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ABSTRACT

This thesis describes a flexible and computationally efficient Bayesian nonpara-

metric modelling approach based on a recursive Polya tree mixture model. This

approach is motivated by the need to capture the heterogeneity observed in many

areas of biostatistics such as meta analysis of clinical trials, survival analysis and

recurrent event data analysis.

Let Y1, . . . , YN be mutually independent observations such that Yi has distribution

h(·|θi). It is assumed that the parameters θ1, . . . , θN arise from an unknown distri-

bution F and that the prior on F is a Polya tree distribution. An empirical Bayesian

approach is adopted for the choice of the prior’s base distribution. As the parame-

ters θ1, . . . , θN are latent, a data augmentation algorithm is used to simulate pseudo

values iteratively. The empirical distribution of these pseudo values can then guide

the choice of the base distribution of the Polya tree prior. The theoretical properties

of this procedure are explored.

Despite its simplicity, the proposed model is practical and computationally efficient.

In addition to providing a good approximation for more complicated Bayesian non-

parametric models, it can be used to handle difficult problems in classical Bayesian

nonparametric modelling. In this thesis, the use of the model is illustrated using the

famous data of Brown (2008) and Liu (1996), which are often viewed as test cases

for Bayesian nonparametric modelling. It is also shown that the proposed approach
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can be applied to density estimation (including in the bivariate case) and meta anal-

ysis in biostatistics. Moreover, a Bayesian semi-parametric accelerated failure time

(AFT) model based on the proposed approach is considered, and an extension of the

AFT model to recurrent event data analysis is introduced.
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ABRÉGÉ

Cette thèse décrit une approche flexible et numériquement efficace de modéli-

sation non paramétrique bayésienne au moyen d’un modèle de mélange fondé sur

une arborescence de Pólya récursive. Cette approche est motivée par la nécessité de

prendre en compte l’hétérogénéité fréquemment observée en biostatistique, notam-

ment lors de la méta-analyse d’essais cliniques ou de l’analyse de durées de vie et

d’événements récurrents.

Soient Y1, . . . , YN des observations mutuellement indépendantes telles que Yi est

de loi h(·|θi). On suppose que les paramètres θ1, . . . , θN proviennent d’une loi F

inconnue et que la loi a priori sur F est une arborescence de Pólya. On adopte

une approche bayésienne empirique pour le choix de la loi a priori de base. Les

paramètres θ1, . . . , θN étant latents, on a recours à un algorithme d’augmentation

de données pour en simuler des valeurs de façon itérative. La loi empirique de ces

pseudo observations permet alors de guider le choix de la loi a priori de base. Les

propriétés théoriques de cette procédure sont explorées.

Malgré sa simplicité, le modèle proposé est pratique et efficace au plan calcul. En

plus de fournir une bonne approximation de modèles bayésiens non paramétriques

plus complexes, il facilite le traitement de problèmes réputés difficiles en modélisation

bayésienne non paramétrique classique. Dans cette thèse, l’emploi du modèle est il-

lustré au moyen des célèbres données de Brown (2008) et de Liu (1996) souvent
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considérées comme bancs d’essai pour la modélisation bayésienne non paramétri-

que. Comme on le fait valoir, l’approche peut aussi servir à estimer une densité

(y compris bivariée) et à des fins de méta-analyse en biostatistique. On étudie en

outre un modèle bayésien semi-paramétrique à temps de panne accéléré (TPA) fondé

sur cette approche et on propose une généralisation du modèle TPA pour l’analyse

d’événements récurrents.
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CHAPTER 1
Introduction

Many statistical applications involve multiple parameters that are related to each

other. For example, in a study involving N hospitals, and hospital i (i = 1, . . . , N)

has ni patients. Suppose the measurements of blood pressure yi1, . . . , yini
for each

hospital i’s patients are observed, and the mean of the blood pressure θi for a hospital

similar to hospital i is of interest. A naive approach is to estimate each θi only using

the information of hospital i, for example θ̂i = (
∑ni

j=1 yij)/(ni). However, it might

be reasonable to expect that the estimates of the θ′is should be related to each other;

thus it is reasonable to view θ′is as a sample from a common population distribution

F .

The Bayesian hierarchical model (Gelman et al. 2003 [33]) is a natural choice

in the statistical applications which involve multiple parameters. Suppose a random

sample Y1, . . . , YN (the random sample can be continuous or count data) are observed,

and assumed to have a parametric distribution with parameters θi: Yi|θi ∼ h(Yi|θi)

independently (in this thesis, h(Yi|θi) represents the p.d.f), and the parameters

θ1, . . . , θN are assumed to arise from some distribution F , θ1, . . . , θN ∼ F i.i.d.

Parametric models assume that F arises from some parametric distribution. How-

ever, this parametric assumption has many restrictions, and may not give useful

information from data (Liu 1996 [57]). A more flexible approach is to consider that

F arises from some nonparametric distribution. For example, by assuming F to be

1



a random distribution with a Dirichlet process prior (Ferguson 1973 [28]) or Polya

tree prior (Lavine 1992 [54]), we can build a intermediary between nonparametric

and parametric models. In recent years, there has been an increase of interest in

Bayesian nonparametric models due to their flexibility, and the availability of algo-

rithms (which mostly rely on MCMC) for posterior computation. Dey et al. (1998

[20]) and Hjort et al. (2010 [40]) have summarized the existing computational issues

arising in Bayesian nonparametric models.

While Bayesian nonparametric models are extremely powerful and introduce

more flexibility, they are still not widely used (Jara et al. 2011 [45]). One possible

reason is that they always rely on complicated computing methods. Although an R

package DPpackage (Jara et al. 2011 [45]) has been developed, the daunting com-

puting approaches may still be considered as a restriction. Alternative computing

algorithms have been developed, including smoothing by roughening (Shen and Louis

1999 [76]), predictive recursion (Newton and Zhang 1999 [70] and Newton 2002 [69];

Martin and Tokdar 2011 [62]), weighted Chinese restaurant sampling (Ishwaran and

James 2003 [44]), sequential imputation (Liu 1996 [57]; MacEachern et al.1999 [59]),

and variational Bayes (Blei and Jordan 2006 [8]). Recently, Wang and Dunson (2011

[81]) proposed a fast method of Bayesian inference in Dirichlet process mixture mod-

els based on a sequential greedy search algorithm. In our view, all these algorithms

represent breakthrough developments.

In this thesis, we propose an alternative Bayesian nonparametric model, called

the recursive Polya tree mixture model (RPTMM), which not only enjoys the flexibility

provided by Bayesian nonparametrics, but is also much easier to implement. We
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describe our new model in the framework of a Polya tree. Before introducing the

detail of this model in next section, we mention some advantages of the proposed

model.

1. In the traditional Bayesian nonparametric hierarchical model, sampling from F

is not straightforward (see Liu 1996 and Liu 1999 [57, 58]), since many MCMC

algorithms marginalize out F . A direct application of data augmentation to

sample F is infeasible. There are alternatives, as described by Doss (1994

[22]), Gelfand and Kottas (2002 [32]), and Liu (1996 [57]). Indeed, even using

the stick-breaking process (Sethuraman 1994 [75]) to express F , sampling from

F will produce ties, since the support of F in the stick-breaking process is

a countable set. In our recursive Polya tree mixture model, sampling from

F is very straightforward, and as a result, the calculation of the marginal

distribution
∫
h(y|θ)F (θ) is trivial.

2. Bayesian nonparametric models always require users to carry out computa-

tion. For example, the derivation of the marginal distribution usually involves

complicated or high-dimensional computation. The proposed RPTMM does not

require any analytical computation, and it can also approximate the compli-

cated Bayesian nonparametric models.

3. The proposed RPTMM model is very fast to implement. In many cases, running

the recursive algorithms for 100-200 steps is sufficient, and this typically takes

a very short time.

The proposed RPTMMmodel makes two significant changes compared with the classical

Polya tree model.
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1. Simple or mixture of Polya tree models (Hanson and Johnson 2002 [37], Hanson

2006 [36]) partition the support in a hierarchical structure, fix all the partition

points, and estimate the “weights” corresponding to each interval. We do

the converse; the probability corresponding to each interval is fixed, and we

estimate the partition points.

2. Polya trees and Dirichlet processes are nonparametric random distributions

centered on a base distribution. The base distribution is always assigned a

parametric distribution with parameters φ. Users are required to specify the

parametric base distribution, and estimate φ.

Empirical ideas have also been developed. Mcauliffe et al. (2006 [63]) proposed

a nonparametric empirical bayes for Dirichlet process mixture model. Holmes

et al. (2009 [41]) also used the empirical distribution to be the base distribution

in a Polya tree-based test statistic. In this thesis, we also bring the empirical

Bayes idea to choose the base distribution. In a Bayesian hierarchical model,

the parameters are unobservable, and their empirical distribution is unavail-

able to us. We develop a easy-to-implement data augmentation algorithm to

overcome this difficulty.

The overall structure of the thesis is as follows. In Chapter 2, we review some

existing Bayesian nonparametric models. In Chapter 3, we introduce the detail of

the proposed recursive Polya tree mixture model. Chapter 4 discusses some examples

related to Bayesian nonparametric hierarchical model. In Chapter 5, a Bayesian

semiparametric AFT model is developed based on the proposed recursive Polya tree

4



mixture model. In Chapter 6, we give a conclusion of this thesis and discuss some

future research topics.
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CHAPTER 2
Introduction to Bayesian Nonparametrics

In this chapter, we introduce the basic ideas of Bayesian nonparametrics. In

Section 2.1, we introduce the Dirichlet process mixture model. Section 2.2 reviews

the Bayesian nonparametrics for survival analysis. In Section 2.3, the Polya Tree

model and some examples are discussed. Some other applications are discussed in

Section 2.4. In Section 2.5, we introduce other Bayesian nonparametric models,

including sequential imputation and predictive recursion.

2.1 The Dirichlet process mixture model

In Bayesian inference, prior distributions are assigned to all unknown quantities

(parameters) in a statistical model. In parametric inference, the data generating

model is assumed to be a function of a finite dimensional parameter; in nonparametric

inference, the parameter dimensionality is not finite (for example, the parameter

might be an unknown distribution function). Ferguson (1973 [28]) suggested two

principles to guide the construction of prior distributions for nonparametric problems:

1. The support of the prior distribution should be large,

2. The resulting posterior distributions should be tractable analytically.

A third principle that is important for practical implementation is that

3. the hyperparameters defining the priors should be easily interpreted.
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The Dirichlet process (Ferguson 1973 [28]) meets all these principles and has be-

come the heart of Bayesian nonparametric solutions. In next section, we outline the

definition and properties of the Dirichlet process.

2.1.1 Definition and properties of Dirichlet process

In 1973, Ferguson (1973 [28]) proposed the definition of Dirichlet process.

Definition Dirichlet process (Ferguson 1973 [28]).

Let Ω be the sample space, and z be the corresponding σ-algebra. A Dirichlet

process (DP; Ferguson, 1973 [28]) is a stochastic process G on (Ω,z) with concen-

tration parameter α and base distribution G0. For any partition (B1, . . . , BM) on

the space of G0, the random vector (G(B1) . . . G(BM )) has a Dirichlet distribution

with parameters (αG0(B1) . . . αG0(BM ))

(G(B1) . . .G(BM )) ∼ Dirichlet(αG0(B1) . . . αG0(BM)).

We denote a Dirichlet process by

G ∼ DP(α,G0)

The existence of a Dirichlet process has been verified in Ferguson (1973 [28]) using

the Kolmogorov consistency conditions. Some properties of the Dirichlet process are

summarized below.

1. The mean of Dirichlet process G is the base distribution,

E(G) = G0,

Var(G) =
G0(1 −G0)

α+ 1
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Thus G0 can be considered as a prior guess for G.

2. The concentration parameter α represents the strength of belief in the base

distribution. For large values, a random function G drawn from the Dirichlet

process will be close to the base distribution G0. As α diminishes, the variation

of the draws around G0 increases.

3. Suppose N samples have been drawn from G. Then the posterior distribution

is also a Dirichlet process

G|Y1 . . . YN ∼ DP


α+N,

αG0

α+N
+

N∑
i=1

δYi
(.)

α+N




This is termed the conjugacy property.

4. For small values of α, the posterior distribution based on Y1 . . . YN is close to

the empirical distribution, as the contribution from the prior is minimal.

5. Draws from a Dirichlet process (that is, random probability mass functions

sampled from the process) are discrete with probability 1. This is an un-

appealing property compared with the Polya tree model (Polya tree can be

absolutely continuous with probability 1).

To demonstrate the role of α, we draw N = 10000 samples from a Dirichlet process

with base distribution to be normal N(0,1), and α = 1, 10, 100, and 1000. From

Figure 2–1 it is evident that when α becomes larger and larger, the histogram of

draws becomes closer and closer to the base distribution. The number, K, of unique

values (or atoms) for each draw is

• α = 1, the number of atoms = 7,
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Figure 2–1: Histogram of the draw from a Dirichlet process DP(α, Normal(0, 1)).
When α becomes larger and larger, the histogram of draws becomes closer and closer
to the base distribution.

• α = 10, the number of atoms = 73,

• α = 100, the number of atoms = 499,

• α = 1000, the number of atoms = 2380.

In expectation, larger values of α yield higher numbers of atoms: we have (Antoniak

1974 [2])

E[K|α,N ] =
N∑

i=1

α

α+ i− 1
= α(ψ(α+N) − ψ(α)) w α log(1 +N/α)

where ψ(.) is the digamma function .

Ferguson’s first construction is now seldom used in real applications, and statis-

ticians have developed several equivalent representations, including the Polya urn

model, the Chinese restaurant process and stick-breaking process.

Definition The Polya Urn model.
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Blackwell and MacQueen (1973 [7]) developed the Polya urn scheme for repre-

senting the Dirichlet process (and other processes) using exchangeability. A sequence

of random variables θ1 . . . θN is a Polya urn sequence with parameters α and base

distribution G0, if

θ1 ∼ G0,

θi ∈ B|θ1 . . . θi−1 ∼
αG0(B) +

i−1∑
j=1

δθj
(B)

α + i− 1
,

for a set B, where δθ(y) denotes the unit measure concentrating at θ. Imagine an

urn with the number of α balls, and there are αG0(θ) balls of color θ. The sequence

θ1 . . . θN can be imagined as: draw a ball from the urn, and after each draw, the ball

drawn is replaced and another ball of the same color is added to the urn.

Blackwell and MacQueen (1973 [7]) showed that as N goes to infinity, a Polya

urn sequence will converge to a Dirichlet process G ∼ DP (α,G0) almost surely. An

important property of the Polya urn model is the explicit clustering property: a new

sample has positive probability, 1/(α + i− 1) for the ith draw to be equal to one of

the previous drawn samples. Here, α determines the probability of choosing a new

color from G0; at step i, this probability is α/(α + i− 1).

Many computing methods using Markov Chain Monte Carlo (MCMC) for poste-

rior inference are based on the Polya urn model: early contributions include Escobar

(1994 [26]) and Escobar and West (1995 [27]).

Definition The Chinese restaurant process.

The Chinese restaurant process (CRP) (Aldous 1983 [1]; Pitman 1995 [72])

is a distribution constructed directly on partitions. Imagine a Chinese restaurant
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with countably infinitely many circular tables, labeled 1, 2. . . . Customers enter the

restaurant sequentially; the first customer always chooses the first table.

Suppose the first n (n ≥ 1) customers have occupied Kn tables. Then the

(n+ 1)st customer will either

• choose a new table with probability α/(n + α), or

• choose an occupied table k (1 ≤ k ≤ Kn) with probability nk/(α + n),

where nk is the number of customers for table k. Suppose the table of customer

i, 1 ≤ i ≤ n is denoted ci,

p(cn+1 = k|c1, . . . , cn) =
α

α + n
δKn+1 +

Kn∑

k=1

nk

α+ n
δk, (2.1)

where δk is the point mass at k. After the Nth label is generated, K ≡ KN denotes

the number of clusters. This process generates the cluster configuration implied by

the Dirichlet process, after which we can generate a random discrete distribution on

the support of G0 by sampling variates θk, k = 1, . . . , K to represent the K cluster

centers.

Definition: The Stick-Breaking process.

Sethuraman (1994 [75]) proposed a constructive definition of Dirichlet process,

writing for a set B

G(B) =
∞∑

k=1

πkδθk
(B),

where θk ∼ G0, and

πk = vk

k−1∏

j=1

(1 − vj),
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with vj ∼ Beta(1, α). Ishwaran and James (2001 [43]) showed that Dirichlet process

can be approximated by truncating the number of components to M

G(B) ≈
M∑

k=1

πkδθk
(B).

By setting vM = 1, we can guarantee that
M∑

j=1

πj = 1. The stick-breaking process

can be imagined as breaking a unit length stick infinitely many times. Starting with

a stick with unit length, we break a piece off the stick and discard it. The breaking

point is generated as a random variable vj ∼ Beta(1, α). By continuing this process

infinitely many times, we obtain the stick-breaking process.

2.1.2 The Dirichlet process mixture model: the conjugate case

Each draw from a Dirichlet process is almost surely discrete, and this property is

undesirable. The Dirichlet process mixture model (DPM, Antoniak 1974 [2]) extends

the Dirichlet process to deal with the continuous case. For a random sample Y1 . . . YN ,

suppose that

Yi|θi ∼ h(Yi|θi) independent,

and assume

θ1, θ2, . . . , θN ∼ DP(α,G0(λ)) i.i.d.

Each variate θi drawn from G is a draw from a discrete distribution, so that some of

the Yi will share the same values of θ, and the Yi with the same values of θ belong to

the same mixture component. The posterior for θ given Y and λ is proportional to

N∏

i=1

h(Yi|θi)

(
αG0(λ) +

∑
k<i I(θi = θk)

α+ i− 1

)
,
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where I(.) is the indicator function. A simple posterior sampling scheme based on

the Polya urn and MCMC (Chapter 1 of Dey et al. [20]) can be summarized as

follows: for each i in turn, we have that

θi|θk,k 6=i, Y, λ ∼ q0(Yi)Gb(θi;λ) +
∑

k 6=i

qk(Yi)I(θi = θk), (2.2)

where

• Gb(θi;λ) ∝ h(Yi|θi)G0(θi;λ), where

– G0(θi;λ) is the prior base density evaluated at θi;

– Gb(θi;λ) is the posterior base density evaluated at θi.

• q0(Yi) ∝ α
∫
h(Yi|θi)G0(θi;λ) dθi;

• qk(Yi) ∝ h(Yi|θk) is proportional to the conditional density of Yi given θk;

where the constant of proportionality is determined by the requirement that

q0(Yi) +
∑

k 6=i

qk(Yi) = 1.

Heuristically, the posterior for θi is largely based on the θj corresponding to Y s near

to Yi. If the hyperparameter of λ in base distribution is known, and a conjugate

prior is used, then the integral

∫
h(Yi|θi)G0(θi;λ) dθi

can be computed analytically. As a result, it is easy to use (2.2) to sample from

the full conditionals and utilize the Gibbs sampler version of Markov Chain Monte

Carlo.
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Example 1. The DPMM for mixtures of binomial distributions Consider

the binomial random sample (X1, Y1), . . . (XN , YN ), where the number of trials is Yi

and the number of successes is Xi. Assume the probability of success is θi for trial

i; is natural to model the conditional distribution given Yi = yi using a binomial

distribution:

Xi|Yi = yi ∼ Binomial(yi, θi),

Now assume that the random effect probabilities θi arise from a Dirichlet process θi ∼

DP(α,G0). The base distribution is the conjugate Beta distribution, G0 ≡ Beta(a, b).

It is then very straightforward to implement the algorithm described in (2.2). The

posterior base distribution in this case

Gb(θi; a, b) ≡ Beta(xi + a, yi − xi + b).

We also have that q0(xi) ∝ α
∫
h(Xi|θi)G0(θi;λ) dθ , so that

q0(xi) ∝ α
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0

txi+a−1(1 − t)yi−xi+b−1dt = αBa,b(yi, xi),

say. The value of qk(xi) is the density value for the binomial distribution with

parameters (yi, θk) evaluated at xi.

Example 2. The DPMM for mixtures of Poisson distributions

Suppose we observe a random sample of count data Y1, . . . YN , and model them

using a Poisson distribution, Yi|θi ∼ Poisson(θi), where the θi are assumed to arise

from a Dirichlet process, θi ∼ DP(α,G0). The base distribution G0 is a conjugate

Gamma distribution, G0 ∼ Gamma(a, b). Escobar and West (1998) (see also Chapter
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1 of [20]) derived the posterior base distribution Gb, q0 and qk as follows:

q0(yi) ∝ α
(yi + a− 1)!

yi!(a− 1)!

(
b

1 + b

)a(
1

1 + b

)yi

Gb(θi; a, b) ≡ Gamma(a + yi, b+ 1)

qk(yi) ∝ Poisson(yi; θk)

Hence for i = 1, . . . , N , we draw θi according to:

• θi ∼ Gamma(a + yi, b+ 1) with probability proportional to q0(yi).

• θi = θk with probability proportional to

θyi

k exp{−θk}
yi!

for k 6= i.

Example 3. The DPMM for mixtures of normal distributions

Suppose that Yi|θi ∼ N(θi, 1), where θi is from a Dirichlet process θi ∼ DP(α,G0),

and the base distribution is a conjugate standard normal distribution, G0 ≡ N(0, 1).

