
Information Sciences 441 (2018) 171–186

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Opportunistic mining of top- n high utility patterns

Junqiang Liu

a , ∗, Xingxing Zhang

a , Benjamin C.M. Fung

b , Jiuyong Li c ,
Farkhund Iqbal d

a School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
b School of Information Studies, McGill University, Montreal, Quebec H3A 1X1, Canada
c School of Information Technology & Mathematical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
d College of Technological Innovation, Zayed University, United Arab Emirates

a r t i c l e i n f o

Article history:

Received 18 December 2016

Revised 10 December 2017

Accepted 15 February 2018

Available online 15 February 2018

Keywords:

Utility mining

Pattern mining

High utility patterns

Frequent patterns

Top- n interesting patterns

a b s t r a c t

Mining high utility patterns is an important data mining problem that is formulated as

finding patterns whose utilities are no less than a threshold. As the mining results are

very sensitive to such a threshold, it is difficult for users to specify an appropriate one.

An alternative formulation of the problem is to find the top- n high utility patterns. How-

ever, the second formulation is more challenging because the corresponding threshold is

unknown in advance and the solution search space becomes even larger. When there are

very long patterns prior algorithms simply cannot work to mine top- n high utility patterns

even for very small n .

This paper proposes a novel algorithm for mining top- n high utility patterns that are

long. The proposed algorithm adopts an opportunistic pattern growth approach and pro-

poses five opportunistic strategies for scalably maintaining shortlisted patterns, for effi-

ciently computing utilities, and for estimating tight upper bounds to prune search space.

Extensive experiments show that the proposed algorithm is 1 to 3 orders of magnitude

more efficient than the state-of-the-art top- n high utility pattern mining algorithms, and

it is even up to 2 orders of magnitude faster than high utility pattern mining algorithms

that are tuned with an optimal threshold.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

High utility pattern mining [40] has recently emerged to address the limitation of frequent pattern mining by considering

the user’s expectation as well as the raw data. Among several high utility pattern mining problems [9,10,18,21,28,30,38,39] ,

mining high utility patterns with the share framework [18,38,39] is the hardest. This problem is difficult to solve since the

utility measure is neither anti-monotone nor monotone. Many algorithms [6,13,19,20,27,32,34,38] resort to an interim, anti-

monotone measure, called transaction weighted utilization (TWU), and work in two phases. UP-Growth+ [32,34] is the best

two-phase algorithm, but it suffers from the scalability and efficiency bottleneck due to the huge number of high TWU pat-

terns (candidates) generated in Phase I. Recently, one-phase algorithms [24–26,41] were proposed to address the bottleneck,

among them is the HUI-Miner algorithm [26] . HUI-Miner is not scalable due to its vertical data structure and is not

efficient when mining large databases due to its join operations on the vertical structure. EFIM [41] and d 2 HUP [24,25] are

the latest one-phase algorithms.
∗ Corresponding author.

E-mail address: jjliu@alumni.sfu.ca (J. Liu).

https://doi.org/10.1016/j.ins.2018.02.035

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.02.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.02.035&domain=pdf
mailto:jjliu@alumni.sfu.ca
https://doi.org/10.1016/j.ins.2018.02.035

172 J. Liu et al. / Information Sciences 441 (2018) 171–186

On the other hand, it is difficult for users to specify a minimum utility threshold as the mining results are very sensitive

to the threshold. An alternative is to reformulate the problem by applying the top- n interesting pattern model [16] , i.e.,

to find top- n high utility patterns. The general approach to the top- n interesting pattern mining problem [1,12,15,35,37] is

to dynamically raise a border threshold that will eventually reach the optimal minimum threshold that results in top- n

interesting patterns while the optimal threshold is unknown in advance. Clearly, the second formulation means a much

larger solution search space and a computationally more challenging problem.

There are very few works on the top- n high utility pattern mining problem, probably due to the aforementioned chal-

lenges. The TKU [33,36] and TKO [33] algorithms are the latest. TKU [33,36] extends UP-Growth+ [32,34] . The bottle-

neck with UP-Growth+ persists and becomes worse with TKU since the border threshold cannot be raised to the optimal

threshold in Phase I. TKO [33] extends HUI-Miner [26] and also inherits the challenges with HUI-Miner [26] , i.e., it is

not scalable and not efficient when mining large databases.

Moreover, when there are extremely long patterns, TKU and TKO simply cannot work even for very small n , for example,

for n = 10 on the BMS-WebView-1 and Pumsb databases where the maximum pattern lengths are 148 and 22, respectively.

These challenges stem from the inherent complexity of the top- n high utility pattern mining problem.

To address the challenges, this paper proposes a novel algorithm called TONUP (TOp-N high Utility Pattern mining) that

directly grows top- n high utility patterns by enumerating patterns as prefix extensions, by shortlisting patterns with the

first n greatest utilities among the enumerated patterns, and by employing the n -th greatest utility as a border threshold to

prune the search space.

Our contributions are listed as follows, including five opportunistic strategies that are not used in prior algorithms.

First, our TONUP algorithm is the first efficient and scalable algorithm that can find the top- n high utility patterns that

are extremely long. TONUP extends the d 2 HUP algorithm [24,25] with the top- n interesting pattern model and embodies an

opportunistic pattern growth approach. TONUP improves d 2 HUP by an improved data structure iCAUL and two strategies,

which is why TONUP beats d 2 HUP by a factor up to 8 when both are tuned with an optimal threshold.

• The AutoMaterial strategy is to make a balance between pseudo projection and materialized projection of transaction

sets that are maintained in iCAUL, by a self-adjusting threshold.

• The DynaDescend strategy is to help raise the border threshold and prune search space by dynamically resorting items

in the descending order of local utility upper bounds, which is different from the static ordering employed in d 2 HUP ,
while TKO and TKU employ an improper ordering.

Second, more opportunistic strategies dedicated to top- n high utility pattern mining are proposed for taking every op-

portunity to improve the efficiency and scalability, which facilitates the full-strength TONUP .

• The ExactBorder strategy is to quickly raise the border threshold by the exact utility of each enumerated pattern, which

is more effective than four strategies in TKU and one strategy in TKO that raise the border threshold by estimating utility

lower bounds.

• The SuffixTree strategy is to efficiently maintain shortlisted patterns by a suffix tree, which is much more efficient than

by linear lists, such as arrays. When shortlisting patterns, TONUP considers the ties for the n -th greatest utility, which is

ignored in TKO and TKU .
• The OppoShift strategy is to opportunistically shift to a two-round approach when the enumerated patterns are ex-

tremely long, which improves efficiency in orders of magnitude in such a case.

Third, insights into our approach and strategies are presented based on complexity analysis and extensive experimental

comparison with the state-of-the-art algorithms. Concretely, the proposed algorithm TONUP is 1 to 3 orders of magnitude

more efficient than the top- n high utility pattern mining algorithms TKO [33] and TKU [33,36] , and is 1 to 2 orders of mag-

nitude faster than the high utility pattern mining algorithms UP-Growth+ [32,34] , HUI-Miner [26] , and EFIM [41] tuned

with an optimal threshold unknown to TONUP .
The rest of the paper is organized as follows. Section 2 defines the top- n high utility pattern mining problem.

Section 3 surveys the related works. Section 4 proposes our opportunistic pattern growth approach. Section 5 proposes

opportunistic strategies for efficiency and scalability. Section 6 evaluates our algorithm by comparing it with the state-of-

the-art algorithms. Section 7 analyzes each strategy that facilitates our approach. Section 8 concludes the paper.

2. Top- n high utility pattern mining problem

Let I be the universe of items. Let D be a database of transactions { t 1 , . . . , t n } , where each transaction t i ⊆I . Each item in a

transaction is assigned a non-zero share or quantity. Each distinct item has a weight or price independent of any transaction,

given by an eXternal Utility Table (XUT). The research problem is formally defined as follows.

Definition 1. The utility of an item i in a transaction t , denoted u (i, t), is a function f of the share of i in t, iu (i, t), and the

weight of i independent of any transaction, eu (i). That is, u (i, t) = f (iu (i, t) , eu (i)) . We also call iu (i, t) the internal utility of

i in t , and eu (i) the external utility of i .

J. Liu et al. / Information Sciences 441 (2018) 171–186 173

Table 1

Transaction database D and external utility table XUT .

(a) Transaction database (b) External utility table

TID Item Item Price ($)

a b c d e f g

a 1

t 1 1 1 1 b 3

t 2 6 2 2 5 c 5

t 3 1 1 1 2 6 5 d 2

t 4 3 1 4 3 e 2

t 5 2 1 2 2 f 1

g 1

 .

Definition 2.

(a) A transaction t contains a pattern X if X ⊆t , which means that for every item i in X, iu (i, t) � = 0.

(b) The transaction set of a pattern X , denoted TS (X), is the set of transactions that contain X . The number of transactions

in TS (X) is the support of X , denoted s (X).

Definition 3.

(a) For a pattern X contained in a transaction t , i.e., X ⊆t , the utility of X in t , denoted u (X, t), is the sum of the utility of

every constituent item of X in t , i.e.,

u (X, t) =

∑

i ∈ X⊆t

u (i, t) .

(b) The utility of X , denoted u (X), is the sum of the utility of X in every transaction containing X , i.e.,

u (X) =

∑

t∈ T S(X)

u (X, t) =

∑

t∈ T S(X)

∑

i ∈ X
u (i, t) .

