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ABSTRACT

Space Situational Awareness (SSA) is an important and pressing field, as the amount of
space debris is growing due to the increase in spacecraft launches. Space agencies like
NASA and ESA keep track of over 5,000 spacecraft and 20,000 spacecraft-related debris
objects currently orbiting the Earth. These spacecraft may undergo trajectory changes
through artificial impulsive maneuvers without warning, posing a risk to other
spacecraft in the vicinity. Additionally, measurement data often consists of uncertainties,
where usual spacecraft maneuver detection and characterisation methods are often
computationally expensive. The goal of this work is to develop a quick, reliable,
computationally inexpensive method for spacecraft maneuver detection and
characterisation, which would be used to assist satellite operators in collision avoidance
measures. This dissertation utilises such a technique, which is applied to simulated
measurement data of an orbiting spacecraft taken from one ground site. With these
objectives, a method using a modified Extended Kalman Filter (EKF) with covariance
inflation from previous research was explored and simplified. Through building on this
set of research, a new parameter definition is presented for maneuver detection and
characterisation, named K, with focus on transverse apogee and perigee maneuvers. A
relationship was then found between the detection parameter (both the original
parameter, Ψ, and the new parameter, K) and the magnitude of the impulsive artificial
maneuver. The detection and characterisation method was tested in several different
scenarios, varying ∆v magnitude and scale, ∆v direction, maneuver orbital location,
orbit geometry, noise covariance, detection parameter threshold, state covariance
inflation threshold, and maneuver duration. In general, it was found that as the
∆v magnitude increases, so does the magnitude of the detection parameter. This
relationship was found to be nonlinear, of either a quadratic (Ψ) or logarithmic (K)
relation through best fit curve testing. Possible future work includes: testing
multi-maneuver scenarios, multi-sensor data collection and fusion, break-up or berthing
events, rendezvous or mating events, and MATLAB EKF protocol implementation.
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ABRÉGÉ

La connaissance de la situation spatiale est un domaine important et pressant, à cause de
la quantité de débris spatiaux qui s’accumulent avec l’augmentation des lancements
d’engins spatiaux. Les agences spatiales comme la NASA et l’ESA tracent de plus de
5000 satellites et 20000 débris liés aux satellites en orbite autour de la Terre. Ces satellites
peuvent effectuer des changements de trajectoire par des manœuvres artificielles et
impulsives sans avertissement, ce qui peut représenter un risque pour d’autres satellites
à proximité. En plus, les données de mesure sont souvent constituées d’incertitudes, ce
qui fait que les méthodes habituelles de détection et de caractérisation des manœuvres
spatiales sont souvent coûteuses en calcul. Le but de ce travail est de développer une
méthode rapide, fiable et peu coûteuse en calcul pour la détection et la caractérisation
des manœuvres des satellites, qui serait utilisée pour aider les opérateurs de satellites
dans les mesures d’évitement des collisions. Cette thèse utilise une technique, qui est
appliquée à des données de mesure simulées d’un satellite artificiel en orbite, prises à
partir d’un site au sol sure la Terre. Avec ces objectifs, une méthode utilisant un
“Extended Kalman Filter (EKF)” modifié avec inflation de covariance à partir de
recherches antérieures a été explorée et simplifiée. En s’appuyant sur cet ensemble de
recherches, une nouvelle définition de paramètre est présentée pour la détection et la
caractérisation des manœuvres, nommé K, avec comme but les manœuvres d’apogée et
de périgée transversales. Une relation a ensuite été trouvée entre le paramètre de
détection (le paramètre d’origine, du Ψ et le nouveau paramètre, K) et l’amplitude de la
manœuvre artificielle et impulsive. La méthode de détection et de caractérisation a été
examiné aux plusieurs scénarios différents, par variant de la magnitude et l’échelle de
∆v, la direction de ∆v, la position orbitale de la manœuvre, la géométrie de l’orbite, la
covariance du bruit de la mesure, la valeur seuil du paramètre de détection, la valeur
seuil de l’inflation de la covariance d’état et la durée de la manœuvre. En général, il a été
constaté que lorsque l’amplitude de ∆v augmente, l’amplitude du paramètre de
détection augmente aussi. Cette relation s’est avérée non-linéaire, soit quadratique (Ψ)
ou logarithmique (K), grâce à des techniques d’ajustement de courbe. Les travaux futurs
possibles incluent: le test de scénarios multi-manœuvres, la collecte et la fusion de
données multi-capteurs, les événements de rupture ou d’accostage, les événements de
rendez-vous ou d’amarrage, et l’implémentation du protocole EKF en MATLAB.
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CHAPTER 1

Introduction

1.1 Motivation and Background

1.1.1 The Space Environment and Debris Problem

The start of the Space Race in the 1950’s, sparked interest in space all over the globe.
Since the first artificial satellite, Sputnik 1, was successfully launched in 1957 [1],
interests in Earth orbiting satellites have been continuously growing. With increasing
appeal comes the increase of launches and satellites placed in orbit. Now, with more
than 60 countries having access to space, and owning orbiting spacecraft [2], space is
becoming competitive, contested, and congested [3–5]. The increase in space congestion
poses great risks to current and future orbiting spacecraft. For example, in April and July
2020, the International Space Station (ISS) had to conduct collision avoidance maneuvers
for break-up debris fragments tracked by the U.S. Space Command (USSPACECOM)
Space Surveillance Network (SSN), which were produced by the Fengyun-1C (FY-1C)
anti-satellite test by China in 2007, and the SOZ (Sistema Obespecheniya Zapuska,
“Launch Support System”) auxiliary motor explosion in 2003, respectively [6].

Space technology is heavily relied upon in the daily lives of people everywhere for
uses such as: GPS, navigation, location, tracking and mapping; food and agriculture
monitoring; disaster management, prediction, and relief; Search-and-Rescue and
emergency response efforts; climate and weather monitoring and prediction;
environment and ecosystems monitoring; internet, television, communications and
surveillance networks; education, sciences and medical research; and, military and
defense [7, 8]. What originally started as only a minimal issue with only few satellites
per year placed into orbit, has become a pressing issue with more than 800 satellites
placed in orbit per decade [9]. There are now more than 5,000 satellites, and over 20,000
objects larger than 10 cm orbiting the Earth [10, 11]. MIT reports that there could be over
1000 satellites launching to orbit per year by 2025, especially with recent developments
in mega-constellations [12]. As reliance on space technology increases, satellite insertion
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rates will grow, increasing space debris and contributions to the space congestion
problem.

Space debris can range from artificial objects of spacecraft parts to full satellites, and
naturally occurring bodies of dust or rock, which all pose a risk to current and future
spacecraft missions [13–17]. Artificial debris can also include defunct spacecraft,
spacecraft paint chips, spacecraft pieces from break-up events, or used rocket
bodies [11]. According to the Space Debris Office at the European Space Agency (ESA),
as of 2018, artificial spacecraft contribute to 22,000 [11,18] space objects larger than 10 cm
orbiting the Earth, tracked by the SSN, which include active and inactive spacecraft [6].
ESA estimates, through statistical modelling, that over 128,000,000 objects as small as
1 mm up to greater than 10 cm are currently orbiting the Earth [18]. These debris objects
include both artificial and natural objects. NASA and ESA illustrate the breakdowns and
trends of the increasing orbiting objects about the Earth in Figures 1.1 and 1.2,
respectively. Figure 1.1 is taken from NASA’s February 2020 edition of the Orbital Debris
Quarterly News. Fragmentation debris include objects from satellite break-up and
anomalous events [10]. Mission-related debris include objects placed, separated, or
released from planned mission events [10]. Figure 1.2 is taken from ESA’s 2019 Annual
Space Environment Report [11]. In both images the rapid growth of orbiting objects is
prevalent and concerning.

Space collisions due to space objects can instigate a domino-effect of continually
increasing collisions and debris [19]. As the increase in debris and space launches
continue, space will become hazardous for safe satellite operations. An increase in
orbiting bodies means an increase in collision probability, an increase in collisions, and
an increase in debris. Kessler [16] proposes that there will be a limit of time that space
travel or launches will still be safe due to the increasing congestion of objects in space.
This concept of limitation is known as the Kessler Syndrome [13–16]. Thus, even the
spacecraft important for everyday uses — e.g. positioning and navigation,
communications, weather data and prediction, pandemic planning, surveillance — will
be greatly and negatively impacted [20]. Hence, it is crucial for space debris to be
detected, tracked, and catalogued both accurately and efficiently [3, 21].

1.1.2 Astrodynamic Standards for Space Debris

In 2012, a study on the astrodynamics algorithms and associated computer systems was
reported by the Committee for the Assessment of the U.S. Air Force’s Astrodynamic
Standards [22]. The goals of the study were to asses the Air Force Space Command
(AFSPC) astrodynamic standards established, and the effectiveness of the standards in
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Figure 1.1: Monthly summary of all catalogued objects by the U.S. SSN from NASA’s

February 2020 edition of the Orbital Debris Quarterly News [10]. Fragmentation debris

include objects from satellite break-up and anomalous events. Mission-related debris

include objects placed, separated, or released from planned mission events.

meeting mission performance requirements, plus possible alternatives [22]. The study
was motivated by the 2009 Iridium 33 and Cosmos 2251 collision, which created over
2000 large fragments of debris (greater than 10 cm) [20], highlighting the necessity in
accurately detecting and monitoring space objects in orbit. It was decided that the
overall goal would be to have the capability of determining the collision probability of
two space orbiting objects. It was found that the standards and algorithms being used
are sufficient, and that the main limitations were sensor-based in relation to quantity and
quality of data-tracking sensors [22]. Since the Cosmos–Iridium collision, there have
been other notable collisions and collision risks, as highlighted in studies by Baird [20]
and Ackerman [19].
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Figure 1.2: Yearly summary of objects orbiting Earth derived from the USSTRATCOM

TLE set reported in ESA’s Annual Space Environment Report [11]. PL = Payload;

PF = Payload Fragmentation Debris; PD = Payload Debris; PM = Payload Mission Related

Object; RB = Rocket Body; RF = Rocket Fragmentation Debris; RD = Rocket Debris;

RM = Rocket Mission Related Object; UI = Unidentified.

1.1.3 Space Situational Awareness (SSA) Definition

Within the field of space debris is Space Situational Awareness (SSA), which has many
definitions and is important to the maintenance of the spacecraft environment as
mentioned above. Kennewell and Vo [1] give a broad definition, stating that SSA is a
reference to the near-space environment knowledge, both naturally occurring and
human-made. In more detail, a report affiliated with the European Space Agency (ESA),
defines SSA as [23]:

”. . . the comprehensive knowledge, understanding, and maintained awareness as far
as the population of space objects in orbits, space environment, and existing
threats/risks are concerned.”

ESA’s definition of SSA means that it is desirable to understand the past path of an
object, its present position in space, and its future trajectory. These pieces of information
are useful to determine and predict future trajectories of spacecraft, as well as any need
for corrective maneuvers for collision avoidance decision-making and procedures [1].
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SSA is a growing field and appeals to a range of areas including civil, military and
commercial interests [3, 23–25]. It is also of interest all over the world, including in many
space agencies; e.g. CSA (Canadian Space Agency), [24–26], NASA (National
Aeronautics and Space Administration) [3, 25, 27], JAXA (Japan Aerospace Exploration
Agency) [28], ESA (European Space Agency) [23, 25, 29], ASA (Australian Space
Agency) [1, 25], Roscosmos (Space Agency for Russia) [25].

SSA is already a necessity for safe launches into outer space, with safely determined
orbits including mitigation instruments or tools (such as thrusters) for any necessary on-
orbit maneuvers, and to ensure collision risks due to space debris can be mitigated for
and reduced to protect spacecraft [26, 28, 29]. In addition, SSA is useful for minimising
space debris as produced by collisions, and for safe operations throughout missions [1,
23]. Thus, as stated by Holzinger et al. [30]:

“SSA [also] encompasses the detection, tracking, and characterisation of space
objects.”

where space objects are updated and stored in a Space Object Catalogue (SOC).
In summary, many papers agree that SSA is related to the knowledge of the

near-space environment in relation to space debris, with the ability to detect, track, and
characterise the orbiting debris for uses including: orbit prediction, collision probability,
risk assessment, cataloguing, and sustainability [1, 14, 17, 23, 30, 31].

1.1.4 Observation-to-Object Tracking Association Demand

Object-to-track association and propagation are important aspects of SSA and event
detection. Various goals of observation association exist, which include orbital
determination and spacecraft maneuver detection. Track association involves factors
influencing the spacecraft orbit, such as natural perturbations (e.g. Earth’s oblateness
(J2), gravity gradient, aerodynamic drag, magnetic torque, Solar Radiation Pressure
(SRP)) and artificial events (e.g. impulsive maneuvers, continuous maneuvers, break-up
or berthing events). An extended goal of the process is for determining any potential for
collision avoidance maneuvers to be applied based on the potential threat of an object,
through orbit prediction and determination [30].

Currently, the main issue with maintenance of the SOC is sensor limitations for space
object detection and characterisation of the many objects already in orbit, and the new
objects planned to orbit the Earth [30]. Additionally, space object observations often
occur over short time periods, providing potentially sparse data, and thus, providing
minimal information for Initial Orbit Determination (IOD) algorithms [30]. Object
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tracking association answers the “What” and “Where” questions of the spacecraft in
observation; it sheds light on the relative positioning of the observed spacecraft to other
spacecraft, the prediction of the direction the observed spacecraft is travelling, and any
risks associated that would call for mitigating action. Therefore, SSA and object-to-track
association are key in maneuvering spacecraft detection, characterisation, and trajectory
prediction, as well as collision risk, collision avoidance maneuver necessity, and overall
defense concerns [1, 23, 25, 26], hence the growing interest in the field.

1.1.5 Event Definitions and Detection Needs

The term “Event” can be defined in several ways. In general, it describes when a
spacecraft or Earth-orbiting piece of space debris has changed its trajectory. Such events
can range from artificial to naturally occurring (orbital perturbations). Though naturally
occurring continuous perturbations can be a factor, for the purposes of this thesis, the
focus is on artificial events due to impulsive maneuvers.

To achieve full SSA, having well-rounded knowledge and determination of events
occurring in space objects both catalogued and not catalogued in the SOC is
necessary [21]. As discussed in Section 1.1.1, space debris and space debris due to
collision events can pose great risks. With the increase in the number of orbiting
spacecraft, there is increased risks of collision, and less ease of mitigation for risks as
more and more partners or operators launch and operate spacecraft in space [15, 21].
Thus, if a spacecraft changes its trajectory unbeknownst to other spacecraft in its vicinity
or orbital regime, it can pose a greater risk to the spacecraft. This situation highlights the
need for detection methods of unknown events in spacecraft [21]. Further to this need is
the need for characterisation of the event [21]. Characterisation can range from
determination of the nature of the event to the intent, the direction, or the magnitude, or
combination thereof. Through both detection and characterisation, it is then possible to
reconstruct and predict the maneuvering spacecraft’s orbital trajectory, making it
possible for operators to determine the potential risks of the spacecraft in question and
determine any collision avoidance needs or alerts for potential malicious intent [21].
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1.2 Event Detection Methods in Literature

There are many pieces of literature that explore the expansive aspects of SSA and space
debris. Since this dissertation focuses on the detection and characterisation of unknown
maneuvers in spacecraft due to artificial events orbiting about the Earth, this section
presents a detailed overview of explored methods for event detection, including:
filtering, thrust representation, optimisation, and Two-Line Element (TLE) methods.

In all methods, object-to-track association and propagation are important aspects, as
well as the use of filters or algorithms to deduce the occurrence of an event, and the
potential for real-time detection or characterisation. Three main topics are explored:
single event detection and characterisation; filtering approaches; and, other scenarios
including event detection with either multi-sensor tracking or multi-object tracking.

1.2.1 Object Track Association and Event Detection

With object-to-track association, uncorrelated tracks (UCTs) may occur in the observation
and object association process, where space object tracks may not correlate to known
objects in the SOC [32, 33]. In this process, a minimum of 3 tracks must be correlated for
the object to be catalogued. Additionally, all space objects start as UCTs, proving to be one
of the most challenging components of SSA [33]. Sabol et al. [33] explain that at large time
differences between tracks, orbital errors can grow quite large, becoming non-Gaussian,
and producing negative effects on the UCT correlation [33]. They explore the nonlinear
effects of this result on the accuracy and covariance to be used in UCT correlation. They
also analyse the best coordinate system for use in an unscented Kalman filter (UKF), and
assess how their approaches could assist in correlating tracks further separated in time
[33]. Sabol et al. [33] found that covariance-base track association (CBTA) is effective if
the measurement error statistics are accurately modelled, and thus, it becomes easier to
associate UCTs [33]. It was also concluded that the Monte Carlo approach in their analysis
presented the best performance with the UKF which was concluded as promising for
track-to-track varying biases, e.g. through radar measurements [33].

As described in an updated report originally published in 1997 by Alfriend [32],
common UCT sources include break-up events, maneuvered operational spacecraft, or
occasionally tracked small objects — which are only observed and tracked dependant on
radar capabilities, as well as object orientation. These objects are not able to be included
in the SOC. Alfriend [32] explains that the determination of UCT-to-Space-Object
association for cataloguing has been a time-consuming manual process, and it is desired
to be efficiently automated, as new objects continuously appear, becoming too intensive
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for the manual process. By considering the changing uncertainty of state variables and
observing the probability density functions (PDFs) of numerical experiments and
simulations, Alfriend [32] was able to propose a covariance-based algorithm for
processing UCTs. However, the experiment returned many large values of the scaled
standard deviation of the semi-axes length of an n-dimensional ellipsoid [32]. This
indicated that sensor errors, noise sigmas, and noise biases were modelled
incorrectly [32]. Both Alfriend [32] and Sabol et al. [33] make use of the Mahalonobis
Distance — where the statistical distance between two tracks at a common time are used
for association [33, 34] — to assist in the UCT determination process.