Then by elementary calculations, if φ(.|µ, σ2) denotes the Normal density function

for parameters (µ, σ2), we have

q0(yi) ∝ αφ(yi|0, 2)

Gb(θi|yi) ≡ N(yi/2, 1/2)

Hence for i = 1, . . . , N , we draw θi according to:

• θi ∼ N(yi/2, 1/2) with probability proportional to q0(yi).

• θi = θk with probability proportional to φ(yi|θk, 1), for k 6= i.
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The Bush-MacEachern algorithm

The algorithms described above draw θi one at a time, without considering the

clustering property. Bush and MacEachern (1996 [13]) made a revision by consid-

ering clustering, thereby potentially improving the convergence properties of their

algorithm. The Bush-MacEachern algorithm has two steps.

• assign yi(1 ≤ i ≤ N) to each component,

• draw parameters for each component.

Let c = (c1, . . . , cN ) be the indicator variables which indicate the component to which

each data point belongs. Suppose there are K (1 ≤ K ≤ N) components (excluding

ci) when ci is to be updated. Then,

p(ci = k|yi, c(−i)) ∝
n−i,k

N − 1 + α
h(yi|θk), (2.3)

determines the probability that yi will be assigned to component k. Here n−i,k de-

notes the number of data points except yi in component k. yi also has the probability

to form a new component with

p(ci = K + 1|yi, c(−i)) ∝
α

N − 1 + α

∫
h(yi|θ)dG0(θ) (2.4)

where K is the number of components (without ci) when ci is ready to be updated

(different ci may have different K). If yi belongs to a singleton component, this

component is completely removed when ci is ready to be updated. After the indicator

variables c = (c1, . . . , cN ) are updated, the parameters are sampled according to the
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posterior for each component

p(θk|y1, . . . , yN , c) ∝ G0(θk)
∏

i: ci=k

h(yi|θk),

which may not be a standard distribution, but can be sampled using adaptive re-

jection sampling, the Metropolis-Hastings algorithm or other popular sampling al-

gorithms.

Example 4. Normal example (continued).

Consider the normal example described above. First, the indicator variables are

updated using

p(ci = k|yi, c(−i)) ∝





n−i,k

N − 1 + α
φ(yi|θk, 1) if 1 ≤ k ≤ K,

α

N − 1 + α
φ(yi|0, 2) if k = K + 1.

After the indicator variables are updated, parameters are sampled according to

p(θk|y1, . . . , yN , c) ∝ φ(θ|0, 1)
∏

i: ci=k

φ(yi|θk, 1).

which yields for component k

θk|y1, . . . , yN , c ∼ N

(
nkyk

nk + 1
,

1

nk + 1

)

where

nk =
n∑

i=1

I(ci = k) yk =
1

nk

n∑

i=1

yiI(ci = k).

17



2.1.3 Posterior computation for the non-conjugate case

If G0 is a conjugate prior then the integral
∫
f(yi|θi)dG0(θ) can be calculated

analytically. Escobar and West (1998) (Chapter 1 of [20]) contend that it is always

reasonable to use conjugate prior as

• they are easy to deal with, especially for hierarchical models;

• although the use of conjugate prior restricts the flexibility, the interest is to

find the distributions “around” G0

• G is sampled from DP(α,G0), which adds some flexibility

Although Escobar and West(1998) claimed that there is no reason to avoid the

use of a conjugate prior, non-conjugate priors are still of interest as they provide

additional flexibility. However, in the non-conjugate case, sampling θi is much less

straightforward. In the next several sections, different sampling algorithms based on

Polya urn schemes are introduced.

The No Gap algorithm

The “No Gap” algorithm (MacEachern and Muller 1998 [60]) is designed to

deal with non-conjugate cases. As in the Bush-MacEachern algorithm, the No Gap

algorithm also contains two steps: the update of indicator variables and the sampling

of parameters. Let K denote the number of components (excluding ci) when ci is to

be updated (different yi may have different K).

1. Case I: If yi belongs to a singleton component, then

ci −→





ci with probability
K

K + 1
,

K + 1 with probability
1

K + 1
.
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where

• if ci −→ ci, then leave it unchanged and go to update next ci+1,

• if ci −→ K + 1, update ci according to the following formula (2.5).

p(ci = k|yi, c(−i)) ∝





n−i,kh(yi|θk) if 1 ≤ k ≤ K,

α

K + 1
h(yi|θK+1) if k = K + 1.

(2.5)

where θK+1 is a new draw from G0.

2. Case II: if yi does not belong to a singleton component, directly use (2.5) to

update ci.

After the indicator variables c = (c1, . . . , cN ) are updated, the parameters are sam-

pled to each component with

p(θk|y1, . . . , yN , c) ∝ G0(θk)
∏

i: ci=k

h(yi|θk) k = 1, . . . , K

Neal’s Algorithm 8

Neal (2000 [68]) updated the No Gap algorithm using auxiliary variables which

only exist temporarily during the algorithm. Rather than considering only one new

component, Algorithm 8 of Neal (2000 [68]) consideredM new components. Suppose

there are K components (excluding ci) when ci is to be updated, and that the auxil-

iary components are labeled as K+1, . . . , K+M . If M is large enough, the empirical

distribution of the auxiliary variables can be considered as an approximation to G0.

Neal’s Algorithm 8 has three steps:

• sampling the auxiliary components;

• updating the indicator variables;
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• sampling the parameters.

For i = 1, . . . , N ,

1. Case I: if yi belongs to a singleton component,

• assign the parameter θci
to one of the auxiliary components, then

• draw values from G0 for the remaining M − 1 auxiliary components.

2. Case II: If yi does not belong to a singleton component,

• draw values from G0 for all of the M auxiliary components.

The auxiliary components are temporary, which means that when the ci finish up-

dating, all the auxiliary parameters are deleted. After the auxiliary parameters are

updated, the indicator variable ci is updated according to the rule

p(ci = k|yi, c(−i)) ∝





n−i,k

N − 1 + α
h(yi|θk) if 1 ≤ k ≤ K,

α/M

N − 1 + α
h(yi|θk) if K < k ≤ K +M .

When updating of the ci is completed, all the auxiliary components which have not

been occupied are deleted. Finally, the parameters are sampled for each component

with

p(θk|y1, . . . , yN , c) ∝ G0(θk)
∏

i:ci=k

h(yi|θk).

2.2 Bayesian nonparametrics for survival analysis

In this section, we introduce the application of Bayesian nonparametrics to es-

timate survival functions.
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2.2.1 Dirichlet process mixture formulation

Doss (1994 [22]) proposed a successive substitution sampling approach based on

the Dirichlet process for survival analysis. Suppose observations Y1 . . . YN are drawn

independently from F , where Yi is an exact observation or it can be a censored

data (right, left or interval censored) that lie in an interval Ai. The prior on F is a

mixture of Dirichlet process models, F ∼ DP (α,G0(θ)), where parameter θ in the

base distribution has its own prior distribution π(.), that is

F |θ ∼ DP(α,G0(θ)) θ ∼ π(dθ).

The objective is to obtain the posterior distribution of F given the incomplete data.

The main idea in Doss (1994 [22])’s approach is to generate F (ν) at each iteration ν,

and obtain the quantities of interest through these generated F (ν).

Doss (1994 [22])’s successive substitution sampling approach is an iterative al-

gorithm in which, at each step, the c.d.f F is estimated. Then the corresponding

Z1, . . . , ZN are sampled, where Zi = Yi if Yi is an exact observation, and Zi is a

sampled value from interval Ai if Yi ∈ Ai is a censored observation.

We start with an initial guess of F (0) and Z
(0)
1 . . . Z

(0)
N , and the two steps at each

iteration ν are first

Generate F (ν) ∼ DP


α+N,

αG0(θ) +
N∑

i=1

δ
Z

(ν−1)
i

(.)

α +N


 ,

and second

Generate (Z
(ν)
1 , . . . , Z

(ν)
N ) ∼ H(Z1 . . . ZN |F (ν), Yi ∈ Ai, i = 1 . . . N),
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where F (ν) and (Z
(ν)
1 , . . . , Z

(ν)
N ) are the samples to be drawn at iteration ν , and

H(Z1, . . . , ZN |F (ν), Yi ∈ Ai, i = 1 . . . N) is the conditional distribution of Z1, . . . , ZN

given F (ν) and Y . After Υ steps are completed, we have obtained Υ estimates

F (1) . . . F (Υ). As result, the distributions for the quantity of interest, like the mean

or median of F can be obtained through F (1) . . . F (Υ).

Next, we introduce the details of the two steps, assuming that θ is known. In

the first step, we first draw a large number of samples (say d samples) ζ1, . . . , ζd from

the Dirichlet process with precision parameter α +N and base distribution

1

(α+N)

(
αG0(B) +

N∑

i=1

δ
Z

(ν−1)
i

(B)

)
.

The base distribution can be expressed using a stick-breaking process (Doss 1994

[22]). We first generate

ζ1, . . . , ζd ∼





G0 with probability α/(α +N)

Zi with probability 1/(α +N)

independently, and then generate v1, . . . , vd ∼ Beta(1, α +N), and set

πi = vi

i−1∏

j=1

vj.

So at iteration ν, F̂ (ν) can be expressed as a mixture distribution of ζj with weights

πj,

F̂ (ν) ≈
d∑

j=1

πjζj .

from which quantities of interest, such as median(F ), can be obtained directly.
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In the second step, after F̂ (ν) is obtained, new simulated data Z1 . . . ZN are

drawn from F̂ (ν). If Yi is an exact observation, then Zi = Yi; if Yi ∈ Ai is censored,

then generate

U
(1)
i ∼ U(0, 1).

Choose J
(1)
i such that

J
(1)
i −1∑

j=1

πj ≤ U
(1)
i ≤

J
(1)
i∑

j=1

πj.

If ζ
J

(1)
i

∈ Ai, set

Z
(k)
i = ζ

J
(1)
i

.

Otherwise, repeat the process using independent uniforms U
(2)
i , . . . , Uei

i until observe

one ζ
J

(ei)
i

∈ Ai. After all the Z
(ν)
1 , . . . Z

(ν)
N are sampled, they are used in the next step

as part of the base distribution in the Dirichlet process. The two steps are repeated

many times to produce Υ estimators of the quantities of interest.

We have reviewed the Dirichlet process mixture model, and discussed some ap-

plications. In next section, we give a brief introduction to another popular Bayesian

nonparametric model: Polya tree.

2.3 The Polya tree

This section reviews the formulation of the Polya tree model, for which full de-

tails can be found from Lavine (1992 [54], 1994 [55]), Hanson and Johnson (2002 [37])

and Hanson (2006 [36]). Suppose a random sample Y = (Y1, . . . , YN ) is observed.

The traditional parametric approach models the random sample through a para-

metric distribution with cumulative distribution function G0(θ) (the corresponding

density g0(θ)). Let the support of the distribution be Ω.
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The Polya tree model is specified through a hierarchical, recursive partition of

the support of Ω. At the first level, Ω is partitioned into two intervals B(0) and

B(1), with Ω = B(0) ∪B(1) and B(0) ∩B(1) = φ. At the second level B(0) is split

into B(00) and B(01), with B(0) = B(00) ∪B(01) and B(00) ∩B(01) = φ. B(1) is

partitioned in the similar way. Following Hanson (2006 [36]), at level j, denote ej(k)

to be the j-fold binary sequence representation of partition component k − 1. For

example, suppose

ej(k) = ε1 . . . εj;

we have e2(1) = 00, and e4(6) = 0101 and so on. Note that at level j, there will

be 2j intervals. Following the recursive binary partition, we know B(ε1 . . . εj) =

B(ε1 . . . εj0) ∪B(ε1 . . . εj1).

The partition points at each level are constructed through the canonical partition

of Lavine (1992 [54]), in which the partition points are specified to be the quantiles

of the parametric distribution G0(θ). At the first level,

B(0) = (G−1
0 (θ)(0), G−1

0 (θ)(1/2)) B(1) = (G−1
0 (θ)(1/2), G−1

0 (θ)(1)).

At each level j, define the intervals

B(ej(k)) = (G−1
0 (θ)((k − 1)/2j), G−1

0 (θ)(k/2j)) k = 1, . . . , 2j − 1

and

B(ej(2
j)) = (G−1

0 (θ)((2j − 1)/2j ), G−1
0 (θ)(1)),
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where G−1
0 (θ)(q) denotes the qth quantile of G0. Let

Πj ≡ {B(ej(k)) : k = 1 . . . 2j}

be the set of partition intervals of Ω at level j. Note that, under the canonical

partition, every set in Πj contains probability 2−j by construction.

Definition Polya tree (Lavine 1992 [54]; Hanson 2006 [36]).

A random probability measure G on a separable measurable space (Ω,z) has a

Polya tree distribution, with parameter (α, ρ,G0(θ)), written as G ∼ PT(α, ρ,G0(θ)),

if there exist random vectors

Υ = {(Ξej(k)0,Ξej(k)1) : k = 1 . . . 2j−1; j = 1 . . .M}

such that

1. All the random vectors in Υ are independent;

2. {(Ξej(k)0,Ξej(k)1)} ∼ Beta(αρ(j), αρ(j)), more precisely

Ξej(k)0 ∼ Beta(αρ(j), αρ(j)) Ξej(k)1 = 1 − Ξej(k)0;

3. For every B(ε1 . . . εj) ∈ Πj,

G(B(ε1 . . . εj)) =

j∏

k=1

Ξε1...εk
.

Polya trees enjoy a conjugacy result. Suppose a random sample Y1 . . . YN ∼ G,

with G ∼ PT (α, ρ,G0(θ)). In light of the data, the posterior on G, G|Y , is also a
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Polya tree with parameters updated as

(Ξej(k)0,Ξej(k)1)|Y ∼ Beta(αej (k)0, αej (k)1) = Beta(αρ(j)+n(ej(k)0), αρ(j)+n(ej(k)1)),

(2.6)

where n(ε1 . . . εj) is the number of elements of the observations in the intervalB(ε1 . . . εj).

In this formulation, the partition points do not change, but the parameters (Ξej(k)0,Ξej(k)1)

are updated through (2.6). We term the αρ(j) + n(ej(k)) for interval B(ej(k)) as

the “beta weight” value.

Quantity ρ(j) is a function of level j of the hierarchical partition. Walker and

Mallick (1997 [66]) suggest the choice ρ(j) = j2. Ferguson (1974 [29]) pointed out

that the parameters set to j2 place prior probability one on absolutely continuous

distributions (see also Kraft 1964 [15]). The Dirichlet process is recovered if ρ(j) is

set proportional to 2−j (Lavine (1992,1993) [54, 55]).

The partition points are decided through the parametric distribution G0(θ),

termed the base distribution. The Polya tree approach generalizes the “guess” dis-

tribution, and it is also centered at the base distribution.

E[G(B(ε1 . . . εj))] =
1

2j
= G0(B(ε1 . . . εj))

Fixing α at a large value reflects the strong belief that the true distribution should

be close to the parametric base distribution G0(θ). As α → ∞, the Polya tree G

equals G0(θ) with probability 1. Conversely, if small values of α are used, the Polya

tree posterior will be close to the empirical distribution of data.

Hanson (2006 [36]) pointed out that “The Polya tree model provides an “inter-

mediary” between the empirical c.d.f and a given parametric distribution in a manner
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similar to the Dirichlet Process”, and found that adding levels to a Polya tree can

not guarantee the improvement of model fit or predictive utility. He suggested a rule

of thumb

M = − log2

(
E

N

)
,

where N is the sample size, E is a “...‘typical’ number of observations falling into

each set at levelM” (Hanson 2006 [36]), that is, the number of observations expected

to fall within each category at the final level of the hierarchical partition; E/N is

the corresponding proportion of observations.

The probability density function (p.d.f) value of Yi can be easily obtained. Sup-

pose Yi ∈ B(ε1 . . . εM) at level M , the p.d.f value can be calculated through

g(Yi) = 2Mg0(Yi)G(B(ε1 . . . εj)),

where g0(Yi) is the p.d.f value of Yi from the base distribution, and G(B(ε1 . . . εj)) is

the posterior probability measure corresponding to the interval B(ε1 . . . εM ) in which

Yi lies.

Example 5. Two component mixture of normals

Consider a random sample of size 100,

Yi ∼ 0.5 N(−3, 1) + 0.5 N(3, 1).

The mean of the sample is 0.053, and the standard deviation is 3.18. A naive

parametric approach may model the data through a single Normal distribution

G0(θ) = N(0.053, 3.18).
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Figure 2–2: The histogram, Polya tree fit (red line), and parametric model fit,
N(0.053,3.18) (blue line). The values of α are fixed as 0.1, 1, 10 and 100

The histogram and the density curve of N(0.053,3.18) (blue line) are plotted in Figure

(2–2). The parametric model fails to capture the bimodal structure of the original

data. Consider instead a Polya tree model with maximum level six (log2(100) ≈ 6).

The partition points and intervals at the first two levels are

B(e1(1)) = (∞, 0.053);B(e1(2)) = (0.053,∞),

B(e2(1)) = (∞,−2.09);B(e2(2)) = (−2.09, 0.053);B(e2(3)) = (0.053, 2.2);B(e2(4)) = (2.2,∞).

Note that G−1
0 (θ; 0.25) = −2.09, G−1

0 (θ; 0.5) = 0.053 and G−1
0 (θ; 0.75) = 2.2.

We fit the Polya tree using the R package “DPpackage”, and the fit is plotted in

Figure 2–2. When the α value is small (upper left plot, α = 0.1), the Polya tree fit

is close to the empirical distribution, and the bimodal structure is captured. When
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the α value is large (lower right plot, α = 100), the Polya tree fit is almost the same

as the parametric model (the blue and red lines coincide). Another finding from

Figure 2–2 is that as α becomes larger and larger, the curve becomes smoother and

smoother.

2.4 Applications

In next several subsections, we introduce some biostatistical and other applica-

tions using the Polya Tree model.

2.4.1 Meta-analysis (Modeling the log of odds ratio)

We consider N independent case-control studies examining the relationship be-

tween an exposure and disease. We consider an analysis based on the standard

frequentist asymptotic approximation of the log odds ratio; denote the observed log

odds ratios as Y1 . . . YN , and assume they arise from normal distributions

Yi|θi, σi ∼ N(θi, σ
2
i ).

where σi is known to us, and it is study dependent, and a function of the study

sample size for study i. Branscum and Hanson (2008 [9]) considered modeling θ as

a random distribution F with a mixture of Polya trees prior.

θi ∼ PT(α, ρ,G0),

with base distribution G0 ≡ N(µ, τ 2). The parameters in the base distribution µ and

τ 2 have their own prior distribution,

µ ∼ N(µb, S
2
b ),
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τ−2 ∼ Gamma
(τ1

2
,
τ2
2

)
,

where µb, S
2
b , τ1, τ2 are specified in advance. Since a conjugate prior is used, the imple-

mentation of the Metropolis-Hastings method is straightforward, and it is introduced

in Branscum and Hanson (2008 [9]).

1. Draw

θ∗i ∼ N

(
τ 2Yi + σ2

i µ

τ 2 + σ2
i

,
σ2

i τ
2

σ2
i + τ 2

)
,

and accept it with probability

min

(
1,
PT(α, ρ,N(µ, τ 2))(θ∗i )

PT(α, ρ,N(µ, τ 2))(θi)

)
,

where PT(α, ρ,N(µ, τ 2))(θ∗i ) denotes the probability measure of the set contain-

ing θ∗i of Polya tree. The precision is α and base distribution is N(µ, τ 2):

2. Draw

µ∗ ∼ N

(
S2

b θ + τ 2µb

τ 2 + S2
b

,
τ 2S2

b

τ 2 + S2
b

)
,

and accept it with probability

min


1,

N∏
i=1

PT(α, ρ,N(µ∗, τ 2))(θi)

N∏
i=1

PT(α, ρ,N(µ, τ 2))(θi)


 .

3. Draw

(τ ∗)−2 ∼ Gamma

(
τ1 +

N + 1

2
, τ2 +

1

2
(µ− µb)

2 +
1

2

N∑

i=1

(θi − µ)2

)
,
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and accept it with probability

min


1,

N∏
i=1

PT(α, ρ,N(µ, (τ ∗)2))(θi)

N∏
i=1

PT(α, ρ,N(µ, τ 2))(θi)


 .

After Υ iterations, we can obtain Υ samples for θi, i = 1 . . . N , µ, and τ . As a

result the standard error, mean and other quantity of interest of these estimates are

available.

Note that we can fix the mean of the base distribution µ to be the median of

F in a straightforward way, and it will have a clear interpretation. However, the τ 2

is just the variance for the base distribution, and not the variance for F , so it does

not have a clear interpretation. In Chapter 4, we will show that in the proposed

recursive Polya tree mixture model, both µ and τ have clear interpretations.

2.4.2 Survival analysis

Muliere and Walker (1997 [66]) presented a Bayesian nonparametric approach to

survival analysis using a Polya tree. Their analysis assigns a Polya tree prior to the

space of survival curves, and based survival statements on the posterior predictive

probabilities for future observations. They review some previous work based on the

extended gamma process and the beta process. Their approach is easy to implement,

easy to obtain posterior samples, and can be thought of as a generalization of the

Kaplan-Meier estimator. Muliere and Walker’s work is the first one to apply Polya

tree model to survival analysis. We will review their approach through a real data set.