Example 1. For D and XUT in Table 1 , I = { a,b,c,d,e,f,g}, and u (i, t) = eu (i) · iu (i, t) . For transaction t 1 = {a,c,e}, we have

iu (a , t 1) = 1 , iu (c , t 1) = 1 , iu (e , t 1) = 1 , eu (a) = 1 , eu (c) = 5 , and eu (e) = 2 . And u (a , t 1) = 1 , u (c , t 1) = 5 , and u (e , t 1) = 2

TS ({a,c }) = { t 1 , t 2 , t 3 } , s ({ a,c }) = 3 , u ({a,c }) = u ({ a,c } , t 1) + u ({ a,c } , t 2) + u ({ a,c } , t 3) = u (a , t 1) + u (c , t 1) + u (a , t 2) + u (c , t 2) +
u (a , t 3) + u (c , t 3) = 28 , and so on.

Definition 4. A pattern X is a high utility pattern , abbreviated as HUP, if the utility of X is no less than a user-defined

minimum utility threshold, μ.

High utility pattern mining is to discover the set, HUPset (μ), of all high utility patterns from a database D given an

external utility table XUT and μ, i.e., HUP set(μ) = { X| X ⊆ I, u (X) ≥ μ} .
Definition 5. A pattern X is a top- n high utility pattern , abbreviated as top- n HUP, if there are fewer than n patterns whose

utilities are greater than the utility of X . In other words, X is a top- n HUP if u (X) ≥μ∗(n), where μ∗(n), called the optimal

minimum utility threshold, is the n -th greatest pattern utility among the utilities of all patterns.

Top- n high utility pattern mining is to find the set, HUPset ∗(n), of all top- n high utility patterns, given D, XUT , and n ,

i.e., HUP set ∗(n) = HUP set(μ∗(n)) = { X| X ⊆ I, u (X) ≥ μ∗(n) } .
Example 2. Given n = 6 , we have μ∗(n) = 30 . Thus, {a,c} is not a top- n high utility pattern as u ({a,c }) = 28 < μ∗(n) , {a,b,c}

is as u ({a,b,c }) = 31 , and so on. Consequently, HUP set ∗(6) = HUP set(30) = { {a,b,c}, {a,b,d}, {a,d,e}, {a,b,d,e}, {b,d,e}, {d,e},

{a,b,c,d,e,g} }. Note that {d,e} and {a,b,c,d,e,g} are tied for the 6th place with a utility of 30. Finding HUPset ∗(n) is harder

than finding HUPset (μ) because μ∗(n) is unknown in advance.

3. Related works

3.1. Frequent pattern mining

Conceptually, frequent patterns [4,5,11,17,31] and high utility patterns [18,38–40] can be organized by a tree, and the min-

ing process can be thought of as searching such a tree. Mining algorithms fall into two categories: breadth-first search and

depth-first search. Apriori by Agrawal and Srikant [4] and FP-growth by Han et al. [17] are well-known frequent pattern al-

gorithms of the two categories, respectively. Generally, depth-first search algorithms [2,7,8,17,29] achieve better performance

than breadth-first search algorithms [3,4] . In particular, FP-growth [17] outperforms Apriori [4] .

174 J. Liu et al. / Information Sciences 441 (2018) 171–186

3.2. High utility pattern mining with the share framework

Hilderman et al. and Yao et al. [18,38–40] proposed the utility mining problem with the itemset share framework. Liu

et al. [27] proposed the TWU (transaction weighted utilization) property and developed the Two-Phase algorithm by adapt-

ing Apriori [4] , which generates high TWU patterns (candidates) in Phase I and identifies high utility patterns from can-

didates in Phase II. Many algorithms adopt the two-phase approach [6,13,19,20,32,34] . Tseng et al. [32,34] proposed the

best two-phase algorithms, UP-Growth and UP-Growth+ , based on FP-growth. UP-Growth employs four strategies: DGU,

DGN, DLU, and DLN. UP-Growth+ uses two more strategies: DNU and DNN.

Recently, one-phase algorithms [24–26,41] were proposed. Liu and Qu [26] proposed HUI-Miner that employs a vertical

data structure, called utility-lists, and performs join operations on utility-lists. Liu et al. [24,25] proposed d 2 HUP with a

few contributions. First, two utility upper bounds facilitate the powerful pruning of the search space. Second, a linear data

structure enables efficient computation of utilities and upper bounds. Third, a singleton property and a closure property help

identify high utility patterns without enumeration. Fourth, a pattern growth approach searches a reverse set enumeration

tree and employs a static sorting of items to enhance the likelihood for pruning. Zida et al. [41] proposed EFIM , which

shares the same pattern growth approach, pruning techniques, and utility upper bounds as d 2 HUP [24,25] . The contributions

are new database projection, transaction merging, and utility counting techniques suitable for dense databases with short

patterns. But, d 2 HUP outperforms EFIM on dense databases with long patterns and on sparse and mixed databases by up

to 2 orders of magnitude in efficiency.

This paper enhances d 2 HUP [24,25] by an improved data structure, extends it with the top- n interesting pattern model,

and proposes five new strategies to improve the scalability and efficiency.

3.3. Top- n interesting pattern mining

Fu et al. [16] proposed the top- n interesting pattern mining model. Wang et al. [35] proposed the TFP algorithm for

mining top- n frequent closed patterns. Afrati et al. [1] proposed using n patterns to approximate frequent patterns. Xin

et al. [37] proposed a method for extracting n -representative patterns. Cong et al. [12] discovered top- n covering rule groups

for each row of gene expression profiles. Fournier-Viger and Tseng proposed algorithms for mining top- n association rules

[15] and top- n sequential rules [14] .

Wu et al. [36] and Tseng et al. [33] proposed TKU and TKO , and Zihayat et al. proposed T-HUDS [42] , for mining top- n

high utility patterns. TKU [33,36] extends UP-Growth+ [32,34] and works in two phases. It incorporates the PE, NU, MD,

and MC strategies for estimating lower bounds on utilities of candidates in Phase I and the SE strategy for sorting candidates

in Phase II. T-HUDS [42] also works in two phases and has the same performance as TKU . TKO [33] extends HUI-Miner
[26] with the top- n interesting pattern model by the RUC strategy and reduces utility estimates by removing zero-elements

by the RUZ strategy. TKO processes itemsets in decreasing order of their estimated utility value by the EPB strategy, which

is however questionable.

This paper addresses the issues with prior works by proposing a novel algorithm that directly discovers top- n high utility

patterns that are very long in a single phase without generating candidates.

4. Opportunistic top- n high utility pattern growth and the baseline TONUP

This section proposes an opportunistic top- n high utility pattern growth approach that extends d 2 HUP with the top- n

interesting pattern model and presents the baseline version of our TONUP algorithm.

The proposed approach is to grow top- n high utility patterns by enumerating patterns as prefix extensions, to compute

the utility of each enumerated pattern by an improved memory-resident structure, to shortlist the enumerated patterns

whose utilities are among the first n greatest utilities, and to use the n -th greatest utility as the running border threshold

to prune the patterns whose estimated utility upper bounds are below the threshold.

4.1. Enumerating patterns by prefix extensions

The basic idea is to enumerate a pattern as a prefix extension of another pattern. In order to avoid repetitive enumeration

of patterns, an ordering of items is imposed, with which a pattern can also be represented as an ordered sequence. For

brevity, we use the set notation, for example, {a,b,c}, in place of the sequence notation, for example, < a,b,c > .

Definition 6. The imposed ordering of items , denoted �, is a pre-determined, ordered sequence of all the items in I . Accord-

ingly, for items i and j, i ≺ j denotes that i is listed before j, i ≺ X denotes that i ≺ j for every j ∈ X , and W ≺ X denotes that

i ≺ X for every i ∈ W , in accordance with �.

Definition 7. Given an ordering �, a pattern Y is a prefix extension of a pattern X , if X is a suffix of Y , i.e., if Y = W ∪ X for

W ≺ X in �.

Definition 8. Given an ordering �, a pattern Y is the full prefix extension of a pattern X w.r.t. a transaction t containing X ,

denoted Y = f pe (X, t) , if Y is a prefix extension of X derived by adding exactly all the items in t that are listed before X in

�, i.e., if Y = W ∪ X with W = { i | i ∈ t ∧ i ≺ X ∧ X ⊆ t} .

J. Liu et al. / Information Sciences 441 (2018) 171–186 175

Our pattern growth approach enumerates patterns of length 1 as prefix extensions of the empty pattern {}, patterns of

length 2 as prefix extensions of patterns of length 1, and so on.

Example 3. Suppose the items are in the lexicographic order, i.e., � = { a,b,c,d,e,f,g}, then a ≺ b, a ≺ c, a ≺{b,c}, {a,b} ≺ {c,d},

and so on. Therefore, {a} through {g} are enumerated as a prefix extension of {}, {a,b} as that of {b}, {a,c} and {b,c} as that

of {c}, {a,b,c} as that of {b,c}, and so forth.

4.2. Shortlisting enumerated patterns

Our major strategy is to raise a border threshold μb , starting from 0 to the optimal minimum utility threshold μ∗(n), by

using the exact utilities of enumerated patterns. This strategy is straightforward and also more effective than the counter-

parts [33,36] that employ utility estimates (lower bounds) and pre-computation to raise a border threshold.

Strategy 1 (ExactBorder - Exact utilities to raise a Border threshold) . When enumerating a prefix extension Y of a pattern

X , updating by u (Y) and Y the set ShortList(n) of shortlisted patterns, i.e., the patterns whose utilities are no less than the

n -th greatest among the patterns enumerated by far. The minimum utility in this set, ShortList (n). μ, is the running border

threshold μb .

ShortList (n) becomes the set of all top- n high utility patterns, HUPset ∗(n), at the end of the pattern enumeration process.

Clearly, the best data structure for ShortList (n) is a minimum heap minHeap with a fixed capacity n , supplemented by a list

tieList of patterns whose utility values are tied for the n -th greatest. Note that the ties are ignored in [33,36] .