1.2.2 Single Event Detection and Characterisation

In the work by Scheeres et al. [35], a study was performed for maneuver detection using
two methods that included non-Gaussian elements, non-linearity in the equations of
motion, and an observability analysis [35]. The first approach provided estimates for
filtering approaches and development of new algorithms for event detection relative to
an assumed level of background noise and orbit determination uncertainty. The second
approach used a linearised filtering method, using process noise and artificially
enhancing sensor sensitivity to improve current filtering methods. This method was
capable of producing an acceleration profile of the spacecraft representing several
possible maneuvers and unmodelled forces acting on the spacecraft with respect to a
background noise threshold [35]. The two approaches were found successful in tracking
the maneuvering satellite through its changed state, including cases in which the
satellite or maneuvers were not tracked, as well as in reconstructing the past spacecraft
trajectory and predicting its future trajectory [35].

In the thesis by Ko [36], Fourier series based Thrust-Fourier-Coefficients (TFCs) are
used as an event representation method for maneuver detection. This method used the
known pre-event orbit solution to determine the post-orbit solution. The TFCs are then
used to represent the unknown trajectory change, and connect the original and new
spacecraft states [36]. The work by Ko [36] was an extension of the work by Hudson and
Scheeres [37, 38], where a control law finds a solution to present the apparent secular
behaviour due to the USE, as opposed to characterising the maneuvering event. The
method presented by Ko was tested in LEO simulations using either a modified Batch
filter or a modified Extended Kalman Filter (EKF) for impulsive burns, continuous
low-thrust maneuvers, and a structural deployment. It was found that the implemented
method was able to estimate the maneuver onset and termination times from the
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observational data in the two filtering systems as a knowledge-free detection scheme,
and proves the tracking of the spacecraft can be maintained [36].

In a study by Jia et al. [39], an Interacting Multiple Model (IMM) filter concept is used
and applied to a Cubature Kalman Filter (CKF). The multiple models of the IMM have
different process noise levels to distinguish the maneuvering effects. The IMM-CKF then
simultaneously tracks space objects and detects maneuver events from Space-Based
Optical (SBO) sensor data, by considering the geometry relations between the SO, the
SBO sensor, and the Sun. It was found that the relational geometry of these 3
components affect the quality of observations [39]. For testing the performance of the
filtering processes, a simulation of a space object with 4 SBOs was completed, and the
performance was compared to the ordinary CKF [39]. It was found that the IMM-CKF
provided higher robustness than the CKF in a maneuver event with an SO, and that the
maneuver detection can be concurrently obtained [39]. Jia et al. [39] explain in their
study that tracking a space object and detecting a maneuver event simultaneously are
necessary, as often the two are obtained separately and are affected by the light-time of
the observation. Different scenarios and tracking methods are still to be studied and
compared by Jia et al. [39].

In another study by Jia et al. [40] cooperative tracking is performed through a
consensus-based algorithm, where the information consensus filter (ICF) is used for
tracking space objects from multiple SBOs, and is improved on by using the Cubature
rule embedded ICF (Cub-ICF). It is found that their solution is more robust than the ICF
alone, solving the large errors problem, and can reach similar performance to consensus
based centralised filters [40]. It is explained that this method can lead to robustness in
space object tracking against sensor failures, computations, and complex network
protocols [40]. To test the algorithm, a similar process to [22] is completed, in a scenario
of one space object observed by four SBO sensors.

In a study by Goff et al. [41] the tracking problem is described as separable into two
considerations: 1) Data association; 2) Real-time tracking. Another approach for object
tracking and maneuver detection is presented, through EKF modification and IMM
process implementation with covariance inflation, which is to be executed after the
detection of an impulsive maneuver, removing the necessity of reconstruction through
post-processing [41]. A weighted maneuver detection parameter was used to determine
the impulsive maneuver, based on the residuals in the filter. Filter efficacy was measured
through comparison of the known original orbit and the filter predicted maneuvered
trajectory. Goff et al. [41] were able to successfully determine the time at which a
maneuver occurred in real-time — unlike other approaches such as IOD or BLS. It was
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also concluded that a relationship between the weighted maneuver detection parameter
and the impulsive maneuver exists, where larger maneuvers resulted in larger
magnitudes of the weighted detection parameter [41].

Lee and Hwang [42] also use an IMM approach for maneuver detection and
characterisation. They make the assumption that maneuvered spacecraft result in
changed orbital elements due to finite maneuvers, which allows for a jump Markov
nonlinear system model with multiple modes [42]. The method is proved effective
through tested simulations.

1.2.3 Other Event Detection Methods

Holzinger and Scheeres [43], utilised a control cost function method as a distance metric
for object-track correlation and maneuver detection. This method used a Measurement
Residual Boundary Value Problem (MRBVP) approach [43]. Expected measurements
were calculated using a sensor measurement model. The method was used for the first
new measurement after an observation gap in the data to provide a maneuver detection
characterisation immediately upon track acquisition [43]. It was found that as the
measurement residuals would tend to zero, the observation occurred exactly as
expected [43]. As the random variables parameter tended to zero, the system became
completely deterministic, becoming a function purely of measurement residuals [43]. It
was concluded that the MRBVP method was an optimal control method for minimising
the control distance metric, utilising a calculus of variations approach.

Lubey and Scheeres [44] proposed an adaptive controls technique for a nonlinear
solution using an Optimal Control Based Estimator (OCBE), which produced optimal
control policies for representing mismodelled state dynamics due to data-sparse
measurements. The mismodelling was evaluated for statistical significance to determine
a maneuver event. Lubey and Scheeres [44] built upon Holzinger et al.’s [45] single
statistical measurement metric, expanding to three OCBE distance measure metrics,
forming the cost function. The estimator was automated and applied to a GEO tracking
problem of a spacecraft making periodic stationkeeping maneuvers unbeknownst to the
estimator. It was concluded that this method was able to continue tracking the
maneuvering object while also detecting and reconstructing the mismodelled dynamical
system, and characterise the maneuvers by order of magnitude and direction [44].

Lemmens and Krag [46] developed two methods for space event detection based on
Two-Line Element (TLE) history analysis: 1) Non-natural anomalous LEO event
detection through TLE Consistency Checks (TCCs), where published data is compared
to propagated data; 2) TLE Time Series Analysis (TTSA), for harmonic and statistical
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analysis of the time series in the orbital elements, extrapolating series behavioural
information to make measurements [46]. This work was to be used in assessing
spacecraft operator compliance with the Integration Space Debris Coordination
Committee guidelines with respect to the LEO safe region, and on impulsive velocity
changes [46].

Patera [47], proposed a method for objects tracked by the Cheyenne Mountain
Operations Centre. Events studied included both artificial and natural causes. The
method involved a window-moving curve fit technique; filtering noise and processing
the time-varied data. A detection was determined when a parameter exceeded the
allowable deviation from the predetermined respective threshold defined by standard
deviations. TLEs were utilised in the object association portion, and energy dispersion
computations updated the statistical maneuver detection determination [47]. The
process was completed for all available space objects until an event was declared,
moving the process to event analysis. It was found that the technique was able to
accommodate secular orbital variations and only detect the abrupt or impulsive orbital
changes for event declaration. Patera [47] concluded that the method was effective,
taking minimal time for processing the SOC (within minutes for a one year catalogue),
and could be implemented in either batch or recursive filtering.

Sanchez and Krag [48] utilised a method of comparison between object miss-distances
and a defined distance threshold or the computed associated risk of collisions and level
of collision probability. The study focussed on the accuracy required for differing regimes
of orbit — in keeping the number of false alarms low — and the associated current risks,
using ESA’s Debris Risk Assessment and Mitigation Analysis (DRAMA) tool [48]. This
work was mainly geared towards collision risk and avoidance as opposed to maneuver
detection and characterisation.

1.2.4 Multi-Object Tracking and Event Detection

Jones et al. [17], as previously mentioned, described the unique challenges associated
with multi-object tracking of space objects, stating that standard models fail in
producing results. They stated, simple traditional models that are linear and in
discrete-time are not accurate for the case of space objects, due to the nonlinear motion,
and thus, current Monte Carlo filters are restricted by high computational costs [17].
System requirements for SSA were outlined and the method of tracking performance
with a δ-Generalised Labelled Multi-Bernoulli (δ-GLMB) filter was described. The
method was compared to traditional filtering models. Jones et al. [17] pointed out that a
common conclusion in the astrodynamics community is that improved methods are
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needed for tracking space objects, reducing UCTs, and improving orbit estimates.
However, the caveat is, each technique must be customised for each astrodynamics
application [17].

Stauch et al. [31] applied a Multiple Hypothesis Joint Probabilistic Data Association
(MH-JPDA) algorithm with a fixed-interval smoother for simultaneous multi-object
tracking. The goal was to gain better estimations with newly discovered objects having
large initial uncertainties due to close spacing between objects. Additional goals
included: avoiding ambiguous data associations, poor state estimations, and filter
divergence. The MH-JPDA enabled immediate track formation with real-time state
estimates and was applied to the Constrained Admissible Region Multiple Hypothesis
Filter (CAR-MHF) for a geosynchronous break-up event [31]. The CAR was to constrain
the ambiguity of a short track-let [31]. Stauch et al. [31] found that using a
Rauch-Tung-Striebel (RTS) UKF with the MH-JPDA method significantly reduced track
errors, and allowed for the strategy of establishing track promotion, resulting in the
convergence of a better accuracy for prediction and object association.

DeMars et al. [49] explored the use of a Bayesian framework with a finite-set statistics
(FST) basis, as it can handle multi-object estimation problems and allow for estimations
of object characteristics. The goal was to integrate the approach to common problems
associated with space objects — detection, tracking, characterisation, data
association [49] — so as to maintain information that would otherwise be lost. Desired
tasks included: new object detection, detected object tracking, and tracked object
characterisation [49]. Considered issues with space object detection included: data with
high noise levels, misdetections, and clutter sources resulting in false alarms [49]. The
main disadvantage found was the high computational demand for real-time processing,
as is commonly found with SSA and space object tracking problems [49]. However,
DeMars et al. [49] found that the method was successful in tracking 25 objects in orbit
that were randomly generated in GEO. Overall, the method was concluded as successful
in tracking for all tested cases [49].

Delande et al. [50] explored a filtering method called the Distinguishable and
Independent Stochastic Populations (DISP) filter designed for handling multi-target
problems on detection and tracking in challenging environments [50]. Delande et al. [50]
simulated 5 objects on different orbits without prior information that were observed by 2
sensors. Simulations included: missed detections, measurement noise, and false-alarm
issues [50]. It was found that the filter was responsive and robust in creating tracks after
the first detection and maintaining object-to-track association. For the future, Delande et

12



al. [50] want to utilise the orbital elements to encapsulate a wider sensor model range
applicable to SSA and incorporate large-scale scenarios.

Singh et al. [51] used the MHT method in multiple space regimes for multi-sensor
multi-object tracking scenarios. The method was automated for SOC maintenance with
expandable uses — i.e. object identification, break-up processing, and UCT/UCO
(uncorrelated optical observations) resolution [51]. It was found that the MHT method
was able to process a high amount of UCTs/UCOs (on the order of tens of thousands),
emanating from hundreds of closely-spaced objects, and tens of thousands of
widely-spaced objects, in real-time with lower computational power requirements than
other methods [51]. In the LEO test, the MHT method was able to address challenges
proposed by breakup events. In MEO, it was able to deal with angles-only optical
observations with a unified multi-frame framework [51]. Additionally, it was able to
detect which UCOs were from GEO when tested in MEO, GEO, and HELO [51].

Olivier et al. [52] modelled the breakup event caused by the Cosmos-Iridium
Collision that occurred in 2009 and sparked the need for SSA to be seriously and
efficiently improved. To obtain the physical and orbital characteristics of the resulting
debris from the collision, a hydrodynamic simulation of the impact was performed. It
was found that the remaining 65 active satellites in the Iridium constellation had a 50%
increased risk of debris collisions following the event [52].
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1.3 Thesis Objectives

As discussed in the beginning of this chapter, SSA is an important and pressing subject,
necessitating in the track-based knowledge of spacecraft in the environment, where space
objects that may change from their expected trajectories can cause issues — i.e. collisions
— to neighbouring spacecraft. Artificially caused changes in spacecraft trajectories are
defined as the events of interest for this research. Several methods were studied that can
evaluate and determine the spatial and temporal states of a spacecraft, determining the
maneuvering properties of the spacecraft. However, these methods are often complex,
involving multiple layers of processes and high computational demands. Thus, the main
objective of this dissertation is to establish a simple and less computationally demanding
method for detecting and characterising unknown maneuvers in spacecraft.

Additional goals were desired including: implementation of the method to existing
EKF/CKF procedures in MATLAB; application to multiple maneuver events over a period
of time; application to break-up events; and, application with multiple sensor scenarios.
However, due to complexity of the problems and time constraints, these objectives have
become goals for future work.

1.4 Thesis Outline

In the next chapter, Chapter 2, a brief overview of orbital dynamics involved for
spacecraft and for attaining simulated data is presented. The orbital propagation
method is exemplified and validated. In Chapter 3, a walk-through of the theories and
mathematics behind the processes of the chosen event detection and characterisation
methods are explained, and the algorithm processes are detailed. Filtering options are
discussed and preliminary results for validating the chosen method are presented.
Chapter 4 contains the results obtained by the chosen method, and presents a discussion
on the findings, with implications for application. The thesis is wrapped up in Chapter 5
with final conclusions and a look ahead to possible future work in relation to the
findings and the additional thesis goals mentioned above.
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CHAPTER 2

Orbital Propagation

2.1 Orbital Mechanics and Orbital Propagator

In order to simulate orbital data for maneuver detection and analysis, an Orbital
Integrator is needed to propagate the spacecraft orbital states from an original orbit,
through a maneuver, to a final orbit. The propagator must be able to include thrust
effects, while illustrating the original and final orbits. It is assumed that all cases will be
considered as 2-body problems to simplify the setup process. This section will walk
through the process, setup, and verification of the simulated data.

2.1.1 Vectors, Reference Frames, and Frame Rotations

The propagator uses position and velocity vector components (r, v, respectively; where,
the boldface font denotes a physical vector or column matrix, depending on the context)
to describe the dynamics of the spacecraft. These vector components can be represented
in any reference frame with appropriate frame rotations applied. Three reference frames
are used in this propagator: Earth-Centered Inertial (ECI;

−→
FECI); Perifocal (PQW;

−→
F PQW );

Spacecraft Body (RSW;
−→
FRSW ). These frames are illustrated in Figure 2.1.

The ECI frame (
−→
F IJK) is a commonly used frame for orbital mechanics [53]. Its origin

is based at the centre of the Earth. The I-axis points to the vernal equinox, the K-axis,
extends through the North Pole (the polar rotational axis of the Earth), and the J-axis
completes the triad by the Right-Hand-Rule (RHR). Thus, the I- and J- axes are aligned
with the ecliptic plane of the Earth. The ECI frame is not fixed to the Earth, and does not
rotate with the Earth. Though the ECI frame is not truly inertial, as explained in [53], it
can be considered as such for this context.

The PQW frame (
−→
F PQW ) is commonly used for satellite observation processing and is

useful for understanding orbital motion with respect to the inertial mass [53]. This system
is a satellite-based reference frame and uses the spacecraft orbit for definition. The origin
is still placed at the centre of the Earth, however, the system is based on the orbital plane
of the satellite. The P -axis points to the orbital perigee, the W -axis is normal to the orbital
plane, and the Q-axis completes the RHR triad. Satellite motion is in the P -Q plane, and
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Figure 2.1: Diagram of Reference Frames to be used in propagator process based on [53];

Earth-Centred Inertial (ECI;
−→
F IJK), Orbital/Perifocal (

−→
F PQW ), Spacecraft/Body (

−→
FRSW ).

thus, the P - and Q- axes are inclined and aligned with the spacecraft orbital plane. This
frame is best used for orbits with a nonzero eccentricity [53].

Lastly, the RSW frame (
−→
FRSW ) is another satellite-based system — also known as the

Spacecraft Body Frame. It is often used for understanding relative motion of a spacecraft,
for example with attitude, and moves with the satellite [53]. Thrust is often defined in
this frame as a vector acting on the spacecraft body. The system origin is at the spacecraft
(which is modelled as a particle), and the frame moves with the spacecraft. The R-axis
(radial direction) points along the position vector from the Earth to the spacecraft. The
W -axis (cross-track direction) is normal to the orbital plane. The S-axis (along-track or
transverse direction) is perpendicular to the R-axis, within the orbital plane, completing
the RHR triad. This axis is only aligned with the spacecraft velocity vector for circular
orbits (e = 0). This system can be used for all orbit types [53].

Components defined in each reference frame can be transformed to any other frame
through what are known as Direction Cosine Matrices (DCMs, denoted C). In general
terms, the notation Cba denotes the DCM needed to rotate Frame-a (

−→
F a) to Frame-b (

−→
F b),

completely describing the orientation of
−→
F b with respect to

−→
F a. DCMs can then be
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applied to position and velocity vector components, in general, as follows:

ra = Cabrb and rb = Cbara where Cba = CT
ab

Often, DCMs are expressed in terms of principal rotations, where the subscript denotes
the axis (e.g. 1 = x-axis, 2 = y-axis, 3 = z-axis), the Euler angle (or angle of rotation, θ(·))
is defined and acts as the argument [53, 54]:

C1(θ1) =

⎡⎢⎣ 1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

⎤⎥⎦ , C2(θ2) =

⎡⎢⎣ cos θ2 0 − sin θ2

0 1 0

sin θ2 0 cos θ2

⎤⎥⎦ , (2.1)

C3(θ3) =

⎡⎢⎣ cos θ3 sin θ3 0

− sin θ3 cos θ3 0

0 0 1

⎤⎥⎦
where, θ(·) = Any Euler Angle or angle of rotation argument with respect to a defined

axis of rotation.