There are two important steps to apply Polya trees to estimate survival functions:

the partitioning approach and the construction of predictive distributions.
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Partitioning approach: The partitioning approach of Muliere and Walker (1997

[66]) still relies on the recursive binary partitions of Lavine (1992 [54]). All the

censored data are set to the partition points at each level. We take an example to

explain their partition approach. Consider the data from Kaplan and Meier (1958

[47])

Deaths occurred: 0.8, 3.1, 5.4, 9.2;

Censoring occurred: 1.0, 2.7, 7.0, 12.1.

At the first level, consider the first censored time 1.0;

B(0) = [0, 1.0);B(1) = [1.0,∞).

At the second level, consider the second censored time 2.7 and first death time 0.8;

B(00) = [0, 0.8);B(01) = [0.8, 1.0);B(10) = [1.0, 2.7);B(11) = [2.7,∞).

At the third level, since no observations occur in B(00) and B(01), they do not need

further partition. The third censored time 7.0 occurs in B(11), so

B(110) = [2.7, 7.0);B(111) = [7.0,∞).

At the fourth level;

B(1100) = [2.7, 3.1);B(1101) = [3.1, 7.0);B(1110) = [7.0, 12.1);B(1111) = [12.1,∞).

Finally at the fifth level;

B(11010) = [3.1, 5.4);B(11011) = [5.4, 7.0);B(11100) = [7.0, 9.2);B(11101) = [9.2, 12.1)
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Predictive distributions: If there are no censored observations, the posterior pre-

dictive distribution is

P (YN+1 ∈ B(ε1 . . . εM )) =
αε1 +Nε1

αε1 + αε0 +N

αε1ε2 +Nε1ε2

αε10 + αε11 +Nε1

. . .
αε1...εM

+Nε1...εM

αε1...εM−10 + αε1...εM−11 +Nε1...εM−1

,

(2.7)

where αε + Nε is the “beta weight” (see section 2.3) for interval B(ε). If right

censored observations exist, Muliere and Walker (1997 [66]) update (2.7) by deleting

the censored data from the risk set (which is the denominator) in the denominator.

The probability P (YN+1 ∈ B(ε1 . . . εM))

P (YN+1 ∈ B(ε1 . . . εM )) =
αε1 +Nε1

αε1 + αε0 +N
. . .

αε1...εM
+Nε1...εM

αε1...εM−10 + αε1...εM−11 +Nε1...εM−1
−Ncε1...εM−1

,

(2.8)

where Nε and Ncε are the number of deaths and censored observations in interval

B(ε). Muliere and Walker (1997 [66]) observed the fact that (2.8) reduces to the

Kaplan-Meier estimator if all the α values are set to 0 and the convention 0
0

= 0

is adopted. A parametric distribution is assigned to the base distribution G0; for

example, an exponential distribution may be appropriate for the data presented

above (see Muliere and Walker 1997 [66]). Muliere and Walker (1997 [66]) suggest

αε1...εj
= α× j2 ×G0(B(ε1 . . . εj)),

where, recall, G0(B(ε1 . . . εj)) is the probability measure of base distribution G0 on

the set B(ε1 . . . εj). In the above example, Muliere and Walker (1997 [66]) assigned
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a exponential distribution with parameter 0.12 to the base distribution, so that

G0(B(ε1 . . . εj)) =

∫

B(ε1...εj )

0.12 exp(−0.12z)dz

The hyperparameter can be adjusted to capture genuine prior knowledge.

2.4.3 Simulating the Polya tree prior or posterior

Simulating data from posterior distribution is easy in Polya tree. At first level,

selectB(0) or B(1) with probability Ξ0 and Ξ1. At level j, if a setB(ε1 . . . εj−1) is cho-

sen, the probability to select B(ε1 . . . εj−10) or B(ε1 . . . εj−11) is (Ξε1...εj−10,Ξε1...εj−11).

At the maximum level M , if B(ε1 . . . εM) is selected, a sample is taken (uni-

formly) from B(ε1 . . . εM).

Example 6. Kaplan-Meier’s data survival analysis

The following results are obtained to compute posterior quantities of interest for

the Kaplan-Meier data: Doss (1994 [22])’s approach (see section 2.2) and Muliere and

Walker (1997 [66])’s Polya Tree model are used. Table 2–1 show the results. The first

t 0.8 1.0+ 2.7+ 3.1 5.4 7.0+ 9.2 12.1+
KME 0.125 0.125 0.125 0.300 0.475 0.475 0.738 0.738
Doss 0.108 0.120 0.207 0.300 0.472 0.526 0.682 0.750
Prior 0.090 0.110 0.270 0.300 0.470 0.560 0.660 0.760

M & W α = 1 0.050 0.110 0.190 0.220 0.390 0.520 0.600 0.760
M & W α = 10 0.080 0.110 0.260 0.290 0.460 0.550 0.650 0.760
M & W α = 0.01 0.110 0.110 0.110 0.300 0.480 0.480 0.740 0.740

Table 2–1: Estimator of c.d.f values of Kaplan and Meier’s data using Doss (1994)
and Muliere & Walker’s (1997) approaches

row shows the result from the Kaplan-Meier estimator. The second row summarizes
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the estimates from Doss (1994 [22])’s approach. In the third row, a parametric model

with a exponential distribution is fit to the data. It is interesting to note that Doss’s

approach is a intermediary between the nonparametric Kaplan-Meier estimator and

the parametric estimator. In rows 4 to 6, the Polya tree with different α values

is implemented. As expected, large α values give the results close to parametric

estimates; and small α values give the results close to the nonparametric estimates.

Comments: Muliere and Walker’s work is the first one to apply Polya tree to

survival analysis based on arbitrarily right censored data. Their approach is easy to

implement, and provides a intermediary between the nonparametric Kaplan Meier

estimator and parametric approaches. However, their partition approaches relies on

the recursive binary split, and all the censoring observations are set to the partition

points at each level. As a result, the maximum level M must be greater than the

number of distinct censored observations, and this is not an appealing feature. The

recursive binary partition approach is also a difficult way to handle the case of interval

censoring. In Chapter 5 of this thesis, we will present a new partition approaches

that can overcome the difficulties caused by recursive binary partition approach.

2.5 Other Bayesian nonparametric models

2.5.1 Sequential imputation

Liu (1996 [57]) developed a sequential imputation algorithm for binomial prob-

lems. Consider the binomial random sample (X1, Y1), . . . (XN , YN ). The number of

trials is Yi and the number of successes is Xi. Assume the probability of success is
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θi for (Xi, Yi); it is natural to model it using a binomial distribution:

Xi ∼ Binomial(Yi, θi),

θ1, . . . , θN ∼ F i.i.d

In Example 1, Section 2.1.2, we introduced an MCMC algorithm which can be used

to estimate each individual θi. If we are further interested in the random distri-

bution F , it is not that easy. As Liu (1999 [58]) comments that “Since F is an

infinite-dimensional parameter, there is no easy way of displaying its full posterior

distribution.” In this section we introduce the sequential imputation algorithm from

Liu (1996 [57]).

As discussed in Section 2.1.2, assume the random effect θi arises from a Dirichlet

process,

θi ∼ DP(α,G0).

The base distribution is the conjugate Beta distribution,

G0 ≡ Beta(a, b).

The quantities Gb, q0 and qk are

Gb(θi; a, b) = Beta(Xi + a− 1, Yi −Xi + b− 1).

q0(xi) ∝ α
Γa+b

Γ(a)Γ(b)

∫ 1

0

txi+a−1(1 − t)yi−xi+b−1dt = αBab(yi, xi),

The quantity qk(xi) is the density value for the binomial distribution with parameters

(yi, θk) evaluated at xi.
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The sequential imputation strategy still samples each θi in the same way, but

Liu (1996 [57]) also considered the weight corresponding to each draw. For the lth

draw,

wl = p(x1)
N∏

t=2

p(xt|θl1, . . . , θl(t−1)). (2.9)

Each draw consists of N values of θ: θl1, . . . , θlN . For the binomial mixture model,

each term in (2.9) is:

p(xi|θl1, . . . , θl(i−1)) =
α

α+ i− 1
Bab(yi, xi) +

1

α + i− 1

i−1∑

t=1

θxi

l(t)(1 − θl(t))
(yi−xi)

It is possible to estimate the posterior distribution by a weighted mixture. From

Theorem 5 of Liu (1996 [57]), the posterior distribution of G can be approximated

by a weighted mixture of Dirichlet processes:

p(G|X) ≈ 1

W

L∑

l=1

wlDP

(
αG0 +

N∑

i=1

δ(θli)

)
,

where W = w1 + · · ·+wL for L draws, and θli denotes the ith value in the lth draw.

The posterior expectation of G, which is also the predictive distribution for a

future θ is expressed as a weighted mixture of αG0 and point masses (Theorem 5 of

Liu 1996 [57])

E(G|X) ≈ 1∫ 1

0

αG0(du) +N

{
αG0 +

1

W

L∑

l=1

N∑

i=1

wlδ(θli)

}
.

Posterior means and variances of the θi are approximated by

E(θi|X) ≈ 1

W

L∑

l=1

wlθli,
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Var(θi|X) ≈ 1

W

M∑

l=1

wlθ
2
li − {E(θi|X)}2

Liu (1996 [57]) also derives the approach to obtain the optimal value of α.

As Liu (1996 [57]) mentioned: “direct application of Gibbs sampling is difficult

since drawing the infinite-dimensional parameter can not be done cheaply”. Se-

quential imputation provides an approach to approximate G, which is a significant

improvement of Polya urn Gibbs sampling. Although Liu (1996 [57]) only discussed

the Binomial mixture model, it is very easy to extend the sequential imputation

approach to other kinds of models, like Gaussian mixture or Poisson mixture. In

below, we briefly introduce an analysis of the rolling thumbtacks in Liu (1996 [57]).

Example 7. Tossing Thumbtacks Beckett and Diaconis (1994 [5]) generated

binary strings from rolls of common thumbtacks. There were 320 tacks which were

flicked, 9 times each, and the numbers of times that the tacks landed point up were

recorded. This process produces 320 data points which can be modeled as a binomial

distribution.

Xi ∼ Binomial(9, θi), i = 1 . . . 320 independently

The number of trials Yi are 9 for i = 1 . . . 320, and the number of successes Xi were

recorded and are shown in Table 2–2.

Number of “success” 0 1 2 3 4 5 6 7 8 9
Frequencies 0 3 13 18 48 47 67 54 51 19

Table 2–2: Thumbtacks data. The first row shows the number of tacks landed point
up; the second row shows the corresponding number of data points.
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Figure 2–3: Example 7 (Thumbtack data): Density estimation using the prior from
Liu (1996)

Liu (1996 [57]) analyzed these data by assuming θi arise from a nonparametric ran-

dom distribution,

θi ∼ F i.i.d.

The objective of Liu (1996 [57])’s work is to estimate the posterior mean of F , which

is E(F |data). Liu (1996 [57]) used sequential imputation and found an unusual

feature, that is, that the estimate of F demonstrated a surprising bi-modal pattern.

He pointed out that “this feature is unexpected and cannot be revealed by a regular

parametric hierarchical analysis using the Beta-binomial priors”. Liu (1996 [57])’s

result is plotted in Figure 2–3 computed through the R package “DPpackage”. The

finding of this unusual feature reflects the advantage of Bayesian nonparametrics.

Through assuming F arise from a nonparametric random distribution, we can utilize

information that can not be found through a parametric Bayesian hierarchical model.
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2.5.2 Predictive recursion

Newton (1999 [70], 2002 [69]) proposed a fast recursive algorithm to estimate the

unknown F . Predictive recursion requires users to define a finite support of F , and

starts from a large number, K, of fixed mass points whose corresponding probability

density function, f , is estimated in a sequential fashion.

1. Choose an initial guess f0 for f , and a sequence of weights w1, . . . , wN ∈ (0, 1).

2. Set

fi(θ) = (1 − wi)fi−1(θ) + wi

h(Yi|θ)fi−1(θ)∫

Θ

h(Yi|θ′)fi−1(θ
′)dθ′

, i = 1, . . . , N

3. Repeat the processes many times and average the results.

Newton (2002 [69]) starts with a finite support for θ, defines K mass points

uniformly in this support, and provides an initial estimate of the density values

f0(θ1), . . . , f0(θK). In the first step, these values are updated as

f1(θj) = (1 − w1)f0(θj) + w1
h(Y1|θj)f1(θj)

K∑
h=1

h(Y1|θh)f1(θh)

, j = 1 . . . K

Only Y1 is used to update the p.d.f. values for all of the mass points. In the next

step, Y2 is used, and this process continues from Y1 to YN .

Predictive recursion is very fast, efficient and robust. However, the order depen-

dence (that is, the order in which the data is introduced) is a limitation. Newton

(2002 [69]) showed that the order dependence is weak, and can be minimized by

repeating the algorithm many times and averaging the result. However, this order

dependence is still an unappealing property.
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In this chapter, we briefly introduce the basic ideas and some applications of

Bayesian nonparametric models. In next chapter, we introduce the proposed recur-

sive Polya tree mixture model and discuss its advantages.
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CHAPTER 3
The Recursive Polya tree mixture model

In this Chapter, I introduce the recursive Polya tree mixture model that is

computationally efficient and does not suffer from the drawbacks identified in the

previous Chapter.

3.1 Introduction

In Bayesian hierarchical model,

Yi|θi ∼ h(Yi|θi), i = 1, . . . , N, independently

θi ∼ F, i = 1, . . . , N i.i.d.

The marginal distribution is a mixture distribution with

Yi ∼
∫
h(Yi|θi)dF (θi).

and the Yi are conditionally independent, but not independent.

In general, there are two goals for this hierarchical model:

• estimating the distribution function F ,

• estimating each individual random effect θi corresponding to Yi.

To construct a Bayesian solution to these two problems, I will assume that F has

a Polya tree distribution and apply the “empirical Bayes” idea to choose the base

42



distribution. Specifically, the empirical distribution is regarded to be the base dis-

tribution. However, note that the θ are unobservable or latent variables, and their

empirical distribution is unavailable to us.

I develop what I term the recursive Polya tree mixture model (RPTMM) based on

an iterative algorithm. At each iteration step, the empirical distribution of the θs

is re-estimated. In the next step, the estimated empirical distribution from the last

step is taken as the Polya tree base distribution. Three steps are involved in the

implementation of the RPTMM: the updating step, the augmentation step, and the

construction step.

3.2 Constructing the recursive Polya tree mixture model

3.2.1 Updating step

The RPTMM starts with initial distribution F (0) with a broad support [S1, S2] (in

most cases, a uniform distribution on [S1, S2] is taken as F (0)). A Polya tree is built

to be centered on F (0), and truncated at level M . At level M , there are 2M intervals,

and I label them as IM1, . . . , IM2M . Denote F (IMk) by PMk, k = 1, . . . , 2M . The

conditional probability density function of Y can be written as

g(Y |θ, PM1, . . . , PM2M ) =
2M∑

j=1

PMjh(Y |θ),

where θ ∈ IMj with probability PMj under F . Using the “canonical partition” of

Lavine (1992 [54]), PMk = 1/2M , k = 1, . . . , 2M . Letting Lk, Rk be partition points

for interval IMk, the probability density function of θ, f (0) can be written as a mixture

43



of uniform distributions:

f (0)(θ) =
2M∑

k=1

PMkUθ(Lk, Rk),

where Uθ(a, b) represents uniform distribution on (a, b). After a data point Yi = yi

is observed, the posterior probability associated with interval IMk is

P (θi ∈ IMk|yi) = ωik ∝ P (ζMk|yi)(RMk − LMk)

=
PMkh(yi|ζMk)

RMk − LMk

(RMk − LMk) = PMkh(yi|ζMk), (3.1)

where ζMk is the midpoint of interval IMk. The first line of (3.1) is from the trape-

zoidal rule. Thus, through normalizing (3.1),

P (θi ∈ IMk|yi) = ωik =
PMkh(yi|ζMk)

2M∑
l=1

PMlh(yi|ζMl)

.

The quantity ωij represents the posterior probability that θi ∈ IMj given data Yi.

3.2.2 Augmentation step

For θi, I generate an interval IMj from the discrete distribution over intervals

according to the probabilities ωi1, . . . , ωi2M , and define an indicator variable zij,

zij =





1 if θi ∈ IMj,

0 otherwise.

Then probabilities P
(0)
Mj = 1/2M , j = 1, . . . , 2M can be updated to

P
(1)
Mj =

N∑
i=1

zij

N
or P

(1)
Mj =

N∑
i=1

ωij

N
(3.2)
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Note that equation (3.2) allows some prior information to be added. For example,

in the density estimation problem, I could consider prior information as

PriorMj =

N∑
i=1

I(yi ∈ IMj)

N
,

where I(.) is indicator function. Then (3.2) can be replaced as

P
(1)
Mj =

N∑
i=1

(zij + I(yi ∈ IMj))

N +N
or P

(1)
Mj =

N∑
i=1

(ωij + I(yi ∈ IMj))

N +N
(3.3)

After P
(0)
Mj has been updated to P

(1)
Mj, f

(0)(θ) has been updated to

f (1)(θ) =

2M∑

k=1

P
(1)
MkUθ(Lk, Rk).

In the Augmentation step, I sample pseudo parameters from the mixture of uniform

distributions f (1); the sampling process is very straightforward:

• draw an interval IMi from IM1, . . . IM2M based on the probabilities P
(1)
M1, . . . , P

(1)

M2M ,

• sample a pseudo data uniformly from IMi.

The process is repeated d times to produce pseudo data θ∗1, . . . , θ
∗
d. The empirical

distribution function of these pseudo data θ∗1, . . . , θ
∗
d can be obtained.

In next step, the base distribution is estimated by the empirical distribution of

these pseudo data. Note that the support of sampled pseudo θ at iteration υ will

always be included in the support at iteration υ − 1, which means

[min(θ
∗(υ)
1 , . . . , θ

∗(υ)
d ),max(θ

∗(υ)
1 , . . . , θ

∗(υ)
d ))] ∈ [min(θ

∗(υ−1)
1 , . . . , θ

∗(υ−1)
d ),max(θ

∗(υ−1)
1 , . . . , θ

∗(υ−1)
d ))]
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As a result, the support of pseudo data (θ∗1, . . . , θ
∗
d) will continue to shrink. To

overcome this problem, I add a buffer to the support of these pseudo data. So the

support will be

[min(θ∗1, . . . , θ
∗
d) − buffer,max(θ∗1, . . . , θ

∗
d) + buffer]

The rule of thumb to choose the buffer is

buffer =
max(Y1, . . . , YN ) − min(Y1, . . . , YN)

2M
.

In practice, the RPTMM starts with a very broad support [S
(0)
1 , S

(0)
2 ], which ultimately

will shrink to the area [S1, S2] such that

F ((−∞, S1] ∪ [S2,∞)) ≈ 0.

The support will become stable when the algorithm converges.

3.2.3 Construction step

In the construction step, a new Polya tree is constructed, and its base distribu-

tion is the empirical distribution of pseudo data from last iteration step. To construct

the new Polya tree, I have to decide the partition points at each level, and from the

“canonical partition” of Lavine (1992 [54]), they should be the quantiles of the base

distribution.

3.2.4 Algorithm summary

The three steps updating, augmentation, and construction are repeated

many times until convergence. I summarize the recursive Polya tree mixture model
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below. Firstly under the Bayesian hierarchical model

Yi|θi ∼ h(Yi|θi) independent,

θi ∼ F i.i.d.

1. Start with a guess F (0) on a broad support (S1, S2). A Polya tree truncated at

level M is built and centered on F (0).

2. For l = 1, . . . ,Υ,

• for each data point Yi, calculate P (θi ∈ IMk|Yi) = ωik (k = 1, . . . , 2M ),

and draw a interval for θi from IM1, . . . , IM2M with probability ωi1 , . . . ,

ωi2M ;

• compute

PMj =

N∑
i=1

zij

N
or PMj =

N∑
i=1

ωij

N
;

• draw a large number of pseudo data θ∗1, . . . , θ
∗
d;

• build a new Polya tree using the empirical distribution of θ∗1, . . . , θ
∗
d as the

base distribution.

3.2.5 Parameter estimation

The algorithm described above is a data augmentation method. Suppose there

are in total Υ steps, and produce Υ estimates of generic parameters ψ: ψ(1), . . . , ψ(Υ).

These ψ(υ) values can be easily sampled from pseudo data at each iteration. Then I

estimate each ψi as

ψ̂i =
1

Υ

Υ∑

υ=1

ψ
(υ)
i .

47



The standard deviation of ψ̂i is

sd(ψ̂i) =

√√√√ 1

Υ − 1

Υ∑

υ=1

(ψ
(υ)
i − ψ̂i)

2.

In the next section, I discuss the theoretical justification of this approach.

3.3 Theoretical properties

3.3.1 Convergence

To study the convergence of the iterative algorithm, I apply the duality principle

introduced in Diebolt and Robert (1994 [21]). The recursive Polya tree mixture model

can be written in a typical form of data augmentation algorithm,

(a) generate z(ν) ∼ q(z|y, λ(ν)),

(b) generate λ(ν+1) ∼ π(λ|y, z(ν)),

where the step (a) corresponds to the generation of the indicator variables zi accord-

ing to a multinomial distribution with probabilities ωij, where

ωik =
PMkh(Yi|ζMk)

2M∑
l=1

PMlh(Yi|ζMl)

.