The root of the minimum heap keeps the minimum utility. In other words, minHeap.root.utility = ShortList (n). μ = μb . A

pattern whose utility is less than μb is not a top- n high utility pattern. Moreover, if an estimated upper bound of the utility

of a pattern is less than μb , the pattern can be pruned without actually computing its exact utility. In particular, we present

two pruning techniques based on the following two upper bounds, respectively.

Theorem 1 (Upper bound on prefix extensions of a pattern with an item) . For a pattern X and an item i ≺ X, the utility of

any prefix extension Y of X that contains i is no more than the sum of the utility of the full prefix extension of X w.r.t. every

transaction in TS ({ i } ∪ X), denoted uB item

(i, X), i.e.,

u (Y) ≤
∑

t∈ T S({ i }∪ X)

u (f pe (X, t) , t) = uB item

(i, X) (1)

Pruning 1. If uB item

(i, X) < μb for a pattern X and an item i ≺ X , then i is irrelevant and can be pruned in enumerating

prefix extensions of X since every prefix extension of X containing i is not a top- n high utility pattern.

Example 4. When going to enumerate the prefix extensions of {d}, the shortlisted patterns with utilities are {({c}, 20), ({e},

20), ({a,b}, 27), ({a,c}, 28),({b,c}, 24), ({a,b,c}, 31)}, and μb is raised to 20. At the moment, we have uB item

(a, {d}) = uB item

(b,

{d}) = u ({a,b,c,d } , t 3) + u ({a,b,d} , t 4) + u ({a,b,d} , t 5) = 36 > μb , and uB item

(c, {d}) = u ({a,b,c,d} , t 3) = 13 < μb . Thus, the items

a and b are relevant, and the item c is irrelevant in growing the prefix extensions of {d}.

Theorem 2 (Upper bound on prefix extensions of a pattern) . For a pattern X, the utility of any prefix extension Y of X is no

more than the sum of the utility of the full prefix extension of X w.r.t. each transaction in TS (X), denoted uB fpe (X), i.e.,

u (Y) ≤
∑

t∈ T S(X)

u (f pe (X, t) , t) = uB f pe (X) (2)

Pruning 2. If uB fpe (X) < μb for a pattern X , then X and all its prefix extensions can be pruned since none of them is a top- n

high utility pattern.

Example 5. When enumerating {c,e}, μb is raised to 27, and uB fpe ({c,e }) = u ({ a,c,e } , t 1) + u ({ a,b,c,e } , t 3) = 29 > μb . Thus,

{c,e} cannot be pruned. However, {a,c,e} together with all its prefix extensions can be pruned and so can {b,c,e} since

uB fpe ({a,c,e }) = 26 < μb and uB fpe ({b,c,e }) = 21 < μb .

4.3. Computing utilities of enumerated patterns

For each enumerated pattern X , we compute the utility u ({ i } ∪ X) and upper bounds uB item

(i, X) and uB fpe ({ i } ∪ X) for every

item i ≺X , which depends on the set TS (X) of transactions that support X . How to represent and maintain TS (X) is a key

factor to the scalability and efficiency. We propose an improved version iCAUL of the data structure CAUL [24,25] to address

this.

iCAUL (improved Chain of Accurate Utility Lists) for a pattern X is a memory-resident structure to represent TS (X).

Concretely, TS (X) by iCAUL, denoted as TS iCAUL (X), consists of 2 parts.

Utility lists : For each transaction t ∈ TS (X), there is a utility list holding the utilities of all the items in t relevant in

growing prefix extensions of X . ∀ i ∈ fpe (X, t) ∧ i ≺X , a quadruple (i, u (i, t), u ({ i } ∪ X, t), link (i)) is stored in the utility list in the

imposed ordering �. Moreover, utility lists made of an identical set of items are merged into one.

176 J. Liu et al. / Information Sciences 441 (2018) 171–186

(a) TSiCAUL({})

(b) TSiCAUL({b}) (c) TSiCAUL({c})

(d) TSiCAUL({d}) (e) TSiCAUL({c, e})

Fig. 1. TS iCAUL : the iCAUL representing transaction sets.

A summary table : For each distinct item i relevant in growing prefix extensions of X , an entry summary [i] = (u ({ i } ∪
X) , uB item

(i, X) , uB f pe ({ i } ∪ X) , link (i)) is maintained in the table. The entries are arranged by the imposed ordering �. The

same items i in different utility lists are threaded together by link (i) starting from summary [i]. Clearly, the process of con-

structing TS iCAUL is the process of computing the utilities and bounds.

Example 6. Fig. 1 a shows TS iCAUL ({}) where the first list represents t 1 with its first element storing the item a, u (a , t 1) = 1 ,

and u ({a} ∪ {} , t 1) = 1 , its second element storing the item c, u (c , t 1) = 5 , and u ({c} ∪ {} , t 1) = 5 , and so on. The occurrences

of the item a in all the five lists are threaded by link (a) starting from the summary entry summary [a]. The other components

of summary [a] are u ({a}), uB item

(a, {}), and uB fpe ({a}). Fig. 1 b through Fig. 1 e show the subsets of T S iCAUL ({}), the T S iCAUL for

{b}, {c}, {d}, and {c, e}, where TS iCAUL ({d}) and TS iCAUL ({c, e}) are used in Examples 4 and 5 .

4.4. The baseline TONUP algorithm

This section proposes the baseline version of our algorithm, called TOp-N high Utility Pattern mining (TONUP), which

works in three steps, as shown in Algorithm 1 .

Algorithm 1 TONUP (D, XUT, n) / ∗ a high level description

∗/ .

Input: database D , external utility table XUT , n

Output: HUP set ∗(n)

1: T S iCAUL ({}) .create (D, XUT , n) ;

2: Short List (n) .update (u ({ i }) , { i }) for each item i in T S iCAUL ({}) ;
3: enumPrefixExt({}, T S iCAUL ({}) , Short List (n));

4: return Short List (n) ;

Step 1: TONUP creates TS iCAUL ({}) by scanning the database D and the external utility table XUT to compute u ({ i }), uB item

(i ,

{}), and uB fpe ({ i }) for each item i .

Step 2: TONUP initializes ShortList (n) by utility u ({ i }) of each item i in TS iCAUL ({}).

Step 3: TONUP invokes Algorithm 2 to enumerate the prefix extensions of the empty pattern {}, which works as follows.

Given a pattern X , it enumerates each prefix extension Y that is a concatenation of X with an item i ≺X in an imposed

ordering � (Lines 1 to 2). According to Theorem 2 , if the utility upper bound on Y is less than μb , the prefix extensions of Y

will not be enumerated by Pruning 2 (Line 3); otherwise, TS iCAUL ({ Y }) is projected from TS iCAUL ({ X }), ShortList (n) is updated,

and the prefix extensions of Y will be recursively enumerated (Lines 4 to 6).

Algorithm 2 enumPrefixExt(X, TS iCAUL (X), ShortList (n)).

Input: X , T S iCAUL (X) , Short List (n)

Output: Short List (n)

1: for each item i in the summary table of T S iCAUL (X) by ordering � do

2: Y ← { i } ∪ X;

3: if uB f pe (Y) ≥ (μb ← Short List (n) .μ) then

4: T S iCAUL (Y) ← T S iCAUL (X) .project(Y) ;

5: Short List (n) .update (u ({ j} ∪ Y) , { j} ∪ Y) for item j in T S iCAUL (Y) ;

6: enumPrefixExt(Y , T S iCAUL (Y) , Short List (n));

7: end if

8: end for

J. Liu et al. / Information Sciences 441 (2018) 171–186 177

(a) ShortList(6): just initialized (b) ShortList(6): the final result

Fig. 2. Shortlisted patterns by a suffix tree where the superscript and subscript indicate when a pattern pushed into and when popped from ShortList (n).

5. Opportunistic strategies and the full-strength TONUP

In this section, opportunistic strategies are proposed, for scalably maintaining shortlisted patterns, for efficiently comput-

ing utilities, for quickly raising the border threshold, and for dealing with extremely long patterns, to take every opportunity

to improve the efficiency and scalability. Then, the implementation of our full-strength algorithm is discussed, and complex-

ity analysis is presented.

5.1. Efficient strategy for maintaining the shortlisted patterns

Strategy 1 suggests maintaining the exact utilities in a minimum heap minHeap together with a tie list tieList . A naive

way is to represent each shortlisted pattern as an array directly kept in minHeap or tieList , which is, however, inefficient. We

propose to employ a suffix tree.

Strategy 2 (SuffixTree - Suffix Tree to maintain patterns) . A suffix tree is employed to keep the shortlisted patterns. When

a pattern X is newly shortlisted, a new node Node (X) will be created on the suffix tree with the path starting from Node (X)

to the null root representing the pattern X . The link to Node (X) with the utility u (X) is stored in minHeap or tieList .

Algorithm 3 will be called when a pattern Z is enumerated. If u (Z) is no less than the running border threshold, then

the shortlisted patterns will be updated as follows. First, a new suffix tree node Node (Z) will be created with the path from

Node (Z) to the root representing Z (Line 2). Then, the pattern Z will be shortlisted (Lines 3 to 11).

Algorithm 3 ShortList (n). update (u (Z), Z)).

Input: u (Z) , Z , minHeap, t ieList , the suffix tree

Output: minHeap, t ieList , the suffix tree

1: if u (Z) ≥ (Border pre v ← minHeap.root .ut ilit y) then

2: create a suffix tree node Node (Z) representing Z;

3: if minHeap.isF ul l () then

4: copy minHeap.root into t ieList ;

5: replace minHeap.root by (u (Z) , Node (Z)) and heapify minHeap.root;

6: if Border pre v < minHeap.root .ut ilit y) then

7: delete each element from tieList and purge its suffix tree path;

8: end if

9: else

10: push (u (Z) , Node (Z)) into minHeap and heapify minHeap if it is full;

11: end if

12: end if

Example 7. Given n = 6 , Algorithm 1 enumerates a total of 27 patterns, 20 of which are shortlisted. Fig. 2 a shows the suffix

tree together with minHeap and tieList where μb = 7 right after enumerating all distinct items. Fig. 2 b shows the final top- n

high utility patterns when Algorithm 1 ends, where {d, e} and {a, b, c, d, e, g} are tied for the 6th with μb = 30.

