level. OASIS, in tum, will look to RosettaNet for domain-specifie input to ensure

the applicability of uni versaI standards within and between industries," said Patrick

Gannon, president and CEO of OASIS [79].

97

eXtensible Business Report Language (XBRL):

Web site: http://www.xbrl.org/

XBRL is an XML-based, royalty-free open standards organization. It develops standards

describing publication, exchange and analysis of complex financial information in

corporate business reports. A consortium consisting of over 170 companies and agencies

worldwide develops its standards.

Health Level Seven (HL 7)

Website: http://www.hI7.org!

HL7 is an ANSI-accredited Standard Developing Organization (SDO) that works on

developing application level data exchange, management and integration standards. These

standards pro vide guidelines, methodologies and other services for health care

information systems to exchange information in a flexible and cost-effective interoperable

way.

HL7 was initlated by about 20 countries and regions in 1996. Its members inc1ude users,

vendors and consultants.

4 - 2. Key Web Services Vendors And Products

Today, Web Services are being collaboratively developed by multiple standards

organizations. No single organization is able to ho st the whole Web Services technology

family or even just the basic stack. Hence, influential Web Services vendors such as IBM,

Microsoft, Sun, BEA and others are taking part in almost aIl the collaborations on

standards development by actively presenting themselves in these influential standards

98

organizations. These companies frequently submit their own techno1ogica1 workouts to

these organizations to be further deve10ped into new industry standards. These vendors

profound1y influence the deve10pment of industry standards and techno1ogica1 direction.

Therefore they are p1aying the most important role in the Web Services paradigm.

Web Services products are still fast evo1ving. Whi1e existing major E-business p1atform

and too1s still dominate the techno1ogy deve10pment and dep1oyment, new products keep

emerging to catch this new technica1 wave after the World Wide Web. IBM WebSphere,

Microsoft .NET, Sun Microsoft Sun Open Net Environment (Sun ONE), HP Open View

and BEA Web10gic P1atform are the Web Services p1atforms that provide the most

functionalities. These p1atforms can aU be used to deve1op, test, depIoy, register and

manipu1ate Web services.

99

CHAPTER 5

Web Services: What It Brings

Web Services emerged only four years ago, if we consider the appearance of XML-RPC

and SOAP as its starting date. Web Services is now one of the most popular E-business

technologies, and is evolving very quickly. Figure 5-1 illustrates how the E-business

technologies evolved in the past 30 years.

Figure 5-1 History of Distributed Computing

(Source: The past, present andfuture a/Web Services, Part 1 [80])

100

The emergence of Web Services is driven by the increasing demand of

machine-to-machine, primarily B2B, interactions and collaborations from the business

industry.

In the last few years, Web page-based E-business has been a hot topic. It provides a

networked, integrated and easy-to-use GUI interface to interact with human customers. It

dramatically reduces human work to conduct business processes.

Today, Web Services based E-business is starting to take the stage center. Web Services

further reduces human intervention, which is essential for Web page-based E-business,

and enables machines (actually Web services) to automatically interact and collaborate to

conduct business processes. Ideally, humans just need to design interoperation

"agreements" among business partners and then "choreograph" the business processes.

Web services will be able to conduct aIl of the executions intelligently without human

intervention.

In the future, as Tim Bemers-Lee described in his papers, Web Services will contribute

and lead to the emergence of Semantic Web. "The Semantic Web is an extension of the

CUITent web in which information is given well-defined meaning, better enabling

computers and people to work in cooperation." [82] In a Semantic Web, programs (called

agents) would be able to intelligently interact and collaborate to accomplish various kinds

of sophisticated tasks.

Web Services is tremendously improving the development and deployment of Web-based

application systems. It can reduce development time, labor and cost, and dramatically

improve application compatibility and reusability. Meanwhile, it en ables highly

interoperable application collaboration among different systems and infrastructures. This

101

section will present a perspective of the advantages Web Services brings.

5 - 1. Web Services Provides A Growing Publicly A vailable API Across The

Web

Web services are represented by the Web service providers, which are nonnally objects

that provide certain functionalities, across the Internet. Those functionalities provided by

Web service providers include manipulations and computations of the data passed over in

the requests, choreography of a series of other applications across the Web as requested,

etc.

Generally, Web service providers and requesters both are implemented as 00 programs.

A Web service requester can invoke a Web service provider by simply sending a request

message. From the service requester side, invoking a Web service is like calling a

function in its API library. (Although in the implementation underneath, Web services are

invoked through a special interface.) However, Web services are more flexible: first, Web

service providers can be objects on another system across the network; second, Web

service providers can be written in any language and running on any platfonn, which may

be different from those of Web service requesters.

A popular example of free Web services provided on the Internet is temperature report.

Many of the websites that provide trial Web services offer such a service, which can

return CUITent temperature of the area specified in the service request. For example, if an

application needs to acquire CUITent temperature in Boston, it can simply invoke either a

Web service provider on IBM's website written in Java and running on AIX, or another

Web service provider on Microsoft's website written in C++ and running on Windows

102

Server. As long as the message exchanges follow the same protocol stack binding, the

service requester does not need to care what language or platform the service provider

uses. The service requester can use such a Web service just like calling a local function

through a local API.

