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ABSTRACT

Background: Following the successful use of deep learning (DL) in the field

of computer vision and natural language processing, Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) have been increasingly applied to neu-

roimaging studies to differentiate diseased population from healthy subjects. Deep

learning models have been applied to datasets acquired from different modalities such

as electroencephalography (EEG), Magnetic Resonance Imaging (MRI) and magne-

toencephalography (MEG). Most of the previous studies have focussed on decoding

stimulus from neural responses or identifying diseased-vs.-healthy condition-specific

neural responses. Although DL models have outperformed competing methods in

these contexts, the usefulness of the trained models to improve our understanding

of the underlying neural substrates remains limited. This is primarily due to the

difficulty associated with visualizing and interpreting the predictive features learned

by DL models.

Goal: Our main aim was to leverage DL models to reveal subtle discriminative

brain patterns from neuroimaging data and subsequently develop methods to visu-

alize these patterns. We investigated the applicability of DL models to 2 specific

neuroimaging studies: (1) an EEG dataset obtained from a small number of par-

ticipants to understand the add-on effects of acute cardiovascular exercise on motor

learning in healthy subjects, (2) a large-scale MRI and MEG study to characterize

the process of healthy brain aging.

Methods: This thesis is comprised of two distinct experiments. (1) We leveraged
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the end-to-end learning ability of CNNs to investigate the differences in EEG ac-

tivity between an exercise and a control group from data collected while subjects

performed isometric handgrips. Subsequently, we developed a method to visualize

the task-specific, discriminatory EEG patterns between the two groups. (2) We in-

vestigated machine learning models coupled with several multivariate associativity

techniques to predict the age of healthy individuals from their T1-weighted MRI and

resting-state MEG data. We also explored Graph Convolutional Networks (GCNs)

and CNNs to incorporate the topological information of the data into the prediction

models.

Results: We found that CNNs can be reliably trained on a dataset collected from

a relatively small number of participants using an adversarial training strategy. In

addition, we were able to identify relevant frequency bands and brain regions that

were modulated by exercise. A previous analysis from our group using more standard

statistical analysis concluded that beta band activity in the range of 15-29 Hz orig-

inating from sensorimotor areas was modulated by exercise. Using the CNN-based

pipeline on the same dataset, we observed (i) a finer frequency band within the beta-

band that was modulated by exercise, as well as (ii) a significant modulation of the

event-related desynchronization in this frequency band located in bilateral sensori-

motor cortices and contralateral prefrontal regions to the moving hand. Therefore,

our approach demonstrates the feasibility of identifying subtle discriminative features

in a completely data-driven manner using deep learning. In the context of brain age

prediction, we found that the subcortical regions were more reliable predictors of age

as compared to cortical regions. In addition, we also observed how the functional
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organization of the brain changed with age.

Significance: Our approach demonstrated the feasibility of identifying subtle dis-

criminative features in a completely data-driven manner using DL. We believe these

results hold a significant contribution to the methodological advances for small-scale

neuroimaging studies where a small number of subjects are traditionally tested, e.g.

– neurorehabilitation. Our findings from the brain age prediction expanded upon

previous work in the field and provided useful insights into the brain areas that are

reliably affected with age. In addition, the graph network architecture demonstrated

ways to include the topology of the brains functional organization while analyzing

age-related effects on a diverse set of neuroimaging features. Collectively, the find-

ings and methods presented in this thesis demonstrated the wide scope of using DL

models in the analysis of various modalities of neuroimaging data.
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ABRÉGÉ

Contexte: Suite à l’utilisation réussie de l’apprentissage en profondeur (DL)

dans le domaine de la vision par ordinateur et du traitement du langage naturel,

les réseaux de neurones à convolution (CNN) et les réseaux de neurones récurrents

(RNN) ont été de plus en plus utilisés dans les études en neuroimagerie afin de

différencier les populations en santé de celles présentant une maladie neurodégénérative.

Des modèles d’apprentissage en profondeur ont été appliqués à des ensembles de

données acquis à partir de différentes modalités telles que l’électroencéphalographie

(EEG), l’imagerie par résonance magnétique (IRM) et la magnétoencéphalographie

(MEG). La plupart des études antérieures se sont concentrées sur le décodage du

stimulus à partir des réponses neuronales ou l’identification de réponses neuronales

spécifiques à un état pathologique. Bien que les modèles DL aient surperformé les

méthodes concurrentes dans ces contextes, l’utilité des modèles conus pour améliorer

notre compréhension des substrats neuronaux sous-jacents reste limitée. Ceci est

principalement dû à la difficulté associée à la visualisation et à l’interprétation des

fonctions prédictives apprises par les modèles DL.

Objectif: Notre objectif principal était dexploiter des modèles DL pour révéler des

caractéristiques cérébrales subtiles discriminantes à partir de données de neuroim-

agerie, puis de développer des méthodes permettant de les visualiser. Nous avons

étudié l’applicabilité des modèles DL dans le cadre de deux études spécifiques util-

isant la neuroimagerie soient: (1) un ensemble de données EEG obtenu à partir d’un
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nombre restreint de participants afin d’étudier les effets additifs de l’exercice cardio-

vasculaire aigu sur l’apprentissage moteur auprès de sujets en santé, et (2) une étude

à partir de données dIRM et de MEG à grande échelle pour caractériser le processus

du vieillissement cérébral sain.

Méthodes: Cette thèse est composée de deux expériences distinctes. (1) Nous

avons exploité la capacité dapprentissage de bout en bout des CNN pour étudier

les différences dans les activités EEG entre un groupe assujetti à lexercice cardio-

vasculaire et un groupe contrôle. Les données ont été collectées pendant que les

sujets exécutaient des contractions manuelles isométriques. Par la suite, nous avons

développé une méthode permettant de visualiser les formes EEG pouvant discriminer

les deux groupes et étant spécifiques à la tâche. (2) Nous avons étudié des modèles

dapprentissage machine associés à divers techniques dassociativité à variables multi-

ples pour prédire lâge des individus en bonne santé à partir de leurs données dIRM

pondérées en T1 et de MEG à létat de repos. Nous avons également exploré les

réseaux convolutionnels de graphes (GCN) et CNN pour incorporer les informations

topologiques des données dans les modèles de prévision.

Résultats: Nous avons constaté que les CNN peuvent être entrâınés de manière

fiable sur un ensemble de données collecté auprès d’un nombre relativement restreint

de participants à l’aide d’une stratégie de formation contradictoire. De plus, nous

avons pu identifier des bandes de fréquences pertinentes et des régions du cerveau

modulées par l’exercice. Une analyse antérieure de notre groupe utilisant une analyse

statistique plus standard a conclu que l’activité de la bande bêta dans linterval de 15

à 29 Hz provenant de zones sensorimotrices était modulée par l’exercice. En utilisant
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le pipeline basé sur les CNN sur le même ensemble de données, nous avons observé

(i) une bande de fréquence plus fine modulée par l’exercice dans la bande bêta,

ainsi que (ii) une modulation significative de la désynchronisation liée à l’événement

dans cette bande de fréquence située dans les cortex sensorimoteurs bilatéraux et les

régions préfrontales controlatérales à la main en mouvement. Par conséquent, notre

approche démontre la faisabilité d’identifier des caractéristiques discriminantes sub-

tiles d’une manière entièrement basée sur les données en utilisant l’apprentissage en

profondeur. Dans le contexte de la prédiction de l’âge du cerveau, nous avons con-

staté que les régions sous-corticales étaient des prédicteurs plus fiables de l’âge en

comparaison aux régions corticales. De plus, nous avons également observé comment

l’organisation fonctionnelle du cerveau changeait avec l’âge.

Importance: Notre approche a démontré la faisabilité d’identifier des caractéristiques

discriminantes subtiles d’une manière entièrement basée sur les données en utilisant

la DL. Nous pensons que ces résultats apportent une contribution significative aux

avancées méthodologiques pour les études en neuroimagerie à petite échelle dans

lesquelles un nombre habituellement restreint de sujets est testé, par exemple la

neuroréhabilitation. Nos conclusions tirées de la prédiction de l’âge du cerveau

complémentent celles détudes antérieurs se penchant sur la même question et ont

fourni des informations utiles sur les zones du cerveau systématiquement affectées par

l’âge. En outre, larchitecture du réseau convolutionnel de graphes met en évidence

des moyens pour inclure la topologie de lorganisation fonctionnelle du cerveau, tout

en analysant les effets liés à lâge basés sur un ensemble divers de quantités car-

actéristiques issues de la neuroimagerie. Ensemble, les résultats et les méthodes
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présentés dans cette thèse ont démontré le large champ dutilisation des modèles DL

dans lanalyse de diverses modalités de données de neuroimagerie.
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CHAPTER 1
INTRODUCTION

One of the major aims of neuroimaging is to reveal insights about the func-

tion and structure of the brain from non-invasive measurements. Studying the

living brain using various neuroimaging modalities provides insight into the func-

tioning of the brain in typical as well as diseased conditions. Existing neuroimag-

ing modalities leverage different physiological characteristics to reflect properties of

the brain structure or function. Currently used popular imaging modalities include

magnetic resonance imaging (MRI), functional MRI, diffusion tensor imaging (DTI),

positron emission tomography (PET), electroencephalography (EEG), and magne-

toencephalography (MEG), among others.

A great majority of neuroimaging studies performed so far, have relied on the

a priori selection of features from the recorded structural or functional data [11].

However, this approach may yield sub-optimal feature selection and eventually pre-

vent the detection of subtle discriminative patterns present in the data. With the

increasing popularity of neuroimaging techniques to study the brain, the amount of

digital data has exponentially risen. This has allowed the use of several “big data”

techniques in extracting relevant information from the data [172]. Such techniques

range from associative techniques to graph theoretic methods and machine learn-

ing models to improve the understanding of functional and structural aspects of the

human brain in healthy and diseased connditions.
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Data-driven approaches such as deep learning (DL) allow the identification of the

optimal discriminative features in a given dataset. Specifically, Convolutional Neu-

ral Networks (CNNs) and Recurrent Neural Networks (RNNs) have been applied to

computer vision and speech processing datasets with great success [61, 81, 92, 189].

DL architectures excel at finding hidden, low-dimensional features by discovering sta-

tistical regularities in high-dimensional training data, and can do so in a relatively

unsupervised fashion [13, 59, 70, 96, 178, 179]. These approaches have also been used

in the context of neuroimaging to identify features for structural and functional MRI

data analysis [123] and EEG data decoding [12, 137, 139, 164]. Although the field of

neuroimaging has seen a recent surge of papers involving the use of DL, the applica-

bility of such models is primarily restricted to the classification of data segments into

known categories. The usefulness of trained DL models to improve our understand-

ing of the neural substrates underlying observed behavior is less straightforward,

primarily due to difficulty associated with the visualization and interpretation of the

feature space learnt by DL models.

The main objective of the present study is to develop a DL pipeline suited

to most neuroimaging data analysis pipelines and subsequently analyze the features

learnt by the DL architecture. We intend to establish a framework for future re-

searchers to use DL architectures as data analysis tools for neuroimaging data. To

this end, we will design a CNN-based analysis pipeline for the analysis of EEG data.

This pipeline will subsequently be applied to EEG recordings collected to study the

effect of acute cardiovascular exercise on motor learning in healthy subjects. We

will also present a novel technique to identify the optimal feature set learnt by the
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trained CNN, thus extending the CNN’s usability beyond classification tasks. The

resulting optimal feature set would yield insights into the neurophysiological sub-

strates underlying the positive effects of exercise. Thereafter, we will compare the

CNN-yielded optimal feature sets to prior literature in the field of cardiovascular

exercise to exhibit the potential of CNNs to act as a powerful data analysis tool that

can be used in a relatively unsupervised setting for EEG analysis.

We will further explore machine and deep learning pipelines to other

neuroimaging modalities, namely MRI and MEG, to estimate the biological age of

subjects from their neuroimaging data. The discrepancy between the reported and

estimated age will subsequently be compared for healthy and diseased populations to

be used as potential biomarker of neurological disorders. The ability of the multivari-

ate associativity techniques, like canonical correlation analysis, in conjunction with

machine learning models as well as Graph Convolutional Networks to characterize

the complex process of brain aging demonstrates the usability of such methods to

other applications across the neuroimaging domain.
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CHAPTER 2
BACKGROUND

2.1 Deep Learning for neuroimaging

Following the success of DL in other fields, CNNs and RNNs have been in-

creasingly used in neuroimaging to differentiate diseased population from a cohort

of healthy subjects. The application of DL models have spanned several neuroimag-

ing modalities, including EEG [12, 137, 139, 164], functional and structural MRI

[50, 123] as well as MEG [24]. Most of the previous studies have aimed to either

decode stimulus from neural responses or compare stimulus encoding in neural re-

sponses to those in different processing layers of a deep network. Studies involving

DL for MRI have also focused on automated segmentation of the MR images. Some

recent applications of DL models include inferring latent dynamics from simultane-

ously recorded, single-trial neural spiking data [118]. Although DL has outperformed

competing methods in most of these paradigms, the usefulness of the trained models

to improve our understanding of neural substrates remains limited. This is primarily

due to the difficulty associated with the visualization and interpretation of predictive

features learnt by the DL models.

2.1.1 DL architectures for EEG decoding

Machine learning techniques have been widely used for extracting information

from EEG recordings, and therefore play an important role in several EEG-based

research and application areas. For instance, machine learning forms a central tool for
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EEG-based Brain Computer Interface (BCI) systems for clinical applications [114].

Such systems have aided, for example, people with severe paralysis to communicate

[116] and to control telepresence robots [168]. Such systems have also been applied to

facilitate stroke rehabilitation [126] and have the potential to be used in the treatment

of epilepsy [55]. Furthermore, machine learning techniques have been increasingly

recognized as important tools for neuroimaging data analysis pipelines that are aimed

to answer neuroscientific queries [37, 88, 94, 150].

Although traditional machine learning methods have allowed impressive progress

in EEG decoding and BCI design, there is considerable possibility of improvement

with respect to several important aspects of information extraction from EEG, in-

cluding decoding accuracy and interpretability. Hence, innovations in the area of

machine learning have found continued applicability in improving current EEG de-

coding methods and BCI designs. Correspondingly, recent studies have investigated

the potential of CNN and RNN for EEG decoding in the context of BCI design

[22, 109, 139, 158, 183], cognitive load classification [12, 63] and seizure prediction

[7, 137, 164]. Most of these studies aim to learn a DL network that is optimized for

a specific application using a sufficiently large cohort of subjects. A recent study

leverages the power of auto-encoders [85] to learn feature representation from noisy

EEG data collected from limited number of subjects [154].