5.2. Opportunistic strategy for projecting transaction sets

For a prefix extension Y of a pattern X with Y = { i } ∪ X, TS iCAUL (Y) is projected from TS iCAUL (X) as in Algorithm 2 (Line 4),

and TS iCAUL (Y) can be a pseudo or materialized projection of TS iCAUL (X).

Pseudo projection . TS iCAUL (Y) can share the same memory space [23] with TS iCAUL (X), where the utility lists of the pseudo

TS iCAUL (Y) are delimited by following the chain threaded by the summary entry link [i] for the item i in TS iCAUL (X), and the

summary entry for each item j ≺i of the pseudo TS (Y) is computed by scanning each delimited utility list.
iCAUL

178 J. Liu et al. / Information Sciences 441 (2018) 171–186

Materialized projection . The materialized TS iCAUL (Y) is made by copying the pseudo TS iCAUL (Y) to memory space separate

from TS iCAUL (X). According to Theorem 1 , any item j with uB item

(j, Y) < μb is left out from the materialized TS iCAUL (Y) by

Pruning 1 . Moreover, lists with an identical set of items are merged. Materialization has both benefit and drawback. On

one hand, it is beneficial to the efficiency as irrelevant items are filtered out when enumerating the prefix extensions of Y .

On the other hand, it incurs additional overhead for allocating memory space and copying transactions. In general, there is

more benefit than overhead if many prefix extensions of Y will be enumerated, which is more likely when the length of Y

is short and less likely when the length is long. Therefore, we propose to decide whether materializing a transaction set for

a pattern based on the pattern length and the percentage of relevant items.

Strategy 3 (AutoMaterial - Automatic Materialization in projecting TS) . When the percentage of relevant items in the pseudo

projection is below a materialization threshold, φ, a materialized copy will be made. And φ decreases with the increase of

the pattern length � as expressed by φ = α� −1 with 0 ≤α ≤ 1.

This strategy is incorporated in the procedure TS iCAUL (X). project (Y) at Line 4 in Algorithm 2 . It is independent of data

characteristics and, hence, is highly expected as it alleviates the burden on users, though the benefit and drawback also

depend on data characteristics, i.e., pseudo projection is better on sparse datasets and materialized projection is better on

dense datasets.

5.3. Dynamic strategy for raising border threshold and for pruning

Our TONUP algorithm enumerates patterns in a depth-first manner. The order of listing items has significant impact

on the depth-first search process. Based on the following observations, we propose Strategy 4 that is incorporated into

Algorithm 2 (Line 1).

• Roughly speaking, listing items in the descending order of uB item

is in accordance with the descending order of utilities.

Such an ordering increases the likelihood for early enumeration of patterns with large utilities and, hence, helps quickly

raise μb .

• If we list items in the proposed order, the enumeration of patterns containing items with low uB item

will be delayed,

which increases the likelihood for pruning such patterns without enumeration, as an item i with low uB item

is less rele-

vant in growing top- n high utility patterns.

Strategy 4 (DynaDescend) . When enumerating each prefix extension Y of a pattern X , Dyna mically resorting items i in

TS iCAUL (X) by the Descend ing order of the local uB item

(i, X).

Although it incurs additional computational overhead to dynamically reorder items in each TS iCAUL by the local uB item

,

the overhead is offset by the benefit of quickly raising the border threshold and the benefit of improving the pruning. This

is different from the static ordering based on the global uB item

in [24,25] and also different from the counterparts in [33,36] .

5.4. Opportunistic strategy for a two-round approach

When there are extremely long patterns to be enumerated, keeping the shortlisted patterns on a suffix tree becomes

computationally expensive, although more efficient than using arrays, since many long paths representing shortlisted pat-

terns will first be created and then be purged. Note that the suffix tree keeps roughly n paths dynamically by creating new

paths and removing old paths. For such a case, we propose to shift to a two-round approach.

Strategy 5 (OppoShift - Opportunistic Shift to a two-round approach) . When the average length of patterns enumerated

by far is over a threshold η, the mining process will shift to a two-round approach. The first round will keep the utilities

without the patterns and thus will only find the optimal threshold, μ∗(n), which will be fed into a second round to mine

the patterns whose utilities are no less than μ∗(n).

When shifting to the two-round approach, both rounds can employ a closure property [22,24,25] . Concretely, when all the

items in TS iCAUL (X) have the same support, we can compute the utility of each prefix extension of X without enumeration,

which helps improve the efficiency.

Example 8. If the threshold η for shifting to a two-round approach is set to 0, i.e., employing the two-round approach from

the very beginning, the first round enumerates 13 patterns to finally get μ∗(6) = 30 , and the second round enumerates 7

patterns to output all the top-6 high utility patterns.

5.5. Implementing the full-strength TONUP

Integrating the opportunistic strategies with Algorithm 1 results in our full-strength TONUP algorithm, which employs a

suffix tree to maintain and shortlist enumerated patterns. Consequently, the implementation is mainly about constructing

a suffix tree path to represent each enumerated pattern, maintaining a link to the path in minHeap or tieList if the pat-

tern is shortlisted, and removing the path if the pattern and all of its prefix extensions are not shortlisted. Algorithm 1 is

implemented as follows.

J. Liu et al. / Information Sciences 441 (2018) 171–186 179

(a) pseudo TSiCAUL({b}) (b) ShortList(6) with the first 7 patterns

(c) pseudo TSiCAUL({c}) (d) ShortList(6) with the first 9 patterns

Fig. 3. Explanation of the implementation by the running example.

Step 1 : TONUP creates the null root of the suffix tree to represent the empty pattern {}, and then creates TS iCAUL ({}) by

scanning the database D twice. The first database scan is performed to compute uB item

for each item in the summary table

and to sort the items by uB item

. In the second database scan, the items of each transaction are sorted and maintained by a

utility list. For instance, Fig. 1 a shows TS iCAUL ({}) created in Step 1 as detailed in Example 6 .

Step 2 : To initialize ShortList (n), TONUP creates a child node for the suffix tree root to represent each of the ω items in

the summary table and passes each child node to Algorithm 3 to update the shortlist. For instance, Fig. 2 a shows the result

of Step 2, as detailed in Example 7 .

Step 3 : TONUP calls Algorithm 2 , enumPrefixExt, by passing the suffix tree root representing {} and TS iCAUL ({}).

Algorithm 2 is implemented as constructing and searching the subtree rooted at a given node Node (X) representing a pat-

tern X in a depth-first manner. For a pattern Y = { i } ∪ X represented by a child node Node (Y) of the given node Node (X). If

the upper bound on the utilities of prefix extensions of Y is no less than the running threshold, then Y is not pruned and

Algorithm 2 does the following.

First, it gets TS iCAUL ({ Y }) from TS iCAUL ({ X }) by pseudo projection, and if necessary it materializes TS iCAUL ({ Y }) by

Strategy 3 and sorts the items in materialized TS iCAUL ({ Y }) by Strategy 4 (Line 4). Second, it updates ShortList (n) by first

creating a child node Node (Z) of Node (Y) for each item j in TS iCAUL ({ Y }) with Z = { j} ∪ Y and by passing to Algorithm 3 the

utility of Z and the pattern Z represented by the link to Node (Z) (Line 5). Finally, the recursion continues with Y represented

by Node (Y) (Line 6).

Example 9. Step 3 starts with the null root in Fig. 2 a. Nothing happens with the first child node (a, 13) as no item is before

the item a by �. For the second child node (b, 15), the pseudo TS iCAUL ({b}) in Fig. 3 a is projected from TS iCAUL ({}), whose

materialized version is shown in Fig. 1 b. Then, a grandchild node (a,27) is created and ShortList (n) is updated accordingly,

which raises μb to 13 in Fig. 3 b. Similarly, nothing happens with the grandchild node (a,27). Step 3 continues with the third

child node (c, 20) of the null root by projecting TS iCAUL ({}) to the pseudo TS iCAUL ({c}) in Fig. 3 c, whose materialization is in

Fig. 1 c, by creating two child nodes (a, 28) and (b, 24) for the node (c,20) and by updating ShortList (n) accordingly, which

raises μb to 16 in Fig. 3 d.

5.6. Complexity analysis

We analyze the time and space complexity of our algorithm, T ime (TONUP) and Space (TONUP) . First of all, let d = | D | denote

the number of transactions in the database, ω the number of items in | I | (and in �), τ a and τm

the average and maximum

lengths of a transaction, ρa and ρm

the average and maximum lengths of a top- n pattern, and s a and s m

the average and

maximum supports of an item, as shown in Table 2 . Furthermore, let
 , � a , and � m

denote the number, the average length,

and the maximum length of candidates. Obviously, ρa ≤ρm

≤ τm

, � a ≤ � m

≤ τm

, τ a ≤ τm

≤ω, s a ≤ s m

≤ d , and ω ≤ d · τ a .

Time complexity . According to Sections 4.4 and 5.5 , the complexity of Algorithm 1 is as follows.

Time (Step 1) = 2 c 1 · d · τ a + c 2 ·ω · log ω + c 3 · d · τ a · log τ a where the first component is the time for two database scans

with the constant c 1 for reading an item and computing its utility, and the second and the third for sorting items in the

summary table and in all transactions, respectively, with c 2 and c 3 depending on the respective sorting procedures. Asymp-

totically, Time (Step 1) = O (d · τa · log τa + ω · log ω) .