Today, Web services are primarily deployed internally within business systems or

between business partners. They provide a manner that enables programs developed with

different languages to freely interoperate with each other across different platforms

through a common API. With more and more chargeable and free Web services being

public1y available over the Internet, this API may be enriched without a limit and all

applications in the Internet would be able to benefit from it.

5 - 2. Web Services Introduces A Loosely Connected Application Architecture

After a number of years' efforts, enterprises have built up powerful and complicated

computer systems. These systems may inc1ude self-developed applications and purchased

software inc1uding those of Enterprise Resource Planning (ERP), Customer Relation

Management (CRM), Manufacturing Resource Planning (MRP), Ruman Resource (HR),

Management Information System (MIS), transaction systems among business partners,

etc. These systems are normally developed in different languages, running on various

platforms, and sometimes even with a different network structure. To fully and efficiently

utilize these systems' capability, the y need to be integrated through Enterprise Application

Integration (EAI).

Before Web Services, developers had to define strict and rigid interfaces between invoked

applications and the predetermined calling applications. The development had to be

carefully scheduled to make sure each invoking application and invoked application

103

would work properly before gomg to the next developing stage. Picking up the

appropriate technology to enable the interoperability among various application systems

was a more serious challenge.

Web Services introduces a common solution for EAI in a flexible way. First, it provides a

common programming and interaction interface among various application systems.

Second, it does not require application systems to be tightly combined together with

specific send-receive patterns or formats, but rather provides flexible patterns defined in

SOAP with self-described XML messages. Third, with a flexible description and

discovery mechanism, application systems can be easily redeveloped with other

languages and platforms, and redeployed without affecting other functionalities.

With the development of common provisions to improve Web Services interoperability,

application collaboration among business partners is becoming more real. Meanwhile,

more and more Web Services organizations and vendors start to provide Web services

publicly available on the Internet. With these efforts, the advantages of Web Services to

provide loosely connected application architecture will be further improved.

5 - 3. Web Services Provides A Solution For Integrated E-commerce (IEC)

IEC represents the idea behind B2B, which means to eliminate manual processes while

trading by allowing trading partners' business systems to directly exchange data.

Businesses have developed various storefronts, which provide Web page interaction to

improve the automation, to reduce customers' manual paperwork.. However, if a

customer needs to browse a large number of suppliers' website before accomplishing a

104

deal, e.g. 300 websites, this browser-server pattern will still require too many manual

steps therefore diminish the benefit of IEe.

Recently, the E-commerce portal became a better solution than the storefront. It is like an

ASP that collects the business categories of aIl the trading partners and puts them together

into the portal Customers can obtain aIl required information by simply searching through

such a portal server. Still, this solution may encounter sorne potential difficulties. For

example, if both trading partners need to keep updating their ERP systems while

interacting with the portal server, it will raise a data security concern for these business

systems.

Web Services could be a powerful and convenient way to realize the IEC for business

trading partners. It enables a customer system to communicate with multiple vendor

systems automatically only by adopting the same interface and exchange information

both with XML. Web service requesters do not directly touch the data in the service

provider systems. Instead, the service provider will accomplish the task locally, reducing

the menace to local system security.

5 - 4. Web Services Offers A Complementary Means For Software Service

Generally, a software package is sold in the form of Compact Disk (CD) or other media.

It may raise a lot of copyright concerns, such as illegal copies, illegal installations, etc.

Also, a software installation media may need to be kept for a period in order to be

reinstalled or additionally installed. But the media may be broken or damaged after stored

for a while. For a software producer, making, storing and delivering copies also add more

cost to distributing the software. Furthermore, when a piece of software requires a more

105

powerful or a new platform to run on, the user has to purchase such a platform and may

have to hire a technician to install it. In a case when the user only needs this software

occasionaIly, the cost might prove prohibitive.

Before Web Services, these problems were solved by providing various Application

Service Providers (ASPs). ASPs are third-party entities that manage and distribute

software-based services and solutions to customers across a wide area network from a

data center.

However, ASPs still have a number of disadvantages. Firstly, they cannot provide

application services for aIl available software because of legal or other limitations of the

software itself. Secondly, how to utilize the application services varies from one software

product to another, thus the aggravating its complexity. Thirdly, users need to log in to

acquire the services, which makes the security and reliability management of the ASP site

a significant consideration. Furthermore, an ASP generally is not the owner of the

software, so that its ability to improve the service is limited.

Adopting Web Services infrastructure can eliminate these disadvantages of ASPs. Each

component function of a piece of application software can be presented as a Web service

or a group of Web services. By this means, the copyright control, usability, system

security and reliability, etc., aIl can be actualized by providing a universal invoking

interface to the users.

Figure 5-2 illustrates an example that can apply Web services to provide software

services.

106

Web Services

Interface

Rack-End

--Ô?RMSJ

0-G)
O--€D

Figure 5-2 Software Service Examples

5 - 5. Web Services Enables Grid Computation Across The Web

Integration

The Web is moving into an era of computation collaboration. The idea of computation

collaboration has already expedited a few vendor-specific grid computation technologies.

"Under the coaxing of IBM, Sun Microsystems, Hewlett-Packard and others, grid

computing has been moving into the commercial realm." [83] IBM has already

announced its grid computation service to the Internet.

