
The Laplacian and its Eigenfunctions over

Self-Similar Sets

Karim Elmallakh

Department of Mathematics and Statistics

McGill University, Montreal

March 2022

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science in Mathematics

©Karim Elmallakh

2022



ii



Abstract

In this work, we review some of the major steps in the construction of the Laplacian over

general self-similar fractal sets, and study properties of its spectrum and eigenfunctions of

the constructed formulation. After a detailed exposition of self-similar sets and their char-

acterisation, functional analytic and measure-theoretic techniques are used to develop a

viable Laplacian over self-similar fractal sets equipped with a regular harmonic structure.

An exposition of the properties of eigenfunctions and a Weyl’s-type law is presented for

the corresponding eigenvalues. The work concludes with a discussion of the heat ker-

nel, and possible methods of heat kernel embeddings of post-critically finite fractals into

Hilbert spaces, emulating the general techniques over manifolds.
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Abrégé

Dans ce thèse, nous présontons les étapes importants dans la construction de la Laplacian

sur des ensembles fractales auto-sembable et nous étudions les valeurs propres et fonc-

tions propres de ce opérateur différentiel. Après une exposition détaillée sur des ensem-

bles fractale auto-similaire et leurs caractéerisation, des techniques d’analyse fonctionelle

et la théorie de la mesure sont utilisées pour développer un Laplacian viable équipé avec

une structure harmonique régulière. Un exposition de les propriétés des les fonctions

et valeurs propres, et une analogue de la théorème de Weyl sur des asymptotique des

valeurs propres de la Laplacian sur Rn est presentée. Ce thèse conclut avec une discus-

sion de la noyau de la chaleur de la Laplacian et des homéomorphismes injectifs entre des

fractals auto-sembable et un espace Hilbert avec des fonctionnes propres.
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Abrégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

2 Preliminaries 3

2.1 Construction of Self-Similar Sets . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Characterisation via Shift Spaces and Iterated Function Systems . . . . . . . 6

2.3 Measure and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Construction of the Laplacian over Self-Similar Sets 13

3.1 Graph Approximations of Self-Similar Sets . . . . . . . . . . . . . . . . . . . 13

3.2 Dirichlet Forms and Laplacians over Finite Graphs . . . . . . . . . . . . . . . 15

3.3 Resistance Networks, Effective Resistance, and Sequences of Discrete Lapla-

cians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Dirichlet Forms, Laplacians, and Measure . . . . . . . . . . . . . . . . . . . . 26

4 Pointwise Formulation of the Laplacian and the Gauss-Green Formula 32

4.1 Harmonic Structures and the Effective Resistance Topology . . . . . . . . . . 33

4.2 The Pointwise Laplacian and Neumann Derivatives . . . . . . . . . . . . . . 38

4.3 The Gauss-Green Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



5 Eigenvalues of the Laplacian and Weyl’s Law over Self-Similar Domains 45

5.1 Eigenvalues and Eigenfunctions of the Laplacian . . . . . . . . . . . . . . . . 45

5.2 The Eigenvalue-Counting Function and Weyl’s Law . . . . . . . . . . . . . . 47

6 The Heat Kernel and Eigenfunction Embeddings 54

6.1 The Heat Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Heat Kernel Embeddings into Hilbert Spaces . . . . . . . . . . . . . . . . . . 60

7 Conclusion 63

v



Chapter 1

Introduction

Fractals are a ubiquotous occurrence in mathematics, and have many applications to var-

ious fields of research, including geography, physics, biology, and many others; a lot of

natural structures exhibit fractal geometry, from neuroplasticity and neural geometry to

the length of coastlines. This makes studying diffusion processes over such sets incredi-

bly useful, but from a purely mathematical perspective, the study of analysis on fractals

leads to a very rich theory linking various branches of mathematics including graph the-

ory, differential geometry, real and complex analysis, and probability. In this work, we

begin in Chapter 2 by constructing a specific class of fractal sets known as self-similar

fractals, and discuss notions of measure and integration over such sets in order to build

a theory of differential operators, and specifically an analogue of the classical Laplacian

over such sets.

In chapter 3, we begin investigating the architecture required to build the Laplacian

over self-similar sets by viewing them as limits of graph networks equipped with the

appropriate Dirichlet forms, giving rise to a resistance metric. We further discuss the

relations between these Dirichlet forms and use functional analytic and measure-theoretic

techniques to relate these bilinear Dirichlet forms to our previously constructed notion of

measure. We use this to construct a non-negative self-adjoint operator analogous to the

classical Laplacian over these sets. Chapter 4 then expands on chapter 3 by explicitly
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defining the Dirichlet and Neumann Laplacians as self-adjoint operators, and following

the groundbreaking work of Kigami in [7] and [8] to define a pointwise formulation,

known as the Kigami Laplacian, and develop a Gauss-Green formula.

The fourth chapter of this work then proves the existence of eigenvalues and eigen-

functions of the Kigami Laplacian, and investigates some of their basic properties. We

also state and prove an important theorem presented by Kigami and Lapidus in [9] re-

garding the asymptotics of the Laplacian eigenvalues.

We conclude this work with the fifth chapter, where we discuss an application of

eigenfunctions to the construction of the heat kernel. It is first introduced formally, and

we prove its existence and preliminary continuity and differentiability properties. We

then use the heat kernel to construct an embedding of a post-critically finite self-similar

set into `2(R), emulating the usual techniques used to construct heat kernel embeddings

of manifolds in differential geometry presented by Berard, Besson, and Gallot in [3]. We

also discuss the differences between the manifold and fractal cases in the conclusion, and

the shortcomings of heat kernel embeddings of fractals as opposed to manifolds, and

briefly propose further avenues of research into constructing metric-preserving embed-

dings of fractals into Hilbert-spaces.
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Chapter 2

Preliminaries

We begin with an exposition of the basics of self-similar and post-critically finite (p.c.f)

fractals, including their construction and how one can begin to study analysis on such

structures; specifically, we review the construction of the Laplacian in this context. The

following work is an adaptation of the work of Kigami and Strichartz from [8] and [12].

2.1 Construction of Self-Similar Sets

To begin our construction, we take (X, d) to be a metric space, and C(X) the space of all

compact non-empty subsets of X equipped with the Hausdorff metric.

Definition 2.1.1. For A,B ∈ C(X), we define the Hausdorff distance between A and B to be

δ(A,B) = inf

{
r > 0

∣∣∣∣∣⋃
y∈A

Br(y) ⊇ B,
⋃
y∈B

Br(y) ⊇ A

}
where Br(y) is the ball of radius r centered at y.

It can be easily verified that Hausdorff distance is well-defined over C(X) and is in-

deed a metric; furthermore, it is fairly well known that equipped with this metric, if (X, d)

is complete, then C(X) is complete.

Definition 2.1.2. Let (X, d) be a metric space, and f : X → X a Lipschitz continuous map with

Lipschitz constant 0 < r < 1. Then, f is referred to as a contraction with contraction ratio r.
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Given this definition, the Banach Fixed Point Theorem establishes the existence and

uniqueness of a fixed point for a contraction mapping f . In other words, for f : X → X

a contraction and (X, d) a complete metric space, there exists a unique x ∈ X such that

f(x) = x. The goal of this section is to establish the existence of self similar sets using the

Banach Fixed Point Theorem applied to the complete metric space (C(X), δ). To this end,

we require the following lemmas:

Lemma 2.1.1. Let A1, A2, B1, B2 ∈ C(X). Then,

δ(A1 ∪ A2, B1 ∪B2) ≤ max{δ(A1, B1), δ(A2, B2)}.

Proof. Let r > max{δ(A1, B1), δ(A2, B2)}, by definition of δ(Ai, Bi) for i = 1, 2, we have

that ⋃
y∈Ai Br(y) ⊇ Bi,

which implies ⋃
y∈A1∪A2

Br(y) ⊇ B1 ∪B2.

By symmetry of the metric δ, we have a similar result with the roles of Ai and Bi inter-

changed, demonstrating that r ≥ δ(A1 ∪ A2, B1 ∪B2), thus proving the lemma.

Remark 2.1.1. By induction, Lemma 1 extends to finite unions of sets in C(X). More precisely,

δ(∪ni=1Ai,∪ni=1Bi) ≤ max
1≤i≤n

{δ(Ai, Bi)}.

When referencing this lemma in the proof of further results in this section, we refer to this more

general formulation.

Lemma 2.1.2. Let (X, d) be a metric space, and f : X → X a contraction with contraction ratio

r. Then for all A,B ∈ C(X), δ(f(A), f(B)) ≤ rδ(A,B).

Proof. For A,B ∈ C(X), let s := δ(A,B). By definition of δ⋃
y∈ABs(y) ⊇ B, and

⋃
y∈B Bs(y) ⊇ A.
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It follows that for x ∈ B and f(x) ∈ f(B), by the above containment we have that

f(x) ∈ f
(⋃

y∈ABs(y)
)

=
⋃
y∈A f(Bs(y)),

And so there exists a y ∈ A such that f(x) ∈ f(Bs(y)). Then, since f is a contraction with

contraction ratio 0 < r < 1, we obtain the following string of inequalities

d(f(x), f(y)) ≤ rd(x, y) ≤ rs < s.

So f(x) ∈
⋃
f(y)∈f(A) Brs(y), demonstrating that f(B) ⊆

⋃
f(y)∈f(A) Brs(y). By symmetry,

we have the analogous result f(A) ⊆
⋃
f(y)∈f(B) Brs(y). Then, by definition of the Haus-

dorff metric as the infimum, we get that δ(f(A), f(B)) ≤ rs = rδ(A,B), as desired.

Now that we have established how the Hausdorff metric acts on images of contrac-

tions, we are prepared to begin our construction of self-similar sets.

Theorem 2.1.3. Let (X, d) be a complete metric space and {fi}ni=1 be a finite set of contractions

from X to itself, with contraction ratios {ri}ni=1 respectively. Then there exists a unique K ∈

C(X) called the self similar set with respect to {fi}ni=1, satisfying

K =
⋃n
i=1 fi(K).

Proof. Consider C(X) equipped with the Hausdorff metric δ, and define the function

F : C(X)→ C(X)

F (A) =
⋃n
i=1 fi(A).

It is clear that F is well-defined and is indeed a map from C(X) to itself, as finite unions

of compact sets are compact.And by Lemmas 1 and 2, we have that for A,B ∈ C(X)

δ(F (A), F (B)) ≤ max
1≤i≤n

δ(fi(A), fi(B)) ≤ max
1≤i≤n

riδ(A,B)

Letting r := max
1≤i≤n

ri, the above string of inequalities demonstrates that δ(F (A), F (B)) ≤

rδ(A,B). Thus, F is a contraction with contraction ratio r, and by the Banach Fixed Point

Theorem, we have that there exists a unique K ∈ C(X) such that K = F (K). In other

words,
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K =
⋃n
i=1 fi(K)

as desired.

2.2 Characterisation via Shift Spaces and Iterated Function

Systems

Given a self-similar set K with associated contractions {fi}ni=1, we now wish to see what

happens as we arbitrarily take compositions of each of the fi for 1 ≤ i ≤ n. We first

introduce some necessary notation.

Definition 2.2.1. Form,n ∈ N, we define the set of words of lengthm to be the Cartesian product

of the set {1, 2, ..., n}m times; i.e.:

Wm
n = {1, 2, ..., n}m = {w1w2w3...wm|wi ∈ {1, 2, ..., n}}

Furthermore, we define the empty word to be Wm
0 = {∅}, and W n

∗ =
⋃∞
m=1W

m
n . In settings

where there can be no ambiguity, for ease of notation we will refer to Wm
n as Wn, and W n

∗ as W∗.

Definition 2.2.2. We define the shift space of n symbols to be

Σn := {ω1ω2ω3... | ωi ∈ {1, 2, 3, ..., n}}

Likewise, for simplicity, we will refer to this space as Σ when the context is clear.

Given a shift space Σ (with n symbols), it is clear that both appending a symbol from

{1, 2, ..., n} to a word ω = ω1ω2ω3... ∈ Σ, and removing a symbol from ω yields another

word in Σ respectively. More formally, for k ∈ {1, 2, ..., n}, we can define the two maps

σk : Σ→ Σ

σk(ω) = kω1ω2ω3...

and
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σ : Σ→ Σ

σ(ω) = ω2ω3ω4...

The latter map, which is of more significance for our purposes, is referred to as the

shift map. Now given this framework, for an arbitrary set of contractions {fi}ni=1, we can

consider arbitrary compositions of the fi using words w = w1w2...wm ∈ W∗ by defining

fw = fw1 ◦ fw2 ◦ fw3 ◦ ... ◦ fwm , and the associated image spaces Kw = fw(K). We will refer

to a set Kw ⊆ K as a cell of level m. Furthermore, by defining the appropriate metric

on the shift space Σ, we can realise it as a self-similar set, so that given a self-similar set

K with contractions {fi}ni=1, we can establish a one-to-one correspondence between K

and its shift space Σ. A set is called post-critically finite if for all 1 ≤ i, j ≤ n, we have

that fi(K) ∩ fj(K) is non-empty and finite, in addition to the symbolic representations of

these points (in terms of words of length m) are periodic. We now prove some important

theorems characterising self-similar sets via shift spaces, as done in [8].

Theorem 2.2.1. Let ω, τ ∈ Σ with ω 6= τ , and r ∈ (0, 1). Then, the map

δr : Σ× Σ→ R

δr(ω, τ) =


rs(ω,τ) ω 6= τ

0 ω = τ

where s(ω, τ) := min
m∈N
{ωm 6= τm}− 1 defines a metric on Σ, and (Σ, δr) is a compact metric space.

Furthermore, with respect to this metric, the maps σk for k ∈ {1, 2, 3, ..., n} are contractions with

contraction ratio r, and Σ is the self similar set with respect to {σk}nk=1.