Time (Step 2) = c 4 · ω · log n = O (ω · log n) where c 4 · log n is the time for one execution of Algorithm 3 with the constant

c 4 depending the heapify operation, and ω is the number of times that Algorithm 3 is called.

Time (Step 3) =
 · (c 5 · s a · τ a + c 4 · log n + c 6 · � a) = O (
 · (s a · τa + log n + � a)) where the first factor,
 , is the number

of times that Algorithm 2 is called, i.e., the total number of candidates (patterns) enumerated by TONUP , while the second

180 J. Liu et al. / Information Sciences 441 (2018) 171–186

Table 2

Experimental datasets.

Dataset τ a τ m ω = | I| top-10K to top-100K d = | D | s m s a Type PatLen Size

Density ρa ρm

Connect 43.0 43 129 1,839.1 15.9 21.8 67,557 67,473 22,695 dense medium medium

Accidents 33.8 51 468 1,798.5 8.5 14.8 340,183 340,151 24,575 dense short medium

Pumsb 74.0 74 2113 1,961.8 17.8 26.0 49,046 48,944 1,718 dense long small

Mushroom 23.0 23 119 1,202.9 9.1 15.8 8124 8,124 1,570 dense short small

WV1 2.5 267 497 346.3 144.7 148.0 59,602 3,658 301 mixed very long medium

BMS-POS 6.5 164 1657 229.0 4.7 9.4 515,597 308,656 2,032 mixed short large

WV2 4.6 161 3340 186.2 7.6 15.4 77,512 3,766 107 mixed short medium

T40 39.6 77 942 239.8 9.5 17.7 10 0,0 0 0 28,738 4,204 mixed short medium

Chainstore 7.2 170 46,086 10.2 17.2 33.0 1,112,949 63,818 175 sparse long large

Retail 10.3 76 16,470 16.9 11.8 45.2 88,162 50,675 55 sparse medium medium

Foodmart 4.5 29 1559 36.2 21.3 27.0 34,015 143 105 sparse long small

T20 20.0 49 10 0 0 75.8 6.5 14.0 999,287 142,667 20,221 sparse short large

factor consists of the time for projecting a transaction set, the time for one execution of Algorithm 3 , and the time for

deleting a suffix tree path.

Therefore, T ime (TONUP) = Time (Step 1) + Time (Step 2) + Time (Step 3) = O (d · τa · log τa + ω · (log ω + log n) +
 · s a · τa +

 · (log n + � a)) , where

 ∑ � m

l=1
C(ω, l)
 2 ω , � a ∝ ρa , and � m

∝ ρm

, which depends on our pattern growth approach and

Strategies 1, 4 and 5 . While the constants c 1 through c 4 are not correlated to a strategy, c 5 is correlated to Strategy 3 and

c 6 to Strategies 2 and 5 .

Space complexity . The space required by TONUP has three parts. The first part is the space for TS iCAUL ({}), which is

created in Step 1 and persists to the end of TONUP . This part consists of a utility list for each transaction and a summary

table of ω entries, whose space complexity is O (d · τa + ω) = O (d · τ a).

The second is the space for ShortList (n) initialized in Step 2 and kept on updating in Step 3. It consists of a minimum

heap of size n and a suffix tree of n shortlisted patterns, whose space complexity is O (n + n · � a) = O (n · � a) .

The third part is the space for materializing the transaction sets of enumerated patterns in Step 3. Since there are at

most � m

transaction sets along a suffix tree path that are depth-first searched in Step 3, with a shrinking rate α, the space

complexity is at most O (s a · τa ·
∑ � m

l=0
αl) .

Therefore, Space (TONUP) = O (d · τa + n · � a + s a · τa ·
∑ � m

l=0
αl) = O (d · τa + n · � a) since

∑ � m
l=0

αl approaches a constant for

0 < α < 1 and O (s a · τ a) < O (d · τ a).

Observations on complexity analysis . First, selecting a large α for Strategy 3 makes a large memory footprint, but it

results in a relatively small constant, c 5 , to help improve efficiency. Second, selecting a large η for Strategy 5 favours a

one-round approach and also makes a large memory footprint, but it results in a relatively smaller
 . Third, T ime (TONUP) <

T ime (TKO) < T ime (TKU) since TONUP has much smaller
 , � a , � m

, and constants due to its powerful pruning and efficient

computation enabled by iCAUL. T ime (TKU) is the highest as it has a component O (
 · log
) for sorting candidates in Phase

II, while
 by TKU is the largest as it cannot find the optimal threshold μ∗(n) in Phase I.

6. Experimental comparison of TONUP with state-of-the-art works

We evaluate our algorithm TONUP by comparing with the state-of-the-art top- n high utility pattern mining algo-

rithms TKU [33,36] and TKO [33] . We also compare with high utility pattern mining algorithms UP-Growth+ [32,34] ,

HUI-Miner [26] , EFIM [41] , and d 2 HUP [24,25] tuned with the optimal threshold μ∗(n), denoted UP-Growth + op ,

HUI-Miner op , EFIM op , and d 2 HUP op , respectively. The code of d 2 HUP , EFIM , and HUI-Miner are provided by the orig-

inal authors. But, due to unavailability, UP-Growth+ , TKU , and TKO are implemented by us. We have greatly improved

Phase II [25] in our implementation of UP-Growth+ and TKU . Our implementation of TKO adapts and improves the code

of HUI-Miner 1 , and only outputs μ∗(n) without the top- n patterns. To some extent, the running time of UP-Growth+ ,
TKU , and TKO is under-estimated.

Twelve datasets are used in the experiments. They are summarized by Table 2 where the parameters τ a , τm

, ω, ρa , ρm

,

d, s m

, and s a are defined in Section 5.6 , Density is the average number of top- n patterns per item, Type is a categorization

by Density, PatLen is a categorization by ρa , and Size is a categorization by d . And WV1, WV2, T20, and T40 stand for the

datasets BMS-WebView-1, BMS-WebView-2, T20I1KD1M, and T40I1KD100K, respectively. Most of the datasets are from the

ML Repository 2 or the FIMI Repository 3 without utility information, and we generate the utility information by following
1 http://philippe- fournier- viger.com/ .
2 http://www.ics.uci.edu/ ∼mlearn/MLRepository.html .
3 http://fimi.ua.ac.be/data/ .

http://philippe-fournier-viger.com/
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://fimi.ua.ac.be/data/

J. Liu et al. / Information Sciences 441 (2018) 171–186 181

Table 3

Highlighting the experimental comparisons shown in Fig. 4 .

Dataset n running time (s) by three top- n algs & four optimal algs
 = candidates(× 10 3) memory ftpt (MB)

TONUP TKO TKU UP-G+ o HUI-M o EFIM o d 2 HUP o TONUP TKO TKU TONUP TKO TKU

Connect 50 6 5960 − − 29 3 3 6 773 − 89 275 −
Connect 1K 6.2 − − − 79 3 3 43 − − 89 − −
Accidents 5K 50 5076 − 2622 72 16 60 22 7K − 385 569 −
Pumsb 10K 13 − − − 3381 111 24 362 − − 117 − −
Mushroom 10K 0.4 32 183 13 0.95 0.24 0.27 73 1.2K 4.5K 7 10 137

WV1 5K 11.2 − − − − 2348 1.2 11K − − 5 − −
WV1 10K 19.5 − − − − 2951 1.5 20K − − 7 − −
BMS-POS 5K 15 3297 99 20 10 18 14 19 91K 386 95 83 62

WV2 10K 0.46 − 8.35 1.88 2.45 3.9 0.56 46 − 1.5K 11 − 51

T40 10K 26 876 250 102 67 27 9 283 1.4K 4.1K 127 100 136

Chainstore 10K 22 1928 590 130 709 767 20 60 26K 359 237 185 237

Retail 10K 2.6 131 − 5.1 29 31 2.3 55 11K − 29 23 −
Foodmart 10K 0.5 4.4 − 31 2.5 1.1 0.33 264 160 − 6.9 4.4 −
T20 10K 126 1110 383 200 244 216 71 181 211 754 612 467 617

[27] while Chainstore is from [27] and Foodmart is the sample database shipped with the Microsoft Analysis Service 4 . The

datasets and our TONUP code are ready for download

5 .

The experiments were performed on a workstation with a 2.40 GHz CPU and 4 GB memory, running CentOS 6.3. The

default setting for automatic materialization and for opportunistic shift are α = 0 . 85 and η = 20 , respectively, according to

the complexity analysis in Section 5.6 and the sensitivity analyses in Sections 7.3 and 7.5 . The mining parameter n changes

from 100 to 100K, or from 1 if TKU and TKO cannot run for n ≥ 100.

6.1. Comparison in running time

Fig. 4 a shows the running time for mining top- n high utility patterns by our TONUP algorithm, TKO , and TKU with

changing n , as well as the running time for mining high utility patterns by UP-Growth+ op , HUI-Miner op , EFIM op
6 , and

d 2 HUP op that are tuned with the optimal threshold μ∗(n), which is also highlighted by the first nine columns of Table 3 .

On dense datasets as in Fig. 4 a(i)–(iv) and in the first five rows of Table 3 , TONUP is up to 3 orders of magnitude more

efficient than TKO and TKU , and even up to 2 orders of magnitude more efficient than UP-Growth+ op and HUI-Miner op .

EFIM op is up to 3 times faster than TONUP and d 2 HUP op when the patterns are short. On the contrary, TONUP is up to 1

order of magnitude faster than EFIM op when the patterns are long. On mixed datasets, TONUP is up to 2 orders of magni-

tude more efficient than TKO and TKU , and up to 1 order of magnitude more efficient than UP-Growth+ op , HUI-Miner op ,

and EFIM op . On sparse datasets, TONUP is up to 1 order of magnitude more efficient than TKO and TKU , and up to 1 order

of magnitude more efficient than UP-Growth+ op , HUI-Miner op , and EFIM op .