In step (b), the λ(ν) represent the simulated pseudo data generated at iteration

ν. Diebolt and Robert (1994 [21]) describe this iterative algorithm using two dual

Markov kernels

H(z′|z) =

∫
f(z′|y, λ)π(λ|y, z)dλ,

K(λ′|λ) =

∫
π(λ′|y, z)f(z|y, λ)dz.
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At iteration ν, the posterior distributions are derived from these kernels as

π(ν)(λ′|y) =

∫
K(λ′|λ)π(ν−1)(λ|y)dλ,

f (ν)(z′|y) =

∫
H(z′|z)f (ν−1)(z|y)dz.

Theorem 3.1 (Diebolt and Robert 1994 [21]). If the chain for z is geometrically

ergodic, with distribution f(z|y), the chain for λ derived by λ ∼ π(λ|z) is also

geometrically ergodic, with invariant distribution π(λ|y). Moreover, there exists

ρ ∈ (0, 1) and a constant C > 0 such that

∫

Λ

|π(ν)(λ|y) − π(λ|y)|dλ ≤ Cρν.

The importance of this theorem is that if the chain for λ are derived from a second

chain for z by simulation from π(λ|z), the properties of the chain for λ can be

gathered from those of the chain for z.

In the recursive Polya tree mixture model, since the indicator variables z have

a finite support and the Markov chain is aperiodic and irreducible, the chain is

geometrically ergodic. Note that, at iteration ν, there are d pseudo data θ∗1, . . . , θ
∗
d ∼

F (ν) sampled according to

θ∗1 ∼ π(ν)(θ∗|z) =
2M∑

j=1

{
1

N

N∑

i=1

zijU(Lj , Rj)

}
,

. . . . . . . . . . . . . . . . . . . . .

θ∗d ∼ π(ν)(θ∗|z) =
2M∑

j=1

{
1

N

N∑

i=1

zijU(Lj , Rj)

}
.
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Since Theorem 3.1 holds for any conditional distribution π(ν)(θ∗|z), the chain θ∗(ν)

derived by θ∗(ν) ∼ π(θ∗|z) is geometrically ergodic. In step ν, I also know that these

pseudo data θ∗(ν) have empirical cumulative distribution function F (ν)(θ|y). From

Theorem 3.1, for each specific θ, F (ν)(θ|y) converge in distribution to the stationary

posterior distribution F (θ|y).

3.3.2 Large-sample analysis

To study the large-sample behavior, I follow Shen and Louis (1999 [76]). The

updating process of the recursive Polya tree mixture model is related to the smoothing

by roughening (SBR) of Shen and Louis (1999 [76]). There are two differences.

Firstly, the finite support in SBR is fixed, but is changing in RPTMM. Secondly, the

mass points in SBR are fixed, and the “weights” corresponding to each mass point

are updated, but the RPTMM treats the mass points as the parameters to be estimated.

I begin with the first iteration, g(0)(y) =
∫∞

−∞
h(y|θ)dF (0)(θ). In the first itera-

tion, for any value t ∈ IMJ(J = 1, . . . , 2M )

F (1)(t|Y ) =
1

N

N∑

i=1

J−1∑
j=1

P
(0)
Mjh(Yi|ζMj) +

(
t− LJ

RJ − LJ

)
P

(0)
MJh(Yi|ζMJ)

2M∑
l=1

P
(0)
Mlh(Yi|ζMl)

=
1

N

N∑

i=1

∫ t

−∞

h(Yi|θ)dF 0(θ)

g(0)(Yi)
.

50



When the sample size N → ∞,

F (1)(t|Y ) −→
∫ ∞

−∞

∫ t

−∞

h(Y |θ)dF 0(θ)

g(0)(Y )
dG(Y )

=

∫ t

−∞

∫ ∞

−∞

h(Y |θ)
g(0)(Y )

dG(Y )dF (0)(θ)

= F (1)(t),

where G(Y ) is the marginal cumulative distribution function of Y . Shen and Louis

(1999 [76]) take the derivative of F (1)(t) with respect to t, and obtain

f (1)(θ) = f (0)(θ)

∫ ∞

−∞

h(Y |θ)g(Y )

g(0)(Y )
dY.

Shen and Louis (1999 [76]) show that, in general, at iteration ν,

f (ν+1)(θ) = f (ν)(θ)

∫ ∞

−∞

h(Y |θ)g(Y )

g(ν)(Y )
dY

=

∫
h(Y |θ)f (ν)(θ)

g(ν)(Y )
g(Y )dY

=

∫
h(Y |θ)f (ν)(θ)∫
h(Y |θ)f (ν)(θ)

g(Y )dY

=

∫
f (ν)(θ|Y )g(Y )dY

(3.4)

So f is a fixed point of Equation (3.4) (Shen and Louis 1999 [76]).

3.4 Discussion

3.4.1 Comparison with the classical Polya tree model

In the classical Polya tree model, the partition points are fixed, and the “weights”

corresponding to each interval are updated in each step. In the recursive Polya tree

mixture model, I do the converse, and update the partition points.
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I describe our model in the framework of a Polya tree, since the class of Polya

trees is overwhelmingly large. In practice, one could even ignore the “hierarchical”

partition structure, and directly focus on the K = 2M partitions in the support, and

treat it as a mixture of uniform distribution. So the parameters to be estimated are

the partition points.

3.4.2 Convergence

The RPTMM relies on the data augmentation algorithm, so it is necessary to check

whether the Markov chain has become stable. All the existing methods to diagnose

convergence in the literature can be used. I introduce a simple way to check the

convergence, based on a criterion mentioned in Laud and Ibrahim (1995 [53]) and

Krnjajic et al. (2008 [51]): the full-sample log score (LSFS)

LSFS =
1

N

N∑

i=1

log p(Yi|θ) (3.5)

The p.d.f value of p(Yi|θ) can be easily computed through the Monte Carlo method.

If the Markov chain has converged to a stationary distribution, I should observe

stable LSFS values, and the LSFS values should not oscillate too much. I plot

the LSFS values in the following example. The left panel in Figure 3–1 shows an

example of good convergence.

3.4.3 The choice of the buffer and the support

In the Augmentation step, I introduce the use of a buffer. If the buffer is

too small, it can not prevent the continuous shrinkage of the support; if the buffer

is too large, the support will oscillate too much, and has poor mixing property.

One may use trial-and-error method to choose the value of the buffer. Start with a
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Figure 3–1: Convergence: The left panel shows the LSFS values, and the right
panel shows the support of pseudo data at each iteration. After 10-15 iterations, the
LSFS values become stable.

guess buffer value (say 0.1× (max(Y )−min(Y ))), run the RPTMM algorithm and plot

Ŝ1 = min(θ∗1, . . . , θ
∗
d) and Ŝ2 = max(θ∗1, . . . , θ

∗
d) at each step to judge the choice of

buffer. If the difference of Ŝ2 − Ŝ1 continues to become smaller, it means that the

buffer is too small, and a larger one should be used. If the difference oscillates too

much, which means the buffer is too large, and a smaller one should be used.

In this thesis, I consider a rule of thumb buffer = range(Yi, i = 1, . . . , N)/2M ,

and find that this rule of thumb works very well in real applications. The right panel

in Figure 3–1 shows a good example of such a plot. I find that the curve becomes

stable quickly (at iteration between 10 and 15), which indicates that the choice of

buffer is a good one.
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One may also run the algorithm many times, estimate the support [S1, S2] and

fix it, and regard the process as a burn-in process. Then re-run the algorithm with

the fixed estimated support. I find the two algorithms perform similarly in practice,

and in this thesis I focus on the first one (not fix the support).

Although the theoretical support for θ is (−∞,∞), using finite support [S1, S2]

to approximate F ([S1, S2]) ≈ 1 is also considered. For example, the finite mixture

model (chapter 9 of Bishop 2006 [6]) assumes the support for θ to be the finite number

of points. Shrinkage methods, like the James-Stein estimator (Efron and Morris, 1975

[25]) shrink the extreme values towards the mean. As a result, the hidden assumption

of the James-Stein estimator is that [S1, S2] ∈ (min(Y1, . . . , Yn),max(Y1, . . . , Yn)).

Shen and Louis (1999 [76]) proposed a “smoothing by roughening (SBR)” al-

gorithm, and Newton and Zhang (1999 [70]) and Newton (2002 [69]) developed a

predictive recursion algorithm. Both of them fix a finite support and many mass

points, and then update the p.d.f values corresponding to each mass point. The

SBR relies on an iterative algorithm, and the predictive recursion is a sequential

updating method. Although their approaches are fast and powerful, it is difficult for

the SBR algorithm and predictive recursion to choose the finite support.

3.4.4 The choice of the number of levels

As mentioned in Chapter 2, Hanson (2006 [36]) found that adding levels to

a Polya tree did not guarantee the improvement of model fit or predictive utility.

Hanson (2006 [36]) suggested a rule of thumb

M = − log2(5/N) or log2(N),
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and discussed its rationale. Note that Hanson (2006 [36]; 2008 [9])’s rule is consistent

with the theoretical result of Barron et al. (1999 [3]) who studied the consistency

of posterior distributions in nonparametric problems. For the Polya tree, to satisfy

the conditions of their Corollary 2, they required that M ≤ log2(ε
2N/10) for some

ε > 0. Hanson (2006 [36]; 2008 [9])’s rule corresponds to ε2 = 2 or 10. In this thesis,

I follow their rule of thumb.

3.5 Nuisance parameters

In a typical Normal setting, Yi|θi ∼ N(θi, σ
2
i ) independently, and θ1, . . . , θN ∼

F, i.i.d. If σi is unknown to us, and heterogeneity is believed to exist, each σi should

be estimated also. I first consider the classical finite mixture of normal distributions

with K components,

g(y) =
K∑

j=1

πjN(µj , σ
2
j ).

If µj is known, I can estimate each individual σj as (see Chapter 9 of Bishop 2006

[6])

σ̂2
j =

1

γj

N∑

i=1

ωij(yi − µj)
2,

where

γj =
N∑

i=1

ωij =
N∑

i=1

πjN(yi|µj, σj)∑K

k=1 πkN(yi|µk, σk)
,

Bishop (2006 [6]) denoted γj as the “effective degree of freedom”.

In the RPTMM, the probability density function of Y can also be written as a

finite mixture of normal distributions with 2M components,

g(Y |θ, PM1, . . . , PM2M ) =
2M∑

j=1

PMjh(Y |θ),
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θ ∈ IMj with probability PMj.

The difference is that in the RPTMM the support is 2M intervals; for a finite mixture of

normal distributions the support isK points. So I could also estimate each individual

σMj corresponding to each component j(j = 1, . . . , 2M ) as

σ̂2
Mj =

1

γj

N∑

i=1

ωij(yi − ζj)
2 j = 1, . . . , 2M

where ζj is the midpoint of interval IMj and

γj =

N∑

i=1

ωij.

The σi corresponding to each data value Yi is estimated as

σ̂2
i =

2M∑

j=1

ωijσ̂
2
Mj,

where ωij = P (θi ∈ IMj|yi).

3.6 Summary

In this chapter, I introduce the detail of the proposed recursive Polya tree mix-

ture model (RPTMM). Instead of fixing partition points and updating “weights” corre-

sponding to each interval, the RPTMM update the partition points. Sampling pseudo

data from F is very straightforward. As a result, the empirical distribution of these

pseudo data is available to us, and is treated as the base distribution of Polya tree.

I discuss the related problems, such as convergence diagnostics, and the choice

of the buffer and number of levels. The estimation of nuisance parameters in the nor-

mal case is provided. I also discuss some theoretical aspects related to the proposed
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RPTMM. In the next chapter, I discuss some examples related to Bayesian nonpara-

metric hierarchical models.
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CHAPTER 4
Bayesian Nonparametric Hierarchical Models: Examples

4.1 Example 1: Density estimation

I consider the simulated data from Kottas and Gelfand (2001 [50]), which consist

of 250 observations generated from a mixture of normal distributions

y = (y1, . . . , y250) ∼ 0.435N(−4, 1) + 0.43N(0, 1.52) + 0.135N(5, 22).

Hanson and Johnson (2002 [37]) examined several Bayesian nonparametric models

to estimate the density of the 250 simulated observations. These models include

the simple Polya tree, a mixture of Polya tree, and Dirichlet process mixture model.

Hanson and Johnson (2002 [37]) considered two criteria to compare the performance

of each model: integrated squared error (ISE) and weighted integrated squared error

(WISE):

ISE(f̂ ) =

∫
(f̂(y) − f(y))2dy and WISE(f̂ ) =

∫
(f̂(y) − f(y))2f(y)dy,

where f̂ (y) is the estimated p.d.f value and f(y) is the true p.d.f value. I use a Monte

Carlo method to calculate the two measurements. For ISE, I can rewrite the formula

as

ISE(y) =

∫
(f̂(y) − f(y))2

f(y)
f(y)dy.
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Since y1, . . . , y250 ∼ f(y), I can approximate ISE as

ISE(y) =
1

250

250∑

i=1

(f̂(yi) − f(yi))
2

f(yi)
.

WISE is straightforward to evaluate using Monte Carlo:

WISE(y) =
1

250

250∑

i=1

(f̂(yi) − f(yi))
2.

I assume each observation arises from a normal distribution Yi|θi ∼ Normal(θi, σ
2
i ),

and θ1, . . . , θN ∼ F . I simulate 200 data sets and calculate the ISE and WISE values

for each data set.

The average values of ISE and WISE from RPTMM are listed in the first line of Table

4–1. Hanson and Johnson (2002 [37]) implemented three Bayesian nonparametric

models (simple Polya tree, mixture of Polya tree, and Dirichlet process mixture

models) and a parametric model. All the ISE and WISE values are listed from Line

2 to Line 13 in Table 4–1. The S0 in Table 4–1 are the fixed standard deviations for

base distributions.

Our RPTMM is shown to perform better than simple Polya tree and mixture of

Polya trees. Note also that, among all the 13 models in Table 4–1, RPTMM ranks 3rd

(slightly worse than the Dirichlet process mixture model with normal base density).

In Figure 4–1, I draw the density estimation curve from RPTMM and the true density

for one of the simulated data sets. The RPTMM’s density curve is shown to be close to

the true one. Density curves from classical kernel density estimation and Dirichlet

process mixture model also perform very well (close to the true curve). The density
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Models WISE ISE

RPTMM 0.000564 0.003130

MPT

α = 1, normal base 0.000730 0.004230
α = 1, logistic base 0.000740 0.004090
Simple PT

S0 = 6.81, α = 0.1 0.001530 0.007940
S0 = 22.7, α = 0.1 0.004300 0.019340
DPM

split densities, less informative 0.002770 0.014990
split densities, more informative 0.002500 0.013480
uniform densities, less informative 0.002890 0.014370
uniform densities, more informative 0.000900 0.004060
Gaussian, S0 = 0.375 0.001880 0.010790
Gaussian, S0 = 0.75 0.000310 0.002400
Gaussian, S0 = 1 0.000140 0.001330
Parametric normal model 0.005420 0.030860

Table 4–1: ISE and WISE values for several models, from Hanson & Johnson (2002).
RPTMM represents recursive Polya tree mixture model; MPT represents the mixture
of Polya tree; Simple PT represents simple Polya tree. DPM represents the Dirich-
let process mixture model. The S0 are the fixed standard deviations for the base
distributions.
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Figure 4–1: The density estimates from RPTMM, kernel density estimation, Polya tree,
Dirichlet process mixture model and the true density.

curve from the mixture of Polya tree model (with precision value 1) seems to be close

to histogram.

4.2 Density estimation for real data sets

In this section, I consider the density estimation problem for two real data

sets. They were analyzed in Richardson and Green (1997 [35]) using a complicated

reversible jump MCMC.

Example 8. Galaxy data The first data set is the galaxy data, and it consists

of the velocities of 82 distant galaxies. Escobar & West (1995 [27]) used a Dirichlet

process mixture model and Richardson & Green (1997 [35]) considered an infinite

mixture of normals using reversible jump MCMC.
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The density estimates using classical kernel density estimation, Dirichlet process

mixture model (DPM), mixture of Polya tree (PT), and RPTMM are shown in Figure

4–2.

Figure 4–2: Galaxy data: Density estimates from RPTMM, Polya tree, Dirichlet process
mixture model, and classical density estimate

The RPTMM curve is close to the DPM curve. It is interesting to note that simple

Polya tree (PT) fails to capture the cluster on the leftmost end of the range, when

the observations are around 10. The kernel density also did well, but fails to clearly

show the cluster effects.

Example 9. Acidity data

The second data set consists of 155 acidity index measurements for lakes in

north-central Wisconsin. All the methods indicate that there are two clusters.
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Figure 4–3: Acidity data: Density estimates from RPTMM, Polya tree, Dirichlet process
mixture model, and classical density estimation

I discuss how well RPTMM performs on density estimation, not intending to pro-

vide new insights, but to provide a numeric comparison with other Bayesian non-

parametric models. In the simulated data sets, the RPTMM performed better than

most of the other Bayesian nonparametric models. In the two real data sets, RPTMM

also did very well. In real applications, kernel density estimation or histograms are

the easiest approach to density estimation. With the help of the bootstrap (Efron

1979 [24]), the uncertainty of density estimation is also very easy to obtain. However,

in some cases (e.g., the galaxy data), Bayesian nonparametric models can help to

identify some additional information (such as clustering of elements).
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4.3 Bivariate density estimation

It is easy to generalize the recursive Polya tree mixture model to solve the

bivariate density estimation problem.

Example 10. Ozone data

Suppose we observe a bivariate random sample (X1, Y1), . . . , (XN , YN ), and as-

sume

(Xi, Yi)|~µi,Σi ∼ N2(~µi,Σi), independently

where N2 denotes a bivariate normal distribution, ~µi is a 2 × 1 mean vector and

Σi is a 2 × 2 covariance matrix. I further assume that ~µi ∼ F i.i.d. Instead of

2M “intervals”, I consider 22M “bins”, labeled as B1, . . . , B22M . The probability

P (~µi ∈ Bj) = ωij (j = 1, . . . , 22M ) is

ωij =
PMjφ2((Xi, Yi)|ζj ,Σi)

22M∑
k=1

PMkφ2((Xi, Yi)|ζk,Σi)

,

where φ2 denotes a bivariate normal density function and ζj(j = 1, . . . , 22M ) is the

midpoint of the jth bin. The algorithm in Section 3.5 can be used to estimate Σi, and

I only need to change the normal density function to the bivariate normal density

function. Thus, I estimate Σi as

Σ̂i =

22M∑

j=1

ωijΣ̂Mj,

where

Σ̂Mj =
1

γj

N∑

i=1

ωij([X1, Y1]
T − ~µ)([X1, Y1]

T − ~µ)T ,
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and

γj =
N∑

i=1

ωij.

Hanson (2006 [36]) discuss an ozone data set, where N = 111 bivariate ob-

servations on the cube root of ozone concentration (xi) and radiation level (yi) are

modeled. Hanson (2006 [36]) considered two Bayesian nonparametric models: a

mixture of Polya tree model (MPT) and a Dirichlet multinomial allocation (DMA)

model. Hanson (2006 [36]) assessed these model using the log pseudo marginal like-

lihood (LPML), with larger value indicating better performance. The parametric

model gives LPML ≈ −796, while the mixture of Polya tree (MPT) improves the

LPML ≈ −782. Dirichlet multinomial allocation (DMA) has LPML ≈ −774, and

gives a significant improvement over the MPT.

From the recursive Polya tree mixture model (RPTMM), the LMPL ≈ −772. The

performance of RPTMM is similar to the Dirichlet multinomial allocation (DMA), and

significantly better than MPT. The contour plot and perspective plot are shown in

Figure 4–4

Example 11. Kidney data

In this section, I discuss a data set from McGilchrist and Aisbett (1991 [64])

that consists of bivariate measures (Ti1, Ti2)(i = 1, . . . , N) of times from insertion of

catheter to infection for N = 38 dialysis patients. There are 6 censored observations

in the first time, and 12 censored observations in the second, and 3 censored obser-

vations on both times. If censored data occur, it is straightforward to impute values

in each step based on the truncated bivariate normal distribution. The bivariate

density estimation problem using this data set was also considered in Barajas and
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Figure 4–4: Ozone Concentration and Radiation: contour plot and perspective plot

Walker (2007 [71]) and Walker and Stephens (1999 [80]). Figure 4–5 shows the per-

spective plot for female kidney patients. The plots from the Dirichlet process mixture

model and recursive Polya tree mixture model are very similar. When the “true”

bivariate density is parametric (bivariate normal), although the RPTMM is based on a

nonparametric assumption, it can still make valid density estimation.

Figure 4–6 shows the posterior estimates of the survival functions for females.

The plots here are very similar to Figure 1 and 2 in Barajas and Walker (2007 [71]).

4.4 Thumbtacks data analysis revisited

This data set is from Beckett et al. (1994 [5]), and studied previously in Ex-

ample 7. Some 320 tacks were flicked, 9 times each, and the number of times

that the tacks landed point up were recorded. This process produces 320 data

points which can be modeled as Binomial distributions: Xi ∼ Binomial(9, θi), i =
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Figure 4–5: Perspective plot for data from female kidney patients. Left panel shows
the plot from the Dirichlet process mixture model; right panel shows the plot from
recursive Polya tree mixture model.