Proof. We begin by establishing that δr is indeed a metric on Σ. For ω, τ ∈ Σ, it is clear that

δr(ω, τ) is non-negative and is 0 if and only if ω = τ ; similarly, symmetry trivially follows

from the definition of s(ω, τ). So, it suffices to prove the triangle inequality.

We first note that s(ω, τ) is clearly a natural number, and as a quantity measures how far

along both words we need to go before the symbols of both words start to differ. More

precisely, given n = s(ω, τ), we get that for all 1 ≤ i ≤ n, ωi = τi and ωn+1 6= τn+1.
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So it follows that for ω, τ, κ ∈ Σ, min{s(ω, κ), s(τ, κ)} ≤ s(ω, τ). In other words, the

index at which all three start to differ, is less than the index at which any two individually

start to differ.

Therefore, for ω, τ, κ distinct words, we have that

δr(ω, κ) ≤ rmin{s(ω,κ),s(τ,κ)} ≤ rs(ω,κ) + rs(τ,κ) = δr(ω, τ) + δr(τ, κ)

As desired. To prove compactness of (Σ, δr), let m ∈ N, and take a sequence {ωn}∞n=1 ⊆ Σ,

and consider the sets

Sm = {n ∈ N | (ωn)i = τi for all 1 ≤ i ≤ m and τ ∈ Σ}

So for fixed τ ∈ Σ, Sm is the set of all indices where ωn agrees with τ . If we can prove that

Sm is infinite for each m, that would imply that there are infinitely many ωn that agree

with tau at the first m terms. This would then allow us to extract a subsequence that

converges to τ . We proceed with a proof of this claim by induction.

For the base case ofm = 1, there are trivially infinitely many words that share a symbol

at the first index. Since there are only finitely many symbols and infintely many ωn, by

the pigeonhole principle, we get that S1 is infinite.

Now assume that for a fixed k, Sk is infinite. As in the base case, we have that there

will be infinitely many ωn that agree at the symbol in position k + 1, and by the inductive

hypothesis, there are infinitely many ωn that agree with a τ ∈ Σ at the first k symbols.

Combining both of these facts together, we can find a τ ∗ ∈ Σ such that there are infinitely

many ωn that agree at the first k + 1 symbols, as desired. Then, since each Sm is infinite,

we can extract a subsequence of {ωn} of consecutively agreeing terms at each (ωn)m that

converges to a τ ∈ Σ as n→∞, thus demonstrating that Σ is compact with respect to the

topology induced by the metric δr.

Lastly, it remains to prove that for 1 ≤ k ≤ n, σk is a contraction, and that Σ is a self

similar set with respect to {σk}nk=1. . For ω, τ ∈ Σ, with ω = ω1ω2ω3... and τ = τ1τ2τ3... we

have that

δr(σk(ω), σk(τ)) = rs(σk(ω),σk(τ)) = rs(kω1ω2ω3...,kτ1τ2τ3...) = rs(ω,τ)+1 = rδr(ω, τ).
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Therefore, for all 1 ≤ k ≤ n, δr(σk(ω), σk(τ)) ≤ rδr(ω, τ), so that each σk is a contraction

(with equality), with contraction ratio r. And since, for all ω ∈ Σ, there exists 1 ≤ k ≤ n

such that ω1 = k, we get that ω ∈
⋃n
k=1 σk(Σ). Trivially

⋃n
k=1 σk(Σ) ⊇ Σ, so that

Σ =
⋃n
k=1 σk(Σ).

This completes the proof of the theorem.

Now that we’ve realised the shift space Σ as a self-similar set with respect to the ap-

propriate contractions, it remains to establish a correspondence between an arbitrary self-

similar set K and its shift space Σ. A self-similar set characterised and expressed in this

way is referred to as an iterated function system. This correspondence is established in

the following theorem:

Theorem 2.2.2. Let (X, d) be a complete metric space, and K ⊆ X be the self-similar set with

respect to the contractions {fi}ni=1 with corresponding contraction ratios {ri}ni=1. Then, for ω =

ω1ω2ω3... ∈ Σ, the map defined by

π : Σ→ K

π(ω) =
⋂∞
m=1Kω1ω2...ωm

is a well-defined, continuous, surjective map, and for all 1 ≤ i ≤ n, π ◦ σi = fi ◦ π.

Proof. We begin by proving that π is a well-defined map, which amounts to showing that

the set
⋂∞
m=1Kω1ω2...ωm contains only one point. Since K is a self-similar set, we get that

for all 1 ≤ i ≤ n, fi(K) ⊆ K. This implies that we have the following inclusions of image

spaces

Kω1ω2...ωmωm+1 = fω1ω2...ωm(fωm+1(K)) ⊆ fω1ω2...ωm(K) = Kω1ω2...ωm

This demonstrates that the sequence of sets {Kω1ω2...ωm}∞m=1 is decreasing, and since

each fi is continuous, andK is compact (as an element ofC(X)), we get that {Kω1ω2...ωm}∞m=1

are compact, and thus
⋂∞
m=1Kω1ω2...ωm is non-empty and compact.

Now, to prove that π(ω) is well-defined, let r := max
1≤i≤n

ri and w = ω1ω2ω3...ωm ∈ Wm.

Then,
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diam(Kw) = sup
x,y∈K

d(f(x), f(y)) ≤ rm sup
x,y∈K

d(x, y) = rmdiam(K)

So that as m → ∞, we get that diam(
⋂∞
m=1 Kω1ω2...ωm) = 0, and so Kω1ω2...ωm contains

only one point, and thus π(ω) is well-defined.

To prove continuity, let ω, τ ∈ Σ and R > 0 with ω = ω1ω2...ωm... and τ = τ1τ2...τm...

such that δR(ω, τ) ≤ Rm. In other words, ω and τ agree up to the first m symbols, and

hence Kω1ω2...ωm = Kτ1τ2...τm . This implies π(ω), π(τ) exist in the same set Kω1ω2...ωm , and

d(π(ω), π(τ)) ≤ rmdiam(K), which tends to 0 as m → ∞ and so can be made arbitrarily

small, proving continuity.

Now, for ω ∈ σ and 1 ≤ i ≤ n we have that

π(σi(ω)) =
⋂∞
m=1Kiω1ω2...ωm =

⋂∞
m=1 fi(Kω1ω2...ωm) = fi(π(ω))

demonstrating that π ◦ σi = fi ◦ π. And lastly, by Theorem 2.2.1, we have that Σ =⋃n
k=1 σk(Σ), so that

π(Σ) = π(
⋃n
k=1 σk(Σ)) =

⋃n
k=1 π(σk(Σ)) =

⋃n
k=1 fk(π(Σ))

This demonstrates that π(Σ) is a self-similar set with respect to {fk}nk=1, as it is a com-

pact non-empty subset, and by uniqueness of self-similar sets, we must have that π is

surjective, with π(Σ) = K.

2.3 Measure and Integration

Now that we have constructed a self-similar setK, and characterised it as an iterated func-

tion system with respect to contractions {fk}nk=1, to define differential operators on such

spaces, we need a notion of measure and integration. This is usually done by constructing

a regular probability measure over K, often referred to as a self-similar measure.

We follow Kigami’s construction [8], although various parts of this construction can

also be found in [12]. To construct such a measure µ, for a cell C ⊆ K, we require four

main conditions:
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• [Positivity] For C 6= ∅, µ(C) > 0,

• µ(K) = 1,

• [Finite Additivity] Given {Ck}nk=1 ⊆ K almost disjoint cells (disjoint cells with the

exception of possibly intersecting at their boundaries - which could be a finite set of

points), we have

µ (
⋃n
k=1Ck) =

∑n
k=1 µ(Ck)

• [Continuity] For {Ck}∞k=1 ⊆ K decreasing sets, then

µ (
⋂∞
k=1Ck) = lim

k→∞
µ(Ck)

To construct such a measure µ, we assign weight 1 to all of K, and then inductively

assign weights to the following cells of levelm. To this end, forK self-similar with respect

to contractions {fk}nk=1, we choose a set of weights {µk}nk=1 such that

n∑
k=1

µk = 1

Then, for w = w1w2...wm ∈ Wm, and a cell fw(K) ⊆ K, we define

µ(fw(K)) :=
m∏
k=1

µwk

It is easily seen that the collection of finite unions of cells (of a self-similar set) form

an algebra, and µ inductively constructed satisfying the conditions above forms a pre-

measure. So that by the Caratheodory Extension Theorem, we can extend µ uniquely

to form a measure over all of K. It is important to note, however, that while such a

measure µ is unique, we can construct various measures depending on how we choose

to inductively assign our weights on the algebra of cells of level m. The special case were

for all 1 ≤ i, j ≤ n with i 6= j, µi = µj is referred to as the standard measure over K.
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Now that we have constructed a measure over K, for cells fw(K) of level m, and

xw ∈ fw(K), we define the integral of a continuous function over K, like so:∫
K

Fdµ := lim
m→∞

∑
|w|=m

F (xw)µ(fw(K))

Note that this integral is well-defined and finite by virtue of F being continuous andK

being compact. This guarantees that F achieves a (finite) maximum and minimum over

K, and is further uniformly continuous. This makes the value of our integral independent

of the choice of points xw.
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Chapter 3

Construction of the Laplacian over

Self-Similar Sets

Now that we have established the necessary preliminaries and context in which we are

operating and explored the general construction and characterisation of our domains, in

this chapter we introduce the required machinery to construct differential operators, and

specifically, the Laplacian, in a way that is analogous to its interpretation over smooth

domains. This is generally done by considering graph approximations of our self-similar

sets, and defining the appropriate bilinear energy to create a weak formulation of our

Laplacian. This weak or variational formulation is then used to develop a pointwise

formulation, which we show possesses all the familiar properties of the Laplacian over

smooth surfaces. Furthermore, we show that the domain of such an operator is non-

trivial. As in the previous chapter, the following work is also adapted from [8].

3.1 Graph Approximations of Self-Similar Sets

Now that we have constructed self-similar sets, an alternative formulation in terms of

graphs proves to be helpful in defining differential operators via difference quotients. We

create this graph formulation inductively. Let K be a self-similar set with respect to the
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contractions {fi}ni=1. For each m ∈ N, we construct graphs Γm with associated vertex and

edge sets (Vm, Em); we call each Γm the graph approximation of level m.

We begin by defining the vertex sets, Vm. Let V0 be a (finite) set of boundary points

of K (note that since K is compact, we can always define such a finite set by choosing a

point from every finite-subcover of an arbitrary open cover of K, but it will be different

from the topological boundary ∂K).

To define Vm, let w = w1w2...wm ∈ Wm be a word of length m, and as in the previous

chapter, we write

fw = fw1 ◦ fw2 ◦ ... ◦ fwm

And define Vm inductively, like so

Vm =
⋃m
i=1 fi(Vm−1),

where the index i ∈ {1, 2, ..., n}. We can obtain a more explicit formulation of Vm in

terms of the boundary points of K using the above recurrence relation and our formula-

tion of K via shift spaces. We can write Vm−1 using our recurrence

Vm−1 =
⋃m−1
j=1 fj(Vm−2)

And substituting this into our defining recurrence relation, we get

Vm =
⋃m
i=1 fi(

⋃m−1
j=1 fj(Vm−2)) =

⋃m
i=1

⋃m−1
j=1 fi(fj(Vm−2))

We can then reformulate this in terms of words w ∈ Wm, as the indices iterate through

each permutation of 1 ≤ i, j ≤ m, and continuing recursively as above, we obtain

Vm =
⋃
w∈Wm

⋃
p∈V0 fw(p)

where p ∈ V0 are our (finitely many) boundary points.
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3.2 Dirichlet Forms and Laplacians over Finite Graphs

To formulate a weak Laplacian we emulate the general procedure in analysis over smooth

surfaces, and we reframe the problem variationally. In other words, we minimise an

appropriate energy functional over our graph approximations Γm and take a continuum

limit to obtain a functional over our self-similar set K that minimises energy.

For a general (finite) graph G = (V,E), we begin by first introducing the linear space

`(V ) as the space of all functions of from the vertex set V into R, where addition and

scalar multiplication are defined pointwise. Furthermore, for u, v ∈ `(V ), we define the

inner product over `(V ) by

〈u, v〉V =
∑
p∈V

u(p)v(p)

When no ambiguity can occur, we will often drop the subscript V in the notation of

the inner product. Given this context, we define our graph energy as follows:

Definition 3.2.1. Let V be a finite set. A symmetric bilinear form

ε : `(V )× `(V )→ R, is called a Dirichlet Form on V if it satisfies the following conditions:

(i) For all u ∈ `(V ), ε(u, u) ≥ 0

(ii) ε(u, u) = 0 if and only if u is constant on V .

(iii) (Markov Property) For any u ∈ `(V ), we define ū : V → R by

ū(p) =


1 if u(p) ≥ 1,

u(p) if 0 < u(p) < 1

0 if u(p) ≤ 0

Then, ε(ū, ū) ≤ ε(u, u).

We denote the space of all Dirichlet Forms over V by DF(V ), and the space of all symmetric

bilinear forms satisfying (i) and (ii) by D̃F(V ).
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Definition 3.2.2 (Characteristic Functions and Linear Operators). Let V be a finite set, and

U ⊆ V . Then the characteristic function of U is the function

χVU (p) =


1 if q ∈ U

0 otherwise.

In cases where there is lack of ambiguity, for ease of notation, we write χU for the characteristic

function of U . And in the case where U = {p} is a singleton, we write χp instead of χ{p}.

Furthermore, for a linear operator H : `(V )→ `(V ), for p, q ∈ V , we define

Hpq = (Hχq)(p),

and for u ∈ `(V ), we have

(Hu)(p) =
∑
q∈V

Hpqu(q).