Although there are a number of more efficient technologies than Web Services available

for grid computation, these technologies are still vendor-specific, and often are not

Web-based. These two attributes limit grid computation to be adopted only by a small

107

group of users across the Web.

Web services are performed completely locally on the service providers' systems. It is

therefore possible to organize grid computations by appropriately provide a series of Web

services. Web Services-based grid computation can be implemented across a variety of

vendor-specific platforms and provide service to aIl users across the Internet. While more

and more Web services are becoming available on the Web, the Web Services-based grid

computation may become more powerful.

5 - 6. Web Services Fosters Flexible Low-cost Worldwide Inter-business

Solutions

Without Web Services, when two business parties want to set up a B2B connection, they

must either rely on Web pages, with which human intervention is necessary, or carefully

design and develop a stringent interface between their two business systems. For any

negotiated application that needs to communicate with the other side, a corresponding

application that performs the data exchange strictly following the predefined steps must

exist on the other side. Furthermore, which language and platform to be used and which

network infrastructure to be adopted are also critical restrictions while considering

compatibility. These constraints not only affect the system development, but also restrict

its further maintenance and improvement. Businesses are frustrated by the complexity and

stringent constraints of implementing Inter-business solutions.

With Web Services, the whole process becomes much easier. First, the parties can apply

the loosely connected architecture introduced by Web Services. Secondly, each party can

independently choose its own platforms and network infrastructure. Thirdly, each party

108

can flexibly draw its own development and deployment schedule under the overall

negotiated frame. Fourthly, once the Web services are accomplished, other Inter-business

systems can simply employ it without any modification. Furthermore, Web services can

be available across the Internet, which makes the cost of communications low far

Inter-business solutions.

Along with other advantages, Web Services is widely expected to foster global

inter-business solutions across the Internet.

5 - 7. Web Services Promotes Possibility Towards Semantic Web [82]

The inventor of the World Wide Web, Tim Berners-Lee, who is currently the director of

W3C, has proposed a new concept - The Semantic Web. It describes an intelligent Web

on which applications can understand each other's terms and logic, which are not

stringently standardized.

In a Semantic Web, programs are able to invoke and collaborate with each other. A human

can give an abstract order to an agent pro gram in the Semantic Web. This agent is able to

intelligently analyze and understand the semantic meaning of the abstract arder. It hence

selects, organizes, executes and communicates with a series of other programs to

accomplish the task defined by the original arder. Finally, the agent returns the required

result to the user.

In principle, the Web Services mechanism contributes a common communication

mechanism for agents to collaborate tasks and exchange messages, which takes a further

step towards the ultimate goal of Semantic Web.

109

CHAPTER 6

Conclusion

Still in its infancy, the Web Services mechanism holds tremendous potential to be

continuously developed and applied. The advantages it brings in, especially the common

interaction interface, would help the Internet utilization to enter a new paradigm.

Today, the Web Services infrastructure is primarily adopted for improving Enterprise

Application Integration (EAI), such as in the systems of Amazon and eBay. Web Services

breaks the interoperability barrier between various application systems.

The rising application of Web Services is to implement application collaboration among a

group of business partners, each of which is trusted by the group and agrees to participate.

These groups may grow into big industrial alliances. They will still be considered as

proprietary systems since trust is granted by human to intended business partners only.

In the future, Web Services may lead the Web to provide open services across the Internet

with a highly secure and automated infrastructure, which is likely a part of the Semantic

Web. IBM, Microsoft, Google, XMLMethods, and other institutions have already

attempted to provide publicly available Web services on their websites. The Web Services

110

mechanism is expected to be as popular as today's browser-server model for the Internet.

However, besides the obvious advantages it holds, the Web Services may also facing

potential technological obstacles for its development. For example, while too many

standards are developed, people have a lot of choices to build up their own Web Services

technology stack. This may easily decrease the interoperability between Web services

systems, and then discourage further development of this young technology. Furthermore,

lack of a universally agreed on standards for security and other feature considerations is

also a disadvantage that holds Web Services from further development and deployment.

While E-business is the industry that would benefit the most from Web Services, the

advantages of this technology are yet far from fully realized by the E-business society,

especially those application users who really have the power to decide whether or not

investing on this new technology.

The industry has already noticed these potential obstacles and started collaborating on

eliminating the negative points. It might take time. But according to the active work that

is being undertaken, many people are still optimistic about the future of Web Services.

111

REFERENCES

[1] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,

Chris Ferris and David Orchard, Web Services Architecture, W3C Working Draft 8 August

2003, W3C, at http://www.w3.orgiTR/ws-arch/.

[2] http://www.webopedia.coml.

[3] Aaron Skonnard, The Birth of Web Services, the October 2002 issue of MSDN

Magazine, at http://msdn.microsoft.comlmsdnmag/issues/02/10/xmlfiles/default.aspx.

[4] Web Services Toolkit for Mobile Devices, 25 July 2003, IBM, at

http://www.alphaworks.ibm.comltech/wstkmd.

[5] http://www.soaplite.com.

[6] T. Bemers-Lee, R. Fielding and L. Masinter, Uniform Resources Identifiers (URI):

Generic Syntax, IETF, August 1998, at http://www.ietf.orglrfc/rfc2396.