Frame rotations can be conducted as a combination of stacked principal rotations, which
are completed in reverse order of multiplication, denoted by the axes subscripts;
e.g. C312(θ3θ1θ2) = C2(θ2)C1(θ1)C3(θ3). Since filtering of the simulated data will also be
needed, and often filters are based in the ECI frame, transformations into the ECI frame
from PQW and RSW are as follows [53]:

C313(Ω, ω, i) =

⎡⎢⎣ cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i

sinΩ cosω + cosΩ sinω cos i − sinΩ sinω − cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω sin i cos i

⎤⎥⎦

C3(ν) =

⎡⎢⎣ cos ν sin ν 0

− sin ν cos ν 0

0 0 1

⎤⎥⎦ (2.2)

where, C313(Ω, ω, i) = DCM for PQW −→ ECI,
C3(ν) = DCM for PQW −→ RSW;

Use either: C3(−ν) or C−1
3 (ν) for RSW −→ PQW,

Such that: C313(Ω, ω, i)C−1
3 (ν) is used for RSW −→ ECI

Ω, ω, i, ν = COEs defined in Section 2.1.3.
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2.1.2 Spacecraft Dynamics Equations of Motion

Now, with the reference frames and orbital elements defined, the position and velocity
vectors can initially be expressed in the Perifocal Reference Frame as follows:

−→r =
−→
F P rPQW

rPQW =

⎡⎢⎣ rP

rQ

rW

⎤⎥⎦ =

⎡⎢⎣
p cos ν

1+e cos ν
p sin ν

1+e cos ν

0

⎤⎥⎦ (2.3)

−→v =
−→
F PvPQW

vPQW =

⎡⎢⎣ vP

vQ

vW

⎤⎥⎦ =

⎡⎢⎢⎣
−
√︂

µ
p
sin ν√︂

µ
p
(e+ cos ν)

0

⎤⎥⎥⎦ (2.4)

where p = a(1 − e2) and is known as the semilatus rectum, a is the semi-major axis, e
is the eccentric anomaly, ν is the true anomaly, and µ is Earth’s gravitational parameter,
which are all further discussed in Section 2.1.3. These r and v vectors can then be rotated
into the ECI frame using the C−1

3 (ν) rotation matrix form of Equation (2.2), which build
the basis of the equations of motion. An overall vector (X) can be used to contain all of
the position and velocity vector information:

XPQW =

[︄
rPQW

vPQW

]︄
which can also be rotated as necessary.

Since the propagator is based as an integrator, the equations of motion for the
spacecraft must be in differential form, and the equations for acceleration must be
included. The two-body orbital acceleration (r̈) is defined using the Keplerian two-body
equation of motion for spacecraft, accounting only for the gravitational force acting on
the spacecraft as induced by the Earth at specified distances (r), to which the
perturbation forces (ap) have been added (Cowell’s Formulation) [53]:

r̈ = −µ
r
|r|3

+ ap (2.5)

The perturbation vector (ap) can include any kind of perturbation forces acting on the
spacecraft (i.e. natural and artificial) [53]. For this propagator, the perturbation vector
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includes only the instantaneous thrust vectors (contained by U3×1), which are related to
the applied change in velocity due the maneuver (∆v [53, 54]) over the maneuvering
time (tman), such that: U3×1 = ∆v

/︁
tman. Thus, the differential form of the equations are

written as follows:

Ẋ =

[︄
ṙ
v̇

]︄
=

[︄
ṙ

−µ r
|r|3 + ap

]︄

=

[︄
ṙ

−µ r
|r|3

]︄
+

[︄
03×3

I3×3

]︄
U3×1

= F (X, t) + BU

(2.6)

where,

ap =

[︄
03×3

I3×3

]︄
U3×1 = BU3×1

and, r = The orbital position vector in the respective frame,
B = The input matrix [55]; projects the perturbation onto the state equations [56],
ap, = The perturbation vector per the respective frame,
U3×1 = The thrust motion vector per the respective frame.

which can also be written in vector from [56]:
−→
X
̇
=

−→
F (

−→
X ) +B

−→
U (

−→
X ) (2.7)

2.1.3 Classical Orbital Elements (COEs)

This section presents a review of orbital elements used in the propagator process, which
can be found in various texts. This information is included for completeness, convenience
and understanding for the reader. In general, orbital elements are a set of parameters
consisting of up to six elements that fully describe the state of an orbiting object at a point
in time. These elements can consist of position (r) and velocity (v) components, which are
then stored in an overall state vector (X) [53]. The Classical Orbital Elements (COEs) are a
related six-element set used to achieve this orbital description goal [53]. The common set
is comprised of: two geometry elements — the semi-major axis (a) and eccentricity (e);
three angular orientation elements — inclination (i), Right Ascension of the Ascending
Node (RAAN, Ω), argument of perigee (ω); and, one position-time relation element —
true anomaly, (ν). Often, a time component can be considered as a seventh element, but
will not be included as such for this context, as time is included in the true anomaly
component [53]. An illustration of these COEs is presented in Figure 2.2.
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Figure 2.2: Diagram of Classical Orbital Elements (COEs) based on [53,54]. The top image

illustrates COE vectors and orientation elements. The bottom image illustrates orbital

geometry elements.

The semi-major axis (a) and, eccentricity (e) are the dimensional elements describing
the size and shape of the orbit, and are defined by the orbital geometry. The semi-major
axis is the longest radius of the orbit from the orbital centre to the orbital perimeter. It can
be derived from geometry, calculated from the magnitudes of the position (r) and velocity
vectors (v), or from the orbital energy (ε) magnitude [53]:

a =
ra + rp

2
=

r

2− rv2

µ

= − µ

2ε
(2.8)
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where,

ε =
|v|2

2
− µ

|r|
=

−µ

2a
(2.9)

r = |r|, v = |v|

and, µ = 3.986 × 105 km3/s2 is the gravitational parameter of the Earth. Eccentricity (e)
is a nondimensional measure describing the ellipticity of the orbit (i.e. the amount that
the orbit deviates from a circle). For circular orbits, a is equal to the radius of the orbit,
thus e = 0. For elliptical orbits, 0 < e < 1. The eccentricity can be calculated from the
position (r), velocity (v), and angular momentum (h) vectors as follows [53]:

h = r × v (2.10)

e =
v × h
µ

− r
r

(2.11)

where,

h =
[︂
hx hy hz

]︂T
(2.12)

e =
[︂
ex ey ez

]︂T
(2.13)

Orbital inclination (i) and RAAN (Ω) describe the angular orientation of the orbital
plane with respect to the ECI frame (previously discussed in Section 2.1.1). Orbital
inclination (i) represents the angular tilt of the orbital plane, measured from the K-axis
unit vector (K̂) of the ECI frame to the orbital angular momentum vector. Inclination
ranges from 0◦ < i < 180◦ and is calculated as follows [53, 54]:

i = cos−1

(︃
hK

h

)︃
, i ∈ [0◦, 180◦] (2.14)

where,
h = |h| =

√︂
h2
I + h2

J + h2
K (2.15)

RAAN (Ω) is the angle between the I-axis unit vector (Î) of the ECI frame and the
ascending node. The ascending node lies on the line of nodes and is the point at which
the orbit crosses from the Southern to the Northern hemispheres of the Earth. The line of
nodes can be represented in vector notation as, −→n , and can be derived through the
following cross product: −→n = K̂ ×

−→
h . For equatorial orbits, RAAN is undefined, as there

are no nodes (−→n = 0). The measurement direction comes from the Right-Hand-Rule
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convention viewed from above the North Pole [53]. For all orbits, 0◦ < Ω < 360◦ in the
I-J plane of the ECI frame. The value of RAAN is dependant on the I-component of the
angular momentum vector, and is calculated as follows [53]:

Ω = tan−1

(︃
hI

−hJ

)︃
=

⎧⎨⎩0 ≤ Ω ≤ 180◦, if hI > 0

180◦ ≤ Ω ≤ 360◦, if hI < 0
(2.16)

The argument of perigee (ω) describes the angular location of the orbital perigee, and
is measured from the ascending node. The perigee (rp) is the shortest radius of the orbit
from the focus (often Earth’s centre) to the orbital perimeter. For all orbits, 0◦ < ω < 360◦,
except for circular or equatorial orbits, as no perigee and no node exist. The argument
of perigee is dependant on the K-component of the eccentricity vector and is generally
calculated as follows [53]:

ω = cos−1 ex cosΩ + ey sinΩ

e
=

⎧⎨⎩0 < ω < 180◦, if eK ≥ 0

180◦ < ω < 360◦, if eK < 0
(2.17)

e = |e| =
√︂

e2I + e2J + e2K (2.18)

The true anomaly (ν) describes the position of the spacecraft in an orbit at a point in
time, and is the relational component from orbital geometry and position to time. It is
measured in relation to the perigee, and varies 0◦ < ν < 360◦ over the orbital period. For
circular orbits, ν is undefined, as there is no perigee. The true anomaly is dependant on
the dot product of the position and velocity vectors, and is calculated as follows [53]:

ν = cos−1 e · r
er

=

⎧⎨⎩0 < ν < 180◦, if r · v > 0

180◦ < ν < 360◦, if r · v < 0
(2.19)

Note that the |· · ·| notation indicates the L2 norm to be computed as:
|· · ·| =

√︁
x2 + y2 + z2 for the respective vector components in the respective frame,

where x, y, z are placeholder components of the respective vector.
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2.2 Orbital Propagator Tests and Validation

This section showcases results to validate the propagator process discussed in this
chapter, which in turn, validates the method used in constructing the sample data for
analysis by the filter, as well as the governing equations of motion to be used for the
filter. Figure 2.3 shows an original orbit (Orbit 1) of a spacecraft that has undergone a
maneuver at the apogee and is now in the new orbit (Orbit 2). The axes correspond to
the I- (x1) and J- (x2) directions. A circle for the Earth and a point for the orbital focus
(centre of the Earth) are included for reference. This result demonstrates an example that
the propagator functions as desired and expected. The initial and final orbital elements
and orbital energy associated with the maneuvering case in this example are provided in
Table 2.1 for reference.

Figure 2.3: Example spacecraft maneuver affect on 2D orbital geometry for ∆v = 100 m/s

in the transverse direction applied at the orbital apogee).
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For further validation, Figure 2.4 displays the orbital energy over the full simulation,
including the maneuver. As shown in the image, there is an increase in orbital energy
due to the applied maneuver. Both before maneuver onset and after maneuver
completion, the orbital energy is constant, as expected. Since the orbital energy results
follow expected trends, this validates the propagator and its process. The initial and
final orbital elements and orbital energy associated with the maneuvering case in this
example are also provided in Table 2.1 for reference.

Figure 2.4: Orbital energy plot over full simulation time for propagator validation of

∆v = 10 m/s in the transverse direction applied at the orbital apogee.

Table 2.1: Initial and Final Orbital Elements and Orbital Energy for Validation Cases

∆v (m/s) a (km) e i (◦) Ω (◦) ω (◦) ν (◦) ε (km2/s2)
Initial — 8 107.84 0.090 0 0 0 0 -24.58

Final (Figure 2.3) 100 8 325.33 0.062 0 0 0.520 33.51 -23.94
Final (Figure 2.4) 10 8 127.75 0.087 0 0 0.029 1.944 -24.52
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CHAPTER 3

Filtering and Detection

3.1 Filtering Methods

As discussed in Chapter 1, filters are a popular method for the detection of unknown
maneuvers. Possibilities include different kinds of Kalman Filtering, batch filters, and
others. Here, the focus is on using Kalman Filtering, as a widely used and accepted
filtering method [57]. However, since the primary function of a filter is to separate and
discard noise from data measurements, a filter will not necessarily detect the occurrence
of a maneuver automatically. Thus, along with a filtering method, a maneuver detection
and characterisation method is required. As previously discussed (see Section 1.2.2),
some methods include the use of Thrust-Fourier-Coefficients (TFCs) for event
representation [41], Root Mean Square Error (RMSE) and model probability [39], or a
specified covariance-based detection parameter [41]. Since the goal is to maintain
simplicity in the algorithm for decreasing computational needs, the use of a detection
parameter is desirable and explored further in this section.

3.1.1 Kalman Filtering Overview

The Kalman Filter (KF) and its modified versions are popular filtering systems for
several dynamical systems and tracking problems [57, 58]. The KF is a base popular
technique used for linear systems. Modifications such as the Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF), or Cubature-Kalman Filter (CKF) allow for the
filtering of nonlinear systems. Since spacecraft follow nonlinear dynamical systems,
these modified versions of the KF are often utilised. Kalman-based filtering techniques
have been widely known and used since the 1960’s for filtering noise from
measurements and predicting state dynamics [57, 58].

The Kalman Filter is a solution to the Linear-Quadratic Problem (LQP), as a
sequential optimal estimator, to estimate the instantaneous state of a system, involving
uncertainty and noise [57, 58]. The KF is widely used as it does not require as much
computational management as other techniques, nor any specific or unrealistic
assumptions [59]. Additionally, the KF allows for inference of missing or unavailable

25



information from noisy and indirect measurements; can be used for prediction and
estimation purposes of dynamical systems [57]; and, can combine measurements of
multiple different sensors [40]. With estimation, the KF is able to handle systems that
include some random behaviours by using statistical information [57].

The Extended Kalman Filter (EKF) was developed for handling nonlinear systems,
and became another popular filter, that is still widely used and accepted [57, 58]. The
EKF was even used for a space navigation problem in the Apollo missions to travel to
the Moon and back [57]. Though the linearisation process in the EKF can induce errors
causing divergence, the process is still robust, and a continued popular choice for use
[57]. Partial derivatives as linear approximations of the nonlinear dynamical relations are
used in the EKF approach, which accomplish the linearisation objective of the filter [57].
The EKF updates the state trajectory estimate at each time iteration reducing divergence
encountered by the linear KF [53].

The Unscented Kalman Filter (UKF) was next developed for nonlinear estimation. It
incorporates the higher order system statics in order to avoid the EKF linearisation
process by utilising sample point sets, and is capable of estimating the associated
quaternions of spacecraft attitude [58]. The UKF makes use of the Unscented Transform
(UT), a sigma-point sampling method for propagating state means and covariances of
nonlinear systems [57]. Samples are selected and weighted by the UT based on the state
estimate, (x̂), and state covariance matrix, (P) [57].

More recently, the Cubature Kalman Filter (CKF) was developed for high-dimensional
state estimation [60]. The main feature of the CKF is the third-degree spherical-radial
cubature rule, which allows for multivariate moment integrals passed to the filter to be
computed [60]. A square-root version of the CKF was also developed by Arasaratnam
and Haykin to improve numerical stability [60]. Modifications and variations to the CKF
are still being developed by Jia et al. with promising results [39, 40].

3.1.2 Extended Kalman Filter

As a widely accepted filtering technique, the EKF is a useful option for the spacecraft
maneuvering detection and characterisation problem. The EKF follows a sequential
process for estimating, updating, and propagating state dynamics [41, 57]. A reference
trajectory is used in the EKF to predict and update state estimates, which is also updated
at each time step [53]. The advantages of the EKF are well documented as listed in [53].
Thus, this section walks through the EKF process, as based on the algorithm presented
by Goff et al. [41], and with background reference to [53].
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The EKF is generally governed by two main equations [39, 41]:

x = f(x, t) + v (3.1)

y = h(x, t) + w (3.2)

where, x = State vector,
f(x, t) = Nonlinear state dynamics relationship (Equations (2.5) and (2.6)),
v = Process noise,
y = Observations of the state,
h(x, t) = Nonlinear relationship of observations to the state,
w = Observation noise.

To begin the process, state dynamics must first be defined, including a state estimate,
(X̂), and a state covariance matrix estimate, (P̂) [41,57]. The state estimate is, again, based
on Equations (2.5) and (2.6), where the components are listed in the form of positions
and velocities of the spacecraft. The state covariance matrix captures the estimation
uncertainty of the states [57], and is often of diagonal matrix form. In order to gain a
state covariance estimation from the filter, the State Transition Matrix (STM; Φ) is used.
The STM is an evolution operator for dynamical systems [57] that maps the state from
one time to the next. It is a Jacobian matrix, can be defined as follows [41, 53]:

Φ(t, t0) =
∂F (X, t)

∂X
=

[︄
0 I
Λ 0

]︄
(3.3)

Λ =

⎡⎢⎣ − µ
r3

+ 3µ
r21
r5

3µ r1r2
r5

3µ r1r3
r5

3µ r1r2
r5

− µ
r3

+ 3µ
r22
r5

3µ r2r3
r5

3µ r1r3
r5

3µ r3r2
r5

− µ
r3

+ 3µ
r23
r5

⎤⎥⎦
where, µ and r are defined in Section 2.1.3, and F (X, t) is defined in Section 2.1.1. The
STM can then be differentiated to form the following relationship [53]:

Φ̇(t, t0) =

(︃
∂F (X, t)

∂X

)︃
Φ(t, t0) (3.4)

When the time interval is zero, the STM is equal to the identity matrix (Φ(t0, t0) = I) and
is used as an initial condition to Equation (3.4). The state covariance estimation also
relies on the process noise, represented by the Process Noise Covariance Matrix (Q),
which captures error in the propagation of P through time [53], and is also often of
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diagonal form. Thus, the state covariance matrix can be predicted through the following
relationship [41, 53]:

P̄ = Φ(t, t0)P̂Φ(t, t0)
T + Q (3.5)

The state prediction (X̄) is the result of integrating Equation (2.6).
Next, the state and state covariance matrix must be updated with observational

information provided by the sensors. Observations from sensors can consist of position
and velocity data, but more often consist of range, azimuth, elevation, and range-rate
data. Note that sensors often operate in

−→
F SEZ and

−→
FECF [41, 53], which are discussed

further in Section 3.2. By using this types of observation set (y), another matrix
relationship of partial derivatives is utilised, called the observation partials matrix or
measurement sensitivity matrix (H), which captures the affect of the changes in the state
the observations [41, 53, 57]:

H =

(︃
∂ŷ
∂X

)︃
=

(︃
∂G(X̄, t)

∂X

)︃
(3.6)

where, ŷ represents the calculated observations by G(X, t), which maps the predicted
state to the observation set and creates a predicted observation set (ŷ) [41]. The details of
G(X, t), and subsequently H, are further explained in Section 3.2. With the observation
mapping matrix, the residuals (νe) that the EKF works to minimise can be calculated [41]:

νe = y − G(X̄, t)

= y − ŷ
(3.7)

From the observation partials matrix, the observation covariance matrix, which is
dependent on both the predicted state covariance and the measurement noise matrix,
can be calculated [41]:

S = HP̄HT + R (3.8)

where, R is the measurement noise covariance matrix, which captures noise created in
the observation measurements made by the sensors, and is often of diagonal matrix form.
With the observation covariance matrix, the Kalman gain matrix is calculated [41, 53, 57]:

K = P̄HT(S)−1 (3.9)
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which, is a defining feature of KFs, and is a partial result of solving the matrix Riccati
equation [57]. Together, the Kalman gain and residuals are used in calculating the state
and state covariance matrix estimates, using the state and state covariance predictions,
respectively, as follows [41, 57]:

X̂ = X̄ + Kνe (3.10)

P̂ = (I − KH)P̄ (3.11)

Finally, the filter has predicted and updated the state and state covariance matrix at the
current time step. The filter can then process through the next time step, starting at the
beginning again (Equations (2.6) and (3.4)), using the newly estimated data, and reading
in the next observational data set.