In other words, if we know howH acts on χq for q ∈ V , we can determine the action of

H on all of V by summing over all q ∈ V . Alternatively, to further motivate this definition,

it’s clear that the set {χq}q∈V is a basis for `(V ), and so for an arbitrary linear operator H ,

we can study its action by restricting our attention to the basis elements of our space.

Definition 3.2.3 (Laplacian). Let H : `(V )→ `(V ) be a symmetric linear operator. Then, H is

called a Laplacian over V if it satisfies the following conditions:

(i) H is non-positive definite; i.e.: we have that 〈u,Hu〉V ≤ 0,

(ii) H(u) = 0 over V if and only if u is constant on V ,

(iii) Hpq ≥ 0 for all p, q ∈ V with p 6= q.

We denote the collection of Laplacians over `(V ) by LA(V ), and the space of all symmetric

linear operators satisfying the first two conditions in the above definition by L̃A(V ).
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From definitions 3.2.1 and 3.2.3, we can clearly see thatDF(V ) ⊆ D̃F(V ), andLA(V ) ⊆

L̃A(V ). the following theorem demonstrates that we can establish a one-to-one corre-

spondence between DF(V ) and LA(V ). In other words, for each Laplacian, there exists

an associated Dirichlet form, and vice versa. This allows us to construct differential oper-

ators, and specifically a Laplacian, analogous to the one over smooth spaces, variationally.

Theorem 3.2.1. Let H : `(V ) → `(V ) be a symmetric linear operator, and define the quadratic

form

εH(., .) : `(V )× `(V )→ R

(u, v) 7→ −〈u,Hv〉.

Now, we define the map

π : L̃A(V )→ D̃F(V )

π(H) = εH .

Then, π is bijective, with π(LA(V )) = DF(V ).

Proof. To prove injectivity, let H1 and H2 be non-positive definite symmetric linear opera-

tors satisfying π(H1) = π(H2). Then by definition of π, for u ∈ `(V ), we have that

〈u,H1u〉 = 〈u,H2u〉,

which can equivalently be written as

⇐⇒ 〈u, (H2 −H1)u〉 = 〈u, 0〉.

Since u ∈ `(V ) is arbitrary, we have that H1 −H2 = 0 if and only if H1 = H2.

For surjectivity, let ε ∈ D̃F(V ). Then, as a symmetric bilinear form, for u ∈ `(V ), we

have that the map v 7→ ε(u, v) is a linear operator from `(V ) to itself. Then, since `(V ) is

an inner product space of finite dimension, it’s isomorphic to Rn, and thus complete.
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So by the Riesz-Representation theorem for Hilbert spaces, there exists a linear opera-

tor H such that

ε(u, v) = −〈u,Hv〉

Then, since ε(u, u) ≥ 0, we have that −〈u,Hu〉 is non-negative definite, so H is non-

positive definite. Furthermore, ε(u, u) = 0 implies u is constant on V , and thus Hu is

constant over V . This demonstrates that H ∈ L̃A(V ), and thus π is a bijective map from

L̃A(V ) to D̃F(V ).

It remains to show that π(LA(V )) = DF(V ). We first note that for p, q ∈ V ,

Hpq(u(p)− u(q))2 = Hpqu(p)2 − 2Hpqu(p)u(q) +Hpqu(q)2

And summing across all p, q ∈ V , we get the identity∑
p,q∈V,p 6=q

Hpq(u(p)− u(q))2 = −2
∑
p,q∈V

Hpqu(p)u(q)

Notice that the right hand side is just twice εH(u, u) = −〈u,Hu〉, by definition of Hu

and the inner product on `(V ), so

εH(u, u) = 1
2

∑
p,q∈V

Hpq(u(p)− u(q))2

It remains to show that εH possesses the Markov property. Recall the function

ũ(p) =


1 if u(p) ≥ 1

u(p) if 0 < u(p) < 1

0 if u(p) ≤ 0.

We need to consider various cases. For p, q ∈ V , if 0 < u(p) < 1 and 0 < u(q) < 1, then

ũ(p) = u(p) and ũ(q) = u(q), so that (ũ(p) − ũ(q))2 = (u(p) − u(q))2. If both u(p), u(q) ≥ 1

or u(p), u(q) ≤ 0, then ũ(p) = ũ(q) = 1 or u(p) = u(q) = 0, so that (ũ(p) − ũ(q))2 = 0 ≤

(u(p) − u(q))2. Given u(p) ≥ 1 or u(p) ≤ 0 and 0 < u(q) < 1, we have that for c = 0, 1,

(ũ(p)− ũ(q))2 = (c− u(q))2 = (u(q)− c)2 ≤ (u(q)− u(p))2. Lastly, if u(p) ≥ 1 and u(q) ≤ 0,

we have that (ũ(p)− ũ(q))2 = (1− 0))2 ≤ (1− u(q))2 = (u(q)− 1)2 leq(u(q)− u(p))2.
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In all cases, since −H is a Laplacian, we have for all p, q ∈ V that Hpq ≥ 0 and thus

εH satisfies the Markov Property, and is ta Dirichlet form. This yields the containment

π(LA(V )) ⊆ DF(V ).

We do the converse inclusion via the contrapositive. Let H be a symmetric bilinear

form with Hpq < 0 for some p 6= q, and without loss of generality, we can assume that

Hpq = −1. To simplify our notation, let x = u(p), y = u(q), and z = u(a) for a 6= p 6= q.

Then, we can express εH(u, u) as

εH(u, u) = α(x− z)2 + β(y − z)2 − (x− y)2

for some positive constants α, β, by the non-negative definiteness of εH . Then for any

function where x = 1, y < 0 and z = 0, this collapses to

εH(u, u) = α + βy2 − (1− y)2

= α + βy2 − 1 + 2y − y2 = α + (β − 1)y2 − 1 + 2y

Likewise, since y = u(q) < 0, we have that ũ(q) = 0, so that

εH(ũ, ũ) = α− 1

Then if
−2

β − 1
< y < 0, we have that εH(u, u) ≤ εH(ũ, ũ), and thus εH is not a Dirichlet

form, and so π(H) /∈ DF(V ), as desired.

3.3 Resistance Networks, Effective Resistance, and Sequences

of Discrete Laplacians

Definition 3.3.1. (Resistance Network and Effective Resistance) Let V be a finite set, and H ∈

LA(V ). Then, the pair (V,H) is called a resistance network. Furthermore, for H ∈ L̃A(V ), we

define the effective resistance as

RH(p, q) := max
u∈`(V )

εH(u,u) 6=0

{
|u(p)− u(q)|2

εH(u, u)

}
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Note that the effective resistance can be equivalently defined as, as is done in [8]

RH(p, q) =

 min
u∈`(V )

u(p)=1,u(q)=0

εH(u, u)

−1

The proof of this equivalence is fairly involved, and not fairly enlightening for our

purposes, and thus we omit it here. The full details proving this equivalence can be found

in Chapter 2.1 of [8].

The importance of the effective resistance is two-fold: it defines a metric over V , and

it gives us an upper bound on the value of |u(p) − u(q)|2 for u ∈ `(V ). For the latter (and

rather simpler) point, we notice that for u ∈ `(V ) with εH(u, u) 6= 0,

|u(p)− u(q)|2

εH(u, u)
≤ RH(p, q),

implies that

|u(p)− u(q)|2 ≤ RH(p, q)εH(u, u). (3.1)

In regards to the former point, we notice two things, the first which we prove in

this section, and the second which is instrumental in constructing solutions to the eigen-

value problem. Firstly,
√
RH defines a metric over V for any symmetric linear operator

in L̃A(V ); secondly, returning to our setting of self-similar sets with a sequence of fi-

nite graph approximations,
√
RH turns the union of these approximations into a Hilbert

space. In light of this, after appropriately defining the fractal Laplacian, we can apply the

spectral theorem to get a set of functions solving the eigenvalue problem.

Proposition 3.3.1. Let H ∈ L̃A(V ), and RH be its associated effective resistance over V . Then,
√
RH defines a metric over V .

Proof. It is clear from the definition of RH that it is symmetric and that its takes value

0 when p = q for p, q ∈ V . It remains to show the triangle inequality, and that given

RH(p, q) = 0, we have p = q.

For the latter claim, let RH(p, q) = 0, and let u ∈ `(V ) achieve the maximum in the

definition of RH . Then,
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0 ≤ |χp − χq| ≤ RH(p, q)εH(u, u) = 0.

Equivalently, χp = χq and so p = q. Now, for the triangle inequality, given p, q, r ∈ V ,

we have that

|u(p)− u(q)|√
εH(u, u)

≤ |u(p)− u(r)|√
εH(u, u)

+
|u(r)− u(q)|√

εH(u, u)

Taking the maximum across all u ∈ `(V ) with εH(u, u) 6= 0, we get that√
RH(p, q) ≤

√
RH(p, r) +

√
RH(r, q)

This demonstrates that
√
RH is a metric over V .

We are now prepared to look at sequences of graph approximations, and sequences of

resistance networks.

Definition 3.3.2. (Compatible sequence of resistance networks)

Let Vm be a finite set for all m ∈ N, and Hm ∈ L̃A(Vm). Then, S := {(Vm, Hm)}∞m=1 is called

a compatible sequence (of resistance networks) if Vm ⊆ Vm+1, and Hm+1 = Hm on Vm. This is

often denoted symbollically as (Vm, Hm) ≤ (Vm+1, Hm+1).

Furthermore, we define the set V∗ as the union of all the Vm; i.e.:

V∗ =
⋃∞
m=1 Vm

Before we proceed, we elaborate on some notation for the sake of clarity. As in the

definition of `(V ) for a set V with finite cardinality, we define `(V∗) to be all real-valued

maps on V∗. We further define the set

F(S) :=
{
u ∈ `(V∗)

∣∣∣ lim
m→∞

εHm(u|Vm , u|Vm) <∞
}

Throughout the rest of this work, for a Laplacian (or symmetric linear operator) Hm

over Vm, we will often refer to εH(u, u) as the energy of u over Vm with respect to Hm, and

we refer to a function u ∈ F(S) as a function with finite (Dirichlet) energy over V∗.
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Definition 3.3.3. (Bilinear Energy and Effective Resistance over V∗)

Let S = (Vm, Hm)∞m=1 be a compatible sequence of resistance networks. Then, for u, v ∈ F(S),

we define the bilinear form

εS : `(V∗)× `(V∗)→ R

εS(u, v) = lim
m→∞

εHm(u|Vm , v|Vm)

which has associated Dirichlet form

εS(u, u) := lim
m→∞

εHm(u|Vm , u|Vm)

Furthermore, for p, q ∈ V∗, we define the effective resistance associated with S by

RS(p, q) := RHm(p, q)

for sufficiently large m such that p, q ∈ Hm.

Proposition 3.3.1 demonstrates the following characterisation of the effective resis-

tance RS(., .), which we often call the resistance form.

Proposition 3.3.2. Let p, q ∈ V∗. Then,

RS(p, q) = max
u∈F(S)
εS(u,u)6=0

{
|u(p)− u(q)|2

εS(u, u)

}

Furthermore,
√
RS(p, q) is a metric over V∗ (often called the resistance metric), and for any

p, q ∈ V∗ we have the following estimate

|u(p)− u(q)|2 ≤ RS(p, q)εS(u, u)

Remark 3.3.1. The above estimate demonstrates that F(S) ⊆ C(V∗, R
1/2
S ), the space of contin-

uous functions over V∗ equipped with the metric
√
RS . Furthermore, if V∗ is the collection of

all finite graph approximations of a self-similar set K, we have that u ∈ F(S) is bounded and

uniformly continuous, since K is compact (by construction).
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Proof (of Proposition 3.3.2). Let m ∈ N be sufficiently large such that p, q ∈ Vm. Then, by

definition,

RS(p, q) = RHm(p, q) = max
u∈`(Vm)

εHm (u,u)6=0

{
|u(p)− u(q)|2

εHm(u,u)

}
Then, since S is a compatible sequence, we can take m → ∞ to get the desired result.

Furthermore, by Proposition 3.3.1, it follows that
√
RS is a metric over V∗, and that we

have the above estimate on |u(p)− u(q)|2.

Now, given a compatible sequence S = {(Vm, Hm)}∞m=1, we want to turn F(S) into

a Hilbert space. It turns out that this amounts to defining the appropriate equivalence

relation on F(S); since εS(u, v) = 0 if and only if u − v is constant over V∗, this provides

us with a viable candidate for such a relation. Turning F(S) into a Hilbert space is then

incredibly useful, since if we can construct an appropriate symmetric self-adjoint operator

(that has the same properties as the classical Laplacian), then we can apply the spectral

theorem to get solutions to the eigenvalue problem, which is ultimately our goal.

However, before we can prove this we need the following lemma, which relates `(Vm)

to F(S).

Lemma 3.3.1. Let u ∈ `(Vm). Then there exists a linear map

hm : `(Vm)→ F(S),

such that hm(u)|Vm = u, and

εHm(u, u) = εS(hm(u), hm(u))

= min
v∈F(S),v|Vm=u

εS(v, v).

Remark 3.3.2. We further note that this lemma implies that given a nested sequence of sets Vm ⊆

Vm+1, and a function u ∈ `(Vm), we can construct a Dirichlet form εm+1 on Vm+1 that agrees with

εm on Vm and minimises the value of εm+1 on Vm+1. In other words, we can construct a sequence

of Dirichlet forms over {Vm}∞m=1 that minimises the values of each εm on Vm. This is sometimes

referred to as a harmonic extension of u.
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Proof of Lemma 3.3.1. See Chapter 2.2 (pg. 51-52) of [8].

Theorem 3.3.2. Let u, v ∈ F(S), and define the equivalence relation u ∼ v if and only if u − v

is constant on V∗. Then εS is a positive definite symmetric form on F(S)/ ∼ that defines an inner

product, and induces a Hilbert space structure.

Furthermore, if for all m ∈ N, Hm ∈ LA(V ), then εS satisfies the Markov property, and is

thus a Dirichlet form over F(S).