[7] R. Fielding, Relative Uniform Resource Locators, IETF, June 1995, at

http://www.ietf.org/rfc/rfc 1808.

112

[8] R. Moats, URN Syntax, IETF, May 1997, at http://www.ietf.org/rfe/rfe2141.

[9] Naming andAddressing: URIs, URLs, 000' W3C, at http://wwwow3oorg/Addressing/o

[lO]Ethan Cerami, Web Services Essentials, First Edition, 2002, O'Reilly & Associates,

Ineo

[ll]Robin Bloor, Governments Don't Understand The Electronic Economy, Bloor

Researeh, 26 September 2000, at http://www.it-direetoroeom/artic1eophp?artic1eid=1283o

[12] The Difference Between the Internet and the World Wide Web, Webopediaoeom, at

http://wwwo webopediaoeom/DidYouKnow/Intemet/2002/Web_ vs_Intemet.asp, Appendix

Ao

[13]About The World Wide Web, W3C, at http://wwwow3coorgIWWW/o

[14]Bill Gates, Microsoft oNET Today, 14 June 2001

[15]http://wwwows-ioorg/o

[16] BeepCoreoorg, at http://wwwo beepeoreoorglbeepcore/home.jspo

[17] Stephen A. Thomas, HTTP Essentials, 200 1, Wiley Computer Publishing

[18]Erie Newcomer, Understanding Web Services: XML, SOAp, WSDL and UDDI, 2002,

Addison-Wesleyo

113

[19]R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Bemers-Lee,

Hypertext Transfer Protocol-- HTTP/1.1, RFC2616, June 1999, JETF.

[20] Charles F. Goldfarb, Charles F. Goldfarb 's XML Handbook, 4th Edition, 2002,

Prentice Hall.

[21]http://www.sgmlsource.coml.

[22]Dino Esposito, XML Language, III the June 1999 Issue of Microsoft Internet

Developer.

[23]About the World Wide Web Consortium (W3C), W3C, at

http://www.w3c.orglConsortiuml.

[24]Tim Bray, Jean Paoli, C. M. Sperberg McQueen and Eve Maler, Extensible Markup

Language 1.0 (Second Edition), W3C Recommendation 6 October 2000, W3C at

http://www. w3 .orglTRlREC-xml.

[25]Aaron Skonard, Understanding XML Namespaces, July 2002, Microsoft Corp. and

CMP Media LLC.

[26]Tim Bray, Dave Hollander and Andrew Layman, Namespace In XML, World Wide

Web Consortium 14-Janauary-1999, at http://www.w3.orglTRIREC-xml-names/.

[27]Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelshon, XML

schema part 1: Structures, W3C Recommendation 2 May 2001, W3C at

http://www.w3c.orglTRlxmlschema-1I.

114

[28] Paul V. Biron and Ashok Malhotra, XML schema part 2: Datatypes, W3C

Recommendation 2 May 2001, W3C at http://www.w3c.orglTRlxmlschema-2/.

[29] David C. Fallside, XML schema part 0: Primer, W3C Recommendation, 2 May 2001,

W3C at http://www.w3c.org/TRlxmlschema-0/.

[30] Cascading Style Sheet, W3C, at http://www.w3.orgiStyle/CSS/.

[31] The Extensible Stylesheet Language Family (XSL) , W3C, at

http://www.w3.org/Style/XSU.

[32] Document abject Model (DOM), W3C, at http://www.w3c.orgIDOMI.

[33]About SAX, at http://www.saxproject.org/.

[34]About XML-DEV, XML.org, at http://www.xml.orglxml/xmldev.shtml.

[35]Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh, XPointer Framework,

W3C Recommendation 25 March 2003, W3C, at http://www.w3.orglTRlxptr-framework/.

[36]James Clark, Steve DeRose, XML Path Language (XPath) Version 1.0, W3C, at

http://www. w3 . orglTRlxpath.html

[37]Steve DeRose, Eve Maler, David Orchard, XML Linking Languae (XLink) Version 1.0,

W3C, at http://www.w3.orglTRlxlink/.

[38] Scott Boag, Don Chamberlin, Mary F. Femandez, Daniela Florescu, Jonathan Robie

115

and Jerome Simeon, XQuery 1.0: An XML Query Language, W3C working draft 22

August 2003, W3C, at http://www.w3.orgrrRlxquery/.

[39] Cover Stories, OASIS, at http://xml.coverpages.org/ni2003-06-12-b.html.

[40] Dave Winer, Dave's History of SOAp, Sat, Sep 25, 1999, at

http://www.xmlrpc.comlstories/storyReader$555 , Appendix B.

[41]Dave Winer, XML-RPC Specification, 15 June 1999, Userland Software Inc. at

http://www.xmlrpc.comlspec.

[42] Nilo Miltra, SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 June 2003,

W3C at http://www.w3.org/TRlsoap12-partO/.

[43]Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik

Frystyk Nielsen, SOAP Version 1.2 Part 1: Messaging Framework, W3C

Recommendation 24 June 2003, W3C at http://www.w3.orgITRlsoap12-partll.

[44]Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik

Frystyk Nielsen, SOAP Version 1.2 Part 2: Adjuncts, W3C Recommendation 24 June

2003, W3C at http://www.w3.orglTR/soap12-part2/.