However, a core limitation of all the above mentioned studies lies in the inter-

pretability of the feature representation learnt by the trained DL network. Conse-

quently, this limits the use of DL to improve our understanding of the neural sub-

strates underlying the observed behavior. Although previous studies have presented
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certain feature visualization methods to address this issue, these methods have lim-

ited applicability in varied neuroimaging studies. Therefore, a major objective of

this study is to fill this gap in existing literature by devising a method to reliably

visualize the features learnt by the DL network trained on EEG data.

2.1.2 Visualizing the predictive feature space

CNNs have achieved superior performance in EEG decoding problems as com-

pared to other apriori feature-based machine learning methods. But their lack of

decomposability into intuitive and understandable components makes them hard to

interpret [103]. The importance of interpretability carries paramount importance

in neuroimaging analysis. It allows the researcher to understand the salient fea-

tures in the input data that allows a deep network to exhibit superior performance.

Therefore, this allows the researcher to reliably use CNNs as an investigation tool

in neuroimaging. Although there has been some efforts in developing methodologies

to create feature visualizations from trained CNNs, those methods are not widely

applicable to varied neuroimaging studies.

Schirrmeister et al. described a correlation-based analysis to interpret the spec-

tral features in EEG data that determine the performance of a trained CNN [139].

Their method involved correlating the input power of a particular frequency band to

the activation of an artificial neuron in a layer of the CNN. Neurons showing high

correlation values were considered to be capturing the information in that particular

frequency band. Although the authors successfully used this method for interpreting

the spectral features that were captured by each filter in a layer of the CNN, the

aforesaid method could be considered as a feature validation approach. The authors
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had to select the spectral feature apriori to observe its contribution to the CNN’s

performance.

Some studies have relied on techniques used in computer vision literature, namely

the deep dream algorithm [107, 108], to infer activation maps. The activation maps

depict the features that were considered “salient” by the CNN for prediction. How-

ever, the deep dream algorithm is devised for input data with a uniform feature

scale, which is not the case for EEG data. The pink noise characteristic of the EEG

spectrum is well-known, whereby the lower frequencies have higher power and higher

frequencies have lower power [44]. Thereby, the deep dream algorithm would yield

mis-leading results by showing higher feature importance for lower frequency spec-

tral features. This conjecture is consistent with findings in our data whereby a CNN

was trained to identify the modulatory effect of cardiovascular exercise on the EEG

power spectrum while subjects performed a fixed force hand-grip task.

Given the existing caveats in visualizing features for a CNN trained on neu-

roimaging data, we developed a novel methodology called the cue-combination for

Class Activation Map (ccCAM) to generate activation maps signifying the salient

features in input data. We believe that using ccCAM along with existing CNN

architectures will extend the usability of DL as a reliable data analysis tool for neu-

roimaging researchers.

2.2 Effect of cardiovascular exercise on motor learning

A single bout of cardiovascular exercise, when performed in close temporal prox-

imity to a session of visuo-motor skill practice has been shown to facilitate motor
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memory consolidation [35, 130]. The positive effects of exercise on motor mem-

ory have been associated with a variety of events at the molecular and systems

level. These involve increased concentration of neurotrophin molecules such as brain-

derived neurotrophic factors (BDNF), vascular endothelial growth factor (VEGF)

and insulin-like growth factor (IGF-1). These factors in-turn mediate downstream

effects like neurogenesis and synaptogenesis which form the basis of events underly-

ing neuroplasticity. Increased corticospinal excitability has also been observed during

the memory consolidation period and is thought to facilitate synaptic transmission

between neuronal networks involved in motor skill practice [117]. However, the pre-

cise contribution of distinct brain areas and networks associated with the positive

effects of exercise on motor memory consolidation remain largely unknown.

EEG has been widely used to study the electrical activity originating in differ-

ent brain areas while the subject is performing a task. The EEG signal arises from

synchronized postsynaptic potentials of neurons that generate electrophysiological

oscillations in different frequency bands. During movement, the EEG signal power

spectrum within the alpha (8–12 Hz) and beta (15–29 Hz) range decreases in ampli-

tude and this is thought to reflect increased excitability of neurons in the sensorimotor

areas [33, 115, 122, 135]. This phenomenon is termed Event-Related Desynchroniza-

tion (ERD). Previous studies have reported that alpha and beta-band ERD patterns

are modulated during motor skill learning [16, 74, 191]. There is also converging

evidence toward an association between cortical oscillations in the motor cortex and

neuroplasticity events underlying motor memory consolidation [16, 124]. A recent
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EEG study described the oscillatory patterns in brain’s electrical activity while sub-

jects performed a handgrip task [35]. Using a time-frequency decomposition-based

pipeline, a significant decrease in post-exercise beta-band ERD in EEG electrodes

over the sensorimotor area in both hemispheres was found. Additionally, changes in

beta-band ERD were associated with better skill retention 24 hr after motor prac-

tice. These results suggest that changes in oscillatory patterns take place when motor

learning is combined with acute exercise and that some of these brain changes have

implications on skill retention.

2.3 Brain age prediction

The human brain is known to change across the adult lifespan. This process of

Brain aging underlies the gradual decline in cognitive performance. Although aging-

induced changes are not necessarily pathological, but neurodegenerative disorders

have shown to be more likely with increasing age [1]. The wide range of onset ages

for age-associated brain disorders indicates that the effects of aging on the brain

structure and function vary greatly among individuals. Therefore, understanding

the process of brain aging and identifying biomarkers for characterizing the same

are vital to improve the detection of early-stage neurodegeneration and age-related

cognitive decline.

The effect of aging on brain structure, like cortical thinning, have been robustly

identified in previous studies [71, 155]. Similarly, age-related differences in brain

function have been demonstrated through studies involving functional connectivity

[36, 39]. It is important to establish the trajectories of these changes over the lifespan

by means of longitudinal studies to obtain a basis for characterizing clinically relevant
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deviations [128, 192]. Brain-based age prediction offers a useful tool to identify

personalized biomarkers of age-related brain changes and thereby promises to predict

future cognitive impairments by indicating deviations from typical structural and

functional development.

Prediction of brain age has been widely explored in literature. Most studies

have trained a prediction model on healthy subjects and then used these models

to predict brain age in independent clinical samples. By comparing the estimated

age of the individual with their chronological age, conclusions about age-typical

and atypical brain development can be drawn. For instance, if the brain-predicted

age is greater than the reported chronological age, it is thought to be an indicator

of aberrant accumulation of age-related changes to the brain. The degree of this

added brain aging has been more frequently quantified by subtracting chronological

age from brain-predicted age. This approach has been extended to the context of

several brain-related disorders including Alzheimer’s [51, 58], traumatic brain injury

[28], schizophrenia [89, 141], HIV [31], epilepsy [119], Down’s syndrome [27] and

diabetes [52]. Interestingly, the utility of prediciting brain-age is not just limited to

understanding neurological disorders. Some studies have shown positive influence of

meditation [105] and increased education and physical exercise [151] on the brain

age.

Aforementioned studies have shown that the structure and function of one’s

brain can be both positively and negatively influenced to reflect their age. Therefore,

the problem at hand is an interesting one and has far-reaching consequences given

the usability of the brain-predicted age as a biomarker to study the impact of various
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factors on typical brain development trajectory. Although there’s a trend in brain-

age prediction to shift from correlative to predictive approach primarily based on

machine learning [20, 54, 121, 176, 185], it is important from neuroscience point-of-

view to understand the underlying neurological factors influencing these predictions.

Added to this, a major roadblock to clinical applications of the machine learning

models is their interpretability and reliability [93].

One of the most popular machine learning models used for brain age prediction

is the Gaussian Process Regression (GPR) models [127]. GPRs have been popularly

used on T1-MRI data from a cohort of healthy subjects but the lack of interpretabil-

ity has restricted further neuroscientific insights into the process of healthy aging.

This has further restricted researchers to draw conclusions on atypical brain aging

in the context of the aforementioned brain-related disorders. We sought to establish

the contribution of dimensionality reduction techniques, specifically Principal Com-

ponent Analysis (PCA) [80] and Canonical Correlation Analysis (CCA) [165], on the

performance of GPRs and other regression models. Further analysis using PCA or

CCA enabled us to observe major areas of the brain that contribute to the prediction

of brain age.

Recent studies have aimed to combine both structural and functional brain data

to characterize the aging process. These studies have primarily used structural and

functional MRI data [23, 102]. With an increase in rich datasets and such high

dimensionality data, machine and deep learning algorithms have been explored to

predict brain age from neuroimaging data [29]. In this context, we applied dimen-

sionality reduction techniques in conjunction with machine learning models as well as
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Graph Convolutional Networks in the context of brain age prediction from MRI and

MEG data. We intend to use the features extracted by these models as biomarkers

for age-associated health problems, including brain-related disorders.
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CHAPTER 3
EFFECTS OF CARDIOVASCULAR EXERCISE ON NEURAL

CORRELATES OF MOTOR LEARNING

3.1 Abstract

Cardiovascular exercise is known to promote the consolidation of newly acquired

motor skills. Previous studies seeking to understand the neural correlates underlying

motor memory consolidation that is modulated by exercise, have relied so far on us-

ing traditional statistical approaches for a priori selected features from neuroimaging

data, including EEG. With recent advances in machine learning, data-driven tech-

niques such as deep learning have shown great potential for EEG data decoding for

brain-computer interfaces, but have not been explored in the context of exercise.

Here, we present a novel Convolutional Neural Network (CNN)-based pipeline for

analysis of EEG data to study the brain areas and spectral EEG measures modulated

by exercise. To the best of our knowledge, this work is the first one to demonstrate

the ability of CNNs to be trained in a limited sample size setting. Our approach re-

vealed discriminative spectral features within a refined frequency band (27–29 Hz) as

compared to the wider beta bandwidth (15–30 Hz), which is commonly used in data

This work is currently submitted as:
Ghosh A, Dal Maso F, Roig M, Mitsis GD, Boudrias MH. Unfolding the effects of
acute cardiovascular exercise on neural correlates of motor learning using Convolu-
tional Neural Networks.
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analyses, as well as corresponding brain regions that were modulated by exercise.

These results indicate the presence of finer EEG spectral features that could have

been overlooked using conventional hypothesis-driven statistical approaches. Our

study thus demonstrates the feasibility of using deep network architectures for neu-

roimaging analysis, even in small-scale studies, to identify robust brain biomarkers

and investigate neuroscience-based questions.

3.2 Introduction

A single bout of cardiovascular exercise, when performed in close temporal prox-

imity to a session of visuomotor skill practice has been shown to facilitate motor

memory consolidation [35, 130]. The positive effects of exercise on motor memory

have been associated with a variety of events at the molecular and systems level.

These involve an increased concentration of neurotrophin molecules such as brain-

derived neurotrophic factors (BDNF), vascular endothelial growth factor (VEGF)

and insulin-like growth factor (IGF-1). In turn, these factors mediate downstream

effects like neurogenesis and synaptogenesis, which form the basis of events underly-

ing neuroplasticity. Increased corticospinal excitability has also been observed during

the memory consolidation period and is thought to facilitate synaptic transmission

between neuronal networks involved in motor skill practice [117]. However, the pre-

cise contribution of distinct brain areas and networks associated with the positive

effects of exercise on motor memory consolidation remain largely unknown. Under-

standing how the brain is altered by exercise could hold the key to designing therapies

that could optimize the neurophysiological changes associated with motor memory

consolidation for varied purposes [68].
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Electroencephalography (EEG) is a technique used to study the electrical ac-

tivity originating in different brain areas. The EEG signal arises from synchro-

nized postsynaptic potentials of neurons that generate electrophysiological oscilla-

tions in different frequency bands. During movement, the EEG signal power spec-

trum within the alpha (8–12 Hz) and beta (15–29 Hz) range decreases in amplitude

and this is thought to reflect increased excitability of neurons in the sensorimotor

areas [33, 115, 122, 135]. This phenomenon is termed Event-Related Desynchroniza-

tion (ERD). Various studies have reported that alpha- and beta-band ERD patterns

are modulated during motor skill learning [16, 74, 191]. There is also converging ev-

idence towards an association between cortical oscillations in the motor cortex and

neuroplasticity events underlying motor memory consolidation [16, 124]. Using EEG,

we recently described the oscillatory patterns in brain electrical activity while sub-

jects performed a handgrip task [35]. Using a time-frequency decomposition-based

analysis pipeline, we found a significant decrease in post-exercise beta-band ERD

in EEG electrodes located over the sensorimotor area in both hemispheres. Addi-

tionally, changes in beta-band ERD were associated with better skill retention 24

h after motor practice. These results suggest that changes in brain oscillatory pat-

terns occur when motor learning is combined with acute exercise and that some of

these changes have implications for skill retention. However, as these inferences were

drawn from a hypothesis-driven approach, whereby standard EEG frequency bands

from pre-selected electrodes were considered, the existence of more subtle, fine-scale

neurophysiological features that are modulated by a single bout of exercise cannot

be excluded.
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Neural network models, particularly deep learning (DL) models, have been suc-

cessful in identifying optimal discriminative features in a given dataset [98]. Convo-

lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) have been

applied to computer vision and speech processing datasets [61, 81, 92, 188] with

great success. These approaches have also been used in the context of neuroimaging

to identify features for structural and functional magnetic resonance imaging data

analysis [123] and EEG data decoding [12, 140, 164] among others.

CNNs are artificial neural networks that can learn low-level patterns in a given

dataset by using convolution operations as a key component. CNN architectures may

range from shallow architectures with just one convolutional layer [2], deep CNNs

with multiple sequential convolutional layers [92] to very deep architectures with over

1000 layers [66]. CNNs have an edge over other machine learning models as they are

well suited for end-to-end learning, i.e. learning from raw data without any a priori

feature selection and they can exploit hierarchical structures that may be present in

the data.

Although the field of EEG signal decoding has recently seen a surge of papers

[166, 184, 186] involving the use of DL, the applicability of DL models has been pri-

marily restricted to the classification of EEG data segments into known categories.

The usefulness of CNNs to improve our understanding of the neural substrates un-

derlying observed behaviors is less straightforward, primarily due to the difficulty

associated with the visualization and interpretation of the feature space learned by

DL architectures, e.g. CNNs. For instance, Schirrmeister et al. ([140]) proposed

a systematic CNN framework for EEG decoding, including the impact of various
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architectural considerations on decoding performance. However, they presented a

feature validation approach to understand which a priori selected features were used

by the CNN rather than a feature discovery approach.