Proof. We first note that the latter statement follows from Theorem 3.2.1 and the fact that

S = {(Vm, Hm)}∞m=1 is a compatible sequence. It remains to prove that ∼ is indeed an

equivalence relation on F(S), and that εS is an inner produce that turns F(S)/ ∼ into a

Hilbert space.

It’s clear that∼ is reflexive and symmetric; it remains to prove transitivity. Let u, v, w ∈

F(S) with u ∼ v and v ∼ w. Then, there exist constants K,L ∈ R such that u− v = K and

v−w = L. Then, u−w = u− v + v−w = K +L, which is constant. Hence, u ∼ w, and ∼

is transitive.

Now, from the definition of εS , it is clear that it is a bilinear form and that εS is a

symmetric quadratic form, and thus always non-negative. Furthermore, if u ∼ v, then for

all m ∈ N Hm(u− v) = 0, and thus Hm(u) = Hm(v). So, by definition of εHm

εHm(u, v) = −〈u,Hmv〉 = −〈u,Hmu〉 = εHm(u, u)

and likewise, by symmetry of Hm

εHm(u, v) = εHm(v, v)

So that εHm(u, u) = εHm(v, v). Taking m→∞we get that εS(u, u) = εS(v, v) given

u ∼ v. Therefore, εS is a well-defined positive definite, symmetric bilinear form on

F(S)/ ∼. This makes it an inner product over S/ ∼. It remains to prove that this space is

complete.

To do this, for arbitrary p ∈ V∗, define the space Fp := {u ∈ F(S)|u(p) = 0}. Then,

F/ ∼ is isomorphic to Fp since F(S) is the set of equivalence classes of functions that
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are constant over V∗, and without loss of generality, we can restrict our attention to the

equivalence class of functions whose difference is 0. So, if we can show that Fp equipped

with εS is a Hilbert space, then F(S)/ ∼ is a Hilbert space.

Let {vn}∞n=1 ⊆ Fp be a Cauchy sequence, and define vmn := hm(vn|Vm), where hm is the

linear operator as defined in Lemma 3.3.1 (where p ∈ Vm for sufficiently large m). Then,

by its characterisation as the minimser of εS , we have that

εS(vmk − vml , vmk − vml ) ≤ εS(vk − vl, vk − vl)

Thus, εS is an inner product onFp∩`(Vm), where we identify `(Vm) with the restriction

hm(`(Vm))for u ∈ `(V∗). Then, since Fp ∩ `(Vm) is a finite dimensional Hilbert space, it is

complete and thus there exists a function vm ∈ Fp ∩ `(Vm) such that vmn → vm as n → ∞.

Furthermore, we have that vm+1|Vm = vm, and thus there exists v ∈ `(V∗) with v|Vm = vm.

Define C = sup
n∈N

εS(vn, vn) < ∞, since for all n ∈ N, vn ∈ F(S), and εS is a bounded

linear operator. Then,

εS(vm, vm) ≤ sup
n,m∈N

εS(vmn , v
m
n ) = C <∞.

So that v ∈ F(S). Now, we are ready to show that vn → v. Let ε > 0, and since {vn}∞n=1

is Cauchy, let n ∈ N such that for all k > n

εS(vn − vk, vn − vk) < ε
3

Since {vmn }∞n=1 converges to vm, and as m → ∞ vmn → vn, and vm → v there exists an

m ∈ N such that

|εS(vn − v, vn − v)− εS(vmn − vm, vmn − vm)| < ε
3

And given that hm minimises εS , we have

εS(vmn − vmk , vmn − vmk ) ≤ εS(vn − vk, vn − vk) < ε
3

So that,
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|εS(vn − v, vn − v)| = |εS(vn − v, vn − v)− εS(vmn − vm, vmn − vm) + εS(vmn − vm, vmn − vm)|

≤ |εS(vn − v, vn − v)− εS(vmn − vm, vmn − vm)|+ |εS(vmn − vm, vmn − vm)|

< ε
3

+ |εS(vmn − vm, vmn − vm)|

Likewise, by our second estimate

|εS(vmn −vm, vmn −vm)| = |εS(vmn −vm, vmn −vm)−εS(vmn −vmk , vmn −vmk )+εS(vmn −vmk , vmn −vmk )|

≤ |εS(vmn − vm, vmn − vm)− εS(vmn − vmk , vmn − vmk )|+ |εS(vmn − vmk , vmn − vmk )|

< ε
3

+ |εS(vmn − vmk , vmn − vmk )|

And finally, using our last estimate, we have that

εS(vmn − vmk , vmn − vmk ) ≤ εS(vn − vk, vn − vk) < ε
3

So in summary,

|εS(vn − v, vn − v)| < ε
3

+ ε
3

+ ε
3

= ε

and so {vn}∞n=1 converges to v ∈ Fp as desired.

3.4 Dirichlet Forms, Laplacians, and Measure

The content of the previous section lays the groundwork for the development of the

Laplacian over self-similar sets. However, there are a few minor details to smooth out.

Given a self-similar set K and a compatible sequence of graphs {Vm, Hm}∞m=1 with Vm ⊆

Vm+1 and V∗ = ∪∞m=1Vm, it may not always be the case that V∗ = K; furthermore, V∗ is

countable given Vm finite), and thus V∗ equipped with
√
RS (its resistance metric) may

not be complete. To circumvent both of these issues, we take the completion of (V∗,
√
RS),

which turns out to correspond exactly with K if S is a compatible sequence of Dirich-

let forms (i.e.: they satisfy the Markov Property). For further discussion regarding these

details, see Chapter 2.3 of [8].

Furthermore, it is important to note that in section 3.3, we built a resistance form and

its associated resistance metric using a compatible sequence of (finite) graph Laplacians.
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We can then consider the set of all such forms (respectively metrics) over V∗ in greater

generality. It can be shown that there exists a bijective mapping between resistance forms

and resistance networks as done in [6] and [8]. Then, given this framework, in conjunction

with a a notion of measure and integration, we can construct our Laplacian. In a sense,

this can be viewed as a ”weak” formulation of our Laplacian. In the next section, we de-

velop a more direct characterisation of our Laplacian that corresponds with the standard

classical Laplacian.

Throughout this section, we assume that a resistance form (εS,F(S)), and associated

metric
√
RS has been constructed from a compatible sequence S, using the methods of

section 3.3. We will drop the subscript S when no confusion can arise.

Theorem 3.4.1. Let X be a set, and (ε,F) be a resistance form over X with associated resistance

metric R. Suppose that (X,R1/2) is a separable space equipped with a σ-finite Borel measure µ,

and for u, v ∈ L2(X ∩ F) define

ε1(u, v) := ε(u, v) +

∫
X

u(x)v(x)µ(dx)

Then ε1 is an inner product on L2(X ∩ F) that induces a Hilbert space structure.

Moreover, if µ is a finite measure, and
∫
X
R(p, p∗)µ(dp) < ∞ for some p∗ ∈ X , then the

identitiy map

I : L2(X ∩ F , ε1)→ L2(X,µ)

is a compact operator, where L2(X,µ) is equipped with its standard L2 norm.

Proof. We only prove the former part of the theorem. The compactness of the identity,

while an important result, isn’t incredibly significant for the purpose of this work. The

details of the proof can be found in [8].

Let u, v ∈ L2(X ∩ F). We first show that ε1(., .) is an inner product on L2(X ∩ F).

Firstly, it is well defined by Hölder’s inequality, and the fact that u, v ∈ F , and it is clearly

bilinear. Now, consider
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ε1(u, u) = ε(u, u) +

∫
X

u2dµ

Then, this quantity is always non-negative since ε is a Dirichlet form on F , and given

equality

ε1(u, u) = ε(u, u) +

∫
X

u2dµ = 0,

we have

ε(u, u) = −
∫
X

u2dµ.

The right hand side of the above equality is always non-positive, since
∫
X

u2dµ ≥ 0.

But ε(u, u) ≥ 0 as a Dirichlet form, and thus

ε(u, u) = −
∫
X

u2 = 0,

which implies that ∫
X

u2 = 0.

Therefore, u = 0 on X ∩ F . If u = 0 then we clearly have that ε1(u, u) = 0. This proves

that ε1 is an inner product, and it remains to show that L2(X ∩ F) is complete.

Let {un}∞n=1 ⊆ L2(X ∩ F) be a Cauchy sequence with respect to the norm induced by

ε1. Then, for p ∈ X define the sequence vn := un − un(p), and it is readily observable that

for all n ∈ N we have vn(p) = 0, and so vn ∈ Fp. By Theorem 3.3.2, we have that Fp is

complete (with respect to ε), and thus there exists v ∈ Fp such that

ε(vn − v, vn − v)→ 0

Recall the defining property of a resistance form: For p, q ∈ X

R(p, q) := sup
u∈F ,u6=0

{
|u(p)− u(q)|2

ε(u, u)

}
From which we can deduce that for u = vn − v

|vn(p)− v(p)− vn(q) + v(q)|2 ≤ R(p, q)ε(vn − v, vn − v)
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But since vn, v ∈ Fp, we have that for all n ∈ N, vn(p) = v(p) = 0, so that the above

inequality becomes

|vn(q)− v(q)|2 ≤ R(p, q)ε(vn − v, vv − v)

so that vn → v pointwise. Now, since X is σ-finite, for each m ∈ N there exists a set

Km ⊆ X such that Km is bounded and has finite measure, with

⋃∞
m=1Km = X .

Since Km is bounded, we have that on each Km∫
Km

|vn − v|2dµ ≤
∫
Km

R(p, q)ε(vn − v, vn − v)

= µ(Km)R(p, q)ε(vn − v, vn − v)→ 0,

as n→∞, so that vn → v in L2(Km, µ).

A priori, we don’t know if {un}∞n=1 is bounded overX , and so we restrict our attention

to Km, being bounded subsets of X . However, because {un}∞n=1 is Cauchy in L2(Km, µ)

and given Km bounded,∫
Km

|un − um|2dµ ≤ ε(un − um, un − um) +

∫
Km

|un − um|2dµ

= ε1(un − um, un − um)→ 0

since {un}∞n=1 is Cauchy with respect to ε1. Hence, {un}∞n=1 is Cauchy with respect to the

L2(Km, µ) norm.

Now, by definition of vn, we have that un(p) = (un − vn)|Km ∈ R, and since un and vn

are Cauchy in L2(Km, µ), it follows that {un(p)}∞n=1 is Cauchy in R, and thus converges to

some c ∈ R as n→∞. Then, since vn → v with respect to ε, and we have un = vn + un(p),

we get that un → u = v + c with respect to ε. In other words, we have that over Km

ε(un − u, un − u)→ 0 as n→∞.

This further implies that
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∫
Km

|un − u|2dµ ≤ ε(un − u, un − u) +

∫
Km

|un − u|2dµ

= ε1(un − u, un − u)

Now, recall that vn → v in L2(Km, µ), and un(p) and c are constants (with un(p)→ c in

R), so that in L2(Km, µ)

‖un − u‖L2(Km,µ) = ‖vn + un(p)− v − c‖L2

≤ ‖vn − v‖L2(Km,µ) +

(∫
Km

|un(p)− c|2
)1/2

= ‖vn − v‖L2(Km,µ) +
√
µ(Km)|un(p)− c|

Both the above quantities now go to 0, so we have that un → u in L2(Km, µ), and thus

combined with the fact that un → u with respect to ε, we have that un → u with respect to

ε1 over Km.

Finally, it remains to show that un → u in L2(X,µ). By the completeness of L2(X,µ),

there exists a ũ such that un → ũ in L2(X,µ). However, for all m ∈ N, by uniqueness of

the limit, we must have the u = ũ over Km, and since ∪∞m=1Km = X , we get that u = ũ

over X . Hence un → u in L2(X,µ), and since un → u with respect to ε, we must have

that un → u with respect to ε1 over all of X and thus L2(X,µ)∩F is complete (and thus a

Hilbert space) with respect to inner product ε1.

Now, we use the following theorem from functional analysis, as presented in Ap-

pendix B of [8] to construct our desired Laplacian.

Theorem 3.4.2. Let Q be a non-negative quadratic form on a real and separable Hilbert Space H

(with inner product 〈., .〉) with dense domain Dom(Q). Then, the following are equivalent

(1) Dom(Q) = Dom(H1/2), and Q = QH for some non-negative self-adjoint operator H on H,

where QH := 〈H1/2f,H1/2g〉 for all f, g ∈ Dom(H1/2)

(2) Given Q∗ := Q(f, g) + 〈f, g〉 for any f, g ∈ Dom(Q). Then, (Dom(Q), Q∗) is a Hilbert

space.

where H1/2 is the unique nonegative self-adjoint operator such that (H1/2)2 = H .
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Theorems 3.4.1 and 3.4.2 now provide the perfect setting to construct our desired

Laplacian. This is summarised in the following theorem:

Theorem 3.4.3. Let (X,R1/2) be a separable Hilbert space, equipped with a σ-finite Borel mea-

sure µ, and let (ε,F) be a resistance form over X with associated resistance metric R. Then,

if L2(X,µ) ∩ F is dense in L2(X,µ) with respect to the L2-norm, there exists a non-negative

self-adjoint operator H on L2(X,µ) such that Dom(H1/2) = F , and for all u, v ∈ F , we

have ε(u, v) = 〈H1/2u,H1/2u〉. Moreover, if µ(X) < ∞ and there exists p∗ ∈ X such that∫
X
R(p, p∗)µ(dp) <∞, then H has compact resolvent.