[45]John Cowan and Richard Tobin, XML Information Set, W3C Recommendation 24

October 2001, at http://www.w3.org/TRlxml-infoset/.

[46]Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, and Sanjiva Weerawarana,

Web Services Description Language (WSVL) Version 1.2 Part 1: Core Language, W3C

116

Working Draft 11 June 2003, W3C at http://www.w3.orglTR/wsd112/.

[47]Martin Gudgin, Amy Lewis, and Jeffrey Schlimmer, Web Services Description

Language (WSDL) Version 1.2 Part 2: Message Patterns, W3C Working Draft 11 June

2003, W3C at http://www.w3.org/TR/wsd112-patterns/.

[48]Jean-Jacques Moreau and Jeffrey Schlimmer, Web Services Description Language

(WSDL) Version 1.2 Part 3: Bindings, W3C Working Draft 11 June 2003, W3C at

http://www.w3.orgiTR/wsdlI2-bindings/.

[49] Tom Bellwood, Luc Clément, David Ehnebuske, Andrew Hately, Maryann Hondo,

Yin Leng Husband, Karsten Januszewski, Sam Lee, Barbara McKee, Joel Munter, and

Claus von Riegen, UDDI Version 3.0 - UDDI Spec Technical Committee Specification, 19

July 2002, OASIS at http://uddi.orglpubs/uddi-v3.00-published-20020719.htm.

[50]J. Postel, J. Reynolds, File Transfer Protocol, RFC 959, October 1985, IETE

[51]J. Postel, Simple Mail Transport Protocol, RFC821 , August 1982, IETE

[52] Gabriel Minton, IIOP Specification: A Closer Look, Unix Review, 1997.

[53]Ed Dumbill, XML Watch: Bird's Eye BEEP, December 2001, at

http://www-l06.ibm.comldeveloperworks/xmllli brary/x -beep/.

[54]Ed Dumbill, XML Watch: Worm's Eye BEEp, March 2002, at

http://www-l06.ibm.comldeveloperworks/library/x-beep2.html.

117

[55]Frank Leymann and Dieter Roller, Business processes in a Web services world - A

quick overview of BPElAWS, August 2002, IBM at

http://www-106.ibm.com/developerworks/webservices/library/ws-bpelwp/.

[56]Tony Andrews, Fancisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,

Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic,

and Sanjiva Weerawarana, Business Pro cess Execution Language for Web Services -

Version 1.1, 5 May 2003, Copyright BEA, IBM, Microsoft, SAP, Siebel.

[57] http://www.RosettaNet.orgl.

[58] RosettaNet Background Information, RosettaNet, at

http://www.rosettanet.org/background.

[59]How ebXML Will Transform the Software Industry at

http://www.webservices.orglindex.php/artic1e/artic1eview/399/1/22/, Appendix C.

[60]About ebXML, OASIS, at http://www.ebxml.org/geninfo.htm.

[61]http://www.ebxml.org/.

[62] Benoît Marchal, ebXML: Introducing The Vision, at

http://www.developer.com/xml/artic1e. php/2204681.

[63]ebXML Technical Architecture Project Te am , ebXML Technical Architecture

Specification vl.O.4, ebXML, 16 February 2001.

118

[64]OASIS ebXML Messaging Services Technical Committee, Message Service

Specification version 2.0, OASIS, 1 April 2002.

[65] Mike Rawlins, Mark Crawford, Don Rudie, Thomas Wamer, Kenji Itoh, Jean Kubler,
Kathleen Tyson-Quah, David R.R. Webber, Garrett Minakawa, Turochas Fuad, Dr.
Marcia McLure, Norbert Mikula, Christopher Lueder, Scott Hinkelman, Ravi Kackar,
Doug Hopeman, Gaile L. Spadin, Sangwon Lim, ebXML Requirement Specificationv1.06,
UN/CEFACT and OASIS 2001.

[66] Henrik Frystyk Nielsen and Hervé Ruellan, SOAP 1.2 Attachment Feature, W3C, at

http://www.w3.org/TR/2002IWD-soap12-af-20020924/

[67]Robert McMillan, Web Services Visionary, 17 June 2003, IBM, at

http://www-106.ibm.comldeveloperworks/webservices/li brary /ws-samruby.html,

Appendix D.

[68]Security in a Web Services World: A Proposed Architecture and Roadmap - A joint

security whitepaper Jrom IBM Corporation and Microsoft Corporation Version 1.0, 7

April 2002, IBM & Microsoft at

http://www-106.ibm.comldeveloperworks/webservices/library/ws-secmap/ .

[69]Bemi Dwan, Web Services - Not Quite There Yet, Computer Fraud & Security

October 2002, Page 14-16.

[70]Barbara Gengler, Web Services Push, Computer Fraud & Security, April 2002, Page

4.

[71] Janice J. Heiss, The Future oJWeb Services Security: A Conversation with Eve Maler,

March 2003, Sun at http://java.sun.comlfeaturesI2003/03/webservices-qa.html.

119

[72] Elspeth Wales, Web Services Security, Computer Fraud & Security Feb. 2003 issue.

[73] Roger Cutler, RE: "Orchestration" and "Choreography", W3C, at

http://lists. w3 .org/ Archi ves/Public/www -ws-arch/2002Augl0224.html

[74]Chris Peltz, Web Services Orchestration, a review of emerging technologies, tools

and standards, January 2003, Hewlett Parkard.