3.2 Reference Frames and Observation Conversions

Following the three references frames discussed in Section 2.1.1, two additional frames
are needed for use with the filter to take into account the positioning of sensors used
in observing the maneuvering spacecraft. These two additional frames are the Earth-
Centered-Earth-Fixed (ECEF;

−→
FECF ) and the Topocentric Horizon or South-East-Zenith

(SEZ;
−→
F SEZ) frames [41, 53]. These two extra frames are illustrated in Figure 3.1.

The ECEF frame (
−→
FECF ) is generally used for processing accelerations and

observation calculations [53]. This frame is fixed to the Earth, with the origin placed at
the centre of the Earth, rotating with the Earth [53]. The E-axis points to the
zero-longitude location of the Earth, along the equator (where λ = 0). The F -axis is
aligned with Earth’s axis of rotation (through the North Pole), and the C-axis completes
the triad. This system is not fixed in space, and thus, also moves with the Earth [53].

The Topocentric Horizon frame (
−→
F SEZ) is often used for sensor systems, and is

another Earth-based system. The origin of the system lies at the sensor location on the
surface of the Earth, and the frame rotates with the Earth. The location of the sensor is
described by the geodetic latitude (ϕgd) and longitude (λ), which can be found on a
map [53]. The S-axis points towards the South from the sensor location; the E-axis
points towards the East from the site location and is undefined when the site is located at
the North or South Poles; the Z-axis completes the triad, pointing outwards normal to
the site [53]. The orientation of the system is defined by the Local Sidereal Time
(LST; θLST ), which is an angle measured from the Vernal Equinox (I-axis of

−→
FECI) to the

local longitude of the site location, and fixes the system to a location [53]. The SEZ frame
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Figure 3.1: Diagram of Reference Frames for observations to be input to the filtering

algorithm based on [53] for handling observational data; Earth-Centred-Earth-Fixed

(ECEF;
−→
FECF ), Topocentric Horizon/South-East-Zenith (

−→
F SEZ).

incorporates viewing angles to describe the location of a satellite in relation to the sensor
site. These angles are the azimuth (β) and elevation (el). Azimuth is measured clockwise
from the North to the location of the satellite on the Earth’s surface (beneath the
satellite), and lies within the range of 0◦ ≤ β ≤ 360◦. Elevation is measured from the site
local horizon upwards to the satellite, and lies within the range of −90◦ ≤ el ≤ 90◦ [53].

Similarly to Section 2.1.1, the components in each frame can be transferred to other
frames through rotation matrices (DCMs). When dealing with observations, additional
components are necessary to complete the process, which include elliptical properties,
site location, and Earth’s constants. The site location in matrix form within the

−→
FECF is

defined as follows [53]:

CE =
RE√︁

1− e2E(sin
2 ϕgd)

SE =
RE(1− e2E)√︁
1− e2E(sin

2 ϕgd)

rsiteECF
=

⎡⎢⎣ (CE + hellp) cosϕgd cosλ

(CE + hellp) cosϕgd sinλ

(SE + hellp) sinϕgd

⎤⎥⎦ (3.12)
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where, CE, SE = Auxiliary quantities obtained from geometric elliptical properties [53],
RE = 6378.137 km, Earth’s Radius,
eE = 0.081819221456, Earth’s surface eccentricity,
ωE = 7.292115 ×10−5 Rad/s, Earth’s rotation speed,
ϕgd = Geodetic Latitude of the site,
λ = Site Longitude,
hellp = Height above ellipsoid reference.

Note that the definition of hellp is similar to that of the height above Mean Sea Level (MSL),
and further details can be found in the textbook of [53].

From the above site matrix definition, the observation vector in
−→
FECF can also be

defined [41, 53]:

ρF(rsat, vsat) =

[︄
rsat − rsite

vsat

]︄
(3.13)

where, rsat, vsat = satellite state components,
rsite = site location matrix within the

−→
FECF as defined in Equation (3.12).

In order to rotate components from the ECI frame to the ECEF frame (
−→
FECI →

−→
FECF ),

the C1 matrix defined in Equation (2.1) can be used. The argument for this rotation is
known as the Greenwich Mean Time (GMT) which is a combination of Earth’s rotational
speed and the present time (t) since the initial start time (t0) [61]. Thus, this DCM is
time-dependant and defined as follows [53, 61]:

θGMT = ωE(t− t0)

CFI = C1(θGMT )

Since observation partials will be needed in the filter, this time-dependant DCM will need
to be differentiated into its derivative form [53]:

ĊFI =

⎡⎢⎣ − sin (θGMT ) cos (θGMT ) 0

− cos (θGMT ) − sin (θGMT ) 0

0 0 0

⎤⎥⎦ (3.14)

For the rotation from the ECEF frame to the SEZ frame (
−→
FECF →

−→
F SEZ), the DCM is a

combination of the C2 and C3 matrices defined in Equation (2.1). The arguments are based
on the longitude and latitude of the site location, and the matrix is defined as follows [53]:
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CSF =

⎡⎢⎣ sin(ϕgd) cos(λ) sin (ϕgd) sin(λ) − cos(ϕgd)

− sin(λ) cos(λ) 0

cos(ϕgd) cos(λ) cos(ϕgd) sin(λ) sin(ϕgd)

⎤⎥⎦ (3.15)

In Section 2.1.1, it was discussed that the satellite description would be a six-element
set consisting of position and velocity vectors. This set would be equally split as 3
position components and 3 velocity components. However, observations are often made
in a 4-element set consisting of range (distance from the site to the object), azimuth,
elevation, and range rate. Thus, there are: one distance, one velocity, and two viewing
angles involved. This means not only are rotation matrices necessary for filtering, but a
method for converting the usual 6-element set to the practical 4-element observational
set type is also necessary.

First, the predicted state directly post integration is converted from the ECI frame to
ECEF (

−→
F IJK →

−→
FECF ). Since the set contains velocity terms, the differentiated form of

the respective DCM is used (Equation (3.14)), which is time-dependent [41, 53]:

X̄F =

[︄
CFI(t) 0
ĊFI(t) CFI(t)

]︄
X̄I (3.16)

This becomes the satellite information to be used in Equation (3.13), which can then be
rotated from ECEF to SEZ (

−→
FECF →

−→
F SEZ) using Equation (3.15) as follows [41, 53]:

ρS =

[︄
CSF 0

0 CSF

]︄
ρF (3.17)

where, the first three components can be considered range terms and the last three can
be considered range rate terms (i.e. ρS = [ρS ρE ρZ ρ̇S ρ̇E ρ̇Z ]

T). From this, the following
components can be defined at each time step [41, 53]:

ρ = |ρ| =
(︃√︂

ρ2S + ρ2E + ρ2Z

)︃
(3.18)

β = tan−1

(︃
−ρS
ρE

)︃
(3.19)

el = sin−1

(︃
ρZ
ρ

)︃
(3.20)

ϖ =
(︁
ρ · ρ̇

)︁
(3.21)
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where, ρ, ρ = Calculated observation range vector and magnitude, respectively,
ρ̇ = Calculated observation range rate vector,
β, el = Viewing angles: Azimuth (Rad) and Elevation (Rad), respectively,
ϖ = Dot product of the range vector by the range rate vector.

Finally, the calculated observation matrix can be assembled [41, 53]:

ŷ =
[︂
ρ β el ϖ

ρ

]︂T
(3.22)

which is used in Equation (3.7).
Now, the H-partials (H) and mapping (G(X̄, t)) matrices mentioned in Section 3.1.2

(Equation (3.6)) can be introduced and defined in detail as follows [41, 53]:

H =
∂ŷ
∂ρS

∂ρS

∂ρF

∂ρF

∂XF

∂XF

∂XI
=

∂G(X̄, t)

∂X̄
(3.23)

which are defined piece by piece per the following [41, 53]:

∂XF

∂XI
=

[︄
CFI(t) 0
ĊFI(t) CFI(t)

]︄
∂ρF

∂XF
= I

∂ρS

∂ρF
=

[︄
CSF 0
ĊSF CSF

]︄

Υ =

⎡⎢⎢⎢⎢⎢⎢⎣

ρS
ρ

ρE
ρ

ρZ
ρ

ρE
ρ2E+ρ2S

− ρS
ρ2E+ρ2S

0

− ρSρZ

ρ2
√

ρ2−ρ2Z
− ρEρS3

ρ2
√

ρ2−ρ2Z

√
ρ2−ρS3

ρ2

ρ̇S
ρ − ρSϖ

ρ3
ρ̇E
ρ − ρEϖ

ρ3
ρ̇Z
ρ − ρZϖ

ρ3

⎤⎥⎥⎥⎥⎥⎥⎦

Ω =

⎡⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 0 0
ρS
ρ

ρE
ρ

ρZ
ρ

⎤⎥⎥⎥⎥⎦
∂ŷ
∂ρS

=
[︂
Υ Ω

]︂
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3.3 Detection Parameter Amendments, Improvements, and

Preliminary Results

The main desirable aspect of the Goff et al. [41] study is the weighted maneuver detection
parameter, Ψ, based on the filter residuals and observation covariance estimated by the
EKF (outlined in Section 3.1.2). The Ψ parameter is then used as an indicator to initiate a
covariance inflation option based on a specified threshold value. This particular inflation
process prevents filter divergence, allowing for a converged maneuver detection solution
output in real-time [41]. Since Goff et al. [41] use an IMM process in conjunction with
the EKF, another parameter, η, is used as a set of potential inflation limits per available
model options, and is used as a secondary initiation of covariance inflation based on the
trace of the filter-estimated state covariance matrix (P̂). For the purposes of simplicity,
since the IMM is not to be used in this dissertation, the η parameter acts as a constant
set state covariance trace threshold for the secondary initiation. In addition, the process
noise covariance matrix (Q) is updated to utilise the calculated Ψ-value at each time step.
Thus, the following steps are appended to the EKF based on [41] and modified:

1. Calculation of Ψ after residuals Observation Covariance computation:

Ψ = νT
e (S)

−1νe (3.24)

2. Application of Inflation Process:

Ψ > Ψth → Inflation check: tr(P̂) < ηth → P̂ = 10 P̂
where, Ψth = The set threshold detection parameter,

Ψ = The detection parameter,
tr(·) = The matrix trace computation,
ηth = The set state covariance inflation threshold,
P̂ = The estimated State Covariance Matrix.

3. Process Noise Calculation:

Q =

[︄
qr I 0
0 qv I

]︄
(3.25)

where, qr, qv = Scaling components for position and velocity, respectively,
and are defined in Table 3.1.
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Once these steps are complete, the filter can go back to the first step with the new state
covariance and state estimates as before, using the inflated covariance matrices.

Table 3.1: Values for Process Noise Covariance Inflation Based on Ψ (per [41])

0 ≤ Ψ 105 ≤ Ψ 5× 105 ≤ Ψ 106 ≤ Ψ 5× 106 ≤ Ψ 107 ≤ Ψ 5× 107 ≤ Ψ 108 ≤ Ψ 5× 108 ≤ Ψ

qr 0 0.05 0.1 0.5 1 5 10 50 100

qv 0 5× 10−5 1× 10−4 5× 10−4 1× 10−3 5× 10−3 0.01 0.05 0.1

3.3.1 Detection Parameter Improvements

As will be illustrated in Section 3.3.2, the previously established method by Goff et al. [41]
is able to detect a maneuver, however, the detection is not always clear for all results over
the full simulation time. To make the detection as clear and prominent as possible, the
original Ψ parameter has been modified, as follows:

K = 20 log10(Ψ + 1) (3.26)

This new parameter, K, adjusts the output to showcase and separate the maneuver
occurrence from the rest of the data by utilising the base-10 logarithm. The logarithmic
parameter definition allows for better handling of high orders of magnitudes in the
original Ψ detection parameter, where a linear definition would not necessarily represent
the parameter well. Since it is now on a decibel (dB) scale, the factor 20 amplifies the
differences between the detection and the threshold, as conventional in control theory,
acoustics, or communications [62]. Adding 1 to Ψ shifts all values, guaranteeing positive
values at all times, and removes the noticeable undesirable anti-peaks shown in the
preliminary results (see Figure 3.2a). This K-parameter is the new method of analysis
and addition to the previously accepted methods for maneuver detection and
characterisation. For analyses, a maneuver detection occurrs when K is at a maximum
(K = Kmax). These maximums can be accumulated over multiple simulations, and a
relationship can be explored.

Another difference between K and Ψ is the timing of the implementation; Ψ is
applied and used within the EKF algorithm, whereas K is applied after the EKF as a post
processing procedure. Though Ψ was intended to be a real-time detection parameter, by
placing K after the filtering process, it is possible that false detections could be
minimised as only maximum K-values are analysed. This could be assistive to both
operators and smaller operating companies, where real-time calculations may be too
costly in terms of computational resources.
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3.3.2 Preliminary Maneuver Detection Results

Figures 3.2 to 3.4 showcase the capability of both the Ψ-parameter maneuver detection
method per Goff et al. [41] and of the K-parameter developed in this research, as an
example and for comparison. Figures 3.2 and 3.4a show Ψ and K over the full simulation
with an impulsive maneuver of ∆v = 5 m/s applied at apogee in the radial direction,
while Figures 3.3 and 3.4b show the results for a ∆v = 25 m/s applied at perigee in the
transverse direction. For Figures 3.2 and 3.3, results are plotted using two different
scales: 1) Logarithmic, as per the results presented in Goff et al. [41]; and, 2) Linear, as a
way to showcase the results in another fashion. The horizontal dashed lines in all figures
represent the set threshold values, where Kth = 20 log10(Ψth=30 + 1). The vertical dashed
lines represent the times of the applied maneuver. Though it is not visible in these plots,
there are actually two vertical dashed lines plotted to represent the maneuvering onset
and completion times, respectively.

The orbit for these results was set with an eccentricity of 0.09, an initial spacecraft
altitude of 1000 km (which is also the perigee altitude), an initial true anomaly of 0◦, and
an inclination, RAAN and ω of 0◦. The impulsive maneuver was applied after 2 full orbits,
in the radial direction at the apogee. The total simulation time was over 5 full orbits of
the initial orbital period plus the maneuvering time of tman = 100 seconds. The detection
threshold was set at Ψth = 30 ( ∴ Kth ≈ 30), with a state covariance trace threshold of
ηth = 1 [41]. The covariance matrices were set as:

R = diag
(︃[︂

(5× 10−3)2 0.022 0.022 (0.5× 10−3)2
]︂)︃

P̂0 = diag
(︃[︂

1× 10−4 1× 10−4 1× 10−4 1× 10−6 1× 10−6 1× 10−6
]︂)︃

Q0 = diag
(︃[︂

1× 10−2 1× 10−2 1× 10−2 1× 10−5 1× 10−5 1× 10−5
]︂)︃

where, P̂0 is the initial state covariance matrix estimate and Q0 is the initial process noise
covariance matrix for the filtering algorithm. Noise of zero-mean Gaussian property was
added to the simulated observational data as per the provided R measurement noise
covariance matrix values per Goff et al. [41].

In Figures 3.2a and 3.3a, a small peak at the maneuver time is observable in both cases.
However, the peaks are quite near the Ψth = 30 threshold and could be easily missed, at
just Ψ ≈ 101 for both cases. There are many low anti-peaks below the threshold, with
very large anti-peaks near the beginning of the simulation at Ψ ≈ 10−12 in both cases.
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In addition, the numbers achieved are quite large, causing a great variation in Ψ overall
with a large range of 102 ≤ Ψ ≤ 10−12, reducing the clarity of a maneuver detection peak,
especially for smaller magnitude maneuvers or maneuvers at perigee. In some cases,
these ranges were even larger with possible ranges of up to 103 ≤ Ψ ≤ 10−23. On the
linear scales, the detection is clearer, with Ψ ≈ 33 and Ψ ≈ 34, respectively. However, this
could be improved.

For Figures 3.4a and 3.4b, a prominent spike is visible at the maneuver time, with
K ≈ 50 and K ≈ 37, respectively. There are no longer any undesired anti-peaks, with all
values in the positive range. In addition, the scale is now more comprehensible than in
the logarithmic scale, with a smaller range of 0 ≤ K ≤ 50 and 0 ≤ K ≤ 37, respectively.
This shows an improvement from the original detection parameter, where the detection
is clear and the range has increased in the positive scale to assist in clarifying a maneuver
has taken place. This also shows that the new detection parameter may be robust for
many scenarios, and alludes to the possibility of the characterisation of maneuvers and
prediction of maneuver type through the development of possible relationships between
K and ∆v. It is important to note that, for some specific cases, the original Ψ parameter
will show clearer detections, where Ψ will become large on the order of Ψ ≈ 103.

It should also be noted that the K-parameter is denoted as κ for the y-axis labels for
these figures (Figure 3.4). For discussion purposes, the two variables and notations are
considered equivalent for this section. In subsequent sections, κmax is shown in figures for
the y-axis labels, which is the maximum value of κ over the respective simulations, and is
then also used interchangeably with K.

For further comparison, a base case for the filter and detection process has been
included in Appendix B where no maneuvers have been applied. The result showcases a
maximum at t = 15 400 seconds with Kmax = 30.127 and Ψmax = 31.089. Thus, it can be
expected that small maneuvers, where ∆v ≈ 0, will incur a detection parameter value of
Kmax ≈ 30.127 or Ψmax ≈ 31.089, which sets the minimum possible and default output
values for the detection parameters, and could result in false detections at these values.
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(a) (b)

Figure 3.2: Ψ detection parameter vs. time results for an impulsive radial maneuver of

∆v = 5 m/s applied at apogee, plotted on logarithmic (Figure 3.2a) and linear scales

(Figure 3.2b).