Proof. Let H = L2(X,µ), and Q := ε(., .), and Dom(Q) = F in Theorem 3.4.2. Then

by Theorem 3.4.1, we have that ε1 turns L2(X,µ) ∩ F into a Hilbert space, and so by

Theorem 3.4.2, we get the existence of the desired self-adjoint operator H with Q = QH =

〈H1/2u,H1/2u〉.
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Chapter 4

Pointwise Formulation of the Laplacian

and the Gauss-Green Formula

The previous chapter provides the necessary framework to build the Laplacian over a

self-similar set, and in fact we constructed a variational formulation in terms of graph en-

ergies and self-similar measures. Given a self similar set K =
⋃

1≤i≤n fi(K) with respect

to contractions {fi}ni=1, we take {Γm}∞m=1 to be a sequence of graph approximations of K

with vertex sets {Vm}∞m=1. By convention, we take V0 to be the graph approximation of the

boundary of K. In this context, and in light of the variational formulation of Chapter 3

and finalised here, we begin by defining the concept of a harmonic structure and regular

harmonic structure, its relation to compatible sequences of Laplacians Hm over Vm, and

the resistance metric ε over V∗ =
⋃∞
m=1 Vm. We also establish necessary and sufficient con-

ditions for when V̄∗ = K, where V̄∗ is the completion of V∗ with the respect to the effective

resistance metric (and K is endowed with its original metric), and use this to define the

Dirichlet and Neumann Laplacian over K, denoted −HD and −HN respectively.

In the latter part of this Chapter, we introduce the pointwise formulation of the Lapla-

cian, known as the Kigami Laplacian, and investigate some of its properties, culminating

in an analogue of the Gauss-Green formula for the Kigami Laplacian overK, and we state

a theorem that asserts that the pointwise formulation corresponds to our constructed vari-
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ational formulations HD and HN with the appropriate boundary conditions. Most results

reviewed in this chapter are obtained from [7].

4.1 Harmonic Structures and the Effective Resistance Topol-

ogy

We begin by introducing the concept of a harmonic structure, as defined by Kigami in [7].

Definition 4.1.1. Let D ∈ LA(V0) and for all 1 ≤ i ≤ n let ri > 0, and define the vector

r = (r1, r2, ..., rn). Then, for all u, v ∈ `(Vm), we define εm ∈ DF(Vm) by

ε(m)(u, v) :=
∑
w∈Wm

1

rw
εD(u ◦ fw, v ◦ fw)

where w = w1w2...wm, and rw := rw1rw2 ...rwm . For ease of notation, for the remainder of this

chapter, we write εm := ε(m).

Remark 4.1.1. Note that by Theorem 3.2.1, we have that for all m ∈ N, there exists a correspond-

ing Laplacian Hm ∈ LA(Vm) for each ε(m), since each of the Vm are finite sets. An explicit char-

acterisation can be formulated for Hm given the identity εm = εHm = 〈u,Hmv〉 for u, v ∈ `(Vm).

More explicitly, it can be shown that for w ∈ Wm

Hm =
∑
w∈Wm

1

rw
RT
wDRw

where Rw : `(Vm) → `(V0)) is a linear map defined by Rw(u) := u ◦ fw, and RT
w is its

transpose [8].

Now, we note that for all m ∈ N, εm+1 can be expressed inductively, like so

εm+1(u, v) =
n∑
i=1

1

ri
εm(u ◦ fi, v ◦ fi) (4.1)
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since for a fixed word in w = w1w2...wm ∈ Wm, we have w̃ = wwm+1 ∈ Wm+1 for

wm+1 ∈ {1, 2, ..., n}. In light of this, we can view the sequence {(Vm, Hm)}∞m=1 as a self-

similar sequence, since the each term in the sequence is dependent on the preceding term,

and each Vm is the vertex set of an m’th level approximation of a self-similar set.

Definition 4.1.2 (Harmonic Structure and Regular Harmonic Structure). Let D ∈ LA(V0)

and r ∈ Rn) be as in Definition 4.1.1. Then, the pair (D, r) is called a harmonic structure if

{(Vm, Hm)}∞m=0 is a compatible sequence, where H0 := D.

If in addition, we have that 0 < ri < 1 for all ri ∈ r, then (D, r) is called a regular harmonic

structure.

So far, we have defined what a harmonic structure is, and Definition 4.1.1 can be

thought of as a graph energy over the vertex sets Vm. However, both of these defini-

tions, especially Definition 4.1.1, seem fairly unmotivated, and it is unclear how such a

sequence can be constructed from a sequence of graph approximations of a self-similar

set K. In practice, the operator D is often chosen differently according to the properties

of the fractal we are considering. This is often done by analysing the edge sets Em of the

m’th level graph approximations, and a harmonic structure can then be constructed via its

inductive formulation by aiming to fix the energy εm on Vm, and minimising the increase

in εm on Vm+1. The process of extending the εm in this manner is often times referred to

as a harmonic extension.

At this stage in the construction, all of the relevant structures are defined over finite

sets, and so all of our operators are finite dimensional, and thus expressible as matrices

in Rm×m. Thus, the process of constructing a harmonic extension can be reduced to a

minimisation problem in Rn, where we try to minimise the graph energy given our choice

of ri for all 1 ≤ i ≤ n. For more details regarding this process, and more explicit examples,

see [12]

The following proposition makes this process more rigorous, and provides a necessary

and sufficient condition for the pair (D, r) to be a harmonic structure.

Furthermore, if we define the operator
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R r : LA(V0)→ LA(V0)

Rr(D) = H1|V0

called the renormalisation operator. By the following proposition, we have that D is

a harmonic structure if and only if it is a fixed point of Rr. Furthermore, for λ > 0 and

α > 0, by definition of H1 given in Definition 4.1.1

Rλr(αD) =
∑
w∈W1

1

λrw
[RT

w(αD)Rw]|V0

=
α

λ
H1|V0

=
α

λ
Rr(D)

So if D is an eigenvector of Rr (i.e.: Rr(D) = λD), the preceding calculation demon-

strates that D is a fixed point of Rλr(D). This reduces the existence of a harmonic struc-

ture to (equivalently) a fixed point or eigenvalue problem over the renormalisation op-

erator. This however, remains an open problem for self-similar sets in general; however,

Lindstrøm’s paper [11] provides a solution to the existence problem over nested fractals,

self-similar fractals satisfying additional symmetry, connectivity, and nesting properties

amongst the cells fw for w ∈ Wm. Examples of such sets include the Sierpinski Trian-

gle, Koch curve, amongst other self-similar fractals. By constructing Brownian motion

over such fractals, and proving they are strong Markov processes with continuous sample

paths, it can be shown that the renormalisation map has a fixed point, given the existence

of a harmonic structure over K [11].

Proposition 4.1.1. Let K be a self-similar set with defining contractions {fi}ni=1, and let V0 and

V1 be the (graph) boundary and vertex set of a 1-level approximation ofK. Then, forD ∈ LA(V0),

and r = (r1, r2, ..., rn), (D, r) is a harmonic structure if and only if (V0, D) ≤ (V1, H1), where

H1 ∈ LA(V1) is the linear operator associated with the Dirichlet form ε1.

Remark 4.1.2. Essentially, Proposition 4.1.1 allows us to focus our construction of a harmonic

structure by creating a harmonic extension from V0 to V1.
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Proof (of Proposition 4.1.1). If (D, r) is a harmonic structure, we trivially have that {(Vm, Hm)}∞m=0

is a compatible sequence of r-networks, and so (V0, D) ≤ (V1, H1).

We prove the converse by induction. Assume that (V0, D) ≤ (V1, H1), then this takes

care of the base case, and it remains to show that given (Vm−1, Hm−1) ≤ (Vm, Hm), then we

have that (Vm, Hm) ≤ (Vm+1, Hm+1).

So let {fi}ni=1 be the defining contractions of K, and take u ∈ `(Vm). Using an ana-

logue of the identity from Lemma 3.3.1, and by the induction hypothesis (Vm−1, Hm−1) ≤

(Vm, Hm)

εm−1(u ◦ fi, u ◦ fi) = min
v∈`(Vm+1)
v|Vm=u

εm(v ◦ fi, v ◦ fi) (4.2)

Now, by equations (4.1) and (4.2), we have

εm(u, u) =
n∑
i=1

1

ri
εm−1(u ◦ fi, u ◦ fi)

=
n∑
i=1

1

ri
min

v∈`(Vm+1)
v|Vm=u

εm(v ◦ fi, v ◦ fi)

= min
v∈`(Vm+1)
v|Vm=u

n∑
i=1

1

ri
εm(v ◦ fi, v ◦ fi)

= min
v∈`(Vm+1)
v|Vm=u

εm+1(v, v)

Therefore, (Vm, Hm) ≤ (Vm+1, Hm+1), which proves the inductive hypothesis.

Before we can continue to construct a pointwise formulation of the Laplacian over

a self-similar set, we need to deal with a minor detail we have circumvented thus far.

Putting together the results of Chapter 2 and the previous section, given a harmonic struc-

ture (D, r), and its induced compatible sequence {(Vm, Hm)}∞m=0, we have that there exists

(ε,F) and R an effective resistance form and effective resistance metric respectively over

K.

We mentioned at the beginning of section 3.4 that V∗ is not necessarily equal to K,

and so to circumvent this issue, we consider the completion of V∗, which we denote here

by Ω (where the completion is taken with respect to the topology induced by R). It can
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be easily shown that (ε,F) and R are an effective resistance form and resistance metric

over Ω respectively. However, it may be that Ω 6= K in general, and so we need to check

that the topology over Ω induced by the effective resistance metric is equivalent to the

original topology over K. The following theorem, which we do not prove here, provides

a necessary and sufficient condition for this to be the case.

Theorem 4.1.1. Let K be a self-similar set, and (D, r) be a harmonic structure with induced

compatible sequence {(Vm, Hm)}∞m=0 approximating K. Let V∗ = ∪∞m=0Vm and Ω the completion

of V∗ with respect to effective resistance metric R induced by (Vm, Hm)}∞m=0, and Ω = V R
∗ , the

completion of V∗ with respect to R. Then, the following are equivalent.

(1) Ω = K

(2) (Ω, R) is compact

(3) (Ω, R) is bounded

(4) for any u ∈ F , sup
p∈Ω
|u(p)| <∞

(5) (D, r) is a regular harmonic structure

Proof. See Kigami Chapter 3.3, pg. 85. in [8].

In light of Theorem 4.1.1., for the remainder of this chapter, for a self-similar setK with

harmonic structure (D, r), we will assume that (D, r) is regular and its induced effective

resistance (ε,F) is a regular Dirichlet form. This allows us to bypass any idiosyncrasies

of the metric topology induced by the effective resistance metric R, as mentioned earlier.

For details on defining the Laplacian in the event that (D, r) is not a regular harmonic

structure, see Chapter 3.4 of [8].

Furthermore, to create a pointwise formulation of the Laplacian, and analyse the spec-

trum and associated eigenfunctions over K, we need to define the appropriate boundary

conditions. The following theorem and its corollary summarise all of this information.

37



Theorem 4.1.2. Let K be a self-similar set with respect to the contractions {fi}ni=1, and take

(D, r) to be a regular harmonic structure over K. If µ is a self-similar measure over K, then the

resistance form (ε,F) is a local Dirichlet form on L2(K,µ), and the corresponding self-adjoint

operator HN on L2(K,µ) has compact resolvent.

Proof. Since (D, r) is a regular harmonic structure, we have that Ω = K by Theorem 4.1.1,

where Ω is the completion of V∗ with respect to the resistance metric R. By Theorem 3.3.2,

we have that ε is a local Dirichlet form over F , and by Theorem 3.4.1, we have that it

is an inner product on L2(K,µ) that induces a Hilbert space structure. Thus, invoking

Theorem 3.4.3, we have that there exists a unique non-negative self-adjoint operator HN

on L2(K,µ) with compact resolvent satisfying ε(u, v) =
∫
K
fvdµ for f ∈ F for any v ∈ F ,

and so f = HNu.

This non-negative self-adjoint operator HN is the operator associated with the Neu-

mann Laplacian over K, hence the subscript N ; the operator−HN is the Neumann Lapla-

cian. The following corollary defines the Dirichlet Laplacian.

Corollary 4.1.2.1. Deine the set F0 := {u ∈ F | u|V0 = 0}. Then under the conditions of Theo-

rem 4.3.1, we have that (ε,F) is a local regular Dirichlet form on L2(K,µ). The corresponding

non-negative self-adjoint operator HD on L2(K,µ) has compact resolvent.

Proof. This follows by Theorem 4.2.1 over K \ V0.

4.2 The Pointwise Laplacian and Neumann Derivatives

In order to define a pointwise formulation of HN (and HD respectively), it remains to

prove that there exist functions u ∈ F satisfying −HNu = 0 (respectively, −HD = 0),

which we call harmonic functions. This is because the pointwise formulation of the

Laplacian depends on the existence of such functions and is in terms of specific harmonic

functions over K. For the purposes of this thesis, we assume the existence of such func-

tions; a thorough exposition of the existence of harmonic functions over can be found in
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chapter 3.2 of [8], but we quote some definitions and results important to defining the

pointwise formulation here. For the remainder of this thesis, we take K to be equipped

with a regular harmonic structure (D, r), which has an associated compatible sequence

{(Vm, Hm)}∞m=0 and associated regular Dirichlet form (ε,F), where recall that F is the do-

main of ε. This section once again predominantly follows the results of [7], where most of

these results were presented.

Definition 4.2.1. Let p ∈ V0, and let x ∈ K \ V0. Then, we define the function ψp to be the

harmonic function that ψp|V0 = χV0p .

Furthermore, for arbitrary w ∈ Wm, if u ◦ fw is harmonic for a function u over K, and u|Vm =

χVmp . Then we call u the m-harmonic function with boundary value χVmp , and we write u = ψmp

Remark 4.2.1. More generally, anm-harmonic function u is a function overK such that u◦fw is

harmonic. It can be shown that any m-harmonic function can be written as a linear combination

of {ψmp }p∈Vm , and the piecewise harmonic functions over V∗ form a basis of `(V∗). [8]

Furthermore, it can be shown that any m-harmonic function u satisfies ε(u, f) = 0 for any

f ∈ F given f |Vm = 0. This justifies our use of the term harmonic in this context.