[75]Web Services Interoperability Organization, Web Service Profiles - An Introduction

version 1.0, 6 February 2002, IBM & Microsoft.

[76] Keith Ballinger, David Ehnebuske, Martin Gudgin, Mark Nottingham, and Pras ad

Yendluri, Basic Profile Version 1.0 Working Group Approval Draft Date: 2003/05/20,

WS-I.

[77]Colleen Evans, Dave Chappell, Doug Bunting, George Tharakan, Hisashi Shimamura,

Jacques Durand, Jeff Mischkinsky, Katsutoshi Nihei, Kazunori Iwasa, Martin Chapman,

Masayoshi Shimamura, Nicholas Kassem, Nobuyuki Yamamoto, Sunil Kunisetty,

Tetsuya Hashimoto, Tom Rutt, and Yoshihide Nomura, Web Services Reliability

(WS-Reliability) version 1.0,8 January 2003, Fujitsu, Hitachi, NEC, Oracle, Sonic, Sun.

[78]Felipe Cabrera, George Copeland, Tom Freund, Johannes Klein, David Langworthy,

David Orchard, John Shewchuk, and Tony Storey, Web Services Coordination

(WS-Coordination), BEA, IBM and Microsoft.

[79] OASIS and RosettaNet Form Standards Development to Implementation Alliance, at

http://www.webservices.orglindex.php/article/articleview/1035/1/3/.

120

[80]Uche Ogbuji, The Past, Present And Future Of Web Services, Part 1, 28 September

2002, at http://www. webservices.orglindex. php/article/articleview/663/1I61/.

[81]Uche Ogbuji, The Past, Present And Future Of Web Services, Part 2,7 October 2002,

at http://www. webservices.orglindex. php/ article/ articleview /679/1/61/.

[82]Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web, Scientific

American, May 2001.

[83] Stephen Shankland, IBM stretches grid business, 27 April 2003, CNET News.com, at

http://news.com.com/2100-1010-998429.html.

[84]M. Rose, The Blocks Extensible Exchange Proto col Core, RFC3080, March 2001,

IETF.

[85]Ramesh Nagappan, Robert Skoczylas and Rima Patel Srignaesh, Developing Java

Web Services - Architecting and Developing Secure Web Services Using Java, 2003,

Wiley Publishing Inc.

[86] Frank P. Coyle, XML, Web Services and the data Revolution, 2002, Addison-Wesley

[87] Harvey M. Deitel, Web Services: a Technical Introduction, 2003, Prentice Hall

[88]Doron Sherman, BPEL: Make Your Services Flow - Composing Web Services Into

Business Flow, Web Services Journal, at

http://www.sys-con.com/webservices/articleprint.cfm?id=589.

121

[89]Jon Udell, Orchestrate Services, 5 July 2002, at

http://www.infoworld.comlarticle/02/07 /05/020708pl weborch_l.html.

[90] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David

Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-Nagy, Ivana

Trickovic, and Sinisa Zimek, Web Services Choreography Interface (WSCI) 1.0, W3C

Note 8 August 2002, BEA, Intalio, SAP and Sun at http://www.w3.orgiTR/wsci/.

[91]Beth Blakely, The Future Of Web Services, 30 August 2002, At

http://www.zdnet.com.au/itmanager/trends/story/0.2000029592.20267816.00.htm.

[92]Dan Gisolfi, The Web Services Architect: Catalysts For Fee Based Web Services, 1

November 2001, at

http://www-l06.ibm.comldeveloperworks/webservices/li brary/ws-arc6/.

[93] http://www.coverpages.org/.

[94] Web services are next IT stonn, Forrester CEO says, Webservices.org, at
http://www. webservices.orglindex. php/article/articleview/95111/7 /.

122

APPENDICES

AppendixA

The Difference Between the Internet and the World Wide Web

- Webopedia. corn,

at http://www.webopedia.com/DidYouKnow/Internet/2002/Web _vs_Internet. asp

Many people use the terms Internet and World Wide Web (a.k.a. the Web)

interchangeably, but in fact the two terms are not synonymous. The Internet and the Web

are two separate but related things.

The Internet is a massive network of networks, a networking infrastructure. It connects

millions of computers together globally, forming a network in which any computer can

communicate with any other computer as long as they are both connected to the Internet.

Information that travels over the Internet does so via a variety of languages known as

protocols.

The World Wide Web, or simply Web, is a way of accessing information over the medium

of the Internet. It is an information-sharing model that is built on top of the Internet. The

Web uses the HTTP protocol, only one of the languages spoken over the Internet, to

transmit data. Web services, which use HTTP to allow applications to communicate in

order to exchange business logic, use the Web to share information. The Web also utilizes

browsers, such as Internet Explorer or Netscape, to access Web documents called Web

123

pages that are linked to each other via hyperlinks. Web documents also contain graphies,

sounds, text and video.

The Web is just one of the ways that information can be disseminated over the Internet.

The Internet, not the Web, is also used for e-mail, which relies on SMTP, Usenet news

groups, instant messaging and FrP. So the Web is just a portion of the Internet, albeit a

large portion, but the two terms are not synonymous and should not be confused.