(a) (b)

Figure 3.3: Ψ detection parameter vs. time results for an impulsive transverse maneuver

of ∆v = 25 m/s applied at perigee, plotted on logarithmic (Figure 3.3a) and linear scales

(Figure 3.3b).
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(a) Radial maneuver K vs. time for ∆v = 5 m/s applied at apogee.

(b) Transverse maneuver K vs. time for ∆v = 25 m/s applied at perigee.

Figure 3.4: Results for detection parameter K vs time for a radial impulsive maneuver

of ∆v = 5 m/s applied at apogee (Figure 3.4a), and transverse ∆v = 25 m/s applied at

perigee (Figure 3.4b).

39



CHAPTER 4

Maneuver Detection Results and Discussion

4.1 Simulation Setup

For all simulations, it is assumed that all cases can be modelled as 2-body problems (per
Chapter 2), without other perturbations (i.e. natural events). Maneuvers are considered
to be impulsive — a high magnitude thrust (implemented as a small constant
acceleration, since mass is not considered, per Chapter 2) applied over a short time
period. Orbital elements can, therefore, be considered constant over the thrust period
(set as tman = 100 seconds), and the Direct Cosine Matrices (DCMs) can be used at the
initial orbit state prior to the maneuver. Only the time dependent DCMs used for
filtering observations (Equations (3.14) and (3.15)) require updates at each time step. For
all simulations, observation data is assumed to be taken from the Ascension, Atlantic
ground station site location (ϕgd = −7.91◦, λ = −14.4◦, hellp = 56.1 m [53]), with
observations taken every 5 seconds, and omitted if the spacecraft is below 1◦ of elevation
per sensor constraints [53]. The observation data was simulated per the propagator
presented in Chapter 2, with added zero-mean Gaussian noise per the provided
measurement noise covariance matrix in Chapter 3. The Extended Kalman Filter (EKF)
technique with the amendments outlined in Chapter 3 was implemented. Though
MATLAB has available KF algorithms, including an EKF protocol, the filtering technique
was manually coded for simpler customisation and editing.

For the basis of cases, the settings are applied as shown in Section 3.3.2 with the listed
Earth constants in Table 4.1 (per [53]). Test cases are simulated by varying the different
parameters from Section 3.3.2 — e.g. orbital elements are varied to simulate maneuvering
cases in different orbits. Several cases are tested to explore the capability of the new K-
parameter, with attempts to find a relationship between K and the maneuvering ∆v. The
main tests of interest are: varying ∆v both in magnitude and direction (Section 4.2.1);
varying the maneuver orbital location (Section 4.2.2); and, varying the orbital geometry
(Section 4.2.3). From these results, the goal is to find possible relationships between K and
∆v per orbital location or maneuver direction. Some results are compared to some of the
original results from Goff et al. [41], and other possible test cases are briefly discussed.
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Table 4.1: Earth’s Constants Used in All Simulations [53]

RE (km) G (km3
/kg·s2) ME (kg) µE (km3/s2)

6378.137 6.673× 10−20 5.973× 1024 3.986× 105

4.2 Detection Parameter Trends

Several case studies were simulated and analysed using simulated observation data as
describe above. This section presents the relevant case results with corresponding
discussions on how the new K detection parameter may relate to different maneuvering
scenarios. Some comparison to the original Ψ-parameter is also provided. Tested
scenarios include varied ∆v magnitudes, ∆v directions, maneuvering locations, orbital
geometry and orientation, measurement noise covariance, detection parameter and state
covariance inflation thresholds, and maneuver duration. A maneuver occurrence
detection is deemed by observing a maximum in K at a certain time, such that K = Kmax

(denoted as κmax in all figures. These maximums are accumulated over multiple
simulations and analysed (where ∆v points are colour coded with red as the smallest
and blue as the largest ∆v for all figures). Results are discussed to make conclusions
about the possible trends in the relationships between K and ∆v with some reference
and comparison to Ψ and ∆v. Curves are fitted to find an approximate analytical
relationship between the two parameters in both cases. Finding an analytical
relationship between the two parameters, which is important for both maneuver
characterisation and prediction purposes for operators. It is possible that different curve
fit relationships could be best for different scenarios. The main scenarios of interest,
however, are maneuvers applied at the orbital apogee in the transverse direction, and
will be the focus for most subsections. A summary table of qualitative summaries for
select cases can be found in Appendix C. Results for further cases can be found in
Appendices D and E, including a short discussion on maneuver detection timing in
Appendix F.
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4.2.1 Variation of K with ∆v Magnitude and Direction

In this first set of simulations, the impulsive maneuver magnitude, ∆v, was varied
discretely from 1 m/s to 100 m/s. Figures 4.1 to 4.3 show the variation in the new
K detection parameter in relation to the tested ∆v values. The K-parameter is denoted as
κmax for the y-axis labels in all figures — as the maximum value was taken from each
simulation (described above), which depicts a maneuver detection — and are used for
creating the relationships. For discussion purposes, the two are considered equivalent,
and the same is consistent for the remainder of this chapter.

For the maneuvers applied in the radial direction, the variation of K ranges from
30 < K < 90 (Figure 4.1), which is similar in the transverse direction, at 30 < K < 85

(Figure 4.2), and is smallest, at 30 < K < 45 (Figure 4.3) for the maneuvers applied in the
normal direction. These observations allude to a possible relationship between the
ranges of K to ∆v. Directional predictions of ∆v could be made based on these ranges,
where K falling within a certain range of values indicates a particular direction. For
example, smaller K-values would be associated with normal maneuvers until K = 45,
after which K-values indicate transverse maneuvers, where K > 85 would indicate
radial maneuvers. This could be useful to operators for preliminary predictions. There is
also an obvious general trend that as the maneuver velocity magnitude increases, the
magnitude of K increases as well, though not necessarily proportionally, as anticipated.

To find an approximate analytical relationship, five curves were fitted to the results
for each direction. The corresponding coefficients of the five fitted lines are tabulated in
Table 4.2, where the y-variable represents the detection parameter, K, and the x-variable
represents ∆v. The correlation measures are showcased by the R2 and R2-adjusted values
tabulated in Table 4.3. Note that the x-values were not normalised, and thus, have units
of ∆v (m/s); the y-values follow the K-parameter, which is dimensionless.

To select potential curve fit relationships, the impact of applying an impulsive
maneuver to the system must be analysed. Through inspection of the orbital energy
equation (Equation (2.9)), it is noticed that there is a relationship present with the square
of any velocity vector magnitude. This alludes to the need for a relationship that at least
involves a relationship of K to ∆v2. Further inspection of the orbital energy equation
shows that an increase in velocity due to an impulsive maneuver vector affects the
equation in the following fashion:

v2 = (v0 +∆v) · (v0 +∆v) = v20 + 2 (∆v) · (v0) + ∆v2

42



where, v0 is the original velocity vector, ∆v is the applied impulsive change in the velocity
vector. As a result of the maneuver, both linear and quadratic forms of ∆v are now present
for all directions. Therefore, functions with linear terms, squared terms, and both linear
and squared terms are considered, and a function with a quadratic relationship including
dependence on both linear and quadratic terms makes logical sense as a potential best fit
relationship expectation. Hence, the five curve fit relationships chosen for investigation
are: Linear (y = mx + b); Square Root (y = c + b

√
x); Square (y2 = c + bx); Quadratic

(y = b + cx + dx2); and, the Logarithm of the Quadratic (y = 20 log10 (b+ cx+ dx2)).
Note that the Square fit relationship is listed as ”nonlinear” in the figures, and the two are
equivalent for this section.

The expectation, based on the above orbital energy equation expansion, is for the
quadratic or logarithmic relationships to be presented as the best fit options, and could
consequently return the best ∆v predictions given a K-value. It is expected that the term
representing v20 will be much greater than the coefficient representing 2v0, which will be
greater than the coefficient associated with ∆v, due to the orders of magnitude in
difference between v0 and ∆v, as further discussed later in this section. Thus, the
following outcomes through the curve fitting analysis process are expected:
v20 > 2v0∆v > ∆v2 (per direction and overall); and, K = f(∆v, ∆v2).

From Table 4.2, the coefficients of the fitted curves can be analysed. On the surface it
would appear as if the square fit shows the strongest dependence on its coefficients with
the highest values. However, due to the units present of the x- and y- variables (since
these were not nondimensionalised, as mentioned above, and thus the dimensionless K2

is compared to ∆v (m/s), which does not follow in accordance with the above system
inspection and relationship expectations), and the exclusion of a ∆v2 term (deemed
necessary in the discussion above); this relationship would not actually be a good fit
choice, which is supported by the low correlation values of the R2 numbers in Table 4.3.
Thus, the square fit is omitted in subsequent sections.

Visually, the quadratic and logarithmic fits seem to be the best options in all directions.
Physically, this is consistent with the above discussion of the orbital energy equation,
and is also consistent with the fact that the system and equations of motion for these
scenarios are nonlinear (presented in Chapter 2). Hence, a linear relationship would not
be an accurate fit (but is still included throughout as a baseline reference). Additionally,
since the new K term is defined using the logarithm, a relationship that incorporates a
logarithmic expression makes logical sense as a possible best fit choice. Thus, the two
best fit options (quadratic and logarithm of the quadratic) are the focus for discussions.
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For all cases shown in Table 4.2, except the logarithmic fit for maneuvers in the radial
and transverse directions, the relationship shows a stronger dependence on the
∆v-independent terms, suggesting that the values of K have a stronger dependence on
these terms, which involve v0. This is expected and consistent with energy equation
inspection above, as the ∆v-independent terms represent v20 , which is the original orbital
velocity term squared, and is much larger in order of magnitude than the order of
magnitude of a ∆v or other terms (e.g. v0 ∼ 103 m/s, ∆v ∼ 1 m/s; where ∆v is only but a
fraction of v0 with respect to magnitude). Considering that the orbital energy involves
dependence on ∆v2, the most interesting cases to analyse are the quadratic and
logarithmic curve fits, which involve both ∆v and ∆v2 terms.

In all directions, for the quadratic fit, the highest dependence is on the ∆v-independent
term, b (or v20); and the lowest dependence is on the very small ∆v2 term, d, ranging on
the order of 100 to 10−3. The linear term, c (or 2v0, associated with ∆v), is generally in the
middle, as expected. With both linear and quadratic terms present, this shows that K is a
function of ∆v and ∆v2 ( ∴ K = f(∆v, ∆v2)), and thus involves a complicated relationship
with the comparatively low magnitude ∆v. This is important, as the ∆v is not always
applied in the same direction as v0 and can further complicate the K-∆v relationship.
Another observation is that the values of b are generally close to the threshold value of
Kth = 20 log10(Ψth=30 + 1) ≈ 30 (per Equation (3.26) and Section 3.3.2 examples). This is
justified by inspecting both the definition of K and the quadratic relationship with ∆v.
With a logarithmic definition comparable to the definition of a conversion to decibels
(dB) [62], 30 in the linear scale is equal to 30 dB, and indicates the lowest possible value
for the ∆v-independent term. In the quadratic relationship, with ∆v = 0 (or even ∆v ≈ 0),
only be the v20 term will remain present (or will further dominate the relationship), and
thus the ∆v-independent term will be near the threshold, such that b ≈ 30 ≈ Kth.

The negative value of the d-terms in the quadratic fit may indicate dependence on the
negative of ∆v2 for the radial and transverse directions. However, the negative term, c,
in both the logarithmic and quadratic relationship for the normal direction is a peculiar
result, as it suggests dependence on the negative of v0 and ∆v, yet there is no apparent
dependence on the negative of the ∆v2 (due to a positive d-value). It would be expected
that with a dependence on the negative of v0 and ∆v, that the d coefficient would be
affected as well. However, this result may be justified by inspecting the orbital energy
equation (Equation (2.9)) once again, where elements of v0 and ∆v are squared, and thus,
any negative values will still result in positive outcomes. In another sense, these
negative d-values may indicate that this is not actually a good fit, especially when
considering very small values of ∆v, as these values may be too close to zero and induce
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other computational errors. For these reasons, the relationships with the negative ∆v

and ∆v2 terms are unclear at this time.
The above quadratic relationship trends with the coefficients changes for the

logarithmic fit over the different directions. In the radial and transverse directions, the
relationship shows stronger dependence on c, associated with the linear v0 and ∆v

terms; though the dependence is still weaker with d, and thus, on ∆v2. This means that
K depends more on the linear ∆v variable than with the ∆v-independent term depicted
in the previous observations for the quadratic relationship. The ∆v-independent term, b,
is also negative for the radial direction, and thus, K may vary with the negative of v20 for
this specific case, though the relationship for negative values is inconclusive at this time.
The curve fit for the normal direction follows the same relationship for the quadratic fit
cases discussed above, with strongest dependence on v20 , and weakest dependence ∆v2.
In this specific case, the linear coefficient term, c, is negative, again, indicating that K
may vary with the negative of v0 or ∆v (but not the negative of ∆v2), which is also
consistent with observations of the quadratic fit in the normal direction. Additionally,
the R2 numbers in Table 4.3 support the selection of the logarithmic fit as the best
potential curve fit relationship between K and ∆v, as R2 ≈ 1 for all directions.

In summary, due to the dominating quadratic relationship in ∆v present from
expanding velocity in the orbital energy equation, and the logarithmic definition of K, it
is recommended for the curve fit function for the logarithm of the quadratic to be used
for maneuver characterisation and prediction purposes. This would then allow for a
calibration of sorts to be carried out by operators. By knowing the K-value (which could
even be determined at the time the original Ψ-parameter deems a detection is made) the
chosen relationship can be used to determine the most likely impulsive ∆v applied and
the possible outcomes with respect to orbital geometry and trajectory changes. A sudden
change in K would then show the possible onset time of maneuver, similarly to the
original Ψ-parameter in Goff et al. [41]. The different values of K and the curve fit
coefficients (b, c, d) could then relate to different maneuvering directions and orbital
locations, which is briefly explored in the next sections.

At the same time, since the results and testing set up are limited, a concrete
relationship may not yet be present, and further testing scenarios are necessary. The
possible process for operators could be: 1) Calibrate system per chosen relationship;
2) Determine detection with prominent peak in K; 3) Apply the logarithmic relationship
to K; 4) Determine ∆v type (in terms of direction, magnitude, location, or original orbital
proprieties of the maneuvering spacecraft); 5) Apply collision avoidance prediction or
decision-making protocol.
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Table 4.2: Apogee Coefficients for Curve Fit Lines of the K-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Square
y2 = c+ bx

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

m b c b c b b c d b c d

Radial 0.5244 46.8325 34.4062 6.4230 1801.6269 83.9924 37.9894 1.6449 -0.01150 -8.9891 74.4401 3.7804

Transverse 0.4608 42.9008 32.9615 5.4092 1604.9774 63.5357 38.09184 1.07015 -0.00627 6.1991 50.6466 0.7132

Normal 0.1269 30.2850 28.6861 1.2167 913.9629 8.9000 31.4265 -0.01770 0.001487 38.9983 -0.5341 0.01768

Table 4.3: Apogee R2 Numbers for Curve Fit Lines of the K-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Square
y2 = c+ bx

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted

Radial 0.9547 0.9524 0.8672 0.8406 0.7509 0.7011 0.8934 0.8402 0.9784 0.9676

Transverse 0.9784 0.9773 0.9148 0.8977 0.8205 0.7847 0.8626 0.7939 0.9810 0.9715

Normal 0.9981 0.9980 0.7276 0.6731 0.8795 0.8554 0.9977 0.9966 0.9950 0.9925

Figure 4.1: Trend of K (κmax) with varied apogee radial maneuvering ∆v (m/s).
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Figure 4.2: Trend of K (κmax) with varied apogee transverse maneuvering ∆v (m/s).

Figure 4.3: Trend of K (κmax) with varied apogee normal maneuvering ∆v (m/s).
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For relationships with Ψ vs ∆v, Figures 4.4 to 4.6 show the variation in the original Ψ
detection parameter by Goff et al. [41] for each applied maneuvering direction at apogee.
Overall, the trends are similar to those found for K: the variation of Ψ ranges from the
greatest to smallest in the same order as before — radial, transverse, normal; as the
maneuver velocity magnitude increases, the magnitude of Ψ increases, which is also
consistent with Goff et al. [41]; the relationship is not proportional and is nonlinear, as
expected. The same curve fitting methods as for the K cases were used, and the
corresponding coefficients of the curve fit equations are tabulated in Table 4.4, while the
correlation measures by the R2 and R2-adjusted values are tabulated in Table 4.5.

For the Ψ-∆v curve fits, it was not possible to consistently obtain either: a square fit
(y2 = c + bx) — which is analogous to the K-∆v cases (where it had the lowest
correlation values), and is not truly physically meaningful; nor, a logarithmic fit —
which would not fit well without a logarithmic relationship already present within the
definition of Ψ. Hence, these two fits are omitted in all Ψ-∆v results. Similarly to the
curve fits for K-∆v, the Ψ-parameter has a stronger dependence on the ∆v-independent
coefficient (which is v20), and a weaker relationship with ∆v2, which is also consistent for
nearly all maneuvering directions. The trend differs for maneuvers applied in the
normal direction with the square root (y = c + b

√
x) fit, where the dependence is weaker

on the v0 term as opposed to stronger. Another interesting observation is that many of
the coefficients are negative, some with very large quantities (indicating even greater
dependence on the associated values), and are of different values than with the results
for the K-∆v cases. The implications of negative coefficients remains unclear at this time.