We are finally ready to present the piecewise formulation of the Laplacian, which was

defined by Kigami in [7].

Definition 4.2.2 (The Pointwise or Kigami Laplacian). Let µ be a self-similar measure, and

f ∈ C(K). If there exists u ∈ C(K) satisfying

lim
m→∞

max
p∈Vm\V0

∣∣∣∣ 1

µm,p
(Hm)u(p)− f(p)

∣∣∣∣ = 0 (4.3)

where µm,p :=

∫
K

ψmp dµ. If such a u exists, we write ∆µu = f , where ∆µ is called the

Laplacian associated with measure µ and harmonic structure (D, r). We often denote the

domain of ∆µ by Dµ.
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Remark 4.2.2. Note that for f = 0, by the existence of harmonic functions over K, we have that

there exists u ∈ C(K) satisfying ∆µu = 0 and thus Dµ is non-trivial. It can also be shown that

∆µ : Dµ → C(K) is a linear map.

Remark 4.2.3. It is not imperative to take µ to be a self-similar measure and (D, r) to be a regular

harmonic structure. In practice, this is often the case, but the above definition given and regular

Borel probability measure and any harmonic structure over K. See [7] and [8].

Remark 4.2.4. For a, b ∈ R, with a < b, if µ a self similar measure with weights µi = 1
2

for

i = 1, 2, we have that ∆µ corresponds to the classical Laplacian over [a, b].

We now define the Neumann derivative of a function f over K that is in the domain

of the Laplacian.

Definition 4.2.3. Let f ∈ Dµ and p ∈ V0. The Neumann derivative, of f at p, denoted (df)p, is

defined as

(df)p = lim
m→∞

−(Hmf)(p)

The following theorem establishes that the above pointwise formulation corresponds

to the variational Dirichlet and Neumann Laplacians constructed in Chapter 3. The proof

of this theorem requires the construction of Green’s functions over a self-similar set; how-

ever, this is outside the scope of this thesis, and thus we omit it here. It was first proved

by Fukishima and Shima in [2] for the special case of the standard Laplacian over the

Sierpinski Gasket, and the more general case is presented in [7] and [8]. It is important to

note that Kigami’s proof in [8] p.c.f self-similar fractals that are equipped with a possibly

non-regular harmonic structure.

Theorem 4.2.1. Let µ be a self-similar measure, and (D, r) a regular harmonic structure over K

a self-similar set. Define

DD,µ = {u ∈ Dµ | u|V0 = 0}

DN,µ = {u ∈ Dµ | (du)p = 0 for p ∈ V0}
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Then, DD,µ = Dom(HD)∩Dµ, with HD = −∆µ on DD,µ, and DN,µ = Dom(HN)∩Dµ with

HN = −∆µ on DN,µ.

Proof. See Chapter 3.7 of [8].

The following is also an important corollary of this theorem, also found in [8], which

we also don’t prove here. The specific case of the Sierpinski Gasket was also discussed

in [2]. It essentially stating that we can treat the operators Hb (for b = N,D) and the

pointwise Laplacian interchangeably.

Corollary 4.2.1.1. For b ∈ {N,D}, if f ∈Dom(Hb) and Hbf ∈ C(K), then f ∈Dom(Hb)∩Dµ.

4.3 The Gauss-Green Formula

We now establish an analogue of the Gauss-Green formula for the Kigami Laplacian as

presented in [7]. We begin by proving a few preliminary lemmas.

Lemma 4.3.1. Let v ∈ C(K), and u ∈ Dµ. Then,

lim
m→∞

∑
p∈Vm\V0

v(p)Hmu(p) =

∫
K

v∆µudµ

Proof. Define fm(x) =
∑
p∈Vm

v(p)
Hmu(p)ψmp (x)

µm,p
. Then, by definition of ∆µu, we have that

fm → v∆µu pointwise as m→∞. Now, given A ⊆ K \ V0 a compact subset, we have that

all of the components within the sum are continuous functions over A and thus achieve

a maximum over A, so that fm is bounded from above by c|v||Hmu||ψmp |, which are con-

tinuous and harmonic functions respectively, and thus integrable; here c denotes the car-

dinality of the finite set Vm \ V0. Thus, applying the generalised dominated convergence

theorem, we have that ∫
K

fmdµ→
∫
v∆µ

In particular, we have that
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∫
K

fm(x)dµ(x) =

∫
K

∑
p∈Vm

v(p)
Hmu(p)ψmp (x)

µm,p

=
∑
p∈Vm

v(p)Hmu(p)

∫
K
ψmp (x)dµ(x)

µm,p

=
∑
p∈Vm

v(p)Hmu(p)

where the latter inequality follows by the definition of µm,p given in Definition 4.3.2.

Therefore, as m→∞we have that∑
p∈Vm

v(p)Hmu(p)→
∫
K

v∆µudµ

Lemma 4.3.2. Let f ∈ Dµ and p ∈ V0, then

lim
m→∞

−(Hmf)(p) = −(Df)(p) +

∫
K

ψp∆µfdµ

Proof. See Proof of Lemma 3.7.5 in [8].

Note that by Lemma 4.3.2, the Neumann derivative is well-defined for f ∈ Dµ. We

now prove an analogous Gauss-Green formula for the Laplacian over self-similar K.

Lemma 4.3.3. Let v ∈ C(K) and u ∈ Dµ. Then,

lim
m→∞

εm(v, u) =
∑
p∈V0

v(p)(du)p −
∫
K

v∆µudµ

Proof. By definition of εm(v, u), we have that

εm(v, u) = −
∑
p∈V0

v(p)(Hmu)(p)−
∑

p∈Vm\V0

v(p)(Hmu)(p) (4.4)

where we split the sum across the disjoint union of the two sets V0 and Vm \ V0. Then,

by Lemma 4.3.1, we have

lim
m→∞

ε(v, u) =
∑

p∈Vm\V0

v(p)(Hmu)(p) =

∫
K

v∆µudµ

42



combining this with the definition of (du)p (Definition 4.3.2), and taking the limit as m

tends to infinity, we get the desired the result.

Theorem 4.3.4 (Gauss-Green Formula). For a compatible sequence {Vm, Hm}∞m=0 associated

with a regular harmonic structure (D, r) we have that the domain of ε is contained in Dµ. For

u ∈ Dµ and v ∈ F we have that

ε(v, u) =
∑
p∈V0

v(p)(du)p −
∫
K

v∆µudµ

If in addition, we have that v ∈ Dµ

∑
p∈V0

(v(p)(du)p − u(p)(dv)p) =

∫
K

(v∆µu− u∆µv)dµ

Proof. By Lemma 4.3.2, we have that

lim
m→∞

εm(u, v) =
∑
p∈V0

v(p)(du)p −
∫
K

v∆µudµ

Furthermore, we have that (du)p is well-defined, and hence everything on the right

hand side of the above equation is finite. So by definition of ε(u, v), we have that u ∈ Dµ

and we get the desired equality.

To prove the latter part of the theorem, let u, v ∈ Dµ. Note that we can write

εHm(u, v) =
∑
p,q∈Vm

(Hm)pq(u(p)− u(q))(v(p)− v(q)))

where it is clear that εHm is symmetric, and thus ε is as well. Thus, applying Lemma

4.3.2 to ε(u, v) and ε(v, u) respectively, we have that

ε(v, u) =
∑
p∈V0

v(p)(du)p −
∫
K

v∆µudµ,

and

43



ε(u, v) =
∑
p∈V0

u(p)(dv)p −
∫
K

u∆µvdµ.

Subtracting both equations, we obtain

∑
p∈V0

(v(p)(du)p − u(p)(du)p) =

∫
K

(v∆µu− u∆µv)dµ.
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Chapter 5

Eigenvalues of the Laplacian and Weyl’s

Law over Self-Similar Domains

In this chapter, we establish the existence of eigenvalues and eigenfunctions associated

with the Kigami Laplacian ∆µ over a connected p.c.f self-similar set K with respect to a

regular harmonic structure (D, r) and self-similar measure µ. We establish the existence

of both Dirichlet and Neumann eigenvalues (and eigenfunctions), where the boundary

conditions are as defined in Theorem 4.2.1 of the previous chapter. We also introduce an

eigenvalue-counting function and study its asymptotics, stating a Weyl-type law origi-

nally proved by Kigami and Lapidus in [9].

5.1 Eigenvalues and Eigenfunctions of the Laplacian

We begin by defining the Dirichlet and Neumann eigenvalues of ∆µ.

Definition 5.1.1. Let K be a p.c.f. self-similar structure equipped with regular harmonic struc-

ture (D, r) and self-similar measure µ. We define the space of Neumann eigenfunctions associated

with eigenvalue λ by

EN(λ) := {ϕ ∈ DN,µ | ∆µϕ = −λϕ}
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Furthermore, we define the Dirichlet eigenfcuntions associated with eigenvalue λ by

ED(λ) := {ϕ ∈ DD,µ | ∆µϕ = −λϕ}

Note that by linearity of ∆µ, EN(λ) and ED(λ) equipped with pointwise addition of

functions and scalar multiplication are vector spaces over R. If their respective dimen-

sions are non-trivial, then λ and ϕ are referred to as non-trivial Neumann/Dirichlet eigen-

values and eigenfunctions respectively. Furthermore, by Theorem 4.2.1, they coincide

with those of the non-negative self-adjoint operators HN and HD constructed in Theorem

4.1.2 (and Corollary 4.1.2.1 respectively). For ease of notation, we let b = D,N denote the

Dirichlet and Neumann boundary conditions respectively

Proposition 5.1.1. Let K be a p.c.f. self-similar set equipped with regular harmonic structure

(D, r), where r = (r1, r2, ..., rn), and self-similar measure µ with weights {µi}ni=1. Consider the

non-negative self-adjoint operators Hb for b = N,D with regular Dirichlet forms (ε,F) and

(ε,F0) respectively, as defined in Theorem 4.1.2 and Corollary 4.1.2.1.

If for all 1 ≤ i ≤ n we have that riµi < 1, the following are equivalent

(1) ϕ ∈ Dom(Hb) and Hbϕ = λϕ

(2) ϕ ∈ F (or F0), and ε(ϕ, u) = λ(ϕ, u)µ where (., .)µ is the inner product over L2(K,µ)

(3) ϕ ∈ Eb(λ)

The preceding statements are furthermore equivalent given Dirichlet boundary conditions as

well (replacing instances of HN with HD, F with F0, and EN(λ) with ED(λ) respectively.

Proof. The proof of this proposition requires the use of Green’s functions overK and their

properties, the details of which can be found in [7] and as previously mentioned, this is

outside the scope of this thesis. The proof can be found in Kigami’s [8].

Given the established correspondence between the Dirichlet and Neumann eigenval-

ues associated with ∆µ and those of HD and HN respectively, we have the following the-

orem
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Theorem 5.1.1. Let ∆µ be the Laplacian over a connected pcf self-similar set K. Then there exist

λ ∈ R and u ∈ L2(K,µ) non-trivial solutions to the equation

∆µu = −λu (5.1)

for boundary conditions b = D,N . Furthermore, there exist countably many {λbk}∞k=1 and

{ϕbk}∞n=1 ∈ Eb(λbk) satisfying (5.1), with

0 ≤ λb1 ≤ λb2 ≤ ... ≤ λbk ≤ λbk+1 ≤ ...

with the only limit point at +∞, and {ϕbk}∞k=1 form a complete orthonormal basis of L2(K,µ).

Proof. By Theorem 4.2.1, we have that ∆µ corresponds with the non-negative self-adjoint

operators Hb. In addition, by Theorem 4.1.2 and Corollary 4.1.2.1, we have that Hb have

compact resolvents. Thus, invoking the spectral theorem for compact self-adjoint opera-

tors, we have that there exist countably many {λbn}∞n=1 ⊆ R and {ϕbn}∞n=1 ⊆ L2(K,µ) satis-

fying the properties stated in the theorem, and by Proposition 5.1.1, all such ϕbn ∈ E(λbn)

and thus satisfy (5.1).

5.2 The Eigenvalue-Counting Function and Weyl’s Law

Now that we have the existence of eigenvalues, we can introduce the eigenvalue counting

function, and study its asymptotics. The eigenvalue-counting function and its asymp-

totics was studied by Lapidus in [10], and the result presented here is adapted from [9],

where the result is presented as it is here.

Definition 5.2.1. We define the eigenvalue-counting function for boundary condition b ∈ {D,N}

and µ a self-similar measure over K, ρb(., µ) : R→ R by ρb(x, µ) :=
∑

λ≤x dim(Eb(λ)).

Proposition 5.2.1. ρb(x, µ) has the following properties

(1) ρb(x, µ) = max
k∈N
{λbk ≤ x}
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(2) ρb(x, µ)→∞ as x→∞

Proof. Fix x ∈ R. Then if each eigenvalue has multiplicity 1, the equality in (1) is clear.

However, if for k ∈ N has multiplicity m ≥ 1, then dim(Eb(λ
b
k)) ≥ 1. Note that by the

spectral theorem, we have that the only accumulation point of {λbk}∞k=1 is +∞ so that no

λbk has infinite multiplicity.

Without loss of generality, we can assume that k is the last such occurrence of this

eigenvalue in the list with λbk ≤ x, and that all smaller eigenvalues have multiplicity 1,

so that dim(Eb(λ
b
k−m)) = dim(Eb(λ

b
k−m+1)) = ... = dim(Eb(λ

b
k)), and dim(Eb(λ

b
n)) = 1 for

all n ≤ k −m. But ρb(x, µ) =
∑

λ≤xdim(Eb(λ)) where we do not repeat eigenvalues with

higher multiplicity in the index of the sum, and thus no over-counting due to multiplicity

takes place .