In this context, the aim of the present study was to develop a data-driven ap-

proach for studying the positive effects of exercise on motor learning by investigating

the EEG-based ERD patterns during an isometric motor grip execution in healthy

young subjects. We aimed to identify specific EEG spectral features modulated by

exercise and further investigate if these features were related to skill retention per-

formance. The subjects performed a repetition of isometric handgrips before and

after a session of intense cycling exercise (exercise group) or rest for the same pe-

riod (control group). In addition to isometric handgrips, subjects also practiced a

new motor tracking task with their dominant hand in close proximity to the exercise

or rest session. To identify the neurophysiological substrates underlying the posi-

tive effects of exercise, we used a CNN-based deep network architecture to identify

exercise-induced changes in neural activity from EEG signals recorded during the

handgrip task. Since neural networks are known to be universal function approxi-

mators [73], with the capability of identifying linear as well as non-linear boundaries

in high-dimensional data spaces, this allowed us to differentiate the exercise and

control groups in the EEG time-frequency data space. The training was carried

out in a hierarchical structure – initially in the time-frequency domain and subse-

quently for topographical maps of ERD pattern. Visualizing the features after each

stage of training allowed us to identify frequency bands as well as the corresponding

brain regions modulated by the positive effects of acute exercise on motor learning.
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Moreover, the majority of previous related DL studies used datasets comprising of

hundreds of subjects for training purposes [123, 138]. Therefore, one of our main

goals was to develop a DL-based method that is suitable for neuroimaging studies

with smaller subject numbers, which is frequently the case. To this end, we added

a regularizer (adversary component) to the CNN, which prevented the latter from

learning subject-specific features, thus favoring the identification of group-specific

features. The proposed approach revealed that the CNN-extracted features were

strongly correlated to the improvement in motor learning scores. Visualizing these

features revealed finer frequency bands and corresponding brain regions where ERD

patterns were modulated by exercise. Therefore, the proposed analysis provided ob-

servational evidence for the identified frequency band-related ERD to be associated

with the positive effects of exercise on motor memory consolidation.

3.3 Dataset

The experiment and data collection are described in detail in [35]. Briefly, 25

right-handed healthy subjects were recruited and assigned to the Control (CON,

n = 13 subjects) or Exercise (EXE, n = 12 subjects) groups in matched blocks. The

blocks of subjects were created with similar age, gender, body mass index, work-

ing and episodic memory as well as cardiorespiratory fitness. All subjects signed a

written consent form according to the research protocol that complied with the rec-

ommendations of the declaration of Helsinki for investigation of human participants

and was approved by our local ethics committee (CRIR-1134-0116).

Each subject reported to the laboratory on four occasions as described in [35].

Visit 1 required the participants to go through a Graded Exercise Test (GXT), which
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was used to determine their cardiorespiratory fitness. Visit 2 was conducted at least

48 hrs after the GXT to avoid potential long-term effects of exercise on memory

[14, 72]. EEG recordings were collected at baseline (before the exercise session)

while subjects performed repetitions of visually cued isometric handgrips with their

dominant right hand using a hand clench dynamometer (Biopac, Goleta, CA, USA).

Each contraction was maintained for 3.5 sec at 15% of each participant’s maximum

voluntary contraction (MVC). This was followed by a 3 to 5 sec rest period. The

baseline assessment was followed by the practice of a visuomotor tracking task (skill

acquisition), which was used to calculate the motor learning score of each subject.

Following the training period, participants were randomly assigned to two groups.

The EXE group performed a bout of high-intensity interval cycling of 15 min, while

the CON group rested on the cycle ergometer for the same amount of time. EEG

recordings similar to baseline were repeated 30, 60 and 90 min after the exercise or

rest period. During visits 3 and 4, two blocks of the visuomotor tracking task were

performed 8 and 24 hrs after the exercise or rest period.

EEG activity was recorded using a 64-channel ActiCap cap (BrainVision, Mu-

nich, Germany) with electrode locations arranged according to the 10–20 interna-

tional system. The electrical conductive gel was inserted at each electrode site to

keep impedances below 5 kΩ. EEG signals were referenced to the FCz electrode and

sampled at 2500 Hz.

3.4 Methods

The analysis pipeline was first applied to the time and frequency domain data

without incorporating spatial information. Subsequently, it was applied to the data
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obtained by creating topographical maps corresponding to the distribution of activ-

ity within specific frequency bands across the cortex. The entire pipeline consisted

of 3 segments, i.e.– Preprocessing, CNN training and cue-combination for Class Ac-

tivation Map (ccCAM) generation.

3.4.1 Time-Frequency (TF) maps

Preprocessing

EEG data preprocessing was similar to that described previously [35] and was

performed using the Brainstorm Matlab toolbox [159]. The preprocessing pipeline

is summarized in Figure 3.1. Briefly, EEG signals were bandpass-filtered between

0.5 Hz and 55 Hz and average-referenced. The data were visually inspected and

signal segments with artifacts were rejected. Independent component analysis (ICA)

was subsequently applied (total number of components: 20) and eye-blink related

components were rejected based on their topography and time signatures [38]. The

resulting data were epoched with respect to the period of time (3.5 sec) corresponding

to the appearance of the visual cue that triggered the initiation of the isometric

handgrips (n = 50/subject). Finally, each epoch was visually inspected and those

containing artifacts were manually removed. EEG electrodes with atypical power

spectrum density were interpolated using spherical splines.

Morlet wavelet (wave number = 7) coefficients between 1 to 55 Hz with 1 Hz

resolution were extracted to obtain time-frequency decompositions of the EEG data

[161]. The time-frequency data for each electrode were normalized with respect to

their spectral power before the start of the grip event, using a window of 0.5 sec. An

average over all trials was then calculated in order to obtain a single time-frequency
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Figure 3.1: Data preprocessing pipeline outlining the preparation of data to be used
as input to the deep network.

map for each electrode. Subsequent analysis was performed on the EEG recording

segment corresponding to 0.5–3.5 sec after the appearance of the visual cue, i.e.

during the handgrip task. Finally, one time-frequency map was obtained for each

electrode for each session (baseline, 30 min, 60 min or 90 min after exercise) and for

each subject.

CNN training

The proposed CNN architecture is shown in Figure 3.2. The preprocessed data

for each session was rearranged to form 2D matrices comprising of the frequency

spectra for all electrodes at a given time instant t. Each matrix had a dimension of

64 × 55 (64 electrodes × 55 frequency bands). For training the network, a pair of

matrices was used – the first corresponding to time point t from the baseline session

and the second corresponding to the same time point t from the post-intervention

session. Each pair was labeled based on the respective group allocation (EXE or

CON). Structuring the data in this fashion allowed the network to take into account
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the inter-subject variability in baseline measures and therefore did not require the

experimenter to adopt techniques for normalizing the EEG signal from the post-

intervention session with respect to the baseline session. Thus, the network was

expected to capture the EEG features that were modulated by the effects of acute

exercise.

Figure 3.2: Modified deep network architecture with an adversary component (bot-
tom right). The adversary component makes it feasible to use CNNs for identifying
subject-invariant features in neuroimaging studies with a limited number of subjects.
Dimensions corresponding to the obtained TF maps are also shown.

Dataset Notation:- B and A represent the entire data tensor at baseline and

post-intervention respectively. Each data tensor consists of data matrices from all

25 subjects and timepoints. For subject s, the goal was to classify whether the tuple

containing the matrices Bs
t and Ast (where t denotes timepoint) belongs to the EXE

or CON groups. Matrices Bs
t and Ast were arranged so that they belonged to the

set R64X55, where 64 is the number of electrodes and 55 is the number of frequency

bands.
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To identify EEG features modulated by exercise, we used a deep CNN that was

trained to discriminate between EEG data from EXE and CON group. The network

architecture is similar to the one described in [3]. Features from matrices Bs
t and

Ast were extracted using a network termed Base CNN. The difference between the

obtained feature vectors was passed to a discriminator network, termed Top NN, to

predict the correct group to which each pair belonged to. The schematic view of the

architecture is shown in Figure 3.2 and the details for each network’s architecture

are provided in Tables S1 and S2 in Supplementary Material respectively. Using a

sampling frequency of 2500 Hz and a time period of interest of 3 sec duration, each

tuple input to the CNN was of the form (Bs
t ,A

s
t) where timepoint t ∈ [1,7500] and

subject s ∈ [1,25].

The convolutions performed in the Base CNN were with respect to the fre-

quency direction and not the electrode (sensor) dimension. This is done because the

frequency dimension was by definition arranged in terms of increasing frequencies, as

opposed to the electrode dimension, which was not arranged in terms of the spatial

locations of the electrodes in a meaningful manner. Consequently, the features ex-

tracted by the Base CNN corresponded to the frequency bands significantly affected

by exercise. Therefore, all convolutional filters in the Base CNN were implemented

as 1× n 2D filters, where n is the extent of the filter in the frequency domain. The

same holds for the Max-Pooling layers.

Initially, a network that did not include an adversary loss component (Figure

A1.a from Appendix A) was used; however, it was found that this network was able

to learn subject-specific features as opposed to subject-invariant, exercise-related
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features. This is illustrated in Figure A2 (Appendix A) and Table 3.2. In most

neuroimaging studies examining the effect of exercise, the number of participants

scanned was relatively low [62, 75, 129], which typically prevents deep networks

from learning subject-invariant features. To address this issue, we followed a domain

adaptation approach. Specifically, each subject was considered as a separate domain

comprising of subject-specific features along with subject-invariant, exercise-related

features. Since our goal was to learn features mainly related to the effect of exercise on

the consolidation of motor memory, we incorporated the domain confusion strategy

[169] to train the network, thus adding the subject discriminator as an adversary

(Figure 3.2 – bottom right). Specifically, we included this network in parallel to the

Top NN with similar model capacity (see Table A3 in Appendix A for architecture

details).

Network Architecture Notation:- The feature extractor operation and parame-

ters of the Base CNN are denoted as fθf and θf respectively, the Top NN feature

discrimination operator and its parameters by hθt and θt respectively, while the sub-

ject discrimination operator and its parameters by hθs and θs respectively. The input

tuple is denoted by x and its corresponding group and subject labels by yg and ys

respectively. We used the Negative Log Likelihood (NLL) loss for each classifier

with the Adam optimizer [84] in Torch [32] for training the network. The Subject

Discriminator was trained to minimize the subject prediction loss given by –

Js(θs, θf ) = −[
m∑
i=1

logh
(y

(i)
s )

θs
(fθf (x(i)))] (3.1)
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The Top NN was trained to minimize the group prediction loss given by –

Jg(θt, θf ) = −[
m∑
i=1

logh
(y

(i)
g )

θt
(fθf (x(i)))] (3.2)

We trained the feature extractor (Base CNN) to extract features that would be

agnostic to the originating subject; therefore, the target distribution for the subject

prediction network had a uniform distribution. Hence, we used the domain confusion

loss [169] over the gradient reversal layer [57]. We also used the Kullback-Leibler

(KL) divergence from the uniform distribution over 25 classes (25 subjects) as our

loss metric. Conclusively, the Base CNN was trained to minimize the loss given by –

Jf (θf , θt, θs) = −[
m∑
i=1

logh
(y

(i)
g )

θt
(fθf (x(i)))] + λ[

m∑
i=1

KL(U, hθs(fθf (x(i)))] (3.3)

where KL(P,Q) denotes the KL divergence between distributions P & Q, U

denotes the uniform distribution, m denotes the total number of training examples,

and λ is a hyperparameter that determines the weight for the subject discrimination

regularizer. Here, we used a 80-20 split of the data set, whereby 80% was used for

training and 20% was used for validation.

ccCAM

An innovative contribution of the present work is the development of a novel

method for the visualization of the features that guide the proposed network’s deci-

sion. Although well-known techniques used in the computer vision literature include

Global Average Pooling (GAP) [190] and grad-CAM [144], they are not well suited
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to the neurophysiological paradigm considered here. For instance, GAP requires av-

eraging the activations of each filter map, i.e. each channel of the extracted feature

tensor. This leads to loss of information related to electrode positions, as convolu-

tions were performed only in the frequency domain. Consequently, we were unable

to obtain adequate classification accuracy (≈ 56%) with a GAP layer in the network.

Grad-CAM is sensitive to the absolute scale of variability in the features in the input

data and, as a result, it yielded results that were biased towards frequency bands

with higher power-values, i.e. the lower frequency bands (¡10 Hz).

Given the above limitations in existing analytic methods, we used the linear cue-

combination theory applied in human perception studies [47] to develop a method

that improves the interpretability of the network’s decisions. Let us consider, for

example, a CNN with only 2 channels, i.e. filter maps, in the final feature tensor

extracted after convolutions. Each of these filter maps preserves the spatial and/or

semantic structure of the input data. Each of these filter maps acts as a cue to

the network’s classifier layers, denoted as c1 and c2. These cues guide the networks

prediction. If we denote the desired class label as y1 and assuming c1 and c2 to be

independent to each other, we can use Bayes’ Theorem to write –

P (y1|c1, c2) =
P (c1, c2|y1)P (y1)

P (c1, c2)
=
P (c1|y1)P (c2|y1)P (y1)

P (c1)P (c2)
=
P (y1|c1)P (y1|c2)

P (y1)

(3.4)

If the likelihood for predicting y1 due to cue ci is Gaussian with mean µi and

variance σ2
i , the maximum likelihood estimate (MLE) yields the combined cue, de-

noted by c∗, that summarizes the important features on which the network bases
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its decisions. Therefore, the combined cue, c∗, is the desired Class Activation Map

(CAM).

c∗ =
2∑
i=1

wiµi where wi =
1/σ2

i

2∑
i=1

1/σ2
i

(3.5)

Since the network is trained, µi = ci. To calculate the values of σi, we used the NLL

loss values. The NLL loss when a cue was removed from the network provided an

estimate of the σ associated with that specific cue, as shown in Equation 3.6.

ε = −logP (y1|c1, c2)

= −logP (y1|c1)− logP (y1|c2) + logP (y1) [From eq 3.4]

ε1 = ε|c1=0 = −logP (y1|c1 = 0)− logP (y1|c2) + logP (y1)

ε1 − ε = logP (y1|c1)− logP (y1|c1 = 0)

=
µ2
1

2σ2
1

Therefore,
1

σ2
1

=
2(ε1 − ε)

µ2
1

(3.6)

σi is estimated over the entire dataset as shown in Equation 3.7.

1

σ2
i

=
m∑
j=1

2[(εi − ε)](j)

[µ2
i ]

(j)
(3.7)

Using the estimated σi, the CAM corresponding to the correct class for each input

was obtained. Since in the present case µi corresponded to a 2D matrix, the denom-

inator in Equation 3.7 was replaced by the mean-squared value of the corresponding

matrix. A summary of the process of generating a CAM is outlined in Figure 3.3.
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The resulting CAM was a 2D matrix with each row corresponding to an electrode and

each column corresponding to a frequency band. To obtain the contribution of each

frequency band in determining the correct class, we averaged the CAM along the

row dimension to yield a vector corresponding to the importance of each frequency

band power across the whole brain. This vector was generated at each timepoint t,

depicting the importance values of each frequency band at timepoint t. Since the

subject was exerting a fixed force during the entire time period of the EEG segment

that was considered, we expected important frequency bands to exhibit pronounced

differences at all timepoints. Consequently, we considered a frequency band to be

reliably modulated by exercise only if the corresponding CAM value was high for all

timepoints. Therefore, we followed a procedure similar to the bootstrapping tech-

nique to estimate the reliability of each frequency band [45, 112, 111]. Specifically,

we calculated the bootstrapped ratio (BSR) of the CAM values for each band and

subject by dividing the mean of CAM values across time by its standard deviation.