From the R2 numbers in Table 4.7 and the corresponding graphs, the best fit option is
the quadratic fit for all directions, which supports the observations of the depicted K-∆v

relationship proposed above. In addition, the linear correlation values in the radial and
transverse directions are outside of the expected range of values for R2 numbers, which
means the linear fit does not correlate well with the results for Ψ. The square root fit
correlates less well with the data — decreasing per direction, from radial to transverse to
normal — which are much lower than those of the quadratic fit relationship, supporting
the quadratic as the best fit choice for Ψ-∆v. This result confirms the conclusions made
in the previous discussion on the relationships between the detection parameter and the
maneuvering velocity (∆v) with reference to expectations of nonlinear systems, and in
regards to the relationship between orbital energy and overall velocity. Thus, the
quadratic fit would be the main focus for determination of a Ψ-∆v relationship,
supporting the discussion on K curve fits requiring and centring around an included
quadratic function. Further Ψ-∆v results are included in Appendix E for reader interest.
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Table 4.4: Apogee Coefficients for Curve Fit Lines of the Ψ-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

m b c b b c d

Radial 286.6935 -509.4414 -5074.7721 2977.0210 -827.6546 327.0128 -0.4145

Transverse 147.4418 -966.4376 -2885.1733 1428.0750 415.0241 -27.5972 1.7998

Normal 1.2252 23.7468 9.2188 11.5269 38.3235 -0.6218 0.01899

Table 4.5: Apogee R2 Numbers for Curve Fit Lines of the Ψ-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted

Radial -157.2368 -165.1486 0.9350 0.9220 0.9956 0.9934

Transverse -870.7472 -914.3346 0.7281 0.6737 0.9855 0.9782

Normal 0.7025 0.6876 0.6577 0.5886 0.9987 0.9980

Figure 4.4: Trend of Ψ (Ψmax) with varied apogee radial maneuvering ∆v (m/s).
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Figure 4.5: Trend of Ψ (Ψmax) with varied apogee transverse maneuvering ∆v (m/s).

Figure 4.6: Trend of Ψ (Ψmax) with varied apogee normal maneuvering ∆v (m/s).
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4.2.2 Variation of K with Orbital Location

In this set of simulations the relationship of K-∆v is tested at different orbital locations.
The same maneuvers from Section 4.2.1 were applied at the orbital perigee, as well as the
two locations halfway between orbital perigee and apogee of the same orbital geometry
as Section 4.2.1. Figure 4.7 shows the variation in the new K detection parameter versus
the tested ∆v maneuvering values applied at the orbital perigee, while Figures 4.8
and 4.9 show the results for maneuvers applied at the halfway points after perigee and
after apogee, respectively. Similarly, the original Ψ-parameter was tested in these
scenarios and curve fits were applied, of which the results and discussions can be found
in Appendix E. As stated in Section 4.2.1, the focus is on maneuvers in the transverse
direction, thus only these results are illustrated in this section. A qualitative summary of
results is included in Appendix C.

For transverse maneuvers applied at the orbital perigee, the variation of the new
K detection parameter ranges from 30 < K < 47. At a quarter of the orbit after orbital
perigee, the variation in the range is 30 < K < 60, and similar at 30 < K < 70 for
transverse maneuvers applied at a quarter of the orbit after apogee. The similar ranges
for the orbital halfway points makes sense, as the velocities would be near equal at these
locations (in terms of magnitude), hence, the ranges should be comparable in these
areas. For transverse maneuvers, the largest variance in K occurs when maneuvers are
applied at apogee, followed by the halfway point after apogee, then the halfway point
after perigee, leaving the smallest range to maneuvers applied in the transverse
direction at perigee. Therefore, if K(·) represents the range of the K-parameter at different
maneuvering locations, then: Kap > K1/4 ap > K1/4 per > Kper, for transverse maneuvers.

This observation can be justified by considering Kepler’s Laws, as spacecraft velocity
is greatest at the perigee [53,54]. By inspecting and applying vis-viva equations [53,54], it
is apparent that perigee maneuvers require larger ∆v magnitudes, implying that greater
added energy is required for a change to occur. Thus, the associated variance in the range
of K is decreased, as changes in velocity at perigee would be less easily conducted and
affect less change. Overall, the same expected general trends can be deduced in all cases,
where the magnitude of K increases with increasing ∆v in a nonlinear fashion. In this
scenario, the five curve fits were more closely packed when plotted together.

The coefficient values of the fitted curves for perigee maneuvering cases in Table 4.6,
are more consistent with each other than in the previous section; the ∆v-independent
variable, b (which is v20), for each fit case and maneuvering direction contains the largest
value, and thus, K has greater dependence on v20 for all of these cases. The only negative
values are in the ∆v2 term, d, of the quadratic fit for the radial and transverse
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maneuvering cases, which were also negative in the previous section. The peculiarity
and unclear implications of the negative terms to the K-∆v relationship remains
consistent as well. In addition, this d-term is the smallest value overall, across all curve
fit relationships and maneuvering directions for this scenario, and is also consistent with
the previous section. The small d-values at an order of magnitude of 10−4 and 10−5

indicate a weak dependence on ∆v2 for K. These consistencies in the observations of the
results support the focus of curve fits involving a quadratic relationship as best possible
options for the analytical relationship between the K detection parameter and ∆v.

By the R2 numbers in Table 4.7 for the perigee maneuver location, the logarithmic
and quadratic fits would not immediately seem to be the best fit options for maneuvers
applied at perigee. However, physically and visually, as previously discussed, the curve
fit should involve a quadratic relationship, due to the nature of the nonlinear system, as
evidenced by inspecting the orbital energy equation, which is consistent with the results
discussed in Section 4.2.1. Consequently, the quadratic and logarithm of the quadratic
curve fits are chosen as the focus for discussion of the maneuvers applied at the halfway
points between orbital perigee and apogee.

The coefficient values of the fit curves for maneuvering cases at a quarter of the orbit
after perigee are tabulated in Table 4.8. Overall, the same trend is observed as with the
perigee maneuvering case, where the larger values of the ∆v-independent terms in the
fitted curves allude to having the strongest influence on K. The ∆v2 d-terms for the
logarithmic and quadratic fits are still the smallest for all directions, but are slightly
larger at orders of magnitudes of 10−3 and 10−4 for the quadratic cases, which allude to a
slightly stronger relationship to ∆v2 in these cases. There are also two negative
coefficients in the logarithmic fit: the term, c, for the transverse direction, meaning that K
depends on the negative of v0 and ∆v; and the term, d, for the normal direction
indicating that K depends on the negative of the ∆v2. That said, the true implications of
the negative relationship remains unclear at this time.

As for the coefficients for the curve fits in the quarter of an orbit after apogee cases,
the coefficients vary greatly from each other, especially for the different directions in the
logarithmic fit, as shown in Table 4.9. The coefficients of the radial direction are the largest
for the logarithmic fit with this case than any of the previous cases. This implies that in
the radial direction, K has a stronger dependence on all of its associated coefficients and
is prone to greater variance in this relationship than with those of the other directions
for maneuvers applied at a quarter of the orbit after apogee. In addition, the negative
linear term, c (which is double v0 and associated with ∆v), is now observed in the radial
maneuvering direction for the logarithmic case, rather than the transverse case observed
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before with maneuvers applied at a quarter of the orbit after perigee. As with the apogee
maneuvering cases, the small d-terms of the quadratic fits are negative in the radial and
transverse directions, alluding to a potential relationship with the negative of ∆v2, though
the true implications remain unclear. However, the order of magnitude of d is higher than
both the perigee and quarter of an orbit after perigee cases (d ∼ 10−2 or d ∼ 10−3), relating
more closely to apogee cases, with orders of magnitudes of 100 and 10−1, respectively by
direction. The d-term for the normal direction of the logarithmic fit is the smallest, which
implies that this case varies least with ∆v2 than the other directions of this fit. This is
consistent with expectations and justifiable per discussions in the previous sections.

In summary, there seems to be a consistent trend with the quadratic and logarithmic
relationships when analysing the coefficients, with some variance between the different
maneuvering locations and directions. It is possible that a relationship between curve fit
coefficients and different maneuvering locations exists. However, at this time, there may
not be a prominent nor discernible pattern to dictate a consistent relationship per orbital
location, and thus, further analysis is necessary.

Table 4.6: Perigee Coefficients for Curve Fit Lines of the K-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

m b c b b c d b c d

Radial 0.1893 32.1677 28.9354 2.0181 31.7478 0.2425 -0.0005471 39.03095 0.9433 0.01966

Transverse 0.1551 31.3475 28.7300 1.6462 31.1161 0.1845 -0.0003015 35.1564 0.8710 0.008205

Normal 0.1668 31.3728 28.7394 1.7267 31.4375 0.1586 0.00008421 37.5967 0.4785 0.01593

Table 4.7: Perigee R2 Numbers for Curve Fit Lines of the K-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted

Radial 0.9981 0.9980 0.8538 0.8246 0.8666 0.7999 0.8647 0.7971

Transverse 0.9998 0.9998 0.9615 0.9538 0.9816 0.9724 0.9808 0.9712

Normal 0.9996 0.9995 0.9220 0.9063 0.9866 0.9799 0.9820 0.9730
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Table 4.8: Coefficients for Best Curve Fit Lines of the K-∆v Relationship at a Quarter of

the Orbit after Perigee

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

m b c b b c d b c d

Radial 0.2275 31.8943 27.9710 2.4342 30.8090 0.3650 -0.001414 35.9044 1.1951 0.03279

Transverse 0.2784 30.7748 26.2759 2.9067 30.09432 0.3646 -0.0008866 36.7672 -0.3567 0.07954

Normal 0.1271 32.4990 29.9451 1.4470 30.6833 0.3572 -0.002365 33.4793 2.1565 -0.01053

Table 4.9: Coefficients for Curve Fit Lines of the K-∆v Relationship at a Quarter of the

Orbit after Apogee

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

m b c b b c d b c d

Radial 0.5120 39.5683 25.4666 6.7439 14.9420 3.6323 -0.03208 60.9982 -25.0722 3.7655

Transverse 0.3435 34.2645 28.05677 3.7441 32.7966 0.5295 -0.001912 36.1324 4.1442 0.1324

Normal 0.01584 31.3606 31.1321 0.1588 31.3974 0.01118 0.00004794 37.1588 0.04458 0.0003044

Figure 4.7: Trend of K (κmax) with transverse perigee maneuvers of varied ∆v (m/s).
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Figure 4.8: Trend of K (κmax) with transverse maneuvers of varied ∆v (m/s) applied at a

quarter of the orbit after perigee.

Figure 4.9: Variation of K (κmax) with transverse maneuvers of varying ∆v (m/s) applied

at a quarter of the orbit after the orbital apogee.
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4.2.3 Variation of K with Different Orbits

In this set of simulations, the maneuvers from Section 4.2.1 were applied at both the
orbital perigee and apogee of a different Low Earth Orbit (LEO). The tested orbital cases
are shown in Table 4.10, where the results for orbital Case 1 were previously presented in
Sections 4.2.1 and 4.2.2.

Table 4.10: Initial Orbital Elements of Tested Orbital Cases

a (km) e i (◦) Ω (◦) ω (◦) νt=0 (◦)
Case 1 8 107.8 0.09 0 0 0 0
Case 2 7 345.4 0.05 10 0 0 0

Figures 4.10 and 4.11 show the variation in the K detection parameter versus the tested
∆v values for the different orbit (orbital Case 2) with maneuvers applied in the transverse
direction at the orbital perigee and apogee, respectively. A qualitative summary of these
results in included in the tables of Appendix C. Results and discussion for comparison
with the Ψ parameter can be found in Appendix E.

For the apogee transverse maneuvers, the range is 30 < K < 70, and is smaller, at
30 < K < 39 for the transverse maneuvers applied at perigee. This is consistent with
the results of the previous section, where the perigee transverse maneuvers varied less
than at apogee. As expected, the same general trend can be deduced: the magnitude of
K increases with increasing ∆v in a nonlinear fashion.

Furthermore, the v20 terms of the curve fits contain the largest values, consistently
suggesting stronger dependence of K on v20 , evidenced by Table 4.11. The ∆v2 terms in
the quadratic and logarithmic fits are the smallest, consistently suggesting weaker
dependence of K on ∆v2. The order of magnitude of the d-terms are larger at apogee
than perigee, which is consistent with previous results for the logarithmic fit. One major
difference, is that all ∆v2 terms are negative in the quadratic fit. This may have relation
to either the size or orbital inclination, or both, though is currently unclear. In addition,
K varies with the negative of ∆v2 in the radial and transverse directions applied at
apogee, as well as the negative of v0 (associated with ∆v), for the logarithmic apogee
radial and normal directions of this orbital case. Per previous discussions, the true
relations and implications of the negative coefficient values remains unclear at this time.
Maneuvers in the normal direction have the greatest dependence on v0 for the quadratic
and logarithmic cases at perigee, which differs from the results of orbital Case 1
(of Section 4.2.2). Again, more testing may be necessary to discern a consistent K-∆v

relationship with varied orbital location, maneuvering direction, and orbital geometry.

56



Table 4.11: Coefficients for the Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied in the Second Orbital Case

Perigee Maneuvers

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

m b c b b c d b c d

Radial 0.1583 33.2557 30.1230 1.7908 31.0721 0.4350 -0.0028448 35.6503 2.7260 -0.008520

Transverse 0.0803 32.6230 30.7937 0.9659 31.0769 0.2762 -0.0020144 34.1933 1.7915 -0.01276

Normal 0.1180 32.8775 30.7174 1.2930 32.7304 0.1367 -0.0001916 41.0632 1.0416 0.001312

Apogee Maneuvers

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

m b c b b c d b c d

Radial 0.4074 32.1499 25.0698 4.3729 30.1785 0.6572 -0.002568 38.3991 -0.9417 0.2937

Transverse 0.4281 33.9230 25.3862 4.8579 28.8522 1.0706 -0.006606 29.7950 1.2838 0.4742

Normal 0.4417 32.6904 24.7332 4.8083 29.6725 0.8241 -0.003932 38.3408 -2.1765 0.4690

Figure 4.10: Trend of K (κmax) with Transverse Perigee Maneuvers of varying ∆v (m/s)

for the Second Orbital Case.
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Figure 4.11: Trend of K (κmax) with Transverse Apogee Maneuvers of varying ∆v (m/s)

for the Second Orbital Case.
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4.2.4 Variation of K with Measurement Noise Covariance, R

In this set of simulations, the order of magnitudes in the measurement noise covariance
matrix were varied in two cases: 1) R = 10R; and, 2) R = R/10. The maneuvers from
Section 4.2.1 were applied at both the perigee and apogee of orbital Case 1 defined
previously. This section showcases the apogee transverse maneuver results, with perigee
results provided in Appendix D. Since the quadratic and logarithmic curve fits were
previously selected for the relationships of focus, only these results are evaluated.
Appendix E contains the results for the original Ψ-parameter for reader interest.

For the first case (R = 10R), the range is 30 < K < 95 for the maneuvers applied
at the orbital apogee (Figure 4.12), and larger at 20 < K < 140 for perigee maneuvers
(Figure D.1), which is different than the previously discussed results. For the second case
(R = R/10), the range is 30 < K < 85 for the maneuvers applied at the orbital apogee
(Figure 4.13), and is smaller at 30 < K < 55 for perigee maneuvers (Figure D.2). From
these ranges, no true discernible pattern can be determined. However, it is interesting
that with a change in measurement noise covariance, the ranges of K have increased for
all cases. The range for the first case (R = 10R) is greatest at apogee. The range for the
second case (R = R/10) is greatest at perigee. Thus, if the measurement noise covariance
were to be a variable that could be selected or controlled by a spacecraft operator, this
may provide capability for discerning a relationship with the maneuver location.

Overall, the same general trend can be deduced in all cases — that the magnitude of
K increases with increasing ∆v in a nonlinear fashion, as expected. However, for perigee
maneuvers with R = 10R (Figure D.1) there seems to be an anomaly at ∆v = 50 m/s,
which skews the curve fits, creating difficulty for the curves to find a good fit. That said,
if the anomaly were removed, the range would be much smaller, at 30 < K < 60, which
is still greater in range than the results in Section 4.2.2, and remains consistent with the
above discussion. These observations imply that transverse maneuvers applied at
perigee produce smaller variation in K with different magnitudes of ∆v, while the same
maneuvers applied at apogee produce a greater range in K. Thus, it may be possible to
make predictions, stating that K will only fall within a certain range indicative of an
applied perigee maneuver, whereas a greater K could indicate the application of an
apogee maneuver. This would be highly useful to operators, though further tests would
assist in concretely defining this relationship.

The fit coefficients are found in Appendix D (Tables D.1 and D.2), depicting the same
general trends: greater dependence on v20 and weaker dependence on ∆v2. Various
negative coefficients are present, the implications of which remain unclear and support
the need for further tests.
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Figure 4.12: Variation of K (κmax) with Transverse Apogee Maneuvers of varying

∆v (m/s) for the first Orbital Case with R = 10R.

Figure 4.13: Variation of K (κmax) with Transverse Apogee Maneuvers of varying

∆v (m/s) for the first Orbital Case with R = R/10.
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4.2.5 Variation of K with Ψ Threshold and State Covariance Inflation Threshold, η

In this set of simulations, the maneuvers from Section 4.2.1 were applied at both the
orbital perigee and apogee of the Case 1 orbit from previous sections. The thresholds of
the original Ψ detection parameter and the state covariance inflation parameter, η, were
varied in three cases: 1) Ψth = 10; 2) Ψth = 100; and, 3) ηth = 0.1. With transverse
maneuvers being the direction of main interest, only these results are illustrated. Further
results for these scenarios, and the respective tabulated results can be found in
Appendix D (Tables D.3 to D.5). Following suit, results for Ψ in these scenarios are
included in Appendix E for reference, and will not be discussed here.

From analysing Figures 4.14 to 4.16, few conclusions can be made. For a lower Ψth

the range in the variation of K is comparable to Section 4.2.1 but has shifted to 21 < K <

75. For a lower ηth the range in the variation of K has increased to 30 < K < 100 in
comparison Section 4.2.1. However, both visually and by the coefficients of the curve
fits, similar trends to Section 4.2.1 are depicted. These observations suggest that lowering
these thresholds has minimal impact on the K-∆v relationship K due to ∆v.

For larger Ψth, the range of K has shifted and increased to 40 < K < 160. There is
an anomaly at ∆v = 50 m/s, possibly skewing the results, which also occurred in the
results of Section 4.2.4. In addition, by Figure 4.15, the logarithmic fit may have struggled
to reach a best fit result, deduced by the second curve shown at the lower maneuvering
values. This may suggest that a larger Ψth may not be adequate for detecting smaller
magnitude ∆v maneuvers. Analysing the coefficients (see Appendix D, Table D.4), the
terms are generally on similar orders of magnitude, but with less dependence on negative
terms. This suggests that a larger Ψth value has some impact on the K-∆v relationship,
though is possibly minimal.