Since dim(Eb(λ
b
k−m)) = dim(Eb(λ

b
k−m+1)) = ... = dim(Eb(λ

b
k)), we have that dim(Eb(λ

b
k)) =

k − (k −m) + 1 = m+ 1, and thus

ρb(x, µ) = k −m− 1 +m+ 1 = k = max
k∈N
{λbk ≤ x}

proving (1). Using (1) in conjunction with the fact that the eigenvalues only accumu-

late at +∞, it is then clear that ρb(x, µ)→∞ as m gets arbitrarily large.

Now that we have established the elementary properties of ρb(x, µ), we want to more

precisely pin down its asymptotics, and prove an analogous Weyl’s Theorem for bounded

domains in Rn. This is usually stated like so, as adapted from [4]

Theorem 5.2.1 (Weyl’s Theorem in Rn). Consider the standard Dirichlet eigenvalue problem

of the standard Laplacian −∆ over Ω ⊆ Rn bounded. Then, given ρ(x) := |{i ∈ N | λi ≤ x}|,

where |A| here denotes the cardinality of a set A, we have that as x→∞

ρ(x) ∼ 1

(2π)n
m(B(0, 1))m(Ω)xn/2 + o(xn/2)

where B(0, 1) is the unit ball in Rn and m(.) denotes n−dimensional Lebesgue measure.
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For a proof of this theorem, we refer the reader to Lapidus [10].

Although to establish such a theorem for the Kigami Laplacian over K, given both

Dirichlet and Neumann boundary conditions, we require the following results, as seen

in [13]

Theorem 5.2.2 (Feller’s Renewal Theorem). Let t∗ > 0, and f : R→ R a measurable function

such that f(t) = 0 for all t < t∗, and satisfies

f(t) =
n∑
i=1

f(t− αi)pi + u(t) (5.2)

where for all 1 ≤ i ≤ n, αi > 0, i > 0 with
n∑
i=1

pi = 1, and u : R → R is a non-negative

Riemann integrable function over R and u(t) = 0 for all t < t∗. Then, the following statements

hold

(1) Lattice Case: If there exists T > 0 such that αi = miT for {mi}ni=1 relatively prime

positive integers, then there exists a T -periodic function G(t) given by

G(t) =

(
n∑
i

mipi

)−1∑
i∈Z

u(t+ iT )

satisfying |f(t)−G(t)| → 0 as t→∞.

(2) Non-Lattice Case: If
n∑
i=1

Zαi is a dense additive subgroup of R, then lim
t→∞

f(t) exists

and is given by

lim
t→∞

f(t) =

(∑
αipi

)−1 ∫
R
u(t)dt

Lemma 5.2.3. Let µ be a self-similar measure over K with weights {µi}ni=1, and (D, r) a regular

harmonic structure with r = (r1, r2, ..., rn).Consider the eigenvalue counting functions ρb(x, µ)

for b ∈ {D,N}. Then, there exist positive constants M1,M2 > 0 such that
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ρD(x, µ)−M1 ≤
n∑
i=1

ρD(riµix, µ) ≤ ρD(x, µ) ≤ ρN(x, µ) ≤ ρD(x, µ) +M2 (5.3)

Proof. See Lemma 2.3 in [9].

The proof of the main theorem is an application of Feller’s Renewal Theorem, with the

appropriate assumptions being met by virtue of the second and third inequalities in (5.3);

the significance of Lemma 5.2.3 also lies in showing that we have an analogous Weyl’s

law for both Dirichlet and Neumann boundary conditions. We now state and prove the

theorem here.

Theorem 5.2.4 (Weyl’s Law for the eigenvalue-counting function of ∆µ). Let µ be a

self-similar measure with weights {µi}ni=1, and (D, r) a regular harmonic structure with r =

(r1, r2, ..., rn). Assume that for all 1 ≤ i ≤ n we have riµi < 1, and dS is the (unique) real

number, called the spectral dimension/exponent of K, satisfying

n∑
i=1

γdSi = 1

for γi :=
√
riµi. Then, for b = N,D we have that

0 < lim inf
x→∞

ρb(x, µ)

xdS/2
≤ lim sup

x→∞

ρb(x, µ)

xdS/2
<∞

Moreover, the following statements hold:

(1) Lattice Case: If
n∑
i=1

Z log(γi) is a discrete subgroup of R with generator T > 0. Then,

there exists a right-continuous T -periodic function G independent of the boundary

conditions satisfying

0 < inf
x∈R

G(x) ≤ sup
x∈R

G(x) <∞

and

ρb(x, µ) = (G(log(x/2)) + o(1))xdS/2
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where o(1)→ 0 as x→∞.

(2) Non-Lattice Case: If
n∑
i=1

Z log(γi) is a dense subgroup of R, then there exists a Rie-

mann integrable function R over R such that

lim
m→∞

ρb(x, µ)

xdS/2
=

(
n∑
i=1

−γdSi log(γi)

)−1 ∫
R
e−dS/2R(e2t)dt

In particular, we have that the limit exists, is finite, and independent of any bound-

ary conditions.

Proof. It suffices to prove the theorem for the Dirichlet case, and we note that the Neu-

mann case follows immediately by the latter inequality involving the Neumann eigenvalue-

counting function in Lemma 5.2.3. For ease of notation, we write ρD(x) := ρD(x, µ).

We begin by defining the R-valued function

R(x) := ρD(x)−
n∑
i=1

ρD(µirix),

and thus have the identity,

ρD(x) =
n∑
i=1

ρD(riµix) +R(x). (5.4)

Now, further define the pair of R-valued functions

f(t) := e−dStρD(e2t),

u(t) := e−dStR(e2t),

Parametrising x = e2t and multiplying identity (5.4) by e−dSt, by definition of f(t) and

u(t), we have

f(t) =
n∑
i=1

e−dStρD(riµie
2t) + u(t)

Now, note that we can write riµi = e2 ln
√
riµi = e2 ln γi , so that the previous equation

becomes
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f(t) =
n∑
i=1

e−dStρD(e2(ln γi+t)) + u(t)

=
n∑
i=1

edS ln γie−dS(t+ln γi)ρD(e2(ln γi+t)) + u(t)

=
n∑
i=1

γdSi f(t+ ln γi) + u(t)

Now, for all 1 ≤ i ≤ n set pi := γdSi and αi := − ln γi. Then since riµi < 1, we have that

αi > 0, and
∑n

i pi = 1, by definition of the spectral exponent, so

f(t) =
n∑
i=1

pif(t− αi) + u(t)

which is the required form for f to satisfy Feller’s Renewal Theorem. It remains to

show that u(t) = f(t) = 0 for all t < t∗ for some t∗ ∈ R, and that u(t) is indeed integrable.

To this end, consider the first eigenvalue, λ1, ofHD. Then, sinceHD is positive definite,

λ1 > 0, and thus ρD(x) = 0 for all x < λ1. Taking t∗ < 1
2

lnλ1, we obtain f(t) = 0 for all

t ≤ t∗; by identity (5.4), this also demonstrates thatR(t) = 0, and so u(t) = 0. Furthermore,

by Lemma 5.2.3, we have there exists a constant M > 0 such that for all x ∈ R

0 ≤ ρD(x)−
n∑
i=1

ρD(riµix) ≤M .

So |R(t)| ≤M for all t ∈ R, and

|u(t)| ≤Me−dSt.

This demonstrates that u is bounded from above a by a Riemann integrable function.

In addition, ρD is also clearly a step function as an eigenvalue counting function (part

(1) of Proposition 5.1.1), and thus has at most countably many discontinuities. Hence, u

is Riemann integrable, and f satisfies all of the required properties of Feller’s Renewal

theorem, and we can conclude that in the non-lattice case, lim f(t) exists as t→∞, with

f(t)→

∫
R
e−dStR(e2t)

n∑
i=1

(− ln γi)γ
ds
i

. (5.5)
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In the lattice case, taking T > 0 as the generator of the additive group
∑n

i=1 Z ln γi, we

have that there exists a T -periodic function G satisfying

G(t) =

∑
i∈Z e

−dS(t+iT )R(e2(t+iT ))∑n
i=1(ln γiγ

ds
i )

with f(t)−G(t)→ 0 as t→∞.

In both cases, note that by setting t = lnx/2, we get that f(lnx/2) = x−dS/2ρD(x), so

that our limits in t can be translated to limits in x, and we are indeed investigating the

behaviour of x−ds/2ρD(x). In the non-lattice case, we have that the limit exists, and is given

by (5.5), and we are done.

In the non-lattice case, since f(t)−G(t)→ 0 as t→∞, we have that

e−dStρD(e2t) = G(t) + o(1)

Taking t = lnx/2 again, we get that

ρD(x) = (G(lnx/2) + o(1)))xdS/2

where o(1)→ 0 as x→∞, as desired. Furthermore, since R(x) ≤M for all x ∈ R, and

is positive for all t < t∗ as previously established, we have that

0 < inf G(x) ≤ supG(x) <∞

Furthermore, it is clear to see that R is right-continuous in as a (finite) linear com-

bination of step functions, and by boundedness of |R(x)|, we can apply the dominated

convergence theorem to get that G is right-continuous as well. Lastly, by Lemma 5.2.3,

we have that there exists a C > 0

ρD(x) ≤ ρN(x) ≤ ρD(x) + C

and so the theorem immediately follows for ρN with the exact same expressions for G

and limit point of f in the lattice and non-lattice cases respectively, and thus the asymp-

totics of x−dS/2ρD(x), and properties of G are independent of any boundary conditions.

This completes the proof of the theorem.
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Chapter 6

The Heat Kernel and Eigenfunction

Embeddings

In this chapter, we define the Dirichlet and Neumann heat kernels associated with the

Dirichlet and Neumann Laplacians respectively over a p.c.f self-similar set K. We estab-

lish some of their basic properties, including continuity, differentiability, and their rela-

tion to the heat equation over K.The main results of this chapter are adapted from [8],

although it is important to note that similar estimates were obtained by Barlow in [1] via

probabilistic methods. We then discuss the use of the heat kernel in embedding manifolds

into the Hilbert space `2 as done in [3], and extend the result to embedding self-similar

fractals into Hilbert spaces, and discuss how the situation over fractals differs from that

over manifolds. For this chapter, we once again take K equipped with a self-similar mea-

sure, and regular harmonic structure (D, r).

6.1 The Heat Kernel

To construct the heat kernel, we consider the sequence of eigenvalues {λbn}
∞
n=1 and their

associated eigenfunctions {ϕbn}∞n=1 ⊆ Eb(λ
b
n) for boundary conditions b ∈ {N,D}. By

Theorem 5.1.1, we have that the eigenvalues are increasing and tend to infinity, and that
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{ϕbn}∞n=1 form a complete orthonormal basis of L2(K,µ) for a self-similar measure µ. In

light of this, we can formally define the heat kernel.

Definition 6.1.1 (Heat Kernel). For b ∈ {D,N}, we define the heat kernel as the function

pb(t, x, y) : (0,∞)×K2 → R

pb(t, x, y) =
∞∑
n=1

e−tλ
b
nϕbn(x)ϕbn(y)

A priori, it is unclear whether the previous infinite sum is indeed convergent, and

thus whether the heat kernel is well-defined. However, as it turns out, the heat kernel is

indeed well defined, and in fact C1 on [T,∞] for any T > 0. To prove this, we require the

following lemmas, the first of which can be found in [1].

Lemma 6.1.1. Let dS be the spectral dimension of K, and consider the sequence of eigenvalues

{λbn}∞n=1. There for any n ≥ 2 there exists constants c1, c2 > 0 such that

c1n
2/dS ≤ λbn ≤ c2n

2/dS

Proof. By our analogue for Weyl’s theorem (Theorem 5.2.4 in the previous chapter), we

have that the limsup and liminf of x−dS/2ρb(x) exist, and thus there exist constants C,D >

0 such that for x > 0 sufficiently large

Cxds/2 ≤ ρb(x) ≤ DxdS/2 (6.1)

Now, by part (1) of Proposition 5.2.1 and applying the previous inequality, we have

that n ≤ ρb(λ
b
n) ≤ Dλbn. In particular, rearranging and defining c1 := 1

D2/dS
this we get that

c1n
2/dS ≤ λbn

This demonstrates the first inequality. For the latter inequality, let ε > 0, and notice

that by (6.1), we have that

C(λbn − ε)dS/2 ≤ ρb(λ
b
n) ≤ n
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where the latter inequality follows from Proposition 5.2.1 part (1) and the fact that

λbn − ε < λbn. Since this holds for ε > 0 arbitrary, we can take ε→ 0 to get that

C(λbn)dS/2 ≤ n

Rearranging and defining c2 := 1
C2/dS

, we get that

λbn ≤ c2n
2/dS

Combining both inequalities yields the desired result.

Lemma 6.1.2. For any α, β > 0 and any T > 0, then
∞∑
n=1

nαe−n
βt is uniformly convergent on

[T,∞).

Proof. By the power series expansion of ex, we have that

n−αen
βt =

∞∑
k=1

nβk−αtk

k!

So let m ∈ N be the first index such that βk − α > 1. Then, by Taylor’s remainder

theorem, we have the following upper bound on n−αenβt

n−αen
βt ≤ nβm−αtm

m!

Taking reciprocals, we get that

nαen
−βt ≤ n−(β(m+1)−α)(m+ 1)!

tm+1
≤ n−(β(m+1)−α)(m+ 1)!

Tm+1

for all t ≤ T , which we note is a bound independent of t. Furthermore,
∑∞

n=1 n
−(β(m+1)−α) <

∞ since β(m+ 1)− α > 1, so that
∑∞

n=1 n
αen

βt converges uniformly in t.