We have three observations in the experimental results. First, TONUP is up to 1 to 3 orders of magnitude more efficient

than TKO and TKU . One reason is that using a suffix tree to maintain shortlisted patterns (Strategy 2) and opportunistically

shifting to a two-round approach (Strategy 5) are effective for mining top- n high utility patterns. Second, TONUP is 1 to 2
orders of magnitude faster than HUI-Miner op , UP-Growth+ op , and EFIM op when the optimal threshold μ∗(n) unknown

to TONUP is given to the latter algorithms. One exception is that EFIM op beats TONUP and d 2 HUP op on dense datasets with

short patterns. Third, TONUP is just a little slower than d 2 HUP op , usually within a factor of 2 to 3. This confirms that the

data structure iCAUL and Strategies 3 (AutoMaterial) and 4 (DynaDescend) improve efficiency.

6.2. Comparison in number of candidates

The number
 of candidates enumerated by our TONUP algorithm, TKO , and TKU is shown in Fig. 4 b and in the tenth

through twelfth columns of Table 3 . On dense datasets as in Fig. 4 b(i)–(ii) and in the first five rows of Table 3 , TKU enumer-

ates the most candidates, and TKO and TKU enumerate 1 to 2 orders of magnitude more than TONUP . On mixed datasets,

TKO and TKU enumerate 1 to 2 orders of magnitude more candidates than TONUP . On a sparse dataset, TKO enumerates

the most candidates, and TKO and TKU enumerate 1 to 2 orders of magnitude more than TONUP .
In short, TONUP enumerates 1 to 2 orders of magnitude fewer candidates than TKO and TKU on all datasets. The reason

is that using the exact utilities instead of the estimates to raise the border threshold (Strategy 1) and dynamically sorting

items in the descending order of local uB item

(Strategy 4) are much more effective than the counterparts in TKO and TKU .
The latter algorithms employ either an improper ordering or an irrelevant ordering measure.
4 http://www.dagira.com/tips/foodmart _ download/ .
5 http://kddlab.zjgsu.edu.cn:7200/implementations.html/ .
6 Experiment comparing EFIM and d 2 HUP in [41] employed an improper implementation of d 2 HUP without two key techniques.

http://www.dagira.com/tips/foodmart_download/
http://kddlab.zjgsu.edu.cn:7200/implementations.html/

182 J. Liu et al. / Information Sciences 441 (2018) 171–186

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

i. Connect

top−n

Ti
m

e
(s

)

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

ii. Accidents

top−n

Ti
m

e
(s

)

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

iii. Pumsb

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

iv. Mushroom

top−n

Ti
m

e
(s

)

10
0

10
1

10
2

10
3

10
4

10
5

10
−1

10
1

10
2

10
3

10
4

v. WV1

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

vi. BMS−POS

top−n

Ti
m

e
(s

)
10

0
10

1
10

2
10

3
10

4
10

5
10

−1

10
0

10
1

10
2

vii. WV2

top−n

Ti
m

e
(s

)

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

viii. T40

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

ix. Chainstore

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

x. Retail

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

xi. Foodmart

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

xii. T20

top−n

Ti
m

e
(s

)

TONUP TKO TKU UP−Growth+(op) HUI−Miner(op) EFIM(op) d2HUP(op)

(a) TONUP, TKO, and TKU with changing n, and algorithms with µ∗(n), in running time

10
0

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
5

10
6

10
7

i. Connect

top−n

C
an

di
da

te
s

10
0

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
6

10
8

ii. Accidents

top−n

C
an

di
da

te
s

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

10
8

iii. WV1

top−n

C
an

di
da

te
s

10
2

10
3

10
4

10
5

10
2

10
4

10
6

10
8

10
10

iv. BMS−POS

top−n

C
an

di
da

te
s

10
2

10
3

10
4

10
5

10
2

10
4

10
6

10
8

v. Chainstore

top−n

C
an

di
da

te
s

10
2

10
3

10
4

10
5

10
2

10
4

10
6

10
8

10
10

vi. Retail

top−n

C
an

di
da

te
s

TONUP TKO TKU

(b) TONUP, TKO, TKU in num Ψ of candidates

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300
i. Connect

top−n

M
em

or
y

(M
B

)

10
0

10
1

10
2

10
3

10
4

10
5

0

200

400

600

800
ii. Accidents

top−n

M
em

or
y

(M
B

)
10

0
10

1
10

2
10

3
10

4
10

5
0

20

40

60
iii. WV1

top−n

M
em

or
y

(M
B

)

10
2

10
3

10
4

10
5

0

100

200

300
iv. BMS−POS

top−n

M
em

or
y

(M
B

)

10
2

10
3

10
4

10
5

120

200

280

360
v. Chainstore

top−n

M
em

or
y

(M
B

)

10
2

10
3

10
4

10
5

10

20

30

40

50
vi. Retail

top−n

M
em

or
y

(M
B

)

TONUP TKO TKU

(c) TONUP, TKO, TKU in memory footprint

1 2 3 4 5 6 7 8 9 10
0

40

80

120

160
i. T10 (1K)

size (100K)

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10
0

40

80

120

160

200
ii. T10 (10K)

size (100K)

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800
iii. T20 (1K)

size (100K)

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000
1200

iv. T20 (10K)

size (100K)

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

v. T40 (1K)

size (100K)

Ti
m

e
(s

)

1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

vi. T40 (10K)

size (100K)

Ti
m

e
(s

)

TONUP TKO TKU

(d) Scalability

10
2

10
3

10
4

10
5

0

5

10

15

20
i. Connect

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

20

40

60

80

100
ii. Accidents

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

0

200

400

600

800
iii. WV1

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

0

10

20

30

40
iv. BMS−POS

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

0

40

80

120

160
v. Chainstore

top−n

Ti
m

e
(s

)

10
2

10
3

10
4

10
5

0

20

40

60

80
vi. Retail

top−n

Ti
m

e
(s

)

TONUP
1r

PreComp
1r

LBound
1r

(e) Strategy 1 ExactBorder

Fig. 4. Running time, candidate number, memory footprint, scalability, and Strategy 1 .

J. Liu et al. / Information Sciences 441 (2018) 171–186 183

6.3. Comparison in memory footprint

The memory footprints of our TONUP algorithm, TKO , and TKU are shown in Fig. 4 c and in the last three columns of

Table 3 . On dense datasets, TONUP uses the lowest amount of memory, and TKU uses the highest and often runs out of

memory. On mixed datasets, TONUP uses the lowest, and TKU uses the highest. On sparse datasets, TKO uses the lowest,

and TKU still uses the highest.

In short, TKU uses the highest amount of memory when n is large on all datasets. TONUP uses the lowest on dense and

mixed datasets, and TKO uses the lowest on sparse datasets. While TONUP is the most efficient, its memory footprint is

reasonably small, due to Strategy 3 for balancing the efficiency and scalability.

6.4. Comparison in scalability

We evaluate the scalability of the three algorithms by performing experiments on three datasets T10, T20, and T40 with

the size of each dataset varying from 100K to 10 0 0K and for the top- n parameter n = 1 K and n = 10 K, respectively. The

result is shown in Fig. 4 d.

TONUP is the most scalable algorithm, and TKO is less scalable than TKU . Concretely, the running time of TONUP in every

setting is the shortest. For example, on the dataset T10 with size 500K, TONUP takes 11s, TKO 70s, and TKU 37s for n = 1 K;

TONUP takes 13s, TKO 105s, and TKU 45s for n = 10 K. Most importantly, the slope of the curve of TONUP is the smallest in

every setting.

7. Experimental analysis of the TONUP algorithm

This section further analyzes the five new strategies and an improved data structure that enable our opportunistic pattern

growth approach. While TONUP is integrated with all strategies, TONUP 1 r disables the OppoShift strategy, i.e., sticking to the

one-round approach.

7.1. Analysis of the ExactBorder strategy

We analyze the effectiveness of the ExactBorder strategy (Strategy 1) by pushing into TONUP 1 r the strategies for raising

the border threshold by pre-computing utilities of item pairs and by estimating utility lower bounds, denoted as PreComp 1 r
and LBound 1 r in Fig. 4 e, respectively. PreComp 1 r takes 30% to 2 times more time than TONUP 1 r , and LBound 1 r takes

marginally more time than TONUP 1 r for most cases, as shown in Fig. 4 e. For example, on Connect, LBound 1 r takes 7.3s,

TONUP 1 r 7.9s, and PreComp 1 r 13.4s for n = 200 K. On BMS-POS, LBound 1 r takes 29s, TONUP 1 r 27s, and PreComp 1 r 35s for

n = 200 K. On Chainstore, LBound 1 r takes 52s, TONUP 1 r 47s, and PreComp 1 r 117s for n = 100 K.

It is confirmed that pre-computing utilities of item pairs (PreComp 1 r) or estimating lower bounds (LBound 1 r) does not

help much in raising the border threshold. Our basic strategy of raising the border threshold by exact utilities is effective,

and the four strategies in TKU and one strategy in TKO that the raise border threshold by estimating utility lower bounds

do not work well.

7.2. Analysis of the SuffixTree strategy

We analyze the SuffixTree strategy (Strategy 2) by comparing TONUP 1 r with Array 1 r that maintains shortlisted patterns

in arrays. TONUP 1 r is up to 20% to 4 times faster than Array 1 r , as shown in Fig. 5 a. For example, on Connect, TONUP 1 r takes

7.9s and Array 1 r 10.7s for n = 200 K. On WV1, TONUP 1 r takes 60s and Array 1 r 246s for n = 10 K. On BMS-POS, TONUP 1 r
takes 27s and Array 1 r 32s for n = 200 K. On Chainstore, TONUP 1 r takes 47s and Array 1 r 97s for n = 100 K. On Retail,

TONUP 1 r takes 16s and Array 1 r 78s for n = 100 K.