The obtained BSR values were subsequently group-averaged to extract frequency

bands that contained features characteristic to each group (CON and EXE).

3.4.2 Topographical maps

Topographical maps were created using the frequency bands obtained from the

ccCAM corresponding to the TF-maps following the same procedure as described in

[12]. Specifically, the 3D position of the electrodes on the EEG cap was projected to

a 2D space to construct a 64× 64 image. The image intensities corresponded to the

respective electrodes spectral power within the frequency band of interest at time

point t. Since this procedure yielded a sparse matrix, cubic interpolation was used to
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Figure 3.3: ccCAM generation pipeline outlining the procedure for obtaining CAMs
from the trained deep network.

obtain a continuous image depicting the distribution of activity within each frequency

band over the entire scalp. A total of three such matrices were concatenated to form

a 3× 64× 64 tensor corresponding to activity maps at three consecutive timepoints

(say t, t + 1 and t + 2 respectively). The entire data tensor for a given subject was

created by taking non-overlapping time windows. Hence, the total number of tensors

for each subject was equal to 2500.

Similar to the analysis of TF-maps, we trained a CNN-based network to classify

each data tensor into the CON and EXE groups. Since the inputs were 2D image

tensors, we used 2D convolutional filters in the Base CNN (see Tables A4, A5 and A6

in Appendix A for more details). Following training, ccCAM was applied to obtain

CAMs for each subject at each time instant during task execution.

3.4.3 Statistical analysis for TF curves and Topographical maps

To estimate the statistically significant frequency bands in the resultant ccCAM

maps for the two groups, we employed one-way ANOVA on a point-by-point basis.
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This yielded a series of p-values, each corresponding to a frequency bin in the ccCAM

map. Since these tests were not mutually independent, we chose the Simes method

[136, 147] for correcting the obtained p-values as done in [104]. This method was

better suited to our problem compared to the standard Bonferroni correction, as

several highly correlated statistics were involved. The method is based on the ordered

p-values in a sliding window of length L with the p-value we want to correct being

in the center (L = 2w + 1). The corrected p-value is given by

p′j = min
1≤i≤L

Lp(i)
i

(3.8)

Given the employed convolutional kernel sizes for the TF and topographical

maps, we chose the corresponding window lengths for the Simes method to be 5 for

TF maps and 3 × 3 for the topographical maps. All points with corrected p-values

less than 0.05 were considered to be significant.

3.5 Results

The results presented here illustrate the differences between the baseline and

90 min post-exercise/rest datasets. The network architecture details for each type

of data (TF and Topographical) map are presented in the Supplementary Material,

along with details regarding the chosen hyperparameters.

3.5.1 Comparison to alternative EEG decoding methods

We compared the performance of the proposed CNN to alternative machine

learning methods on a leave-two-out cross-validation strategy by using 23 subjects

for training the model and 2 subjects (1 from CON and 1 from EXE) for validating

the model performance on unseen data. Initially, we compared the proposed CNN
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architectures to random forests (RF) [18] and support vector machines (SVM) [152]

given the same input data. The proposed CNN with a subject adversary component

clearly outperformed RF and SVM (Table 3.1). A feature importance analysis showed

that RF was unable to account for the pink noise characteristics of EEG in the

frequency domain [44] and therefore assigned more importance to lower frequencies.

To control for this, the data were normalized by multiplying power in each frequency

bin by the frequency value itself before being fed to the RF but this did not yield

significant improvement.

Subsequently, the data were binned into pre-specified frequency bins, as done

widely in EEG decoding techniques [11], and used as input in a RF. Although this

improved the RF prediction performance, the resulting RF prediction accuracy was

lower than the obtained CNN prediction accuracy (Table 3.1). Interestingly, the RF

prediction accuracy was very similar to an adversary-less CNN. We also compared

the performance using the common spatial pattern technique, which is widely used

in EEG decoding for brain-computer interfaces [6]. However, the prediction accuracy

was far below the CNN prediction accuracy. Overall, these results imply that the

CNN architecture with subject adversary was able to generalize better across subjects

compared to the alternative, widely used EEG decoding methods. The CNN leave-

two-out prediction accuracy was equal to 65.4%. The summary of the results is

presented in Table 3.1.

3.5.2 Time-Frequency maps

We observed that the features extracted by the Base CNN, without any subject

prediction regularizer, were able to perfectly identify the subject corresponding from
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Table 3.1: Comparison of CNN performance with alternative machine learning meth-
ods

Method Average validation
accuracy over 10 folds

Random Forests 58.94 %
Random Forests with frequency bands 60.13 %
Random Forests with Common Spatial

Patterns
45.94 %

CNN without baseline normalization
architecture

56.59 %

CNN without subject adversary 60 %
CNN with subject adversary 65.4 %

the obtained time-frequency patterns. As the subject discriminator regularization

was given more weight by increasing λ, the Base CNN learned to extract features

that were agnostic to the originating subject. However, for very high λ values, the

extracted features could not be used to discriminate the EXE and CON groups,

suggesting that the Base CNN was unable to learn any discriminative feature. The

loss values obtained post-training for four different values of λ are shown in Table

3.2. The choice of an optimal value for λ depends on two factors – group prediction

accuracy and subject prediction accuracy. To identify subject-invariant features, we

sought for a value of λ that achieved good group prediction accuracy and poor subject

prediction accuracy (i.e., a good tradeoff between the two prediction accuracies).

According to this procedure, the model corresponding to λ = 13 was used for the

ccCAM generation. The average loss over a batch for subject prediction was around

2.6 (Table 3.2), which roughly predicted the correct subject with probability of 1
13

(Since −log( 1
13

) ≈ 2.6). The group prediction accuracy was 99.984% (99.969% for

CON and 100% for EXE) when evaluated using a train-test split strategy following
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Table 3.2: Variation of Loss values with λ after training network on TF maps.
λ Group prediction

loss (NLL)
Subject prediction

loss (NLL)
KL divergence loss

from Uniform
distribtion

0 ≈ 0 ≈ 0 ≈ 0.3
10 ≈ 0.1 ≈ 1.5 ≈ 0.07
13 ≈ 0.4 ≈ 2.6 ≈ 0.004
15 ≈ 0.68 ≈ 3.2 ≈ 0.0002

80-20 split of all timepoints from all subjects. Since we aimed to obtain a model

that best explained the recorded EEG data, we focused on timepoint-level accuracy,

instead of subject-level accuracy as before (Table 3.1). Therefore, we trained on 80%

of timepoints from all subjects and validated the model performance on 20% unseen

timepoints from all subjects. For λ = 13, the extracted features achieved excellent

group prediction, while all subjects in the group were predicted with roughly equal

probability (CON and EXE consisted of 13 and 12 subjects respectively).

As one of the main goals of this study was to identify the frequency bands

that contained significant discriminative information between the CON and EXE

groups, we calculated the BSR of the CAM values for each frequency bin as described

above. The difference obtained using ccCAM BSRs is shown in Figure 3.4. The bold

lines denote the group-mean and the shaded regions span 1 standard error over all

subjects in the group. The two plots are significantly different within the band

23–33 Hz. A statistical significance analysis between the two curves with Simes

correction revealed that the band 27–29 Hz lies below the significance threshold of

0.05. The uncorrected and corrected p-values for each frequency bin are shown in

Figure 3.4. The aforementioned band lies within the beta-band and agrees with

33



findings in [35], where beta-band desynchronization was found to be significantly

modulated by exercise. Note that Figure 3.4 corresponds to the differences between

the 90min and baseline EEG recordings. In addition, the features extracted by the

CNN were found to be strongly correlated to the motor skill retention improvement

between the 8 hr and 24 hr session (Figure 3.5).

The CNN was trained to classify the EXE and CON groups given the baseline

EEG and 90 min post-exercise EEG recordings. To observe how the discriminative

features evolved over time (30 min and 60 min post-exercise), we used the t-SNE

algorithm [106] to obtain a lower dimensional (2D) representation of the feature

vectors extracted by the trained CNN for all sessions and subjects. Figure 3.6 shows

the corresponding plot with each point representing one session from one subject,

color-coded with respect to session and group. The differences between the features

extracted from the 90 min post-exercise and baseline sessions were more pronounced

as compared to the EXE group as compared to the CON group. Also, the difference

between the two groups becomes prominent from the 30 min post-exercise session

itself, with the feature trajectories being considerably different for the two groups.

3.5.3 Topographical Maps

Topographical maps were created to study the distribution of the activity within

the 23–33 Hz frequency band across the cortex. Since we used a convolutional filter

of size 5 in the BaseCNN for TF-maps, we selected the wider 23–33 Hz instead of the

finer 27–29 Hz band, and projected this band-limited activity on the cortex to obtain

topographical maps. After training a network to classify the CON and EXE groups

from the resulting topographical maps, a classification accuracy of 98.70% (98.94%
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for CON and 98.43% for EXE) was obtained for λ = 5. Generating ccCAMs for

the topographical maps revealed brain areas where the activity was notably different

between the CON and EXE groups. The BSR values were obtained to estimate the

reliability as in the case of TF maps and the results are shown in Figure 3.7. Statis-

tical analysis to highlight areas with significantly different activity within the 23–33

Hz band is shown in Figure 3.7. Notable areas that exhibited significant differences

include the contralateral and ipsilateral sensorimotor areas, the contralateral pre-

frontal area and the occipital areas. The observed differences in occipital areas are

not surprising as the occipital cortex is primarily responsible for visual information

processing and the task under consideration is a visuomotor task. Therefore, these

differences could also highlight a change in functional connectivity between the sen-

sorimotor and occipital cortices. Findings in sensorimotor and prefrontal areas are

in strong agreement with those reported in Dal Maso et al. and therefore suggest

that the proposed method was able to identify the modulatory effect of exercise [35].

In addition, the topographical features extracted by the CNN were strongly corre-

lated to the motor skill retention improvement between the 8 hr and 24 hr sessions

(Figure 3.8), indicating a possible association of these features to the observed motor

learning improvements in the EXE group [35].

3.6 Discussion

In the present work, we used a novel DL approach to investigate the effects

of acute cardiovascular exercise on brain activity during the early stages of motor

memory consolidation while subjects performed isometric handgrips. The proposed

methodological approach does not require the specification of a priori features and
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included a novel feature visualization technique to highlight the neurophysiological

patterns modulated by exercise. Our approach addressed existing caveats related to

the application of DL architectures, such as CNNs, to EEG data recorded from a

relatively small number of subjects by means of three novel contributions:

1. We used two parallel feature extraction streams to identify informative features

from EEG data before and after a session of cardiovascular exercise and subse-

quently characterize the modulatory effect on these baseline-corrected features

rather than on the raw EEG data;

2. We incorporated a subject prediction adversary component in the network ar-

chitecture to learn subject-invariant, group-related features instead of subject-

specific features;

3. We developed a novel feature visualization method, termed cue-combination

for Class Activation Map (ccCAM).

Previous studies using DL in the context of structural and functional neuroimag-

ing [12, 123, 140, 164] have been primarily restricted to classification tasks and have

relied on a large cohort of subjects for training. The interpretation of the results ob-

tained from these studies and their usefulness for investigating neuroscientific ques-

tions has been less straightforward, primarily due to the difficulty associated with

the visualization and interpretation of the feature space learned by the employed DL

architectures. Schirrmeister et al. proposed a feature validation approach to under-

stand which a priori selected features were given importance by a CNN that was

trained to decode imagined or executed tasks from raw EEG [140]. Specifically, their

method relied on calculating correlations between the output of each unit or layer of
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the network and EEG power in specific frequency bands. This allowed them to verify

if the network used the power in a priori decided frequency bands for its predictions.

Additional studies involving CNNs for EEG decoding have extended the deep dream

algorithm [107, 108] for identifying discriminative features in EEG time segments

[125]. However, this algorithm was found to be sensitive to the scale of features and

therefore may not be applicable to a diverse range of neuroimaging studies. The

proposed ccCAM methodology is a feature discovery technique that is less sensitive

to the feature scale and thereby allows extending the applicability of CNNs beyond

classification tasks. Furthermore, our study introduced a novel adversary component

to prevent the CNN from exclusively learning subject-specific features. This allowed

the DL pipeline to learn group-specific features from the EEG data and therefore

improved the generalizability of the CNN from a limited cohort size. Overall, to

the best of our knowledge, our study is the first to investigate neuroscience-based

questions, specifically related to motor learning, from a limited cohort size using a

DL approach.

Our analysis using CNNs outperformed alternative machine learning and EEG

decoding methods with regards to differentiating between previously unseen EXE

and CON subjects, thus indicating the improved generalization properties of the

proposed method. The proposed ccCAM method was able to identify a finer fre-

quency band (27–29 Hz) that was modulated by exercise, as opposed to the entire

beta band reported in [35], without using any prior knowledge. Applying ccCAM

to the topographical patterns of the electrophysiological activity between 23–33 Hz

revealed the specific brain areas (the contralateral and ipsilateral sensorimotor areas,
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contralateral prefrontal area and occipital areas) that were mostly impacted by exer-

cise in agreement to previous studies [35]. Correlation analysis between the extracted

features and the motor learning scores yielded further evidence that these features

are plausible neurophysiological substrates underlying the positive effects of exercise

on motor learning.

3.6.1 Comparison to alternative EEG decoding methods

A comparison of the proposed DL pipeline to alternative machine learning meth-

ods, such as RF showed that it yielded improved generalization performance to un-

seen subjects (Table 3.1). In turn, this suggests that the DL pipeline was able to

learn features that were specific to the exercise intervention. Specifically, the per-

formance of RF was close to that of CNNs without an adversary. This suggests the

importance of the adversary component in learning subject-invariant, group-specific

features. A feature importance analysis for the RF models indicated that higher im-

portance was assigned to features corresponding to lower frequency bands, which are

more generally associated with cognitive behaviors [78]. Therefore, the absence of

an adversary component possibly caused the examined machine learning models to

assign higher importance scores to these subject-specific features, which were more

likely reflective of the cognitive state of the subject while performing the task. In

turn, this may explain their more limited generalizability to unseen subjects.

The CNN leave-two-out prediction accuracy was equal to 65.4%, which was

lower compared to the accuracy achieved by CNNs in computer vision or motor

imagery EEG datasets [140]. We believe that the main reason for this is the number of

subjects and that adding more subjects would yield improved accuracy. Furthermore,
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we did not compare the classification accuracy of CNN architectures that have been

popularly used for EEG decoding because those networks were designed specifically

for raw time-series data [97, 140]. The main focus of our work was to train a CNN

that could discriminate the two groups from their spectral EEG patterns before and

after an exercise session.