Moreover, in order to prove continuity of the heat kernel, we need the following es-

timate on the L∞ norm of eigenfunctions. Specifically, if ∆µϕ = −λϕ for λ > 0, then

ϕ ∈ L∞(K), and we have the following estimate

||ϕ||∞ ≤ cλα/2||ϕ||2 (6.2)
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where α := max
1≤i≤n

lnµi
lnµiri

, ||.||∞ and ||.||2 refer to the norms L∞(K) and L2(K,µ) respec-

tively, and c > 0 is a constant independent of λ and ϕ. This estimate appeared for the first

time in Chapter 4.5 of [8], along with the other results in the book’s chapter.

We are now ready to prove some significant properties of the heat kernel.

Theorem 6.1.3. Let pb(t, x, y) denote the heat kernel with respect to boundary condition b, and

for (t, x) ∈ (0,∞) × K define the function p
(t,x)
b : K → R by p(t,x)

b (y) = pb(t, x, y). Then the

following statements hold

(1) pb is continuous on (0,∞)×K2

(2) For all (t, x) ∈ (0,∞)×K, p(t,x)
b ∈Dom(Hb) ∩ Dµ

(3) For all (x, y) ∈ K2 fixed, pb(t, x, y) ∈ C1((0,∞))

(4) Given any (t, x, y) ∈ (0,∞)×K2

∂pb(t, x, y)

∂t
= (∆µp

(t,x)
b )(y)

(5) For s, t > 0 and x, y ∈ K

pb(s+ t, x, y) =

∫
K

pb(s, x, x
′)pb(s, x

′, y)dµ(x′)

Proof. We prove each of the assertions of the theorem in order. For claim (1), by inequality

(6.2), we have that for all x, y ∈ K, there exits c > 0

|ϕ(x)||ϕ(y)| ≤ c2(λbn)α||ϕbn||22

where α := max1≤i≤n
lnµi

ln riµi
. Now, by Lemma 6.1.1, we can extend this inequality using

our bounds on λbn to

|ϕ(x)||ϕ(y)| ≤ C2n2α/dS
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where C := c
√
c2||ϕbn||2 and c2 is the constant from Lemma 6.1.1. Furthermore, apply-

ing the lemma again have that there exists c1 > 0 such that c1n
2/dS ≤ λbn so that for all

t > 0 we have e−λbnt ≤ e−c1n
2/dS t. Hence

∞∑
n=1

e−λ
b
nt|ϕbn(x)||ϕbn(y)| ≤ C2

∞∑
n=1

n2α/dSe−c1n
2/dS t

Applying Lemma 6.1.2, we get that the above sum on the right hand side converges

uniformly on [T,∞) for all T > 0, and thus pb(t, x, y) in continuous over (0,∞) × K2

(where we note that any solution u to ∆µu = f is continuous by Definition 4.2.2).

To prove assertion (2), we use that the eigenfunctions form a basis of L2(K,µ) to write

f =
∑n

i=1 anϕ
b
n. Then, we get that f ∈ Dom(Hb) if and only if

∑∞
n=1 |anλbn|2 < ∞, since

Hb(ϕ
b
n) = λbnϕ

b
n. Now, computing Hb(p

(t,x)
b (y)), we have that

Hb(p
(t,x)
b (y)) = Hb(

∑∞
n=1 e

−λbntϕbn(x)ϕbn(y))

=
∞∑
n=1

e−λ
b
ntϕbn(x)Hb(ϕ

b
n(y))

=
∞∑
n=1

λbne
−λbntϕbn(x)ϕbn(y) (6.3)

where we used the equality Hb(ϕ
b
n(y)) = λbnϕ

b
n(y) in the last step. Therefore, apply-

ing our previous reasoning to p
(t,x)
b (y), we have that p(t,x)

b (y) ∈ Dom(Hb) if and only if∑∞
n=1(λbne

−λbntϕbn(y))2 <∞.

Using the estimate from Lemma 6.1.1 and our estimates in the proof of part (1) of the

theorem, we have that

∞∑
n=1

(λbne
−λbnt
n

b(y))2 ≤ K
∞∑
n=1

n4/dS+2α/dSe−4/dSc1t

for constant K > 0 and c1 as in Lemma 6.1.1, and by Lemma 6.1.2, we have that

the sum on the right hand side of the above equation converges uniformly on [T,∞) for

T > 0, and thus p(t,x)
b (y) ∈ Dom(Hb) with Hb(p

(t,x)
b (y)) given by (6.3). This further shows

that H(t,x)
b (y) is continuous and thus by Corollary 4.2.1.1, p(t,x)

b ∈ Dom(Hb) ∩ Dµ.
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We now proceed to proving claim (3), that pb(t, x, y) ∈ C1((0,∞)) as a function of t.

Since the infinite sum in (6.3) converges uniformly, we have that for t1 < t2 in (0,∞)∫ t2

t1

−(Hb(p
(t,x)
b ))(y)dt =

∫ t2

t1

∞∑
n=1

−λbne−λ
b
ntϕbn(x)ϕbn(y)dt

∞∑
n=1

∫ t2

t1

−λbne−λ
b
ntϕbn(x)ϕbn(y)dt = pb(t2, x, y)− pb(t1, x, y)

Thus demonstrating that pb(t, x, y) ∈ C1((0,∞)) with respect to t, as desired. Combin-

ing the previous integral identity pb(t, x, y) with equation (6.3), we then immediately get

assertion (4) that

∂pb(t, x, y)

∂t
= (∆µp

(t,x)
b )(y)

Lastly, it remains to prove that pb(s + t, x, y) =

∫
K

pb(s, x, x
′)pb(s, x

′, y)dµ(x′). So con-

sider ∫
K

pb(s, x, x
′)pb(s, x

′, y)dµ(x′)

=

∫
K

[
∞∑
n=1

e−λ
b
ntϕbn(x)ϕbn(x′)

][
∞∑
n=1

e−λ
b
nsϕbn(x′)ϕbn(y)

]
dµ(x′)

=

∫
K

∞∑
n=1

n∑
m=1

e−λ
b
mtϕbn(x)ϕbn(x′)e−λ

b
n−m+1sϕbn−m+1(x′)ϕbn−m+1(y)dµ(x′)

=
∞∑
n=1

n∑
m=1

e−λ
b
nt−sλbn−m+1ϕbn(x)ϕbn−m+1(y)

∫
K

ϕbn(x′)ϕbn−m+1(x′)dµ(x′)

where the last equality follows by the fact that the sum in the definition in pb converges

uniformly. Now, since {ϕn}∞n=1 is an orthonormal sequence, we have that
∫
K
ϕbn(x′)ϕbn−m+1(x′)dµ(x′) =

1 if and only if n+ 1 = 2m and is 0 otherwise. Therefore, upon reindexing k = 2m = n+ 1

the previous expression collapses to
∞∑
k=1

e−(t+s)λbkϕbk(x)ϕbk(y) = pb(t+ s, x, y)

And thus, we have the desired equality, completing the proof of the last assertion of

the theorem.
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6.2 Heat Kernel Embeddings into Hilbert Spaces

In the final section of this thesis, we turn to a common application of the heat kernel in the

theory over manifolds. Given a smooth n-dimensional Riemannian manifold M , we have

that for each t ∈ (0,∞) there exists and embedding ψt : M → H for a Hilbert space H ,

and that the pull-back metric (ψt)
∗ of the embedding is asymptotic to the original metric

g on M as t → 0 [3] Originally proven by Berrard, Besson, and Gallot in [3], we present

here an adaptation of the original construction for manifolds to construct an embedding

of a self-similar set K into a Hilbert space, notably `2(R).

Theorem 6.2.1. Let (K, d) be a post-critically finite self-similar set with metric d and let {bn}∞n=1

be a basis of eigenfunctions of ∆µ. Then, we define the family of maps for t > 0 with respect to this

basis

ψbt : K → `2(R)

ψbt (x) =
√

2(4π)dS/4t((dS+2)/4){e−λbnt/2ϕbn(x)}∞n=1

For any t > 0, we have that ψbt is an embedding of K into `2(R).

Proof. We first show that for t > 0 and a fixed eigenfunction basis {ϕbn}∞n=1, the map ψbt is

continuous. To prove this, it suffices to show that

Ψb
t : K → `2(R)

Ψb
t(x) = {e−λbnt/2ϕbn(x)}∞n=1

is continuous in (t, x) ∈ (0,∞) × K. To this end, take a sequence {(tn, xn)}∞n=1 ⊆

(0,∞)×K converging to (t, x) ∈ (0,∞)×K as n→∞. Then,

||Ψb
tn(xn)−Ψt(x)||2`2 =

∞∑
n=1

|e−λbntn/2ϕbn(xn)− e−λbnt/2ϕbn(x)|2

=
∞∑
n=1

|e−λbntnϕbn(xn)2 − 2e−λ
b
n(tn+t)/2ϕbn(xn)ϕbn(x) + e−λ

b
ntϕ

b
n(x)2

= pb(tn, xn, xn)− 2pb(
tn+t

2
, xn, x) + pb(t, x, x)
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But since pb is continous over (0,∞)×K2, we have that taking the limit of the latter ex-

pression as (tn, xn)→ (t, x), we get that ||Ψb
tn(xn)−Ψb

t(x)||2`2 → 0 as n→∞, demonstrating

continuity.

It remains to show that Ψb
t(x) is injective. For injectivity, take x, y ∈ K and let Ψb

t(x) =

Ψb
t(y). Then, for each n ∈ N

e−λ
b
ntϕbn(x) = e−λ

b
ntϕbn(y)

ϕbn(x) = ϕbn(y)

x = y

since {ϕbn}∞n=1 is a basis, and thus ϕbn is injective. Both steps demonstrate that Ψb
t is an

injective homeomorphism, and thus an embedding of K into `2(R).

Remark 6.2.1. It is important to note that we can modify Ψb
t into an embedding in the unit sphere

S∞ in `2(R) by defining the family of maps

Kb
t : K → S∞

Kb
t (x) =

1∑∞
n=1 e

−λbnt/2(ϕbn(x))2
{e−λbnt/2ϕbn(x)}∞n=1

This is adapted from a similar map found in [3].

However, in regards to the pull-back metric, it was proven by Kajino in [5] that as

t → 0 the limit of tdS/2pb(t, x, x) does not exist over affine nested fractals. This suggests

that even though we can construct an embedding of K into `2 when (K, d) is equipped

with a regular harmonic structure and self-similar measure (where d is the original metric

on K), the asymptotics of the pull-back metric do not behave similarly to the original

metric as t → 0 due to the highly variational nature of the heat kernel near 0. More

explicitly, as stated in [5]

Theorem 6.2.2. LetK be an affine nested fractal with boundary V0 having greater than 3 vertices.

Then the limit

lim
t→0

tdS/2pb(t, x, x)
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does not exist for any x ∈ K \ A for A ⊆ K a Borel set of measure 0 with respect to a

self-similar measure µ containing V0.

Kajino also focused explicitly on the Sierpinski gasket, and its generalisations the

d−dimensional level l Sierpinski gasket or the N -polygasket. This is unfortunate, given

that nested fractals, of which the Sierpinski gasket is included, exhibit more regularity

than post-critically finite fractals or even more general self-similar fractals. This suggests

that a completely alternate method is needed to construct a family of embeddings Ψt that

have more regular asymptotics as t→ 0. Perhaps naively this could be achieved by taking

a convolution of pb(t, x, y) with an appropriate smooth function or integrating pb(t, x, y)

around a small neighbourhood of x ∈ K, although more investigation is required before

any concrete conclusions can be made.
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Chapter 7

Conclusion

Starting with the basic infrastructure of self-similar sets, this work provides a self-contained

exposition of self-similar sets and their architecture, as well as the construction of the

Dirichlet and Neumann Laplacians as self-adjoint operators over post-critically finite self-

similar sets. A detailed exposition of the work of Kigami from [8] and [7] is then explored

in regards to creating a pointwise formulation of an analogous classical Laplacian on self-

similar sets. The work of Kigami and Lapidus [9] on the spectrum of the Laplacian and

the formulation of a Weyl’s type law of asymptotics of the Kigami Laplacian is then re-

viewed. This then leads into a formulation of the heat kernel, and its asymptotics, and

a review of the work of Berard, Besson and Gallot in [3] on heat kernel embeddings of

manifolds is adapted to the fractal case, and we discuss its shortcomings.

A naturally arising research question from this work then is how one would construct

an embedding of a self-similar set K into a Hilbert space (one with relatively more struc-

ture), in a way that preserves the original metric over K. There seems to be little work

done in this respect, although the work of Kajino [5] does demonstrate the turbulent na-

ture of the variation of the heat kernel near 0, thus suggesting alternative approaches are

requiring, meriting this proposed research direction.

Furthermore, stepping back to the construction of the Laplacian, an obvious gap in

the current literature pertains to the existence of harmonic structures over self-similar
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sets. The work of Lindstrøm [11] demonstrates their existence over nested fractals, but

given that a lot of the current theory hinges on the existence of harmonic structures, and

in particular regular harmonic structures over fractal sets, this would be a crucial area of

study, including study of the renormalisation operator presented in Chapter 3.

In addition to this, the author of this thesis is further interested in how one would go

about constructing analogous Laplacians for a broader class of fractals, beyond those that

are post-critically finite. Given the ubiquity of fractal structures in mathematics and other

fields, the study of analysis and diffusion processes over such sets would further merit

this as a fruitful area of research. Given the work of Lindstrøm [11], as well as that of

Fukushima and Shima [11] in this domain that is more probabilistic in nature, perhaps

this would be a more fruitful avenue by which to tackle the questions proposed here.

The author of this thesis hopes that this thesis was successful in being a relatively self-

contained exposition on the construction of the Laplacian, its spectrum, and eigenfunc-

tions over self-similar sets and their applications by detailing the already existing strong

theoretical results currently available. The author further endeavours that this thesis ig-

nites further research and interest in analysis on fractals, and how to further expand the

existing theory given its detailed review of the promising results currently available and

outlining the wealth of possible questions that naturally arise from them.
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