124

Appendix B

Dave's History of SOAP

- Sep 25, 1999 by Dave Winer

at http://www.xmlrpc.com/stories/storyReader$555

SOAP worked with Dave as they knew XML RPC was the existing protocol. It annoys

me that everyone wants to be a superstar and in vent new protocols without consulting

people who are already doing it.

That's not exactly true. Before folklore becomes reality, XML-RPC was originally,

privately, called SOAP, when Don Box and 1 were working with Bob Atkinson and

Mohsen Al-Ghosein at Microsoft, in early 1998.

UserLand had a protocol before that called "RPC", 1 announced it in DaveNet, and the y

asked if rd like to work with them on this.

1 put a hold on our work and posted a heads-up to Prontier developers that the spec might

be changing, based on the first meeting we had with the Microsoft folks.

We quickly implemented a client and server for what was then called SOAP, and Mohsen

wrote a client and server too, in JavaScript 1 believe, and we got them working together.

125

Then a lot of other MS people got in the loop, and the arguing began, and it dragged on

for weeks.

1 talked privately with sorne of my friends, "What do 1 do?". We analyzed the choices. 1

could stay with the program with MS, and now we know where that would have led. We

would have waited over a year, with our users in limbo.

We could go back to the "RPC" format, but we had already implemented the "SOAP"

server/client, and it was much better than the old one (the old one didn't have <struct>s or

<array>s).

Or we could change the name to something else and release it publicly. 1 asked the MS

guys how the y felt about this, and they said nothing. So 1 sucked in my breath, released

the spec as XML-RPC, and waited for them to squash me (1 was trained by Apple, who

definitely would have crossed me off their list for not being their slave). They never

squashed, and in fact, they kept inviting me to meetings to discuss this or that about their

spec, which was evolving into something that would be hard to see as originating from

the XML-RPC spec.

To me, it was most important to get Microsoft out publicly promoting the idea of low-tech

wire protocols based on the standards of the Internet. 1 would have been just as happy

with support from mM, Oracle, Sun, Apple, Netscape, whatever, because 1 know that the

value of a big name is essential in making something like this stick. Once we had a basic

agreement with MS on what became XML-RPC 1 went on a private tour of execs in the

industry, but none of them (1 think) had a clue what 1 was talking about. Microsoft, on the

other hand, as a group, got it immediately, aIl the way to the top, 1 emailed with Gates on

this several times.

126

Intemally, they acted like a standards body, with people from IETF and W3C arguing

over aIl kinds of things. 1 had no time for the arguments. 1 basically said yes to everyone.

Go for it. Let's do it, 1 kept saying. But it kept dragging on.

Now we're implementing our SOAP stuff, and we'll plug it in behind aIl the interfaces

we're doing. When 1 say XML-RPC now, 1 mean SOAP *and* XML-RPC. Any interface

1 define now will also be a SOAP interface when we get our server running. Bierman is

working on that, for now, but 1 expect that Andre and 1 will take it over soon.

Anyway, l'm rambling. The bottom line is that people *will* reinvent the wheel. It always

works that way. Instead of hating them for doing it, love them for it and make sure that

we can hide their differences behind scripting APIs. Then everyone can win, and no one

will be threatened by repeating innovation loops.

127

Appendix C

How ebXML Will Transform the Software Industry

- WebServices.org

at http://www. webservices .org/index. php/ article/ articleview /399/1/22/

We talk to Dieter Jenz about his latest report on ebXML and its consequences for the

software industry

Most people will agree that there is a definite need for a univers al, standards-based

business collaboration infrastructure that supports inter-enterprise as weIl as

intra-enterprise integration, provides out-of-the-box interoperability and is available at

low cost. Part of the ebXML initiative is to offer such a solution. ebXML is an initiative

jointly sponsored by UN/CEFACT and OASIS and has developed a set of specifications

endorsed by major industry consortia. Already there are several implementations of core

ebXML specifications and organizations have started pilot projects. The most notable is

the Automobile Industry in the US (www.aiag.org) who use ebXML in practice to

collaborate and trade.

Dieter Jenz of Jenz & Partner has recently written a paper on the impact ebXML will

have on the software industry. He shared with us sorne of his key findings.

128

He findings indicate there is a wide market for ebXML, if it can solve real problems. He

states that "There is virtually no organization that is not striving for optimalleverage of IT

resources, how to better automate business processes and to connect business processes

with business partners. In pursuing the highly strategie objective of aligning IT with

business, IT managers want interoperability, being tired of aIl the hassles that are incurred

with plumbing together a plethora of application systems."

Until now EDI has had a high entry barrier in terms of cost and effort. This has hindered

its progress in first-generation B2B, and is yet to become a widely used business

collaboration technology. Dieter explains "As a consequence,· enterprises had to retain

their paper-based business processes to do business with business partners that have not

committed to ED!."

The ebXML future

After the advent of XML, several initiatives have started to pave the way for the

establishment of an XML-oriented, standards-based business collaboration infrastructure,

which allows business partners to connect their business processes. Today, three major

business collaboration infrastructure architectures exist: ebXML, RosettaNet and

Microsoft's BizTalk.

Dieter in particular favours ebXML to lead the way forward. He says "At present, ebXML

is the only non-proprietary horizontal business collaboration infrastructure architecture

that provides integration at the business process level."