3.6.2 Time-Frequency maps

The ccCAM approach was able to identify the frequency bands that were sig-

nificantly different in terms of ERD patterns between the EXE and CON groups

(Figure 3.4). Specifically, the frequency band between 27–29 Hz, which is a subset of

the wider beta band (15–29 Hz) typically used in previous studies related to motor

activity-associated ERD, yielded the most significant differences. This finding is in

agreement with [35] and implies that decreased neural excitability was needed to

perform the handgrip task after exercise. The p-value calculated from the obtained

time-frequency data within the 27–29 Hz frequency band was equal to 0.0044. This

suggests that if the band of interest in [35] had been chosen to be 27–29 Hz, instead

of the entire beta-band (15–29 Hz), similar statistically significant results would have

been obtained. The standard error values in the ccCAM reliability plots (Figure 3.4)

indicate that the frequency band modulated is variable among subjects. Overall, the

proposed DL-based analysis was able to identify a narrower frequency band mod-

ulated by exercise without using any prior knowledge. This finding has particular

importance for the development of targeted interventions, such as non-invasive stim-

ulation protocols, whereby it is desirable to modulate the frequency band of interest

without interfering with other frequencies.
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The trajectory of the extracted features was significantly different for the CON

and EXE groups (Figure 3.6), indicating that the effects of exercise were observable

during the consolidation period. However, it cannot be concluded from these results

whether these changes are short- or long-term. Measuring the brain activity of the

subjects at a later timepoint (e.g. 24 hours later) may reveal further insights about

the evolutionary patterns of exercise-induced changes during the retention period.

An important goal of the present study was to identify whether there was an

association between the identified brain features and the learning scores of each

subject. The features indeed were found to be strongly correlated to the motor

learning improvement assessed by the difference between the skill retention scores at

8 and 24 hours after motor practice (Figure 3.5). As reported by Dal Maso et al.

[35], these effects probably indicate the effect of sleep on motor memory consolidation

[83]. This strongly suggests that the features extracted by the CNN corresponded

to exercise-induced changes while carrying predictive information about the subjects

motor skill retention abilities following a period of sleep.

3.6.3 Topographical Maps

The distribution of the discriminatory 23–33 Hz band power across the brain

was found to be localized instead of being widespread across the brain (Figure 3.7),

suggesting that activity in specific brain regions was modulated by exercise. Notable

areas with differential activity included the contralateral and ipsilateral sensorimotor

areas, contralateral prefrontal area and occipital areas. These results are in strong

agreement with the inferences drawn in [35]. Interestingly, the analysis pipeline em-

ployed in the present work uncovered the areas that were differentially activated in
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the two groups, whereas the same inferences required the use of 3 different met-

rics in the standard analysis performed by Dal Maso et al. Specifically, in [35] the

differences in ERD were observed in the sensorimotor areas, differential functional

connectivity was observed among the sensorimotor and occipital areas and the ERD

in contralateral prefrontal area electrode activity was shown to have strong correla-

tions to motor score. In comparison, using only the ERD values from the baseline

and post-exercise sessions, the proposed DL approach was able to identify the brain

regions modulated by exercise without any a priori knowledge.

Similar to what was reported in Dal Maso et al., we found reduced ERD in

the sensorimotor areas as well as the contralateral prefrontal area, suggesting a more

efficient use of neural substrates involved in motor memory consolidation [175]. Con-

sequently, these results indicated that after exercise, reduced neural excitability in

these areas was required to perform the fixed force handgrip task. As discussed in Dal

Maso et al., the observed decrease in ERD could also be indicative of a reduction in

gamma-aminobutyric acid (GABA) inhibitory activity due to exercise [148]. Given

that the task was a visuomotor one, we also expected changes in the visual areas. Dal

Maso et al. reported these changes by using functional connectivity analysis within

the beta band. However, using a finer band revealed ERD changes in these areas

and these could be indicative of changes in visual attention activity and perception.

The range of beta band activity commonly used in visual studies is 15–25 Hz and

is thought to be a carrier for visual attention, whereas gamma band (30–60 Hz) ac-

tivity is thought to be responsible for visual synchronization and perception [182].

Interestingly, the range of frequencies uncovered by our analysis included high beta
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activity and low gamma activity. Therefore, the proposed DL pipeline highlighted

a modulation of these properties by a session of exercise. As we used a visuomotor

task, it is difficult to delineate the modulation effects in visual areas from motor

areas and thereby draw conclusive inferences about findings in visual areas. The

significantly different activity in the prefrontal area aligns well with prior literature

demonstrating the role of the dorsolateral prefrontal cortex in motor memory con-

solidation [56]. Therefore, it is plausible that acute cardiovascular exercise promotes

the efficient distribution of neural resources in the prefrontal area [41], thus reducing

neural demands of cognitive processes that underlie the consolidation of motor mem-

ory. Interestingly, the CNN-extracted topographical features are well correlated to

motor learning improvement measured after a period of sleep (Figure 3.8), i.e. once

the memory has been well consolidated [131]. Taken together, the identified features

are indicative of the resultant consolidated memory and not necessarily behavior

during the memory consolidation period.

The presented results provide observational evidence for the extracted features

to be considered as candidate neurophysiological substrates underlying motor mem-

ory consolidation. As argued by Tonegawa et al. [167], observational studies demon-

strate a correlation between specific neural activity and behavior and therefore act as

preliminary evidence for establishing causality. Future studies need to target loss-of-

function and gain-of-function experiments to establish a causation link between neu-

rophysiological mechanisms and motor memory consolidation. The proposed method

achieved the identification of more specific, narrower frequency band activity mod-

ulated by cardiovascular exercise that was unique to each subject. To establish a
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stronger causal link between frequency band-related ERD and the positive effects

of exercise, future studies could modulate activity in these subject-specific bands by

non-invasive electrical stimulation techniques and subsequently assess motor learning

behavior. Our analysis pipeline also has clinical relevance as it could potentially be

used to estimate the efficacy of rehabilitation strategies for individual subjects, e.g.

stroke patients. Neurophysiological features modulated by the intervention could

be extracted using the presented DL pipeline and subsequently used to obtain im-

provements in performance. Therefore, the proposed methodology yields significant

potential for designing of patient-specific neurorehabilitation therapies that can sig-

nificantly improve upon a one-size-fits-all approach.

3.6.4 Limitations

A major limitation of the CNN-based approach lies in computational demands.

CNNs require more time and specialized hardware, namely GPUs, to train. In our

case, CNNs were trained on a GeForce GTX 960 and required around 7 hours to

train. The training demands and consequently required time would increase with

more subjects. Therefore, the operational cost of using the presented methodology

is expected to be higher as compared to alternative state-of-art methods.

3.7 Conclusion

The present work introduces a deep learning architecture for the analysis of

EEG data and shows promising results in terms of discriminating the effects of an

acute bout of high-intensity exercise/rest in close temporal proximity to performing

a motor learning task on the brain activity of participants. The proposed approach

outperformed alternative machine learning methods in terms of the classification of
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CON and EXE subjects. Importantly, it also enabled us to visualize the features

learned by deep networks such as CNNs, which may in turn yield better feature in-

terpretation. The results are in general agreement with those reported in a previous

study using standard statistical analysis using a priori selected features on the same

dataset [35], with our analysis revealing a narrower, more specific frequency band

associated with exercise-induced changes. In addition, our method revealed local-

ized regions of the differential activity. Therefore, our approach demonstrates the

feasibility of identifying subtle discriminative features in a completely data-driven

manner using deep learning.

The proposed method is not restricted to the EEG modality and dataset de-

scribed here. Hence, it paves the way for applying similar methods to other neu-

roimaging datasets of differing cohort sizes. This, in turn, yields promise for using

deep learning as a tool towards the identification of neurophysiological changes as-

sociated with a variety of neurological disorders and ultimately lead to the design of

optimized and individualized intervention strategies.
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(a) Bootstrap ratio of TF map ccCAM averaged over electrodes & subjects showing
discriminative frequencies. Bootstrapping is done using ccCAM values obtained for
each timepoint to establish the reliability of the ccCAM values during the task period.
The two groups exhibited different BSRs within the range 23–33 Hz.

(b) Uncorrected and Simes corrected p-values corresponding to the difference between the boot-
strapped ratio (BSR) values of the ccCAM TF maps obtained in CON and EXE groups. The
difference in the BSR values between 27–29 Hz was found to be statistically significant (p <0.05).

Figure 3.4: TF map ccCAM averaged over electrodes & subjects showing discrimi-
native frequencies.
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Scatter plot of Retention Motor Scores (24hr - 8hr) vs Extracted feature #8

Figure 3.5: Scatter plot showing the motor skill retention improvement and a repre-
sentative feature extracted by the final layer of CNN (Layer 3 of TopNN) from TF
maps. The dotted line shows a linear fit between the two variables. The extracted
feature is strongly correlated to the motor skill retention (correlation coefficient =
-0.57).
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Figure 3.6: t-SNE plot of Top NN Layer 3 outputs (time-averaged) for the TF maps
for all subjects and sessions. The EXE subjects (circles) move further away from
baseline with time compared to the CON group (crosses), indicating exercise-induced
changes on the underlying electrophysiological signals. Also, the feature trajectories
across time are very different for the two groups starting from the 30 min session,
which indicates that exercise-induced changes surface right after the session of acute
exercise.
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(a) Bootstrapped ratio of the topographical map of ccCAM values averaged over
subjects in the CON and EXE groups showing regions with difference in activity
before and 90min after rest/exercise. Bootstrapping was performed using ccCAM
values obtained for each timepoint to establish the reliability of the ccCAM values
during the task period.

(b) Topographical maps of significantly different ccCAM bootstrapped ratio values
between the CON and EXE groups. Instead of p-values, −log(p) is color coded to
delineate significant regions (yellow) more clearly. Non-significant regions are shown
in blue. Significantly different activity was observed over the sensorimotor, occipital
and frontal areas.

Figure 3.7: Topographical map ccCAM averaged over subjects showing brain areas
with discriminative activity.
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Scatter plot of Retention Motor Scores (24hr - 8hr) vs Extracted feature #1

Figure 3.8: Scatter plot showing the motor skill retention improvement and a rep-
resentative feature extracted by the final layer of CNN (Layer 3 of TopNN) from
topographical maps. The dotted line shows a linear fit between the two variables.
The extracted feature is strongly correlated to the motor skill retention (correlation
coefficient = -0.53).
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CHAPTER 4
BRAIN AGE PREDICTION

4.1 Abstract

The human brain changes with age and these age-related changes are known to

act as biomarkers for several brain-related disorders. The prediction of brain age

from T1-weighted MRI images therefore presents the scope for clinical applications.

This study presents various analysis techniques involving dimensionality reduction

techniques and regression models for prediction of brain age. Although Principal

component analysis (PCA) degrades prediction performance, Canonical correlation

analysis (CCA) enhances it when used along with Gaussian Process regression mod-

els. This combination proves to be the most accurate model for predicting brain

age in the CAM-CAN dataset. The analysis also includes exploring the contribution

of each brain region in determining the component that maximally covaries with

brain age by using the CCA loading values. In agreement with previous studies, the

loading values indicate brain atrophy all throughout the brain with strongest effect

in grey matter of subcortical regions and corpus callosum fibre tracts. The analysis

This work is to be submitted as:
Xifra-Porxas A*, Ghosh A*, Mitsis GD, Boudrias MH. Combining structural MRI
images and MEG recordings for Biological brain age prediction.
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pipeline also reveals the contribution of the cerebellum and therefore inspires future

studies to investigate these areas.

4.2 Introduction

The human brain is known to change across the adult lifespan. The process

of Brain aging underlies the gradual decline in cognitive performance. Although

aging-induced changes are not necessarily pathological, the risk of developing neu-

rodegenerative disorders increases with increasing age [1]. The wide range of age-

associated brain disorders indicates that the effect of aging on the brain structure

and function vary greatly among individuals. In fact, diseases such as Alzheimer’s

and Schizophrenia are thought to be the results of processes associated with accel-

erated brain aging [87, 149]. Therefore, a better understanding of brain aging as

well as better ways to identify biomarkers of healthy aging carrying vital importance

will contribute to improve the detection of early-stage neurodegeneration and predict

age-related cognitive decline.

One promising approach to identify individual differences in brain aging relies

on the use of neuroimaging data to accurately predict the chronological or biologi-

cal age of healthy individuals. In that context, machine learning techniques (ML)

have proven to be a promising tool to ‘learn’ correspondence between patterns in

the structural or functional brain features and the age label [43, 53]. ML models

can formulate high-dimensional regression boundaries, with features derived from

neuroimaging data as input variables to predict the biological age. When these mod-

els are trained on large training datasets with a large number of subjects, they can
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generalize sufficiently well on unseen or ‘novel’ subjects. This provides the oppor-

tunity to deploy ML models at the population level and use the predicted age as a

biomarker of the brain aging process.

Most studies have explored the use of ML on data obtained from neuroimaging

techniques to quantify atypical brain development in diseased populations. A com-

mon practice entails training a ML-based prediction model on healthy subjects and

subsequently using it to predict brain age in clinical samples, e.g. in the context of

Alzheimer’s population. In this context, if the brain-predicted age is greater than

the reported chronological age for an individual, it is thought to be an indicator

of aberrant accumulation of age-related changes to the brain. The degree of these

atypical age-related brain changes has been more frequently quantified by subtract-

ing chronological age from brain-predicted age. This approach has been applied in

the case of several brain-related disorders including Alzheimer’s [51, 58], traumatic

brain injury [28], schizophrenia [89, 141], HIV [31], epilepsy [119], Down’s syndrome

[27] and diabetes [52]. Interestingly, the utility of predicting brain-age has also been

extended beyond understanding neurological disorders. For instance, studies have

reported a positive influence of meditation [105] and increased education and phys-

ical exercise [151] on the brain age. Recent work has also shown a relationship

between the brain-predicted age difference and specific cognitive functions, namely

visual attention, cognitive flexibility, and semantic verbal fluency [17].

The studies mentioned above have mainly focused on predicting the brain age

based on structural Magnetic Resonance images (MRI), with most studies using T1-

weighted MR images. This is due to the fact that large MR-based open datasets

52



are available, which has allowed researchers to train and validate their models on

a large number of subjects. However, it is well known from the aging literature

that in addition to structural alterations, changes in brain functional connectivity,

described as the similarity between activity in two brain regions, are also closely

related to cognitive aging [95]. In line with this, some studies have used ML to

predict brain age from functional MRI (fMRI) data, specifically on fMRI-derived

connectivity matrices [43, 100, 102, 177]. Few studies have also looked at changes in

the functional signatures of the brain as captured by EEG, a modality that offers good

temporal resolution, and subsequently build a brain age prediction model based on

the temporal and spectral information of brain activity [4, 157]. A detailed overview

of different neuroimaging modalities and ML methods that have been used to predict

the brain age is presented in [26]. However, the aforementioned studies investigate

the age-related structural and functional brain changes in isolation. In this study,

we aimed to combine both structural and functional information to predict the brain

age in a cohort of healthy subjects.