1, . . . , 320 independently. The number of trials Yi are 9 for i = 1, . . . , 320, and the

number of “successes” Xi were recorded and are shown in Table 4–2.

Number of “success” 0 1 2 3 4 5 6 7 8 9
Frequencies 0 3 13 18 48 47 67 54 51 19

Table 4–2: Thumbtacks data. The first row shows the number of tacks landed point
up; the second row shows the corresponding number of data points. For example,
there are 3 data points in which only 1 tack landed point up; and there are 19 data
points in which 9 tacks landed point up.

I first consider the data x1/9, . . . , x320/9, and fit the data using kernel density

estimation, shown as the blue curve in Figure 4–7. It is interesting to note that there

is no unusual feature that can be found directly from kernel density estimation, or
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Figure 4–6: Posterior estimates of the survival functions for females. Time to first
infection T1 and time to second infection T2. The 95% credible intervals are also
shown.

the histogram. In a superficial analysis, one may think the kernel density estimation

is enough to explain the data.

Liu (1996 [57]) analyzed these data by assuming θi arise from a nonparametric

random distribution, θi ∼ F i.i.d. The objective of Liu’s (1996 [57]) work is to

estimate the posterior distribution F |data; to do this Liu (1996 [57]) used sequential

imputation, and found an unusual feature.

The unusual feature is that the estimate of F demonstrated bimodality. He

pointed out that “this feature is unexpected and cannot be revealed by a regular

parametric hierarchical analysis using the Beta-binomial priors”. The finding of the

unusual feature reflects an advantage of Bayesian nonparametrics. By assuming F

arises from a nonparametric random distribution, we could “mine” some information

that can not be found through a regular Bayesian hierarchical model. Newton (2002
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Figure 4–7: The histogram, density estimates for the thumbtacks data. The red line
shows the density estimate for F from the RPTMM.

[69]) reanalyzed these data using predictive recursion, and found a similar conclusion

to Liu (1996 [57]).

I also assume θ1, . . . , θN ∼ F i.i.d, and use a recursive Polya tree mixture

model to estimate F . The density estimation curve of F is shown in Figure 4–7.

When I compare with the plot reported in Liu (1996 [57]), I find both of them are

very similar and both indicate the surprising bimodality. The recursive Polya tree

mixture model is easier to implement than the sequential imputation proposed in

Liu (1996 [57]) and does not require any analytical computation.

4.5 Baseball data

The Major League Baseball data set is from Brown (2008 [10]), and consists

of batting records for 567 Major League Baseball players in the 2005 season. For

an individual player, given a observed number of attempts (called “at-bats”), an
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observed number of successes (“hits”) is available. Denote the yi as the “at-bats” for

player i, and xi as the “hits”.

4.5.1 Model formulation

It is natural to model these data as a binomial distribution: xi ∼ Binomial(yi, θi),

where θi, unknown to us, represents the player’s latent ability. Batting average is a

performance measure for each player, and is typically measured as BAi = xi/yi, the

the maximum likelihood estimator of θi. Efron and Morris (1975 [25]) has shown

that this naive estimator where each θi is estimated individually in isolation from

the others can have poor performance.

Given I have the batting records from an early part of the season, the objective is

to estimate each individual θi, and to predict the batting averages for the remainder

of the season (denoted as BAri). The batting records from an early part of the season

can be considered as training data, and I estimate each θi using the training data.

The batting records for the remainder of the season are also available to us, and they

can be considered as test data. So I can test the performance of our estimates by

comparing the predicted values θ̂i to the “true” values.

Brown (2008 [10]) considered a variance stabilizing transformation,

T = arcsin

√
X + 0.25

Y + 0.5
.

and discussed the advantages of this transformation, instead of Efron and Morris

(1975 [25])’s transformation approach. Brown (2008 [10]) showed that using the
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reparameterization µi = arcsin
√
θi, I have

Ti
·∼· N

(
µi,

1

4Yi

)
,

4.5.2 Performance measurements

Brown (2008 [10]) proposed three performance measurements. Denote the train-

ing data in the first half of the season to be (X11, Y11), . . . , (X1N1, Y1N1), and the test

data in the second half of the season to be (X21, Y21), . . . , (X2N2, Y2N2). The three

performance measurements discussed in Brown (2008 [10]) are

TSE =

N2∑

i=1

(µ̂2i − T2i)
2 −

N2∑

i=1

0.25

Y2i

,

TSER =
N2∑

i=1

(
X2i

Y2i

− µ̂2i

)2

−
N2∑

i=1

X2i

Y 2
2i

(
1 − X2i

Y2i

)
,

TWSE =
N2∑

i=1

Y1i(µ̂2i − T2i)
2 −

N2∑

i=1

0.25Y1i

Y2i

.

Smaller values of TSE, TSER, TWSE indicate better performance. Brown (2008 [10])

regard the naive estimator (directly use the batting average in the training data

to be the estimate) as the baseline method, and report the ratio of TSE, TSER and

TWSE relative to those of the naive estimator. The performance measures reported

in Brown (2008 [10]) are

TSE

TSE0

TSER

TSER0

TWSE

TWSE0
,

where TSE0, TSER0 and TWSE0 are the quantities corresponding to the naive estimators.
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Models TSE TSER TWSE

N1 567 567 567
N2 499 499 499

Naive 1.000 1.000 1.000
Group mean 0.852 0.877 0.741
EB(MM) 0.593 0.606 0.626
EB(ML) 0.902 0.925 0.607
NP EB 0.508 0.509 0.560

Harmonic prior 0.884 0.905 0.600
James-Stein 0.525 0.540 0.502

Bayesian estimator 0.884
Muralidharan 0.588

Zhang & Liu: Bernstein 0.663 0.683 0.532
Zhang & Liu: Dirichlet 0.697 0.725 0.597

RPTMM 0.510 0.510 0.536

Table 4–3: Baseball data: Performance measures for different estimates using all the
players’ data.

4.5.3 Results

Brown (2008 [10]) analyzed the baseball players data using several empirical

Bayes approaches. 1: naive estimator: µ̂i = Ti; 2: grand mean: µ̂i =

N
P

i=1
Ti

N
; 3:

parametric empirical Bayes: assume the prior for µi ∼ N(µ, τ 2), then estimate (µ, τ 2)

using data through method of moments or maximum likelihood; 4: nonparametric

empirical Bayes; 5: James-Stein estimator; 6: Bayesian estimator: assume that

µi ∼ N(µ, τ 2) and µ ∼ Uniform(−∞,∞) and τ 2 ∼ Uniform(0,∞). Muralidharan

(2010 [67]) considered a new mixture model, and Zhang and Liu (2012 [84]) used a

nonparametric Bayesian model with Bernstein polynomial priors. All the results are

listed in Tables 4–3 to 4–5.
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Models TSE TWSE

N1 486 486
N2 435 435

Naive 1.000 1.000
Group mean 0.378 0.561

EB(MM) 0.387 0.494
EB(ML) 0.398 0.477
NP EB 0.372 0.527

Harmonic prior 0.391 0.473
James-Stein 0.359 0.469

Bayesian estimator 0.391
Muralidharan 0.314

RPTMM 0.330 0.489

Table 4–4: Baseball data: Performance measures for different estimates using only
non-pitchers’ data.

I implement the RPTMM model for the baseball players data. If following Brown

(2008 [10]), I assume

Ti ∼ N(µi, σ
2
i ), independent

µi ∼ RPTMM.

When using all players, the RPTMM is always among the top three models (see Table

4–3). Only considering non-pitchers (see Table 4–4), Muralidharan (2010 [67])’s

approach did best in terms of TSE, RPTMM did just a little bit worse, but still better

than the other approaches. In terms of TWSE, three approaches (parametric empirical

Bayes, harmonic prior, and James-Stein’s estimator) perform better then RPTMM. Our

RPTMMmodel seems to perform moderately for non-pitchers. In Table 4–5 for pitchers,

RPTMM is also among the top three models in terms of TSE and TWSE.
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Models TSE TWSE

N1 81 81
N2 64 64

Naive 1.000 1.000
Group mean 0.127 0.262

EB(MM) 0.129 0.191
EB(ML) 0.117 0.180
NP EB 0.212 0.266

Harmonic prior 0.128 0.190
James-Stein 0.164 0.226

Bayesian estimator 0.128
Muralidharan 0.156

RPTMM 0.119 0.200

Table 4–5: Baseball data: Performance measures for different estimates using only
pitchers’ data.

In general, no approach can perform best in terms of every measurement, but

RPTMM is among one of the top models to estimate the individual θi in the baseball

players data.

4.6 Biostatistical meta-analysis

In many medical settings, several studies are carried out to address the same

medical issue. For example, a typical problem is to compare results with a new

treatment and an old treatment. Each study gathers a summary statistic Di (for

example, a log odds ratio), with estimated standard error σ̂i. These studies may

have inconsistent conclusions: some studies may be favorable to the new treatment

and the others are not. Meta-analysis is a systematic review approach to combine

all the information across these studies, and provide an overall conclusion.
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A challenge in meta-analysis is the existence of heterogeneity across all the

studies. Different studies may be conducted in different times and places. The

participants may also have very different characteristics, like age, sex, health situation

etc. The existence of heterogeneity prompts the use of random effects meta-analysis:

see Smith et al. (1995 [77]). Random-effects models assume that each study has a

“true effect”, which should be obtained if the sample sizes of each study were infinite.

Let the observed log odds ratios be D1, . . . , DN , from classical asymptotic theory,

Di
·∼· N(θi, σ̂i) (4.1)

independently, and σi is assumed to be known. A popular parametric random effects

model assumes that the random effects θ1, . . . , θN arise from a normal distribution

(DerSimonian and Laird 1986 [19])

θ1, . . . , θN ∼ N(µ, τ 2). (4.2)

The (4.2) is a modelling assumption, and is made just for the sake of convenience.

Higgins et al. (2009 [39]) summarize five tasks in meta analysis: estimating het-

erogeneity, estimating mean effect, estimating study effects, prediction, and testing.

Theses tasks are easily performed for the parametric model.

However, it is very possible that the distribution of random effects are non-

normal. One possibility is the presence of potential outliers, which cause heavy

tails. Another possibility is that the participants can be clustered to several groups

(e.g.,“young” vs “senior”), which make a mixture of normals a better choice. The

possibility of the existence of non-normality encourages statisticians to develop more
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flexible models, and Bayesian nonparametric models is one of them. Instead of

making the normality assumption, the random effects in Bayesian nonparametric

models are assumed to arise from a nonparametric distribution θ1, . . . , θN ∼ F . The

random distribution F is commonly assumed to have a Dirichlet process prior or

Polya tree prior.

Burr and Doss (2005 [12]) proposed a “conditional Dirichlet process”, which

extend the ordinary mixture of Dirichlet process by fixing µ to be the median. Bran-

scum and Hanson (2008 [9]) considered the mixture of Polya trees prior. Both of

them rely on complicated Markov chain Monte Carlo method to estimate parame-

ters. I apply our RPTMM to a meta-analysis introduced in Burr and Doss (2005 [12]).

The RPTMM does not require any analytical calculation and computation is straightfor-

ward, yet it can approximate the ordinary Dirichlet process and conditional Dirichlet

process results well.

4.6.1 Example: Decontamination of the digestive tract

The data consist of the results of 14 clinical trials carried out by the Digestive

Tract Trialists’ Collaborative Group (1993). The patients were randomized to either

a dual treatment group (who received both topical and systemic antibiotics), or a

control group.

The objective of the meta-analysis is to check whether the dual treatment can

prevent an infection that is an important cause of death for decontamination of the

digestive tract. Table 4–6 give the number infected and the total number in the

treatment group, and the same information in control group. Note that the observed

odds ratio in Table 4–6 seem to give inconsistent conclusions.
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Treated Control Est.
Trial Infected Total Infected Total OR
1 14 45 23 46 0.46
2 22 55 33 57 0.49
3 27 74 40 77 0.54
4 11 75 16 75 0.64
5 4 28 12 60 0.71
6 51 131 65 140 0.74
7 33 91 40 92 0.74
8 24 161 32 170 0.76
9 14 49 15 47 0.86
10 14 48 14 49 1.03
11 15 51 14 50 1.07
12 34 162 31 160 1.10
13 45 220 40 220 1.16
14 47 220 40 220 1.22

Table 4–6: Decontamination of the digestive tract. First two columns list the number
infected and total number in the treatment group, and column 3 and 4 provide the
same information for the control group. The fifth column gives the estimated odds
ratio.
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Higgins et al. (2009 [39]) give a re-evaluation of random effects meta-analysis.

They point out that “a sole focus on estimating the mean of a random effects distri-

bution may be misleading”, and there are “five aspects are likely to be relevant and

useful results from a random effects meta-analysis”. I will focus on three aspects:

estimating heterogeneity, estimating the mean effect, and estimating study effects.

Burr and Doss (2005 [12]) proposed a Bayesian semiparametric model for ran-

dom effects meta-analysis based on so called “conditional Dirichlet process”. The

random effects θ1, . . . , θN are assumed to arise from a nonparametric distribution

with Dirichlet process prior. The base distribution in Dirichlet process is taken to

be N(µ, τ 2). Burr and Doss (2005 [12]) noticed that the µ in the base distribution

does not have a clear interpretation, since the mean of F does not equal to µ. So

the overall effects can not be clearly expressed.

Burr and Doss (2005 [12]) did add a key modification, and fixed the median F

to be µ: conditional on this restriction, F is a Dirichlet process. Then µ can be used

to represent the “overall effect”. Burr and Doss also developed complicated MCMC

approaches to estimate parameters.

Task 1: Estimating heterogeneity

In the random effects meta-analysis, from the asymptotic theory, the observed

log odds-ratios Di have normal distribution,

Di ∼ N(θi, σ̂i),

78



Figure 4–8: Decontamination of the Digestive tract data: Density of τ for the base
distribution of conditional Dirichlet process (CDP) and RPTMM. Left panel: CDP with
precision α = 1, 5, or 100. Right panel: RPTMM with level M = 2 or 3.
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independently with σi is assumed to be known, and

E[θi] = µ var(θi) = τ 2.

In practice, one of the major objectives in random effects meta-analysis is to make

inference to the mean or “overall” effect, µ. Higgins et al. (2009 [39]) pointed out

that “a single parameter cannot adequately summarize heterogeneous effects.” They

conclude that “estimation of τ 2 is just as important”, and “this variance explicitly

describes the extent of the heterogeneity and has a crucial role in assessing the

degree of consistency of effects across studies.” In their analysis, they considered the

classical parametric model, and assume θ1, . . . , θN ∼ N(µ, τ 2). In this parametric

case, estimating τ 2 is easy by using some standard methods, like empirical Bayes or

fully Bayesian inference via MCMC.

However, if the random effects are assumed to arise from a nonparametric ran-

dom distribution F , the estimation of τ is not straightforward, and a Dirichlet process

or mixture of Polya trees prior may be used. Both priors have a base distribution,

such as N(µ, τ 2). The τ 2 in the base distribution does not equal var(θi). The first two

columns in Table 4–7 summarize the value of τ in the base distribution in conditional

Dirichlet process and Dirichlet process.

It is very easy to estimate the heterogeneity in our RPTMM model (without any

analytical computation), and the var(θi) = τ 2 is directly estimated. In each run, in

the Augmentation step, pseudo data θ∗1, . . . , θ
∗
d are sampled. These pseudo data are

considered as samples from F . So I just need to calculate the standard deviation of
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Model τ Model τ Model τ
CDP(α = 1) 0.43 (0.39) DP(α = 1) 0.52 (0.18) RPTMM(M = 2) 0.30 (0.11)
CDP(α = 5) 0.33 (0.13) DP(α = 5) 0.48 (0.15) RPTMM(M = 3) 0.20 (0.08)
CDP(α = 100) 0.28 (0.09) DP(α = 20) 0.45 (0.13)

Table 4–7: Decontamination of the digestive tract data. First column summarizes
the τ from base distribution in conditional Dirichlet process (CDP). Second column
summarizes the τ from base distribution in Dirichlet process (DP). Third column
summarizes the standard deviation τ in RPTMM, and M is the truncated level. The
“()” indicates the corresponding standard deviation.

these pseudo data, say τ (υ) at iteration υ. Then I can estimate τ as

τ̂ =
Υ∑

υ=1

τ (υ) var(τ̂ ) =
1

Υ − 1

Υ∑

υ=1

(τ (υ) − τ̂ )2

There are totally 14 trials, and according to Hanson (2006 [36])’s rule, log2(14/5)

suggests that the level should be truncated at M = 2; log2(14) suggests that the

level should be truncated at M = 3. The estimates of τ with their standard errors

are listed in the third column of Table 4–7.

In the conditional and Dirichlet process models, the estimated τ is just for the

base distribution. However, in RPTMM, the estimated τ is directly for F , and has a

more clear interpretation. The estimated τ in RPTMM is close to that in conditional

Dirichlet process (CDP) when the precision value is large (note that when the precision

value is very large, the conditional Dirichlet process would be close to the parametric

model).
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Figure 4–9: Decontamination of the Digestive tract data: Density of µ for the con-
ditional Dirichlet process (CDP) and RPTMM. Left panel: CDP with precision α = 1, 5,
or 100. Right panel: RPTMM with level M = 2 or 3.

Model µ Model µ Model µ
CDP(α = 1) -0.23 (0.31) DP (α = 1) -0.23 (0.21) RPTMM(M = 2) -0.22 (0.33)
CDP(α = 5) -0.21 (0.18) DP (α = 5) -0.23 (0.24) RPTMM(M = 3) -0.20 (0.22)
CDP(α = 100) -0.20 (0.12) DP (α = 20) -0.24 (0.26)

Table 4–8: The first column lists the estimates of µ from conditional Dirichlet process,
and α is the precision value. The second column contains the estimates from ordinary
Dirichlet process mixture model, and α is the precision value. The third column lists
the estimates from recursive Polya tree mixture model, and M is the truncated level.
The “()” indicates the corresponding standard deviation.

82



Model Prob. Model Prob.
CDP(α = 1) 0.840 RPTMM(M = 2) 0.800
CDP(α = 5) 0.900 RPTMM(M = 3) 0.874
CDP(α = 100) 0.950 .

Table 4–9: The probability that the odds ratio is smaller than 1 from conditional
Dirichlet process and recursive Polya Tree mixture model.

Task 2: Estimating the mean effect

This is one of the main objects in meta-analysis, which reflects the overall ef-

fects. Recall that in the RPTMM, in each run, in the Augmentation step, pseudo data

θ∗1, . . . , θ
∗
d are sampled, and considered as samples from F . So I just need to calculate

the mean of these pseudo data, say µ(υ) at iteration υ. Then I can estimate µ as

µ̂ =
Υ∑

υ=1

µ(υ) var(µ̂) =
1

Υ − 1

Υ∑

υ=1

(µ(υ) − µ̂)2.

Table 4–8 lists the estimates from conditional Dirichlet process, ordinary Dirichlet

process, and recursive Polya tree mixture model. I find almost all the approaches

give similar estimates.

Researchers may be interested in the estimates of the posterior probability that

the odds ratio is smaller than 1, P (exp(µ) < 1|D). From the Υ values µ(1), . . . , µ(Υ)

in the Υ MCMC runs, I can easily compute the probability P (exp(µ) < 1|D) as

P (exp(µ) < 1|D) =

Υ∑
l=1

I(exp(µ(l)) < 1)

Υ
.

In the meta-analysis of decontamination of the digestive tract, P (exp(µ) < 1|D) =

0.8 when truncated at level M = 2; and P (exp(µ) < 1|D) = 0.874 when truncated
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Trial CDP(α = 1) CDP(α = 5) CDP(α = 100) RPTMM (M = 2)
1 0.66 0.68 0.69 0.65
2 0.66 0.68 0.69 0.64
3 0.66 0.69 0.69 0.65
4 0.74 0.76 0.76 0.73
5 0.78 0.80 0.79 0.78
6 0.77 0.77 0.77 0.76
7 0.78 0.79 0.78 0.77
8 0.79 0.79 0.79 0.78
9 0.84 0.84 0.84 0.84
10 0.88 0.88 0.87 0.89
11 0.90 0.89 0.89 0.92
12 0.96 0.95 0.95 0.98
13 0.99 0.99 0.98 1.04
14 1.00 1.01 1.02 1.07

Table 4–10: The first three columns list the study effects from a conditional Dirichlet
process when precision values are set to 1, 5 and 100. The last column contains the
estimates from recursive Polya tree mixture model at truncated level M = 2

at level M = 3. This suggests that the dual treatment protocol led to a significant

reduction in mortality. Branscum and Hanson (2008 [9]) analyzed the same data,

and find P (exp(µ) < 1|D) = 0.95 from mixture of Polya trees, and P (exp(µ) <

1|D) = 0.87 from the Dirichlet process. I used the R package bspmma to implement

the conditional Dirichlet process, and find P (exp(µ) < 1|D) = 0.81, 0.84, 0.95 for

precision α = 1, 5, 100.