Overall, further analyses would assist in discerning a relationship with variance in Ψth

and ηth on the K-∆v relationship.
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Figure 4.14: Variation of K (κmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with Ψth = 10.

Figure 4.15: Variation of K (κmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with Ψth = 100.
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Figure 4.16: Variation of K (κmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with ηth = 0.1.
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4.2.6 Variation of K with Maneuver Duration

In this near final set of simulations, the Section 4.2.1 maneuvers are applied at the
perigee and apogee of the Case 1 orbital geometry of previous sections. The maneuver
duration is varied in two cases: 1) tman = 10 seconds; and, 2) tman = 1000 seconds. In all
previous simulations, the maneuvering thrust duration was set as tman = 100 seconds.
With apogee transverse maneuvers as the direction and location of interest, only these
results are illustrated. Results for perigee maneuvers and the corresponding tabulated
results for the curve fits of these scenarios can be found in Appendix D (Tables D.6
and D.7); while results for Ψ are included in Appendix E for reference.

In the first case (tman = 10 seconds, Figure 4.17), the K-∆v relationship is inconsistent
with the previous results, showing only a straight line at a constant K-value near Kth,
which is likely analogous to the default detection output of this case with no applied
maneuvers (see Appendix B with discussion in Sections 3.3.2 and 4.2.1). The coefficients
of the curve fits (Table D.6) make this apparent, where the v20 term is near the default
parameter output value. This is justifiable, as tman = 10 seconds is quite fast and may
not truly be practical with current engines [62]. Thus, with such a fast duration, almost
no change is affected in the overall velocity, such that almost no change is observed in K.
This is supported by the near zero ∆v and ∆v2 coefficients, indicating nearly no variance
nor relationship to these terms, such that ∆v ≈ 0, and hence, b ≈ Kth. This implies
a possible limitation of K, where maneuvers may need to be near at least 100 seconds
(tman ∼ 102) for any discernible relationship, though further tests would be necessary to
make a concrete conclusion.

For the second case (tman = 1000 seconds, Figure 4.18) the relationship for apogee
maneuvers follow the same expected general trend, where the magnitude of K increases
with increasing ∆v in a nonlinear fashion. This is a promising result for developing
relationships with longer duration maneuvers. However, for theses maneuvers at the
perigee (see Appendix D and fig. D.7), the results seem to be erroneous, where no
discernible relationship can be deduced, indicating that a maneuvering time of 1000
seconds is too long for an accurate detection or relationship to be obtained for perigee
maneuvers. This alludes to another possible limitation of the detection parameters,
necessitating further tests. This supports the notion that that maneuver duration has an
impact on the detection and predicted characterisation of maneuvers.

For both cases, it is possible that tuning the Ψ and η thresholds could assist in the
detection of longer and shorter duration maneuvers, and further tests would be required.
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Figure 4.17: Variation of K (κmax) with Transverse Apogee Maneuvers of varying

∆v (m/s) for the first Orbital Case with tman = 10 seconds.

Figure 4.18: Variation of K (κmax) with Transverse Apogee Maneuvers of varying

∆v (m/s) for the first Orbital Case with tman = 1000 seconds.
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4.2.7 Variation of K with Small-Scale ∆v’s

For all previous cases, it is important to note that all maneuvers were of m/s scale.
However, it is possible for maneuvers to occur at smaller scales, for example, in the cm/s
range. In this section, maneuvering thrust magnitudes in the cm/s range are explored
for velocities varied discretely from 1 cm/s to 100 cm/s.

In order to accomplish this, it was found that the Ψth and ηth values required some
tuning, such that a detection could be consistently determined by the Ψ and K
parameters. Setting Ψth = 10 ( ∴ Kth ≈ 21) and ηth = 0.1 was found to yield results of
similar consistency to the larger magnitude ∆v cases (on the m/s scale) explored in the
preceding sections of this chapter. Modifying these thresholds supports suggestions in
prior sections that modifications would be necessary for certain cases.

For the apogee transverse maneuvers (Figure 4.19), the overall expected trend of
previous sections is observed, where the detection parameter maximum increases with
increasing ∆v, and is easily visible as shown by Figure 4.21. Thus, the parameters are
able to consistently detect maneuvers even on this smaller magnitude scale. At the same
time, for perigee maneuvers (Figure 4.20), a trend is less easily determined. If the first
test point were to be removed (∆v = 0.5 cm/s), the same general trends with better
curve fit relationships would likely exist. This means that at perigee, the smaller
maneuvers are harder for the parameter to accurately detect — which is supported by
the lower peak among other peaks near the threshold shown in Figure 4.22 — and
consequently for an accurate relationship to be obtained, which is consistent with
discussions in the previous sections as well, concerning smaller maneuver magnitudes.
It is possible other values of Ψth and ηth would assist in detections of maneuvers on the
even smaller scale, especially for perigee, where other peaks past the threshold are
visible, which could influence false detections. At the same time, spacecraft velocity is
greatest at the orbital perigee, which alludes to the requirement for larger ∆v maneuvers
to be applied for a noticeable orbital change to occur. The the final orbital elements for
the two presented cases are tabulated in Table 4.12, supporting that such small
maneuvers incur minimal change, and is included for reference.

Another interesting observation of this case is that the curve fit relationships show
very little dependence on the ∆v and ∆v2 terms, some of which are negative, for
maneuvers applied in the normal direction. At the same time, radial and transverse
maneuvers applied at apogee depend greatly on ∆v2, with a coefficient on the order of
magnitude of 102, which is larger than and inconsistent with most tested cases. Further
analyses on the cm/s scale may be useful in assisting to solidify relationships between
K and ∆v, as these results pose counterintuitive conclusions in comparison to the
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previous sections based on analysis of the curve fit coefficients. On the other hand, for
perigee maneuvers, the trends in the coefficients of the curve fit relationships are
generally consistent with previous results overall: greatest dependence is observed
on v20 , and weakest dependence is observed on ∆v2, with focus on the logarithmic fit.

In addition, from inspecting the graphs, it is noticed that the variation in K is smaller
than in previous cases. For apogee maneuvers the variation ranges from 21 < K < 46,
and is 21 < K < 22 for perigee maneuvers. This supports the notion that small maneuvers
both in general (and applied at perigee in particular) will have decreased effects on the
variation of K, as these maneuvers will be orders of magnitude even smaller than the
operating v0 of the spacecraft.

Table 4.12: Initial and Final Orbital Elements and Orbital Energy for for ∆v in the cm/s

Range

∆v = 5 (cm/s) Location a (km) e i (◦) Ω (◦) ω (◦) ν (◦) ε (km2/s2)

Initial (Case 1) — 8 107.84 0.09000 0 0 0 0 -24.58

Final (Figure 4.21) Apogee 8 108.10 0.08996 0 0 0.00205 5.85 -24.58

Final (Figure 4.22) Perigee 8 108.21 0.09004 0 0 0.00307 5.82 -24.58

Table 4.13: Coefficients for the Curve Fit Lines of the K-∆v Relationship in the cm/s

Range for the First Orbital Case with Ψth = 10 and ηth = 0.1

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 21.8017 5.7870 -3.7443 12.2506 9.3672 -6.0455

Transverse 21.8444 -0.8447 1.0225 12.3640 -1.1825 1.4415

Normal 22.3267 -0.6406 2.7946 13.0947 -1.6050 5.3681

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 20.2600 21.1746 5.7709 12.7318 -47.7166 249.3969

Transverse 20.7902 10.8329 15.0671 13.5088 -56.4986 227.0109

Normal 21.3362 -4.8765×10−07 4.3069×10−07 11.6630 1.2635−09 -8.5542−10
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Figure 4.19: Variation of K (κmax) with transverse apogee maneuvers of varying ∆v (m/s)

in the cm/s range for the first Orbital Case with Ψth = 10 and ηth = 0.1.

Figure 4.20: Variation of K (κmax) with transverse apogee maneuvers of varying ∆v (m/s)

in the cm/s range for the first Orbital Case with Ψth = 10 and ηth = 0.1.
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Figure 4.21: Transverse apogee K vs. time for ∆v = 0.05 m/s = 5 cm/s; Kmax = 46.7961,

at t = 18 450 seconds (Ψth = 10, ηth = 0.1).

Figure 4.22: Transverse perigee K vs. time for ∆v = 0.05 m/s = 5 cm/s; Kmax = 24.8591,

at t = 14 855 seconds (Ψth = 10, ηth = 0.1).
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions and Final Key Points

Through an extensive review process, it was determined that the methods proposed by
Goff et al. [41] provided the best foundation to achieve the goals of this thesis. Being able
to define and utilise a single parameter to determine the occurrence of an unknown event
was of high interest, as it alludes to a simple and consistent method of maneuver detection
without complicated processing prior to maneuver detection. The method proposed by
Goff et al. [41] included an IMM process to handle multiple sensor data, which can add a
layer of complexity, increasing computational demand. Hence, the goal was to add to the
work of Goff et al. [41], by implementing a single parameter detection method that can
easily detect and relate to maneuvers from single-sensor data. Furthermore, the work by
Goff et al. [41] alluded to a preliminary relationship between the detection parameter and
the maneuvering velocity, but does not include a method for characterising maneuvers,
which supports the need to determine analytical relationships with maneuvering velocity
in terms of both magnitude and direction, accompanying the aforementioned goal.

This dissertation proposes a possible improvement to the method presented by
Goff et al. [41], by using the same concept for a single detection parameter to identify
maneuvers, and consequently develop a preliminary relationship between the
parameter (K, as well as Ψ) and the applied maneuvering magnitudes (∆v). The method
proposed utilises the same base detection parameter (Ψ) and inflation covariance
protocol, and builds onto the quadratic relationship between the original Ψ parameter
and ∆v magnitudes applied, where the new detection parameter (K) places the detection
magnitudes into a decibel scale while eliminating any large magnitude anti-peaks in the
K results when observed over time. This is helpful in determining event occurrence by
result observation as the peaks in K can be more prominent than in Ψ observed over
time, though some maneuvering scenarios may favour the use of the original Ψ

parameter in a linear scale for better detection. In terms of the K-∆v and Ψ-∆v

relationships, it was found that in general, as the maneuvering ∆v magnitude increased,
the magnitudes of K and Ψ also increased. These relationships were found to be
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nonlinear due to included dependence on the square of the maneuvering velocity (∆v2),
fitting best with either a quadratic (for Ψ) or logarithm of the quadratic (for K)
relationships with indications to the ranges of the variation in K per applied maneuver
direction or location. The possible procedure an operator could follow to implement and
utilise the new parameter was also outlined (Section 4.2.1), along with inference to
indicators of maneuvering type and details based on the variations in K through results
of the several tested scenarios.

The chosen filtering technique was the same as that of Goff et al. [41] with added
amendments, and it was decided to manually implement the code for ease of use, as
opposed to manipulating the existing EKF protocol in MATLAB after some attempts.
Future work to build on this dissertation can include further testing with presented
cases, as well as application to simulations of break-up or berthing events, multiple
maneuvering scenarios, multiple sensors and other site locations or space-based sensing,
the inclusion of natural perturbations, and implementation with the existing MATLAB

protocol, which are discussed further in Section 5.2.
Overall, this work was successful in exploring and developing a method for

maneuver detection, and establishing the nonlinear relationship between maneuver
detection parameters and the maneuvering ∆v magnitude, all while maintaining low
computational demands. The success of this work could be extended to small satellite
operators that may not be as computationally rich as large space agencies or companies,
only having limited resources for SSA algorithms. With a simpler, less computationally
demanding base method, extensions can then be applied for multi-sensor use and
determination, or other case scenarios.

5.2 Possibilities for Future Work

Though several cases were tested in this research, there are still several more testing
scenarios possible, as indicated in several discussions within Chapter 4. Most test cases
only considered the relationships between the detection parameter and ∆v for one
orbital geometry and orientation in the Low Earth Orbit (LEO) regime. More simulations
of the outlined test scenarios should be conducted for multiple orbital types to obtain
complete and more concrete relationships. Additionally, other orbital regimes should be
explored, testing if the relationships proposed remain consistent. For further detail, an
exploration on the affects of maneuvering direction and orbital energy could be explored
for further assistance in establishing concrete maneuver detection and characterisation
relationships.
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As shown in Section 3.3.1, the calculation of K was applied after the EKF as a simple
post processing procedure. However, the original detection parameter, Ψ, was calculated
within the EKF protocol. Thus, K could be implemented at the same step for a real-time
result. It would be interesting to observe how implementation in this manner could
impact maneuver characterisation, and if Ψ and K could be used in conjunction to
minimise false detections or obtain rapid real-time predictions for characterising
detected maneuvers. This would test the implementation of established relationships
between K and ∆v in another fashion for robust solutions to be used by operators.

Furthermore, only the case of single maneuver detection was explored. In the future,
spacecraft that undergo multiple maneuvers could be explored as well. A preliminary
test of this scenario was tested (though not presented), and the results seemed promising
with the current work. With increasing needs in space defense, this is a valuable and
pertinent area of exploration.

In addition, simulations only included data coming from one sensor and fixed site
location on the Earth. In reality, operators may receive data from multiple sensors or site
locations, or from space-based sensors. Kalman Filters are able to incorporate and fuse
data from multiple sensors. Hence, this would be another useful extension of efforts and
apply to more realistic cases.

This dissertation only explored cases for satellites that maneuver and stay as one
whole satellite. With the increasing risk of collisions and thus possibilities for break-up
events, this would be another pertinent area to explore. In the same vein, with increases
in space launches and satellite ridesharing, berthing events would be another
compelling area to explore. In these cases, one observed spacecraft becomes multiple,
and could highlight interesting relationships between maneuver detection and
maneuver magnitudes. At the same time, it is possible for a spacecraft to rendezvous
another, which could be another interesting case to explore.

Lastly, since MATLAB already has an existing EKF protocol, among other KF
algorithms, it would be valuable and desirable to be able to implement the work for this
dissertation to function with indicated algorithms. Being able to implement this work
with the available MATLAB protocol would allow for ease of use, implementation and
accessibility for operators interested in using these methods.
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APPENDIX A: FULL FILTERING PROCESS STEPS

This EKF process is based on [41] and [53, 57] as discussed in Section 3.1.

1. Read and Define observation information:

yi,Ri

2. Read or Define State and process information:

P̂i−1, x̂i−1, Φ(ti−1, ti−1) = I, Qi

3. Propagate State information to obtain State prediction and STM; x̄Fi
, Φ(ti, ti−1):

ti−1 → ti

x̄Fi
=

∫︂ (︁
ẋ = f(x, t)

)︁
i

Φi =

∫︂ (︄
Φ̇ =

(︃
f(x, t)

dx

)︃
Φ(ti, ti−1)

)︄
i

4. Apply Mapping Process to x̄ (Section 3.2):

x̄Fi =

[︄
CFI(ti) 0
ĊFI(ti) CFI(ti)

]︄
x̄Ii , ρFi

= ρFi
(x̄Fi), ρSi

=

[︄
CSF 0

0 CSF

]︄
ρFi

5. Define and build State estimate in terms of observation data elements (Section 3.2):

ŷi =
[︂
ρ β el ρ̇

]︂T
6. Build H-partials Matrix (Section 3.2):

Hi =
∂ŷ
∂ρS

∂ρS

∂ρF

∂ρF

∂xF

∂xF

∂xI

7. Calculate State Covariance prediction:

P̄i = Φ(ti, t0)P̂i−1Φ(ti, t0)
T + Qi
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8. Calculate filtering residuals to reference orbit:

νei = yi − ŷ

9. Calculate Observation Covariance:

Si = HiP̄iHT
i + Ri

10. Calculate Ψ Detection Parameter:

Ψi = νT
ei
(Si)

−1νei

11. Calculate Kalman Gain Matrix:

Ki = P̄iHT
i (Si)

−1

12. Calculate update to obtain State and State Covariance estimates:

x̂i = x̄i + Kiνei

P̂i−1 = (I − KiHi)P̄i

13. Perform Ψ-check and Covariance Inflation:

Ψi > Ψth → Inflation check:

tr(P̂i) < ηth → P̂i = 10 P̂i

14. Perform Process Noise Covariance Inflation (per Table 3.1):

Qi =

[︄
qri I 0

0 qvi I

]︄

15. Repeat Steps 1 to 14 with new x̂i, P̂i, Qi

16. Apply new K detection calculation to all Ψ values (there is possibility for this to
be implemented in Step 10 and accumulated after the Ψ calculation, but further
investigation is necessary):

K = 20 log10(Ψ + 1)
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APPENDIX B: NO MANEUVER BASE RESULT

(a)

(b)

Figure B.1: Base filtering results of K and Ψ for no applied maneuvers; Kmax = 30.127 and

Ψmax = 31.089 at t = 15 400 seconds.
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APPENDIX C: QUALITATIVE SUMMARIES

Table C.1: Summary of K-∆v Relationship for Most Pertinent Tests

Apogee Man Perigee Man

Range of K Logarithmic comments
y = 20 log1 0(b+ cx+ dx2)

Range of K Logarithmic comments
y = 20 log1 0(b+ cx+ dx2)

Radial 30 <K <90
Largest Variation

Greatest dependence on c both
overall and per direction
Negative b
Weaker dependence on d
Largest coefficient values overall
Largest variance in K-range

Radial 30 <K <51

Greatest dependence on b both
overall and per direction
Negative b
Weaker dependence on d

Transverse 30 <K <85 Greater dependence on c
Weaker dependence on d

Transverse 30 <K <47 Greater dependence on b
Weakest dependence on d overall

Normal 30 <K <45

Greater dependence on b
Negative c
Weakest dependence on d overall
Most consistent relationship with
subsequent cases

Normal 31 <K <49
Greater dependence on b
Negative c
Weaker dependence on d

Quarter of an Orbit after Apogee Quarter of an Orbit after Perigee

Range of K Logarithmic comments
y = 20 log1 0(b+ cx+ dx2)

Range of K Logarithmic comments
y = 20 log1 0(b+ cx+ dx2)

Radial 30 <K <50

Greatest dependence on b both
overall and per direction
Negative c
Weaker dependence on d

Radial 31 <K <53 Greater dependence on b
Weaker dependence on d

Transverse 30 <K <70 Greater dependence on b
Weaker dependence on d overall

Transverse 30 <K <60

Greatest dependence on b both
overall and per direction
Negative c
Weaker dependence on d

Normal 31 <K <33
Smallest Variation

Greater dependence on b
Small c on similar order to d
Weakest dependence on d overall
Smallest variance in K-range

Normal 31 <K <43
Greater dependence on b
Negative d
Weakest dependence on d

Apogee Man Case 2 Perigee Man Case 2

Range of K Logarithmic comments
y = 20 log1 0(b+ cx+ dx2)

Range of K Logarithmic comments
y = 20 log1 0(b+ cx+ dx2)

Radial 30 <K <70

Greatest dependence on b both
overall and per direction
Negative c
Weakest dependence on d

Radial 31 <K <49

Greater dependence on b
Negative d
Weaker dependence on d
Anomaly at ∆v = 50 m/s,
else variation would be
31 < K < 45

Transverse 30 <K <39 Greater dependence on b
Weaker dependence on d

Transverse 30 <K <70
Greater dependence on b
Negative d
Weaker dependence on d

Normal 30 <K <73
Greater dependence on b
Negative c
Weaker dependence on d

Normal 30 <K <45

Greatest dependence on b both
overall and per direction
Negative d
Weakest dependence on d
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APPENDIX D: FURTHER TEST CASE RESULTS

D.1 Variation in Measurement Noise Covariance

Table D.1: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied to the First Orbital Case with R = 10R

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 29.8466 0.3323 -0.00006416 39.3434 -1.6154 0.1220

Transverse 16.4436 3.0313 -0.02582 51.4830 -16.5070 2.2429

Normal 32.5980 0.1455 0.0002462 40.4518 0.9560 0.01301

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 31.0509 2.0385 -0.01363 14.1845 -10.6937 13.0489

Transverse 34.1347 1.2505 -0.006954 -10.6593 44.5899 1.7214

Normal 19.2349 0.5999 -0.002783 10.9665 -0.07235 0.04534

Table D.2: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied to the First Orbital Case with R = R/10

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 32.2048 0.3305 -0.0007745 41.3952 1.1477 0.05345

Transverse 31.6454 0.3932 -0.001950 35.1306 2.8321 0.006256

Normal 34.9705 0.1886 0.0007809 69.5088 -2.4769 0.1241

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 33.1228 0.6123 -0.003639 37.7550 6.7726 0.01568

Transverse 32.9230 1.04829 -0.005662 36.6849 4.8364 1.01634

Normal 31.6855 0.06656 -0.0003007 38.3265 0.3214 -0.001195
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Figure D.1: Variation of K (κmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with R = 10R.