Going Beyond Prediction

Brain-age prediction methods have been primarily based on ML [20, 54, 121,

176, 185]. However, it is important from a neuroscience point-of-view to understand

the underlying factors influencing these predictions. In addition to this, a major

roadblock to clinical applications of ML models is their explainability and reliability

[93]. As argued by Kriegeskorte et al., decoding models can reveal the presence of

information in fine-grained multivariate information [90]. The authors highlighted
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the difficulties and confounds associated with interpreting weights in a linear decod-

ing model and consequently suggest the use of multivariate techniques to identify

the informative predictors. Based on these inferences, we sought to improve the

explainability of some of the previously used ML models by applying correlative

multivariate statistical methods. Specifically, we wanted to focus on dimensionality

reduction techniques to identify neuroimaging features that significantly contributed

to the performance of regression models like Gaussian Process Regressors [127].

Including Topology to improve prediction

Previous works have used neuroimaging features from different brain regions as

independent features to predict the age using ML algorithms. However, these meth-

ods do not incorporate the underlying topology of the data, such as the neighborhood

information of each voxel or information about the functionally connected regions.

More recent work has focused on using Convolutional Neural Networks (CNN) for

MR images [29, 69, 79] or functional connectivity patterns [100, 170] from fMRI

data to capture the spatial topology of the data. However, the functional topology

information has not yet been used for brain age prediction.

A functional connectivity matrix represents a graph structure arrangement of

the regions of the brain. Therefore, directly using CNN with input as the matrices

could lead to misleading conclusions. CNN is designed to capture the topology in

Euclidean spaces. On the contrary, a graph is inherently a non-Euclidean structure.

This has led to modifications in the CNN structure to capture the graph neighbor-

hood of each region and using that information to predict the age of preterm infants
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[82]. Although some recent work has focused on using graph-theory measures com-

bined with ML techniques to predict brain age [42], none so far have explored the

neighborhood information present in the graph structure. Therefore, in this study,

we focused on the use of deep learning techniques to ‘learn’ the optimal features by

utilizing the graph topology information. We explored the utility of Graph Convo-

lutional Networks (GCN) [86] for age prediction. The GCN framework allows for

graph nodes to have their respective features and afterward transforms these fea-

tures by taking into account the graph topology. We developed a GCN framework

to combine both structural and functional features of the cortical regions to pre-

dict the brain age. To investigate the functional brain changes, we relied on MEG

to obtain a better temporal and spatial resolution of brain activity as compared to

EEG. Specifically, we used the MEG-derived functional connectivity information to

form the graph structure of the brain for each subject and used the electrophysiolog-

ical and structural features of each brain region as features for the graph nodes. In

this work, we aim to explore the role of the functional topology of the brain in age

prediction using GCN for MEG-derived functional connectivity information.

4.3 Methods

4.3.1 Dataset

We used the open-access dataset from Cambridge Center for Aging Neuroscience

(CAM-CAN) [145, 162], from which we used the T1-weighted MRI and the rest-

ing state data acquired with MEG. Briefly, the dataset consisted of 652 subjects

(male/female = 322/330, mean age = 54.3 ± 18.6, age range 18-88 years). The MR

images were acquired from a 3 T Siemens TIM Trio scanner with a 32-channel head
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coil. The images were acquired using a MPRAGE sequence with TR = 2250 ms,

TE = 2.99 ms, Flip angle = 9◦, Field of View = 256 × 240 × 192 mm3 and voxel

size = 1× 1× 1 mm3. The resting-state MEG data were recorded for 9 min using a

306-channel Elekta Neuromag Vectorview (102 magnetometers and 204 planar gra-

diometers) at a sampling rate of 1kHz. Shafto et al. and Taylor et al. present a

detailed description of the dataset and the data acquisition protocols [145, 162].

4.3.2 Neuroimaging Data processing

Figure 4.1: Feature Extraction pipeline for MRI and MEG data

A summary of the entire feature extraction process is presented in Fig. 4.1.

The processing of T1-weighted MR images followed the pipeline presented in Cole

et al. [29] and was implemented in FSL [77]. Briefly, all images were registered to

the MNI152 space (2mm resolution) by using the brain extraction pipeline followed

by a non-linear spatial transformation. Next, we segmented the images into Grey

Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF). The GM maps

were further segmented into cortical and subcortical regions to delineate the effects

of aging on these regions. The resultant images were vectorized and subsequently
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z-scored to obtain a feature vector for each subject. This process resulted in a feature

matrix where each row consists of normalized feature maps for a single subject.

For the MEG data, we first convert the data from sensor space to the source

space using the Linearly Constrained Minimum Variance Beamformer technique [173,

174]. The sources were constrained to the cortical regions of the brain. Further, we

parcellated the cortex into 148 parcels using the Destrieux atlas [40]. For each of

the cortical parcels, the power spectrum density (PSD) for the entire resting state

was calculated for 7 frequency bands, namely Delta (2–4 Hz), Theta (5–7 Hz), lower

Alpha (8–10 Hz), higher Alpha (11-13 Hz), lower Beta (15–25 Hz), higher Beta (26–

35 Hz), and Gamma (36–48 Hz). In addition to the PSD features, amplitude envelope

correlation in each frequency band was used to estimate the functional connectivity

relationship among cortical parcels. Thus, we had a functional connectivity matrix

for each of the 5 frequency bands – Delta, Theta, Alpha (8–13 Hz), Beta (15–35

Hz) and Gamma. Inter-layer Coupling (ILC) was calculated from the functional

connectivity matrices to estimate the similarity of the connectivity profile across

frequency bands [163]. This feature extraction process is summarized in Fig. 4.1.

Some subjects were removed during this process due to unsatisfactory preprocessing

results. Therefore, we had a pruned dataset with 612 subjects.

4.3.3 Gaussian Process Regression

Gaussian Process regression (GPR) has been widely used in predicting chrono-

logical age from T1-MRI data [27, 28, 29, 30, 31]. The GP approach, which is a

non-parametric approach, finds a distribution over possible functions that are con-

sistent with the data. The main assumption underlying GPs is that any finite subset
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of the available data must follow a multivariate Gaussian distribution. The prior

belief about the relationship between variables is decided by the definition of these

multivariate Gaussian distributions to generate a model that represents the observed

variance in the available data. Multivariate Gaussian distributions can reflect local

patterns of covariance between individual data points. Therefore, a combination of

multiple such distributions in a GP can model non-linear relationships and is more

flexible than conventional parametric models, which rely on fitting global models.

In this work, GPs were used to predict age from neuroimaging data, which was a

regression problem.

4.3.4 Similarity metric

The GPR method was implemented using the scikit-learn toolbox [120] in Python.

The feature vectors obtained were input to the GPR model for training. We used

a k-fold cross-validation strategy, and each random split of the dataset consisted of

500 subjects in the training set and the rest in the validation or testing set. Fol-

lowing [29], we represented the data as a N × N similarity matrix (N being the

number of subjects in training set). The similarity between any two subjects was

calculated using the dot product of their corresponding feature vectors. We also

tried a different similarity metric, namely the cosine similarity, but it yielded com-

parable performance. Therefore, each subject was represented as a 500-length vector

containing similarity values corresponding to each of the 500 training subjects. The

model performance was evaluated using mean absolute error (MAE) and coefficient

of determination (R2) of the prediction, using 20-fold cross-validation.
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We also compared the performance of GPRs with Support Vector Regression

(SVR) models [10], which are more commonly used in the machine learning literature

for regression problems. We observed that GPR outperformed SVR. Therefore, GPR

was chosen to be the regression model for all further analyses.

However, the use of a similarity metric entails the following issues:

1. The training set needs to have enough subjects to sample the spectrum of

healthy aging completely

2. The predictions are based on how similar a test subject is to each of the training

subjects. Thus it is difficult to visualize the neuroimaging features that guide

the brain age prediction

To avert the issues mentioned above, we used dimensionality reduction tech-

niques. Specifically, we used Principal Component Analysis (PCA) and Canonical

Correlation Analysis (CCA) to identify the features that contribute to age prediction.

4.3.5 Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique using Singular Value De-

composition of the data to project it to a lower dimensional space [80]. It is widely

used to decompose a multivariate dataset in a set of successive orthogonal compo-

nents that explain the maximum amount of the variance. The principal components

obtained from this analysis correspond to the maximal modes of variation and hence

correspond to the most prominently changing features in the dataset. Often, the

number of principal components to be used is decided using the knee rule. We used

PCA to project the feature matrix to a lower dimensional space and subsequently

predict the age using a GPR model.
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4.3.6 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is another dimensionality reduction tech-

nique that finds latent variables to model the covariance in input and output variables

[165]. Like PCA, CCA is also a linear dimensionality reduction technique but uses

Singular Value Decomposition of the covariance matrix instead of the input variance

matrix.

In the present problem scenario, the inputs are the neuroimaging feature matrix

and the brain age vector. Therefore, CCA should retrieve a linear combination of the

neuroimaging features that are maximally correlated to the brain age. We used CCA

to project the feature vector along this direction and subsequently use the projection

values to predict brain age using GPR. Like previous analysis cases, the performance

is judged using the MAE and R2 values following 20-fold cross-validation.

Figure 4.2: Figure illustrating the calculation of loadings and Bootstrapped ratio
(BSR) of loadings from a CCA model

CCA also yields a loading vector that specifies the contribution of each feature

to the CCA component. We used these loading values to estimate the contribution
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of each feature to the brain age prediction and thereby understand which regions of

the brain exhibit maximal age-related changes. To estimate the reliability of these

loading values, we used the bootstrapped ratio by repeating the CCA analysis for

1000 bootstrapped samples of the dataset chosen at random with replacement [46,

111, 112]. The bootstrapped ratio (BSR) of the loading values indicates which areas

reliably contribute to the brain age prediction, thus increasing the overall reliability

of the prediction systems. The schematic for generating the BSR of loadings values

is illustrated in Fig. 4.2.

4.3.7 Rich Club Organization

Another aim of the study was to include topology to improve prediction. To

do so, we focused on exploiting the functional topology of the brain. The functional

connectivity matrix in each frequency band of the MEG data yielded a graph topol-

ogy of the cortical regions. Therefore, we created a graph for each subject and each

frequency band where the nodes would correspond to the cortical parcels, and the

edge weights would be the connectivity values in the respective frequency band. To

obtain a sparsely connected graph, we binarized the connectivity matrix to have the

top 5 percent weights for each subject and frequency band. Hence, each graph had

a connectivity density of 5 percent.

To observe if the graph topology changes with age, we calculated the rich club

coefficients for each functional graph [171]. Rich-clubs are known to be variations

of small world network organization, with disproportionately dense interconnections

and different topological properties [113, 171]. The rich-clubs in the brain effec-

tively define the top-level structure of the brain and enable effective communication
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throughout the brain. Therefore, we wanted to observe if the graph topology re-

mained stable with aging or if it showed significant changes in its “rich-clubness”.

Consequently, we calculated the rich-club coefficients of the binary graphs following

[171] and subsequently obtained normalized rich-club coefficients using the HQS-

normalization [187].

We compared the rich-club coefficients as a function of node degree across dif-

ferent age groups. The entire dataset of 612 subjects was ordered in increasing order

of age and then divided into six age groups, consisting of 102 subjects each. Apart

from the rich-club coefficients, we also compared the distribution of node degrees and

shortest path length across age groups for binary graphs of each frequency band.

4.3.8 Graph Convolutional Networks (GCN)

A key challenge from a machine learning perspective is to encode the high-

dimensional, non-Euclidean information about the graph structure into a feature

vector. Traditional machine learning approaches have relied on summary graph

statistics (e.g. degrees or clustering coefficients) [15], kernel functions [180] or hand-

crafted features to measure local neighbourhood structures [101]. However, these

approaches are limited because the features used are inflexible. Specifically, they

cannot adapt during the learning process, and designing these features can be a time-

consuming process requiring domain-specific knowledge. In contrast, representation

learning approaches aim to learn node embeddings that encode graph structure.

GCN, a recent development in the deep learning literature, is a type of represen-

tation learning approach that uses shared parameters between nodes and leverages

62



Figure 4.3: An overview of the embedding generation process in a 2-layer GCN. To
generate an embedding for node A, the model aggregates messages from As local
graph neighbors (i.e., B, C, and D), and in turn, the messages coming from these
neighbors are based on information aggregated from their respective neighborhoods,
and so on. The boxes next to the nodes represent their embedding vectors. Darker
color indicates a higher level of embedding generated by the GCN. Figure modified
from [65].

node attributes during the embedding generation process. An overview of the embed-

ding generation process is shown in Fig. 4.3. Depending on the type of aggregator

function used to incorporate the neighborhood information, the GCN model can

learn different information from the local graph neighborhood that aids end-to-end

learning. Two types of aggregator functions that are commonly used are the mean

aggregator and the pooling aggregator functions. GCN uses the mean aggregator

[86] whereas a variant of GCN, namely the GraphSAGE, uses the pooling aggregator

[64]. The two aggregator functions and their implications on the learning paradigm

are discussed in detail in [64].

For this work, we combined the functional and structural features and used

GCNs to predict age. As mentioned before, each subject had a distinct graph for

each frequency band wherein each node of the graph represented a cortical parcel.

63



We used the PSD features, the cortical area, thickness & volume measures, and the

mean & standard deviation of MRI intensities of voxels of the respective cortical

parcel as the node attributes or features. Therefore, the dimensionality of the node

features was 12 (7 for PSD features, 3 for the cortical area, thickness & volume, and

2 for the mean & standard deviation of MRI voxel intensities).

4.4 Results

4.4.1 Dimensionality reduction and GPR

We compared the performance of all models using a 10-fold cross-validation

approach with random train and test splits of the dataset in each fold. Firstly, to

compare the performance of different dimensionality reduction techniques with the

similarity metric presented in [29], we used only the MRI voxel intensities as input

to different models. A summary of the results is shown as a bar plot in Fig. 4.4.

Figure 4.4: Brain age prediction Mean absolute error (MAE) in years for different
methods and data modalities.
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Using only MRI voxel intensities as the input, CCA turned out to be the best

model for age prediction with MAE of 5.57 yrs. PCA degraded performance signif-

icantly, and the use of the similarity metric yielded worse performance (with MAE

of 7.3 yrs) as compared to using GPR on raw features. The failure of the similar-

ity metric to yield the best performance indicated the variability of features across

subjects in the dataset. The presence of lesser subjects, as compared to [29], led

to incomplete sampling of the aging subspace and hence yielded worse performance.

Since CCA coupled with GPR was the best model, we compared this method for

other data modalities.