Task 3: Estimating study effects

Estimating study effects θ1, . . . , θN may be of interest, especially “if studies

are distinguishable from each other in ways that cannot be quantified” (Higgins et

al. 2009 [39]). The estimated study effects from the conditional Dirichlet process,

84



Trial DP (α = 1) DP (α = 5) DP (α = 20) RPTMM (M = 3)
1 0.79 0.74 0.72 0.73
2 0.78 0.73 0.72 0.74
3 0.78 0.73 0.72 0.74
4 0.82 0.80 0.79 0.79
5 0.84 0.83 0.83 0.81
6 0.82 0.80 0.79 0.81
7 0.83 0.81 0.80 0.81
8 0.83 0.82 0.81 0.81
9 0.85 0.85 0.85 0.83
10 0.86 0.89 0.89 0.87
11 0.87 0.89 0.90 0.87
12 0.89 0.94 0.96 0.90
13 0.91 0.98 1.00 0.94
14 0.93 1.00 1.03 0.97

Table 4–11: The first three columns list the study effects from ordinary Dirichlet
process mixture model when precision values are set to 1, 5 and 20. The last column
contains the estimates from recursive Polya tree mixture model truncated at level
M = 3
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Trial CDP(α = 1) CDP(α = 5) CDP(α = 100) RPTMM(M = 2) RPTMM(M = 3)
1 0.93 0.92 0.93 0.94 0.97
2 0.94 0.94 0.94 0.96 0.97
3 0.94 0.94 0.96 0.97 0.98
4 0.85 0.85 0.88 0.88 0.92
5 0.77 0.77 0.81 0.81 0.89
6 0.88 0.89 0.91 0.92 0.95
7 0.84 0.85 0.87 0.88 0.93
8 0.83 0.85 0.87 0.89 0.93
9 0.74 0.74 0.77 0.78 0.88
10 0.68 0.69 0.72 0.71 0.83
11 0.67 0.68 0.70 0.66 0.82
12 0.59 0.59 0.62 0.60 0.79
13 0.53 0.52 0.54 0.51 0.71
14 0.51 0.48 0.47 0.48 0.63

Table 4–12: The estimated probability that odds ratio is smaller than 1 for each
individual study.

ordinary Dirichlet process and recursive Polya tree mixture model are listed in Table

4–10 and 4–11. When truncated at level M = 3, I find that recursive Polya tree

mixture model gives similar estimates to those from ordinary Dirichlet process. When

truncated at level M = 2, the recursive Polya tree mixture model gives estimates

similar to those from conditional Dirichlet process.

Table 4–12 lists the probability that the odds ratio is smaller than 1 for each

study. The RPTMM when truncated at M = 2 again gives results similar to the

conditional Dirichlet process when α = 1 or 5. I find that though the recursive Polya

tree mixture model does not require any analytical computation, it can approximate

conditional Dirichlet process if truncated at level M = log2(N/5), and approximate

ordinary Dirichlet process mixture model if truncated at level M = log2(N).
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Trial Lj e.s.e.(Lj)
1 -0.04 0.161
2 -0.13 0.179
3 -0.36 0.172
4 0.01 0.119
5 -0.45 0.180
6 -0.34 0.103
7 -0.24 0.092
8 -0.51 0.247
9 -0.22 0.147
10 -0.37 0.207
11 -0.22 0.422
12 -0.36 0.172
13 -0.27 0.096
14 -0.31 0.092
15 0.10 0.091
16 0.00 0.114
17 -0.92 0.147

Table 4–13: Data on possible risk-lowering effect of NSAIDS on breast cancer: Sum-
mary data from 17 studies on aspirin and breast cancer: the observed log risk ratio
Lj and the corresponding estimated standard error e.s.e.(Lj).

4.6.2 Example: Effect of NSAIDS on risk of breast cancer

The use of non-steroidal anti-inflammatory drugs (NSAIDs) is believed to reduce

the risk of breast cancer. There have been some studies on the effect of NSAIDs on

risk of breast cancer in the literature. Some studies have strongly suggested that

long-term use of NSAIDs can decrease the risk of breast cancer significantly; while

others suggested just a slight risk reduction or no risk reduction. These kinds of

inconsistent results may be due to the heterogeneity in the subjects (age, ethnicity,

and health status).
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Figure 4–10: Data on possible risk-lowering effect of NSAIDS on breast cancer: The
density of τ from conditional Dirichlet process and recursive Polya tree mixture
model. The τ is just for the base distribution in CDP. In RPTMM, it is directly for F .

Burr (2012 [11]) considered 17 studies, and Table 4–13 lists the log risk ratios

and the corresponding standard errors for these studies. Burr (2012 [11]) used the

conditional Dirichlet process (Burr and Doss 2005 [12]), and concluded that “long-

term use of NSAIDs appears to be associated with reduction of the risk of breast

cancer at least at the study level”. In next several section, I apply the recursive

Polya tree mixture model to reanalyze it.

Task 1: Estimating heterogeneity

Table 4–14 lists the posterior mean of τ in the base distribution from conditional

Dirichlet process (CDP) and ordinary Dirichlet process mixture models (first two

88



Model τ Model τ Model τ
CDP(α = 1) 0.40 (0.19 ) DP(α = 1) 0.52 (0.18) RPTMM(M = 2) 0.22 (0.08)
CDP(α = 5) 0.32 (0.11) DP(α = 5) 0.47 (0.15) RPTMM(M = 4) 0.17 (0.04)
CDP(α = 100) 0.25 (0.06) DP(α = 100) 0.40 (0.11)

Table 4–14: The first column lists the estimate of τ with its standard error from
conditional Dirichlet process, and α is the precision value. The second column con-
tains the same estimate for ordinary Dirichlet process. The third column lists the
estimates from recursive Polya tree mixture model, and M is the truncated level.

Model µ Model µ Model µ
CDP(α = 1) -0.33 (0.19) DP(α = 1) -0.27 (0.16) RPTMM(M = 2) -0.24 (0.24)
CDP(α = 5) -0.29 (0.12) DP(α = 5) -0.27 (0.19) RPTMM(M = 4) -0.24 (0.18)
CDP(α = 100) -0.26 (0.07) DP(α = 100) -0.27 (0.22) . .

Table 4–15: The first column lists the estimate of µ with its standard error from
the conditional Dirichlet process, and α is the precision value. The second column
is the same estimate from the ordinary Dirichlet process. The third column lists the
estimates from recursive Polya tree mixture model, and M is the truncated level.

columns). In the recursive Polya tree mixture model, the posterior means of standard

deviation τ are listed in the third column of Table 4–14.

Just as the previous discussion, the τ for the RPTMM has a more clear interpre-

tation; while the τ in CDP or DPMM is just for the base distribution, and does not

have clear interpretation.

Task 2: Estimating the mean effect

For the overall effect µ, Table 4–15 lists the posterior means from the conditional

Dirichlet process, the ordinary Dirichlet process mixture model, and the recursive

Polya tree mixture model. The posterior density plots are plotted in Figure 4–11.
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Figure 4–11: Data on possible risk-lowering effect of NSAIDS on breast cancer:
Density of µ from conditional Dirichlet process and recursive Polya tree mixture
model.

Model Prob. Model Prob.
CDP(α = 1) 0.98 RPTMM(M = 2) 0.90
CDP(α = 5) 0.99 RPTMM(M = 4) 0.90
CDP(α = 100) 1.00 . .

Table 4–16: The probability that the risk ratio is smaller than 1 from conditional
Dirichlet process and recursive Polya Tree mixture model.
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Trial CDP(α = 1) CDP(α = 5) CDP(α = 100) RPTMM(M=2) RPTMM(M = 4)
1 0.90 0.90 0.90 0.88 0.86
2 0.84 0.84 0.84 0.83 0.82
3 0.73 0.73 0.73 0.74 0.76
4 0.96 0.96 0.95 0.98 0.93
5 0.69 0.69 0.68 0.69 0.74
6 0.72 0.72 0.72 0.76 0.75
7 0.77 0.78 0.79 0.79 0.78
8 0.68 0.68 0.68 0.68 0.74
9 0.79 0.79 0.79 0.80 0.79
10 0.73 0.73 0.73 0.74 0.76
11 0.76 0.78 0.78 0.80 0.79
12 0.73 0.73 0.73 0.74 0.76
13 0.75 0.76 0.76 0.78 0.77
14 0.73 0.73 0.73 0.77 0.76
15 1.00 1.03 1.05 1.10 1.04
16 0.96 0.95 0.95 0.96 0.93
17 0.47 0.47 0.48 0.53 0.51

Table 4–17: The first three columns list the study effects from conditional Dirichlet
process when precision values are set to 1, 5 and 100. The last column is the estimate
from recursive Polya tree mixture model at truncated level M = 2 or M = 4.

Table 4–16 summaries the probability that risk ratio is smaller than 1 overall. All

the probabilities are close to 1, which confirms the conclusion that: long-term use of

NSAIDs is associated with reduction of the risk of breast cancer.

Task 3: Estimating study effects

Table 4–17 lists the posterior mean of risk ratios for each study. I find the

estimates for the RPTMM are close to those from conditional Dirichlet process. Table

4–18 summaries the probability that risk ratios smaller than 1 for each study. I also

find that the two methods give similar results.
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Trial CDP(α = 1) CDP(α = 5) CDP(α = 100) RPTMM(M=2) RPTMM(M = 4)
1 0.72 0.78 0.79 0.80 0.84
2 0.83 0.87 0.89 0.89 0.93
3 0.98 0.99 0.99 0.99 0.99
4 0.62 0.66 0.66 0.62 0.68
5 0.99 0.99 0.99 0.99 1.00
6 1.00 1.00 1.00 1.00 1.00
7 0.99 0.99 1.00 1.00 1.00
8 0.97 0.98 0.98 0.99 0.99
9 0.95 0.96 0.96 0.97 0.98
10 0.97 0.98 0.98 0.97 0.98
11 0.87 0.88 0.88 0.86 0.92
12 0.98 0.99 0.99 0.99 0.99
13 1.00 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 1.00
15 0.47 0.40 0.30 0.37 0.34
16 0.62 0.67 0.68 0.67 0.70
17 1.00 1.00 1.00 1.00 1.00

Table 4–18: The probability that the risk ratio is smaller than 1 for each individual
study.
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In this chapter, I discuss the application of RPTMM to some examples related to

Bayesian nonparametric hierarchical models. In next chapter, I build a Bayesian

semiparametric accelerated failure time model based on RPTMM, and also discuss the

extension to recurrent data analysis.
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CHAPTER 5
Survival Analysis Models

5.1 A Bayesian semiparametric AFT model

In survival analysis, inference concerning the effect of covariates on the survival

time T is of central importance. Cox’s proportional hazards (PH) model (Cox 1972

[18]) is the most commonly used and popular model, and the associated partial like-

lihood theory of estimation is easily implemented using standard packages. However,

the proportional hazard assumption may not be appropriate in a given analysis set-

ting. In addition, it is also hard to interpret the regression coefficients, as Cox himself

said (Reid 1994 [73]):

“Of course, another issue is the physical or substantive basis for the proportional

hazards model. I think that’s one of its weakness, that accelerated life models are

in many ways more appealing because of their quite direct physical interpretation,

particularly in an engineering context.”

A popular alternative is the accelerated failure time (AFT) model, which assumes

that for individual i, i = 1, . . . , N ,

Ti = exp(xiβ)Vi (5.1)

V1, . . . , VN |G ∼ G. (5.2)
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Here Ti denotes the survival time, xi represents the covariates, β is a vector of

regression coefficients, and G is a baseline survival distribution. A limitation of

the parametric AFT model is that the baseline distribution G must be specified in

advance. Kalbfleisch and Prentice (1980 [46]) introduced details of parametric AFT

model: common choices for G are Weibull, gamma, log-normal, and log-logistic. The

requirement to specify G in advance restricts the applicability of the AFT model.

Since Ferguson (1973 [28]) proposed the Dirichlet process, Bayesian nonpara-

metric approaches have played important roles in developing flexible AFT models.

Christensen and Johnson (1988 [16]) presented a semiparametric AFT model based

on a simple Dirichlet process. However, Hanson and Johnson (2004 [38]) pointed out

that “this approach does not allow a prior to be placed on β or credible intervals

to be calculated for any parameter.” Kuo and Mallick (1997 [52]) proposed an AFT

model using a Dirichlet process mixture (DPM) model. Their approach is based on

the algorithms from Escobar (1994 [26]) and Escobar and West (1995 [27]). Walker

and Mallick (1999 [79]) introduced an AFT model which assumes that G is a ran-

dom distribution with a simple Polya tree prior. Based on their work, Hanson and

Johnson (2004 [38]) proposed a semiparametric AFT model using a stick-breaking

process (Sethuraman 1994 [75]), and their algorithm “Chain Two” can be easily

fitted to interval-censored data.

Although many flexible AFT models have been proposed, their popularity is

still limited (Jara et al., 2011 [45]). One of the reasons is that these Bayesian semi-

parametric AFT models rely on complicated computing algorithms, and are hard to
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be understood and implemented. In this Chapter, I develop a Bayesian semipara-

metric AFT model based on the recursive Polya tree mixture model and term this

the RPTMM-AFT model, which not only enjoys the flexibility provided by Bayesian

nonparametrics, but is also very easy to implement.

In Section 5.2, I introduce the detail of the RPTMM-AFT model. In Section 5.3,

I study a simulated data set (Hanson and Johnson, 2004 [37]), in which the base-

line distribution is assumed to have mixture form; a right-censored data set; and

an interval-censored data set. In Section 5.4, I extend the semiparametric AFT

model to the application of recurrent data analysis, and show that our approach can

approximate the AFT model based on the reversible jump MCMC.

5.2 The model

I write the model of (5.1) in the regular regression form

Yi = log(Ti) = xiβ + log(Vi) = xiβ + εi, i = 1, . . . , N,

V1, . . . , VN |G ∼ G i.i.d.

The coefficients β are assigned a prior distribution, β ∼ π(β). Here I assume the

prior for β is noninformative, but it is straightforward to implement the other kinds

of prior.

In the following sections, I give details of the RPTMM tailored for survival data

problems in general, and the AFT model in particular.
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5.2.1 The algorithm

Step 1. Initialization step

I firstly initialize the parameters in the model. For each i, εi = log(Vi) is assumed

to arise from a mixture distribution

εi|θi, σ
2
i ∼ N(θi, σ

2
i ) θi ∼ F

F is initialized as a uniform distribution on a broad support,

F (0) ∼ U(min(Y ) − |max(Y ) − min(Y )|,max(Y ) + |max(Y ) − min(Y )|).

Parameters θi and σ2
i are initialized as θ

(0)
1 = · · · = θ

(0)
N = 0 and σ

(0)
1 = · · · = σ

(0)
N = 1.

Step 2. Estimation of β

With θi and σ2
i fixed at their current values, the estimation process of β is very

standard. Let Ỹi = Yi − θi. Then

Ỹi = xiβ + εi − θi = xiβ + ε̃i,

where ε̃i|θi, σi ∼ N(0, σ2
i ). Here, for a prior specification I have β ∼ π(β), where f(β)

is noninformative. From page 375 of Gelman et al. (2003 [33]),

β|Data, θ, σ2 ∼ N(A,B), (5.3)

where

A = (XTW−1X)−1XTW−1Ỹ B = τ 2(XTW−1X)−1.
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Here W is an N ×N diagonal matrix whose diagonal elements are σ2
1/τ

2, . . . , σ2
N/τ

2.

τ 2 is drawn from

1

τ 2
∼ Gamma

(
0.1 +

N

2
, 0.1 +

1

2

N∑

i=1

(εi − ε)2

)

At each iteration υ (υ = 1, . . . ,Υ), I draw a value β(υ) from (5.3), to obtain the final

estimate of β as the average of all the drawn values from each step υ = 1, . . . ,Υ,

β̂ =
1

Υ

Υ∑

υ=1

β(υ),

and the 95% credible intervals for β can be obtained from the quantiles of the drawn

values β(1), . . . , β(υ), . . . , β(Υ) from each step.

Step 3. Estimation of θi

This is the key step in the RPTMM-AFT model, and in this step I assume the σi

has been fixed at the current value. Consider the error term at iteration υ

ε
(υ)
i = Yi − xiβ

(υ).

I model εi using the Bayesian hierarchical model as,

εi|θi, σi ∼ N(θi, σ
2
i ), independently

with

θ1, . . . , θN ∼ F i.i.d.

I assume that F has a Polya tree distribution, and use the recursive algorithm from

Section 3.2 to perform Bayesian nonparametric analysis.
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Estimation of σ2
i

In the RPTMM-AFT model, εi|θi ∼ N(θi, σ
2
i ) independently, and θ1, . . . , θN ∼

F, i.i.d. If σi is unknown to us and heterogeneity is believed to exist, each σi

should be estimated. I could use the method described in Section 3.5 to estimate

each individual σi at each step. Thus each individual σMj corresponding to each

component j(j = 1, . . . , 2M ) can be estimated as

σ̂2
Mj =

1

γj

N∑

i=1

ωij(εi − ζj)
2

where ζj is the midpoint of interval IMj and

γj =

N∑

i=1

ωij.

The σi corresponding to each data εi is estimated as

σ̂2
i =

2M∑

j=1

ωijσ̂
2
Mj, (5.4)

where ωij = P (θi ∈ IMj|εi).

5.2.2 Censored data

If Yi is censored in [C1, C2), it is easy to impute values through the truncated

normal distribution. I sample a value for Yi using

Yi ∼ truncated N(xiβ + θi, σ
2
i ) in [C1, C2). (5.5)

The sampling process for the truncated normal distribution can be done efficiently

in R (see for example the function ptnorm in the package msm).
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Summary of the algorithm

1. Initialize F (0), θ(0), and σ(0). A Polya tree truncated at level M is built and

centered on F (0).

2. For l = 1, . . . ,Υ,

• Sample β from equation (5.3);

• Use RPTMM to estimate θ

(a) For each data point εi, calculate P (θi ∈ IMk|εi) = ωik (k = 1, . . . , 2M ),

and calculate PMj =
∑N

i=1 ωij/N

(b) Draw a large number of pseudo data θ∗1, . . . , θ
∗
d

(c) Built a new Polya tree using the empirical distribution of θ∗1, . . . , θ
∗
d as

base distribution

(d) Calculate θi using the RPTMM procedure.

• Estimate σ2
i using equation (5.4).

• Impute censored data according to equation (5.5).

3. Repeat Steps 1 and 2 many times.

Estimating the survival function

To estimate the probability P (T > t|X, Y ), I notice that

P (T > t|X, Y ) = P (exp(Xβ + ε) > t|X, Y )

= P (ε > −Xβ + log(t)|X, Y ).

(5.6)
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I could empirically estimate P (ε > −Xβ + log(t)|X, Y ) at iteration step υ through

Ŝ(υ)(t) = P (ε > −Xβ + log(t)|X, Y ) =

N∑
i=1

I(ε
(υ)
i > −Xβ(υ) + log(t))

N
,

where I(.) is indicator variable. Let the estimate at the iteration υ be Ŝ(υ)(t), so the

final estimate will be

Ŝ(t) =

Υ∑
υ=1

Ŝ(υ)(t)

Υ
.

The samples Ŝ(t)(1), . . . , Ŝ(Υ)(t) can be used to build the credible intervals. For

example, the 95% credible interval is [Ŝ(t)0.025, Ŝ(t)0.975], where Ŝ(t)q is the q quantile

of Ŝ(1)(t), . . . , Ŝ(Υ)(t).

Estimating the intercept

For the model

Y = log(T ) = β0 +Xβ + ε,

ε ∼ F is not assumed to have the mean zero. It will cause confounding of the

intercept, but not influence the estimate of β. I rewrite the model as

Y = log(T ) = β0 + θ +Xβ + ε− θ = β̃0 +Xβ + ε̃,

where θ is the mean of pseudo θ∗1, . . . , θ
∗
d at each iteration υ. It is easy to verify that

E(ε̃|θ, σ) = 0. With the constraint, the β̃0 is the intercept I need to estimate.

5.3 Examples

Example 12. Simulated data
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Figure 5–1: Simulated data: Estimating the true β1 = 1. The top panel represents
the estimates from RPTMM-AFTmodel, and the bottom panel represents the estimates
from the MPT-AFT model. The 95% credible interval for each dataset is plotted.

I simulated 100 data points V1, . . . , V100 from a mixture of normal distributions

(from Hanson and Johnson 2002 [37]):

V1, . . . , V100 ∼ 0.5 N(1, 0.152) + 0.5 N(3, 0.152)

Two covariates were generated by taking xi,1 ∼ 0.5δ0 + 0.5δ1, where δa is a point

mass at a; the second covariate xi,2 ∼ N(0, 1). The true vector of coefficients was set

at β = (1,−1) and the survival times are calculated as

Ti = exp(xiβ)Vi.
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Figure 5–2: Simulated data: Estimating the true β2 = −1. The top panel represents
the estimates from RPTMM-AFTmodel, and the bottom panel represents the estimates
from the MPT-AFT model. The 95% credible interval for each dataset is plotted.

The baseline survival distribution is a mixture distribution, which is very possible to

occur in real applications. Hanson and Johnson (2002 [37]) fit this kind of simulated

data using a mixture of Polya tree (MPT) model. They found that a parametric model

cannot recover the accurate estimates of β, while by using the nonparametric baseline

distribution (mixture of Polya trees), the true β can be accurately estimated.