The observation is that maintaining shortlisted patterns by a suffix tree instead of arrays improves the efficiency signifi-

cantly. There is no counterpart in TKO and TKU . Moreover, TONUP considers the ties for the n -th greatest utility, while ties

are ignored in TKO and TKU .

7.3. Analysis of the AutoMaterial strategy

We analyze the AutoMaterial strategy (Strategy 3) by comparing TONUP 1 r with Pseudo 1 r that only uses pseudo projec-

tions and Mat 1 r that only uses materialized projections. We also analyze the improved data structure iCAUL by comparing

with CAUL 1 r that uses CAUL [24,25] instead of iCAUL. The result is shown in Fig. 5 b. On dense datasets, TONUP 1 r , Mat 1 r ,
and CAUL 1 r have the same performance. Pseudo 1 r is 2 to 3 orders of magnitude slower than the others. For example on

Connect, TONUP 1 r takes 6.4s , Pseudo 1 r 1,435s, Mat 1 r 6.8s, and CAUL 1 r 5.7s for n = 10 K. On mixed datasets, TONUP 1 r is

up to 6 times faster than others. Pseudo 1 r is up to 2 times faster than Mat 1 r , and CAUL 1 r is marginally faster than Mat 1 r .
For example on WV1, TONUP 1 r takes 60s, Pseudo 1 r 266s, Mat 1 r 366s, and CAUL 1 r 214s for n = 10 K. On sparse datasets,

TONUP 1 r is up to 1 order of magnitude faster than Pseudo 1 r , up to 5 times faster than Mat 1 r , and up to 80% faster than

CAUL 1 r . For example on Retail, TONUP 1 r takes 16s, Pseudo 1 r 170s, Mat 1 r 84s, and CAUL 1 r 29s for n = 100 K.

184 J. Liu et al. / Information Sciences 441 (2018) 171–186

Fig. 5. Evaluating Strategies 2 through 5, and analyzing parameter sensitivity.

J. Liu et al. / Information Sciences 441 (2018) 171–186 185

There are two observations. First, the AutoMaterial strategy makes a balance between pseudo projection and material-

ization and thus helps improve the efficiency by several orders of magnitude as neither pseudo projection nor materialized

projection consistently outperforms the other. Second, the improved data structure iCAUL also helps improve the efficiency

significantly. This also explains why TONUP outperforms d 2 HUP op when both are tuned with the optimal threshold.

Sensitivity and Default Value of Parameter α. We analyze the parameter α, which is used to calibrate Strategy 3 , by

performing experiments evaluating TONUP 1 r with changing α in the range [0, 1] for n = 1 K, 10K, and 100K, respectively.

Fig. 5 c shows the result. In dense datasets, the running time of TONUP 1 r decreases with the increase of α and becomes

insensitive for α ≥ 0.1. In sparse and mixed datasets, the running time for α in the range [0.1, 0.9] approaches the shortest

and changes little. Therefore, a large value in the range [0.1, 0.9], say 0.85, is a good choice for the default value of α.

7.4. Analysis of the DynaDescend strategy

We analyze the DyanDescend strategy (Strategy 4) by comparing TONUP with Ascend that sorts items in the ascending

order of uB item

, Static in the descending order of the global uB item

, and NoSort in the lexicographic order. TONUP is up

to 4 orders of magnitude faster than Ascend , up to 2 orders of magnitude faster than NoSort , and up to 100% faster than

Static , as shown in Fig. 5 d. For example, on Connect, Ascend takes 56,979s, NoSort 342s, Static 5.8s, and TONUP
5.9s for n = 200 . On Accidents, Ascend takes 10,127s, NoSort 89s, Static 45s, and TONUP 41s for n = 900 . On WV1,

Ascend takes 108s, NoSort 106s, Static 11s, and TONUP 3.2s for n = 1 K. On Chainstore, Ascend takes 105s, NoSort
98s, Static 74s, and TONUP 69s for n = 100 K.

This set of experiments confirms that dynamically sorting items in the descending order of the local uB item

helps raise

the border threshold quickly and helps prune the search space. Notice that TKU sorts items in the ascending order of TWUs

or UP-Tree path utilities, which does not help quickly raise the border threshold, and TKO sorts items in the descending

order of a measure similar to our uB fpe rather than uB item

, which is not effective either.

7.5. Analysis of the OppoShift strategy

We compare TONUP that embodies the OppoShift strategy (Strategy 5) with OneRound a.k.a. TONUP 1 r and TwoRounds
that always takes a two-round approach. Fig. 5 e shows the result.

When OneRound is faster than TwoRounds , TONUP is as efficient as OneRound and is 70% to 100% more efficient than

TwoRounds . For example, on Connect, OneRound takes 7.1s, TONUP 7.5s, and TwoRounds 11.2s for n = 100 K. On BMS-POS,

OneRound takes 23.5s, TONUP 21.5s, and TwoRounds 43s for n = 100 K.

When TwoRounds is faster than OneRound , TONUP is as efficient as TwoRounds and is up to 3 times faster than

OneRound . For example, on WV1, OneRound takes 795s, TONUP 264s, and TwoRounds 259s for n = 200 K. On Retail,

OneRound takes 16s, TONUP 13s, and TwoRounds 12.4s for n = 100 K.

Sensitivity and Default Value of Parameter η. We analyze the parameter η, which is used to calibrate Strategy 5 , by

performing experiments evaluating TONUP with changing η for n = 1 K, 10K, and 100K, respectively. In most cases, as shown

in Fig. 5 f, the running time of TONUP decreases with the increase of η and becomes insensitive for η ≥ 10, i.e., there is little

change in the running time for η ≥ 10. Therefore, any value no less than 10, say 20, is a good default value for η.

8. Conclusion and future work

This paper proposes a novel algorithm TONUP for mining top- n high utility patterns that are very long. The baseline

TONUP adopts an opportunistic pattern growth approach that grows patterns as prefix extensions, shortlists patterns whose

utilities are the first n greatest, and prunes the search space by utility upper bounding. The full-strength TONUP proposes

five opportunistic strategies for scalably maintaining shortlisted patterns, for efficiently computing utilities and estimating

upper bounds, and for improving pruning. TONUP is up to 1 to 3 orders of magnitude more efficient and is more scalable

than the state-of-the-art algorithms TKU and TKO . Surprisingly, TONUP is even 1 to 2 orders of magnitude faster than high

utility pattern mining algorithms UP-Growth+ , HUI-Miner , and EFIM that are tuned with an optimal threshold unknown

to TONUP .
The proposed algorithm, TONUP , heavily relies on memory resident structures and will eventually confront the scalability

issue. In this regard, an interesting future work is to propose parallel and distributed algorithms for handling big data.

TONUP only works for static data, and the state-of-the-art algorithms for dynamic data consider either insertion or deletion

of transactions but not both. Therefore, another future work is to propose an incremental algorithm to mine (top- n) high

utility patterns for dynamic data with both insertion and deletion. In the future, we will also extend the top- n pattern

mining model by introducing more interestingness measures and by applying multiple measures.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China [grant number 61272306], the

Zhejiang Provincial Natural Science Foundation of China [grant number LY17F020 0 04], and the Australian Research Council

[grant number DP140103617].

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100000923

186 J. Liu et al. / Information Sciences 441 (2018) 171–186

References

[1] F.N. Afrati , A. Gionis , H. Mannila , Approximating a collection of frequent sets, in: Proceedings of the Tenth ACM SIGKDD International Conference

Knowledge Discovery and Data Mining, Seattle, Washington, USA, 2004, pp. 12–19 .

[2] R. Agarwal , C. Aggarwal , V. Prasad , Depth first generation of long patterns, in: Proceedings of the Sixth ACM SIGKDD International Conference Knowl-
edge Discovery and Data Mining, Boston, MA , USA , 20 0 0, pp. 108–118 .

[3] R. Agarwal , C. Aggarwal , V. Prasad , A tree projection algorithm for generation of frequent item sets, J. Parallel Distrib. Comput. 61 (3) (2001) 350–371 .
[4] R. Agrawal , R. Srikant , Fast algorithms for mining association rules, in: Proceedings of the Twentieth International Conference Very Large Data Bases,

Santiago de Chile, Chile, 1994, pp. 4 87–4 99 .
[5] A.U. Ahmed , C.F. Ahmed , M. Samiullah , N. Adnan , C.K.-S. Leung , Mining interesting patterns from uncertain databases, Inf. Sci. (Ny) 354 (2016) 60–85 .

[6] C.F. Ahmed , S.K. Tanbeer , B.S. Jeong , Y.K. Lee , Efficient tree structures for high utility pattern mining in incremental databases, IEEE Trans. Knowl. Data

Eng. 21 (12) (2009) 1708–1721 .
[7] R. Bayardo , Efficiently mining long patterns from databases, in: Proceedings of the ACM SIGMOD International Conference Management of Data, Seattle,

Washington, USA, 1998, pp. 85–93 .
[8] D. Burdick , M. Calimlim , J. Gehrke , MAFIA: A maximal frequent item set algorithm for transactional databases, in: Proceedings of the Seventeenth IEEE

International Conference Data Engineering, Heidelberg, Germany, 2001, pp. 443–452 .
[9] C.H. Cai , A.W.C. Fu , C.H. Cheng , W.W. Kwong , Mining association rules with weighted items, in: Proceedings of the IEEE International Database Engi-

neering and Applications Symposium, 1998, pp. 68–77 .

[10] R. Chan , Q. Yang , Y. Shen , Mining high utility itemsets, in: Proceedings of the Third IEEE International Conference Data Mining, Melbourne, Florida,
USA, 2003, pp. 19–26 .