4.4.2 Adding the Functional features from MEG data

The use of MEG features alone did not yield satisfactory performance with MAE

of 9.7 yrs for the GPR+CCA model (Table B.2). However, the MEG features only

contained information from the cortex, whereas the MRI intensities were from both

cortical and subcortical regions. To delineate the effect of cortical from subcortical

areas, we compared the performance of these features separately. Using the similar-

ity metric on cortical MRI features yielded similar performance as MEG features,

the MAE being 10.1 yrs and 10.5 yrs respectively (Table B.1). Also, there was a

striking difference between the performance of models using subcortical MRI fea-

tures and those using cortical features. Subcortical features performed better with

MAE of 6 yrs for the GPR+CCA model, thus indicating a substantial contribution

of subcortical regions towards age prediction.

To assess the utility of combining modalities and exploring the problem of age

prediction from a multi-modal approach, we used CCA with GPR on cortical MRI
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Aggregator Method Connectivity Information MAE (yrs)
- None 7.21 ± 0.14

Mean (GCN) Delta 7.14 ± 0.16
Mean (GCN) Theta 7.19 ± 0.19
Mean (GCN) Alpha 7.28 ± 0.21
Mean (GCN) Beta 7.22 ± 0.19
Mean (GCN) Gamma 7.18 ± 0.17

Pooling (GraphSAGE) Delta 6.69 ± 0.13
Pooling (GraphSAGE) Theta 6.82 ± 0.15
Pooling (GraphSAGE) Alpha 6.94 ± 0.16
Pooling (GraphSAGE) Beta 6.84 ± 0.15
Pooling (GraphSAGE) Gamma 6.80 ± 0.14

Table 4.1: Comparison of age prediction by GCN models with different neighbour-
hood pooling functions. Mean Absolute Error (MAE) calculated over the testing set
and averaged over 10-folds.

and MEG features. This model performed better than individual modalities (MAE

of 6.69 yrs) but was worse than using subcortical MRI features (Table B.2). GCNs

yielded similar performance as that of the GPR+CCA model (MAE of 6.72 yrs).

However, a critical difference between the two is that the GCN model uses a linear

regression model on the learned features to predict age. Therefore, we compared GCN

models to similar models that do not have the connectivity information to identify if

including the topology contributed to improvement in age prediction. These results

are presented in Table 4.1.

4.4.3 Impact of Graph Topology

The rich-club coefficients were not significantly different across the different age

groups for any frequency band. All groups showed a similar trend of normalized

rich-club coefficients with increasing node degree, with all groups showing rich club

behavior above node degree of 17. The results were similar for the degree as well as
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shortest path distribution in the binary graphs of all frequency bands across ages.

These results indicated that the graph topology in the binary graphs did not change

significantly with age. Therefore, we aimed to leverage this topology to learn feature

representations for each node and subsequently, predict age using GCNs. The graph

metrics guided the structure of GCNs (and its variant, i.e. GraphSAGE). Since all

age groups showed a peak shortest path length of 3, the GCN architectures consist

of 3 layers. Each layer of GCN incorporates information from 1-hop, and therefore,

a 3-layer GCN can incorporate information from 3-hop neighbors. Further details

about the GCN architecture and comparison of different graph metrics across age

groups are presented in Appendix B.

4.4.4 CCA loadings

We also identified which brain regions correspond to maximal age-related changes.

The CCA loadings offered a window to assess the reliability of each neuroimaging

feature to age prediction, thus indicating which features showed the most reliable

age-related changes. The histogram of BSR values of loadings of voxel intensities

and the top 15 percent BSR values of loadings of each of GM, WM, and CSF are

shown in Fig. 4.5. The histogram of BSR values indicated that GM and WM vox-

els showed more reliable age-related changes as compared to CSF (histogram peak

for GM and WM being around -300 and -400 respectively, whereas histogram peak

for CSF is around -100). Most of the loadings were negative, thus indicating a de-

creased voxel intensity with increasing age. Also, the top 15 percent of BSR values

are confined to subcortical regions, thus supporting our earlier results that subcor-

tical regions yielded better age prediction. These areas are shown in Fig. 4.5. The
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Figure 4.5: CCA loadings BSR values for the T1-weighted MR images. Top image
shows the distribution of BSR values for GM, WM and CSF voxels. Bottom image
shows the regions with top 15% BSR values, highlighting that most reliable voxels
for brain age prediction were restricted to subcortical regions.

highlighted (red) GM areas were localized in important subcortical structures like

Putamen, Thalamus, and the Caudate nucleus. Most of the highlighted (green) WM

voxels were confined to the corpus callosum, thus indicating that the corpus callosum

reflected most age-related changes among WM voxels. Another essential structure

among WM voxels is the Thalamic radiation. Our analysis pipeline also uncovered

certain regions in the cerebellum that showed age-related effects reliably across the

dataset.
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We visualized the CCA loadings for the PSD features, which are shown in Fig.

4.6. We observed different regions showing age-related effects in various frequency

bands. The low-frequency bands, namely Delta and Theta, showed maximal age-

related effects in the frontal areas. The alpha band showed maximal age-related

effects in the visual and motor areas. Higher frequency bands, namely Beta and

Gamma, showed increasing PSD values with age in motor areas. Contrary to MRI

loadings, wherein most of the loading values were negative, PSD loadings were both

positive and negative. These results are in agreement with previous literature study-

ing the difference in resting-state PSD values in various frequency bands between

healthy young and elderly populations [21, 34, 67, 76, 99, 132, 181].

Figure 4.6: CCA loadings BSR values across different cortical regions depicting re-
gions with PSD values that are correlated or anti-correlated with age for each fre-
quency band.

4.5 Discussion

In this study, we aimed to leverage multimodal neuroimaging data to predict the

age in a cohort of healthy subjects with age ranging from 18–88 years. The major

contributions of our study are summarized below:
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1. We applied dimensionality reduction techniques in conjunction with ML and

found that the CCA+GPR model worked best for all data modalities. Fur-

thermore, using PCA was detrimental to the performance of GPR.

2. We visualized the regions that exhibited the age-related changes and found

that subcortical MRI intensities showed age-related changes more reliably than

cortical MRI intensities. We also showed the age-related changes in the spectral

features of various cortical regions, as observed using the MEG data.

3. We developed a GCN framework to incorporate the graph topology in the

functional data and thereafter predict age. This framework allowed combining

structural and functional features for cortical regions and thereby, improved

age prediction.

4.5.1 Dimensionality reduction and GPR

We used T1-weighted MR images and resting-state MEG data to develop a

brain-age prediction framework that uses both structural and functional information

of the brain. We restricted our analysis to cortical sources of the MEG data and

thereby had functional information from the cortical regions only. Since the goal was

to predict the age, the desired MAE for the perfect model would be 0 yr. Owing to

subject variability and the ill-conditioning of the problem, precisely the definition of

“healthy” subjects, we did not expect to achieve a MAE of 0 yr. To get an estimate

of the chance level of age prediction, we used predictions from a random model with

no training. Irrespective of the modality of data used, the chance level of MAE was

around 16.738 yrs and R2 was around -0.034. These values act as a baseline to

judge the performance of various models. All models, irrespective of the modality
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of data, performed better than chance level thus indicating that all neuroimaging

features that were used had some age-related effects.

Following [29], GPRs outperformed other regression models, like Support Vec-

tor Regression (SVR) and Random Forest regression models. These experiments

were done on the similarity metric-derived feature vectors. Based on these results,

GPRs were used as the regression model of choice for age prediction for all further

experiments. A vital contribution of this work is the role of dimensionality reduction

techniques in age prediction. PCA is one of the most commonly used dimensionality

reduction techniques in neuroimaging. However, PCA degraded performance in the

current scenario. We feel that the primary reason underlying this is the subject vari-

ability in neuroimaging features. Since PCA yields components that are maximally

varying in the dataset, these could be aligned to directions of subject variability in

the dataset instead of being age-related changes. Hence, it degrades the age predic-

tion performance. Instead, CCA improves performance by yielding the component

that maximally covaries with age. Since CCA is a multivariate associativity tech-

nique relying on Singular Value Decomposition, it was able to identify features that

covary with age. Following the success of CCA, we also tried deep CCA (DCCA) [5]

to learn a non-linear combination of features that maximally covary with age. But

deep CCA was not numerically stable and hence, was not explored further.

A major drawback of using GPR as a regression model is that the prediction is

reasonably good only for points within the bounds of the training data. Hence, the

age prediction for subjects that are younger than the youngest training subject (or

older than the oldest training subject) is erroneous. Therefore, the model returns
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Figure 4.7: Plot of predicted age vs biological age for CCA+GPR model using con-
catenated MRI and MEG features.

biased age predictions for the youngest and oldest subjects. Fig. 4.7 shows the plot

of predicted age vs. biological age for the CCA+GPR model using all neuroimaging

features. The predictions for the youngest subjects is higher than the biological age,

whereas the trend is reversed for the oldest subjects.

4.5.2 Adding Functional features from MEG data

We studied the contribution of spectral features and functional connectivity fea-

tures obtained from resting-state MEG recordings towards age prediction. Among

the spectral features, we used the relative PSD in 7 frequency bands. We used

Amplitude Envelope Correlation (AEC) and ILC to characterize the functional con-

nectivity information [163]. However, ILC values did not significantly contribute to

age prediction with the MAE values being very close to that of the random model

(MAE of 14.7 yrs). PSD performed much better than AEC values and combining
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both these features yielded the best performance with a CCA+GPR model (MAE

of 9.7 yrs). This model was worse compared to the CCA+GPR model using MRI

intensities. However, the similarity+GPR model using only cortical MRI intensities

yielded comparable performance to the one using PSD and AEC values. These re-

sults indicated that a possible reason for the inferior performance of models using

MEG features was the absence of subcortical information.

4.5.3 CCA loadings

CCA also returns loading values for each input feature and therefore, improves

model explainability. Using the BSR of loading values for MRI images, we found

that most of the voxel intensities were negatively correlated with age. These findings

are in agreement with previous studies that have studied cortical thinning with age

[48, 71, 134, 155]. However, the absence of the strongest negative correlations in the

cortex was possibly due to improper alignment of sulci and gyri to the standard brain

in MNI152 space. We further explored the contribution of cortical area, thickness,

and volume measures to age prediction. However, models that used these metrics

failed to perform as well as models that used subcortical MRI intensities for age pre-

diction. These results indicated that subcortical regions are more reliable predictors

of age, possibly due to less subject variability within the same age group [133]. The

subcortical structures that most reliably showed age-related changes are some of the

most important structures for information relay across the brain and several cogni-

tive functions [60, 142, 146]. Several stereological and MRI studies have explored

the atrophy in these regions with age [19, 25, 49, 91, 110, 156]. Our results are

in strong agreement with the inferences from these studies and also provide insight
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into the age-related changes in these regions compared to the cortical areas. The

WM regions highlighted in Fig. 4.5 are mostly confined to the corpus callosum and

the thalamic radiation. These results are in strong agreement with previous studies

exploring bimanual coordination in humans that have reported atrophy in corpus

callosum fiber tracts [9, 143, 153]. Although CSF voxels did not exhibit high BSR

values of loadings when compared to their GM and WM counterparts, including CSF

improved model performance. CSF information possibly indicated changes in brain

volume and ventricle sizes that helped brain age prediction.

Among the MEG features used, PSD features yielded the best performance.

Adding the functional connectivity information helped age prediction slightly. Hence,

we visualized the loadings values for only the PSD features. Several studies have in-

vestigated the relationship between resting-state power levels of various frequency

bands and the healthy aging process. The reported results have a fair bit of contro-

versy in several bands, primarily due to different resting-state protocols, i.e. eyes-

closed or eyes-open. Regarding the slower waves (0.5–7 Hz), most studies have

reported a decrease in power among older adults as compared to their younger coun-

terparts [21, 34, 99, 181]. The CCA loadings for the Delta and Theta bands reveal

a similar relationship with age, the more focal effect being restricted to the frontal

regions. These results possibly indicate declining cognitive performance with age

[78]. There is much more consensus about changes in beta power with age. Several

studies have shown an increased beta power at rest [21, 67, 76, 132]. Using higher

and lower beta bands, we could identify the spatial extent of this effect in each of
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the bands. The lower beta band is restricted to frontal regions, indicating changes

in cognitive processing during motor task performance [76].

On the contrary, the higher beta effects are restricted to the motor cortex indi-

cating differences in motor task performance with age [67, 132]. Changes in alpha

power are more controversial as compared to other bands. Several studies reported

no significant changes in alpha power with age [21, 67], whereas other studies have

reported a decrease in alpha [76]. Since alpha activity indicates changes in attention

[21], the differences in findings could be related to the resting-state protocol [160].

The CCA loadings indicated a strong effect of age on the higher alpha activity in the

occipital cortex. However, further investigation is required to conclude if this effect

is due to subjects falling asleep during the eyes-closed resting state session [160].

4.5.4 Impact of Graph Topology

Among the GCN models, GraphSAGE performs better than the basic GCN

variant. GraphSAGE can “learn” the neighborhood statistics that aid the task of

age prediction, whereas GCN gives equal importance to all neighbors [65]. This

behavior has close relations to various routing strategies in biological graphs, namely

random walks and percolation [8]. GCN can be thought of using the random walk

communication strategy as it uses all connections to learn feature representations

of nodes. GraphSAGE can be thought of using a more percolation-like routing

strategy, whereby it uses certain connections to aggregate information about the

neighborhood. The ability to adaptively aggregate information from each node’s

neighborhood gives GraphSAGE models the power of inductive learning [64], thus

improving the models to generalize better on unseen subjects. Further investigation
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into the feature space learned by the models could provide more insight into the

topological information learned by these graph-based models. In this work, we only

focused on binary graphs. But the methodology can be easily extended to weighted

graphs.

4.5.5 Limitations

A severe limitation of the problem of brain age prediction is the use of biological

age as a surrogate for brain age. Although we used a cohort of healthy subjects, the

brain age is known to depend on various other factors, like education [151]. In this

work, we ignored all lifestyle factors and aimed to predict the biological age from

neuroimaging features. Besides, we used a single model to predict the brain age for

both males and females. These factors contribute to the biological age labels being

noisy version of the “true” brain age of each subject. Also, we restricted our analysis

to the cortical information from the functional data, which limits the investigation

of age-related changes into the functional activity of deep brain structures. Like

other deep learning architectures, GCN-based approaches require more time and

specialized hardware, namely GPUs, to train. We used a GeForce GTX 960, and

each cross-validation fold required about 30 minutes of training time. Therefore, the

operational cost of deploying GCN-based methods is higher than other ML-based

approaches.

4.6 Conclusion

In this study, we used a combination of structural and functional brain in-

formation to predict brain age in a cohort of healthy subjects. We showed that

dimensionality reduction techniques could be used to simultaneously improve brain
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age prediction and identify key neuroimaging features that show age-related effects.