200 data sets have been simulated and implemented using the proposed approach

(RPTMM-AFT) and the AFT model based on mixture of Polya tree (MPT-AFT, using

the R command PTlm in R package DPpackage). I plot the posterior mean and 95%

credible intervals for the estimates of β = (1,−1) for the 200 simulated datasets

(in Figure 5–1 and 5–2), and find that both of the two Bayesian semiparametric
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Figure 5–3: Simulated data: Survival curves and baseline density estimates for co-
variates x = (1, 0).

AFT models give similarly accurate results. The average errors for the 200 data

sets 1
200

200∑
i=1

(β̂−β)2 for the two Bayesian semiparametric AFT models are calculated.

Both models give the average errors smaller than 0.001, and confirm their similar

performance

In Figure 5–3, for one of the simulated data sets, I plot the survival curves

and baseline density estimates for covariate combination x = (1, 0). I find that

they are very close to the true curves. Figure 1 of Hanson and Johnson (2002 [37])

also gives similar curves. I provide an alternative way which can approximate the

semiparametric AFT model based on a mixture of Polya trees.

Example 13. Right censored case: Small cell lung cancer data

I demonstrate the proposed method for the small cell lung cancer data (Ying et

al 1995 [83]). The standard therapy for patients with small cell lung cancer is to use

the combination of drugs etoposide and cisplatin. However, whether to use etoposide
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Models β0 β1 β2

Ying (1995) 3.03 -0.16 (-0.34,0.01) -0.004 (-0.014,0.006)
Yang M1 (1999) 3.16 (2.86,3.17) -0.17 (-0.24,-0.09) -0.006 (-0.009,0.001)
Yang M2 (1999) 3.09 (2.95,3.20) -0.16 (-0.23,-0.10) -0.005 (-0.008,-0.001)

Huang et al (2007) 2.70 (2.37,3.01) -0.15 (-0.24,-0.05) 0.001 (-0.005,0.007)
RPTMM-AFT 3.24 (2.94,3.54) -0.17 (-0.27,-0.08) -0.006 (-0.011,-0.002)

Table 5–1: Small cell lung cancer data. The first four rows list the estimates of
coefficient and the 95% confidence intervals from the literature. The fifth row lists
the posterior mean and 95% credible interval from RPTMM-AFT model

or cisplatin first is not clear. The data are from a clinical study, where in Group 1

cisplatin followed by etoposide, and in Group 2 etoposide followed by cisplatin. In

this study, 121 patients with small cell lung cancer were randomly assigned to these

two groups (62 patients to Group 1 and 59 patients to Group 2).

There was no loss to follow-up in this study, and each terminal event was either

an observed death or administratively censored. Let X1 = 0 if the patient is in Group

1 and 1 otherwise. Let X2 denote the patient’s entry age. Instead of using natural

log, Y = log10(T ), so the model is Y = log10(T ) = β0 + β1X1 + β2X2 + ε.

The estimates of coefficients are listed in Table 5–1. Ying et al. (1995 [83])

proposed a survival analysis with median regression models. Yang and Prentice (1999

[82]) used weighted empirical survival and hazard functions for this right censored

data. Recently, Huang (2007 [42]) presented a least absolute deviations estimate for

AFT model. Here, I fit these data using the Bayesian semiparametric RPTMM-AFT

model.

Estimates of the covariate effects from each model are similar. β1 is significant,

which indicates that Group 1 (cisplatin followed by etoposide) seems to perform
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better. The 95% credible interval of β2 is a little bit significant in RPTMM-AFT model.

Example 14. Interval censored case: Cosmetic effects of cancer therapy

Interval-censored survival data are very common in real applications. However,

the literature to handle interval-censored cases using nonparametric approaches is

limited. In frequentist statistics, Turnbull’s EM algorithm (Turnbull 1976 [78]) seems

to be a popular choice. In Bayesian nonparametric analysis, Doss and Huffer (2003

[23]) and Hanson and Johnson (2004 [38]) proposed two algorithms based on mixtures

of Dirichlet processes. In this section, I discuss interval-censored data, and show

that the proposed RPTMM-AFT model can provide accurately approximate Bayesian

inference.

For women with early breast cancer, radiotherapy is an alternative treatment to

mastectomy. An interesting question is whether a combination of radiotherapy and

chemotherapy can reduce the cosmetic effect that induce breast retraction quickly.

Beadle et al. (1984 [4]) presented a retrospective study of 46 radiation only patients,

and 48 radiation plus chemotherapy patients. Patients went to a clinician typically

every four to six months, and the level of breast retractions since the last visit

was recorded as none, moderate or severe. If moderate or severe breast retraction

occurred, the time of retraction was known only to lie between the present time

and last visit, so is interval-censored. If no moderate or severe breast retractions

have occurred at the last visit of a patient, the last visit time is considered as right

censored.
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I fit our RPTMM-AFTmodel to these data, under Y = log(T ) = β0+β1X1 +ε. The

covariate of interest is x1i = 0 if the ith patient had radiotherapy and chemotherapy,

and x1i = 1 if the ith patient had radiotherapy only. The posterior medians for

β1 are listed in the first row in Table 5–2. The posterior median of months for

the radiotherapy only group is 38.8, with the 95% credible interval (30.5, 47.3).

Adding chemotherapy to radiation treatment reduced the median time to retraction

to 23.1 with 95% credible interval (20.0, 27.6). Both the algorithms based on mixture

of Dirichlet process in Hanson and Johnson (2004 [38]) and the RPTMM-AFT model

conclude that adding chemotherapy significantly reduces the time to deterioration.

Figure 5–4: Breast cancer data set. Left panel: comparison of functions of retraction
time for the two treatment groups and the 95% credible intervals from the RPTMM-AFT
model. Right panel: Survival functions from EM algorithm (R package interval)

I also calculated the posterior medians and 95% credible intervals for the differ-

ence in survival across groups, and they are listed in Row 4-7 of Table 5–2. Before
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Estimand MDP (α = 20) RPTMM-AFT

Median of β1 0.57 (0.16,0.91) 0.53 (0.16,0.81)
Median months for radiotherapy only 39.00 (28.00, 50.00) 38.80 (30.50,47.30)
Median months for radiotherapy+chemotherapy 22.00 (18.00, 29.00) 23.1(20.00, 27.60)
S(t|x = 1) − S(t|x = 0) at month 10 0.08 (0.01,0.16) 0.07 (0.01, 0.12)
S(t|x = 1) − S(t|x = 0) at month 20 0.25 (0.08,0.44) 0.22 (0.07, 0.33)
S(t|x = 1) − S(t|x = 0) at month 30 0.30 (0.04, 0.51) 0.30 (0.05,0.49)
S(t|x = 1) − S(t|x = 0) at month 40 0.29 (0.07, 0.52) 0.30 (0.07,0.49)

Table 5–2: Breast cancer data set: comparison of the Mixture of Dirichlet processes
(Hanson and Johnson 2004 [38]) with the RPTMM-AFT model. The first row lists the
posterior median of β1. The second and third rows list the median months for each
groups. The rest four rows list the differences in survival across groups at month 10,
20, 30, and 40. The “( )” lists the 95% credible interval.

10 months, there is little difference in survival between the two groups. After month

20, the difference becomes larger. All the estimates from RPTMM-AFT model are rea-

sonably close to those from the AFT model based on the MDP algorithm (Hanson

and Johnson 2004 [38]).

Klein and Moeschberger (1997 [48]) presented an analysis based on Turnbull’s

nonparametric maximum likelihood estimate (Turnbull 1976 [78]) of a survival func-

tion. Finkelstein and Wolfe (1985 [30]) used their semiparametric model and drew

the estimated survival curves. Both their curves become constant after month 40.

I plot the comparison of distributions of retraction time for the two treatment

groups in Figure 5–4, and I also plot the survival curves from EM algorithm using

the R package interval. Our curves are very close to the Figure 4 of Hanson and

Johnson (2004 [38]). There are two significant differences between the survival curves

from Bayesian nonparametric models and EM algorithms:
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• Before month 15, according to the EM algorithm, the survival curve from the

“Radiation only” group is above the curve from the “Radiation plus Chemother-

apy” group. While the Bayesian nonparametric models give different result.

Through Table 5–2, I know that before month 10, the difference between the

two groups is small.

• Bayesian nonparametric survival curves are smoother than those from EM al-

gorithm.

5.4 Recurrent event data analysis

In many medical and scientific studies, patients can experience recurrent or

repeated events during follow-up, such as recurrent infections or attacks in patients

suffering from some disease within a longitudinal study. The challenge in recurrent

data analysis is that the independence assumption between the event times is broken.

Related failures of the same patient are dependent.

Lin et al. (1994 [56]) and Cook and Lawless (2006 [17]) give an excellent overview

of the existing approaches to handle recurrent data, and most of them are based on

the Cox’s model. Komarek and Lesaffre (2007 [49]) proposed an accelerated failure

time model for recurrent data, in which the error term is assumed to have a mixture

of normal distributions. Reversible jump MCMC (Green 1995 [34]) is used to find

the number of components and estimate parameters. In this section, I extend the

RPTMM-AFT model proposed above to the recurrent data analysis. The error term

is also assumed to arise from a nonparametrically specified distribution. Instead of

complicated reversible jump MCMC, the recursive Polya tree mixture model is used.
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For individual i, assume the failure time is Ti0 = 0, Ti1, . . . , Tini
, I consider the

log of gap time Yij = log(Tij − Ti(j−1)), j = 1, . . . , ni. Let the covariates involved be

Xij, j = 1, . . . , ni for individual i. The model I consider is

Yij = Xijβ + εij, (5.7)

where

εij|θi, σi ∼ N(θi, σ
2
i ) θi ∼ F

Note that although an individual i can experience several events, εij share the same

θi and σi within the same individual for the normal kernel.

The estimating process is similar to the proposed algorithms, and the only

change is that the ωik is estimated as

ωik = P (θi ∈ IMk|εi) =

PMk

ni∏
j=1

N(εij|ζMk, σ
2
i )

2M∑
l=1

PMl

ni∏
j=1

N(εij|ζMl, σ2
i )

.

I next discuss a well known data set (Manda et al. 1995 [61]), and fit it using Komarek

and Lesaffre (2007 [49])’s nonparametric AFT model, and our RPTMM-AFT model.

Although RPTMM-AFT model is extremely simple to implement, it can approximate

the Komarek and Lesaffre (2007 [49])’s result.

Example 15. CGD data

The data set is from Fleming and Harrington (1991 [31]) and it is a double-

blinded placebo controlled randomized trial of gamma interferon (γ-IFN) in chronic

granulomatous disease (CGD). CGD is a group of rare inherited disorders of the

110



Covariates Placebo Gamma interferon
Number of patients 65 63
Pattern of inheritance 0: X-linked 41 (63.1%) 45 (71.4 %)

1: autosomal recessive
Age (in years) 14.98 (9.64) 14.29 (10.12)
Corticosteroid use(0: No; 1: Yes) 2 (3.1%) 1 (1.6%)
Prophylactic antibiotic use (0: No; 1: Yes) 55 (84.6%) 56 (88.9%)
Gender (0: Male; 1: Female) 12 (18.5%) 12 (19.1 %)
Hospital region (0: USA; 1: Europe) 22 (33.8%) 17 (27 %)

Table 5–3: CGD data: baseline characteristics according to treatment group (from
Manda et al. 1995 [61]).

immune function, with recurrent pyogenic infections. It is believed that the effect of

gamma interferon can help to treat CGD patients.

A total 128 patients were followed, 65 patients on placebo, and 63 patients on

gamma interferon treatment. 203 infections/censoring were observed, and the num-

ber of infections for per patient range from 1 to 8. Some of the potential confounder

are involved, and they are listed in Table 5–3.

I fit the data using three models: a parametric AFT model whose frailty is as-

sumed to be normal; a Bayesian semiparametric AFT model introduced in Komarek

and Lesaffre (2007 [49])(R package bayesSurv); and the proposed RPTMM-AFT model

Table 5–4 lists the posterior mean and 95% credible intervals or confidence

intervals for the three methods. I find

• The posterior means of the two Bayesian semiparametric models are very close.

The parametric model gives the estimates closer to zero.
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Models Parametric AFT Komarek (2007) RPTMM-AFT

Treatment Estimate 1.10 (0.30) 1.25 (0.43) 1.31 (0.33)
95% CI (0.51,1.69) (0.49,2.16) (0.69,1.96)

Inheritance Estimate -0.62 (0.37) -0.89 (0.44) -0.86 (0.37)
95% CI (-1.35,0.10) (-1.78,-0.04) (-1.54,-0.10)

Age Estimate 0.03 (0.02) 0.042 (0.02) 0.041 (0.02)
95% CI (-0.009,0.009) (0.001,0.085) (0.007,0.08)

Corticosteroids Estimate -1.57 (0.88) -2.38 (1.22) -2.16 (0.97)
95% CI (-3.30,0.15) (-4.80,-0.03) (-3.82,-0.21)

Prophylactic Estimate 0.79 (0.42) 1.04 (0.48) 1.03 (0.45)
95% CI (-0.03,1.61) (0.11,2.03) (0.21,1.98)

Gender Estimate 0.99 (0.51) 1.40 (0.72) 1.44 (0.52)
95% CI (-0.01,1.99) (0.10,2.90) (0.43,2.52)

Hospital Estimate 0.74 (0.36) 1.11 (0.46) 0.97 (0.45)
95% CI (0.02,1.44) (0.24,2.09) (0.02,1.82)

Table 5–4: CGD data: Posterior means, 95% credible intervals of parameters for
three methods: 1. parametric AFT model whose frailty is assumed to be normal; 2.
a Bayesian semiparametric AFT model introduced in Komarek and Lesaffre (2007
[49])(R package bayesSurv); and 3. the proposed RPTMM-AFT model.

112



• The standard errors from the proposed RPTMM-AFT model are relatively larger

than those from parametric model, but are smaller than those from Komarek’s

model.

• In parametric model, only treatment and hospital region are statistically sig-

nificant. However, all the variables in the two Bayesian semiparametric models

are significant.

All the covariates are significant for both of the Bayesian semiparametric models.

The application of γ-IFN significantly reduces the rate of infection in CGD patients.

Patients with X-linked inheritance pattern and with the presence of corticosteroids at

the time of entry experienced higher rate of serious infection in CGD. Young patients

and male patients also have a higher rate of infection. Patients in U.S.A hospitals

seem to perform worse than those in European hospital.

I also did a “naive simulation”. The errors εi = yi − xiβ̂ are calculated, and the

β̂ are from Komarek’s model. I ignore the dependence between these errors, and

applied resampling techniques to produce 200 bootstrap samples. If yi is right cen-

sored, it is still considered as censored in the bootstrap sample.

I fit the proposed RPTMM-AFT model to each of the bootstrap samples, and con-

sider the β̂ as the “true” values. I record the proportion of the “true” values that

are included in the credible intervals in the 200 bootstrap samples. For the seven co-

variates, these proportions are: Treatment (92%), Inheritance (96.5%), Age (96%),

Corticosteroids (93.5%), Prophylactic (98%), Gender (96%), and Hospital Region
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(93%).

Another “naive simulation” is to consider the β̂ from RPTMM-AFT to be the true

values, simulate a θ∗i ∼ F̂ , and then simulate a ε∗i ∼ N(θ∗i , σi). The simulated

Y ∗ = Xβ̂ + ε∗. I also repeat the simulation 200 times to produce 200 simulated

samples. The proportions to cover the “true” values for the seven covariates are:

Treatment (92.5%), Inheritance (94%), Age (95%), Corticosteroids (94%), Prophy-

lactic (93%), Gender (92.5%), and Hospital Region (94.5%). The proportions from

the two naive simulations are around 95%, which indicate that the PRTMM-AFT

model gives a reasonable fit.

The proposed RPTMM-AFT model can provide approximately similar results with Ko-

marek and Lesaffre (2007 [49])’s nonparametric AFT model. In their models, the

error terms are assumed to arise from a infinite mixture of normal distribution,

and the reversible jump MCMC is used to estimate the number of components and

parameters. The proposed RPTMM-AFT model is very easy to be implemented and

understood.

5.5 Conclusions

In this section, I developed a fully Bayesian semiparametric accelerated failure

time model, based on a recursive Polya tree mixture model. Our models are easy to

implement and to be understood, compared with other semiparametric AFT models.

When the baseline survival arise from some unexpected distribution (like a mixture

distribution), our RPTMM-AFT model can still give accurate estimates of regression
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coefficients.

The RPTMM-AFT model can also handle interval-censored data, and provide survival

function estimates. In frequentist statistics, Turnbull (1976 [78])’s EM algorithm

seems to be the only one to provide a nonparametric fit (see Doss and Huffer 2003

[23]). In the nonparametric Bayesian world, Doss and Huffer (2003 [23]) and Hanson

and Johnson (2004 [38]) proposed the models based on mixture of Dirichlet process.

The simple RPTMM-AFT model can approximate their approaches very well, and can

easily implement fully Bayesian inference.

I also extend the proposed model to handle recurrent data, as an alternative to Ko-

marek and Lesaffre (2007 [49])’s work. Both approaches can obtain similar estimates

and provide fully Bayesian inference. Our approaches can avoid the requirement to

specify the large number of prior parameters in advance.
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CHAPTER 6
Conclusions and future work

In this thesis, I propose a recursive Polya tree mixture model (RPTMM). The mo-

tivation of our work is to provide a simple and computationally efficient Bayesian

nonparametric approach. I model a random sample by assuming Yi|θi ∼ h(Yi|θi)

independently, and the parameters are supposed to arise from some random distri-

bution F . I model F using a Polya tree prior and use the empirical distribution of

some pseudo parameters to be the base distribution. The proposed approach enjoys

a number of advantages: (1) sampling from F is very straightforward, (2) it does not

require any analytical computation, and (3) very fast.

I discuss the application of RPTMM to the baseball players’ data in Brown (2008 [10]),

and show that the proposed approach can compete with other Bayesian nonparamet-

ric and empirical Bayes methods. I also revisited the thumbtacks data in Liu (1996

[57]), and show that the “accurate” plots can also be obtained from RPTMM. I also

discuss the density estimation problem, including bivariate density estimation. The

proposed recursive Polya tree mixture model is shown to perform better than mixture

of Polya tree model. In addition, I also show that the proposed approach can ap-

proximate a complicated conditional Dirichlet process model in meta-analysis. Since

it is easy to sample from F , the mean or variance of F can obtained in a natural way.
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In this thesis, I developed a semiparametric AFT model by assuming the error term

arises from a random distribution F , and show that the RPTMM-AFT model can pro-

vide a full Bayesian inference. I revisit the simulated data proposed in Hanson and

Johnson (2002 [37]), the data on a small cell lung cancer, and on the cosmetic effects

of cancer therapy. The proposed approach is demonstrated to give similar perfor-

mance to some more complicated approaches. I also extend the semiparametric AFT

model to handle recurrent data.

In regression problems, I only consider the case where the response is a continuous

variable. A future research problem is to extend the semiparametric regression model

to the generalized linear model, and this may require more complicated computing

algorithms. I investigate the performance of recursive Polya tree mixture models

under a number of applications. However, many other situations could also be inves-

tigated, for example, large-scale multiple testing problems, such as gene expression

data analysis.
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CHAPTER 7
Epilogue

In this chapter, I discuss some questions raised by the examiners of my thesis. I

discuss four issues related to the proposed recursive Polya tree mixture model.

1. Examples where we need this extra flexibility that the proposed model gives

and other approaches lack.

2. Estimating the variance of F in meta-analysis

3. Assess whether the proposed RPTMM would produce too short credible intervals

when sample size is small.

4. Compare the proposed RPTMM with the parametric AFT model.

7.1 Extra flexibility

In this section, I examine whether the proposed RPTMM can provide extra flexi-

bility that other methods lack.

7.1.1 Comparison with parametric models

In my thesis, some examples have demonstrated the advantages of RPTMM by

relaxing the parametric assumption concerning F .

One compelling example is the thumbtack data set discussed in Section 4. In

this example

Xi ∼ Binomial(Yi, θi),
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and

θ1, . . . , θN ∼ F.

By assuming F to arise from some random distribution, the recursive Polya tree

mixture model captured the surprising “bimodal” structure of the data. As Liu

(1996 [57]) mentioned, this surprising “bimodal” structure can not be captured

through a parametric model.

Another example is the simulated data set (Example 12) discussed in Section

5.3, where the error term is assumed to arise from a mixture of log normal distribu-

tions. The least squares method can not accurately estimate the parameters in the

simulated data set (Example 12), since the hidden assumption in the least squares

method is that: the error term is a simple normal distribution.

By relaxing the parametric assumption of the error term, the proposed recursive

Polya tree mixture model can successfully estimate the parameters, and also cap-

ture the mixture of log normal distributions.

The two examples demonstrate the extra flexibility and advantages of the recursive

Polya tree mixture model compared with other parametric models.

7.1.2 Comparison with existing Bayesian nonparametric models

The RPTMM exhibits the same level of flexibility as many Bayesian nonparametric

models. However, our proposed recursive Polya tree mixture model still enjoys

a lot of advantages.

Case 1: General objectives in the Bayesian hierarchical model
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In the Bayesian hierarchical model, suppose we observe a random sample Y1, . . . , YN ,

Yi|θi ∼ h(Yi|θi) independently,

and θ1, . . . , θN are assumed to arise from some random distribution F

θ1, . . . , θN ∼ F i.i.d

Generally speaking, there are two objectives in a Bayesian hierarchical model

• to estimate the individual θ1, . . . , θN

• to perform inference on F

In Chapter 4, I discuss a baseball players’ dataset, which is related to estimating

θ1, . . . , θN ; and I also discuss a thumbtack data set, which is related to performing

inference on F .