The question asked by many is, will ebXML work in practice? It is acknowledged that a

common business collaboration infrastructure yields tremendous synergy effects and will

129

lead to significantly reduced costs for inter-enterprise as weIl as intra-enterprise business

integration. Dieter is one of many who believe that the business value goes far beyond the

level of CUITent business process integration solutions.

The move to BPM

It has been widely suggested that the advent of ebXML marks an important turning point

in the system integration industry towards Business Process Integration broker technology.

Dieter says that the move towards application architectures "will exploit the power of

multiple servers (application server, database server, presentation server) and the

separation of application logic, data access logic, presentation logic, and process control

logic facilitates this transition". In essence he means that the focus will shift from

integration at the data level to integration at the process flow level.

Where do Web Services play a role

Web Services and ebXML will complement each other. For example a Business Process

Management System (BPMS) will assume the role of a broker, participating in

inter-enterprise business collaborations (public processes) and connecting them with

internaI business processes (private processes). The role of Application integration will

fall to Web Services.

Dieter sees Web Services as the glue in this system. "Web Services provide technical

interoperability in that the technology allows a service requester (the BPMS) to interact

with a service provider via messages of definite language-neutral and platform-neutral

format" he states.

130

What work remains to be done

While it is "so far so good", there is still work to be done. The fact remains that ebXML is

content-agnostic, meaning that it restricts itself to providing a technical collaboration

infrastructure. In effect this means it only defines the envelope used to transport content

from sender to recipient and sorne of the processes and structures of how business could

take place. The actual business documents such as an application form for an insurance

product, is not specified.

Dieter told us, "The content in the form of business documents is defined by industry

bodies, such as the Open Applications Group (OAG). Likewise, ebXML only defines the

Business Process Specification Schema, but does not define concrete business processes".

Still much work remains to be completed on such business documents, and this is a

possible hindrance to the future take up of ebXML systems. Dieter looks to the work of

the UBL to provide the answers. He says "The Uni vers al Business Language (UBL)

Technical Committee is working under the auspices of OASIS. It is chartered with the

development of a standard library of XML business documents. UBL is intended to

bec orne an international standard for electronic commerce. UBL is still at an early stage

in development. Although UBL and OAG's Business Object Document (BOD) definitions

overlap since they define content for the same things, companies should not shy away

from committing to a widely recognized industry standard, which OAGIS is today."

Dieter concludes, "In our research report, we have analyzed who are the driving forces

pushing towards the adoption of a standards-based business collaboration platform, who

will benefit from this sweeping move and who will lose. One of our key findings it that

Software vendors will OEM core infrastructure components, enabling systems integrators

131

to offer best-of-breed solutions at as yet unprecedented pnce points. Solutions will

become available starting from $5,000, which makes them affordable for smaller

companies. "

"EAI software vendors will be affected most, forcing them to review and modify their

current business strategies. EAI is a tactical issue while BPM is considered strategic.

Rence, EAI vendors need to move up the "food chain", meaning that focusing on data

integration is no longer a viable strategy for EAI vendors."

132

Appendix D

Web services visionary (Part)

Sam Ruby's job is to see into the future of Web services

- June 17, 2003 by Robert McMillan

at http://www-106.ibm.com/developerworks/webservices/li brary/ws-samruby.html

Sam Ruby, a member of the mM Emerging Technologies Group, has become a key part of

several Web services-related open source projects over the last three years, including Tomcat

and the mM SOAP stack. He's still contributing both his code and his insight to the community.

He spoke with Bob McMillan on a number of topics, including the appeal of open source, the

future of Web services, and the power of Web logs

[developerWorks represents the interviewer, Ruhy represents Sam Ruby]

developerWorks: There are so many emerging Web services standards, and groups that

these standards can go through, and then there's this de facto open source way of

developing standards. It seems very easy to get confused about what standards are

emerging where, and what standards efforts are important to watch. Does this all make

sense to you?

133

Ruby: 1 think the short answer to that is that 1 don't think anybody knows which way it's

going. What we've got is lots of people with cornpeting interests. No one pers on knows

exactly the right answer for the future. But instead of going like we have done in the past

and say, "Let's build this hurnongous standard like CORBA," and you've got to agree to

every single aspect of it in order to have an irnplernentation. ... What we're doing

collectively -- not sornething that IBM's doing or Microsoft's doing, but what the whole

industry is doing -- is defining this, in steps. And what you get is a bit of confusion. You

get a bunch of people with opposing standards -- sorne of which live, sorne of which die.

ln the process, the industry -- l'rn not saying IBM or anyone in specifies -- is trying lots of

venues, whether it's W3C or OASIS or just sirnply publishing a URL out in the Web and

not going through any standards body.

There have been a nurnber of noticeable failures. Microsoft originally put out SOAP With

Attachrnents, th en later said that was a failure, and then they put out this other thing

called DIME, and now they're saying that was a fail ure , and the best thing to do is go

back with SOAP With Attachrnents when you've got to, but actually put the data in the

XML infoset when you cano

So what you're seeing there are people trying this, seeing if it works, seeing if other

people rally around it. We don't know yet which of these standards will be used five years

frorn now. However, the basics, like SOAP and WSDL, seern to have gotten a lot of

traction and don't seern to be going away.

134