Specifically, we showed that using CCA in conjunction with GPR yielded the best

model for age prediction. PCA degraded prediction performance. We also showed

that subcortical structures exhibited the most reliable age-related effects in MRI fea-

tures. We added functional features from resting-state MEG to further improve the

age prediction obtained using only cortical information.

Additionally, we presented a framework to leverage the functional graph topol-

ogy and perform brain age prediction using GCN. We found that including the topo-

logical neighborhood information improved age prediction. However, these models

did not outperform models that used GPR. Therefore, further work could focus on

using GPR in conjunction with GCN. In the current work, we explored the prob-

lem of age prediction only in the context of healthy subjects. The validation of our

proposed analysis pipeline to predict age for a diseased population remains to be

explored. This validation is essential to establish the potential for the identification

of biomarkers relevant to atypical brain aging processes, and thereby as an early

marker for neurological disorders.
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CHAPTER 5
CONCLUSIONS & SIGNIFICANCE

The first project introduces a deep learning architecture for the analysis of EEG

data. The proposed CNN outperformed alternative machine learning techniques with

regards to differentiating between previously unseen Exercise and Control group sub-

jects, based on their event-related desynchronization information. Importantly, we

could also visualize the features learned by the CNN, which in turn, yields better

interpretation of their classification basis. The results are in general agreement with

those reported in a previous study using standard statistical analysis on a priori

selected features from the same dataset [35], with our analysis revealing a narrower,

more specific frequency band associated with exercise-induced changes. Also, our

method revealed localized regions of the differential activity. Therefore, our ap-

proach demonstrates the feasibility of identifying subtle discriminative features in an

entirely data-driven manner, using deep learning. These results are expected to con-

tribute to the methodological advances for small-scale neuroimaging studies, such

as those performed in the context of neurorehabilitation, where a small cohort of

subjects/patients is traditionally tested. The findings are also expected to promote

research towards the identification of neurophysiological changes associated with a

variety of neurological disorders and ultimately lead to the design of optimized and

individualized intervention strategies.
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The second project presents a brain age prediction framework using structural

and functional neuroimaging data. The results indicate the effectiveness of dimen-

sionality reduction techniques coupled with regression models to improve brain age

prediction. Interestingly, CCA improved the predictor performance, whereas PCA

degraded the performance when used in conjunction with GPR. Therefore, our analy-

sis provides conclusive evidence that the age-related brain changes are not maximally

varying changes in structural features of the brain. Subsequently, we identified brain

regions and features that reliably show age-related changes. Specifically, the struc-

tural features from subcortical areas showed more prominent age-related changes.

Also, we showed that the proposed GCN-based framework improved prediction per-

formance by leveraging the functional topology in the MEG data. Further work

will attempt to establish the validation of these methods in the context of diseased

populations. This work is expected to have significant contributions in the field of

aging neuroscience to improve the understanding of the aging process and clinical

neuroscience to establish biomarkers for atypical brain aging.

79



APPENDIX

80



Appendix A

Effects of Cardiovascular Exercise on Neural Correlates of Motor

Learning

Network Architecture

Notation:- Conv denotes the 2D Spatial Convolutional layer. ReLU denotes

the Rectified Linear Unit Layer that adds non-linearity to the network. MaxPool

denotes the 2D Spatial Max Pooling layer. FullyConn denotes a Fully Connected

layer, also known as the linear layer of the network.

TF maps

Layer Type Maps and Neurons Filter Size
0 Input 1M × 64 × 55N -
1 Conv 6M × 64 × 28N 1×5
2 ReLU 6M × 64 × 28N -
3 MaxPool 6M × 64 × 14N 1×2
4 Conv 16M × 64 × 14N 1×5
5 ReLU 16M × 64 × 14N -
6 MaxPool 16M × 64 × 7N 1×2

Table A.1: Network architecture used for EEG feature extraction network (Base
CNN). The output of the network is a tensor of dimensions 16× 64× 7.
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Layer Type Maps and Neurons Filter Size
0 Input 16M × 64 × 7N -
1 Flatten 7168N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 2N 1×1

Table A.2: Network architecture used for group discrimination network (Top NN).
The output of the network is a vector of dimension 2, values corresponding to the
probability that the data tuple belongs to particular class.

Layer Type Maps and Neurons Filter Size
0 Input 16M × 64 × 7N -
1 Flatten 7168N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 25N 1×1

Table A.3: Network architecture used for subject discrimination network (adversary).
The output of the network is a vector of dimension 25, values corresponding to the
probability that the data tuple belongs to particular subject.
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(a) Basic Architecture without adversary

(b) Modified Architecture with adversary to avoid subject discrimination

Figure A.1: Deep Network Architecture. The initial choice of architecture (without
any adversary) gives good subject prediction accuracy from features extracted by the
Base CNN. Therefore, a subject discriminator of roughly the same model capacity as
the Top NN is added. The subject discrimination acts as a regularizer while training
and avoids the Base CNN from learning subject specific features.
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Topographical maps

Layer Type Maps and Neurons Filter Size
0 Input 3M × 64 × 64N -
1 Conv 16M × 32 × 32N 5×5
2 ReLU 16M × 32 × 32N -
3 MaxPool 16M × 16 × 16N 2×2
4 Conv 32M × 16 × 16N 5×5
5 ReLU 32M × 16 × 16N -
6 MaxPool 32M × 8 × 8N 2×2
7 Conv 64M × 8 × 8N 3×3
8 ReLU 64M × 8 × 8N -
9 MaxPool 64M × 4 × 4N 2×2

Table A.4: Network architecture used for EEG feature extraction network (Base
CNN). The output of the network is a tensor of dimensions 64× 4× 4.

Layer Type Maps and Neurons Filter Size
0 Input 64M × 4 × 4N -
1 Flatten 1024N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 2N 1×1

Table A.5: Network architecture used for group discrimination network (Top NN).
The output of the network is a vector of dimension 2, values corresponding to the
probability that the data tuple belongs to particular class.
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Layer Type Maps and Neurons Filter Size
0 Input 64M × 4 × 4N -
1 Flatten 1024N -
2 Dropout (p=0.5) - -
3 FullyConn 8N 1×1
4 ReLU 8N -
5 FullyConn 25N 1×1

Table A.6: Network architecture used for subject discrimination network (adversary).
The output of the network is a vector of dimension 25, values corresponding to the
probability that the data tuple belongs to particular subject.
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Training curves

Time-Frequency Maps

Hyperparameter Value
Learning Rate 0.001
Learning Rate Decay 0.0001
Weight Decay 0.001

Table A.7: List of hyperparameters used for training the networks on TF maps.

Topographical Maps

Hyperparameter Value
Learning Rate 0.001
Learning Rate Decay 0.001
Weight Decay 0.03

Table A.8: List of hyperparameters used for training the networks on Topographical
maps.
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(a) Group prediction loss (λ =
0)

(b) KL divergence (λ = 0) (c) Subject prediction loss (λ =
0)

(d) Group prediction loss (λ =
15)

(e) KL divergence (λ = 15) (f) Subject prediction loss (λ =
15)

(g) Group prediction loss (λ =
13)

(h) KL divergence (λ = 13) (i) Subject prediction loss (λ =
13)

Figure A.2: Time-Frequency Maps Training curves for three different weight values
to the subject predictor regularizer.
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(a) Group prediction loss (λ =
0)

(b) KL divergence (λ = 0) (c) Subject prediction loss (λ =
0)

(d) Group prediction loss (λ =
10)

(e) KL divergence (λ = 10) (f) Subject prediction loss (λ =
10)

(g) Group prediction loss (λ =
5)

(h) KL divergence (λ = 5) (i) Subject prediction loss (λ =
5)

Figure A.3: Topographical Maps Training curves for three different weight values to
the subject predictor regularizer.
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Appendix B

Brain Age Prediction

Dimensionality reduction and GPR

Model Input Feature MAE (yrs) R2

GPR WM 6.82 ± 0.12 0.78
GPR GM 6.42 ± 0.1 0.81
GPR cortical GM 7.29 ± 0.13 0.76
GPR subcortical GM 6.05 ± 0.11 0.83
GPR GM+WM+CSF 5.64 ± 0.07 0.85
GPR subcortical GM+WM+CSF 5.52 ± 0.06 0.86

GPR+similarity WM 11.07 ± 0.48 0.49
GPR+similarity GM 8.28 ± 0.31 0.70
GPR+similarity cortical GM 10.1 ± 0.41 0.57
GPR+similarity subcortical GM 8.04 ± 0.29 0.71
GPR+similarity GM+WM+CSF 7.3 ± 0.14 0.77
GPR+similarity subcortical GM+WM+CSF 7.29 ± 0.12 0.76

GPR+PCA WM 11.71 ± 0.51 0.38
GPR+PCA GM 8.63 ± 0.34 0.66
GPR+PCA cortical GM 10.18 ± 0.4 0.54
GPR+PCA subcortical GM 8.77 ± 0.32 0.65
GPR+PCA GM+WM+CSF 9.23 ± 0.39 0.62
GPR+CCA WM 6.77 ± 0.15 0.78
GPR+CCA GM 6.37 ± 0.11 0.81
GPR+CCA cortical GM 7.27 ± 0.16 0.77
GPR+CCA subcortical GM 5.97 ± 0.08 0.83
GPR+CCA GM+WM+CSF 5.57 ± 0.06 0.86
GPR+CCA subcortical GM+WM+CSF 5.45 ± 0.07 0.86

Table B.1: Comparison of age prediction by GPR models with different dimension-
ality reduction techniques for GM, WM and CSF voxel intensities. Mean Absolute
Error (MAE) and Coefficient of determination (R2) are calculated over the testing
set and averaged over 10-folds.
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Adding functional information from MEG data

Model Input Feature MAE (yrs) R2

GPR PSD 9.75 ± 0.32 0.55
GPR AEC 11.15 ± 0.43 0.45
GPR ILC 14.47 ± 0.55 0.15
GPR PSD+AEC+ILC 9.74 ± 0.3 0.57

GPR+PCA PSD 10.68 ± 0.38 0.47
GPR+PCA AEC 13.55 ± 0.51 0.20
GPR+PCA ILC 14.60 ± 0.57 0.14
GPR+PCA PSD+AEC+ILC 12.79 ± 0.48 0.28
GPR+CCA PSD 12.75 ± 0.56 0.24
GPR+CCA AEC 11.11 ± 0.4 0.46
GPR+CCA ILC 15.88 ± 0.75 0.04
GPR+CCA PSD+AEC+ILC 9.67 ± 0.28 0.58

GPR PSD+AEC+ILC+cATV 8.37 ± 0.29 0.67
GPR+PCA PSD+AEC+ILC+cATV 12.29 ± 0.48 0.33
GPR+CCA PSD+AEC+ILC+cATV 8.28 ± 0.26 0.70

GPR PSD+AEC+ILC+MRI 5.61 ± 0.08 0.85
GPR+PCA PSD+AEC+ILC+MRI 7.65 ± 0.18 0.73
GPR+CCA PSD+AEC+ILC+MRI 5.28 ± 0.07 0.87

Table B.2: Comparison of age prediction by GPR models with different dimensional-
ity reduction techniques for MEG features, MEG+cortical area,thickness & volume,
and MEG+MRI features. Mean Absolute Error (MAE) and Coefficient of determi-
nation (R2) are calculated over the testing set and averaged over 10-folds.

Rich Club Organization
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(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure B.1: Degree distribution for the graph generated by binarizing the FC matrix
of each frequency band. All frequency bands show a tailed distribution without any
differences across age groups.
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(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure B.2: Distribution of shortest path length for the graph generated by binarizing
the FC matrix of each frequency band. All frequency bands show a peak at 3 without
any differences across age groups.
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(a) Delta Band (b) Theta Band

(c) Alpha Band (d) Beta Band

(e) Gamma Band

Figure B.3: HQS-normalized RC coefficients plotted as a function of node degree
for the graph generated by binarizing the FC matrix of each frequency band. All
frequency bands show a RC organization above node degree = 17 without any dif-
ferences across age groups.
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GCN architecture

Since the length of shortest path distribution peaks at 3, we used all GCN

models with 3 layers – 2 hidden layer and 1 output layer. Following the feature

transformation by GCN models, the features from all nodes were vectorized and

passed through a fully connected layer: 1776→ 1 (each graph had 148 nodes and 12

features for each, hence size of feature vector = 148× 12 = 1776).

Model Hidden Lay-
ers

Hidden di-
mension

Input/Output
dimension

Architecture

GCN 2 36 12 12→ 36→ 36→ 12
GraphSAGE 2 36 12 12→ 36→ 36→ 12

Table B.3: Model Architecture for GCN and GraphSAGE.

Hyperparameter Value
Optimizer Adam
Learning Rate 0.006
Learning Rate Decay 0.003
Weight Decay 0.0001
Dropout 0.75
Batch size 16
FC threshold 95 percentile

Table B.4: List of hyperparameters used for training the GCN networks. Input
features were – PSD, cortical area, thickness & volume, mean & standard deviation
of MRI intensities.
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tini, Carlo Cosentino, and Francesco Amato. Importance of multimodal mri in
characterizing brain tissue and its potential application for individual age pre-
diction. IEEE journal of biomedical and health informatics, 20(5):1232–1239,
2016.

[24] Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba,
and Aude Oliva. Comparison of deep neural networks to spatio-temporal cor-
tical dynamics of human visual object recognition reveals hierarchical corre-
spondence. Scientific reports, 6:27755, 2016.

[25] CE Coffey, WE Wilkinson, LA Parashos, SAR Soady, RJ Sullivan, LJ Patter-
son, GS Figiel, MC Webb, CE Spritzer, and WT Djang. Quantitative cerebral
anatomy of the aging human brain a cross-sectional study using magnetic res-
onance imaging. Neurology, 42(3):527–527, 1992.

[26] James Cole, Katja Franke, and Nicolas Cherbuin. Quantification of the bio-
logical age of the brain using neuroimaging. 2018.

[27] James H Cole, Tiina Annus, Liam R Wilson, Ridhaa Remtulla, Young T Hong,
Tim D Fryer, Julio Acosta-Cabronero, Arturo Cardenas-Blanco, Robert Smith,
David K Menon, et al. Brain-predicted age in down syndrome is associated
with beta amyloid deposition and cognitive decline. Neurobiology of aging,
56:41–49, 2017.

[28] James H Cole, Robert Leech, David J Sharp, and Alzheimer’s Disease Neu-
roimaging Initiative. Prediction of brain age suggests accelerated atrophy after
traumatic brain injury. Annals of neurology, 77(4):571–581, 2015.



98

[29] James H Cole, Rudra PK Poudel, Dimosthenis Tsagkrasoulis, Matthan WA
Caan, Claire Steves, Tim D Spector, and Giovanni Montana. Predicting brain
age with deep learning from raw imaging data results in a reliable and heritable
biomarker. NeuroImage, 163:115–124, 2017.

[30] James H Cole, Stuart J Ritchie, Mark E Bastin, MC Valdés Hernández,
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