From the performance of different Bayesian methods to these two data sets, I

compare the proposed RPTMM with Dirichlet process mixture model and empirical

Bayes methods. Several points that show the advantages of the proposed RPTMM are

emphasized here:

• The Dirichlet process mixture model (with the help of sequential imputation)

successfully captures the bimodal structure in the thumbtack data set, but

gives a poor fit to the baseball players’ data set (see Table 4–3),

• The empirical Bayes approach is among one of the top models to estimate the

batting averages in baseball players’ data set, but it is not clear how to apply

the empirical Bayes method to perform inference on F
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• The proposed recursive Polya tree mixture model is not only one of the

top models to estimate the batting averages in the baseball players’ data, but

also successfully captures the bimodal structure in the thumbtack data set.

The advantage of the proposed recursive Polya tree mixture model is that:

it can not only provide a reasonable fit to estimate θ1, . . . , θN , but also perform

inference on F .

Case 2: Density estimation

In Section 4, the density estimation problem is also discussed. Different ap-

proaches are compared based on some criteria (ISE, WISE and LPML).

• The proposed recursive Polya tree mixture model performs better than

mixture of Polya trees to estimate the density.

• Based on the criteria (ISE, WISE and LPML), the recursive Polya tree mixture

model provides similar performance to the Dirichlet process mixture model.

Because of the discrete property of the Dirichlet process, the Dirichlet process

mixture model would lead to a mixture of any parametric distributions (the number

of components is not fixed) to estimate the density. For example, in the Ozone data

set (in Section 4.3), the density plot in the Dirichlet process mixture model shows

a two-cluster structure. However, the proposed recursive Polya tree mixture

model would lead to a “smoothed histogram” and capture more information.

Another advantage of the proposed approach is that: it is straightforward to

obtain the uncertainty of the estimates of density. For example, the density of a

point xi,

h(xi) ∼
∫
h(xi|θ)dF (θ),
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can be estimated through the Monte Carlo method if the θ values can be sampled

from F . The proposed recursive Polya tree mixture model is a recursive algo-

rithm, and includes many iterative steps 1, 2, . . . ,Υ. With the help of Monte Carlo

method, the pseudo data at each step can be plugged to the formula above to obtain

the estimates

h(xi)
(1), . . . , h(xi)

(Υ).

Thus the 95% credible intervals can be easily obtained as the 0.025 and 0.975 quan-

tiles of these h(xi)
(1), . . . , h(xi)

(Υ).

In the Dirichlet process mixture model, F is marginalized out. At each step

the drawn θ’s can not be considered as a sample from F . Thus, how to estimate

uncertainty of density still needs further investigation in the Dirichlet process mixture

model.

Conclusion

Compared with the parametric model, the RPTMM can capture more flexibility

from data. Compared with the existing Bayesian nonparametric models, the pro-

posed RPTMM can enjoy some computational advantages described above.

7.2 Estimating the variance of F in meta-analysis

In this section, I discuss a simulated data set to demonstrate that the proposed

RPTMM performs well but the existing Bayesian nonparametric models do not give a

reasonable fit.
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In Section 4.6, I discussed the meta-analysis problem. The log odds ratios

Y1, . . . , YN are assumed to be from normal distributions

Yi|θi, σi ∼ N(θi, σ
2
i ),

and

θ1, . . . , θN ∼ F i.i.d.

One of the objectives in meta-analysis is to estimate the Var(F ). As discussed in

Section 4.6, if the θ1, . . . , θN are assumed to arise from a nonparametric random dis-

tribution F , the estimation of Var(F ) is not straightforward using existing Bayesian

nonparametric models.

For example, in the mixture of Polya trees model, the random distribution F

has a base distribution N(µ, τ 2). The τ 2 in the base distribution does not equal to

the Var(F ), and thus does not have a clear interpretation.

In Table (4–7) and (4–14), we observe big difference in estimating the Var(F ),

especially when the precision values α for existing Bayesian nonparametric models are

small. Note that when the precision values α for existing Bayesian nonparametric

models are large, both the proposed recursive Polya tree mixture model and

the existing Bayesian nonparametric models provide similar estimates.

An important question is: which one is more accurate to estimate Var(F ), the

existing Bayesian nonparametric models (with small precision values) or the proposed

recursive Polya tree mixture model?

A simulated meta analysis data set
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Figure 7–1: Simulated data set: The plot show the true density of F ∼
0.5Normal(−1, 0.52) + 0.5log-Normal(1,

√
0.5

2
), the estimated density of F from

RPTMM (red line) and the density of observed log odds ratios (blue line)

To answer this, a new simulated data set was designed, where 100 θ values are

generated from a mixture distribution

θ1, . . . , θ100 ∼ 0.5Normal(−1, 0.52) + 0.5log-Normal(1,
√

0.5
2
),

and log odds ratios Y1, . . . , Y100 is assumed to arise from

Yi ∼ N(θi, 1) i = 1, . . . , 100.

The distribution of F is from a mixture distribution, and the true density plot

of F is shown in Figure 7–1. Suppose the distribution is unknown to us, and only the

simulated log odds ratios are available. For one simulated data set, the estimated
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density plot of F from the proposed RPTMM is shown in Figure 7–1, and the two-

cluster structure is successfully captured. The density plot of the observed log odds

ratios (blue line) does not show any special structure.

In the mixture of Polya trees, the precision value α is set to be 1, and the

hyperparameters are set according to the suggestions in the computing reference

manual of the R package DPpackage (http://cran.r-project.org/web/packages/

DPpackage/DPpackage.pdf). Compared with the mixture of Polya trees model, the

proposed RPTMM is more “automatic”, and does not require to set any hyperparame-

ters.

The objective is to estimate the
√
Var(F ) (the true value is 3.0), and I simulate

100 data sets (each data set has 100 observations). I consider two methods to examine

which method (RPTMM vs. mixture of Polya trees) give a more reasonable estimate of
√
Var(F ).

In the first method, for each of the simulate data set, the 95% credible intervals

of both RPTMM and mixture of Polya tree are calculated, and check whether the true

value 3.0 is included in the 95% credible intervals.

For an adequate model fit, we expect that around 95 out of 100 credible intervals

would include the true value. For the proposed RPTMM, 93 credible intervals include

the true value; however for the mixture of Polya trees, only 65 credible intervals

include the true value. Thus, the mixture of Polya tree seems to provide incorrect

inferences in this simulated case.
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In the second method, I examine the average error. Suppose we define it as

1

100

100∑

i=1

(

√
V̂ar(F(i)) − 3)2,

where
√
V̂ar(F(i)) denotes the estimates from the RPTMM for simulated data set i. For

mixture of Polya tree, the average error is 0.51, but for the recursive Polya tree

mixture model, the average error is only 0.21. It is clear that the mixture of Polya

trees fails to provide a reasonable estimate for the Var(F ).

The main reason for the failure of mixture of Polya tree is that it can only

estimate the variance of base distribution, not the variance of F . However, the

proposed recursive Polya tree mixture model directly estimates the variance

of F .

In this simulated data set, I show that the recursive Polya tree mixture

model is not only a computationally efficient method, but also gives reasonable an-

swer where the existing Bayesian nonparametric models fail. In addition, to estimate

the variance of F in meta analysis, the proposed RPTMM is also preferable.

7.3 Is the proposed RPTMM would produce too short credible intervals
when sample size is small?

In this section, I discuss some problems related to the empirical Bayes idea, and

discuss the credible intervals problem. Three topics are discussed in this section:

• I introduce the parametric empirical Bayes method, and discuss why sometimes

it would exhibit the “over-shrinkage” problem,

• I explain why parametric empirical Bayes method produces a shorter confidence

interval when the sample size is small,
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• I discuss whether the RPTMM would provide reasonable credible intervals.

7.3.1 Empirical Bayes method in meta-analysis

The details of the empirical Bayes method to meta-analysis can be found from

many standard textbooks or lecture notes. The introduction in this section is from

a lecture note by Dr. David Draper, and the link of the lecture note is

http://users.soe.ucsc.edu/~draper/San-Francisco-2011-notes-part-2.pdf

In the meta-analysis problem, the observed log odds ratio y1, . . . , yN are from a

normal distribution

yi|θi ∼ N(θi, σ
2
i ),

and θ1, . . . , θN are assumed to arise from a normal distribution

θ1, . . . , θN ∼ N(µ, τ 2).

The conditional distribution of θi, given data and parameters µ and τ 2 is

θi|yi, µ, τ
2 ∼ N(θ∗i , σ

2
i (1 − Bi)),

where

Bi =
σ2

i

σ2
i + τ 2

,

and

θ∗i = (1 − Bi)yi +Biµ.

Here the conditional mean of the effect for study i θ∗i is a weighted average of the

sample mean for that study (yi) and the overall mean (µ).
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To estimate the effect for study i, all the studies are used, which reflects the “bor-

rowing information from others” in the estimation process. The Bi is the shrinkage

effect.

Now the problem is how to estimate µ and τ . The likelihood function is

l(µ, τ 2|y) ∝
N∏

i=1

1√
σ2

i + τ 2
exp{−1

2

N∑

i=1

(yi − µ)2

σ2
i + τ 2

}

The maximum likelihood estimate µ̂ and τ̂ 2 is

µ̂ =

∑N

i=1 Wiyi∑N

i=1 Wi

,

and

τ̂ 2 =

∑N

i=1 Wi[(yi − µ̂)2 − σ2
i ]∑N

i=1Wi

,

where

Wi =
1

σ2
i + τ̂ 2

Thus the maximum likelihood estimate of θi is

θ̂i = (1 − B̂i)yi + B̂iµ̂, (7.1)

where

B̂i =
σ̂2

i

σ̂2
i + τ̂ 2

=
1

1 + τ̂ 2/σ̂2
i

, (7.2)

Morris (1983 [65]) discussed the detail of the “over-shrinkage” problem. For

small N , the uncertainty in τ 2 can not be accounted for fully, and therefore the

τ̂ 2 is underestimated. Morris (1983 [65]) pointed out that B is a convex nonlinear

function of τ 2, and so substitution of a nearly unbiased estimator τ̂ 2 of τ 2 into B
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would produce an estimate of B that is biased to be too large. This conclusion can

be proved by Jensen’s inequality, and the details can be found in Morris (1983 [65]).

Note that Bi is the shrinkage factor, and measures the “degree of shrinkage” for

the estimation of θi. Larger values of Bi indicate more shrinkage, and vice versa.

Thus, if B̂i is overestimated, the maximum likelihood estimate of θi in (7.1) would

“over-shrink” to the overall mean µ.

7.3.2 Why empirical Bayes would produce confidence intervals that are
too short?

In this section, I discuss why the parametric empirical Bayes method would

produce shorter confidence interval. The detail can be found in Morris (1983, [65])

and Carlin and Louis (2009, [14]).

Consider the Bayesian hierarchical model,

Yi|θi ∼ h(Yi|θi) independently,

and

θ1, . . . , θN ∼ F (λ).

The parametric empirical Bayes method would use the data to estimate the

hyperparameter λ. However, Morris (1983, [65]) pointed out a problem of the “em-

pirical Bayes” idea, that is, they would produce shorter confidence interval, especially

when the sample size is small.

To see this, from elementary statistics, we have the iterated variance formula,

Var(θi|λ) = Eλ|Y (Var(θi|Yi, λ) + Varλ|Y (E(θi|yi, λ)) (7.3)
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Methods ACI(EB) ACI (RPTMM) Average error (EB)) Average error (RPTMM)
N = 5 71.0% 95.4% 0.43 0.41
N = 10 85.1% 97.0% 0.40 0.38
N = 20 92.1% 95.8% 0.35 0.40
N = 30 92.4% 95.2% 0.35 0.41
N = 50 94.3% 93.1% 0.34 0.37
N = 100 94.7% 93.2% 0.33 0.35

Table 7–1: Simulated case 7.3.1. The average coverage rates and average errors of
the empirical Bayes methods and RPTMM are summarized.

An empirical Bayes procedure would estimate λ using the data, and ignore the

posterior uncertainty about λ (the second term of the equation (7.3)). As a result,

only the first term of equation (7.3) is considered (see Carlin and Louis, 2009, [14]).

Thus, the confidence interval of empirical Bayes would be too short, and espe-

cially when sample size is small (Morris, 1983 [65]). Morris (1983, [65]) introduced

a method to produce reasonable confidence intervals for empirical Bayes method.

7.3.3 Will the proposed RPTMM produce too short confidence interval?

In this section, I examine whether the proposed RPTMM would produce too short

credible intervals by examining two simple simulated cases.

Simulated case 7.3.1

In this simulated case, θ is generated from a normal distribution with mean 0

and variance 1,

θ1, . . . , θN ∼ Normal(0, 1),

and the observed Yi(i = 1, . . . , N) is also generated from a normal distribution with

mean θi and variance 0.5

Yi ∼ Normal(0, 0.5).
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The objective of generating θ from a normal distribution is to guarantee that

the parametric empirical Bayes method can provide correct point estimation. Thus,

if too short confidence intervals are produced by empirical Bayes methods, we could

conclude that the problem is caused by underestimating Var(θi|λ), not caused by

point estimation.

Different sample sizes N = 5, 10, 20, 30, 50, 100 are considered, and we repeated

sampling 100 data sets. To examine whether the confidence/credible intervals are

reasonable, I summarize the number of data sets where the true θ values are included

in the 95% confidence/credible intervals. The average coverage rate are defined as

ACR =
1

100

1

N

100∑

i=1

N∑

j=1

I(θi ∈ 95%CI).

If empirical Bayes or RPTMM gives reasonable fit, the average coverage rate ACR

is expected to be 95%. Table 7–1 summarize the average coverage rates and average

errors of the empirical Bayes methods.

Note as expected, the average errors of parametric empirical Bayes method are

a little bit smaller than RPTMM. Thus, from the point estimation perspective, the

performance of empirical Bayes method is good.

However, just as Morris (1983, [65]) pointed out, when the sample size is small

(N = 5 and N = 10), the average coverage rates of empirical Bayes method are

only 71% and 85.1%. The values are significantly lower than the expected 95%, and

indicates that when the sample size is small, the parametric empirical Bayes method

produces too short confidence intervals. However, when the sample size is large
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Methods coverage rate Average Error
Parametric AFT (Weibull) 97% 0.007

Parametric AFT (Exponential ) 100% 0.012
Parametric AFT (Lognormal) 93.5% 0.015
Parametric AFT (Loglogistic ) 88% 0.029

Mixture of Polya tree 98.5% < 0.001
RPTMM 96% < 0.001

Table 7–2: Simulated case 7.3.2. The coverage rate and average error for the β1,
and the true value is 1. Ti = exp(xiβ)Vi, where xi,1 ∼ 0.5δ0 + 0.5δ1, xi,2 ∼ N(0, 1),
β = (1,−1), and V1, . . . , V100 ∼ 0.5 N(1, 0.152) + 0.5 N(3, 0.152).

Methods coverage rate Average Error
Parametric AFT (Weibull) 100% 0.002

Parametric AFT (Exponential ) 100% 0.003
Parametric AFT (Lognormal) 97% 0.003
Parametric AFT (Loglogistic ) 94% 0.006

Mixture of Polya tree 97% < 0.001
RPTMM 93% < 0.001

Table 7–3: Simulated case 7.3.2. The coverage rate and average error for the β2,
and the true value is -1. Ti = exp(xiβ)Vi, where xi,1 ∼ 0.5δ0 + 0.5δ1, xi,2 ∼ N(0, 1),
β = (1,−1), and V1, . . . , V100 ∼ 0.5 N(1, 0.152) + 0.5 N(3, 0.152).

(N = 50 and N = 100), the parametric empirical Bayes method produces reasonable

confidence intervals.

As a comparison, the average coverage rates of the proposed RPTMM are close to

95%. Thus, the problem of the “too-short” confidence interval in empirical Bayes

methods does not afflict the proposed RPTMM.

Simulated case 7.3.2

In this simulated case, I examine whether the RPTMM-AFT model can give rea-

sonable credible intervals in a regression setting. Some 100 data points V1, . . . , V100
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from a mixture of normal distributions (from Hanson and Johnson 2002 [37]) were

simulated:

V1, . . . , V100 ∼ 0.5 N(1, 0.152) + 0.5 N(3, 0.152)

Two covariates were generated by taking xi,1 ∼ 0.5δ0 + 0.5δ1, where δa is a point

mass at a; the second covariate xi,2 ∼ N(0, 1). The true vector of coefficients was set

at β = (1,−1) and the survival times are calculated as

Ti = exp(xiβ)Vi.

200 data sets are simulated. The proposed RPTMM, and the parametric AFT models

are fit to the 200 data sets. The 95% credible intervals are produced for each of

the 200 data sets. If the true coefficients are included in the 95% data sets, the

credible/confidence interval produced by that method is determined to be reasonable.

The coverage rate and average errors of the two coefficients for different methods

are listed in Table 7–2 and 7–3.

First, the parametric AFT with different parametric distributions can not give

accurate point estimation. Both of the average errors of the two Bayesian nonpara-

metric methods are smaller than 0.001; while the average errors of the parametric

AFT are much larger.

Second, by examining the coverage rates of each method, we conclude that

• the parametric AFT models with Weibull and exponential distributions pro-

duce too wide confidence intervals for the two parameters (note the coverage

rates are close to 100%),
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• the 95% confidence interval of β1 in loglogistic AFT model is too short (only

88%),

• the 95% credible intervals of mixture of Polya trees seem to be a little bit wider

(98.5% and 97%),

• both the lognormal AFT model and the proposed RPTMM-AFT give confidence/credible

intervals close to 95%.

A fundamental difficulty in parametric AFT model is: how to choose the appro-

priate distribution? In addition, even the lognormal distribution is chosen (produces

reasonable confidence interval), it’s performance in point estimation is poor (note

the average errors are 0.015 and 0.003).

The proposed RPTMM not only performs well in point estimation, but also gives

reasonable credible intervals in this regression setting.

7.4 Compare the proposed RPTMM with the parametric AFT model

In Table 5–4 (Example 15), the regression coefficients in the parametric AFT

model are found to be shrunk towards the null. The objective of this section is to

discuss the mis-specification effects in the accelerated failure time model.

Robinson and Jewell (1991, [74]) discussed the problems with covariates adjust-

ment in logistic regression models, and they summarized two conclusions

• In linear regression, omitting some covariates would not bias effect estimates,

but decrease the precision of effect estimates,

• In logistic regression, omitting some covariates does bias the effect estimates

(toward zero).
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In Example 15, when the frailty term is assumed to arise from a parametric

distribution, the regression coefficients are also driven toward zero. Note although in

this example the regression coefficients are diluted, it does not indicate that in every

data set, the parametric assumption of frailty would drive regression coefficients

toward zero. It is an interesting research topic in the future to examine whether

the parametric assumption of frailty would play some systematic role on coefficient

estimates.

A simulated data was designed to examine: if heterogeneity exists in recurrent

data, whether the parametric AFT model can obtain accurate coefficient estimates?

There are 75 patients, and each of them has four measurements. Two covariates

are designed

x ∼ N(2, 0.52)

and

z ∼ 0.5δ1 + 0.5δ2,

where δa is the point mass at a.

The response is designed to be (for i = 1, . . . , 75; j = 1, 2, 3, 4)

yij = 2Xij + 5Zij + bi + εij,

where

εij ∼ N(0, 1),

and bi is assumed to arise from a mixture of log-normal distributions

bi ∼
35

75
log-Normal(1, 0.1) +

40

75
log-normal(3, 0.1).
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Suppose the response variables and two covariates are known to us, and the objective

is to estimate the coefficients. The true coefficients are 2 and 5. I simulate 100 data

sets and apply the parametric AFT model and the proposed recursive Polya tree

mixture model to these 100 simulated data sets.

The average squared errors

1

100

100∑

i=1

(β̂ − β)2

for the two parameters are used to compare the performance of the parametric AFT

model and the RPTMM.

For the first covariate x, the average squared error for parametric AFT model

is 0.81, while the value for RPTMM is only 0.02; for the second covariate z, the average

squared error for parametric AFT is 0.79, while the value for RPTMM is also 0.02.

Note in this simulated, the parametric AFT model fails to estimate the regres-

sion coefficients accurately. When heterogeneity exists, the proposed AFT shows its

advantage to accurately estimate the regression coefficients.

7.5 Summary

In this chapter, I discuss some questions raised by the examiners of my thesis.

In Section 7.1, the proposed RPTMM is shown to capture more flexibility from data

compared with the parametric models. Compared with existing Bayesian nonpara-

metric models, the proposed RPTMM can also enjoy some computational advantages.

In Section 7.2, a simulated data set is discussed to show that the RPTMM works

but the existing Bayesian nonparametric models do not give reasonable fit.
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In Section 7.3, I explain why the parametric empirical Bayes would produce too

short confidence intervals, and show that the RPTMM does not have this problem.

In Section 7.4, a simulated data set in recurrent data is discussed. The paramet-

ric AFT fails to give a reasonable fit, whereas the proposed RPTMM-AFT can accurately

estimate the coefficients.
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