[11] H. Chen , L. Shu , J. Xia , Q. Deng , Mining frequent patterns in a varying-size sliding window of online transactional data streams, Inf. Sci. (Ny) 215
(2012) 15–36 .

[12] G. Cong , K.L. Tan , A.K.H. Tung , X. Xu , Mining top- k covering rule groups for gene expression data, in: Proceedings of the ACM SIGMOD International
Conference Management of Data, Baltimore, Maryland, USA, 2005, pp. 670–681 .

[13] A. Erwin , R.P. Gopalan , N.R. Achuthan , Efficient mining of high utility item sets from large datasets, in: Proceedings of the Twelfth Pacific-Asia Confer-
ence Knowledge Discovery and Data Mining, Osaka, Japan, 2008, pp. 554–561 .

[14] P. Fournier-Viger , V.S. Tseng , Mining top- k sequential rules, in: Proceedings of the Seventh International Conference Advanced Data Mining and Appli-

cations, Beijing, China, 2011, pp. II:180–194 .
[15] P. Fournier-Viger , V.S. Tseng , Mining top- k non-redundant association rules, in: Proceedings of the International Symposium Methodologies for Intelli-

gent Systems, Macau, China, 2012, pp. 31–40 .
[16] A.W.-C. Fu , R.W.-W. Kwong , J. Tang , Mining n -most interesting itemsets, in: Proceedings Twelfth International Symposium Methodologies for Intelligent

Systems, Charlotte, NC, USA, 20 0 0, pp. 59–67 .
[17] J. Han , J. Pei , Y. Yin , Mining frequent patterns without candidate generation, in: Proceedings of the ACM SIGMOD International Conference Management

of Data, Dallas, Texas, USA, 20 0 0, pp. 1–12 .

[18] R.J. Hilderman , C.L. Carter , H.J. Hamilton , N. Cercone , Mining market basket data using share measures and characterized itemsets, in: Proceedings of
the Second Pacific-Asia Conference Knowledge Discovery and Data Mining, Melbourne, Australia, 1998, pp. 159–170 . April

[19] Y.C. Li , J.S. Yeh , C.C. Chang , Isolated items discarding strategy for discovering high utility itemsets, Data Knowl. Eng. 64 (1) (2008) 198–217 .
[20] M.-Y. Lin , T.-F. Tu , S.-C. Hsueh , High utility pattern mining using the maximal itemset property and lexicographic tree structures, Inf. Sci. (Ny) 215

(2012) 1–14 .
[21] T.Y. Lin , Y.Y. Yao , E. Louie , Value added association rules, in: Proceedings of the Sixth Pacific-Asia Conference Knowledge Discovery and Data Mining,

Taipei, Taiwan, 2002, pp. 328–333 .

[22] H. Liu , X. Wang , J. He , J. Han , D. Xin , Z. Shao , Top-down mining of frequent closed patterns from very high dimensional data, Inf. Sci. (Ny) 179 (2009)
899–924 .

[23] J. Liu , Y. Pan , K. Wang , J. Han , Mining frequent item sets by opportunistic projection, in: Proceedings of the ACM SIGKDD International Conference
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002, pp. 229–238 .

[24] J. Liu , K. Wang , B.C.M. Fung , Direct discovery of high utility itemsets without candidate generation, in: Proceedings of the Twelfth IEEE International
Conference Data Mining, Brussels, Belgium, 2012, pp. 984–989 .

[25] J. Liu , K. Wang , B.C.M. Fung , Mining high utility patterns in one phase without generating candidates, IEEE Trans. Knowl. Data Eng. 28 (5) (2016)

1245–1257 .
[26] M. Liu , J. Qu , Mining high utility itemsets without candidate generation, in: Proceedings of the Twenty First ACM International Conference Information

and Knowledge Management, Maui, HI, USA, 2012, pp. 55–64 .
[27] Y. Liu , W. Liao , A. Choudhary , A fast high utility itemsets mining algorithm, in: Proceedings of the ACM SIGKDD International Conference on Utili-

ty-Based Data Mining Workshop (UBDM), 2005, pp. 253–262 .
[28] S. Lu , H. Hu , F. Li , Mining weighted association rules, Intell. Data Anal. 5 (3) (2001) 211–225 .

[29] J. Pei , J. Han , H. Pinto , Q. Chen , U. Dayal , M. Hsu , PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth, in: Proceedings

of the Seventeenth IEEE International Conference Data Engineering, Heidelberg, Germany, 2001, pp. 215–224 .
[30] Y. Shen , Q. Yang , Z. Zhang , Objective-oriented utility-based association mining, in: Proceedings of the Second IEEE International Conference Data

Mining, Maebashi City, Japan, 2002, pp. 426–433 .
[31] F.S.C. Tseng , Y.-H. Kuo , Y.-M. Huang , Toward boosting distributed association rule mining by data de-clustering, Inf. Sci. (Ny) 180 (2010) 4263–4289 .

[32] V.S. Tseng , B.E. Shie , C.W. Wu , P.S. Yu , Efficient algorithms for mining high utility itemsets from transactional databases, IEEE Trans. Knowl. Data Eng.
25 (8) (2013) 1772–1786 .

[33] V.S. Tseng , C.-W. Wu , P. Fournier-Viger , P.S. Yu , Efficient algorithms for mining top- k high utility itemsets, IEEE Trans. Knowl. Data Eng. 28 (1) (2016)

54–67 .
[34] V.S. Tseng , C.W. Wu , B.E. Shie , P.S. Yu , UP-Growth: an efficient algorithm for high utility itemset mining, in: Proceedings of the Sixteenth ACM SIGKDD

International Conference Knowledge Discovery and Data Mining, Washington, DC, USA, 2010, pp. 253–262 .
[35] J. Wang , J. Han , Y. Lu , P. Tzvetkov , TFP: an efficient algorithm for mining top- k frequent closed itemsets, IEEE Trans. Knowl. Data Eng. 17 (5) (2005)

652–664 .
[36] C.W. Wu , B.-E. Shie , P.S. Yu , V.S. Tseng , Mining top- k high utility itemsets, in: Proceedings of the Eighteenth ACM SIGKDD International Conference

Knowledge Discovery and Data Mining, Beijing, China, 2012, pp. 78–86 .
[37] D. Xin , H. Cheng , X. Yan , J. Han , Extracting redundancy-aware top- k patterns, in: Proceedings of the Twelfth ACM SIGKDD International Conference

Knowledge Discovery and Data Mining, Philadelphia, PA , USA , 2006, pp. 4 4 4–453 .

[38] H. Yao , H.J. Hamilton , Mining itemset utilities from transaction databases, Data Knowl. Eng. 59 (3) (2006) 603–626 .
[39] H. Yao , H.J. Hamilton , C.J. Butz , A foundational approach to mining itemset utilities from databases, in: Proceedings of the Fourth SIAM International

Conference Data Mining, Lake Buena Vista, Florida, USA, 2004, pp. 4 82–4 86 .
[40] H. Yao , H.J. Hamilton , L. Geng , A unified framework for utility-based measures for mining itemsets, in: Proceedings of the ACM SIGKDD International

Conference on Utility-Based Data Mining Workshop (UBDM), 2006, pp. 28–37 .
[41] S. Zida , P. Fournier-Viger , J.C.-W. Lin , C.-W. Wu , V.S. Tseng , EFIM: a fast and memory efficient algorithm for high-utility itemset mining, Knowl. Inf.

Syst. 51 (2) (2017) 595–625 .

[42] M. Zihayat , A. An , Mining top- k high utility patterns over data streams, Inf. Sci. (Ny) 285 (2014) 138–161 .

http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0001
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0002
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0003
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0004
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0005
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0006
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0007
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0007
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0008
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0009
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0010
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0011
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0012
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0013
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0014
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0014
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0014
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0015
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0016
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0017
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0017
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0017
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0017
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0018
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0019
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0019
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0019
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0019
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0020
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0021
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0022
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0023
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0024
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0025
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0025
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0025
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0025
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0026
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0027
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0028
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0029
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0030
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0031
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0032
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0033
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0034
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0035
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0036
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0037
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0038
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0038
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0038
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0039
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0039
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0039
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0039
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0040
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0040
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0040
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0040
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0041
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0042
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0042
http://refhub.elsevier.com/S0020-0255(16)31012-X/sbref0042

	Opportunistic mining of top-n high utility patterns
	1 Introduction
	2 Top-n high utility pattern mining problem
	3 Related works
	3.1 Frequent pattern mining
	3.2 High utility pattern mining with the share framework
	3.3 Top-n interesting pattern mining

	4 Opportunistic top-n high utility pattern growth and the baseline TONUP
	4.1 Enumerating patterns by prefix extensions
	4.2 Shortlisting enumerated patterns
	4.3 Computing utilities of enumerated patterns
	4.4 The baseline TONUP algorithm

	5 Opportunistic strategies and the full-strength TONUP
	5.1 Efficient strategy for maintaining the shortlisted patterns
	5.2 Opportunistic strategy for projecting transaction sets
	5.3 Dynamic strategy for raising border threshold and for pruning
	5.4 Opportunistic strategy for a two-round approach
	5.5 Implementing the full-strength TONUP
	5.6 Complexity analysis

	6 Experimental comparison of TONUP with state-of-the-art works
	6.1 Comparison in running time
	6.2 Comparison in number of candidates
	6.3 Comparison in memory footprint
	6.4 Comparison in scalability

	7 Experimental analysis of the TONUP algorithm
	7.1 Analysis of the ExactBorder strategy
	7.2 Analysis of the SuffixTree strategy
	7.3 Analysis of the AutoMaterial strategy
	7.4 Analysis of the DynaDescend strategy
	7.5 Analysis of the OppoShift strategy

	8 Conclusion and future work
	 Acknowledgments
	 References