Figure D.2: Variation of K (κmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with R = R/10.
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D.2 Variation in Ψ and η Thresholds

Table D.3: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied in the First Orbital Case with Ψth = 10

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 21.5310 0.5604 -0.002574 13.4670 0.2297 0.04198

Transverse 22.3863 0.2243 0.0002361 14.5230 -0.1145 0.02023

Normal 23.8234 0.3512 -0.0008171 17.3971 0.005315 0.03227

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 29.3968 1.8226 -0.01288 1.8633 18.2847 3.1166

Transverse 28.8241 1.4585 -0.01020 -3.1182 27.6177 0.4199

Normal 21.4546 0.1930 0.00005035 12.5925 0.01685 0.01013

Table D.4: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied the First Orbital Case with Ψth = 100

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 41.6476 0.0895 0.0006081 118.3562 1.2338 0.03686

Transverse 42.4253 0.2045 -0.0009702 123.6157 5.0505 -0.01822

Normal 43.2556 0.1104 -0.0001722 140.6565 2.6074 0.0009403

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 40.7810 1.0432 -0.005966 119.0851 -1.6129 2.4392

Transverse 28.4328 3.4693 -0.02896 265.2980 -187.4138 31.1539

Normal 40.2001 0.1011 -0.0005599 102.2277 1.3348 -0.006285
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Table D.5: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied the First Orbital Case with ηth = 0.1

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 29.8573 0.9501 -0.005175 34.6704 0.07479 0.5207

Transverse 32.1711 0.7860 -0.003813 38.7328 3.1336 0.3687

Normal 29.3335 0.6578 -0.003041 37.7427 -1.2857 0.2173

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 53.0094 2.0438 -0.01591 -921.9259 1919.0585 -2.5311

Transverse 48.9655 2.0718 -0.01579 -371.9054 807.0640 15.4323

Normal 29.5032 0.5568 -0.002246 37.3095 -1.0182 0.1627

Figure D.3: Variation of K (κmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with Ψth = 10.
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Figure D.4: Variation of K (κmax) with Transverse Perigee Maneuvers of varying ∆v (m/s)

for the first Orbital Case with Ψth = 100.

Figure D.5: Variation of K (κmax) with Transverse Perigee Maneuvers of varying ∆v (m/s)

for the first Orbital Case with ηth = 0.1.
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D.3 Variation in Maneuvering Duration

Table D.6: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied in the First Orbital Case with tman = 10 seconds

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 30.6572 -0.006445 0.00002683 34.1085 -0.02516 0.0001071

Transverse 30.5031 0.007568 -0.00006713 33.5005 0.03019 -0.0002678

Normal 30.4248 -0.005986 0.00004789 33.2060 -0.02254 0.0001801

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 31.4506 -1.8531×10−17 3.0408×10−19 37.3707 3.9433×10−16 -3.4953×10−18

Transverse 31.4506 -5.9364×10−17 6.1872×10−19 37.3707 1.3742×10−16 -1.4649×10−18

Normal 31.4506 1.0797×10−17 2.3296×10−19 37.3707 3.8066×10−16 -4.6939×10−18

Table D.7: Coefficients for Curve Fit Lines of the K-∆v Relationship for Maneuvers

Applied in the First Orbital Case with tman = 1000 seconds

Perigee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 34.5977 0.2875 -0.001694 50.3754 2.9058 -0.01305

Transverse 35.4383 0.3215 -0.002140 59.3274 3.0385 -0.01501

Normal 30.2060 0.2311 0.00005453 39.8329 -1.1565 0.06120

Apogee
Quadratic

y = b+ cx+ dx2

Logarithmic
y = 20 log10 (b+ cx+ dx2)

b c d b c d

Radial 29.8168 0.5985 -0.002561 36.6241 -0.3647 0.1765

Transverse 29.4469 0.5896 -0.002943 34.7140 0.3762 0.1086

Normal 55.2973 -0.0508 -0.002301 915.9655 -26.3132 0.1752
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Figure D.6: Variation of K (κmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with tman = 10 seconds.

Figure D.7: Variation of K (κmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with tman = 1000 seconds.
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APPENDIX E: FURTHER Ψ RESULTS

E.1 Variance in Orbital Location

For the Ψ-∆v results of maneuvers applied at the orbital perigee, the range of the original
detection parameter is 40 < Ψ < 220. At a quarter of the orbit after orbital perigee, the
range is 40 < Ψ < 180, and is much smaller, at 36 < Ψ < 44 for the maneuvers at a
quarter of the orbit after apogee. Thus, for transverse maneuvers, the largest variance
in Ψ occurs when maneuvers are applied at apogee, then at perigee, followed by after
perigee, leaving the smallest range to maneuvers applied in the transverse direction after
apogee. This is consistent with the trend for the K-parameter described in Section 4.2.2,
where the largest range of values occurred at the apogee maneuvering location, and the
smallest variance occurred with transverse maneuvers applied at the perigee. The same
overall observation is deduced that Ψ increases with increasing ∆v, and is consistent with
Goff et al. [41], with a non-proportional relationship, as expected and stated previously.

The coefficient values for the curve fits of the Ψ-∆v relationship of the perigee
maneuvering cases are shown in Table E.1. Similarly to the curve fits for K-∆v, the
coefficients for the quadratic and linear curves are generally consistent, where the v20

b-term contains the largest value, and implies that the variance of Ψ has a stronger
dependence on v20 . With the square root relationship, the opposite is true, and suggests
that Ψ could vary with the square root of the velocity for transverse maneuvers at
perigee. Focusing on the quadratic case (per Chapter 4), the d-term remains the smallest,
consistently suggesting that Ψ varies less with ∆v2 than v20 .

Table E.3 shows the coefficient values of the fit curves for maneuvering cases at a
quarter of the orbit after perigee. Overall, the same general trend is observed, where
the ∆v-independent term contains the largest quantity throughout, and suggests that Ψ
depends greatly on v0. This is consistent with the K results of the same case. However,
there is more variance with the negatives of the values than previously. Focusing on
the quadratic fit, the v20 term is largest in the transverse direction, suggesting the Ψ has
a stronger dependence on v20 . The d-term of the quadratic fit in the normal direction is
negative and suggests a relationship with the negative of ∆v2. However, the relationship
and implications of negative coefficients is unclear (per Chapter 4). All the d-terms in the
quadratic fit for this maneuvering location are small, on the order of 10−2, which is more
consistent and less than the apogee case, yet consistent with the K results.
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As for the coefficients for the curve fits in the quarter of an orbit after apogee cases,
all fits for radial direction maneuvers contain very large values on the orders of 104 to
106 as presented in Table 4.9. This suggests that Ψ depends greatly on these coefficients
for this direction. In the same vein, the smallest values are observed in the coefficients of
the curve fits in the normal direction, and suggests Ψ posses a weaker relationship with
coefficients in this direction. Throughout the quadratic fit case, the term b suggest greatest
dependence on v20 and the term, d, suggests weakest dependence on ∆v2 for all directions,
as expected. Relationships with negative associated values are observed in both of the b-
and d- terms of the radial direction, as well as in the c-term of the transverse direction.
This is different than most previous cases, and is most similar to the apogee maneuver
cases.

By the R2 numbers for perigee maneuvers as shown in Table E.4, the best fit is still the
quadratic fit (y = b+ cx+dx2) for all directions, which is consistent with prior results and
discussion, and follows for the maneuvers applied at the halfway points between orbital
perigee and apogee.

Table E.1: Perigee Coefficients for Curve Fit Lines of the Ψ-∆v Relationship

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

m b c b b c d

Radial 2.8782 25.6178 -15.8893 28.8495 37.8495 1.3284 0.01594

Transverse 1.7403 26.6309 1.9799 17.3369 36.7267 0.4611 0.01320

Normal 2.1167 22.9639 -5.4687 20.7142 38.8352 0.1057 0.02068

Table E.2: Coefficients for Curve Fit Lines of the Ψ-∆v Relationship at a Quarter of the

Orbit after Perigee

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

m b c b b c d

Radial 4.1456 15.6343 -44.5148 41.6403 27.6287 2.6258 0.01563

Transverse 6.9597 -18.8903 -110.6424 67.6931 32.3082 0.4726 0.06670

Normal 1.1899 42.6251 19.08540 13.4578 23.9234 3.5596 -0.02437
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Table E.3: Perigee Coefficients for Curve Fit Lines of the Ψ-∆v Relationship at a Quarter

of the Orbit after Apogee

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

m b c b b c d

Radial 2.2890 ×105 5.3091 ×106 -2.4518 ×106 3.3644 ×106 -1.1841 ×107 2.4020 ×106 -2.2344 ×104

Transverse 21.09013 -127.5794 -395.3867 202.6771 84.9014 -5.8324 0.2768

Normal 0.07408 35.9315 34.8720 0.7404 36.1376 0.048797 0.0002685

Table E.4: Perigee R2 Numbers of the Ψ-∆v Relationship at Perigee

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted

Radial 0.8368 0.8286 0.8261 0.7913 0.9635 0.9453

Transverse 0.9506 0.9481 0.8241 0.7889 0.9913 0.9869

Normal 0.6086 0.5890 0.7756 0.7307 0.9924 0.9885

Figure E.1: Trend of Ψ (Ψmax) with transverse perigee maneuvers of varied ∆v (m/s).
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Figure E.2: Trend of Ψ (Ψmax) with varied transverse maneuver ∆v (m/s) applied at a

quarter of the orbit after the Orbital Perigee.

Figure E.3: Trend of Ψ (Ψmax) with varied Transverse maneuver ∆v (m/s) applied at a

quarter of the orbit after the Orbital Apogee.
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E.2 Variation in Orbital Geometry and Orientation

Figures E.4 and E.5 show the variation in the Ψ detection parameter versus the tested ∆v

values for this scenario set. For the apogee transverse maneuvers, the resulting range is
0 < Ψ < 35 00, and is smaller, at 0 < Ψ < 800 for the transverse maneuvers applied at
perigee. This is consistent with the results found in the previous sections, where apogee
maneuvers generally had a greater variance in transverse maneuvers, for both Ψ and K
parameters. Again, the same general trend is deduced, that the magnitude of Ψ increases
with increasing ∆v in a nonlinear fashion, as expected.

Once again, the same trends are followed as in orbital Case 1, where the v20 terms of the
curve fits contain the largest values, suggesting stronger dependence of Ψ on these values,
especially for the apogee maneuvers, as presented in Table E.5. With apogee maneuvers,
the transverse direction shows the greatest dependence on v20 of the quadratic fit, with
the largest variance between coefficients, from 102 (term b) to 10−2 (term d), and both of
these terms are negative. At the same time, the coefficient, C, indicates a relationship
with the negative of double v0 (associated with ∆v) for the radial and normal directions
in the quadratic fit for apogee maneuvers. With perigee maneuvers, the only negative
term relationship is associated with the ∆v2 in the normal direction of the quadratic fit.
There is also greater variance in the order of magnitude of the coefficients in the apogee
quadratic fits, in comparison to the Case 1 orbital geometry.

By the R2 numbers in Table E.6, the best fit is consistently the quadratic fit, as per the
previous discussion. In this case, the linear correlations in the apogee maneuvers are far
away from the accepted range of values for R2 numbers, and supports that the linear fit
is not a best fit for the results.
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Table E.5: Coefficients for Curve Fit Lines of the Ψ-∆v Relationship for Maneuvers

Applied in the Second Orbital Case

Perigee Maneuvers

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

m b c b b c d

Radial 4.1456 15.6343 -44.5148 41.6403 27.6287 2.6258 0.01563

Transverse 6.9597 -18.8903 -110.6424 67.6931 32.3082 0.4726 0.06670

Normal 1.1899 42.6251 19.0854 13.4578 23.9234 3.5596 -0.02437

Apogee Maneuvers

Linear
y = mx+ b

Square Root
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

m b c b b c d

Radial 30.5115 -225.2407 -614.1337 293.5652 48.9411 -4.2289 0.3572

Transverse 32.9212 -103.8998 -607.2513 336.8416 -105.9170 33.1768 -0.002628

Normal 41.9022 -303.4334 -848.9792 405.9118 33.6872 -0.8129 0.4392

Table E.6: R2 Numbers for Maneuvers Applied in the Second Orbit Case for the Ψ-∆v

Relationship

Perigee Maneuvers

Linear
y = mx+ b

Square
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted

Radial 0.8509 0.8434 0.8571 0.8285 0.9839 0.9758

Transverse -0.04538 -0.09765 0.7736 0.7284 0.9996 0.9995

Normal 0.03142 -0.01701 0.6957 0.6348 0.8122 0.7183

Apogee Maneuvers

Linear
y = mx+ b

Square
y = c+ b

√
x

Quadratic
y = b+ cx+ dx2

R2 R2 adjusted R2 R2 adjusted R2 R2 adjusted

Radial -28.8408 -30.3329 0.7347 0.6817 0.9999 0.9999

Transverse -6.2975 -6.6624 0.8946 0.8735 0.9796 0.9694

Normal -156.7523 -164.6400 0.7584 0.7101 0.9999 0.9999
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Figure E.4: Trend of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v (m/s) for

the Second Orbital Case.

Figure E.5: Trend of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s) for

the Second Orbital Case.
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E.3 Variation of Measurement Noise Covariance

Figure E.6: Variation of Ψ (Ψmax) with transverse perigee Maneuvers of varying ∆v (m/s)

for the first Orbital Case with R = R/10.

Figure E.7: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with R = R/10.
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Figure E.8: Variation of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with R = 10R.

Figure E.9: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with R = 10R.
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E.4 Variance in Ψ and η Thresholds

Figure E.10: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with Ψth = 10.

Figure E.11: Variation of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with Ψth = 10.
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Figure E.12: Variation of Ψ (Ψmax) with transverse maneuvers of varying ∆v (m/s)

applied at apogee with Ψth = 100 for the first Orbital Case.

Figure E.13: Variation of Ψ (Ψmax) with transverse maneuvers of varying ∆v (m/s)

applied at perigee with Ψth = 100 for the first Orbital Case.
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Figure E.14: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with ηth = 0.1.

Figure E.15: Variation of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with ηth = 0.1.
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E.5 Variance in Maneuver Duration

Figure E.16: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with tman = 10 seconds.

Figure E.17: Variation of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with tman = 10 seconds.
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Figure E.18: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v (m/s)

for the first Orbital Case with tmaneuver = 1000 seconds.

Figure E.19: Variation of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v (m/s)

for the first Orbital Case with tmaneuver = 1000 seconds.
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E.6 Small-Scale ∆v’s

Figure E.20: Variation of Ψ (Ψmax) with transverse apogee maneuvers of varying ∆v in

the cm/s scale for the first Orbital Case with Ψth = 10 and ηth = 0.1.

Figure E.21: Variation of Ψ (Ψmax) with transverse perigee maneuvers of varying ∆v in

the cm/s scale for the first Orbital Case with Ψth = 10 and ηth = 0.1.
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APPENDIX F: MANEUVER DETECTION TIME

The following plots showcase the timing of the detection by K over the simulation time
for different ∆v’s in both magnitude and direction. The onset and completion of the
maneuver are indicated by the vertical dashed lines, and labelled, respectively. These
plots are for the same orbital Case 1 as in Sections 4.2.1 and 4.2.2. Apogee Maneuvers are
generally accurate with very close times to the maneuvering onset, within the
maneuvering duration, other than few select cases. However, at perigee, detection often
occurs much earlier, with an average of almost 400 seconds earlier. The reason is unclear,
though this fact may explain some of the variances or inconsistencies observed through
analyses of the results in Chapter 4.
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Figure F.1: Detection timing of K (κ) for orbital Case 1 apogee maneuver ∆v (m/s).

Figure F.2: Detection timing of K (κ) for orbital Case 1 perigee maneuver ∆v (m/s).
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